
DOTTORATO DI RICERCA

in

SCIENZE COMPUTAZIONALI E INFORMATICHE

Ciclo XIX

Consorzio tra Università di Catania, Università di

Napoli Federico II, Seconda Università di Napoli,

Università di Palermo, Università di Salerno

SEDE AMMINISTRATIVA: UNIVERSITÀ DI

NAPOLI FEDERICO II

Rosa Palmiero

A Subscription Language For Event-Based

Monitoring of Grid Resources and Services

Tesi di Dottorato di Ricerca

Il Coordinatore

Prof. Aldo de Luca

Contents

0.1 The context . 8

0.2 The aim . 8

0.2.1 Thesis structure . 9

1 Monitoring in Distributed Systems 11

1.1 Overview . 11

1.2 Monitoring and Management activity 13

1.3 The problem of distributed systems 13

1.4 Filtering and Correlation Capabilities 14

1.5 Monitoring Models . 14

1.6 Formal environment description 15

2 The Content-Based Publish/Subscribe Paradigm 18

2.1 Overview . 18

2.2 Introduction to a Publish/Subscribe Model 18

2.3 Description of interaction scheme and comparison with tradi-

tional ones . 20

2.4 Description of Content-Based Model 21

3 Primitive Events: Formalization and Functions Definition 24

3.1 Chapter’s Content . 24

1

3.2 Primitive and composite events 24

3.3 Primitive event definition . 25

3.4 Subscription Definition . 27

3.5 Relation between events and subscriptions 28

3.6 Function defined on simple events 29

3.7 Extended functions to the primitive events 30

3.8 Temporal variable . 31

4 Ennary Trees 34

4.1 Chapter’s Content . 34

4.2 Definition of Tree Structure 34

4.3 Binary and N-ary Trees . 35

4.4 Useful functions . 35

5 Composite Events and Related Functions 38

5.1 Chapter’s Content . 38

5.2 Composite Event . 39

5.3 Formalization of Composite Event 40

5.4 Subscriptions and functions defined on composite events . . . 43

5.5 Subscription’s example on composite event 45

5.6 Subscription’s example applied on monitoring event 47

5.7 Subscriptions and hash data structure 50

6 The Semistructured Data and The Extensible Mark-up Lan-

guage 51

6.1 Chapter’s content . 51

6.2 Structured and Semistructured Data 51

6.3 The Reason of Choice of Semistructured Data 53

6.4 XML as Semistructured Data Model 54

2

6.4.1 XML and HTML: the differences 54

6.4.2 Basic Syntax . 55

6.5 From XML to Semistructured Data Representation 57

6.6 Translation Function . 59

6.7 Query Language for Semistructured Data 60

6.8 Query Language for XML: XPath 60

7 The Pseudo-code: An Idea of Algorithm 62

7.1 Principal Procedures for primitive events 62

8 The Recent Emerging Technology: Computational GRIDs 65

8.1 Chapter’s Content . 65

8.2 The Grid History . 65

8.3 The Grid and Other Technologies: Analogies and Differences 67

8.4 Grid Architecture: a Short Description 68

8.5 The Grid Monitoring . 69

8.5.1 Terms and Concepts 69

8.5.2 Grid Monitoring Phases 70

8.6 INFN-GRID: Naples’s project 70

A Algebra of events 73

B Hash Tables 74

B.1 Collision Resolution . 74

B.2 Hash collision resolved by chaining 75

C GridICE: A Monitoring Tool 76

C.1 GridICE: the architecture . 76

C.1.1 The layers . 76

3

C.2 GridICE Implementation . 78

C.3 GridICE: Usage and Results 79

D The Events Published by GridICE 80

D.1 Site Event . 80

D.1.1 An example of subscription 83

D.2 Gris Event . 83

D.3 Host Service Event . 84

Bibliography 85

4

Acknowledgments

I would like to express my gratitude to everyone who contributed to my re-

search work: researchers and friends. In particular I would like to thanks

Natascia De Bortoli for her suggestions to face this research work, Leonardo

Merola, for his scientific and human support and Gennaro Tortone that ac-

tively collaborated to the work done.

5

to Maria, my Mother

6

Foreword

At present the WEB allows the publication of data concerning everything.

This is the time of information data moving online; much of information

consists of data without any predefined structure which grows quickly causing

a corresponding increase of complexity and size of the Web sites; much of it is

expressed using XML metalanguage. Documents published rather than being

manually composed, are usually automatically generated from the system.

So, the documents hide a common structure that should emerge. In this

context three different philosophies seem to enter in collision: the philosophy

that everything is a document, the philosophy that everything is an object

and everything is a relation. Each attitude produces a different culture, but

each of them is able to explain an aspect of a such complex scenario. In this

work, I approach a real problem: how to explain generic events produced by a

system and how to query them. The produced events are a concrete example

of unstructured data, to be converted in semistructured data; queries to be

done follow the same requirement. The considered problem is common to

many contexts as explained in the introduction. We try to give an answer to

this question, building and describing a possible formalization.

7

Preface

0.1 The context

This work was born in the frame of Grid Monitoring. It regards specifically

design and development of a monitoring system for GRID technology, devel-

oped in part at National Institute of Nuclear Physics (INFN) of Naples. The

goal consists in the formalization of interests of GRID users in the occurrence

of some specific events, developing a language that can help them to submit

their demands. In this thesis, formal definition of events and of subscriptions

are given; in particular temporal subscriptions, interested in occurrence of

events dependent on time, are formalized.

0.2 The aim

Even if the research work was born in a specific environment, it can be for-

malized independently from the problem that generated it. In this way, the

obtained formalization can describe every context where users are interested

in publication of some events and in the variation of some contained at-

tributes. Let us suppose to manage a net bookstore, where events regarding

variation of one or more attributes are published, such as, for example, the

variation of books price, the entry of a new book’s edition, new entries in the

8

bookstore and so on. For example, let us consider that a user is interested

in the reduction of the price of a specific book within a specific temporal

interval, beginning from the instant of subscription emission. This example,

changing environment and attributes meaning, can describe various contexts

such as Economy or Physics.

This thesis consists of two parts. In the first part, monitoring and man-

agement activities, applied to distributed systems, are introduced, then the

generic event and the generic subscription, depending on the time, are for-

malized. In this part atomic, primitive and composite events, simple and

complex subscriptions are structured; the functions that take events set as

input and give contained attributes are defined. In the second part, the

adopted formalization is applied to the Grid monitoring context. Language,

which has been chosen to represent occurred events, is the Extensible Mark-

up Language (XML); a query language chosen to explain subscriptions is the

Extensible Path Language (XPath). In the specific case our goal is to explain

queries, depending on the time, in an XPath extension. The choice of these

languages does not cause loss of generality of the formalization realized.

0.2.1 Thesis structure

This thesis, as previously said, is divided in two parts.

The first part is divided in five chapters:

• Chapter I, Monitoring in Distributed Systems;

• Chapter II, The Content-Based Publish/Subscribe Paradigm

• Chapter III, Primitive Events: Formalization and Functions

Definition;

9

• Chapter IV, Ennary Trees;

• Chapter V, Composite Events and Related Functions

The Second part is divided in three chapters

• Chapter VI, Semi-structured data and the extensible mark-up

Language

• Chapter VII, the Pseudo-code: an idea of algorithm

• Chapter VIII, The recent emergent technology: Computational Grid

10

Chapter 1

Monitoring in Distributed

Systems

1.1 Overview

Monitoring is the activity of obtaining, collecting, and presenting the infor-

mation required by an observer about the observed system [Bib.1], [Bib.2],

[Bib.3]. In this scenario the goal consists of obtaining information in order

to describe a model of system behaviour or to modify an existing model

(management role) [Bib.5]. Monitoring is essential to obtain the required

information about the operations of distributed systems in order to make

management decisions and to control their behaviour [Bib.4]. The manager

(human or machine), on the base of monitoring information, modifies the

state of the monitored system (management activity) [Bib.4]. Monitoring

activity is necessary for various purposes. The general activity can be spe-

cialized as follows [Bib.5], [Bib.6]:

• debugging

11

• testing

• accounting

• performance evaluation

• resource using analysis

• security

• fault detection

• teaching aid

In this thesis we are interested in monitoring distributed systems. The char-

acteristics of distributed systems, such as heterogeneity, autonomy, physical

separation and concurrency, make the process of monitoring very compli-

cated. So each design and development of monitoring facilities needs to deal

with these problems. Management structures are, therefore, necessary to

maintain information on the objects participating in a monitoring session,

and manage the monitoring facilities in each of them. Monitoring informa-

tion can be ordered in four phases [Bib.7]:

• generation

• processing

• dissemination

• presentation

A typical distributed system consists of a number of processes which run

on different machines and cooperate to perform a common task. Processes

12

coordinate their activities by sending messages over a communication net-

work. Examples of such systems include process control, telecommunication

and banking applications.

1.2 Monitoring and Management activity

Monitoring activity is required for various purposes such as debugging, test-

ing and program visualization. It is also used for general management ac-

tivities such as: i) performance and quality of service management; ii) con-

figuration management; iii) fault management; iv) security management; v)

accounting management. A managed distributed system consists of a num-

ber of managed objects. We consider a managed object any hardware or

software component whose behaviour can be monitored by a management

system.

1.3 The problem of distributed systems

There are many fundamental problems associated with monitoring of distrib-

uted systems [Bib.50]. For example, the delays in transferring information

from generator to the disseminator. This means it is very difficult to obtain

a global and consistent view of all components in a distributed system. In

order to overcome these problems, it is necessary to design a monitoring sys-

tem in terms of a set of general functions related to generation, processing,

distribution and presentation of monitoring information.

13

1.4 Filtering and Correlation Capabilities

In large distributed systems, the amount and frequency of the monitoring

information quickly grow and cause managers to be overloaded with work.

Sometimes a significant portion of this information may be irrelevant. An

efficient monitoring service must realize filtering and correlation of reports

with the aim of raising the abstraction level of monitoring information. In

this thesis the terms correlation, combination and composition are used in-

terchangeably.

1.5 Monitoring Models

According to Event Management Model [Bib.5], it is possible to identify the

following four monitoring activities performed in a loosely-coupled, object-

based distributed system:

• i) Generation: important events are detected and status reports are

generated. These monitoring reports are used to construct monitoring

traces, which represent historical views of system activity;

• ii) Processing: a generalized monitoring service provides common process-

ing functionality such as merging of traces, validation, database updat-

ing, combination/correlation and filtering of monitoring information.

They convert the raw and low-level monitoring data to the required

format and level of detail;

• iii) Distribution: monitoring reports are distributed to users, managers

(or processing agents) who require them;

• iv)Presentation: gathered and processed information are displayed to

14

the users in an appropriate form;

The most frequently model for analyzing distributed system behaviour

consists of event-driven monitoring [Bib.8], [Bib.9]. In this model, the sys-

tem behaviour is described using primitive events. Generic users subscribe

their interest in the occurrence of composite or atomic events (composition

is realized trough logic operators). If subscribed events occur, users are no-

tified. In this context, time is fundamental. A composite subscription is

satisfied if events pattern occurs. If only one pattern is registered in delay,

the occurred events cannot be notified with the related error in the following

actions. For example, if a subscriber is interested in occurrence of event: e1,

n seconds after of the occurrence of e2, where:

n ≥ 0

a delay in registration of the event or a change in its occurrence, produces

an error that could be fatal for the management activity. So, the definition

of global time and the definition of good methods describing temporal re-

strictions in distributed environment, are essential in the monitoring phase.

Distributed systems demand a dynamical monitoring activity because of their

inner nature. The dynamic aspect is essential in simple operations such as:

connection of one or more components, submission of new subscriptions or

deleting of the old ones .

1.6 Formal environment description

In this section, we give the characteristics of the environment where a distrib-

uted system is monitored on the base of its status and occurred events. Let

us define the system as ”a group of independent but interrelated elements”

15

[Bib.10], or a collection of hardware and software components organized to

accomplish a specific function or a set of functions [Bib.11]. Let us suppose

this system is under observation through use of persistent sensors, able to

gather all information useful for monitoring and management activities. The

described environment consists of the system, all sensors and a set of rules to

make management decisions, which may modify system’s behaviour. More

in details, gathered data are reported in the Monitoring Reports, used by

automated or human manager to control system. Each component object is

characterized by a status and a set of events (representing status changes and

activities). The object behaviour can be observed and described in terms of

both its status and events. The object status is a measure of its behaviour in

a specific instant time, it can be represented using a vector of status variables

(or attributes). These attributes may be static (for example, operative sys-

tem installed) or time-varying (for example, CPU load). An event is defined

as an entity that registers a modification of an object status. The status of

an object is characterized by life time, for example, ”process is idle”, whereas

an event occurs instantaneously. The status is usually continually changing

so the object behaviour is monitored on the base of some particular events,

called events of interest. It is necessary to distinguish between time-driven

monitoring and event-driven monitoring. Time-driven monitoring is based

on acquiring periodic status information to provide an instantaneous view

of the behaviour of an object or a group of objects, while and event-driven

monitoring is based on obtaining information about occurrence of events

of interest, which provide a dynamic view of system activity. In the first

approach, there is a direct relationship between the sampling rate and the

amount of information generated. In the second one, the amount of generated

and communicated monitoring data is reduced as only the information per-

16

taining to activity of interest. For this reason, the event–driven monitoring

is the most common approach adopted in monitoring systems.

17

Chapter 2

The Content-Based

Publish/Subscribe Paradigm

2.1 Overview

In this chapter it is necessary to introduce the publish/subscribe commu-

nication paradigm, because of the important role it plays in the frame of

distributed systems and especially in this thesis. In the following sections we

describe the fundamental characteristics of a distributed Publish/Subscribe

model, we discuss the content-based variant and justify both the choices.

2.2 Introduction to a Publish/Subscribe Model

Nowadays the distributed systems are composed by thousand of components

generally located all over the world. The location and the behaviour of

each component determine the behaviour and even the lifetime of distrib-

uted system. For this reason the designing and developing of a more flexible

communication model appear absolutely necessary, especially to preserve the

18

Figure 2.1: The producer and the consumer of event

dynamic and decoupled nature of involved applications, necessary for distrib-

uted systems [Bib.12]. In this scenario the publish/subscribe (P/S) schema

seems to answer the many requirements previously advanced, for example, it

provides a loosely coupled interaction. This communication paradigm pro-

vides two principal players, the publisher (the information producer) and the

subscriber (the information consumer) (fig.1). The publisher entity publishes

the information produced (the events) on a software bus, while the subscriber

expresses her/his interest in a specific part of information (an event or in a

pattern of events), submitting related subscription. The subscriber is notified

when the submitted subscription matches an occurred event or a pattern of

events. This communication model provides a simple and efficient methods

for distributing information, moreover it guarantees decoupling of involved

players. In fact in the P/S model the event is asynchronously sent to every

subscribers interested in it, moreover a full decoupling in terms of time, space

19

and synchronization, between publisher and subscriber, is guaranteed.

In our research work we assume the subscriber can only subscribe to future

data [Bib.12]. She/he can not receives information published before her/his

subscription is submitted.

2.3 Description of interaction scheme and com-

parison with traditional ones

As we said, this interaction model provides a producer, that publishes the

occurred events on a software bus, and a consumer, that expresses her/his

interest in an event or a pattern submitting related subscription to the same

bus. As we said, the action of sending the event to the interested subscriber

is called notification.

The communication model is governed by a notification service that stores

and manages submitted subscriptions and, in case of matching, provides to

notify interested subscribers [Bib.13]. The presence of the event service

produces the decoupling between publisher and subscriber (fig.2). In fact

each player can interact with service independently from the other. The

decoupling can be interpreted under three different point of view: space

decoupling, time decoupling and synchronization decoupling [Bib.12]. Let us

analyze the meaning of a such decomposition:

• space decoupling: publisher and subscriber do not know each other,

the publication and subscription are transparent and independent.

• time decoupling: the actions of publisher and subscriber can be done

at different moments, they have not to interact, at same time, with

event service

20

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Subscriber

Pu
b
lis

h

Pu
b
lish

Notify

Su
b
sc

rib
e
l

Storage and

management

of subscriptions

Notify Subscribe

EVENT SERVICE

Figure 2.2: The The event service

• synchronization decoupling: the publishing and notifying operations

are respectively asynchronous. If the producer is performing some ac-

tivities and an event occurs, it can finish its activities and then publish

the event, In the same way, the subscriber, that is engaged in other

operations, can be notified when she/he has finished.

The alternative communication paradigms as message passing, remote

invocation, notifications, message queuing and shared space, even though

presenting same common points with P/S model, are all unable to guarantee a

full decoupling between interacting parts. Traditional interaction models are

not able to contemporary offer time, space and synchronization decoupling.

This circumstance limits their implementation in distributed environment.

2.4 Description of Content-Based Model

In all distributed environments, subscribers are not interested in the set of

all published events, usually their interests fall on a small subset [Bib.15].

21

As we said, they declare their interests through subscriptions, so the way

of characterizing the waited event, defines the adopted subscription scheme.

The most widely used schemes are the topic based and the content based

[Bib.12].

In the topic based several topics (groups) are identified. The consumer infor-

mation subscribes to one or more topics, becoming a member of that group

(groups). The published events are distributed for topics and consequently

broadcast to each group’s member. The topic-based publish/subscribe model,

is demonstrated to be static and primitive but simple to implement.

The content-based scheme is based on the content of the event [Bib.16]. The

event is classified according to its properties, internal and external. Sub-

scribers express their interest by a subscription language that allows to filter

published information. For example, the subscription contains name-value

pairs of properties composed with comparison operators (=, >, <, <=, >=)

[Bib.12], [Bib.52]. The final content-based P/S paradigm, obtained adopting

the content-based subscription scheme, is much more expressive of topic one,

but, requiring sophisticated protocols [Bib.51], it is not so simple to imple-

ment. Even so, the content-based P/S is the most adaptable paradigm to

distributed systems because of the expressive power of its model and sub-

scription language [Bib.14], [Bib.56]. For this reason but especially because

of the many studies regarding the connection between Grid environment and

the content-based scheme [Bib.13], [Bib.17], we develop our work adopting

this communication paradigm.

In this thesis we are not interested in the routing modality for produced

messages. Generally the form of routing adopted in the networks is unicast

or multicast. Nevertheless, in the last years, the interest of developers com-

munity, for the addressing and routing communication, is grown, specially

22

in the case of loosely coupled distributed systems with large number of con-

sumer, with different interests and heterogeneous resources. For this reason

we choose as communication model the content-based addressing and routing

paradigm [Bib.57], [Bib.18], [Bib.19], [Bib.17], [Bib.16].

Most of existent content-based P/S systems are developed on the base of sub-

scription languages. In the following chapters, we describe our events and

subscriptions formalization that allows subscribers to submit to the system

very complicated subscriptions, containing also time requests.

23

Chapter 3

Primitive Events:

Formalization and Functions

Definition

3.1 Chapter’s Content

In this Chapter we introduce the basic element of our work: the event. Once

the definition of the event is given, we introduce the related functions, useful

to extract event attribute values, and the subscription definition. In the end

of this chapter, some words will be spent to clarify the meaning that time

assumes in this context.

3.2 Primitive and composite events

The events, the kernel of this research work, are here distinguished in prim-

itive and composite. We assume that a primitive event occurs when a char-

acteristic of a monitored object changes. A composite event is defined as

24

combination, or composition of primitive events [Bib.6]. Furthermore, com-

position of composite events gives composite events. All events are to be

intended independent from each other and instantaneous. Each event hap-

pens in the same instant when a sensor registers a modification of one of the

related attribute characteristics. The publication of the events happens each

∆T temporal interval. In the formalization developed an event (composite

or primitive) is represented by a set of n–tuples as specified in following.

3.3 Primitive event definition

Let’s define a primitive event as a set composed by a finite n–tuple of elements

such as name, time stamps(tms) and a certain number of ordered triples

containing type, attribute, value [Bib.16]:

event := {(name-event, id-number, tms, (type, attribute, value), ..., (type, attribute, value))}

with the following meaning:

• name-event:= name of the event

• id-number:= a unique number that identifies the occurred event

• tms:= when the event service publishes the event

while ordered triple (type,attribute,value) has the following meaning:

• type:= type of event, chosen between standard type

• attribute:= attribute name of the event

• value:= attribute value

25

In the previous definition, type falls in a set of primitive types commonly

used in programming languages or query languages. The given definition is

commonly used in technical literature, [Bib.16]. It is important to observe

that temporal instant tms and each temporal instant we are going to use, are

to be understood as an interval: [tms-h, tms+h], where h is a defined value.

Let us define a simple event or atomic event as an event containing only one

triple:

event := (name-event, id-number, tms, (type, attribute, value), ..., (type, attribute, value))

Example: atomic event

(thermodynamic, id-number, 12 : 31, (float, thermodynamic, ”2.0”))

If the user is interested in the occurrence of one or more events, she/he will

submit to the monitoring system one or more subscriptions. A subscription

declares the interest of the subscriber user in the occurrence of certain events.

Through the use of binary operators, a subscription specifies attributes and

restrictions on the assumed values. I am going to define subscriptions in the

next sections. Here, for example, a simple request is reported:

(thermodynamic, id-number, t ≥ T ime−Of−Emission, (float, thermodynamic | x ≥ 1.5))

Let us observe the Time-Of-Emission variable expresses the time of subscrip-

tion submission. In the previous demand, the user is interested in the ocur-

rance of all events whose name is thermodynamic and whose value is greater

then 1.5, published every time after the emission of subscription (tme). We

observe that for many authors the terms event and notification are change-

able. In this work I distinguish two terms, giving to them two different

meanings as in the natural language: a notification is defined as the infor-

mation sent to a user who submitted a subscription; the aim of notification

is to advertise a user that the event of his/her interest occurred.

26

3.4 Subscription Definition

As we said in the previous chapter, the adopted paradigm is the publish/subscribe.

In this model, the producer (publisher) submits her/his data (event) to the

system while the information consumer (subscriber) indicates her/his interest

in the occurrence of certain events. The set of indications provided by sub-

scriber, written in the established format, constitutes the subscription. To

represent a generic subscription I used the same structure adopted for the

event, so a subscription is defined as a finite t-ple of elements as name, time of

emission(tme) and a certain number of ordered quadruples containing type,

attribute, operator, value [Bib.16]:

s := ((names, id-numbers, tmes, (types, attributes, operatorss, values)))

where the elements contained have the following meaning:

• name:= name of the event of interest

• id-number:= the unique number to identifie the subscription and, fi-

nally, related subscriber

• tme:= time of the emission of subscription

while the ordered quadruple (type, attribute, operator, value) contains:

• type:= type of the event of interest

• attribute:= attribute name of the event of interest

• operators:= the comparison operator between values.

• value:= attribute value of interest

27

3.5 Relation between events and subscriptions

A primitive event is a set of t-ple containing a name, an id-number, a tms

and a certain finite number of triples: (type, attribute, value). The event

name is a string of characters. The attribute (or equally attribute name)

contained in the triple is characterized by type and value. The reported

types fall in a predefined set of types with a predefined set of operators. A

simple subscription is represented as follows:

s := ((names, id-numbers, tmes, (types, attributes, operatorss, values)))

a simple or atomic event is:

e := ((namee, id-numbere, tmse, (typee, attributee, valuee)))

we say:

s < e

(where the operators among the event and the subscription declares sub-

scription is satisfied by event e) that e satisfies the constraint contained in

s, if:

names == namee

tmes ≤ tmse

types == typee

attributes == attributee

operators(values, valuee) = True

Something about the covering operator and the connected theory is reported

in appendix A.

28

3.6 Function defined on simple events

In this section, we define functions that are able to match published events

and submitted subscriptions. Let us start by defining these functions on the

set of all atomic events named Eatomic. Given an atomic event:

e := (namee, id-numbere, tmse, (typee, attributee, valuee))

Let us define the function

Att : Eatomic −→ Attribute

where the co-domain is the set of all attributes, the function Att takes an

event as input and gives the attribute contained in it

Att(e) = attributee

In the same way:

V al : Eatomic −→ V alue

Val takes an atomic event as input and gives its value as output.

V al(e) = valuee

Also in this case Value is the set of all assumed values. In analogous manner:

Typ : Eatomic −→ type

and

Typ(e) = typee

In this work, we identify the event structure with its name, so:

e ≡ namee

Function Tms:

Tms : Eatomic −→ T ime

29

3.7 Extended functions to the primitive events

Previous functions are defined on the set of simple or atomic events, where,

for example, the definition of function Att (and of all functions that give

elements contained in the triple) is not ambiguous. It takes in input a simple

event and gives the unique value of unique attribute,

(typee, attributee, valuee)

If the event of interest contains more than one triple (type, attribute, value),

functions previously defined have to be extended. Let us suppose a generic

primitive event contained n triples (type, attribute, value):

event := (name, id-number, tms, (type1, attribute1, value1), ..., (typen, attributen, valuen))

In this case it is necessary to extend following functions as reported:

Typ(e, attributei) = typei

V al(e, attributei) = valuei

where the functions are defined in the domain:

Eprimitive × Attribute

and i is an integer less or equal to n. For primitive events let us define

the function Count ; function takes in input primitive events and gives the

occurrence of triples (type, attribute, value) in the event.

Count : Eprimitive −→ N

So if event contains m triples (type, attribute, value):

Count(e) = m

30

Let us report the extended functions:

Att(e, i) = attributei

Typ(e, i) = Typi

V al(e, i) = valuei

where functions are defined:

F : Eprimitive × N

and i is an integer less or equal to m, given by Count that specifies position

of current triple in the event e. Functions defined depend on primitive events

and on position of triple.

3.8 Temporal variable

A very important question to face regards the treatment of those subscrip-

tions depending on the time [Bib.6]. I am especially interested in explaining

subscriptions declaring users interest in the variation of the value of one or

more elements during time [Bib.16]. For example, let us suppose that a user

is interested in the atomic event e when the attribute value of e increases of

ten percent in at most 20 minutes. So interested user is notified when the

event e occurres with attribute value greater than previous ones of ten per-

cent. This new kind of query demands to the system to store some occurred

events, objects of interest of some subscriptions, until the subscriptions are

satisfied and not beyond the prefixed time (of 20 minutes in the previous ex-

ample). So, if the life time is not indicated in the subscription, and subscriber

doesn’t delete it, the system will assign a maximum time life (mtl). The time

life, assigned as default, allows the system to delete events and subscriptions,

31

avoiding the storage of a such huge data. Let us give a simple example: we

suppose the user ’anonymous’ is interested to receive the notification of the

occurrance of the following atomic event:

e = (name, id-number, tms, (type, attribute, value));

when a variation of element value is verified. The related subscription is:

s = (name, id-number, tme, (type, attribute | actual−value ≥ previous−value));

In this case the matching system, after assigning a default maximum time

of life of subscription, will make a comparison between the first value(e) of

event published right after the time of emission of subscription and the same

element value(e), successfully published. In the section 3.2, I introduced the

interval DeltaT , justifying it as the interval of publication of events. In this

way events are ordered published, the interval time can be seen as time’s unit.

In this way the previous subscription lives in a temporal window [tme, tme

+ tle], so, each event e published at n*DeltaT instant (n∈ N) is considered

if and only if

n ∗ ∆T < tle;

In this case, system matching makes a comparison:

valuetme
e < (>)valuen∗DeltaT+tme

e

These considerations are to be extended to the composite events. In this case

the subscriber could be interested in one or more variations of the attributes

values, within specified time interval, or in the occurrence of two or more

different events, within different time interval. In spite of the formalization

of the composite event is reported in the next chapters, here I anticipate

32

that, for example, the join operator combines the sets of three events in a

only one containing three t-uples. Let us remember the event is defined as

a set o t-uples, while the primitive one is a set containing only one t-uple.

Let us suppose that generic user is interested in the variation of one element

of event or in their combination or in their intersection. For example let us

suppose that user is interested in the occurrence of subsequent event obtained

combained atomic ones:

e = (e1 ∪ e2 ∪ e3);

He wants to be notified when the value of attribute of e2 or e3 changes within

m sampling:

att(e2)tme 6= att(e2)tme+x
∨

att(e3)tme 6= att(e3)tme+x

where:

x <= m ∗ ∆T

If our user is interested in the combination of both events, she/he will be

notified when:

att(e2)tme 6= att(e2)tme+x
∧

att(e3)tme 6= att(e3)tme+x

where x<m (we omitted DeltaT). Let us suppose subscriber would be

notified when the attribute value of e3 increase of y quantity, within m

sampling, as before:

att(e3)(tme) = y + att(e3)(tme + x)x <= m

33

Chapter 4

Ennary Trees

4.1 Chapter’s Content

In this chapter we spend some words about ennary tree structures because

the important role they play in the event and subscription formalization

provided, that will be clarified later.

4.2 Definition of Tree Structure

In computer science, a data tree structure plays an important role [Bib.55].

It allows a simple and graphical representation of hierarchical data. Data

are represented with a set of nodes, the hierarchical relation between nodes

can be drawn with an arc connecting a node to each of its successors . The

unique node with no predecessor (no parent) is called the root of the tree.

A node with no successors (no children) is called a leaf. The successors of

a node are called its children; the unique predecessor of a node is called

its parent. If two nodes have the same parent, they are called brothers or

siblings. It is important to observe that a tree data structure can be viewed

34

as an acyclic oriented graph, where the hierarchical relation between node

induces a partial ordered relation on the set of nodes.

4.3 Binary and N-ary Trees

A binary tree is a tree data structure in which each node has at most two

children [Bib.20]. Typically the children nodes are called respectively left

and right. A n-ary tree was born to represent more complex data structures.

Generally n-ary trees are defined as structure in which exist one node with

at most n children. As in a binary trees, only one node exists without any

parent (root node) and each node is connected with its children or its parent

trough directed edge. Let us give the following definition useful in this work:

• depth of a node n:= length of the path from the root to the node

• level of tree:= set of all nodes at a given depth

• height of a node n:= the length of the path from the node n to its

furthest leaf.

• siblings:= nodes that share parent

• ancestor and descendant:= if a path exists from node p to node q, then

p is an ancestor of q and q is a descendant of p.

• size of a node:= the number of descendants it has including itself.

4.4 Useful functions

In this section we are going to define that functions useful for visiting the

tree data structure. Let us define Node as the set of all nodes of tree and

35

Parent as the function that map a node n in its parent. Node set, without

root, is the domain of Parent function, the same Node is the codomain for

that

Parent(n) = p

for given definition:

Parent(root) = null

Level is defined as function that gives the node’s number (a natural num-

ber) from root to current node(inclusive)

Level : Node −→ N

Let us define function in details:

Level(root) = 1; Level(n) = Level(Parent(n)) + 1

In the same way, let us define tree Depth:

Depth : Trees −→ N

where Trees is the n-ary trees set

Depth(tree) = max{Level(n), n ∈ Node}

.

Let us define Children and Sibling as correspondences between the node

set and the set of node subsets

Children(n) = {n1, n2, ..., nk}

. where n is parent of k node (where k is an integer number¿ 0).

Siblings(n) = {n1, n2, ..., nl}

36

. where all l+1 node are brothers. Obviously:

Children(leaf) = null

.

Siblings(p) = null

where p can be the root node or a unique child. Ancestor(Descendant) gives

the set of all predecessors (descendants) of current node.

Something more about hash table [Bib.21] is reported in appendix A.

37

Chapter 5

Composite Events and Related

Functions

5.1 Chapter’s Content

In this chapter the composite event and the related subscription are defined,

starting from previous definition of primitive event. At the same time the

formalization adopted is represented as tree data structure. Without loss

of generality, we choose to translate the formalized event in the frame of

Extensible Markup Language (the reason of such choice is explained in the

following chapters). At the end of this chapter an example of a real Grid

monitoring event is given, showing how it can be represented through our

formalization.

38

5.2 Composite Event

A composite event can be represented with a set of t-ples of atomic events

for example in following way:

e = (e1, e2, e3, ..., en)

A composite event usually consists of primitive events connected to each other

by hierarchical link. Such a composite event finds a simpler representation in

the frame of tree data structure. Let us suppose a composite event, composed

by 5 primitive events, is represented using meta-language XML:

<e1>

<e2>

<e3>...</e3>

<e4>...</e4>

</e2>

<e5> ...

</e5>

</e1>

The reported event has only one time stamps, generally written in the root t-

ple. Using language of data tree structure (Ch. 3) it is recognized a root node

with two children, e2 ed e5. The node e2, on its turn, has other two children

called e3 ed e4. To satisfy a subscription it is necessary to visit tree data

structure verifying that subscribed attributes are satisfied by respectively

values.

39

5.3 Formalization of Composite Event

To represent and operate with composite events two different data struc-

ture are needed, the first is useful for representation, the second for data

storage. An example is reported. Let us suppose to have a XML data tree

representation [Bib.22]:

<bookstore>

<book>

<author>

<name>Warren W.</name>

<family-name>Gay</family-name>

</author>

<title>Learning linux </title>

<home-ed>Tecniche nuove</home-ed>

<price>40.00</price>

<edition>

<place>Milan</place>

<year>1999</year>

</edition>

</book>

<book>

<author>

<name>Wankyu</name>

<family-name>Choi</family-name>

</author>

<author>

40

<name>Allan</name>

<family-name>Kent</family-name

</author>

<title>PHP4 - Developer Guide</title>

<home-ed>Hoepli</home-ed>

<price>29.99</price>

<edition>

<place>Milan</place>

<year>2001</year>

</edition>

</book>

</bookstore>

To represent data in a useful manner we choose an analogous representation

like that provided for primitive events (chapter 2):

(name-event, id-number, tms, (type, name-event, ”value”), parent-of -current-event)

where id-number is a unique number, has the same meaning reported in

chapter 2 (tms is reported only in a root description of composite event), and

parent is the only parent of current event. Adopting previous formalization

on the tree data, we obtain:

(bookstore, id − number, tms, (string, bookstore, ”null”), null)

(book, id − number, (string, book, ”null”), bookstore)

(author, id − number, (string, author, null), book)

41

(name, id − number, (string, name, ”Warren”), author)

(family − name, id − number, (string, family − name, ”Gay”), author)

(author, id − number, (string, author, null), book)

(name, id − number, (string, name, ”Wankiou”), book)

(family − name, id − number, (string, family − name, Choi), book)

(title, id − number, (string, title, ”DeveloperGuide”), book)

(home-ed, id-number, (string, home-ed, ”Hoepli”), book)

(price, id − number, (float, price, ”29.99”), book)

(edition, id − number, (string, edition, ”null”), book)

(place, id − number, (stringplace, ”Milan”), edition)

(year, id − number, (string, year, ”2005”), edition)

42

Let us observe the sub-events regarding author, author’s name and au-

thor’s family name, can be substituted with the following:

(author, id−number, (string, name, ”Wankiou”), (string, family−name, Choi), book)

because name and family name, are elements without children, with the same

parent.

In this way it is possible to reconstruct the whole tree with the correct

hierarchy. To store data we use the hash table structure useful for three

fundamental operations: insertion of new data, deletion of old data, lookup

of data. In this thesis we are not interested in implementing hash algorithm

(appendix A), we assume to adopt the best one available, useful for our case

[Bib.21]. Moreover, subscribers are notified receiving events having the form:

(name−event, id−number(type, name−event, ”value”), parent−of−current−event)

they are never interested in the hash storage.

5.4 Subscriptions and functions defined on

composite events

The functions useful to describe composite events are reported in chapter 3,

there, Parent function, Children function and others were defined. Let us

define now the form of generic subscription able to query composite events. In

chapter 2, primitive events and relative subscription were defined as reported

below:

e := ((namee, tmse, (typee, attributee, valuee)))

43

s := ((names, tmes, (types, attributes, operatorss, values)))

In defining a generic subscription let us observe a composite event is

described as a finite list of n–tuples, containing all indication necessary to

reconstruct original hierarchy: the parent elements. A generic subscription

able to query a composite event, should contain an element name, an emission

time (tme), one ore more quadruples of form:

(type, attribute − name, operators, value)

where operator has the same meaning reported in the chapter 2. A submitted

subscription has to be matched with event structured through n-tuples, so

the form of the subscription has to be faithful to the event’s structure. A

simple subscription on composite event is described through a list of n–tuples

in number depending on the richness of information given from subscriber as

reported below:

(name−event, tme+default−T ime, (type, attribute−name, operators, value), parent(event))

or, if the user is interested in occurrence of nodes containing more at-

tributes:

s:= (name-event, tme + default-Time, (type, attribute-name, operators, value),...,

(type, attribute-name, operators, value), default-parent)

A more complex subscription, interested in occurrence of tree nodes,

placed at different depth or having different parent, is expressed as a set

of simple subscriptions linked by And operator:

44

s:= (name-event, tme + default-Time, (type,attribute-name, operators, value),...,

(type, attribute-name, operator,value), default-parent, default-children)

And

s:= (name-event, tme + default-Time, (type, attribute-name, operators, value),...,

(type, attribute-name, operators, value), parent)

5.5 Subscription’s example on composite event

Given previous composite event, formalized in section 5.3, let us suppose to

be interested in occurrence of the event book when title is Developer Guide

and price is less then 20.00 dollars, within interval time of 3 hours. The

relative subscription is:

(title, tme + 180, (string, title,′ equal − to′, ”DeveloperGuide”), book)

(price, (numerical, price,′ less − than′, ”20.00”), book)

Let us observe the element tme + default-Time is reported only on the

first expressed tuple. If subscriber does not explicitly declare life time, a

default life time is assigned.

Because elements title and price have same parent, the last two n–tuples

can be substituted with:

45

(title, (string, title, ’equal-to’, ”Developer Guide”), (numerical, price, ’less-than’,

”20.00”), book)

where the event name is the first attribute declared from subscriber. It

is possible including both simple subscription in the same t-ples. If user

is interested in all events content books published by Hoepli, in the year

2002, or published by Hoepli when price is less then 20.00 dollars, relative

subscription becomes:

(home−ed, tme+default−T ime, (string, home−ed,′ equal−to′”Hoepli”), book)

(year, (string, year,′ equal − to′, ”2002”), edition)

OR

(home − ed, (string, home − ed,′ equal − to′”Hoepli”), book)

(price, (numerical, price,′ less − than′, ”20.00”), book)

Both events cover the same tree, so, using a compact expression:

(home − ed, (string, home − ed,′ equal − to′”Hoepli”), book)

(year, (string,year,’equal-to’,”2002”), edition)

OR

(price,(numerical,price,’less-then’,”20.00”), book)

46

Because user has not declared any temporal restriction, a default life time

of subscription is assumed. After this life time subscription is deleted. In

this way, the storage of enormous size of data is avoided.

5.6 Subscription’s example applied on moni-

toring event

In this section, before closing the present chapter, an example of a monitoring

event is reported and described. At present monitoring events are represented

through tree structure using XML meta-language [Bib.24]. The meaning of

terms we are going to use, for example Virtual Organization (VO) [Bib.25]

or Reverse Domain, are explained later. Here we want just to treat the

monitoring events as any events and rewrite them using formalization of t-

ples. In the following example we treat an event reporting jobs summary

related to virtual organization and site. The original document, published

on INFN-GRID [Bib.26], [Bib.23] web site, was cut in the redundant parts,

the real significant parts are reported below.

<?xml version="1.0" encoding="UTF-8" ?>

<JobSummarySiteVO xmlns="http://grid.infn.it/gridice/"

created="August 03 2006 09:52:19" Expire="2">

<VOList>

<VOElement>atlas</VOElement>

<VOElement>bio</VOElement>

<VOElement>biomed</VOElement>

</VOList>

47

<Site Name="INFN-NAPOLI">

<Domain ReversedDomain="it.infn.na">na.infn.it</Domain>

<Country DnsCode="it">Italy</Country>

<VO Name="atlas">

<Q>7</Q>

<R>11</R>

</VO>

<VO Name="bio">

<Q>2</Q>

</VO>

<VO Name="biomed">

<Q>5</Q>

</VO>

</Site>

</JobSummarySiteVO>

The first line

<?xml version="1.0"

encoding="UTF-8" ?>

declares XML version used. Composite event consists of the root event named

JobSummarySiteVO(JSSVo) published in August 03 at 9:52 (it is equivalent

to the time-stamp tms, defined in our formalization), default time is assigned

48

with string: Expire=2. Attribute of event is :”http://grid.infn.it/gridice/”.

In a compact form:

(JSSV O, id-number, August039 : 52+2, (string, JSSV O, http : //grid.infn.it/gridice/), null)

(V Olist, id-number, (string, V Olist, null), JobSummarySiteV O)

(V OElement, id-number, (string, V OElement, ”atlas”), V Olist)

(V OElement, id-number, (string, V OElement, ”bio”), V Olist)

(V OElement, id-number, (string, V OElement, ”biomed”), V Olist)

(SiteName, id-number, (string, SiteName, ”INFN−Napoli”), JobSummarySiteV O)

(Domain, id-number, (string, Domain, ”na.infn.it”), SiteName)

(Country, id-number, (string, Country, ”Italy”), SiteName)

(V oname = atlas, id-number, (string, V oname = atlas, null), SiteName)

49

(Q, id-number, (integer, Q, ”7”), V oname = atlas)

(R, id-number, (integer, R, ”11”), V oname = atlas)

(V oname = bio, id-number, (string, V oname = bio, null), SiteName)

(Q, id-number, (integer, Q, ”2”), V oname = bio)

(V oname = biomed, id-number, (string, V oname = biomed, null), SiteName)

(Q, id-number, (integer, Q, ”5”), V oname = biomed)

Our monitoring event is represented by 15 n–tuples. Let us observe where

the attribute value is null (for example for event named Vo name=atlas),

type has value string. when attribute value is null, the default type could be

string or null. This reported example is the most nested and complex event

produced by actual monitoring service. It is perfectly represented through

our formalization.

5.7 Subscriptions and hash data structure

It is necessary to underline that in this work we are not interested in the

storage of data in a hash structure. We suppose current subscription is

translated in a useful form for the lookup phase.[Bib.21]

50

Chapter 6

The Semistructured Data and

The Extensible Mark-up

Language

6.1 Chapter’s content

The formalization of events and subscriptions, described in the previous chap-

ters, falls in the schema-less or self-describing data theory, also called semi-

structured data theory. In this chapter the definition and some fundamental

notions inherent to semistructured data are reported; moreover an explana-

tion of this choice instead of structured data is given.

6.2 Structured and Semistructured Data

Data without any kind of structure are often called schema-less data or self-

describing data [Bib.27]. Both terms underline there is no separation between

the description of the type of data and its instance. Generally when a piece

51

of data is programmed, first the relative structure is described (schema and

type) and then the instance of that type, built in that schema, is created. On

the contrary, semistructured data are directly described using a simple and

intuitive syntax, where description combines both type and structure, or,

sometimes, type, structure and instance, as reported in the third example.

Example: atomic event

event := (name, tms, (type, name − attribute, value))

(thermodynamic, 12 : 31, (float, pressure, ”2.0”))

combining both expressions:

(name= thermodynamic, tms= 12:31,

(type= float, name-attribute= pressure, value=

"2.0")

This representation is based on label-value pairs expressed using n–tuple-

like structure. Data can be graphically represented as a graph where given

events are nodes connected by edges to their values(fig.1); let us observe

edges are characterized by no terminal names.

Generally semistructured data are graphically represented though graphs

theory. In this work the generic event and generic subscription formalized

can be represented through trees theory, as described in chapter 3. Let us

explicitly observe trees set is a subset of graphs set, with stronger properties.

In programming languages definition of types and data structure is very

rigid. A small change in the data requires a revision of all structure defined.

The chosen philosophy is able to explain our data and lets the data describe

them self. This kind of information takes self describing data name.

52

NODE

NAME
TMS

THERMODINAMIC 12.31
TYPE

ATTRIBUTE

NAME

VALUE

FLOAT PRESSURE 2.0

Figure 6.1: HTML representation

6.3 The Reason of Choice of Semistructured

Data

The choice of semistructured data is necessary where information are not

consistent to conventional model, where data intrinsically have no structure,

for example on the Web. Users sometimes users have to compare information,

coming from different sources, described using different format (for example

produced by different databases). In this case any structured language pro-

duces a rigid representation that is unable to describe some changes in the

data. Of course, self describing data wastes space, if naively stored, spe-

cially if many descriptions with each data item are needed. It is important

to observe that data we treat, have a very short life so, any lost of space

during storage is compensated by frequent deleting of information. On the

other hand, information are all preserved and expressed using a very simple

syntax, near to natural language.

53

6.4 XML as Semistructured Data Model

XML is a consolidate standard for data exchange on the Web. In this section

we want to introduce this meta-language underlining how it is adaptable

to the description of semistuctured data. We are not going to give a full

description of XML, our intention consists of disclosing XML properties, em-

phasizing its role as a data exchange format. The necessary of common

and widespread language of data exchange useful to combine information

coming from different source (usually explained with languages having dif-

ferent syntax), finds in the XML meta-language a universal data exchange

format. XML may be seen as a tool to develop languages describing content

of information (rather then presentation), that is able to control the syntax

and semantic information aspect. It permits to define new nodes (where

node have the meaning reported in the previous section) or to nest news to

arbitrary depth. The basic XML syntax is perfectly suited for describing

semistructured data.

6.4.1 XML and HTML: the differences

It appears important at this point to underline HTML can be seen as an

”instance” of XML but it can not be confused with it. HTML is the most

popular language for describing Web pages. It consist of tag fields such as

<p> ... </p> containing text, for example:

<p> Carmen , Santiago ,

 1978-Agoust-15 , Las Palmas ,

<i> CarSantiago@laspalmas.es </i>

</p>

54

where <p >means a new paragraph is beginning (at contrary </p >means

a paragraph is finished), and <i >mean that the text contained may

respectively appear bold and italic.

HTML was specifically designed to describe data presentation and not

its content. On the contrary, XML generates languages able to describe con-

tent [Bib.22]. Trough XML rules it is possible to define new tags, made

”ad hoc”, for specific purpose (for example in the mathematical, chemical or

physical frame, including in the document a description of used grammar),

to indicate specific structures. Moreover it is possible nesting structures to

arbitrary depth.

For example:

<bookstore> ... </bookstore>

defines a new structure named bookstore that can contain other substructures

like books and so on. At the end, let us observe XML provides no instructions

about its displaying. These information are generally reported in a style-sheet

(a document developed in the homonymous language able to translate XML

data in HTML that allows displaying by any browsers). Essentially, XML

allows syntax and semantic data transmission, for this reason it has become

a major standard for data exchange between different applications.

6.4.2 Basic Syntax

Let us now show some basic components of XML meta-language. The real

basic component in XML is the element, a piece of text contained between

55

start-tag and end-tag. Let us observe tags in XML are not predefined as in

HTML, generally tags are defined by users. In the following example

<student>

<name> Carmen </name>

<family-name> Santiago </family-name>

<birth-date> 1978-Agoust-15 </birth date>

<birth-place> Las Palmas </birth-place>

<email> CarSantiago@laspalmas.es</email>

</student>

the structures between the tags are called content, so the name, family name,

date, place of birth and email are the content of student, moreover each tag

contained in the student tag is its sub-element. On the contrary of HTML

description, here it is underlined the content of data information, but no

indication about displaying is given.

Another important ”object” of XML is the the attribute. In this context

the term attribute means property and it is expressed using name-value pair.

The Extensible Mark-up Language allows to associate the elements with

attributes, so the previous example of the structure named student, can be

described in the following way:

<student name="Carmen" family-name="Santiago">

<birth-date>1978-Agoust-15 </birth date>

<birth-place> Las Palmas </birth-place>

<email> CarSantiago@laspalmas.es</email>

</student>

where name= ”Carmen” and family-name=”Santiago” are two pairs name-

value (two attributes), associate with student element. Also attributes are

56

arbitrarly defined by users.

When tags nest properly and defined attributes are unique, the XML docu-

ment is well formed that means XML data will parse into a labeled tree.

6.5 From XML to Semistructured Data Rep-

resentation

The XML syntax is suitable to represent semistructured data. In the previ-

ous section an instance of structure student was reported, let us now analyze

the same structure as a semistructured data, translating it through our for-

malization. The following XML structure

<student>

<name> Carmen </name>

<family-name> Santiago </family-name>

<birth-date> 1978-Agoust-15 </birth date>

<birth-place> Las Palmas </birth-place>

<email> CarSantiago@laspalmas.es</email>

</student>

can be seen as a composite event where the event student is the root event,

while substructures are all siblings and children of the root. The semistruc-

tured formalization has the subsequent representation:

(student, id − num1, tms, (null, student, null)null)

(name, id − num2, (string, name, ”Carmen”), student)

57

(family − name, id− num3, (string, family − name, ”Santiago”), student)

(birth−date, id−num4, (alpha−num, birthplace, ”1978−Agoust−15”), student)

(birth − place, id − num5, (sting, birth − place, ”LasPalmas”, student)

(email, id−num6, (alpha−num, email, ”CarSantiago@laspalmas.es”), student)

where composite event contains 6 primitive events, reporting their iden-

tification number.

If users express the same XML structure using more attribute elements,

for example:

<student name="Carmen" family-name="Santiago">

<birth date="1978-Agoust-15" place="Las Palmas" </birth>

<email> CarSantiago@laspalmas.es</email>

</student>

the semistructured formalization becomes:

(student, id-num-i, tms,(string, name,"Carmen"),

(string,family-name, "Santiago"), null)

(birth, id-num-i+1, (alpha-num, birth-date,"1978-Agoust-15"),

(string birth-place,"Las Palmas"), student)

58

(email, id-num-i+2, (alpha-num, email,"CarSantiagolaspalmas.es"),

student)

that is still a composite event but more compact, where the user has used

the syntax element attribute, and has introduced another structure named

birth enclosing birth-date and birth-place.

6.6 Translation Function

It appears necessary to underline that generally schema-less data are un-

ordered. On the contrary XML representation is based on ordered structure,

the exchange of two any structures, nested at same level, produces two dif-

ferent documents. This aspect (and some others) is not easily reconciling

with semistructured data theory but formalization we developed, produces

ordered events, using ordered t-ples.

Let us now observe the transformation from document, represented trough

our formalization, to XML document (and vice-versa) can be realized intro-

ducing a translation function that associates a simple node of XML tree to

a primitive event. The function, named T, has the following input:

(name, tms, id − num, (type, atrribute, value)

and gives the following output

(nametms = ””idnum = ””, attribute = ”value”)

In a analogous manner it can be extended to composite event. The idea

we want to underline is that formalization realized is not dependent on the

language used.

59

6.7 Query Language for Semistructured Data

There is a deep difference between accessing data from database or from

document. If the data of our interest are stored in a database it is necessary

to elaborate a right query to obtain it. If we need data contained in a Web

document, we provide a URL (Uniform Resource Locator) and obtain, as

answer an HTML page. HTML page is usually obtained on the base of a

query created by user interface. But, while query can give a detailed answer,

an HTML page represents the document where it is necessary to search for

the answer. In this context emerges the importance of a query language for

Web data, in general, for semi-structured data. Obviously we want our query

language to be powerful and able to use complex predicates, we already want

it to combine and perform data. Here we describe some general points that

are necessary for a query language, independently from specific format of

data. It should be expressive, it means it should be capable of expressing

all operations of relational algebra. It should be characterized by a clear

semantics to allow query transformation. It should be composed, where

composed means the output produced from language should have the same

form of answered data.

6.8 Query Language for XML: XPath

In this thesis we choose to query data represented in XML, with XPath

language, which in the last years has become a W3C standard. XPath is, at

present, one of the most popular language for query XML documents [Bib.28].

It can be explained as a syntax for defining parts of an XML document. It is

based on the usage of path expressions to navigate in XML documents and

to select nodes of interest. These path expressions are very similar to those

60

represented by a traditional computer file system, this characteristic allows

users to approach its philosophy.

61

Chapter 7

The Pseudo-code: An Idea of

Algorithm

7.1 Principal Procedures for primitive events

In this section we describe, through the pseudo-code, the algorithms that

allow users to query published events in order to verify subscription’s satis-

faction. Let us begin analyzing a primitive event. The form of a primitive

event and of generic a subscription, ignoring the id-number, is:

e := ((namee, tmse, (typee1, attributee1, valuee1), ..., (typeen, attributeen, valueen)))

s := ((names, tmes, (types, attributes, operatorss, values)))

Previous subscription is interested in all events named name
s
, published

within temporal interval

[tmes, tmes + defaultT ime]

62

where:

∃i ∈ 1, ..., n

for that

types = typeei

attributes = attributeei

and

operatorss(values, valueei) = True

I create suitable procedures that implement the matching phase:

Procedure Base_Validation(s,e)

Base-validation= False

if name_{s}== name_{e}

and

tme_{s} < t <tme_{s}+ Default-Time

Base-validation= True

end-if

Procedure Base_Matching(s,e)

Base-matching= False

if type_{ei}=type_{s}

and

attribute_{ei}=attribute_{s}

and

operator_{s}(value_{ei}, value_{s})= true

63

Base-matching= True

end-if

where Base-Validation verifies if field name of published event matches

name of one of submitted subscriptions; at the same time the procedure

controls the compatibility in terms of time. If both conditions are satisfied,

Base-Matching procedure is invoked. Last called procedure verifies type’s

and attribute’s identity of the event and subscription; the procedure also

verifies the operator satisfaction. Both procedures are called in the procedure

match, in the following way:

match(s,e)

begin

Base_Validation(s,e)

if Base_Validation(s,e)=true

for i =1,..., Count(e)

Base_Matching(s,e)

end for

if Base_Matching=true

Notify_subscriber,

end-if

end-if

end

The function Count, defined in the chapter 3, gives the number of triples

contained in the event n–tuple. The procedure Notify-subscriber takes the

matched event and, on the base of id-subscription number, sends it to all

subscribers that expressed their interest.

64

Chapter 8

The Recent Emerging

Technology: Computational

GRIDs

8.1 Chapter’s Content

In this chapter the computational Grids are introduced underlining that the

importance of Grid concept is caused by concrete and specific problem of large

scale resource sharing. Then the Grid problem and the Grid infrastructure

are defined explaining the differences with the others existent technologies.

At the end of this chapter an important aspect of the Grid problem, object

of this work, is described and analyzed: the Grid monitoring

8.2 The Grid History

The term ”Grid”, coined in 1998, in analogy with the electric power Grid,

identifies ”a proposed distributed computing infrastructure for advanced sci-

65

ence and engineering” [Bib.30], [Bib.26]. The ”electric power grid metaphor”

is sometimes used to explain the revolutionary aspect of computational Grids.

In their book ”The Grid”, Ian Foster and Carl Kesselmann make a compar-

ison between current status of computation and that of electricity around

1910, underlining that ”the truly revolutionary development was the electric

power grid and the associated transmission and distribution technologies”

rather than electricity discovery (Chapter 2) [Bib.29]. When people use elec-

tricity they do not need to know how and where it is produced, they do not

need to know which kind of technologies were developed to transmit and to

distribute it to everyone, they just plug their device in the wall socket and use

it [Bib.31]. At present millions of computers, connected through internet and

sharing information, populate the planet. In this scenario the science dream

of using unlimited computational power seems to become reality [Bib.25].

”What we need is an infrastructure and standard interface able to providing

transparent access to all this computing power and storage space in a uniform

way” [Bib.31]. Across the net the end user will not see any more the many

connected machines but he will just submit his request and relative require-

ments and the built Grid will satisfy him. The Grid infrastructure will find

and allocate suitable resources, will monitor the running process and finally

will notify the user sending him the final result. Since the described process

is perfectly analogous to that of electrical power we think it will produce the

same social economic growth in the society.

66

8.3 The Grid and Other Technologies: Analo-

gies and Differences

Nowadays The Grid infrastructure has developed a great deal and the Grid

term now is used to denote all that is related to ”advanced networking”. It

appears necessary to underline that there is a deep difference between this

emergent technology and other major ones, such as distributed computing,

peer to peer computing or internet technology, but the progress made in

the Grid frame produced significant benefits also in all the other fields. We

define Grid infrastructure as a set of coordinated systems sharing [Bib.32].

We define Grid problem as ”flexible, secure, coordinated resource sharing

among dynamic collections of individuals, institutions and resources” (also

called VO, Virtual Organizations). It appears necessary to spend some words

to define the Virtual Organization, which represents the principal reason of

Grid development . Let us suppose people, various institutions or both want

to permit direct access to their software, data and resources in the range of

collaboration that defines priorities of each component and the sharing con-

ditions. The group defined by this conditions is called Virtual Organization

[Bib.25]. Sometimes such organizations differ enormously in the nature of

their problems, aims, size of data, duration of collaboration and specially in

the sociology of involved parts. But it is possible to recognize some com-

mon requirements that find their solution in the Grid philosophy. In fact

all VOs need flexible sharing modality, ranging from client server to peer

to peer model [Bib.34], [Bib.33], [Bib.54], a VO always includes components

working in different places that want to share remote resources, in the re-

spect of assigned priorities without any loss in terms of security and quality

of services. The latter requirements are not satisfied by current distributed

67

systems. The same Internet technology allows communication and informa-

tion exchange between computers but it isn’t able to provide sharing access

to multiple resources with, for example, the computational purposes. During

last years many distributed computing technologies were born as, for ex-

ample, the Open Group’s Distributed Computing that assures the resources

sharing among different organizations in the respect of security of all involved

parts [Bib.25]. This technologies results too inflexible, not adaptable to VO

requirements. Other technologies permit the access only to some resources

types. So, each technology can at most satisfy some well defined demands. In

this context the real importance of the Grid technology emerges. At present,

protocols, services and tools satisfying VO’s requirements are available and

Grid technology is integrated, rather then competing, with other distributed

technologies.

8.4 Grid Architecture: a Short Description

In this section, Grid technology is described under the architecture point

of view [Bib.35], recognizing principal system components, describing their

function and the rules of interaction. The first requirement to be satisfied is

the interoperability that can be translated in common protocols. Interoper-

ability allows participants, although different programming languages, plat-

forms, and programming environments, to start sharing relationship. These

common protocols permit resources sharing to VO users (including priority

rules). A standard based open architecture, common protocols, Application

Program Interface and Software Development Kit constitute the Grid mid-

dleware. In the following description Grid architecture is organized in layers.

Components of each layer are built on the base of functions provided by lower

68

layer. In this description we have 5 layers: Fabric(the lowest), Connectivity,

Resource, Collective and Application. The number of protocols defined for

Resource and Collective have to be small, this two layers allow the sharing

of individual resources. To better understand this high level description it

is necessary to analyze the protocols defined and tested in many projects

[Bib.36], [Bib.37], [Bib.38], [Bib.39], [Bib.40] .

8.5 The Grid Monitoring

Monitoring activity is essential to the management of a Grid System [Bib.43],

[Bib.50]. The Grid Monitoring consists of measuring significant Grid resource

related parameters [Bib.41], [Bib.42] with the aim to describe behaviour,

performance and usage of Grid System. Development of adaptable Grid

monitoring system has to deal with a new class of problems as geographical

distribution of the resources or diversity of involved parts. In Grid environ-

ment we can distinguish two monitoring phases: infrastructure monitoring

and application monitoring. The first regards collecting information about

Grid resources in order to build the grid resources history. The second phase,

on the base of collected information, permit to satisfy users demands.

8.5.1 Terms and Concepts

In this section the definition of terms inherent Grid monitoring activity is

given. In the Grid monitoring context with the entity term we define each

monitored object. We define as attribute a characteristic of a generic en-

tity [Bib.41]. With the term measure we describe a procedure which as-

sign to each attribute a value, on the base of observed phenomena. We

define measure unit an adopted quantity for convention. The measure de-

69

finition implies necessarily the presence of sensors able to evaluate it. We

define sensor as a monitoring entity process with the aim to produce related

observation.[Bib.41]

8.5.2 Grid Monitoring Phases

In the Grid Monitoring process it is possible to distinguish four main phases:

(1) the generation where sensors query entities and produce the values re-

lated to the obtained measures (2) distribution where obtained information

is distributed to the suitable components (3) filtering that permits to choose

only the useful information on the base of fixed criteria (4) presentation

where information are distributed to interested users for management phase.

Users interested in the monitoring information are distinguished in three

categories: Grid Operators, Virtual Organization managers and Site Admin-

istrators. They present same common requirements, so they can satisfied

from a integrated monitoring tools. The the most common important aspect

among different categories is the choice of measurements to be performed.

Only a small subset is specifically designed for each of them [Bib.58].

8.6 INFN-GRID: Naples’s project

The INFN is involved in the LHC (Large Hadron Collider) project [Bib.44],

[Bib.48], [Bib.47], under construction at CERN and expected to provide first

collision in 2007. The high-energy physics experiments at the LHC will col-

lected data for 15 years. The resource requirements are so large that they

are not provided in a single geographic location, they need a Grid infrastruc-

ture and a adaptable monitoring service [Bib.45]. The INFN, section of

Naples, is involved in the design and development of such monitoring service

70

since 2001. In these years the monitoring team produced a monitoring tool:

GridICE [Bib.23]. A lot of Grid Projet (Russian Grid, South Eastern Eu-

ropean Grid, Europe and Latin America Grid, EuMed Grid, EuChina Grid)

[Bib.24], [Bib.46] chose GridICE as a monitoring tool. The characteristics of

this tool are reported in appendix.

71

Conclusion

In this thesis we have described general lines of monitoring in distributed sys-

tems, with regards to the grid monitoring. We adopted the publish/suscribe

paradigm with content-based communication model. In this context, inter-

ests of users in the occurrence of some events and the variation of some con-

tained attributes (during time), has been formalized. In this thesis atomic,

primitive and composite events, simple and complex subscriptions have been

structured; the functions that take events set as input and give contained

attributes, have been defined. This formalization, structured independently

from the monitoring problem, has been then adopted to the grid monitoring.

It has been demonstrated that realized formalization is able to describe each

monitoring event currently produced and allows users to submit expressive

subscriptions.

It is necessary to underline that the model shown is applicable to other

contexts characterized by publish/subscribe paradigm, such as Economy or

Physics or Earth observation, moreover it is defined independently of lan-

guage used. This formalization finds its natural positioning in the future

Grid Monitoring Service under construction.

72

Appendix A

Algebra of events

It is interesting observing some mathematical properties simply analyzing

formalized events and subscriptions through language of the Algebra. Let’s

define set E containing all published events, (e ∈ E), let’s define set S con-

taining all submitted subscriptions, s ∈ S. Given s subscription It is simple

to observe that set of events satisfying s is a subset of E, Let’s indicate it Es.

Es = e ∈ E, | e < s

If an event satisfies a given subscriptions it covers the subscription. The

covering notion introduced is a matemathical relation. We say s < e se

e ∈ Es, or s < s′ if

Es ⊆ Es′

Covering relation on the set subscriptions is a no total ordering relation,

induced by set inclusion.

73

Appendix B

Hash Tables

A hash table is a data structure that associates keys with values. This

structure supports efficiently a lookup operation: given a key (for example

a personal code), it finds the corresponding value (e.g. actual address).

The concept of hash table is strictly related to the concept of hash function.

It works by transforming the key using a hash function into a hash, that

is a number used to locate and to find the desired value. The lookup on

average is constant-time O(1) , regardless of the number of items in the

table. However, in the worst case, lookup time can be as O(n). Compared

to other data structures, hash tables are more useful when it is necessary to

store a large numbers of data records.

B.1 Collision Resolution

If two keys hash to the same index, the corresponding records cannot be

stored in the same location. So, if it’s already occupied, it is necessary to

find another location for the new record, choosing a criteria so that it’s easy

to find it later. There are a number of collision resolution techniques, but

74

the most popular are chaining and open addressing.

B.2 Hash collision resolved by chaining

In the simplest chained hash table technique, each slot in the array references

a linked list of inserted records that collide to the same slot. Insertion requires

to find the correct slot and appending to either end of the list in that slot;

deletion requires to search the list and removal.

75

Appendix C

GridICE: A Monitoring Tool

As we said, in the Grid computing monitoring activity plays an important

role. In this section the GridICE tool is described, analyzing better the

notification service [Bib.23], [Bib.24], [Bib.41], [Bib.42], [Bib.49].

C.1 GridICE: the architecture

The GridICE architecture is developed in five layers, including the producers

of monitoring data and the final consumers of these data

C.1.1 The layers

• Measurement Service: the first layer is the Measurement Service, whose

goal is to probe resources for simple or composite metrics. The gathered

data are locally stored in a site repository.

• Publisher Service: the second layer is the Publisher Service. This layer

organizes the gathered data to potential consumers.

• Data Collector Service: the third layer is the Data Collector Service.

76

Figure C.1: The GridIce Architecture

It permits the collection of historical monitoring data and is developed

in several components. The main ones are the New Resources Detec-

tion component, the Scheduler component, and the Persistent Storage

component.

• Detection/Notification and Data Analyzer Services: the fourth layer

comprises two services. The Detection and Notification Service pro-

vides a flexible and configurable means for event description, detection,

and notification. This service has to be able to: (1) send timely noti-

fications using different communication services; (2) escalate through

different levels of notification if no actions are taken (3) help in the

diagnosis of notified events by enabling the browsing of historical infor-

mation at various levels of aggregation and detail; (4) adapt automati-

cally to the dynamics of the resource part of the virtual pools accessible

77

to VOs. The second service of this layer is the Data Analyzer Service.

It provides performance analysis, usage level, and general reports and

statistics. It can be configured to generate and send periodical reports

of Grid activity, and possibly also Grid structure.

• Presentation Service: the last layer of the architecture is the Presenta-

tion Service, a web-based graphical user interface that offers a view of

monitoring information.

C.2 GridICE Implementation

This architecture was implemented with component software. In the first

layer, the sensors for all the defined metrics in the extended GLUE Schema

was developed and tested. In GridICE previous version, the data collector

used by default was the Lemon tool. GridICE can dialogue with different

local monitoring tools.

In the second layer, Globus MDS Version 2, the information service usu-

ally adopted by large-scale Grids in High Energy was adopted. Because

of Important advancements in the area of content-based publish/subscribe

overlay networks and XML-based technologies, the information service will

change. For layer three, the scheduling of observations is based on Nagios For

layer four, simple versions of the Detection/ Notification and the Data Ana-

lyzer Services have been implemented, but both still require improvements to

be used in production environments. For layer five, the presentation service

relies on a web interface written in PHP.

78

C.3 GridICE: Usage and Results

Usage and results of GridICE monitoring tool are related to the testing and

production phases of Grid systems related to the LHC experiment. LHC

(Large Hadron Collider) is the world’s largest and most powerful particle

accelerator currently under construction at CERN, the European Organiza-

tion for Nuclear Research. GridIce monitoring tool took place in the context

of one of the four LHC experiments: the Compact Muon Solenoid [Bib.23].

This experiment previews a wide and international collaboration, involving

more than 2,000 people coming from 160 organizations in 36 countries. One

of its goals is to confirm the existence of the Higgs boson (predicted by the

Standard Model but not detected so far by any experiment). The second

large deployment of GridICE is within the Italian Grid infrastructure, man-

aged by the Italian Institute for Nuclear Physics (INFN). It consistes of more

than 20 sites among the most important Italian universities with about 1,500

CPUs and more than 15 Terabytes of disk space. The third large deployment

of GridICE is its integration in LCG middleware release 2. The goal of LCG

is to fulfill LHC computing needs by deploying a worldwide computational

Grid service, integrating the capacity of scientific computing centers spread

across Europe, America and Asia. The LCG system includes more than 70

sites in the world with about 6,000 CPUs (35 Terabytes of disk space).

79

Appendix D

The Events Published by

GridICE

In this section classes and characteristics of Grid monitoring events are re-

ported [Bib.59]. The event of interest are classified in three types:

• Site Events

• Gris Events

• Host Services Events.

At present GridICE publishes the events of interest on a web page and in a

XML format.

D.1 Site Event

This class of event gives information about computing and storage resources

of specific site monitored by GridICE . The generic event is characterized by:

• number of Computing Elements

80

Figure D.1: GridIce web site

• total job slots

• available job slots

• percentage of used job slots

• number of available gatekeepers

• running job

• waiting job a

• percentage of running jobs respect to computing resource

• monitored hosts

• computing power

• available nodes

81

• total CPU

• CPUs to WNs.

The grid monitoring events generally contain information about Storage

Elements such as the disk space available, total space, and the percentage of

disk space used [Bib.58] .

A Site Event can be represented in XML, as following reported

<SiteData Name="Site Name">

<Country DnsCode="code">Country Name</Country>

<QueuesNum>1</QueuesNum>

<SlotsNum>2</SlotsNum>

<FreeSlots>2</FreeSlots>

<SlotsLoad>0</SlotsLoad>

<GateKeeperNum>1</GateKeeperNum>

<RunningJobs>0</RunningJobs>

<WaitingJobs>0</WaitingJobs>

<JobsLoad>0</JobsLoad>

<MonitoredHosts>-</MonitoredHosts>

<BogoMips>-1</BogoMips>

<WorkingNodesNum>-1</WorkingNodesNum>

<CPUNum>-1</CPUNum>

<CPULoad>-1</CPULoad>

<StorageAvailable>616144</StorageAvailable>

<StorageUsed>759135</StorageUsed>

<StorageTotal>1375279</StorageTotal>

<StorageLoad>55</StorageLoad>

</SiteData>

82

D.1.1 An example of subscription

If a subscriber is interested in the occurrence of Site type event, she/he will

expresses her/his interest in one or more attributes described: For example

users could be interested in receiving notifications if:

• The Queues inherent to CERN-CIC site are more than 10 and no work-

ing node is available.

• There are many sites without storage element available space.

D.2 Gris Event

This kind of event describes the Gris. It expresses grid host names, the

version of installed middleware domain name, the country, the name of ad-

ministration site, the gris type among Computing Element, Storage Element,

Extended Gris or a BDII. An example of gris event is following reported:

<GRISElement URI="ldap://host:port/mds-vo-name=local,o=grid">

<HostName>Host Name</HostName>

<Middleware>LCG-2_6_0</Middleware>

<Domain ReversedDomain="it.infn.na">Domain Name</Domain>

<Country DnsCode="...">...</Country>

<SiteName>Site Name</SiteName>

<Type Code="4">EX</Type>

<LastCheck UnixTime="1131844923">2005-11-13 02:22</LastCheck>

<ConnectionCode>1</ConnectionCode>

<Entries>0</Entries>

<ConnectionCodeSince UnixTime="1131726743">

2005-11-11 17:32

83

</ConnectionCodeSince>

<Scheduling>2</Scheduling>

<IDRes>668</IDRes>

<Contact>mailto: mail adddress</Contact>

</GRISElement>

Users interested in a gris event could submit their interest in the occurrence

of event where connection code is OK.

D.3 Host Service Event

This kind of event gives information on the most relevant hostes in the Grid.

An example of Host Service Event is following reported:

<Site Name="Site Name">

<Domain ReversedDomain="...">Domain Name</Domain>

<Country DnsCode="...">Country Name</Country>

<Role Name="All">

<Total>0</Total>

<KO>0</KO>

<Dis>0</Dis>

</Role>

.....

<Role Name="Others">

<Total>0</Total>

<KO>0</KO>

<Dis>0</Dis>

</Role>

</Site>

84

Bibliography

[Bib.1] Yigal Hoffner Monitoring in Distributed Systems, Report Ansa Phase

III, 1994.(www.ansa.co.uk)

[Bib.2] DOMAINS Standardization, Document D2f V1.0, Distributeed Open

Management Architecture in Networked Systems, Esprit Project No

5165, (1992).

[Bib.3] LaBarre Management by Exception: OSI Event Generation, Report-

ing and Logging, The MITRE Corporation, 2nd IFIP Symposium on

Integrated Network Management, Washington, USA (1991).

[Bib.4] McDowell, Helmbold, Debugging Concurrent Programs, ACM Com-

puting Surveys, 21(4), pag. 593-622 Dec. 1989.

[Bib.5] Joyce, Lomow, Slind, Unger, Monitoring Distributed Systems, ACM

Transactions on Computer Systems, 5(2), 121-150 May 1987.

[Bib.4] Sloman M.,Policy driven managment for distributed systemsJournal

of Network and Systems Management, Springer, 1994

[Bib.5] Masoud Mansouri-Samani Monitoring of Distributed Systems, Uni-

versity of London, Imperial Colloge of Science,Technology and Medicine,

Department of Computing, 1995

85

[Bib.6] Masoud Mansouri–Samani and Morris Sloman GEM A Generalised

Event Monitoring Language for Distributed Systems EE/IOP/BCS Dis-

tributed Systems Engineering Journal Vol. 4, No. 2 June 1997

[Bib.7] Mansouri–Samani M., Sloman M. Monitoring Distributed Systems

Network, IEEE, Vol7, Issue 6, pag. 20-30, 1993,

[Bib.8] Bates P. Debugging Heterogeneous Distributed Systems Using Event-

Based Models of Behaviour, ACM Transactions on Computer Systems,

Vol. 13, No. 1, pp. 1–31, (1995)

[Bib.9] Wolfson, Sengupta, Yemini, Managing Communication Networks by

Monitoring Databases, IEEE Transactions on Software Engineering, Vol.

17, No. 9, pp. 944–953, (1991).

[Bib.10] [en.wikipedia.org/wiki/System]

[Bib.11] [www.ichnet.org/glossary.htm]

[Bib.12] Eugster, Felber, Guerraoui, Kermarrec, The Many faces of Pub-

lish/Subscribe,ACM Computing Surveys, Volume 35 , Issue 2 table of

contents, Pages: 114 - 131, 2003

[Bib.12] Fidler, Jacobsen, Mankowski, The PADRES Distributed Pub-

lish/Subscribe System, Features Interaction in Telecommunication and

Software System, page 13, IOS press 2005.

[Bib.13] Ceccanti, Panzieri, Content–Based Monitoring in Grid environ-

ments Proc. 13th. IEEE, International Workshop on Enabling Tech-

nologies.2004

86

[Bib.14] Aguilera, Strom, Strurman, Astley, Chandra, Matching events in a

Content-based Subscription System, Proc. 18th. Annual ACM Sympo-

sium on Principles of Distributed Computing, pg. 53–61, 1999.

[Bib.15] A. Carzaniga, A. L. Wolf. Contentbased networking: A new com-

munication infrastructure. In NSF Workshop on an Infrastructure for

Mobile and Wireless Systems, Scottsdale, Arizona, 2001.

[Bib.16] A.Carzaniga, A.L.Wolf Content-based Addressing and Routing: A

General Model and its Application, Proc. NFS Workshop on an In-

frastructure for Mobile and Wireless Systems.

[Bib.17] A. Carzaniga, M.J. Rutherford, A.L. Wolf, A Routing Scheme for

Content-Based Networking, INFOCOM 2004, 23th Annual Joint Con-

ference of IEEE Computer and Communications Societies, Vol. 2, pag.

918–928

[Bib.18] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and eval-

uation of a widearea event Notification Service. ACM Transactions on

Computer Systems, 19(3):332–383, 2001.

[Bib.19] A. Carzaniga, A. L. Wolf. Forwarding in a contentbased network.

SIGCOMM ’03, Karlsruhe, Germany, Aug. 2003.

[Bib.20] Aho, Ullman Fondamenti di iInformatica, Zanichelli, 1994

[Bib.21] Secure Hash Standard. U.S. Department of Commerce/NIST, Na-

tional Technical Information Service, Springeld, VA, Apr 1995.

[Bib.22] Erik T. Ray, O’reilly Learning XML.

87

[Bib.23] Andreozzi, De Bortoli, Fantinel, Ghiselli, Rubini, Tortone, Vistoli,

GridICE: A Monitoring Service for Grid Systems, Future Generation

Computer Systems, Elsevier (www.sciencedirect.com).

[Bib.24] grid.infn.it/gridice

[Bib.25] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid, En-

abling Scalable Virtual Organizations,International Journal of High Per-

formance Computing, Vol. 15 n. 3, 2003.

[Bib.26] I. Foster, C. Kesselman The Grid 2. ELSEVIER, 2004.

[Bib.27] S.Abiteboul, P.Buneman, D.Suciu. Data on the Web: from relations

to semistructured data and XML, Morgan Kaufmann Publishers, 2000.

[Bib.28] www.w3.org

[Bib.29] I. Foster, C. Kesselman, M. Kaufmann The Grid: blueprint for a

new computer infrastructure, 1998 Publisher Inc. San Francisco.

[Bib.30] K. Czajkowki, S. Fitzgerald, I. Foster, C. Kesselman Grid Informa-

tion Service for Distributed Resource Sharing Proc. 10th IEEE, Interna-

tional Symposium on High Performance Distributed Computing 2001.

[Bib.31] http://web.datagrid.cnr.it/LearnMore/LearnMore4.jsp.

[Bib.32] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke The Phisiology of the

Grid: An Open Service Architecture for Distributed Systems Integration,

CiteSeer 2002.

[Bib.33] the Overlay network, Spotlight Overlay Networks: A Scalable Al-

ternative for P2P, IEEE Internet Computing, July-August 2003.

88

[Bib.34] I. Stoica, R. Morris, D. Karger, M.F. Kaashooek, H.BalaKrishnan

Chord: A scalable Peer to Peer Lookup Service for internet Applications,

Mit Laboratory for Computer Science

[Bib.35] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke Grid Service for Dis-

tributed System Integration Computer, Vol. 35, Issue 6, pag. 37–46 2002.

[Bib.36] I. Foster, C. Kesselman, Globus Project: A status Report, Heteroge-

neous Computing Workshop, IEEE, 4-18, 1998

[Bib.37] Johnston, Gannon, Nitzberg, Grids as Production Computing Envi-

ronments, The Engineering Aspects of NASA’s Information Power Grid,

Proc. 8th IEEE International Symposium on High Performance Distrib-

uted Computing, 1999

[Bib.38] Beiringer, Johnson, Bivens, Humphreys, Rhea, Constructing the

ASCI Grid , Proc. 9th IEEE International Symposium on High Per-

formance Distributed Computing, 2000

[Bib.39] www.griphyn.org

[Bib.40] www.eu-datagrid.org

[Bib.41] S. Andreozzi, at all GridICE:Requirements, Architecture and Expe-

rience of Monitoring Tool for Grid Systems, Proc. CHEP 2006 Mumbai.

[Bib.42] Andreozzi, De Bortoli, Fantinel, Ghiselli, Rubini, Tortone, Vistoli,

GridICE: A Monitoring Service for the Grid, 3rd Cracow Grid Work-

shop, 2003.

[Bib.43] ZaniKolas, Sakellarious, A Taxonomy of Grid Monitoring Systems,

Future Generation Computer Systems, page 163–188, 2004

89

[Bib.44] M. Price, The LHC Project, Nuclear Instruments and Methods in

Physics Research Section A., Vol 478, Issues 1–2, pag. 46–61 2002

[Bib.45] Hosckek, Jean-Martinez, Samar, H. Stockinger, K. Stockinger, Data

Management in an International Data Grid Project, Lecture Notes in

Computer Science, Vol 1971/2000, 2000.

[Bib.46] http://www.euchinagrid.org/

[Bib.47] http://www.na.infn.it/

[Bib.48] http://lcg.web.cern.ch/LCG/

[Bib.49] Andreozzi, Fattibene, De Bortoli at all: Flexible Notification Service

for GRID Monitoring Events Chep 06

[Bib.50] Xuechai Zhang Freschl, Schopf: A performance study of monitor-

ing and information services for distributed systems, High performance

Distributed Computing, Proceedings, 12th International Symposium,

2003

[Bib.51] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E.

Strom, and D. C. Sturman, An effi cient multicast protocol for content-

based publishsubscribe systems. 19th IEEE International Conference on

Distributed Computing Systems (ICDCS ’99), pages 262–272, Austin,

Texas,1999.

[Bib.52] Fabret, Hacobsen, Lirbat, Pereira, Filtering algorithms and imple-

mentation for very fast publish/subscribe systems, In ACM SIGMOD

2001, pages 115–126, Santa Barbara, California, 2001.

90

[Bib.53] Andreozzi, G. L. Rubini, Fantinel, Legnaro, De Bortoli, G. Tortone,

A Multidimensional Approach to the Analysis of Grid Monitoring Data,

proceedings CHEP 2004

[Bib.54] A. Rowstron, P. Druschel, Pastry: Scalable, Distributed Object Lo-

cation and Routing for Large-Scale Peer-to-Peer Systems Proc. Conf.

Distributed Systems Platforms (Middleware)-ACM Press, 2002.

[Bib.55] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduzione agli algo-

ritmi. Jackson libri, 1999.

[Bib.56] Carzaniga, Rosenblum, Wolf, Achieving scalability and expressive-

ness in an internetscale event notification service, Proc. 19th ACM Sym-

posium on Pinciples of Distributed Computing (PODC 2000), Jul 2000.

[Bib.57] R. Chand, P.A. Felber. A Scalable Protocol for Content-Based Rout-

ing in Overlay Networks, CiteSeer 2003.

[Bib.58] http://infnforge.cnaf.infn.it/gridice/index.php/NotGuide/HomePage

[Bib.59] http://gridice4.cnaf.infn.it:50080/gridice/help/SE-site-help.html]

91

