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STUDIES ON BACTERIAL POLYSACCHARIDES OF BIOTECHNOLOGICAL INTEREST 
 

Abstract 
 
The ability to produce polysaccharides is widely found among microbial species, especially among 

prokaryotes. Large numbers of bacterial polysaccharides are potentially available, but relatively few have 

been commercially employed. The bacteria may be pathogenic, production costs may be very high, product 

quality may be difficult to maintain and to guarantee, or the product may not achieve regulatory 

acceptability. Despite these problems, several products from bacteria are accepted products for modern 

biotechnology: for instance, many sectors of industry are showing a growing interest for microbial 

polysaccharides, usually associated with the outer surface of the bacterium. They can form an amorphous 

layer of extracellular polysaccharides (EPSs) surrounding the cell that may be further organized into a distinct 

structure termed a capsule. Additional polysaccharide molecules such as lipopolysaccharide (LPS) or 

lipooligosaccharide (LOS) may also decorate the cell surface. Polysaccharide capsules may mediate a 

number of biological processes, including invasive infections of human beings. LPSs are found in the outer 

membrane of the Gram-negative bacteria and they are also known as endotoxins (Fig. 1). 

 They consist of three parts: lipid A, which is the toxic component; 

the core region, which can be divided into an inner and an 

outer part; and finally the O-antigen polysaccharide, which is 

specific for each serogroup.  

Fig. 1 

Considerable attention is now paid to the bacteria Escherichia coli, Agrobacterium tumefaciens and 

Lactobacillus. The first two are Gram-negative bacteria, some strains of  E. coli produce EPSs that warrant 

special notice because they bear close structural relationship to polymers of the human host, whereas A. 

tumefaciens is a bacterium important for plant bioengineering. The last one, Lactobacillus, is a Gram-positive 

bacterium which produces EPSs commonly used by the food industry - mainly because of their GRAS 

(generally regarded as safe) status. Furthermore, EPSs from LAB (Lactic Acid Bacteria) have received 

increasing interest from pharmaceutical companies due to their potential use as probiotics. The target of this 

research deals with the structure and the structure/function analysis of microbial polysaccharides with 

potential biotechnological interest. The following strains have been selected: 

 

- Escherichia coli O5:K4:H4 

- Agrobacterium tumefaciens A1, F/1, TT9, and TT111 

- Lactobacillus crispatus B6    

 

 

Escherichia coli O5:K4:H4 



 
E. coli O5:K4:H4 synthesizes a capsule polysaccharide (K4 antigen) with a carbohydrate backbone similar to 

non sulphated chondroitin. The K4 antigen is composed of a repeating subunit made of D-glucuronic acid 

(GlcA), N-acetyl-D-galactosamine (GalNAc) and β-fructofuranose (Fru) (1): 

[GlcA-β-(1→3)-GalNAc-β(1→4)]n 

 3 
 ↑ 

 1 
 β-Fru 

This repetitive unit presents a structural analogy with chondroitin sulphate [(D-GlcA β(1-3)-D-GalNAc β(1-4)]n. 

Chondroitin sulfate differs from K4 polymer for the presence of the fructofuranose residue and for the lack of 

sulphate. Human chondroitin is mostly sulphated at positions 4 or 6 of N-acetyl galactosamine, although rare 

substitutions at O-2 or O-3 of the uronic acid may happen. Chondroitin sulfate is a substance found naturally in 

the human body: it is part of a large protein molecule (proteoglycan) that gives cartilage elasticity. The 

commercial preparation is extracted from animal tissues such as pig tracheas or shark fins and it is sold as 

dietary or nutritional supplement. Under such circumstances it is of great interest to have a procedure that 

rapidly could defructosylate the native K4 and purify it from the toxic LPS so to obtain a suitable product that 

could be further sulphated in the desired positions. In order to set up a purification protocol suitable for an 

industrial scale up process, different methods have been tested to develop a viable commercial process 

economically advantageous and ecologically compatible. The K4 polysaccharide was obtained by 

fermentation, isolated from broth culture. Different types of media were tried and tested to achieve an 

optimal fermentation yield. Chemical analysis and NMR spectra showed K4 to be always present together with 

the LPS molecule; fructose from K4 and lipid A from LPS were removed by mild acid hydrolysis, so that the 

resulting O-Chain and defructosilated K4 could be separated by anion-exchange chromatography on a Q-

Sepharose FF resin. This purification method opens up new prospects for obtaining biologically active 

molecules by semi-synthesis as an alternative to extraction from animal organs. 

 
Agrobacterium tumefaciens A1, TT111, F1, and TT9 
 
The bacteria belonging to A. tumefaciens species are object of very intensive investigation due to their 

potential biotechnology use. All the members of this family are phytopathogenic and induce the crown gall 

disease in most of dicotyledonous plants(2). The disease is characterized by neoplastic transformation at the 

site of infection and it results from the transfer and expression of oncogenes from bacteria to susceptible plant 

cells. The utility of these bacteria has developed from an understanding of the molecular basis of the disease 

symptoms: the transfer of a small portion of DNA (T-DNA or transferred DNA) from the bacterium to the plant 

nuclear genome. The O-antigenic region of LPS is primarily responsible for the serological specificity of the 

organisms (Wilkinson, 1977) and thus it may be reasonable to assume that these exposed carbohydrates might 

play a major role in the adherence of Agrobacterium to the plant cells. This peculiar feature makes them 

suitable tools for plant genetic engineering: replacing the transferred tumour-inducing genes with exogenous 

DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the 

development of modern plant genetics and agricultural biotechnology. Bacteria can express either smooth 

LPS, which is composed of O-antigen, complete core oligosaccharides, and the lipid A, or rough LPS (LOS) 

which lack O-antigen but possesses lipid A and progressively shorter core oligosaccharides. The structure of the 

LPS or LOS fractions of four different strains of A. tumefaciens have been determined using NMR, GC-MS and 



Oligosaccharide 1 

chemical analysis in order to clarify the involvement of these carbohydrate groups in host-pathogen 

interaction.  

 
A. tumefaciens A1      
 
A. tumefaciens strain A1 presents a LOS fraction composed of three different oligosaccharide structures. 

Oligosaccharide 1 represents the most complex structure, in which the external Kdo ( 3-deoxy-D-manno-2-

octulosonic acid) bears a galactose (Gal), while the mannose residue (Man) linked to the internal Kdo bears 

an additional mannose: 

α-D-Man 
1 
↓  
6 
α-D-Man-(1→5)-α-D-Kdo-(2→6)-β-D-GlcN4P-(1→6)-α-D-GlcN1P                                                           Oligosaccharide 1 

 4 
 ↑  
 2 

β-D-Gal-(1→8) α-D-Kdo 
 

Oligosaccharide 2 is very similar to oligosaccharide 1: it maintains  the terminal galactose on the external Kdo, 

but there are no additional mannose residues: 

 

α-D-Man-(1→5)-α-D-Kdo-(2→6)-β-D-GlcN4P-(1→6)-α-D-GlcN1P 
 4                                                                                                                                 Oligosaccharide 2 
 ↑  
 2 

β-D-Gal-(1→8) α-D-Kdo 
 

Oligosaccharide 3 differs from oligosaccharide 2 by lacking the terminal galactose unit: 

 

α-D-Man-(1→5)-α-D-Kdo-(2→6)-β-D-GlcN4P-(1→6)-α-D-GlcN1P 
 4 
 ↑                                                                                                                                   Oligosaccharide 3 
 2 

  α-D-Kdo 
 

 
 
 
A. tumefaciens TT111 
 
The LOS fraction from the phytopathogenic bacterium A. tumefaciens TT111, the reference strain for the 

homonymous group, is composed of four different oligosaccharides. These species descend from a common 

architecture, oligosaccharide 1, further substituted from the non stoichiometric residues R1 (α-Rha) and R2 (β-

GlcN): 

R2→3)-α-Rha-(1→2)-α-Rha-(1→2)-α-Rha-(1→3)-α-Rha-(1→3)-α-Man-(1→5)-α-Kdo-(2→6)-β-GlcN4P-(1→6)-α-GlcN1P 
 4  
 ↑   
 2  

 β-Gal-(1→8)-α-Kdo 
 4 

 ↑  
 1 
 β-Gal(2←R1 

 
 

                                                                                                           



Fig. 2 

A. tumefaciens F1 
 
A. tumefaciens F1 is a smooth-type bacterium. Its LPS fraction presents two different O-Chains, obtained by 

mild acid hydrolysis of the lipopolysaccharides. Their structures were determined by chemical analyses and 

NMR spectroscopy. The repeating units are reported here: 

 

[3)-α-L-Rhap-(1 →3)-β-D-GlcpNAc-(1→]n   O-Chain 1 (less abundant) 

 

[4)- α-L-Rhap-(1 →3)- β-D-GlcpNAc-(1→]n  O-Chain 2 (major component) 

 

The only difference between the two structures concerns the rhamnose, which in O-Chain 1 is 3-O linked while 

in O-Chain 2 is 4-O linked.  

 

A. tumefaciens TT9 
 
LPS fraction from strain TT9 comprehends two different antigenic moieties, the simplest one is a linear 

polysaccharide with the following repeating unit: 

[4)-α-L-Rha-(1→3)-α-D-Fuc-(1→]n 

By means of extensive chemical procedures the identification of the repeating unit of the second polymer 

(Fig. 2) was achieved; it is constituted from the amino acid N-methyl-3,4-dihydroxy-3-methyl-5-oxoproline and 

from the sugar residue 4-deoxy-4-amino-3-O-methyl-α-D-Fucose; the 

monosaccharide is linked at O-4� of the modified amino acid that, in 

turn, is a substituent at N-4 of the successive amino sugar unit.  

 

                                                                                                                            

                                                                                                                                        

 

 

 

 

 

 

Conclusions 

A.tumefaciens strains A1 and TT111, although belonging to the same TT111 group, differ in pathogenicity. In 

particular, strain A1 is not a very pathogenic one even if compared to the other strains belonging to this group. 

The difference in the pathogenic profile can be correlated to the differences present in the structures: A1 

oligosaccharides contain hexoses but no deoxysugars such as rhamnose or fucose, usually present in both LOS 

or LPS structures from other members of the genus Agrobacterium. These results suggest that deoxysugars 

residues, more stable and more hydrophobic than hexoses, may contribute to the pathogenicity of bacteria 

by supporting the adhesion process during the infection. Another characteristic feature of strain A1 is the very 

low molecular mass of its LOS fraction: the number of sugar residues varies from 5 to 7, while TT111 

oligosaccharides 1 is built up of  13 units. In addition, it is worthy of note that the outer core region of strain 

TT111 is composed of a rhamnose oligosaccharide that shares sequences and conformational similarities with 

some bioactive rhamnans already tested and proposed as epitope necessary for the recognition mechanism 
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involved during the infection process(10). As for strain TT9 and strain F1, they both present carbohydrate residues 

attached to lipids as lipopolysaccharides on the outer membrane of the bacteria. Strain F1 produces two O-

Chains with almost the same structure. Surprisingly, these two structures have been shown to be identical to 

the  structures of the polysaccharides from serotypes O17 and O19 (for the minor component) and O1 (for the 

major component) from Serratia marcescens(11). S. marcescens is a Gram-negative rod which can cause 

endotoxin shock when a number of bacteria invade the bloodstream. Pathogenicity of these bacteria is due, 

among other factors, to the presence of LPS in their cell wall. There is evidence for a close structure/function 

relationship among these O-Chains belonging to two bacteria from very different families (S. marcescens 

belongs to Enterobacteriaceae family and A. tumefaciens to Rhizobiaceae). Strain TT9 produces two O-

Chains as well, one with a simple disaccharidic repeating unit and another one which is found for the first time 

in bacterial LPS. The structure of the oxoproline derivative is new and it participates to the glycosidic linkage 

formation as well. This feature is really peculiar, since it is quite uncommon for a glycosidic linkage to join a 

sugar moiety and a modified amino acid. Elucidation of such unusual structural peculiarities may lead to 

understanding of biological properties of this pathogenic bacterium. 

 
Lactobacillus crispatus B6 
 
The Lactic Acid Bacteria (LAB) comprise a clade of gram positive, acid tolerant, non-sporulating, rod or cocci 

that are associated by their common metabolic and physiological characteristics. These bacteria produce 

lactic acid as the major metabolic end product of carbohydrate fermentation. This trait has historically linked 

LAB with food fermentation as acidification inhibits the growth of spoilage agents. Lactobacillus is a genus of 

Gram-positive facultative anaerobe bacteria; they are a major part of the Lactic Acid Bacteria group. They 

are common and usually benign, even necessary, inhabitants of humans and other animals. In humans they 

are present in the vagina (3) and in the gastrointestinal tract and are an important genus of the gut flora. It has 

been suggested that these properties and some antagonistic mechanisms may include competitive 

interference in pathogen adhesion(4), capability to aggregate with other bacteria(5), and production of 

antibiotic-like substances or hydrogen peroxide(6). The function of lactobacilli is to maintain an acidic 

environment which inhibits the growth of some harmful bacteria. Their metabolic products can improve the 

microflora of the host and also to stimulate the immune system. Because HIV is readily inactivated below pH 

4.5, a number of acidifying agents (often called microbicides) are in development for use as topical 

prevention(7). There are different ways in which microbicides act to prevent infection with genital pathogens. 

Some microbicides (Carraguard®, Cyanoviran®, cellulose sulphate, PRO 2000®) provide a physical barrier that 

keeps HIV and other pathogens from reaching the target cells. Another class of microbicides (e.g. Acidform®, 

BufferGel® and Lactobacillus crispatus) act by enhancing the natural vaginal defence mechanisms by 

maintaining an acidic pH, which protects the vagina(8). Following this pipeline, a clinically isolated strain of  L. 

crispatus (namely L. C. strain B6) has been characterised and the structure of the EPS produced has been 

elucidated. Chemical analyses together with  NMR data allowed to suggest an average repeating unit built 

up of mannose α(1→6) backbone highly branched at C-2 with di-, tri- and tetrasaccharide side chains as here 

reported: 

 

 

 

 

 



[→6)α-D-Manp-(1→6)-α-D-Manp-(1→6)-α-D-Manp-(1→6)-α- D-Manp-(1→]n 
 2 2 2  
 ↑ ↑ ↑ 
 1 1 1 
α-D-Manp  α-D-Manp  α-D-Manp 
                                       2 2  
                                       ↑ ↑  
                                       1 1  
                                 α-D-Manp α-D-Manp  
 3 
 ↑ 
 1 
 α-D-Manp  
 

 

It is noteworthy that there is evidence that mannan can block dendritic cell uptake of HIV in vitro(9). The 

structural characterisation of this exopolysaccharide will add new information necessary to direct the further 

development and refinement of strategies that will ultimately provide effective protection against mucosal 

HIV transmission. 
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CHAPTER 1 

 
BACTERIAL POLYSACCHARIDES 

 
1.1.       Introduction 
  
Bacteria produce a variety of polysaccharides as part of their cell wall, which are usually 

associated with the outer surface of the bacterium, but bacteria can produce both 

surface and/or secreted polysaccharides that can act as prominent antigens. Many of 

these polysaccharides are also extremely variable in structure, function and biosynthesis, 

as shown for Salmonella and E. coli. As in other Gram-negative bacteria, the E. coli cell 

wall consists of an inner and an outer membrane separated by a periplasmic space. 

Peptidoglycan, a polysaccharide covalently linked to short peptides, represents the major 

structural component of the periplasm (Fig. 1.1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Structure of the cell wall in E. coli.  

The cell wall of gram-negative bacteria consists of several layers of various polysaccharides. The 
periplasm contains Peptidoglycan, a copolymer of polysaccharide and short peptides, and a class 
of β-glucans known as MDOs which play a part in osmoregulation. The outer leaflet of the outer 
membrane is rich in LPS. In mucoid strains, a capsular polysaccharide covers the entire cell (not 
shown). 
 

 

Gram-positive bacteria have a similar cell wall structure, except that they lack the outer 

membrane and have a much thicker peptidoglycan layer with additional specialized 

polysaccharides known as teichoic acids. Bacterial polysaccharides include 

lipopolysaccharides (LPSs), lipooligosaccharides (LOSs), capsular polysaccharides (CPSs) 



and extracellular polysaccharides (EPSs). Some bacteria can form an amorphous layer of 

EPSs surrounding the cell that may be further organized into a distinct structure termed 

capsule. LPS (Fig. 1.2) is present only in Gram-negative bacteria and, structurally, in its 

smooth form, it comprises three regions: lipid A, Core oligosaccharide and O-antigen (O-

Chain).  
 

 

 

 

 

Fig. 1.2. Schematic structure of LPS in E. coli.  

The lipid A domain contains two acylated GlcNAc-P residues (G). The core domain consists of KDO 
(K), heptoses (H), and neutral sugars such as galactose. The outer O-antigen consists of units of two 
to eight sugars repeated many times (open hexagons). 
 

The lipid A component is composed of sugars and fatty acids, which anchor the LPS in the 

outer leaflet of the outer membrane. The core is made of sugars and unusual sugars 

derivatives, such as 3-deoxy-D-manno-octulosonic (Kdo). The O-antigen is a 

polysaccharide that extends from the cell surface and it consists of repeating 

oligosaccharide units. LPSs in their rough form do not possess an O-specific polysaccharide 

and are named LOSs(1). In pathogenic bacteria, capsular EPSs and O-antigen 

lipopolysaccharides are involved in the immune response: they represent the first line of 

defence against bacteriophages. Polysaccharide capsules may mediate a number of 

biological processes, including invasive infections of human beings. The capsular 

polysaccharides and LPS also contain the major antigenic determinants that distinguish 

various serotypes of bacteria, which are sometimes correlated with disease. EPSs 

produced by lactic acid bacteria (LAB) display a great variety of structures, and many are 

heteropolysaccharides composed of different sugar moieties. In addition to their 

technological properties in fermented milk products, they may also have biological roles, 

such as immunomodulatory and cholesterol-lowering activities. Furthermore, EPSs 

produced by some LAB are currently used as microbicides: preliminary studies using 

Lactobacillus for normalization of the vaginal flora showed it to be of great potential 

benefit. Lactobacilli can effectively decrease the risk of bacterial vaginosis and enhance 

resistance to sexually transmitted infections, providing effective protection against 

mucosal HIV transmission. As polysaccharide structure has a great influence on the 

technological properties and biological activities of EPSs, identification of new structures 

will add new information to further develop their use.    
 
 
 
 
 

 



1.2.        Lipopolysaccharides : structure, occurrence and biology 
 
As briefly described above, the envelope of Gram-negative bacteria is composed of two 

distinct lipid membranes: an inner membrane and an outer membrane. The outer 

membrane is an asymmetric bilayer, the outer leaflet of which consist predominantly of 

lipopolysaccharides with proteins taking up much of the remaining surface. The inner 

leaflet is composed simply of conventional glycerophospholipids, mainly 

phosphatidylethanolamine and phospatidylglycerol. The outer membrane has an 

important function in nutrient uptake but also provides the organisms with remarkable 

permeability barriers that confer resistance to many different detergent and antibiotics. 

LPS  was first discovered more than 100 years ago: in 1892-95, Richard Pfeiffer, while 

investigating V. cholerae identified two different toxic factors: a heat-liable exotoxin 

released during growth and a heat-stable endotoxin released during stationary phase. The 

term endotoxin does not appear in Pfeiffer publications, but is cited in 1904 review article 

by Wolff referring to Pfeiffer coining the term.  When released into the circulation, it binds 

to CD14 on monocytes and macrophages, which triggers secretion of various cytokines. Its 

structure is complex, consisting of three distinct domains termed lipid A, core and O-Chain. 

The biosynthesis of LPS is strictly sequential. The core sugars are added sequentially to Lipid 

A by successive additions, and the O side chain is added last, one preassembled subunit 

at a time. The properties of mutants producing incomplete LPS molecules suggests the 

nature and biological functions performed by various parts of the LPS molecule. 
 
 
 

1.2.1. Lipid A 
 
Lipid A is a unique and distinctive phosphoglycolipid, the structure of which is highly 

conserved among species. The partial structure was described in 1950s but remained 

uncertain until 1983 (Rif.11 di Alba). The complete synthesis of lipid A in 1985 confirmed its 

identity as the heat-stabile endotoxin associated with Gram-negative sepsis. Lipid A also 

serves to anchor LPS to the cell surface by insertion into the outer membrane and as the 

scaffold for assembly of the inner core region and the outer O-antigens oligosaccharides. 

The basic structure of lipid A consists of two phosphorylated N-acetyl-glucosamine residues 

in β(1-6) linkage with 4 or 7 fatty acids attached. The length of the carbon chains usually 

varies between C10 and C16, with some exceptions. E. coli lipid A, as an example, 

typically has five C14 and one C12. Lipid A is a very potent stimulant of the immune 

system, activating cells involved in the immune response (monocytes or macrophages) at 

picogram per milliliter quantities. It is believed to activate cells via Toll-like receptor 4 

(TLR4), MD-2 and CD14 on the cell surface. When present in the body at high 

concentrations during a Gram-negative bacterial infection, it may cause shock and death 

by an excessive immune reaction.  



 
 
1.2.2. Lipid A and virulence 
 
Endotoxins are toxic to most mammals. Compared to the classic exotoxins of bacteria, 

endotoxins are less potent and less specific in their action, since they do not act 

enzymatically. Endotoxins are heat stable (boiling for 30 minutes does not destabilize 

endotoxin), but certain powerful oxidizing agents such as superoxide, peroxide and 

hypochlorite degrade them. The injection of living or killed Gram-negative cells, or purified 

LPS, into experimental animals causes a wide spectrum of nonspecific pathophysiological 

reactions such as: fever, changes in white blood cell counts, disseminated intravascular 

coagulation, hypotension, shock and death. Lipid A is the region of LPS mainly responsible 

for many of the pathophysiological effects associated with infection by Gram-negative 

bacteria, although this activity may be modulated by the nature of the polysaccharide 

core region. Since Lipid A is embedded in the outer membrane of bacterial cells, it 

probably exerts its toxic effects only when released from multiplying cells in a soluble form, 

or when the bacteria are lysed as a result of autolysis, complement and the membrane 

attack complex, ingestion and killing by phagocytes, or killing with certain types of 

antibiotics. It is thought that LPS released into the bloodstream by lysing Gram-negative 

bacteria is first bound by certain plasma proteins identified as LPS-binding proteins. The 

LPS-binding protein complex interacts with CD14 receptors on monocytes and 

macrophages and other types of receptors on endothelial cells. In monocytes and 

macrophages three types of events are triggered during their interaction with LPS:  

a. Production of cytokines, including IL-1, IL-6, IL-8, tumour necrosis factor (TNF) and 

platelet-activating factor. These in turn stimulate production of prostaglandins and 

leukotrienes. These are powerful mediators of inflammation and septic shock that 

accompanies endotoxin toxemia. LPS activates macrophages to enhanced phagocytosis 

and cytotoxicity. Macrophages are stimulated to produce and release lysosomal 

enzymes, IL-1, and tumour necrosis factor (TNF-alpha), as well as other cytokines and 

mediators. 

b. Activation of the complement cascade. C3a and C5a cause histamine release 

(leading to vasodilatation) and effect neutrophil chemotaxis and accumulation. The result 

is inflammation. 

c. Activation of the blood coagulation cascade.  Initial activation of Hageman factor 

(blood-clotting Factor XII)  can activate several humoral systems resulting in coagulation, 

activation of the complement alternative pathway, plasmin activation which leads to 

fibrinolysis, kinin activation releases bradykinins and other vasoactive peptides which 



causes hypotension. The net effect is to induce inflammation, intravascular coagulation, 

haemorrhage and shock.  

 

1.2.3. Core Region 

The core oligosaccharide is expressed by all Gram-negative bacteria and is a functionally 

important part of the LPS. The core region consists of two domains, the outer core (O-

polysaccharide proximal)and the inner core (lipid A proximal). The core region usually 

demonstrates little structural variability within a bacterial species, e.g. E. coli has five core 

types. Importantly, the greater structural differences among the core regions of various 

bacterial species occur primarily in the outer core region. The core region from both 

smooth and rough forms of enteric bacteria generally includes oligosaccharides built of up 

to 11 units. The inner core region is characterised by the presence of the unusual sugars L-

glycero-D-manno-heptose (Hep) and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Linking 

the reducing end of the inner core region with lipid A is an α-ketosidic Kdo residue, termed 

Kdo I. Kdo I is further substituted by an α-linked Kdo [Kdo II], which in turn may be non-

stoichiometrically substituted by another Kdo [Kdo III]. A Hep residue is usually attached to 

Kdo I and this may be substituted by another Hep residue to which the outer core region is 

attached. The inner core region may also have other monosaccharides or charged 

entities such as phosphate and ethanolamine. The inner core may play a role in 

modulating lipid A activity and in the induction of cytokines such as IL-1. Furthermore, this 

region represents the high affinity binding site for divalent cations of importance in 

maintaining outer membrane integrity of some bacterial species. 

 

1.2.4.  O-polysaccharide (O-Chain) 

O-Chain is attached to the Outer Core oligosaccharide. It is composed of up to 40 

repeating units, which may contain up to 7 different or identical sugars, each of which is 

interlinked by glycosidic linkages. Since differences are possible for sugar type, nature, ring 

form, substitution and sequence within the repeat units, a large amount of variation is 

observed between LPS expressed by different bacterial strains. The O-polysaccharide is 

much longer than the Core polysaccharide, and it maintains the hydrophilic domain of 

the LPS molecule. Great variation occurs in the composition of the sugars in the O-side 

chain between species and even strains of Gram-negative bacteria. The structures of O-

polysaccharides from numerous bacterial species have been well characterised. 

Common sugars such as pentoses, hexoses, 6-deoxyhexoses, 2-amino-2, deoxyhexoses, 

and uronic acids have been documented in various O-polysaccharide structures. Other 



rarer monosaccharides such as 3,6 dideoxyhexoses, 2-amino-2,6 dideoxyhexoses, and di-

amino sugars have also been found to be present in certain O-polysaccharides. The 

variability observed among various bacterial O-polysaccharides has formed the basis of 

typing schemes such as serotyping. It has been hypothesised that such structural variability 

is an attempt by the bacterium to evade host defences by presenting an O-

polysaccharide not previously recognised by host antibodies or to present O-

polysaccharides resembling host structures recognised as self by the host immune system. 

The latter strategy is termed molecular mimicry, but may, however, contribute to the 

pathogenic potential of some bacteria. The tertiary structures of O-polysaccharides is 

important in interactions with antibodies, porins, and LPS-binding protein . They also play a 

role in activating complement by the alternate pathway and as receptors for 

bacteriophages. Particular sugars in the structure, especially the terminal ones, confer 

immunological specificity of the O-antigen, in addition to "smoothness" (colony 

morphology) of the strain (S strain). Loss of the O-specific region by mutation results in the 

strain becoming a "rough" (colony morphology) or R strain. Loss of the O-antigen results in 

loss of virulence suggesting that this portion is important during a host-parasite interaction. 

It is known that R-LPS strains are more susceptible to phagocytosis and killing by 

bactericidal serum factors in vivo. Only smooth strains, protected by their O- 

polysaccharide chains, can survive in the host.  

 

1.3. Extracellular and Capsular polysaccharides  
 
Exopolysaccharides (EPSs) are long-chain polysaccharides that are secreted mainly by 

bacteria and microalgae into their surroundings during growth and that are not 

permanently attached to the surface of the microbial cell. A second group of 

polysaccharides that are structurally similar but that are permanently attached to the cell 

surface are classified as capsular polysaccharides. 

 
EPSs may be present in both Gram-negative and gram-positive bacteria. They can be 

released from the cell into the environment as a slime or remain attached to the cell 

surface to form a capsule. In their natural environment, they are thought to play a role in 

the protection of the microbial cell against desiccation, phagocytosis and phage attack, 

antibiotics or toxic compounds (e.g. toxic metal ions, sulphur dioxide, ethanol), predation 

by protozoans, osmotic stress, adhesion to solid surfaces and biofilm formation, and also in 

cellular recognition (via binding to a lectin). The polysaccharide capsule often constitutes 

the outermost layer of the cell; as such, it may mediate direct interactions between the 

bacterium and its immediate environment. Capsular polysaccharides are linked to the cell 

surface of the bacterium via covalent attachments to either phospholipid or lipid-A 



molecules. In contrast, extracellular polysaccharides molecules appear to be released 

onto the cell surface with no visible means of attachment and are often sloughed off to 

form slime. The release of polysaccharide from the cell surface must be used with caution 

as a criterion for differentiating between capsules and EPSs. Capsular polysaccharides 

may themselves be released into the growth medium as a consequence of the stability of 

the phosphodiester linkage between the polysaccharide and the phospholipids 

membrane anchor. They can be homo- or hetero-polymers and may be substituted by 

both organic and inorganic molecules. Any two monosaccharides may be joined in a 

number of configurations as a consequence of the multiple hydroxyl groups within each 

monosaccharide unit that may be involved in the formation of a glycosidic bond. As a 

result, capsular polysaccharides are an incredibly diverse range of molecules that may 

differ not only by monosaccharides units but also in how these units are joined together. 

The introduction of branches into the polysaccharide chain and substitution of both 

organic and inorganic molecules yield additional structural complexity.   
 

 

1.3.1. Production and synthesis 
 
Extracellular and capsular polysaccharides are produced by a wide range of bacteria, 

including important pathogens of humans, livestock, and plants. These polymers are major 

surface antigens and serve a variety of roles in virulence, depending on the biology of the 

producing organism. In addition to their importance in disease, some EPSs also have 

industrial applications as gelling and emulsifying agents. Some EPS are synthesised 

throughout bacterial growth, whereas others are only produced during late logarithmic or 

stationary phase. Production of most of these polymers is favoured by nutrient imbalance 

such as high C:N ratios, and often by sub-optimal incubation temperatures. High aeration 

may also be needed. Unfortunately, these same growth conditions favour synthesis of 

storage polymers such as glycogen and polyb- hydroxybutyric acid (PHB). In K. aerogenes 

grown under high carbon : nitrogen ratios, EPS and glycogen competed for substrate(2). It 

is fortuitous that X. campestris, which gives conversion rates of carbon substrate to 

polysaccharide of up to 70%, lacks such intracellular products. Gellan yields are lower, as 

S. elodea makes considerable quantities of PHB in addition to polysaccharide. Synthesis of 

all these EPSs is an intracellular process utilising nucleoside diphosphate sugars and 

considerable progress has been made in recent years in determining the biosynthetic and 

genetic mechanisms involved. These usually involve a �cassette� of genes, the products of 

which are responsible for the addition of individual sugars to isoprenoid lipid acceptors 

and of any acylation. Typically, a gene sequence of the order of 12�17 kb may be 

required depending on the complexity of the polysaccharide. Interestingly, in the case of 



xanthan, additional acylation genes were discovered. The repeating units are polymerised 

on the carrier lipids then excreted into the extracellular environment(3). 
 

 

 

1.4.         Subject of the study 
 
In summary, bacterial polysaccharides are a diverse range of biologically important 

molecules. They play pivotal roles in mediating a number of biological processes and are 

accepted products for modern biotechnology. Many sectors of industry are showing a 

growing interest for microbial polysaccharides: the topic of this research deals with the 

structure and the structure/function analysis of microbial polysaccharides with 

biotechnological interest. The following strains have been selected: 

 

- Escherichia coli O5:K4:H4 

- Agrobacterium tumefaciens A1, F/1, TT9, and TT111 

- Lactobacillus crispatus B6    

 

E. coli strain O5:K4:H4 produces an extracellular polysaccharide that warrants special 

notice because it bears close structural relationship to chondroitin found in human 

cartilage, whereas EPSs from Lactobacillus crispatus have received increasing interest from 

pharmaceutical companies due to their potential use as probiotics and microbicides. 

Strains belonging to the phytopathogenic Agrobacterium tumefaciens have been critical 

for the development of plant bioengineering and are object of intense structural studies in 

order to further understand their biological properties. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 2 

 
Escherichia coli 

 
 
Escherichia coli (named after Theodor Escherich, 1857-1911) is a Gram-negative, rod-

shaped bacterium. It is the head of the large bacterial family (Enterobacteriaceae). The 

enteric bacteria are facultative anaerobic bacteria that live in the intestinal tracts of 

animals in health and disease, and they are among the most important bacteria 

medically. A number of genera within the family are human intestinal pathogens (e.g. 

Salmonella, Shigella, Yersinia). Several others are normal colonists of the human 

gastrointestinal tract (GI) (e.g. Escherichia, Enterobacter, Klebsiella). E. coli isolates 

produce two serotype-specific surface polysaccharides: the lipopolysaccharides O 

antigen and the capsular polysaccharide K antigen. 
 
 

 
2.1. E. coli serotypes 
 
Different strains of  E. coli are defined serologically by distinctive antigens: over 700 

antigenic types (serotypes) are recognized based on O, K, and H antigens. Serotyping is 

still important in distinguishing the small number of strains that actually cause disease. 

Following the extensive investigations in the 1930's on the serological characterization of 

the Salmonella group of organisms, F. Kauffmann turned his attention to the E. coli group. 

He based the serotyping scheme on three types of antigen:  

a. The somatic (O) antigen, derived from the cell wall. These are composed of 

lipopolysaccharide complexes, which are part of the cell wall structure of the E. coli. It is 

the immunogenicity of the polysaccharide repeating units which gives the O antigens their 

specificity. A number of the O antigens either strongly cross-react serologically or are even 

identical both chemically and serologically to somatic antigens of other organisms. 

b. The capsular (K) antigen, derived from polysaccharide capsules secreted by the 

organism. These are mainly acidic polysaccharide and were initially  subdivided into three 

types depending on their heat-sensitivity. The thermostability or thermolability properties 

reflect differences in the means by which the capsule is linked to the cell surface. Despite 

extensive studies describing the repeating unit structure of K antigens, the precise linkages 

of capsules to the cell surface are still not fully resolved in all E. coli groups(4).  

c. The flagellar (H) antigen, derived from flagella and only found on motile strains. Their 

antigenic diversity is based on the different types of flagellin present as part of the flagellar 

structure. Many E. coli on primary isolation are either only sluggishly motile or non-motile. 

However, many strains on passage through a semisolid agar attain full motility. Only such 

strains are suitable for H typing. Those strains not developing motility are designated non-



motile (NM) or H-. Initially Kauffmann described 25 O, 55 K and 20 H antigens. As new 

antigens are being described new numbers are being added to the scheme(5).  

 
 

 
 
2.2. Biosynthesis and function of bacterial capsular polysaccharides  
 

Polysaccharide capsules are structures found on the cell surface of a broad range of 

bacteria. Pathogenic bacteria are notorious for their ability to surmount host defences by 

producing a wide gamut of virulence factors that enhance microbial infectivity. One such 

factor is the capsule, an extracellular polymer coating surrounding the microbial cell(6). 

Pathogens that lose the ability to produce a capsule are often attenuated or non virulent. 

The majority of described capsules are composed of long anionic polysaccharide chains, 

but neutral polysaccharides as well as proteinaceous components are also observed in 

some cases. The introduction of branches into the polysaccharide chain yield additional 

structural complexity. Biosynthesis and assembly of capsular polysaccharides is a complex 

process: in Gram-negative bacteria, it is proposed that biosynthesis and translocation of 

capsular polysaccharides to the cell surface are temporally and spatially coupled by 

multiprotein complexes that span the cell envelope. Activated precursors (nucleotide 

monophospho and diphospho sugars) in the cytoplasm are assembled into the nascent 

polysaccharide (Mr > 100.000 Da) by enzymes associated with the inner membrane. A 

dedicated translocation pathway moves nascent polymer through the periplasm and 

across the outer membrane to the cell surface. Current data suggest that capsule 

biosynthesis and assembly machinery form a transmembrane complex, but how this 

complex cross the peptidoglycan layer without compromising cell wall integrity and how 

its activity is coordinated with others involved in membrane biogenesis during cell growth 

and division is still unknown(4). E. coli capsules are surface-enveloping structures comprising 

high-molecular-weight polysaccharides that are firmly attached to the cell. An 

understanding of the synthesis and expression of E. coli K-antigens has allowed their 

classification into four different groups. These groups include two fundamentally different 

polymerisation pathways and both are widespread among different bacteria(13). E. coli 

group 1 and 4 capsules share a common assembly system, and this is fundamentally 

different from the one used for group 2 and 3 capsules. In this classification, the E. coli 

strain O5:K4:H4 belongs to the group 2 capsules(4). 

A number of  possible functions have been suggested for polysaccharide capsules, such 

as prevention of desiccation(7), adherence of  bacteria to surfaces and to each other to 

facilitate the formation of a biofilm and the colonization of various ecological niches(8), 

resistance to specific and non-specific host immunity: during invasive bacterial infections, 

interactions between the capsular polysaccharide and the host�s immune system can 



decide the outcome of the infection. In the absence of specific antibody, the presence of 

a capsule is thought to confer resistance to non-specific host defence mechanisms by 

providing a permeability barrier to complement components, thereby masking underlying 

cell surface structures that would otherwise be potent activators of the alternative 

complement pathway(9). The net negative charge conveyed on the cell surface by the 

polysaccharide capsule may also serve to confer resistance(10,11,12): the more highly 

charged the capsular polysaccharide is, the greater is the degree of resistance to 

phagocytosis. 
 

 

 

2.3.  Cell surface polysaccharides in Escherichia coli 
 
The pathogenicity of Escherichia coli is, to a large extent, determined by capsular 

polysaccharides.The cell surface of E. coli is a complex array of proteins and 

glycoconjugates. The capsular polysaccharides (CPSs) and the O-polysaccharides of the 

lipopolysaccharide (LPS) molecules are the major surface polysaccharides expressed at 

37°C. These polymers are serotype specific and give rise to the K- and O- antigens, 

respectively. Variations in sugar composition, linkage specificity, as well as substitution with 

non-carbohydrate residues result in 167 different O-serogroups and more than 80 

polysaccharide K-antigens in E. coli. The primary structures of many of these antigens have 

been elucidated. The O- and K- antigens provide recognized virulence determinants. 

Generally, the O-antigens are important for resistance to complement-mediated serum 

killing, whereas the capsular K-antigens are responsible for resistance against 

phagocytosis.  
 

 

 

2.4.  Sulphated Glycosaminoglycans (GAGs) 
 

Both vertebrates and certain microbes produce glycosaminoglycans (GAGs), long linear 

polysaccharides consisting of repeating disaccharide units containing a derivative of an 

amino sugar (either glucosamine or galactosamine). The physiologically most important 

GAGs are hyaluronic acid, dermatan sulphate, chondroitin sulphate, heparin, heparin 

sulphate and keratin sulphate. Hyaluronan [β(1→4)GlcA-β(1→3)GlcNAc], chondroitin 

[β(1→4)GlcA-β(1→3)GalNAc], and heparan sulfate/heparin [α(1→4)GlcA-β(1→4)GlcNAc] 

contain an uronic acid as the other component of the disaccharide repeat, while keratan 

[β(1→4)GlcNAc-β(1→3)Gal]contains a galactose. GAGs are located primarily on the 

surface of cells or in the extracellular matrix, where they play structural, recognition and 

adhesion roles. In the form of proteoglycans, they comprise the ground substance in the 



extracellular matrix of connective tissue. By virtue of their physical characteristics, namely 

a high negative charge density and a multitude of polar hydroxyl groups, GAGs help 

hydrate and expand tissues(19-22). Along with the high viscosity that they impart to the 

solution comes low compressibility, which makes these molecules ideal for a lubricating 

fluid in the joints. Charged groups such as carboxyl and sulphate are neutralized by 

cations which, in turn, attract and retain large quantities of water by osmotic forces. These 

forces equilibrate with the tensile forces on the intervertebral discs. The biochemical 

composition thus offers the central matrix the unique capacity to create a hydraulic 

space of fixed volume and alterable dimension(14). Certain pathogenic bacteria produce 

extracellular capsules composed of GAGs or GAGs-like polymers that enhance the 

microbes� ability to infect or to colonize the host.  
 
 
 
 
2.5.  Chondroitin Sulphate 
 
Glycosaminoglycans of articular cartilage consist mainly of chondroitin sulphate (about 

80% of the total amount of GAGs). This molecule consists of a repeating disaccharide unit 

built up of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). GalNac residues 

are usually sulphated in position 4 and/or 6. The significance of the position of sulphate 

group is unknown. Biological variability in the sulphation position exists: maturation and 

ageing causes a shift from 4 to 6 sulphation and a high degree of 4,6 disulphation at the 

GAG terminal residues, which is much decreased in degenerated cartilage(14). Cartilage is 

a highly specialized, dense connective tissue found between the surfaces of movable 

articular joints whose main function is to bear stresses during joint motion. It possesses high 

stiffness, strength, resiliency and shock absorption. Although cartilage is composed of 

many different molecules, GAGs are the major determinants of the tissue�s ability to resist 

compressive loading. Chondroitin sulphate is found in humans in cartilage, bone, cornea, 

skin and the arterial wall. This type of chondroitin sulphate is sometimes referred to as 

chondroitin sulphate A. The amino group of galactosamines in the basic unit of chondroitin 

sulphate A is acetylated, yielding N-acetylgalactosamine (GalNAc); there is a sulphate 

group esterified to the 4-position in GalNAc. Chondroitin sulphate A is also sometimes 

called chondroitin 4-sulphate and Its molecular weight ranges from 5.000 to 50.000 Da. 

Chondroitin sulphate C, primarily found in fish and shark cartilage, but also in humans, is 

also made up of linear repeating units of GalNAc and GlcA, but the sulphate group is 

esterified to the 6-position in GalNAc. Chondroitin sulphate C is sometimes called 

chondroitin 6-sulphate. Chondroitin sulphate B is also known as dermatan sulphate. It is 

abundant in skin and it is also found in heart valves, tendons and arterial walls. Dermatan 

sulphate is made up of linear repeating units containing D-galactosamine and either L-

iduronic acid or D-glucuronic acid. Its molecular weight ranges from 15.000 to 40.000 Da. 



Due to the presence of sulphate groups in different amounts and positions (2 and 3 of 

GlcA, 4 and 6 of GalNAc residues), chondroitin sulphate represents a heterogeneous 

family of polysaccharides(16). Such a large heterogeneity makes necessary an accurate 

evaluation of their structures and properties, charge density and position of sulphate 

groups, which is of paramount importance mainly for pharmacological applications. 

Furthermore, chondroitin is an expensive material, so experts have been concerned about 

the quality and quantity of the ingredient in the supplements. The source of chondroitin 

sulphate used in nutritional supplements includes the cartilaginous rings of bovine trachea 

and pork by-products (ears and snout). Shark cartilage and whale septum cartilage have 

also been used. Because chondroitin usually comes from cow cartilage, an additional 

concern has been whether the products may be contaminated with bovine spongiform 

encephalitis, the causative agent (a �prion�) of Mad Cow Disease. The risk, however, 

seems to be minuscule since the prion is known to exist only in very low levels in cartilage, 

while it is most abundant in nervous and glandular tissues. Unfortunately, there�s no simple 

way to test for BSE prion contamination in supplements, so pharmaceutical companies are 

looking forward to safer products. Chondroitin sulphate supplements are usually isomeric 

mixtures of chondroitin sulphate A (chondroitin 4-sulphate) and chondroitin sulphate C 

(chondroitin 6-sulphate)(15). These preparations are widely used as food supplements to 

slow the progression of osteoarthritis - the deterioration of cartilage between joint bones - 

and to reduce the associated pain. Chondroitin supplements are also employed as 

chondroprotective, with application in the therapy of tibiofibular osteoarthritis of the 

knee(17), finger joints and hip, and may possibly have beneficial effects on cartilage of all 

joints, including the intervertebral disc(14).          

  
 
 
2.6.  Escherichia coli O5:K4:H4 
 
Three E. coli capsular types, K1, K4 and K5, make polymers composed of GAG-like 

polymers. The K1 polysaccharide is a poly(2→8)-α-N-acetylneuraminic acid, the K5 

polysaccharide [with the repeating unit -4)-β-D-GlcA-(1→4)-α-D-GlcNAc-(1-] has a 

structure alike to N-acetylheparosan, the precursory polymer of heparin and heparin 

sulphate. The K4 polysaccharide synthesized by  E. coli strain O5:K4:H4 has a non sulphated 

chondroitin backbone decorated  with fructose side branches on the C3 position of the 

GlcA residues. Biochemical analysis demonstrated that a single GalNAc residue is added 

to a non reducing terminal GlcA residue of a chondroitin-derived oligosaccharide 

acceptor. It appears that the fructose branch is added to the K4 polymer chain after the 

GAG repeat is formed because defructosylated K4 oligosaccharide but not the intact 

native K4 oligosaccharide served as an acceptor. The fructose branch makes the 

chondroitin polymer more antigenic. At this time, an E. coli capsular type without fructose 



moiety has not been reported(18). In this context, it is of great interest to have a procedure 

that could rapidly defructosylate the native K4 and purify it from the toxic LPS so to obtain 

a suitable product that could be further sulphated in the desired positions. In order to set 

up a purification protocol suitable for an industrial scale up process, different methods 

have been tested to develop a viable commercial process economically advantageous 

and ecologically compatible. 

 

 

 

 
 

2.7. Precipitation of acidic polysaccharides with cetyltrimethylammonium 
bromide  
 
 

Extraction with a cetyltrimethylammonium bromide solution (Cetavlon) is a procedure 

suitable for lipopolysaccharide preparation. This method is typically used to purify LPS from 

residual nucleic acids after phenol/water extraction. Removal of nucleic acids is achieved 

by their preferential precipitation with a cationic detergent such as Cetavlon. Nucleic 

acids are more strongly acidic than the phosphoric acid ester-containing LPS and form a 

water-insoluble salt with Cetavlon while the LPS complex remains in solution. Such 

procedure is effective to separate acidic polysaccharides from LPS as well. Separation of 

the acidic polysaccharides and nucleic acids is based on the fact that the Cetavlon 

complexes of the polysaccharides are soluble at different concentration in a  sodium 

chloride (NaCl) solution, compared with the Cetavlon-nucleic acids complexes. Srivastava 

and co-workers(23) used a similar method for the isolation and purification of acidic 

polysaccharides from Serratia marcescens. Orskov prepared acidic polysaccharide 

antigens from E. coli capsules by application of this procedure(24).  Rodriguez et al. took 

advantage of this methodology as well to precipitate the K4 capsular polysaccharide 

from the liquid cultures. Following this pipeline, a modified procedure similar to those cited 

above has been developed. As reported from Rodriguez, the K4 capsular polysaccharide 

was precipitated from the liquid cultures by addition of Cetavlon, then it was extracted  

from the precipitate with calcium chloride and purified by several cycles of precipitation 

with ethanol. Contaminating proteins were removed by repeated extraction with cold 

phenol. The process described below presents some differences. The first innovation lies in 

the fact that the  precipitation with Cetavlon was performed on the culture filtrate after 

ultrafiltration and diafiltration, so that there was no need of an additional purification with 

phenol. Besides, the entire purification protocol shows some improvements in the modus 

operandi.     



 
 

2.7.1. Experimental procedure 
 
Ultrafiltrated, protein free and lyophilised fermentation broth containing extracellular K4 

polysaccharide and LPS was subjected to precipitation with Cetavlon.  The content of 

uronic acid in the sample was about 45% as determined using the uronic acid assay. 300 

mg were dissolved in 15 mL of deionised water,  35 mL from a 3% Cetavlon solution were 

added. The sample was allowed to precipitate for 4 hours at room temperature, then it 

was centrifuged (7000 rpm, 30 min, 25°C). The precipitate was dissolved in the minimum 

amount of 1.5 M NaCl and purified by three cycles of precipitation with 30 mL of ethanol. 

In each subsequent cycle the concentration of NaCl solution was reduced to a half (i.e.  

0.75 M, 0.3 M, H2O milliQ). After the last cycle the precipitate was dissolved in deionised 

water and lyophilised. The supernatants were collected together and dialysed against 1M 

NaCl (membrane cut off 12.000-14.000 Da). Both supernatant and precipitate (yield 112 

mg)  were screened by SDS-PAGE 12% and analysed by GC-MS and NMR (Fig. 2.1 - 2.4).  
 

Fig.2.1.  GC-MS chromatogram of  K4 capsular before Cetavlon extraction.  
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Fig.2.2.  GC-MS chromatogram of  K4 capsular after Cetavlon extraction.  

 

 

 

Fig.2.3.  1H NMR spectrum of  K4 capsular before Cetavlon extraction.  

 

Fig.2.4.  1H NMR spectrum of  K4 capsular after Cetavlon extraction.  

 

 

2.7.2. Results and discussion 
 
Characterization of the precipitate after extraction with Cetavlon showed it to be 

composed of K4 polysaccharide (the yield obtained was approximately 100%) without the 

endotoxin LPS. The structure was investigated by composition, methylation and by 1D and 

2D nuclear magnetic resonance spectroscopy. The polysaccharide was determined to be 

composed of repeating disaccharide subunit of D-glucuronic acid (GlcA) (β 1→3) and N-

acetyl-D-galactosamine (GalNAc) (β 1→4) to which β-fructofuranose units are linked to C-

3 of D-glucuronic acid residues. Such procedure is useful to obtain a product which can 

be easily defructosylated under acid conditions to produce a polysaccharide having the 

5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 ppm 

5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 



structure of nonsulfated chondroitin. Traces of Cetavlon were always present in the sample 

and all attempts to completely remove it failed. As a consequence, this product was used 

to further improve other purification processes, but it was not suitable to be proposed as 

an active pharmaceutical ingredient.    

 
 
 
 
 
 
2.8. Solid Phase Extraction 
 
 
2.8.1. Charcoal as adsorbent for Solid Phase Extraction 
 
Solid phase extraction (SPE) is an extraction method that uses a solid phase and a liquid 

phase to isolate one, or one type of analyte, from a solution. Commercial SPE cartridges 

have 1-10 mL capacities and are made of activated charcoal. Activated carbon is a 

crude form of graphite, it differs from graphite by having a random imperfect structure 

which is highly porous: the size of the pores varies from micropores (2 nm), to mesopores (2-

50 nm), to macropores (greater than 50 nm). The graphite structure gives the carbon its 

extraordinarily large surface area (300-2000 m2/g)(25) which allows the carbon to adsorb a 

wide range of compounds(26). Activated charcoal is manufactured from a variety of 

sources containing a high carbon content such as coal, wood, lignite and coconut shells. 

The raw material has a very large influence on the characteristic and performance of 

activated carbon. The process includes first carbonising the raw material at low 

temperatures, and then activating the carbon in a high temperature steam process. There 

are two forms of activated carbon used as adsorbent: granular activated carbon (GAC) 

and powder activated carbon (PAC). The type chosen is determined by the desired 

physical and chemical properties. The most important physical parameters are specific 

surface area, pore size distribution, specific adsorption capacity and particle size. The most 

important chemical properties are ash composition and pH. The specific mode of action is 

extremely complex, since activated carbon has both chemical and physical effects on 

substances. Activity can be separated into (1) adsorption; (2) mechanical filtration; (3) ion 

exchange. The most studied of these properties is adsorption, the process that occurs 

when components of a liquid attaches to a solid surface. This can be either physical or 

chemical, and frequently involves both. Physical adsorption involves the attraction by 

electrical charge differences between the adsorbent and the adsorbate. Chemical 

adsorption is the product of a reaction between the adsorbent and the adsorbate. 

Adsorption capacity depends on many factors: physical and chemical characteristics of 

adsorbent and adsorbate, concentration of the adsorbate in liquid solution, 

characteristics of the liquid phase (pH, temperature). Mechanical filtration involves the 



physical separation of suspended solids from a liquid passing through carbon arrayed as a 

porous media in a column. The effectiveness of filtration depends on particle size and 

hardness(27). While a smaller particle size results in a clearer liquid, it also slows the speed of 

processing. As for ion exchange, coal is a natural ion exchanger(28), and chemical 

activation can enhance ion exchange. Carbon surfaces have both negative or positive 

charges to attract free ions in solution. Treatment of carbon with a base increases the 

capacity of carbon to exchange anions, while acidulation of the surface makes carbon a 

powerful cation exchanger(29). Activated charcoal has long been used for the preparative 

chromatographic fractionation of mixtures of oligosaccharides obtained by partial acid 

hydrolysis of polysaccharides(30). GAC adsorption has been used successfully for the 

advanced treatment of industrial wastewater, to adsorb soluble organics and inorganic 

compounds such as nitrogen, sulphides and heavy metals(31). Applications of activated 

carbon in the liquid phase include potable water treatment, groundwater treatment, 

decolourisation and chemical and pharmaceutical treatment. After the activated carbon 

has reached exhaustion and all the adsorptive sites are filled, it can be regenerated 

through thermal reactivation, by heating it at a temperature of 820 to 930 °C. Recovery of 

the carbon ranges from 90 to 95%. Alternatively, regeneration can take place by steam 

stripping (volatile constituents are removed with the steam passed through a bed of 

charcoal granules), solvent regeneration or wet air oxidation. 

 
 
 

2.8.2. Carbograph solid phase extraction 
 
 
Carbograph solid phase extraction packing is a homogenous graphitised carbon black 

with a surface area of 100m2/g and a particle size of 38-125 µm. A graphitised carbon is a 

graphitic carbon with more or less perfect three-dimensional hexagonal crystalline order 

prepared from non-graphitic carbon by graphitization heat treatment. The primary 

retention mechanism is reversed-phase, but under certain conditions cationic areas of the 

carbon surface will act as anion exchange sites. This mixed-mode characteristic allows the 

separation of acidic compounds from basic and neutral compounds(32).  

 

 
 
2.8.3.  Experimental Section 
 
A method to purify K4 from LPS using solid-phase extraction was developed. SPE was 

performed using Carbograph cartridges, Activated Carbon powder and Activated 

Carbon granular. For this purpose, K4 sample (containing both exopolysaccharide and 

lipopolysaccharide) was hydrolysed (acetic acid 1%, 100°C 2h, solution at 25 mg/mL). Lipid 



A was removed by centrifugation, while the recovered supernatant was dialysed for 24 h 

against deionised water to remove fructose. GC-MS and NMR analysis of the resulting 

material showed it to be composed of defructosylated K4 (K4d) and O-Chain. This sample 

was then subjected to SPE. Different solvents such as ethanol, acetone and acetonitrile 

were tested for elution. Acetone and ethanol  eluted compounds incompletely, while 

acetonitrile showed to provide for a more effective elution.  

 
 
 
Materials 
Carbograph cartridges (150 mg, 0.5 mL) were from Alltech Associates Inc., Activated 

Carbon type Norit CN1 from wood and Activated Carbon granular Norit type Darco from 

lignite were from Fluka. Dialysis tubes having a cut-off range of 12-14000 Da were from 

Spectrum Labs. Glass columns were from Microglass s.r.l.. 

 

CARBOGRAPH 
Carbograph cartridge was washed with 3 volumes of acetonitrile. Elution was performed 

with five volumes of water , three volumes of  acetonitrile/water 1:3, three volumes of 

acetonitrile/water 1:3 with 0.05% trifluoroacetic acid (TFA). Fractions of 0.5 mL were 

collected and screened using phenol/sulphuric acid and uronic acid assays as described 

elsewhere (Fig. 2.5). Two peaks were collected and subjected to chemical and 

spectroscopic analysis.  
 

 

 

                                                                                                                                 Fig. 2.5.  Phenol/sulphuric acid 

(Abs 490 nm) and uronic acid assays (Abs 520 nm). 

 

 

 

 

 

 

 

 

 
Activated Carbon powder (PCA) and Activated Carbon granular (GCA) 
 
PCA and GCA were used as medium for packing glass columns (20 x 1.8 cm). Batch trials 

on a small amount of carbon were performed as well. In both cases, elution was 

performed as described for Carbograph. Fractions were screened by phenol/sulphuric 

acid, uronic acid assay and SDS-PAGE 12%. In these cases it was not possible to achieve 

an optimal separation of the two substances. In addition, the carbon powder resulted to 

be always present in all the fractions recovered after SPE. 
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2.8.4.  Results and discussion 
 
From all these experiments it was possible to argue that Carbograph cartridges gave the 

best results, providing for a fine and reproducible technique for the purification of K4d from 

O-Chain. Carbon powder resulted to be so fluffy that it couldn�t be removed by 

centrifugation. All others attempts to remove it from samples failed. Small amount of 

carbon powder were found in samples also after GCA extraction. Furthermore, in order to 

set up a protocol suitable for an industrial scale up process, it should be considered that 

activated carbon is expensive, thus making regeneration economically desirable but not 

easy to perform on a large scale. Another disadvantage with activated carbon is the high 

emissions of sulphur dioxide generated from the heating process in manufacturing carbon 

from coal, and with the increasing demands for environmental protection it could be 

suitable to look at another viable procedure ecologically compatible.  

 
2.9.  Ion Exchange Chromatography 
 
 
Ion Exchange Chromatography (IEC) is a high resolution technique for separating samples 

according to their charge. It is the most commonly used chromatographic method of 

separation due to its ease of use and scale up capabilities, since large volumes can be 

applied to ion exchange columns. The protocol here described takes advantages of the 

strong anion exchanger Q-Sepharose Fast Flow. Q-Sepharose Fast Flow resin belongs to 

the BioProcess Media family, which are made and supported for industrial scale, especially 

the manufacture of healthcare products. The ion exchange group is a quaternary amine 

which remains charged and maintains constantly high capacities over the entire working 

range (pH 2-12). With its elevated physical and chemical stability and its high 

reproducibility it is ideal for all stages of an operation, from process development through 

scale-up and into production.  
 
 
 
Materials 
 
Ion-exchange resin Q-Sepharose Fast Flow was from GE Healthcare. Dialysis tubes having 

a cut-off of 12-14.000 Da were from Spectrum Labs. Glass columns were from Microglass 

s.r.l.. 

  

 

Purification of K4 polysaccharide 
 



The broth culture concentrated by ultrafiltration and after enzymatic deproteinization was 

dialysed, lyophilised and analysed by  uronic acid assay, GC-MS and NMR. The content of 

K4 polysaccharide was about 53%. The polysaccharide sample (1.1 g) was hydrolysed with 

1% acetic acid at 100°C for 2 h (solution at 25 mg/mL) and then centrifuged to remove the 

precipitate (lipid A, yield 253 mg). The supernatant was dialysed against deionised water 

to remove fructose, then it was lyophilised again (yield  800 mg). The subsequent 

purification was carried out by passing it through a column (2.4 x 34 cm) packed with Q-

Sepharose FF resin equilibrated with 10 mM NaCl. The column was then washed with three 

volumes of 100 mM and 1 M NaCl (flow rate 200 mL/h). Fractions of 12 mL were collected 

and screened by phenol/sulphuric acid and uronic acid assays. Two peaks (A and B) were 

obtained by the phenol test. Only peak B gave a positive match to uronic acid assay. On 

the basis of the chromatogram reported in Fig. 2.6., peaks A and B were pooled, dialysed 

and freeze-dried. Approximately 390 mg of the purified K4 and 380 mg of the O-Chain 

were recovered. Characteristics of the two samples obtained at the end of purification  

were analysed according to chemical and spectroscopic analysis (Fig. 2.7 and Fig. 2.8).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6. Uronic acid (Abs 520nm) and phenol/sulphuric acid assay (Abs 490nm). 
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Fig. 2.7. 1H NMR spectrum of O-Chain. 
 
 
 
 

 
 
Fig. 2.8. 1H NMR spectrum of purified defructosylated K4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

                         2.9.1.  Results and discussion 
 
 
The spectra of the defructosylated K4 and the antigenic O-polysaccharide component 

were similar to the spectra reported in literature. Their structures were investigated by 

composition, methylation and by 1D and 2D nuclear magnetic resonance spectroscopy. 

The purified K4 polysaccharide resulted to be composed of equimolar quantities of 

glucuronic acid and N-acetylgalactosamine in a linear chain. Both NMR spectra and GC-

MS chromatogram showed the absence of fructose previously bonded in a lateral chain 

with carbon 3 of glucuronic acid. The K4 polysaccharide produced and purified with the 

procedure described above has the structure reported below: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The O-Chain was determined to be composed of repeating tetrasaccharide units 

containing D-ribose (Rib), D-N-acetylgalactosamine (GalNAc), D-galactose (Gal), 3-N-

Acetyl-6-deoxy-D-glucose (Quin3NAc) and having the following structure: →4)β-D-

Quin3NAc(1→3)β-D-Ribf(1→4)β-D-Gal(1→3)α-D-GalNAc(1→ . 
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The process described above for the isolation and purification of the bacterial K4 antigen 

allows this polymer to be obtained with very high purity (100%) and with higher yields than 

when using other known procedures. The non sulphated K4 polysaccharide is 

defructosylated and it is the suitable substrate for successive reactions: it can be O-

sulphated in position 4 and/or 6 of the galactosamine to obtain chondroitin sulphate. The 

possibility of producing the extracellular K4 by means of a fermentation on a large scale 

and the subsequent purification process supplies a polysaccharide precursor of 

chondroitin sulphate. Such polymer can be transformed, by means of economically 

advantageous industrial processes of selective sulphation, into chondroitin sulphate.     
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
CHAPTER 3 

 
 

Agrobacterium tumefaciens 
   
 
Agrobacterium tumefaciens is a Gram negative, non sporing, rod-shaped soil plant 

pathogenic bacterium, closely related to Rhizobium. Plant transformation mediated by A. 

tumefaciens has become the most used method for the introduction of foreign genes into 

plant cells and the subsequent regeneration of transgenic plants. The first evidence 

indicating this bacterium as the causative agent of the crown gall, a disease affecting a 

wide range of plants, goes back to one hundred years ago: in 1907, Erwin F. Smith and C. 

O. Townsend(33) established that crown gall was caused by a bacterium which they 

named Bacterium tumefaciens, later changed to Agrobacterium tumefaciens by Conn in 

1942. In the same year, White and Braun showed that although A. tumefaciens was 

necessary for the induction of crown gall, once the gall was initiated, the bacteria could 

be eliminated without affecting gall growth. The next noteworthy development was the 

discovery of opines in the late 1960s by Morel and his colleagues in France. Opines are 

unusual compounds resulted from condensation between amino acids and sugars, which 

are produced and excreted by the crown gall cells. Examples are octopine, nopaline, 

agropine and agrocinopine, which are not synthesized by normal plant tissues. The kind of 

opine synthesized depends not on the plant but on the inciting bacterium which can 

catabolize the synthesized opines and use them as a source of energy, carbon and 

nitrogen. Strain of  A. tumefaciens are frequently classified according to opines 

synthesized. In 1975 it was showed that genes for pathogenicity are located on a large 

plasmid called the tumour-inducing (Ti) plasmid. The bacterium has the particular ability to 

transfer a  small DNA segment (called transfer DNA or T-DNA) of the Ti plasmid into the 

nucleus of infected plant cells, where it is subsequently stable integrated into the host 

genome and transcribed(34,35). As expected, the oncogenic genes encoding for enzymes 

involved in the synthesis of auxins and cytokinins (responsible for the tumour formation) 

and the genes encoding for the synthesis of opines are located within the T-DNA. Outside 

the T-DNA are located the genes for the opine catabolism and the genes involved in the 

process of T-DNA transfer from the bacterium to the plant cell(36,37). As a result of T-DNA 

transfer, the plant is directed to synthesize compounds which it can�t utilize: only the 

inciting bacterium benefits from such substances. Although A. tumefaciens naturally 

infects only dicotyledonous plants and many economically important plants (including the 

cereals, nuts, ornamentals, vines and canes), during the last decade reproducible and 

efficient methodologies were established on monocotyledonous plants such as rice(38,39), 

banana(40), corn(41), wheat(42) and sugarcane(43,44).   



 
 

3.1.  Disease Cycle 
A. tumefaciens can survive in soil as a saprophyte for short periods before it invades a host 

plant through a wound. It is found commonly in the rhizosphere (the region on and around 

root surfaces), where it seems to survive by using nutrients that leak from the root tissue. The 

motile cells of A. tumefaciens are attracted to wound sites in response to the release of 

sugars and other common root components(Fig.3.1.).  

 

 

 
 

 

 

 

 

 

Fig. 3.1. Agrobacterium attaches to plant cell. 

 

 

Once within the plant, the bacterium induces formation of a gall by transferring its T-DNA 

into the cell of the plant, where it becomes integrated into the plant�s genome (Fig.3.2).  

 

 

 

 

 

 

 

 
Fig. 3.2. T-DNA transfer. 

 

Genes on this tumour-inducing (Ti) plasmid cause the plant cell to divide repeatedly, thus 

forming the tumour. Crown galls typically form on the root �crown� of the plant near the 

soil line but also can form on roots or on aboveground stems and twigs. The galls are 

initially small and usually white or tan, more or less round, and spongy in texture. As the 

galls enlarge, the outer tissue gradually darkens to brown and becomes convoluted and 

rough, and the inner tissue becomes hard. The bacteria live and multiply in the intercellular 



spaces of the gall and are released back into the soil when the gall eventually 

deteriorates. 

3.2.  Agrobacterium tumefaciens T-DNA transfer process 
 

The process of gene transfer from A. tumefaciens to plant cells implies several steps: (1) 

bacterial colonisation, (2) induction of bacterial virulence system, (3) generation of T-DNA 

transfer complex, (4) T-DNA transfer and (5) integration of T-DNA into plant genome and its 

expression(45). Virulent bacteria recognize wound phenolic compounds such as 

acetosyringone as a signal which attracts the motile cells of A. tumefaciens to wound sites. 

Thus, one of the functions of the Ti plasmid is to code for specific receptor that are inserted 

in the bacterial membrane and enable the bacterium to recognise wound sites. 

Acetosyringone plays a further role in the infection process, because at higher 

concentrations it activates the virulence genes on the Ti plasmid. The vir genes products, 

among other function, are necessary for the processing and transport of the T-DNA from 

the bacterium to the eukaryotic cell. These genes coordinate the infection process, 

leading to productions of proteins (permeases) that are inserted in the bacterial cell 

membrane for the opines uptake and causing the production of an endonuclease (a 

restriction enzyme) that excises the T-DNA. The bacterium releases the excised T-DNA that 

enters the plant cells, where it integrates into the plant chromosomes. The rest of the Ti 

plasmid remains in the bacterium to serve further roles. The mechanism involved in the T-

DNA integration has not been characterized yet, but it is considered that the integration 

occurs by illegitimate recombination(46). When integrated into the plant genome, the 

genes on the T-DNA code for production of cytokinins and opines synthesis. Bacterial 

colonisation is the essential and earliest step in tumour induction(47): Lippincott and 

Lippincott (1977,1980) have shown that the primary event in crown gall tumour induction is 

the attachment of the bacterial cells to the host plant cell wall. The lipopolysaccharides 

(LPSs) and the capsular  polysaccharides (K-antigens) are proposed to play an important 

role in the colonising process(48). Whatley et al. (1976) have demonstrated that the 

Agrobacterium component involved in the microbial-plant adherence is the 

polysaccharide or O-antigen portion of LPS (O-Chain). The lipid A moiety anchors the LPS 

molecule in the outer membrane, while the projecting polysaccharide chains participate 

in the adherence process. On the part of the host cell wall, polygalacturonic acid has 

been implicated in the adherence mechanism because of its excellent ability to inhibit 

tumour induction(49). The knowledge of the structures of the repeating units in bacterial O-

antigens is very important from the biotechnological point of view, since it can lead to the 

understanding, on the molecular level, of the bacterial strain pathogenesis mechanism. 

 

 

 



 

 
 

3.3. Genetic engineering: plant transformation mediated by Agrobacterium 

tumefaciens 

 
Agrobacterium tumefaciens is more than the causative agent of crown gall disease: it is 

also firstly the natural instance for the introduction of foreign genes in plants allowing its 

genetic manipulation(45). The A. tumefaciens-plant interaction is a process in which a 

prokaryote �genetically engineers� an eukaryote. The basis of Agrobacterium-mediated 

genetic engineering is that the T-DNA is excised and integrated into the plant genome, so 

any foreign DNA inserted into the T-DNA will also be integrated: replacing the transferred Ti 

genes with resistance genes (to insects or to herbicides) allows to select improved varieties 

which are more productive and resistant to pathogens and diseases. Plant transformation 

mediated by this soil plant pathogen has become the most used method for 

dicotyledonous plant transformation. The transgenic tomatoes do not express the gene for 

polygalacturonase, an enzyme that degrades pectin, leading to softening of the fruit 

tissues. As a result, the tomatoes can be left on the plant for longer to accumulate flavour 

components. Several crops have been engineered to express the insecticidal toxin gene 

of Bacillus thuringiensis(50), so that plants were protected from the ravages of many 

caterpillars. This is highly successful, but it has the potential disadvantage that continuous 

exposure of insects to the toxin will select for the development of toxin resistance. Several 

crops have also been engineered for resistance to herbicides, so that the herbicide can 

be used for weed control without damaging the crop. Consequently, A. tumefaciens has 

been critical for the development of modern plant genetics and agricultural 

biotechnology.  

 

All the bacteria belonging to A. tumefaciens species are phytopathogenic and are object 

of very intensive investigation due to their potential biotechnological use. In order to 

reveal the relationship between the chemical structure of their O-antigenic 

polysaccharides and their involvement during host-pathogen interaction, the following 

strains have been selected and subjected to chemical and spectroscopic analysis: A. 

tumefaciens A1, TT111, F1 and TT9. The first three strains are extensively described in the 

attached articles, the latter one will be discussed in the next chapter.  

 

 

 

 



 

 

3.4.  Experimental Section 
 
 
 
3.4.1.   Bacterial growth and culture conditions 
 
A. tumefaciens strain DMS 30208 (here referred to as TT9) was grown at 28°C in liquid shake 

culture (200 rpm) in Nutrient Broth (Fluka Nutrient Broth No 4 cod. 03856) for 18 h (early 

stationary phase). The bacterial suspension was centrifuged (3500 × g, 5 min) and 

harvested cells were washed two times sequentially with ethanol, acetone and ethylic 

ether.  
 

 

3.4.2.  Isolation and purification of the LPS 
 
 
Dried cells (yield 0.170 g L-1)were extracted by the phenol/water method. Each phase was 

dialyzed against distilled water and freeze-dried to yield 1.27 g of LPS fraction in the phenol 

phase (23% yield gLPS/gcells) and 183 mg in the water phase (3.3% yield gLPS/gcells). Both 

fractions were screened by discontinuous SDS-PAGE electrophoresis on a 12% gel with a 

Bio-Rad miniprotean gel system. The samples were run at constant voltage (150V) and 

stained by Kittelberger�s procedure. The lyophilized product from the phenol phase 

presented a large amount of insoluble product that was removed by centrifugation. The 

supernatant was further purified on Sephacryl HR 400 (Pharmacia, 1.5 x 90 cm, eluent 

NH4HCO3 50 mM, flow 0.5 mL/min). The eluate was monitored with a R.I. refractometer (K-

2310 Knauer) and the collected peaks were again screened on SDS-PAGE leading to 131 

mg of pure LPS fraction (yield 10% from crude phenol extract). 
 

 

 

3.4.3.  Chemical compositional analysis 
 
Monosaccharides as acetylated O-methyl glycoside derivatives and lipids as methyl esters 

were analyzed by GC-MS on an Agilent 5973 instrument, using a SPB-5 capillary column 

(Supelco, 0.25 mm x 30 m, flow rate 0.8 mL/min, He as carrier gas, with the following 

temperature program: 150°C for 5 min, 150→300°C at 5°C/min, 300°C for 5 min). The mass 

spectra were recorded with an ionization energy of 70 eV and an ionizing current of 0.2 

mA. The absolute configuration for Rhamnose and Fucose was determined by analysis of 

the chiral 2-octyl derivatives according to the procedure of Leontein. In order to analyze 

the glycosyl linkage, the permethylated  LPS was recovered in the organic layer of the 

water/chloroform extraction and converted into its partially methylated alditol acetates 



(AAPM), according to the procedure of Sandford. The octyl and AAPM derivatives 

mentioned above were analysed by GC-MS as reported above. 

                       3.4.4.  Isolation of the O-Specific Polysaccharides  
 
 
Purified LPS fraction (7 mg) was dissolved in 1 mL of 1% acetic acid solution and kept at 

100°C  for 2h. After cooling, the solution was centrifuged (7000 rpm, room temperature, 10 

min) and the clear supernatant was freeze-dried. The O-Chain was further purified by HPLC 

on TSK G3000 PWXL (Tosoh Bioscience, 7,8mm ID x 30cm L, eluent H2O, flow 0,7 mL/min), 

previously calibrated with dextran standards. Two fractions (A= 2mg and B= 3 mg) with 

different molecular weight (223.000 Da and 3600 Da, respectively) were obtained in 

approximately 70% yield from LPS. 

 
 
 
 3.4.5.  Determination of Absolute Configuration of Methyl-4-amino-4-deoxy-      
3-O-Methyl-Fucoside 

  
 
Aglycon fraction (∼  0,5mg) was hydrolyzed with KOH 4M under Argon Atmosphere (120°C 

Overnight) and then neutralized with HCl 4M. After isopropanol was added, the 

precipitate was removed by centrifugation while the supernatant was analyzed by Thin 

Layer Chromatography (TLC) eluting with CHCl3/MeOH/H2O 14:6:1) and by NMR analysis. 

The resulting hexose was p-bromobenzoylated with 2-fold excess of the corresponding 

acyl chloride at room temperature for 5 h with dry pyridine as solvent. Circular Dichroic 

Absorption  (∆ O.D.) was measured in HPLC-grade methanol with a Jasco J-715 instrument. 

The spectrum was elaborated according to the instrument software. The D-configuration 

was established from the positive Cotton effect, which indicated a clockwise 

arrangement of the two p-bromobenzoate chromophores. 
 
 
 

                       3.4.6.   Smith Degradation  
 
 
Purified LPS (16mg) was oxidized with NaIO4 50mM at 4°C for 72 hours, followed by 

reduction (NaBH4, 1 h, Room Temperature), acidification (2M acetic acid), dialysis and 

freeze-drying. The oxidized polymer was then hydrolyzed (0,1% SDS, 50mM AcONa pH 5, 

100°C, 6 h), centrifuged and the supernatant was purified by Sephacryl HR100 (Pharmacia, 

1,5 x 70 cm, eluent NH4HCO3 50mM, flow 0,3mL/min). The eluate was monitored with a R.I. 

refractometer (K-2310 Knauer) and the collected peaks were screened by NMR analysis 

(6% yield from LPS). 
 

 

 



 

 

3.4.7.  NMR spectroscopy 
 
Spectra of A and B were recorded with a Varian Inova 500 of Consortium INCA (L488/92, 

Cluster 11), operating at 25°C and equipped with a with a z-gradients reverse probe. 

Spectra of all Methyl-4-amino-4-deoxy-3-Methyl-fucopyranoside derivatives were recorded 

with a Bruker DRX 400 spectrometer at 303 K. Chemical shifts of spectra recorded in D2O 

are expressed in δ relative to internal acetone (δ= 2.225 and 31.5 ppm), whereas spectra in 

DMSO are referred to the chemical shifts of the solvent. For the homonuclear experiment, 

solvent saturated DQF-COSY, TOCSY and ROESY spectra, 512 FIDs of 2048 complex data 

points were collected, with 48 scans per FID and using standard manufacturer software. 

The spectral width was set to 10 ppm and the frequency carrier was placed at the residual 

HOD peak and mixing times of 120 and 200 ms were used for TOCSY and ROESY, 

respectively. For the HSQC and HMBC spectra, 256 FIDS of 2048 complex points were 

acquired with 50 scans per FID, the GARP sequence was used for 13C decoupling during 

acquisition. Conversion of the Varian data and processing was performed with Topspin 1.3 

program, the spectra were assigned using the computer program Pronto. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
3.5.   Results and discussion  
 
Analysis of the GC-MS chromatogram (Fig. 3.1.) of the sample recovered from phenol 

phase extract revealed the presence of four main intense peaks, those found at 7.6 and 

8.2 RT  were identified as Rhamnose and Fucose, respectively, when compared with 

standards. Octyl glycosides and methylation analysis showed the  Rhamnose to be 4-

linked and L configured, whereas Fucose was D configured and 3-linked.  
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C-MS chromatogram of sample recovered from phenol extract. 

 

 

Attribution of the peaks at 41.5 and 42.2 RT was more complicated and it was achieved by 

means of extensive chemical procedures in combination with NMR analysis. Such product 

resulted to be the acetyl derivative of a methyl-4-amino-4-deoxy-3-O-methyl-fucosyde 

linked at N-4 with the new aglycon N-methyl-3,4-dihydroxy-3-methyl-5-oxoproline. This new 

compound, initially suspected to be a contaminant, resulted to be the second antigenic 

moiety produced by A. tumefaciens TT9. In order to prove this hypothesis, LPS fraction was 

subjected to mild acid hydrolysis and it was subsequently purified by HPLC on a gel 

filtration column. The two moieties were obtained in mixture. By means of 2D NMR it was 

possible to identify a first O-Chain (named O-Chain 1) built up of Rhamnose and Fucose.  

Additional data supporting the presence of a second O-Chain were obtained by 

periodate degradation: O-Chain 1 was cleaved selectively, whereas the other compound 

(named O-Chain 2) was recovered unaffected. To further verify these data, the O-Chains 

mixture was hydrolyzed in strong basic conditions (KOH 4M). Under these conditions, O-

Chain 1 was cleaved selectively, while O-Chain 2 was recovered unaltered. Structure 

elucidation was achieved with chemical methods, GC-MS analysis and NMR 
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spectroscopy. 1H and 13C NMR spectra, as well as 2D NMR experiments (DQF-COSY, 

TOCSY, ROESY, HSQC and HMBC) proved to be particularly effective in the 

characterization of the O-Chain 1 and the α/β anomeric mixture of O-Chain 2. The 

structures of the two O-polysaccharides are shown below; the simplest one is a linear 

polysaccharide with the following repeating unit: [3)-α-D-Fuc-(1→4)- α-L-Rha-(1→]n 
 

 O-Chain 1 

 

 

 

Fig. 3.2.  1H NMR spectrum of the product (O-Chain 1) obtained after basic hydrolysis (KOH 

4M). 
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Tab. 3.1. Chemical shifts of O-Chain 1. 

 

 

 

 

 

The second polymer is constituted from the amino acid N-methyl-3,4-dihydroxy-3-methyl-5-

oxoproline and from the sugar residue 4-deoxy-4-amino-3-O-methyl-α-D-Fucose; the 

monosaccharide is linked at O-4� of the modified amino acid that, in turn, it is linked at N-4 

of the successive amino sugar unit. The structure of this oxoproline derivative is new and it 

is found for the first time in bacterial LPS. 
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Fig. 3.3. 1H spectrum of methyl-glycoside (anomeric mixture) 
 
 

 
 
Fig. 3.4.  13C spectrum of methyl-glycoside (anomeric mixture). 
 
 
 
The structure elucidation started from the anomeric protons, found at 4.79 ppm for the α-

anomer (3JH1,H2= 4.0 Hz) and 4.31 ppm for the β-anomer (3JH1,H2= 7.8 Hz). The recognition of 

all the ring protons obtained by COSY spectrum allowed the identification of the 6-deoxy 

nature of the sugar residue, while the small values of 3JH3,H4 (4.4 Hz) and 3JH4,H5 (2.0 Hz) 

coupling constants were in agreement with a galacto configuration for this spin system. 

The low field value of C-4 (51.6 and 51.3 ppm, 

respectively) indicated that this atom was 

linked to a nitrogen atom, whereas the higher 

chemical shift of C-3 (79.0 and 82.1 ppm, 

respectively) was diagnostic for an alkyl 

substituent O-3 linked. The circular dichroism 

(CD) exciton chirality method was applied to 
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determine the absolute configuration of the sugar residue.  

 

Fig. 3.5.  Circular dichroism spectrum. 

 

Hydroxyl group was transformed into the corresponding ester and NH2 group was 

converted into the corresponding amide with 4-p-Br-benzoyl-chloride, upon which 

interactions between the electric transition moments of chromophores located nearby in 

space give rise to CD curves exhibiting split Cotton Effects. Inversion of the CD sign 

occurred at λ= 241 nm, while λmax was registered at 251.6 nm (Fig. 3.5). The positive Cotton 

Effect designated a clockwise arrangement of the two p-bromobenzoate chromophores, 

and consequentially a D-configuration was assigned. The 13C spectrum of the 

polysaccharide 2 (Fig. 3.4) contained, inter alia, signals for two C=O groups at 175.7 and 

172.5 ppm, and two methyls signals at 22.0 (C -CH3) and 30.3 ppm (N -CH3) correlated to 

the two signals at 1.40 and 2.70 ppm in 1H spectrum. Other information was obtained by 

proton signals at 4.51 ppm (13C = 76.7 ppm) and 4.11 ppm (α-anomer) or 4.13 ppm (β-

anomer), whose carbon signal was found at 72.2 ppm. No correlation was found in the 

HSQC spectrum for the carbon signal at 72.2 ppm, 

this was diagnostic for a quaternary carbon. 

Additional informations were added by analysis of 

HMBC spectrum: long range correlations (3JC,H) are 

showed in Fig. 3.6. Such structure was confirmed 

from GC-MS analysis (Fig. 3.7) and from NMR spectra 

registered in DMSO-d6 (Tab. 3.2). In Fig. 3.8 is 

reported the 1H NMR spectrum. Signals attributed to 

OH and NH groups are highlighted.   
 
 
Fig. 3.6.  Long range correlations. 
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Fig. 3.7. GC-MS  analysis of methyl-glycoside. 
 
 

 
 
Table 3.1. Chemical shifts of  α/β anomer in D2O. 
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Fig. 3.8. 1H NMR spectrum of methyl-glycoside.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 3.2. Chemical shifts of  α/β anomer in DMSO-d6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 
 
 

Lactobacillus crispatus B6 
 

 
4.1.  Lactic acid bacteria 
 

Lactic acid bacteria (LAB) are a group of related bacteria which have the property of 

converting lactose and other simple sugars to lactic acid by a process called 

fermentation. Some nutritional benefit gained from lactic acid include an improved 

nutritional value of food, control of intestinal infections, improved digestion of lactose and 

control of serum cholesterol levels. Bacteria belonging to this group are referred to as 

probiotics, which means �in favour of life�. Probiotics are defined as living microorganism 

that can be administered to promote the health of the host by treating or preventing 

diseases such as urinary tract infections (UTI)(51). An important criterion for a potential 

probiotic strain is its ability to adhere to the mucosal surfaces of the human gastrointestinal 

tract. Adhesion of probiotics to the intestinal mucosa can prolong the time that probiotics 

have effects on the microbiota balance of the host and the gastrointestinal immune 

system(52). The ability to 

adhere to the surface of 

human intestinal 

surfaces is thought to 

help in the colonization 

by the probiotics to 

create this balance. The 

genus Lactobacillus is an 

important member of 

this group. Lactobacilli 

are Gram-positive 

facultative anaerobe 

bacteria which vary in 



morphology from long rods to short coccobacilli. In humans they are normal inhabitants of 

the gastrointestinal tract and the urogenital tract(53,54). Some Lactobacillus strains using 

either the cells alone or in combination with their culture supernatants inhibit adhesion of 

pathogens, such as Escherichia coli K88 to porcine mucus(55-57).  

 
Fig. 4.1. Vaginal acquisition of HIV infection. The normal vaginal epithelium comprise a multi-cellular 

layer of stratified squamous epithelial cells. Cell-free virus can gain access to Langerhans cells  with 

dendritic surfaces that might extend near to, or into, the mucosal lumen(64). 

Lactobacilli used as probiotics have played an important role in preventing the 

colonization of pathogenic bacteria in the vagina(58). To date, 56 species of the genus 

Lactobacillus have been identified. Lactobacillus species are the predominant aerobes of 

the vaginal microflora.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2.a.  Factors that can increase the risk of vaginal HIV infection: thinning of the squamous 

epithelial layer, bacterial vaginosis, vaginal drying, inflammation, trauma, ulcerative infections that 

might allow more ready access of virus to sub-epithelial dendritic cells(64).   

 

 

While all lactobacilli produce lactic acid, some lactobacilli also produce hydrogen 

peroxide (H2O2), a known antibacterial compound(59). Because of this activity, these strains 

are believed to act as endogenous microbicides in the vagina: they may protect against 

genital infection, including Neisseria gonorrhoeae, Chlamydia, Herpes simplex virus 2 and 

human immunodeficiency virus (HIV) infection(60,61). Disruption of the Lactobacillus-



dominated microbiota can lead to abnormal vaginal microbial communities associated 

with bacterial vaginosis, which develops with a concomitant rise in vaginal pH, and an 

increased incidence of urinary tract infections (UTI).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2.b. Factors that might decrease the risk of infection with HIV: a thicker squamous epithelium, a 

mucous layer that physically traps virus, innate immune defence molecules (such as defensins, 

interferons) physical properties leading to HIV inactivation such as low pH and peroxides (for 

example, hydrogen peroxide) from Lactobacilli(64). 

 

 

The role of Lactobacilli in the maintenance of vaginal health was first recognized by 

Doderlein in the late 1800�s: application of exogenous Lactobacillus was one of the first 

strategies used to treat gonorrhea. Recent studies have established that  L. crispatus and L. 

jensenii are two of the most commonly recovered vaginal species in women with a 

Lactobacillus predominant microflora(62). At present, a capsule containing L. crispatus has 

been developed for use in humans to promote and increase vaginal colonization by H2O2 

� producing Lactobacilli. Use of this probiotic as a new intravaginal agent is now being 

evaluated(63). The development of the L. crispatus capsule as a natural, probiotic 

microbicide offers several advantages for vaginal health. Therefore, the probiotic 



microbicide approach is unique in that it is focused on promoting innate defences of the 

vaginal ecosystem.  

The structural determination of the EPSs from this probiotic bacterium is the first step in 

understanding their function in protecting the host from harmful bacteria and viruses.  

 

 

 

 

           4.2.   RESULTS AND DISCUSSION 
 
Fermentation broth containing the crude exopolysaccharide material was ultrafiltrated 

and lyophilised. EPSs were precipitated by the addition of cold ethanol. The NMR spectrum 

of the supernatant showed it to be composed mainly of phospholipids, while the 

precipitate containing EPSs was  purified on Sephacryl S-400, obtaining two products. A 

Sephacryl S-300 gel-filtration chromatography was performed on the more retained 

fraction, obtaining three different peaks (LC/2/B) vedi fig. Peak 2 was further purified by 

water/phenol extraction. The water extract (EPS fraction) was analysed by GC-MS and 

NMR (Fig. 4.3-4.4).  

 

 

 
Fig. 4.3. GC-MS chromatogram of EPS fraction from Lactobacillus crispatus. 
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Fig. 4.4. 1H NMR spectrum of EPS fraction from Lactobacillus crispatus. 

 

The glycosyl composition indicated a monosaccharide composition consisting of 

differently linked mannose units suggesting a mannan structure. In particular, the 

methylation analysis showed the presence of terminal Manp, 2-substituted Manp, 3- 

substituted Manp, 6- substituted Manp and 2,6- substituted Manp. The absolute 

configuration of these sugars was determined to be D on the basis of the GLC analysis of 

their 2-octyl glycoside acetates. The 1H NMR  spectrum exhibited seven broad anomeric 1H 

singlets (Table 4.1), all attributable to mannose units.  

 

 

Tab. 4.1. Chemical shifts of EPS fraction from Lactobacillus crispatus. 

Residue 1 2 3 4 5 6 

1P-
Manp  5.435  4.001 3.913 3.802 3.700  3.870, 

3.721 
 96.8  70.5  70.8  67.1 74.4 61.0 
2-
Manp  5.280  4.105 3.906 3.718 3.714  3.870, 

3.721 
 101.2  79.3  71.0  67.4 75.4  61.8  
3-
Manp  5.159  4.209 3.881 3.65 3.761  3.886, 

3.736 
 103.2  71.1  79.1  66.0 75.3  62.0  
3-
Manp  5.137  4.226 3.876 3.60 3.756  3.886, 

3.736 
 103.2  71.1  79.1  66.1 75.6  62.0  
2,6-
Manp  5.105  4.027 3.932 3.69 3.800  4.005, 

3.701 
 99.2  79.6  71.5  67.8 74.6 67.6  
t-
Manp  5.037  4.059 3.860 3.663 3.754  3.893, 

3.711 
 103.2  71.0  71.2  67.5 76.4 62.1  
t-
Manp  5.037  4.204 3.932 3.62 3.864  3.893, 

3.711 
 103.2  70.1  70.7  67.9 76.4 62.1  
6-
Manp  4.889  3.981 3.818 3.708 3.88 3.913, 

3.729 
 100.6  70.6  71.0  67.3 74.8 66.5  

1.01.52.2.53.3.4.04.55.5.5 pp



 

 

These values, together with the  3JH-2,H-3 and  1JC,H coupling constants, were diagnostic for 

an α-configuration of the sugar residues. The signal resonating at 5.435 ppm  in 1H NMR  

spectrum was correlated to a carbon signal at 96.8 ppm. Both values were in agreement 

with a phosphorylated mannose unit. The assignment of all spin resonance systems by 

means of COSY, TOCSY, NOESY, and HSQC experiments allowed to identify a α-(1→6)-

linked mannopyranan. Furthermore, in accordance with data reported in literature, these 

results suggested the presence of a highly branched, comb-like structure with 

mannopyranose units branched at C-2 with 2-substituted mannose residues. In order to 

confirm this hypothesis and to establish the length of the branches, an acetolysis reaction 

was performed on EPS fraction. The crude reaction mixture was separated by means of a 

TSK-40 gel-filtration chromatography, obtaining four fractions (1-4). Each fraction was 

subjected to chemical and spectroscopic analysis.  

 

 

 

Table 4.2 
Chemical
shift δ 
(1H/13C) 

1 2 3 4 5 6 

2-α-
Manp  5.36  3.93 3.77 3.67 3.77  3.873 

 92.9  79.7 73.6 67.5 74.2 61.4 
2-α-
Manp  5.28  4.10 3.94 3.68 3.76  3.873 

 100.9  79.3 70.5 67.5 74.2  61.4  
t-α-
Manp  5.13  4.06 3.87 3.65 3.76  3.874 

 102.4  70.6 70.9 67.5 74.2  61.4  
3-α-
Manp  5.02  4.21 3.94 3.74 3.77 3.874 

 102.6  69.9 78.5 66.9 73.4  61.4  
Table 4.3 
Chemical
shift δ 
(1H/13C) 

1 2 3 4 5 6 

2-α-
Manp  5.35 3.92 3.77 3.68 3.75  3.86  

 93.0  79.1 72.9 66.8 73.2 61.4 
2-α-
Manp  5.28  4.10 3.95 3.67 3.74  3.74 

 100.8 78.4 69.9 66.8 73.2  61.4  
t-α-
Manp  5.03  4.05 3.83 3.63 3.76  3.86 

 101.9  70.0 70.4 66.8 73.2  61.4  
Table 4.4 
Chemical
shift δ 
(1H/13C) 

1 2 3 4 5 6 

2-α-
Manp  5.36  3.93 3.77 3.67 3.77  3.87 

 93.0 78.9 73.6 67.5 74.5  61.4  
t-α-
Manp  5.03  3.99 3.87 3.66 3.76  3.74 

 101.9  70.0 70.5 66.8 74.5  61.4  



Tab. 4.2-4.4  Chemical shifts of polysaccharides obtained from acetolysis reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction 1 consisted of a mannose tetrasaccharide, the structure of which is the following: 

α-D-Manp-(1→3)-α-D-Manp-(1→2)-α-D-Manp-(1→2)- D-Man.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. 1H NMR spectrum of tetrasaccharide. 

Fraction 2 was found to be a trisaccharide α-D-Manp-(1→2)-α-D-Manp-(1→2)- D-Man, 

while fraction 3 consisted of the disaccharide D-Manp-(1→2)- D-Man. 

3.4 3.63.84.04.24.44.64.8 5.05.2 5.4 ppm 



 

 

 

 

Fig.4.6. 1H NMR spectrum of trisaccharide. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.4.7. 1H NMR spectrum of disaccharide. 
 

 

 

 

Fraction 4 was composed by mannose monosaccharides. Hence, a general formula for 

this complex exopolysaccharide can be represented as follows: 

 

 

      [→6)α-D-Manp-(1→6)-α-D-Manp-(1→6)-α-D-Manp-(1→6)-α- D-Manp-(1→]n 

3.43.6 3.8 4.04.24.44.64.8 5.05.2 5.4 
ppm

3 43 63 84 04 24 44 64 85 05 25 4 ppm



 2 2 2  
 ↑ ↑ ↑ 
 1 1 1 
α-D-Manp  α-D-Manp  α-D-Manp 
                                       2 2  
                                       ↑ ↑  
                                       1 1  
                                 α-D-Manp α-D-Manp  
 3 
 ↑ 
 1 
 α-D-Manp  

 

 

The oligosaccharides side chains can be linked to whichever mannose residue of the 

mannan backbone. It was not possible to find out the positions that each side chain holds 

along the main chain, since the true sequence of this EPS doesn�t have a well defined 

repeating unit but possesses an extremely random one.    

 

 
 

4.3.  Experimental Section 

 
4.3.1. Purification of EPSs 

 
50mL of ultrafiltrated fermentation broth were lyophilised leading to a yield of 600mg of 

crude exopolysaccharide material. The native EPS was dissolved in 12 mL of water and 

allowed to precipitate with three volumes of cold ethanol overnight at 4°C. The 

precipitate was collected by centrifugation (7000 rpm, 15 min, 4°C, yield 277mg) and 

identified as mannan by chemical composition and NMR analysis (EPS fraction). The 

supernatant(yield 320mg) resulted to be composed mainly of phospholipids and it was not 

considered further. EPS fraction was applied to a column of Sephacryl S-400 (GE 

Healthcare, 1,5 x  87 cm), eluted with 50mM NH4HCO3 at a flow rate of 20 mL/h at room 

temperature. The eluate was monitored with a R.I. refractometer (K-2310 Knauer) and 4 mL 

fractions were collected. Two fractions were obtained; the more retained fraction 

(yield140 mg) was further purified by means of a Sephacryl S-300 column (GE Healthcare, 

1,5 x  70 cm), eluted with 50mM NH4HCO3 at a flow rate of 20 mL/h at room temperature. 

Three peaks were collected and subjected to chemical and spectroscopic analysis. Peak 

2 (figure) (yield 98 mg) was purified according to the hot phenol/water method. An 

aliquot of water phase (yield 90 mg) was used for the acetolysis reaction.  

 

 
4.3.2. Acetolysis of mannan 

 



In order to selectively cleave 6-linked sugars, an acetolysis reaction on 50 mg of product 

was performed as reported. The deacetylated products (yield 40mg) were separated on a 

Toyopearl TSK HW-40 column (1,5 x 95 cm,  flow rate 7 mL/h, NH4HCO3 as eluent) and 

monitored with a R.I. refractometer (K-2310 Knauer). Four peaks were detected and 

analysed by methylation analysis and NMR.  

 

 

4.3.3. NMR spectroscopy 

 

The 1H and 13C  NMR spectra were obtained in D2O at 400 and 100 MHz, respectively, with 

a Bruker DRX 400 spectrometer equipped with a reverse probe, in the FT mode at 27°C. 

Spectra were calibrated with internal acetone [δH 2.225, δC 31.45]. Two dimensional 

spectra (COSY, TOCSY, ROESY, HSQC and HMBC) were measured using standard Bruker 

software.  

4.3.4.  Compositional and methylation analysis 

 

1 mg of sample was methanolysed with 1 mL of 1 M HCl/MeOH at 80°C overnight, dried 

under reduced pressure and then acetylated with 100 µL of acetic anhydride in 200 µL of 

pyridine (80°C, 40 min). After work-up, the sample was analysed by GLC-MS on an Hewlett-

Packard 5890 instrument, SPB-1 capillary column (Supelco, 30 m x 0.25 mm i.d., flow rate 

0.8 mL/min, He as carrier gas) with the following temperature program: 150°C 3min, then 

up to 300°C at 10°C/min). Absolute configurations were determined by GLC of acetylated 

glycosides of (+)-2-octanol as reported.  
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