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Introduction 

 
 
Mucopolysaccharidosis type III 
 
 

Mucopolysaccharidosis type III belongs to the group of 

mucopolysaccharidoses, inherited lysosomal diseases due to deficiencies 

in various enzymes involved in the degradation of cellular 

glycosaminoglycans (GAG). The glycosaminoglycans themselves are 

lysosomal degradation products derived by proteolitic removal of the 

protein core of proteoglycans, the macromolecular forms in which these 

molecules exist at the cell surface or in the extracellular matrix (Neufeld 

and Muenzer, 2001). 

Mucopolysaccharidosis type III (Sanfilippo syndrome) is an 

autosomal recessive disorder including four subtypes (Neufeld and 

Muenzer,2001). Each is due to deficiency of one of four lysosomal 

enzymes that participate in the removal of sulfated N-acetylglucosamine 

residues during the degradation of heparan sulfate: heparan N-sulfatase 

(EC 3.10.1.1) for A subtype, α-N-acetylglucosaminidase (EC 3.2.1.50) 

for B subtype, acetyl-CoA: α-glucosaminide acetyltransferase (EC 

2.3.1.3.) for C subtype, and N-acetylglucosamine 6-sulfatase (EC 

3.1.6.14) for D subtype. Heparan sulfate, that consists of glucuronic acid 

and L-iduronic acid residues, some of which are sulfated, alternating with 

α-linked glucosamine residues, is degraded by the action of three 

glycosidases, three, or perhaps four, sulfatases, and one enzyme that is 

not a hydrolase but an acetyltransferase as shown schematically in Fig.1. 

Specifically, iduronate-2-sulfatase removes the sulfate group from the 2-

position of L-iduronic acid, and α-L-iduronidase hydrolyzes terminal α- 
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Fig. 1: Stepwise degradation of heparan sulfate. 
The deficiency diseases corresponding to the numbered reactions are: 1= 
MPS II, Hunter syndrome; 2= MPS I, Hurler, Hurler-Scheie, and Scheie 
syndromes; 3= MPS IIIA, Sanfilippo syndrome type IIIA; 4= MPS IIIC, 
Sanfilippo syndrome type IIIC; 5=MPS IIIB, Sanfilippo syndrome type IIIB; 
6= no deficiency disease yet known; 7= MPS VII, Sly Syndrome; 8=MPS 
IIID, Sanfilippo syndrome type IIID. 
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L-iduronic acid residues present in heparan sulfate. In the next step, 

heparan N-sulfatase is specific for sulfate groups linked to the amino 

group of glucosamine then acetyl-CoA: α-glucosaminide N-

acetyltransferase catalyzes the acetylation of the glucosamine amino 

groups. The N-acetylglucosamine residues that exist in heparan sulfate or 

are generated during lysosomal degradation are removed by α-N-

acetylglucosaminidase. Enzyme for next step is glucuronate 2-sulfatase 

that acts on the rare sulfated glucuronic acid residues, then these residues 

without sulfate group are cleaved by β-glucuronidase. The necessary last 

enzyme is N-acetylglucosamine 6-sulfatase specific for the 6-sulfated N-

acetylglucosamine residues of heparan sulfate. It has been suggested that 

these enzymes function cooperatively in a complex, allowing the product 

of one enzyme to be passed efficiently to the next enzyme in the 

pathway. In the absence of any one of these enzymes, undegraded or 

partially degraded heparan sulfate accumulates in lysosomes and is also 

excreted in urine. The Sanfilippo syndromes are rare disorders (1/75,000) 

that may often remain undiagnosed because of the nonspecific nature of 

early manifestations. Geografic distribution reported for European 

populations is uneven, with the A subtype prevalent in the British Isles, 

the B subtype most common in Southern Europe, and the A, B, and C 

subtypes distributed in a 3:2:1 ratio in the Netherlands. The biochemistry 

of these syndromes has been largely studied, but the relationship between 

molecular mechanisms and clinical signs, particularly behavioral 

disturbances and neurodegeneration are not yet well understood. 

The clinical presentation of MPS III is predominantly 

characterized by severe central nervous system (CNS) degeneration 

resulting in progressive mental retardation. The mechanism by which 
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heparan sulfate storage leads to CNS degeneration is not known 

(Yogalingam and Hopwood, 2001). It has been proposed that some of the 

CNS pathology observed in MPS III is due to the lysosomal 

accumulation of GM2 gangliosides, secondary to heparan sulfate storage. 

Clinically, the neuropsychiatric abnormalities associated with MPS III 

can be divided into three phases. Between the ages of one and four years 

MPS III display development delay alone. The second phase of the 

illness, which starts in severely affected children at the ages of three to 

four years and onwards, is associated with severe behavioral 

disturbances. Affected children are physically quite strong with good 

mobility under the age of 10 years, making the second phase of the 

illness the most difficult to manage. The pattern of behavior at this stage 

of the illness is characterized by frequent and severe temper tantrums, 

hyperactivity, sleep disturbane, aggression, and a rapid diminution in 

attention span. During the quieter third and final stage of the illness 

general physical health and strength deteriorate. Falls are common due to 

loss of balance. Feeding difficulties are also common due to impaired 

chewing and swallowing mechanisms. Increasing spasticity combined 

with degenerative joint disease severely impairs mobility. During this 

final phase seizures are also common. Death occurs in severely affected 

children in the mild to late teenage years usually as a result of respiratory 

infection.  

Like most genetic disorders, the clinical phenotype of MPS III 

varies considerably from severe, to intermediate, to attenuated. In the 

attenuated form of the disease patients may still be independently mobile 

at 20-30 years of age. Unlike in most other MPS cases, the somatic 

features of MPS III, which involve skeletal pathology, 
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hepatosplenomegaly, and degenerative joint disease, are relatively mild 

and observed mainly in older patients. Often the lack of somatic 

involvement combined with the high incidence of false negative results 

in the urinary screening test for heparan sulfate by some methods leads to 

difficulty in diagnosing patients with attenuated MPS III.  

 
 
 
Mucopolysaccharidosis type IIIB 

 

Mucopolysaccharidosis IIIB (MPS IIIB, Sanfilippo syndrome type 

B) is inherited as an autosomal recessive disorder caused by mutations in 

the gene encoding alpha-N-acetylglucosaminidase (NAGLU). 

Epidemiological data on this disorder and a clear and controlled picture 

of clinical progression of disease has not been widely studied, but the 

best estimate of incidence is approximately 1 in every 235,000 live births 

(Meikle et al.,1999). The disease is characterized, clinically, by profound 

neurological deterioration, hyperactivity with aggressive behavior, 

hirsutism, sleep disorders, and mild hepatosplenomegaly. Life span is 

usually until adolescence, but longer survival occurs among the more 

mildly affected patients.   

     NAGLU has been purified from placenta (Weber et al.,1996), 

liver (Sasaki et al.,1991), and urine (Salvatore et al.,1984); its 

biosynthesis and maturation has been studied in skin fibroblasts (von 

Figura et al.,1984) and human carcinoma cells (Di Natale et al.,1985). 

The reported molecular masses ranged from 80 kDa-86 kDa for the 

precursor form, 77 kDa for the intermediate form, and 73 kDa for the 

mature form. The human NAGLU cDNA encodes a 720 aminoacid 

protein that has six potential N-glycosylation sites at asparagine residues 
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261, 272, 435, 503, 523, and 532 (Zhao et al., 1995, Zhao et al., 1996; 

Weber et al., 1996). Recombinant wild type NAGLU has been expressed 

and characterized in CHO-KI cells and shown to be synthesized as an 80 

kDa precursor polypeptide which is successively cleaved to a 78.5 kDa 

intermediate polypeptide and a mature 77 kDa polypeptide (Yogalingam 

et al.,2000). Recombinant NAGLU is secreted from CHO-KI cells as an 

83 kDa precursor and has been used for the generation of polyclonal 

antiserum (Zhao and Neufeld, 2000; Weber et al., 2001). As most of the 

other lysosomal enzymes, the NAGLU enzyme is targeted to lysosomes 

through interaction with the mannose-6-phosphate receptors (MPRs) 

(Sahajian  et al., 1981; Dahms et al.,1989). The phosphorylated 

lysosomal enzymes bind to MPRs that are located in the membrane of the 

clatrine-coated vescicles budding from the trans-Golgi network. These 

vescicles then fuse with other acidic vescicles (such as late endosomes) 

leading, in acid condition, to the dissociation of the lysosomal enzymes 

into the lumen, while the receptors recycle back to the Golgi. Mannose-6-

phosphate receptors are also present on the plasma membrane, where 

they are able to bind circulating or extracellular lysosomal enzymes and 

deliver them to the lysosomes. Two different MPRs have been identified, 

characterized, and their cDNAs cloned. The first MPR to be 

characterized, identified as CI MPR, or MPR 300, or Man-6-P/IGF, is a 

membrane-associated glycoprotein that binds ligand independent of 

divalent cation; by biochemical studies has been confirmed that sequence 

of insulin like growth factor II (IGF-II) receptor corresponds to that of 

the CI-MPR. The second mannose-6-phosphate receptor, cation 

dependent receptor (CD-MPR), or MPR46, is also a membrane-

associated glycoprotein but requires divalent cations for optimal ligand 
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binding. Lysosomal enzymes are also partially secreted in the 

extracellular environment from which thus can be reinternalyzed by 

binding with the cation-independent MPR (CI MPR). In contrast to other 

lysosomal hydrolases, recombinant NAGLU produced in Chinese 

hamster ovary (CHO) cells is not efficiently captured by MPS IIIB cells, 

both in vitro (Zhao and Neufeld, 2000; Weber et al.,2001) and in vivo 

(Yu et al.,2000). 

 The gene locus for NAGLU has been localized to chromosome 

17q21 (Fig.2). The 3’ end of the NAGLU gene resides in the upstream 

flanking region of the 17-β-hydroxysteroid dehydrogenase gene. The 

NAGLU gene, interrupted by five introns, is 8.2 kb long from translation 

start site to polyadenylation site. The first exon is indicated provisionally 

as containing an additional 0.3 kb of untranslated sequence, based on 

primer extension studies that showed an apparent transcription start site 

332 and 321 nucleotides upstream of the initiating methionine. But 

because that region contains neither TATA box nor SP1 sites and is not 

particularly G + C rich, the untranslated region may extend even further 

upstream (Zhao et al., 1996). The knowledge of the gene allowed 

mutation analysis in affected patients. 

MPS IIIB shows extensive molecular heterogeneity with more than 

100 different mutations identified to date including: 73 

nonsense/missense mutations, 18 deletions, 14 insertions, and 2 splicing 

mutations (http://www.hgmd.cf.ac.uk/). All mutations occur once or at 

relatively low frequencies; most of these alterations are reviewed by 

Yogalingam and Hopwood (2001; Tab.1). Of the eight nonsense 

mutations all are associated with severe phenotypes; among these 

mutations, R297X occurred at the highest frequency (11.5%) in MPS  
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Fig. 2: Location of MPS IIIB mutations in the NAGLU gene. 
Exons are represented by boxes and exon numbers are indicated in roman numerals. 
The position of missense and nonsense mutations are shown above the gene. Other 
mutations (insertions, deletions, and a splice site mutation) are show below the gene.  
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Table 1.  Mutations in the NAGLU gene causing MPS IIIB 
(from Yogalingam and Hopwood, 2001) 
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Table 1. Continued. 



 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Continued 
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IIIB patients. This mutation has been engineered into the wild type 

NAGLU cDNA and expressed in CHO-KI cells: only a 34 kDa truncated 

polypeptide with a rapid degradation was observed. Also the E336X 

nonsense mutation has been expressed in COS cells: it was detected as 

inactive, truncated polypeptides which remained stable over a 24 h period 

(Tessitore et al.,2000). Yogalingam and Hopwood reported also 50 

missense mutations in the NAGLU gene, most of these are unique 

mutations. However, some of them resulted to be recurrent: Y140C has 

been detected in eight out of 148 (5.4%) reported MPS IIIB allels. 

R674H, R643C, R565W, and P521L occur in MPS IIIB patients at 

frequencies of 4.7%, 3.4%, 3.4%, and 4.1% respectively. As expected, 

the mutations which are reported to be associated with attenuated clinical 

phenotypes and therefore to maintain some residual activity, are all 

missense mutations. Some of these were deeply studied: for example, 

F48L has been engineered into the wild type NAGLU cDNA and 

expressed (Yogalingam et al.,2000). When over-expressed in MPS IIIB 

skin fibroblast via retroviral mediated gene transfer, F48L NAGLU 

activity corresponded to 3.8% of NAGLU activity levels found in wild 

type NAGLU transduced MPS IIIB fibroblasts. Concerning splicing 

mutations, IVS3+1G>A, for example, disrupts the consensus sequence 

between exon 3 and intron 3 (Tessitore et al.,2000). For this alteration the 

deletion of both exons 2 and 3, which disrupts the reading frame, resulted 

in no detectable NAGLU protein when expressed in COS cells. Sixteen 

deletions and eleven insertions have also been identified in the NAGLU 

gene, these mutations are associated with severe Sanfilippo phenotypes 

presumably due to increased instability and/or lack of residual activity. 

Many of these alterations cause a change in the reading frame resulting in 



 13

the addition of altered aminoacid and/or premature chain termination. 

Interpretation of the clinical phenotype resulting from different mutations 

is very difficult for a disorder where the predominant feature is CNS 

degeneration; the prediction of genotype-phenotype correlation is very 

difficult for MPS IIIB as for all the MPS. In addition, this correlation for 

MPS IIIB is also complicated by the presence of polymorphisms such as 

the missense change G737R (Yogalingam and Hopwood, 2001). 

 

 

Animal models for MPS III  

  

Animal models represent a powerful tool to assess the biological 

pathways and pathological mechanism of a disease condition. However, 

the limitation for the use of naturally occurring large animal models has 

been their limited availability, difficult and costly maintenance, and in 

some cases the lack of resemblance to the corresponding human disease. 

In contrast, the laboratory mouse offers multiple advantages as an 

experimental system. Mice are small and relatively inexpensive to 

maintain, have short life span and gestation period, and produce abundant 

offspring, allowing the timely generation of large experimental groups 

for analysis. In addition, creation of inbreed strains of mice is feasible 

eliminating the variability of a spurious genetic background, thereby 

facilitating the interpretation of the results. In general, the mouse shares 

biochemical pathways and developmental stages with larger mammals 

including humans, and its genomic organization is relatevely conserved 

compared to humans (Sabatini et al 2001). Because of this similarity, the 

generation of mutant mouse strains by gene targeting technology in 
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embryonic stem (ES) cells has contributed greatly to the understanding of 

biochemical pathways, protein function and pathological mechanism of 

disorder observed in humans (Sabatini et al, 2001). 

To date, animal models have been reported for all forms of MPS 

III except type IIIC; a caprine form of Sanfilippo type D result from a 

nonsense mutation and consequent deficiency of lysosomal N-

acetylglucosamine 6-sulfatase (G6S) activity and are associated with 

tissue storage and urinary excretion of heparan sulfate. Using special 

stains, immunohistochemistry, and electron microscopy, secondary 

lysosomes filled with GAG were identified in most tissue from affected 

goats. Primary neuronal accumulation of heparan sulfate and secondary 

storage of gangliosides were observed in the CNS of these animals. In 

addition, morphological changes in the CNS such as neuritic expansions 

and other neuronal alterations that may have functional significance were 

also seen. The spectrum of lesions was greater in the severe form of 

caprine MPS IIID and included mild cartilaginous bony, and corneal 

lesions. The most pronounced neurological deficits in the severe form 

were partly related to a greater extent of CNS dysmyelination (Jones et 

al., 1998).  

Two cases of MPS IIIA have been reported in adult wire-haired 

Dachshund littermates (Fischer et al.,1998). Clinical and pathologic 

features paralleled the human disorder; both dogs exhibited progressive 

neurologic disease without apparent somatic involvement. Pelvic limb 

ataxia was observed when the dogs were 3 years old and progressed 

gradually within 1-2 years to severe generalized spinocerebellar ataxia. 

Mentation remained normal throughout the course of the disease. A 

mucopolysaccharide storage disorder was indicated in both dogs by 
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positive toluidine blue spot tests of urine. The diagnosis of MPS IIIA was 

confirmed by documentation of urinary excretion and tissue 

accumulation of heparan sulfate and decreased sulfamidase activity in 

fibroblasts and hepatic tissue. Mild cerebral cortical atrophy and dilation 

of the lateral ventricles were grossly evident in both dogs. Light 

microscopically, fibroblasts, hepatocytes, and renal tubular epithelial 

cells were vacuolated. Within the nervous system, cerebellar Purkinje 

cells, neurons of brainstem nuclei, ventral and dorsal horns,and dorsal 

ganglia were distended with brightly autofluorescent. Neuronal storage 

appeared as membranous concentric whorls, lamellated parallel 

membrane stacks, or electron-dense lipid globules. (Fischer et al., 1998). 

In the 1999 was described a spontaneous mouse mutant that replicates 

many of the features found in MPS IIIA children (Bhaumik et al.,1999). 

Brain sections revealed neurons with distended lysosomes filled with 

membranous and floccular materials with some having a classical zebra 

body morphology. Affected mice usually died at 7-10 months of age 

exhibiting a distended bladder and hepatosplenomegaly. Enzyme assay of 

liver and brain extracts revealed a dramatic reduction in sulfamidase 

activity. Other lysosomal hydrolases that degrade heparan sulfate or other 

glycans and glycosaminoglycans were either normal, or were somewhat 

increased in specific activity.  

To date, three animal models have been described for MPS IIIB: 

two spontaneous models in the emu and in the dog and the knockout 

mouse.  

In Dromaius novaehollandiae (emu), was described a progressive 

neurologic disease characterized by NAGLU deficiency and heparan 

accumulation (Giger et al.,1997). In the first months of life, affected birds 
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develop ataxia, tremor, circling, lethargy, and inappetence; death ensues 

by 6 months of age. Both parents of affected birds had intermediate 

levels of NAGLU activity, thus suggesting an autosomal recessive mode 

of inheritance. Liver had elevated levels of enzymes involved in 

glycosaminoglycan metabolism, while other lysosomal enzymes were 

within the normal range. These findings indicated that affected emus had 

an avian lysosomal disease homologous to the human disorder Sanfilippo 

syndrome type B. To define the molecular basis, the sequences of the 

normal emu NAGLU cDNA and gene were determined by PCR based 

approaches using primers for highly conserved regions of evolutionarily 

distant NAGLU homologues. The exon-intron structure of the emu 

NAGLU gene is similar to that of mouse and human; however, the 

introns are much shorter than those in the human and mouse NAGLU 

genes. The emu NAGLU gene appears to be highly polymorphic, with 19 

variations found in the coding region alone. 

Between animals models for MPS IIIB, the canine model is unique 

in that it is a large mammalian model with a clear and overt neurological 

phenotype (Ellinwood et al.,2003). Clinically the canine model is 

characterized as an early adult onset cerebellar ataxia. The disease was 

initially described in the Schipperke breed, where onset of clinical signs 

were seen at 18-24 months of age. Disease progression lasted from 1-2 

years, upon which owners elected eutanasia. Biochemically and 

histopathologically, the model is characterized by lysosomal distention 

and granules or vacuoles in neuron, microglia, and perithelial cells 

throughout the CNS. There is almost a complete loss of Purkinje cells in 

the terminal stages of the canine model. The storage of GM2 ganglioside 

is apparent as early as a few months of age. Storage in peripheral tissues 
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is most severe in the liver and kidney, where distal convoluted tubules 

are most affected. Storage in other tissues is confined primarily to 

resident macrophages. 

The mouse model of MPS IIIB has been produced by the 

disruption of exon 6 in the murine NAGLU gene (Li et al., 1999). After 

enzymatic digestion a 852-bp fragment within exon 6 was replaced by a 

cassette containing the neor gene under control of the phosphoglycerate 

kinase promoter. Mutant mice are healthy and fertile while young and 

could survive for 8-12 months. They are totally deficient in α-N-

acetylglucosaminidase and have massive accumulation of heparan sulfate 

in liver and kidney as well as secondary changes in activity of several 

other lysosomal enzymes in liver and brain and elevation of gangliosides 

GM2 and G M3 in brain. Vacuolation was seen in many cells, including 

macrophages, epithelial cells, and neurons, and became more prominent 

with age. Although most vacuoles contained finely granular material 

characteristic of glycosaminoglycan accumulation, large pleiomorphic 

inclusions were seen in some neurons and pericytes in the brain. The 

hyperactivity that is characteristic of affected children was not observed 

even in younger mice. No therapy is available for the affected MPS IIIB 

patients and the rarity of this disorder makes the use of this model critical 

for studies of pathogenesis and development of therapies particularly 

enzyme replacement therapy (Yu et al.,2000) and gene therapy (Fu et al., 

2002; Cressant et al., 2004; Di Natale et al.,2005). 
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Pathogenesis studies on MPS IIIB 

 

The pathogenesis of MPS IIIB is not well understood, as for the 

other lysosomal diseases; however, few studies have been performed on 

the mouse model (Li et al.,2002; Ohmi et al.,2003). The first report (Li et 

al.,2002) showed the effects of possible heparan sulfate accumulation on 

neuroplasticity that are within the spectrum of action of fibroblast growth 

factor and their receptors (Li et al., 2002). Heparan sulfate has functions 

important for development and plasticity for neural cells (Ruoslahti and 

Yamaguchi,1991; Brickman et al.,1998), is known to be a low-affinity 

receptor for members of the FGF family, such as FGF-1 and FGF-2 

(Yayon et al.,1991; Nurcombe et al.,1993; Rahmoune et al.,1998); one of 

the key functions of the FGF-2/HS complex is to regulate astrocyte 

proliferation and function (Gomez-Pinilla et al., 1995). Astrocytes have a 

critical role in maintaining brain homeostasis (Ridet et al., 1997), 

particularly after insult or disease (Hatten et al., 1991; Acarin et al., 

2000). For example, astrocytes maintain ionic equilibrium and detoxify 

the extracellular environment (Rothstein et al., 1996). They also produce 

cytokines and growth factors, including FGFs. Astrocyte malfunction 

during periods of physiological demand, such as after injury or disease, 

may compromise neuronal vitality and brain function. Autopsy studies on 

brains of MPS III patients have shown an increased number of reactive 

astrocytes (Tamagawa et al., 1985; Kurihara et al., 1996). There was an 

overall increase in the relative density of reactive astrocytes in the 

affected mice brains, but these astrocytes showed a reduced capacity to 

react to injury. The progressive increase of reactive astrocytes over time 

suggests that a possible chronic accumulation of HS may be responsible 
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for astrocyte activation/proliferation. This finding parallels the 

observations of above-normal  reactive astrocyte density in MPS IIIB 

patients. In a subsequent study, the involvement of microglia in brain 

pathology of the affected MPS IIIB mice was evidenced (Ohmi et 

al.,2003). Microglia have been implicated in the pathogenesis of a 

number of neurodegenerative conditions, including Alzheimer’s disease, 

HIV dementia, and multiple sclerosis. Microglia cells are ubiquitously 

distributed in the central nervous system and comprise up to 20% of the 

total glial cell population in brain. These cells are related to monocytes 

and macrophages (Lee et al.,2001). As the primary immune effector cells 

in the central nervous system, microglia cells migrate to the site of tissue 

injury or inflammation, where they respond to invading pathogens or 

other inflammatory signals. Like monocytes/macrophages, they also 

secrete inflammatory cytokines and toxic mediators, which may amplify 

the inflammatory responses (Minghetti et al.,1998; Gonzalez-Scarano et 

al.,1999). Microglia cells and astrocytes underwent apoptosis upon 

inflammatory activation, and nitric oxide acted as an autocrine cytotoxic 

mediator in this process (Lee et al., 2001; Suk et al., 2001). Activation of 

glial cells may be intended to protect neurons at first. More frequently, 

however, activation of glia cells and inflammatory products derived from 

them have been implicated in neuronal destruction commonly observed 

in various neurodegenerative diseases (Gonzalez-Scarano et al., 1999). 

Among the various cytotoxic factors released by activated microglia, 

reactive oxygen species (ROS) such as superoxide free radical appear to 

play a key role in the inflammation-mediated oxidative damage to 

neurons. Growing evidence suggests that the generation of oxidants does 

not result simply from an accidental disruption of aerobic metabolism, 
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but rather from an active process crucial for non-specific immune 

defenses of the brain. While essential for survival, these processes may 

be inappropriately activated to cause neurodegeneration. Oxidants can be 

produced by essentially all of the cells in the brain. For example, 

NADPH oxidase, the super-oxide-generating enzyme in phagocytes, is 

expresses not only by microglia but also by astrocytes and neurons 

(Hischiropoulos  et al.,2003).   

Multiple lines of evidence demonstrate that oxidative stress is an 

early event in pathologies as Alzheimer’s disease (AD) (Zhu et al., 

2004). Over the past decade, modification to virtually all classes of 

biomacromolecules indicative of oxidative stress has been described in 

association with susceptibile neurons of AD; (1) DNA and RNA 

oxidation, DNA repair deficiency is also noted in AD since higher levels 

of DNA breaks, DNA nicking and fragmentation are observed in AD 

patients (Mecocci et al.,1994); (2) Oxidative modification of proteins, 

some specifically oxidized proteins have recently been identified by 

proteomics and it is notable that many are either enzymes that are related 

to ATP generation or enzyme involved in glycolysis. Therefore, 

oxidative modification may lead to metabolic impairment in AD, 

moreover crosslinking of proteins, by oxidative processes, may lead to 

the resistance of the lesions to intracellular and extracellular removal 

even though they are extensively ubiquitinated and this resistance of 

neurofibrillary tangles to proteolysis might play an important role in the 

progression of AD; (3) Lipid peroxidation that lead to eventual cell 

death, and (4) Modification to sugars that is marked by increased 

glycation and glycoxidation. 
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An excellent example to discuss the significance of oxidative 

processes as a central but not an initiating event for the development of 

clinical disease is Parkinson disease, where the dopaminergic neurons in 

the substantia nigra are selectively injured. Genetic factors or 

environmental toxins that epidemiological studies have shown to be risk 

factors are capable of generating reactive intermediates, directly 

alkylating reduced thiols inhibiting complex I of the mitochondrial 

transport chain, inducing α-synuclein aggregation, and activating 

microglia. Possibly, they may also alter iron or other divalent metal 

homeostasis as well as dopamine metabolism, permitting an increase in 

non-vescicle associated dopamine levels. All these events permit 

formation of reactive oxygen and nitrogen intermediates that propagate 

cellular dysfunction, leading to cell death (Hischiropoulos  et al.,2003).   
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Aim of the research project 

 

During the first two years of the Ph.D. course (2003-2004) I 

collaborated to a study on the murine model of MPS IIIB, based on gene 

therapy mediated by a third generation lentiviral-NAGLU vector 

showing its terapeutic potential and limits (Di Natale et al.,2005). 

This thesis refers to the experimental work performed in the last 

two years of the Ph.D. course (2005-2006). I studied MPS IIIB-specific 

gene expression profiles in brain and cerebellum of affected mice by 

cDNA microarray analysis and Real Time PCR, trying to understand the 

pathogenesis of this devasting disease. 
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Experimental work 

Materials and methods 

Animals 

       The mouse model of MPS IIIB was created by targeted disruption of 

exon 6 of the corresponding mouse NAGLU gene Li et al. (1999). The 

biochemical phenotype of mutant mice is generally similar to that of the 

human disorder, the only exception being that affected mice do not show 

increased urinary excretion of heparan sulfate. The mice were genotyped 

by polymerase reaction analysis performed on DNA sample extracted 

from tail clipping exactly 1 month after birth. PCRs  were performed in a 

total volume of 100 μl containing 500ng of template DNA extracted from 

tail clipping, 1xPCR buffer from PerkinElmer, 0.2 μM of each dNTP, 2.5 

units of Taq polymerase and two sets of the following primers (0.5 μM 

each): (i) MXXDe1F, sense primer starting at position 6773 of the 

murine NAGLU gene, GenBank® accession number AF003255 (5’-

GCTCCTACTCAGAAGTGTCTACAACTGCTC-3’), and MXXDelR, 

antisense primer starting at position 7279 (5’-

GAGGCTGGTAGTAATCAGCCACCAGTCCTG-3’). Amplification 

yielded a 537 bp fragment in the presence of the normal allele, no band in 

the presence of the mutant allele; (ii)  Neo1F, sense primer starting at 

position 202 in the Neo ORF (5’-

GTGGCTGGCCACGACGGGCGTTCCTTGCG-3’), and M7R, 

antisense primer starting at position 7454 of the murine NAGLU gene 

(5’-GAGGAAGATCTTCTTGGAGAGGTCCACGGTG-3’). 

Amplification  yielded no band in the presence of the normal allele but 

yielded a 1200 bp band in the presence of the mutant allele. Cycling 
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conditions were the following: 96°C for 5 min, 35 cycles at 95°C for 45 

s, 64°C for 35 s and 72°C for 2 min.  

 

Antibodies, chemicals and statistical analysis 

The primary rabbit polyclonal antibody against Caspase-11 was 

from Oncogene research products; primary polyclonal goat anti-gp91phox 

and rabbit anti-BDNF antibodies were from Santa Cruz Biotechnology. 

The biotinylated anti-rabbit secondary antibody for 

immunohistochemistry was obtained from Vector Laboratories 

(Burlingame, CA U.S.A.); the secondary peroxidase conjugate donkey 

anti-goat and anti-rabbit peroxidase conjugate were purchased from 

Santa Cruz Biotechnology (CA, U.S.A.) and from Sigma (St. Louis, MO, 

U.S.A.), respectively. For immunostaining the ABC Elite Vector Staining 

kit from Vector Laboratories was used. All chemicals were from Sigma. 

All the statistical analyses given in this paper were performed using 

ANOVA.  

 

Isolation of RNA  

MPS IIIB mice and age-matched normal animals, age 1, 3 and 7 

months at the time of sacrifice, were killed with CO2 and the brain and 

cerebellum were removed, subdivided into parts and immediately frozen 

in liquid nitrogen; total RNA was isolated from 50 mg of tissue using the 

RNeasy Lipid Tissue (Qiagen, MD U.S.A.) following the manufacturer’s 

protocol. The concentration and purity of the RNA preparations were 

determined by measuring the absorbance at 260, 280 and 230 nm by 

spectrophotometer. Equal amounts of RNAs from at least three mice 

(normal or MPS IIIB) were then pooled before generating the cDNAs to 
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be used in the following experiments. 

Microarray analysis  

The GEArrayTM Q series cDNA expression array filters (MM-002, 

MM-005, MM-010, MM-015) were used and hybridisation procedures 

were as described by the manufacturer. Briefly, the biotin dUTP-labeled 

cDNA probes were specifically generated using total RNA (5 μg per 

filter) from the 7-month-old mice and the AmpoLabeling-LPR kit. The 

array filters were then hybridized with biotin-labeled probes at 60° 

overnight. The membranes were then washed twice with 2 x saline 

sodium citrate buffer (SSC)/1% sodium dodecyl sulfate (SDS) and then 

twice with 0.1 x SSC/0.5%SDS at 60° for 15 min each. 

Chemilumilescent detection steps were performed by subsequent 

incubation of the filters with alkaline phosphate-conjugate streptavidine 

and CDP-Star substrate. All chemicals were from SuperArray Inc (MD, 

U.S.A.). All cDNA microarray experiments were performed twice and 

the data were analysed using the free software Scanalyze from Michael 

Eisen followed by the SuperArray GEArray Analyzer software.  

 

Immunostaining  

Before dissecting the brain, wild type and homozygous mutant 

mice at 7 months of age were anesthetised then perfused through the left 

ventricle with PBS pH 7.4 followed by 10% neutral buffered formalin 

solution; the brain was removed and fixed in formalin overnight at 4°C 

and embedded in paraffin. Sections were preincubated sequentially for 20 

min with proteinase K 5 μg/ml, 5 min with 3% H2O2, and 30 min with 

BSA 1%; they were then reacted overnight with rabbit anti-caspase11 

antibody (2μg/ml). For visualization by light microscopy, the sections 
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were reacted for 1 hour with secondary antibody conjugate to biotin 

(1:100). Colour was developed using diaminobenzidine (DAB) as 

chromogen (Vector Laboratories). To assess the number of Caspase 11 

positive cells in sections, an area of 0.6 mm2 was counted; at least twelve 

slices, six fields each, were stained and counted for each mouse and the 

mean is given for the number of positive cells per square millimeter.  

 

In situ apoptosis detection  

The terminal deoxynucleotidyl transferase–mediated dUTP nick 

end labeling (Tunel) method was used for detection of apoptotic cells 

using kit S7101 Chemicon (Temecula, CA), according to the 

manufacturer’s instructions. Sections from brains of MPS IIIB and 

normal mice at 7 months of age were deparaffinised, rehydrated, and 

pretreated with proteinase K 20 μg/ml in PBS for 15 min. After blocking 

for endogenous peroxidase activity with 3% H2O2 in PBS, the sections 

were treated with equilibration buffer and incubated with terminal 

deoxynucleotidyl transferase enzyme at 37° for 1 h. The sections were 

then incubated with anti-digoxygenin conjugate to peroxidase and 

reacted with diaminobenzidine. The sections were counterstained with 

methyl green. Tunel-positive cells were counted in areas of 0.6 mm2;  at 

least twelve slices, six fields each, were counted for each mouse and the 

mean is given for the number of positive cells per square millimeter.  

 

RT-PCR  

The cDNA was synthesized using 6 μg total RNA in the presence 

of random primers, dNTPs, RNAse Inhibitor and Reverse Transcriptase 

(all from Promega, Madison WI U.S.A.) following the manufacturer’s 
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protocol. The PCR was performed in 25 μl reaction solution containing 

12.5 μl RT2 Real-Time SYBR Green/ Fluorescein PCR Master Mix 

(from SuperArray Inc.), 1.0 μl of template cDNA and 0.2 μM PCR 

Primer set. The PCR conditions were as follows: 95°C 15 min,40 cycles 

of 95°C for 30 s, 55°C for 30s, and 72°C for 5 min. Relative expression 

of mRNA for the target genes was performed by the comparative CT 

(ΔΔCT) method using the Abl gene as the control. A validation 

experiment was performed for each gene of interest and its control to 

determine the conditions for optimal concentration of primers and 

probes. The normalized CT (ΔCT) was obtained by subtraction of the CT 

for Abl from the CT for gene of interest. The difference between the ΔCT 

for mutant and control samples gave rise to the ΔΔCT value that was used 

for the calculation of the relative mRNA expression using the formula 2-

ΔΔCT
.  The relative mRNA levels were expressed as fold change in MPS 

IIIB mice over control mice. The following primer pairs were used for 

each gene of interest: Abl (NM_009564), forward primer: 5’-

GGTATGAAGGG AGGGTGTACCA-3’, reverse primer: 5’-

GTGAACTAACTCAGCCAGAGTGTTGA-3’; Cbln1, forward primer: 

5’-TGCACACTCCCGTTTCCAA-3’, reverse primer: 5’-

TGGACGTGGGTAAGGAACCA-3’; BDNF, forward primer: 5’-

ACACTGAGTCTCC AGGACAGCA-3’, reverse primer: 5’-

ATGCAACCGAAGTATGAAATAACCA-3'; Ccl3, forward primer: 5’-

TGACACTCTGCAACCAAGTCTTC-3’, reverse primer: 5’-

AACGATGAATTG GCGTGGAA-3’; Casp11, forward primer: 5’-

CTGATGCTGTCAAGCTGAGCC-3’, reverse primer: 5’-

TGACAAGAGCAAGCATGTTTCC-3’; gp91phox (NM_007807), 

forward primer: 5’-GGAGTTCCAAG ATGCCTGGA-3’, reverse 
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primer: 5’-CCACTAACATCACCACCTCATAGC-3’; p47phox 

(NM_010876), forward primer: 5’-CCCAACTACGCAGGTGAACC-3’, 

reverse primer: 5’-AGCCGGTGATATCCCCTTTC-3’; p67phox 

(NM_010877), forward primer: 5’-GGCCTTCACCAAAA GCATCA-3’, 

reverse primer: 5’-GTCTATCAGCTGGTTCCCACG-3’; iNOS 

(NM_010927), forward primer: 5’-GAGCAACTACTGCTGGTGGTGA-

3’, reverse primer: 5’-GAGGGTACATGCTGGAGCCA-3’. All the 

primers were designed by Primer Express software (Applied Biosystems, 

CA, U.S.A.).  

 

Western blot analysis  

The presence of gp91phox and BDNF in the brain and cerebellum of 

MPS IIIB and normal mice at 7 months of age was assessed by Western 

blot analysis. Fifty mg of tissues from three mice (normal or MPS IIIB) 

were pooled before homogenization. Total protein extracts were obtained 

by homogenization in Ripa lysis buffer with a mixture of protease 

inhibitors (both from Santa Cruz Biotechnology); protein concentration 

was measured and 50 μg of protein of each sample was electrophoresed 

by SDS-PAGE (7.5% gel for gp91phox and 12.5% gel for BDNF). 

Proteins were then blotted on nitrocellulose membrane; the blocked 

membranes were incubated with antibodies against gp91phox (goat,1:200) 

or BDNF (rabbit,1:500). After extensive washing with TBST the 

membranes were incubated with horseradish peroxidase-conjugate anti-

goat or anti-rabbit secondary antibodies, and the bound antibodies were 

detected by Western blot luminol reagent (Santa Cruz Biotechnology).  
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Analysis of NADPH Oxidase Activity  

NADPH oxidase activity was measured using a 

chemiluminescence detection system in homogenates prepared in 

phosphate buffer 100 mM, pH 7, by pooling brains or cerebella from 

MPS IIIB or normal 7-month-old mice (n=3). In these assays, 150 μg of 

proteins were added to a mix containing 50μM lucigenin, 50 mM 

phosfate buffer, 1mM EGTA, 150 mM sucrose, 0.1 mM NADH, 0.1 mM 

NADPH. Reactions were started by adding the proteins, and the 

production of superoxide ion was measured every 10 sec for 15 min by 

monitoring chemiluminescence using a luminometer Turner Biosystems 

20/20n. The data, collected as relative luminescense units, were plotted 

versus time, and the area under the curve was used for analysis.  
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Results 
 
Gene expression profile in the brain at 7 months from birth: 

microarray analysis 

 

GEArrayTM Q series cDNA expression filters were used as a first 

step for the analysis of gene expression. These membrane filters 

contained sequence verified gene fragments that used regions of cDNA 

selected to minimize potential cross-reactivity with related genes and for 

overall similarity in hybridization conditions. On the filter, each gene is 

reproduced in quadruplicate and controls (two house-keeping genes, b-

actin and GAPDH, one negative control, two positive controls and 

blanks) are spotted across the base of the membrane, allowing a rapid 

assessment of the evenness of hybridization and straightforward 

quantitation and normalization on the same array (Fig. 3). The brains 

were collected from 7-month-old MPS IIIB and age-matched normal 

mice and RNA was isolated for the microarray analysis. A total of 355 

genes present on 4 different membranes were assessed; the genes chosen 

were classified into four categories: genes related to apoptosis, genes for 

neurotrophins and receptors, genes for extracellular matrix (ECM) 

molecules and genes for chemokines, cytokines and their receptors. Of 

the genes tested, the expression of 274 transcripts was revealed in the 7-

month-old mice, representing about 77% of all the genes examined. Of 

the expressed genes only those with a fold change ≥ 1.5 were considered 

significantly altered and therefore reported in Tab. 2. The microarray 

analysis showed that for the MPS IIIB mice 56 of the 274 genes 

examined were altered (i.e. approximately 20%) and the number of the 

upregulated transcripts (57%)  was            comparable to that     of    the  
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Fig. 3: Image profile of a representative cDNA filter array 
Brains from 7-months-old MPS IIIB (-/-) or normal mice (wt) 
(n=3) were dissected and the total RNA extraction was 
performed. Equal amounts of RNA from each mouse were then 
pooled before generating the cDNAs. cDNAs were used for 
hybridization to the neurotrophins and receptors microarray as 
described under materials and methods. Genes expressed in the 
affected brain (right panel) were identified as a specific 
hybridization signal and compared to the normal control(left 
panel). In addition to the test genes, each filter contained one 
negative control (PUC 18), two positive controls (Ppia and 
Rpl13a) and two house-keeping genes (β-actin and GAPDH) 
for normalization. Circles in the normal control delimit spots 
corresponding to representative genes found downregulated (B, 
Bdnf) or upregulated (C, Cbln1) in the 7-months -old MPS IIIB 
mice (arrows).    
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downregulated genes (43%). All but one the chemokines that were 

altered belonged to the group of transcripts present at a significantly 

higher level in the brain of the MPS IIIB mice than in the brain of the 

control mice, the only exception being the macrophage migration 

inhibitor factor (Mif), which presented a 0.66-fold change in its 

expression (Tab. 2). In these mice, most of the altered genes among the 

neurotrophins and their receptors were also upregulated, representing 

77% of the members of this group. Conversely, all 17 ECM and adhesion 

molecules that were altered at 7 months from birth were expressed at 

significantly lower levels than in the control mice, with the exception of 

Col18A1 and CD44 (Tab. 2). Finally, a more balanced profile was 

exhibited by the apoptosis-related genes, 45% being upregulated and 

55% showing a decreased expression in the MPS IIIB animals (Tab. 2). 

 

Validation of the array analysis: real time RT PCR analysis on 

deregulated genes from the brain and cerebellum at 1, 3 and 7 months 

from birth  

 

To confirm the gene expression pattern, some genes were selected 

and their expression analysed by real time RT-PCR on RNA extracts 

from 1-, 3- and 7-month-old mice. The genes, chosen on the basis of the 

results obtained from the array analysis, were: Bdnf and Cbln1, the genes 

most differentially expressed among the neurotrophin and receptor-

related genes; Ccl3, the transcript with the highest expression among all 

the genes examined; Casp11 (Casp4) was chosen because it was recently 

reported to be an essential molecule in an apoptotic pathway of activated 

astrocytes (Suk et al, 2002). 
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Table 2. Array analysis: genes found deregulated in brains from 7 months-old 
MPS IIIB mice 
 

 
Genebank 

accession n. 

 
 

Gene symbol 
 

 
 

Gene name 

 
Fold 

chane 
 

Chemokines, cytokines and receptors 
 

NM_011337 Ccl3 (MIP-1 alpha) chemokine (C-C motif) ligand 3  5.77 
NM_013652 Ccl4 (MIP-1 beta) chemokine (C-C motif) ligand 4  1.54 
NM_011332 Ccl17 (Scya17) chemokine (C-C motif) ligand 

17 
1.82 

NM_011888 Ccl19 (Scya19) chemokine (C-C motif) ligand 
19 

2.22 

U51717 Ccr2 (MIP-1 
alphaR) 

chemokine (C-C motif) receptor 
2 

2.21 

NM_009916 Ccr4 (Cmkbr4) chemokine (C-C motif) receptor 
4  

2.50 

NM_007719 Ccr7 (Cmkbr7) chemokine (C-C motif) receptor 
7  

1.54 

NM_007720 Ccr8 (Cmkbr8) chemokine (C-C motif) receptor 
8  

2.92 

NM_007721 Ccr10 (Cmkbr9) chemokine (C-C motif) receptor 
10  

3.03 

NM_011798 Ccxcr1 (Xcr1) chemokine (C motif) receptor 1  3.44 
NM_009909 Il8rb (CXCR2) interleukin 8 receptor, beta 3.53 
AF102269 Cx3cr1 chemokine (C-X3-C) receptor 1 3.33 
NM_010560 Il6st (gp130) interleukin 6 signal transducer 1.50 
NM_010548 Il10 interleukin 10 1.68 
NM_013584 Lifr leukemia inhibitory factor 

receptor 
2.08 

NM_010798 Mif macrophage migration inhibitory 
factor 

0.66 

NM_008907 Ppia (CypA) peptidylprolyl isomerase A 1.75 
 

Neurotrophins and receptors 
 

NM_007540 Bdnf brain derived neurotrophic factor 0.51 
NM_019626 Cbln1  cerebellin 1 precursor protein 3.54 
NM_053007 Cntf ciliary neurotrophic factor 2.00 
NM_011808 Ets1  E26 avian leukemia oncogene 1, 

5' domain 
1.74 

M33760 Fgfr1  fibroblast growth factor receptor 
1 

1.93 

NM_139149 Fus  fusion, derived from t(12;16) 1.85 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23832
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malignant liposarcoma (human) 
NM_008115 Gfra2  glial cell line derived 

neurotrophic factor family 
receptor alpha 2 

1.65 

NM_019791 Maged1  melanoma antigen, family D, 1 1.91 
NM_019548 Tro (Maged3) trophinin 1.56 
NM_009750 Ngfrap1  nerve growth factor receptor 

(TNFRSF16) associated protein 
1 

1.54 

NM_008703 Nmbr  neuromedin B receptor 1.67 
NM_031199 Tgfa  transforming growth factor alpha 0.65 
NM_00103938
5 

Vgf  VGF nerve growth factor 
inducible 

0.52 

 
  

 

Extracellular matrix and adhesion molecules 
 

NM_009818 Catna1  catenin (cadherin associated 
protein), alpha 1 

0.68 

NM_018761 Catnal1  catenin (cadherin associated 
protein), alpha-like 1 

0.64 

X06340 Cdh3  cadherin 3 0.62 
NM_009867 Cdh4  cadherin 4 0.58 
NM_009929 Col18A1  procollagen, type XVIII, alpha 1 1.88 
M27130 CD44  CD44 antigen 1.88 
NM_007899 Ecm1  extracellular matrix protein 1 0.61 
M18194 Fn1  fibronectin 1 0.52 
NM_016780 Itgb3 (CD61) integrin beta 3 0.56 
NM_021359 Itgb6  integrin beta 6 0.42 
NM_008482 Lamb1  laminin B1 subunit 1 0.53 
NM_008609 Mmp15 (MT2-

MMP) 
matrix metallopeptidase 15 0.52 

NM_013903 Mmp20  Matrix metallopeptidase 20  0.53 
NM_010808 Mmp24 (MT5-

MMP) 
matrix metallopeptidase 24 0.60 

NM_010810 Mmp7  matrix metallopeptidase 7 0.60 
NM_011346 Sell  selectin, lymphocyte  0.56 
NM_011581 Thbs2  thrombospondin 2  0.59 

 

Apoptosis-related genes 
 

NM_009684 Apaf1  apoptotic peptidase activating 
factor 1 

1.90 
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NM_009741 Bcl2  B-cell leukemia/lymphoma 2 0.58 
NM_007544 Bid  BH3 interacting domain death 

agonist 
0.57 

NM_007609 Casp11 (Casp4) caspase 11, apoptosis-related 
cysteine peptidase 

1.95 

NM_007465 Birc2 (IAP2) baculoviral IAP repeat-
containing 2 

0.57 

NM_009403 Tnfsf8 (Cd30l) tumor necrosis factor (ligand) 
superfamily, member 8 

0.62 

NM_011609 Tnfrsf1a (Tnfr1) tumor necrosis factor receptor 
superfamily, member 1a 

1.44 

NM_011610 Tnfrsf1b (Tnfr2)  tumor necrosis factor receptor 
superfamily, member 1b 

0.56 

NM_011632 Traf 3  Tnf receptor-associated factor 3 1.50 
 

Array analyses were performed on pooled RNA from  ≥ 4 seven months-old MPS IIIB 
mice or age-matched controls.  
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The results of the real time analysis performed both for the brain and 

cerebellum of the mice are shown in Fig. 4. Cbln1, which was found by 

the array filters to be upregulated in the brain of the 7-month-old MPS 

IIIB mice was by real time PCR approximately 2.6- and 2.2-fold more 

expressed in the 3-month-old and 7-month-old MPS IIIB mice, 

respectively compared to the age matched normal controls, while 

remaining unchanged in the 1-month-old mice (Fig. 3 and Fig. 4, panel 

A). Conversely, the same gene was unaltered in the cerebellum of the 

MPS IIIB mice at all time points from birth (Fig. 4, panel B).  

Also Bdnf was unchanged at 1 month from birth, both in the brain 

and cerebellum, but presented changes in the older mice. In the brain, it 

showed, a decreased expression (0.615 and 0.59 fold at 3 months and 7 

months from birth, respectively) (Fig. 4, panel A), thus confirming the 

results provided by the arrays (Tab. 2); in the cerebellum, Bdnf presented 

different rates: it was downregulated in the 3-month-old MPS IIIB mice 

(0.3 fold) and upregulated in the older animals (2.22 fold) (Fig. 4, panel 

B). The results from the real time analysis were confirmed, for Bdnf, also 

at the protein level by Western blot (Fig. 4, panel C): as revealed by the 

densitometric analysis, the Bdnf polypeptide present in the homogenates 

from brains from the 7-month-old MPS IIIB mice was approximately one 

half compared to the normal controls (Fig. 4, panel C); conversely, a two-

fold increase in the Bdnf protein level was seen in the cerebellum of the 

same animals (Fig. 4, panel C).  

According to the array data, Ccl3 proved to be the most 

upregulated gene in the brain of the MPS IIIB mice at every time point 

from birth: 9.65 fold at 1 month, 9.2 fold at 3 months and 11.4 fold at 7 

months. Upregulation was confirmed also for Casp11: 7.62    fold  at      1  
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Fig. 4: Relative levels of Cbln1, Bdnf, Ccl3 and Casp11 in brain or 
cerebellum of affected mice. 
Panels A and B: results from real time analysis performed on RNAs obtained 
from brains (panel A) or cerebella (panel B) dissected at different times from 
birth (n=4). Equal amounts of RNAs from each mouse were pooled before 
generating the cDNAs. Abl cDNA were used to normalize the level of gene 
of interest in both mutant and control preparations. Data (mean± SEM of 
three experiments performed in triplicate) are expressed as fold change in the 
affected mice compared to the normal control. White bars: 1-month-old mice; 
striped bars: 3-months-old mice; black bars: 7-months-old mice. *P<0.05; 
**P<0.001. 
Panel C: western blot analysis of Bdnf levels in brain or cerebellum obtained 
from 7-months-old MPS IIIB (-/-, gray bars) or normal mice (wt, dotted bars) 
(n=3) and pooled before homogeneization. Histograms shown the values 
(mean ± SEM of three experiments, P<0.05) obtained by densitometric 
analysis of Bdnf band normalized for tubulin levels. On the bottom: the 
western blot image refers to a representative experiment.  
 



 38

month, 3.73 fold at 3 months and 3.03 fold at 7 months from birth (Fig. 

4, panel A). The same genes were always expressed at significantly 

higher levels than the normal controls also in the cerebellum (Fig. 4, 

panel B). 

 

 

Immunohistochemistry and Tunel analysis 

 

To verify whether the upregulation of Casp11 transcript resulted in 

identificable immunoreactivity in the brain sections, we performed 

immunohistochemistry on paraffin sections from a 7-month-old MPS 

IIIB mouse and an age-matched normal control. Immunohistochemical 

staining with an anti-caspase 11 antibody demonstrated a response of 

positive cells in the brain, especially in the subcortical region (Fig. 5, 

panel B); the number of caspase-11 positive cells in the MPS IIIB mouse 

was approximately 2-fold the values for the control animal (Fig. 5, panel 

E). These results were in agreement with the Tunel analysis in which 

positive staining in the MPS IIIB mouse (Fig. 5, panel D) revealed a 

marked increase in apoptotic cells of 56-fold compared to the normal 

control (Fig. 5, panel F).  

 

Candidate genes with potentially critical roles in CNS degeneration: 

the NADPH-dependent oxidase complex 

 

Another set of genes to be analysed by real time RT PCR was 

selected on the basis of their potential role in the neurodegeneration; 

specifically, we chose to verify the expression of   some   components  of  
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Fig. 5: Immunohistochemistry and Tunel analysis on brain 
from 7-months-old mice. 
Brain sections of 7 μm were obtained from affected and normal 
mice at 7 months from birth. Panel A and B: brain sections 
stained with antibody against caspase-11 as described under 
Materials and Methods; arrows point to caspase 11 positive cells 
as resulting from peroxidase staining in the control (A) and in the 
MPS IIIB affected mouse (B). The slides were counterstained 
with hematoxylin. Magnification 40X. 
Panels C and D: Tunel staining on the affected mouse (D) 
compared to the normal age-matched control (C); arrows point to 
apoptotic cells. Magnification 40X. 
Panels E and F: counts of caspase-11 positive cells (Panel E: 
P<0.05) and Tunel-positive cells (Panel F: P<0.0001) in MPS IIIB 
mouse (-/-, black bars) compared to normal mouse (wt, white 
bars). At least twelve slices were stained and counted for each 
mouse and the mean (± SEM) is given for number of positive 
cells per square millimeter area.  
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the phagocytic NADPH-dependent oxidase enzyme complex, gp91phox,  

p67phox and p47phox, to reveal a possible overproduction of superoxide ion 

that might be involved in the neuropathogenesis of MPS IIIB disease. For 

this reason, we also analysed the iNOS (inducible NO synthase) gene: it 

was recently suggested that the activation of microglial NADPH oxidase 

can be synergistic with glial iNOS expression in inducing neuronal death 

(Mander and Brown, 2005).  

The real time analysis also on this second set of genes was 

performed on 1-, 3- and 7-month-old mice, both on the brain and 

cerebellum. The results from this analysis are reported in Fig. 6. As 

shown, gp91phox, p67phox and p47phox were upregulated, both in the brain 

and cerebellum. The levels of the gp91phox transcripts in the MPS IIIB 

mice was always at least three times higher than in the normal controls at 

each time point from birth, either in the brain or in the cerebellum (Fig. 6 

panels A and B). For this gene the correspondence between the transcript 

levels and the protein levels was verified by Western blot analysis. As 

resulted from the densitometric analysis, approximately a three-fold 

increase in the gp91phox protein level was evident in the 7-month-old 

MPS IIIB mice, both in the brain and cerebellum (Fig. 6, panel C). The 

p67 and p47 expression proved to be more variable, with the lowest 

values seen at 3 months from birth, both in the brain and cerebellum, but 

always higher than the normal controls (Fig. 6, panels A and B).  Finally, 

the iNOS gene was also upregulated in the 1-month-old MPS IIIB mice, 

both in the brain (Fig. 6, panel A) and cerebellum (Fig. 6, panel B) but its 

expression reverted to normal levels in both organs from 3 months of age 

(Fig. 6, panels A and B). 
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FIG. 6: Relative levels of gp91phox, p47phox, p67phox, and iNOS in brain or 
cerebellum of affected mice. 
Panels A and B: results from real time analysis performed on RNAs obtained from 
brains (panel  A) or cerebella (panel  B) dissected (n=4) at different times from 
birth. Equal amounts of RNAs from each mouse were pooled before generating the 
cDNAs. Abl  cDNA were used to normalize the level of gene of interest in both 
mutant and control preparations. Data (mean ± SEM of three experiments 
performed in triplicate) are expressed as fold change in the affected mice compared 
to the normal controls. White bars: 1-month-old mice; striped bars: 3-months-old 
mice; black bars: 7-months-old mice. *P<0.05; **P<0.001. 
Panel C: western blot analysis of gp91phox levels in brain or cerebellum obtained 
from 7-months-old MPS IIIB (-/-, gray bars) or normal mice (wt, dotted bars)) 
(n=3) and pooled before homogeneization. Histograms show the values (mean ± 
SEM of three experiments, P<0.05) obtained by densitometric analysis of 
gp91phoxband normalized for tubulin levels. On the bottom: the western blot image 
refers to a representative experiment.
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To verify that the increased levels observed in the components of the 

NADPH oxidase resulted in an increased production of superoxide ion in 

the organs of the MPS IIIB mice, we determined the oxidase activity in 

the brain and cerebellum homogenates from 7-month-old mice. As seen 

in Fig. 6, the comparison between MPS IIIB and normal age-matched 

animals showed an approximately two-fold and three-fold increase in the 

chemiluminescence observed in the brain and cerebellum homogenates 

from the MPS IIIB mice, respectively. In all cases chemiluminescence 

was suppressed by SOD 30 U/ml, indicating that the main reactive 

oxygen species detected in the reaction was the superoxide ion (Fig. 7). 
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Fig. 7: Functional analysis of normal and mutant homogenates 
from 7-months-old mice in NADPH oxidase assay. 
NADPH oxidase activity was determined in brains and cerebella 
homogenates, prepared pooling tissues from 7-months-old normal (wt, 
white bars) and affected (-/-, black bars) mice (n=3), by a lucigenin-
based assay performed as described under Materials and Methods. 
Reaction were started by adding the proteins and the production of 
superoxide ion was measured each 10sec for 15 min by monitoring 
chemiluminescence. The data, collected as relative luminescence 
units, were plotted versus time, and the area under the 
chemiluminescence intensity curve (integral chemiluminescence) was 
used for analysis. The chemiluminescence was suppressed by 
superoxide dismutase (SOD) 30U/ml, indicating that the main reactive 
oxygen species detected in the reaction was the superoxide ion. 
Values are mean ± SEM of three experiments (P<0.01).  
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Discussion 
 

A  variety of inter- and intracellular pathways have been described 

that underlie both pathologic and neuroprotective processes. Specifically, 

the studies characterizing the involvement of neurotrophins (Dawbarn 

and Allen, 2003), apoptosis-related pathways (Krantic et al,, 2005) and 

inflammation mechanisms  (Griffin, 2006) have revealed a great deal 

about the determinants of neuronal vulnerability.  

Several genes involved in astrogliosis showed an increased 

expression in the brain of the MPS IIIB mice (Tab. 2). Brain 

inflammation, in fact, is characterized by reactive gliosis involving the 

activation of astrocytes and microglia. Gliosis, in turn, is associated to an 

increased production of cytokines and chronic activation of inflammatory 

pathways that take part in a large variety of phenomena occurring in 

brain disease, including neuronal cell damage, glial cell activation and 

proliferation, neurogenesis and alterations in the blood–brain barrier 

permeability, involving highly divergent diseases (for example, human 

immunodeficiency virus type-one associated dementia, Alzheimer's 

disease, Parkinson's disease, Sandhoff disease) (Kadiu et al, 2005, Wu 

and Proia, 2004). Among the chemokines, cytokines and receptors 

examined in the present study, all the altered genes except Mif were 

upregulated (Tab. 2). The early production of chemokines/cytokines 

occurs in resident microglia and astrocytes and is preceded by 

monocyte/macrophage recruitment. Particularly, Ccl3 (MIP1-alpha) 

plays a pivotal role in macrophage recruitment, inducing monocytes to 

infiltrate the CNS and expanding the activated macrophage-microglial 

subpopulation. In the present study Ccl3 was the most expressed 

chemokine from one month from birth, exhibiting the highest 
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upregulation among all the genes examined in the brain of the MPS IIIB 

mice. By real time analysis we demonstrated that Ccl3 was highly 

upregulated also in the cerebellum of the MPS IIIB mice. This 

chemokine was previously reported to be induced in the brain of a mouse 

model in another lysosomal storage disease, Sandhoff disease, from an 

early stage of the pathogenesis and to trigger an apoptosis of neurons, 

resulting in a rapid neurodegenerative course (Wu and Proia, 2004). 

Interestingly, we found an other two related chemokines upregulated in 

the MPS IIIB brains: Ccl4 (MIP1-beta), a neutrophil survival factor that 

cooperates with Ccl3 for the neuronopathic effects induced by a murine 

oncornavirus (Askovic et al, 2001), and Ccr2, which was demonstrated to 

be involved in macrophage recruitment to the injured nervous system 

(Siebert et al, 2000), probably by establishing interaction with MCP-1 

(1.34-fold increase in the MPS IIIB mice, data not shown), which at least 

in the liver, is required for optimal Ccl3 production, as recently reported 

(Hokeness et al, 2005).  

The brain of MPS IIIB mice also showed at 7 months from birth 

increased levels of Il6st (gp130) and Lifr transcripts associated to a 

moderate increased expression of Il6 (1.24-fold compared to the normal 

controls, data not shown). Substancial evidence indicates that cytokines 

involved in the brain’s response to injury include tumor necrosis factor, 

interleukin (Il)-1 and Il-6-type. In particular, a great deal of focus, has 

been put on the gp130 (Il-6-type) cytokines, a redundant and pleiotropic 

family of peptide signaling molecules that consists of at least six 

members including Il-6, leukemia inhibitory factor (Lif) and ciliary 

neurotrophic factor (Cntf) (Wang and Shuaib, 2002). All these cytokines 

share one or both of the receptor signal transducing subunits gp130 and 
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Lifr in their respective receptor complexes. They exert a variety of 

biological and cellular effects; among these, it has been suggested that 

they are also involved in the regulation of glial activation: for example, 

the induction of gp130-related cytokines and activation of the 

JAK2/STAT3 pathway in astrocytes precedes an up-regulation of glial 

fibrillary acidic protein in an experimental model of neurodegeneration 

(Sriram et al, 2004). In this respect, our result concerning the significant 

upregulation of Cntf in the brain of the MPS IIIB animals may be of 

particular interest. This gene is classified in Tab. 2 among the 

neurotrophins and receptors, since the protein encoded by it is a 

polypeptide hormone whose action appears to be restricted to the nervous 

system where it promotes neurotransmitter synthesis and neurite 

outgrowth in certain neuronal populations. However, there is substantial 

evidence that, in addition to its neurotrophic activity, Cntf regulates glial 

activation in the brain, and functions as an inducer of reactive gliosis 

Cntf is strongly upregulated in activated astrocytes and the application of 

Cntf upregulates the GFAP expression in cultured astrocytes and induces 

various aspects of gliosis in the intact brain (Winter et al, 1995). The 

association between Cntf and its receptor, Cntfr, leads to recruitment and 

dimerization of gp130 and Lifr, both of which we found to be 

upregulated in the MPS IIIB brain, and these events  in turn induce 

downstream signalling (Elson et al, 2000).  

Finally, it is also interesting to note that in the MPS IIIB mice we 

found evidence of upregulation of CXCR2 receptor (Il8rb), which is an 

important neutrophil arrest chemokine in vivo, (Smith et al, 2004) and for 

the peptidyl prolyl isomerase A gene (Ppia, cyclophilin A), coding for a 

cytokine that activates endothelial cells and which was suggested as 
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playing an important role in the pathogenesis of inflammatory diseases 

(Jin et al, 2004). All the data reported above provide additional support 

for the major involvement of the inflammatory component in the brain 

pathogenesis of MPS IIIB disease. 

Among the cytokines and chemokines examined the only 

downregulated gene in the brain of the MPS IIIB mice at 7 months from 

birth was the macrophage migration inhibitor factor (Mif). Mif exerts a 

critical proinflammatory action: its downregulation could be an integral 

component of a mechanism stimulating anti-inflammatory effects to 

defend the brain from chronic inflammation. The upregulation observed 

for Il10 could also be ascribed to this mechanism, since Interleukin-10 

appears to be able to suppress microglial activation/macrophage 

infiltration and markedly reduces the production of proinflammatory 

cytokines by the activated microglia or macrophages (Stoeck et al, 2005). 

The alterations observed for the neurotrophins and receptors in the 

brain of MPS IIIB mice include the interesting downregulation, 

demonstrated both at the RNA and protein level, of the brain derived 

neurotrophic factor (Bdnf). Bdnf, a secreted neurotrophin, regulates 

aspects of neuronal survival, migration, morphological and biochemical 

differentiation, and in adult life it plays a role in the maintenance of the 

neuronal phenotype and in the modulation of synaptic efficacy and 

plasticity. In particular, the hippocampus, which retains a high degree of 

plasticity and vulnerability throughout life, is one of the regions where 

Bdnf is expressed at high basal levels in the mature brain, where it is also 

required for the long-term survival of newborn neurons (Sarainen et al, 

2005). The loss of Bdnf during the earlier stages of development causes 

hyperactivity and more pronounced hippocampal-dependent learning 
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deficits (Monteggia et al, 2004) as well as hippocampal-dependent 

memory impairment (Barrientos et al, 2003). In agreement with these 

data, it was reported that Bdnf is critical for the function and survival of 

neurons, which degenerate in the late stage of Alzheimer's disease (AD) 

and that the decrease in Bdnf precedes the decline in choline 

acetyltransferase activity occurring later in AD (Peng et al, 2005). 

Moreover, Bdnf, which is also synthesised by dopaminergic neurons in 

the adult nigrostriatal pathway, shows a significantly reduced expression 

in the Parkinson’s disease substantia nigra and probably contributes 

directly to the death of nigral dopaminergic neurons and the development 

of Parkinson’s disease (Porritt et al, 2005); decreased Bdnf expression 

was also observed in Huntington's disease, where it exacerbates 

dopaminergic neuronal dysfunction and  participates in the motor 

disturbances associated with this neurodegenerative disorder (Pineda et 

al, 2005). Thus, the downregulation observed for Bdnf in the brain of the 

MPS IIIB mice seems to correlate well to the disturbance of the neuronal 

plasticity proposed for this murine model by Li et al (2002), as well as to 

the neurological clinical signs of the human disease, mainly hyperactivity 

and learning impairment. Such downregulation, however, appears to be a 

late molecular event in the pathogenesis of MPS IIIB-related brain 

disease, at least for the mouse model, since real time analysis revealed 

normal levels of Bdnf transcript in the one-month-old MPS IIIB animals 

and a downregulation from 3 months from birth. In addition the Bdnf 

levels in the cerebellum of the MPS IIIB mice proved to be more intricate 

since the real time analysis showed a transient decrease in the Bdnf 

transcripts at 3 months from birth, followed, surprisingly, by a consistent 

increase in its expression at 7 months from birth. We have no clear 
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explanation for this, but it is known that the cerebellum is a CNS region 

that is resistant to many neurodegenerative disorders such as stroke and 

Alzheimer's disease; this could be related to the recent findings 

suggesting that this region plays a vital role in learning, memory, fear 

conditioning, and cognitive processing (Wu et al, 2005). Thus, the 

cerebellum could have alternative mechanisms to induce protective levels 

of Bdnf, which by exerting a role as an essential factor for the 

maintenance of the cerebellar neural functions, could help to save part of 

the functionality of this organ. 

Another interesting neurotrophin that was upregulated in the brain 

of the MPS IIIB mice was cerebellin 1 (Cbln). The Cbln1 gene codes for 

a cerebellin, a small polypeptide preferentially expressed in the 

cerebellum but also present at variable concentrations elsewhere in the 

CNS, especially in the hypothalamus. The  precise function of cerebellin 

is controversial. However, recently it was reported that among midbrain 

populations of dopaminergic neurons cerebellin 1 is expressed in the A9 

group in the substantia nigra 2.2-fold more than  in the A10 neurons, and 

it is known that A9 cells are more vulnerable to factors causing 

neurodegeneration in Parkinson’s disease (Chung et al, 2005); these 

observations suggest that Cbln1 may be involved in dopaminergic neuron 

survival/cell death and provide  a possible link to the results shown above 

for Bdnf in MPS IIIB disease. 

For the ECM-related molecules analysed in this study, it is 

noteworthy that several transcripts were altered in the MPS IIIB brains, 

mostly downregulated; this could result in possible alterations in the 

matrix and intracellular network integrity and contribute to the 

impairment of the neuronal functions. For example, we found decreased 
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levels of the  alphaE-catenin (Catn1) transcript, and the central nervous 

system-specific deletion of this essential adherens junction gene was 

recently reported to cause abnormal activation of the hedgehog pathway, 

resulting in shortening of the cell cycle, decreased apoptosis and cortical 

hyperplasia (Lien et al, 2006). Matrix metalloproteinases (Mmps) have 

been said to remodel the extracellular environment of neurons and play 

crucial roles in regulating both normal and pathophysiological processes 

in the brain; among these, MT5-MMP (Mmp24), expressed in the 

neurons, and found by us to be downregulated in the MPS IIIB mice 

brain, plays an important role in axonal growth, which contributes to the 

regulation of the neural network formation and remodelling (Monea et al, 

2006). 

The results obtained from the analysis of the apoptosis-related 

genes are also intriguing. The decreased levels of the proapoptotic genes 

Bid and Tnfsf8 and the increased expression of the antiapoptotic gene 

Traf3 seem to suggest a limited involvement of apoptotic mechanisms in 

the brain pathology. However, the downregulation of the antiapoptotic 

genes Bcl2, Birc2 and Tnfr2,  and the increased levels of the transcripts 

for Apaf1 (the core of the apoptosome in the intrinsic pathway for 

apoptosis), Tnfr1 and Casp11, apparently suggest apoptosis as a 

significant mechanism underlying the pathogenesis of the brain disease in 

the MPS IIIB murine model. In particular, for Casp11, for which the real 

time analysis confirmed the transcript upregulation, we also found 

evidence, by immunohistochemistry, of an increase in the corresponding 

polypeptide in the subcortical region of the MPS IIIB mouse brain; 

accordingly, the Tunel test showed, in the same region, a significant 

number of apoptotic cells. These results apparently disagree with a 
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previous report of an absence of neuronal cell apoptosis in the MPS IIIB 

mouse model (Li et al, 2002); however, it is possible that the Casp11 

upregulation found in this study and the cell apoptosis observed can be 

primarily ascribed to the glial cells, as also suggested by the 

morphological analysis of the Casp11-positive cells. In effect, the 

apoptosis of activated astrocytes, mediated by caspase 11, was suggested 

as an autoregulatory mechanism for rat astrocyte activation (Suk et al, 

2002), whereas mouse microglial cells undergo apoptosis upon 

inflammatory activation by an apoptotic pathway involving the induction 

of caspase 11 expression (Lee et al, 2001). Thus, the upregulation of 

Casp11 could be involved in the above hypothesized mechanism by 

stimulating anti-inflammatory effects to defend the brain from chronic 

inflammation. In this respect, also the upregulation of TRAF3 could 

contribute to limiting the inflammatory response since this molecule was 

recently reported to be essential for the induction of type I interferons 

and the anti-inflammatory Il-10, but dispensable for the expression of 

pro-inflammatory cytokines (Hacker et al, 2006). Moreover, it is 

interesting to note that also Bcl2 downregulation, as seen in the MPS IIIB 

mice, was suggested as a possible pathway involved in inflammatory 

activation-induced cell death (AICD) of glial cells (Suk et al, 2002). 

Substantial evidence implicates the oxygen reactive species (ROS) 

in a variety of pathogenic events producing neurodegeneration. Indeed, 

ROS belong to the wide variety of factors that activate astrocytes and/or 

microglia and may mediate neuronal impairment; therefore we decided 

also to verify the expression in the MPS IIIB mice brain of some genes 

involved in the ROS production and not included in the set of genes 

analyzed by array. Specifically, we performed real time analysis for some 
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components of the phagocytic enzyme complex NADPH-dependent 

oxidase, gp91phox,  p67phox and p47phox. NADPH oxidase is the major 

source of ROS during inflammation, is expressed mainly by microglia 

and produces superoxide ion that can then be broken down mainly by 

extracellular and intracellular superoxide dismutase to give hydrogen 

peroxide. It is a multicomponent enzyme complex that includes an 

integral membrane heterodimer composed of gp91phox and p22phox,  four 

cytosolic protein components, p47phox,  p67phox,  p40phox and a small GTP-

binding protein, Rac (Green et al, 2001). We demonstrate here that at 

least three components of this complex are upregulated, at the RNA 

and/or protein level, and, more importantly, that this leads to increased 

NADPH oxidase activity in the brains affected. It was recently reported 

that glial inducible nitric oxide synthase (iNOS) is induced in astrocytes 

and microglia by proinflammatory cytokines and that in vitro this 

increased expression is synergistic with the activation of microglial 

NADPH oxidase in inducing neuronal death by producing the neurotoxic 

peroxynitrite (Mander and Brown, 2005); therefore, we decided to verify 

whether this pathogenetic mechanism could be applied also to the MPS 

IIIB mouse model by performing real time analysis also on the glial 

iNOS. Interestingly, we observed a transient upregulation of the iNOS 

transcripts at one month from birth, followed by a normalization of the 

RNA levels at 3 and 7 months from birth. These data suggest that 

NADPH oxidase does not cause neurodegeneration via peroxynitrite in 

adult MPS IIIB mice; however it is possible that peroxynitrite is involved 

in neurodegeneration in the early stages of the pathogenesis. In any case, 

our finding that the MPS IIIB nervous tissues are able to overproduce 

superoxide ion and probably the related ROS could be important: ROS 



 53

could be involved in several ways in the neurodegenerative events 

underlying brain disease in MPS IIIB. For example, dopaminergic cell 

death seems to involve the production of microglia-derived 

proinflammatory factors, among which ROS, that might exceed 

proinflammatory cytokines (Wang et al, 2005); in particular, ROS 

overproduction could have a synergistic effect with the decrease 

observed in the Bdnf levels, since oxidative stress and neurotrophins 

deficiency seem to be factors triggering neurodegeneration in the 

substantia nigra (Onyango et al, 2005). It is also interesting that MCP-

1/Ccl3 and Ppia expression and secretion appear to be influenced by 

oxidative stress (Nishi et al, 2005; Jin et al, 2004). Moreover, the 

increase in the NADPH oxidase activity in the MPS IIIB brain might also 

be linked to the upregulation of Ccr2 and CXCR2 observed, since Ccr2 

deficiency attenuates oxidative stress (Hayasaki et al, 2006) while the 

activation of CXCR2 causes a translocation of Raf and Rac to the 

membrane fraction (Zhao et al, 2004). 

Identifying the signaling mechanisms that modulate neuronal 

function during injury has important implications for understanding the 

pathophysiology of, and developing therapy for conditions that involve 

acute neuronal degeneration. Our findings further support the importance 

of  inflammation, induced as a consequence of glial activation, in MPS 

III IIIB brain disease and provide insight on the possible involvement of 

oxidative stress in its pathogenesis. 
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