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2 Notation and abbreviations

Notations
Explanation of the main Symbols 1/2

N number of units or observations

i generic unit or observation i, with i = 1, . . . , N

M number of exogenous latent variables

J number of endogenous latent variables

Q total number of latent variables (endogenous and

exogenous ones), with Q = M + J

P total number of manifest variables

Pq number of manifest variables in the q-th block, with
∑Q

q=1 Pq = P

ξq generic latent variable

xpq generic manifest variable in the q-th block

B path coefficient matrix; the generic element is βmj, i.e. the path coefficient

linking the m-th exogenous latent variables to the j-th endogenous latent variable

Λ external loading matrix; the generic element is λpq,

i.e. the loadings associated to the generic manifest variable xpq

W external weight matrix; the generic element is wpq,

i.e. the external weight associated to the p-th manifest variable in the q-th block

E matrix containing the errors εpq associated to the generic manifest variable xpq

in a reflective measurement model

∆ matrix containing the errors δpq associated to the generic manifest variable xpq

in a formative measurement model

H matrix containing the errors ζj associated to the j-th endogenous latent variable

in the structural model

Φ covariance matrix of the exogenous latent variables

Ψ covariance matrix of the inner residuals in the structural model

Θ covariance matrix of the external residuals in a reflective measurement model

Ω matrix containing all model parameters, i.e. Ω = {Λ,B,Φ,Ψ,Θ}
Σ̂ = Σ

(
Ω̂
)

implied covariance matrix of the manifest variables

S sample covariance matrix of the manifest variables

Σ population covariance matrix of the manifest variables

K number of latent classes

k generic latent class

nk number of units or observations in the k-th latent class

βmjk path coefficient linking the m-th exogenous latent variables

to the j-th endogenous latent variable in the k-th latent class

Z partition matrix of dimension N ×K
zik generic element of Z matrix, i.e. categorical variable define the membership of

the i-th unit to the k-th class

πk mixing proportion in Mixture Models, i.e. class size

ρik posterior probability for unit i to belong to the k-th latent class
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Explanation of the main Symbols 2/2

ak number of extracted component in a PLS Regression for the k-th class

Tk matrix containing the component scores for the PLS Regression model for the k-th class

yj generic endogenous variable in a PLS Regression, with j = 1 . . . J

rijk residual for the i-th unit in the k-th latent class

corresponding to the j-th endogenous variable in a PLS Regression model

vipj∗k residual of the redundancy model for the i-th unit

in the k-th latent class, corresponding to the j∗-th target block in a PLS-PTM

eipqk measurement residual for the i-th observation in the k-th latent class,

corresponding to the p-th manifest variable in the q-th block,

i.e. the communality residuals in REBUS-PLS

fijk structural residual for the i-th observation in the k-th latent class,

corresponding to the j-th endogenous block in REBUS-PLS



4 Notation and abbreviations

Abbreviations

• MLR: Multiple Linear Regression

• LS: Least Squares

• OLS: Ordinary Least Squares

• PLS: Partial Least Squares

• ALS: Alternating Least Squares

• GLS: Generalized Least Squares

• ULS: Unweighted Least Squares

• ADF: Asymptotically Distribution Free

• RMR: Root Mean Residual

• ML: Maximum Likelihood

• EM: Expectation - Maximization

• ECM: Excpectation-Conditional Maximization

• ACEM: Alternative Excpectation-Conditional Maximization

• LRT: Likelihood Ratio Test

• FCM: Fuzzy C-Means
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• FCL: Fuzzy C-Lines

• FCV: Fuzzy C-Varieties

• FCR: Fuzzy Clusterwise Regression

• GoM: fuzzy Grade Of Membership model

• INDCLUS: INDividual Difference CLUSter analysis

• GENNCLUS: GENeral Nonhierarcichal CLUStering analysis

• CONCLUS: CONstrained CLUster analysis

• NN: Neural Network

• AID: Automatic Interaction Detection

• MAID: Multivariate AID

• CHAID: CHi-squared Automatic Interaction Detection

• CART: Classification And Regression Trees

• LCA: Latent Class Analysis

• AIC: Akaike’s Information Criteria

• MAIC: Modified Akaike’s Information Criteria

• CAIC: Consistent Akaike’s Information Criterion

• BIC: Bayesian Information Criterion



6 Notation and abbreviations

• ICOMP: Informational COMPlexity criterion

• EN: Entropy Index

• NEC: Normed Entropy Criterion

• SEM: Structural Equation Models

• LV: Latent Variable

• MV: Manifest Variable

• SEM-ML: Maximum Likelihood Approach to SEM

• SEM-PLS: Structural Equation Models with Partial Least Squares

• LISREL: LInear Structural RELations

• PLS-PM: Partial Least Squares Path Modeling

• GSCA: General Structured Component Analysis

• GME: Generalized Maximum Entropy

• FIMIX-PLS: FInite-MIXture PLS

• FCGSCA: Fuzzy Clusterwise GSCA

• PLS-TR: PLS Typological Regression

• PLS-TPM: PLS Typological Path Modeling

• REBUS-PLS: REsponse Based Unit Segmentation in PLS-PM
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• PLS-R: PLS Regression

• GoF: Goodness of Fit index

• AGFI: Adjusted Goodness of Fit Index

• NFI: Normed Fit Index

• NNFI: Non-Normed Fit Index

• TLI: Tucker-Lewis Index

• IFI: Incremental Fit Index

• BFI: Bentler Fit Index

• RNI: Relative Noncentrality Index

• CFI: Bentler Comparative Fit Index

• RMSEA: Root Mean Square Error of Approximation

• FIT: FIT index

• AFIT: Adjusted FIT index

• PLS-PMC: PLS-PM based Clustering

• PLS-GAS: PLS Genetic Algorithm Segmentation

• ECVI: Expected Cross Validation Index

• GFI: Global Fit Index
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• SRMR: Standardized Root Mean square Residuals

• CM: Closeness Measure

• GQI: Grouping Quality Index



Chapter 1

Introduction

Heterogeneity among units is an important issue in statistical analysis.

In statistical methods, treating the sample as homogeneous, when it

is not, may seriously affect the results.

Since human behaviors are complex, looking at groups or classes of

units having similar behaviors will be particularly hard. Heterogeneity

can hardly be detected using external information, i.e. using a priori

clustering approach, especially in social, economic and marketing ar-

eas. Moreover, in the marketing field, in particular, more attention is

given to clustering methods which are able to obtain groups that are

homogeneous in terms of their response [Wedel & Kamakura 2000].

Therefore, response-based clustering techniques, as particular cases of

post hoc clustering approaches, will become more and more important

in statistical literature.



10 Introduction

Simple models are not suitable to model complex human behaviors

because they only take into account a small number of relationships

among the variables. This is the reason, along with computer-science

development, for the increase in the use of Structural Equation Models

(SEM) [Bollen 1989, Kaplan 2000]. As a matter of fact, in Structural

Equation Models the real word complexity can be studied taking into

account a whole number of causal relationships among latent con-

cepts (i.e. the Latent Variables (LVs)), each measured by several ob-

served indicators usually defined as Manifest Variables (MVs). Two

different approaches exist to estimate model parameters in Structural

Equation Models: the covariance-based techniques and the component-

based techniques. The first approach refers to the methods aiming at

reproducing the sample covariance matrix of the manifest variables

by means of the model parameters. In component-based techniques,

instead, latent variable estimation plays a main role. As a matter of

fact, the aim of component-based methods is to provide an estimate of

the latent variables in such a way that they are the most correlated

with one another (according to the path diagram structure) and the

most representative of each corresponding block of manifest variables.

Nevertheless, whatever estimation technique is used, Structural Equa-

tion Models assume homogeneity over the observed set of units. In

other words, all units are supposed to be well represented by a unique

model estimated on the whole sample, i.e. the global model. If all the

units are considered as belonging to a single class in Structural Equa-

tion Models when it is not true, i.e. if heterogeneity is not taken into
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account, it may lead to biased results both in terms of model param-

eters and of validation indexes [Jedidi, Jagpal & De Sarbo 1997a, Je-

didi, Jagpal & S. De Sarbo 1997b]. Usually heterogeneity in Structural

Equation Models is handled by forming classes on the basis of such ex-

ternal variables or on the basis of such standard clustering techniques

on manifest and/or latent variables, and then by using the multigroup

structural equation modeling of Jöreskog [1971] and Sörbom [1974].

But very rarely, heterogeneity in the models may be captured by well-

known observable variables playing the role of moderating variables

[Hahn, Johnson, Herrmann & Huber 2002]. Moreover, post-hoc clus-

tering techniques on manifest variables, or on latent variable scores,

do not take into account in any way the model itself. Hence, while the

local models obtained by cluster analysis on the latent variable scores

will lead to differences in the group averages of the latent variables but

not necessarily to different models, the same method performed on the

manifest variables is unlikely to lead to different and well-separated

models, both in terms of model parameters and of average latent vari-

able scores. In addition, a priori unit clustering in Structural Equation

Models is not conceptually acceptable since no causal structure among

the variables is postulated: when information concerning the causal

relationships among variables is available (as it is in the theoretical

causal network of relationships), classes should be looked for while

taking into account this important piece of information. In other

words, even in the Structural Equation Models framework the need

is pre-eminent for a response-based clustering method, where the ob-
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tained classes are homogeneous with respect to the postulated model.

The aim of this thesis is to find an answer to this specific need by

presenting a new technique able to provide response-based clustering

in PLS Path Modeling (PLS-PM): the Response Based Unit Segmen-

tation in PLS-PM (REBUS-PLS) [Trinchera 2007, Trinchera, Squillac-

ciotti, Esposito Vinzi & Tenenhaus 2007, Trinchera, Romano & Espos-

ito Vinzi 2007, Esposito Vinzi, Trinchera, Squillacciotti & Tenenhaus

2008, Esposito Vinzi, Amato & Trinchera 2008].

To reach this objective, I first review the main clustering techniques

(cf. chapter two). The methods used in clustering research can be

classified according to two different aspects. First, they can be clas-

sified into a priori and post hoc approaches [Green 1977, Wind 1978].

A clustering approach is called a priori when the type and the num-

ber of segments are determined in advance by the research, usually

on the basis of external information. In post hoc clustering, instead,

both the type and the number of segments we are looking for are de-

termined on the basis of the results of some data analysis. A hybrid

procedure combining both the a priori and the post hoc approaches

is also possible. Nevertheless, its effectiveness depends mainly on the

post hoc procedure used in the second step [Wedel & Kamakura 2000].

Secondly, they can be classified according to whether descriptive or

predictive statistical methods are applied. Of course, in a descriptive

clustering method units are segmented looking at the associations be-
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tween a set of variables with no difference between endogenous and

exogenous variables. In a predictive approach, instead, unit clustering

is accomplished by analyzing relationships between two sets of vari-

ables, one influencing the other.

A priori clustering methods will be discussed in section 2.2, while the

post hoc approaches will be presented in section 2.3. In both cases, we

first discuss the descriptive approaches and then the predictive ones.

A detailed discussion on the Mixture Models for clustering will be pro-

vided at the end of the chapter (cf. section 2.4).

Successively, a detailed discussion on the estimation methods for the

Structural Equation Models will be provided (cf. chapter three).

Structural Equation Models [Bollen 1989, Kaplan 2000] include a num-

ber of statistical methodologies that allow us to estimate the causal

relationships, defined according to a theoretical model, linking two or

more latent complex concepts, each measured through a number of

observable indicators. The Structural Equation Models notation and

the specification of the model will be introduced in section 3.2.

Essentially developed in a social domain, Structural Equation Models

were first introduced by Jöreskog [1970] as confirmatory models to as-

sess cause-effect relations among two or more set of variables, based

on the maximum likelihood (ML) estimation method (SEM-ML). This

method, also known as LISREL (LInear Structural RELations), has

been for many years the only estimation method for SEM. The term

LISREL was initially used for the software implementing the method-
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ology [Jöreskog & Sörbom 1996]. However, it had such a rapid devel-

opment that the methodology and the software have been associated

to each other. Furthermore, it is important to notice that other esti-

mation techniques besides the maximum likelihood approach can be

used to estimate Structural Equation Models, such as the Generalized

Least Squares (GLS) or the Asymptotically Distribution Free (ADF).

All these methods are usually referred to as LISREL-type estimation

techniques. The factor common to all the LISREL-type estimation

techniques is that they are so-called covariance-based methods. As

a matter of fact, all these techniques aim at reproducing the sample

covariance matrix of the manifest variables by means of the model pa-

rameters. The fundamental hypothesis underlining these approaches

is that the implied covariance matrix of the manifest variables is a

function of the model parameters. The covariance-based approaches

will be discussed in section 3.3. Namely, in subsection 3.3.1 we will

focus on the LISREL-type methods.

Subsequently, the component-based estimation techniques will be shown

(cf. section 3.4). As already said, the aim of component-based meth-

ods is to provide an estimate of the latent variables in such a way

that they are the most correlated with one another (according to the

path diagram structure) and the most representative of each corre-

sponding block of manifest variables. The most recognized methods

among the component based approaches is the PLS approach to Struc-

tural Equation Models, also known as PLS Path Modeling (PLS-PM)

[Wold 1975, Tenenhaus, Esposito Vinzi, Chatelin & Lauro 2005]. This
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approach will be discussed in detail in subsection 3.4.1. More recently,

other component based techniques have been presented. Namely, the

Generalized Maximum Entropy (GME) by Al-Nasser [2003], discussed

in subsection 3.4.3, and the Generalized Structured Component Anal-

ysis (GSCA) by Hwang & Takane [2004], shown in subsection 3.4.2.

For each of the discussed approaches the estimation procedure used, as

well as the different indexes to assess model quality, will be discussed.

In the fourth chapter I focus on techniques for detecting unit seg-

ments by response-based techniques in the case of unknown (latent)

moderating effects, i.e. when both the number and the structure of

the classes are not known a priori. Ways to handle unobserved hetero-

geneity in the different approaches to Structural Equation Models will

be presented. Firstly methods allowing response-based clustering in

LISREL-type Structural Equation Models will be shown (cf. section

4.2): the Structural Equation Finite Mixture Model (STEMM) by Je-

didi et al. [1997a] and Jedidi et al. [1997b] (cf. subsection 4.2.1) and

the Bayesian Finite Mixture SEM by Zhu & Lee [2001] (cf. subsection

4.2.2). Further, response-based techniques for clustering in the PLS-

PM framework will be presented (cf. section 4.3). In this framework,

several approaches will be described. Namely, the Finite Mixture PLS

[Hahn et al. 2002, Ringle, Wende & Will 2008] (cf. subsection 4.3.1),

the PLS Typological Path Model [Squillacciotti 2005, Trinchera, Squil-

lacciotti & Esposito Vinzi 2006] (cf. subsection 4.3.3), the PATH-

MOX [Sanchez & Aluja 2006, Sanchez & Aluja 2007] (cf. subsec-
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tion 4.3.2) and the PLS Path Model Clustering (PLS-PMC) [Ringle

& Schlittgen 2007] (cf. subsection 4.3.4). To conclude, unobserved

heterogeneity in GSCA will be investigated by the Fuzzy Clusterwise

Generalized Structured Component Analysis of Hwang, De Sarbo &

Takane [2007] (cf. subsection 4.4.1). Moreover, once the groups are

identified, it is important to assess the differences (and similarities) be-

tween the detected classes of units. This essentially entails comparing

the obtained local models to one another and with the global model.

It is for this reason that the last section of the fourth chapter will be

devoted to presenting the different techniques allowing us to compare

local models (cf. section 4.5), with special regards to the model pa-

rameter comparison (cf. subsection 4.5.2), the latent variable scores

comparison (cf. subsection 4.5.3), and the model quality comparison

(cf. subsection 4.5.4).

The original proposition will be made in chapter five. The Response

Based Unit Segmentation (REBUS-PLS) algorithm [Trinchera 2007,

Trinchera, Squillacciotti, Esposito Vinzi & Tenenhaus 2007, Trinchera,

Romano & Esposito Vinzi 2007, Esposito Vinzi, Trinchera, Squillac-

ciotti & Tenenhaus 2008, Esposito Vinzi, Amato & Trinchera 2008],

will be presented.

REBUS-PLS is an iterative algorithm allowing us to estimate at the

same time both the memberships of units to latent classes and the

parameters of the local models.

Coherent with PLS Path Modeling features, REBUS-PLS does not
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require distributional hypotheses. Moreover, REBUS-PLS may lead

to local models that are different in terms of both structural and mea-

surement models. Furthermore, REBUS-PLS involves an error-based

unit/model “distance” defined according to the Goodness of Fit (GoF )

index structure (cf. subsection 3.4.1). This leads up to local models

that fit better than the global model. To conclude, REBUS-PLS does

not require external/concomitant variables to cluster the units. Nev-

ertheless, external information (when available) can be used to char-

acterize the latent classes identified by REBUS-PLS.

Simulation studies have been done to assess REBUS-PLS ability in

detecting unobserved heterogeneity under different hypotheses. In

particular, three different simulation schemes have been tested. In the

first one, local models are different only as regards the path coefficients

intensities, i.e. the structural parameters. In the second simulation

scheme, local models are different only concerning the measurement

model parameters. While the third scheme takes into account local

models that are different as regards both the measurement and the

structural parameters. The results of the simulation studies will be

shown in section 6.1. To conclude, REBUS-PLS will be applied to a

real dataset (cf. section 6.2) involving a customer preference study on

the Benetton fashion firm.

The code for running REBUS-PLS algorithm in SAS-IML language

(cf. appendix A.2) will be provided in the appendix.
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It is important to underline that throughout this work the word clus-

tering is to be referred to as unsupervised pattern recognition. Neither

the number of classes, nor their composition is known at the begin-

ning of the analysis. In marketing field, clustering, in the sense of

unsupervised pattern recognition, is often referred to as segmentation.

That is why throughout this work the word segmentation has to be

considered equivalent to clustering.



Chapter 2

Clustering techniques

2.1 Introduction

Working with Unobserved Heterogeneity means finding groups of units

or clusters having similar behaviors. This essentially entails determin-

ing both the number and the composition of classes. In Statistics we

have to distinguish between classification and clustering. The idea be-

hind classification is that units belong to a given group, and the aim

of the several classification techniques is to assess a decision-rule in

order to classify new units into the existing classes. From this point-of

view classification has to be considered a taxonomic task. Cluster-

ing, instead, is essentially a grouping task, for which a large variety of

methods are available. The aim common to all clustering methods is

to find out class of units similar in such a way.

Classification and clustering are often referred to as supervised pat-
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tern recognition and unsupervised pattern recognition. The word su-

pervised and unsupervised refers to whether or not group membership

from some training data is given, i.e. if a taxonomy of units is avail-

able.

Of course, working with Unobserved Heterogeneity promptly means

working in the clustering field. As a matter of fact, no information

about group membership is available in the case of Unobserved Het-

erogeneity.

Moreover, in the marketing field both classification and clustering are

often referred to as segmentation. Nevertheless, throughout this work

the word segmentation has to be considered equivalent to clustering.

The methods used in clustering research can be classified according

to two different aspects. First, they can be classified into a priori

and post hoc approaches [Green 1977, Wind 1978]. A clustering ap-

proach is called a priori when the type and the number of segments

are determined in advance by researchs, usually on the basis of exter-

nal information. In post hoc clustering, instead, both the type and the

number of segments we are looking for are determined on the basis of

the results of some data analysis. A hybrid procedure combining both

the a priori and the post hoc approaches is also possible. Nevertheless,

its effectiveness depends mainly on the post hoc procedure used in the

second step [Wedel & Kamakura 2000].

A second way to classify clustering techniques is according to whether
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descriptive or predictive statistical methods are applied. Of course, in

a descriptive clustering method, units are segmented looking at the

associations between a set of variables with no difference between en-

dogenous and exogenous variables. In a predictive approach, instead,

unit clustering is accomplished by analyzing relationships between two

sets of variables, one influencing the other.

As stated by Gordon [1999], the principal outcome of a clustering

study is to provide a partition of the units in a set of classes. Through-

out this work the words class, group, segment and cluster are to be

considered as synonyms.

In this chapter a review of the main clustering techniques will be

provided. First a priori clustering techniques will be discussed (cf.

section 2.2), then the post hoc approaches will be presented (cf. sec-

tion 2.3). In both the cases, we first discuss the descriptive approaches

and then the predictive ones. A detailed discussion on the Mixture

Models for clustering will be provided at the end of the chapter (cf.

section 2.4).

2.2 A priori clustering techniques

In the a priori approach the number and the type of classes are de-

termined independently from the statistical method that will be later

used to analyze the data. The main difference between an a priori
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descriptive method and an a priori predictive method is that in the

first case external information is used to obtain clusters of units ho-

mogeneous with regard to the variable used to cluster, while in the

a priori predictive approach, once groups are obtained as regards to

endogenous or exogenous variables, relations between the two sets of

variables within the groups are studied.

2.2.1 A priori descriptive methods

The most popular approach to obtain an a priori clustering of units

using a descriptive procedure is the cross-tabulation. This approach

allows us to examine frequencies of units that belong to specific com-

binations of categories on more than one variable using a so-called

cross-tabulation table displaying the joint distribution of two or more

variables.

Several approaches exist to analyze cross-tabulation tables. Among

them we have to distinguish between techniques to be used in the case

of two variables and techniques allowing us to take into account inter-

action between more than two variables.

Without doubt, the most popular test for the significance of the rela-

tionship between categorical variables is the Pearson chi-square. This

measure is based on the fact that we can compute the expected fre-

quencies in a two-way table (i.e. frequencies that we would expect if

there was no relationship between the variables). The chi-square test

becomes increasingly significant as the observed frequencies deviate
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further from the expected one. Discussion on the use of the chi-square

test in cross-tabulation can be found in each statistical manual.

Among the techniques used to analyze multi-cross-tabulation tables,

log-linear models provide a more sophisticated way of looking at cross-

tabulation tables. Specifically, it is possible to test the different vari-

ables that are used in the cross-tabulation and their interactions for

statistical significance. The term log-linear derives from the fact that

in log-linear models logarithmic transformations allow us to restate

the problem of analyzing multi-way frequency tables in terms that are

very similar to ANOVA. In particular, it is possible to think of the

multi-way frequency as a table to reflect various main effects and in-

teraction effects that added together in a linear function, bring about

the observed table of frequencies. Bishop, Fienberg & Holland [1975]

provide details on how to derive log-linear equations to express the

relationship among factors in a multi-way frequency table.

2.2.2 A priori predictive methods

In a predictive approach, instead, groups of units are obtained as re-

gards only one of the two sets of endogenous and exogenous variables

[Wilkie & Cohen 1977]. In a forward approach groups are formed by

using exogenous variables, then the a priori classes are related to the

set of endogenous variables. A backward procedure, instead, uses en-

dogenous variables to define groups and then uses exogenous variables

to describe the a priori obtained groups. A common method applied

in a backward a priori predictive approach is discriminant analysis
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[Fisher 1958, McLachlan 1992]. Nevertheless, this method is more

useful to describe segments than a real clustering method aiming at

identifying groups of units. In other words it is closer to a classifi-

cation task than to clustering. In a forward perspective, tabulation

appears to be the most popular method. Problems arise if more than

two variables are taken into account. As Wildt & Mc Cann [1980]

suggest, linear regression can overcome these difficulties by estimating

both the effect of multiple segmentation variables and their partial

contributions.

2.3 Post hoc clustering techniques

The post hoc methods define the number and the type of segments on

the base of analysis’ results. In a descriptive post hoc approach, groups

are defined according to such measured characteristics, while in a pre-

dictive post hoc analysis, groups are obtained on the basis of the esti-

mated relationships between the exogenous and the endogenous sets

of variables. Therefore, segments obtained by a descriptive post hoc

method are homogeneous as regards measured characteristics, while

segments formed by a predictive post hoc method are homogeneous in

the relationships between exogenous and endogenous variables.

A classification of post hoc clustering techniques can be obtained refer-

ring to the nature of the classes obtained. In this sense they can be dis-

tinguished in nonoverlapping, overlapping and fuzzy [Hruschka 1986]
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clustering techniques. In nonoverlapping clustering methods each unit

belongs to only one class. In an overlapping clustering method units

can belong to multiple classes. Instead, in fuzzy clustering each unit

is associated with a degree of membership to belong to a unique

(nonoverlapping fuzzy) class or a multiple (overlapping fuzzy) class.

We can distinguish the three different types of clustering methods also

according to the form of the partition matrix Z. The partition matrix

Z is an N by K matrix, where N is the number of units and K is the

number of classes taken into account. The generic element of the Z

matrix, zik, indicates the assignment of a unit to a class. Specifically,

zik represents a membership-value that is equal to one if the i-the unit

belongs to the k-th class otherwise it is equal to zero, i.e.:

zik =

{
1 if i ∈ k
0 if i /∈ k

(2.1)

In clustering methods providing nonoverlapping clusters, units belong

to a one and only class, therefore matrix Z has only one element in

each row equal to one, the other elements being zero. In the situation

of overlapping clusters units can belong to more than one class, conse-

quently the rows of the matrix Z may have several elements equal to

one. In fuzzy clustering procedures, units have partial memberships

in more than one class. In this case zik indicates a membership value.

Of course in this case zik is a nonnegative number bounded between

zero and one and the sum of row values must be equal to one.
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Two types of fuzzy clustering methods can be distinguished. The first

one refers to the fuzzy set theory of Zadeh [1965], the second based on

the idea that data arise from a mixture of distributions [McLachlan

& Basford 1988]. In the first case, the traditional assumption that

every unit is to be assigned to one cluster is replaced with the idea

that units can belong to more than one class with a particular degree

of membership zik.

The second type of fuzzy clustering techniques aims at estimating the

probability of each unit of belonging to each segment. As already said,

this approach is based on the idea that data arise from a mixture of

distributions [McLachlan & Basford 1988]. A detailed discussion on

Mixture Models will be given in subsection 2.4.

Both the approaches provide membership values zik that are bounded

between zero and one. Nevertheless, in a “pure” fuzzy approach, the

idea is that units really belong to different classes with a different de-

gree of membership, while in a mixture approach the basic assumption

is that units only belong to one class and the information in the data

is insufficient to determine uniquely its assignation. In this last case

zik is the probability of each unit of belonging to each class.

2.3.1 Descritive post hoc methods

Clustering procedures are the most widely-used tools to achieve post

hoc descriptive clustering. Cluster analysis is not a single technique,

but has to be considered as a variety of techniques that attempt to

form classes with internal cohesion and external isolation [Gordon
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1999]. Exhaustive introduction to cluster analysis overcomes the pur-

pose of this section. A whole set of monographs was published on

cluster analysis. For a review see for example, Everit [1992] and Gor-

don [1999]. In this work a classification of the different clustering

procedures will be provided and the main features of the different ap-

proaches shortly analyzed.

The several descriptive post hoc methods will be discussed according

to the nature of the partition matrix provided. The nonoverlapping

methods will be presented first. Then the overlapping techniques will

be shown and to conclude, the fuzzy descriptive post hoc methods will

be discussed.

Nonoverlapping techniques can be distinguished essentially in hier-

archical [Frank & Green 1968] and nonhierarchical methods.

The first ones provide a hierarchy of partitions. Different levels of

aggregation, i.e. different number of classes, are investigated includ-

ing the initial class formed by the whole sample and the N classes

each formed by a single unit. Agglomerative hierarchical clustering

methods start from N classes, each formed by a single unit, and ar-

rive through successive steps at a unique class containing all the units.

Divisive hierarchical methods, instead, start from the global class, i.e.

the class containing all the units, and arrive at defining the N classes.

The issue common to all clustering techniques is the definition of the

dissimilarity (or similarity) criterion, which may be a dissimilarity

measure, a distance measure or a ultrametric measure. Differences
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arise also in the way used to compute the “distance” between a clus-

ter and the units, or across classes, i.e. in the agglomerative criterion

chosen. The final result common to all the nonoverlapping nonhier-

archical clustering techniques is a dendogram, i.e. a tree structure

representing all the hierarchy of partitions.

Nonhierarchical clustering methods, instead, provide a partition of the

N units in a number of classes K defined a priori. They start from an

initial partition of the units into K classes and move units from one

class to another in successive steps by the optimization of a certain

criterion of interest. Several nonhierarchical classification methods

have been proposed, among them the Forgy [1965] and MacQueen

[1967] methods. They differ according to the criterion optimized and

the algorithm used in the optimization process. In particular, three

characteristics distinguish the various classification methods: (1) the

selection of seed points, i.e. of the starting points, (2) the type of

cluster assignment process, (3) the statistical criterion used to assign

the points to the clusters. The widely-used nonhierarchical method

is the K-means algorithm presented by MacQueen [1967]. Several ex-

tensions have been proposed to the K-means algorithm such as the

one of De Sarbo, Carroll & Clark [1984] that clusters units and si-

multaneously derives weights for the variables used to cluster units.

A common problem of all nonhierarchical clustering procedures is the

definition of the number of classes to be considered and the definition

of the initial partition. The starting partition can be obtained in sev-

eral ways, i.e. by randomly assigning units to clusters, on the basis of
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external information or by performing a hierarchical clustering proce-

dure. None of these procedures appears to be better than the others.

As a matter of fact, a random partition may lead to local optimum,

while using hierarchical clustering techniques needs to have a sufficient

number of units.

As stated by Punj & Stewart [1983], nonhierarchical methods seem

to perform better than hierarchical ones. As a matter of fact, they

are more robust to outliers and to the presence of irrelevant attributes

[Wedel & Kamakura 2000]. Nevertheless, hierarchical algorithms al-

low us to investigate different numbers of classes and do not require

to define it a priori as nonhierarchical ones need to. In many ap-

plications external information may be used to select the number of

classes to take into account, but if no information is available hierar-

chical clustering methods have to be preferred to nonhierarchical ones.

Overlapping clustering methods were first presented by Shepad and

Araibe [Shepard & Arabie 1978]. Since then, a lot of different tech-

niques have been proposed, such as the Individual Difference Cluster

analysis (INDCLUS) by Carrol & Arabie [1983], the General Nonhier-

arcichal Clustering analysis (GENNCLUS) by De Sarbo [1982] and the

Constrained Cluster analysis (CONCLUS) by De Sarbo & Mahajan

[1984].

Two types of fuzzy clustering methods can be distinguished. The first

one refers to the fuzzy set theory of Zadeh [1965], the second based on
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the idea that data arise from a mixture of distributions [McLachlan

& Basford 1988]. In the first case, the traditional assumption that

every unit is to be assigned to one cluster is replaced with the idea

that units can belong to more than one class with a particular de-

gree of membership zik. The first authors who proposed applying

the fuzzy set theory to clustering problems were Bezdek [1974] and

Dunn [1974]. They developed the fuzzy c-means (FCM) algorithm.

The FCM can be considered the fuzzy variant of K-means nonhier-

archical algorithm. The idea is to classify the units in a pre-specified

number of classes by minimizing a sum of squared errors, computed

as the difference between each observed value and the center of each

class. It is important to notice that in FCM since all units belong

to all classes (according to fuzzy clustering logic) the centroid of a

cluster is the mean of all units, weighted by their degree of belong-

ing to the cluster. A generalization of FCM algorithm, the fuzzy

c-lines (FCL) was developed by Bezdek et al. [Bezdek, Coray, Gun-

derson & Watson 1981a, Bezdek, Coray, Gunderson & Watson 1981b].

FCM and FCL, as well as fuzzy clusterwise regression (FCR) [Wedel

& Steenkamp 1989, Wedel & Steenkamp 1991], and fuzzy grade of

membership model, (GoM) [Manton, Woodnury & Tolley 1994] are

part of a family of methods named fuzzy c-variates FCV [Bezdek

et al. 1981a, Bezdek et al. 1981b], in which the prototypes are multi-

dimensional linear varieties represented by some local principal com-

ponent vectors. The FCV clustering algorithms can be regarded as a

simultaneous algorithm of fuzzy clustering and principal component
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analysis. This allows us to obtain not only round classes as in FCM,

but also classes with linear configuration.

The second type of fuzzy clustering techniques aims at estimating the

probability of each unit of belonging to each segment. As already said,

this approach is based on the idea that data arise from a mixture of

distributions [McLachlan & Basford 1988]. A detailed discussion on

Mixture Models will be given in section 2.4.

2.3.2 Predictive post hoc methods

Post hoc predictive clustering methods allow us to obtain clusters of

units homogeneous as regards the relationships in the model. Several

techniques achieve this objective.

The traditional approach is the Automatic Interaction Detection (AID).

Groups obtained by AID are maximally different according to an en-

dogenous variable and are obtained on the basis of exogenous variables.

Many extensions of the AID have been proposed to handle particular

cases, such as the Multivariate AID (MAID) algorithm [MacLachlan

& Johansson 1981] in the case of more than one dependent variable

and the CHAID [Kass 1980] in the case of categorical dependent vari-

ables. A closely related technique is the so-called classification and

regression trees (CART) presented by Breiman, Friedmabn, Olshen &

Stone [1984]. More details on classification and regression trees can

be found in Haughton & Oulabi [1993], and in Trasher [1991].

Even neural networks (NN) [Balakrrishnan, Cooper, Jacob & Lewis

1995] and extensions of conjoint analysis, such as componential clas-



32 Clustering techniques

sification [Green 1977, Green & De Sarbo 1979] have been used to

obtain post hoc predictive clustering. Various hierarchical predictive

clustering approaches have been presented by Christal [1968], Bot-

tenberg & Christal [1968], Lutz [1977], Ogawa [1987] and Kamakura

[1988]. The main drawback common to all of these methods is that

misclassification at an early stage of the algorithm may carry on to

higher levels [Wedel & Kamakura 2000].

Clusterwise regression [Späth 1979, Späth 1981, Späth 1982] tries to

overcome this problem in a nonhierarchical way. The aim is to clus-

ter units so as to optimize the fit of the regression within the classes.

Since then, a number of extensions to the first method proposed by

Späth have been developed. For example the De Sarbo, Oliver and

Rangaswamy clusterwise regression algorithm to deal with overlap-

ping classes and multiple dependent variables [De Sarbo, Oliver &

Rangaswamy 1989] and the Wedel and Kistemaker algorithm to handle

partial membership of units in the classes [Wedel & Kistemaker 1989].

Clusterwise regression can be considered a fuzzy approach since the

algorithm provides a degree of membership of each unit to several

classes. It is a powerful method to achieve post hoc predictive clus-

tering since it combines clustering and prediction. Nevertheless, the

properties of the estimators are not established and clusterwise results

depend on subjective choices influencing the degree of separation of

the classes.

An extension of clusterwise regression to the Structural Equation Model
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context is the Fuzzy Clusterwise Generalized Structured Component

Analysis [Hwang et al. 2007] (cf. subsection 4.4.1).

Latent Class (or Mixture) regression methods try to solve the draw-

backs of the clusterwise regression. Mixture Regression methods allow

simultaneous group units in latent (unobserved) classes and estimate

regression models in each class [Wedel & De Sarbo 1994]. An exten-

sion of Mixture Regression models are the Mixture Models applied to

Structural Equation Models (cf. subsection 4.2.1, subsection 4.2.2 and

subsection 4.3.1). The biggest advantage of these methods is that they

directly identify classes that are homogeneous in how they respond to

the model.

2.4 Mixture Models for clustering

Mixtures of distributions have been largely used in the last years to

solve some different issues in Statistics. One of the recent uses of

Mixture Models is in clustering analysis [Everit & Hand 1981, Titter-

ington, Smith & Makov 1985, McLachlan & Basford 1988, McLachlan

& Peel 2000, Wedel & Kamakura 2000].

In this context it is assumed that data arise from a mixture of a spec-

ified number of populations (K) mixed in unknown proportions and

each characterized by a specific density function. In such a sense,

Mixture Models for clustering aim at estimating the unknown param-

eters of the K density functions and the posterior probability of group
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membership for each unit.

The Mixture Models approach to clustering has to be considered a

model-based clustering technique since the form of each density func-

tion has to be specified in advance. Several labels have been used to

refer to Mixture Models for clustering, such as Latent Class Cluster

Analysis [Vermunt & Magidson 2002], Mixture Likelihood Approach

to Clustering [McLachlan & Basford 1988, Everit 1992], Unsupervised

Learning [McLachlan & Peel 1996], and others, nevertheless the sta-

tistical techniques behind all of them are the same.

In Mixture Models, as well as in many other clustering techniques, the

number of clusters, i.e. the number of components, has to be defined

a priori. This problem will be explicitly discussed in subsection 2.4.3.

Other issues related to the use of Mixture Models concern the esti-

mation algorithm used to estimate the density function and its con-

vergence in local optima, as well as the choice of starting values (cf.

subsection 2.4.2).

2.4.1 A general definition of Mixture Models

Assuming that P variables have been measured on N units, xi is a row

vector of P dimensions containing the values of the P variables for the

i-th unit. Under the Finite Mixture Models each xi can be viewed as

arising from a specific k-th population. The probability density func-

tion associated to the vector xi can be represented by the general form

fk (xi|θk), where θk is the vector of all parameters associated with the

specific form of the density function chosen for the k-th class.
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Distributions of the exponential family, such as the normal, the Pois-

son, the exponential gamma and many others are usually used as

density functions in a Mixture Model. As a matter of fact, all the

distributions of the exponential family can be studied simultaneously,

rather than as a collection of unrelated cases. Moreover, all these

distributions are characterized by a mean value, µpk and possibly a

dispersion parameter specific for each variable. In the case of nor-

mally distributed data, for example, θk contains the means, µpk, and

the variances, σ2
pk, of the normal distribution within each class.

Once the conditional density function is defined as above, the un-

conditional density function can therefore be represented as a mixture

of the conditional, i.e. class specific, density function:

f (xi|φ) =
K∑
k=1

πkfk (xi|θk) (2.2)

where φ = (π,θ) is the vector of all unknown parameters, and πk’s

are the mixing proportions. The summation on the right-hand side

indicates that the distribution of xi is a weighted mean of the class

specific distribution, where the mixing proportions serve as weights.

The mixing proportions πk are nonnegative quantities subject to the

following constraints:

πk ≥ 0 (2.3)
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and

K∑
k=1

πk = 1 (2.4)

The aim of the Mixture Models is to estimate the parameters of each

density function and the mixing proportions. In other words, the

goal is to estimate the parameters vector φ = (π,θ) by a maximum

likelihood approach.

In this sense, the likelihood function for φ can be easily formulated

as:

L (φ;X) =
N∏
i=1

f (xi|φ) . (2.5)

This equation measures the likelihood that the parameters vector φ

could have produced the observed vector xi. The same results can be

obtained by working on the log-likelihood function defined as:

logL (φ;X) =
N∑
i=1

log f (xi|φ) =
N∑
i=1

log

(
K∑
k=1

πkfk (xi|θk)

)
. (2.6)
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An estimate of φ can be obtained as a solution of the following max-

imization problems:

max L (φ;X) =
N∏
i=1

f (xi|φ) (2.7)

subject to
K∑
k=1

πk = 1 and πk ≥ 0

i.e. by maximizing the likelihood in equation 2.5, with respect to φ

and under the constraints in equations 2.3 and 2.4. The same can be

obtained referring to the log-likelihood function expressed in 2.6.

The maximization problems in 2.7 can be resolved easily by means of

standard optimization routines such as the Newton-Raphson method

[McHugh 1956, McHugh 1958] or by using the Expectation-Maximization

(EM) algorithm [Dempster, Laird & Rubin 1977].

The Newton-Raphson method does not always assure the convergence,

but when the convergence is achieved it requires fewer iterations than

the EM algorithm. The EM algorithm, instead, always assures the

convergence at least in a local maximum. Moreover, the EM algo-

rithm, thanks to its computational simplicity, is easily programmed.

Although there is no evidence that the EM algorithm performs better

than numerical optimization, it is preferred in general [Titterington

1990].

A detailed discussion on the EM algorithm and on its major draw-

backs will be provided in subsection 2.4.2.
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Once the parameters are estimated, i.e. once φ is obtained, it is pos-

sible to estimate for each unit the posterior class membership proba-

bility. This provides a fuzzy clustering of units in K classes.

Each unit belongs to each class by a probability given by:

ρik = P (k|xi) =
P (k) · P (xi|k)

P (xi)
=

πkfk (xi|θk)∑K
k=1 πkfk (xi|θk)

(2.8)

Where P (k) is the probability of belonging to a class independently

from the xi values, i.e. the size of the class πk; P (xi|k) is the prior

probability of membership; and P (xi) is the probability to show specif

xi values independently from the class membership. That is finally an

application of the Bayes theorem [Bayes 1763/1958].

A partition of the N units in nonoverlapping classes is possible by

assigning each unit to the class to which it has the highest estimated

posterior probability of membership.

2.4.2 The EM algorithm and the other estimation

methods

The maximization problem expressed by equation 2.7 was first solved

using the method of moments [Pearson 1894, Quandt & Ramsey 1978].

Nevertheless, nowadays it is usually solved by means of two main

methods: the EM algorithm [Dempster et al. 1977] and the Newton-

Raphson method [McHugh 1956, McHugh 1958]. These are both it-
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erative procedures aiming at providing a numerical solution to the

likelihood. The EM algorithm provides a solution to the maximum

likelihood estimation in incomplete-data frameworks. The incomplete-

data situation where the EM algorithm has been applied includes not

only evident incomplete-data situations, such as the presence of miss-

ing values, but also many other situations where the incompleteness

is not so evident, as namely in Mixture or Latent Classes.

The EM algorithm

The presentation of the EM algorithm is generally due to Dempster

et al. [1977]. Nevertheless, before Dempster, Laird and Rubin’s work

many authors had proposed some methods that then turned out to

be special applications of the EM algorithm, see for example New-

comb [1886], McKendrick [1926], Healy & Westmacott [1956] and Buck

[1960].

In the case of the Mixture Model estimation, the aim of the maxi-

mization problem expressed in equation 2.7 is to estimate the model’s

parameters, θ and the membership values π, i.e. provide an estimate

of φ, with φ = (π,θ). The EM algorithm allows us to solve this

problem by maximizing at each iteration a simplified function. This is

obtained by associating to the incomplete-data problem a complete-

data problem for which the ML is computationally easier to handle.

This is achieved by adding at each iteration additional information

that replaces unobserved data.

In the Mixture Models the unobserved data to be replaced is the mem-
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bership value, πik, of the i-th unit to the k-th class. The additional

information to be added is the expected membership, zik, of a unit to

a class, given a set of preliminary estimates of the model’s parameters.

Each iteration of the EM algorithm is composed of two steps, the

E-step (Expectation Step) in which the expectations of the member-

ship value, zik, are computed given a provisional estimate of θ, and

the M-step in which the expectation of the log-likelihood obtained in

E-step is maximized with respect to the parameters.

In more formal terms, in the first iteration let zik be one if the i-the

unit belongs to the k-th class and zero otherwise, i.e.:

zik =

{
1 if i ∈ k
0 if i /∈ k

(2.9)

The zik values are included in a Z matrix of dimensions N by K.

Once the data is “completed” by means of the z’s values, the complete-

data log-likelihood function defined in 2.6 can be rewritten as:

logL (φ) =
K∑
k=1

N∑
i=1

(zik log fk (xi) + zik log πk) (2.10)

The first term of this equation, i.e.
∑K

k=1

∑N
i=1 zik log fk (xi), does

not depend on φ, i.e. on π. Since equation 2.10 is linear in zik, the

E-step of the second iteration simply requires the calculation of the
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expectation of zik given the observed data xi:

E (zik|xi) = z
(2)
ik = ρik (2.11)

The ”new” value of zik, that can be shown to be equal to the pos-

terior probability that unit i belongs to class k, is so used to obtain

a provisional estimate of the completed log-likelihood function, i.e.

E (logL (φ|xZ)). This value is maximized in the M-step with respect

to the πik to give:

π
(3)
k =

N∑
i=1

z
(2)
ik /N (2.12)

Thus, the estimate of the prior probability at each step is the average

of the posterior probability in each class: each unit contributes to the

estimation of πk according to its posterior probability of membership

in the k-th class calculated in the previous iteration.

The two steps are alternated until there is convergence on the increase

of the likelihood function value. It is important to notice that conver-

gence is more a stopping rule than a real convergence. As a matter of

fact, convergence of the EM algorithm is achieved when the likelihood

function value does not increase noticeably from one step to another.

As said, one of the major reasons to use the EM algorithm is that

transforming an incomplete-data situation to a complete-data one in-

volves maximizing in the M-step a complete likelihood function that
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is often computationally easier. If this is not the case, i.e.if even the

complete likelihood function is still difficult to handle, then the EM al-

gorithm is less attractive. Nevertheless, on several occasions the com-

plete likelihood function is easily estimated under some conditions.

Generalizations of the EM algorithm have recently been proposed to

handle this kind of situation, such as the Expectation-Conditional

Maximization (ECM) of Meng & Rubin [1993], the ECME algorithm

[Liu & Rubin 1994] and the Alternative ECM (AECM) by Meng &

van Dyk [1995].

The local maxima and others issues of the EM algorithm

Since Dempster et al. [1977] showed that the likelihood function value

does not decrease after an EM iteration, and since the likelihood func-

tion value increases from one step to another of the EM algorithm,

hence under fairly general conditions, the convergence is assured at

least in a local maximum. In particular, in the case where the likeli-

hood function L (φ) is unimodal, the EM sequence converges to the

unique ML solution irrespective of its starting value. Otherwise, the

convergence of the EM algorithm in a local or global maximum, and

rarely in a saddle point, depends on the choice of the starting values,

as related by McLachlan & Krishnan [1997].

The problem of multiple maxima in Mixture Models is well docu-

mented [Titterington et al. 1985]. In particular, conditions increasing

the perils to converge to local optima are: a large number of param-

eters to be estimated, limited information on the units leading to no
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correct starting values and groups’ density functions which are not

well separated. A great deal of advice has been proposed to solve

the convergence in local maxima. Most advised to use different start-

ing values for the EM algorithm, as well as using a priori descriptive

clustering method to obtain an initial partition of the units, that in

principle should be closer to the optimal solution than random start-

ing values.

Another criticism of the EM algorithm is that it does not provide an

estimate of the covariance matrix of the parameter estimates. Several

developments of the EM algorithm have been presented to overcome

this problem. Namely, the ones proposed by Louis [1982] and Meilijson

[1989].

The Newton-Rahpson type methods

The Newton-Raphson [McHugh 1956, McHugh 1958] methods are nu-

merical techniques allowing us to find zeros of a specified function, i.e.

aiming to solve maximization problems. Three different approaches

are included in this framework: the Newton-Raphson method, the

quasi-Newton methods and the modified Newton methods. A detailed

discussion on the Newton-Rahpson methods goes beyond the aim of

this work. For a more detailed discussion please refer to Dennis &

Schnabel [1983] and to Scales [1985].

The “pure” Newton-Raphson method uses a linear Taylor series ex-

pansion to find the zeros of the function. Usually, few iterations

are required to converge. Nevertheless, convergence is not always as-
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sured, namely in the case of the not concave log-likelihood function

[McLachlan & Basford 1988]. Since the Newton-Raphson method re-

quires the computation of the Information matrix (that is the negative

of the Hessian matrix), it provides the asymptotical variance of the

estimated parameters.

2.4.3 Select the number of classes in Mixture

Models

A crucial problem in clustering by Mixture Models is the choice of

the number of classes or groups to take into account, i.e. the number

of components to include in the mixture. Two main approaches exist

to determine the number of classes to be considered. The first one is

based on a penalized form of the likelihood function, the other uses

the likelihood ratio to perform a test. The two approaches are going

to be briefly discussed. The most recent development is, however, the

use of computationally intensive techniques like parametric bootstrap

[McLachlan & Peel 1999] and Markov Chain Monte Carlo methods

[Bensmail, Celeux, Raftery & Robert 1997].

Likelihood Ratio Test

The likelihood ratio test (LRT) appears to be the natural way to assess

the number of classes to take into account. The LRT can be used

to test the null hypothesis (H0) of K classes against the alternative

hypothesis (H1) of K∗ classes to consider, with K∗ > K. Usually the
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test is performed under the alternative hypothesis of K + 1 classes,

i.e.:

H0: k = K (2.13)

versus

H1: k = (K + 1) (2.14)

This test is simply based on the difference between the maximized

likelihood under H0 and H1, i.e.

− 2 log λ = 2 [logLH0 − logLH0 ] (2.15)

where λ is the likelihood ratio test statistic.

Given certain regularity conditions, the LRT statistic follows a chi-

square distribution with degrees of freedom equal to the difference

between the number of parameters under the null and the alterna-

tive hypothesis for nested models under the null hypothesis. Unfortu-

nately, in the case of Mixture Models, the LRT is not asymptotically

distributed as a chi-square. Because the H0 corresponds to a bound-

ary of the parameters space for H1, one of the regularity conditions

is broken [Böhning, Dietz, Schaub, Schlattmann & Lindsay 1994]. In

particular, under H0 the generalized likelihood ratio test statistic is

not asymptotically a full rank quadratic form [Aitkin & Rubin 1985,

Titterington 1990].

Several attempts have been made to propose different tests derived
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from LRT and based on a Monte Carlo procedure [Aitkin, Anderson

& Hinde 1981, Lachlan 1987, De Soete & De Sarbo 1991]. Neverthe-

less, all these proposed strategies are computationally hard. That is

why nowadays other criteria, such as Information based criteria are

preferred.

Information Criteria

As the likelihood increases with the addition of components to a Mix-

ture Model, i.e. with a higher number of classes, some indexes for

the assignment of the number of classes are based on a “penalization”

of the likelihood. Usually a term taking into account the number of

parameters in the model is subtracted from the likelihood, or log like-

lihood. This results in a penalized log likelihood yielding the so called

Information Criteria for the choice of the number of classes in a Mix-

ture Model approach to clustering.

Several Information Criteria are available. They are distinguished

from one another on the basis of the “penalization” term to apply

to log likelihood. These are heuristic criteria and it is not possible

to perform any test. The “best” model, i.e. the number of groups

to consider, is chosen comparing the criterion obtained for successive

numbers of classes and the model for which the chosen criterion is the

smallest is selected.

In a general form they are expressed by the equation:

C = −2 logL+ dtK (2.16)
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where tK is the number of parameters estimated and d is a constant.

Different criteria impose different values on d.

The classical Information Criterion is the Akaike’s one (AIC). It is

characterized by a d value equal to 2:

AIC = −2 logL+ 2tK (2.17)

Bozdogan in 1987 proposed a modified Akaike Information Criteria,

the MAIC, where d = 3 [Bozdogan 1987]:

MAIC = −2 logL+ 3tK (2.18)

Other criteria penalizing more the likelihood by means of a sample

size penalty are: the Bayesian Information Criteria (BIC), proposed

by Schwarz [1978]:

BIC = −2 logL+ log (N) tK (2.19)

and the Consistent Akaike Information Criteria (CAIC):

CAIC = −2 logL+ log (N + 1) tK (2.20)

Both are more conservative than the AIC and prefer models with fewer

classes than models with more classes. More recently new criteria us-

ing the estimated Information matrix have been proposed. Among

them, Bozdogan [1993] proposed the Informational Complexity crite-
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rion (ICOMP). This is an extension of Akaike’s Information Criterion

obtained by adding a correction for model complexity that is measured

by the complexity of the estimated inverse Information matrix.

ICOMP = −2 log (L) + tK log (tr {Σ})− log (|Σ|) (2.21)

where Σ is the covariance of the estimates obtained as the inverse of

the Information matrix. This criterion considers the balance between

improved fit with a more saturated model, i.e. a model with more

classes, and the increased complexity of such a model.

2.4.4 Assessment of class separation

Mixture Models provide a fuzzy clustering of the data. Each unit

belongs to each class with a probability value given in equation 2.8.

Therefore, once the number of classes is chosen (cf. subsection 2.4.3),

it is important to assess the class separation. As a matter of fact, it is

necessary to ensure that class centroids of the conditional density are

sufficiently separated for the selected number of classes.

The most simple way is just to look at the posterior probabilities. If

units are in great measure associated to a class with probability value

close to one, then we can conclude that classes are well separated.

Nevertheless, several indexes based on entropy have been proposed

to investigate the degree of class separation. The Entropy index in

equation 2.22 is an index bounded between zero and one. EN values

close to one indicate that classes are well separated, while EN values
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close to zero mean that there is no separation among classes. In fact,

values close to zero indicate that the posterior probabilities are equal

for each observation; this implies that the centroids of the conditional

distributions are not sufficiently separated.

ENK = 1−
∑N

i=1

∑K
k=1 ρik log (ρik)

N logK
(2.22)

where ρik is the posterior probability of membership of unit i to belong

to the k-th latent class (cf. equation 2.8). A modification to the

EN was proposed by Celeux & Soromenho [1996]. They proposed a

normed entropy criterion (NEC) defined as:

NECK =
ENK

logL (K)− logL (1)
(2.23)

where logL (K) and logL (1) are the values of the log-likelihood func-

tion in the case of K classes and in the case of a unique class.

A drawback of this index is that it is not defined in the case of K = 1.

Usually the EN index is preferred to others to assess class separation.





Chapter 3

Structural Equation Models:

several estimation techniques

for a unique model

3.1 Introduction

Modeling the real world is a fundamental task in Statistics. Models

are built for describing, understanding, estimating, reproducing and

inspecting real phenomena [Piccolo 1998]. As well-known, a model is

an exemplification of reality. The basic aim is to explain the com-

plexity inside a system by studying the relationships among variables

observed over statistical units.

Structural Equation Models (SEM) [Bollen 1989, Kaplan 2000] include

a number of statistical methodologies that allow us to estimate the
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causal relationships, defined according to a theoretical model, linking

two or more latent complex concepts, each measured through a num-

ber of observable indicators.

The basic idea is that complexity inside a system can be studied tak-

ing into account a whole of causal relationships among latent concepts,

called Latent Variables (LV), each measured by several observed indi-

cators usually defined as Manifest Variables (MV). It is in this sense

that, Structural Equation Models represent a joint-point between the

path analysis [Tukey 1964, Alwin & Hauser 1975] and the Confirma-

tory Factor Analysis [Thurstone 1931].

As a matter of fact, factor analysis presumes that a number of factors

(i.e. the latent variables) smaller than the number of observed vari-

ables are responsible for the shared variance-covariance among the

observed variables. Hence, SEM receive from Confirmatory Factor

Analysis the idea that different subsets or blocks of variables are ex-

pression of different concepts. Moreover, path models are a logical

extension of regression models as they involve the analysis of simulta-

neous multiple regression equations. More specifically, a path model

is a relational model with direct and indirect effects among observed

variables, while multiple-multivariate regression models being additive

by definition, only take into account direct relationships between the

independent variables and the dependent variables.

When the variables inside the path model are latent variables whose

measure is inferred by a set of observed indicators, path analysis is

termed Structural Equation Modeling.
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Since the 1970s, when two seminal papers were published approach-

ing SEM from two different perspectives, until now, several authors

have been interested in Structural Equation Models, approaching the

model in very different ways and dealing with very different kinds of

problems within. A non-exhaustive list of the main works in Struc-

tural Equation domain is given: [Bollen 1989, Hoyle 1995, Jöreskog

& Sörbom 1979, Kaplan 2000, Lohmöller 1989, Chin 1998, Fornell &

Bookstein 1982, Tenenhaus et al. 2005].

Essentially developed in a social domain, Structural Equation Models

were first introduced by Jöreskog [1970] as confirmatory models to as-

sess cause-effect relations among two or more set of variables, based

on the maximum likelihood (ML) estimation method (SEM-ML). This

method, also known as LISREL (LInear Structural RELations), has

been for many years the only estimation method for SEM. The term

LISREL was initially used for the software implementing the method-

ology [Jöreskog & Sörbom 1996]. However, it had such a rapid devel-

opment that the methodology and the software have been associated

to each other. Furthermore, it is important to notice that other esti-

mation techniques rather than the maximum likelihood approach can

be used to estimate Structural Equation Models, such as the Gen-

eralized Least Squares (GLS) or the Asymptotically distribution free

(ADF). All these methods are usually referred to as LISREL-type

estimation techniques. The factor common to all the LISREL-type



54 Structural Equation Models

estimation techniques is that they are the so-called covariance-based

methods. As a matter of fact, all these techniques aim at reproducing

the sample covariance matrix of the manifest variables by means of

the model parameters. The fundamental hypothesis underlining these

approaches is that the implied covariance matrix of the manifest vari-

ables is a function of the model parameters.

In 1975, Wold [1975] finalized a soft modeling approach to the analy-

sis of the relations among several blocks of variables observed on the

same statistical units. This method, known as PLS approach to SEM

(SEM-PLS) or as PLS Path Modeling (PLS-PM), is a distribution-

free approach that was developed as a flexible technique for handling

a huge amount of data characterized by missing values, strongly cor-

related variables and a small sample size as compared to the number

of variables.

Several authors have compared the two approaches over the years; see,

for example, Jöreskog & Wold [1982], Fornell & Bookstein [1982], Djk-

stra [1983]. The two approaches differ in the objectives of the analysis,

the statistical assumptions, the estimation procedures and the related

outputs.

New estimation techniques for Structural Equation Model estimation

have been presented recently. Namely, in 2003 Al-Nasser proposed

to extend Information theory knowledge at Structural Equation Mod-

els context via a new technique called Generalized Maximum Entropy
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(GME) [Al-Nasser 2003].

More recently, instead, Hwang & Takane [2004] presented the General-

ized Structured Component Analysis (GSCA). These new estimation

techniques remain in the optic of PLS approach to SEM since no dis-

tributional assumptions are required. Moreover, the same problems

characterizing the PLS-PM, namely the lack of a global optimizing

criterion, have yet to be successfully solved.

All these approaches to Structural Equation Models have to be consid-

ered as component-based estimation techniques. As a matter of fact,

in all these techniques the latent variable estimation plays a central

role.

In this chapter first we introduce the SEM notation and the specifica-

tion of the model, then the four estimation techniques (the LISREL-

type approach to SEM, the PLS approach, the GSCA and the GME)

will be discussed in the details. For each of these approaches the es-

timation procedure used, as well as the different indexes to assess the

model quality, will be discussed.

3.2 SEM: the bases

Structural Equation Models adhere to certain common drawing con-

ventions (cf. figure 3.1). Specifically, ellipses or circles represent the

latent variables and rectangles or squares refer to the manifest vari-

ables. Arrows showing causations among the variables (either latent
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Figure 3.1: Commonly used symbols in Structural Equation Models

or manifest), and the direction of the array define the direction of the

relation, i.e. variables receiving the array are to be considered as en-

dogenous variables in the specific relationship.

Moreover, each Structural Equation Model is composed of two sub-

models: the measurement or outer model and the structural or inner

model (cf. figure 3.2).
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Figure 3.2: Structural Equation Model representation

The measurement model takes into account the way which the man-

ifest variables are linked to the corresponding latent variable. Three

different types of measurement model are available in Structural Equa-

tion Models: the formative scheme, the reflective scheme and the

MIMIC mode (cf. figure 3.3). In a reflective scheme the set of manifest

variables are assumed to measure a unique underlying concept. Each

manifest variable reflects the corresponding latent variable and plays a

role of endogenous variable in the block specific measurement model.
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In the reflective measurement model, indicators linked to the same la-

tent variables should covary: changes in one indicator imply changes

in the others. Moreover, internal consistency has to be checked, i.e.

each block needs to be unidimensional. It is important to notice that

for the reflective schemes, the measurement model reproduces exactly

the factor analysis model, in which each variable is function of the

underlining factor.

Figure 3.3: Formative and Reflective Indicators

In the formative scheme, each manifest variable or each sub-block of

manifest variables represents different dimensions of the underlying

concept. The latent variable is obtained as a linear combination of

the corresponding manifest variables, thus each manifest variable is
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an endogenous variable in the measurement model. These indicators

need not to covary: changes in one indicator do not imply changes in

the others. Measures of internal consistency are not necessary.

The MIMIC scheme is a mixture of the reflective and formative schemes.

For each block, the same manifest variables are considered to be linked

to the latent variable following a formative scheme and others follow-

ing a reflective scheme.

Whatever scheme is used to build the measurement model, the param-

eters to be estimated are the so-called external or outer weights (wpq)

and the loadings (λpq).

The structural model, instead considers the relationship among the

latent variables. Parameters to be estimated in the inner model are

the path coefficients (βmj), i.e. the regression coefficients linking the

latent variables of each other, as well as the error terms for each re-

gression in the structural model.

In SEM literature there is no agreement on the notation used to de-

fine latent variables and all the other parameters of the models. As

a matter of fact, in covariance-based estimation techniques endoge-

nous and exogenous latent variables, as well as the related manifest

variables and parameters, are notated differently, while in component-

based estimation techniques, especially in PLS-PM, all latent variables

are notated in the same way regardless of their role in the regression-

like relationships.
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In this work, differently from the previous literature, we decide to use a

unique notation for all the approaches to Structural Equation Models.

In particular, we decide to use the same symbol to identify the latent

variables regardless of whether they are endogenous or exogenous vari-

ables. Nevertheless, a prime will distinguish between endogenous ((J))

and exogenous ((M)) latent variables if necessary.

The same logic will be applied to all the elements of the model.

A list of the symbols used in this work will be found at the beginning

of the thesis. Nevertheless, the following is a summarization of the

main symbols used in this chapter:

• the generic manifest variable in the q-th block will be indicated

by xpq, andXq is the matrix containing all the manifest variables

of the q-th block;

• the generic latent variable will be indicated by ξq, and Ξ is the

matrix containing all the latent variables;

• the generic outer weight linking the p-th manifest variables to

the corresponding latent one will be wpq, andW is all the matrix

of the outer weights in the model;

• the generic loading associated to the p-th manifest variable in

the q-th block will be indicated by λpq, and Λ is the matrix

containing all the loadings in the model;

• the generic path coefficient linking the m-th exogenous latent

variable to the j-th endogenous latent variable will be noted as



3.2. SEM: the bases 61

βmj, andB is the matrix of all the path coefficients in the model.

• the generic measurement residuals associated to the generic man-

ifest variable xpq in a reflective scheme will be indicated by εpq,

and the corresponding matrix containing all these measurement

residuals will be E;

• the generic measurement residuals associated to the generic man-

ifest variable xpq in a formative scheme will be indicated by δpq,

and the corresponding matrix containing all these measurement

residuals will be ∆;

• the generic structural residuals associated to the j-th endoge-

nous latent variable, will be indicated by ζj, and the matrix

containing all the structural residuals will be H ;

Taking the notation as listed above, Structural Equation Models can

be described in more formal terms as composed of two different mod-

els: the measurement model and the structural model.

If differences among endogenous and exogenous latent variables are

taken into account (like in the LISREL-type methods), the structural

model describing the causations among the latent variables can be

written for each unit in the model as:

ξ
(J)
i = B(J)ξ

(J)
i +B(M)ξ

(M)
i + ζi (3.1)
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or as: (
I −B(J)

)
ξ

(J)
i = B(M)ξ

(M)
i + ζi (3.2)

where ξ(J) are the endogenous latent variables in the model and ξ(M)

are the exogenous ones.

If no differences among endogenous and exogenous latent variables

are taken into account (like in PLS-PM) equations 3.1 and 3.2 can be

rewritten as:

ξi = Bξi + ζi (3.3)

Of course, the matrix B in equation 3.3 contains both the path co-

efficients (B(J)) interrelating the endogenous latent variables and the

path coefficients (B(M)) relating the exogenous latent variables to the

endogenous ones, i.e.:

B =

[
B(J)

B(M)

]
(3.4)

Both the equations 3.1 and 3.3 perfectly parallel the multiples-multivariate

regression. As a matter of fact, all the path coefficients, regardless of

whether they refer to endogenous or exogenous latent variables, are to

be considered equal to regression coefficients.

Different ways exist to formalize the measurement model according

to the type of relations supposed to link the manifest variables to the
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corresponding latent variable. In particular, as already said the rela-

tionship between latent and manifest variables could be formative or

reflective. These two schemes suppose a different conception of the

latent variable.

As a matter of fact, in a reflective scheme each manifest variable re-

flects the corresponding latent variable, thus it is related to the latent

variable by a simple regression model:

xpq = λpqξq + εpq (3.5)

The error term εpq represents the imprecision in the measurement pro-

cess. Furthermore, as the reflective block reflects the (unique) latent

construct, it should be unidimensional. Hence, the set of manifest

variables are assumed to measure the same unique underlying con-

cept. There exist several tools for checking the unidimensionality of a

block:

a) Cronbach’s alpha: a block is considered unidimensional if this

index is larger than 0.7

α =

∑
p 6=p′ cor(xpq,xp′q)

Pq +
∑

p 6=p′ cor(xpq,xp′q)
× Pq
Pq − 1

(3.6)

where Pq is the number of manifest variables in the q-th block.
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b) Dillon-Goldstein’s rho (or Jöreskog’s): a block is considered uni-

dimensional if this index is larger than 0.7

ρ =
(
∑Pq

p=1 λpq)
2

(
∑Pq

p=1 λpq)
2 +

∑Pq
p=1(1− λ2

pq)
(3.7)

c) Principal component analysis of a block: a block is considered

unidimensional if the first eigenvalue of the correlation matrix is

higher than 1, while the others are smaller.

According to Chin [1998] the Dillon-Goldstein’s rho is considered to

be a better indicator of the unidimensionality of a block than the

Cronbach’s alpha.

In a formative scheme, instead, each latent variable is obtained as

the linear combination of the manifest variables of the block, thus the

measurement model can be expressed as:

ξq =

Pq∑
p=1

wpqxpq + δpq (3.8)

The error term δpq represents the fraction of the corresponding latent

variable not accounted for by the manifest variables. Relationships

among manifest and latent variables can be specified either in a series

of equations, one for each observed (in reflective scheme) or latent (in

formative scheme) variable, as done in equations 3.5 and 3.8, or in
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matrix form, i.e. as:

X = ΞΛ +E (3.9)

for the reflective scheme, where Ξ is the N by Q matrix containing the

latent variable scores, Λ is the Q by P matrix containing the loadings

and E is the N by P matrix containing the external residuals (or

specification errors). And as:

Ξ = XW + ∆ (3.10)

for the formative scheme, where W is a P by Q matrix containing the

external weights linking each manifest variable to the corresponding

latent variable, and ∆ is the N by Q matrix containing the external

errors associated to each latent variable.

Moreover, the equations 3.9 and 3.10 , as well as the equations 3.5 and

3.8, can be rewritten considering distinctly the measurement model

concerning the endogenous blocks and the measurement model related

to the exogenous blocks.

Both the measurement and the structural models, as well as the way

to estimate the model coefficients (i.e. the path coefficients, the load-

ings and the external weights) in Structural Equation Models will be

presented in detail according to the chosen estimation techniques, i.e.

in LISREL-type models (cf. subsection 3.3.1), in PLS-PM (cf. subsec-

tion 3.4.1), in GSCA (cf. subsection 3.4.2) and in GME (cf. subsection
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3.4.3).

The several estimation techniques listed above are grouped into two

different approaches to Structural Equation Model estimation: the

covariance-based approach to Structural Equation Models and the

component-based approach to Structural Equation Models. The aim of

covariance-based techniques is to estimate model parameters in such a

way that the model becomes capable of “emulating” the analyzed sam-

ple covariance (or correlation) matrix. In component-based estimation

methods, instead, a key role is played by the estimation of the latent

variables in the model. In other words, the main aim of component-

based methods is to provide an estimation of the latent variables in

such a way that they are the most correlated with one another (ac-

cording to the path diagram structure) and the most representative

of each corresponding block of manifest variables. In the section 3.3,

the covariance-based estimation techniques, such as the SEM-ML, will

be shown in detail. In the section 3.4 the PLS Path Modeling and

the other component-based estimation techniques will be discussed in

depth.

3.3 Covariance-based Structural Equation

Modeling

The aim of the covariance-based techniques is to reproduce the sample

covariance matrix by the model. In other words, model coefficients
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are estimated in such a way as to reproduce the sample covariance

matrix. These techniques can be considered as a generalization of the

Confirmatory Factor Analysis to the case of multi-tables data linked

to one another. Therefore, in the covariance-based approach the mea-

surement model is only considered as reflective. Formative indicators

(i.e. formative manifest variables) are not allowed.

Different estimation techniques exist in a covariance-based approach to

Structural Equation Models. The first methods proposed by Jöreskog

[1970] to estimate Structural Equation Models is based on the maxi-

mum likelihood (ML) estimation method (SEM-ML). Since then, sev-

eral estimation techniques have been applied in Structural Equation

Models frameworks, keeping the aim of reproducing the sample co-

variance matrix. All these techniques are commonly referred to as

LISREL-type techniques. As a matter of fact, for a long time the

LISREL (LInear Structural RELations) software [Jöreskog & Sörbom

1996] was the main (and unique!) reference for Structural Equation

Models in covariance-based framework. To be point that the word

LISREL overlapped the more correct SEM-ML.

In reality, LISREL has to be used only to refer to the software, while

LISREL-type methods have to be used to refer to the classical methods

which allow us to estimate Structural Equation Models in a covariance-

based framework, such as the SEM-ML. Moreover the expression “LISREL-

type” has to be considered equivalent to covariance-based approach to

Structural Equation Models.
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3.3.1 The LISREL-type Structural Equation Mod-

els

Structural Equation Models were first introduced by Jöreskog [1970]

as confirmatory models to assess cause-effect relations between two or

more set of variables, based on the maximum likelihood (ML) estima-

tion method (SEM-ML). This method, also known as LISREL (LInear

Structural RELations), has been for many years the only estimation

method for SEM. As already said, the term LISREL was initially used

for the software implementing the SEM-ML. However, it had such a

rapid development that the methodology and software have been as-

sociated to each other.

Furthermore, since the 70’s many other estimation techniques besides

the maximum likelihood approach, have been presented, such as Gen-

eralized Least Squares (GLS) or the Asymptotically Distribution Free

(ADF).

Here, we first introduce the model specification of the LISREL-type

Structural Equation Models, as well as the model identifiability, and

all the other issues common to all estimation techniques. Then, the

different estimation techniques will be discussed. Finally, the quality

indexes used in a LISREL-type framework will be presented.

The LISREL-type model specification and other issues

Traditionally, in the LISREL-type Structural Equation Models the

endogenous and the exogenous latent variables (as well as all the cor-

responding parameters in the models) are indicated differently. As a
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matter of fact, in Jöreskog’s notation the Greek letter η refers to en-

dogenous latent variables while ξ refers to exogenous latent variables.

Here, the author prefers to use the same symbol for all the latent vari-

ables and the corresponding parameters, regardless of whether they

are endogenous or exogenous. Therefore, the symbol ξ refers to a

generic latent variable.

Nevertheless, a prime will be used to distinguish between endogenous

(ξ(J)) and exogenous (ξ(M)) latent variables as well as for all the other

parameters in the model.

Let S be the sample (i.e. observed) covariance matrix associated with

the manifest variables and Σ
(
Ω̂
)

be the predicted (i.e. implied) co-

variance matrix obtained by estimating model parameters (Ω). Since

the covariance-based approaches to Structural Equation Models aim

at reproducing the sample covariances matrix, then it is possible to

identify a so-called discrepancy function F as some differences between

the sample covariance matrix and the implied covariance matrix:

F = f (S,Σ (Ω)) (3.11)

The discrepancy function F assumes different forms with regards to

the estimation technique used to estimate the model parameters. Nev-

ertheless, regardless of the estimation technique used, the discrepancy

function F must have the following properties:

1. F is a scalar;



70 Structural Equation Models

2. F ≥ 0

3. F = 0 if and only if Σ (Ω) = S

4. F is continuous in S and in Σ (Ω).

Minimizing the discrepancy function that satisfies these condition leads

to consistent estimators of the model parameters (Ω̂) [Brown 1984].

The several estimation techniques available to estimate model parame-

ters in the LISREL-type Structural Equation Models will be discussed

afterward (cf. subsection 3.3.1). Here, we are interested in defining

the implied covariance matrix using model parameters.

According to equation 3.1, the structural model for LISREL-type mod-

els is:

ξ
(J)
i = B(J)ξ

(J)
i +B(M)ξ

(M)
i + ζi (3.12)

Moving all the endogenous latent variables to the left side of the equa-

tion 3.12 yields an alternative form of the structural model equation:(
I −B(J)

)
ξ

(J)
i = B(M)ξ

(M)
i + ζi (3.13)

and to:

ξ
(J)
i =

(
I −B(J)

)−1

B(M)ξ
(M)
i + ζi (3.14)
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The equations 3.12, 3.13 and 3.14 are equivalent. They represent

different forms to express the structural model in LISREL-type Struc-

tural Equation Models. This last reformulation of the structural model

is useful for expressing the structural model in terms of covariances.

As a matter of fact, equation 3.14 is similar to the Confirmatory Factor

Analysis model. Therefore, the covariance matrix of the endogenous

latent variables can be written as:

Σ
ξ
(J)
i ξ

(J)T

i

=
(
I −B(J)

)−1

B(M)E
(
ξ

(M)
i ξ

(M)T

i

)
B(M)T

(
I −B(J)

)−1T

+

+
(
I −B(J)

)−1

E
(
ζiζ

T
i

) (
I −B(J)

)−1T

(3.15)

Let Φ be the covariance matrix of the exogenous latent variables, i.e.:

Σ
ξ
(M)
i ξ

(M)T

i

= Φ = E
(
ξ

(M)
i ξ

(M)T

i

)
(3.16)

and let Ψ be the covariance matrix of the structural residuals, i.e.:

Ψ = E
(
ζiζ

T
i

)
(3.17)

then the equation 3.15 can be rewritten as:

Σ
ξ
(J)
i ξ

(J)T

i

=
(
I −B(J)

)−1

B(M)ΦB(M)T
(
I −B(J)

)−1T

+

+
(
I −B(J)

)−1

Ψ
(
I −B(J)

)−1T

(3.18)



72 Structural Equation Models

while the covariance matrix associated to the exogenous latent vari-

able is expressed in equation 3.16.

In LISREL-type Structural Equation Models the measurement model

is only reflective. No formative indicators are allowed in covariance-

based approaches. Moreover, two different measurement models are

identified, one for the manifest variables related to the exogenous la-

tent variables and the other for the manifest variables related to the

endogenous latent variables. For these reasons, and to recall the equa-

tion 3.5, the measurement models for LISREL-type Structural Equa-

tion Models can be written, for each unit in the model, as:

x
(M)
i = Λ(M)ξ

(M)
i + ε

(M)
i (3.19)

for the exogenous blocks, and as:

x
(J)
i = Λ(J)ξ

(J)
i + ε

(J)
i (3.20)

for the endogenous blocks.

The two lambda matrices (Λ(M)) and Λ(J) contain the external load-

ings, while the vectors ε
(M)
i and ε

(J)
i are the residuals associated to the

manifest variables.

As in Confirmatory Factor Analysis, the implied covariance matrix as-

sociated to the manifest variables is obtained for the exogenous block
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as:

Σ
X(M)X(M)T = Λ(M)E

(
ξ(M)ξ(M)T

)
Λ(M)T + E

(
ε(M)ε(M)T

)
(3.21)

Using Θ(M) to represent the residual covariance matrix, i.e.:

Θ(M) = E
(
ε(M)ε(M)T

)
(3.22)

and being Φ(M) the covariance matrix of the exogenous latent vari-

ables, then the equation 3.21 can be rewritten as:

Σ
X(M)X(M)T = Λ(M)ΦΛ(M)T + Θ(M) (3.23)

For the manifest variables of the endogenous blocks, instead, the co-

variance matrix is:

Σ
X(J)X(J)T = Λ(J)E

(
ξ(J)ξ(J)T

)
Λ(J)T + Θ(J) (3.24)

where the expected value of ξ(J)ξ(J)T cannot be immediately expressed,

being function of the structural model parameters (c.f. equation 3.18).

Replace equation 3.18 in equation 3.24, yields to:

Σ
X(J)X(J)T = Λ(J)

[(
I −B(J)

)−1
B(M)ΦB(M)T

(
I −B(J)

)−1T
]

Λ(J)T +

+Λ(J)

[(
I −B(J)

)−1
Ψ
(
I −B(J)

)−1T
]

Λ(J)T + Θ(J) (3.25)
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that can be rewritten in a more compact way as:

Σ
X(J)X(J)T = Λ(J)

(
I −B(J)

)−1 (
B(M)ΦB(M)T + Ψ

)(
I −B(J)

)−1T

Λ(J)′ +

+Θ(J) (3.26)

Assuming that the vector ξ
(M)
i , is uncorrelated with all the errors in

the model (ζi, ε
(M)
i and ε

(J)
i ), i.e.:

E
(
ξ

(M)
i , ε

(M)T

i

)
= E

(
ε

(M)
i , ξ

(M)T

i

)
= 0 (3.27)

E
(
ξ

(M)
i , ε

(J)T

i

)
= E

(
ε

(J)
i , ξ

(M)T

i

)
= 0 (3.28)

E
(
ξ

(M)
i , ζTi

)
= E

(
ζi, ξ

(M)T

i

)
= 0 (3.29)

and assuming that the errors are uncorrelated with one another (i.e.

that the error covariance matrices Ψ, Θ(J) and Θ(J) are diagonal ma-

trices) then, the covariance matrices between the endogenous and the

exogenous manifest variables are:

ΣX(M)X(J) = Λ(M)ΦB(M)T
(
I −B(J)

)−1T

Λ(J)T (3.30)

and

ΣX(J)X(M) = Λ(J)
(
I −B(J)

)−1

B(M)ΦTΛ(M)T (3.31)

with ΣX(M)X(J) = (ΣX(J)X(M))
T .

The decomposition of the implied covariance matrix among the man-



3.3. Covariance-based Structural Equation Modeling 75

ifest variables is:

Σ (Ω) =

[
Σ
X(M)X(M)T ΣX(M)X(J)

ΣX(J)X(M) ΣX(J)X(J)

]
(3.32)

where the matrix elements are obtained according to the equations

3.23, 3.26, 3.30, 3.31.

Several techniques has been developed to estimate the model parame-

ters (i.e.: Λ(M), Λ(J),B(M),B(J), Φ, Ψ, Θ(M), Θ(J)) in order to obtain

the implied covariance matrix according to equation 3.32. These will

be discussed afterward in this section.

Regardless of the estimation method used, the model needs to be

identifiable in order to be estimated. A model is identifiable if the co-

variance matrix can be uniquely decomposed in function of the model

parameters. This entail that the number of covariances among the

manifest variables must be larger than the number of parameters to

be estimated. Therefore, the degrees of freedom (df) of a model are

obtained as the difference between the number of available covariances

and the number of model parameters:

df =
P (P + 1)

2
− t (3.33)

where P is the number of manifest variables in the model and t is the

number of parameters to be estimated.
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A statistical model is perfectly identified if the information available

implies that there is one best value for each parameter in the model.

The perfectly identified models are models showing 0 degrees of free-

dom, that is the reason for which they are called saturated model.

Moreover, perfectly identified models yield a trivially perfect fit, mak-

ing the test of fit uninteresting. On the contrary, a model is overiden-

tified if there are more knowns than unknowns. Overidentified models

may not fit well and this is their interesting feature. They are charac-

terized by positive degrees of freedom.

Nevertheless, having a positive degrees of freedom is only a necessary

condition for a model to be identified, not a sufficient one. It is for

this reason that several methods have been proposed to determine

model identification. For further information on model identification

in Structural Equation framework please refer to Bollen [1989].

The estimation techniques for the LISREL-type model

Several estimation techniques have been applied to the LISREL-type

Structural Equation Models. For all of these techniques the aim is to

minimize the discrepancy function F , in such a way as to obtain an

implied covariance matrix (Σ̂), function of the estimated parameters,

that is as close as possible to the sample covariance matrix. Where Σ̂

stands for the implied covariance matrix for a specific estimate of the

models parameters Ω̂, i.e. :

Σ̂ = Σ
(
Ω̂
)

(3.34)
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Once the discrepancy function defined as:

F = S − Σ̂ (3.35)

the various estimation techniques are different as regards the form of

the discrepancy function used.

The most widely used discrepancy function for LISREL-type Struc-

tural Equation Models is the Maximum Likelihood (ML) function.

Following this approach, the discrepancy function to be minimized is:

FML = ln
∣∣∣Σ̂∣∣∣− ln |S|+ tr

(
SΣ̂

−1
)
− P (3.36)

where tr is the trace of a matrix, i.e. the sum of the diagonal elements

of a matrix. As Σ̂ converge to S, Σ̂ inverse will approximate S in-

verse and SΣ̂
−1

will approximate an identity matrix (SS−1). Because

an identity matrix has ones on the diagonal, the trace of SΣ̂
−1

will

be equal to the matrix size, i.e. to P . Thus, if the model is able to

reproduce exactly the sample covariance matrix, then the F expressed

in equation 3.36 will be equal to zero.

The use of the discrepancy function defined in equation 3.36 is based

on the assumption that the manifest variables have a multinormal

distribution or that the sample covariance matrix S has a Wishart

distribution. Moreover, we have to assume that both the implied and

the sample covariance matrices are positive-definite, which means that

they are non-singular.
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Since the discrepancy function expressed in equation 3.36 is usually a

complicated function, numerical iteration algorithms, such as the EM

algorithm [Dempster et al. 1977] (cf. subsection 2.4.2), are used to

find zeros of the discrepancy function.

ML estimators are widely used thanks to their several asymptotic pro-

prieties. As a matter of fact, for large samples, ML estimators are

asymptotic unbiased, consistent and asymptotically efficient. More-

over, the distribution of a ML estimator approximates a normal dis-

tribution as sample size increases. This implies that, for large samples,

the ratio of the estimated parameter and its standard errors should

approximate a standardized normal distribution.

To conclude, FML is usually scale invariant and scale free. The scale

invariance properties implies that the value of the discrepancy function

is the same using the correlation or the covariance matrices (or more

generally it is the same for any change of scale). The scale freeness,

instead, implies that changing the measurement units of one or more

of the observed variables (or more in general, applying a linear trans-

formation on the manifest variables) leads to obtaining new estimates

of the model parameters that are simply related to the ones obtained

for the non-transformed manifest variables.

One application of the OLS (Ordinary Least Squares) principle in

a Structural Equation Model framework is the use of an Unweighted

Least Squares (ULS) estimation procedure. As OLS estimation tech-

nique allows us to obtain model parameters by minimizing the sum
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of squares of the residual term in a regression model, ULS allows us

to obtain model parameters by minimizing one-half of the sum of the

squares of each element in the residual matrix. The main difference

between the two approaches is that in a OLS optic, differences are

computed for individual observations, while ULS focuses on covari-

ance matrices. As a matter of fact, the discrepancy function to be

minimized in a ULS optic is defined as:

FULS =
1

2
tr

[(
S − Σ̂

)2
]

(3.37)

Finding zeros of the function expressed in equation 3.37 could be a

difficult task. Once again, iterative numerical techniques may help to

solve the minimizing problem involving the function 3.37.

Even if, in the case of a big sample size ULS often provide estimates

close to the ML’s ones, it does not lead to the asymptotically most effi-

cient estimators for the model parameters (because the ML estimators

are more efficients). Nevertheless, in the case of big sample size ULS

provides consistent estimators without the need to make assumptions

on the manifest variables distribution. To conclude, differently from

FML, the ULS discrepancy function is not scale invariant, nor is it

scale free. Using covariance matrices or correlation matrices will lead

to different FULS values that are not linked to each other. In other

words, it is not possible to obtain the parameters estimated by using

the covariance matrix from the one obtained by using the correlation

matrix (or vice versa).
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The ULS estimation technique implicitly weights all the elements of

the discrepancy function as if they have the same variances and co-

variances. This is exactly the same problem arising in classical regres-

sion problems when OLS estimators are applied in the case of het-

eroschedasticity of the errors. And, exactly as in a regression frame-

work, this limitation is overcome by using Generalized Least Squares

(GLS) estimators, i.e. by adding a weight matrix (D) to the ULS

discrepancy function. A general formulation of the GLS discrepancy

function is:

FGLS =
1

2
tr

[
D−1

(
S − Σ̂

)2
]

(3.38)

where the weights matrix for the residuals (D) is either a random

matrix that converges in probability to a positive definite matrix as

N → ∞, or it is a positive definite matrix of constants. It is easy to

notice that ULS is a particular case of GLS, when the weights matrix

is equal to the identity matrix.

Usually, estimators obtained by means of GLS are consistent esti-

mators and their distributions approximate normal distributions as

sample size increases. Nevertheless, these proprieties depend on the

choice of D. As a matter of fact, using D = I leads to obtaining

ULS estimators that, as already said do not have these proprieties. In

order to assure proprieties to the GLS estimators, the weights matrix

have to be chosen under two assumptions on the element of the sample

covariance matrix:
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1. the elements of S are unbiased estimators of the corresponding

variance/covariance, i.e. E (sij) = σij.

2. the elements of S are asymptotically multinormal distributed

with means equals to σij, and asymptotic covariance between sij

and sgh equal to N−1 (σigσjh + σihσjg).

This last assumption requires that the units are i.i.d. and that the

fourth-order moments of the manifest variables exist. Moreover, in

order to obtain asymptotic covariance equal to N−1 (σigσjh + σihσjg),

the manifest variables need to be multinormallly distributed, or at

least following other distributions without excessive kurtosis.

Under these assumptions, and choosing a weights matrix obtained so

that D−1 = cΣ−1, the GLS estimators have an asymptotic multinor-

mal distribution and are asymptotically efficient. Since no information

about the population covariance matrix (Σ) is available, the sample co-

variance matrix is the most used consistent estimator of Σ. Moreover,

usually c = 1. This leads to using S−1 as weight matrix. Thus, the

GLS discrepancy function expressed by equation 3.38 can be rewritten

as:

FGLS =
1

2
tr

[
S−1

(
S − Σ̂

)2
]

(3.39)

To conclude, GLS estimators are scale invariants and scale free. Nev-

ertheless, they require more assumption than ML ones. Among them,

the most restrictive assumption is the one on the asymptotic co-

variance of the elements of S. As a matter of fact, as underlined
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by Bollen [1989], if the manifest variables have very “fat” or “thin”

tails, the asymptotic covariance between sij and sgh may deviate from

N−1 (σigσjh + σihσjg).

Other standard estimation techniques can be used to estimate model

parameters in the LISREL-type Structural Equation Models, such as

the Asymptotically Distribution Free estimation technique. A detailed

discussion on all these techniques goes further than the aim of this

work. Nevertheless, the author wishes to discuss a new estimation

technique recently proposed by McDonald [1996].

This method is based on the ULS estimation technique. Nevertheless,

McDonald imposes as zero the measurement error covariance matrices,

i.e. Θ(M) = 0 and Θ(J) = 0

FMcDonalds =
∥∥∥S − Σ̂

∥∥∥2

(3.40)

Being a generalization of the Principal Component Analysis, this tech-

nique can be used even if the sample covariance matrix S is not of full

rank and the sample size is small.

The Quality indexes

Since in covariance-based approaches the aim is to reproduce the sam-

ple covariance matrix, the goodness of fit is related to the ability of

the model to reproduce the sample covariance matrix. As a matter of

fact, the differences between the implied covariance matrix computed

by the model (Σ̂) and the sample covariance matrix (S) can be con-
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sidered as a measure of fit.

Let F be the computed minimum value of the fit function (i.e. the

discrepancy function) obtained by means of one of the estimation tech-

niques discussed above, e.g. ML (see equation 3.36) or GLS (see equa-

tion 3.38).

Overall fit is assessed by a chi-square goodness of fit test based on the

F value:

χ2 = (N − 1)F (3.41)

Under the null hypothesis of perfecting fitting (i.e. F = 0), the χ2 ex-

pressed in equation 3.41 follows a chi-square distribution with degrees

of freedom (df) equal to the difference between the number of covari-

ates and the number of parameters in the model. The null hypothesis

is rejected (i.e. the model is considered not fit to the data) when the

p-value associated to the tested model is smaller than a certain signif-

icance value, usually 0.05.

If for perfectly fitting models sample size has no effect on the χ2 statis-

tic, for imperfectly fitting models, the higher the sample size is, the

higher the χ2 value is, regardless of the model fit (i.e. the F value).

Moreover, since the degrees of freedom remain the same regardless

of the sample size then the reference chi-square distribution against

which the χ2 is judged for significance also remains the same. This

implies that, with a very large sample size, there is a spurious ten-

dency to obtain large values of χ2, which tend to be associated to

small p-values. Consequently, for very large samples there will be an
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artificial tendency to reject the model, even if the model fits the data

well (i.e. even if the F value is close to zero). On the contrary, very

small samples are more easily associated to small χ2 values, and are

more easily accepted as good models.

Other indexes based on the discrepancy between the implied covari-

ance matrix and the sample covariance matrix have been proposed to

overcome this problem. Among them, the Root Mean Residual (RMR)

that is simply the square root of the mean of the squared discrepancy

between all the elements of the implied covariances matrix and the

sample covariances matrix:

RMR =

√√√√2
P∑
p=1

p∑
r=1

(spr − σ̂pr)2

P (P + 1)
(3.42)

(where, P is the total number of manifest variables, spr is the generic

element of the sample covariance matrix, and σ̂pr is the generic element

of the implied covariance matrix) and the Goodness of Fit Index (GFI)

expressed as:

GFIML = 1−
tr

[(
Σ̂
−1
S − I

)2
]

tr

[(
Σ̂
−1
S
)2
] (3.43)
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if the Maximum Likelihood estimators are used, and as:

GFIGLS = 1−
tr

[(
I − Σ̂S−1

)2
]

P
(3.44)

and

GFIULS = 1−
tr

[(
S − Σ̂

)2
]

tr
(
S2
) (3.45)

if the model is fitted respectively by GLS or ULS. In all the cases I is

an identity matrix.

The GFI assess the relative amount of the variances and covariances

jointly accounted for by the model (similar to the R2 in a regression

analysis). The GFI was initially devised by Jöreskog & Sörbom [1996]

for ML, GLS and ULS estimation. Since then, it has been generalized

to other estimation criteria.

Moreover, the GFI does not take into account the complexity of the

model. That is why, Jöreskog & Sörbom [1996] proposed also a mod-

ified version of the GFI considering the number of parameters in the

model: the Adjusted Goodness of Fit Index (AGFI):

Like the GFI, also the AGFI formulation changes according to the

estimation technique used. In particular, the AGFI changes since the

GFI uses changes:

AGFI = 1−
[
P (p+ 1)

2df

]
[1−GFI] (3.46)
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where df are the degrees of freedom of the model and GFI is the

Goodness of Fit Index computed according to the estimation tech-

nique used.

Both the GFI and the AGFI are bounded between 0 and 1. Values

close to 1 are usually associated with well-fitting models. Moreover,

the calculation of both the GFI and the AGFI is not affected by the

sample size. Nevertheless, simulation study performed by Anderson &

Gerbing [1984] suggest that the means of the sampling distribution of

GFIML and AGFIML tend to increase as sample size increases, while

they tend to decrease as the number of manifest variables in each block

or the number of latent variables increases.

Tests presented above assume that the closer the implied covariance

matrix is to the sample covariance matrix, the better the model fits.

Nevertheless, the null hypothesis of perfecting fit is too “restrictive”.

As a matter of fact, a model is used to analyze certain phenomena if

it should represent a useful simplification and approximation of the

reality rather than a precise replica of it. Following this idea, the null

hypothesis of perfecting fit is still not interesting. A weaker hypothesis

to be tested can be detected. That is why, other tests to assess model

quality have been presented, the so-called tests of close-fit.

Several fit indexes comparing the performance of the model to be

tested with a so-called null model have been presented. The null model

represents the extreme case of no relationships among the manifest

variables, so a less restrictive null hypothesis than the perfect fit one.
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In other words, all the manifest variables in the model are supposed to

be independent of one another. Only the elements on the diagonal of

the implied covariance matrix, i.e. the variable variances, are different

from zero. The null model is the “worst fitting” model. Comparing

the fit function value obtained for the null model (F0) to the one ob-

tained for the proposed model or the χ2 value obtained for the null

model (χ2
0) to the one obtained for the proposed model, allows us to

assess model quality.

The first index comparing the tested model performance to the null

model to be proposed was the Normed Fit Index (NFI) by Bentler &

Bonett [1980], defined as:

NFI =
F0 − F
F0

or (3.47)

NFI =
χ2

0 − χ2

χ2
0

In its original version this index allows us to compare the performance

of two alternative models rather than the performance of one model

against the null model, i.e. another F value can be used instead of the

F0. This is an index bounded between 0 and 1. Bentler and Bonett

suggested accepting the model if NFI is greater than 0.90.

Nevertheless, the NFI does not take into account the complexity of

the model. That is why Bentler and Bonett also proposed a modified
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version of the NFI: the Non Normed Fit Index (NNFI).

NNFI =
F0/df0 − F/df

F0/df0 − 1/ (n− 1)

or (3.48)

NNFI =
χ2

0/df0 − χ2/df

χ2
0/df0 − 1

The NNFI is a simple variant of the NFI that takes into account

the degrees of freedom of the tested model. Once again it could be

used to test two alternative models rather than the proposed model

against the null model. If one of the two tested models is the null

model as expressed in equation 3.48, then the NNFI is exactly the

Tucker-Lewis index (TLI) [Tucker & Lewis 1973].

The NNFI is robust across sample size changes [Hu & Bentler 1995,

Marsh, Balla & McDonald 1988], but it is not bounded between 0 and

1.

Another index based on the comparison between the proposed model

and the null model is the Incremental Fit Index (IFI) by Bollen [1989]:

IFI =
χ2

0 − χ2

χ2
0 − df

(3.49)

where df (the degrees of freedom of the proposed model) is the ex-

pected value of the χ2 obtained for the proposed model.

Further, other indexes have been developed to handle the case of non-

central chi-square distribution. Among them both the Bentler Fit In-
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dex (BFI) proposed by Bentler [1990], and the Relative Noncentrality

Index (RNI) by McDonald & Marsh [247–255]. These two indexes are

the same, and they are expressed as:

RNI or BFI =
[χ2

0 − df0]− [χ2 − df ]

χ2
0 − df0

(3.50)

This index is not bounded between 0 and 1. A modified version of the

BFI bounded between 0 and 1 was proposed by Bentler in 1990: the

Bentler Comparative Fit Index (CFI).

All these indexes can be used to test nested models, as is the case for

the null model against the proposed model. The implicit answer to

the question “how well does the model do compared with several or a

unique alternative model with the same data?” is obtained by com-

paring the results obtained for the model with the ones obtained for

the (nested) alternative models.

Models that differ as regards the relationships in the model cannot

be compared using the indexes discussed above. As a matter of fact,

in the case of non-nested models the simple way to compare the mod-

els’ performance is to compare absolute fit indexes such as the χ2 value

or the GFI. Nevertheless, direct comparison is complicated because

no direct statistical comparison is possible. For such models, other fit

indexes based on the Information Theory could be used. The Infor-

mation based indexes do not have ideal values to attain but provide a

relative ordering of different models estimated on the same sample.

Among them the most popular are the LISREL-type SEM version of
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the Akaike Information Criteria (AIC) (cf. subsection 2.4.3) as pre-

sented by Jöreskog:

AIC(Jöreskog) = χ2 − 2df (3.51)

and as presented by Tanaka:

AIC(Tanaka) = χ2 + 2fp (3.52)

where fp is the number of free parameters in the model.

Other fit indexes based on the information criteria and modified in

order to be applied to the LISREL-type Structural Equations Models

are the modified version of the AIC, i.e.:

CAIC = χ2 − ln (1 +N) df (3.53)

and the expected cross validation index (ECV I) by Browne & Cudeck

[1993]:

ECV I =
χ2

N
+ 2

fp

N
(3.54)

where, as above, fp is the number of free parameters in the model.

The following tests, instead, are based on the discrepancy between

the implied covariance matrix and the population covariance matrix

(Σ).

The Root Mean Square Error of Approximation (RMSEA) by Steiger
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& Lind [1980] is defined as:

RMSEA =

√
F0

df
(3.55)

where F0 is the value assumed by the fit function for S = Σ, i.e.:

F0 = Σ− Σ̂, (3.56)

so assuming that we are comparing the implied covariance matrix with

the population covariance matrix, and df are the degrees of freedom as

defined above (i.e. as the differences between the number of covariates

and the number of parameters in the model).

Since no information about the Σ value is available, the RMSEA ex-

pressed by equation 3.55 is estimated using the sample covariance

matrix as:

RMSEAestimated =

√
F

df
− 1

N − 1
(3.57)

where F as usual is the obtained value of the fit function:

F = S − Σ̂
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3.4 Component-based Structural Equation

Modeling

In this section the component-based estimation techniques will be dis-

cussed in detail. As already said, the aim of component-based methods

is to provide an estimate of the latent variables in such a way that they

are the most correlated with one another (according to the path di-

agram structure) and the most representative of each corresponding

block of manifest variables. These techniques are to be considered

as a generalization of Principal Component Analysis to multi-tables

data linked to one another. In the component-based approaches the

measurement model can be both reflective and formative.

The most recognized estimation technique among the component based

methods is the PLS Path Modeling [Wold 1975, Tenenhaus et al. 2005]

(cf. subsection 3.4.1). More recently, other component based tech-

niques have been presented. Namely, the Generalized Maximum En-

tropy (GME) by Al-Nasser [2003] (cf. subsection 3.4.3) and the Gen-

eralized Structured Component Analysis (GSCA) by Hwang & Takane

[2004] (cf. subsection 3.4.2).

3.4.1 The PLS Path Modeling

The PLS (Partial Least Squares) approach to Structural Equation

Models, also known as PLS Path Modeling (PLS-PM) has been pro-

posed as an alternative estimation procedure to the LISREL-type ap-

proach to Structural Equation Models (cf. section 3.3). In Wold’s
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[1975] seminal paper the main principles of partial least squares for

the principal component analysis [Wold 1966], were extended to situa-

tions with more blocks of variables. The first presentation of the PLS

Path Modeling is given in Wold [1979], and the algorithm is described

in Wold [1982] and in Wold [1985]. An extensive review on PLS ap-

proach to Structural Equation Models is given in Chin [1998] and in

Tenenhaus et al. [2005].

As all the component-based estimation techniques, also PLS Path Mod-

eling is an estimation method based on components. It is an iterative

algorithm that separately estimates the several blocks of the measure-

ment model and then, in a second step, estimates the structural model

coefficients. Differently from LISREL-type estimation techniques, PLS

Path Modeling aims at explaining at best the residual variance of the

latent variables and, potentially, also of the manifest variables in any

regression run in the model [Fornell & Bookstein 1982]. That is why

PLS Path Modeling is considered more an explorative approach than

a confermative one: it does not aim at reproducing the sample covari-

ance matrix.

Moreover, differently from LISREL-type estimation techniques, the

PLS Path Modeling is a completely free approach that does not re-

quire any distributional assumptions. For this reason the PLS-PM is

considered as a soft modeling approach: no strong assumptions (with

respect to the distributions, the sample size and the measurement

scale) have to be made. Nevertheless, PLS-PM does not seem to opti-

mize a well identified global scalar function. Until now convergence is
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proved only for path diagram with one or two blocks [Lyttkens, Aresk-

oug & Wold 1975]. Researches on this topic are on going.

Further, PLS Path Modeling provides a direct estimate of the latent

variable scores.

The Algorithm

PLS Path Modeling aims to estimate the relationships among Q blocks

of variables, which are expression of unobservable constructs. Specif-

ically, PLS-PM estimates through a system of interdependent equa-

tions based on simple and multiple regressions, the network of rela-

tions among the manifest variables and their own latent variables, and

among the latent variables inside the model.

Formally, let us as usual assume P variables observed on N units

(i = 1, . . . , N). The resulting data xnpq are collected in a partitioned

table of standardized data X:

X = [X1, . . . ,Xq, . . . ,XQ] ,

where Xq is the generic q-th block.

Let the measurement and structural models be defined as in equations

3.5, 3.8 and 3.1. And since PLS approach to SEM does not need to

distinguish between endogenous and exogenous latent variables, at

least at the inner and outer estimation level, the structural model can

be rewritten as:

ξq = Bξq + ζq (3.58)
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The measurement model for the reflective scheme, as well as for the

formative scheme, is the same as the one expressed in equation 3.5

and in equation 3.8. As a matter of fact, in a reflective scheme each

manifest is related to the latent variable by a simple regression model,

i.e:

xpq = λpqξq + εpq (3.59)

An assumption behind this model is that the residual εpq has a zero

mean and is uncorrelated with the latent variable of the same block:

E(xpq|ξq) = λpqξq (3.60)

This assumption defined predictor specification assures desirable esti-

mation properties in OLS modeling.

In a formative scheme, instead, each latent variable is obtained as a

linear combination of the manifest variables of the block. Thus the

measurement model can be expressed as:

ξq =

Pq∑
p=1

wpqxpq + δpq (3.61)

The error term δpq represents the fraction of the corresponding latent

variable not accounted for by the manifest variables. The assumption
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behind this model is the following predictor specification:

E(ξq|xpq) =

Pq∑
p=1

wpqxpq (3.62)

In PLS Path Modeling an iterative procedure allows us to estimate

the model parameters, i.e the outer weights (wpq) and the latent vari-

able scores (ξq). The estimation procedure is named partial since it

solves blocks one at a time by means of alternating single and multiple

linear regressions. The path coefficients (βmj) come afterwards from

a regular regression between the estimated latent variable scores.

The estimation of the latent variable scores are obtained through the

alternation of the outer and the inner estimations, iterating till conver-

gence. It is important to underline that no formal proof of convergence

has been provided until now. As a matter of fact, until now conver-

gence is proved only for path diagram with one or two blocks [Lyttkens

et al. 1975]. Nevertheless, empirical convergence is always assured.

The procedure starts by choosing arbitrary weights wpq. Then, in

the external estimation, each latent variable is estimated as a linear

combination of its own manifest variables:

νq ∝
Pq∑
p=1

wpqxpq = Xqwq (3.63)
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where νq is the standardized outer estimation of the q-th latent vari-

able ξq and the symbol ∝ means that the left side of the equation

corresponds to the standardized right side.

In the internal estimation, each latent variable is estimated by consid-

ering its links with the other Q′ adjacent latent variables:

ϑq ∝
Q′∑
q′=1

eqq′νq (3.64)

where ϑq is the standardized inner estimation of the q-th latent vari-

able ξq and the inner weights (eqq′) are equal (in a centroid scheme) to

the signs of the correlations between the q-th latent variable νq and

the νq′s connected with νq. Inner weights can be obtained following

other schemes rather than the centroid one. Namely, the inner weights

can be equal to:

1. the signs of the correlations between the q-th latent variable

νq and the νq′s connected with νq in the centroid scheme (the

Wold’s original scheme)

2. the correlations between the q-th latent variable νq and the

νq′s connected with νq in the factorial scheme (the Löhmoller

scheme)

3. the multiple regression coefficient of νq and the νq′s connected

with νq, if the νq is the inner estimation of an endogenous la-

tent variables, or the correlations coefficient for exogenous latent

variables in structural scheme.
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Once a first estimation of the latent variables is obtained, the algo-

rithm goes on by updating the outer weights wpq.

Two different ways are available to update the outer weights usually

related to the two different kinds of measurement model (i.e. the for-

mative or the reflective scheme) expressed in section 3.1:

• Mode A: each outer weight wpq is the regression coefficient in the

simple regression of the p-th manifest variable of the q-th block

(xpq) on the inner estimate of the q-th latent variable ϑq. As a

matter of fact, since the latent variable score xpq is standardized,

the generic outer weight wpq is obtained as:

wpq = cov (xpq,ϑq) (3.65)

i.e. as the covariance between each manifest variable and the

corresponding inner estimate of the latent variable.

• Mode B: the vector wq of the weights wpq associated to the man-

ifest variables of the q-th block is the regression coefficient vector

in the multiple regression of the inner estimate of the q-th latent

variable ϑq on its centered manifest variables Xq:

wq =
(
X ′qXq

)−1
X ′qϑq (3.66)

As already said, the choice of the external weight estimation mode is

strictly related to the nature of the model. For a reflective model the

Mode A is more appropriate, while Mode B is better for the formative
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model.

Furthermore, Mode A is suggested for endogenous latent variables,

while Mode B for the exogenous ones.

It is worth noticing that Mode B is affected by multicollinearity. In

such a situation, PLS regression may be used as a valuable alternative

to OLS regression to obtain the external weights according to equation

3.66.

The algorithm is iterated till convergence, which is demonstrated to

be reached for one and two-block models. However, for multi-block

models, convergence is always verified in practice.

After convergence, structural (or path) coefficients are estimated through

an OLS multiple regression among the estimated latent variable scores.

Wold’s original algorithm has been further developed [Lohmöller 1987,

Lohmöller 1989]. In particular, new options for computing both inner

and outer estimations have been implemented together with a specific

treatment for missing data and multicollinearity [Tenenhaus & Espos-

ito Vinzi 2005].

As regards this last point, in the case of multicollinearity among the

estimated latent variables, PLS regression can be used to obtain path

coefficient estimates instead of OLS regression.

Here, a schematic description of the original PLS Path Modeling Wold’s

algorithm is given:
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Algorithm 1 PLS Path Modeling Wold’s algorithm

Input: X = [X1, . . . ,Xq, . . . ,XQ] standardized MV’s;
Output: βj, wq, ξq;

1: for all q = 1, . . . , Q do
2: initialize wq

3: νq ∝
∑Pq

p=1wpqxpq = Xqwq

4: eqq′ = sign [cor (νq,νq′)] following the centroid scheme

5: ϑq ∝
∑Q′

q′=1 eqq′νq′

6: update wq : wpq = cor(xpq,ϑq) or wq = (X ′qXq)
−1X ′qϑq

7: end for
8: Steps 1 to 7 are repeated until convergence on a specific

latent variable is achieved, i.e. until:

νq∗ = ϑq∗

9: Once the convergence is assured:

(i) for each block the latent variable scores are computed as:

ξq ∝Xqwq,

(ii) for each endogenous latent variable ξ
(J)
j , the vector of the

path coefficients is obtained as:

βj =
(
ΞTΞ

)−1
Ξξ

(J)
j ,

where Ξ includes the exogenous latent variables scores of the
latent variables connected to the j-th endogenous latent vari-
able ξ

(J)
j .
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The Quality indexes

PLS Path Modeling lacks a well identified global optimization criterion

so that there is no global fitting function to be evaluated to determine

the goodness of the model. Furthermore, it is a variance-based model

strongly oriented to prediction. Thus, model validation focuses on the

model predictive capability. According to PLS-PM structure, each

part of the model needs to be validated: the measurement model, the

structural model and the overall model. That is why, PLS Path Mod-

eling provides three different fit indexes: the communality index, the

redundancy index and the Goodness of Fit (GoF ) index.

For each q-th block in the model the quality of the measurement model

is measured by means of the communality index measure:

Comq =
1

Pq

Pq∑
p=1

cor2
(
xpq, ξq

)
(3.67)

This index measures how much of the manifest variable variability in

the q-th block is explained by its own latent variable ξq. That means

how well the manifest variables describe the related latent variable.

Moreover, the communality index for the q-th block is nothing but

the average of the squared correlation between each manifest variable

in the q-th block and the q-th latent variable.

It is possible to measure the quality of the whole measurement model
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by means of the average communality index, i.e:

Com =
1

P

Q∑
q=1

PqComq (3.68)

This is a weighted average of all the Q block-specific communality

indexes (see equation 3.67) with weights equal to the number of man-

ifest variables in each block. Moreover, since the communality index

for the q-th block is nothing but the average of the squared corre-

lation in the block, then the average communality is the average of

all the squared correlations between each manifest variable and the

corresponding latent variable in the model, i.e.:

Com =
1

P

Q∑
q=1

Pq∑
p=1

cor2
(
xpq, ξq

)
(3.69)

Although the quality of each structural equation is measured by a

simple evaluation of the R2 fit index, this is not sufficient to evaluate

the whole structural model. Specifically, since the structural equations

are estimated once the convergence is assured, i.e. once the latent vari-

able scores are estimated, then the R2 values only take into account

the fit of each regression in the structural model. That is why a new

index is computed for each endogenous block in addition to the R2

value in order to take into account also the measurement model: the

redundancy index.
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The redundancy index computed for the j-th block, measures the por-

tion of variability of the manifest variables connected to the j-th en-

dogenous latent variable explained by the latent variables indirectly

connected to the block, i.e.:

Redj = Comj ×R2
(
ξ

(J)
j , {ξq’s explaining ξ

(J)
j }
)

(3.70)

A global quality measure of the structural model is also provided by

the average redundancy index, computed as:

Red =
1

J

J∑
j=1

Redj (3.71)

where J is the total number of endogenous latent variables in the

model.

As aforementioned, there is no overall fit index in PLS Path Mod-

eling. Nevertheless, a global criterion of goodness of fit has been re-

cently proposed by Amato, Esposito Vinzi & Tenenhaus [2005]: the

GoF index.

Such index has been developed in order to take into account the model

performance in both the measurement and the structural model. For

this reason the GoF index is obtained as the geometric mean of the

average communality index and the average R2 value:

GoF =
√
Com×R2 (3.72)
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where the average R2 value is obtained as:

R2 =
1

J
R2
(
ξ

(J)
j ,
{
ξq’s explaining ξ

(J)
j

})
(3.73)

According to equations 3.67 and 3.73 the GoF index can be rewritten
as:

GoF =

√√√√√√
Q∑
q=1

Pq∑
p=1

Cor2
(
xpq, ξq

)
P

×

J∑
j=1

R2
(
ξ

(J)
j ,

{
ξq’s explaining ξ(J)

j

})
J

(3.74)

As PLS Path Modeling is a soft modeling approach with no distri-

butional assumptions, it is possible to estimate the significance of the

parameters based on cross-validation methods like jack-knife and boot-

strap [Efron & Tibshirani 1993].

It is also possible to build a cross-validated version of all the quality

indexes (i.e. of the communality index, of the redundancy index, and

of the GoF index) by means of a blindfolding procedure. For more

details on the blindfolding procedure please refers to Tenenhaus et al.

[2005].

A normalized version of the GoF has been presented by Tenenhaus,

Amato & Esposito Vinzi [2004].

This index is obtained by relating each term in equation 3.72 to the

corresponding maximum value.

In particular, it is well known that in principal component analysis the

best rank one approximation of a set of variables X is given by the
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eigenvector associated to the largest eigenvalue λ of the XTX matrix.

Furthermore, the sum of the squared correlation between each variable

and the first principal component of X is a maximum.

Therefore, if data are mean centered and with unit variance, the first

term in equation 3.77 is such that
∑Pq

p=1 cor
2
(
xpq, ξq

)
≤ λq. Thus, the

normalized version of the first term of the GoF is obtained as:

T1 =
1

P

Q∑
q=1

∑Pq
p=1 cor

2
(
xpq, ξq

)
λq

(3.75)

In other words, here the sum of the communalities in each block is

divided by the first eigenvalue of the block.

As concerning the second term of the equation 3.77, the normalized

version is obtained as:

T2 =
1

J

J∑
j=1

R2
(
ξ

(J)
j ,
{
ξq’s explaining ξ

(J)
j

})
ρ2
j

(3.76)

where ρj is the first canonical correlation of the canonical analysis of
matrices Xj containing the manifest variables associated to the j-th
endogenous latent variable, and Xq containing the manifest variables
associated to the exogenous latent variables explaining ξq.
Thus, according to equations 3.75, 3.76 and 3.72, the relative GoF
index is:

GoF =

√√√√√ 1
P

Q∑
q=1

∑Pq

p=1 Cor
2
(
xpq, ξq

)
λq

× 1
J

J∑
j=1

R2
(
ξ

(J)
j ,

{
ξq’s explaining ξ(J)

j

})
ρ2
j

(3.77)
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This index, is bounded between 0 and 1. Both the GoF and the

relative GoF are descriptive indexes, i.e. there is no inference-based

threshold to judge their values. Nonetheless, the higher their value is,

the best the model performance is. As a rule of thumb, a value of the

relative GoF equal to or higher than 0.9 clearly speaks in favor of the

model.

3.4.2 The Generalized Structured Component Anal-

ysis

Generalized Structured Component Analysis is a method recently pro-

posed by Hwang & Takane [2004] to estimate Structural Equation

Models. As usual, Structural Equation Models can be formalized tak-

ing into account both the structural and the reflective measurement

models as expressed by equations 3.1 and 3.5.

For the i-th unit the structural and measurement models can be rewrit-

ten as:

xi = Λξi + εi (3.78)

and

ξi = Bξi + ζi (3.79)

where: xi is a P by 1 vector containing all the manifest variables for

unit i, ξi is the vector of dimension Q by 1 of all the latent variables
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(both the J endogenous and the M exogenous ones) for the i-th unit,

Λ is a P by Q matrix of the loadings, B is a square matrix Q by Q

containing the path coefficients of the structural model (an element

of B is equal to zero if the relationship is not included in the model),

and εi and ζi are the two vectors of the residuals in the structural and

measurement models respectively.

GSCA integrates the two models expressed in equation 3.78 and in

equation 3.79 in a unique formulation, i.e.:[
xi

ξi

]
=

[
Λ

B

]
ξi +

[
εi

ζi

]
(3.80)

Moreover, in GSCA the latent variables are defined as weighted com-

ponents of the observed variables, i.e.:

ξi = Wxi (3.81)

where W is a Q by P matrix containing the component weights.

Then, the equation 3.80 can be rewritten as:[
I

W

]
xi =

[
0 Λ

0 B

][
I

W

]
xi +

[
εi

ζi

]
(3.82)

where:I is an identity matrix of order P .

Moreover, defining A =

[
0 Λ

0 B

]
, ri =

[
εi

ζi

]
and ui =

[
I

W

]
xi,
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the last equation can be rewritten as:

ui = Aui + ri (3.83)

As is easy to notice in GSCA all the manifest variables, as well as all

the latent variables, are included in the supervector ui of dimension

(P +Q) by 1. Moreover all the parameters of the model (i.e. the

loadings and the path coefficients) are included in the matrix A of

dimension (P +Q) by Q. As the authors underlined “differently from

the PLS-PM, in GSCA the structural and the measurement models

are not addressed separately, on the contrary they are combined in a

unique algebraic formulation” [Hwang & Takane 2004]. This allows

the authors to identify a unique function to maximize.

Therefore, the parameters of GSGA (W and A) are estimated so that

the sum of the squares of all residuals ri for the i-th unit is as small

as possible.

In other words, the following least-squares criterion is minimized:

ϑ =
N∑
i=1

(ui −Aui)′ (ui −Aui) (3.84)

with respect to W and A and under the constraint that the latent

variable scores are normalized, i.e.:
∑N

n=1 ξ
2
iq = 1.

This is equivalent to minimize:

ϑ = SS (U −UA) (3.85)
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where SS (X) = trace (X ′X).

An Alternating Least Squares (ALS) algorithm [de Leeuw, Young &

Takane 1976] is used so as to minimize equation 3.84. ALS algorithm

is an iterative procedure composed of two steps.

In the first step of ALS algorithm applied to GSCA A is update for

a fixed W . While, in the second step W is update for the value of

A estimated in the first step. These two steps are alternate until con-

vergence is assured, i.e. until the decrease in the function value falls

below a certain threshold value. For more details on ALS please refer

to de Leeuw et al. [1976].

Since ALS monotonically decrease the value of the chosen criterion the

convergence is assured. Nevertheless, it is not assured that the con-

vergence is reached in a global minimum. To overcome this problem

different procedures are available, namely using such “good” initial

values or running the algorithm with different starting values. In par-

ticular, Hwang & Takane [2004] suggest using a Constrained Compo-

nent Analysis to obtain such “good” starting values for W , and then

simply obtain A as least square estimate given W .

Generalized Structured Component Analysis can be performed with

both formative and reflective manifest variables. Moreover, as for the

PLS Path Modeling, GSCA includes a lot of existing standard multi-

variate techniques as special cases, for example the regression model,

the ANOVA and the discriminant analysis.
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The Quality indexes

Generalized Structured Component Analysis provides an overall mea-

sure of model fit based on the part of the endogenous variable variance

explained by the model: the FIT index. This index is given by:

FIT = 1− SS (U −UA)

SS (U)
(3.86)

The FIT index is a function of the residuals from the model summa-

rizing the discrepancy between the model and the data. The higher

the residual variance is, the smaller the FIT index is. Models showing

higher FIT index values are to be preferred to models showing lower

FIT index values.

Furthermore, the FIT index is bounded between 0 and 1: models with

FIT values close to one have to be considered “good” models, while

models with FIT values close to zero have to be rejected.

Nevertheless, FIT index does not take into account model complexity.

It is for this reason that more recently a new global quality index has

been developed: the Adjusted FIT index.

AFIT = 1− (1− FIT )
df0

df1

(3.87)

where df0 = NP is the number of degrees of freedom for the model

for which W = 0 and A = 0, and df1 = NP − fp is the degrees for

the model to test where fp is the number of free parameters.



3.4. Component-based Structural Equation Modeling 111

Other existing indexes can be used in the GSCA framework to as-

sess model quality. Namely, the GFI of Jöreskog & Sörbom [1996] for

the unweighted least-squares, and the Standardized Root Mean square

Residuals (SRMR). These two indexes are based on the discrepancy

between the sample covariance matrix and the covariance matrix ob-

tained by the model. Moreover, both the index values close to one

have to be considered as associated to a good fitted model.

3.4.3 The Generalized Maximum Entropy Approach

In 2003 Al-Nasser proposed an alternative method to estimate Struc-

tural Equation Models in a distribution free optic: the Generalized

Maximum Entropy Approach to SEM [Al-Nasser 2003]. This method

is an extension of the Generalized Maximum Entropy (GME) proce-

dure for general linear econometric model presented by Golan, Judge

& Miller [1996]. In this subsection first a review of the GME proce-

dure by Golan et al. [1996] will be done, then the GME approach to

Structural Equation Models will be presented.

The Generalized Maximum Entropy procedure

The Generalized Maximum Entropy procedure (GME procedure) for

the general linear econometric model presented by Golan et al. repre-

sents an estimation technique allowing us to obtain model parameter

estimates when the underlining model is incompletely known and the
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data are limited, partial or incomplete [Golan et al. 1996]. This estima-

tion technique is based on the Shannon’s entropy-information measure

[Shannon 1948] and on the Maximum Entropy Principle introduced by

Jaynes [1957a] [1957b].

Letting x a random variable observed on N unit, with possible out-

come x1, · · · , xN whose probability of occurrence are p1, · · · , pN , such

that
∑N

i=1 pi = 1. Shannon defined the entropy or the information of

entropy of the distribution of x as:

H (x) = −
N∑
i=1

pi ln (pi) (3.88)

where (−ln (pi)) is the amount of the self-information of the event

xi and 0 ln (0) = 0. The average of the self-information is defined

as the entropy. The function H reaches a maximum of ln (N) when

p1 = p2 = · · · = pN = 1/N , i.e. when all the possible outcome

x1, · · · , xN have the same probability of occurrence. While H is zero

when pi = 1 for the i-th unit and otherwise zero.

The GME procedure [Jaynes 1957a, Jaynes 1957b] allows us to ob-

tain the distribution function of the random variable x by recovering

the unknown probabilities pi. To recover the unknown probability

p’s that characterize a given data set, Jaynes proposes maximizing

entropy, subject to sample-moment information and adding up con-

straints on the probabilities [Jaynes 1957a, Jaynes 1957b]. The idea

behind this is that, if sufficient information on the data is not avail-

able, the best estimation of the true distribution is obtained using the
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frequency that maximizes the entropy. This principle was taken up

by Golan et al. [1996] to obtain an alternative estimation technique

to estimate regression model parameters in the case of an ill-posed

problem. Further information on GME estimation procedure can be

found in Skilling [1989] and Golan et al. [1996].

The Generalized Maximum Entropy procedure applied to model pa-

rameter estimation needs to express the model parameters, as well as

the errors in the model, in terms of probability values. This is why

the first step in all GME procedures is to convert the standard prob-

lem into a probability form. Moreover, the GME procedures needs,

for each parameter and error, to specify the support spaces, i.e the

ranges within which each estimated parameter and error lies. The

support space is specified, based on prior knowledge. Once the re-

parametrization of the model is obtained, the GME procedure can be

seen as a non linear programming problem maximizing the Shannon’s

Entropy measure (cf. equation 3.88) solved by numerical methods.

The Generalized Maximum Entropy procedure applied to model pa-

rameter estimation can be summarized in the following steps:

1. re-parametrization of the unknown parameters and of the dis-

turbance terms as a convex combination of the expected value

of a discrete random variable;

2. rewriting the model with the new re-parametrization as a con-

straint:
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3. formulation of the GME problem as non linear programming

problem, i.e.:

Objective function = Shannon’s Entropy measure

under:

• the normalization constraints

• the consistency constraints, which represent the new for-

mulation of the model

4. solving the non linear programming problem by using numerical

methods.

A reformulation of SEMs in a GME optic

Let x
(M)
i and x

(J)
i be the vectors of the manifest variables associated

with the exogenous latent variables and with the endogenous latent

variables observed for the i-th unit.

And let as usual, ξ
(M)
i and ξ

(J)
i be the vectors of the exogenous and

endogenous latent variables for the i-th unit.

Then, in the case of reflective scheme and according to equation 3.5,

the measurement model of a Structural Equation Model can be rewrit-

ten as:

x
(M)
i = Λ(M)ξ

(M)
i + ε

(M)
i (3.89)
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for the manifest variables associated to the exogenous latent variables,

and as:

x
(J)
i = Λ(J)ξ

(J)
i + ε

(J)
i (3.90)

for the manifest variables associated to the endogenous latent vari-

ables. Where Λ(M) and Λ(J) are the loadings associated to the mani-

fest variables of type M and of type J .

Further, according to equation 3.1 the structural model is:(
I −B(J)

)
ξ

(J)
i = B(M)ξ

(M)
i + ζi (3.91)

The above equations can be mixed in a unique matrix formulation of
the specified Structural Equation Model, i.e:

X(J) = Λ(J)
(
I −B(J)

)−1
[
B(M)

(
Λ(M)

)−1 (
X(M) −E(M)

)
+H

]
+E(J)(3.92)

where I is an identity matrix, E(M) and Z are the matrices con-

taining the measurement and structural errors, and
(
Λ(M)

)−1

is the

generalized inverse of Λ(M).

As already said, GME needs a re-parametrization of the model in

a probabilistic form. Therefore, in order to apply a GME procedure

to Structural Equation Models and following Al-Nasser’s [2003] work

we need to rewrite the parameters of the model so as to have them

expressed as probabilities.
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With this intent the model parameters (i.e. the structural coefficients

B(M) and B(J), the external loadings Λ(M) and Λ(J), as well as the

errors terms Z, E(M) and E(J)), are re-parametrized as the expected

values of discrete random variables with two or more sets of points. In

other words, each model parameter is transformed according to this

general formulation:

θ =
∑A

a=1 paϑa with
A∑
a=1

ϑa = 1

where A is the number of fixed points, θ is a generic parameter, ϑa

is a generic fixed point and pa is the probability associated to the

a-th fixed point. The transformation expressed in equation 3.93 is

applied to each element of the model parameter matrices. By way

of example the generic element β
(J)
mj of the matrix B(J) containing

the path coefficients associated to the endogenous latent variables is

re-parametrized as:

β
(J)
mj =

A∑
a=1

pmjab
(J)
mja (3.93)

under the constraint that
∑A

a=1 b
(J)
mja = 1.

Once all the parameters are re-parametrized according to equation

3.93, the Structural Equation Model expressed in a matrix form as in
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equation 3.92 can be rewritten as:

X(J) = ψ
(
b(M), b(J), l(M), l(J), e(M), e(J), z

)
(3.94)

where b(M) and b(J) are the random variables for the path coeffi-

cients re-parametrization (according to equation 3.93), l(M) and l(J)

are the random variables for the external loadings re-parametrization,

e(M) and e(J) are the random variables for the external errors re-

parametrization, and z is the random variable for the error term in

the structural equations.

For more details on GME re-parametrization of Structural Equation

Models please refers to Al-Nasser [2003].

According to the third step of the GME procedure, the parameter

estimates are obtained by solving by means of numerical algorithm a

non linear programming problem expressed as:

maxH
(
b(M), b(J), l(M), l(J), e(M), e(J), z

)
(3.95)

subject to:

(i) the consistency constraints, i.e:

X(J) = ψ
(
b(M), b(J), l(M), l(J), e(M), e(J), z

)
; (3.96)
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(ii) the normalization constraints, i.e:

A∑
a=1

ϑa = 1 (3.97)

for all parameters in the models.

where H is the entropy function as defined in equation 3.88.

As already said, numerical optimization techniques are used to solve

this system and to obtain parameter estimates.

In a simulation study, Ciavolino and Al-Nasser showed that the Gen-

eralized Maximum Entropy approach to Structural Equation Models

seems to work better than PLS Path Modeling in the presence of out-

liers [Ciavolino, Al Nasser & D’Ambra 2006]. Nevertheless, in the case

of high multicollinearity among manifest variables GME does not show

better results than PLS Path Modeling at least for moderate sample

sizes.

Further research on the GME approach to Structural Equation Mod-

els is required to specify better the capability and the drawbacks of

the GME approach.



Chapter 4

Latent class detection in

Structural Equation Models

4.1 Introduction

Traditionally, Structural Equation Models assume homogeneity over

the observed set of units. In other words, all units are supposed to be

well represented by a unique model estimated on all the units, i.e. the

global model. This assumption may however often turn out to be false.

In many cases it is reasonable to expect that different classes show-

ing heterogeneous behaviors may exist in the observed set of units,

and that treating all units as a single class may lead to biased results

both in terms of model parameters and of validation indexes [Jedidi

et al. 1997a, Jedidi et al. 1997b].
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The traditional approach to clustering in Structural Equation Model-

ing consists in estimating separate models for unit segments obtained

by external clustering techniques, either by assigning units to a priori

classes on the basis of external variables such as demographic or con-

sumption variables, or through cluster analysis. Concerning this last

point, in Structural Equation Models, classes can be obtained by per-

forming a cluster analysis either on the manifest or on the estimated

latent variable scores.

In other words, usually heterogeneity in Structural Equation Models

is handled by forming classes on the basis of such external variables or

on the basis of such standard clustering techniques on manifest and/or

latent variables, and then by using the standard multigroup structural

equation modeling of Jöreskog [1971] and Sörbom [1974].

None of these a priori approaches, however, can be considered really

satisfactory for several different reasons. Firstly, very rarely hetero-

geneity in the models may be captured by well-known observable vari-

ables playing the role of moderating variables [Hahn et al. 2002]. More-

over, clustering techniques on manifest variables or on latent variable

scores do not take into account in any way the model itself. Hence,

while the local models obtained by cluster analysis on the latent vari-

able scores will lead to differences in the group averages of the latent

variables but not necessarily to different models, the same method

performed on the manifest variables is unlikely to lead to different

and well-separated models, both in terms of model parameters and

of average latent variable scores. Additionally, clustering procedures
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may show some theoretical problems: traditional cluster analysis, in

fact, assumes independence among variables, while Structural Equa-

tion Models are based on the assumption that variables (latent or

manifest) are correlated [Jedidi et al. 1997b].

Apart from the methodological considerations, a priori unit clustering

in Structural Equation Models is not conceptually acceptable since no

causal structure among the variables is postulated: when information

concerning the causal relationships among variables is available (as it

is in the theoretical causal network of relationships), classes should be

looked for while taking into account this relevant piece of information.

In other words, a response-based clustering method should be used,

where the obtained classes are homogeneous with respect to the pos-

tulated model.

This approach to clustering is opposed to the traditional a priori clus-

tering, where classes are defined according to information which is not

related to the existing model but depends on external criteria.

In this chapter we focus on techniques for detecting unit segments

by response-based techniques in the case of unknown (latent) mod-

erating effects, i.e. when both the number and the structure of the

classes are not a priori known.

Ways to handle unobserved heterogeneity in three of the different ap-

proaches to SEM presented in chapter three will be presented. Firstly,

methods allowing response-based clustering in LISREL-type Structural
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Equation Models (cf. subsection 3.3.1) will be shown: the Structural

Equation finite Mixture Model (STEMM) by Jedidi et al. [Jedidi

et al. 1997a, Jedidi et al. 1997b] (cf. subsection 4.2.1) and the Bayesian

Finite Mixture SEM by Zhu & Lee [2001] (cf. subsection 4.2.2). Fur-

ther, unobserved heterogeneity in PLS Path Modeling (cf. section

3.4.1) framework will be presented. In this framework, several ap-

proaches will be described. Namely, the Finite Mixture PLS [Hahn

et al. 2002, Ringle et al. 2008] (cf. subsection 4.3.1), the PLS Ty-

pological Path Model [Squillacciotti 2005, Trinchera et al. 2006] (cf.

subsection 4.3.3), the PATHMOX [Sanchez & Aluja 2006, Sanchez &

Aluja 2007] (cf. subsection 4.3.2) and the PLS Path Modeling Clus-

tering [Ringle & Schlittgen 2007] (cf. subsection 4.3.4). To conclude,

response-based techniques for clustering in GSCA (cf. subsection 3.4.2)

will be investigated by the Fuzzy Clusterwise Generalized Structured

Component Analysis of Hwang et al. [2007] (cf. subsection 4.4.1).

A new technique to obtain response-based clustering in PLS Path Mod-

els, the Response Based Unit Segmentation in PLS-PM (REBUS-PLS)

[Trinchera 2007, Trinchera, Squillacciotti, Esposito Vinzi & Tenenhaus

2007, Trinchera, Romano & Esposito Vinzi 2007, Esposito Vinzi, Trinchera,

Squillacciotti & Tenenhaus 2008, Esposito Vinzi, Amato & Trinchera

2008], will be presented in chapter five.

To conclude, once the groups are identified it is very important to

assess the differences (and similarities) among the detected classes of
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units. In a Structural Equation framework, this essentially entails

comparing the obtained local models to one another and with the

global model. It is for this reason that the last section of this chap-

ter will be devoted to presenting the different techniques allowing us

to compare local models (cf. section 4.5). Since Structural Equation

Models are complex models, comparing local models entails taking

into account several aspects. Hence, the different ways to compare

model parameters in the several approaches to Structural Equation

Models will be first discussed (cf. subsection 4.5.2). Subsequently, la-

tent variable scores comparison (cf. subsection 4.5.3), as well as model

quality comparison (cf. subsection 4.5.4), will be examined.

4.2 Unobserved Heterogeneity in LISREL-

type models

In SEM-ML the multigroup Structural Equation Modeling of Jöreskog

[1971] and Sörbom [1974] is also usually used to handle unobserved

heterogeneity. If no well-known moderating variables are available,

several clustering techniques, such as K-means, are applied to the

manifest variables in order to form a priori classes of units, i.e. classes

of units built out of the model. Then, multigroup analysis is performed

on such detected classes of units.

Jedidi et al. in 1997 initially felt the necessity for a response-based

clustering technique in SEM-ML. The authors proposed to apply the

Finite Mixture Model to the Structural Equation Model and presented
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the STEMM (STructural Equation finite Mixture Model) [Jedidi et al.

1997a, Jedidi et al. 1997b]. Since then, the Finite Mixture Models

have been used also in a PLS Path Modeling context (cf. section 4.3).

More recently, Zhu and Lee developed a Bayesian approach to analyze

mixtures in Structural Equation Models [Zhu & Lee 2001]. Since then,

other works on the same topic have been presented [S.Y.Lee & Song

2002, Lee 2007]. Here, we first present the Jedidi et al. approach to

Finite Mixture Models in SEM framework (cf. subsection 4.2.1), and

then the Bayesian approach (cf. subsection 4.2.2).

4.2.1 Finite Mixtures in SEM-ML

The Structural Equation Finite Mixture Model (STEMM) by Jedidi et

al. [Jedidi et al. 1997a, Jedidi et al. 1997b] is a model-based clustering

technique which allows us to obtain response-based unit clustering in a

SEM-ML framework. This method simultaneously forms classes and

obtains class-specific estimates for the model parameters, i.e. for the

measurement and the structural parameters.

Considering the presence of K latent classes, the measurement and

the structural models in LISREL-type methods (cf. section 3.2) can

be rewritten for each class k as:

x
(J)
i |k = ν

(J)
k + Λ

(J)
k ξ

(J)
ik + ε

(J)
ik (4.1)

x
(M)
i |k = ν

(M)
k + Λ

(M)
k ξ

(M)
ik + ε

(M)
ik
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and (
1−B(J)

k

)
ξ

(J)
ik = B

(M)
k ξ

(M)
ik + ζik (4.2)

where x
(M)
i |k and x

(J)
i |k are the vectors of the manifest variables linked

respectively to the exogenous and to the endogenous blocks for the i-

th unit in the k-th latent class, ξ
(M)
ik and ξ

(J)
ik are, respectively, the J

by one and the M by one vectors of the endogenous and exogenous

latent variables for the i-th unit in the k-th latent class, Λ
(M)
k , Λ

(J)
k and

Bk are the matrices containing the group-specific parameters of the

measurement and of the structural models, εik and ζik are the vectors

of the group-specific errors for unit i associated to the measurement

and to the structural models.

Let xi|k be the joint vector, of dimension [P × 1] composed of the

manifest variables linked to both the exogenous and the endogenous

blocks:

xi|k =

[
x

(J)
i |k

x
(M)
i |k

]
(4.3)

under the assumption that all measures are error-free, i.e. E
(
ε

(M)
ik

)
=

0, E
(
ε

(J)
ik

)
= 0 and E (ζik) = 0, the conditional mean vectors µk of

the x|k is:

µk =

[
ν

(J)
k + Λ

(J)
k B

(M)−1
k B

(J)−1
k τ ξ

(M)

k

ν
(M)
k + Λ

(M)
k τ ξ

(M)

k

]
(4.4)
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where τ ξ
(M)

k is the mean vector of the exogenous latent variables in

the k-th latent class, i.e. E
(
ξ

(M)−1

k

)
= τ ξ

(M)

k

Moreover, let the covariance matrix of ξ
(M)
k be equal to Φk, i.e.:

Φk = E

[(
ξ

(M)
k − τ ξ

(M)

k

)(
ξ

(M)
k − τ ξ

(M)

k

)T]
, (4.5)

the covariance matrices of the measurement errors be equal to Θ
(J)
k

and Θ
(M)
k , i.e.:

E
(
ε

(J)
ik ε

(J)T

ik

)
= Θ

(J)
k (4.6)

and

E
(
ε

(M)
ik ε

(M)T

ik

)
= Θ

(M)
k (4.7)

with these last two matrices not necessarily diagonal (so, with mea-

surement errors correlated with one another), the covariance matrix

of the structural error equal to Ψk, i.e.:

E
(
ζikζik

T
)

= Ψk, (4.8)

and under the assumption that the structural errors are uncorrelated

with the endogenous latent variables, the conditional covariance ma-

trix of the joint vector x|k is:

Σ̂k = (4.9)

=

[
Λ

(J)
k

(
I −B(J)−1

k

)(
B

(M)
k

ΦkB
(M)T

k
+ Ψk

)(
1−B(J)−1

k

)T
Λ

(J)T

k
+ Θ

(J)
k

Λ
(J)
k

(
1−B(J)−1

k

)
B

(M)
k

ΦkΛ
(M)T

k

Λ
(M)
k

ΦkB
(M)
k

B
(M)T

k

(
I −B(J)−1

k

)T
Λ

(J)T

k
Λ

(M)
k

ΦkΛ
(M)T

k
+ Θ

(M)
k

]
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according to equation 3.34.

Assuming that the joint vector xi|k is multivariate normally distributed

within each class, with parameters equal to µk and Σk:

xi|k ∼ fik (xi|µk,Σk) (4.10)

then, the unconditional density function can therefore be represented

as a mixture of the conditional, i.e. class specific, density functions:

xi ∼
K∑
k=1

πkfik (xi|µk,Σk) (4.11)

where πk’s are the mixing proportions or equivalently the size of the

clusters, subject to standard constraints as expressed in equations 2.3

and 2.4, i.e. to be non-negative values and to sum up to one across

classes.

The Log-likelihood function for the whole sample is then:

logL =
N∑
i=1

K∑
k=1

πkfik (xi|µk,Σk) (4.12)

The estimation of the free parameters can be obtained by maximizing

the equation 4.12 under the constraints on the mixing proportions

πk, and under the condition that |Σk| > 0 for all the classes. This

last condition is necessary since consistent estimators are not possible

when Σk is not singular [Jedidi et al. 1997b]. Moreover, this condition

entails a minimum sample size of P (P+1)
2

units within each group.
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A modified EM algorithm (cf. subsection 2.4.2) is used to solve the

maximization problem.

Once the estimates (π̂k, µ̂k and Σ̂k) of the parameters are obtained, it

is possible to apply Bayes’ theorem [Bayes 1763/1958] to estimate the

posterior probability of memberships of each unit in each latent class:

ρik =
π̂kfik

(
xi|µ̂ik, Σ̂k

)
∑K

k=1 π̂kfik

(
xi|µ̂k, Σ̂k

) (4.13)

Basing on the ρik, a fuzzy classification of the units is obtained. More-

over, K local models, one for each class are defined according to the

parameters estimated through an EM algorithm.

Since an EM algorithm is used to estimate the mixing components, all

the drawbacks and the positive aspects of the EM algorithm are still

valid (cf. subsection 2.4.2). Namely, even if the EM algorithm always

assures convergence, it has a tendency to fall into a local optimum.

For this reason, several starting values have to be tested in order to

choose the best estimates of the mixing components. Moreover, the

problem of the convergence in local optimum seems to increase in im-

portance when the number of parameters to be estimated is high, that

is often the case in complex Structural Equation Models.

Another problem affecting the STEMM algorithm is that the number

of classes to take into account has to be decided a priori. If a priori

information is not available, STEMM needs to be performed with suc-

cessive numbers of classes. All the available procedures to select the
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number of classes to take into account defined in subsection 2.4.3, are

still available in the STEMM framework. Among them the Akaike’s

Information Criteria (AIC), the Controlled Criterion (CAIC) and the

Bayesian Information Criterion (BIC). The model for which the cho-

sen criterion is the smallest is selected.

Also the usual indexes to assess class separation in Mixture Models

(cf. subsection 2.4.4) are still available in STEMM. In particular the

entropy index (EN) as described in equation 2.22 is the most widely

used also in the STEMM context.

To conclude Jedidi et al. assess that the STEMM is equivalent to

multigroup Structural Equation Modeling [Jöreskog 1971] when the

number of groups and the membership values are known a priori

[Jedidi et al. 1997b].

4.2.2 Bayesian Finite Mixtures in SEM-ML

In 2001, Zhu and Lee proposed a Bayesian analysis to Finite Mix-

ture in the LISREL-type models [Zhu & Lee 2001]. Since then, other

works have been presented on this topic, in particular in 2002 Lee and

Song developed a Bayesian approach to analyze mixtures in Structural

Equation Models with an unknown number of classes (i.e. the com-

ponents of the mixture) [S.Y.Lee & Song 2002].

More recently Lee [2007] published a complete work on the Bayesian

approach to Structural Equation Models.
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Defining the measurement and the structural models for each unit

in each latent class as usual, i.e:

x
(M)
i |k = ν

(M)
k + Λ

(M)
k ξ

(M)
ik + ε

(M)
ik , (4.14)

x
(J)
i |k = ν

(J)
k + Λ

(J)
k ξ

(J)
ik + ε

(J)
ik (4.15)

and (
I −B(J)

k

)
ξ

(J)
ik = B

(M)
k ξ

(M)
ik + ζik (4.16)

where x
(M)
i |k and x

(J)
i |k are the vectors of the manifest variables for

the i-th unit in the k-th latent class respectively associated to the ex-

ogenous and to the endogenous latent variables, ξik is the vector of the

generic latent variable for the i-th unit in the k-th latent class (with

ξ
(J)
ik and ξ

(M)
ik defining respectively, the vector of the endogenous and

the exogenous latent variables), ε
(M)
ik and ε

(J)
ik are the measurement

residuals associated to the exogenous and to the endogenous blocks

for the i-th unit in the k-th latent class, and ζik are the the structural

residuals for the i-th unit in the k-th latent class. Remembering that

Λ
(M)
k and Λ

(J)
k are the matrices containing the group-specific parame-

ters of the measurement model, that B
(M)
k and B

(J)
k are the matrices

containing the group-specific parameters of the structural model, that

µk is a vector containing the group-specific means for the manifest
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variables and that Φk, Θ
(M)
k , Θ

(J)
k and Ψk are the covariance matri-

ces, respectively, of the exogenous latent variables, of the measurement

errors and of the structural errors as expressed in equations 4.5, 4.6

and 4.8.

The idea is that for each unit the xi arises from a mixture of distri-

butions, the unconditional distribution of xi can be written as:

f (xi|Ωk) =
K∑
k=1

πkfik (xik|Ωk) (4.17)

where Ωk contains all the unknown parameters of the model, i.e. Λ
(M)
k ,

Λ
(M)
k , B

(M)
k , B

(J)
k , Φk, Θ

(M)
k , Θ

(M)
k and Ψk, as well as the main vector

µk, and the mixing proportion πk,

Ωk =
(
µk, πk,Λ

(M)
k ,Λ

(J)
k B

(M)
k ,B

(J)
k ,Φk,Θ

(M)
k ,Θ

(J)
k Ψk

)
.

Assuming the membership values correspond to the i-th unit, zi is a

latent allocation variable i.i.d. as a multinomial with probabilities πk:

p (zi = k|X) = πk (4.18)

Standard Bayesian analysis provides an easy evaluation of the poste-

rior distribution p (Ω|X). Nevertheless, since SEM Mixture Models

are more complex models, the Bayesian estimation of p (Ω|X) is here

more complicated. As a matter of fact, the standard problem of the
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Bayesian analysis needs to take into account not only the manifest

variables, but also the latent variable scores and the membership val-

ues in the posterior analysis. That is why, in this context the aim

is to provide an evaluation of the posterior distribution of (Ω,Ξ,Z)

given X, where Ξ is the matrix containing both the exogenous and

the endogenous latent variable scores, and Z is the matrix containing

the membership values. In other words here we are interested in ana-

lyzing the P (Ω,Ξ,Z|X).

The Bayesian estimates of Ω and Ξ are obtained by computing the

posterior means of Ω and Ξ in the posterior distribution of (Ω,Ξ,Z|X).

This is done by simulating a sufficiently large sample of observations

from this posterior distribution, in order to approximate the Bayesian

estimates by the sample means.

Usually, in Bayesian Analysis applied to SEMs, a Gibbs sampler [Geman

& Geman 1984] is used to generate the sample of observations from

p (Ω,Ξ,Z|X). A detailed discussion on this procedure goes beyond

the aim of this work. For more details please refer to [Lee 2007]. Nev-

ertheless, here a brief overview of the used procedure is given.

At the t-th iteration with current values Ω(t), Ξ(t) and Z(t), the Gibbs

sampler procedure can be summarized in three steps:

(a) generate
(
Z(t+1),Ξ(t+1)

)
from p

(
Ξ,Z|X,Ω(t)

)
(b) generate Ω(t+1) from p

(
Ω|X,Ξ(t+1),Z(t+1)

)
(c) Reorder the label through the permutation sampler to fulfill the

identifiability.
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Moreover, since p (Ξ,Z|X,Ω) = p (Z|X,Ω) p (Ξ|X,ZΩ), the step

(a) can be decomposed into two sub-steps:

(a1) generate Z(t+1) from p
(
Z|X,Ω(t)

)
(a2) generate Ξ(t+1) from p

(
Ξ|X,Z(t+1)Ω(t)

)
Under several assumptions, such as that there are no cross-group con-

straints, {(
Ω(j),Ξ(j),Z(j)

)
, j = 1, · · · , J

}
(4.19)

are the observations of (Ω,Ξ,Z) generated by the Gibbs sampler from

the posterior distribution of (Ω,Ξ,Z|X).

The Bayesian estimates of Ω and Ξ are then obtained by sample means

of the generated observations, i.e.:

Ω̂ = G−1
∑G

g=1 Ω(g), (4.20)

and

Ξ̂ = G−1
∑G

g=1 Ξ(g) (4.21)

with G is the total number of observations estimated by the Gibbs

sampler procedure. These are consistent estimates of the correspond-

ing posterior means. Moreover, it is possible to obtain estimates also

for the parameters covariance matrix, as well as for the latent variable

matrix. To conclude, it is possible to use simulated observations to

compute other statistical inferences (such as deriving confidence inter-

vals) on the latent variable scores and on the model parameters.
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Once the estimate of Ω and Ξ are obtained via the Gibbs sampler

according to the latter equations, an approximation of the posterior

probability p (zi = k|X) can be obtained for each class:

p (zi = k|X) ≈ G−1

G∑
g=1

I
(
z

(g)
i = k

)
(4.22)

A Bayesian classification of the units can be reached using the mem-

bership values contained inZ. As a matter of fact, using a “percentage

correctly classified” loss function (see [Richardson & Green 1997, Zhu

& Lee 2001]), a Bayesian classification of the i-th unit is:

ẑi = arg max
k
{p (zi = k|X)} (4.23)

This technique allows us also to compute a Bayesian classification of a

new observation i∗ not used to define the classes. Since the inclusion

of a new vector of the manifest variables xi∗ changes the posterior

distribution, for each given class k̄ an approximation of the posterior

probability associated to the new unit can be obtained as:

P
(
zi∗ = k̄|X,xi∗

)
≈ G−1

G∑
g=1

π
(g)

ik̄
fik̄

(
xi∗|µ(g)

k̄
,Ω

(g)

k̄

)
∑K

k=1 π
(g)
k fik

(
xi∗|µ(g)

k ,Ω
(g)
k

) (4.24)
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4.3 Unobserved Heterogeneity in PLS-PM

Similarly to classical covariance-based methods, also PLS Path Mod-

eling (cf. subsection 3.4.1) assumes homogeneity over the observed

set of units: all units are supposed to be well represented by a unique

model estimated on all the units.

Nevertheless, in many cases it is reasonable to expect that different

classes showing heterogeneous behaviors may exist in the observed set

of units. In these cases, treating all units as a single class may lead

to biased results both in terms of model parameters and of validation

indexes [Jedidi et al. 1997a, Jedidi et al. 1997b].

Recently, several works have been proposed to deal with unobserved

heterogeneity in PLS Path Modeling framework [Hahn et al. 2002,

Ringle, Wende & Will 2005, Squillacciotti 2005, Trinchera & Esposito

Vinzi 2006, Trinchera et al. 2006, Sanchez & Aluja 2006, Trinchera

2007, Sanchez & Aluja 2007, Esposito Vinzi, Trinchera, Squillacciotti

& Tenenhaus 2008, Ringle et al. 2008, Squillacciotti 2008, Esposito

Vinzi, Amato & Trinchera 2008]. To the author’s knowledge, four

approaches exist to handle heterogeneity in the PLS-PM: the Finite

Mixture PLS, proposed by Hahn et al. [2002] and modified by Ringle

et al. [2008], the PLS Typological Path Model presented by Squillac-

ciotti [2005] and modified by Trinchera & Esposito Vinzi [2006] and

Trinchera et al. [2006], the PATHMOX by Sanchez & Aluja [2006]

and the PLS-PM based Clustering (PLS-PMC) by Ringle & Schlittgen

[2007].

In this section all these methods will be discussed in detail. Properties
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and drawbacks of each approach will be analyzed and compared.

Moreover, a new and original approach to detect homogeneous groups

of units in PLS-PM, i.e. the Response Based Unit Segmentation in

PLS-PM, will be presented in the next chapter (cf. chapter 5).

4.3.1 The Finite Mixture PLS

As described by Hahn et al. [Hahn et al. 2002], FInite MIXture PLS

(FIMIX-PLS) is an extension of the Finite Mixture Models in SEM-

ML (cf. subsection 4.2.1) to a PLS-PM framework. This technique

joins a Finite Mixture procedure (cf. section 2.4) with an EM algo-

rithm (cf. subsection 2.4.2), which specifically concerns the PLS-PM

predictions, obtained by means of classical OLS regressions.

FIMIX-PLS is based on the assumption that if separate classes of

units exist, the unobserved heterogeneity will be concentrated in the

structural model, i.e. in the relationships among latent variables. The

measurement model is therefore kept constant among detected classes.

As in STEMM, the population is supposed to be the mixture of two

or more sub-populations (hereby called classes), each characterized by

a different distribution, and mixed in different proportions. The aim

is to identify the probability of each unit to belong to each class, as

well as to estimate model parameters within each detected class.

The first step of FIMIX-PLS consists in estimating the defined path

model on all units through a standard PLS-PM algorithm (cf. sub-

section 3.4.1), i.e. to estimate the so-called global model. Then, the
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estimated latent variable scores are used to detect the classes by an EM

based procedure. In order to ensure model identification, a normal-

ity assumption is required, at least at the endogenous latent variable

level.

Moreover, in FIMIX-PLS, heterogeneity is supposed to be concen-

trated only in the structural model. Therefore, in order to identify

the classes and calculate the latent variable scores, the measurement

model is kept constant over the iterations. In other words, in all local

models, the outer weights are constant and equal to those obtained

for the global model.

In more formal terms, FIMIX-PLS assumes that the vector of the

J endogenous latent variables for the i-th observation (ξ
(J)
i ) is dis-

tributed as a finite mixture of conditional multivariate normal densi-

ties fik

(
ξ

(J)
i |φk

)
, i.e.:

ξ
(J)
ik ∼ fik

(
ξ

(J)
i |φk

)
(4.25)

ξ
(J)
i =

K∑
k=1

πkfik

(
ξ

(J)
i |Ωk

)
(4.26)

where, as usual φk = (πk,Ωk) is the vector of all unknown parame-

ters in the k-th class, and πk’s are the mixing proportions subject to

the usual constraints as expressed in equation 2.3 and 2.4, i.e. to be

non-negative values and to sum up to one across classes.
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In a Finite Mixture Model applied to PLS Path Modeling the parame-

ters to be estimated are the (J×J) matrix of the path coefficients link-

ing the endogenous latent variables to each other, (B
(J)
k ), the (J×M)

matrix of the path coefficients linking each endogenous variable to the

exogenous ones, (B
(M)
k ), as well as the variances from each regression

in the structural model.

The vector Ω is so composed by the vector of the M exogenous la-

tent variables in the inner models ξ
(M)
i and by the parameters to be

estimated, i.e. by: B
(J)
k , B

(M)
k , and by the diagonal matrix of the

exogenous latent variable variance Ψk.

Therefore, vector Ω is :

Ω =
(
ξ

(M)
i ,B

(J)
k ,B

(J)
k ,Ψk

)
(4.27)

Assuming multivariate normal density distribution for the vector of

the endogenous latent variables (ξ
(J)
i ), and keeping in mind that the

structural model as defined in subsection 3.4.1 can be expressed for

the generic k-th class as:

ξ
(J)
i B̃

(J)

k + ξ
(M)
i B

(M)
k = ζi (4.28)

whereB̃
(J)

k =
(
I −B(J)

k

)
.

The equation 4.25 can be rewritten as:

ξ
(J)
i ∼

K∑
k=1

πk


∣∣∣∣B̃(J)

k

∣∣∣∣
J
√

2π
√
|Ψk|

e
1
2

((
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

)T
Ψ−1

k

(
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

))(4.29)
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The likelihood function and the log-likelihood function as expressed

in equation 2.5 and 2.6 can be reformulated for the N vectors(
ξ

(J)
1 , ξ

(J)
2 · · · ξ

(J)
N

)
as:

L
(
φ; ξ(J)

)
= (4.30)

∏N
i=1

[∑K
k=1πk

[ ∣∣∣B̃(J)
k

∣∣∣
J√2π
√
|Ψk|

e
1
2

((
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

)T
Ψ−1

k

(
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

))]]

and

logL
(
φ; ξ(J)

)
= (4.31)

∑N
i=1

∑K
k=1 log

(
πk

[ ∣∣∣B̃(J)
k

∣∣∣
J√2π
√
|Ψk|

e
1
2

((
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

)T
Ψ−1

k

(
ξ
(J)
i B̃

(J)
k +ξ

(M)
i B

(M)
k

))])

In FIMIX-PLS, an EM algorithm (cf. subsection 2.4.2) is used to maxi-

mize the likelihood function expressed in equation 4.30. An exhaustive

description of this procedure will be given later in this subsection.

Once the class specific parameters of the model, B
(J)
k , B

(M)
k , Ψk, are

estimated through the EM algorithm, a fuzzy clustering of the units

can be obtained.

The posterior probability of each unit to belong to each detected la-

tent class (ρik) is computed by means of the Bayes’ theorem [Bayes
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1763/1958] as:

ρik =
πkfik

(
ξ

(J)
i |ξ

(M)
i , B̂

(J)

k , B̂
(M)

k , Ψ̂k

)
∑K

k=1 πkfik

(
ξ

(J)
i |ξ

(M)
i , B̂

(M)

k , B̂
(M)

k , Ψ̂k

) (4.32)

In FIMIX-PLS the number of classes is not known a priori nor is in-

cluded as a parameter in the estimation process. In order to detect

the optimal partition, FIMIX-PLS has to be repeated using each time

a different choice for the number of classes K, i.e. K = 1, K = 2,

K = 3 . . ..

Since Mixture Models are not asymptotically distributed as a chi-

square and consequently the Likelihood Ratio Test (LRT) has not an

asymptotically full rank quadratic form, then the LRT statistic is not

valid [Aitkin & Rubin 1985, Titterington 1990].

For a detailed discussion on how to choose the appropriate number of

classes to be considered in a Mixture Model, please refer to the sub-

section 2.4.3.

All the available procedures defined in subsection 2.4.3 are still avail-

able in a FIMIX-PLS framework. As a matter of fact, both Hahn

et al. [2002] and Ringle et al. [2008] suggest using different indexes to

choose the number of classes to be considered, such as the Akaike’s

Information Criteria (AIC), the Controlled Criterion (CAIC) and the

Bayesian Information Criterion (BIC). The model with the smallest

values for the chosen criteria is selected.
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Also the usual indexes to assess class separation in the Mixture Model

(cf. subsection 2.4.4) are still available in FIMIX-PLS. In particu-

lar, the entropy index (EN) as described in equation 2.22 is the most

widely used in FIMIX-PLS.

As usual, the EN value will increase with the improvement of class

separation. As a matter of fact, values higher than 0.5 indicate an

unambiguous segmentation. Experience has however shown that the

choice of the appropriate number of classes is not at all straightforward

in empirical applications. When trying FIMIX-PLS with an increasing

number of classes, the method may lead to unacceptable results, such

as R2 higher than 1 or negative variances. These problems appear

especially when class sizes are too small [Esposito Vinzi, Trinchera,

Squillacciotti & Tenenhaus 2008].

Another drawback of FIMIX-PLS is that this technique only focuses

on the heterogeneity concentrated in the structural model. If units

differ with respect to the measurement model, FIMIX-PLS is not able

to capture this source of heterogeneity as long as the structural coeffi-

cients are similar among the classes. In other words, the outer weights

for the local models, i.e. the weights linking the latent variables to the

correspondent manifest variables, are the same as in the global model.

To overcome this problem, Ringle et al. [2008] propose to perform an

ex-post analysis in the last step of the procedure. The ex-post anal-

ysis consists in looking for an external variable able to lead to the

same classes as those identified by FIMIX-PLS. Once this variable is
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detected, multi-group PLS-PM is performed over these a priori seg-

mented data leading to class-specific latent variable scores, as well as

different measurement and structural models. Very rarely, however, is

possible to find one (or few) external variables leading unambiguously

to the same classes as indicated by FIMIX-PLS.

Finally, the main issue concerning FIMIX-PLS is that it requires con-

ditional multivariate normal density assumptions for predicted latent

variable scores, at least for the endogenous latent variables. The PLS

Path Model, instead, is a distribution-free technique that does not re-

quire assumptions on manifest variables: hence the estimated latent

variable scores are unlikely to follow a normal distribution except for

the case of latent variables corresponding to super-blocks in PLS hier-

archical models that may approach a normal distribution even if both

the manifest variables and the other latent variable scores are far from

being normal [Tenenhaus, Mauger & Guinot 2008]. That is why it

will be suitable to apply such a distribution-free clustering technique

to obtain unit clustering in the PLS-PM framework.

An EM formulation for the FIMIX-PLS

The EM algorithm is a widely-used procedure to estimate likelihood

parameters in Mixture Models. For a detailed discussion on the EM

algorithm and of its features please refer to the subsection 2.4.2. Here,

an application of the EM algorithm to the PLS-PM framework is de-

scribed.



4.3. Unobserved Heterogeneity in PLS-PM 143

FIMIX-PLS firstly estimates both endogenous and exogenous latent

variable scores by applying standard PLS-PM to the whole set of units.

In a second stage, the estimated scores are used to perform a set of

regressions between endogenous and exogenous latent variables ac-

cording to the path structure.

As well known, the EM algorithm provides a solution to the max-

imum likelihood estimation in incomplete-data frameworks. In the

Mixture Models the unobserved data to be replaced are the member-

ship values, πk’s, and the additional information to be added is the

expected membership values, zik’s. Each iteration of the EM algorithm

is composed of two steps, the E-step (Expectation Step) in which the

expectations of the membership value, zik, are computed given a pro-

visional estimate of ω, and the M-step in which the expectation of

the log-likelihood obtained in E-step is maximized with respect to the

parameters.

Once the data is “completed” by means of the z’s values, and assum-

ing that the vector zi = (zi1, . . . , ziK) is i.i.d. as a multinomial with

probabilities πk, the complete-data log-likelihood function defined in

equation 4.31 can be rewritten as:

logL
(
φ; ξ(J)

)
=

N∑
i=1

K∑
k=1

zik log
(
fik

(
ξ

(J)
i |ξ

(M)
i , B̃

(J)

k ,B
(M)
k ,Ψk

))
+

N∑
i=1

K∑
k=1

zik log (πk) (4.33)
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In the first E-step the expectation of the log-likelihood expressed in

equation 4.33 is evaluated assuming such provisional estimates B̃
(J)∗
k ,

B
(M)∗
k , Ψ∗k, and π∗k for the parameters B̃

(J)

k , B
(M)
k , Ψk, and πk respec-

tively. These estimates can be easily obtained by a random sample

of the membership values πk, or on the basis of prior knowledge or

analysis of the classes and/or the coefficients.

The expectation of the log-likelihood function expressed in 4.33 is:

E
(

logL
(
φ∗; ξ(J)

))
=

N∑
i=1

K∑
k=1

E
(
zik; ξ

(M)
i , π∗k, B̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k|ξ

(J)
i

)
log
(
fik

(
ξ

(J)
i |ξ

(M)
i ,Π∗kB̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k

))
(4.34)

+
N∑
i=1

K∑
k=1

E
(
zik; ξ(M), π∗k, B̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k|ξ(J)

)
log (π∗k)

where the conditional expectation of zik with B
(M)∗
k , B̃

(J)∗
k , Ψ∗k, and

π∗k fixed, can be calculated as:

E

(
zik; ξ(M), π∗k, B̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k|ξ

(J)

)
=

π∗kfik

(
ξ

(J)
i |ξ

(M)
i , B̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k

)
∑K
k=1 π

∗
kfik

(
ξ

(J)
i |ξ

(M)
i , B̃

(J)∗
k ,B

(M)∗
k ,Ψ∗k

)
(4.35)

Having defined E
(
zik; ξ

(M), π∗k, B̃
(J)∗
k ,B

(M)∗
k ,Ψ∗k|ξ(J)

)
as above, the

equation 4.33 is maximized in the M-step of the algorithm in order to

obtain new provisional estimates of the parameters B
(J)
k , B̃

(J)

k , Ψk,

and πk. These new parameter estimates are then used in a subsequent
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E-step to obtain update estimates of zik according to equation 4.35,

and so forth.

The two steps are alternated until there is convergence on the increase

of the log-likelihood function value.

In the M-step provisional estimates of the parameters B̃
(J)∗
k , B

(M)∗
k ,

Ψk, and πk are obtained through a number of independent OLS re-

gressions according to the path model scheme.

In particular, one OLS regression is performed for each endogenous la-

tent variable ξ
(J)
j . For a detailed formulation of the M-step in FIMIX,

please refer to Hahn et al. [2002].

Since an EM algorithm is used in FIMIX-PLS to estimate the mixing

components, all the drawbacks and the positive aspects of the EM

algorithm are still valid. Namely, the EM algorithm, even if it always

assures convergence, has a tendency to fall in a local optimum. For

this reason several starting values have to be tested in order to choose

the best estimates of the mixing components. Moreover, the problem

of the convergence in local optimum seems to increase in importance

when the number of parameters to be estimated is large, that is often

the case in complex PLS Path Models.

4.3.2 The PATHMOX algorithm

Path Modeling Segmentation Tree algorithm (PATHMOX algorithm)

was recently presented by Sanchez & Aluja [2007]. It provides a path
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model tree having a decision tree-like structure. Each node in the

decision tree-like structure is represented by a local PLS Path Model.

The PATHMOX algorithm uses external concomitant variables, such

as socio-demographical variables, to split units. Nevertheless, the split

order is obtained taking into account the capacity of each concomi-

tant variable to identify local models as different as possible. In other

words, the clustering is obtained by means of external information,

and it is somehow optimized with respect to the model.

The algorithm starts by estimating the global model at the root node.

Then, all the possible two-way splits obtained by the categories of

the concomitant variables are investigated. The several obtained local

models are compared first of all as regards the structural models via

a test for comparing the path coefficients. In addition, the diversity

among measurement models is assessed. Once the best segmentation

variable is detected, the algorithm provides a new estimation of the

local models in each node. The process goes on by looking for new

segmentation variables able to provide the best split.

Usually the number of units in a node, as well as the significance level

for the best split, are considered as stopping criterion.

In more formal terms, consider all the categories of a concomitant

variable and all the possible two-way splits of these categories, then

for each of those two-way splits, units are divided into two groups of

size n1 and n2, respectively.

For each group the structural model is estimated taking into account
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the latent variable scores computed at the previous step. The “po-

tential” structural model of the child nodes are compared with the

structural model of the parent node. An extension of the test pre-

sented by Lebart, Morineau & Piron [1995] for testing the equality of

two regression models has been developed for this purpose. In partic-

ular, under the null hypothesis all the path coefficients are assumed

to be identical between two models, while alternative hypothesis as-

sumes that two models are different as regards at least one of the path

coefficients.

Define the structural models for the two models to be tested as:

Ξ1 = Ξ1B1 +E1 (4.36)

and

Ξ2 = Ξ2B2 +E2

where Ξk is the matrix of dimension N by Q containing all the latent

variable scores, ξq, computed for the k-th latent class,Bk is the matrix

of dimension M by Q containing the path coefficients estimated for

the k-th latent class, and Ek is the class specific matrix of dimension

N by Q containing the residuals of all the regressions in the structural

models.

Under the null hypothesis H0 all the coefficients are to be considered

equal, i.e.: B1 = B2 = B.
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In matrix notation H0 and H1 can be expressed as:

H0 :

[
Ξ1

Ξ2

]
=

[
Ξ1

Ξ2

]
[B] +

[
E1

E2

]
(4.37)

H1 :

[
Ξ1

Ξ2

]
=

[
Ξ1 0

0 Ξ
(M)
2

][
B1

B2

]
+

[
E1

E2

]
(4.38)

The sum of the squared errors (SSE) is computed under H0 and under

H1 and a test statistic is computed as:

F =
(n∗ − 2M)

M

SSE0 − SSE1

SSE1

(4.39)

where M is the total number of exogenous latent variables in the model

and n∗ = NJ with J equal to the number of endogenous latent vari-

ables in the model and N equal to the total number of units in the

sample, with N = n1+n2. This test statistic distributes approximately

as an F distribution with M and (n∗ − 2M) degrees of freedom.

The partition showing the most significant p-value is considered a can-

didate for the best split.

The same process is repeated for each concomitant variable selecting

the partition with the minimum p-value among all the candidates as

the optimal split.

Once the child node is identified, the child model and the parent model

are compared as regards the measurement models. A Ryan-Joiner test
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[Ryan & Joiner 1976] is used to assess how close to unity the corre-

lation between the latent variable scores in the parent node and the

latent variable scores in the child node is. The basic idea underlin-

ing this procedure is that, if the measurement models are the same

between the two tested models, then, the correlation between the es-

timated latent variable scores in the parent node and the estimated

latent variable scores in the child node have to be as high as possible,

i.e. close to the unity.

With respect to the other clustering techniques presented in this chap-

ter, PATHMOX directly uses concomitant variables to classify the

units. Even if it provides local models that are different as regards

the structural and the measurement models, the unit clustering is not

made using the model directly. If no external/concomitant variables

other than the manifest variables used in the model are available, this

technique is no more applicable. Moreover, the test used to compare

structural models requires the normality assumption on the structural

model residuals.

4.3.3 The PLS Typological Path Model

The PLS Typological Path Model (PLS-TPM) [Squillacciotti 2005,

Trinchera & Esposito Vinzi 2006, Trinchera et al. 2006] algorithm

aims at overcoming the drawbacks of FIMIX-PLS, namely the nor-

mality assumption on latent variable scores and the assumption that

unobserved heterogeneity is focused only in the structural model. This
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method is an iterative algorithm firstly proposed by Squillacciotti

[2005]. It allows us to estimate at the same time both the mem-

berships of units to classes and the parameters of the local models

without making any kind of distributional assumption.

The algorithm iteratively assigns the units to the classes correspond-

ing to the closest local model, according to a measure which stems

from the DModY distance used in PLS Regression [Tenenhaus 1998]

and the DModY,N index in PLS Typological Regression (PLS-TR)

[Esposito Vinzi & Lauro 2003]. In particular, the DModY distance

used in PLS Regression measures the distance between the i-th unit

and the regression model in the space spanned by the endogenous

variables using the model residuals. For more details, please refer to

Tenenhaus [1998]. In PLS Typological Regression, instead, Esposito

Vinzi & Lauro [2003] following the DModY optic, define a distance

measure to cluster units in PLS Regression framework taking into ac-

count the predictive purpose of the PLS Regression. The DModY,N

index developed for PLS Typological Regression is defined as:

DModY,Nk =

√√√√√
∑J
j=1[r2ijk/Rd(Tk,yj)]

(J−ak)∑N
i=1

∑J
j=1[r2ijk/Rd(Tk,yj)]

(nk−ak−1)(J−ak)

(4.40)

where J is the number of endogenous variables, ak is the number of

extracted components in the k-th class, Rd (Tk, yj) is the portion of

the j-th endogenous variable variance explained by the ak components

within the k-th class, and r2
ijk is the square of the i-th residual for the
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j-th endogenous variable in the PLS Regression model estimated for

the k-th class.

An extension of this distance measure is used in PLS Typological

Path Model, i.e.:

Dik =

√√√√√√√
∑Pj∗
p=1

[
v2
ipj∗k/Rd

(
ξ
(J)
j∗k,xpj∗k

)]
(Pj∗−ak)∑N

i=1

∑Pj∗
p=1

[
v2
ipj∗k/Rd

(
ξ
(J)
j∗k,xpj∗k

)]
(nk−ak−1)(Pj∗−ak)

(4.41)

where j∗ is a target endogenous block, ak is the number of exogenous

latent variables linked to the target block in the local model estimated

for the k-th latent class, Rd
(
ξ

(J)
j∗k,xpj∗k

)
is the redundancy index (cf.

subsection 3.4.1) computed for the p-th manifest variable linked to the

target block j∗ in the k-th latent class, and vipj∗k is the i-th residual

of the “redundancy” model in the k-th latent class.

The redundancy residuals vipj∗k are obtained as the residuals of the

regression of each p-th manifest variable linked to the target block j∗

over the target endogenous latent variable scores (ξ
(J)
j∗k) estimated for

the k-th latent class. A redundancy residual is computed for each unit

with respect to each latent class, i.e. at each iteration NK redundancy

residuals are computed.

It is important to notice that the chosen measure of unit-model dis-

tance in PLS-TPM requires the presence of a well-identified target

latent variable among the J endogenous latent variables. Neverthe-
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less, in a PLS Path Model the identification of a unique endogenous

target latent variable, on which to compute the unit-model distance

defined in equation 4.41, is not always possible.

In the original formulation of the PLS-TPM by [Squillacciotti 2005],

the algorithm starts by estimating the global model over the whole

set of observed units. After having randomly assigned the units to a

previously chosen number K of classes, the starting local models are

estimated, and the distances between each unit and each local model

are computed. Units are then re-assigned to the closest local model

on the basis of the unit-model distance measure in 4.41. If this leads

to modifications in the classes’ composition, updated local models are

estimated and new distances computed. The algorithm repeats these

steps until stability is reached on the classes’ compositions. The final

local models are then compared and classes are eventually charac-

terized by means of available external (concomitant) variables that,

however, do not play any explorative role in the identification of the

classes.

Nevertheless, once again the number of classes is not considered as

a parameter to be estimated. As a matter of fact, the main problem

with this procedure concerns the choice of the number of classes. As in

all latent class detection procedures presented so far, the appropriate

number of classes is generally a priori unknown, and PLS-TPM has to

be repeated with different values of K in order to choose the optimal

partition. Differently from FIMIX-PLS, however, neither indicators to



4.3. Unobserved Heterogeneity in PLS-PM 153

assess class separation nor Information criteria are available in PLS-

TPM. In fact, it does not lead to a “fuzzy” clustering but rather to

a “hard” one and is not model based. This makes the choice of the

number of classes to retain more difficult.

In a more recent version of the algorithm Trinchera & Esposito Vinzi

[2006] propose to obtain the number of classes to retain and the initial

unit assignment to classes by means of a hierarchical classification over

the redundancy residuals (vipj∗k) computed for the global model. Once

the number of classes is identified, units are iteratively assigned to the

class corresponding to the closest local model, according to the dis-

tance measure defined in equation 4.41. Models concerning the classes

are re-estimated at each iteration, leading to a dynamic re-estimation

of all elements in the models (path coefficients, latent variable scores,

outer weights, etc.). This leads to final local models that are differ-

ent with respect to both the measurement and the structural models.

Stability of results in terms of class’ compositions is considered as a

stopping criterion.

In the modified PLS-TPM by Trinchera & Esposito Vinzi [2006] the

number of classes to take into account is not chosen a priori by the

users, but it is directly obtained by the algorithm. This allows us to

apply PLS-TPM even if prior information on the number of classes is

not available.

In both the formulations, the PLS-TPM approach leads to a clustering
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of the units according to the specified path model. Nevertheless, the

units’ assignment to classes is obtained only according to the struc-

tural and the measurement model for the target block. As underlined

by Esposito Vinzi, Trinchera, Squillacciotti & Tenenhaus [2008] “Ob-

tained local models lead only to a higher predictivity in terms of R2

value associated to the target latent variable”, but not to better local

models in a more general meaning. Moreover, PLS-TPM is applicable

only to PLS Path Models including only reflective indicators.

4.3.4 The PLS Path Model based Clustering

Recently, Ringle & Schlittgen [2007] presented a new class of meth-

ods for clustering in PLS-PM: the PLS-PMC (PLS Path Model based

Clustering) methods. The idea is to use model residuals to improve

an initial partition of units according to the model features.

The initial unit partition can be obtained either by using Genetic Al-

gorithms [Cowgill, Harvey & Watson 1999] as the case in PLS Genetic

Algorithm Segmentation (PLS-GAS) or by a random assignment of

the units as in PLS-SPS.

A common drawback to all these methods is that the number of classes

to take into account is not determined by the algorithm but has to be

defined by comparing the models. The procedure needs to be re-

peated taking into account a successive number of latent classes, as

in FIMIX-PLS and in the original formulation of the PLS Typological

Path Model.

To conclude, further research on these new techniques has to be done
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in order to evaluate the capacity of these techniques to detect latent

classes.

4.4 Unobserved Heterogeneity in GSCA

Generalized Structured Component Analysis (GSCA) models are es-

timated under the assumption that data are homogeneous. Neverthe-

less, it is often more realistic to assume that units come from hetero-

geneous subgroups. Until now, only one method is available to handle

this kind of problem in the GSCA framework: the Fuzzy Cluster-

wise Generalized Structured Component Analysis (FGSCA) by Hwang

et al. [2007]. This method will be discussed in detail in the following

subsection.

4.4.1 The Fuzzy GSCA

An extension of the Generalized Structured Component Analysis mod-

els was recently presented by Hwang et al. [2007] combining fuzzy

clustering with GSCA: the Fuzzy Clusterwise Generalized Structured

Component Analysis (FCGSCA). This method allows us to obtain at

the same time both a fuzzy clustering of units into overlapping clusters

(cf. chapter 2) and GSCA parameters for each detected class. Given

an a priori chosen number of classes K, for each class the matrix Zk

is a matrix containing the membership values of each unit in the k-th

class, under the classical assumptions of fuzzy clustering, i.e. under

the constraints that 0 ≤ zik ≤ 1 and
∑K

k=1 zik = 1. Moreover, let
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m be the fuzzifier, i.e. the predetermined fuzzy weight scalar which

influences the degree of fuzziness of the solution.

Then, the equation to be minimized in GSCA as expressed in equa-

tions 3.84 and 3.85 can be rewritten taking into account the classes

as:

ϑ = SS (U k −U kAk)Zmk
(4.42)

where:

U k =

[
I

W k

]
X (4.43)

and

Ak =

[
0 Λk

0 Bk

]
, (4.44)

are the matrices containing the class-specific model parameters (i.e.

the external weights wk, the path coefficients βk and the external

loadings λk), and SS (X)Y = trace
(
XTY X

)
Of course in the case of a unique class, i.e. if K = 1, the equation 4.42

reduces to equation 3.84. In other words, GSCA is a particular case

of FCGSCA when the number of classes taken into account is equal

to one.

Solving the minimizing problem expressed in equation 4.42 under the
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constraints on the zik’s by using a Lagrangian multiplier (λ) is equiv-

alent to minimizing:

L =
K∑
k=1

N∑
i=1

zmikrik − λ

(
K∑
k=1

zik − 1

)
(4.45)

where rik is the class-specific residual obtained for the i-th unit, i.e.

rik = SS (U k −AkU k).

So, solving L with respect to zik:

∂L/∂zik = mzm−1
ik rik − λ = 0 (4.46)

and λ:

∂L/∂λ =
K∑
k=1

zik − 1 = 0 (4.47)

leads to:

ẑik =

(
λ

mrik

)1/(m−1)

(4.48)

and

λ̂ =

( K∑
k=1

1/ (mrik)

)1/(m−1)
1−m

(4.49)
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Inserting the equation 4.49 in the equation 4.48 allows us to obtain an

estimate of the membership values, given the class-specific parameters:

ẑik∗ =
1∑K

k=1

(
rik∗
rik

)1

/ (m− 1)
(4.50)

The class-specific estimates of the parameters, as well as the class-

specific membership values, are obtained by an optimization proce-

dure composed of two steps.

In the first step the class-specific parameters (W k and Ak) are esti-

mated for fixed membership values. This is equivalent to minimizing:

ϑ =
K∑
k=1

SS

(
(Zm

k )1/2

(
X

[
I

W k

]
−X

[
I

W k

]
Ak

))

=
K∑
k=1

SS

(
Xk

[
I

W k

]
−XkAkU k

)
(4.51)

where Xk =
(

(Zm
k )1/2X

)
. Equations expressed in 4.51 are nothing

but the sum of the equation 3.85 of the GSCA across the K classes.

Under such provisional membership values, an Alternating Least Squares

algorithm is used as in GSCA to update the parameters estimates

within each latent class.

Once the class-specific parameters are estimated, the membership val-

ues are updated using equation 4.50.



4.4. Unobserved Heterogeneity in GSCA 159

Since FCGCSA is an extension of GSCA, it bears all the drawbacks

of the GSCA, such as improper solutions or indeterminacy of latent

variable scores. In addition, FCGCSA requires a very large number

of units to be applied. As a matter of fact, a minimum sample size of

P (P + 1) /2 in each latent class is needed in order to obtain a positive

definite covariance matrix within each class [Wedel & Kamakura 2000].

Moreover, being based on the EM algorithm (cf. subsection 2.4.2)

FCGCSA requires the data in each latent class to be normally dis-

tributed.

Nevertheless, also the good aspects of the GSCA are still available in

the FCGSCA. As a matter of fact, the two quality indexes proposed in

GSCA, the FIT and the AFIT (cf. subsection 3.4.2) can be rewritten

taking into account the class-specific values in order to allow us to

compare models:

FIT = 1− SS (U k −U kAk)

SS (U k)
(4.52)

and

AFIT = 1− (1− FIT )
df0

df1

(4.53)

where df0 = NP is the number of degrees of freedom for the model for

which W k = 0 and Ak = 0, and df1 = NP − fp are the degrees for

the model to test and fp is the number of free parameters, including

the unknown elements in W k = 0 and Ak = 0, as well as all the

membership values zik.
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As for the GSCA, the AFIT index takes into account the model com-

plexity in evaluating the fit of the model. Simpler models are usually

preferred over complex models showing similar explanatory power.

Nevertheless, the AFIT index is useful as long as fp < NP . Since

fp depends on the number of classes considered, AFIT can be used

only in the case of K < P . As a matter of fact, if K = P , the number

of membership values becomes equivalent to NP , and so df1 becomes

equal to zero. This drawback is not so relevant in SEM models since

the number of manifest variables (P ) is usually large enough.

Moreover, FCGSCA provides also several indexes able to assess class

separation as in Mixture Models based clustering techniques. Being

based on fuzzy clustering, the FCGSCA borrows from classical fuzzy

theory a number of cluster validity measures [Bezdek 1981, Roubens

1982]. In particular, according to the Rubens works, the Fuzziness

Performance Index (FPI) and the Normalized Classification Entropy

(NCE) are the most useful cluster validity measurements in the fuzzy

clustering procedure. That is why, Hwang et al. [2007] suggest using

these two indexes also in FCGSCA to assess how well the detected

classes are separated. These two indexes are defined as:

FPI = 1− (K × PC − 1)

(K − 1)
(4.54)
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and

NCE =
PE

logK
(4.55)

where:

PC =
1

N

N∑
n=1

K∑
k=1

z2
ik (4.56)

is the Partition Coefficient of Bezdek [1974] and

PE = − 1

N

N∑
n=1

K∑
k=1

zik log zik (4.57)

is the Partition Entropy [Bezdek 1974].

Both the indexes in equations 4.54 and 4.55 select the model yielding

the smallest value.

Two main weak points affect the FCGSCA. The first one pertains

to the number of classes to be considered. Once again the number of

classes to taken into account is not a parameter of the model. Just

like any other technique discussed in this chapter, if a priori informa-

tion about the number of classes is not available, the method needs to

be repeated for successive numbers of classes. Model quality indexes,

as well as cluster validity measurements, are then used to select the

“best” number of latent classes.

The second main drawback of the FCGSCA, common to any fuzzy
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clustering analysis, is related to the choice of the fuzzy weight m.

Until now, there has been no theoretical justifiable way to select

m. As a matter of fact, m can be any of the values bounded be-

tween one and infinity. Nevertheless, values too close to one may

lead to a non-overlapping clustering of the units, with membership

values close to zero or to one. Instead, high m values lead to an

excessively overlapping clustering, with membership values constant

across classes and equal to 1/K. As a consequence of this open-

endedness, a m value of two is the most popular choice in fuzzy

clustering [Bezdek 1981, Gordon 1999, Hruschka 1986, Steenkamp &

Wedel 1993]. Also in FCGSCA m = 2 is the standard value for the

fuzzy weight.

4.5 Assessment of model diversity

In a clustering framework, once the groups are identified it is very im-

portant to assess the differences (and similarities) among the detected

classes of units. In our specific framework, this essentially entails com-

paring the obtained local models to one another and with the global

model. Hence, in heterogeneous Structural Equation Models, group

comparison can be seen as model comparison.

Since Structural Equation Models are very complex systems, com-

paring Structural Equation Models estimated on different groups of

units is a very difficult task. As a matter of fact, and as stated by

Liao [2002], various levels of comparison have to be taken into ac-
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count when comparing Structural Equation Models. In particular Liao

[2002], identified four different degrees of comparison in LISREL-type

models:

• Comparing distribution

• Comparing data structure

• Comparing model structure

• Comparing model parameters

Here we focus our attention only on the last item, i.e. on comparing

the model parameters. Moreover local models will be compared also as

regards the goodness of fit and the latent variable scores. The model

structure, i.e. the relationships involved in the model, are considered

constant across the different classes.

In LISREL-type models, standard tests are available to compare two

or more groups of units. In PLS-PM, in FIMIX and in GSCA con-

text, instead, only non parametric procedures and resampling meth-

ods, such as a bootstrap based technique [Efron 1982], are available.

Nevertheless, since the bootstrap procedure is not yet available in the

case of two or more samples, and since the detected groups can be

considered different samples, bootstrap empirical confidence intervals

can not be used to compare the model parameters.

Other non parametric techniques have been developed for this pur-

pose. Among them, the permutation tests allow us to compute test
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statistics in a non parametric framework. For reference on permuta-

tion test please refer to Edgington [1987].

In this section first an overview of the permutation tests will be given

(cf. subsection 4.5.1), then the different ways to compare model pa-

rameters in the several approaches to SEM will be discussed (cf. sub-

section 4.5.2). Furthermore, latent variable scores comparison (cf.

subsection 4.5.3), as well as model quality comparison (cf. subsection

4.5.4), will be examined.

4.5.1 Permutation tests

Permutation tests [Edgington 1987] are based on the permutation of

units among classes. In particular, let k1, k2 be two groups of units

and s a statistic that allows us to test the null hypothesis H0. Then,

these tests need to compute the statistic s several times on different

samples obtained by unit permutation in order to obtain an empirical

distribution of the statistic s under the null hypothesis. H0 is rejected

if the p-value obtained by the empirical distribution is lower than a

certain threshold α. In other words, H0 is rejected if the value of the

statistic s computed on the original groups, soriginal, is an extreme

value of the empirical distribution of the statistics s computed on the

permuted data, spermuted. The probability of soriginal < spermuted is:

P (soriginal < spermuted) =
1

G+ 1

 G∑
g=1

I
(
soriginal < spermutedg

)
+ 1


(4.58)
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where

I
(
soriginal < spermutedg

)
=

{
1 if soriginal < spermutedg
0 if not

(4.59)

and G is the number of random permutations.

The null hypothesis is rejected if the probability value expressed in

equation 4.58 is lower than a certain value α.

As a matter of fact, the procedure behind a permutation test can

be summarized by the following scheme:

1. The statistic s is computed in each sample, in our case a statistic

s is computed for each of the two groups in order to obtain

soriginal

2. The units are grouped in a unique sample k1 ∪ k2.

3. A random permutation of the unique sample is performed in

order to obtain two groups of k∗1 and k∗2 units having the same

size as the original groups.

4. The statistic s is computed for each of the permuted samples,

spermutedg .

5. The steps 3 to 4 are repeated G times.

6. An empirical distribution of the spermuted under H0 is obtained.
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7. If the original value of the statistic s, soriginal, is an extreme value

of the spermuted distribution, then the null hypothesis is rejected.

This procedure is shown to be a valid technique to check hypothesis

[Edgington 1987].

4.5.2 Comparing model parameters

Comparing model parameters is the easiest way to assess if two mod-

els are different. In a latent class context this means to define if the

detected classes show different behaviors as regards the model param-

eters. Of course, different procedures are available to compare model

parameters according to the estimation techniques used to estimate

the Structural Equation Model. That is why in this subsection com-

paring model coefficients will be discussed for each of the estimation

techniques presented in chapter 3.

Comparing coefficients in LISREL-type models

In LISREL-type techniques, it is possible to test if the detected latent

classes meet the assumption that they are equal among the groups by

examining whether different matrices in the model (which represent

sets of path coefficients) are “invariant”. In other words, it is possible

to test whether the matrices of the coefficients in the model are equal

across the groups.

Model parameters could be tested at different degrees, i.e. different

assumptions of class equality can be tested. As a matter of fact,
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assuming that the model has the same form across the different classes,

it is possible to test model equality at the path coefficients level, as well

as at external weights level, or at the level of the covariance matrices

of the errors in the models. Moreover, they are usually tested in a

particular order [Bollen 1989], i.e. from the least restrictive test to the

hypothesis imposing the most constraints on the parameters. Usually,

supposing the structure of the model be the same across groups, the

order of the tests for equality in Structural Equation Model is:

HΛ test for equality in the measurement models, i.e.: Λ1 = Λ2.

HΛB test for equality in the structural models, given equal measure-

ment models, i.e.: Λ1 = Λ2, B1 = B2.

HΛBΘ test for equality in the covariance matrix of the measurement

errors, given equal measurement and structural coefficients,i.e.:

Λ1 = Λ2, B1 = B2, Θ1 = Θ2.

HΛBΘΨ test for the equality in the covariance matrix of the structural

errors, given equal measurement loadings and structural coeffi-

cients, as well as similar covariance matrix of the measurement

errors, i.e.: Λ1 = Λ2, B1 = B2, Θ1 = Θ2, Ψ1 = Ψ2.

HΛBΘΨΦ test for equality in the covariance matrix of the exogenous

latent variables, given equal all the other parameters in the mod-

els, i.e: Λ1 = Λ2, B1 = B2, Θ1 = Θ2, Ψ1 = Ψ2, Φ1 = Φ2.

This last test is the most restrictive hypothesis. Under HΛBΘΨΦ all

parameter matrices are constrained to be the same among groups. If



168 Latent class detection in SEM

HΛBΘΨΦ is accepted, the results are consistent with the assumption

that parameters have the same level in the two groups. In other words

the model is invariant among the groups.

Of course, this is not a restrictive order. If a particular hypothesis has

to be tested, the order in which parameter equalities are tested can

be altered. Nevertheless, once the testing hierarchy is established, it

is possible to perform the tests and assess which degree of invariance

best fits the data.

Whatever the level at which the test is performed, independently from

the H0 under which the test is performed, the same procedure is ap-

plied.

As a matter of fact, in all the cases the test is performed on the

group-specific covariance matrix (Sk). Under each of the above spec-

ified hypothesis an implied covariance matrix can be estimated as a

function of the model’s parameters, i.e. Σk

(
Ω̂k

)
, where Ωk is the

matrix of model parameters. Let Σ̂k = Σk

(
Ω̂k

)
, the closer the Σ̂k

is to the Sk’s for all groups, the better the model fit. The global fit

function is obtained as a weighted combination of the fit for all the

groups, with weights equal to relative group sizes, i.e:

F =
K∑
k=1

nk
N
Fk

(
Sk, Σ̂k

)
(4.60)

where Fk is a general fit function defined according to the different

estimation modes ( for example ML or GLS) in LISREL-type Struc-
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tural Equation Models (cf. subsection 3.3.1 and equation 3.11), nk is

the size of the k-th group and N is the total number of units, with

N = n1 + · · ·nK in the case of K groups.

Under the null hypothesis, the constraints in all the groups are cor-

rected. The (N − 1)F following a chi-square distribution with(
KP (P+1)

2
− fp

)
degrees of freedom, where fp is the number of inde-

pendent parameters is estimated in all the groups.

Moreover, since the hierarchy of testing hypothesis presented above

contains nested models, and since the differences in chi-squares for

nested models is distributed as a chi-square with degrees of freedom

equal to the difference in the degrees of freedom for the two models

(that in the case of the nested model is equal to one), then it is easy

to perform the test while scrolling the hierarchy up and down.

The null hypothesis of equality among the groups, for a given testing

level, is rejected if the χ2 value is higher then a given α value, i.e. if

the associated p-value is small.

Comparing coefficients in PLS-PM

In the PLS Path Modeling approach several methods are available to

compare the parameters of models having the same structure. Usually

only path coefficients are taken into account when comparing several

models. Nevertheless, many of the presented procedures can be easily

extended to the external weights.

Four approaches have been developed to test if differences in model
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parameters across groups is significant. These are:

• the classical (parametric) approach,

• the non-parametric approach,

• the permutation based approach,

• the moderator variable based approach.

Each of these approaches will be discussed in details.

Parametric approach

This approach is based on standard bootstrap techniques [Efron 1982].

For each group, the parameter to be investigated linking the m-th ex-

ogenous variable to the j-th endogenous one, βmj, is estimated by

performing standard PLS Path Modeling analysis. Then, the stan-

dard deviation (s2
βmj

) of each estimated parameter βmjk is estimated

by means of bootstrapping. The following test statistic is calculated:

t =
βmj1 − βmj2√

(n1−1)2

n1+n2−2
· sβmj1

2 + (n2−1)2

n1+n2−2
· s2

βmj2
·
√

1
n1

+ 2
n2

(4.61)

Under several distribution assumptions, such as the normality of the

residuals, the test statistic defined in equation 4.61 is asymptotically

distributed as a Student with (n1 + n2 − 2) degrees of freedom.

A parametric test can be performed and the null hypothesis on the

equality of coefficients tested.
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This procedure is relatively easy to be applied, nevertheless it requires

a distributional assumption, at least on the residuals. As shown by

Henseler & Fassott [2007] this assumption does not always hold. For

this reason, the use of this procedure to assess differences among model

parameters has to be carefully evaluated.

Non-parametric approach

This approach was recently presented by Henseler & Fassott [2007]. It

is a bridge between the parametric and the permutation approaches.

The basic idea is to obtain, by means of bootstrapping the empirical

cumulative distribution of the parameters of interest. The procedure

requires four steps, that are:

1. For each group, estimate the parameter of interest, and fix the

null hypothesis.

For instance, supposing there are two groups, and that the path

coefficient linking the m-th exogenous latent variable to the j-th

endogenous one is greater in group one than in group two, i.e.

H0 : βmj1 > βmj2 .

2. For each group, build G bootstrap samples and compute the G

estimates for the parameter of interest.

3. Build all the possible combinations (GK) of the bootstrap pa-

rameters across groups, in the case of two groups we will have

G2 possible combinations.
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4. Count how often, in the GK combinations, the null hypothesis

is rejected. In our case, count how often the path coefficient of

group one is smaller than or equal to the one estimated for group

two.

The relative frequency of these counts reflects the error probability, i.e.

the probability that in the population the path coefficient computed

for group one is smaller than or equal to the one computed for group

two:

P
(
βmj1 > βmj2

)
= 1− 1

G2

G∑
g=1

G∑
s=1

I
(
βgmj1 ≤ βsmj2

)
(4.62)

where βgmj1 is the parameter estimated for group one in the g-th boot-

strap sample, and I is a boolean function with:

I
(
βgmj1 ≤ βsmj2

)
=

{
1 if βgmj1 ≤ βsmj2
0 otherwise

(4.63)

This method is easily applied by using the available software for PLS-

PM analysis together with a spreadsheet software. Moreover, it does

not require any distributional assumption. Nevertheless, increasing

the number of classes directly increases the number of bootstrap sam-

ple combinations to take into account.

Permutation tests approach
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Chin in 2003 proposed to apply permutation tests to compare path

coefficients of PLS Path Models estimated on different samples [Chin

2003].

In the case of two groups, the null hypothesis to be tested is:

H0: βmj1 = βmj2 (4.64)

where, as usual, βmj1 and βmj2 are the path coefficients linking the

m-th exogenous latent variable to the j-th endogenous latent variable

in group one and in group two. As described in subsection 4.5.1, a s

statistic needs to be identified. Chin [2003] in his work does not spec-

ify the used statistic. As a matter of fact, since the aim is to test if the

path coefficients are different across groups, both the s =
∣∣βmj1 − βmj2∣∣

and the s =
(
βmj1 − βmj2

)2
can be considered in a permutation pro-

cedure as expressed in 4.5.1.

Then a permutation test procedure as expressed in subsection 4.5.1 is

performed.

Using moderating variables to assess differences among

model parameters

Moderating variables are categorical or metric variables influencing

the relationship, in terms of strength and/or direction, between an en-

dogenous and an exogenous variable (fig. 4.1) [Baron & Kenny 1986].

Following this idea, group effects are nothing else than a moderating

effect of a categorical moderating variable expressing group member-
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Figure 4.1: Moderating Variable in a simple SEM

ship. Several solutions have been proposed to consider moderating

variable in regression-like techniques. Nevertheless, usually a modera-

tor effect is modeled by taking into account product terms considering

the effects of the moderating variables.

In other words, moderating variables have been integrated in Struc-

tural Equation Models by adding a so-called interaction term as an

additional latent variable in the model [Kenny & Judd 1984]. In a

simple model, with only one exogenous variable and one endogenous

variable, the interaction term is obtained as the product of the mani-

fest variables linked to the exogenous latent variable and the moder-

ating variable (fig. 4.2). In such a model, it does not matter which
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variable is moderating and which one is the exogenous one. Moreover,

problems arise in the interpretation of the product term.

Figure 4.2: Creating interaction term in a simple SEM by product

A first attempt to take into account moderating variables in PLS-PM

by including interaction effects was made by Chin, Marcolin & New-

sted [2003]. Since then, other proposals exist for modeling moderating

effects in PLS-PM framework, as the one by Tenenhaus et al. [2008]

and the one by Hensler & Fassott [2008].
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As Hensler & Fassott [2008] suggest, in the case that the exogenous

variable or the moderating variable is formative, the pairwise multi-

plication of the manifest variables is not feasible. In this case they

propose to use a two step procedure to include product terms. In the

first step they suggest performing PLS-PM by considering both the

exogenous variable and the moderating variable as independent latent

variables in the model. Once latent variable scores are estimated, the

product term is computed as the elementwise product of the exoge-

nous latent variable scores and the moderating latent variable scores.

A multiple linear regression between the endogenous latent variable

scores and the exogenous, the moderating, and the product term la-

tent variable scores is then performed. The interaction effect is esti-

mated. A scheme of procedure proposed by Hensler & Fassott [2008]

is shown in figure 4.3.

Chin et al. [2003] suggest to assessing moderating by comparing the

R2 value, i.e. the proportion of the variance explained by the model,

computed for the model without moderating effects with the R2 value

obtaining for the model taking into account interaction effects. The

effect size, f 2, is computed as:

f 2 =
R2

model with moderating −R2
model without moderating

1−R2
model without moderating

(4.65)

Moderating effects with an effect size f 2 of 0.02 are regarded as weak,

an effect size between 0.15 and 0.35 as moderated and an effect size

higher than 0.35 as strong [Chin et al. 2003]. Nevertheless, the au-
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Figure 4.3: Henseler and Fassot procedure to model interaction effect
in a simple SEM with formative manifest variables

thors stress that a lower effect size does not necessarily mean that the

considered moderating effect is negligible.

The significance of the coefficient linked to the interaction effect can

be tested also by means of bootstrap-based techniques [Hensler &

Fassott 2008].
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It is important to notice that, usually, when comparing model coeffi-

cients, information about model fit is not taken into account. Future

research in this framework might be able to test differences across

model parameters taking into account also the fit of the models.

Moreover, even if all these approaches have been developed in PLS-

PM framework, they may be easily extended to Structural Equation

Models estimated by ML or by GSCA.

Comparing coefficients in GSCA

Fuzzy Clusterwise Generalized Structured Analysis uses bootstrap tech-

niques [Efron 1982] to compute standard errors of parameter estimates.

Critical Ratios, obtained by dividing the parameter estimates by their

standard errors, can be used to test the parameters significance with-

out distributional hypothesis.

Nevertheless, no specific technique is available to compare parameters

across groups. Techniques developed in PLS-PM framework could be

easily extended to GSCA context.

4.5.3 Comparing latent variable scores

Especially in PLS-PM framework, latent variable scores assume a key

role. As a matter of fact, PLS-PM directly provides latent variable

scores, while in SEM-ML latent variable scores can only be obtained
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indirectly. In any case, generic latent variable scores are obtained as:

ξq =

∑Pq
p=1 wpqxpq∑Pq
p=1wpq

(4.66)

Usually these values are scaled between 0 and 100 by means of the

following equation:

ξ∗q = 100×
ξq − xmin
xmax − xmin

(4.67)

Two different hypotheses can be tested on the scaled values. Both

tests are obtained by means of a non-parametric approach: the per-

mutation tests [Edgington 1987] specified in subsection 4.5.1.

First of all, it is possible to look for differences across groups in latent

variable means. Let µ̂ξ∗
q1

be the mean value for the q-th latent variable

in the first group, and µ̂ξ∗
q2

the mean value for the same variable in

the group two, then it is possible to compare the mean values under

the null hypothesis that the two values are equal, i.e.:

H0: µξ∗q1 = µξ∗q2 (4.68)

where the latent variable mean values are estimated by means of the

expectation of each latent variable in each class, i.e. µξ∗q1 = E
(
ξ∗q1
)

and µξ∗q2 = E
(
ξ∗q2
)
, and a permutation test is used to perform the

test.

As discussed in subsection 4.5.1, in a permutation test we have to
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identify a statistic s allowing us to test the null hypothesis. Under the

null hypothesis expressed in equation 4.68, the statistic s to be used

is:

s =
∣∣E (ξ∗q1)− E (ξ∗q2)∣∣ (4.69)

If the null hypothesis is rejected, differences between mean values al-

low us to assess that each group has a specific mean value for the q-th

latent variable. Of course, for each latent variable a similar test has

to be performed.

The same procedure can be applied to test differences across the groups

as regards the variance values of the latent variables in the model. In

this case the null hypothesis to be tested will be:

H0: σ2
ξ∗q1

= σ2
ξ∗q2

(4.70)

Under this null hypothesis, the statistic s to be tested becomes:

s =
∣∣∣Sξ∗q1 − Sξ∗q2∣∣∣ (4.71)

where S is the sample variance. The permutation tests performed on

this statistic allow us to compare the group dispersion as regards the

q-th latent variable scores.
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4.5.4 Comparing model quality

Comparing the quality of Structural Equation Models requires apply-

ing different procedures as regards the estimation method used to esti-

mate it. Moreover, since SEM are complex models, defining a quality

index in a SEM framework requires taking into account several as-

pects. In this section an overview of the different methods available

to compare model quality in the different Structural Equation frame-

works will be provided. First of all comparing model quality in a

LISREL-type framework will be presented. Later, the cases of both

GSCA and PLS-PM will be considered. A new way to assess if the

local models perform better than the global model will be introduced

in chapter 5 (cf. section 5.3).

Comparing models in SEM-ML framework

As expressed in subsection 3.3.1 LISREL-type Structural Equation

Models aim to reproduce the sample covariance matrix. In this frame-

work the quality of a model is strictly related with its ability to fit the

data. The various indexes proposed in subsection 3.3.1 can be easily

compared across groups using standard parametric tests based on the

likelihood ratio test.

Comparing models in PLS-PM framework

In PLS-PM framework, three different quality indexes are available as

expressed in subsection 3.4.1. Jakobowicz [2007] in his doctoral thesis
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proposed an extension of the Chin [2003] approach, presented in sub-

section 4.5.2, in order to compare models estimated on different groups

of units. The basic idea is to apply permutation tests (cf. subsection

4.5.1) on the PLS-PM quality indexes under the null hypothesis that

the quality of the model is the same across groups. In the case of two

groups:

H0: GF1 = GF2 (4.72)

where GFk is a quality index for the k-th group, with k = 1, 2.

Under this null hypothesis, the statistic to be used in a permutation

test is expressed by:

s = |GF1 −GF2| (4.73)

A permutation procedure as expressed in subsection 4.5.1 is applied,

and the null hypothesis is rejected if the obtained p-value is lower than

a certain value α, usually α = 0.05.

The Jakobowicz [2007] procedure can be applied to all the quality in-

dexes usually available in PLS-PM framework. Therefore, the GF can

be one of the three indexes presented in subsection 3.4.1, i.e. the av-

erage communality index, the average redundancy index and the GoF

index. The use of the different quality indexes as GF allows us to

test differences in model quality with respect to the structural model

(by using the redundancy index), to the measurement model (by using

communality index) and to the whole model (by using the GoF index).
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In latent class detection, the Jakobowicz [2007] procedure can be used

to test differences between the performance of the global model and

the performance of the local models in order to establish whether tak-

ing into account a group structure in the data would improve model

quality.

Comparing models in GSCA framework

Fuzzy Clusterwise Generalized Structured Component Analysis fur-

nishes an overall fit measure as discussed in subsection 3.4.2: the FIT

index. However this index does not take into account model complex-

ity. For this reason Hwang et al. [2007] propose to use a modified

version of the FIT , i.e. the adjusted FIT expressed by equation 4.74.

AFIT = 1− (1− FIT )
df0

df1

(4.74)

where df0 = NP are the degrees of freedom of the null model and

df1 = NP − fp are the degrees of freedom of the model being tested,

with fp equal to the number of free parameters including the unknown

elements in the matrices of external weights (W ) and in the matrix

of model coefficients (A), as well as the membership values (zik).

A simpler model showing similar explanatory power is preferred to a

more complex model. Moreover, a model showing a higher value of the

AFIT index has to be preferred over competing models. Nevertheless,

AFIT is valid until fp < NP , so until the number of classes consid-
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ered is smaller than the number of manifest variables in the model.

As a matter of fact, the number of free parameters becomes equal to

NP in the case of K = P . This is not a serious drawback since SEM

models usually take into account a larger number of manifest variables.

In this chapter a detailed overview of the available techniques to handle

unobserve heterogeneity in Structural Equation Models has been pro-

vided. The different approaches have been discussed and the ways to

assess model diversity shown. To the author’s knowledge, no unique

and complete discussion of the available techniques to detect latent

classes in Structural Equation Models has been presented until now.

The author wishes to make up for this gap with this work.

Moreover, in the next chapter (cf. chapter 5) a new method to obtain

response-based clustering in PLS Path Modeling will be presented:

the REBUS-PLS (REsponse Based Unit Segmentation in PLS path

models) algorithm [Trinchera 2007, Trinchera, Squillacciotti, Esposito

Vinzi & Tenenhaus 2007, Trinchera, Romano & Esposito Vinzi 2007,

Esposito Vinzi, Trinchera, Squillacciotti & Tenenhaus 2008, Esposito

Vinzi, Amato & Trinchera 2008].



Chapter 5

The REBUS-PLS algorithm

5.1 Introduction

A new method for unobserved heterogeneity detection in PLS Path

Modeling is proposed in this chapter: the REBUS-PLS (REsponse

Based Unit Segmentation in PLS-PM) [Trinchera 2007, Trinchera,

Squillacciotti, Esposito Vinzi & Tenenhaus 2007, Trinchera, Romano

& Esposito Vinzi 2007, Esposito Vinzi, Trinchera, Squillacciotti &

Tenenhaus 2008, Esposito Vinzi, Amato & Trinchera 2008].

REBUS-PLS is an iterative algorithm, which allows us to estimate at

the same time both the unit memberships to latent classes and the

class specific parameters of the local models without making any kind

of distributional assumption either on the manifest variables or on the

latent variables. The core of the algorithm is a so-called closeness

measure between units and models based on residuals and directly
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developed by the author. The idea behind the definition of this new

measure is that if latent classes exist, units belonging to the same la-

tent class will have similar local models, i.e. similar performance as

regards the global model.

Moreover, if a unit is assigned to the correct latent class, its perfor-

mance in the local model computed for that specific class will be better

than the performance obtained by the same unit considered as sup-

plementary in all the other local models.

Unlike FIMIX-PLS (cf. subsection 4.3.1) and coherent with PLS Path

Modeling features (cf. subsection 3.4.1), REBUS-PLS does not require

distributional hypotheses. Moreover, REBUS-PLS may lead to local

models that are different both in terms of structural and measurement

models. Furthermore, differently from PLS Typological Path Model,

REBUS-PLS involves a new “distance”, taking into account all the en-

dogenous latent variables and the measurement models of all blocks.

Thus it removes the requirement of a well-identified target endogenous

latent variable (cf. subsection 4.3.3). To conclude, unlike the PATH-

MOX, REBUS-PLS does not require external/concomitant variables

to cluster the units.

Furthermore, the number of classes to take into account is directly

defined by the algorithm. So, REBUS-PLS can be applied even if no a

priori information on the number of latent classes to consider is avail-

able.
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In this chapter the REBUS-PLS algorithm will be explained in de-

tail (cf. section 5.2).

Moreover, the Group Quality Index, i.e. a new index to evaluate the

obtained unit partition, will be presented in section 5.3.

5.2 The REsponse BAsed Unit Segmen-

tation algorithm

Despite following the procedure defined in PLS Typological Path Mod-

eling, the REBUS-PLS algorithm is based on a different logic. PLS

Typological Path Modeling searches for classes optimizing the local

model predictivity relative only to a target block (latent and man-

ifest variables), hence leading to high values of R2 associated with

the target latent variable [Esposito Vinzi, Trinchera, Squillacciotti &

Tenenhaus 2008]. This is reflected in the choice of the “distance”:

units are assigned to the class corresponding to the local model mini-

mizing the redundancy residuals (see equation 4.41).

In REBUS-PLS, instead, the “distance” of a unit from a model is

defined by taking into account the model performance for both the

structural and the measurement model. Since the “distance” measure

chosen in PLS-TPM (see equation 4.41) is a sum of squared residu-

als, it would be better defined as a measure of closeness of units to

the model, than to a “distance” measure. This is the reason why in

REBUS-PLS, and in the rest of this work, a measure to assess distance

between unit and model based on residuals is referred to as a closeness
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measure (CM) rather than as a distance.

In order to obtain local models that fit better than the global model,

the chosen closeness measure is defined according to the structure of

the Goodness of Fit (GoF ) index (cf. subsection 3.4.1), the only avail-

able measure of global fit for a PLS Path Model. The GoF index, as

already presented in subsection 3.4.1, is defined as:

GOF =

√√√√√√√
Q∑
q=1

Pq∑
p=1

Cor2
(
xpq, ξq

)
∑Q
q=1 Pq

×

J∑
j=1

R2
(
ξj ,
{
ξ∗q ’s explaining ξj

})
J

(5.1)

The left product term in 5.1, the average communality index (see

equation 3.68), can be considered as an index measuring the quality

of the measurement models: it is obtained as the mean of the squared

correlations linking each manifest variable (xpq) to the correspondent

latent variable (ξq) over all the Q blocks.

The term on the right side, the average R2, is instead an index mea-

suring the quality of the structural model (see equation 3.73).

Since the GoF is obtained as the geometric mean of the average com-

munality and the average R2 value, a model with a high GoF value

shows a better performance on both the structural and measurement

models.

Following the GoF structure, as expressed in equation 5.1, a new

closeness measure between unit and model has been defined. This



5.2. The REsponse BAsed Unit Segmentation algorithm 189

index is based on the residuals of the communality model (i.e., the

regressions of the manifest variables over their respective latent vari-

ables) and of the structural model (the regressions of the endogenous

latent variables over their respective explanatory latent variables).

In more formal terms, the closeness measure (CM) of the i-th unit

to the k-th local model, i.e. to the latent model corresponding to the

k-th latent class, is defined as:

CMik =

√√√√√√√√√√√√√

Q∑
q=1

Pq∑
p=1

[
e2ipqk/Com

(
xpq , ξqk

)]
N∑
i=1

Q∑
q=1

Pq∑
p=1

[
e2ipqk/Com

(
xpq , ξqk

)]
(N −mk − 1)

×

J∑
j=1

[
f2
ijk/R

2
(
ξj ,
{
ξq∗ ’s explaining ξj

})]
N∑
i=1

J∑
j=1

[
f2
ijk/R

2
(
ξj ,
{
ξq∗ ’s explaining ξj

})]
(N −mk − 1)

(5.2)

where:

Com
(
xpq, ξqk

)
is the communality index computed following equation

3.67 for the p-th manifest variable of the q-th block in the k-th latent

class;

eipqk is the measurement model residual for the i-th unit in the k-th

latent class, corresponding to the p-th manifest variable in the q-th

block, i.e. the communality residuals;

fijk is the structural model residual for the i-th unit in the k-th latent

class, corresponding to the j-th endogenous block;

N is the total number of units;

mk is the number of extracted components. Since all blocks are sup-

posed to be reflective, this figure will always be equal to 1.
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As for the GoF index, the left-side term of the product in equation

5.2 refers to the measurement models for all the Q blocks in the model

(whereas in PLS Typological Path Model the measurement model is

taken into account only for the target block), while the right-side term

refers to the structural model. It is important to notice that both the

measurement and the structural residuals are computed for each unit

with respect to each local model regardless of the memberships of the

units to the specific latent class.

The idea behind this is that if latent classes exist, units belonging to

the same latent class will have similar local models, i.e. similar per-

formance as regards the global model. Moreover, if a unit is assigned

to the correct latent class, for example to class two out of five classes,

its performance in the local model computed for the second class will

be better than the performance obtained by the same unit considered

as supplementary in all the other local models. That is why residuals

of each unit from each local model are computed. In computing the

residual from the k-th latent model, we expect that units belonging

to the k-th latent class show smaller residuals than units belonging to

the other (K − 1) latent classes.

Two kinds of residuals are used to evaluate the closeness between

a unit and a model: the measurement (or communality) residuals and

the structural residuals. The firsts are taken into account in order to

evaluate unit performance as regards the measurement model, while

the seconds check for homogeneity in the structural model.



5.2. The REsponse BAsed Unit Segmentation algorithm 191

In a reflective measurement scheme a communality residual is com-

puted for each manifest variable in the model.

In more formal terms, the measurement residual of the i-th unit from

the k-th local model, i.e. the local model computed for the k-th latent

class, is obtained as:

eipqk = xipq − x̂ipqk (5.3)

where xipq is the observed value of the p-th manifest variable in the

q-th block for the i-th unit and x̂ipqk is the estimated value of xipq in

the k-th latent class.

Hence, for each unit i, x̂ipqk is obtained by regression of xpq on the

q-th latent variable computed for the k-th latent class, i.e. ξqk.

Thus as:

x̂ipqk = λpqkξiqk (5.4)

with λpqk representing the class-specific loading associated with the

p-th manifest variable of the q-th block in the k-th latent class, and

ξiqk being the score of the q-th latent variable for the i-th unit.

This last value is obtained by using the external weights estimated for

the k-th latent class according to:

ξiqk =

Pq∑
p=1

wpqkxipq (5.5)



192 The REBUS-PLS algorithm

where wpqk is the external weight linking the p-th manifest variable

of the q-th block to the corresponding latent variable ξqk in the k-th

local model.

The generic external weight wpqk is obtained by performing a PLS

Path Model on units belonging to the k-th latent class, i.e. it is class-

specific. In other words, the communality residuals are the residuals of

the simple regressions of each manifest variable on the corresponding

latent variable computed according to the class-specific parameters.

The structural residuals fijk, instead, are computed in order to evalu-

ate unit performance in the structural model.

They are obtained for each unit i as the difference between each en-

dogenous latent variable score (i.e. the latent variable value estimated

using external weights obtained by PLS Path Model performed for the

k-th latent class, as defined in equation 5.5) and the inner estimation

of the latent variable obtained by the path diagram relations (ϑijk).

Therefore, the generic structural residual fijk is computed as:

fijk = ξijk − ϑijk (5.6)

where ξijk is obtained according to 5.5 and ϑijk is:

ϑijk =

Q∗’s on j∑
q∗=1

βq∗jkξijk (5.7)
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where βq∗jk is the path coefficient linking the q∗-th exogenous latent

variable to the j-th endogenous latent variable computed in the k-th

local model. In other words, the structural residuals are the resid-

uals of the multiple regression of the endogenous latent variables on

their exogenous latent variables. Consequently, a structural residual

is computed for each endogenous latent variable in the model.

The choice of the closeness measure in equation 5.2 as a criterion

for assigning units to classes has two major advantages.

Firstly, unobserved heterogeneity can now be detected in both the

measurement and the structural models. If two models show identical

structural coefficients, but differ with respect to one or more outer

weights in the exogenous blocks, REBUS-PLS is able to identify this

source of heterogeneity, which might be of major importance in prac-

tical applications (cf. chapter 6).

Moreover, since the closeness measure is defined according to the struc-

ture of the Goodness of Fit (GoF ) index, the identified local models

will show a higher value for both the GoF and the R2 indexes (cf.

chapter 6).

Nevertheless, the CM expressed by equation 5.2 is only the core of an

iterative algorithm allowing us to obtain a response-based clustering

of the units.

As a matter of fact, REBUS-PLS is an iterative algorithm that start-

ing from the global model allows us to detect local models performing
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better than the global model (cf. figure 5.1). The steps of the REBUS-

Figure 5.1: A schematic representation of the REBUS-PLS algorithm

PLS algorithm overlap the ones of the PLS Typological Path Modeling

[Trinchera & Esposito Vinzi 2006]. However, as already said, the two

methods are different as regards the way in which they look for latent

classes among units.

The first step of the REBUS-PLS algorithm involves computing the

global model on all the observed units, by performing a simple PLS
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Path Modeling analysis. In the second step, the communality and the

structural residuals of each unit from the global model are obtained

according to equations 5.3 and 5.6.

The number of classes (K) to be taken into account during the succes-

sive iterations and the initial composition of the classes are obtained

by performing a hierarchical cluster analysis on the computed residu-

als (both from the measurement and the structural models).

Once the number of classes to consider and the initial composition of

the classes are obtained, a PLS Path Modeling analysis is performed

on each formed class and K provisional local models are estimated.

The group-specific parameters computed at the previous step are so

used to compute the communality and the structural residuals of each

unit from each local model according to equations 5.3 and 5.6. Then

the CM of each unit from each local model is obtained according to

equation 5.2.

Each unit is, therefore, assigned to the closest local model, i.e. to the

model from which shows the smaller CM value. Once the composition

of the classes is updated, K new local models are estimated.

The algorithm goes on until the threshold of a stopping rule is achieved.

A schematic representation of the REBUS-PLS algorithm is shown

in figure 5.1 and in the algorithm 2.

As in PLS-TPM, stability on class composition from one iteration to

the other is considered as a stopping rule. The author suggests using
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Algorithm 2 REBUS-PLS algorithm

Input: X = [X1, . . . ,Xq, . . . ,XQ] standardized MV’s;
Output: βjk, wqk, ξqk, Z;

1: Estimate a global PLS Path Model
2: for all i = 1, . . . , N do
3: Compute the communality and structural residuals as:

4: fijk = ξijk − ϑijk and eipqk = xipq − x̂ipqk
5: end for
6: Perform a hierarchical cluster analysis on the residuals computed

at step 2
7: Choose the number of classes (K) to take into account according

to the dendograme obtained at step 3 and assignment of units to
the class according to the cluster analysis results.

8: for all k = 1, . . . , K do
9: Estimate the local PLS Path Model

10: end for
11: for all i = 1, . . . , N do
12: for all k = 1, . . . , K do
13: Compute the communality and structural residuals as:

14: fij = ξij − ϑij and eipq = xipq − x̂ipq
15: end for
16: Compute the CM measure for each unit from each local model
17: according to equation 5.2
18: end for
19: Assign each unit to the closest local model
20: Steps 4 to 7 are repeated until there is convergence on

class composition
21: Once the convergence is achieved:

(i) Estimate the final local models

(ii) Compute the Group Quality Index according to equation 5.12
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the threshold of less than 0.05% of units changing class from one iter-

ation to the other as stopping rule. As a matter of fact, REBUS-PLS

usually assures convergence in a small number of iterations (i.e. less

than 15).

It is also possible not to define a threshold as a stopping rule and run

the algorithm until the same groups are formed in successive itera-

tions. In fact, if no stopping rule is imposed once the “best” model is

obtained in the REBUS-PLS viewpoint, i.e. once each unit is correctly

assigned to the closeness local model, the algorithm provides the same

partition of the units at successive iterations.

If the sample size is large, it is possible to have such boundary units

that change classes time after time at successive iterations. This leads

us to obtain a series of partitions (i.e. of local model estimates) that

repeat themselves in successive iterations.

In order to avoid the “boundary” unit problem the author suggests

always defining a stopping rule.

Once the stability on class composition is reached, the final local mod-

els are computed. The class-specific parameters are then compared in

order to explain differences among detected latent classes.

Moreover the quality of the obtained partition can be evaluated through

a new index (i.e. the Group Quality Index (GQI)) expressly developed

(cf. section 5.3). A permutation test procedure (cf. subsection 4.5.1)

applied on the GQI, can be used to validate the detected latent classes.

Furthermore, if external concomitant variables are available, an ex-
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post analysis on the detected classes can be performed. This allows us

to use such concomitant variables to characterize the detected latent

classes.

Until now, REBUS-PLS has only been able to be applied in mod-

els showing the reflective measurement model. As a matter of fact,

the measurement residuals, as stated in equation 5.3, are the residuals

of the simple regression between each manifest variable in a block and

the corresponding latent variable. Therefore, they are defined only for

reflective indicators. Developments of the REBUS-PLS algorithm to

take into account also formative indicators are on going.

5.3 A new index to assess group separa-

tion

A new index to assess if local models perform better than the global

model will be introduced in this section. Of course, if local models

perform better than the global model, this directly entails assessing

the quality of the detected partition. As a matter of fact, if the de-

tected local models perform better than the global model, and better

than a random partition of the units, this can be considered an index

of the quality of the detected partition.

The Group Quality Index (GQI) presented here, is a reformulation

of the Goodness of Fit (GoF) index in a multi-group optic, and as the
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CM used in REBUS-PLS algorithm it is based on residuals.

As is well known the R2 index in a simple regression is an indica-

tor of how well the model fits the data. According to this, the R2

value is commonly expressed as the proportion of the dependent vari-

able variability explained by the regression model.

In other words, the smaller the variability of the residual values around

the regression line relative to the overall variability is, the better the

prediction obtained by the model is. Once again, the residuals play a

central role in stating the quality of a model.

Following this idea the simple R2 index can be expressed as:

R2 = 1− Dev (E)

Dev (Y )
(5.8)

where Dev (E) is the deviance of the errors in the model, and Dev (Y )
is the deviance of the dependent variable.

Remembering the Goodness of Fit index as presented in subsection
3.4.1, it is easy to notice that both the terms on the left-side of the
index and on the right-side are R2 value:

GoF =

√√√√√√√
Q∑
q=1

Pq∑
p=1

Cor2
(
xpq, ξq

)
∑Q
q=1 Pq

×

J∑
j=1

R2
(
ξj ,
{
ξ∗q ’s explainingξj

})
J

(5.9)
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Thus, it is possible to rewrite the GoF index according to the R2

formulation expressed in equation 5.8, i.e. based on the residuals:

GoF =

√√√√√√√
Q∑
q=1

Pq∑
p=1

(
1−

∑N
i=1 e

2
ipq∑N

i=1 (xipq − xpq)2

)
∑Q
q=1 Pq

×

J∑
j=1

(
1−

∑N
i=1 f

2
ij∑N

i=1

(
ξij − ξj

)2
)

J

(5.10)

Remembering that the total number of manifest variables in the model
is P , with P =

∑Q
q=1 Pq, the equation 5.10 can be rewritten as:

GoF =

√√√√ 1
P

Q∑
q=1

Pq∑
p=1

(
1−

∑N
i=1 e

2
ipq∑N

i=1 (xipq − xpq)2

)
× 1
J

J∑
j=1

(
1−

∑N
i=1 f

2
ij∑N

i=1

(
ξij − ξj

)2
)
(5.11)

This reformulation of the GoF allows us to assess model quality

directly as regards the measurement and the structural residuals, i.e.

directly in the REBUS-PLS optic.

If more than one class is taken into account, i.e. if the N units are

split into K classes each one of size nk, the GoF index as expressed in

equation 5.11 can be reformulated leading to the Group Quality Index.

Therefore, in the case of K classes the Group Quality Index can be
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expressed as:

GQI =

√√√√√√√√√√√
K∑

k=1
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(5.12)

This index is equal to the GoF in the case of a unique class, i.e. when

K = 1 and n1 = N .

In other words, the Group Quality Index computed for the whole sam-

ple as a unique class is equal to the GoF index computed for the global

model.

If local models performing better than the global model are detected

the GQI index will be higher than the GoF value computed for the

global model. As a matter of fact, local models performing better than

the global model mean working with residuals that are smaller than

the one computed for the global model. And this directly entails ob-

taining higher GQI index than the one obtained for the global model.

Of course, the GQI can be considered as an average of the class spe-

cific GoF index. Nevertheless, expressing the Group Quality Index as

in equation 5.12, allows us to directly compare the same index among

different partitions of the units (and with the aggregate solution of the

global model too).

Simulation study (cf. subsection 6.1.3) has suggested that an im-
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provement of the GQI index from the global model to the detected

local model higher than the 25% can be considered as a satisfactory

threshold to prefer the detected unit partition to the aggregate data

solution.

The improvement of the GQI index as regards the global model can

be computed as:

GQIimprovement =
GQIK −GQI1

GQI1

(5.13)

where GQI1 is the Group Quality Index computed for the aggregate

data, i.e. the GoF value computed for the global model, and GQIK

is the Group Quality Index computed for the detected partition of the

units in K latent classes.

To conclude, to assess the quality of the detected partition it is pos-

sible to perform a permutation test procedure involving T random

replications of the unit partition (keeping constant the group propor-

tions as detected by REBUS-PLS).

In this way an empirical distribution of the GQI index will be ob-

tained. The GQI obtained for the REBUS-PLS based partition will

be compared to the empirical distribution, in order to assess if the

REBUS-PLS based partition performs better than random assignment

of the units, and better than the global model.

As a matter of fact, simulation studies, as well as real data case (cf.

chapter 6), have shown that in the case of unobserved heterogene-

ity, apart from the outlier solutions, the GQI index computed for the
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aggregate level is the minimum value obtained for the empirical dis-

tribution of the GQI.

REBUS-PLS features, as well as GQI proprieties will be investigated

in the following chapter through a simulation study involving 600 ex-

perimental data-sets. Furthermore, REBUS-PLS will be applied on

an empirical data-set coming from a marketing study.





Chapter 6

Simulation study and

application to real data

6.1 Simulation study

6.1.1 Design of the Numerical Example and Data

Simulation

A key area for identifying and forming segments in social sciences is

related to the specific behaviors of certain groups of observed units.

Although the naming of latent variables is a trivial matter for numer-

ical examples using simulated data, this study focuses on the area of

customer satisfaction, as well as segmentation of markets, and con-

sumers. In this section, the REBUS-PLS algorithm will be tested in



206 Simulation study and application to real data

order to investigate its capability of detecting unobserved heterogene-

ity. These kind of examples allow us to better illustrate the features of

the REBUS-PLS algorithm that could be easily transferable to other

research disciplines in social sciences.

Customer satisfaction has achieved a fundamental and well docu-

mented results in business research. Forming groups of consumers

that are homogeneous in terms of the benefits they seek or their re-

sponse to marketing programs (e.g. product offering, price discounts)

is therefore a key element for marketers to establish and improve their

targeted marketing strategies [Wedel & Kamakura 2000].

Here, a simple marketing type model will be used to assess the REBUS-

PLS capability. The postulated model overlaps the one used by Jedidi

et al. [1997a] and by Esposito Vinzi, Ringle, Squillacciotti & Trinchera

[2007] for their numerical examples. It is composed of one latent en-

dogenous variable, Customer Satisfaction, and two latent exogenous

variables, Price Fairness and Quality (cf. figure 6.1).

Each latent exogenous variable (Price Fairness and Quality) has five

manifest variables (reflective mode), and the latent endogenous vari-

able (Customer Satisfaction) is measured by three indicators (reflec-

tive mode). However, it is not relevant for this study to include an ad-

ditional level of complexity by exemplifying path model details regard-

ing the manifest variables and the theoretical reasoning for choosing

reflective instead of formative measurement models. Since REBUS-

PLS has been established for path models with reflective blocks, our
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analysis will be limited to that kind of measurement model.

Figure 6.1: Experimental model

This study intentionally uses a clear cut example of a marketing re-

lated path model for data simulation purposes. The data generation

procedure is based on the LISREL-type approach. In other words,

once the model parameters are established, the data are generated

according to the implied covariance matrix, using a specific SAS-IML
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macro developed by the author.

Two latent classes showing different local models are supposed to exist.

Each one is composed of 200 units. Thus, the data on the aggregate

level for each one of the numerical examples includes 400 units.

This simulation study aims at testing the REBUS-PLS capability in

handling unobserved heterogeneity in three different situations, i.e.

when the unobserved heterogeneity is focused only on the structural

models (simulation scheme 1), when it concerns only the measurement

models (simulation scheme 2), and when units are heterogeneous as re-

gards both the structural and measurement models (simulation scheme

3).

For each of the postulated simulation schemes, 100 sets of simulated

data will be used.

In total, the analysis involves 300 marketing related numerical ex-

amples on different sets of simulated data. Each set includes compu-

tation of the PLS Path Modeling results for (a) the aggregate data

level (global model), (b) each class of simulated data (group models)

and (c) the local model solutions for REBUS-PLS obtained by using

a SAS-IML macro developed by the author (cf. A.2).

In all the cases the results of the global model exhibit the requirement

for addressing heterogeneity of model estimates. A comparison of the

outcomes in the local model estimates facilitates an assessment of the

REBUS-PLS algorithm. The class-specific parameters, as well as the
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quality indexes as the R2 and the GoF of the local models, are bench-

marks for REBUS-PLS. The rate of correctly assigned cases will also

be used as a performance indicator.

To conclude, the Group Quality Index as defined in section 5.3, will

be used to assess the performance of the local models compared with

the global model.

In this section, the results concerning the REBUS-PLS capability of

detecting unobserved heterogeneity focused on structural models (sim-

ulation scheme 1) will be presented first (cf. subsection 6.1.2). Then,

the REBUS-PLS performance in handling unobserved heterogeneity

concerning the measurement models (simulation scheme 2) will be in-

vestigated (cf. subsection 6.1.3). To conclude (cf. subsection 6.1.4),

REBUS-PLS will be tested in local model detection when both the

measurement and structural models are different among classes (sim-

ulation scheme 3).

6.1.2 Unobserved heterogeneity focused on the

structural model

Unobserved heterogeneity focused only on the structural models di-

rectly means working with local models that are different only as re-

gards the path coefficient intensities. In a simple model, as the one

postulated above, heterogeneity in the structural model implies de-

tecting price sensitive consumers, or those requiring price fairness,

and consumers who have the strongest preference for another partic-
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ular product attribute, e.g. quality.

Thus the experimental sets of data consist of two latent classes with

the following characteristics:

(a) Class 1 - price fairness seeking customers - characterized by

a strong relationship between Price Fairness and Customer Sat-

isfaction and a weak relationship between Quality and Customer

Satisfaction;

(b) Class 2 - quality oriented customers - characterized by a

strong relationship between Quality and Customer Satisfaction

and a weak relationship between Price Fairness and Customer

Satisfaction.

Data simulation for the group of price fairness seeking consumers in-

volves a strong relationship of 0.9 between Price Fairness and Cus-

tomer Satisfaction and a weak relationship of 0.1 between Quality

and Customer Satisfaction in the structural model (Class 1). Another

group of data reflects the characteristics of the quality oriented con-

sumers (Class 2), with a path coefficient close to 0.9 between Quality

and Customer Satisfaction, and a weak relation (close to 0.1) between

Price Fairness and Customer Satisfaction.

Each of the two groups is composed of 200 units. Therefore, at the

aggregate level each experimental data-set is composed of 400 units.

100 data-sets keeping the postulated features (two groups of 200 units

each one, the first characterized by a strong relationship between Price
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Fairness and Customer Satisfaction, and the second by a strong rela-

tionship between Quality and Customer Satisfaction) have been sim-

ulated.

The REBUS-PLS algorithm has been applied to each of the 100 aggre-

gate data-sets. A summary of the results obtained at aggregate level,

as well as at detected local model level, are shown in the tables 6.3

and 6.5, as well as in the figures 6.2 and 6.4.

In all the cases, REBUS-PLS detect two classes of units overlapping

the simulated groups. As a matter of fact, looking at the distribution

of the structural model coefficients (cf. figure 6.2) it is possible to no-

tice that the path coefficient estimates obtained for the first detected

class are always coherent with the simulated one (close to 0.90 for the

latent variable Price, and close to 0.10 for the latent variable Quality).

It is the same for the second detected class. In this case, the path co-

efficient estimates linked to the latent variable Price are close to 0.10,

while the same for the latent variable Quality are close to 0.90.

The PLS Path Modeling results on the aggregate data level are signif-

icantly different compared with the segment specific computations for

each a priori simulated group of data. In these numerical examples,

estimates for the overall sets of data are close to the weighted average

of group specific coefficients. As a consequence, the PLS Path Mod-

eling results are ambiguous when heterogeneity is not accounted for.
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Figure 6.2: Box-Plots for path coefficient estimates for simulation
scheme 1

As a matter of fact, in a simulation scheme as the one here adopted

(characterized by two structural relationships of about 0.9 and 0.1 for

one class and vice versa for the other class), to perform a PLS Path

Modeling analysis without taking into account heterogeneity in the

data turns out to have a value on the aggregate data level between

0.30 and 0.46 for both the relationships (cf. table 6.3).
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Figure 6.3: Descriptive Statistics for path coefficient estimates and
detected class size obtained from the 100 data-sets simulated according
to simulation scheme 1

As regards the quality indexes, i.e. the R2 value associated with the

endogenous latent variable Satisfaction, and the GoF value computed

for each of the 100 data-sets, their values are always definitely higher

at local model level than at aggregate level (cf. figure 6.4 and table

6.5).

In particular, the R2 values at the aggregate level are significantly

lower than the ones computed for the REBUS-PLS based clusters.

This is logically due to the simulation scheme that only involved the

structural model.

The GoF values computed for the global models, instead, even if lower

than the ones obtained for the local models, are still “higher” at the
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Figure 6.4: Box-Plots for R2 and GoF values computed for simulation
scheme 1

aggregate level. This is due to the GoF nature. As a matter of fact,

the GoF index is a quality index that takes into account both the

model performance in the structural and in the measurement models.

In the postulated simulation scheme, the measurement model are sim-

ilar in the two simulated groups. This means, that even at aggregate

level they are well estimated. In other words, the communality indexes

are still higher at the aggregate level (and close to the ones obtained
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at the local model level).

This leads to GoF values that at the aggregate level are only slightly

affected by unobserved heterogeneity.

Figure 6.5: Descriptive Statistics for the R2 values, the GoF values,
the GQI values, the well-classified rate and the improvement of the
GQI obtained from the 100 data-sets simulated according to simulation
scheme 1

Moreover, to assess the REBUS-PLS capability to detect the simu-

lated group of data, the well-classified rate can be used. REBUS-PLS

is always able to correctly assign units to the corresponding simulated

group, with a well-classified rate never lower than 91% (cf. table 6.5).

To conclude, the Group Quality Index, as presented in section 5.3, is

always higher than 0.885, i.e. about double the one obtained at the
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aggregate level (i.e. the GoF index computed for the global models).

This means, that REBUS-PLS clustering leads to an improvement of

the model quality (in terms of the GoF value, cf. equation 5.13) al-

ways higher than 53% (cf. table 6.5).

The Box-Plots summarizing the distribution of the GQI and of the

well-classified rate in the 100 simulated data-sets are provided in fig-

ure 6.6

Figure 6.6: Box-Plots for GQI and well-classified rate computed for
simulation scheme 1

We can conclude stating that if heterogeneity in the structural model

is not identified by the researcher, this can lead to incorrect estimates
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of the path coefficients and to models performing worse than homoge-

neous models.

In our example, if heterogeneity in the structural model is not taken

into account the effects of Price Fairness and Quality on Satisfac-

tion seem to be equally important. As a consequence of these, PLS

Path Modeling results, marketers may focus on the areas of Price

Fairness and Quality at the same time for all consumers. Uncovering

heterogeneity in the structural model relationships and forming dis-

tinctive classes of price fairness seeking and quality oriented customers

allows marketers to develop better targeted and more effective busi-

ness strategies.

In the next subsection the problems linked to the presence of het-

erogeneous measurement models will be investigated.

6.1.3 Unobserved heterogeneity focused on the

measurement model

The second simulation scheme involves working with local models that

are different at measurement model level. In other words, the simu-

lated local models are different as regards the outer weight intensities

and the correlations between each manifest variable and the corre-

sponding latent variable.

The path coefficients, instead, are supposed to be the same among the

two groups. In other words, the two exogenous latent variables (Price

Fairness and Quality) are supposed to have the same impact on the
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endogenous latent variable Satisfaction.

In order to build such different measurement models the author de-

cided to identify, for each group of units, a manifest variable showing

a slight correlation with the corresponding manifest variable. This

means that each group is characterized by a unique and well defined

outer weight smaller than all the others in the model.

Therefore, the experimental sets of data consist of two latent classes

with the following characteristics:

(a) Class 1 - characterized by a weak correlation between the 3rd

manifest variable of the Price Fairness block and the

corresponding latent variable;

(b) Class 2 - characterized by a weak correlation between the 3rd

manifest variable of the Quality block and the correspond-

ing latent variable.

In particular, data simulation for the first group involves a relationship

of 0.7 between Price Fairness and Customer Satisfaction and between

Quality and Customer Satisfaction in the structural model, and an

external normalized weight close to 0.1 for the third manifest variable

of the Price Fairness block (Class 1).

The second group of data, instead, shows a path coefficient close to 0.7

between Quality and Customer Satisfaction, and between Price Fair-

ness and Customer Satisfaction, and an external normalized weight

close to 0.1 for the third manifest variable of the Quality block.

As usual, each of the two groups is composed of 200 units, and 100
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data-sets keeping the postulated features have been simulated.

The REBUS-PLS algorithm has been applied to each of the 100 aggre-

gate data-sets. A summary of the results obtained at aggregate level,

as well as at detected local model level, is shown in the tables 6.7 and

6.8, as well as in the figures, 6.9, 6.10 and 6.11.

Figure 6.7: Descriptive Statistics for normalized outer weight esti-
mates and detected class size obtained from the 100 simulated data-sets
simulated according to simulation scheme 2

In table 6.8 it is possible to notice that the improvement of GQI, ob-

tained according to equation 5.13, reaches a minimum value of 0.088.

In other words, there are some data-sets for which the obtained unit

partition does not improve the model quality (in terms of GoF value).
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Figure 6.8: Descriptive Statistics for the GoF values, the GQI values,
the well-classified rate and the improvement of the GQI obtained from
the 100 data-sets simulated according to simulation scheme 2

In particular, for 13 data sets out of 100, the obtained partition shows

an improvement of GQI smaller than 25% (cf. table 6.12). This is

due to the fact that the unobserved heterogeneity is focused only on

the measurement model. Since REBUS-PLS is based on a measure

that takes into account both the structural and measurement model

it is not always able to handle local models that differ only as regards

the measurement model.

It is for this reason that in 13 data sets out of the 100 simulated ac-

cording to the simulation scheme 2, REBUS-PLS does not detect the
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Figure 6.9: Box-Plots for normalized weight estimates for simulation
scheme 2

“true” (simulated) local model, showing an average well-classified rate

close to 70% (cf. table 6.12), and no difference in class-specific outer

weights (cf. table 6.13).

For the remaining 87 data sets, instead, the REBUS-PLS results are

extremely positive. As a matter of fact, for these cases the average

well-classified rate is close to 98% and never lower than 87% (cf. table
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Figure 6.10: Box-Plots for R2 and GoF values computed for simulation
scheme 2

6.14).

The same encouraging results are obtained for the GQI values that

have a mean value of 0.83 with an improvement of the GoF value

never smaller than 27, 4% (cf. table 6.14).

Not taking into account heterogeneity leads us to neglect both the
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Figure 6.11: Box-Plots for GQI and well-classified rate computed for
simulation scheme 2

3rd manifest variable of the Price Fairness block and the 3rd manifest

variable of the Quality block (cf. table 6.15). As a matter of fact, at

the aggregate level both the normalized weights of the 3rd manifest

variable associated to the Price Fairness block and the 3rd manifest

variable of the Quality block show average values close to 0.16.

The group specific estimates, instead, exactly overlap the simulated

value for the normalized outer weights of both the manifest variables.

As a matter of fact, for the selected 87 simulated data-sets, the nor-

malized outer weight associated to the 3rd manifest variable of the

Price Fairness block for the first detected class is bounded between
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Figure 6.12: Descriptive Statistics for the GoF values, the GQI values,
the rate of well-classified and the improvement of the GQI obtained
for the “worst” 13 data-sets out of the 100 simulated according to
simulation scheme 2

0.052 and 0.165, with an average value of 0.085, i.e. close to the sim-

ulated value of 0.100. While, the 3rd manifest variable of the Quality

block shows an average normalized weight close to 0.212, i.e. close

to the ones associated with the other manifest variables of the block,

usually close to 0.200 (cf. table 6.15).

Similar results are obtained for the second detected class. Also in this

case, the obtained results overlap the simulated group specific values.

In fact, in the Quality block the 3rd manifest variable is the weakliest

correlated with the corresponding latent variable, with a normalized
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Figure 6.13: Descriptive Statistics for normalized outer weight esti-
mates and detected class size obtained for the “worst” 13 data-sets out
of the 100 simulated according to simulation scheme 2

outer weight value bounded between 0.059 and 0.135. While, in the

Price Fairness block all the manifest variables show the same level of

correlation with the latent variable, with an average normalized outer

weight equal to 0.204 (cf. table 6.15). Moreover, looking at figure 6.9,

it is possible to notice that the distributions of the normalized outer

weights are very different in the two groups.
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Figure 6.14: Descriptive Statistics for the GoF values, the GQI values,
the well-classified rate and the improvement of the GQI obtained for
the “best” 87 data-sets out of the 100 simulated according to simulation
scheme 2

6.1.4 Unobserved heterogeneity involves both the

measurement and the structural models

This last simulation scheme involves working with local models that

are different at both the measurement and the structural model levels.

Here, the simulation scheme 1 (cf. subsection 6.1.2) and the simulation

scheme 2 (cf. subsection 6.1.3) are mixed in order to obtain groups

of units with specific values for both the path coefficients and the

measurement model parameters.
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Figure 6.15: Descriptive Statistics for normalized outer weight esti-
mates and detected class size obtained for the “best” 87 data-sets out
of the 100 simulated according to simulation scheme 2

Thus, the experimental sets of data consist of two latent classes with

the following characteristics:

(a) Class 1 - price fairness seeking customers - characterized by

a strong relationship between Price Fairness and Customer Sat-

isfaction and a weak relationship between Quality and Customer

Satisfaction, as well as by a weak correlation between the 3rd

manifest variable of the Price Fairness block and the correspond-

ing latent variable;

(b) Class 2 - quality oriented customers - characterized by a

strong relationship between Quality and Customer Satisfaction
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and a weak relationship between Price Fairness and Customer

Satisfaction, as well as by a weak correlation between the 3rd

manifest variable of the Quality block and the corresponding la-

tent variable.

In particular, data simulation for the group of price fairness seeking

consumers involves a strong relationship of 0.9 between Price Fair-

ness and Customer Satisfaction and a weak relationship of 0.1 between

Quality and Customer Satisfaction in the structural model, and an ex-

ternal normalized weight close to 0.1 for the third manifest variable of

the Price Fairness block (Class 1).

Another group of data reflects the characteristics of the quality ori-

ented consumers (Class 2), with a path coefficient close to 0.9 be-

tween Quality and Customer Satisfaction, a weak relation (close to

0.1) between Price Fairness and Customer Satisfaction, and an exter-

nal normalized weight close to 0.1 for the third manifest variable of

the Quality block.

As usual, each of the two groups is composed of 200 units. And, 100

data-sets keeping the postulated features have been simulated.

The REBUS-PLS algorithm has been applied to each of the 100 aggre-

gate data-sets. A summary of the results obtained at aggregate level,

as well as at detected local model level, is shown in the tables 6.16,

6.18 and 6.22, as well as in the figures 6.17, 6.19 and 6.21.

In all the 100 data-sets, REBUS-PLS detects two classes of units over-
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lapping the simulated groups.

As regards the structural model, exactly as in the first simulation

schemes, the path coefficient estimates obtained for the first detected

class are always coherent with the simulated one (close to 0.90 for the

latent variable Price Fairness, and close to 0.10 for the latent variable

Quality) (cf. table 6.16) Moreover, looking at figure 6.17, it is possible

Figure 6.16: Descriptive Statistics for path coefficient estimates and
detected class size obtained from the 100 data-sets simulated according
to simulation scheme 3

to notice that the distributions of the structural model coefficients are

very different in the two groups.

Once again, the results for the aggregate model are significantly dif-

ferent with respect to the class-specific ones. Not taking into account

heterogeneity leads to path coefficient estimates that are similar for
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Figure 6.17: Box-Plots for path coefficient estimates for simulation
scheme 3

both the relationships in the structural model. In other words, at the

aggregate data level it is not possible to assess which is the most im-

portant driver for Satisfaction.

The same happens in measurement model estimates. Nevertheless, as

regards the measurement model parameters, not taking into account

heterogeneity leads one to neglect both the 3rd manifest variable of
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the Price Fairness block and the 3rd manifest variable of the Quality

block (cf. table 6.18). As a matter of fact, at the aggregate level both

the normalized weights of the 3rd manifest variable associated to the

Price Fairness block and the 3rd manifest variable of the Quality block

show average values close to 0.1

Figure 6.18: Descriptive Statistics for normalized outer weight esti-
mates and detected class size obtained from the 100 data-sets simulated
according to simulation scheme 3

The group-specific estimates, instead, exactly overlap the simulated

values for the normalized outer weights of both the manifest variables.

As a matter of fact, out of all the 100 simulated data-sets, the nor-

malized outer weight associated to the 3rd manifest variable of the

Price Fairness block for the first detected class is bounded between

0.092 and 0.127, i.e. close to the simulated value of 0.100. While, the
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3rd manifest variable of the Quality block shows an average normal-

ized weight close to 0.23, i.e. close to the ones associated to the other

manifest variables of the block.

As regards the second detected class, the obtained results overlap the

simulated group specific values. In fact, in the Quality block the 3rd

manifest variable is the weakliest correlated with the corresponding la-

tent variable, with a value bounded between 0.082 and 0.130. While,

the manifest variables of the Price Fairness block all show the same

level of correlation with the latent variable.

All this information can be easily checked also referring to figure 6.19.

Differently from the first simulation scheme, where heterogeneity only

involved the structural model, here there is a difference in model per-

formance arising in both the measurement and the structural models

when comparing the global model to the local ones.

This leads to quality indexes, i.e. the R2 value associated to the en-

dogenous latent variable Satisfaction and the GoF value computed

for each of the 100 data-sets, that are always definitely higher at local

model level than at aggregate level (cf. figure 6.21 and table 6.22).

As a matter of fact, the R2 value at the aggregate level is at the most

equal to 0.338, while for both the detected classes of units the same

is never less than 0.785 (cf. table 6.22). Therefore, the detected local

models show R2 values that are more than double the ones obtained

for the aggregate level. Is it the same for the GoF values, even if the

difference between the GoF value obtained from global models and
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Figure 6.19: Box-Plots for normalized weight estimates for simulation
scheme 3

the same obtained at local model level is not so strong as the one

obtained for the R2 value. This is due to the GoF features and to

the fact that the measurement model quality indexes (i.e. the com-

munality indexes) are only slightly affected by heterogeneity in the

measurement model. As a matter of fact, the distribution of the aver-

age communality values are not different in the global model and the

two detected local models (cf. figure 6.21).
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Figure 6.20: Descriptive Statistics for the R2 values, the GoF values,
the GQI values, the well-classified rate and the improvement of the
GQI obtained from the 100 data-sets simulated according to simulation
scheme 3

Moreover, also in this last example the well-classified rate can be used

to assess the REBUS-PLS capability to detect the simulated group of

data. Once again, REBUS-PLS shows its ability to correctly assign

units to the corresponding simulated group, with a well-classified rate

never lower than 90.8% (cf. table 6.22).

To conclude, the Group Quality Index, as presented in section 5.3,

is always higher than 0.808, with an improvement in the model qual-

ity (in terms of the GoF value) always higher than 58.4% (cf. table

6.22).
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Figure 6.21: Box-Plots for the Average Communality values, the R2

values and the GoF values computed for simulation scheme 3

The Box-Plot for the GQI and for the well-classified rate summarizing

the distribution of these two values in the 100 simulated data-sets for

simulation scheme 3 are provided in figure 6.23



236 Simulation study and application to real data

Figure 6.22: Descriptive Statistics for the R2 values, the GoF values,
the GQI values, the well-classified rate and the improvement of the
GQI obtained from the 100 data-sets simulated according to simulation
scheme 3

6.1.5 Conclusion

On the basis of this simulation study is possible to state that the

REBUS-PLS algorithm is able to detect unobserved heterogeneity not

only when it affects the whole model (i.e. both the measurement and

structural models), but also when it focuses only on the structural

model level or on the measurement model level.

As a matter of fact, out of all the 300 simulated data-sets, REBUS-

PLS never achieved a well-classified rate lower than 86%.

Its ability to detect homogeneous group of units, however, is stronger
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Figure 6.23: Box-Plots for GQI and well-classified rate computed for
simulation scheme 3

if the unobserved heterogeneity is focused on the structural model or

on the whole model, than if it simply affects the measurement model.

In the author’s opinion, this is not a great problem in real applica-

tion. As a matter of fact, to assume that heterogeneity only affects

the measurement model is an unrealistic assumption. At well as, to

assume that the same only affects the structural model as in the case

of FIMIX-PLS.

As far as future developments are concerned it would be interesting

to evaluate REBUS-PLS capabilities when dealing with alterations
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of segment sizes as well as in data distribution. Moreover, it would

be interesting to perform a simulation study in order to evaluate the

REBUS-PLS behavior under the so-called “null hypothesis” of homo-

geneity in the sample. The author has already conducted studies in

this sense and the results obtained so far are positive. Nevertheless, a

more organic and systematic study is necessary.

6.2 Real data example

The REBUS-PLS algorithm has already been tested also on some em-

pirical data [Esposito Vinzi, Trinchera, Squillacciotti & Tenenhaus

2008, Trinchera et al. 2006, Esposito Vinzi, Amato & Trinchera 2008].

Here the author decides to present a simple and clear example to

show the REBUS-PLS ability to handle unobserved heterogeneity on

empirical data. Moreover, the author decides to use a dataset that

has already been used in the literature [Ringle et al. 2008], in order

to indirectly compare the REBUS-PLS results with the ones obtained

using methods other than REBUS-PLS.

Due to this, the author decides to use empirical data coming from

the Gruner&Jahr’s ’Brigitte Communication Analysis performed in

2002 that specifically concerns the Benetton fashion brand.

Gruner&Jahr is one of the leading publishers of printed magazines in

Germany. Since 1984, they have conducted each year a Communica-

tion Analysis Survey. In the survey, over 5.000 women answer numer-
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ous questions on brands in different product categories and questions

regarding their personality. The women represent a cross section of

the German female population. As Ringle et al. [2008] suggest Benet-

ton’s aggressive and provocative advertising in the 1990s resulted in

a lingering customer heterogeneity that is more distinctive and easier

to identify compared with other fashion brands in the Communication

Analysis Survey (e.g. Esprit or S.Oliver). For this reason, as well as

for comparing the REBUS-PLS results with the Ringle et al. [2008]

ones, the author chooses to use the answers to questions on the Benet-

ton fashion brand.

The scope of this work neither includes a presentation of a theoreti-

cally hypothesized Path Model scheme, nor a discussion on whether

the measurement models of latent variables should be operational-

ized as formative or reflective [Diamantopoulos & Winkelhofer 2001,

Rossiter. 2002]. Moreover, an extensive presentation of the survey

data went beyond the aim of this paragraph.

Our goal is simply to show the applicability of REBUS-PLS to em-

pirical data for a reduced cause-effect relationship model on branding

[Yoo, Donthu & Lee 2000] that principally guides all kinds of Struc-

tural Equation Models analysis in marketing employing this clustering

technique.

The Benetton dataset, as used by Ringle et al. [2008], is composed of

10 manifest variables observed on 444 German women. Each manifest
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variable is a question in the Gruner&Jahr’s ’Brigitte Communication

Analysis of 2002. The women had to answer each question using a

four-point scale from “low” to “high”.

The PLS Path Model scheme for Benetton’s brand preference, as

used by Ringle et al. [2008], consists of one latent endogenous Brand

Preference variable, and two latent exogenous variables, Image and

Character. All latent variables are linked to the corresponding latent

variable via a reflective measurement model. Figure 6.24 illustrates

the path model with the latent variables and the particular manifest

variables from Gruner&Jahr’s ’Brigitte Communication Analysis 2002’

employed. A list of the used manifest variables with the corresponding

meanings is shown in table 6.25.

A SAS-IML macro developed by the author ( cf. appendix A.2) has

been used to perform a simple PLS Path Modeling analysis on the

whole sample. In other words, the global model estimates have been

obtained by using the PLS-PM SAS-IML macro imposing the num-

ber of classes equal to zero, i.e. ncla = 0. As is obvious, the global

model estimates are consistent with the ones obtained by Ringle et al.

[2008] in their study. A simple overview of the global model results is

proposed in figure 6.26. According to the global model results Image

seems to be the most important driver for Brand Preference, with a

path coefficient equal to 0.423. The influence of the latent exogenous

Character variable is considerably weaker (path coefficient of 0.177).

Nevertheless, the R2 value associated with the endogenous latent vari-
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Figure 6.24: Path diagram for Benetton data

able Brand Preference is quite low, being equal to 0.239. Ringle et al.

[2008] consider this value as a moderate level for a PLS Path Model.

In the author’s opinion a R2 value of 0.239 has to be considered as

unsatisfactory, and could be used as a first sign of heterogeneity in the

data.

Looking at the measurement models, all the relationships in the re-

flective measurement model have high factor loadings (the smallest

loading has a value of 0.795, cf. table 6.27). In figure 6.26 the nor-

malized outer weights are shown. Differences in the manifest variables
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Figure 6.25: Manifest Variable meanings and block definition for
Benetton Data

impact arise in the Brand Preference block. As a matter of fact, the

outer weights of the exogenous block are quite similar to each other,

while in the endogenous block the latent variable is more correlated

with the manifest variable Sympathy than with the Brand Usage. To

conclude, the global model on Benetton data shows a GoF value equal

to 0.422 (cf. table 6.28). The quite low value of the GoF index also

suggests that we have to look for more homogeneous segments among

the units.
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Figure 6.26: Global model results from Benetton data obtained by using
a SAS-IML macro

A more complete outline of the global model results is provided in

table 6.27 and in table 6.28. In these tables all the PLS Path Mod-

eling results, such as the communality indexes and the redundancy

indexes, as well as model parameter estimates, and the corresponding

interval of confidence obtained by bootstrap, are shown.

These tables contain also the class-specific results in order to make it

easier to compare the segments.
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Figure 6.27: Measurement model results for the global model and the
local models obtained by REBUS-PLS
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Figure 6.28: Structural model results for the global model and the local
models obtained by REBUS-PLS

Performing REBUS-PLS on Benetton data allows us to detect three

different classes of units showing homogeneous behavior. As a matter

of fact, the cluster analysis performed on the residuals from the global

model (cf. figure 6.29) suggests that we to look for two or three latent

classes. Both the partitions have been investigated.

Nevertheless, the three class solution has been preferred to the two

class solution. As a matter of fact, the three class partition shows

a Group Quality Index higher than the two class one. Moreover, the

GQI index computed for the two class solution (GQI = 0.454) is close

to the GoF value computed for the global model (i.e. the GQI index
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Figure 6.29: Dendograme obtained by performing a cluster analysis
on the residuals from the global model (Step 3 of the REBUS-PLS
algorithm)

in the case of only one class) (GoF = 0.422). The 25% improvement

forseen to consider the obtained unit partition better than the unique

class solution (cf. section 6.1.1) was not achieved.

Here only the results for the three class partition will be presented.

Results concerning the two class solutions can be found in the ap-

pendix A.1.

As already said, thanks to the REBUS-PLS algorithm the 444 units
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have been clustered in three classes that are more homogeneous as

regards the model parameters.

The first class is composed of 105 units, i.e around 24% of the whole

sample. This class is characterized by a path coefficient linking the la-

tent variable Character to the endogenous latent variable higher than

the one obtained for the global model. Moreover, differences in unit

behaviors arise also as regards the correlations amongs manifest and

latent variables in the Brand Preference block. Figure 6.30 shows

the PLS Path Model parameter estimates obtained for the first class.

Differently from the global model, in the Brand Preference block the

manifest variable Brand Usage shows higher outer weight than Sym-

pathy. It is the same for the manifest variable Fashion1 that shows

a lower correlation with the corresponding latent variable than in the

global model and in the first class model.

The quality index values for the local model computed for the first

groups are close to the ones obtained for the global model, with a R2

associated to the endogenous block equal to 0.308, and a GoF value

equal to 0.455.

The second class, instead, shows quality index values definitely higher

than the global model, with aGoF value of 0.676 and aR2 value for the

latent variable Brand Usage equal to 0.669 (cf. table 6.28). This class

is composed of around 32% of the whole sample, and it is characterized

by a higher path coefficient associated to the relationship between the
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Figure 6.30: Local model results for the first group detected by per-
forming REBUS-PLS algorithm on Benetton data

Image and the Brand Preference. Looking at the measurement model

(cf. table 6.27), differences arise in the Brand Preference block and in

the Character block. As a matter of fact, the communality index (i.e.

the square of the correlation) between the manifest variable Brand

Usage and the corresponding latent variable Brand Preference is re-

ally lower than the one obtained for the global model and for the first

group local model. It is the contrary for the manifest variable Sym-

pathy that here shows a higher normalized weight value. As regards
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the Character block, the manifest variable Fashion2 shows a higher

correlation with the corresponding latent variable Character than in

the global model or in the local model for group 1.

A synthesis of the results obtained for the second class is provided in

figure 6.31.

Figure 6.31: Local model results for the second group detected by per-
forming the REBUS-PLS algorithm on Benetton data

To conclude, the results for the third detected class are presented in

figure 6.32. This class is composed of 198 units., i.e. more than 44%
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of the whole sample. It is characterized by a very weak relationship

between the latent variable Character and the endogenous latent vari-

able Satisfaction. Moreover, the bootstrap interval shows that this

relation is not significant (cf. table 6.28). Differences arise also as

regards the measurement block, notably in the Image block. As a

matter of fact, in this class the manifest variable Modernity shows a

very low correlation compared with the other model results. While,

the manifest variable Style of life seems to be slightly more correlated

with the latent variable Image than in the other models.

Nevertheless, the quality index values computed for the third local

model are only slightly different from the global model one (R2 = 0.27

and GoF = 0.417).

The three class solution shows a Group Quality Index equal to 0.531.

In order to validate the REBUS-PLS based partition, an empirical

distribution of the GQI values is computed. Following the permuta-

tion test approach (cf. subsection 4.5.1) the whole sample has been

randomly divided 300 times into three classes of the same size as the

ones detected by REBUS-PLS. The GQI has been computed for each

of the random partitions of the units.

The empirical distribution of the GQI values for a three class parti-

tion of the units is therefore obtained (cf. figure .38). The GQI value

obtained from the REBUS-PLS partition of the units is definitely an

extreme value of the distribution. Moreover, analyzing the Box-Plot

obtained for the empirical distribution of the GQI values (cf. figure
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Figure 6.32: Local model results for the third group detected by per-
forming the REBUS-PLS algorithm on Benetton data

6.34), it is possible to notice that the GQI computed for the global

model (i.e. the GoF value computed for the global model) is the

smaller value obtained for the GQI, except for outliers.

This means that a partition of units in latent classes always surpassed

the performance of the global model. In other words, the global model

has to be definitely considered as affected by heterogeneity. Moreover,

the GQI value obtained for the REBUS-PLS based partition is the

higher obtained value. This allow us to assess that the REBUS-PLS
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Figure 6.33: Empirical distribution of the GQI computed on 300 ran-
dom partition of the sample in three classes

based clustering of the units is better than a random assignment of

the units, and is definitely better than the global model solution.

Comparing REBUS-PLS results with the Ringle et al. [2008] ones

Ringle et al. [2008] applied FIMIX-PLS to Benetton data.

As already said (cf. subsection 4.3.1), the FIMIX-PLS look for het-

erogeneity only in the structural model. The measurement model pa-

rameters remain constant among the local models. In other words,

the detected classes are different only as regards the path coefficient

intensities.
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Figure 6.34: Box-Plots obtained for the empirical distribution of the
GQI values

Moreover, FIMIX-PLS only provides a fuzzy clustering of the units.

As a matter of fact, all the units are supposed to belong to all the

detected latent classes, with a particular degree of membership.

To conclude, if there is no information about the number of classes

to take into account, FIMIX-PLS needs to be performed to successive

numbers of latent classes in order to identify the better partition.

According to the FIMIX-PLS features Ringle et al. [2008] identify only

two segments. The first one (80.9% of the whole sample) overlaps the

global model results in terms of path coefficient estimates. Neverthe-

less, the R2 value associated to the endogenous latent variable Satis-
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faction is equal to 0.108. This is a very small value, compared with

the already small global model one (R2 = 0.236).

The second detected segment (19.1% of the whole sample), instead,

overlaps the results obtained by REBUS-PLS for the second class. As

a matter of fact, also in this case the exogenous latent variable Image

seems be the most important driver for Brand Preference, showing an

R2 value close to the unit.

In order to obtain local models that are different also as regards the

measurement model, Ringle et al. [2008] applied a two step strategy.

In the first step they simple apply FIMIX-PLS. Successively they used

such external/concomitant variables to look for groups overlapping the

FIMIX-based ones.

Nevertheless, also in this two step procedure the obtained results are

not better than the ones provided by the REBUS-PLS based partition.

As a matter of fact, the R2 value and the GoF value of the first local

model are smaller than the global model ones. In other words, the lo-

cal model for the biggest segment (80% of the whole sample) performs

worse than the global model, and worst of all the REBUS-PLS based

local models.

6.2.1 Conclusion

The detection of unobserved heterogeneity in Structural Equation

Models, especially in the marketing field, is a very important task.

As a matter of fact, our simulation study (cf. section 6.1.1), as well as
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other authors [Jedidi et al. 1997a, Jedidi et al. 1997b] underline that

treating a sample as homogeneous when it is not, may lead to model

parameter estimates that are biased.

The REBUS-PLS algorithm turned out to be a powerful tool to detect

unobserved heterogeneity in both experimental and empirical data.

In particular, as regards the real data application, REBUS-PLS was

able to detect three latent classes of units, showing different behavior.

Moreover, all the obtained local models perform better than the global

model, with R2 values and GoF values higher than the global model

ones.

To conclude, a permutation test performed on the Group Quality In-

dex has proved that the REBUS-PLS based partition is the best one

according to the prediction capability of the model.
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A.1 The REBUS-PLS results for the two

class solution on Benetton data

Here the results obtained by performing REBUS-PLS algorithm on

Benetton data, in the case of two latent class, are presented.

Figure .35: Local model results for the two groups detected by perform-
ing REBUS-PLS algorithm on Benetton data
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Figure .36: Measurement model results for the global model and the
local models obtained by REBUS-PLS for the two class solution
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Figure .37: Structural model results for the global model and the local
models obtained by REBUS-PLS for the two class solution
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Figure .38: Empirical distribution of the GQI computed on 300 ran-
dom partitions of the sample in two classes
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Figure .39: Box and Whisker Plot obtained for the empirical distribu-
tion of the GQI values for two class solution
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A.2 The SAS-IML code for the REBUS-

PLS algorithm

/*********************************************************************/

/* */

/* This procedure allow to perform the last version of */

/* REBUS-PLS algorithm. */

/* */

/* Author : Laura Trinchera - DMS - Università di Napoli FEDERICO II */

/* November 30 2007 */

/* */

/* The REBUS-PLS is an iterative algorithm that allows to perform */

/* response based clustering in a PLS-PM framework. */

/* */

/* 1 At the initial step a global PLS-PM is performed on all units */

/* (Macro PLS_PM with nclas=0) */

/* */

/* 2 The residuals of each unit from the global model are computed */

/* (Macro dis_res with DIST = ’NO’) */

/* */

/* 3 A cluster analysis is then performed on the residuals computed */

/* at step 2 */

/* (Macro cluster_for_1_g ) */

/* */

/* 4 Once the number of segments defined, looking at the dendogram */

/* obtained in step 4, the composition of classes is obtained */

/* (Macro update_class) */

/* */

/* 5 The local models (one for each segment) are estimated */

/* (Macro PLS_PM) */
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/* */

/* 6 A measure of the distance of each unit from each model is then */

/* computed */

/* (Macro dis_res with DIST = ’YES’) */

/* */

/* 7 All units are reassigned to the class corresponding to the */

/* closest local model */

/* (Macro alloc_units) */

/* */

/* 8 Local models are estimated for each new class */

/* (Macro PLS_PM) */

/* */

/* THE ALGORITHM IS REITERATED UNTIL CONVERGENCE IS OBTAINED */

/* N.B. convergence is obtained when group membership are stable */

/* from one iteration to the other and the macro alloc_units print */

/* "STOP" */

/* */

/* ONCE THE CONVERGENCE RICHED the final local models, as well as */

/* the GQI index, are computed by the macro "PLS_PM" with GQI=YES */

/*********************************************************************/

/*********************************************************************/

/* NOTATION */

/* (valid for all macros) */

/* - Matrix X containing all the MVs values for all the units */

/* (raw data)MUST BE CALLED Cl_0 */

/* - the index g&k indicates the number of classes, e.g.: */

/* - COMM_g&0_M is the average communality of the */

/* GLOBAL MODEL */

/* - COMM_g&1_M is the average communality of the MODEL */

/* estimated for group one, and so on... */
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/* - the index b&q refers to the blocks */

/*********************************************************************/

/*********************************************************************/

/* Macro PLS_PM */

/* */

/* This macro allows to estimate the same PLS-PM diagram */

/* either on different classes or on a single (global) model */

/* */

/* The macro parameters: */

/* */

/* LIBNAME = the library where the results will be stocked and where */

/* the data to be analyzed are stocked */

/* TABLE = name of the table containing the data to analyze */

/* ID = The unit’s identifier. It must be Text type: usually id_1, */

/* id_2, id_3, and so on */

/* NCLAS = the number of classes for which the PLS-PM is performed */

/* NBLOC = the number of PLS_PM blocks (each block is formed by */

/* a LV and the corresponding MVs) */

/* NVLendo= the number of endogenous blocks in the model */

/* GQI = Global Quality Index. GQI = ’YES’ allowing the macro to */

/* compute the GQI, while GQI = ’NO’ does not including the */

/* computation of the GQI in the macro. */

/* GQI have to be computed only once the convergence assured */

/* to assess unit clustering. Therefor, GQI have to be kipped */

/* equal to ’NO’ until the last running of this macro! */

/* */

/* N.B. Some steps of this macro depend on the specification of the */

/* inner model and of the outer model. Hence, some steps are */

/* to be MANUALLY modified by the user according to the model */
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/* specification BEFORE running the macro. */

/*********************************************************************/

%macro PLS_PM(libname=,table=,id=,nclas=,nbloc=,nVLendo=,GQI=);

data &libname..Cl_0;

set &libname..&table;

run;

proc iml;

%do k=0 %to &nclas;

use &libname..Cl_&k;

read all into X_g&k [rowname=&id colname=colX&k];

N_g&k=nrow(X_g&k);

print N_g&k;

/****************************************************************/

/* Definition of the outer model by allocating each MV, */

/* i.e. each X column, to its block. */

/* */

/* The blocks are indicated by successive numbers */

/****************************************************************/

/****************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (assignment of each MV to its block) */

/****************************************************************/

/* replace into brackets the names of the observed variables for*/

/* each block and define the name of the latent variable */

use &libname..Cl_&k var{IM1 IM2 IM3 IM4};
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read all into X_image_g&k;

use &libname..Cl_&k var{Brand1 Brand2 Brand3 Brand4};

read all into X_brand_g&k;

use &libname..Cl_&k var{SAT1 SAT2};

read all into X_sat_g&k;

/*****************************************************************/

/* ALWAYS KEEP THE SAME ORDER FOR THE EXOGENOUS LATENT VARIABLES */

/*****************************************************************/

%do q=1 %to &nbloc;

%if &q=1 %then %do; X_g&k._b&q=X_image_g&k;

%end;

%if &q=2 %then %do; X_g&k._b&q=X_brand_g&k;

%end;

%if &q=3 %then %do; X_g&k._b&q=X_sat_g&k;

%end;

%end;

%do q=1 %to &nbloc;

mean_VM_g&k._b&q=(X_g&k._b&q[+,])/N_g&k;

print mean_VM_g&k._b&q;

quad_VM_g&k._b&q=X_g&k._b&q##2;

mean_quad_VM_g&k._b&q=(quad_VM_g&k._b&q[+,])/N_g&k;

print mean_quad_VM_g&k._b&q;

var_VM_g&k._b&q=mean_quad_VM_g&k._b&q-mean_VM_g&k._b&q##2;

sqm_VM_g&k._b&q=sqrt(var_VM_g&k._b&q);

print sqm_VM_g&k._b&q;

XS_g&k._b&q=standard(X_g&k._b&q);

correzione=N_g&k/(N_g&k-1);

correzione=sqrt(correzione);

XS_g&k._b&q=XS_g&k._b&q*correzione;
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P_g&k._b&q=ncol(XS_g&k._b&q);

%end;

/****************************************************************/

/* P_g&k it is the total number of MVs in the outer model */

/* It is obtained as sum of the MVs of each bloc */

/****************************************************************/

/****************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (number of blocks to be added) */

/****************************************************************/

/* if new blocks have been added, add new addend */

P_g&k=P_g&k._b1+P_g&k._b2+P_g&k._b3;

/*---------weights vectors initialization module----------*/

start iniz_w (P);

w=j(1,P,0);

do i=1 to P;

if i=1 then w[,i]=1;

else w[,i]=0;

end;

w=w‘;

return (w);

finish iniz_w;
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%do q=1 %to &nbloc;

w_g&k._b&q=iniz_w(P_g&k._b&q);

%end;

/***************************************************************/

/* The PLS-PM Algorithm */

/* Maximum number of iterations: 50 */

/***************************************************************/

z_g&k._b3=XS_g&k._b3*w_g&k._b3;

y_old_g&k=z_g&k._b3*100;

do it=1 to 50 until (converg<0.0000001);

y_old_g&k=z_g&k._b3;

/* ----- outer estimation of LVs ["csi"] ----- */

%do q=1 %to &nbloc;

y_g&k._b&q=XS_g&k._b&q*w_g&k._b&q;

y_g&k._b&q=standard(y_g&k._b&q);

y_g&k._b&q=y_g&k._b&q*correzione;

%end;

/* ----- estimation of the inner weights ["e"] ------ */

/*************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/*(weights are obtained according to the path diagram scheme)*/

/*************************************************************/

/* ----- centroid scheme ----- */

/*each weight "e" is obtained as the sign of the correlations*/
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/*---------- between the LVs linked by a causal path --------*/

e_g&k._b1_b3=(y_g&k._b1‘*y_g&k._b3)/N_g&k;

if e_g&k._b1_b3>0 then e_g&k._b1_b3=1;

else if e_g&k._b1_b3<0 then e_g&k._b1_b3=-1;

e_g&k._b2_b3=(y_g&k._b2‘*y_g&k._b3)/N_g&k;

if e_g&k._b2_b3>0 then e_g&k._b2_b3=1;

else if e_g&k._b2_b3<0 then e_g&k._b2_b3=-1;

/* ----- inner estimation of the LVs ["Z"]----- */

/*************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (inner estimates depend on the path diagram scheme) */

/*************************************************************/

/*check carefully all links between LVS for inner estimation */

z_g&k._b1=e_g&k._b1_b3*y_g&k._b3;

z_g&k._b2=e_g&k._b2_b3*y_g&k._b3;

z_g&k._b3=e_g&k._b1_b3*y_g&k._b1+e_g&k._b2_b3*y_g&k._b2;

%do q=1 %to &nbloc;

z_g&k._b&q=standard(z_g&k._b&q);

z_g&k._b&q=z_g&k._b&q*correzione;

%end;

/* estimation of the outer weights ["w"]*/

/* reflective way */

%do q=1 %to &nbloc;
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w_g&k._b&q=inv(z_g&k._b&q‘*z_g&k._b&q)*(z_g&k._b&q‘*XS_g&k._b&q);

w_g&k._b&q=w_g&k._b&q‘;

%end;

/* formative way */

/*%do q=1 %to &nbloc;

/* w_g&k._b&q=inv(XS_g&k._b&q‘*XS_g&k._b&q)*(XS_g&k._b&q‘*z_g&k._b&q);

/*%end;*/

converg=(ssq(y_old_g&k-z_g&k._b3))/(ssq(y_old_g&k));

print converg;

end;

/* ----the outer weights are non normed ---- */

%do q=1 %to &nbloc;

print w_g&k._b&q;

%end;

/*******************************************************/

/* computation of the LVs using the outer weights w */

/*******************************************************/

%do q=1 %to &nbloc;

VL_g&k._b&q=XS_g&k._b&q*w_g&k._b&q;

sqm_VL_g&k._b&q=(VL_g&k._b&q‘*VL_g&k._b&q)/(N_g&k);

sqm_VL_g&k._b&q=sqrt(sqm_VL_g&k._b&q);

w_tilde_g&k._b&q=w_g&k._b&q/sqm_VL_g&k._b&q;

print w_tilde_g&k._b&q;

abs_w_tilde=abs(w_tilde_g&k._b&q);

somma_w_tilde=abs_w_tilde[+,];

w_tilde_normal_g&k._b&q=w_tilde_g&k._b&q/somma_w_tilde;
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print w_tilde_normal_g&k._b&q;

VLS_g&k._b&q=XS_g&k._b&q*w_tilde_g&k._b&q;

print VLS_g&k._b&q;

%end;

/* ----- the LVs are standardized ----- */

/*************************************************************/

/* computation of the correlation between */

/* each LV and the corresponding MVs */

/*************************************************************/

%do q=1 %to &nbloc;

corr_VL_g&k._b&q=(XS_g&k._b&q‘*VLS_g&k._b&q)/N_g&k;

print corr_VL_g&k._b&q;

%end;

/*************************************************************/

/* computation of the Path coefficients and of the R2 value */

/* of the endogenous LVs */

/* */

/* VL_exo_g&k_onXX is the vector containing the exogenous LVs*/

/* linked to the endogenous LV XX */

/*************************************************************/

/*************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (depending on which latent variables are linked */

/* by a causal path) */

/*************************************************************/
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/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

VL_exo_g&k._on3=(VLS_g&k._b1||VLS_g&k._b2);

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

/* taking into account only the endogenous blocks */

%do q=3 %to &nbloc;

path_coef_g&k._b&q=inv(VL_exo_g&k._on&q‘*VL_exo_g&k._on&q)

*(VL_exo_g&k._on&q‘*VLS_g&k._b&q);

print path_coef_g&k._b&q;

VLS_g&k._b&q.att=VL_exo_g&k._on&q*path_coef_g&k._b&q;

RES_g&k._b&q=VLS_g&k._b&q-VLS_g&k._b&q.att;

R2_g&k._b&q=1-(RES_g&k._b&q‘*RES_g&k._b&q)/

(VLS_g&k._b&q‘*VLS_g&k._b&q);

print R2_g&k._b&q;

%end;

/* ----- computation of the Communality and Redundancy indexes ------*/

%do q=1 %to &nbloc;

COMM_g&k._b&q._vm=(corr_VL_g&k._b&q)##2;

print COMM_g&k._b&q._vm;

%end;

%do q=1 %to &nbloc;

COMM_g&k._b&q=sum((corr_VL_g&k._b&q)##2)/P_g&k._b&q;

print COMM_g&k._b&q;

%end;
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/****************************************************************/

/* AVERAGE COMMUNALITY */

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (the average communality is obtained taking into account */

/* all the communality indexes, i.e. one per block) */

/****************************************************************/

/* if new blocks have been added, add new latent variable */

/* in the sum at the numerator */

COMM_g&k._M=(P_g&k._b1*comm_g&k._b1+P_g&k._b2*comm_g&k._b2

+P_g&k._b3*comm_g&k._b3)/P_g&k;

print COMM_g&k._M;

/****************************************************************/

/* REDUNDANCY */

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (number of endogenous latent variables in the model) */

/****************************************************************/

/*the redundancy indexes are calculated only for the endogenous LVs*/

/* IT MUST BE OBTAINED according to the path diagram */

%do q=3 %to &nbloc;

RED_g&k._b&q=COMM_g&k._b&q*R2_g&k._b&q;

print RED_g&k._b&q;

RED_g&k._X&q=(CORR_VL_g&k._b&q)##2*R2_g&k._b&q;

print RED_g&k._X&q;

%end;
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/*-------- computation of the GOF index----------*/

/**************************************************************/

/* This step is to be MANUALLY completed by the user BEFORE */

/* running the macro */

/* (number of endogenous latent variables in the model) */

/**************************************************************/

R2_g&k._M= (R2_g&k._b3);

print R2_g&k._M;

GOF_g&k= sqrt(COMM_g&k._M*R2_g&k._M);

print GOF_g&k;

/*------- creation of output SAS tables------------*/

%do q=1 %to &nbloc;

varname1={"scores_b&q"};

create &libname..scoresVLS_g&k._b&q from VLS_g&k._b&q

[rowname= &id colname=varname1];

append from VLS_g&k._b&q [rowname= &id];

close &libname..scoresVLS_g&k._b&q;

varname1_bis={"scores_orig_b&q"};

create &libname..scoresVL_orig_g&k._b&q from VL_g&k._b&q

[rowname= &id colname=varname1_bis];

append from VL_g&k._b&q [rowname= &id];

close &libname..scoresVL_orig_g&k._b&q;

create &libname..CORR_VL_g&k._b&q from CORR_VL_g&k._b&q ;
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append from CORR_VL_g&k._b&q ;

close &libname..CORR_VL_g&k._b&q;

create &libname..w_tilde_g&k._b&q from w_tilde_g&k._b&q;

append from w_tilde_g&k._b&q;

close &libname..w_tilde_g&k._b&q;

create &libname..w_tilde_normal_g&k._b&q from w_tilde_normal_g&k._b&q;

append from w_tilde_normal_g&k._b&q;

close &libname..w_tilde_normal_g&k._b&q;

create &libname..COMM_g&k._b&q from COMM_g&k._b&q;

append from COMM_g&k._b&q;

close &libname..COMM_g&k._b&q;

create &libname..COMM_g&k._b&q._vm from COMM_g&k._b&q._vm;

append from COMM_g&k._b&q._vm;

close &libname..COMM_g&k._b&q._vm;

create &libname..mean_VM_g&k._b&q from mean_VM_g&k._b&q;

append from mean_VM_g&k._b&q;

close &libname..mean_VM_g&k._b&q;

create &libname..sqm_VM_g&k._b&q from sqm_VM_g&k._b&q;

append from sqm_VM_g&k._b&q;

close &libname..sqm_VM_g&k._b&q;

%end;

create correzione from correzione;

append from correzione;

close correzione;
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/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

create &libname..path_coef_g&k._b&q from path_coef_g&k._b&q;

append from path_coef_g&k._b&q;

close &libname..path_coef_g&k._b&q;

create &libname..RED_g&k._b&q from RED_g&k._b&q;

append from RED_g&k._b&q;

close &libname..RED_g&k._b&q;

create &libname..R2_g&k._b&q from R2_g&k._b&q;

append from R2_g&k._b&q;

close &libname..R2_g&k._b&q;

%end;

%do q=1 %to &nbloc;

create &libname..VM_oss_b&q._g&k from X_g&k._b&q [rowname= &id];

append from X_g&k._b&q [rowname= &id];

close &libname..VM_oss_b&q._g&k;

%end;

%end;

/****************************************************************/

/* computation of the Group Quality Index */

/****************************************************************/

%if &GQI=’YES’%then %do;

%do k=0 %to &nclas;

%do q=1 %to &nbloc;

proc sort data=&libname..VM_oss_b&q._g&k;

by &id;
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run;

proc sort data=&libname..scoresVLS_g&k._b&q;

by &id;

run;

%end;

%end;

proc iml;

%do k=0 %to &nclas;

%do q=1 %to &nbloc;

/***********************************************************/

/* computation of the first term of Group Quality Index */

/* Q inner residuals have to be computed, */

/* one for each block in the model */

/***********************************************************/

use &libname..VM_oss_b&q._g&k;

read all into VM_oss_b&q._g&k [rowname=&id];

use &libname..mean_VM_g&k._b&q;

read all into mean_VM_g&k._b&q;

use &libname..scoresVLS_g&k._b&q;

read all into scoresVLS_g&k._b&q;

use &libname..sqm_VM_g&k._b&q;

read all into sqm_VM_g&k._b&q;

use &libname..CORR_VL_g&k._b&q;

read all into c_b&q._g&k;

N_g&k=nrow(VM_oss_b&q._g&k);

P_g&k._b&q=ncol(VM_oss_b&q._g&k);

mean_matrix_VM_g&k._b&q=repeat(mean_VM_g&k._b&q,N_g&k,1);

sqm_matrix_g&k._b&q=repeat(sqm_VM_g&k._b&q,N_g&k,1);
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XS_g&k._b&q=(VM_oss_b&q._g&k-mean_matrix_VM_g&k._b&q)#

(sqm_matrix_g&k._b&q##-1);

E_VM_b&q._g&k=scoresVLS_g&k._b&q*c_b&q._g&k‘;

ex_res_VM_b&q._g&k=XS_g&k._b&q-E_VM_b&q._g&k;

dif_VM_b&q._VM_g&k._means=XS_g&k._b&q;

dif_VM_b&q._VM_g&k._means=dif_VM_b&q._VM_g&k._means##2;

%end;

/* if the model is composed by more than 3 blocks, */

/* add new addends */

P=P_g&k._b1+P_g&k._b2+P_g&k._b3;

%end;

%do k=1 %to &nclas;

%do q=1 %to &nbloc;

num_primo_termine_1step_b&q._g&k=ex_res_VM_b&q._g&k##2;

num_primo_termine_2step_b&q._g&k=

num_primo_termine_1step_b&q._g&k[+,];

den_primo_termine_1step_b&q._g&k=dif_VM_b&q._VM_g&k._means;

den_primo_termine_2step_b&q._g&k=

den_primo_termine_1step_b&q._g&k[+,];

primo_termine_b&q._g&k=num_primo_termine_2step_b&q._g&k/

den_primo_termine_2step_b&q._g&k;

%end;

primo_termine_g&k._1step=

primo_termine_b1_g&k %do q=2 %to &nbloc;||primo_termine_b&q._g&k%end;;

primo_termine_g&k._2step=primo_termine_g&k._1step[,+]/P;

primo_termine_g&k._3step=(N_g&k/N_g0)#primo_termine_g&k._2step;

%end;

K=&nclas;

%if &nclas=0 %then %do; K=1; %end;

primo_termine_1step=
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primo_termine_g1_3step%do k=2 %to&nclas;||primo_termine_g&k._3step%end;;

primo_termine_2step=primo_termine_1step[,+];

primo_termine=1-primo_termine_2step;

print primo_termine;

/*****************************************************************/

/* computation of the second term of Group Quality Index */

/* J inner residuals have to be computed */

/* one for each endogenous block in the model */

/*****************************************************************/

%do k=1 %to &nclas;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

VL_exo_g&k._on3=(scoresVLS_g&k._b1||scoresVLS_g&k._b2);

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

use &libname..path_coef_g&k._b&q;

read all into path_coef_g&k._b&q;

mean_scoresVLS_g&k._b&q=scoresVLS_g&k._b&q[+,]/N_g&k;

mean_matrix_scoresVLS_g&k._b&q=

repeat(mean_scoresVLS_g&k._b&q,N_g&k,1);

VL_g&k._b&q.att=VL_exo_g&k._on3*path_coef_g&k._b&q;

in_RES_VL_g&k._b&q=scoresVLS_g&k._b&q-VL_g&k._b&q.att;

dif_VL_b&q._VL_g&k._means=

scoresVLS_g&k._b&q-mean_matrix_scoresVLS_g&k._b&q;

dif_VL_b&q._VL_g&k._means=dif_VL_b&q._VL_g&k._means##2;

%end;

%end;

J=&nVLendo;
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%do k=1 %to &nclas;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

/* since it is computed only for endogenous LV */

%do j=3 %to &nbloc;

num_secondo_termine_1step_b&j._g&k=in_RES_VL_g&k._b&j##2;

num_secondo_termine_2step_b&j._g&k=

num_secondo_termine_1step_b&j._g&k[+,];

den_secondo_termine_1step_b&j._g&k=dif_VL_b&j._VL_g&k._means;

den_secondo_termine_2step_b&j._g&k=

den_secondo_termine_1step_b&j._g&k[+,];

secondo_termine_b&j._g&k=num_secondo_termine_2step_b&j._g&k/

den_secondo_termine_2step_b&j._g&k;

%end;

/* ADD NEW TERMS BY MEANS OF || ONE FOR EACH ENDOGENOUS LV*/

secondo_termine_g&k._1step=secondo_termine_b3_g&k;;

secondo_termine_g&k._2step=secondo_termine_g&k._1step[,+]/J;

secondo_termine_g&k._3step=(N_g&k/N_g0)#secondo_termine_g&k._2step;

%end;

secondo_termine_1step=

secondo_termine_g1_3step %do k=2 %to &nclas;

|| secondo_termine_g&k._3step

%end;;

secondo_termine_2step=secondo_termine_1step[,+];

secondo_termine=1-secondo_termine_2step;

print secondo_termine;

GQI=sqrt(primo_termine*secondo_termine);

print GQI;

create &libname..results_GQI from GQI;

append from GQI;

close &libname..results_GQI;
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quit;

%end;

quit;

%mend PLS_PM;

/********************************************************************/

/* Macro res_dist */

/* */

/* this macro allows to compute the residuals and the distances */

/* between each unit and each local model */

/* */

/* Macro parameters : */

/* LIBNAME = library where the results are stocked */

/* ID = The unit’s identifier. It must be Text type: usually id_1, */

/* id_2, id_3, and so on. */

/* NCLAS= number of classes for which the PLS-PM has been estimated*/

/* NBLOC = the number of PLS_PM blocks (each block is formed */

/* by a LV and the corresponding MVs) */

/* DIST = ’YES’ if distance have to be computed, */

/* ’NO’ if only residual have to be computed */

/* N.B. Some steps of this macro depend on the specification of */

/* the inner model and of the outer model. */

/* Hence,some steps are to be MANUALLY modified by the user */

/* according to the model specification BEFORE running */

/* the macro. */

/********************************************************************/

%macro res_dist(libname=,id=,nclas=,nbloc=,dist=);
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/* Computation of LVs scores for all the units */

/* regardless the class memberships */

proc iml;

%do k=0 %to &nclas;

%do q=1 %to &nbloc;

use &libname..w_tilde_g&k._b&q;

read all into w_tilde_g&k._b&q;

use &libname..VM_oss_b&q._g0;

read all into X_g0_b&q [rowname=&id];

use &libname..mean_VM_g&k._b&q;

read all into mean_VM_g&k._b&q;

use &libname..sqm_VM_g&k._b&q;

read all into sqm_VM_g&k._b&q;

N_g&k=nrow(X_g0_b&q);

mean_matrix_g&k._b&q=repeat(mean_VM_g&k._b&q,N_g&k,1);

sqm_matrix_g&k._b&q=repeat(sqm_VM_g&k._b&q,N_g&k,1);

XS_all_g&k._b&q=(X_g0_b&q-mean_matrix_g&k._b&q)

#(sqm_matrix_g&k._b&q##-1);

VL_all_g&k._b&q=XS_all_g&k._b&q*w_tilde_g&k._b&q;

%end;

%end;

/* computation of the predicted values of the MV linked to all LVs */

%do k=0 %to &nclas;

%do q=1 %to &nbloc;

%do m=0 %to &nclas;

use &libname..CORR_VL_g&k._b&q;

read all into c_b&q._g&m;

%end;
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E_VM_b&q._with_coef_of_g&k=VL_all_g&k._b&q*c_b&q._g&k‘;

%end;

%end;

/* computation of the predicted values of the endog LVs */

%do k=0 %to &nclas;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

VL_all_exo_g&k._on3=(VL_all_g&k._b1||VL_all_g&k._b2);

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

use &libname..path_coef_g&k._b&q;

read all into path_coef_g&k._b&q;

VL_g&k._b&q.att=VL_all_exo_g&k._on&q*path_coef_g&k._b&q;

%end;

%end;

/* ---------- creazione output sas -------- */

%do k=0 %to &nclas;

%do q=1 %to &nbloc;

create XS_all_g&k._b&q from XS_all_g&k._b&q [rowname=&id];

append from XS_all_g&k._b&q [rowname=&id];

close XS_all_g&k._b&q;

create VL_all_g&k._b&q from VL_all_g&k._b&q [rowname=&id];

append from VL_all_g&k._b&q [rowname=&id];

close VL_all_g&k._b&q;

create work.E_VM_b&q._with_coef_of_g&k from E_VM_b&q._with_coef_of_g&k

[rowname=&id];

append from E_VM_b&q._with_coef_of_g&K [rowname=&id];
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close work.E_VM_b&q._with_coef_of_g&k;

%end;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

create VL_g&k._b&q.att from VL_g&k._b&q.att [rowname=&id];

append from VL_g&k._b&q.att [rowname=&id];

close VL_g&k._b&q.att;

%end;

%end;

/************************************************************/

/* computation of the residuals and of the distances */

/************************************************************/

/* -------- residuals "outer" on VM --------- */

%do k= 0 %to &nclas;

%do q=1 %to &nbloc;

proc sort data=XS_all_g&k._b&q;

by &id;

run;

proc sort data=work.E_VM_b&q._with_coef_of_g&k;

by &id;

run;

proc iml;

use work.E_VM_b&q._with_coef_of_g&k;

read all into E_VM_b&q._with_coef_of_g&k [rowname=&id];

use XS_all_g&k._b&q;

read all into VM_oss_b&q._g&k [rowname=&id];
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ex_res_VM_b&q._from_g&k=VM_oss_b&q._g&k-E_VM_b&q._with_coef_of_g&k;

varname3={%do c=1 %to 10;

"ex_res&c._VM_b&q._from_g&k"

%end;};

create &libname..ex_res_VM_b&q._from_g&k from ex_res_VM_b&q._from_g&k

[rowname=&id colname=varname3];

append from ex_res_VM_b&q._from_g&k [rowname=&id];

close &libname..ex_res_VM_b&q._from_g&k;

quit;

%end;

%end;

/* -------- residuals "inner" on VM --------- */

%do k=0 %to &nclas;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

proc sort data=VL_g&k._b&q.att;

by &id;

run;

proc sort data=VL_all_g&k._b&q;

by &id;

run;

proc iml;

use VL_all_g&k._b&q;

read all into VL_all_g&k._b&q [rowname=&id];
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use VL_g&k._b&q.att;

read all into VL_g&k._b&q.att [rowname=&id];

in_RES_g&k._b&q=VL_all_g&k._b&q-VL_g&k._b&q.att;

varname4={%do c=1 %to 10;

"In_res&c._g&k._b&q"

%end;};

create &libname..in_Res_g&k._b&q from in_Res_g&k._b&q

[rowname= &id colname=varname4];

append from in_Res_g&k._b&q [rowname= &id];

close &libname..in_Res_g&k._b&q;

quit;

%end;

%end;

/* creo la tavola RES con tutti i residui*/

%do k=0 %to &nclas;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

proc sort data=&libname..In_res_g&k._b&q;

by &id;

run;

%end;

data all_in_res_from_g&k;

/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

merge %do q=3 %to &nbloc;

&libname..in_res_g&k._b&q

%end;;
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by &id;

run;

%do q=1 %to &nbloc;

proc sort data=&libname..Ex_res_VM_b&q._from_g&k;

by &id;

run;

%end;

data all_ex_res_from_g&k;

merge %do q=1 %to &nbloc;

&libname..Ex_res_VM_b&q._from_g&k

%end;;

by &id;

run;

data &libname..res_g&k;

merge all_in_res_from_g&k

all_ex_res_from_g&k;

by &id;

run;

%end;

%if &dist=’YES’%then %do;

/* -------- Distance --------- */

%do k=1 %to &nclas;

proc iml;

%do q=1 %to &nbloc;

use &libname..ex_res_VM_b&q._from_g&k;

read all into ex_res_VM_b&q._from_g&k [rowname=&id];

%end;
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/* IT MUST BE DEFINED ACCORDING TO THE PATH DIAGRAM */

%do q=3 %to &nbloc;

use &libname..in_Res_g&k._b&q ;

read all into in_Res_g&k._b&q [rowname=&id];

use &libname..R2_g&k._b&q;

read all into R2_g&k._b&q;

%end;

use &libname..cl_&k;

read all into cl_&k;

%do q=1 %to &nbloc;

use &libname..Comm_g&k._b&q._vm;

read all into Comm_g&k._b&q._vm;

%end;

/* ------ NEW distances --------*/

t_g&k=1;

/* t=1 since the number of extracted components it is */

/* always equal to 1...only one LV for block! */

N=nrow(ex_res_VM_b&q._from_g1);

print N;

secondo_termine_num_g&k=(in_Res_g&k._b3##2/R2_g&k._b3);

/* the numerator computation have to be changed according*/

/* to the number of endogenous blocks in the model */

secondo_termine_num_g&k=secondo_termine_num_g&k[,+];

/* new vector containing the "super-residual" for each unit*/

secondo_termine_den_g&k=secondo_termine_num_g&k[+,]/(N-t_g&k-1);

secondo_termine_g&k=secondo_termine_num_g&k/secondo_termine_den_g&k;
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primo_termine_num_g&k=((ex_res_VM_b1_from_g&k##2*COMM_g&k._b1_vm##-1)

||(ex_res_VM_b2_from_g&k##2*COMM_g&k._b2_vm##-1)

||(ex_res_VM_b3_from_g&k##2*COMM_g&k._b3_vm##-1));

/* the numerator computation have to be changed according to */

/* the number of blocks in the model */

primo_termine_num_g&k=primo_termine_num_g&k[,+];

/* new vector containing the "super-residual" for each unit*/

primo_termine_den_g&k=primo_termine_num_g&k[+,]/(N-t_g&k-1);

primo_termine_g&k=primo_termine_num_g&k/primo_termine_den_g&k;

D_from_g&k=sqrt(primo_termine_g&k#secondo_termine_g&k);

print D_from_g&k;

/**********************************************************/

/* Creation of the output SAS tables */

/**********************************************************/

varname5={"D_from_g&k"};

/*defining a table for distances..*/

create &libname..dis_from_g&k from D_from_g&k

[rowname= &id colname=varname5];

append from D_from_g&k [rowname= &id];

close &libname..dis_from_g&k;

quit;

%end;

%end;

%mend res_dist;

/*******************************************************************/

/* Macro alloc_units */

/* */

/* Assignment of the units to the closest local model */

/* */
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/* Macro parameters : */

/* LIBNAME = where the results are stocked */

/* ID = The unit’s identifier. It must be Text type: usually id_1 */

/* id_2, id_3, and so on. */

/* NCLAS = number of class for which PLS-PM has been estimated */

/*******************************************************************/

%macro alloc_units(libname=,id=,nclas=);

%do k=1 %to &nclas;

proc sort data=&libname..dis_from_g&k;

by &id;

run;

%end;

proc sort data=&libname..merge;

by &id;

run;

data a;

set &libname..merge (keep= &id cluster);

run;

%do k=1 %to &nclas;

data a;

merge a

&libname..dis_from_g&k;

by &id;

run;

%end;
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data &libname..dis;

set a;

run;

data &libname..dis;

set &libname..dis;

%do k=1 %to &nclas;

if D_from_g&k<=D_from_g1

%do h=2 %to &nclas; and D_from_g&k<=D_from_g&h %end;

then cl_new=&k;

%end;

run;

proc sort data=&libname..cl_0;

by &id;

run;

data &libname..merge;

merge &libname..dis (keep = &id cluster cl_new)

&libname..cl_0;

by &id;

run;

data cluster_old;

set &libname..merge (keep = &id cluster);

run;

data cluster_new;

set &libname..merge (keep = &id cl_new);

run;



Appendix 295

data cambio;

set &libname..merge (keep = &id cl_new);

rename cl_new=cambio_classe;

run;

data dif_classe;

merge cluster_old

cluster_new

cambio;

by &id;

run;

data &libname..cambio_classe;

set dif_classe;

if cluster^=cl_new

then cambio_classe=1;

else cambio_classe=0;

run;

/*----------- output SAS tables -------------*/

/* defining the cl_&g matrix with the unit belong to the */

/* 1st class (cl_1),to the second class (cl_2), and so on */

%do k=1 %to &nclas;

data &libname..cl_&k;

set &libname..merge (drop=cluster);

where cl_new=&k;

run;

data &libname..cl_&k (rename=(cl_new=cluster));

set &libname..cl_&k;

run;

%end;
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data &libname..merge ( drop=cluster rename=(cl_new=cluster));

set &libname..merge;

run;

/*************************************************************/

/* Tables cl_g contain all data for units belonging to */

/* group g (k=1,...,K) */

/*************************************************************/

/******* detecting unit changing class membership *******/

data &libname..Unita_camb;

set &libname..cambio_classe (keep = &id cambio_classe);

where cambio_classe=1;

run;

proc print data=&libname..Unita_camb;

var &id;

run;

proc iml;

%do k=1 %to &nclas;

use &libname..cl_&k;

read all into cl_&k;

n_g&k=nrow(cl_&k);

print n_g&k;

%end;

use &libname..cambio_classe;

read all into cambio_classe;

N_i_cambian_class=cambio_classe[+,3];

print N_i_cambian_class;

N=nrow(cambio_classe);
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tasso_cambio=N_i_cambian_class/N;

print tasso_cambio;

if tasso_cambio<0.005 then print "STOP";

else if tasso_cambio>0.995 then print "STOP";

else print "GO_ON";

quit;

%mend alloc_units;

/****************************************************************/

/* Macro cluster_for_1_g */

/* */

/* this macro allow to run a hierarchical cluster analysis on */

/* the residuals obtained from the global model running the */

/* dis_res macro */

/* */

/* Macro parameters : */

/* LIBNAME = library where the results are stocked */

/* */

/****************************************************************/

%macro cluster_for_1_g(libname=);

proc cluster data=&libname..res_g0

method=ward

outtree=&libname..tree_res;

run;

proc tree data=&libname..tree_res;

run;

%mend cluster_for_1_g;
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/********************************************************************/

/* Macro update_class */

/* */

/* this macro allow to build one table for each new class as */

/* obtained from the cluster analysis performed on the */

/* from the local models */

/* */

/* The "new" number of classes must be chosen by looking at the */

/*results of the clustering performed in the macro "cluster_for_1_g"*/

/* */

/* Macro parameters : */

/* LIBNAME = library where the results are stocked */

/* ID = The unit’s identifier. It must be Text type: usually id_1, */

/* id_2, and so on... */

/* NCLAS_old = number of classes for which the PLS-PM was */

/* estimated in the previous step */

/* NCLAS_new = number of classes for which we will estimate */

/* the LOCAL models */

/* */

/********************************************************************/

%macro update_class(libname=,id=,nclas_old=,nclas_new=);

%if &nclas_old=0 %then %do;

proc fastclus data=&libname..res_g0

maxclusters=&nclas_new out=&libname..clus_&nclas_new;

run;

%end;

%if &nclas_old>0 %then %do;

proc fastclus data= &libname..res_g0
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maxclusters=&nclas_new out=&libname..clus_&nclas_new ;

run;

%end;

proc sort data=&libname..clus_&nclas_new ;

by &id;

run;

proc sort data=&libname..cl_0;

by &id;

run;

data &libname..merge;

merge &libname..clus_&nclas_new (keep = &id cluster)

&libname..cl_0;

by &id;

run;

/* defining the cl_&g matrix with the unit belong to the */

/* 1st class (cl_1), to the second class (cl_2), and so on..*/

%do k=1 %to &nclas_new;

data &libname..cl_&k;

set &libname..merge;

where cluster=&k;

run;

%end;

proc sort data=&libname..merge;

by cluster;

run;

%mend update_class;
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These macros have to be run according to the REBUS-PLS algorithm
steps, i.e. following the BENETTON example:

libname Benetton’D:....\Reale\Benetton\Benetton_SAS’;

%PLS_PM(libname=Benetton,table=Benetton_for_SEM,id=id,nclas=0,nbloc=3,

nVLendo=1,GQI=’No’);

%res_dist(libname=Benetton,id=id,nclas=0,nbloc=3,dist=’NO’);

%cluster_for_1_g(libname=Benetton);

/**************** in the case of two latent classes ********************/

%update_class(libname=Benetton,id=id,nclas_old=0,nclas_new=2);

/* iterations to be repeated until convergence!: model with 2 classes*/

%PLS_PM(libname=Benetton,id=id,nclas=2,nbloc=3,nVLendo=1,GQI=’No’);

%res_dist(libname=Benetton,id=id,nclas=2,nbloc=3,dist=’YES’);

%alloc_units(libname=Benetton,id=id,nclas=2);

/**************** in the case of three latent classes ******************/

%update_class(libname=Benetton,id=id,nclas_old=0,nclas_new=3);

/*iterations to be repeated until convergence!: model with 3 classes*/

%PLS_PM(libname=Benetton,id=id,nclas=3,nbloc=3,nVLendo=1,GQI=’NO’);

%res_dist(libname=Benetton,id=id,nclas=3,nbloc=3,dist=’YES’);

%alloc_units(libname=Benetton,id=id,nclas=3);

/**************** Once the convergence is assured **********************/

%PLS_PM(libname=Benetton,id=id,nclas=3,nbloc=3,nVLendo=1,GQI=’YES’);
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Lohmöller, J. [1989], Latent variable path modeling with partial least squares,
Physica-Verlag, Heildelberg.

Louis, T. [1982], ‘Finding the observed information matrix when using the EM
algorithm’, Journal of the Royal Statistical Society 44, 226–233.



310 Bibliography

Lutz, J. [1977], ‘The multivariate analogue of JAN’, Educational and Psycological
Measurement 37, 37–45.

Lyttkens, E., Areskoug, B. & Wold, H. [1975], The convergence of NIPALS es-
timation procedures for six path models with one or two latent variables,
Technical report, University of Göteborg.
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