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Introduction

Action recognition is a task of everyday life which is performed by the cen-
tral nervous system. The aim of this research is to build a neurophysiological
model of action recognition in humans. The model proposed is called RO-
MOACRE (a RObotic MOdel for ACtion REcognition).

The results of the research are presented in this thesis, which is made up of
five chapters, the first three of which present the background knowledge and
previous studies, while the fuorth and fifth chapters illustrate a first attempt
which we call the precursor of ROMOACRE and finally ROMOACRE.

In the first chapter we describe very briefly the central nervous system,
which represents the largest part of the nervous system; together with the
peripheral nervous system, it has a fundamental role in the control of be-
havior. The basic component of the CNS is the neuron, whose main role
is to process and transmit information. Neurons have excitable membranes,
which allow them to generate and propagate electrical impulses. The neuron
is made up of a soma, an axon, the synapses, and dendrites. The dynamics
of a neuron is based on the difference of potential between the interior and
the exterior of the membrane. The axon is in a state of potential ON/OFF.
In the ON state neurotransmitters are emitted, then neurotransmitters reach
the receptors of the postsynaptic neuron. A flux of ions produces an exita-
tory or inhibitory potential. Then the potentials are summed in the soma
and if the sum reaches a threshold the neuron enters the state ON (it fires
or emits a spike). The significative variable is the frequency of the trains
of spikes. Then we propose the formalized neuron by McCulloch and Pitts.
After this we describe the lobules, the sulcus, the cortical areas and the cir-
cuits of the brain with special attention to visual and motor areas. We can
distinguish two visual pathways: the form patway (ventral) and the motion
pathway (dorsal). The first recognises forms in the visual field while the
second recognises motion in the visual field.

In the second chapter we describe the mirror mechanism which is mainly
involved in action recognition. Neurons in motor area F5 (see later) are di-
vided in two classes: canonical neurons and mirror neurons. Canonical neu-
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4 INTRODUCTION

rons discharge only when a subject performs an action, while mirror neurons
discharge also when a subject sees an action. Prior to the the discovery of
mirror neurons by Rizzolatti it was known that the monkey (Macaca nemest-
rina) frontal cortex is subdivided into several different areas, among which
area F5 is particularly interesting for its possible omology with Broca’s area
of human brain. With the term mirror neurons are indicated those neurons
that become active when the monkey observes meaningful hand actions per-
formed by the experimenter; the simple presentation of objects, even when
held by hand, does not evoke the neuron discharge. The majority of mirror
neurons (about 60%) are selective for one type of action (for instance grasp-
ing). Some are highly specific and fire selectively during the observation of a
particular type of hand configuration used to grasp or manipulate an object
(for instance precision grip, but not whole hand prehension). The remain-
ing neurons are activated by observation of two or more hand actions. The
actions most represented are: grasp, put object on a surface in front of a
monkey, manipulate.

The activity of mirror neurons represents the action. Generally there are
mechanisms which inhibit the observer to imitate the movements of the actor.
When the observed action is of particular interest it can happen that a short
initial part of the movement is executed by the observer. Then the actor
recognizes an intention of the observer and the observer will notice that his
involuntary answer will modify the behaviour of the actor. This will establish
a primitive dialog which might be the basis of linguistic comunication. So,
human language is probably evolved from a mechanism which originally was
not related to speech comunication but to action recognition; similarly, a
language grammar has evolved starting from the prelinguistic grammar.

The rostral part of monkey ventral premotor cortex is called area F5.
Electro-physiological studies have shown that in this area there is a motor
representation of mouth and hand actions. Neurons related to hand actions
discharge when the monkey executes specific goal-directed hand actions such
as grasping, holding, tearing, and manipulating objects. It has been pro-
posed that these neurons constitute a sort of vocabulary of hand actions.
As we already said, part of these neurons discharge both when the monkey
performs specific goal-directed hand actions and when it observes another
monkey or an experimenter performing the same or a similar action. These
neurons are called mirror neurons because the observed action seems to be
reflected as in a mirror, in the motor representation for the same action
of the observer. Some MEP (Motor Evoked Potentials) studies have also
been conducted on humans. During hand action observation there was an
increase of amplitude of motor evoked potentials recorded from those hand
muscles, normally recruited when the observed action is actually performed
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by the observer. An fMRI (functional Magnetic Resonance Imaging) study
was conducted on humans, which showed that the mirror neuron system is
complex and related to different body actions performed not only with the
hand, but also with the foot and the mouth. The actions showed could be
either transitive (the mouth/hand/foot was acted upon an object) or intran-
sitive (the mouth/hand/foot action was performed without an object). The
observation of both transitive and intransitive actions, compared to the ob-
servation of a static image of the same action, led to the activation of different
regions in the premotor cortex and Broca’s area.

The third chapter deals with the meaning of “action” and “action recog-
nition”. An action is a generic movement of the human body, like moving
a hand in the space; a meaningful action is an action which has a meaning,
like walking, running, imitating grasping (without an object); obviously the
meaningful actions constitute a subset of the set of the actions; a goal ori-
ented action is a meaningful action in which the variables of the procedure
(meaningful action) are instantiated. There are two possible meanings for
action recognition: pragmatic recognition (the action is recognized when the
observer is able to imitate it) and semantic recognition (the action is rec-
ognized when the observer is able to classify it). Following this distinction
two models of action recognition are presented: the model by Giese and Pog-
gio, which is a model of semantic recognition and the model by Demiris and
Johnsson, which is a model of pragmatic recognition.

The model by Giese and Poggio is based on four assumptions: the model
is divided into two parallel processing streams, analogous to the ventral and
dorsal streams, that are specialized for the analysis of form and optic flow
information, respectively; both pathways comprise hierarchies of neural fea-
tures detectors that extract form or optic flow features with increasing com-
plexity along the hierarchy. The position and size invariance of the feature
detectors also increases along the hierarchy; the model assumes that the hi-
erarchy in both pathways is predominantly feedforward (apart from local
feedback loops), without the need of top-down signals. Although such sig-
nals might be important, in particular for longer stimulus presentations, good
recognition performance can be achieved in most cases also without them.
Recordings in the STS (Superior Temporal Sulcus) have found short laten-
cies for the recognition of biological movements. None of these facts rules
out the use of feedback processing. However, it indicates a hierarchical feed-
forward architecture as the core circuitry, underlying immediate recognition,
that might be modulated by recurrent loops and higher-level interactions
over longer time intervals; the representation of motion is based on a set of
learned patterns. These patterns are encoded as sequences of snapshots of
body shapes by neurons in the form pathway, and by sequences of complex
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optic flow patterns in the motion pathway. This assumption is a central
postulate of the model.

The model by Demiris and Johnsson is a combination of two kinds of
models: inverse models and forward models. Inverse models are also known
as controllers, or behaviours. Given a goal and the current state of the con-
trolled system, they output the necessary motor commands that are needed
in order to achieve or maintain that goal. These models are used frequently
in control engineering and have been used for modeling motor planning and
control. Inverse models have been hypothesized to exist in the premotor cor-
tex (F5 mirror). Forward models are also known as predictors. Given motor
commands and the current state of the controlled system, they output the
predicted next state of that system. Like inverse models, they have been
used in motor control modeling, and they have been hypothesized to exist in
the cerebellum.

On the basis of some experiments on the motor cortex in humans and on
brain disorders we state that action recognition is a two steps process: prag-
matic recognition (the action is mentally reharsed, i.e. motor commands
needed to perform it are extracted from visual information) and semantic
recognition (the action is classified analyzing the motor commands). The
model of action recognition proposed here is based on the assumptions indi-
cated above.

Finally we report a work by Jacoboni about the role of mirror neurons in
grasping the intention behind the goal.

In the fourth chapter we describe the precursor of ROMOACRE. RO-
MOACRE is composed of the following three computational stages: human
pose estimation from images of body silhouette; evaluation of the motor com-
mands of the action from human poses sequence; recognition of the action
from motor commands. First of all we briefly present previous works about
pose estimation. Then we present the k-NNW method which we will use in
this model for pose estimation. Human pose estimation in ROMOACRE is
performed in two stages: the first stage takes as input the raw data from
the image and produces as output a vector of snapshot units selective for
body silhouette shapes (form pathway); the second stage performs human
pose estimation with the k-NNW method using as weights the output of the
first stage. The form pathway is composed of three computational levels.
The first level of the form pathway consists of local orientation detectors
that model simple cells in the primary visual cortex (V1). Consistent with
other models of simple cells, these detectors are modelled as Gabor filters.
The second level of the form pathway contains position and scale tolerant
bar detectors, which extract local orientation information. Within a limited
range, thir responses are independent of the spatial position and scale of con-
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tours within their receptive fields. They might correspond to complex-like
cells in area V1, or to neurons that are increasingly invariant to position
changes in areas V2 and V4. Many neurons in areas V2 and V4 are selec-
tive for more complex form features that are similar to corners or junctions.
Such features were not necessary to achieve sufficent selectivity of the form
pathway for body silhouette shapes. The third level of the form pathway con-
tains snapshot neurons that are selective for body silhouette shapes. These
model neurons are similar to view-tuned neurons in monkey inferotemporal
cortex (IT) which are selective for complex shapes and can become tuned
to complex shapes through learning. Neurons with a similar property in the
cortex might be located in the STS of monkey and humans. Activity that
is selective specifically for human body shapes has been found in the human
lateral occipital complex, occipital and fusiform face areas and monkey STS.
Then we assumed that the human pose is described by eight angles and we
measured these angles on the subject with an alidade. We implemented the
2-NNW method with a neural network. Using another neural network we
performed motor command evaluation. Finally we performed action recog-
nition by confronting the evaluated motor commands with the known motor
commands. We tested the model with three actions.

In chapter five we describe ROMOACRE. Roughly speaking it is com-
posed of the same computational stages of its precursor: human pose estima-
tion, evaluation of motor commands, action recognition. The first difference
between ROMOACRE and its precursor is that in the precursor the actions
are real, videos are captured and the poses are measured; in ROMOACRE,
instead, actions are generated, videos are produced and poses are exported.
In order to generate actions we used POSER, a third-party software which
allows the creation of 3D motion of the human body. POSER produces BVH
files which contain information about the poses (the body model we used is
constituted by 19 3D joints). Three sets of 15 128x128 images of the silhou-
ette of the human body performing each action was produced. In order to
perform body pose estimation we extracted a set of shape descriptors from
the image. This operation is performed in the form pathway, consisting of a
hierarchy of five levels: S1 layer models simple cells; C1 layer models com-
plex cells; S2 layer models composite feature cells; C2 layer models complex
composite cells; VTU layer models view tuned cells. VTU layer is only intro-
duced to test selectivity and invariance (in scale and position) of the model,
but it is not a part of the model. Instead we stop the computation of the
form pathway to the C2 layer, then in this model we make action recogni-
tion without performing image recognition according to experimental data.
Anyway the model shows a good invariance for stimulus scale and position.
We use the C2 units as shape descriptors and we perform a regression from
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the space C2 (256 parameters) to the space of body pose (57 parameters).
The regression method used is that of radial basis function neural network.
As training set we used the 45 frames of the three actions generated. So,
for each frame we extracted the C2 parameters and we know the body pose
parameters from the BVH files. We evaluated the known motor commands
for each action and the motor command of the percieved action. We cannot
subtract the angles of two consecutive poses as they are Cardan angles. We
can evaluate the rotation matrix for each joint, i.e. the matrix that rotate
the parent joint to the child joint. Then we define a motor command as the
matrix that transforms the previous joint into the next joint. At this point
the model is able to perform pragmatic recognition. In order to perform
semantic recognition we found a method to compare the perceived motor
commands with the known motor commands. The model has been tested
with three actions.



Chapter 1

The central nervous system

In this chapter part of the biological nervous system will be summarily de-
scribed with special attention to the biological neuron, the cortical areas,
and their connections.

The central nervous system (CNS) represents the largest part of the ner-
vous system. Together with the peripheral nervous system, it has a funda-
mental role in the control of behavior.

The CNS originates from the neural plate, a specialised region of the ec-
toderm, the most external of the three embryonic layers. During embryonic
development, the neural plate folds and forms the neural tube. The internal
cavity of the neural tube will give rise to the ventricular system. The regions
of the neural tube will differentiate progressively into transversal systems.
First, the whole neural tube will differentiate into its two major subdivi-
sions: spinal cord (caudal) and brain (rostral). Consecutively, the brain will
differentiate into brainstem and prosencephalon. Later, the brainstem will
subdivide into rhombencephalon and mesencephalon, and the prosencephalon
into diencephalon and telencephalon.

The CNS is covered by the meninges, the brain is protected by the skull
and the spinal cord by the vertebrae. The rhombencephalon gives rise to
the pons, the cerebellum and the medulla oblongata, its cavity becomes the
fourth ventricle. The mesencephalon gives rise to the tectum, pretectum,
cerebral peduncle and its cavity develops into the mesencephalic duct or
cerebral aqueduct. The diencephalon gives rise to the subthalamus, hypotha-
lamus, thalamus and epithalamus, its cavity to the third ventricle. Finally,
the telencephalon gives rise to the striatum (caudate nucleus and putamen),
the hippocampus and the neocortex, its cavity becomes the lateral (first and
second) ventricles.

The basic pattern of the CNS is highly conserved throughout the different
species of vertebrates and during evolution. The major trend that can be
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10 1. The central nervous system

Figure 1.1: The biological neuron.

observed is towards a progressive telencephalisation: while in the reptilian
brain that region is only an appendix to the large olfactory bulb, it represents
most of the volume of the mammalian CNS. In the human brain, the telen-
cephalon covers most of the diencephalon and the mesencephalon. Indeed,
the allometric study of brain size among different species shows a striking
continuity from rats to whales.

1.1 The biological neuron

1.1.1 The components of a neuron

Neurons are a major class of cells in the nervous system; they are sometimes
called nerve cells, though this term is technically imprecise, as many neurons
do not form nerves. In vertebrates, neurons are found in the brain, in the
spinal cord and in the nerves and ganglia of the peripheral and autonomic
nervous systems. Their main role is to process and transmit information.
Neurons have excitable membranes, which allow them to generate and prop-
agate electrical impulses.

They have cellular extensions which send and receive information. Their
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size is typically 4 to 100 micrometres in diameter, depending on the type of
neuron and the species it is from. Most neurons are highly specialized and
differ widely in appearance.

They can be considered as made by the following different parts (fig. 1.1):

• the soma: the central part of a neuron;

• the axon: the (long) thread coming out from the soma;

• the synapses: the small branches of an axon. Each synapsis ends with a
terminal button. The terminal buttons are connected to the dendrites
of other neurons. The space between a terminal button and a dendrite
is called synaptical gap.

• the dendrites: the short threads which come out from the soma.

1.1.2 Dynamics of a neuron

The dynamics of a neuron is based on the difference of potential between the
interior and the exterior of the membrane. The potential of the interior of
the membrane is negative compared the the potential of the exterior of the
membrane, the difference being about -70 mV. Such difference of potential,
called resting potential, is due to a different concentration of ions. The
species involved are Na+, K+ and Cl−; the different concentration of such
ions causes the difference of potential indicated above.

The membrane is traversed by ionic channels which, in certain conditions,
allow the passing of ions from the interior to the exterior of the membrane;
moreover the ionic channels are sensitive to the difference of potential be-
tween the interior and the exterior of the membrane. These ionic channels
can be considered as doors which stop or allow the passing of ions. According
to chemical elements involved there are two types of ionic channels:

• ionic channels reacting to Na+, which stop or allow the passing of Na+

through the membrane;

• ionic channels reacting to K+, which stop or allow the passing of K+

throgh the membrane.

It is possible to stimulate a neuron in such a way that a difference of
potential is produced which depolarizes the membrane. This happens be-
cause of the variation of permeability of the membrane following the opening
of ionic channels which allow the passing of positive ions from the exterior
to the interior of the membrane. If the stimulus is larger than a threshold



12 1. The central nervous system

Figure 1.2: The action potential of a neuron.

of approximately 50 mV the opening of the Na+ channels increases as it is
sensitive to the difference of potential. In this way a large number of ions
enter the cell. Such stream generates the action potential; it is said that the
neuron fires or that there is a spike. The action potential has a maximum
value of about 35 mV (fig. 1.2).

After the action potential follows the closing of the ionic channels sensitive
to Na+ ions, while those sensitive to K+ ions get open. These produce the
depolarization of the membrane thus bringing positive charges to the exterior
of the cell until the resting potential is reestablished. The action potential is
propagated along the axon of the neuron up to the terminal buttons. When
the action potential reaches the terminal buttons the neurotransmitters are
released in the synaptical gap. These neurotransmitters link to the recep-
tors of the postsynaptical membrane (i.e. the membrane of the dendrites of
another neuron) causing (generally) the opening of the ionic channels sensi-
tive to Na+ and, consequentely, a depolarization of the membrane. When a
sufficient number of dendritic receptors are activated and the depolarization
of the membrane reaches a typical threshold value, then also in this neuron
there will be an action potential.

Moreover, the so called sodium pump is required to expel sodium ions
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from the interior of the nerve axon so that the interior sodium ion concen-
tration is held to about 10% that of the exterior fluid. At the same time
the pump drives potassium ions from a low external concentration to a 30
times higher internal concentration. The pumping rate must keep up with
the leakage of the two kinds of ions and the influx of ions at the occurrence
of the spike.

To summarize, the dynamic of the communicative process among neurons
is the following:

• the axon is in a state ON/OFF. In the state ON it propagates the
signal: action potential or spike. The shape and the amplitude of the
propagated signal is very stable: the signal has always the same shape
and amplitude. In the state OFF there is no signal propagated along
the axon;

• when the signal reaches the end of an axon (the terminal buttons)
it causes the secretion of neurotransmitters (molecules) towards the
postsynaptic membrane (we recall that there is no contact between the
terminal buttons and membrane);

• the neurotransmitters reach the postsynaptical membrane. On the
postsynaptic side these neurotransmitters link to receptors thus causing
the opening of ionic channels which will produce an ionic stream in the
postsynaptical neuron. The amount of the ionic stream entering the
neuron - caused by the presynaptic spike - is a parameter that specifies
the efficiency of the synapsis;

• the postsynaptical potentials (PSP) caused by the entering ionic streams
are summed in the soma. Each single PSP is valued about 1 mV. These
potentials can be activators or inhibitors. The activators depolarize the
postsynaptic membrane and increase the possibility of a spike in the
postsynaptic membrane. The inhibitors iperpolarize the postsynaptic
membrane and decrease the possibility of a spike in the postsynaptic
neuron;

• if the total sum of the PSP which reaches a given threshold the prob-
ability of a spike in the postsynaptic neuron becomes very high. The
threshold value is about tens of mV (50 mV);

• the period from the spike of the presynaptical neuron to the spike of
the postsynaptical neuron is around 1-2 ms;
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• there is a period of about 1-2 ms during which the neuron cannot
produce a second spike. This period is called absolute refractary period.
The maximum frequency of a spike is then 500-1000 periods per second;

• the duration of a spike is around 5-7 ms.

1.1.3 The formal neuron

The model of neuron which we consider here is the original schematic model
by McCulloch and Pitts which is made of:

• an elementary computational unit ni representing the cell body (soma);

• a certain number of input lines (channels, connections) logically con-
nected to Ni;

• each input line is a combination of a dendrite with a terminal button
therefore the number of input lines is equal to the number of connec-
tions between the terminal buttons and the dendrites of a neuron;

• the input channels are activated by signals received from the logical
input to which they are connected. Such logical inputs represent the
presynaptic action. This can either activate the input channel (the axon
carries an action potential) or not activate the input channel (there is
no action potential on the presinaptic axon);

• a single output line (channel, connection) represents the fact that a
single neuron produces one single relevant output (produces a spike or
not);

• to each single output line is associated a parameter wij: the index i
refers to neuron (postsynaptic) which we are considering in the hipoth-
esis of many neurons, the index j refers to the various input channels of
such neuron. The value of wij expresses the efficiency of the connection
between a terminal button and the neural dendrite when there is an
action potential on such button;

• each logical input is represented by a variable xi which takes values 0,
1. xi = 1 when it activates the input channel, and xi = 0 when it does
not activate the channel;

• the output channel is represented by a variable oi which takes values
0, 1. oi = 1 if on the output channel there is a spike, otherwise oi = 0.

A number of further models have been introduced which do not concern
us here.
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1.2 The brain cortex

This section describes the lobules and the sulcus, the cortical areas, and
the circuits of the brain (fig. 1.3). This description is generally acceptable
both for the brain of the humans and for the brain of the macaque (macaca
nemestrina) and it is based, as concernes the cytoarchitecture, on Broad-
mann’s classification of the cortical areas.

1.2.1 The brain lobules and sulcus

The brain cortex is divided in four main lobules:

• frontal lobule;

• parietal lobule;

• temporal lobule;

• occipital lobule.

It contains the following sulci:

• occipital temporal sulcus;

• calcarine sulcus;

• principal sulcus;

• superior temporal sulcus;

• lateral sulcus;

• lunate sulcus;

• superior temporal sulcus;

• inferior occipital sulcus.

1.2.2 The cortical areas

Here follows a short description of the cortical areas which we are interested
in:
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Figure 1.3: Cortical areas. The arrows indicate the connections among the
areas.
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• MT/V5: the MT area, also called V5, is positioned in the interior of the
superior temporal sulcus, close to MST area (middle superior temporal
area). MT area receives signals from layer 4b in V1, from the thick
stripe in V2 and from V3. MT area is the center of motion perception.
In MT area neurons are selective to the direction and speed of motion,
but are non-selective to orientation and wave lenght. Their main task is
to analyze the global motion of objects and surfaces, whereas neurons in
V1 and V2 extract local motion of edges. The behaviour of MT neurons
is very similar to our motion perception. MT area has a retinotopic
map, though the receptive field of its neurons is generally very large;

• LIP: the LIP area is reciprocally connected with V3A, FEF, V6, V6A,
V3, V4, MST, PG, VIP, PE. Furthermore it receives connections from
PF, 7m and sends connections to MT, TE, TEO. LIP receives and
integrates visual information concerning the space and the object from
the areas of the dorsal and ventral stream, with the information from
somatosensorial areas and sends this information to the visuomotor AIP
area. LIP is related to the preparation of saccadic movements, to visual
answers for 3D vision, to aspects like attention and anticipation. LIP
is active also during reaching and grasping movements. The responses
of neurons in LIP are similar to those of AIP;

• AIP: this area is involved in the circuit of the AIP-F5 canonicals (see
chapter 2). It displays three different classes of neurons:

– motor dominant neurons: they are active during the manipulation
of objects in light or in dark conditions but they are not active
during only the observation of objects. Many of them are more or
less selective in respect to various objects;

– visual and motor neurons: they are active both during observation
and manipulation of objects. They are less active during manip-
ulation in the dark and during the observation of the object;

– visual dominant neurons: they are active only during manipula-
tion in light condition and during the observation of the object.

Motor dominant neurons are not influenced by the object position.
Visual and motor neurons are selective for the same type of object in
case of observation and manipulation;

• VIP: in this area there are two main classes of neurons activated by
sensorial stimuli: visual neuron and bimodal neurons. This area is
involved in the VIP-F4 circuit.
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Visual neurons are strongly selective in respect to direction and speed
of the stimulus. Their receptive field is generally wide. A considerable
percentage of these visual neurons codifies the space in respect to the
body of the agent. They react in a selective way to a visual stimulus
that moves in space within a reachable distance, close to a specifical
part of the body.

Bimodal neurons react to both visual and tactile stimuli. Tactile re-
ceptive fields are mainly located on the face. For these neurons the
visual receptive field includes a 3D region around a tactile receptive
field. The visual and tactile receptive fields correspond to:

– location: a neuron which responds, for example, to a visual stimu-
lus produced in the right high corner of the visual field reacts also
to a light touch of the skin in the right high corner of the face;

– dimension: if a neuron has a wide receptive field it has also a wide
somatosensorial receptive field;

– direction: a neuron which reacts to a visual stimulus moving to-
wards a certain direction reacts also to a somatosensorial stimulus
which is moving in the same direction.

This correlation is valid also for eye movements; that is to say that the
visual space to which a neuron reacts stays anchored to the somatosen-
sorial receptive field to which it also reacts.

• Cingulate: it has some connections from 24d towards F1, few con-
nections from 24d towards F2d, various connections from 24a+b, 24d
towards F2vr, strong connections from 24d and 24c towards F3, few
connections from 24c towards F4, various connections from 24c and
to a less extent, from 24a+b towards F7 SEF, few connections from
24a+b and 24c towards F7, strong connections from 24c and, to a less
extent, from 24a+b to F6;

• Prefrontal: there are few connections from 46d towards F2d, F2vr, and
F5; strong connections from 8a, 8b, 45, 12, and to a less extent from
46d, 12arb towards F7. There are strong connections from 46d and 8B
towards F7 ventral, strong connections from 46d, 46v and, to a less
extent, 8B towards F6;

• DLPF (dorso lateral prefrontal cortex): it is made of a dorsal part
(DLPFd or middle frontal gyrus) and a ventral part (DLPFv or infe-
rior frontal gyrus) separated by a main sulcus (P). The caudal part of
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DLPFv and DLPFd form the Frontal Eye Field (FEF, area 8A and 45
of Walker, this one situated under 8A). Close to 8A area there is 8B
area. Rostrally to FEF we found area 46. FEF area receives connec-
tions from V4 and MT regions, from LIP area and from area 46. It
sends strong connections towards area F7 SEF;

• Arcuate sulcus: it is situated in the frontal lobule and is made of two
zones: superior arcuate sulcus (AS) and inferior arcuate sulcus (AI);

• F1 (primary motor area): it is situated in area 4. From a functional
point of view it controls the arms, face, and legs. It is situated in
the frontal part of the central sulcus on both lateral and mesial sur-
face. From F1 about 20-30% neurons sends direct connections towards
the motor neurons of the spinal cord. On F1 arrive connections from
F2,F3,...,F5. The area is somatotopically organized, i.e. the output
from a certain subarea of F1 controls a certain body part;

• F2: it is a premotor area situated rostrally to F1 and posteriorly to
F7. It lies completely in the lateral cortex. From a functional point
of view it controls arms and legs. Area F2 and F3 seem to belong to
the same circuit. The neurons of F2 area send connections to F1 area,
but there are also connections from F2 directly to the spinal cord. F2
can be devided in F2d (F2 dimple) and F2vr (F2 ventrorostral). F2d
receives connections from PEc, PEip, PFG and less from 24d (cingu-
late) 46d (prefrontal). F2vr receives many connections especially from
MIP, V6A (intraparietal sulcus) and from the cingulate; it receives less
from 46d (prefrontal) and MST (temporal). For this reason F2 belongs
to the parieto-dependent motor areas. It is possible to identify two
circuits: PEip/PEc-F2d (it appears to be apparently involved in the
planning and control of the movements on the basis of somatosensorial
information) and MIP/V6A-F2vr (it appears to be apparently involved
in the planning and control on the basis of somatosensorial and visual
information);

• F3: it is a premotor area situated rostrally to F1 and posteriorly to
F6. It lies basically in the mesial cortex (it is in area 6 and corresponds
to the so called supplementary motor area, SMA proper). From a
functional point of view it controls arms, legs and face. Area F2 and
F3 seem to belong to the same circuit. Area F3 is organized in a
somatotopical way and sends connections to area F1, though there are
connections that go directly to the spinal cord. F3 receives mainly
from F2 and F4 areas (25%), and from F5, F6, F7 areas (20%). It
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receives many connections from PEc, PE, PEip (20%), from SII, PFG
(posterior parietal zone), from the cingulate (24d, 24c) (20%) and from
F1 (15%). For this reason it belongs to the parieto-dependent motor
areas;

• F4: it is a premotor area situated in area 6. Functionally it controls
the arms and the face. It is situated in the caudal zone of the frontal
cortex between F5 and F1. Neurons of area F4 send connections to
area F1, though there are connections that go from F4 directly to the
spinal cord. F4 receives many connections from VIP, PEip, SII (intra-
parietal sulcus, anterior and posterior parietal zone) and few connec-
tions from the cingulate (24d, 24c). For this reason it belongs to the
parieto-dependent motor areas. This area is involved in the VIP-F4
circuit. Many neurons of this area react to sensorial stimuli, especially
to somatosensorial stimului. They can be subdivided in two classes:
somatosensorial neurons and bimodal neurons (visual and somatosen-
sorial). Somatosensorial neurons have tactile receptive fields, typically
wide, localized on face, chest, arms and hands. Bimodal neurons have
visual receptive fields and, as in the case of the VIP area, there is a cor-
respondence with tactile fields and generally confined to peripersonal
space. It is noticed that an increase of the stimulus speed causes an in-
crease in the depthness of the receptive field. Furthermore, movement
of the eyes does not imply a change in these fields. Many F4 neurons
react also to reaching movements. Often a correlation is found between
somatosensorial and visual receptive fields and the direction of move-
ment (as an example, a neuron with a visual and tactile receptive field
in the region of face responds also to movements towards the space over
the shoulder);

• F5: it is a motor area situated in area 6. Functionally it controls
the arms. It is located in the inferior part of the arcuate sulcus, in the
frontal cortex of the caudal zone. In this area we distinguish two zones:
F5c (dorsal convexity of the inferior arcuate sulcus) and F5ab (posterior
bank of inferior arcuate sulcus). Both sectors receive many connections
from the second somatosensorial area (SII, located in the inferior zone
of the post central sulcus) and from PF/PFG area. F5ab receives input
selectively also from AIP area (interior of the intraparietal sulcus). F5c
is the main location of mirror neurons, while F5ab is the main location
of canonical neurons. F5 area is involved in two circuits: PE-F5 mirror
and AIP-F5 mirror. We notice that neurons of F5 area send strong
connections to F1 area. Neverthless there are connections that go from
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F5 directly towards the spinal cord where there are groups of neurons
that control proximal movements. One hypothesis is that through F1
neurons more precise hands movements are controlled, while through
the connections that go directly from F5 towards the spinal cord higher
level hands movements are controlled;

• F6: it is an anterior motor area situated in mesial zone of area 6. It
is located in the anterior part of the caudal zone of the frontal cortex
rostrally to F3. From a functional point of view it controls the arms.
It is supposed that F6 area represents a control unit which establishes
when (because of internal or external conditions) a movement has to be
performed. F6 does not send connections to F1, it receives connections
from F5 and F7 (40%), from the prefrontal lobule (46d, 46v) (20%),
from the cingulate lobule (24a+b) (20%), from F2, F3, F4 (15%), from
the parietal lobule (PFG, PG) (15%) and from STP (5%). For this
reason it belongs to the prefronto-dependent motor areas;

• F7: it is the anterior motor area situated, in area 6 of the parietal
zone. From a functional point of view it controls the eyes. It is located
in the anterior part of the caudal zone of the frontal cortex rostrally
to F2. F7 can be divided in F7-SEF (supplementary eye field) and
F7-nonSEF. F7-nonSEF and F6 belong to the same circuit. F7-SEF is
involved in the oculomotor circuit. F7 does not send connections to F1.
It has many connections towards the other motor areas. F7 receives
many connections from the prefrontal lobule (8a, 8b, 45, 12, 46d, 12arb
towards SEF and 46d, 8B towards nonSEF) and not many connections
from the cingulate lobule (24c, 24a+b towards SEF and 24a+b, 24c
towards nonSEF). It has enough connections from the temporal lobule
(STP) towards SEF. It has enough connections from the parietal lobule
(PGM, V6A, PG/PP) towards nonSEF. It has few connections from
the parietal lobule (LIP) towards F7-nonSEF. For this reason it belongs
to the prefronto-dependent motor areas. It is possible to distinguish
two circuits: LIP-F7SEF (it can be important for controllong saccadic
movements) and PGm-F7nonSEF (it can be important for the selection
of conditional movements and for visualization of the stimulus in the
space for reaching movements).

1.3 The cortical circuits

Here follows a short description of the cortical circuits which we are interested
in:
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• AIP-F5 canonical: we suppose that there is a AIP-F5 canonical circuit
which allows the codification (AIP) of the geometrical properties of an
object, which are basics in order to interact with the object. AIP-F5
canonical circuit transforms these geometrical properties into appropri-
ate movements of the hand in order to interact with the object;

• PF-F5 mirror circuit: the role of this circuit is to detect the activity
of mirror neurons as a system for the classification and recognition of
actions;

• VIP-F4 circuit: the previous data support the hypothesis that VIP and
F4 belong to a circuit for the codification of peripersonal space and for
transforming the position of an object into an appropriate movement
towards the object itself.

1.3.1 Parieto-frontal cortical circuits for actions con-

trol and space perception [41] [42] [43]

Motor areas (F1,F2,...,F7) can be divided into two main classes:

• parieto-dependent areas: F1,F2,...,F5. These areas have strong con-
nections mainly with parietal areas belonging to the superior parietal
lobule (SPL) and to the inferior parietal lobule (IPL) located in the
posterior zone of the parietal lobule;

• fronto-dependent areas: F6 and F7. These areas have strong connec-
tions with prefrontal areas and with the cingulate.

The two classes are differentiated has follows:

• the fronto-dependent areas (F6 and F7) do not have direct connections
with F1 and with the spinal cord. They send instead connections to
the encephalic trunk;

• the parieto-dependent areas (F1,...,F5) send direct connections to the
spinal cord (about 20-30% of area F1 sends directly to the motor neu-
rons of the spinal cord). The areas F2,...,F5, moreover, have direct
connections towards F1.

It is interesting to point that each single motor area receives generally strong
connections from one single parietal area. In the same way each parietal
area sends strong connections towards one single area. The pairs of parietal
and motor areas which have strong connections have very similar functions.
From what noted above it is possible to suppose that parietal and motor
areas form a series of circuits independent from each other:
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1. MIP/V6A-F2vr circuit (dorsal premotor cortex, PMd): it transforms
visual and somatosensorial stimuli in order to control the movement of
the arm towards a target;

2. FEF-F7SEF circuit (dorsal premotor cortex, PMd): it codifies the po-
sition of an object in space in order to orient and coordinate the arm-
body movements;

3. V6A-PGm-F7 (dorsal premotor cortex, PMd): it codifies the position
of object in space in order to orient and coordinate the arm-body move-
ments;

4. IP-F4 circuit (ventral premotor cortex, PMv): it codifies the periper-
sonal space and transforms the position of objects into appropriate
movements towards the same object;

5. AIP-F5 canonicals circuit (ventral premotor cortex, PMv): it extracts
the specific characteristics of an object which are useful for manipula-
tion;

6. PF-F5 mirror circuit (ventral premotor cortex, PMv): it represents the
action, independently of its being executed or observed;

7. LIP-FEF circuit (ventral premotor cortex, PMv): it codifies spatial
variables and it controls ocular movements.

We can try to include these circuits in a more general framewok. Histori-
cally the following event was observed: a ventral circuit (occipital-temporal-
prefrontal), called WHAT pathway, which transformed visual information
into a cognitive codification of the object; a dorsal circuit (occipital-parietal),
called WHERE pathway, which transformed visual information into a cod-
ification of the position of the object. The information coming from these
circuits was then integrated into the premotor areas in order to perform the
action itself through the primary motor area (figg. 1.4, 1.5).

Such opinion is now considered obsolete as the dorsal channel (WHERE
pathway) is in fact a channel directly dedicated to the transformation of
visual and somatosensorial information into actions. Moreover the dorsal
channel appears to be divided into two channels: dorso-dorsal and ventro-
dorsal (fig. 1.6). The dorso-dorsal channel supplies the necessary information
for action control. The ventro-dorsal channel has a fundamental role both in
the organization of the action and in the perception of the space and of the
action.
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Figure 1.4: Action execution schema.

Figure 1.5: What and where pathways.
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Figure 1.6: Dorso-dorsal and ventro-dorsal stream.
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The dorso-dorsal channel is organized as follows: V6 receives strong con-
nections from the visual areas V1(4b), V2, V3, V3A. V6 seems to be a
purely visual area and it belongs cytoarchitectonically to the occipital cor-
tex; neverthless it sends connections only towards SPL (superior parietal
lobule). Specifically V6 sends mainly connections towards V6A (cytoarchi-
tectonically closer to the parietal areas) and MIP. V6A and MIP, besided
being reciprocally connected, form the two circuits MIP − V 6A ↔ F2V r
and V 6A/PGm ↔ F7 − nonSEF .

The ventro-dorsal channel is organized as follows: MT/V5 shares with
V6 the input coming from V1(4B). MT/V5 receives connections from V1
and sends connections to MST (besides being connected with V6). The
areas of IPL are also connected with STPa/p (superior temporal polisensory
areaa) and IPa/TE. IPL is involved in four basic cirsuits: V IP ↔ F4,
AIP ↔ F5canonical, PF ↔ F5mirror, and LIP ↔ FEF .

Therefore at a more abstract level we can suppose to have (fig. 1.7):

1. a ventral channel which goes from the visual areas to the superior
temporal sulcus up to the prefrontal areas 12/45 and from here either
towards 46b, connected to the ventral motor areas (F2,F3,...) either
towards 46d, connected to the dorsal motor areas (F6,F7);

2. a ventro-dorsal channel which goes from the visual areas, to the IPL,
up to ventral motor areas (conscious motor control);

3. a dorso-dorsal channel which goes from the visual areas, to the SPL,
up to the dorsal motor areas (online motor control).
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Figure 1.7: Possible routes from the ventral stream to the motor system.
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Chapter 2

The mirror mechanism

This chapter deals with the mirror mechanism, which is mainly involved in
action recognition.

In the next section we describe the cortical circuit in which the mirror
neurons are involved.

2.1 AIP-F5 canonical circuit and PF-F5 mir-

ror circuit

During a goal directed action(grasping, holding, putting down an object)
performed by a subject, the area mainly involved is the area F5 situated in
the inferior part of the arcuate sulcus (caudal zone of the frontal lobule).

In this area we distinguish two classes of neurons: purely motor neurons
and visual neurons (which react to visual information). These last ones can
be further subdivided into two groups:

• mirror neurons, situated mainly in F5c, dorsal convexity of the inferior
arcuate sulcus;

• canonical neurons, situated mainly in F5ab area, posterior bank of the
inferior arcuate sulcus.

Both sectors receive information from the second somatosensorial area
(SII, inferior zone of the post central sulcus) and from PF area; F5ab receives
selectively input also from AIP area (interior of the intraparietal sulcus).
Generally the neurons of F5 area (canonical and mirror neurons) behave as
follows: they are selective in respect to the type of action (to the goal of the
action: catch, put down, hold an object) and to the modality of the action
(grasp with fingers, grasp with full hand).

29
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We can formalize what we said above in the following way:

• according to the type of action performed a special group of neurons is
active, which are selective to the type of the action (also active during
the whole action);

• according to the modality of the action another special group of neurons
is active which are selective to the modality with which the type of
action (i.e. grasp an object) is performed (grasp an object with fingers);

• some neurons which are selective to different specific phase of the action
are active and not active during the action.

Mirror neurons have characteristics similar to other neurons in F5 area
during the performance of an action. Then mirror neurons are also selective
in respect to the type of action (goal) and to the modality of the action
(grasp with fingers, grasp with full hand). Mirror neurons seem to become
active mainly during the final phase of the action (when the hand reaches
the object).

During the performing of an action, mirror neurons cannot be distin-
guished from the canonical neurons; this means that canonical neurons are
also selective to the type and modality of the action.

The activity of mirror neurons only, or of canonical neurons only (caused
by stimulation) should not produce movements and/or part of an action.

We can state that in order to have a goal directed action it is necessary to
activate both mirror neurons and canonical neurons and, obviously, purely
motor neurons. We notice that neurons of F5 area send strong connections to
F1 area, where about 20-30% of the neurons send connections to the motor
neurons of the spinal cord. Neverthless there are connections that go from F5
directly to the spinal cord towards groups of neurons which control proximal
movements. One hypothesis is that through the neurons of F1 more precise
hand movements are controlled, while through connections which go directly
from F5 to the spinal cord higher level movements of the arm are controlled.

Mirror neurons are active also when the subject observes another subject
to perform goal directed actions. There is a congruence between mirror
neurons which are active when the subject performs an action and when the
subject observes the performing of an action. This congruency can be more
or less strong. We can summarize as follows:

• mirror neurons which are selective for the type of action performed,
are active for the same type of action observed indipendently from the
modality of the action observed;



2.1. AIP-F5 canonical circuit and PF-F5 mirror circuit 31

• mirror neurons which are selective for the type and modality of action
performed are active for the same type and modality of the action
observed;

• also during the observation of the action there are possibly mirror neu-
rons which become alternatively active and not active during the ob-
servation of the action.

Canonical neurons, instead, become active, beside the case when the ac-
tion is performed by a subject, also when the observer just sees an object
which can be grasped or manipulated, without any performance. These neu-
rons are selective to the modality with which the object can be grasped. We
can summarize as follows:

• if in the scene there is an object which can be manipulated a group of
canonical neurons starts to be active;

• if the subject receives the command to grasp or manipulate the object,
other canonical neurons, mirror neurons, and purely motor neurons of
the area F5 become active;

• if the subject does not interact manually with the object but another
subject starts to interact with the object it is not known whether the
canonical neurons become active or not. It is known that prefrontal
areas stop the activity of the F5 area if another subject grasps the
object. Furthermore F6 area can distinguish wether a graspable object
is within a reachable distance or not.

In case of an action performed by the subject the activity of canonical
neurons and mirror neurons should be dependent from visual information (the
object) and from the goal. They have the following biological counterpart:

• activity of the canonical neurons: it is based on input coming from
AIP area and from F6 area which receives signals from prefrontal areas
(area 24, cingulate medial zone, DLPF area);

• activity of mirror neurons: it is based on input coming from PF area
and, possibly, visual areas.

In case of an observed action the activity of mirror neurons only should be
dependent from visual information (object and external agent), which have
the following biological correspondence; activity of mirror neurons is based
on input coming from PF area and, possibly, from visual areas.
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2.2 The discovery of mirror neurons [44]

This section describes the discovery of mirror neurons by Rizzolatti et al..

2.2.1 Discovery background

Prior to the the discovery of mirror neurons by Rizzolatti et al. it was
known that the monkey (Macaca nemestrina) frontal cortex is subdivided
into several different areas, among which area F5 is particularly interesting
for its possible omology with Broca’s area of human brain.

F5 is located in the ventro-rostral part of area 6, just caudal to the lower
arm of the arcuate sulcus. F5 has enough somatotopical organization. Hands
movements are represented mostly in its dorsal part, while mouth movements
tend to be represented ventrally.

The properties of F5 neurons controlling hands movements were exten-
sively studied and found to have both motor and sensory properties. As far
as the motor properties are concerned they have two main characteristics:

• most neurons discharge selectively during goal directed hand move-
ments such as grasping, holding and manipulating;

• many neurons are specific for particular types of hand prehension such
as precision grip and whole hand prehension.

For the sensory properties, the most interesting aspect is that a considerable
part of F5 neurons fire at a presentation of a 3D object, in the absence of
a movement. In many cases the discharge occurs only if there is a match
between the object size and the type of grip coded by the neuron.

F5 receives a strong input from the inferior parietal lobule and from AIP
area, located in the lateral bank of the inferior parietal sulcus rostral to the
oculomotor LIP area. As in the case of F5, a large number of neurons in
AIP are related to hand movements. About 40% of AIP neurons discharge
during the appropriate hand movements both in darkness or in the light
(motor dominant neurons). The remaing neurons discharge stronger (visual
and motor neurons) or exclusively (visual dominant neurons) in the light.
Some of these neurons became active when the monkey fixates a still object
and is not required to make a movent toward the object.

These data indicate that AIP and F5 form a cortical circuit which trans-
forms visual information of the intrinsic properties of the object into hand
movements that allow the monkey to interact with the objects. Motor infor-
mation is then transferred to F1, to which F5 is directily connected, as well
as to various subcortical centers for movement execution.
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Rizzolatti et al. discovered that a particular subset of F5 neurons dis-
charge when the monkey observes meaningful hand movements made by the
experimenter. Following this discovery Rizzolatti called this particular subset
“mirror neurons”. Movements included placing or taking away objects from
a table, grasping food, manipulating object. There was always a link between
the effective observed movement and the effective executed movement.

These data suggest that area F5 has an observation-execution match-
ing system. When the monkey observes a motor action that belongs to its
movement repertoire, this action is automatically retrieved. The retrieved
action is not necessarely executed; it is only represented in the motor system.
The assuption was that this observation-execution mechanism plays a role in
understanding the meaning of motor events.

Previous data were considered which showed that an observation-execution
matching system does exist in man and that the cortical region involved in
this matching is part of the region usually referred to as Broca’s area.

2.2.2 Testing the mirror properties

Mirror properties were tested by performing, in front of the monkey, a series
of motor actions related to food grasping (i.e. presenting the food, putting
it on a surface, grasping it, giving it to a second experimenter or taking
it away from him), to manipulation of food or other objects (i.e. breaking,
tearing, folding), or intransitive gestures (non object related) with or without
emotional content (threatening gestures, lifting the arms, waving the hand,
etc.).

In order to verify whether the recorded neuron coded specifically hand-
object interaction, the following actions were also performed:

• movements of the hand mimiking grasping in the absence of the object;

• prehension movements of food or other objects performed with tools
(i.e. forceps, pincers);

• simultaneous combined movements of food and hands, spatially sepa-
rated one from the other.

All experimenter’s actions were repeated on the right and on the left of
the monkey at various distances (50 cm, 1 m, 2 m).

2.2.3 The mirror neurons

Fig. 2.1 shows a lateral view of the monkey brain. Mirror neurons were
recorded from the dorsal convexity of the cortex (shadowed area) and the
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Figure 2.1: Lateral view of the monkey brain. The shadowed area shows the
anatomical localization of the recorded neurons.

adjacent posterior bank of the arcuate sulcus. Both these cortices are part
of area F5. Mirror neurons represented, approximately, 20% of the recorded
neurons.

With the term mirror neurons were indicated those neurons that become
active when the monkey observed meaningful hand actions permormed by
the experimenter. The simple presentation of objects, even when held by
hand, did not evoke the neuron discharge. The majority of mirror neurons
(about 60%) were selective for one type of action (i.e. grasping). Some were
highly specific selectively firing during the observation of a particular type
of hand configuration used to grasp or manipulate an object (i.e. precision
grip, but not whole hand prehension). The remaining neurons were activated
by observation of two or more hand actions. The actions most represented
were: grasp, put object on a surface in front of a monkey, manipulate.

2.2.4 The mirror mechanism

Neurons that are selectively activated by complex biologically meaningful
visual stimuli have been observed in many high-order cortical areas and in the
amygdala. These neurons respond to the sight of hands, faces and particular
types of body movements. Among them are neurons located in the depth of
the superior temporal sulcus, that are specifically responsive to hand-object
interaction.
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Mirror neurons of area F5 share with these complex neurons the property
of being responsive to meaningful stimuly. Neurons with mirror properties
have been described only in F5. It is likely, however, that they are not
unique to this area, but do exist in other frontal and parietal cortical areas
that control the organization of goal directed movements.

An explanation of mirror neurons that comes naturally to mind is that
they are related to motor preparation. When the monkey observes an ac-
tion, he starts automatically to prepare the same action. The preparation
explanation is unsatisfactory for two reasons:

• the discharge of mirror neurons caused by the observation of a move-
ment is not followed by the movement that, supposedly, was prepared;

• mirror neurons cease firing when the food is moved toward the animal
and becomes available to him. If the firing of mirror neurons were
related to motor preparation the neuron activity should have increased
and not decreased in the phase that precedes movement execution.

A more sophysticated interpretation of mirror neurons was given by Jean-
nerod [45] who made the example of a pupil learning how to play a musical
instrument. The pupil is completely still, watching the teacher who demon-
strates an action that he must imitate and reproduce later. Although the
pupil is immobile he must form, in his brain, an image of the teacher action.
Jeannerod’s view is that the neurons responsible for the motor schema for-
mation are the same that the pupil will later activate during planning and
preparation of the action. According to him mirror neurons are neurons that
internally represent an action.

The explanation favoured by Rizzolatti is similar to that proposed by
Jeannerod, in the sense that mirror neurons are neurons that represent in-
ternally actions. However whereas the emphasis given by Jeannerod is on
learning, it is possible that mirror neurons play a role in the understanding
of motor events.

The expression “understanding motor events” indicates the capacity of
an individual to recognize the presence of another individual performing an
action, to differenciate the observed action from other actions, and to use this
information in order to act appropriately. Some of the mechanisms mediating
operations of this type are linked to emotion and depend on the integrity of
limbic structure. In contrast to the “understanding” based on the affective
valence of the stimuli, the “understanding” mediated by the mirror neurons
appears to be disjoint from emotional and vegetative responses. The meaning
of the observed action does not result from the emotion it evokes, but from a
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matching of the observed action with the motor activity which occurs when
the individual performs the same action.

What is important to stress here is that the proposed mechanism is based
on a purely observation-execution matching system. The affective valence of
the stimuli, even if possibly present, does not play a role in this “under-
standing” system. Later we will present the importance of this point for
understanding the development of the observation-execution matching sys-
tem in man.

The presence of an observation-execution matching mechanism in mon-
key’s premotor cortex suggests that a similar mechanism may exist also in
man. To test this prediction the excitability of the motor cortex in a group
of normal human subjects was studied. The subjects were stimulated in four
conditions:

• while they observed an experimenter grasping 3D objects;

• while they looked at the same 3D objects;

• while they observed an experimenter tracing geometrical figures in the
air with his arm;

• while detecting the dimming of a light.

Motor evoked potentials were recorded from arm muscles. The results
showed a significant increase of the motor evoked potentials in the two con-
ditions in which the subject observed movements. Furthermore, the increase
was found only in those muscles that were active when the subjects exe-
cuted the previously observed actions. Although it is premature to draw any
firm conclusion on this last point, because only two type of movements were
tested, neverthless the obtained data strongly suggest that in man there is an
observation-execution matching system similar to that found in the monkey
premotor cortex.

Admitted that an observation-execution matching system exist in man,
the next problem is to assess where it is located. This problem was addressed
using positron emission tomography (PET). The most striking result of the
experiment was the presence, in grasping observation condition, of a highly
significant activation in the posterior part of the left inferior frontal gyrus.
This region corresponds to the rostral part of Broca’s area as defined by
Penfield and Roberts. Other active regions were presented in the occipital
lobule and in the middle temporal gyrus.

Homologies between cortical areas of different species are always difficult
to draw especially when one deals with the speech areas wich are unique
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to humans. In man, the frontal region related to speech (Broca’s area) is
formed by areas 44 and 45 of Broadman. Area 44 has basically an agranular
structure while in the second a granular layer is present.

Mesulam suggested that the ventral part of inferior area 6 (F5) and area
45 are the areas which might be homologs of the human frontal speech areas.
F5 area might be the anatomical homologs of human Broca’s area. Two
major differences can be observed:

• in F5 there is a large hand representation, while Broca’s area is clas-
sically thought of as an area related to the control of musculature re-
sponsible for spoken word production;

• F5 is an area receiving visual and somatosensory inputs, while Broca’s
area is mostly related to auditory input

In F5, in addition to the hand field, there is also a large mouth-face field
located laterally to the hand field. It is very likely that in man this field has
grown in relation to speech development and the great motor difficulies that
speech poses. However a mouth field exist in F5 and, conversely, a hand field
appears to exist in the Broca’s region.

Furthermore, the mirror mechanism is supposed to be at the basis of the
evolution of language. The activity of mirror neurons represents the action.
Generally there are mechanisms which inhibits the observer to imitate the
movements of the actor. When observed action is of particular interest it
can happen that a short initial part of the movement is executed by the
observer. Then the actor recognizes an intention of the observer and the
observer will notice that his involuntary answer will modify the behaviour
of the actor. This will establish a primitive dialog which is at the base of
language comunication.

So, human language is probably evolved from a mechanism which orig-
inally was not related to speech comunication but to action recognition;
similarly, a language grammar has evolved starting from the prelinguistic
grammar.
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Chapter 3

Pragmatic and semantic action

recognition

3.1 Introduction

This chapter deals with the meaning of “action” and of “action recognition”.
Firstly we present what is meant by action (fig. 3.1):

• an action is a generic movement of the human body, like moving a hand
in the space;

• a meaningful action is an action which has a meaning 1, like walking,
running, imitating grasping (without an object); obviously the mean-
ingful actions constitute a subset of the set of the actions;

• a goal directed action2 is a meaningful action in which the variables
of the procedure which implements the meaningful action are instan-
tiated by a specific object. This is a very restricted interpretation of
“goal directed” because, for instance, the action “grasping” is not goal
directed unless it is instantiated in “grasping that cup”.

We introduce now what is meant by action recognition. There are two
possible meanings for action recognition:

1“Meaning” is not intended here as a concept of philosophy of the language. We

use “meaningful action” to denote an action which belongs to an experimentally known

repertoire of actions performed by the organism.
2“Goal directed action “ is not intended in its common sense. It denotes an action in

which an agent performes definite movements with respect to some object. So “Walking”

should not be a goal directed action

39
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Actions

Meaningful actions

Generic movement

Pragmatic recognition

Semantic recognition

Walking

Imitating grasping

Grasping

Goal oriented actions

Figure 3.1: Type of actions.

• pragmatic recognition: the action is recognized when the observer is
able to imitate it;

• semantic recognition: the action is recognized when the observer is able
to classify it.

An action that does not belong to the set of meaningful actions cannot be
recognized in the semantic way, while a meaningful action can be recognized
in both pragmatic and semantic ways.

Here after we present two models of action recognition:

• the model by Giese and Poggio [15], which implements semantic recog-
nition;

• the model by Demiris and Johnson [47], which implements pragmatic
recognition.

3.2 The model by Giese and Poggio

Giese and Poggio developed a neural mechanism for the recognition of bio-
logical movements. The amount and complexity of data available in several
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areas in cognitive neurosciences are continuosly increasing. Consequently,
pure intuition, and the qualitative mental models associated with it, are be-
coming less appropriate for interpreting experimental results and for planning
new experiments. Therefore quantitative computational theories can be an
effective tool for summarizing existing data, and for testing the consistency
of possible explanations.

These models may help to organize knowledge and to use it to provide
explanations and to propose and plan new experiments.

Moreover they are also used as a framework to organize the results of the
experiments.

In the model under discussion two main sets of questions are addressed:

• is it possible to semantically recognize biological movements in a way
that is consistent with experimental data, and also uses plausible neural
mechanisms?

• what are the roles of the ventral and dorsal pathways for the recognition
of visual stimuli induced by biological movements?

This computational model gives an interpretation of the data and provides
answers to these questions. It also points to issues that cannot be answered
by the model and by the available experimental results. For instance:

• how is the information from the two pathways combined?

• what is the role of time in the ventral pathway?

• how does the attention influence the recognition process?

Notice that the actions considered are meaningful, but not goal directed.

3.2.1 Recognition of biological movements

Recognition of complex biological movements - gestures, facial expressions
and motor actions - is biologically important for activities such as detecting
predators, selecting prey and courtship behaviour. Gestures and facial ex-
pressions are also central to social communications in primates and humans.
In fact humans recognize biological movements accurately and robustly, as
shown in classical psychophysical work by Johansson [48] (fig. 3.2).

The information carried by biological movements is illustrated in the ex-
periment by Gunnar Johansson. He attached ten light bulbs to the joints
of actors, who were videotaped while they performed complex movements,
such as walking, running, or dancing in the dark. From the videos, which
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Figure 3.2: The experiment by Johansson.
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showed only ten light dots moving against a dark background, subjects could
immediately recognize the action. In addition, the dots were spontaneously
interpreted as a human being. Furthermore if the subjects saw individual
dot-frames from the videos presented as static pictures, they neither per-
ceived the dots as human nor where able to identify the actions.

Subsequent studies showed that many complex actions can be recognized
on the basis of such “point-light displays”, including facial expressions, Amer-
ican Sign Language, arm movements, and various full-body actions.

3.2.2 The role of ventral and dorsal pathway

Visual information arriving at the cortex is first processed in the occipital
lobule. From there, two main pathways project information to two different
lobules:

• the dorsal pathway projects visual information into the parietal lobule;

• ventral pathway projects visual information into the temporal lobule.

The ventral pathway is hypothesized to play the major role in object
identification. The temporal lobule receives visual input from the ventral
pathway, and the object(s) in the visual scene are compared to stored repre-
sentations in the object-memory system, also located in the temporal lobule.
The ventral pathway is also hypothesized to be a “perception” pathway, in
that it computes spatial relations among components of objects, allowing for
their identification.

The dorsal pathway is hypothesized to play the major role in spatial
localization of stimuli. The parietal lobule receives input not only form the
dorsal pathway, but also from the auditory and somatosensory centers in the
brain. This information is integrated into a coherent spatial representation
of the world. The dorsal pathway is also hypothesized to be an “action”
pathway, in that it computes spatial relations between the organism and the
environment, thus allowing for the organism’s effective interaction with the
environment.

The roles of the ventral and dorsal visual processing streams in the recog-
nition of biological movements are unclear. It seems likely that the dorsal
pathway, which is specialized for the processing of motion information, con-
tributes substantially to the perception of biological movements, in particular
as the perception of actions is possible without well-defined form information.
At the same time, when confronted with full pictures, instead of dot-pictures,
subjects can recognize gait patterns from individual stationary key frames,
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Figure 3.3: The neural model by Giese and Poggio.

and from stimuli with strongly degraded motion information, indicating that
the ventral pathway is involved.

Neurophysiological and imaging experiments support the existence of neu-
rons that respond selectively to human body configurations, so biological
movements might be recognized by analyzing sequences of body shapes that
correspond to “snapshots” from movies of complex movements. The motion
is essential in order to identify the dot-pictures. The results of functional
Magnetic Resonance Imaging (fMRI) indicate that normal movement stim-
uly activate areas in both pathways, whereas point-light stimuli tend not to
activate form-selective areas.

3.2.3 The neural model

The neural model by Giese and Poggio is based on four assumptions which
are consistent with established anatomical and physiological facts (fig. 3.3):

• the model is divided into two parallel processing streams, analogous to
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the ventral and dorsal streams, that are specialized for the analysis of
form and optic flow information, respectively;

• both pathways comprise hierarchies of neural features detectors that
extract form or optic flow features with increasing complexity along
the hierarchy. The position and size invariance of the feature detectors
also increases along the hierarchy;

• the model assumes that the hierarchy in both pathways is predomi-
nantly feedforward (apart from local feedback loops), without the need
of top-down signals. Although such signals might be important, in
particular for longer stimulus presentations, good recognition perfor-
mance can be achieved in most cases also without them. Recordings
in the STS have found short latencies for the recognition of biological
movements. None of these facts rules out the use of feedback process-
ing. However, it indicates a hierarchical feedforward architecture as the
core circuitry, underlying immediate recognition, that might be modu-
lated by recurrent loops and higher-level interactions over longer time
intervals;

• the representation of motion is based on a set of learned patterns.
These patterns are encoded as sequences of snapshots of body shapes
by neurons in the form pathway, and by sequences of complex optic flow
patterns in the motion pathway. This assumption is a central postulate
of the model.

The model by Giese and Poggio extends a previous model meant for the
recognition of stationary objects [49] by integrating form information over
time in the ventral pathway, and by adding the dorsal pathway.

The two pathways are kept separate. This is a semplification: in monkey
and human brain the two processing streams interact at several levels.

Both pathways consist of a hierarchy of neural feature detectors. In ad-
dition they contain neural circuits that make recognition sequence-selective.

The form pathway (ventral)

The form pathway analyze biological movements by recognizing sequences of
snapshots of body shapes. Several neurophysiologically plausible models for
the recognition of stationary form have been proposed. The form pathway
of the model extends a model for object recognition that consists of a hierar-
chy of neural detectors that process form features of increasing complexity.
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These detectors correspond to different classes of neurons in the ventral vi-
sual pathway. Consistent with neurophysiological data, the receptive field
sizes and the position and scale invariance of the neural detectors increase
along the hierarchy.

The first level of the form pathway consists of local orientation detectors
that model simple cells in the primary visual cortex (V1). Consistent with
other models of simple cells, these detectors are modeled as Gabor-like filters.
The model contains orientation detectors for eight preferred orientations, and
two spatial scales that differ by a factor 2. The sizes of the receptive fields
are in the range of those of neurons in monkey V1.

The next level of the form pathway contains position-invariant and scale-
invariant bar detectors, which extract local orientation information. Within
a limited range, their responses are independent of the spatial position and
scale of contours within their receptive fields. They might correspond to
complex-like cells in area V1, or to neurons that are increasingly invariant to
position changes in areas V2 and V4. The receptive field size of the invariant
bar detectors is typical of neurons in area V4. Many neurons in areas V2 and
V4 are selective for more complex form features that are similar to corners
or junctions. Such features were not necessary to achieve sufficient selec-
tivity of the model for motion recognition. A neurophysiologically plausible
mechanism for achieving position and scale invariance is the pooling of the
responses of neurons with similar preferred orientations, but with different
receptive field positions and spatial scales. It is assumed that this pooling is
accomplished by a nonlinear maximum-like operation rather than by linear
summation. Subpopulations of complex cells in the visual cortex of cats and
neurons in area V4 of macaques show behaviour that is compatible with a
maximum computation.

The next level of the form pathway contains snapshot neurons that are
selective, for instance, for body shapes. These model neurons are similar to
view-tuned neurons in monkey inferotemporal cortex (area IT), which are se-
lective for complex shapes and can become tuned to complex shapes through
learning. Like view-tuned neurons in area IT, the snapshot neurons have
large receptive fields (> ◦8) and show substantial position-invariance and
scale-invariance. As in previous models of view-tuned neurons, the snapshot
neurons are modeled by gaussian radial basis function. These neurons re-
ceive inputs from the invariant bar detectors on the previous hierarchy level.
The centers of the basis functions are adjusted during training so that each
snapshot neuron encodes one key frame from a training sequence. In the
simulations, each movement pattern is encoded by 21 snapshot neurons rep-
resenting regularly sampled key frames (this number is not crucial for the
performance of the model). The model does not address how an optimum
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set of key frames can be learned automatically. Neurons with similar proper-
ties in the cortex might be located in area IT in monkeys, and in the STS of
monkeys and humans. Activity that is selective specifically for human body
shapes has been found in the human lateral occipital complex, occipital and
fusiform face areas and monkey STS.

The highest hierarchy level of the form pathway consists of motion pattern
neurons. These model neurons temporally smooth and summate the activity
of all snapshot neurons that contribute to the encoding of the same move-
ment pattern. Each motion pattern neuron encodes a single action, such as
walking or fighting or other actions. Each snapshot neuron has asymmetric
lateral connections that pre-activate snapshot neurons that encode subse-
quent body configurations. The other snapshot neurons are inhibited. The
output signals of all snapshot neurons that are involved in the encoding of
the same motion pattern are summed in a motion pattern neuron. In this
way sequence selectivity is obtained. According to physiological data, motion
pattern neurons in monkey and human cortex are probably located in the
STS, the premotor cortex (area F5) and possibly the fusiform and occipital
face areas.

The motion pathway (dorsal)

The motion pathway recognizes biological movements by analysing optic flow
patterns. Consistent with neurophysiological data, it consists of a hierarchy
of neural detectors for optic flow features of increasing complexity. As in
the form pathway, the receptive field sizes, invariance of the detectors and
complexity of the extracted features increase along the hierarchy.

The first level of the motion pathway consists of local motion detectors
that correspond to direction-selective neurons in V1 and component motion-
selective neurons in area MT. Many neurophysiologically plausible models for
local motion estimation have been proposed. For the simulations reported
in the Giese and Poggio paper, optic flow patterns have been computed
and the responses of motion-sensitive neurons with physiologically realistic
parameters have been calculated. Their equivalent receptive field sizes are in
the range of direction-selective neurons in V1, and of foveal neurons in area
MT.

The second level of the motion pathway consists of neurons with larger
receptive fields that analyze the local structure of the optic flow fields induced
by movement stimuli. There are two types of local optic flow detector. The
first is selective for translation flow and corresponds to motion pattern neu-
rons in area MT. The model includes neuron populations with four preferred
directions and with a receptive field size similar to monkey MT neurons.
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The second class of local optic flow detectors is selective for expansion and
contraction flow. Neurons with such opponent motion selectivity have been
found in several areas in the dorsal processing stream, including areas MT,
MST, and MSTl. They are probably also present in the kinetic occipital area
(KO) in humans. Neurons in area MST have substantial position and scale
invariance. In the model, such position invariance is obtained by pooling
the signals from position-specific motion edge detectors through a maximum
operation. The receptive field size of the motion edge-selective detectors is
in the range of neurons in areas MT and MSTl in the macaque monkey.

The optic flow pattern neurons on the third level of the motion pathway
are equivalent to the snapshot neurons in the form pathway. Their existence
is a prediction of the model. These detectors are selective for complex optic
flow patterns that arise for individual moments of biological movement pat-
terns. Like the snapshot neurons, the motion pattern neurons are modelled
by gaussian radial basis functions that receive their inputs from the previous
hierarchy level. After training, the centres of the basis functions correspond
to the optic flow patterns that are characteristic for individual moments of
the learned movement. It is assumed that such optic flow pattern neurons
might be found at different locations in the visual cortex, in particular in the
STS, fusiform and occipital face areas, and, perhaps area MST.

The output signals of the optic flow pattern neurons are summed and
temporally smoothed by the motion pattern neurons of the motion pathway.
They are modelled in the same way as the motion pattern neurons of the
form pathway. Alternatively, a single set of motion pattern neurons might
integrate the information from both pathways. Motion pattern neurons are
probably located in the STS, fusiform and occipital face areas, and, perhaps
area F5 in the premotor cortex.

Sequence selectivity

Movement recognition is selective for temporal order. In the model, sequence
selectivity results from asymmetric lateral connections between the snapshot
neurons in the form pathway (and between the optic flow pattern neurons
in the motion pathway). With this circuitry, active snapshot neurons pre-
exite neurons that encode temporally subsequent configurations, and inhibit
neurons that encode other configurations. Significant activity can arise only
when the individual snapshot neurons are activated in the correct temporal
order.

Asymmetric lateral connections are one physiologically plausible imple-
mentation of sequence selectivity. The neural activity is strongly reduced if
the order of the input frames is reversed or randomized with respect to the
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training sequence.

3.3 The model by Demiris and Johnson

In this section a cognitive architecture will be presented that allows the imita-
tion and learning of actions, and describe its computational implementation
on two robots. Following earlier work, the architecture employs a genera-
tive, or motor-based simulation approach to imitate actions: we understand
other people’s actions by mentally rehearsing them. These approaches have
been advocated at a more theoretical level for several years. The algorith-
mic and representational requirements for such approaches through a robotic
implementation using distributed, hierarchical structures will be examined.
Moreover it will be demonstrated how new composite action representations
can be learned by imitation.

3.3.1 Different approaches to understanding actions

Fig. 3.4 shows the classical approach to understanding actions: the imita-
tor observes the demonstrated action, which is represented in some symbolic
manner, classifies it and subsequently sends it to the motor system for execu-
tion. This approach, although highly successful in the robotics domain, is not
compatible with a variety of experimental data from the life sciences. The
most important difference is that the decomposition above enforces a strong
decoupling of the perceptual and motor areas, and does not hypothesize any
involvement of the motor systems during observation. On the contrary, as we
said previously, Positron Emission Tomography (PET) and fMRI data have
shown strong activation of the motor areas of the human brain during the
observation of actions, as well as during their execution. The architecture
that is used in these experiments attempts to overcome these discrepancies
by involving the motor systems of the observer during the demonstration
process. The observer uses its motor systems to generate hypotheses during
the demonstration (what could I do if I was in that situation/configuration?),
and ranks the hypotheses according to the accuracy of the predictions they
generate as the demonstrated action unfolds. Action planning, imagination,
execution and perception share a generative computational substrate.

3.3.2 Architecture of the model

In the described model the autors adapt a hierachical, distributed action
representation approach, that emphasizes concurrent execution of several
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Figure 3.4: Classical approach to action imitation.

modules, rather than a monolithic classifier of the type depicted in fig. 3.4.
Here follows a description of the components of the architecture, and how
they are combined to perform the functions this architecture supports.

The essence of the biological data described earlier, i.e. that the mo-
tor systems are involved during the demonstration of an action, has been
captured through the use of inverse and forward models:

• inverse models are also known as controllers, or behaviours. Given
a goal and the current state of the controlled system, they output the
necessary motor commands that are needed in order to achieve or main-
tain that goal. These models are used frequently in control engineering
and have been used for modeling motor planning and control. Inverse
models have been hypothesized to exist in the premotor cortex (F5
mirror);

• forward models are also known as predictors. Given motor commands
and the current state of the controlled system, they output the pre-
dicted next state of that system. Like inverse models, they have been
used in motor control modeling, and they have been hypothesized to
exist in the cerebellum.

Fig. 3.5 shows a typical arrangement of an inverse and a forward model,
as used in motor control. With this arrangement, an inverse model, encod-
ing a particular behaviour, is given the current state and a target goal. The
inverse model outputs the motor commands that would achieve that target
goal, and these are sent to the musculoskeletal system, which in turn, feeds
back proprioceptive information. However, this feedback takes a significant
amount of time before it is available, so, in parallel to this, the motor com-
mands are also sent to a forward model which will output a prediction of
what the next state will be. This predicted state is compared with the target
goal, and errors are used to adjust its confidence on how well it is perform-
ing. Subsequently, parallelism is introduced to this arrangement. Multiple
pairs of inverse and forward models, encoding different behaviours, are sent



3.3. The model by Demiris and Johnson 51

Perceived state

Target goal
model

Inverse

Comparison

Corrective signals

commands

Motor

Inhibition

system

Musculoskeletal
Environment

model

Forward

Predicted state

Figure 3.5: Basic structure of the model: a pair of inverse and forward
models.

to the target goal. They all propose motor commands that they hypothesize
will achieve the target goal. These motor commands are sent to the forward
models (each inverse model sends its motor commands to its corresponding
forward model) which output a set of predicted next states. The pair that has
generated the next state prediction most compatible with the target goal re-
ceives reinforcement (increases its confidence), while the other pairs decrease
their confidences. The errors can also be used so that the behaviours can
adapt their internal parameters (if any) so they can suggest better hypothe-
ses. For example, an error in the prediction of the gripper’s next position
will decrease the confidence of the corresponding behaviour, but it will also
alter the parameters of the behaviour; for example it will alter the gains in a
Proportional Integrative Derivative (PID) controller that moves the gripper,
so that the predictions can potentially be improved.

3.3.3 Implementation of the model

The implementation of the model uses two robots in an experimental scenario
involving imitation of gripper movements. In order to simplify the visual
processing, color markers have been added to the grippers and robots are
placed facing each other. They are equipped with a camera and a two degrees
of freedom gripper (fig. 3.6). The imitator robot “mentally reharses” and
ranks hypotheses during the demonstration, and subsequentally replicates
the one with the highest confidence. If it does not recognize the behaviour
but recognizes its components, it assembles a composite inverse model and
adds a new pair of inverse-forward models to its repertoire.
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Figure 3.6: Left: imitator robots; right: robotic setup

Implementation of inverse models

The most basic inverse model, i.e. a primitive, is a single node implemented
as a simple motor program, which sends out motor commands to the robots
and to the forward model. Composite inverse models can be created, by
having more basic ones arranged serially and/or concurrently in a graph
(fig. 3.7) and indicating the start time of each of them.

Implementation of forward models

For the construction of forward models the speed of movement for each de-
gree of freedom was calculated by having the corresponding robot part (i.e.
the robot gripper) executing a full movement between the two limits (top-
bottom for the gripper platform, and open-close for the gripper fingers), and
recording proprioceptive values and timer values at the beginning and at
the end of the movement (the gripper is only capable of moving with a sin-
gle constant velocity for each degree of freedom). Proprioceptive values are
scaled between the values 0.0 and 1.0. The forward models can then output
predicted proprioceptive values at the next time step (100 ms intervals are
used) by using the known velocity, the direction of movement and the current
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Figure 3.7: An example inverse model.

recorded proprioceptive value.

Implementation of the framework

For the architecture to work on an imitator robot it also requires the extrac-
tion of the visual information of the state of the demonstrator, and of the
imitator’s proprioceptive state. The two quantities extracted are the height
of robot gripper from base and the gripper finger positions. A visual calibra-
tion preceeds the experiment; the demonstrator robot executes a sequence
involving moving the gripper from the lowest possible position to the highest
possible position, and subsequently opening and closing the gripper fingers
completely. The visual coordinates during the calibration are collected and
normalised to give positional information in the range of 0.0 to 1.0.

The inverse models are executed as parallel processes in the robots. Dur-
ing observation, the motor commands they generate are inhibited from being
sent to the motor system, and they are only sent to the forward models.
Each of the forward models output predictions for the state of each of the
degrees of freedom that are involved in this movement, which are compared
to the actual values that come at the next time step. The prediction error is
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given by:

E(t) =
N

∑

i=1

|xi(t) − pxi(t)| (3.1)

where xi(t) is the actual value of the demonstrators state at time t, and pxi(t)
is the predicted value that was given by the forward model for time t. N is
the number of degrees of freedom involved in this behaviour. The confidence
value of the inverse model is then accumulated according to the following
update rule:

C(t) =

{

C(t − 1) + Kr 1
E(t)

ifE(t) < A

C(t − 1) − KpE(t) otherwise

where C(t) is the confidence of the inverse model at time t, A is a con-
stant threshold value which is set experimentally, and Kr and Kp are gain
constants. The value A is essential as a threshold describing the boundary
between the reward and punishment regions.

Having presented two models of action recognition let’s now introduce
the relation between pragmatic and semantic recognition.

3.4 The relation between pragmatic and se-

mantic recognition

In humans, several experiments have investigated the interplay between ac-
tion generation and action perception [50].

Fadiga et al. stimulated the motor cortex of human observers and recorded
the MEP (Motor evoked potentials) from hand muscles, utilising the assump-
tion that if action observation activates the premotor cortex (as it does in
monkeys), this activation should induce an increase of the motor evoked po-
tentials elicited by the magnetic stimulation of the motor cortex. They found
a significant increase of the MEP when subjects observed movements, and
additionally the pattern of muscle activation was very similar to the pat-
tern of muscle contraction present during the execution of the same action,
i.e. the increase was present only in those muscles that are active when the
human subjects executed these actions. During the rehersing of the motor
commands when the observer sees an action the muscle contraction is inhib-
ited but this mechanism is not well known. A different set of experiments
with human subjects used PET brain scanning as a way of mapping the
brain regions whose activations are associated with the observation of hand
actions, as well as mental rehersal. Concerning these studies there is a very
interesting brain disorder: the “imitation behaviour”. The patients affected
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by this disorder imitate the demonstrator’s gesture although they were not
instructed to do so, and some times even when told not to do so. An explicit
direct command from the doctor to the patient would stop the imitation be-
haviour but a simple distraction was sufficient to see imitation reappearing,
despite the patient remembering what he had been told.

On the base of the above we surmise that action recognition is a two steps
process:

• pragmatic recognition: the action is mentally rehersed, i.e. motor com-
mands to perform it are extracted from visual information;

• semantic recognition: the action is classified analyzing the motor com-
mands.

The model of action recognition we will propose is based on the assumptions
indicated above.

3.5 Beyond action recognition: grasping the

intention [51]

Here we present some ideas about intentions as elaborated in the paper by Ia-
coboni. Understanding the intentions of others while watching their actions
is a fundamental building block of social behavior. The neural and functional
mechanisms underlying this ability are still poorly understood. To investi-
gate these mechanisms Iacoboni et al. used fMRI analysis. Twentythree
subjects watched three kinds of stimuli: grasping hand actions without a
context, context only (scenes containing objects), and grasping hand ac-
tions performed in two different contexts. In the latter condition the context
suggested the intention associated with the grasping action (either drinking
or cleaning). Actions embedded in contexts, compared with the other two
conditions, yielded a significant signal increase in the posterior part of the
inferior frontal gyrus and the adjacent sector of the ventral premotor cortex,
where hand actions are represented. Thus, premotor mirror neuron area,
previously thought to be involved only in action recognition, is actually also
involved in understanding the intentions of others. To ascribe an intention
is to infer a forthcoming new goal, and this is an operation that the motor
system does automatically.

Some mirror neurons do not discriminate between stimuli of the same
category (i.e., the sight of different kinds of grasping actions can activate
the same neuron), but discriminate well between actions belonging to dif-
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ferent categories. These properties seem to indicate an action recognition
mechanism (“that’s a grasp”) rather than an intention-coding mechanism.

However, action implies a goal and an agent. Consequently, action recog-
nition implies the recognition of a goal, and, from another perspective, the
understanding of the agent’s intentions.

More complex and interesting, so, is the problem of whether the mirror
neuron system also plays a role in coding the global intention of the actor
performing a given motor act. For example: Mary is grasping an apple. Why
is she grasping it? Does she want to eat it, or give it to her brother, or maybe
throw it away?

The same action done in two different contexts acquires different meanings
and may reflect two different intentions.

In the experiment of Iacoboni et al. subjects watched three different
types of movie-clips (fig. 3.8): CONTEXT, ACTION, and INTENTION,
interspersed with periods of blank screen (rest condition). The CONTEXT
condition consisted of two scenes with 3D objects (a teapot, a mug, cookies,
a jar, etc.). The objects were arranged either as just before having had tea
(the “drinking” context) or as just after having tea (the “cleaning context”).
The ACTION condition consisted of a hand grasping a cup in the absence of
a context on an objectless background. Two types of grasping actions were
shown in the same block an equal number of times: a precision grip (the
fingers grasping the cup handle) and a whole-hand prehension (the hand
grasping the cup body). In the INTENTION condition, the grasping actions
(also precision grip and whole hand prehension shown for an equal number of
times) were embedded in the two scenes used in the CONTEXT condition,
the “drinking” context and the “cleaning” contex. Here, the context cued the
intention behind the action. The “drinking” context suggested that the hand
was grasping the cup to drink. The “cleaning” context suggested that the
hand was grasping the cup to clean up. Thus, the INTENTION condition
contained information that allowed the understanding of intention, whereas
the ACTION and CONTEXT conditions did not (i.e. the ACTION condition
was ambiguous, and the CONTEXT condition did not contain any action).

Notably, the observation of the INTENTION and of the ACTION clips
compared to those at rest yielded significant signal increase in the parieto-
frontal cortical circuit for grasping.

The critical question was to test whether there are significant differences
between the INTENTION condition and the ACTION and CONTEXT con-
ditions in areas known to have mirror properties in the human brain. The
INTENTION condition yielded significant signal increases compared to the
ACTION condition in visual areas and in the right inferior frontal cortex,
in the dorsal part of the pars opercularis of the inferior frontal gyrus. The
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Figure 3.8: Six images taken from the context, action and intention clips.

increased activity in visual areas is expected, given the presence of objects
in the INTENTION condition, but not in the ACTION condition. The in-
creased right inferior frontal activity is located in a frontal area known to
have mirror neuron properties, thus suggesting that this cortical area does
not simply provide an action recognition mechanism (“that’s a grasp”) but
rather it is critical for understanding the intentions behind others’ actions.

The data of the study suggest that the role of the mirror neuron system
in coding actions is more complex than previously shown and extends from
action recognition to the coding of intentions.

The findings of the presented study show increased activity of the right in-
ferior frontal cortex for the INTENTION condition, so strongly suggest that
this mirror neuron area actively participates in understanding the intentions
behind the observed actions.

Before accepting this conclusion, however, there are some points that
must be clarified:

• as a first issue, one might argue that the signal increase observed in
the inferior frontal cortex was simply due to detecting an action in any
context; that is, it is the complexity of observing an action embedded
in a scene, and not the coding of the intention behind actions, that
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determined the signal increase;

• a second issue, closely related to the first one, is the question of canon-
ical neurons. These neurons fire at the sight of graspable objects. Be-
cause they are also located in the inferior frontal cortex, one might be
led to conclude that the increased activity observed in the intention
clips was due to the presence of objects.

A strong argument against both these objections is that the activity in
inferior frontal cortex is reliably different between drinking INTENTION
clips and cleaning INTENTION clips, even though graspable objects were
present in both conditions.

On the basis of our current knowledge of physiological properties of the
inferior frontal cortex, the most parsimonious explanation of the findings
reported here is that mirror neurons are the likely neurons driving the signal
changes in this study.

The interpretation of these findings implies that, in addition to the clas-
sically described mirror neurons that fire during the execution and obser-
vation of the same motor act (i.e. observed and executed grasping), there
are neurons that are visually triggered by a given motor act (i.e. grasping
observation), but discharge during the execution not of the same motor act,
but of another act, causally related to the observed act (i.e. bringing to the
mouth). Neurons of this type have indeed been previously reported in F5
and referred to as “logically related” neurons. The role of these “logically
related” mirror neurons was never theoretically discussed and their functions
remained unclear. The work presented here allows one to attribute a func-
tional role to these ”logically related” mirror neurons and suggest that they
may be part of a chain of neurons coding the intentions of other people’s
actions.

The stronger activation of the inferior frontal cortex in “drinking” as
compared to “cleaning” INTENTION is consistent with our interpretation
that a specific chain of neurons coding a probable sequence of motor acts
underlies the coding of intention.

The conventional view on intention understanding is that the description
of an action and the interpretation of the reason why that action is executed
rely on largely different mechanisms. In contrast, the presented data show
that the intentions behind the actions of others can be recognized by the
motor system using a mirror mechanism. Mirror neurons are thought to
recognize the actions of others, by matching the observed action onto its
motor counterpart coded by the same neurons. The present findings strongly
suggest that coding the intention associated with the actions of others is
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based on the activation of a neuronal chain formed by mirror neurons coding
the observed motor act and by “logically related” mirror neurons coding
the motor acts that most likely follow the observed one, in a given context.
To ascribe an intention is to infer a forthcoming new goal, and this is an
operation that the motor system does automatically.
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Chapter 4

The precursor of ROMOACRE

In this chapter we describe the precursor of ROMOACRE, aROboticMOdel
for ACtion REcognition. In this chapter we will refer to the precursor of
ROMOACRE simply as “ROMOACRE”. Instead the final version of RO-
MOACRE will be described in the next chapter. ROMOACRE is a neuro-
physiologically plausible model whose purpose is the recognition of significant
human actions, like walking, running, and so on. It is neurophysiologically
plausible in the sense that each stage of computation is associated with a
cortical area, and in particular it reflects the mirror mechanism, using motor
commands to recognise actions.
ROMOACRE is composed of the following computational stages:

1. human pose estimation from images of body silhouette;

2. evaluation of the motor commands of the action from human poses
sequence;

3. recognition of the action from motor commands.

The three stages are described in detail in the following sections of this
chapter. The details of image capture and preprocessing are described in the
appendix A.

4.1 Human pose estimation

We define a pose as a particular configuration of body joints angles. As we
will describe later in this chapter, our body model is made up of 8 monodi-
mensional body joints angles. Let’s review first the previous works about
human pose estimation.

61
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4.1.1 Previous works

In literature we have found various methods for human pose estimation. We
divide them in four groups:

• the pose estimation is done from a sequence of images captured by
multiple cameras;

• the pose estimation is done from single images captured by multiple
cameras;

• the pose estimation is done from a sequence of monocular images;

• the pose estimation is done from a single monocular image.

The following work belongs to the first group.

• [4] A 3D reconstruction of the person’s body is computed from sil-
houettes extracted from four cameras. In the first frame, body parts
are located sequentially. The head is located first, since its shape and
size are unique and stable. Other parts are found by sequential tem-
plate growing and fitting. This initial estimate of body part locations,
sizes and orientations is then used as a measurement for the extended
Kalman filter which ensures a valid articulated body model. The same
filter, with a slightly modified state and state transition matrix, is then
used for tracking.

The following work belongs to the second group.

• [5] An approach for estimating 3D body pose from multiple, uncal-
ibrated views is proposed. First, a mapping from image features to
2D body joint locations is computed using a statistical framework that
yields a set of several body pose hypotheses. The recovery of 3D body
pose and camera relative orientations is formulated as a stochastic op-
timization problem.

The following works belongs to the third group.

• [6] A probabilistic method for tracking 3D articulated human figures
in monocular image sequences is presented. Within a Bayesian frame-
work, a generative model of image appearence, a robust likelihood func-
tion based on image graylevel differences, and a prior probability dis-
tribution over pose and joint angles that models how humans move are
defined. The posterior probability distribution over model parameters
is represented using a discrete set of samples and is propagated over
time.
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• [7] A novel solution is presented that directly addresses the depth
ambiguity, in which a discriminative analysis (Support Vector Machine)
is extended to non-rigid human motion classification with a temporal
generative motion model (Hidden Markov Model).

• [8] This work addresses the problem of tracking human body pose in
monocular video including automatic pose initialization and re-initialization
after tracking failures caused by partial occlusion or unreliable obser-
vation. A method is proposed which is based on data-driven Markov
chain Monte Carlo that uses bottom-up techniques to generate state
proposals for pose estimation and initialization.

The following works belongs to the fourth group.

• [9] In this work the authors propose a statistical formulation for 2D
human pose estimation from single images. The human body configu-
ration is modeled by a Markov network and the estimation problem is
to infer pose parameters from image cues such as appearence, shape,
edge, and color. From a set of hand labeled images, we accumulate
prior knowledge of 2D body shapes. A data driven belief propagation
Monte Carlo algorithm is proposed for efficent probabilistic inference.

• [10] This work discusses a bottom-up approach that uses local image
features to estimate human upper body pose from single images in
cluttered backgrounds. The method takes the image window with a
dense grid of local gradient orientation histograms, followed by non
negative matrix factorization to learn a set of bases that correspond
to local features on the human body, enabling selective encoding of
human-like features in the presence of background clutter. Pose is then
recovered by direct regression.

• [11] The authors represent the human model in a phase space spanned
by its different degrees of freedom and use the analysis-by-synthesis
approach to match the phase space model with real images and thereby
estimating the pose.

• [12] The authors describe a method based on learning for recovering 3D
human body pose from single images. The approach recovers pose by
direct nonlinear regression against shape descriptor vectors extracted
automatically from image silhouettes. They evaluate several different
regression methods: ridge regression, Relevance Vector Machine regres-
sion and Support Vector Machine regression over both linear and kernel
bases. The Relevance Vector Machine regression provides much sparser
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regressors without compromising performance, and kernel bases give a
small but worthwhile improvement in performance.

• [13] The problem considered in this work is to take a single two-
dimensional image containing a human body, locate the joint posi-
tions, and use them to estimate the body configuration and pose in
three-dimensional space. The basic approach is to store a number of
exemplar 2D views of the human body in a variety of different config-
urations and viewpoints with respect to the camera. On each of these
stored views, the locations of the body joints are manually marked and
labelled for future use. The test shape is then matched to each stored
view, using the technique of shape context matching. Assuming that
there is a stored view sufficiently similar in configuration and pose,
the correspondence process will succeed. The locations of the body
joints are then transferred from the exemplar view to the test shape.
Given the joint locations, the 3D body configuration and pose are then
estimated.

• [14] In this work the autors introduce a new algorithm that learns a set
of hashing functions that efficiently index examples in a way relevant
to a particular estimation task.

We tried to use some of the method described above and we chose the best
performing method, k-Nearest Neighbors Weighted (k-NNW) method.

4.1.2 The k-Nearest Neighbors Weighted method [14]

In this subsection we describe the method used by ROMOACRE to per-
form human pose estimation, the k-Nearest Neighbors Weighted (k-NNW)
method.

The task of example-based parameter estimation in vision can be formu-
lated as follows. Input, which consists of image features (e.g. edge map,
vector of responses of a filter set, edge direction histograms or vector of re-
sponses of snapshot units) computed on the original image, is assumed to be
generated by an unknown parametric process x = f(θ) (e.g., θ is a vector of
joint angles which represent the pose). A training set of labeled examples
(x1, θ1), ..., (xn, θn) is provided. One must estimate θ0 as the inverse of f for
a novel input x0. The objective is to minimize the residual in terms of the
distance (similarity measure) dθ in the parameter space.
One of the oldest techniques used for such estimation is the k-Nearest Neigh-
bors (k-NN) method: the k-NN estimate is obtained by averaging the values
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for the k training examples most similar to the input:

θ̂NN =
1

k

∑

xi∈neighborhood

θi, (4.1)

i.e. the target function is approximated by a constant in each neighborhood
defined by k. This estimate is known to be consistent, and to asymptotically
achieve Bayes-optimal risk under many loss functions. Note that similarity
(neighborhood) is defined in terms of the distance dx in the input space.
A natural extension to the k-NN method is the k-Nearest Neighbors Weighted
(k-NNW) method, in which the neighbors are weighted according to their
similarity to the query point. The k-NNW estimate is obtained by weighted
average of the values for the k training examples most similar to the input:

θ̂NNW =
∑

xi∈neighborhood

wiθi, (4.2)

assuming that the weights wi are normalized. The next section describes
how k-NNW method is applied in ROMOACRE to perform human pose
estimation.

4.2 Human pose estimation in ROMOACRE

Human pose estimation in ROMOACRE is performed in two stages:

1. the first stage takes as input the raw data from the image and produces
as output a vector of snapshot units selective for body silhouette shapes;

2. the second stage perform human pose estimation with the k-NNW
method using as weights the output of the first stage.

The two next subsections describe these two stages of the model.

4.2.1 Pose estimation: stage 1

This part of our model is inspired to the model by Giese and Poggio for the
recognition of biological movements [15] and is made up of a single processing
stream analogous to the ventral stream that is specialized for the analysis of
form, so we call it form pathway. This form pathway comprises hierarchies of
neural feature detectors that extract form features with increasing complexity
along the hierarchy. The position and size invariance of the feature detectors
also incresases along the hierarchy, which is completely feedforward, without
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the need of top-down signals. We do not claim that such signals are not
important, but without them good recognition performance can be achieved
in most cases. The form pathway is composed of three computational levels.

1. The first level of the form pathway consists of local orientation detec-
tors that models simple cells [16] in the primary visual cortex (V1).
Consistent with other models of simple cells [17], these detectors are
modelled as Gabor filters.

2. The second level of the form pathway contains position and scale toler-
ant bar detectors, which extract local orientation information. Within
a limited range, thir responses are independent of the spatial position
and scale of contours within their receptive fields. They might cor-
respond to complex-like cells in area V1 [16], or to neurons that are
increasingly invariant to position changes in areas V2 and V4 [18] [19].
Many neurons in areas V2 and V4 are selective for more complex form
features that are similar to corners or junctions [18] [20]. Such features
were not necessary to achieve sufficent selectivity of the form pathway
for body silhouette shapes.

3. The third level of the form pathway contains snapshot neurons that
are selective for body silhouette shapes. These model neurons are simi-
lar to view-tuned neurons in monkey inferotemporal cortex (IT) which
are selective for complex shapes [21] [22] [23] and can become tuned
to complex shapes through learning. Neurons with similar property
in the cortex might be located in the STS of monkey and humans
[24] [25] [26] [27] [28] [29]. Activity that is selective specifically for hu-
man body shapes has been found in the human lateral occipital complex
[30], occipital and fusiform face areas [25] and monkey STS [31] [32].

In the next three subsections we describe in detail the three levels of the form
pathway. The retina of the model is made up of 160x128 pixels and it will
be filtered as described below.

Local orientation detectors

The following family of two-dimensional Gabor functions was proposed by
Daugman [33] to model the spatial summation properties (of the receptive
fields) of simple cells in visual cortex:

gσ,γ,λ,φ,x0,y0,θ = e−
x′2+γ2y′2

2σ2 cos

(

2π
x′

λ
+ φ

)

(4.3)
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x′ = (x − x0)cos(θ) + (y − y0)sin(θ) (4.4)

y′ = −(x − x0)sin(θ) + (y − y0)cos(θ) (4.5)

where:

• σ is the standard deviation of the two-dimensional gaussian factor of
the Gabor function;

• γ is the ellipticity of the gaussian factor of the Gabor function; values
tipical of the receptive fields of simple cells lie between 0.2 and 1.0;

• λ is the wavelength of the cosine factor of the Gabor function;

• φ is the phase offset of the cosine factor of the Gabor function: values
00 and 1800 correspond to “centre-on” and “centre-off” functions, while
values −900 and 900 correspond to antisymmetric functions;

• x0 is the abscissa of the centre of the Gabor function;

• y0 is the ordinate of the centre of the Gabor function;

• θ is the orientation of the normal to the parallel stripes of the Gabor
function.

In fig. 4.1 is plotted a graphic of a Gabor function. In the Gabor functions
we use we set

γ = 1 (4.6)

φ = 0 (4.7)

so we use “centre-on” Gabor functions with radial gaussian factor, while
different phase shifts are crudely approximated by centering receptive fields
at near locations [34].
We introduce two batteries of Gabor filters corresponding to two different
scales that differ for a factor two; we consider thirtysix orientation for each
of the two scales that therefore differ from each other by 50. We apply the
filters to the images with resolution 160x128 pixels.

• scale 1:

– σ = 2.4 pixel;

– λ = 12 pixel;

– we found that the length of the main stripe of the Gabor filter at
10% is 11 pixels;
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Figure 4.1: Graphic of a Gabor filter.

– we found that the width of the main stripe of the Gabor filter at
10% is 5 pixels;

– we apply a squared mask to the filters of this scale of 11x11 pixels;

– we apply the filters of this scale centered on the points of a grid
of step 2 pixels;

– so we have 80x64=5120 Gabor filters for each of the 36 orienta-
tions.

• scale 2:

– σ = 4.7 pixel;

– λ = 18 pixel;

– we found that the length of the main stripe of the Gabor filter at
10% is 21 pixels;

– we found that the width of the main stripe of the Gabor filter at
10% is 9 pixels;

– we apply a squared mask to the filters of this scale of 21x21 pixels;

– we apply the filters of this scale centered on the points of a grid
of step 4 pixels;
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Figure 4.2: Locations of the Gabor filters in the image.

– so we have 40x32=1280 Gabor filters for each of the 36 orienta-
tions.

In fig. 4.2 are shown the locations of the Gabor filters in the image.

Tolerant bar detectors

A neurophysiologically plausible mechanism for achieving position and scale
tollerance is the pooling of the responses of neurons with similar preferred
orientations, but with different receptive field positions and spatial scales [35]
[36] [37]. We assume that this pooling is accomplished by a nonlinear max-
imum operation rather than by linear summation [49] [38]. Subpopulations
of complex cells in the visual cortex of cats [39] and neurons in area V4 of
macaques [40] show behaviour that is compatible with a maximum compu-
tation. We compute the maximum among 4x4=16 Gabor filters of a given
orientation of the scale 1 and 2x2=4 Gabor filters of the same orientation of
the scale 2 (20 Gabor filters in total) as shown in fig. 4.4. The amplitute of
the pooling range is of 8x8 pixels. So we obtain 160/8x128/8=20x16=320
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Figure 4.3: Diagram of the model.

tolerant bar detectors for each of the 36 orientations.
In fig. 4.3 is illustrated the diagram of the model.

Snapshot neurons

This level is made up of a neural network with radial gaussian basis function
as shown in fig. 4.5:

• the input vector is constituted by the responses of the tolerant bar
detectors, so its dimension is 320(location)x36(orientation)=11520;

• the hidden layer is constituted by thirtysix radial gaussian basis func-
tions

g(x) = e−
x2

2σ2 ; (4.8)

• the output layer is constituted by thirtysix snapshot neurons that are
selective for body silhouette shapes.

The network learning is performed in this way:

• the central vector of the radial gaussian basis functions µi (i = 1, ..., 36)
of the same dimension of the input space are set equal to the responses
of the tolerant bar detectors for the 36 captured frames;

• the standard deviations σi are set all equal to the average distance
between the centres µi;
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Figure 4.4: Operation of maximum among Gabor filters.



72 4. The precursor of ROMOACRE

radial gaussian
basis functions

snapshot
neurons

���
�

���
�

���
�

���
�

 input vector x

g(||x−x1||)

g(||x−x2||)

g(||x−x36||)

Figure 4.5: Neural network with radial gaussian basis function.
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• the weights of the output layer are evaluated with supervised learning
using the 36 frames.

4.2.2 Pose estimation: stage 2

Before we illustrate the second part of human pose estimation in ROMOACRE,
we list the following assumptions of the model:

• we neglect the angles of the head, of the hands, and of the foot;

• we assume that the back is straight and vertical with respect to the
ground;

• the limbs remain parallel to the sagittal plane.

Once we made these assumptions we can assert that the human pose is
described by eight angles, that are:

• the angle of the left shoulder, i.e. the angle between the back and the
left forearm, positive if the left forearm is ahead, negative if the left
forearm is behind;

• the angle of the left elbow, i.e. the angle between the extension of the
left forearm and the left arm;

• the angle of the left hip, i.e. the angle between the back and the left
thigh, positive if the left thigh is ahead, negative if the left thigh is
behind;

• the angle of the left knee, i.e. the angle between the extension of the
left thigh and the left leg;

• the angle of the right shoulder, i.e. the angle between the back and
the right forearm, positive if the right forearm is ahead, negative if the
right forearm is behind;

• the angle of the right elbow, i.e. the angle between the extension of the
right forearm and the right arm;

• the angle of the right hip, i.e. the angle between the back and the right
thigh, positive if the right thigh is ahead, negative if the right thigh is
behind;

• the angle of the right knee, i.e. the angle between the extension of the
right thigh and the right leg;
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Figure 4.6: Measurement of the shoulder angle.

In the actions we take into account that these eight angles vary in an interval
of width 1500:

• shoulders and hips: [−750, +750];

• elbows and knees: [00, +1500].

In order to do human pose estimation with an example based method (the
k-NNW method) we followed these steps.

• We showed to the subject each of the thirtysix frames and we asked him
to assume the same pose he has in the frame, so we measured with an
alidade the 8x36=288 angles of the body pose (figg. 4.6, 4.7, 4.8, 4.9).

• We did an angle transformation to transform the angles measured with
the alidade in the body angles we have defined above.

• Each of the eight angular variables, of width 1500, has been divided in
30 bins of width 50.

• The index of the occupated bin has been calculated for each of 8(an-
gles)x36(frames)=288 angles.

In this way we produced 36 data sets of dimension 8x30=240 constituted by
binary values that value all 0 except the ones that correspond to the angles
values.
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Figure 4.7: Measure of the elbow angle.

Figure 4.8: Measure of the hip angle.
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Figure 4.9: Measure of the knee angle.
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Figure 4.10: Example poses network.
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Figure 4.11: First frame of the walking action.

In order to establish the correspondence between the 36 frames and the
measured example poses, we use a neural network, that we call the example
poses network (fig. 4.10). It is a layered feedforward network with one layer
of weights:

• the input is constituted by 36 binary units that corresponds to the 36
frames;

• the output is constituted by 8(angles)x30(bins)=240 binary units;

• for the network learning we set to high the input unit that correspond
to a frame and to low all the others, and set the output to the data set
we obtained measuring the 8 body angles for the selected frame, so we
did learning using 36 data sets: when the measured angle fall into the
n-th bin all the output units are set to 0 except the n-th, which is set
to 1.

When training is finished we can get the body pose associated with an
example frame by setting all the input units to low except the one that
corresponds to the frame: so the network outputs the body pose that the
subject had in that frame.
At this point we are able to evaluate the poses of the thirtysix example
frames, that are just the poses we measured. Let’s see how to evaluate a
generic pose (provided it is similar to some of the example poses) with the
k-NNW method: we will show it with an example.

Let’s consider the first two frames of the action walking (figg. 4.11, 4.12).
Now let’s draw a silhouette of a person with pose similar to that of these two
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Figure 4.12: Second frame of the walking action.

Figure 4.13: Silhouette of the intermediate pose.
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frames, i.e. an intermediate pose (fig. 4.13). As we expected the ouputs of
the snapshot neurons for the first frame of walking value all 0 except the first
that values 1, while for the second frame of walking they value all 0 except
the second that values 1. Now let’s consider the output of the snapshot
neurons for the intermediate frame (tab. 4.1). We can observe that the two
maximum values are the ones that correspond to the first and the second
frame of the action walking: we have found the two nearest neighbours. So
now we can use the 2-NNW method to evaluate the pose of the person whose
silhouette is the one if fig. 4.13. Let’s take the two maximum outputs among
the snapshot neurons and normalize them: we obtain the weights

w1 = 0.537721 (4.9)

w1 = 0.462279. (4.10)

They are used in the implementation of the 2-NNW method, wich is
shown in fig. 4.14; let’s describe our implementation of pose estimation con-
stituted by a network of five layers of units that we call the 2-NNW network.

1. We compute the output of the example pose estimation network for the
two nearest neighbours (frames 1 and 2 of walking); for simplicity we
limit ourselves to consider only the column of outputs relative to the
left knee: we obtain that for the first frame only the 9th unit values
1 while for the second frame only the 7th unit values 1 (the left knee
angle has diminished in walking as we can see in figg. 4.11, 4.12); if we
put together this two sets of units we obtain the first layer of the 2-NN
network.

2. The second layer of the network is constituted by thirty units, and the
i-th unit receives connections only from the i-th unit of the two sets of
units of the first layer respectively with weights w1 and w2. We obtain
that all the units of the second layer value 0 except for the 9th and the
7th, that value respectively w1 and w2.

3. The third layer of the network is constituted by one unit that receive
connections from the i-th unit of the second layer with weight i. The
output value is 8.08.

4. The fourth layer of the network is constituted by thirty radial gaus-
sian basis function: the i-th function has centre µi = i and standard
deviation σ = 1.
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Action Frame Output
walking 1 0.531943
walking 2 0.457312
walking 3 -0.090291
walking 4 0.006783
walking 5 0.004365
walking 6 0.000292
walking 7 0.001904
walking 8 -0.000846
walking 9 0.002122
walking 10 -0.000292
walking 11 0.000504
walking 12 0.000519
running 1 -0.003116
running 2 0.107875
running 3 -0.040614
running 4 0.012076
running 5 -0.019293
running 6 0.002468
running 7 0.000515
running 8 0.000544
running 9 0.000114
running 10 -0.000040
running 11 -0.000521
running 12 0.000656
marching 1 0.101119
marching 2 -0.074737
marching 3 -0.011283
marching 4 0.012179
marching 5 -0.014432
marching 6 0.005324
marching 7 0.008799
marching 8 -0.003484
marching 9 -0.002222
marching 10 0.002579
marching 11 0.001043
marching 12 -0.000236

Table 4.1: Output of the snapshot neurons for the intermediate frame.
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Figure 4.14: Implementation of the 2-NNW method for pose estimation.
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5. The fifth layer of the network is constituted by neurons that consti-
tute, together with the fourth layer, a radial gaussian basis functions
network. This subnetwork is trained in this way: when the input (the
third layer neuron) values i only the i-th output unit must value 1 and
all the others must value 0.

In tab. 4.2 is shown the output of the 2-NNW network for the example we
have considered; we can see that the unit with maximum value is that of the
8th unit: in the next section, that describes motor commands evaluation,
we will interpret this result by stating that the occupated bin of the left
knee angle for the intermediate frame is the 8th. If we compute the 2-NNW
network for the eight body angle we obtain human pose estimation with an
example based method.

4.3 Motor commands evaluation

In this section we describe the evaluation of the motor commands, which is
done comparing the human poses at successive times obtained with the pose
estimation stage. Motor commands are the difference of joint angles between
successive frames. This is justified by the fact that, neglecting low level
control processes, a motor command states the amplitude of the movement
to be performed.

The evaluation is performed computing a network that we call the motor
commands estimation network, which is shown in fig. 4.15: it is composed of
three layers of units.

• Let’s suppose we have estimated the human pose at time n− 1 and at
time n; for simplicity we consider the outputs of the 2-NNW network
only for a single angle, say the left shoulder angle, for the frame n − 1
and n. If we put together these two columns of units we obtain the
first layer of the motor command estimation network, which is therefore
composed of 2x30=60 units. We interpret the index of the maximum
unit among each of the two sets as the occupated bin of the left shoulder
angle respectively at time n − 1 and n.

• All the possible variations of the maximum unit index among the two
sets of thirty units are 2x(30-1)+1=59. Then we define 59 basis func-
tions fn that compute the maximum among each of the two sets of
units and produce binary output in this way:
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Unit Output
1 -0.001117
2 0.002767
3 -0.005401
4 0.009829
5 -0.017074
6 0.031317
7 -0.069171
8 0.988623
9 0.083668

10 -0.036154
11 0.020098
12 -0.012000
13 0.007452
14 -0.004725
15 0.003045
16 -0.001973
17 0.001300
18 -0.000988
19 0.000752
20 -0.000504
21 0.000329
22 -0.000156
23 0.000194
24 -0.000021
25 0.000031
26 -0.000073
27 0.000039
28 0.000172
29 -0.000080
30 0.000015

Table 4.2: output of the snapshot neurons for the intermediate frame.
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Figure 4.15: Motor commands estimation network.
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– f1 is high only if the variation of the maximum unit index values
-29;

– f2 is high only if the variation of the maximum unit index values
-28;

– ...

– f59 is high only if the variation of the maximum unit index values
+29;

• the third layer of the motor commands estimation network is consti-
tuted by a single neuron wich is trained in this way:

– the output values -29 if only the first input is high;

– the output values -28 if only the second input is high;

– ...

– the output values +29 if only the 59th input is high;

If we compute the motor commands estimation network for all the eight
body angles we obtain the motor commands at time n. At time n we obtain
8x(n-1) outputs. This stage of computation reflects the behaviour of neurons
directly connected to the muscle-skeletal system: MEP studies show that
these neurons are active also when a human recognizes an action.
In the next section we will explain how it is possible to recognize an action by
comparing the motor commands evaluated with the known motor commands
of the three actions considered.

4.4 Action recognition

This stage reflects the behaviour of the mirror neurons, that are selective for
the meaning of an action: let’s see how it works.

• Let’s consider the measured angles of the left shoulder in the action
walking from time 1 to time 12; we have evaluated the index of the
occupated bin of each angle; then we can evaluate the 11 variations of
the bin in the time, i.e. 11 motor commands that define the vector ~wls.

• Let’s define the subvectors of dimension n-1 of ~wls: we call them ~wn,i
ls .

• We consider now the n-1 outputs of the motor commands neuron for
the left shoulder in the action to be recognized until time n: they define
the vector ~xls(n)
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• We define the variables

xi(n) = ||~xls(n) − ~wn,i
ls ||. (4.11)

• we define the gaussian function

g(x) = e−
x2

2σ2 ; (4.12)

with σ = 1, and we evaluate the fiducial level

gi
wls

(n) = g(xi(n)). (4.13)

• we average over the eight body angles:

gi
w(n) =

gi
wls

(n) + gi
wle

(n) + gi
wlh

(n) + gi
wlk

(n) + l → r

8
. (4.14)

• we take the maximum over i to evaluate the average fiducial level of
the best matching motor commands in time for the action walking:

gw(n) = max{gi
w(n)}. (4.15)

• finally we evaluate also gr(n) and gm(n) with the same steps, and we
normalize them:

ḡw(n) =
gw(n)

gw(n) + gr(n) + gm(n)
(4.16)

ḡr(n) =
gr(n)

gw(n) + gr(n) + gm(n)
(4.17)

ḡm(n) =
gm(n)

gw(n) + gr(n) + gm(n)
. (4.18)

In this way we have evaluated the fiducial level of an unknown action to be
a known action at any time. An action is classified to be the known action
with maximum fiducial level at the final time.

In figg. 4.16, 4.17, 4.18 are shown the outputs of the model respectively
for the actions walking, running, marching used for training.
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Figure 4.16: Output of the model for the action walking.
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Figure 4.17: Output of the model for the action running.
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Figure 4.18: Output of the model for the action marching.



90 4. The precursor of ROMOACRE



Chapter 5

ROMOACRE

In this chapter we describe ROMOACRE. Let’s briefly recall the structure
of ROMOACRE, which is composed, as its precursor, by the following com-
putational stages:

1. human pose estimation from images of body silhouette;

2. evaluation of the motor commands of the action from human poses
sequence (pragmatic recognition);

3. recognition of the action from motor commands (semantic recognition).

The first difference between ROMOACRE and its precursor is that in the
precursor the actions are real, videos are captured and the poses are mea-
sured; in ROMOACRE, instead, actions are generated, videos are produced
and poses are exported. It is better to generate the poses instead of measure
them because measured poses are affected by errors.

Before we describe the three computational stages we will describe the
framework used to generate actions.

5.1 Action generation with POSER

In order to generate actions we used POSER, a third-party software which
allows the creation of 3D motion of the human body (fig. 5.1). With POSER
is possible to create .pz3 files which contain information about the action,
the point of view of the action, the actor and etc.

There are three ways to generate an action with POSER:

• modify manually the pose of the actor in each frame of the action;

91



92 5. ROMOACRE

Figure 5.1: A snapshot of POSER.
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Figure 5.2: The standard body model of POSER (53 body parts).

• using a walk designer included in POSER which allows creation of
actions similar to walking modifing some kinematic parameters of the
action walking (e.g. head bounce) and other generic parameter (e.g.
run);

• import in POSER a file which contains information about the motion
of the human body. These are the BVH files (biovision hierarchical
files) developed by BIOVISION.

In order to describe how we generate action with POSER we have to
explain the BVH file format. This is described in APPENDIX B.

5.1.1 Action generation

In order to generate actions we performed the following steps:
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• Using the walk designer we generated three actions which we call walk-
ing, running, and marching. In these actions the body model of POSER
is used (fig. 5.2). It is very detailed: it includes rotation angles of the
eyes, of the segments of fingers, and of toes. It models 53 body parts.
The parameters of the model are 53x3+3(hip position)=162. Each ac-
tion is made up of 30 frames with a frame rate of 30 frames per second;

• The BVH files of each action were exported from POSER;

• The BVH files obtained describe actions with a much too complex
body model: in the image processing phase we will work with 128x128
images, and this makes impossible to extract information about fingers
position. Therefore we operate in this way on the BVH files. In the
hierarchy section we remove manually the too much detailed joints
(e.g. fingers segments). In the motion section we set the number of
frames to 15 intead of 30 and the frame time to 0.066666 instead of
0.033333. Then with a shell script and AWK (a tool which operates
on formatted files) we delete the even rows from the motion section in
order to obtain 15 raws and we remove the column corresponding to
body parts removed in the hierarchy section. Finally we fix the position
of the hip to 0 30 0 because we want the only free parameters to be the
rotation angles of the joints. In this way we obtained BVH files with a
body model with 19 body parts, i.e. 57 parameters;

• The BVH files obtained were imported into POSER;

• Three sets of 15 128x128 jpg images of the silhouette of the human
body performing each action was produced, so we produced a total of
45 images. (figg. 5.3, 5.4, 5.5). Consequently the model analyses the
silhouettes instead of natural images; we have shown in the appendix
A how it is possible to transform RGB images into silhouette images.

5.2 The form pathway

In order to perform body pose estimation we need to extract a set of shape
descriptors from the image. This operation is performed by the form path-
way. Now we concentrate on the implementation of the form pathway. In
the previous description of ROMOACRE we implemented the form pathway
taking inspiration from the model of movement recognition of Giese and Pog-
gio [15]. The form pathway was constituted by three computational levels
which we summarize:
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Figure 5.3: Images of the silhouettes in the action walking.
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Figure 5.4: Images of the silhouettes in the action running.
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Figure 5.5: Images of the silhouettes in the action marching.
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1. Local orientation detectors that model simple cells in the primary visual
cortex (V1): we introduced two batteries of Gabor filters for two scales
and for 36 orientations;

2. Position and scale tolerant bar detectors (V2), that were implemented
computing the maximum among 4x4=16 Gabor filters of a given ori-
entation of the scale 1 and 2x2=4 Gabor filters of the same orientation
of the scale 2 (20 Gabor filters in total);

3. Neural network with gaussian radial basis functions in the hidden layer
and with snapshot neurons selective for body shapes in the output layer
(IT, STS, FA).

The limitation of this implementation of the form pathway is that it is only
tolerant to position and scale changes but it is not invariant to such changes.
The only way to obtain such invariance is trough learning, i.e. to train the
network in the third level with stimuli modified in position and scale. But
there is now quantitative physiological evidence [49] that view tuned units
(IT) are invariant to position and scale changes, even though the stimulus
was previously presented at only one scale and position.

In this chapter we present a new implementation of the form pathway
(wich is a part of ROMOACRE) that shows intrinsic invariance to posi-
tion and scale changes and is inspired to a model for object recognition of
Riesenhuber and Poggio [49]. The MATLAB code of the form pathway is in
appendix C.

5.2.1 Structure of the form pathway

The form pathway consists of a hierarchy of five levels:

1. S1 layer models simple cells;

2. C1 layer models complex cells;

3. S2 layer models composite feature cells;

4. C2 layer models complex composite cells;

5. VTU layer models view tuned cells.
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Figure 5.6: Convolution of an image with a Gabor filter.

5.2.2 S1 layer

The binary images 128x128 are densely sampled by two dimensional Gabor
filters, the so called S1 units. We filter the images with filters selective
for four different orientations (00, 450, 900, 1350) and of twelve different
sizes (7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25,
27x27, 29x29). Such filters are sensitive to bars of different orientations,
thus resempling properties of simple cells in striate cortex. Filters of each
size and orientation are centered at each pixel of the input image. The filters
are sum-normalized to zero and square-normalized to 1, and the result of the
convolution of an image patch with a filter is divided by the power (sum of
squares) of the image patch. This yields an S1 activity between -1 and 1.
An example of the convolution of an image with a gabor filter is shown in
fig. 5.6.

5.2.3 C1 layer

In this step filter bands are defined, i.e. groups of S1 filters of a certain size
range. Within each filter band, a pooling range is defined which determines
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Filter band Filter sizes Pooling range
1 7x7, 9x9 4x4
2 11x11, 13x13, 15x15 6x6
3 17x17, 19x19, 21x21 9x9
4 23x23, 25x25, 27x27, 29x29 12x12

Table 5.1: Filter bands and pooling ranges.

the size of the array of neighboring S1 units of all sizes in that filter band
which feed into a C1 unit (corresponding to complex cells of striate cortex).
Only S1 filters with the same preferred orientation feed into a given C1 unit
to preserve feature specificity. In tab. 5.1 filter bands and pooling ranges
are illustrated. The pooling operation that the C1 units use is the “MAX”
operation, i.e. a C1 unit’s activity is determined by the strongest input it
receives. That is, a C1 unit responds best to a bar of the same orientation
as the S1 units that feed into it, but already with an amount of spatial and
size invariance that corresponds to the spatial and filter size pooling ranges
used for a C1 unit in the respective filter band. Furthermore, the receptive
fields of the C1 units overlap by a certain amount, given by the value of the
parameter c1Overlap. We used a value of 2, meaning that half the S1 units
feeding into a C1 unit were also used as input for the adjacent C1 unit in each
direction. Higher values of c1Overlap indicate a greater degree of overlap.

5.2.4 S2 layer

Within each filter band, a square of 2x2=4 adjacent, nonoverlapping C1 units
is then grouped to provide input to a S2 unit. There are 256 different types
of S2 units in each filter band, corresponding to the 44 possible arrangements
of four C1 units of each of four types (i.e. preferred bar orientation). The
S2 unit response function is a Gaussian with mean (1,1,1,1) and standard
deviation 1, i.e. an S2 unit has maximal response (we can interpret this
response as a firing rate) of 1 which is attained if each of its four afferents
fires at a rate of 1 as well. S2 units provide the feature dictionary of our
version of the form pathway; in this case all combination of 2x2 arrangements
of “bars” (more precisely, C1 cells) at four possible orientations.

5.2.5 C2 layer

To finally achieve size invariance over all filter sizes in the four filter bands
and position invariance over the whole visual field, the S2 units are again
pooled by a MAX operation to yield C2 units, designed to correspond to
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neurons in extrastriate visual area V4 or posterior IT (PIT). There are 256
C2 units, each of which pools over all S2 units of one type at all positions
and scales. Consequently, a C2 unit will fire at the same rate as the most
active S2 unit that is selective for the same combination of four bars, but
regardless of its scale or position.

5.2.6 VTU layer

C2 units then again provide input to the viewtuned units (VTUs), named
after their property of responding well to a certain two-dimensional view of
a three-dimensional object, thereby closely resembling the view-tuned cells
found in monkey inferotemporal cortex (IT). The C2 → V TU connections
are so far the only stage of this implementation of the form pathway where
learning occurs. A VTU is tuned to a stimulus by selecting the activities
of the 256 C2 units in response to that stimulus as the center of a 256-
dimensional gaussian response function, yielding a maximal response of 1 for
a VTU in case the C2 activation pattern exactly matches the C2 activation
pattern evoked by the training stimulus. The parameter that specifies the
response properties of a VTU is the standard deviation of its gaussian re-
sponse function. A smaller standard deviation yields more specific tuning
since the resultant Gaussian has a narrower half-maximum width. We set
the standard deviation at 0.375.

5.2.7 Invariance and selectivity

Here we show the results obtained with this implementation of the form
pathway.

In fig. 5.7 is shown the selectivity plot for all stimuli, i.e. the 45 VTU
responses for all the 45 stimuli.

In fig. 5.8 is shown the selectivity plot for one stimulus. We can see that
the level of the distractors is below 0.6.

In fig. 5.9 are shown silhouettes of various size of the same stimulus of
fig. 5.8 and in fig. 5.10 is shown the plot of scale invariance. We can see that
the level of the VTU is above 0.8. This indicates that there is a good balance
between selectivity and scale invariance.

In fig. 5.11 is shown the same stimulus of fig. 5.8 with different location
in the image, and in fig. 5.12 is shown the position invariance plot, i.e. the
responses of the VTU to the stimuli shown in fig. 5.11. We observe that the
response is near to 1, then there is a good balance between selectivity and
position invariance.
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Figure 5.7: Selectivity plot for all stimuli.
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Figure 5.8: Selectivity plot for one stimulus.
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Figure 5.9: Different sizes of the same silhouette.
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Figure 5.10: VTU responses to different scales.
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Figure 5.11: Different position of the silhouette.
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Figure 5.12: VTU responses to different position of the silhouette.
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5.3 From shape descriptors to body pose

In this implementation of ROMOACRE the VTU are used only to test se-
lectivity and invariance of the model. We don’t use them to evaluate the
body pose. Instead we use the C2 units as shape descriptors and we perform
a regression from the space C2 (256 parameters) to the space of body pose
(57 parameters). The regression method used is that of radial basis function
neural network. As training set we used the 45 frames of the three actions
generated. So, for each frame we extracted the C2 parameters and we know
the body pose parameters from the BVH files.

5.4 Motor command evaluation

Now we have to evaluate the known motor commands for each action and
the motor command of the percepted action. We cannot subtract the angles
of two consecutive poses as they are Cardan angles. We can evaluate the
rotation matrix for each joint, i.e. the matrix that rotates the parent joint
to the child joint. The rotation matrices around each axis are:

Rx =





1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)





Ry =





cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)





Rx =





cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1





The rotation order is Y Z X, so the rotation matrix is

R = RxRzRy =




cos(β)cos(γ) sin(γ) sin(β)cos(γ)
−cos(α)cos(β)sin(γ) − sin(α)sin(β) cos(α)cos(γ) −cos(α)sin(β)sin(γ) + sin(α)cos(β)
sin(α)cos(β)sin(γ) − cos(α)sin(β) −sin(α)cos(γ) sin(α)sin(β)sin(γ) + cos(α)cos(β)





Now we can evaluate the motor commands in this way: given two joint
matrices at consecutive times we define a motor command as the matrix that
transforms the previous joint matrix into the next joint matrix (as we already
said we neglect the low level control processes):

Mn−1Jn−1 = Jn
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so

Mn−1 = JnJ−1
n−1

In this way we evaluate the known motor commands using as Cardan angles
the ones in the BVH files. We are also able to extract motor commands of
the perceived angles using Cardan angles produced with the RBF regression.

5.5 Pragmatic recognition

At this point the model is able to imitate the action perceived. The model
will perceive the pose of the first frame. In order to produce the poses of the
second frame it applies the motor command perceived matrix (for a given
joint) to the joint matrix of the first frame:

M1J1 = J2

M2M1J1 = J3

and so on. Now using Hamilton’s quaternions (associating a quaternion to a
rotation) it is possible to extract from the joint matrices the Cardan angles.
Finally, we insert the obtained Cardan angles in a BVH file, which defines
the imitated action.

5.6 Semantic recognition

In order to perform a classification of the action we measure the match be-
tween known motor commands of each known action and perceived motor
commands. There will be a matrix X such that

XMk = Mp

where Mk is the matrix of known motor commands and Mp is the matrix of
perceived motor commands. So

X = MpM
−1
k

Therefore X is a rotation matrix, so it has an eigenvalue 1 to which corre-
sponds an eigenvector that indicates the direction of the rotation axis; the
other two eigenvalues are e±iθ where θ is the rotation angle around the axis.
Then

θ = arccos(
λ2 + λ3

2
)
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Figure 5.13: Output of the model for the action walking.

For a given action and a given joint at time n we will have a vector of
eigenvalues θ1, ..., θn so we can evaluate the fiducial level for a given known
action and a given joint:

gn = e−
| ~θn|2

2σ2

Finally we average the fiducial levels over all joints and we normalize the
fiducial levels of the three actions to 1. Finally, we have successfully tested
the model. In figg. 5.13, 5.14, 5.15 are shown the outputs of the model
respectively for the actions walking, running, marching. In the first plot (in
which the action perceived is walking) we can see that the curve relative to
walking goes to 1 while the others go to 0 as the time increases. A similar
result is shown in the other two plots.
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Figure 5.14: Output of the model for the action running.
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Figure 5.15: Output of the model for the action marching.



Appendix A

Here follow the details of image capture.

• Three videos were captured of a person who was walking, running,
marching. The person was by profile with respect to the video cam-
era. The person was entirely dressed in black and the background was
approximatively white. The videos were captured with the camera of
a video phone LG U8330. The camera resolution is 160x128 pixel and
the frame rate is approximatively 20 frame/s. The video file format
is .3gp.

• The three .3gp files were copied on a computer with Windows XP
operating system and were converted to .avi compressed file format
using ImTOO 3GP Video Converter.

• The three .avi compressed files were uncompressed using AviToMpeg
video converter.

The further steps of image preprocessing are illustrated in figg. 5.16, 5.17.

1. 160x128 RGB images are extracted from the video (fig. 5.16 top-left).

2. RGB images are converted to grayscale images (fig. 5.16 top-right).

3. Negative images are evaluated (fig. 5.16 bottom-left).

4. Negative grayscale images are converted to binary images (fig. 5.16
bottom-right).

5. The borders of the binary images are erased (filled with black, cutting
operation) because we assume that the silhouette is in the central part
of the visual field (fig. 5.17 top-left).

6. The four-connected objects in the images are distinguished and labeled
(fig. 5.17 top-right).
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RGB grayscale

grayscale binary

Figure 5.16: top-left: RGB image; top-right: grayscale image; bottom-left:
negative image; bottom-right: binary image.

cutted labeled

silhouette cropped

Figure 5.17: top-left: cutted image; top-right: labeled image; bottom-left:
silhouette image; bottom-right: cropped image.
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7. Only the object with the maximum area is taken, because it is supposed
to be the silhouette (fig. 5.17 bottom-left).

8. The 160x128 images are cropped to 128x128 images in order to simplify
the form pathway code (fig. 5.17 bottom-right).

So at the end of these steps we got twelve images of human silhouettes
at the temporal distance of about 0.1 s for three actions: walking, running,
marching.
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Appendix B

Here follows a BVH example file and its description.

HIERARCHY

ROOT Hips

{

OFFSET 0.00 0.00 0.00

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT Chest

{

OFFSET 0.00 5.21 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0.00 18.65 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0.00 5.45 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 3.87 0.00

}

}

}

JOINT LeftCollar

{

OFFSET 1.12 16.23 1.87

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftUpArm

{
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OFFSET 5.54 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftLowArm

{

OFFSET 0.00 -11.96 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftHand

{

OFFSET 0.00 -9.93 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -7.00 0.00

}

}

}

}

}

JOINT RightCollar

{

OFFSET -1.12 16.23 1.87

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightUpArm

{

OFFSET -6.07 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightLowArm

{

OFFSET 0.00 -11.82 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightHand

{

OFFSET 0.00 -10.65 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -7.00 0.00

}

}

}

}
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}

}

JOINT LeftUpLeg

{

OFFSET 3.91 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftLowLeg

{

OFFSET 0.00 -18.34 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftFoot

{

OFFSET 0.00 -17.37 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -3.46 0.00

}

}

}

}

JOINT RightUpLeg

{

OFFSET -3.91 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightLowLeg

{

OFFSET 0.00 -17.63 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightFoot

{

OFFSET 0.00 -17.14 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -3.75 0.00

}

}

}

}

}
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MOTION

Frames: 2

Frame Time: 0.033333

8.03 35.01 88.36 -3.41 14.78 -164.35 13.09 40.30 -24.60 7.88

43.80 0.00 -3.61 -41.45 5.82 10.08 0.00 10.21 97.95 -23.53

-2.14 -101.86 -80.77 -98.91 0.69 0.03 0.00 -14.04 0.00 -10.50

-85.52 -13.72 -102.93 61.91 -61.18 65.18 -1.57 0.69 0.02 15.00

22.78 -5.92 14.93 49.99 6.60 0.00 -1.14 0.00 -16.58 -10.51 -3.11

15.38 52.66 -21.80 0.00 -23.95 0.00

7.81 35.10 86.47 -3.78 12.94 -166.97 12.64 42.57 -22.34 7.67

43.61 0.00 -4.23 -41.41 4.89 19.10 0.00 4.16 93.12 -9.69 -9.43

132.67 -81.86 136.80 0.70 0.37 0.00 -8.62 0.00 -21.82 -87.31

-27.57 -100.09 56.17 -61.56 58.72 -1.63 0.95 0.03 13.16 15.44

-3.56 7.97 59.29 4.97 0.00 1.64 0.00 -17.18 -10.02 -3.08 13.56

53.38 -18.07 0.00 -25.93 0.00

Biovision BVH

The BVH file format was originally developed by Biovision, a motion capture
services company, as a way to provide motion capture data to their customers.
The name BVH stands for Biovision hierarchical data. This format mostly
replaced an earlier format that they developed, the BVA format, as a way
to provide skeleton hierarchy information in addition to the motion data.
The BVH format is an excellent all around format, its only drawback is the
lack of a full definition of the basis pose (this format has only translational
offsets of children segments from their parent, no rotational offset is defined),
it also lacks explicit information for how to draw the segments but this has
no bearing on the definition of the motion.

Parsing the file

A BVH file has two parts: a header section which describes the hierarchy
and initial pose of the skeleton and a data section which contains the motion
data. Let’s examine the example BVH file. The start of the header section
begins with the keyword “HIERARCHY”. The following line starts with the
keyword “ROOT” followed by the name of the root segment of the hierarchy
to be defined. After this hierarchy is described it is permissible to define
another hierarchy; this too would be denoted by the keyword “ROOT”. In
principle, a BVH file many contain any number of skeleton hierarchies. In
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practice there is often only one hierarchy.
The BVH format now becomes a recursive definition. Each segment of the

hierarchy contains some data relevant to just that segment then it recursively
defines its children. The line following the “ROOT” keyword contains a single
left curly brace “{“; the brace is lined up with the “ROOT” keyword. The line
following a curly brace is indented by one tab character; these indentations
are mostly to just make the file more human readable. The first piece of
information of a segment is the offset of that segment from its parent; or
in the case of the root object the offset will generally be zero. The offset
is specified by the keyword ”OFFSET” followed by the X,Y and Z offset of
the segment from its parent. The offset information also indicates the length
and direction used for drawing the parent segment. In the BVH format there
isn’t any explicit information about how a segment should be drawn. This
is usually inferred from the offset of the first child defined for the parent.
Typically, only the root and the upper body segments will have multiple
children.

The line following the offset contains the channel header information.
This has the ”CHANNELS” keyword followed by a number indicating the
number of channels and then a list of that many labels indicating the type
of each channel. The BVH file reader must keep track of the channel count
and the types of channels encountered as the hierarchy information is parsed.
Later, when the motion information is parsed, this ordering will be needed
to parse each line of motion data. This format appears to have the flexibility
to allow for segments which have any number of channels which can appear
in any order. However, we have never encountered a BVH file that didn’t
have 6 channels for the root object and 3 channels for every other object in
the hierarchy.

You can see that the order of the rotation channels appears a bit odd: it
goes Z rotation, followed by the X rotation and finally the Y rotation. This
is not a mistake, as the BVH format uses any rotation order (in the BVH
files produced by POSER the order of the written rotation angles is X Z Y,
but the rotation is performed in the inverse order Y Z X).

On the line of data following the channels specification there can be one
of two keywords; either you will find the “JOINT” keyword or you will see
the “End Site” keyword. A joint definition is identical to the root definition
except for the number of channels. This is where the recursion takes place,
the rest of the parsing of the joint information proceeds just like a root. The
end site information ends the recursion and indicates that the current seg-
ment is an end effector (it has no children). The end site definition provides
one more bit of information: it gives the length of the preceding segment
just like the offset of a child defines the length and direction of its parents
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segment.
The end of any joint, end site or root definition is denoted by a right

curly brace “}”. This curly brace is lined up with its corresponding right
curly brace.

One last note about the BVH hierarchy: the world space is defined as a
right handed coordinate system with the Y axis as the world up vector. Thus
you will typically find that BVH skeletal segments are aligned along the Y
axis.

The motion section begins with the keyword “MOTION” on a line by
itself. This line is followed by a line indicating the number of frames, this
line uses the “Frames:” keyword (the colon is part of the keyword) and a
number indicating the number of frames, or motion samples that are in the
file. On the line after the frames definition is the “Frame Time:” definition,
which indicates the sampling rate of the data. In the example BVH file the
sample rate is given as 0.033333, which is 30 frames a second (the usual rate
of sampling in a BVH file).

The rest of the file contains the actual motion data. Each line is one
sample of motion data. The numbers appear in the order of the channel
specifications as the skeleton hierarchy was parsed.
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Here follows the matlab code for S1 layer.

function S1 = evaluateS1 (stim,filter)

global filter_size num_filter_size num_orientation

S1_size=size(stim,1);

S1=zeros(S1_size,S1_size,num_filter_size,num_orientation);

for isize=1:num_filter_size

xy_range=[-(filter_size(isize)-1)/2:+(filter_size(isize)-1)/2];

[x,y]=meshgrid(xy_range);

circle=(x.^2+y.^2 <= ((filter_size(isize)-1)/2)^2);

circled=zeros(filter_size(isize));

circled(:,:)=circle(:,:);

norm=sqrt(imfilter(stim.^2,circled))+eps;

for iorientation=1:num_orientation

S1(:,:,isize,iorientation)=imfilter(stim,filter{isize,iorientation});

S1(:,:,isize,iorientation)=abs(S1(:,:,isize,iorientation))./norm;

end

end
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Here follows the matlab code for C1 layer.

function C1=evaluateC1(S1)

global num_orientation C1_pooling num_band

S1_size=size(S1,1);

num_band=4;

C1=zeros(S1_size,S1_size,num_band,num_orientation);

C1_pooling=[4 6 9 12];

C1_band=[1 2;3 5;6 8;9 12];

C1_band_size=[2 3 3 4];

for iband=1:num_band

C1xy=zeros(S1_size,S1_size,C1_band_size(iband),num_orientation);

for i=1:S1_size

x1=i;

x2=min([S1_size x1+C1_pooling(iband)-1]);

for j=1:S1_size

y1=j;

y2=min([S1_size y1+C1_pooling(iband)-1]);

S1_patch=S1(x1:x2,y1:y2,C1_band(iband,1):C1_band(iband,2),:);

C1xy(i,j,:,:)=max(max(S1_patch,[],2),[],1);

end

end

C1(:,:,iband,:)=max(C1xy,[],3);

end
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Here follows the matlab code for S2 layer.
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Here follows the matlab code for the S2 layer.

function S2 = S2resp_zeropad (C1)

% function S2 = S2resp (C1)

% This function returns S2 responses given C1.

global num_orientation;

global C1_shift;

global S2_shift;

global S2_config;

global S2_target;

global S2_sigma;

S2_buf_size = size(C1,1) - C1_shift*(S2_config-1);

S2_buf = zeros(S2_buf_size,S2_buf_size,num_orientation,S2_config^2);

% Reshape C1 into S2_buf.

for i = 1:S2_buf_size

for j = 1:S2_buf_size

k = 0;

for m = 1:S2_config

for n = 1:S2_config

k = k+1;

ii = i+(m-1)*C1_shift;

jj = j+(n-1)*C1_shift;

S2_buf(i,j,:,k) = C1(ii,jj,:);

end

end

end

end

% Resample S2_buf.

S2_range = [1:S2_shift:S2_buf_size];

S2_tmp = S2_buf(S2_range, S2_range, :,:);

% Get different configurations for S2.

% (256 x 4, for example)

idx = 0;

for l = 1:4

for k = 1:4



APPENDIX 127

for j = 1:4

for i = 1:4

idx = idx+1;

seq(idx,:) = [i j k l];

end

end

end

end

for m = 1:size(seq,1)

for n = 1:size(seq,2)

S2_permute(:,:,m,n) = S2_tmp(:,:,seq(m,n),n);

end

end

S2 = squeeze(sum((S2_permute-S2_target).^2,4));

S2 = exp(-S2/2/S2_sigma^2);
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Here follows the matlab code for C2 layer.

function C2=evaluateC2(S2)

global num_band

C2=zeros(4,256);

for iband=1:num_band

C2(iband,:)=max(max(S2{iband},[],1),[],2);

end

C2=max(C2,[],1);



Conclusions

The purpose of this work has been to develop a neurophysiological plausible
model of action recognition in humans. The developed model has been called
ROMOACRE (a RObotic MOdel for ACtion REcognition).

As background preliminary knowledge we relied on the studies on the
central nervous system, with particular attention to cortical areas involved
in visual and motor tasks, and to the related cortical circuits.

Secondly, we used the studies of the mirror mechanism, which is the neural
mechanism mainly involved in action recognition.

Following that, we studied existing models of action recognition, two of
which were considered of special interest for this work: the model by Giese
and Poggio, and the model by Demiris and Johnson.

Having acquired this preliminary knowledge we were able to build the first
version of our model for action recognition, which is called “The precursor
of ROMOACRE”.

Finally we developed ROMOACRE in its final release and we propose
some tests of the model.

The improvements between the two models which we considered as refer-
ence models and the model we have proposed consist in the relation between
single images recognition and action recognition, and in the inclusion of mir-
ror mechanism in the architecture.

The first difference between the two considered models and ROMOACRE is
the following: in the two considered models action recognition takes place as a
consequence of single images recognition, while in ROMOACRE action recog-
nition does take place through the perception of motor commands, which are
considered as the difference of joint angles between successive frames (a ro-
tation matrix in ROMOACRE). This is justified by the fact that, neglecting
low level control processes, a motor command states the amplitude of the
movement to be performed.

In fact in the model by Giese and Poggio there are, in the third stage of
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form pathway and of motion pathway, snapshot neurons which are selective
for particular silhouette shapes of the human body. So there is a stage (stage
three) previous to the stage which implements action recognition (stage four)
that implements image recognition.

This is also the case in the model by Demiris and Johnson, in which two
states of the demonstrator (current state and target state) are fed as in-
put to the set of inverse models and, moreover, the current state is fed as
input to the set of forward models. So also in this case there is a very sim-
ple stage which implements image recognition previous to action recognition.

The same process happens in the precursor of ROMOACRE. In fact in this
model the human pose estimation is a two steps process. The first step
takes as input the raw data from the images and produces as output a vec-
tor of activities of snapshot neurons which are selective for different human
body silhouettes. The second step performs pose evaluation with the k-NNW
method, taking as weights the output of the first step. Following this, motor
commands, not considered in the reference models, are evaluated and finally
the action is recognized. So, also in this model action recognition is subse-
quent to single images recognition.

Instead the relation between single images recognition and action recogni-
tion in ROMOACRE is different. As its precursor, ROMOACRE is made
up of three computational stages: human pose estimation, motor commands
evaluation and action recognition (the same as its precursor). But the human
pose estimation stage is different from the same stage in the precursor; in
fact the pose estimation stage is divided in two steps: step one takes as in-
put the raw data from the images and produces as output a vector of shape
descriptors of the silhouette. Step two performs pose estimation through
a regression between the space of shape descriptors and the space of body
pose parameters. These two steps do not execute image recognition but they
perform the identification of motor commands. From the sequence of these
two steps and not from the recognition of single images, the semantic action
recognition takes place in ROMOACRE.

A strong point of the final version of our model, which does not select for sin-
gle image recognition, is its agreement with experimental data, in particular
the experiment of Johansson [48]. In this famous experiment ten light points
were attached on the joints of some actors and some movies of actions were
produced where only the light points are visible. The observers were not able
to recognize the single dot frames as a human body but they recognized the



CONCLUSIONS 131

actions watching the full dot movie. This experiment proves that single im-
ages recognition is not a necessary requirement for action recognition. This
result is consistent with the architecture of ROMOACRE.

The second difference between the considered models and ROMOACRE is
the inclusion of the mirror mechanism in the architecture. Giese and Pog-
gio state that the fourth stage of their model corresponds to F5 mirror area
but the mechanism they implement in order to perform action recognition
is not a mirror mechanism; it resembles instead the mechanism of expected
perception. On the other hand Demiris and Johnson state that they built an
architecture for action recognition which includes the mirror mechanism but
in their model only pragmatic recognition is performed while semantic recog-
nition is not. In ROMOACRE and its precursor, instead, the action observed
is recognized as it is reflected in the motor representation of the observer for
the same action, according to what happens in the mirror mechanism.
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