Università degli Studi di Napoli "Federico II"

Dipartimento di Economia e Politica Agraria

Dottorato in Valorizzazione e Gestione delle Risorse Agro-Forestali

XX Ciclo

Tesi di Dottorato

Potential for risk management in agriculture

through index-based weather derivatives

Coordinatore:

Ch.mo Prof. Antonio Cioffi

Relatore:

Dr.Carlo Cafiero

Dottorando:

Michele Vollaro

NOVEMBRE 2007

Acknowledgements

I would like to manifest my greatest gratitude to Dr. Carlo Cafiero who has always taken care of my graduate education, step by step, since the beginning of such wonderful adventure. His insights, advices and suggestions guided me through a tireless exploration of my personal attitude toward the enchanting field of the scientific research. I hope the faith he has always placed in me will remain the principal strength that supports my professional experiences. Thanks again.

I am also extremely thankful to Prof. Gary Thompson for his important advices and suggestions that have conferred completeness and solidity to this research. His experience as researcher and professor has been an important example I will carefully preserve.

My last acknowledgement goes to those people who sincerely helped me during difficult periods. I thank them for their patience and loving empathy.

I dedicate this research to two special persons who always have encouraged me to outdo my personal limits and taught me how to spread love and respect between people.

Table of Contents

List of Tables	6
List of Figures	8
Abstract	10
Chapter 1. Introduction	11
Chapter 2. Review on risk management in agriculture	16
2.1. Problems in agricultural risk management	16
2.2. Public policy	18
2.3. Innovative insurance tools	20
2.4. Weather derivatives	21
Chapter 3. Data and Methodology	25
3.1. Physical geography and climate of Grosseto province	25
3.2. Agriculture in Grosseto province	28
3.3. Variables selection	31
3.4. Variables "reduction"	36
3.5. Yields fitting	40
Chapter 4. Results and comparison	42
4.1. Efficient weather index obtained through linear regression on principal	
components	42
4.2. Growing Degree Days method	47
4.3. Results	49
Chapter 5. Feasibility analysis of index-based weather derivatives	51
5.1. Index-based insurance contract	51
5.2. Simulation and sensitivity analisys	53

Chapter 6. Conclusion and discussion for further research	57
References	60
Appendix	64

List of Tables

Table 1. Utilized agricultural area in the Italian province of Grosseto
Table 2. Distribution of the main crops' utilized agricultural area in the province of
Grosseto
Table 3. Net profitability outline (€/ha) of the main crops in the Italian province of
Grosseto
Table 4. Out-of-sample prediction accuracy for grape, soft and durum wheat yields*45
Table A.1. Actual and detrended yield time series from 1990 to 2004 64
Table A2.a. Total variance explained for grape subset of weather variables
Table A2.b. Total variance explained for wheat subset of weather variables
Table A3.a. Component matrix for grape subset of weather variables on file
Table A3.b. Component matrix for wheat subset of weather variables on file
Table A4.a. Likely interpretation of the 14 principal components for grape subset of
weather variables66
Table A4.b. Likely interpretation of the 14 principal components for wheat subset of
weather variables67
Table A5.a. Linear regression on grape yields 68
Table A5.b. Linear regression on soft wheat yields
Table A5.c. Linear regression on durum wheat yields 68
Table A6.a. Linear regression on grape yields 69
Table A6.b. Linear regression on soft wheat yields
Table A6.c. Linear regression on durum wheat yields 69

List of Tables - continued

Table A7.a. Database for regressions on GDD moments and Rain for grape yields	70
Table A7.b. Database for regressions on GDD moments and Rain for soft and duru	ım
wheat yields	70
Table A8.a. Linear regressions on grape yields	71
Table A8.b. Linear regressions on soft wheat yields	71
Table A8.c. Linear regressions on durum wheat yields	71
Tables A9. Out-of-sample prediction accuracy for grape, soft and durum wheat yiel	ds
in GDD model	72
Table A10.a. Hedging grape crops through a weather index (I*=75)	73
Table A10.b. Hedging soft wheat crops through a weather index (I*=20)	74
Table A10.c. Hedging durum wheat crops through a weather index (I*=25)	75
Table A11.a. Benefits to grape farmers from hedging through a weather inde	ex
(threshold $I^* = 75$)	76
Table A11.b. Benefits to soft wheat farmers from hedging through a weather inde	ex
(threshold $I^* = 20$)	77
Table A11.c. Benefits to durum wheat farmers from hedging through a weather inde	ex
(threshold $I^* = 25$)	78
Table A12. Weather stations in the Italian province of Grosseto	79
Table A13. Number of missing observations per weather station	80
Table A14. Arrangement of the monthly variables by station, month and weath	er
measurement	81

List of Figures

Figure 1. Italy FSN nominal expenditure for compensation payments and insurance
premium subsidies 1981 – 2007 (Mln €)19
Figure 2. Orography of Grosseto province
Figure 3. Annual average temperatures and rainfalls trends in Grosseto province27
Figure 4. Spatial distribution of the weather stations owned by ARSIA in Grosseto
province
Figure A1.a. Adjusted R^2 vs number of principal components for grape
Figure A1.b. Adjusted R^2 vs number of principal components for soft wheat
Figure A1.c. Adjusted R^2 vs number of principal components for durum wheat
Figure A2.a. Comparison between actual grape yields and index values (in-sample
prediction)
Figure A2.b. Comparison between actual soft wheat yields and index values (in-
sample prediction)
Figure A2.c. Comparison between actual detrended durum wheat yields and index
values (in-sample prediction)
Figure A3.a. Comparison between actual grape yields and index values (in-sample
prediction)
Figure A3.b. Comparison between actual soft wheat yields and index values (in-
sample prediction)
Figure A3.c. Comparison between actual detrended durum wheat yields and index
values (in-sample prediction)

List of Figures - continued

Figure A4.a. GDD method – linear regressions on grape yields	88
Figure A4.b. GDD method – linear regressions on grape yields	88
Figure A4.c. GDD method – linear regressions on grape yields	89
Figure A5.a. GDD method – linear regressions on soft wheat yields	90
Figure A5.b. GDD method – linear regressions on soft wheat yields	90
Figure A5.c. GDD method – linear regressions on soft wheat yields	91
Figure A6.a. GDD method – linear regression on durum wheat yields	92
Figure A6.b. GDD method – linear regression on durum wheat yields	92
Figure A6.c. GDD method – linear regression on durum wheat yields	93
Figure A7.a. Threshold value in an index-based weather insurance contract for grape	
yields	94
Figure A7.b. Threshold value in an index-based weather insurance contract for soft	
wheat yields	94
Figure A7.c. Threshold value in an index-based weather insurance contract for durum	
wheat yields	95

Abstract

The research is aimed to study the feasibility and efficacy of using index-based weather derivatives to manage yield risk in agriculture. Weather indexes that are highly correlated with yields can be used to write insurance contracts which mitigate problems related to asymmetric information. A new methodology for constructing weather indexes is tested on grape, soft and durum yield data referring to the Italian province of Grosseto. Historic variability of weather in the province has been captured by a limited number of variables obtained by applying a principal component analysis on weather data collected on 18 weather stations over the period 1990 to 2004. The indexes have been constructed by fitting the historic yields with a linear combination of the variables obtained from principal component analysis. The feasibility of using such indexes has been explored by setting a damage trigger value and by simulating the actuarially fair premium for each contract. The analysis reveals that such contracts would have been attractive for farmers characterized by reasonable degrees of risk aversion. The feasibility of such index-based weather contracts would depend on the possibility of transferring the systemic component of the agricultural risk into wider financial markets. As an alternative, index-based compensation could be used to reconsider the kind of public interventions in agricultural risk management typical of Italy in the past thirty years.

Chapter 1. Introduction

The importance of risk management in agriculture resides in the direct association between agricultural income variations and instability of consumptions patterns of farmers' households.

The impact of income variations on households' welfare is certainly greater in developing countries, where agricultural incomes represent the major if not the only component of total household's income available for consumption. In developed countries, several strategies are applicable for hedging agricultural income shocks, such as diversification of household's income and recourse to financial institutions for short-term loans. In fact, steady off-farm income generating activities contribute to greatly reduce the variability of the household income, while access to credit allows farming families to smooth occasional consumption shocks in case of shortfalls in agricultural incomes.

Nevertheless, even in developed countries agricultural risk management has historically attracted the attention of both researchers and policy makers. One of the crucial considerations to be made is that agricultural income risk is linked to two factors: yields and prices variability. Variations of prices do not always imply a proportional variation in farming income. Indeed, in case of negative correlation between price and yields, as commonly occurs in segmented or local markets, the mechanism of *natural hedge* might mitigate the effect of unpredicted price variability on producers' income. Obviously, such a mechanism is less likely to apply for commodities which are traded on more integrated or global markets, where price variations are not strictly correlated with the dynamics of local supply or demand shocks. In such cases, price risk deserves more consideration in that price volatility, not correlated with yields variations, may proportionally affect the stability of producers' income.

Another usual aspect making price volatility difficult to address with private mechanisms by the individual farmers, is that price variability gives rise to uncertainties common to every producer in the market. Price risk tends to be highly spatially correlated (or systemic), something that has traditionally justified public intervention in the sector. Nevertheless, commodity price risk has been and still can be efficiently managed through preharvest agreements, which set a price for future delivery. These kinds of contracts are nowadays represented by *forward* and *futures* contracts, regularly traded in exchanges or in over-the-counter markets.

When price variation is limited by public sector price supports, or when price risk is not spatially correlated, production or yield risk becomes the major concern of risk-averse farmers.

Production risk management has been a widely discussed topic in the economics literature. It is best understood with reference to the principle of risk layering, for which production risk can be split up in three risk layers, each of which has a preferred strategy (Hess, Skees, Barnett and Nash, 2005).

The first layer includes the range of high-probability, low-impact events. The first layer could be denominated the 'risk retention' layer. Farmers can individually manage such risks by adopting agricultural precautionary measures or using financial services in case of revenue losses. The second layer refers to predictable events that cause considerable and frequent yield losses, to the extent that farmers prefer to bear a cost to *transfer* the risk to insurance providers. The second layer is named the 'market

insurance' layer. The third layer includes the range of low-probability high-impact events, called the 'market failure' layer. Events in this layer are difficult to forecast and their effects on agricultural activities are often catastrophic. Companies that would provide insurance for this risk layer could not be able to guarantee indemnities, in that outlays for indemnities could be much higher than premium income. A high discrepancy between indemnities and premium income causes insurance companies to raise the premium rates to the extent that farmers are no more willing to purchase insurance policies to hedge such risks.

As opposed to industrial production, agricultural production risk is mostly characterized by peculiar events that affect farmers differently or all farmers in different times. Unlike price risk, production risk is not generally considered as highly spatially correlated and as such the idiosyncratic (or independent) character of production risk makes yield insurance a reasonable tool to manage such risk. However, production risk is not perfectly idiosyncratic. In fact, unfavorable weather events affecting limited areas cause the same damages to all farmers within such areas. Weather variability could render production risk relatively spatially correlated. Indeed, production risk has been defined by Skees and Barnett (1999) as *in-between* risk. Also the presence of a systemic component caused by weather variability reduces the efficiency of crop insurance in hedging yield shortfalls.

In addition to the problems related to the systemic nature of a relevant component of agricultural production risk, the efficacy of yield crop insurance is affected also by asymmetric information among the involved parties, a problem that is exacerbated by the spatial distribution of the agricultural activities and the length of the production processes, which make monitoring problematic. In response to the limited efficacy of traditional yield crop insurance, researchers have devised innovative insurance tools capable of reducing the impact of asymmetric information and to hedge the systemic component of production risk coming from weather variability.

A promising line of research is based on use of appropriately designed weather indexes. On one hand, use of objectively determined indexes, proven to be highly correlated with yields, might reduce the informational problems that affect insurance contracts. On the other hand, given the proven ability of financial tools to hedge systemic risk by transferring it to other agents, appropriately designed weather indexes could be used as underlying assets of financial derivatives that could be traded on regular exchange or over-the-counter markets.

The potential of weather indexes to mitigate agricultural production risk resides in their capability of manifesting an objective and stable correlation with yields, preferably individual farmers yields. The objective of the thesis is to explore the possibility that the most relevant production risks, that is those directly or indirectly related to variations in weather conditions, could be dealt with the use of properly designed derivative contracts whose underlying asset is based on a combination of objectively measured local weather indexes. The thesis focuses on the construction of a local weather index using meteorological and agricultural data from the Italian province of Grosseto in Tuscany. Then, a feasibility analysis of insurance contracts based on those weather indexes is conducted.

The thesis is organized as follows. Next chapter provides an overview on risk management in agriculture. The third chapter presents the data, including a description of the agricultural area chosen for the analysis, and introduces the innovative methodology, describing the processes applied to construct the weather indexes.

The fourth chapter presents the results of the construction of the weather indexes on the study area, and contrasts them with those obtained through an alternative method based on the use of growing degree days. The fifth chapter discusses the feasibility of possible weather index-based insurance contracts based on the proposed indexes. The last chapter provides conclusions and suggestions for further research.

Chapter 2. Review of risk management in agriculture

2.1. Problems in agricultural risk management

Informational asymmetry between farmers and insurers has been addressed in the agricultural economics literature as the principal cause of insurance markets inefficiency (Chambers, 1989; Just, Calvin and Quiggin, 1999). Two well-known effects of asymmetric information commonly plague traditional yield crop insurance programs worldwide: moral hazard and adverse selection.

Moral hazard occurs because individual farmers, once insured, have the incentive to reduce inputs below their optimal level and to avoid precautionary measures to prevent damages. This change of behavior increases the probability of yield losses, which in turn fosters the likelihood of larger claims. Insurers are compelled to monitor insured farmers and to apply adjustments in claim expectations. The latter measures are often costly and crop insurance might disappear in a long-run market context (Chambers, 1989; Turvey and Zhao, 1999).

Adverse selection arises in crop insurance markets when insurers do not have sufficient information to rate individual farmer's risk exposure and create homogeneous risk pools. In fact, insurers usually do not have access to individual yields and the publicly available estimates of yields are not always reliable. Instead, farmers who are well informed about the distribution of their own yields are able to estimate the actuarial fairness of the premiums they pay better than insurers. Accordingly, high-risk farmers, whose expected indemnities exceed the paid premiums, have the highest incentives to participate in crop insurance programs. So, in the long run, insurers could become insolvent, and the loss-ratio¹ of the insurance pool exceeds one (Skees and Reed, 1986), that is, the cost of compensation frequently exceeds the total premium income, thus generating a vicious circle if insurers raise the premiums in order to circumvent frequent high indemnity outlays, selecting a smaller pool of more risky farmers (Miranda, 1991).

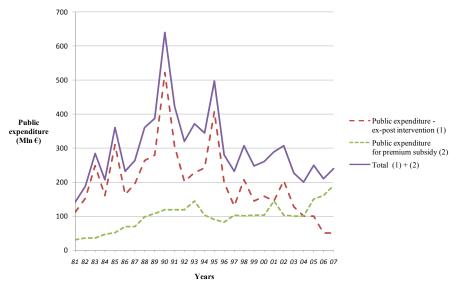
In the long run, moral hazard and adverse selection would inevitably drive crop insurance markets to failure if no market inefficiency adjustment is implemented (Nelson and Loehman, 1987).

Miranda and Glauber (1997), instead, argue that systemic, non-diversifiable risks in crop yields might be the most burdensome cause of crop insurance market failure, especially when widespread natural disaster occurs. Harmful events, like natural calamities, are difficult to accurately predict and cause damages and losses to all farmers at the same time. The property of low predictability and high spatial correlation gives rise to systemic risks. Although yield crop insurance is diffusely used in sharing production risks, it works efficiently only in hedging uncorrelated risks. Production risks have a remarkable systemic component which could be reduced through use of exchange markets, which are efficient in hedging highly spatially correlated risks (Skees and Barnett, 1999).

In presence of both asymmetric information and systemic risk, many authors have suggested that public intervention is needed to avoid crop insurance market failure.

¹ The loss-ratio is the index used by insurers to relate loss outlays to premium income.

2.2. Public policy


An important aspect of agricultural risk management has traditionally concerned the involvement of the public sector. Governments are involved in hedging agricultural risk in different ways. When farmers experience considerable losses owing to natural calamities, government intervenes to compensate for damages. This intervention is commonly called *ex-post disaster relief*.

The public action is also involved in insurance markets with subsidies in premium payments for farmers and with reimbursements of administrative and operating costs for insurers.

Two examples of such public policy are the *Federal Crop Insurance Improvement Act* in the United States, from 1980, and the Italian *Fondo di Solidarietà Nazionale*, from 1974.

The Italian experience of the Fondo di Solidarietà Nazionale (FSN) shows how, over time, allocation of public funds has emphasized ex-post relief more than premium subsidies (figure 1). The trend of nominal expenditures on premium subsidies indirectly traces the evolution of the farmers' participation to the subsidized insurance market. Such trend indicates a slow increment over time and an increasing rate in the last three years. Low participation in subsidized insurance is likely due to the possibility of farmers receiving compensations for natural disaster even without insurance policies (Cafiero, 2003). The increment in the last three years is likely caused by the diminishing availability of public funds for ex-post relief. Further, much of ex-post compensation was implemented under political pressures without objective assessments of actual losses. A similar scenario unfolded in the United States and Nicaragua. In 1994, the United States Congress, in order to reduce the public expenditures, stipulated indemnities would be paid to farmers for disaster relief only if they hold an insurance policy. Congress policy did not experience a significant increment of farmers' participation in insurance market. The policy was rendered ineffective when indemnities for disaster relief were granted to all farmers regardless of any insurance subscription (Glauber, 2004).

Figure 1: Italy FSN nominal expenditure for compensation payments and insurance premium subsidies 1981 – 2007 (Mln €)

Source: Italian Ministry of Agriculture

In 1998, the Nicaraguan government rejected a pilot project, proposed by the World Bank, to implement an index-based risk management. The Nicaraguan government considered the project superfluous because it could rely on international aid in case of natural disasters (Hess, Skees, Barnett and Nash, 2005).

Although some theoretical studies have shown that *ex ante* regulations prove to be economically more efficient than *ex post* disaster relief as the former provide farmers with production incentives such that moral hazard is no longer a stimulus², ex post relief is still common in many developed countries.

2.3. Innovative insurance tools

Several insurance programs have been studied and designed with *ad hoc* contractual mechanisms intended to mitigate moral hazard and adverse selection. The most common is area-yield crop insurance which bases the assessment of actuarial premiums and expected indemnity outlays upon distributions of average area yields rather than individual ones. With this program, the classification of farmers by risk exposure is more accurate and the pools are more homogeneous (Skees, Black and Barnett, 1997; Chambers and Bourgeon, 2003). Area-yield crop insurance is designed to hedge only the systemic component of the production risk. It follows that area-yield mechanism is not able to hedge against the idiosyncratic component of farmers' total risk exposure (Miranda, 1991). Such programs, however, do not guarantee complete coverage of the individual risk. Indeed, since the trigger values of the indemnities mechanism refer to an assessment of the central tendency of yields, area-yield crop insurance has an inevitable associated basis risk (Skees, Black and Barnett, 1997).

² Further details on the topic can be found in Turvey, Islam and Hoy (1999) and Innes (2003)

2.4. Weather derivatives

Recently, research on crop insurance has analyzed new insurance tools based upon weather indexes. Indexes of relevant weather variables could be used to write financial derivatives, called weather derivatives. They can be brokered as an over-the-counter traded option or used to define the indemnity payment trigger of insurance contracts (Turvey, 1999a).

Weather data are collected worldwide, especially in developed countries, and provide objective information about specific weather conditions. Intuitively, agricultural production risk can be both directly and indirectly linked to specific weather conditions: hail, frosts, droughts and floods are examples of direct linkages, while pest, viral and fungal infestations are examples of indirect linkages. Weather indexes might therefore provide farmers and other agents exposed to or merely interested in weather risk, with the possibility of designing specific contracts, thereby spreading their individual risk worldwide.

However, one of the critical aspects of the use of weather derivatives is how they should be priced. The feasibility and difficulty of pricing a weather derivative depends upon the fact that the underlying asset, the index, is not a marketable good, but potential demand and supply for such indexes in fact do exist. Cao and Wei (2004) and Taylor and Buizza (2006) proposed two different frameworks for a temperature derivative and evaluated the factors affecting its pricing. Turvey provides a description of a drought insurance whose pricing is based upon an economic evaluation of rainfall (Turvey 1999a). He also proposes a pricing model for growing degree insurance based on intra-year risk (Turvey 2005).

Even though the problems in pricing weather derivatives have not been fully explored, there are no impediments in researching and designing optimal weather indexes. Skees, Barnett, Ibarra and Syroka (2006) provide a detailed description of the framework for constructing an optimal *local* weather index. The area represented by the *local* index has to be homogenous in terms of pedo-climatic conditions³. Farmers in such an area are naturally exposed to the same systemic risk. Differences in individual yields would vary to the extent farmers adopt different agricultural practices. Weather data have to come from weather station(s) located within the area. The index constructed by using local weather data must somehow be highly correlated with yields. Once the correlation between the weather index and yields is ascertained, especially if the index provides reliable out-of-sample predictions, the weather index will be able to predict low values of yields and to directly assess the extent of damages. A likely basis risk might occur only in case of non-perfect correlation between the weather index and the distribution of yield: the lower the correlation, the higher the probability of basis risk. The distinction between systemic risk and basis risk, however, depends on the extension of the area covered by the index. In theory, if a weather index were constructed to cover a single farm area, there would be no "systemic" risk, and then index-based weather insurance might be directly compared to traditional insurance, with the advantages of reduced monitoring and lossadjustment costs. As the area gets larger (including more than one farm), the increasing presence of the idiosyncratic component of the risk could weaken the correlation between the index and (relatively local) yields and would make index-

³ Homogeneous pedo-climatic condition refers to similar soil and climatic condition in a delimited agricultural area.

based insurance system more similar to area-yields crop insurance, with the possibility of basis risk.

The availability of long time series of both weather and yield data is an essential requirement to make the assessment of the premium actuarially sound. The characteristics of a credible weather index are (Skees, Barnett, Ibarra and Syroka, 2006):

- Objectivity: the measurements are taken by non-human weather surveyors;
- Transparency: the information collected cannot be strategically altered;
- Independence: weather conditions are not contingently affected by human behaviors.

A crop insurance market, based on a reliable and credible local weather index, theoretically would not be plagued by asymmetric information. Moreover, the financial exposure of a local weather derivative might be shared with a nonagricultural sector whose returns are negatively correlated with the underlying index. Opposite stances for summer precipitations, for example, make tourism to be one such non-agricultural sector suitable for sharing risk as long as tourist and agricultural activities lie on the same area.

Unlike previous studies, where the construction of suitable weather indexes is guided by knowledge of agronomical relationships between yields and some weather variables (Vedenov and Barnett, 2004), the approach presented in this thesis is based on the idea of deducing a purely statistical relationship between yields and weather variability. This approach makes sure the resulting index accounts only for the yield variation caused by weather variability. The index definition, hence, proves not affected by both farmers' risk exposure and idiosyncratic component of single farmers' production risk.

Chapter 3. Data and Methodology

As clarified in the previous parts, the possibility of effectively managing yield risk through index-based contracts stands on the property that the weather-index is highly correlated with the agricultural production. This thesis proposes the construction of such a weather-index through the fit of historical data on agricultural yields with a multiple linear regression of *pseudo* weather variables obtained through principal component analysis of actual weather data. In this particular context, linear regression is therefore used to reveal the relationship that, on average, existed between yields and historic weather data, and to use the fitted models to predict yields as the definition of the suitable weather indexes.

A preliminary review of the Italian province of Grosseto is provided by two introductory sections. The first describes the province by its physical and climatic profiles. The second focuses on the structural aspects of the agricultural sector and offers a description of agriculture production of the province of Grosseto.

The model is presented in several sections, describing the processes of: variable selection (both weather and yield data), variable reduction through application of the principal component analysis and linear regression fit of agricultural yield data. A final section presents the results.

3.1. Physical geography and climate of Grosseto province

The distribution of the land relief of the region (orography), covering a surface of 1,739 square miles or 450,400 ha, includes flat lands near the coast, rolling hills and valleys along its interior and the Appennine range on the border with Siena province (see figure 2).

Figure 2: Orography of Grosseto province

Source: Agrifauna Italia

The Ombrone, Albegna and Fiora rivers cross the valleys, where sun exposure reaches eleven hours during the summer season, creating an ideal micro-climate for wine grapes. The climate of the province varies throughout its extension. On the coast a Mediterranean climate prevails and the average temperature ranges between 50 (10) in the winter and 75.2°F (24°C) in summer. The interior area of the province is characterized by a continental climate, with average temperatures in the range of 37.4°F (3°C) – 70°F (21°C) between the winter and summer seasons. The coexistence of Mediterranean and continental climates provides the hilly areas with optimum weather conditions for cattle-breeding, wine grapes and wheat crops. However, wine grapes and wheat crops are often damaged by frost and hail during the spring and by fires occurring in the summer. In fact, the most common crop-yield insurance contracts are designed to hedge farmers against the frost and fire.

The average temperatures and rainfalls of the province, from 1960 to 2000, are summarized in the following figure, where the overlapping graphs give an intuitive indication of the strong correlation between temperature and rainfall trends.

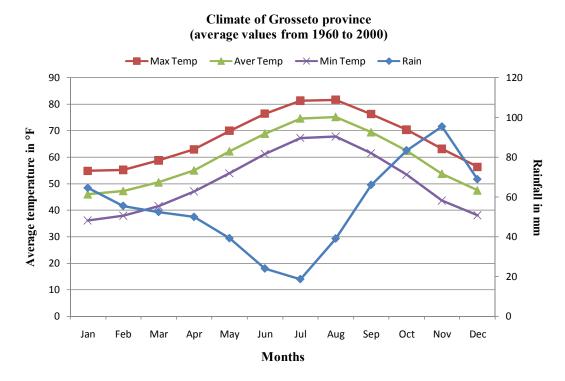


Figure 3: Annual average temperatures and rainfalls trends in Grosseto province

Source: Regional Agency for the Development and Innovation in Agriculture (ARSIA), Tuscany

Indeed, the average rainfall is negatively correlated with temperatures, except for December, indicating that droughts are likely to occur during the summer season. In fact, in 2003, no rain was recorded during 125 days, from April 22th and August 25th in the hilly areas and less than 1 mm of rain for 40 summer days in the coastal areas. Droughts do not jeopardize crop production, rather they are responsible for considerable damages to the quality of the harvesting and, in particular periods⁴, might reduce yields.

⁴ For cereals, a drought in between spring and summer might cause yields reduction.

The total utilized agricultural area and the shares destined to the main crops in the province of Grosseto are listed as follows:

	Mountain	Hill	Plain	Total UAA
Annual crops	9,045	121,089	25,294	155,429
	(47.24%)	(76.39%)	(87.45%)	(75.24%)
Tree crops	3,364	19,567	2,492	25,423
	(17.57%)	(12.34%)	(8.62%)	(12.31%)
Grasses and pastures	6,738	17,852	1,140	25,729
	(35.19%)	(11.26%)	(3.94%)	(12.45%)
Total UAA	19,147	158,508	28,926	206,5809

Table 1: Utilized agricultural area in the province of Grosseto

Source: Italian Institute of Statistics (ISTAT), Fifth Agricultural Census, 2000 Note: Percentages refer to column values

Plain and hilly areas are mostly devoted to annual crops, which in total occupy more than 75% of the total utilized agricultural area. Tree crops are particularly concentrated in hilly areas whose extension covers the almost the 10% of the total utilized agricultural area. The remaining 15% of the total utilized agricultural area is distributed in mountains and plains.

Among annual crops and fruits cultivated in hill and plain areas, cereals, olive and wine grapes are the most common. In particular, durum and soft wheat jointly exceed 75% of the total cereals' utilized agricultural area and 35% of the annual crops' utilized agricultural area. Mountains are covered by woods in which the production of dried fruits is prominent. Table 2 illustrates the aforementioned distribution of the total utilized agricultural area per crop. Durum and soft wheat predominate because of high subsidies per hectare provided by the European Union since 1994. These EU subsidies provided incentives for expanded cultivations (also those non-agronomically elected for wheat crops growing) and cultivation of wheat without proper rotation.

	Mountains	Hills	Plains	Total	
Durum wheat	2,821	39,993	9,131	51,945	
% on cereals' area	61.5	71.8	79.2	72.3	
% on total UAA	14.7	25.2	31.6	25.1	
Soft wheat	235.3	2,477	787	3,500	
% on cereals' area	5.1	4.4	6.8	4.9	
% on total UAA	1.2	1.6	2.7	1.7	
	Mountains	Hills	Plains	Total	
Olive	1,890	12,371	1,689	15,950	
% on tree crops' area	56.2	63.2	67.8	62.7	
% on total UAA	9.9	7.8	5.8	7.7	
Grape	216.5	5,022	583	5,822	
% on tree crops' area	6.4	25.7	23.4	22.9	

Table 2: Distribution of the main crops' utilized agricultural area in the province of Grosseto

Source: Italian Institute of Statistics (ISTAT), Fifth Agricultural Census, 2000

The mono-culture of wheat crops without rotation have implied over time a reduction in yields, in particular for durum wheat. Olive and wine grape, grown mainly in hilly areas, jointly amount to more than 85% of bearing-fruit plants and represent the second most important crops of the province. Net profitability of the main crops is presented in table 3. Such presentation provides a comparison between the average crops' profitability with and without the direct support.

Table 3 clearly shows the differences between presence and absence of support in average net incomes for the main crops. For durum and soft wheat, the presence of supports increased the average net income by four and two times respectively, while for grape the discrepancies are less remarkable.

Table 3: Net profitability outline (€/ha) of the main crops in the Italian province of Grosseto

	Mountain		Hill		Hill Plain	
	w/ supp	w/out supp	w/ supp	w/out supp	w/ supp	w/out supp
Grape						
average	€ 4,958	€ 4,270	€ 4,676	€ 4,135	€ 4,441	€ 3,957
stdev	2503.41	2496.39	1735.31	1680.23	1518.46	1371.12
CV	0.505	0.585	0.371	0.406	0.342	0.347
Durum						
wheat						
average	€ 836.06	€ 195.14	€ 842.61	€ 237.10	€ 822.00	€ 219.08
stdev	121.27	111.36	99.74	90.00	80.61	72.71
CV	0.145	0.571	0.118	0.380	0.098	0.332
Soft						
wheat						
average	€ 393.94	€ 128.95	€ 470.74	€ 217.31	€ 676.72	€ 366.25
stdev	109.54	146.71	141.09	146.46	112.20	139.34
CV	0.278	1.138	0.300	0.674	0.166	0.380

Source: own elaboration on 1996-2000 data - Italian Farm Accounting Data Network (FADN)

Comparing the coefficients of variation (CV) between presence and absence of support, table 3 clearly shows that the support system is able to hedge income variations of durum and soft wheat. The EU supports do not reduce variability for grape's average net income, although the variations in net income are wider. In the light of a declining support system, mainly for wheat, and a higher and variable profitability of grape, these crops have been selected for testing a new methodology for the construction of weather indexes to be used as assets of insurance derivative contracts.

3.3. Variable selection

Ideally, to design an efficient index based insurance contract, one would need series of historic farm-level yield and weather data. Unfortunately, individual time series on yields are not publicly available, and it is not common for a farm in Italy to have a weather station within the farm.

The level of aggregation of the agricultural yield data used in this thesis is the provincial level. Provincial averages of crop yields have been obtained from the RICA database of the Italian institute of agricultural economics (INEA), which is part of the European Union Farm Accounting Data Network (FADN), whose task is to select and monitor samples of farms representative of a particular agricultural zone at the level of the region.⁵

These data present some problems. First, provincial data may not be representative given that representativeness of the FADN is ensured only at regional level; second, by using data aggregated at the provincial level, differences in performance of individual farmers located in areas like coastal plains, hills and interior mountains can be hidden, and this is a fact to be considered when evaluating the results. Moreover, given that for regulatory reasons, farmers can participate to the FADN selection only for a limited lapse of time, there is a lack of continuity in the sample that is used to form the provincial series.

⁵ Within the European Union, the classification of regions is done through the "Nomenclature of Territorial Units for Statistics (NUTS).

See: http://ec.europa.eu/eurostat/ramon/nuts/home_regions_en.html

Unfortunately, for privacy reasons, data at the individual farm level are not made available and therefore there is no feasible way to control for any lack of representativeness.

The dependent variable considered for the weather index is *yield* and the selected crops are wine grapes, soft and durum wheat. Yield data have been analyzed to test for the presence of a significant trend. The following linear model is estimated to test for the significance of a linear trend:

$$Y_t = \alpha + \beta (t - 1989) + e_t, t = 1990, \dots 2004$$

A simple t-test on the hypothesis H_0 : $\beta = 0$ is then performed to test for significance of the linear trend. In case the hypothesis $\beta = 0$ cannot be rejected (only for durum wheat, where a *negative* trend is found), the trend component is calculated as:

$$Y_t^{tr} = \hat{\alpha} + \hat{\beta}(t - 1989)$$

where $\hat{\alpha}$ and $\hat{\beta}$ are the estimated coefficients, detrended yield time series are then calculated as:


$$Y_t^{\text{det}} = Y_t - Y_t^{tr} + \overline{Y}$$

where Y_t are actual yields, \overline{Y} is the average yield and Y_t^{det} are the detrended values. Results of the statistical test, actual and detrended time series of yields from 1990 to 2004, and the relative descriptive statistics are listed in table A.1. in the Appendix.

The meteorological data have been obtained from several weather stations uniformly located throughout the province. The stations are owned and managed by the Regional (Tuscany) Agency for the Development and Innovation in Agriculture (ARSIA) which publishes daily time series of the most common weather variables, such as maximum and minimum temperature, rainfall and maximum and average humidity. In 1990 ARSIA owned only a few stations and, during the following four years, it expanded the network to 18 units. Thus, not all stations have daily time series in the early years of the sample. The number of missing observations per weather station is shown in table A13 in the Appendix. The column entries of table A13 represent the number of missing daily observations per weather variable. The illustration of the spatial distribution of the weather stations in the Grosseto province is given in figure 4.

For purpose of inference, annual crop yields must be matched with meteorological data. Starting from daily weather observations, annual weather variables have been constructed.

Figure 4: Spatial distribution of the weather stations owned by ARSIA in Grosseto province

Source: Regional Agency for the Development and Innovation in Agriculture (ARSIA), Tuscany

First, month-variables of annual observations were created: for each weather station, the following variables have been created for each month:

- monthly maximum temperature max T_{max_i}
- monthly average of the maximum temperatures $n^{-1} \sum_{i=1}^{n} T_{\max_{i}}$;
- monthly minimum temperature $\min_{i} T_{\min_{i}}$;
- monthly average of the minimum temperatures $-n^{-1}\sum_{i=1}^{n} T_{\min_{i}}$;
- monthly average temperature $-n^{-1}\sum_{i=1}^{n} [(T_{\max_{i}} + T_{\min_{i}})/2];$
- monthly average maximum level of humidity $-n^{-1}\sum_{i=1}^{n} \text{Hum}_{\max_{i}}$;
- monthly maximum humidity max Hummax_i;
- monthly cumulative rainfall $-n^{-1}\sum_{i=1}^{n} \operatorname{Prec}_{i}$;
- number of rainy days in the month.

with *i* representing daily observations.

Temperature is measured in degrees Celsius; humidity has a percentage range between 0 and 100, rainfall is measured in millimeters, and rainy days measured in integer numbers. All the variables are continuous measurements, except rainy days which is discrete. As expected, the created weather month-variables of annual observations present missing values, especially in the early years of the series. The resulting missing observations have been replaced with the average of the remaining annual observations of the respective month-variable. For example, in the weather station of Stacciole, the missing maximum temperatures for February from 1990 to 1992 are filled by taking the average of all the maximum temperatures for February from 1993 to 2004 in the same weather station of Stiacciole.

The nine variables were chosen with the aim of delineating a climatic pattern of the province, as to subsequently match crop yields and weather variations. It must be recalled that the purpose of this thesis is neither to understand the relationships between the aforementioned weather events nor to discover which of the adverse events affects agricultural yields more and why.

With 18 weather stations, 12 months and 9 weather variables, there are a total of 18x12x9 = 1944 monthly variables. A sketch of the layout of the weather variables is given in table A14 in the Appendix.

Second, given that the yields cannot be affected by future weather events, and since the annual production cycle of crops does not necessarily correspond to the calendar year, the dates of crop production and weather variables must be matched to obtain reasonable subsets of variables. For soft and durum wheat which are sown between August and September and harvested in June in Italy, relevant weather information is considered from August of the previous year to May of the harvesting year⁶. The subset of relevant variables for wheat (wheat dataset) therefore contains 18x9x10 = 1620 variables. For grapes, observations on weather conditions from January to September of the harvest year have been considered. Such period corresponds to the growing stages from the appearance of flower buds to the grape harvesting⁷. The grape subset contains thus 18x9x8 = 1458 variables (grape dataset).

⁶ One month before the harvesting the caryopsis is already ripe. During the last month there is stage of drying process and only a fire could jeopardize the crop.

⁷ During the period between grape harvesting and appearance of flower buds (winter), vines remain in a dormant status.

With only 15 observations on yields, from 1990 to 2004, it would be impossible to make any inference by using such large numbers of different variables. Therefore, the need arises to synthesize the information contained in the 1944 variables into a smaller number of variables.

The process of data reduction is presented in the following section.

3.4. Variables "reduction"

In order to reduce the number of variables while retaining most of the information they carry, a natural choice is to perform a principal component analysis.

Principal component analysis is a descriptive statistical method mainly applied to reduce the number of explanatory variables in a dataset and to explore the possible underlying structure of a large set of variables. According to Jolliffe (2002), principal component analysis is one of the most applied techniques in a wide variety of disciplines, such as agriculture, psychometrics, facial recognition, gas chromatography, genetics, climatology and meteorology (spatio-temporal atmospheric science data) and social sciences.

The dimensionality reduction process is conducted through a linear transformation applied to variables, aimed at retaining as much variation as possible. A lower dimensional set of independent (or uncorrelated) principal components will be *extracted* and it is considered to be an *underlying structure* of the old one. Hence, it is able to represent or to "transfer" the inner relationships between the original sample variables onto a new system of coordinates⁸.

⁸The software used to perform principal component analyses is SPSS[®].

The application of principal component analysis to the meteorological variables considered in this thesis is motivated by the fact that the weather variables are likely to be highly correlated to each other, and therefore the original dataset would certainly contain redundant information. In particular, having only 15 observations, there would exist a 15-dimensional space capable of fully representing the variability contained in the original datasets.

Principal components are constructed in a way that they are uncorrelated with each other but correlated to the original variables. Each original variable gives a contribution to the variation of every single component. Such contribution is usually called *factor loading*. The "underlying meaning" of each component can be inferred by ranking the contributions in a decreasing order and excluding contributions lower than a certain magnitude (usually a factor loading lower than 0.4 is considered a scarce contribution).

In this study, the principal components are correlated to p = 1620 and 1458 spatial-temporal variables respectively. With such a large number of variables, it would be a painstaking task, and maybe not possible, to give a meaningful "meteorological" interpretation of each principal component. This is not new to users of principal component analysis: Jolliffe (2002) in fact, remarks the possibility that the interpretability of the principal components could be non-obvious and sometimes not even possible.

To the purpose of this work, this is not a major drawback, given that the objective is to use the principal components in subsequent analysis to form an index which is correlated with yields.

Coded in the standard routines implemented in the SPSS[®] software, there are three different methods to extract principal components, each of them producing scores with mean zero:

- 1. Anderson-Rubin: it gives uncorrelated scores with standard deviations equal to one;
- 2. Bartlett: it gives unbiased scores, correlated only with their own factors, with standard deviation equals to one;
- 3. Regression: it gives scores that could be correlated, with variance equals to the square of the multiple correlation between the estimated factor loadings and the true factor values.

These three methods produce equivalent *factor scores* when principal component analysis is applied. In factor analysis (FA), instead, those methods would produce different estimates of factor scores. Factor scores are the *pseudo-observations* (cases) of the variables obtained from the principal components. Therefore, each new principal component, used as an explanatory variable in the subsequent analysis, has 15 observations like the sample ones.

As expected, for both crops, principal component analyses show that the first 14 principal components will account for 100% of the variation of the datasets. But it is not necessary to use all fourteen of them to predict yields. In any of the extracting procedures, principal components are extracted in decreasing order of explained variance. The hope in conducting principal component analysis is that the first *few* components could account for a large share of the total variability.

The question arises of how many components to retain. One criterion of choice suggests to retain only principal components having eigenvalues greater than one,

based on the consideration that such components would account for more variation than the average original variables. Another typical choice criterion adopted by researchers is to set an *a priori* range of variation which, in turn, will determine how many principal components to retain for further analysis. Common cut-off ranges are between 70% and 90% of the total variation. In other words, if the researcher sets a cut-off of 80%, he would retain the minimum number of principal components capable of accounting for at least 80% of the total sample variability. The choice of the cut-off, however, is to some extent arbitrary, and it could change according to the particular relationships between sample variables and principal components (Jolliffe, 2003)⁹.

Given the purpose of relating yields variations to weather variability, the criterion adopted here that might lead to a convenient selection of principal components is to retain the particular subset of principal components for which the adjusted R^2 of the yield-fitting model is the largest, conditional on explaining at least 80% of the of variation of the original sample.

⁹ For more details, see I.T. Jolliffe, *Principal Component Analysis*, (2nd Ed.) Sect. 6 – par. 6.1.

3.5. Yield fitting

Although many different functional forms might be chosen to model the complex relationship between yield and weather variations, the limited number of observations does not allow for specification searches. As a simple yet flexible enough form, a linear relation between yield and weather variability is assumed here.

In order to discover the linear combination of weather variables that best follows the variations in yields, a linear regression is calculated between yields as the dependent variable, and the first *n* principal components as regressors.

By indicating the sets of explanatory variables, extracted from principal component analysis, as $G = \{\mathbf{g}_1, \dots, \mathbf{g}_n\}$ and $W = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ for grape and wheat respectively, the following multiple linear regressions have been estimated:

1. $\mathbf{Y}_{GR} = \mathbf{G}\boldsymbol{\beta} + \mathbf{e}$ 2. $\mathbf{Y}_{SW} = \mathbf{W}\boldsymbol{\delta} + \mathbf{e}$ 3. $\mathbf{Y}_{DW} = \mathbf{W}\boldsymbol{\omega} + \mathbf{e}$

where Y_{GR} , Y_{SW} and Y_{DW} are vectors of 15 observations on yields and β , δ and ω are the vectors of coefficients.

Goodness of fit and F-test are the only critical statistics through which the reliability of such weather-indexes can be checked. In general, it might be important to consider the parameter estimates and their standard errors, but, once again, the concern here is on the ability of the overall function to closely follow yields, rather than on interpretation of particular coefficients. On the other hand, because the explanatory variables are not easily interpreted, also the meaning of each single estimated coefficient would be difficult if not impossible to interpret. Instead, the value of the adjusted R^2 , which gives a measurement of the goodness of fit, provides a reliable and objective measure of the correlation between the hypothesized weather indexes and yields.

A high goodness of fit will imply that the index is able to follow the variations of yields. The more explanatory variables are added to the model, the higher is the flexibility of the model. Unfortunately, the limited number of observations (only 15 years) does not allow inclusion of many variables, lest the model would overfit for lack of degrees of freedom.

In the next chapter the results of this innovative methodology are discussed and compared to the results of an alternative method commonly proposed in literature, that is the use of growing degree days and cumulative rain to predict yields.

Chapter 4. Results and comparison

4.1. Efficient weather index obtained through linear regression on principal components

Principal component analysis was applied to weather variables in both grape and wheat subsets. As expected, the correlation matrices are singular, producing only 14 eigenvalues different from zero, which account for 100% of the total variation of the subsets. Tables A2.a and A2.b report the description of the variance explained by each eigenvalue. For both principal component analyses, the first ten principal components explain more than 90% of the variability in the sample.

The sensitivity analysis on the number of principal components to include in the regressions, showed that the highest value of adjusted R^2 is produced by nine principal components for grape and durum wheat and by eight principal components for soft wheat, as depicted in figures A1.a, .b and .c, in the Appendix.

The principal components included in the regression on grape yields account for 87.7% of the total variation of the grape weather variable subset, while those included in the regressions on soft and durum wheat yields account for 84.4% and 88.8% respectively.

From the component matrices in Tables A3.a and A3.b it might be possible to provide an interpretation to every single principal component, by looking at their ordered entries (factor loadings), whose values express the relative weight of the sample weather variables on the principal components. As mentioned before, the interpretation of the principal components, although feasible and worthy, would require the expertise of a weather expert and would be beyond the objectives of this research. Nevertheless, a possible interpretation is given in tables A4.a and A4.b.The results of the regressions, reported in tables A5.a, .b and .c provide all the necessary information to construct the indexes and to check their correlations with the respective yield variables. Even though the parameter estimates and their individual significance are not of peculiar importance, their values¹⁰ are discussed.

The weather index for *grape yields*, shown in figure A2.a, can be constructed as:

$$\hat{Y}_{GR} = 94.59^* + 14.70^* \mathbf{g}_1 - 1.16 \mathbf{g}_2 + 5.98 \mathbf{g}_3 + 10.89^{**} \mathbf{g}_4 - 7.66 \mathbf{g}_5 + 0.27 \mathbf{g}_6 + 7.80 \mathbf{g}_7$$
$$- 16.76^* \mathbf{g}_8 + 20.07^* \mathbf{g}_8$$

The F value in regression 1 (*grape*) is statistically significant at 5% level (p-value equal to 0.025) suggesting the hypothesis that all coefficients are not different from zero must be rejected; the parameter estimates cannot be interpreted, but the t-tests show that \mathbf{g}_{1} , \mathbf{g}_{8} and \mathbf{g}_{9} are statistically significant at 5% level and \mathbf{g}_{4} at 10% level; the R² of the regression, 0.924, indicates a high goodness of fit.

The weather index for *soft wheat yields*, shown in figure A2.b, can be constructed as:

$$\hat{Y}_{SW} = 28.26^* + 3.62^* \mathbf{w}_1 - 2.26^* \mathbf{w}_2 - 1.06 \mathbf{w}_3 + 0.11 \mathbf{w}_4 + 0.78 \mathbf{w}_5 - 0.46 \mathbf{w}_6 - 1.78 \mathbf{w}_7 + 2.93^* \mathbf{w}_8$$

In regression 2 (*soft wheat*) the F value is statistically significant at 10% level (p-value equal to 0.064); t-tests for parameter estimates show that \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_8 are statistically significant at 5% level, while the other ones have significance at a level

¹⁰ * Statistically significant at 5% level

^{**} Statistically significant at 10% level

much more higher than 10%, resulting not significant; the R^2 of the regression, equal to 0.832, show a reasonable goodness of fit.

The weather index for *durum wheat yields*, shown in figure A2.c, can be constructed as:

$$\hat{Y}_{DW} = 29.77^* + 4.23^* \mathbf{w}_1 - 2.16^* \mathbf{w}_2 + 0.50 \mathbf{w}_3 - 0.27 \mathbf{w}_4 - 1.35 \mathbf{w}_5 + 0.43 \mathbf{w}_6 + 2.33^* \mathbf{w}_7 + 1.24 \mathbf{w}_8 + 1.45 \mathbf{w}_9$$

In regression 3 (*durum wheat*) the F-test is statistically significant at 10% level (p-value equal to 0.053); t-test for parameter estimates show that \mathbf{w}_1 and \mathbf{w}_7 are statistically significant at 5% level, while \mathbf{w}_2 at 10% level; the R² is equal to 0.893, showing a reasonable goodness of fit.

It can be noticed that, with only few significant parameter estimates, the R^2 of the regressions are high. This evidence confirms the hypothesis that a low number of degrees of freedom actually affects the goodness of fit causing an overfitting. The magnitude of the coefficients of determination ascertains the capability of the indexes to predict observed yield in sample.

A test of the predictive ability of the model is performed. A principal component analysis is conducted on weather variables excluding the last observation, year 2004. The weather variables, with observations from 1990 to 2003, obtained from principal components have been used as explanatory variables in three regressions. The factor loadings of the resulting principal components have been then used to predict *out-of-sample* the factor loading "2004" for each principal component. The parameter estimates of the regressions and the predicted factor loadings for "2004" produced the out-of-sample prediction of yields in 2004.

The out-of-sample prediction accuracy is illustrated in table 4. Assuming a normal distribution for yield, the extent of the confidence intervals suggests that the accuracy of the predictions for each crop is reasonable, though the difference between actual and predicted values for durum wheat is remarkable.

yields	Grape	Soft wheat	Durum wheat
actual value	108.33	35.00	42.37
predicted value	113.97	29.78	32.15
% difference	5%	15%	24%
standard deviation ¹¹	18.79	4.38	4.63
confidence interval at 95% level	[65.66 - 162.29]	[17.63 - 41.94]	[19.30 - 45.01]

Table 4: Out-of-sample prediction accuracy for grape, soft and durum wheat yields*

Source: own elaboration

*Note: Durum wheat yields are detrended observations

Even if the normal distribution does not prove as sufficiently appropriate as the beta for modeling actual yield distributions, at least one study has shown the assumption of normality of yields distribution cannot be severely rejected (Ker and Coble, 2003). Given that in the literature there is still uncertainty about modeling actual yields distribution, the hypothesis of normality has been tested by implementing the D'Agostino-Pearson K^2 *omnibus* statistic on the regressions' residuals. The test results, reported in tables A5.a, .b and .c, indicate the null hypothesis of normality of yields is strongly rejected. As such, the estimated standard errors may not be consistent.

¹¹ The standard deviation has been computed as $stdev = \sqrt{\hat{\sigma}^2 \left(I + X_{2004} \left(X'X\right)^{-1} X'_{2004}\right)}$, with X_{2004} as the *out-of-sample* predicted case "2004" for each principal component; $\hat{\sigma}^2$ and X are insample variance and data values.

In order to find a more parsimonious model, three linear regressions were run by regressing yields on only statistically significant principal components of the previous regressions. The results, in tables A6.a, .b and .c in Appendix, do confirm that those principal components prove to be statistically significant, though the insample goodness of fit does not fully satisfy the weather-index requirements. Hence, the in-sample predictions of the indexes, in figures A3.a, .b and .c in the Appendix, do not closely follows yields variations, especially yields shortfalls.

Again, the availability of longer time series would allow more degrees of freedom in the application of both principal component analyses and linear regressions with less impact on the goodness of fit.

Indeed, even if a longer time series included important climate change, such considerable variations could be accounted for by principal components. In this sense, principal component analysis proves to be a powerful analytical tool, especially in disciplines like climatology in which the inner relationship between weather variables is not easy to model. Instead, more can be done to explore the effects of technological progress both on agricultural production, increasing yields and resistance to adverse weather events, and climate, lowering the emission of polluting elements considered to be the most important cause of climatic changes.

The availability of longer time series on yield and weather variables is the only remedy to avoid overfitting and produce effective out-of-sample predictions. Again, those regressions are not intended to explain or understand the reasons for residual yield variation, but to design a weather index that is positively correlated to the yield. The indexes obtained will be used to perform an analysis of sensitivity on farmers' willingness to pay for a weather index-based insurance contract. However, the availability of short time series and provincial level data makes this experimental methodology not quite reliable. The comparison of the latter with a different approach would clear legitimate doubts about the results of the principal component analyses and the subsequent regressions. Therein, a different linear model is applied to fit yields with growing degree days and cumulative rain. The "growing degree days" approach for constructing a weather index is presented in the next section.

4.2. Growing Degree Days method

The indexes constructed by regressing grape, soft and durum wheat yields on the weather variables obtained from principal components provide good in-sample predictions, but the limited possibility of testing the ability to predict out-of-sample values, due to the limited number of available observations to conduct the test, cannot exclude the possibility of overfitting due to few degrees of freedom. An alternative way of assessing the desirability of the proposed index is to compare it with the performance of an index constructed through a different approach. Yields have been regressed on two weather measurements that have been proposed, in the literature (Vedenov and Barnett, 2004; Skees, Barnett, Ibarra and Syroka, 2006), as likely to be highly correlated with agricultural production. The first one is the so called number of *growing degree days* (GDD) and the second one is the *cumulative rain* (CR).

GDD is a measure of cumulative temperature which expresses the amount of heat a plant needs to complete its phenological stages. GDD are used in agronomy generally to forecast the time of crops' growth and to program the growth time of crops in a controlled environment, such as in greenhouses. In this work, the GDD have been computed according to the following formula:

$$GDD = \sum_{i=1}^{n} \frac{T_{i\max} + T_{i\min}}{2} - T_{base} ,$$

where *n* represents the number of days of the plant's cycle, T_{max} and T_{min} are daily temperature values, maximum and minimum of the day respectively, and T_{base} is the temperature threshold value under which the plant have no vegetative activity. T_{base} for grape is 10°C, T_{base} for cereals, including soft wheat, is 0°C (Skees, Barnett, Ibarra and Syroka, 2006). The agronomical period considered for grape crop goes from the vegetative resumption to the harvesting, corresponding to the period January-September. The agronomical period considered for soft wheat goes from the seeding to one month before the reaping, corresponding to the period August-May.

GDD, however, is an index related directly to the growth of the plant, it does not necessarily express a direct relationship between temperature and yields. There could be cases when the plant has a low productivity in spite of its successful growth. Such cases are common especially during rainy seasons when rain and humidity create an ideal micro-climate for fungi growth. Therefore, the cumulative rainfall (in millimeters) (CR) for the concerned periods has been computed as follows:

$$CR = \sum_{i=1}^n r_i \; ,$$

where r is the amount of rain and n is the number of days in the concerned period, and used as explanatory variable in the regressions.

GDD and rainfall variables have been computed using daily data from each of the eighteen weather stations. The explanatory variables in the regressions are *meanGDD*, *varGDD*, *skewGDD* and *meanRain*, representing respectively average, variance and skewness of GDD and average of the cumulative rainfall computed over the 18 weather stations for each year. The two databases obtained are presented in tables A7.a and A7.b.

Three regressions on each yield variable have been run:

- 1. *yield* = $\alpha + \alpha_1 meanGDD + \alpha_2 meanRain + e$
- 2. $yield = \alpha + \alpha_1 meanGDD + \alpha_2 varGDD + \alpha_3 meanRain + e$
- 3. *yield* = $\alpha + \alpha_1 meanGDD + \alpha_2 varGDD + \alpha_3 skewGDD + \alpha_4 meanRain + e$

The degrees of freedom in the regressions on grape yields, having 15 observations, are in turn 12, 11 and 10. Those in the regressions on soft and durum wheat are 11, 10 and 9, given 14 observations. Therefore, the risk of overfitting in these regressions is lower than when using principal components as explanatory variables.

4.3. Results

None of the regressions run on grape yields appears to give a reliable index. In fact, the p-values of the F-tests are higher than 30% significance level, none of the parameter estimates are significant, and the R^2 are low (Table A8.a). The predicted values generated by the three regressions, in figures A4.a, .b and .c, do not follow appropriately the variation of the actual values.

The regressions on soft wheat yields, from the first to the third respectively, present increasing p-values of the F-test, from less than 5% to 11% of significance, and increasing R^2 . The unique parameter estimate resulting significant at 5% level in each regression is the one referred to the *meanRain* variable (Table A8.b). The

predicted values, as reported in figures A5.a, .b and .c, although following the variation of the actual observations, present large discrepancies at peak levels, thereby the resulting index could not be considered a good predictor of extreme yields.

The first two regressions on the de-trended durum wheat yields do not present any significant parameter estimate (Table A8.c). In the third regression, the parameter estimates relative to *skewGDD* and *meanRain* result significance at 10% level and the coefficient of determination, equal to 0.44, expresses a reasonable goodness of fit. Here too the in-sample predicted values, depicted in figures A6.a, .b and .c, although following the variation of the actual yields, over-predict yields shortfalls. Out-of-sample predictions of yields in 2004 have been computed for all the regressions of each crop. The out-of-sample prediction accuracy, illustrated in tables A9.a, .b and .c in the Appendix, show that for soft and durum wheat all the predicted values are lower than the lower bound of the respective confidence intervals. Each out-of-sample prediction of year 2004 for grape remarkably differs from the actual yield value and the extents of the confidence intervals suggest that the accuracy of the predictions in each regression is low. Even if the number of degrees of freedom does not affect the goodness of fit in each regression, the GDD model does not seem to be superior to the experimental model presented before.

Next chapter introduces and discusses the performance of possible insurance contracts, where indemnity payments are linked to the values of weather indexes constructed through the previously introduced model.

Chapter 5. Feasibility analysis of index-based weather derivatives

The weather indexes constructed by fitting yield variables with weather variables obtained by principal component analysis provide good in-sample predictions of the respective observed yields. In particular, they are able to forecast low observed values rather accurately, as shown in figures A2.a, .b and .c in the Appendix. Such indexes, however, cannot be proven accurate in predicting out-of-sample yields for lack of information. Nevertheless, a feasibility study of a local yield crop insurance contract based on those weather indexes can be performed.

5.1. Index-based insurance contract

The hypothesized contract would pay indemnities every time the weather index falls below a pre-fixed trigger value I*, such that the amount of the compensation will be $I^* - I$. For example, supposing a trigger value I* equal to 75 for grape, 20 for soft wheat and 25 for durum wheat expressed as q/ha, from figures A7.a, .b and .c in the Appendix it can be noticed that, over the period considered, the contracts for grape and durum wheat yields would have paid indemnities four times and the one for soft wheat yield twice.

Then, representative farmers with yields equal to the average of those included in the sample data, owning such a contract, would have been able to eliminate the risk that their yields fell below 75 q/ha for grape crop, 20 q/ha for soft wheat crop and 25q/ha for durum wheat crop respectively. Compared to a pure yield crop insurance contract, both weather index contracts would have slightly overcompensated in the years 1994, 1997 and 2001, for grape farmers, and in the years 1998 and 2003, for soft wheat farmers. Indeed, such contracts, constructed at the provincial level, would be as effective as an area-yield insurance contract. There would be residual basis risk to the extent that there would be a difference between individual yields and those predicted by the index.

A perfectly competitive market would made such an insurance system potentially feasible depending solely on the difference between the farmers' willingness to pay for such a contract and the predictable premium. Since the contract is based on the index, not on actual yields, insurance companies will not have to bear administrative and management costs, such as loss adjustments and monitoring, and the premium could be very close to the actuarially fair premium.

Knowing the long-run distribution of yields and weather variables, the actuarially fair premium can be estimated as the contract's expected indemnity. Farmers' willingness to pay, instead, depends on their degree of risk aversion and on their perception of risk exposure. Indeed, if the historical distributions of yields and index were the same, that is if there were a perfect correlation between yields and index in the long run, the willingness to pay for a premium of a risk neutral farmer would exactly be equal to the actuarially fair premium and no market would exist. It follows that any degree of risk aversion or any pessimistic misperception of the actual yield risk by farmers would make the willingness to pay of farmers higher than the actuarially fair premium.

One of the most important advantages of an index-based insurance of the kind presented is that it would reward virtuous farmers, in that the incentive is maintained to use farmers' ability to avoid a shortfall of yields any time the index predicts values lower than the threshold. Indeed, risk-averse farmers possessing better information on how to control yields might actually express a willingness to pay more than the actuarially fair premiums. Hence, since indemnities are computed according only on the value the index predicts, they can receive a higher benefit if they know they can adopt agronomic corrective or protective measure in case the index falls below the threshold. Such a mechanism for yield-risk protection gives incentives to farmers for reducing their yield risk exposure, completely eliminates incentive problems due to moral hazard and provides incentives for a "virtuous" selection. Farmers with a low risk exposure will have a higher incentive to participate, as opposed to the adverse selection which usually afflicts traditional crop insurance programs.

5.2. Simulation and sensitivity analysis

Because of the limited length of the available time series, the precise distribution of the identified weather indexes, as well as the exact actuarially fair premium cannot be determined with high accuracy. The availability of longer time series for the concerned weather stations would make a more accurate characterization of the indexes' distributions possible, for example through a kernel analysis, providing the required conditions for the actuarially fair premium to be computed as the expected revenue from the contracts over a long lapse of time.

In this thesis, the fair premium is computed by a simulation. As a first approximation, the underlying distribution of the indexes has been estimated by resampling from a normal distributions with the same mean and variance of the available series ($\mu = 94.6$ and sd = 35.66 for grape index; $\mu = 28.26$ and sd = 6.38 for soft wheat index; $\mu = 29.77$ and sd = 5.83 for durum wheat index). The simulation has

been conducted extracting n = 500,000 random values I such to compute the actuarially fair premium as $FairP = \sum_{i=1}^{n} \max[(I^* - I_i), 0]/n$. The resulting fair premiums¹² are 6.062 for grape contract (I* = 75), 0.205 for soft wheat contract (I* = 20) and 0.679 for durum wheat contract (I* = 25) respectively.

The second simulation of the actuarially fair premium has been performed by resampling from the realized values of the indexes applying a non-parametric bootstrap. The sample is obtained by extracting at random *n* values from a Uniform distribution [0,1] and by associating each extracted value to the index observations. Such sample is composed by n = 500,000 observations such to compute the actuarially fair premium as $FairP = \sum_{i=1}^{n} \max[(I^* - I_i), 0]/n$. The resulting fair premiums are 4.056 for grape contract (I* = 75), 0.458 for soft wheat contract (I* = 20) and 0.659 for durum wheat contract (I* = 25) respectively.

Given the estimated actuarially fair premiums, it is possible to determine the series of yield that farmers in the area would have had over the 15 years considered, both with and without the hedge provided by the weather index contracts. The descriptive statistics of the series, in Tables A10.a, .b and .c, show that the standard deviations of the "hedged" series are lower than the non-"hedged" ones, implying that a reduction in risk would occur.

Sensitivity analysis is then performed to check whether or not the farmers in the sample would be willing to accept the contracts and pay for such premiums. The change in the certainty equivalent, implied by the purchase of the contract, is hence

 $^{^{12}}$ Fair premiums and indemnities are meant to be the product between price and quantities of crop per hectare (q/ha), assuming the price constant and equal to one.

measured for five different degrees of risk aversion, assuming a Constant Relative Risk Aversion (CRRA) utility function. The assumption of CRRA utility function is quite common, especially in asset pricing literature, though researchers have controversial opinions about its empirical applications in agriculture (Coyle, 1999). Nevertheless, several CRRA utility functions are usually described in the literature, such as the logarithm and the exponential; both posses the desirable property that the degree of risk aversion does not change for changes in wealth. Another reason for assuming CRRA utility functions is that there is evidence that the initial level of wealth does not alter the riskiness of investment choices. Hence, the sensitivity analysis does not depend on farmers' wealth.

The CRRA utility function applied is the exponential and its functional form is $u(x) = \frac{x^{1-\rho}}{1-\rho}$, with $\rho > 0$ representing the degree of risk aversion; $u'(x) = x^{-\rho} > 0$; $u''(x) = -\rho x^{-(\rho+1)} < 0$. The measure of the relative risk aversion is then $R^R = -\frac{u''(x)}{u'(x)}x = -\frac{-\rho x^{-(\rho+1)}}{x^{-\rho}}x = -\frac{-\rho x^{-(\rho+1)}}{x^{-(\rho+1)}} = \rho$ which is *constant*.

Assuming *x* to be the crop yield and letting ρ varying discretely from 1 to 3, in increments of 0.5, levels of utility for the series with and without hedge are computed. Taking the average of the utility levels \overline{u} for each of the three series and inverting the utility function, the certainty equivalents are computed for six different degrees of risk aversion: $CE = (1 - \rho)\overline{u}^{\frac{1}{1-\rho}}$.

The sign of the change in certainty equivalent, ΔCE , that is the difference between the "hedged" *CE* and non-"hedged" *CE*, will tell whether or not a farmer in the area would be willing to subscribe to the contract. A positive sign implies the farmer is willing to accept the contract.

The results of the sensitivity analysis are reported in tables A11.a, .b and .c where it is shown that for reasonably low values of risk aversion ρ , ΔCE are positive. Such results suggest that such contracts would be suitable also for farmers in the area characterized by low risk aversion.

Chapter 6. Conclusion and discussion for further research

This thesis tests a new methodology for constructing a local weather index and analyzes the feasibility of a yield crop insurance contract based on the index, to hedge yield variation of three crops in the Italian province of Grosseto in Tuscany. Such a contract is aimed to hedge, within the province, the systemic exposure of farmers to yield risk.

Three objective weather indexes have been constructed using detailed weather data through an innovative statistical procedure, based on a combination of data reduction, through principal component analysis, and function fitting, through regression analysis. For comparison, the approach has been contrasted to the more traditional use of indexes based on growing degree days.

The limited length of the time series of weather variables makes the results of the applied principal component analyses and of the regressions tentative, especially because of overfitting due to few degrees of freedom. Faced with limited time series of data, a simulation of the indexes' distribution has nevertheless been conducted to compute the actuarially fair premium and to explore possible performances of the proposed insurance schemes.

The three objective weather indexes, constructed using data from 1990 to 2004 of 18 weather stations in the Italian province of Grosseto, manifest a high correlation with grape, soft and durum wheat yields in the province. The growing degree days method, intended to provide a methodological comparison, did not predict yields well. Nor would the linear model if only the first 3 or 4 principal components were used.

Given data limitations, the indexes are shown to be able to follow the lower tails of yields distributions, which is the most desirable property for a local index intended to be used as the underlying asset of a crop yield insurance derivative contract.

Ideally, yields should be analyzed at the level of more homogeneous areas. Yields at provincial level in Italy might reduce the efficacy of the weather index since area of interest presents non-homogeneous pedo-climatic conditions. the Nevertheless, the feasibility analysis provides evidence that, for reasonable degrees of risk aversion, experienced farmers of the province would be willing to purchase a weather index-based insurance contract, paying even more than the actuarially fair premium. Indeed, given indemnities' estimation is based uniquely upon the predictions of the weather index and assured a perfect correlation between index and yields, the feasibility analysis highlights that farmers might receive larger benefits from such index-based insurance mechanism if they adopt corrective measures to reduce the actual yield loss. Hence, the application of index-based coverage provides incentives for a "virtuous" selection and what one might call a "moral advantage", unlike what commonly happens with traditional yield crop insurance plagued by adverse selection and especially by moral hazard. In fact, in a traditional yield crop insurance system, farmers that are more exposed have the highest incentive to participate and further they have the incentive not to engage in risk mitigation activities once the insurance contract has been signed.

Moreover, the insurance mechanism suggests that farmers' associations, at provincial level, might exploit the possibility of using the weather index to hedge the systemic component of yield risk, while adopting other solutions, such as mutual funds, to hedge the more idiosyncratic components of individual farmers' yield risk.

The access to existing longer time series, for both yields from RICA¹³ and weather data from CNR¹⁴, would make the risk analysis more effective, especially if analyses could be extended to more restricted and homogeneous areas, in which the systemic component of the agricultural yield risk increases. Available local yield data will also exploit in a more efficient way the wealth of information on weather data. Local weather measurement, in fact, are meanly used to perform weather forecasting, but such weather information, if employed by the proposed weather index, would be able to link directly or indirectly the fundamental yields variation to local weather conditions with high accuracy.

The proposed weather index could be adopted by public sector as an alternative tool to the complex and expensive procedures of catastrophic damage assessment

Finally, one other potential advantage of insurance contracts based on objective weather indexes is that they can be traded on exchange or over-the-counter markets as derivative contracts, to the extent that they are uncorrelated to risky assets of investors which might include them in their portfolio. Further, if the trigger values are set at a lower level, such index-based weather derivatives might prove to be suitable at reinsuring the risk exposure of insurance providers who had offered the original contract.

¹³ RICA is the Rete di Informazione Contabile Agricola. It is a branch of the Italian institute of agricultural economics (INEA), which is part of the European Union Farm Accounting Data Network (FADN), whose task is to select and monitor samples of farms representative of a particular agricultural zone at the level of the region.

¹⁴ CNR is the Consiglio Nazionale delle Ricerche, the Italian National Research Council.

For more information visit the website http://www.cnr.it/sitocnr/Englishversion/Englishversion.html.

References

- Barton, R. R., and L. W. Schruben "Uniform and bootstrap resampling of empirical distributions" *Winter Simulation Conference* (1993), Los Angeles, California, USA.
- Bolasco, S. Analisi multidimensionale dei dati: metodi, strategie e criteri d'interpretazione (2002) Carocci.
- Cafiero, C. "Il dibattito sul sostegno pubblico alle assicurazioni in agricoltura" *La Questione Agraria* 3(2003):97-123.
- Cafiero, C. "La recente ricerca economico-agraria sulle assicurazioni in agricoltura: una possibile chiave interpretativa." *Collana Working Paper* (2002) Centro per la Formazione in Economia e Politica dello Sviluppo rurale, Portici.
- Cafiero, C. "Modernizzazione e rischio nell'impresa agraria." in ISMEA (A cura di,), Servizi assicurativi e finanziari e processo di modernizzazione dell'impresa Agricola (1999): 77-97, Roma, ISMEA
- Cafiero, C. "Problemi e prospettive per una moderna gestione del rischio nell'agricoltura europea." *Economia e Diritto Agroalimentare* 2(2005):135-150.
- Cafiero, C., Capitanio, F., Cioffi, A., and Coppola, A. "Risk and Crisis Management in the Reformed European Agricultural Policy." *Canadian Journal of Agricultural Economics/Revue Canadienne d'Agroeconomie*, 55,4(2007):419-441.
- Cafiero, C., C. A. Ramezani, and B. D. Wright. "Le assicurazioni in agricoltura tra mercato privato ed intervento pubblico.", in ISMEA (A cura di,), *Servizi* assicurativi e finanziari e processo di modernizzazione dell'impresa agricola (1999):136–148, Roma, ISMEA
- Calvo, R. A., M. Partridge, and M. Jabri. "A comparative study of principal component analysis techniques" *Ninth Australian conference on neural networks* (1998) Brisbane, Australia.
- Cao, M., and J. Wei. "Weather derivatives valuation and market price of weather risk." *Journal of Futures Markets* 24,11(2004):1065-1089.
- Capitanio, F. "Intervento pubblico nella gestione dei rischi in agricoli: chi beneficia del sussidio alle assicurazioni?" *Economia e Diritto Agroalimentare* 1(2005):163-75.
- Chambers, R. G. "Insurability and Moral Hazard in Agricultural Insurance Markets." *American Journal of Agricultural Economics*, 71,3(1989):604-616.

- Chambers, R. G., and J. M. Bourgeon. "Optimal Area-Yield Crop Insurance Reconsidered." *American Journal of Agricultural Economics*, 85,3(2003):590-604.
- Cheng, R. C. H. "Analysis of simulation experiments by bootstrap resampling", *Winter Simulation Conference* (2001) Washington DC, USA.
- Coyle, B. T. "Risk Aversion and Yield Uncertainty in Duality Models of Production: A Mean-Variance Approach." *American Journal of Agricultural Economics*, 81,3(1999):553-567.
- D'Agostino, B. R., Belanger, A. and D'Agostino, B. R., Jr. "A suggestion for Using Powerful and Informative Tests of Normality." *The American Statistician* 44,4(1990): 316-321.
- Dixon, P. M. "Bootstrap resampling" *Encyclopedia of Environmetrics* 1(2002):212-220.
- Glauber, J. W. "Crop Insurance Reconsidered." *American Journal of Agricultural Economics*, 86,5(2004):1179-1195.
- Goodwin, B. K. "Problems with Market Insurance in Agriculture." *American Journal* of Agricultural Economics, 83,3(2001):643-649.
- Greene, W. H. *Econometric Analysis (Fifth Edition)* (2003) Prentice Hall, Upper Saddle River, New Jersey.
- Hess, U., Skees, J., Barnett, B., and Nash, J. *Managing Agricultural Production Risk -Innovations in Developing Countries* (2005) World Bank, Washington, D.C.
- Innes, R. "Crop Insurance in a Political Economy: An Alternative Perspective on Agricultural Policy." *American Journal of Agricultural Economics*, 85,2(2003):318-335.
- Innes, R., and S. Ardila. "Agricultural Insurance and Soil Depletion in a Simple Dynamic Model." *American Journal of Agricultural Economics*, 76,3(1994):371-384.
- Jolliffe, I. T. Principal Component Analysis, 2nd Ed (2002) Springer-Verlag, New York.
- Just, R. E., L. Calvin, and J. Quiggin. "Adverse Selection in Crop Insurance: Actuarial and Asymmetric Information Incentives." *American Journal of Agricultural Economics*, 81,4(1999):834-849.
- Ker, A. P., and K. Coble. "Modeling Conditional Yield Densities." American Journal of Agricultural Economics, 85,2(2003):291-304.

- Mahul, O. "Optimum Area Yield Crop Insurance." *American Journal of Agricultural Economics*, 81,1(1999):75-82.
- Mahul, O. "The Output Decision of a Risk-Neutral Producer under Risk of Liquidation." *American Journal of Agricultural Economics*, 82,1(2000):49-58.
- Mahul, O. "Optimal Insurance against Climatic Experience." American Journal of Agricultural Economics, 83,3(2001):593-604.
- Mahul, O., and D. Vermersch. "Hedging crop risk with yield insurance futures and options." *European Review of Agricultural Economics*, 27,2(2000): 109-126.
- Mahul, O., and B. D. Wright. "Designing Optimal Crop Revenue Insurance." *American Journal of Agricultural Economics*, 85,3(2003):580-589.
- Millsap, R. E. "A User's Guide to Principal Components." *Journal of Educational and Behavioral Statistics*, 20,1(1995):105-107.
- Miranda, M. J., "Area-yield crop insurance reconsidered" American Journal of Agricultural Economics, 73,2(1991):233-242.
- Miranda, M. J., and J. W. Glauber. "Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets." *American Journal of Agricultural Economics*, 79,1(1997):206-215.
- Nelson, C. H., and E. T. Loehman. "Further toward a Theory of Agricultural Insurance." *American Journal of Agricultural Economics*, 69,3(1987):523-531.
- Rencher, A. C. Methods of Multivariate Analysis (Second Edition) (2003) B. Y. University. USA
- Skees, J., Barnett, J. Ibarra, H. and Syroka, J. *Risk Management in Agriculture for Natural Hazard* (2006) ISMEA, Rome.
- Skees, J. R., and B. J. Barnett. "Conceptual and Practical Considerations for Sharing Catastrophic/Systemic Risks." *Review of Agricultural Economics*, 21,2(1999):424-441.
- Skees, J. R., J. R. Black, and B. J. Barnett. "Designing and Rating an Area Yield Crop Insurance Contract." *American Journal of Agricultural Economics*, 79,2(1997):430-438.
- Skees, J. R., and M. R. Reed. "Rate Making for Farm-Level Crop Insurance: Implications for Adverse Selection." *American Journal of Agricultural Economics*, 68,3(1986):653-659.
- Taylor, J. W., and Buizza, R. "Density forecasting for weather derivative pricing" International Journal of Forecasting, 22,1(2006):29-42.

- Turvey, C. "The Essentials of Rainfall Derivatives and Insurance" Working Papers (1999) Dept. of Agricultural Economics and Business, University of Guelph, Canada.
- Turvey, C. "Weather Insurance, Crop Production and Specific Event Risk" (1999) Selected Paper presented at the annual Meeting of the American Agricultural Economics Association, Nashville Aug 8-11.
- Turvey, C., and J. Zhao "Parametric and non-parametric crop yield distributions and their effects on all-risk crop insurance premiums" Working Papers (1999) Dept. of Agricultural Economics and Business, University of Guelph, Canada.
- Turvey, C. G. "Insuring Heat Related Risks in Agriculture with Degree-Day Weather Derivatives" (2002) Selected Paper presented at the annual Meeting of the American Agricultural Economics Association, Long Beach CA July 28-31.
- Turvey, C. G. "The Pricing of Degree-Day Weather Options." *Agricultural Finance Review*, 65,1(2005):59-85.
- Turvey, C. G., M. Hoy, and Z. Islam. "The role of ex ante regulations in addressing problems of moral hazard in agricultural insurance." *Agricultural Finance Review*, 21(2002):03-16.
- Vedenov, D. V., and B. J. Barnett. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments." *Journal of Agricultural and Resource Economics*, 29,3(2004):387-403

Appendix

	Grape	Soft wheat	Duri	um wheat
	Y_t	Y_t	Y_t	$Y_{t,det}$
1990	90.28	23.31	42.22	34.854
1991	101.16	28.28	34.96	28.646
1992	76.56	22.44	38.66	33.399
1993	85.08	26.88	30.33	26.121
1994	64.11	31.82	29.77	26.611
1995	132.82	35.00	39.00	36.895
1996	109.58	26.61	24.38	23.328
1997	70.01	28.11	29.04	29.040
1998	199.49	16.98	21.36	22.412
1999	89.10	34.50	31.80	33.905
2000	97.30	37.00	30.00	33.157
2001	61.30	25.00	18.00	22.209
2002	77.50	35.00	27.00	32.261
2003	56.20	18.00	15.00	21.314
2004	108.50	35.00	35.00	42.366
average	94.60	28.26	29.77	29.77
stdev	35.663	6.383	7.758	6.168
skew	1.940	0.318	0.337	0.310
	Grape	Soft wheat	Durum	wheat
trend	-0.466	0.287	-1.05	52
coefficient	-0.+00	0.207	-1.02	12
st. error	2.208	0.388	0.38	83
t-stat	-0.211	0.740	-2.75	51
p-value	0.836	0.473	0.0	17
<i>R2</i>	0.003	0.040	0.30	58

Table A1: Actual and detrended yield time series from 1990 to 2004

Source: own elaboration on FADN data

Component	Variance	% of Variance	Cumulative %
1	304.2	20.9	20.9
2	159.2	10.9	31.8
3	156.3	10.7	42.5
4	139.9	9.6	52.1
5	139.4	9.6	61.6
6	122.5	8.4	70.1
7	92.4	6.3	76.4
8	84.7	5.8	82.2
9	80.2	5.5	87.7
10	60.8	4.2	91.9
11	45.3	3.1	95.0
12	33.2	2.3	97.3
13	28.2	1.9	99.2
14	11.8	0.8	100.0
15 – 1458	0		

Table A2.a: Total variance explained for grape subset of weather variables.

Extraction Method: Principal component analysis.

Component	Variance	% of Variance	Cumulative %
1	304.2	18.8	18.8
2	220.9	13.6	32.4
3	191.9	11.8	44.3
4	172.6	10.7	54.9
5	142.7	8.8	63.7
6	124.1	7.7	71.4
7	112.9	7.0	78.4
8	98.6	6.1	84.4
9	70.1	4.3	88.8
10	66.2	4.1	92.9
11	45.4	2.8	95.7
12	35.5	2.2	97.8
13	26.4	1.6	99.5
14	8.5	0.5	100.0
15 - 1620	0		

Table A2.b: Total variance explained for wheat subset of weather variables.

Extraction Method: Principal component analysis.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Sun
										#3,4,					
										5,8,					
										11,13,			#3,4,		
weather									all but	14,16,	#3,4,5,8,	#3,4,5,	5,10,		
stations	all	all	all	all	all	all	all but #1	all	#3,#8	17,18	10,12,14	12,14	12,14	#4	
prevailing	Feb-	Jan-	Jun and		Jan-			Jan-		Jan-					
months	Aug	Apr	Sept	Jun-Sept	Apr	July	May-July	Mar	Mar-Aug	Apr	Jan-Mar	May	Jun-Jul	Feb-Apr	
prevailing				low		low	high								
weather			low	Temp,	low	Temp,	Temp,	low				low		low	
measurement			Temp	rain,	Temp,	rain,	rain,	Temp,	rain,		rain,	Temp,	rain,	Temp,	
S	all	all	rain	humidity	rain	humidity	humidity	rain	humidity	all	humidity	rain	humidity	rain	
# of variables	437	194	160	136	123	106	65	57	52	23	34	41	22	8	145
					rainy			rainy						rainy and	
				rainy and	and		summer	and	rainy		rainy	cold	rainy	cold	
likely	Spring-		mild	cold	cold	rainy and	sultry	cold	spring -	hilly	spring on	May	summer	spring in	
interpretation	Summer	Spring	weather	summer	spring	cold July	weather	winter	summer	spring	hill	on hill	on hill	Capalbio	

Table A.4.a: Likely interpretation of the 14 principal components for grape subset of weather variables

Source: own analysis

Table A4.b: Like									0	10	11	10	10	1.4	C
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Sum
									#3,4,5,6,		#3,4,5,				
									8,10,11,		8,				
weather							all but		12,14,	all but	10,12,	#3,4,5	#3,4,5,1		
stations	all	all	all	all	all	all	#15	all	16,17,18	#4,13	14	,12,14	0,12,14	#4	
prevailing	Nov-	Nov-	Oct-Nov	Jan-	Nov-	Oct, Apr-				Aug-		Mar-	Aug-		
months	Apr	Mar	Mar-Apr	Mar	Jan	May	Mar-May	Aug-Dec	Oct-Feb	Sep	Mar	May	Dic	Jan-Apr	
prevailing				low					low						
weather			rain,	temp,	low	rain,	rain,	rain,	temp,			high	high		
measurements	all	rain	humidity	rain	temp	humidity	humidity	humidity	humidity	rain	rain	temp	temp	low temp	
# of variables	375	229	217	171	153	112	71	69	56	34	47	51	28	7	1620
		rainy	rainy and	cold		humidity						warm			
	winter	winter	humid	and		in mid			cold and	rainy	rainy	spring	warm	cold	
likely	-	-	fall-	rainy	cold	fall and	rainy		humid	end	March	on	fall on	spring in	
interpretation	spring	spring	spring	winter	fall	spring	spring	rainy fall	winter	summer	on hill	hill	hill	Capalbio	

Table A4.b: Likely interpretation of the 14 principal components for wheat subset of weather variables

Source: own analysis

Tables:
A5.a:
Linear regression on grape
vields

Δ5 Linear regression on soft wheat yields

A3.C:
Linear regression on durum wheat
yields

yields		yields		yields	yields			
Variable	Parameter estimates	Variable	Parameter estimates	Variable	Parameter estimates			
cons	94.59*	cons	28.26*	cons	29.77*			
	(4.25)		(1.03)		(0.87)			
g1	14.70*	w1	3.62*	w1	4.23*			
	(4.40)		(1.07)		(0.90)			
g2	-1.16	w2	-2.66*	w2	-2.16**			
	(4.40)		(1.07)		(0.90)			
g3	5.98	w3	-1.06	w3	0.50			
	(4.40)		(1.07)		(0.90)			
g4	10.89**	w4	0.11	w4	-0.27			
	(4.40)		(1.07)		(0.90)			
g5	-7.66	w5	0.78	w5	-1.35			
	(4.40)		(1.07)		(0.90)			
g6	0.27	w6	0.46	w6	0.43			
-	(4.40)		(1.07)		(0.90)			
g7	7.80	w7	-1.78	w7	2.33*			
-	(4.40)		(1.07)		(0.90)			
g8	-16.76*	w8	2.93*	w8	1.24			
-	(4.40)		(1.07)		(0.90)			
g9	20.07*			w9	1.45			
	(4.40)				(0.90)			
\mathbb{R}^2	0.924	R^2	0.832	R^2	0.893			
adjusted R ²	0.787	adjusted R ²	0.608	adjusted R ²	0.700			
F-stat.	6.742	F-stat	3.715	F-stat	4.624			
p-value	0.025	p-value	0.064	p-value	0.053			
K ² -stat	13.81	K ² -stat	13.48	K ² -stat	7.49			
p-value	0.001	p-value	0.001	p-value	0.023			
Obs	15	Obs	15	Obs	15			

A5.b:

Note: Standard Errors in parenthesis, * Statistically significant at 5%

level,

** Statistically significant at 10% level.

Tables: A6.a: Linear regression yields	on on grape
	Parameter
Variable	estimates
cons	94 59*

Variable	estimates
cons	94.59*
gl	(4.86) 14.70**
8-	(5.04)
g4	10.89***
	(5.04)
g8	-16.76*
	(5.04)
g9	20.07*
	(5.04)
R^2	0.800
adjusted R ²	0.721
F-stat.	10.031
p-value	0.002
Obs	15

A6.b: Linear regression on soft wheat yields					
	Parameter				
Variable	estimates				
cons	28.26*				
	(1.00)				
w1	3.62*				
	(1.04)				
w2	-2.66**				
	(1.04)				
w8	2.93**				
	(1.04)				
R ²	0.706				
adjusted R ²	0.625				
F-stat.	8.793				
p-value	0.003				
Obs	15				

A6.c: Linear regression on durum wheat vields

yields	
	Parameter
Variable	estimates
cons	29.77*
	(0.92)
w1	4.23*
	(0.96)
w2	-2.16**
	(0.96)
w7	2.33*
	(0.96)
R^2	0.736
adjusted R ²	0.664
F-stat	10.214
p-value	0.002
Obs	15

Note: Standard Errors in parenthesis, * Statistically significant at 1%

level, ** Statistically significant at 5%

level,

*** Statistically significant at 10% level.

year	grape yields	averGDD	varGDD	skewGDD	averRain
1990	90.28	1,784.32	59,985.01	-1.71	334.33
1991	101.16	1,625.13	35,310.67	-1.74	460.58
1992	76.56	1,608.17	123,775.35	-1.48	415.83
1993	85.08	1,555.88	83,393.17	-1.52	268.15
1994	64.11	1,645.54	96,310.50	-1.17	370.71
1995	132.82	1,285.59	122,561.15	-1.64	413.15
1996	109.58	1,265.13	113,800.30	-1.67	600.94
1997	70.01	1,564.61	97,958.23	-1.30	383.78
1998	199.49	1,536.81	101,950.94	-0.72	460.66
1999	89.10	1,505.89	130,347.57	-0.46	438.61
2000	97.30	1,582.67	132,646.52	-0.62	321.77
2001	61.30	1,639.11	152,485.86	-0.77	398.23
2002	77.50	1,465.47	116,369.96	-0.91	485.03
2003	56.20	1,677.50	123,086.71	-0.89	328.81
2004	108.50	1,278.68	119,721.53	-0.73	453.81

Table A7.a: Database for regressions on GDD moments and Rain for grape yields

Source: own elaboration on daily weather data from ARSIA

	soft wheat	durum wheat				-
year	yields	yields	averGDD	varGDD	skewGDD	averRain
1991	28.28	34.85	3,787.15	563,980.54	-1.95	745.85
1992	22.44	28.65	4,173.38	21,541.49	0.21	723.98
1993	26.88	33.40	4,060.75	111,994.41	-1.89	498.60
1994	31.82	26.12	4,081.83	91,128.01	-1.21	611.15
1995	35.00	26.61	4,035.42	83,674.34	-0.82	418.75
1996	26.61	36.90	3,736.66	135,610.92	-1.49	678.59
1997	28.11	23.33	3,888.39	142,455.02	-1.30	607.98
1998	16.98	29.04	4,000.66	142,972.18	-0.78	790.29
1999	34.50	22.41	3,773.10	149,850.84	-0.57	516.78
2000	37.00	33.90	4,024.45	189,300.96	-0.45	584.96
2001	25.00	33.16	4,259.34	216,948.23	-0.63	793.64
2002	35.00	22.21	3,929.00	130,628.49	-1.01	405.68
2003	18.00	32.26	3,818.25	185,533.29	-0.65	699.28
2004	35.00	21.31	3,813.29	165,730.02	-0.57	711.91

Table A7.b: Database for regressions on GDD moments and Rain for soft and durum wheat yields

Source: own elaboration on daily weather data from ARSIA

Table A8.a: Linear regressions on grape yields				
Variables	Regr. 1	Regr. 2	Regr. 3	
cons	165.73	250.86	351.43	
	(163.64)	(187.68)	(210.58)	
averGDD	-0.07	-0.10	-0.12	
	(0.08)	(0.08)	(0.09)	
varGDD		0.00	0.00	
		(0.00)	(0.00)	
skewGDD			29.06	
			(27.9)8	
averRain	0.08	0.06	0.05	
	(0.15)	(0.15)	(0.15)	
R^2	0.18	0.24	0.31	
adjusted R ²	0.04	0.03	0.04	
F-stat	1.30	1.15	1.14	
p-value	0.31	0.37	0.39	

Table A8.b: Linear regressions on soft wheat yield				
Variables	Regr. 1	Regr. 2	Regr. 3	
cons	63.55	48.97	59.48	
	(36.75)	(40.31)	(41.21)	
averGDD	0.00	0.00	0.00	
	(0.01)	(0.01)	(0.01)	
varGDD		0.00	0.00	
		(0.00)	(0.00)	
skewGDD			3.36	
			(3.14)	
averRain	-0.032*	-0.037*	-0.042*	
	(0.01)	(0.01)	(0.01)	
\mathbb{R}^2	0.428	0.472	0.532	
adjusted R ²	0.324	0.314	0.324	
F-stat	4.121	2.986	2.557	
p-value	0.046	0.083	0.111	

Table A8.c: Linear regressions on durum wheat yields				
Variables	Regr. 1	Regr. 2	Regr. 3	
cons	56.54	59.24	80.70**	
	(42.60)	(48.59)	(43.37)	
averGDD	0.00	-0.01	-0.01	
	(0.01)	(0.01)	(0.01)	
varGDD		0.00	0.00	
		(0.00)	(0.00)	
skewGDD			6.86**	
			(3.31)	
averRain	-0.02	-0.02	-0.029**	
	(0.01)	(0.02)	(0.01)	
\mathbb{R}^2	0.172	0.174	0.441	
adjusted R ²	0.022	-0.074	0.193	
F-stat	1.144	0.701	1.776	
p-value	0.354	0.573	0.218	

Note: Standard Errors in parenthesis, * Statistically significant at 5% level, ** Statistically significant at 10% level.

Tables A9: Out-of-sample prediction accuracy for grape, soft and durum wheat yields in GDD model

Explanatory variables. meanODD and meantain				
Grape	Soft wheat	Durum wheat		
108.33	35	42.37		
117.67	24.64	26.45		
9%	30%	38%		
53.39	5.02	4.52		
[-8.01 - 224.67]	[25.06 - 45.93]	[32.52 - 52.22]		
	Grape 108.33 117.67 9% 53.39	Grape Soft wheat 108.33 35 117.67 24.64 9% 30% 53.39 5.02		

a) Explanatory variables: meanGDD and meanRain

b) Explanatory variables: meanGDD, varGDD and meanRain

yields	Grape	Soft wheat	Durum wheat
actual value	108.33	35	42.37
predicted value (2)	159.69	21.50	24.72
% difference	47%	39%	42%
standard deviation	57.32	4.68	4.79
confidence interval at 95% level	[-17.83 - 236.19]	[24.69 - 45.31]	[31.82 - 52.91]

c) Explanatory variables: meanGDD, varGDD, skewGDD and meanRain

yields	Grape	Soft wheat	Durum wheat
actual value	108.33	35	42.37
predicted value (3)	121.09	23.85	28.14
% difference	12%	32%	34%
standard deviation	57.39	4.80	3.77
confidence interval at 95% level	[-19.53 - 236.19]	[24.31 - 45.69]	[33.97 - 50.77]

Source: own elaborations

¹⁵ The standard deviation has been computed as $stdev = \sqrt{\hat{\sigma}^2 (I + X_{2004} (X'X)^{-1} X'_{2004})}$, with

 X_{2004} as the actual cases "2004" of the explanatory variables; $\hat{\sigma}^2$ and X are in-sample variance and data values.

year	Return w/o hedge (R ₁)	Value of the Index (I)	Indemnity (I*- I) if I < I*	Return w/ hedge $(R_2)^{(1)}$	Return w/ hedge $(R_3)^{(2)}$	I*=75
premium	• • •			4.056	6.056	
1990	90.28	93.93	0.00	86.22	84.22	
1991	101.16	92.76	0.00	97.10	95.10	
1992	76.56	94.12	0.00	72.50	70.50	
1993	85.08	110.86	0.00	81.02	79.02	
1994	64.11	57.07	17.93	77.98	75.98	
1995	132.82	131.50	0.00	128.76	126.76	
1996	109.58	103.07	0.00	105.52	103.52	
1997	70.01	66.90	8.10	74.05	72.05	
1998	199.49	191.13	0.00	195.43	193.43	
1999	89.10	91.21	0.00	85.04	83.04	
2000	97.30	87.21	0.00	93.24	91.24	
2001	61.30	62.41	12.59	69.84	67.84	
2002	77.50	78.04	0.00	73.44	71.44	
2003	56.20	52.79	22.21	74.35	72.35	
2004	108.50	105.98	0.00	104.44	102.44	
mean	94.60	94.60	4.06	94.60	92.60	
stdev	35.66	34.28	7.52	32.25	32.25	

Table A10.a: Hedging grape crops through a weather index (threshold $I^* = 75$)

⁽¹⁾ Premium obtained by sampling from actual index values

year	Return w/o hedge (R ₁)	Value of the Index (I)	Indemnity (I*- I) if I < I*	Return w/ hedge $(R_2)^{(1)}$	Return w/ hedge $(R_3)^{(2)}$	I*=20
premium				0.458	0.205	
1990	23.31	28.40	0.00	22.85	23.10	
1991	28.28	28.99	0.00	27.82	28.07	
1992	22.44	28.85	0.00	21.98	22.23	
1993	26.88	28.66	0.00	26.42	26.67	
1994	31.82	32.24	0.00	31.36	31.61	
1995	35.00	33.68	0.00	34.54	34.79	
1996	26.61	25.16	0.00	26.15	26.40	
1997	28.11	26.11	0.00	27.65	27.90	
1998	16.98	16.30	3.70	20.22	20.47	
1999	34.50	33.27	0.00	34.04	34.29	
2000	37.00	34.06	0.00	36.54	36.79	
2001	25.00	23.83	0.00	24.54	24.79	
2002	35.00	34.39	0.00	34.54	34.79	
2003	18.00	16.81	3.19	20.73	20.99	
2004	35.00	33.18	0.00	34.54	34.79	
mean	28.26	28.26	0.46	28.26	28.52	
stdev	6.38	5.82	1.22	5.62	5.62	

Table A10.b: Hedging soft wheat crops through a weather index (threshold $I^* = 20$)

⁽¹⁾ Premium obtained by sampling from actual index values

	Return w/o	Value of the	Indemnity (I*- I)	Return w/	Return w/	
year	hedge (R ₁)	Index (I)	if I < I*	hedge $(R_2)^{(1)}$	hedge $(R_3)^{(2)}$	I*=25
premium				0.659	0.679	
1990	34.86	29.95	0.00	34.20	34.18	
1991	28.65	29.90	0.00	27.99	27.97	
1992	33.40	30.42	0.00	32.74	32.72	
1993	26.13	30.44	0.00	25.47	25.45	
1994	26.62	26.81	0.00	25.96	25.94	
1995	36.90	35.77	0.00	36.24	36.22	
1996	23.33	23.85	1.15	23.82	23.80	
1997	29.04	29.79	0.00	28.38	28.36	
1998	22.42	22.56	2.44	24.20	24.18	
1999	33.91	33.60	0.00	33.25	33.23	
2000	33.16	34.22	0.00	32.50	32.48	
2001	22.21	22.60	2.40	23.96	23.94	
2002	32.26	32.60	0.00	31.60	31.58	
2003	21.32	21.11	3.89	24.55	24.53	
2004	42.37	42.96	0.00	41.71	41.69	
mean	29.77	29.77	0.66	29.77	29.75	
stdev	6.17	5.83	1.24	5.35	5.35	

Table A10.c: Hedging durum wheat crops through a weather index (threshold $I^* = 25$)

⁽¹⁾ Premium obtained by sampling from actual index values

year	Return w/o hedge (R ₁)	Return w/ hedge $(R_2)^{(1)}$	Return w/ hedge $(R_3)^{(2)}$	I*=75
premium		4.056	6.056	
1990	90.28	86.22	84.22	
1991	101.16	97.10	95.10	
1992	76.56	72.50	70.50	
1993	85.08	81.02	79.02	
1994	64.11	77.98	75.98	
1995	132.82	128.76	126.76	
1996	109.58	105.52	103.52	
1997	70.01	74.05	72.05	
1998	199.49	195.43	193.43	
1999	89.10	85.04	83.04	
2000	97.30	93.24	91.24	
2001	61.30	69.84	67.84	
2002	77.50	73.44	71.44	
2003	56.20	74.35	72.35	
2004	108.50	104.44	102.44	
mean	94.60	94.60	92.60	
stdev	35.66	32.25	32.25	
Δ Certainty Ec	quivalent $\rho = 1$	1.21	-0.85	
Δ Certainty Ec	quivalent $\rho = 1.5$	1.84	-0.24	
Δ Certainty Ec	quivalent $\rho = 2$	2.46	0.37	
Δ Certainty Ec	quivalent $\rho = 2.5$	3.08	0.97	
Δ Certainty Ec	quivalent $\rho = 3$	3.69	1.57	

Table A11.a: Benefits to grape farmers from hedging through a weather index (threshold $I^* = 75$)

⁽¹⁾ Premium obtained by sampling from actual index values

year	Return w/o hedge (R ₁)	Return w/ hedge $(R_2)^{(1)}$	Return w/ hedge $(R_3)^{(2)}$	I*=20
premium		0.458	0.205	
1990	23.31	22.85	23.10	
1991	28.28	27.82	28.07	
1992	22.44	21.98	22.23	
1993	26.88	26.42	26.67	
1994	31.82	31.36	31.61	
1995	35.00	34.54	34.79	
1996	26.61	26.15	26.40	
1997	28.11	27.65	27.90	
1998	16.98	20.22	20.47	
1999	34.50	34.04	34.29	
2000	37.00	36.54	36.79	
2001	25.00	24.54	24.79	
2002	35.00	34.54	34.79	
2003	18.00	20.73	20.99	
2004	35.00	34.54	34.79	
mean	28.26	28.26	28.52	
stdev	6.38	5.62	5.62	
Δ Certainty Eq	uivalent $\rho = 1$	0.20	0.46	
Δ Certainty Eq	uivalent $\rho = 1.5$	0.32	0.58	
Δ Certainty Eq	uivalent $\rho = 2$	0.46	0.72	
Δ Certainty Eq	uivalent $\rho = 2.5$	0.60	0.87	
Δ Certainty Eq	uivalent $\rho = 3$	0.76	1.02	

Table A11.b: Benefits to soft wheat farmers from hedging through a weather index (threshold $I^* = 20$)

⁽¹⁾ Premium obtained by sampling from actual index values

year	Return w/o hedge (R ₁)	Return w/ hedge $(R_2)^{(1)}$	Return w/ hedge $(R_3)^{(2)}$	I*=25
premium	neuge (R)	0.659	0.679	1 25
1990	34.86	34.20	34.18	
1991	28.65	27.99	27.97	
1992	33.40	32.74	32.72	
1993	26.13	25.47	25.45	
1994	26.62	25.96	25.94	
1995	36.90	36.24	36.22	
1996	23.33	23.82	23.80	
1997	29.04	28.38	28.36	
1998	22.42	24.20	24.18	
1999	33.91	33.25	33.23	
2000	33.16	32.50	32.48	
2001	22.21	23.96	23.94	
2002	32.26	31.60	31.58	
2003	21.32	24.55	24.53	
2004	42.37	41.71	41.69	
mean	29.77	29.77	29.75	
stdev	6.17	5.35	5.35	
Δ Certainty E	Equivalent $\rho = 1$	0.16	0.14	
Δ Certainty E	Equivalent $\rho = 1.5$	0.25	0.23	
Δ Certainty E	Equivalent $\rho = 2$	0.34	0.32	
Δ Certainty E	Equivalent $\rho = 2.5$	0.43	0.41	
Δ Certainty E	Equivalent $\rho = 3$	0.52	0.50	

Table A11.c: Benefits to durum wheat farmers from hedging through a weather index (threshold $I^* = 25$)

⁽¹⁾ Premium obtained by sampling from actual index values

Weather station	altitude	number
 Alberese	3.28	1
Argentario	1,197.20	2
Braccagni	59.04	3
Capalbio	52.48	4
Casotto Pescatori	16.40	5
Magliano	623.30	6
Manciano	1,148.00	7
Massa Marittima	1,069.28	8
Montenero	656.00	9
Pitigliano	1,1049.60	10
Pomonte	557.60	11
Rispescia	131.2	12
Roccalbegna	1,148.00	13
Roccatederighi	1,607.02	14
Santa Flora	2,656.80	15
Seggiano	1,771.20	16
Semproniano	1,620.32	17
Stiacciole	196.80	18

Table A12: Weather stations in the Italian province of Grosseto

Source: ARSIA Toscana Note: altitude is measured in feet above sea level; number refers to the database labeling.

	max temp	average max temp	min temp	average min temp	average temp	average max humidity	average humidity	rainfall	rainy days		missing years	
Alberese	84	84	84	84	84	84	84	84	84	1990-1996		
Argentario	65	65	65	65	65	65	65	64	64	1990-1995		
Braccagni	8	8	8	8	8	8	8	8	8	1990		
Capalbio	0	2	5	2	2	2	2	0	0		08-09/1996	
Casotto Pescatori	12	12	12	12	12	12	12	12	12	10/2002	12/2002	06/2003
Magliano	39	39	39	39	39	39	39	39	39	1990-1993		
Manciano	62	62	62	62	62	62	62	62	62	1990-1994	06/1998	
Massa Marittima	38	38	38	38	38	39	39	38	38	1990-1992		
Montenero	48	48	48	48	48	48	48	48	48	1990-1993		
Pitigliano	31	31	31	31	31	31	31	31	31	1990-1991	10-12/1994	01-04/1995
Pomonte	36	36	36	36	36	36	36	36	36	1990-1994		
Rispescia	0	0	0	0	0	0	0	0	0			
Roccalbegna	47	47	47	47	47	52	52	47	47	1990-1993		
Roccatederighi	32	32	32	32	31	37	36	33	33	1990-1992		
Santa Flora	61	61	61	61	61	67	67	68	68	1990-1994		
Seggiano	50	50	50	50	50	49	49	49	49	1990-1993	11-12/1994	12/1997
Semproniano	50	50	50	50	50	50	50	50	50	1990-1993	08-09/1996	06/1995
Stiacciole	40	40	40	40	40	40	40	40	40	1990-1992	01-02/1995	

Table A13: Number of missing observations per weather station

Source: elaboration from ARSIA meteorological archive

The monthly variables are labeled as Vi_j_k , where V denotes variable, *i* indicates the weather station, i = 1,...,18, *j* indicates the month, j = Jan(1), Feb(2),..., Dec(12), k indicates the weather variable, k = max temp(1), min temp(3),..., rainy days(9).

]	Table A14:	Arrangem	ent	of tl	ne monthly	variables l	by station,	mon	th and wea	the	r measuren	nen	t	
Year	V1_1_1	V1_1_2			V1_1_9	V1_2_1	V1_2_2		V1_2_9	•	V8_3_1		V10_2_3	•
1990	90	84			15	91	81		7				89	
1991	87	82			13	89	83		10				85	
•		•								•				
										•				
2004	85	78	•		20	87	82	•	11				81	•

Table A14: Arrangement of the monthly variables by station, month and weather measurement

Source: own representation

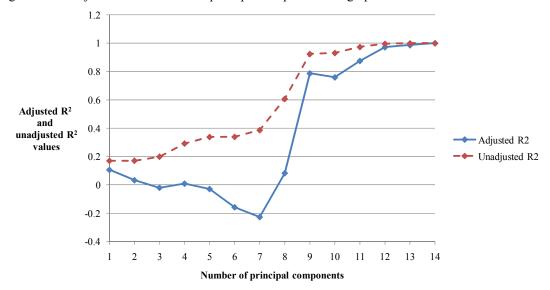


Figure A1.a: Adjusted R^2 vs number of principal components for grape

Source: Own elaboration

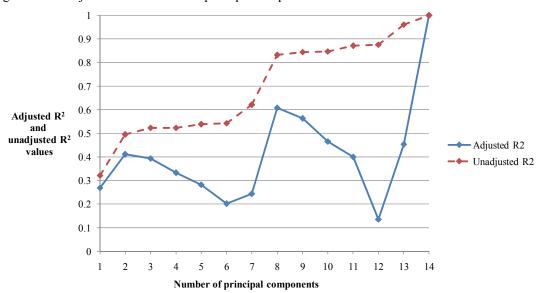


Figure A1.b: Adjusted R^2 vs number of principal components for soft wheat

Source: Own elaboration

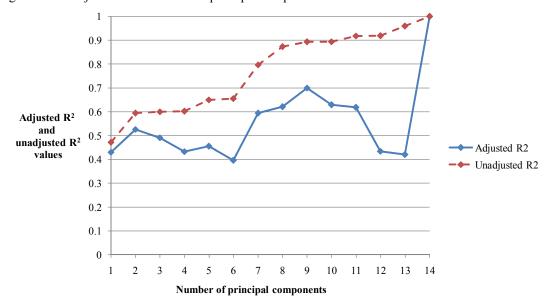


Figure A1.c: Adjusted R^2 vs number of principal components for durum wheat

Source: Own elaboration

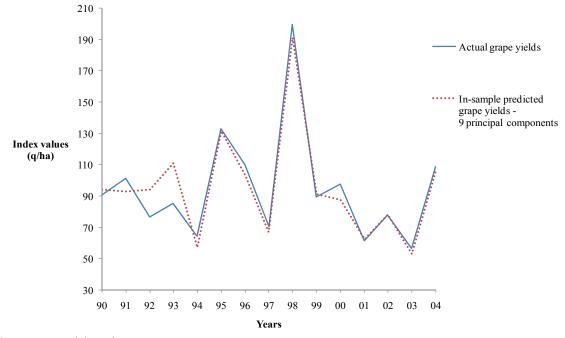


Figure A2.a: Comparison between actual grape yields and index values (in-sample prediction)

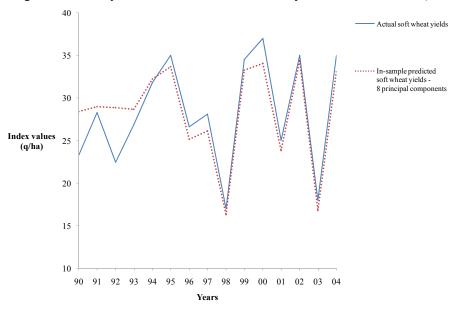


Figure A2.b: Comparison between actual soft wheat yields and index values (in-sample prediction)

Source: own elaboration

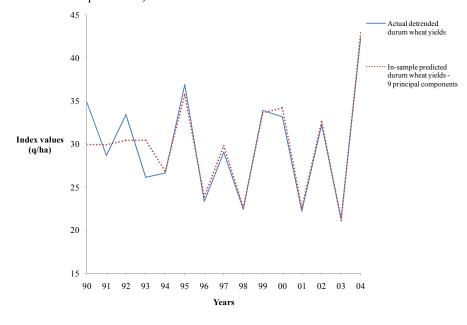


Figure A2.c: Comparison between actual detrended durum wheat yields and index values (in-sample prediction)

Source: own elaboration

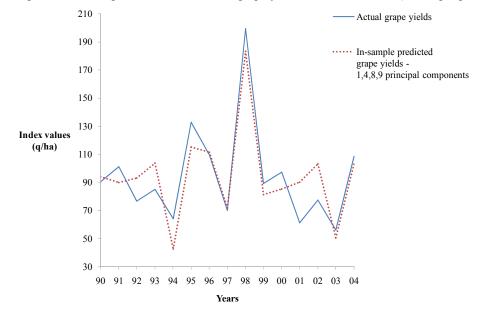


Figure A3.a: Comparison between actual grape yields and index values (in-sample prediction)

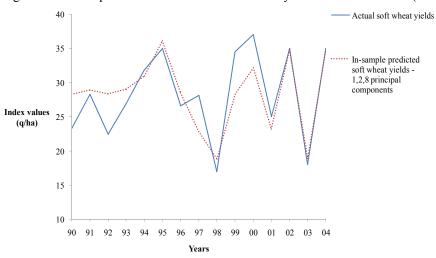


Figure A3.b: Comparison between actual soft wheat yields and index values (in-sample prediction)

Source: own elaboration

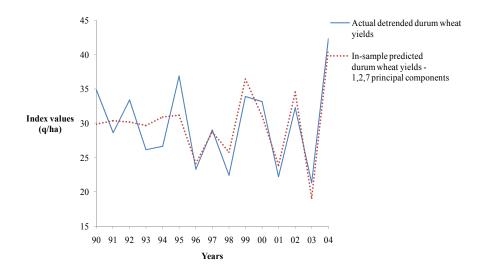
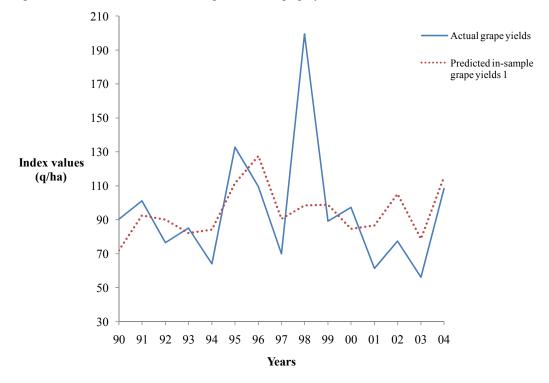
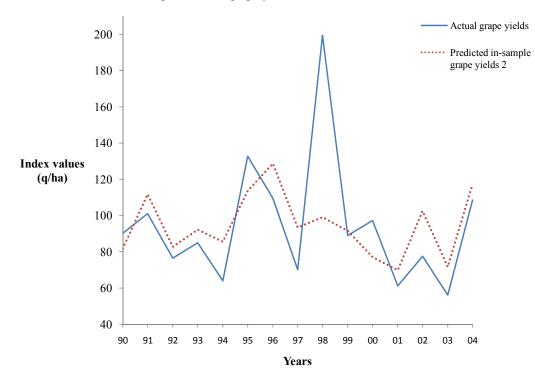
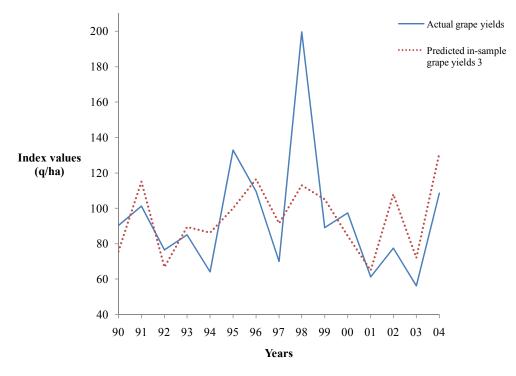


Figure A3.c: Comparison between actual detrended durum wheat yields and index values (in-sample prediction)


Figure A4.a: GDD method - linear regressions on grape yields

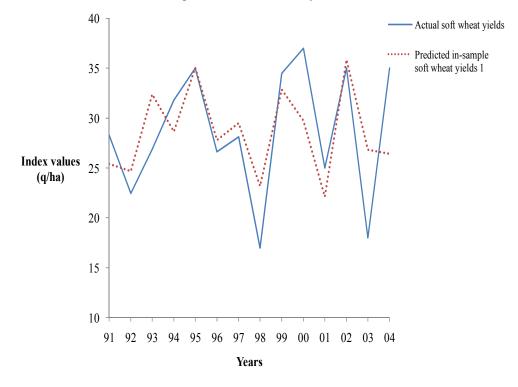
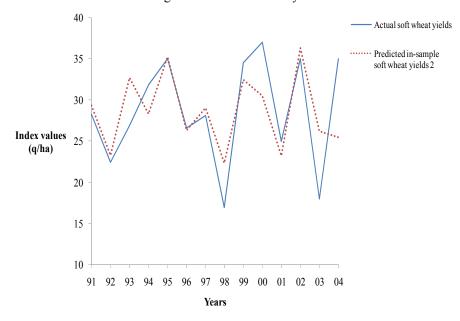
Explanatory variables: meanGDD, meanRain

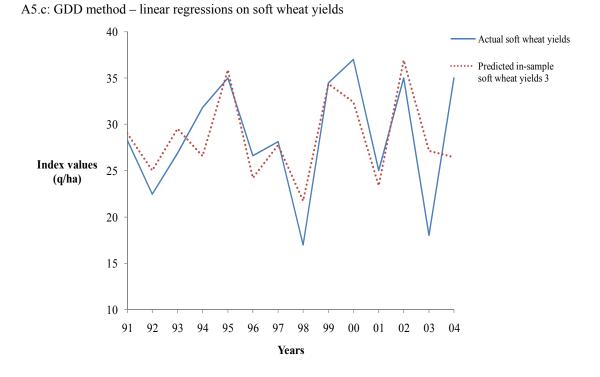
A4.b: GDD method - linear regressions on grape yields

Explanatory variables: averGDD, varGDD, averRain

A4.c: GDD method - linear regressions on grape yields

Explanatory variables: averGDD, varGDD, skewGDD, averRain Source: Own elaborations


Figure A5.a: GDD method - linear regressions on soft wheat yields

Explanatory variables: meanGDD, meanRain

A5.b: GDD method - linear regressions on soft wheat yields

Explanatory variables: meanGDD, varGDD, meanRain

Explanatory variables: meanGDD, varGDD, skewGDD, meanRain Source: own elaborations

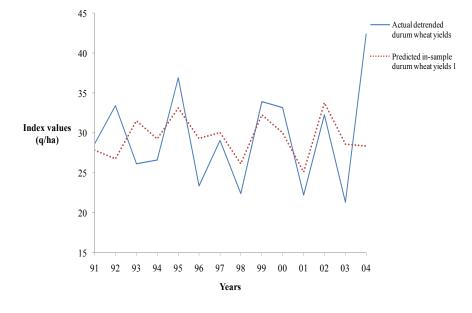
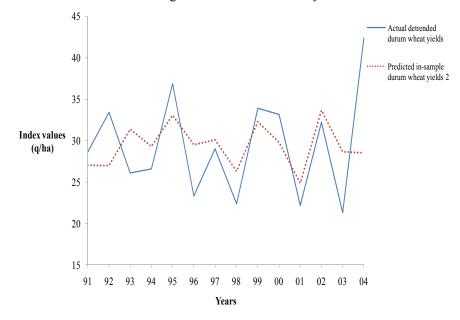




Figure A6.a: GDD method - linear regressions on durum wheat yields

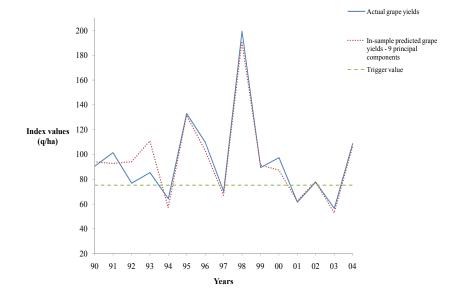
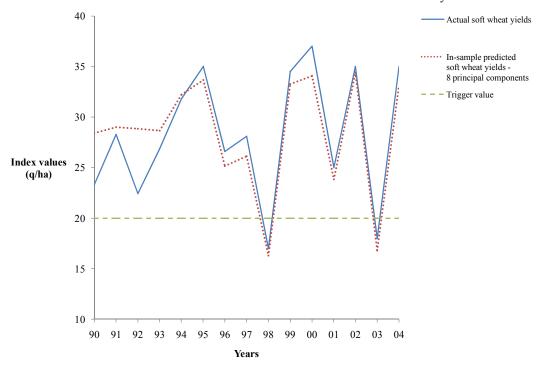
Explanatory variables: meanGDD, meanRain

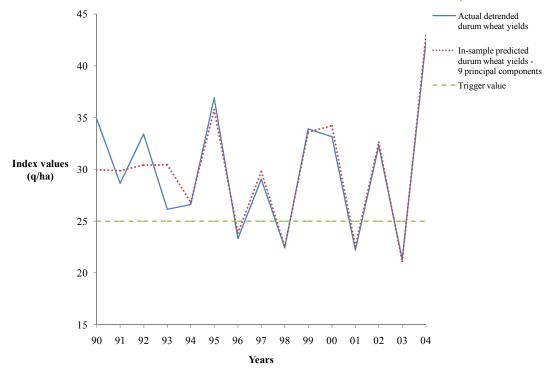
A6.b: GDD method - linear regressions on durum wheat yields

Explanatory variables: meanGDD, varGDD, meanRain

A6.c: GDD method – linear regressions on durum wheat yields

Explanatory variables: meanGDD, varGDD, skewGDD, meanRain Source: own elaborations


Figure A7.a: Threshold value in an index-based weather insurance contract for grape yields

Source: own representation - trigger value = 75

A7.b. Threshold value in an index-based weather insurance contract for soft wheat yields

Source: own representation - trigger value = 20

A7.c Threshold value in an index-based weather insurance contract for durum wheat yields

Source: own representation - trigger value = 25

							Comp	onent						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V2_8_4	946													
V15_8_4	940													
V7_2_7	.939													
V2_8_2	938													
V18_8_5	926													
V15_8_5	920													
V8_8_5	917													
V16_8_6	.915													
V7_2_6	.912													
V18_8_2	909													
V7_8_4	903													
V7_8_5	902													
V14_8_5	901													
V2_8_5	898													
V11_8_5	896													
V12_8_5	895													
V8_2_9	.895													
V11_8_4	895													
V15_5_9	.889													
V3_8_5	887													
V11_5_5	886													
V9_8_5	882													
V13_8_5	882													
V10_8_6	.881													
V11_2_7	.881													
V16_8_4	880													
V10_8_2	878													
V13_8_4	875													
V16_8_5	873													
V10_8_7	.871													
V15_5_5	870													
V7_8_2	870 869													
V6_8_5	868													
V5_8_2	868 868													
V11_2_9	808 .866													
V18_8_7	.800 .865													
V10_5_5														
V9_8_2	865													
V6_8_2	864 862													
vo_8_2 v8_8_4	863													
	862													
/16_8_7	.862													
V9_8_7	.858													
V15_5_4	857													
V13_8_7	.856													
V15_8_2	854													
V15_5_2	850													
/17_5_2	848													
/6_2_7	.845					441								

Table A3.a.: Component matrix for grape subset of weather variables (a)

V13_6_3	843	
V8_6_5	842	
V6_5_5	842	
V6_2_6	.840	427
V8_8_6	.839	.429
V17_5_1	838	
V18_5_2	838	
V5_8_5	836	
V4_2_6	.835	
V11_2_6	.835	
V8_6_2	833	
V2_8_1	832	
V14_8_2	831	
V9_8_4	831	
V6_8_7	.830	
V11_5_2	829	
V18_5_5	829	
V6_8_4	828	
V9_2_7	.827	418
V18_8_6	.827	
V11_8_6	.827	.453
V13_2_7	.825	411
V8_2_7	.824	
V8_2_6	.822	
V18_8_4	822	
V9_8_6	.822	
V13_8_6	.822	
V8_8_1	820	
V18_8_1	820	
V17_8_4	820	
V11_5_4	819	
V16_5_4	819	
V13_8_2	818	
V11_8_2	818	
V6_8_6	.817	.405
V16_5_5	816	05
V3_8_7	.815	
V9_5_2	815	.433
V8_8_2	815	<i></i>
V16_8_2	813	
V3_8_2	813	
V3_8_6	.812	
V3_2_6	.812	
V3_2_0 V3_2_7	.809	
V9_8_1	.808 808	
V9_0_1 V15_6_3	808 807	
V13_0_3 V4_8_5	807 807	
V4_8_3 V15_8_1		
V15_8_1 V7_2_9	806	157
	.804	456
V6_5_2	803	.453

VIO 0 7	002	<u></u>	-	-		400	<u> </u>	
V8_8_7	.803			101		.406		
V17_5_5	802			.431				
V11_8_7	.801							
V12_6_4	800			500				
V17_5_4	799			.500				
V12_8_6	.797							
V6_5_7	.796							
V10_8_5	794							.446
V6_8_1	792							
V9_2_6	.789			455				
V8_6_4	788							
V13_6_5	788							
V15_4_7	.786							
V13_6_2	785							
V7_4_3	.783							
V9_5_5	782		.441					
V13_5_2	781							
V13_6_4	780							
V5_2_7	.780							
V8_2_8	.780							
V12_6_5	779							
V7_8_1	779							
V1_2_7	.777							
V12_8_2	777							
V10_8_1	775							
V13_8_1	773							
V17_8_2	773							
V4_2_7	.772							
V10_5_4	772							
V12_8_1	769							
V2_6_3	768	411						
V14_8_1	768	.418						
V14_8_6	.767							
V15_2_9	.765							
V10_5_7	.764							
V4_8_4	763		440					
V15_8_7	.762							
V17_8_7	.761					.412		
V17_8_5	760							
V7_8_3	760				442			
V4_8_6	.755							
V10_5_2	752		.426					
V15_6_2	751	445						
V12_8_7	.748							
V15_6_8	747	498						
V11_6_5	745	425						
V5_2_9	.744							
V4_8_1	742		415					
V6_4_6	.742							
V7_5_2	742							

1110 4 6		-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	—
V18_4_6	.741														
V18_6_5	741	539													
V15_5_7	.740														
V8_5_2	740				.465										
V16_5_2	738														
V15_8_6	.738														
V5_8_1	736														
V16_2_7	.735														
V8_5_5	732				.473										
V17_2_6	.731							.515							
V12_8_4	731														
V17_8_6	.728							.587							
V15_6_5	727														
V13_5_5	726				.490										
V9_5_6	.726				484										
V11_6_4	724														
V13_5_7	.722					.483									
V17_8_1	722									.424					
V3_2_9	.722				409										
V13_2_6	.722			434					454						
V12_5_3	722														
V9_8_3	721						426								
V1_2_6	.721				.492										
V15_9_7	.720		433												
V15_4_6	.720														
V9_5_7	.719			.437											
V18_2_9	.717						400								
V13_5_6	.716	.468													
V2_8_6	.715														
V2_8_7	.715														
V18_5_1	715						.473								
V8_8_3	713						462								
V17_2_7	.711							.557							
V18_5_4	710					.423									
V6_5_6	.708														
V3_8_4	708														
V13_2_8	.706														
V4_8_7	.705							.407							
V7_8_7	.705							.423							
V15_2_8	.705					406									
V14_8_7	.705														
V15_6_4	705														
V7_5_5	704														
V18_6_2	704	581													
V2_5_7	.702	497													
V18_4_7	.702	497 461													
V16_5_9	.702	101		.522											
V5_8_4	700			.344											
V18_6_3	700	524													
V9_2_4	700 .699	524			.520	407									
v9_4_4	.099				.320	407									

	_		-	-	-	-	-	-	-		<u>. </u>	
V1_8_5	698	-	-	-	632	-	-	-	-			-
V2_6_2	696											
V16_8_1	695			.469								
V3_8_1	695											
V16_9_7	.695					.515						
V17_6_5	694											
V10_8_9	.694									444		
V2_4_3	.693				.414							
V16_4_3	.688	478										
V13_2_9	.688											
V1_4_3	.687	412										
V18_6_4	687											
V7_8_6	.684							.512				
V12_8_9	.683			416								
V11_6_2	681	500										
V6_6_5	679	510										
V1_8_2	678				475							
V5_8_7	.678											
V7_5_9	.677		406									
V15_5_3	676					.569						
V6_9_7	.676											
V2_9_8	675				482							
V16_9_6	.675				.102	.542	.409					
V7_5_7	.675					.942						
V9_5_9	.673			.547								
V3_5_9	.671			.429					.465			
V4_9_7	.671			.129					.105			
V1_8_6	.670							.431				
V9_6_3	670	556						. 131				
V4_6_4	670	.550		456								
V7_5_4	670	.453		50		.405						
V10_2_6	070 .669	55				05						
V2_2_9	.669						494		403			
V17_6_2	.009 668		452				+ <i>7</i> +		+05			
V16_6_5	667	417	432									
V10_0_5 V1_2_4	007 .667	+1/			.488							
V1_2_4 V17_6_4	.007 667				.488 461							
V17_0_4 V13_4_6	007 .667				401				495			
V7_6_2	.007 666		464						473			
V7_0_2 V6_8_3	000 664		404									
V0_8_3 V11_6_9							110		524			
V11_0_9 V11_8_1	.663						.418		534			
V11_8_1 V9_7_6	661					625						
	.660					.635			401			
V13_4_7	.660								421			
V1_6_9	.659		400									
V10_4_6	.659		.488			c 1 7						
V6_5_4	657					.615						
V4_6_5	655											
V10_9_7	.655		500									
V9_9_7	.654		523									

V6_6_4	653	- 415	-	-	-		-		-	-	<u> </u>	<u> </u>
V6_6_4 V4_8_2	652	+15										
V4_8_2 V16_2_4					57 0							
V16_2_4 V15_9_6	.652		414		.578							
	.651		414	457		546						
V7_5_3	648			.457		.546						
V15_5_8	.648											
V7_6_5	648		415									
V14_8_4	646							.411				
V14_5_8	.646											
V16_6_4	646											
V6_4_3	.646	553										
V11_4_6	.645		.415	.434								
V6_6_2	645	605										
V15_5_1	645											
V12_2_9	.644											
V13_5_4	644				.535							
V10_2_7	.643							.475				
V1_5_2	643											
V6_9_6	.641										450	
V17_5_7	.639					.577						
V1_5_1	639		535									
V11_5_8	.638						561					
V7_2_4	.638				.413							
V9_6_2	637	532										
V6_5_1	636				.400		.495					
V16_2_8	.635								.479			
V18_9_7	.635		562									
V16_8_9	.634											
V18_2_8	.634									.436		
V13_5_1	634	.502										
V11_2_8	.632					512						
V1_5_5	631		513									
V1_2_5	.630				.555							
V18_8_9	.629		432									
V10_7_8	.629		1.72									
V3_2_8	.629				482							
V12_9_6	.628				102	.426						
V12_7_8	.628		425			.+20						
V12_7_8 V9_5_4	.627 627		423		.464							
V9_9_4 V9_9_6			110		.404	122						
	.627		440			.433	100					
V3_8_3	627						426	100				
V7_6_7	.627				425			436				
V7_2_5	.626				.435							
V12_2_6	.626				.455							
V8_5_4	625				.538							
V7_6_6	.625											
V15_2_7	.623							.401				
V18_8_3	622										.423	
V7_9_7	.620						.494					
V4_9_6	.619	.405										

			-			-	-	-	-				
V15_8_3	618						547						
V11_6_3	616	488											
V14_2_6	.616												
V10_9_6	.616	.484											
V7_8_8	.615			475		.459							
V1_8_3	615												
V14_4_3	.615			.464									
V2_6_4	615			483									
V12_6_2	614											517	
V8_9_7	.613		417										
V6_2_8	.613						509						
V9_6_5	612	452											
V2_6_9	.612				.479								
V3_6_5	609		403									402	
V18_5_7	.609		577										
V4_2_9	.609						473						
V11_5_9	.608												
V8_7_8	.608								463				
V12_8_3	607												
V5_2_6	.607									457			
V7_6_4	605												
V16_6_2	604	457											
V2_8_3	603						463						
V1_8_1	602												
V10_6_3	601	438		407									
V11_9_7	.600					.499							
V3_8_8	.600			430									
V8_5_1	599				.543								
V8_5_7	.599					.531							
V10_8_8	.598		461										
V11_5_1	598						.415						
V4_8_3	597							.410					
V17_9_7	.596						.504						
V7_9_6	.595						.445						
V14_2_7	.592										.419		
V17_8_3	592							.449					
V11_9_6	.591					.462							
V11_5_7	.591					.459							
V16_2_3	.591	432			.401								
V10_8_3	590											.441	
V1_8_7	.590	401						.426					
V3_6_4	589												
V5_8_3	589						507						
V13_5_9	.589			.471					.565				
V16_5_8	.587					478	466						
V10_2_9	.585						519						
V18_2_7	.583												
V10_4_3	.582	573											
V6_4_7	.582			.537									
V7_2_2	.580				.422								

	-	-	-	-	-	-	-	-	-	-	-		
V8_5_9	.579			.456				426					
V7_2_3	.574			471			.436						
V2_6_5	574			433									
V13_8_3	574								506				
V9_2_3	.572												
V8_4_6	.572												
V9_6_4	571			411			407						
V6_2_4	.571				.525								
V5_9_7	.571												
V11_2_4	.570				.527	451							
V14_8_9	.570		456										
V17_2_9	.569		.415	468									
V17_2_2	.569				.472		.430						
V1_7_5	569		513		491								
V16_2_9	.568				415			.558					
V10_6_4	567	404											
V4_4_7	.566			.421	446								
V11_8_3	564							.510	515				
V11_3_3	562				.445			.419					
V1_2_3	.561								.539	.445			
V12_6_6	.560					.453							
V10_6_5	560	419											
V4_5_3	559												
V12_2_7	.558				.425						.433		
V9_4_7	.557			.555									
V15_5_6	.555					.406							
V2_8_9	.554								.436				
V15_4_3	.554	512			.401								
V15_3_3	551			503	.544								
V12_8_8	.550		456										497
V5_2_4	.547				.460						.544		
V7_7_8	.545	509				466							
V9_2_8	.544				491								
V17_3_1	542							.525					
V14_9_6	.542					.417	.419						
V17_6_3	541												
V16_5_3	538			.406		.535							
V17_5_8	.538								.526				
V6_6_6	.538			428					438				
V5_2_8	.530					410						421	
V18_2_3	.529										.422		
V14_2_4	.529				.435			.407					
V3_6_3	528				-								
V3_9_7	.526						.462				433		
V11_5_6	.526				440	.428							
V12_9_7	.525					.464						421	
V13_7_4	525						.509						
V16_5_6	.525								415				
V11_8_8	.523		440				.424			440			
V3_9_6	.522						.454				415		

V18_3_3	519	-	-		.506		-	-	-	-			-
V16_1_8	517	.446			.500		422			.449			
V8_9_6	.515	.440					422			.449			
V13_6_7	.515	.461		400					447				
V10_7_7	.515	.401		400					447				
V13_7_9	.514		469		.446								
V6_6_3	.514 513	449	409		.440				441				
V0_0_3 V16_8_3	515	449						.468	441				
V10_8_9			421				500	.408	455				
V13_8_9 V14_9_7	.510 .509		431				.508					479	
V8_1_9	509	.416										479	
V15_4_9	508 .508	.410	177										
V10_6_2	.308 507	426	.477									416	
V10_0_2 V15_2_3		420		410			410					410	
V15_2_5 V3_6_2	.507	410	151	410			.418					400	
V9_5_1	507		454									499	
	506	.474		42.4							410		
V3_4_6	.504			.424							412		
V18_2_6	.503					150					.483		
V8_7_6	.500			400		.450							
V1_6_3	500			489		107							
V14_2_9	.498		100	401		407		.445		100			
V3_8_9	.496		409	491	402	150				423			107
V12_2_4	.488		120		.402	458		100	450				467
V2_9_7	.488		439					.422	.459				
V10_5_1	487							105	.408		402		
V18_7_5	487		425					.405			.402		
V12_9_3	487		.435			41.4							
V3_1_1	.479		.446			.414		4.67					
V18_7_4 V18_7_2	478						161	.467			450		
	474						.464	.420			.458		
V8_4_7 V15_2_6	.472		445				.436						
	.471		445	409	424								
V9_5_3 V12_6_3	469	401		.408	.434								
V12_0_3 V16_9_8	461	401	401			.440							
V10_9_8 V10_2_3	.452	.400	421	401		.440							
V5_5_3	.451 443			401									
V6_8_9	443 .425												
V0_8_9 V12_6_7	.423 .407												
V12_0_/ V11_1_4	.407	.943											
V11_1_4 V11_1_3		.943 .940											
V16_1_4		.940											
V1_1_4		.931											
V9_1_5		.921 .910											
V11_1_5		.908											
V10_1_4													
V10_1_4 V1_1_5		.906 .905											
VI I J		.905											
		804											
V1_1_8 V9_1_3		.896 .894											

V10_1_5	.886			-	-					-	
V17_1_7	.884										
V9_1_4	.883										
V5_1_4	.878										
V4_1_5	.872										
V10_1_3	.871										
V5_1_5	.867										
V1_1_3	.855							.463			
V15_4_4	853										
V16_1_3	.852										
V16_1_5	.849										
V7_1_8	.847										
V13_1_5	.845										
V7_1_4	.840										
V7_1_3	.836										
V13_1_4	.829										
V17_1_3	.828										
V13_1_2	.827										
V12_1_5	.823					406					
V8_1_3	.819										
V15_4_5	817										
V11_4_5	812										
V1_1_2	.809			.409							
V17_1_6	.806			.102							
V4_1_4	.803										
V12_1_4	.798					481					
V6_1_7	.794										
V2_1_4	.789										
V2_1_5	.784										
V7_1_5	.782				.406						
V11_4_4	781				.100						
V2_7_8	780						.429				
V10_1_7	.775										
V6_4_4	767										
V10_4_4	766										
V4_7_9	761										
V7_1_6	.758										
V8_1_7	.756				.483						
V5_1_3	.754				. 105				423		
V16_1_7	.745								. 123		
V1_9_1	743			407							
V2_1_3	.743		489	- . -107							
V18_1_5	.737		.707		.421						
V15_4_2	722	- 401			.+21						
V18_4_5	722										
V13_4_5 V11_4_2		576									
V11_4_2 V9_1_2	718 .712	570									
V9_1_2 V16_1_2	.712				.536						
V10_1_2 V18_1_4	.707 .699		.450		.556 .401						
V18_1_4 V18_4_2			.430								
v 10_4_2	698				.469						

V6_1_6	-	.693	-	-	-	-	-		-	-	-	-	<u> </u>
V18_4_4		691		.469									
V5_7_8		689		.+07	.415								
V13_1_7		.688			.+15								
V7_1_9		.088 .684					484						
V6_4_5		.084 681					404						
V0_4_5 V8_1_8													
V8_1_8 V16_4_4		.681		461									
		677		.461									
V16_4_5		675		.460									
V12_4_5		675											
V18_1_8		.674							.485				
V16_1_6		.670						410					
V2_5_1		.667		479	.448								
V14_7_8		667											.430
V11_1_9		.662					594						
V7_1_2		.662		429		.540							
V15_7_9		661			.439	.475							
V2_1_2		.660											
V17_4_3	.482	658											
V17_1_4		.657				.542							
V1_4_4		644		.525									
V2_5_6	.572	643											
V12_4_4		640										.428	
V17_4_4		640				.535			454				
V8_1_6		.636				.508							
V13_1_6		.634			412				458				
V10_4_5		634	413										
V1_1_9		.633	.476										
V10_1_6		.633											
V17_1_5		.633				.483							
V15_1_3		.626		502									
V17_1_9		.625		401									
V14_6_3		624											
V4_1_2		.622											
V8_6_3	548	622											
V11_1_8	535	.621											
V14_1_8	463	.615									.429		
V14_1_0 V18_1_9	+05	.613		.544							.⊤ <i>∠</i> 7		
V7_4_8		.609	.501	.944						408			
V8_2_3		.609 607	.501		.522					400			
V6_2_3 V6_7_8		607			.344	409							
V0_7_8 V8_4_4				120		409					402		
V8_4_4 V16_7_8		604		.438	402				120		.403		
		602			.403				436		450		
V5_4_8		.601				470					.453		
V14_1_5		.599		4.50		.472							
V17_1_8		.597		458									
V4_4_4		597										.467	
V2_7_7		597					439						
V13_6_6	.424	.592							529				
V2_4_7		590				473							

V16_6_6		.590										
V16_4_2		589	495									
V4_1_3		.584										58
V3_4_5		581									.461	
V1_7_8		581	514									
V11_1_2		.581				.559						
V4_4_5		580									.540	
V1_9_4		579	.417		404							
V7_5_6	.430	577				.405						
V18_9_3		571	.436									
V13_1_8		.570										
V1_4_6		565	.446	.421								
V18_4_3		565	.439									
V1_4_5		565	534									
V2_7_6		563					524					
V2_1_7		.559					473					
V10_6_6	.529	.557	.449									
V3_4_4		556									.408	
V12_4_3		555	.429								. 100	
V14_2_3		552	.727							.542		
V15_7_8		550	524		.468					.342		
V1 <u>5_7_</u> 6 V2_7_3		530 .547	324		.408 444				.467			
V13_2_1		.547 .544		.508	444 .512				.407			
V13_2_1 V8_6_6			155	.308	.312				502			
		.543	.455					402	523			
V11_4_8	1.60	.541						.402				
V11_9_3	462	539					10.1					
V5_1_8	428	.539			44.0		484					40.4
V12_7_9		538			.419							.484
V18_7_8		533					485					
V1_9_8		533	456						.496			
V5_1_2		.532					.417					
V6_2_3		529		416								
V9_8_8			497	506								
V5_6_5		525									.467	
	.512	518					413					
V3_4_3		517	.460	.486								
V5_6_3		517	.426								.402	
V16_8_8		510				.425			432			
V10_1_8	.447	.507					503					
V5_6_2		507									.456	425
V18_7_6		.507			.469							
V4_1_7		.499					447					
	.446	493		.424		.424						
V4_1_8		.482					422					
V8_4_5		479		.464						.426		
V7_5_1		.472				.409						
V9_1_7		.468	.417				442		.417			
V14_7_9		465			.441	.438						.452
V3_9_4		462	.452			. 150						
V13_8_8		460										

V5_4_3	.424	453	.424						439	
V7_7_2		.449			447			.447		
V13_9_6		.428	403		416					
V14_5_7										
V4_4_3										
V13_6_1			894							
V7_6_1			890							
V8_9_1			.883							
V12_9_2			.863							
V8_9_2			.853							
V16_9_1			.851			424				
V16_9_5			.841							
V18_9_1			.837							
V5_9_2			.834							
V2_6_6			.826							
V7_9_1			.826							
V6_9_2			.824							
V15_3_9			.821	.416						
V13_9_1			.820							
V1_4_2			813							
V6_9_1			.807							
V16_9_2			.807							
V9_9_2			.803							
V7_9_2			.803	429						
V5_9_1			.803	,						
V9_9_5			.802							
V6_9_5			.802	415						
 V8_9_5			.799							
V15_9_1			.799							
V10_9_1			.796							
V9_9_1			.794							
V6_6_1			793							
V14_1_6			.792							
V16_9_4			.784							
V12_9_1			.784					.405		
V15_9_5			.780							
V9_6_1			773						.431	
V11_6_1			769							
V15_3_8			.764							
V15_4_8			.762							
V18_9_2			.760							
V5_9_5			.759							
V15_9_2	431		.756							
V18_9_5	402		.755							
V7_9_5	.402		.750	565						
V1_9_5 V1_6_6			.730 .746	505						
V1_0_0 V5_9_9			.740 745							
V3_9_9 V18_5_8			745 739				497			
V18_9_8 V11_9_1			739 .739				47/			
V11_9_1 V14_9_5	512		.739							

	_	_	-	-	-		<u> </u>	-	<u> </u>	-	 <u>-</u>	
V12_9_9			734									
V7_4_2			725				403					
V13_9_9			718	.507								
V15_9_4			.717									
V17_9_1			.717									
V6_9_4			.716									
V11_9_2			.716									
V4_9_1			.715									
V14_6_6			.715									
V7_9_4			.713	583								
V18_6_1			712						.490			
V16_9_9			706									
V10_6_1			706									
V13_9_5	445		.706		.461							
V17_9_4			.704									
V13_9_2	433		.704		.504							
V12_9_5			.702									
V1_4_1		532	700									
V7_6_8		497	.700									
V8_9_9			697	.474								
V11_9_5			.694									
V8_9_4		464	.692									
V3_9_2			.681		.404							
V14_1_7			.679			.489						
V17_9_5			.677	475								
V9_9_9			676	.432								
V9_9_8	.505		671									
V10_4_8			.670									
V3_9_9			669	.454								
V17_6_1	434		664		409							
V4_9_9			663									
V14_9_1			.663									
V18_9_9			663	.545								
V8_6_1	473		661									
V10_9_2	415		.660									
V3_6_1			659								491	
V14_9_2	548		.656									
V1_6_7			.655									
V3_9_1			.654									
V2_9_1		428	.652									
V17_9_2	485		.649									
V4_9_5			.649									
V1_9_9			646	.529								
V1_2_9		511	646									
V16_9_3			.645			.525						
V3_9_5			.642									
V1_3_2			639		.551							
V5_9_4			.638									
V18_9_8			636		444							
V15_6_1			633					.444				

V13_9_4	452	-	.632	-	.438	-	-	-	-	-	· · · ·	· · · ·	
V1_6_1	461		630					427					
V4_9_2			.625	482									
V9_7_3			625		541								
V11_9_4			.624					.439					
V1_7_6			.623			.534			.438				
V17_1_2			.618			.449							
V1_4_8			.615			.468							
V9_9_4			.614	414				.455					
V4_8_9			612										
V9_6_6			.610										
V2_4_8			.610	429									
V1_6_5	538		606	>									
V12_3_6			.605							.434			
V18_5_9	.537		604	.445						. 13 1			
V5_6_1	.557		595							.447			
V13_8_9			594	401						. 177			
V16_6_1			592	.101			508						
V18_9_4		463	.592				.500						
V7_4_1		.405	591				.541	437					
V10_9_5			.589				.541	.+57				.411	
V2_6_7	.555		.588									.411	
V1_7_4	583		588										
V5_9_3	467		.586										
V15_9_3	+07	538	.582			.507							
V9_8_9	.546	550	582	441		.507							
V3_4_2	.540		581	++1	.562								
V11_6_6	.439		.581		425								
V16_4_8	.+57	.460	.579		.425								
V4_6_1		.+00	578		424					.415			
V14_5_9	.506		577		.121					.115			
V13_7_8		413											
V11_1_7	.407	.527	.577										
V12_4_6	.431	.521	.576			.504							
V11_4_7	.452		.570	.447		.504							
V10_3_8	.432		.570	.++/									
V10_5_0 V14_6_7			.564				.424						
V8_5_8	.476		.564 562				.424			.499			
V18_9_6	.525	.442	562							.477			
V7_7_3	.323	.442	560						.526				
V14_9_3		531	500 .559						.520				
V1 <u></u> 5 V195		351 468	.559		426								
V18_5_6		408			420			416			431		
V8_9_3	451	493	557 .556					.416			431		
V8_9_3 V17_6_6													
V17_0_0 V3_3_9	.470	.470	.556	400						400			
V3_3_9 V17_4_7			.555 554	.490						499			
V7_9_9			.554	.449		504							
			552 552	.422		.504		402					
			332					.402					
V1_8_8 V11_8_9	.418		552				.447			422			

	V12_3_7			.550	.520									
	V15_7_7	.475		550			.421							
	V10_9_8			540			.404						.431	
	V17_7_8	.430		539						.408			1101	
	V10_4_7	.493		.537										
	V2_8_8	.488		535	446									
	V9_4_2			533	.442									
	V1_5_4	523		532										
	V4_4_2			531								.469		.423
	V2_9_4			.531	483									
	V6_8_8		424	527					.455					
	V11_9_9			527	.440	401								
	V15_7_3			527				.434	.495					
	V3_5_3			524	.499		.495							
	V1_6_2	522		524										
	V5_8_8	.414		523			.425							
	V10_6_7	.497		.522			478							
	V2_9_2	409		.514										
	V7_9_3	442		.508	444									
	V10_4_2			505										
	V12_7_4	445		504				.413						
	V1_5_3	435		502					410					
	V14_4_6	.485		.501										
	V4_9_4			.498				.425						
	V9_9_3	442		.485										
	V5_7_9	.468		480		.472								
	V11_7_9			476				.437						
	V14_7_4			470							.437			
	V13_9_3	421		.470	.425	.441	.400							
	V10_9_4		451	.466	419									
	V1_9_2		422	.465		445								
	V14_9_9			455									445	
	V12_4_8			.454										
	V3_7_4			450		447								
	V9_6_7	.414	.423	.444				443						
	V4_7_4			444										
	V3_4_8		100	.430		426								
	V14_4_7 V12_5_9		420	.423										105
	V12_3_9 V4_9_3			414										.405
	V7_3_6				000									
	V7_3_0 V2_3_6				.888									
	V2_3_0 V7_3_3				.872									
	V7_3_3 V7_3_7				867 .855									
	V17_3_7				.855 .851									
	V17_3_6				.831									
	V16_3_7				.833									
	V13_4_4				.833	.406								
	V5_3_7				.830									
	V16_3_6				.828									
	V1_3_8				.826									
-														

V7_3_9				.806							
V10_3_6				.772							
V1_3_7				.770					422		
V9_4_4		525		.767							
V2_3_7				.765							
V18_1_3				.758							
V1_3_6				.755							
V17_6_8				754							
V6_3_8				.754						446	
V2_9_9				.752	467						
V9_4_5				.739							
V13_3_8				.735							
V11_3_6			.400	.731							
 V8_3_9				.730						490	
V8_3_7				.728						.150	
V9_3_8				.723						495	
V7_4_6	.437			.723							
V6_3_7	, ст. ј			.722					542		
V6_1_3				720					542		
V11_3_8				.719						524	
V11_5_6 V1_8_9										324	
V1_0_9 V13_3_9				718						<i>c</i> 11	
V15_3_9 V16_4_7				.712					401	611	
				.703	500				401		
V13_4_5			1.00	.700	.509						
V2_1_9			469	.699							
V10_3_7				.698							
V5_3_8				.692							
V9_3_7			.401	.692							
V1_5_7				.689		.496					
V6_3_9		.403		.688		.402					
V7_1_1				687				.440			
V8_3_6				.686					470		
V8_3_8				.681						545	
V18_3_8				.681			549				
V16_3_9				.677						564	
V14_3_7			.431	.677							
V9_3_6				.664		450					
V5_3_6				.661						501	
V5_3_9				.659						440	
V4_1_1	420			655							
V6_3_6				.653					522		
V7_3_8			.621	.650							
V13_4_3	.444		.488	.648							
V11_3_7			.509	.646					445		
V14_3_8				.644					.433		.425
V8_8_8			403	643							
V17_3_9				.638					.525		
V9_3_9				.636						431	
V17_8_9	.519			636							
V2_2_3				632	.480						

V7_4_7	.483			.628	_							
V2_9_5			.455	626								
V16_3_8			.412	.626								
V11_3_9				.626						615		
V5_4_7				.623								
V1_5_6				.623		.456						
V8_2_1				.620	.565							
V18_1_6				618				.550				
V14_3_6			.506	.617								
V14_3_9				.617			439					
V2_6_8				616	.531							
V13_3_7	.404			.612					577			
V10_3_9				.605								
V1_7_1		.452		.605								
V13_4_9		429		.599						.538		
V10_5_3	552			.599								
V13_4_1	453			.598								
V16_4_1	460			.597								
V17_4_6	.427		.509	.589								
V17_8_8	.504			588								
V4_8_8				588		.473						
V15_9_9			572	.588								
V16_4_9				.588				.542				
V15_4_1				.588			.446					
V1_4_7		520	.442	.588								
V17_6_9			.568	588								
V14_1_3				.583		.578						
V3_3_7				.581		460						
V11_4_9		436		.581						.442		
V12_3_9				.581		424						
V4_7_6				580								
V8_8_9	.419		440	577						437		
V6_7_7				576		.552						
V8_7_1		.540		.575		403						
V17_2_8	.544			574								
V13_6_8	459			572								
V4_3_7				.568				.521				
V8_4_1				.567							.517	
V9_4_1	407		403	.565								
V13_5_3	422			.565	.488							
V4_6_3	529			558								
V16_4_6	.444			.555	.463				405			
V12_3_8				.553								.490
V13_4_2			430	.553	.477							
V17_3_2				548	.442			.402				
V4_6_7		.428		548							.508	
V14_4_9				.546				.508			.432	
V6_4_1	440			.544								
V7_7_7			418	543					461			
V3_4_1				.541			.433					

	_	-	-	-	-	-	-	-	-	
V8_5_3	526			.539	.431					
V7_8_9	.452		428	539						
V16_6_3	495	522		535						
V2_6_1				533		428	475			
V3_3_6				.531			.520			
V1_6_8			.492	530		.522				
V9_4_9		409		.529						.509
V18_6_7	.524	.418		528						
V9_4_3	.459	426		.526						
V14_5_3				.525		.408				
V1_6_4	519		507	521						
V8_7_7				517		.444	.424			
V17_2_3				515	.427			413		
V15_8_8			414	511						
V6_3_4		413		510						.460
V3_4_7	.479			.510						
V17_6_7	.504			509						
V7_6_3	471	422		509						
V14_8_8	.491			504						
V6_6_7	.483	.415		500					442	
V3_6_8			.410	491						
V9_4_6				.488						.481
V16_5_7	.442			.487						
V18_1_7				485					441	
V10_4_1	444			.480			.413			
V12_4_7		405	.463	.478		.452				
V2_9_6				.476						
V18_7_7	.427			474						
V4_4_9		442		.455						
V11_2_1				.452					.443	
V2_2_2					.837					
V6_2_2					.813					
V2_3_3					.812					
V18_3_5					.801					
V2_2_5					.795					
V18_2_2					.792					
V9_7_5					790					
V2_2_4					.790					
V10_2_2					.781			411		
V3_2_2					.780					
V13_2_5					.778					
V9_7_2					775					
V8_3_5					.774			.425		
V2_4_1					.769					
V2_2_1		.412			.767					
V8_2_5					.764					
V6_2_1				.424	.762					
V8_2_4	.511				.753					
V15_3_4	429				.745					
V15_3_5	407				.744					

V18_2_5					.742				.455	
V6_3_2					.742					
V13_2_2		.432			.742					
V10_2_5	.414				.736					
V9_2_2					.735					
V6_2_5	.451				.733					
V8_2_2					.727		.411			
V9_7_4			540		724					
V13_2_4	.433				.722					
V8_3_4					.721					
V6_3_5					.716					
V2_3_4					.710					
V13_3_5		.433			.705					
V8_3_2					.702			.481		
V2_5_3					.695	.463				
V13_3_2		.481			.693					
V6_1_8					691					
V5_3_5					.690			.464		
V2_3_5		.401			.689					
V9_3_5		.412			.688					
V12_3_5					.687					
V15_3_2				559	.685					
V7_3_4		.543			.683					
V18_3_4		.010			.683					
V1_8_4	554				680					
V2_4_5			449		.674					
V17_7_9			,	455	.674	.404				
V12_2_2					.672					4
V13_3_3		.404			.672					
V12_3_2					.671			.408		
V2_3_2			402		.670					
V18_3_2	448				.670					
V9_2_5	.533				.669					
V9_3_4					.668					
V3_7_9					.663					
V6_3_1					.661			.512		
V3_2_5					.660			.012	.407	
V3_3_5					.659					
V10_9_9				.449	657					
V11_3_4					.654					
V2_3_1					.654	490		.407		
V15_1_7		.579			.034 645	.+70				
V2_4_2			578		0 4 5					
V13_3_4			.570	.401	.641					
V1_2_2	.474			01	.640					
V5_3_4	.+/4				.635					
V11_2_2	.463				.635 .635		.467			
V11_2_2 V11_3_5	.405 438				.633		.407			
V7_3_5	430	.486		470	.035 .631					
,		.+00		470	.628			.505		

V3_3_2					.627						
V15_1_6		.577			625						
V5_3_2				453	.625						
V11_2_5	.506				.624						
V16_2_2	.525				.622						
V9_3_1					.621						
V2_5_2	611				.620						
V2_1_8			433		620						
V9_3_2	408				.618						
V4_3_5					.618						
V10_3_5					.617						
V1_7_9					.617						
V10_2_4	.508				.614						
V1_3_5			518		.613						
V2_5_5	593				.609						
V16_2_5	.578				.608						
V5_2_2					.608					.452	
V15_2_5	.508				.607						
V2_4_4			491	.439	.606						
V18_2_1					.606					.462	
V1_3_4				.506	.604						
V9_2_1		.496			.600						
V4_2_2					.599		.429				
V15_2_4	.590				.599						
V17_3_4					.595			.472			
V1_5_8	.425		427		.595						
V6_4_2		407	442		.593						
V9_3_3					.592			.421			
V14_2_2					.589	.444					
V9_7_9				474	.588						
V12_6_1					588				.439		
V9_7_8				440	.586						
V14_2_5	.521				.585						
V17_2_5	.565				.578		.506				
V15_1_8		.432			578		511				
V2_5_4	510	.534			.576						
V1_2_1	.572				.576						
V17_2_4	.570				.576		.420				
V11_3_2				407	.573						
V15_2_2	.448				.569		.483				
V10_3_4		.414			.565			.452			
V5_2_5	.499				.565					.437	
V17_3_5				451	.565			.466			
V14_9_8					565						
V18_2_4	.483				.564					.502	
V12_2_5	.473				.556						
V9_2_9	.484				551		401				
V16_7_4					546		.529				
V4_3_2					.544			.488			
V17_7_5					540	419	.519				

1/2 2 4	-	-	-	-			-		-	-		<u> </u>	
V3_3_4					.540	467							
V13_9_7			449		540								
V10_3_2	401		401		.533								
V12_3_4					.531							461	
V7_6_9	.476			.521	529								
V3_5_1					.525							.507	
V16_3_1					.524	422		.462					
V1_1_1			415		524	478							
V7_3_2		.421	442	508	.521								
V14_7_2		.514			519						.406		
V4_7_2		.449			515		.495	.417					
V5_3_1					.513			.480	.453				
V4_3_4					.505								
V10_5_9	.498				504		497						
V15_1_9	.415				504		483		416				
V4_7_5					503		.430	.404					
V4_6_6	.421			403	497								
V18_7_9	.460		467		.495	.420							
V4_2_5	.473				.494								473
V8_4_2					.479						.456		
V11_6_7	.430		.418	435	464								
V3_3_1					.461								
V12_7_5					456	409	.423						
V10_3_1					.422		0						
V6_7_9						.869							
V17_7_7						.831							
V14_5_2						.823							
V14_1_2						.810							
V17_7_6						.809			.448				
V14_5_5						.801			.110				
V6_9_9	.401					.772							
V1_1_6	.401		.439			.756	.405						
V13_7_1			.+39			721	.405						
V17_7_1					554								
V2_4_6		527			554	719							
V14_5_4		321				.708							
V2_7_2						.708 707				431			
V11_7_1										431			
V11_7_1 V18_7_1				571		704							
V5_5_7				.571		703				410			
		525				.699				410			
V17_4_5		525		100		.698							
V11_7_7				409	620	.698							
V16_7_1					638	690							
V3_1_2				424		.689							
V13_9_8					465	.680							
V7_7_1					413	679							
V14_7_1		.502				679							
V6_1_5						.675				.450			
V10_1_2		.448				.671							
V2_7_1	631					669							

V12_5_6	.435	-		-	-	.669	-		-	<u> </u>	-	
V2_3_9						.665	.403					
V9_7_7	.579					.663						
V18_4_8		.552				.661						
V6_7_1					419	659						
V15_1_5					,	.656						
V9_7_1						652	.479					
V1_1_7		.410	.430			.650	,					
V18_1_2		.437			.456	.648						
V17_4_2			498			.645						
V2_9_3	479					.641						
V6_6_9	,					.638	.410					
V6_5_3		608				.638						
V14_1_4		.577		.406		.637						
V11_7_6	.441			.100		.636						
V12_1_2	.771	.485				.633		.406				
V14_5_1		.408	486			.631						
V2_7_5		.+00	514			629						
V8_1_2						.628			.432			
V12_5_7						.627			.432			
V12_3_7 V17_2_1			.467			622						
V6_1_9			.407			022 .622						
V6_4_9						.622						
V0_4_) V15_1_2						.617		.481				
V15_1_2 V15_7_5	445					.017 614		.401				
V18_6_9	445					014 .614		120				
V15_3_1					.559			.438				
V8_5_6	.440				.559	612 .609	.436					
V3_5_0 V14_4_2	.440		458				.430					
V7_2_1		427	438			.608						
V17_9_3	152	.427	121			608						
	453		.434	405		.608			100			
V15_2_1	505			.405		604			.496			
V17_5_6 V6_9_8	.595				407	.603				40.4		
			516		.497	.597			4.61	494		
V1_7_7			.516		- 1 -	.596			.461			
V15_7_1					515	593						
V14_4_5	10.4					.589						
V8_6_9	.496					.589						
V12_1_6	507		.577			.581						
V13_7_2	507					571						
V4_9_8		10.2				.571						.410
V6_2_9		.489	101			.569						
V1_9_3	.		.401			.569						
V13_7_7	.544			443		.567						
V16_7_2	434				423	565						
V6_4_8		.482				.562						
V14_2_8	.511					561						
V7_9_8						.560						
V15_7_2	449					558						
V11_9_8						.557						

V12_1_7		-	.494	-	-	.554	401	-	-				
V10_2_8	.472					549	431						
V16_7_7	.446					.549				.444			
V15_1_4		.486				.549	431						
V7_2_8	.527					547	450						
V18_6_6		.514	479			545							
V12_3_3			,			543							
V16_2_1						542			.470				
V14_4_4				.440		.541			.170				
V11_2_3		412		.++0		540	.400						
V8_1_5		.449				.540	.+00						
V10_7_6		.447		460		.539		433					
V6_7_6				400				435					
V6_7_0 V6_1_4					412	.538				425			
		105		501	413	.537				.425			
V6_5_9	410	.425		E10		.537							
V13_7_6	.418			518		.536							
V10_4_9		470				535							
V7_3_1		.470				534							
V6_1_2	455	.401				.532							
V14_3_2						.529		.522					
V4_7_1		.486				526							
V6_9_3			.497			.526	.426						
V13_7_5	516					523	.408						
V3_3_3	506					515							
V15_7_4	422					513			.463				
V8_1_4		.485				.511							
V12_7_6						.508			.451				
V2_7_4					455	508				461			
V8_7_9					.410	.506							
V16_7_5	409				472	506	.407						
V14_4_1				.461		.498				.403	.456		
V15_7_6			424		404	.497							
V3_2_4					.481	495					.484		
V18_5_3	459			.410		.490							
V4_7_7				449		.481							
V4_5_7	.433					.477						431	.4
V16_7_9					.452	.476							
V16_6_8						.474			404	.428			
V12_6_8			.409			.474	.422		-	-			
V10_7_5						472					.436		
V3_6_9						.469						.408	
V13_4_8			.435	.410		.463							
V10_1_9		.417				463	449				.443		
V14_7_7						.460	.442					.455	
V12_4_2		449				.455	4						
V4_3_9		77		.402		452	440			419			
V5_3_3	411			.702		432 421	.++0			.17			
V16_1_9	+11					+21	807						
V10_1_9 V17_4_1	420												
V17_4_1 V18_3_9	420			570			.772						
v10_J_7				.578			724						

V7_5_8	.452				-	-	704		-			-	
V9_1_9		.476					696						
V2_5_9							653		.403				
V10_5_8	.459						644						
V17_7_3							.639	.407					
V6_3_3				562			.628						
V9_6_8						.404	.627		.539				
V3_6_6						439	.623						
V18_6_8							.622						
V14_8_3	585						618	.406					
V15_9_8		.436					.609						
V6_7_4					457		.603						
V9_1_8		.506					603						
V3_7_6	.409						.597				470		
V6_5_8	.510						591						
V11_4_1	478						.585						
V3_5_6							.581				448		
V14_6_4							574						
V17_7_4					542		.573						
V13_5_8		.436			.012		569						
V18_4_1	461	.150		.414			.569						
V5_1_9	.401	.438		. 717			565				.421		
V3_7_7		.450					.560				537		
V11_6_8							.557		502		.557		
V17_7_2					529	479	.556		302				
V6_7_5					497	//	.545						
V12_7_2					520		.545						
V6_7_2					<i>32</i> 0 478		.539						
V16_7_6	.470				470	.472	.539						
V17_9_6	.470					.472	.538						
V12_4_1	.400						.527						
V12_4_1 V11_1_6			.490				523			441			
V11_1_0 V14_6_5	110		.490							.441			
V14_0_3 V11_7_2	448				155	410	522						
V11_7_2 V3_6_7					455	419	.522					410	
							.518					410	
V4_4_1 V14_6_1			165				.511						110
			465			170	498						446
V11_7_5					410	472	.495		450				
V3_1_3		10.5			.418		488		.452				415
V12_1_3		.486					488		407				.415
V9_6_9		410					.487		427				
V8_7_2		.413				. o -	.481						
V3_1_9						.408	474	. = .					
V11_7_4						417	.466	.424					
V14_6_2	416						441						439
V5_7_4					423		.441						
V7_4_9							441						
V17_3_3				411			.439	.432					
V4_1_6							409						
V5_6_4				404			409						

V13_7_3								.737					
V9_4_8						.434		725					
V15_1_1								.720					
V10_7_3			422					.709					
V12_7_3								.703					
V6_6_8								.689					
V17_1_1			.454					.684					
V18_7_3								.671					
V16_1_1								.664	.615				
V6_7_3								.662					
V11_1_1								.655					
V14_3_3								.653					
V11_7_3			400				.418	.642					
V8_7_3								.641					
V16_7_3		.506						.640					
V11_7_8		549						.637					
V2_2_8								.636					
V3_1_6								.627		.412			
V14_1_1						.410		.616					
V14_3_1							495	.612					
V4_7_3								.611	.442				
V11_3_1					.530			.609					
V10_7_4							.426	.604					
V12_3_1					.426			.585				404	
V18_3_1					.566			.583					
V10_7_9								.575					
V14_7_3								.569			.546		
V2_2_7	.427							.546					
V2_1_1		408		444				.529					
V4_3_1					.457			.525	.421			448	
V6_1_1		412		460				.521	.400				
V13_2_3					.500	436		521					
V14_3_5						.501		.520					
V8_3_3	495				.504			.519					
V10_3_3								.519					
V7_7_9		404				.479		.517					
V14_7_6			.508					512					
V7_4_5			483					507		.504			
V3_7_3								.497					
V4_3_8				.465				492					
V10_9_3		447					.422	.490					
V3_7_2							.464	.488			.442		
V12_4_9								.483					
V5_6_7			.426				.458	466					
V12_1_1								.462					418
V18_8_8	.446							453					
V12_9_4		436	.420					.450					
V8_7_4	412							.448					
							419	.447					
V14_3_4													
V14_3_4 V1_3_1	.401			424				.445	.445				

V17_9_9					404				.779			
V16_6_9									761			
V17_5_9	.429								.740			
V2_1_6	,				.431				717			
V17_4_9					1101				.687	.414		
V15_6_9									682			
V11_5_3	529								679			
V1_5_9	52)								.662			
V10_7_1						539			.656			
V10_7_1 V17_9_8						559	.471		.650			
V17_3_8				402			.4/1	412				
				.493				413	.648	401		
V16_3_3	120								.648	.421		
V13_3_6	.430		501						646			
V1_2_8			521						.644			
V15_6_6	.405				439				635			
V1_4_9								.572	.630			
V13_1_3		.575							625			
V1_3_9								.481	.621			
V16_3_5					.442				.620	.445		
V14_6_9	.477					.438			614			
V2_3_8				.513					.612			
V14_2_1				.513					.591			
V1_7_3			470					.490	.591			
V1_7_2					566				.588			
V2_4_9					505				.586			
V16_3_2									.585	.493		
V9_5_8									.582			
V1_3_3		.403			.497				576			
V12_7_7						.489			.576			
V16_3_4					.437				.576	.429		
V15_3_7	.409								573			
V13_6_9			490		546				565			
V2_7_9			447						561			
V15_3_6	.473		,	.409					549			
V2_2_6	.+75	462		.+07	.476				549			
V8_6_7		.509	.446		.+70				542			
V2_5_8		.507	.++0		.405				.537			
V13_1_9		.425			.405		495		537			
V7_7_6		.423		404			495					
V15_6_7	455			404	400				525			
	.455				408	515			525			
V17_5_3	497				100	.515			521			
V13_3_1					.480		10.7		.520			
V9_1_1		.505					405		.516			
V10_2_1						429			.514			
V17_4_8			.485					404	.505			
V5_7_3									.485		.441	
V7_7_4					476		.477		.478			
V1_9_6	.446			.417				.417	.474			
V9_1_6							463		.473			
V3_7_1									.469			
V7_7_5		.424			466				.468			

V1_9_7	.451		-	.442			-	-	.457	-	-	-	<u></u>
V8_6_8	.411		.445	.772					453				
V18_4_9	.+11		.++5	.551					.435	.687			
V16_5_1				.551						682			
V5_1_6										654			
V3_4_9		422								.644			
V8_4_9		.122								.624			
V18_1_1										623			
V3_1_4		.478								.595			
V8_1_1									.460	594			
V8_4_8					527					.578			
V5_5_6										542			
V18_3_7									503	.533			
V3_1_5		.523								.528			
V5_4_6										522			
V7_4_4								484		.521			
V18_3_6									403	.503			
V4_6_8										.499			
V16_2_6	.468				.455				451	496			
V16_6_7							.434		429	.491			
V5_1_7						.483				490			
V13_1_1		.460						.427		480			
V5_6_6										425			
V5_4_1			402								.702		
V8_9_8					571						696		
V5_9_8						.415					678		
V5_1_1											.676		449
V12_7_1											.669		
V5_4_5											.657		
V5_2_3											.653	.433	
V4_1_9							428				.640		
V10_7_2											.632		
V12_1_9							509				.623		
V3_9_8											597	493	
V10_1_1											.595		
V5_4_2			506								.594		
V12_2_3											.591		
V14_1_9			.437								.578		
V12_1_8		.524									.536		
V5_4_9										.512	.527		
V14_4_8					400	.412					.514		
V5_6_9											.491	.450	.473
V5_8_9				424							.482		
V3_1_8		.438									.458		
V14_7_5					424						.456		
V5_6_8						.427			407		.437		
V8_7_5							.406				.431		
V3_5_8												864	
V5_5_5	440											.831	
V5_5_2	465											.821	

V5_5_4	413										.743		-
V5_5_8											735		
V5_5_1	451										.728		
V4_5_5	596										.718		
V4_5_2	550										.697		
V4_5_4	549										.693		
V12_5_4	597										.671		
V5_5_9											669		
V12_5_5	618										.664		
V5_2_1	.010										636		
V3_5_5	561										.630		
V12_5_2	518					.401					.627		
V12_5_1	533					.401					.626		
V3_5_2					420								
V3_5_2 V4_5_1	506				.420						.608		
	530				5 4 5						.592		
V3_2_1 V12_2_1					.545						582		
V12_2_1 V12_9_8					.447					405	568		
									100	495	563		
V3_1_7									.408	.480	.559		
V12_2_8	.504										554		
V3_5_4	503										.546		
V4_2_8	.505						10.1		.434		538	400	
V3_5_7	.447						.404				520	489	
V3_9_3	506										519		
V3_2_3					.438					.477	.489		
V5_4_4											.457		
V4_5_9							447				455		•
V14_5_6												791	
V10_5_6	.454											731	
V5_7_1						450						730	
V4_6_9												.730	
V5_7_6								.448				.729	
V14_6_8												.705	
V10_8_4	531											.635	
V5_9_6	.424											.625	
V10_6_9						573						.612	
V5_7_7											.496	.592	
V10_6_8			.435	469								.590	
V5_8_6	.508											.589	
V14_9_4			.449									564	
V5_7_5												554	
V3_7_8		478										.532	
V5_7_2												531	
V4_5_8												.515	.4
V3_3_8				.421			.401		487			.497	
V4_6_2	459					.419						465	
V12_6_9			.452								.418	.454	
V12_0_9					.412						444	.446	
V12_0_9 V12_5_8													

V4_2_3				.494	655
V4_2_1				455	649
V4_3_6		.451	.429		.595
V4_4_6	.572				.584
V4_3_3		4	414		514
V4_2_4	.484				495
V4_4_8					463

Extraction Method: Principal Component Analysis.(a) 14 components extracted.

							Comp	onent						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V18_8_5	.944													
V8_8_5	.944													
V14_8_5	.925													
V8_8_1	.925													
V8_8_2	.924													
V18_8_2	.915													
V7_8_1	.914													
V16_8_5	.914													
V11_8_5	.914													
V9_8_5	.913													
V15_8_5	.906													
V15_8_2	.904													
V18_8_1	.900													
V15_8_4	.900													
V11_8_4	.900													
V16_8_4	.896													
V9_8_2	.896													
V2_8_2	.890													
V7_8_2	.895													
V13_8_5	.895													
V7_8_5	.891													
V16_8_2	.890													
V16_8_7	.890 889													
V13_8_2	889 .887													
V15_6_2 V6_8_1	.885													
V0_8_1 V9_8_7														
V9_8_7 V13_8_1	884													
V7_8_4	.881													
V9_8_4	.879													
V9_8_4 V2_8_4	.875													
V2_8_4 V12_8_1	.873													
V12_8_1 V8_8_4	.872													
	.871													
V12_8_5 V12_8_2	.865													
	.863													
V11_8_2	.862													
V2_8_5	.861													
V9_8_1	.859													
V18_8_7	859													
V5_8_5	.853													
V6_8_5	.852													
V2_4_7	.849													
V9_9_7	848													
V11_8_1	.848													
V9_8_6	847													
V6_8_2	.843													
V6_8_4	.840													
V13_8_4	.838													
V18_8_4	.838				420									

Table A3.b: Component matrix for wheat subset of weather variables (a)

V10_8_2	020		
V10_8_2 V5_8_2	.838		
V9_8_9	.837		
V9_8_9 V15 8 1			
	.830		
	828		
V14_8_2			
V4_8_5	.819		
V17_8_2	.818		
	.817		
	.816		
V8_10_6			
V17_8_5	.812		
V6_4_6	.810		
V6_4_7	.802		
V2_8_1	.802		
V16_8_1	.796		
V9_9_6	795		
V13_8_7	792		
V6_8_7	792		
V15_8_7	790		.434
V3_8_2	.790		
V15_12_6			
V2_8_8	789		
V18_9_7	784	427	
V10_8_7			
V15_12_7	782		
V7_5_5	781		
V3_8_8			
V10_8_1	.780		
V16_8_6	779		
 V9_10_6			
	.775		
V18_8_9	774		
V8_8_7	773		
V14_2_9	.771		
V1_4_3	.769		
V12_8_8	769		
V5_8_1	.767		
V8_8_6	767		
V3_8_4			
V16_8_9	.766		
V15_9_7	765 765		
V7_4_7			
V17_9_1	.764		
	.761		
V12_8_9	759		
V7_8_3	.758		
V14_8_4	.756		
V5_8_4	.755		
V18_10_7	755		
V3_8_7	754		
V4_8_2	.754		

.453

-.461

-.442

-.505 -.454

.504

-.505

.473

.411

.479

-.464

.436

V18_8_6	750							
V2_5_7	.750	472						
V15_8_6	746							
V4_8_4	.744				446			
V18_12_7	744							.435
V6_12_7	741		.492					
V9_4_7	.741			.488				
V7_12_7	736	.403						
V17_8_3	.735							
V17_8_1	.734						533	
V6_8_3	.734							
V16_9_6	734							
V4_4_9	.733					426		
V7_5_4	732	.452						
V10_8_5	.732							
V7_8_8	729							
V18_10_1	.727						.524	
V15_8_9	726		.561					
V11_8_7	725					.480		
V3_8_1	.724							
	.724							
V7_5_2	722		508					
V15_8_8	719	.438						
V2_8_7						.459		
V14_8_9	718							
V11_1_2	717				.544			
V4_8_1	.717				10 1 1			
V2_4_3	.717				.526			
V15_1_7	714		.437					
V9_3_6	.712							
V18_10_6								
V11_8_6	711					.569		
V7_2_6	.710					.507		
V6_1_2	709				.445			
V15_2_1	.705				5			409
V6_8_8	705				513			.109
V7_4_6	.705			.419	.915		.459	
V3_2_6	.705			.+17				
V6_12_6	705		.498					
V14_9_5	.703	.607	70					
V2_5_6	.704	455						
V1_8_8	703	+55			627			
V6_8_6	702				027	.549		
V0_0_0 V13_8_8	701					.349 466		
V16_4_3	.698	481				400		
V1_2_7	.697	401						
V1_2_7 V8_9_7	.697 695							.466
V8_9_7 V14_8_1	695 .694					420		.400
V14_8_8	.694 694					432		
V14_8_8 V17_5_1			572					
V17_3_1 V15_9_6	694 693	170	372					
15_7_0	093	478						

V6_9_7	691					.439		.412		
V0_9_7 V17_10_1	091 .690					.437	.444	.412		
V1_4_7	.689			.608			.444			
V17_8_7	689			.480						
V11_4_3	.688			.400						.425
V13_1_8	.088 686									.423
V7_8_9	686		.460							
V3_4_3	.685		.400	.511						
V9_9_8	683	447		.511						
V10_8_8	683	++/								
V13_9_5	.682									
V3_4_7	.678			.468						
V9_4_3	.678			.439						
V11_1_5	677			.+57	.503					
V8_10_7	677				.484					
V7_12_6	676	.531			0-					
V3_3_6	.676	.433							454	
V10_8_6	675	.+55				.526			+.)+	
V14_9_2	.674	.570				.520				
V9_10_7	.674 674	.465					410			
V1_12_9	674	.+05			401		+10			
V7_5_1	672				401	.491				
V3_2_7	.672					.+)1				
V13_8_6	671		.407			.491				
V15_9_1	.670		.407	.491		.+)1				
V9_8_3	.670			587						
V2_12_8	669	.517		.507						
V8_1_6	669	.017			.608					
V13_9_2	.669				1000		.421			
V8_8_3	.669				439					
V11_2_8	.668		.439		1.09					
V11_4_6	.668			.568						
V3_8_6	668									
V7_8_7	667									
V18_8_8	664							462		
V8_8_8	662							444		
V11_2_1	.662									445
V2_12_7	661	.519								
V12_8_4	.660				628					
V6_12_1	.659							.494		
V4_8_7	657					.611				
V17_5_5	657		650							
V9_12_7	655		.544							
V13_8_9	655		.450							.488
V14_5_1	654				.572		.413			
V10_9_1	.654	.523								
V17_4_6	.653			.516						
V13_9_4	.652		458							
V16_9_2	.652	.572								
V1_8_5	.651						443			
V1_2_6	.650				.410	.467				

V2_8_9	649			.570	416						
V12_10_1	.647						.574				
V7_3_9	.647			.410		403					
V17_9_2	.646	.535									
V4_1_2	646				.508						
V11_8_9	645										
V5_2_7	.645										
V4_1_1	643										
V14_5_2	643			.424	.403						
V11_8_8	643						.413				
V13_4_3	.642				.506						
V1_8_2	.642						496				
V4_12_7	641		.517								.440
V10_3_9	.641								.501		
V18_4_7	.641	580									
V7_2_8	.641		.525			409					
V15_10_1	.639						.516				
V5_8_8	638								.409		
V16_4_7	.637										
V17_8_8	637			.437				442			
V8_8_9	637										
V1_4_6	.635			.587							
V15_9_2	.634	.606									
V10_4_9	.632				471						
V6_4_8	631						503				
V16_9_1	.631			.580							
V9_8_8	631	.466									
V14_2_8	.630										
V16_2_1	.630										
V5_8_7	630										
V17_12_7	630	.549									
V4_9_7	628	421				.546					
V11_9_2	.628	.544									
V7_9_7	626			.523							
V14_2_6	.626									.421	
V11_4_9	.626			.538							
V2_8_3	.625	.460		457							
V18_12_1	.624	.431						.456			
V3_8_9	624										
V12_8_7	623			.405		.467					
V2_8_6	622					.599					
V3_5_9	.622						.491				
V9_3_7	.619										
V13_4_9	.618								484		
V8_2_4	.618				.433	.482					
V10_10_9	.617	.412					424				
V4_8_9	617										
V10_4_7	.616		.468								
V10_3_8	.615								.405		
V10_4_3	.614										
V15_8_3	.614			403							

V13_12_9	614							442		.473	
V7_1_2	614				.561						
V14_8_7	613			.552							
V16_9_5	.613	.553									
V18_4_6	.612	440									
V5_9_7	611	450									
V10_8_9	611										
V7_2_7	.610		.486								
V8_9_2	.609	.596									
V7_8_6	608					.469	.437				
V3_3_7	.608	.593									
V16_4_9	.608			.463					470		
V3_1_2	608				.484						
V15_4_3	.608	489									
V11_12_1	.606		.456					.508			
V11_10_1	.606						.529				
V14_4_3	.603			.555	.449						
V6_2_6	.603			485							
V9_3_9	.603			.471					.413		
V15_2_4	.601			484		.528					
V10_9_7	601					.429					
V5_9_3	.600										
V14_9_1	.599	.413							574		
V15_5_1	598		555								
V11_9_5	.598	.550									
V16_2_4	.597			452		.518					
V8_12_7	597		.471								
V14_4_6	.596			.486							
V9_2_4	.595			554							
V17_2_1	.595										
V9_4_9	.595						.445		472		
V17_4_7	.594			.504							
V5_9_9	593			519							
V7_1_5	593		.504		.553						
V8_12_8	593										
V6_2_7	.592		.429	495							
V2_3_6	.591	.419									
V15_1_4	591				.500			473			
V16_3_8	.590	.403		.423					.487		
V5_8_9	590								.459	.404	
V16_12_6	590	.492									
V5_9_2	.589	.588									
V12_9_2	.587	.554		.435							
V8_4_3	.587			.561				_			
V17_1_8	585		.479					519			
V1_3_6	.585			.548							
V16_12_7	583	.571									
V10_12_7	582		.478								
V15_1_3	582		.479								
V8_9_6	581	467						.534			
V4_1_5	580		.479		.467						

V10_2_8	.580		.498									
V18_2_1	.580										.439	
V9_1_8	579					532						
V9_4_6	.579		.405	.451								
V11_1_4	579		.466		.506							
V16_3_9	.577			.403					.462			
V1_12_8	576	.525				475						
V17_3_7	.576	.436		.410								
V18_1_7	575	443						.407				
V11_1_3	574		.516									
V11_12_7	573	.420	.547									
V17_8_9	573			.451				498				
V10_12_6	573	.472										
V12_1_4	572		.457		.434							
V11_9_6	571					.550						
V16_12_1	.567											
V7_9_6	567	419										
V13_9_1	.567											
V2_9_7	565	442										
V3_4_6	.565								401		419	
V6_3_6	.564	.411						.466				
V4_9_6	563	562				.461						
V12_1_5	562		.444		.527							
V4_10_7	562							497				
V11_2_7	.561		.555									
V1_8_9	561				450							
V7_3_6	.560	.419										
V14_2_7	.560											
V6_1_3	559		.534									
V17_8_6	559			.415		.436						
V18_12_6	558							.526				
V14_8_6	555			.507		.535						
V11_12_9	554									.435		
V1_8_1	.554		.441				537					
V16_9_4	.554	.502		.447								
V10_11_9	.553	.518										
V8_12_6	552							.522				
V7_4_3	.551	527										
V10_1_5	551		.533		.528							
V4_12_8	550											.463
V3_8_3	.549			409	439				.407			
V18_12_8	548	.442				407		425				
V4_1_4	546		.467		.422							
V8_2_7	.546		.413	454								
V14_10_8	545		-	-		482						
V17_2_6	.543	426			.487							
V15_12_9	542	.522	.464									
V12_12_7	542			.539								
V15_2_8	.542		.533					401				
V14_5_5	540			.443	.486							
V9_2_6	.540		.512	511								

V7_9_9	538						402	.407					
V2_12_9	538	.530				402	402	.407					
V2_12_9 V12_4_9	537	.550				402 499			406				
V12_4_9 V11_1_8	.537 537	.533				499 512			400				
V9_9_1	537	.555		.477		312							
V5_3_7	.530	.300		.477									
V7_5_9	.534	478		.439			.409						
V4_10_6	534	470					.409						
V6_9_6	533	400						.482					
V11_8_3	.535	400		445	405			.402					
V11_3_7	.532			.465	+05					.409			
V11_3_6	.532	.402		.509						.+07			
V8_12_9	530	.402		.495				449					
V2_5_5	529		485	75									
V4_1_8	527		.405								.416		
V2_1_8	525					464	.484				.110		
V11_5_8	.525	423				409	.101						
V10_4_6	.525	.123	.467			.105							
V12_4_3	.524							425					
V18_2_4	.524												
V10_10_6	524			.408	.469								
V13_3_8	.523	.489							.462				
V1_3_7	.523	.510		.445									
V13_12_8	522	.502											
V16_2_8	.520	409						489					
V5_3_9	.519					424						.429	
V12_2_6	.519					.456							
V16_1_8	517	.483								.457			
V8_2_6	.515			485									
V6_1_4	513	472											
V10_12_4	512	.463	.489										
V3_9_7	507	410						.466					
V6_3_7	.506	.402						.492					
V9_5_9	.505						.420						
V1_5_1	503	.486					.503						
V1_2_4	.503			429	.412								
V12_9_7	500					.439							433
V10_3_7	.500												
V1_5_2	500	.407	427				.406						
V5_4_3	.499			.413							459		
V17_3_6	.498	.442		.439	.461								
V12_9_9	497			423									
V18_2_5	.495				.418	.404							
V12_2_9	.494						.407						
V4_8_3	.487				469				.406				
V9_5_1	487	.431								420			
V5_2_8	.484		.428									.404	
V1_2_5	.480				.443		.414						
V2_5_2	476	.442	424	456									
V4_2_9	.476	422											
V4_3_7	.474				.441								

V4_2_6	.472		.448		.436								
V4_4_3	.471			.406									
V12_2_7	.464												
V3_10_6	456					419					408		
V13_2_8	.456		.438				.453						
V14_9_6	449					.448							
V2_2_6	.449							.446					
V5_9_6	445							.++0		432	407		
V5_2_9	.445		.419							.452	.+07		
V8_9_1	.439	.432	.+17	.423		.425							
V4_3_8	.430	.452		.+23		.+23		412					
V18_2_9	.417							+12					
V4_2_7	.417												
V15_11_9	.417	.924											
V8_12_4		.924 .913											
V8_12_4 V8_12_5													
		.904											
V18_10_8		.891											
V6_10_8		.865											
V11_11_9		.851											
V18_12_5		.840											
V1_10_8		.837											
V13_12_4		.833											
V7_10_8		.829											
V13_12_5		.824											
V15_9_3		.824											
V8_12_2	405	.814											
V16_11_8	.407	.800											
V15_10_8		.794											
V9_11_8		.791											
V16_11_9		.791											
V1_12_5		.780											
V8_11_8		.778											
V8_11_3		.774							.403				
V16_11_3		.768	.451										
V16_10_7		.763			.454								
V3_11_8		.760											
V7_11_9		.760											
V8_11_9		.758											
V13_12_2		.757						.449					
V7_11_7		.756	.432										
V13_11_4		.756		536									
V16_11_7		.756				.545							
V1_12_3	498	.754											
V8_1_9		.753						461					
V7_11_6		.753	.414										
V1_12_4		.752											
V15_12_5		.748	.432										
V18_9_1		.748											
V15_11_3		.745		427									
V1_12_2		.742											
V8_9_9	451	741											

V5_9_1 V16_12_8		.738 .735								
V18_12_2		.729						.472		
V6_12_2		.726	.455							
V18_9_2	.586	.722								
V16_10_8		.720					439			
V15_12_2		.719								
V15_2_6		718						.474		
V3_11_9		.714	458							
V15_12_4	407	.714	.485							
V14_11_8		.713						452		
V5_10_8		.710								
V8_11_4		.709			430					
V13_11_3		.709		420						
V16_12_2		.708								
V10_12_2		.707								
V3_11_3		.707			453					
V1_10_9		.706								
V17_9_3		.704								
V13_11_5		.699		568						
V8_12_3		.696							453	
V14_9_3		.696		.436					.155	
V15_9_4	.404	.696		.435						
V18_12_4		.695		.155						
V6_9_5	.456	.694								
V16_12_5	.150	.690	.427							
V6_9_2	.592	.689	.127							
V18_9_5	.564	.688								
V18_10_9	.501	.687					495			
V9_11_9		.686	505				.195			
V13_2_1		.681	.505		.459					
V3_9_2	.436	.678			,5/					
V1_1_5	.150	.677								
V8_9_5	.494	.676								
V16_12_4	418	.675	.450							
V15_11_8	.110	.674	.150	460						
V15_9_5	.546	.671		.400						
V17_11_7	.5 10	.670				.416				
V15_9_8		669		.495		.110				
V14_1_8	421	.666		.175						
V18_9_4	.411	.665		.427						
V5_11_9		.665		.127						.483
V17_12_6	552	.662								.105
V2_9_6	.552	661						.441		
V18_1_6		660								
V9_12_8	495	.659								
V9_9_5	.539	.658								
V8_3_8		.657							.419	457
V6_9_4		.657		.476					. 17	.+57
V2_9_1		.656		.770						
V2_9_1 V2_9_2	.499	.656								
·/_	. 777	.050								

V0 0 4				471							
V8_9_4		.656	(10	.471							
V13_5_4		.654	610								
V9_9_9		654									
V11_11_8		.654	501								
V18_11_9		.651	501								
V11_12_5	150	.651	.436								
V8_9_3	.459	.650					521				
V1_11_9	401	.650		5 4 7			.531	40.4			
V13_11_2		.649		547				.404	502		
V8_11_5		.648	410						.502		
V1_1_4		.648	.419							450	
V18_9_3	(11	.648								.452	
V18_9_6	611	647									501
V14_1_9	170	.646		100							.521
V7_9_3	.470	.646		.480							
V3_9_9		644	10.1					1.50			
V13_4_1		.643	401					.460			
V13_5_5		.642	624								
V11_9_3		.640		44.0						.461	
V1_12_7	548	.640		.419							
V18_11_3		.639		10.0	561						
V7_11_3		.639	.445	483							
V16_12_9	464	.639									
V5_10_9		.639									
V7_9_2	.596	.639									
V8_2_9	.492	637									
V11_10_9		.637					531				
V9_9_2	.628	.636									
V15_5_6		632		.507							
V11_12_2		.631	.515					.423			
V6_9_3		.630		.544		(22					
V10_11_8		.629		420		.422					
V6_12_5		.628	.591								
V2_9_4		.626					.467				
V6_11_8		.625				.415					
V7_9_4		.625		.510							
V2_2_1	44.0	.624		604							
V3_9_5	.419	.624									
V2_9_5	520	.623					.412				
V2_10_9	.530	.622				.					
V18_11_8	100	.622				.543					
V16_9_3	.422	.621									
V16_10_9		.620	10.1				531				
V10_12_5	415	.619	.494								
V10_11_3		.618			575						
V17_3_9	4.4 -	.617	40.4					479			
V13_5_1	416	.617	481								
V12_10_9	101	.614									542
V11_9_4	.401	.613			502	10.4					
V6_11_9		.613	470		.583	.404					
V1_1_8		.607	.472								

V8_3_7		.606						.407			
V10_9_2	.564	.606									
V13_12_3		.605	.446								
V7_11_1		605				.515					
V8_10_9		.605							433		
V9_5_3		.603	471								
V13_12_1	.451	.601						.592			
V2_12_6	559	.601									
V1_9_5		.601				.432				.411	
V7_10_9		.598					491				
V3_9_1		.597	509								
V16_8_8	528	.596		528							
V1_9_2		.596								.473	
V17_11_6	425	.595				.403					
V7_9_5	.519	.595									
V2_9_3	10 17	.591			548						
V9_9_3	.425	.590		.464							
V16_9_8	535	589		.101		.409					
V13_3_1	.555	.588				.102		536			
V12_10_8	421	.587						.550			
V1_12_6	439	.586		.555							
V13_3_4	=37	.586	446	.555	.519						
V2_12_4	521	.584	.408		.517						
V8_2_1	.505	.583	.400		.420						
V8_1_8	435	.582			.+20						
V13_4_5	+35	.582	496								
V18_11_5		.582	490		501				.502		
V16_9_9	573	.582 576			501		440		.502		
V6_10_9	575	.576			.522		++0		425		
V9_9_4		.575		.460	.522				425		
V2_10_8		.575		.400		.452		486			
V6_5_6		.574 572				.432		480			
V0_5_0 V2_12_5	407	<i>372</i> .572									
V2_12_5 V9_3_4	407	.572			.529						
V11_12_4	434	.569	152		.329						
V11_12_4 V15_9_9	434		.453					514			
V7_9_1	551	569	458	417				.514			
V10_9_1	.554	.568		.417				550			
V10_9_9 V10_10_8		568			417			.559			450
V10_10_8 V1_11_1		.568			.417						452
V1_11_1 V15_5_7		565						126			
		564						.436		504	
V1_9_1		.564						.462		.504	
V16_3_4		.563					455	553			
V1_1_9		.563		100	150		455				
V11_11_3	420	.562		489	459				505		
V13_2_3	.438	.562							.505		
V4_9_5	.409	.562									
V17_2_7	.412	560	F 40		.522			100			
V6_1_1		559	540					433			
V17_10_9	41 -	.558						512			
V16_3_7	.416	.558									

V3_3_4		.557		431						.45	5
V7_3_8	.495	.557						446			
V13_10_9	.440	.556					546				
V9_11_3		.556			456						
V7_1_8		.554				415					
V6_4_3	.536	554									
V15_2_7		553						.504			
V8_2_8	.483	552	.445								
V13_4_4		.552	440								
V13_5_3		.551	541								
V10_9_4		.547			451						
V13_3_5		.547	458	413	.509						
V1_9_4		.546		.451							
V5_11_8		.545			409				.410		
V17_4_3	.538	541			,						
V17_10_8		.541		.424		.458					
V18_9_9		541				499		.413			
V1_3_1		540		504							
V1_3_8		.540			.457						
V12_12_3		.540					.477				
V18_1_8	510	.539						423			
V5_3_3		.538		461							
V9_2_1	.434	.538		413	.486						
V13_4_2		.538	507								
V12_9_5	.476	.536									
V14_3_8		.536		.432				484			435
V3_12_2		.535			.483						
V11_9_9	490	535							.410		
V18_3_8		.534			.461	447					
V8_12_1	.476	.532						481			
V8_3_6		.530						.528			
V10_9_5	.488	.529									
V4_12_2		.527	.487								
V9_11_6		.526			526						
V4_9_2		.525				.469					
V12_9_3	.477	.525									
V6_3_9		.524		.412	.508						
V2_5_4	501	.523			.403						
V18_1_4		.522	.433	.443	.454						
V14_12_9	452	.522									
V5_9_5	.486	.521									
V1_4_1		521			456		.422				
V14_12_8		.520									
V13_2_6		520	.469					.515			
V5_1_8	426	.519				414					
V2_4_5		.519			.410						
V4_11_1		518									.458
V13_9_9	502	514									
V12_12_2		.513								.410	.410
V5_3_8	.410	.512									442
V15_4_6		511	.436								

V13_3_9		.510							.503			
V7_3_7	.508	.508						.420				
V9_11_7		.507			469	.477						
V13_2_7		504	.437					.502				
V7_1_1	442	503										
V2_10_6		.501					471					
V7_12_3		.499					.442					
V3_3_3		.496		474							.462	
V15_4_7	.461	495	.485									
V4_9_4		.494		.471								
V16_2_9		492				478						
V1_1_3		.484			.434							
V16_3_6		.481		.467				.403				
V3_9_6	443	481						.417				
V11_1_9		.480				461						
V13_2_2		.480		436	.446							
V12_9_4		.480										453
V9_3_1		.480		476		436						
V10_3_6	.460	.476		.451								
V6_2_1	.459	.473			.473							
V8_3_9	.434	.467		.422					.453			
V1_9_3		.463								.417		
V14_3_9		.456										
V2_2_8		456		.444		435						
V3_9_4		.450						.405				
V3_12_1	.429	.449										
V7_10_7		.442					411	.430				
V3_11_7		.428										
V10_9_8		402										
V6_5_2			826									
V10_5_2	412		822									
V9_12_1			.797									
V13_10_6			.790			.436						
V8_10_4			788		.421							
V8_10_3			783									
V11_5_5	454		776									
V8_5_4		.497	776									
V11_5_2	450		770									
V18_5_2			769									
V15_1_9			.769									
V13_9_6			.766									
V3_2_8			.765									
V8_5_5		.486	764									
V16_5_4	438		760									
V8_5_2		.451	758									
V6_5_5	444		757									
V6_5_1			755									
V11_5_4			754									
V18_5_5	454		752									
V6_4_2			751						.435			
V8_10_5			749				.465					

V10 5 5	C 1 C		745						
V10_5_5			745						
V13_9_7	429		.742						
V15_5_4	487	.416	735						
V16_10_4			734		.427		.469		
V3_4_2			734						
V18_5_4			732						
V17_12_2			.731						
V16_5_5	488		729						
V10_1_8			.726						
V9_5_5	428	.519	717						
V18_3_1			717						
V18_4_2			716	.460					
V6_3_5			714	503					
V1_5_4			712						
V9_5_2	462	.517	712						
V9_10_3			710						
V3_2_9		409	.709						
V8_5_1		.412	701						
V16_10_3			698			420			
V15_5_5	530		697						
V16_5_2	459		697						
	.436		697						
V18_5_3	.150		697						.459
V15_5_2	526		696						.157
V18_10_5	520		694				.463		
V7_12_2	402	.489	094 .694				.405		
V1_5_3	402	.409	.094 694					.485	
V9_5_4		.516	693					.405	
V9_5_4 V15_10_3		.510						100	
V15_10_5 V17_5_2	646		690					.406	
V17_5_8	040		689					570	
V17_3_8 V6_10_3	407		.689					579	
	427		688					417	
	415		.688					.415	
V13_10_3			687						
V1_9_7			684						
V17_1_9	515		.681						
V17_12_5		.468	.680						
V10_4_8			.678				470		
V18_5_1			677						
V1_5_5	449		675						
V8_4_2			674						
V6_12_4		.501	.673						
V18_3_2			672						
V3_3_1			668						
V10_5_4	405		668						
V17_12_4		.484	.668						
V1_11_3		.651	.667						
V10_5_7	.528		.665						
V10_4_1			663				.456		
V15_10_4			662				.646		
V15_11_6	513		.660						

V17_5_4	(22		(())							
	633		660							
V1_9_6	411		659							
V6_1_6			.657	500						
V10_5_3			654	.502						
V5_1_5			.652		10.1					
V18_3_5			652		.421					
V15_3_4			650	458						
V15_4_2			650				.491			
V9_12_6	544		.648							
V6_4_1		.450	647							
V2_1_1		550	646							
V16_10_5			646				.610			
V9_12_2			.645					.462		417
V13_12_7	477		.645					.524		
V11_3_3			644	488					418	
V8_4_5			643							
V11_5_1			643							
V13_5_2	408	.611	642							
V18_10_4	.407		642							.437
V7_12_9			.641			557				
V18_11_1			641						.581	
V9_4_2			640						.495	
V12_4_8			.640	.422						
V6_3_2			638	615						
V1_10_7			637	.015	.459					
V6_4_5			637	.422	.157		.412			
V11_4_2			636	.422			.405			
V1_8_7	461		636				.405	.426		
V7_10_3	401		636					.420		
V12_4_2										
V7_1_6	407	424	633							
V8_4_4	427	.424	.633	420						
			633	.429	451					
V6_3_1	400		632		.451					
V7_1_7	488		.630	410	.458					
V6_5_4	480		628	.413						
V17_11_2	110		.625	566						
V17_10_3	410		625							
V13_10_4			622		.413		.492			
V16_1_3			.620		.498					
V8_5_3		.597	619							
V10_5_1			618							
V7_12_4	539	.472	.614							
V6_11_3			.614		518					
V7_1_9		.467	.613			435				
V7_12_5	476	.530	.613							
V8_3_5			611		.523					
V9_5_6			.609	.516						
V9_2_7	.457		.609	470						
V2_1_7		.432	.607							
V15_4_5			604	.457						
V4_12_6	585		.604							

V3_3_2			602	495						
V8_3_1			601							
V1_4_2			601				.534			
V8_10_2			601				.549			
V15_5_3	418		599	.454						
V17_1_6		.437	.599		.484					
V18_10_3			598						406	
V15_3_3	500		598	487						
V16_5_8	.466		.596							
V8_3_2			594		.477					
V16_1_4	414		.593		.567					
V5_1_4	477		.592		.481					
V11_10_4			592				.448		404	
V7_11_2			.592	590						
V16_5_3		.439	591	.425						
V6_1_7			.590	1.20						
V7_12_1	.414		.589							
V9_12_5		.404	.589					.438		
V13_2_9			.588			515				
V7_2_9	.438		.585			.515				
V14_10_3	.150		584							
V8_3_3			583							
V12_3_2			583	463	.424					
V10_4_2			583	.105	.121		.479		.454	
V10_5_9			.583			544	.+77			
V10_1_4	513		.505		.505					
V7_5_3	403	.401	578	.532	.505					
V13_1_6	548	.101	.576	.002				.541		
V7_1_3	465		.575	455	.409					
V1_10_6			574	.438						
V12_4_1			573							
V13_10_7			.571		.410					
V15_4_4			570	.490						.460
V8_11_7			.567	429		.429				.100
V10_1_7	409		.567	>	.453	>				
V10_1_9	.105		.567			429				
V7_11_5	413		.565	531		>				
V17_2_9			.563		.426					
V11_4_5			560		422					
V11_10_3			560		.448					
V7_1_4	555		.559		.546					
V9_12_4	.555	.476	.558		.510					
V15_12_8	536	.458	.556							
V17_11_3	.550	.150	.550		538	.516				
V9_2_8		530	.548				.444			
V4_12_1			.548	453						
V18_3_4		.415	548		.457					
V17_1_3	414		.547	443	.461					
V7_11_4			.547	468						
V4_11_6			.545		414	.484				
V4_4_8			.545			.419				
			.5 15			.117				

-.508

-.468

V10 10 2			~					470				
V10_10_3			544		150			.473				100
V12_3_1			544	410	.453		110					.409
V9_4_5			541	.410			.416			470		
V10_3_1			541	412						470		
V5_1_3		505	.541							472		
V18_3_3	407	.505	539									
V2_2_9 V6_9_8	.407		.539				514			454		
V0_9_8 V10_12_8		510	539				.514			.454		
V10_12_8 V15_1_8	500	.510	.537									
V15_1_8 V16_4_1	508	401	.536				410					
V10_4_1 V3_10_5		.491	535 534				.410 .433					
V3_10_5 V13_11_1			534 534				.455	.524				
V15_11_1 V9_5_7	.429		534 .534	510				.324				
V6_11_7	.429		.534	.512 430								
V6_11_7 V6_3_4		499	531	430		.419			414			
V0_3_4 V3_4_5		499	529			.419	.440		414			442
V3_4_3 V4_11_7			329 .529			.494	.440					442
V12_5_3		.412	.529 529			.474						
V12_5_5 V17_2_8		.412	529	430				448				
V11_2_0 V11_3_4		.463	520	456				++0				
V1_8_6	497	.405	524 524	450		.518						
V15_11_7	498	.437	.523			.510						
V11_2_9	.503	446	.523									
V17_4_2	.505	.110	522	.510								
V16_4_2			516				.483		.509			
V9_4_1		.504	515				.415	.461				
V11_11_1		454	514			.509						
V13_3_3		.498	513		.448							
V10_1_6	404		.512									
V3_4_1			511				.419					
V4_10_3			511									
V12_3_5			509	466	.401							.421
V9_10_5			508	419	.417		.433					
V4_5_3			505									
V12_11_1			505									.498
V10_2_9	.454		.503			417						
V11_4_1			497		404			.429				
V2_10_3	404	486	493									
V9_3_5		.474	492	482	.456							
V1_9_9		432	492					.409				
V17_4_1			484			.475						
V11_12_6	480	.412	.482	.417								
V12_10_3			481			412						
V11_3_1			473	472			429					
V5_12_2			.473								.469	
V12_4_5			470	.406								415
V8_4_6			.469			.404		.427				
V8_4_7			.455	.405		.431						
V1_10_3			453		.420			.420				
V11_4_4			453	.440								

V10_1_3	439		.453									24	
V4_3_1	429		437								.4	-24	
V11_1_7	428		.429										
V4_4_1 V2_11_2				0.45									
V2_11_2 V2_3_2				845									
V2_3_2 V7_3_1				839 812									
V7_3_1 V2_3_9				813									
V2_3_9 V7_3_2	402			.806									
V14_4_4	403			802 .785									
V7_3_5				.785 784									
V15_3_1				784 779									
V15_5_1 V2_11_5				774				.433					
V14_12_6				.772				.455					
V14_12_7				.745									
V7_3_3				745		.455							
V1_11_2				744									
V16_4_4				.736									
V2_2_2				731									
V7_3_4				730	.449								
V2_3_5				725									
V14_12_3				.724									
V14_12_2				.723									
V18_4_4				.714									
V2_3_3			424	714									
V2_2_5				710		.457							
V2_12_2				704									
V2_3_1				703									
V15_3_2			524	703									
V17_9_8		491		.699			404						
V2_11_4				697				.496					
V2_2_4				691									
V2_11_3				687				.458					
V1_5_6				.686									
V11_2_4	.489			684									
V16_11_2				678									
V2_2_3				674		.497							
V14_10_6				.673									
V3_2_4				666							.455		
V2_11_1				665				.410	.41	17			
V18_1_3		.483		.664									
V2_3_4				660									
V6_4_9		_		.660	.462								
V7_5_6		560		.658									
V12_4_7	.471	100		.658		10-							
V14_12_4		.409		.655		486							
V9_11_2			.479	654	50.5								
V6_8_9			522	.650	.526								
V18_4_5			533	.650									
V11_4_7 V15_11_5	.626			.646	501								
V15_11_5				645	521								

V17_5_6				.644	551			
V17_5_0 V6_5_3		450	429	.638	.551			
V0_5_5 V16_11_5		459 .421	429					
V10_11_5 V6_1_9		.421		637	500			
V0_1_9 V1_10_1				.636	.582		500	
		414		635			.590	
V7_5_7 V1_5_7		414		.634	400			
				.634	.480			
V2_4_2		12.1		631				
V13_8_3	.454	.434		630				
V15_11_2				630	535			
V17_9_9			100	.629		1.0.0	588	
V17_11_5			.489	629		.439		
V6_3_8	.412			.628				.487
V2_5_1	486			625				
V11_3_2			470	623				
V10_3_5			428	622				
V16_3_1				621				
V16_4_5			408	.620			.426	
V1_1_6				.619		.609		
V9_11_5				619	430			
V11_5_6			.414	.617				
V14_12_5				.616		587		
V5_3_2			472	610				
V15_3_5			602	608				
V11_5_7			.435	.608	.511			
V11_2_5	.496			607		.551		
V4_4_7	.494		.433	.607				
V12_12_6				.607				
V7_2_1				606				
V15_11_4		.473		605	449			
V14_4_7	.520			.604				
V9_2_5	.498			604				
V10_2_4	.461			604				
V9_3_2			506	600				
V18_11_6				599	516			
V9_11_4		.482		598	480			
V12_9_1		.412		.597				
V9_10_1				594	.508			
V1_3_2			428	594				
V5_4_7	.512			.593				.410
V11_3_5			552	591				
V14_1_3				.587	.579			
V11_11_2				584				.457
V6_12_3				.583	420			418
V11_11_5				583	496			
V11_11_4		.438		583	530			
V9_3_3		.438	405	582	.550			
V17_4_5		432	451	582				
V9_4_4	.530	52	,51	.582				
V2_1_3	.330 490		.429	580				
V2_1_5 V16_11_4	70	.536	.749	578				
, IO_II_ T		.550		570				

V17_3_2				578					458				
V4_3_2				575									
V14_4_5				.575									
V14_3_6	.416			.575									
V14_5_7	.480			.575									
V3_3_5			504	575									
V8_4_8				.572					466				
V6_9_1	.501	.454		.569					408				
V6_11_6			.474	568									
V10_8_3				566	490								
V10_3_4				566	.439								
V10_3_3			417	565					505				
V10_3_2			535	564					.505				
V1_11_5			.555	564		418							
V17_12_3			.414	.562		+10			417				
V9_10_4			530	562	.441				41/				
V13_4_8			550	562 .561	.441			411	.418				
V7_2_4						542		411	.410				
V16_8_3	407			561		.543							
V10_8_5 V2_4_1	.487	510		560		167							
V6_5_9		.519	420	559	451	.467							
			.429	.558	.451		401						
V17_3_5		167	401	558	424		421						
V13_3_2	4.40	.467	401	557	.434								100
V12_2_4	.449	550		556									480
V6_4_4		552		.554									
V12_3_3				553		422							
V12_5_6	550			.553		.432		410					
V17_9_7 V5_5_7	550			.552				.418	477	445			
				.551	100		4.40		.477	445			
V14_4_1 V4_11_5				.551	.409		.442						
V4_11_3 V5_3_5			100	551	509								
			498	549	.479		510						
V1_10_5			494	548			.510						
V1_10_2	5 4 4		500	547			.523						
V5_8_3	.544			547	451								
V13_2_4	.496		506	547	.451	4.40							
V17_11_4	5 0 f		.506	546		.442							
V18_4_3	.536			.545				443					
V14_3_7	.412			.545				40.5					
V17_9_6		445		.545				.495					
V3_2_5		.433		545									
V5_2_4				538							.527		
V17_4_4		440	505	.536				.424					
V9_3_8	12.5	.477		.533		1				414			
V10_2_5	.436			532		.476							
V4_3_3				532									528
V1_4_4	.505			.527			.463						
V4_3_5				527								.424	
V18_4_1			499	.525									
V4_2_4				525									503
V4_11_2				525									

V12_5_7				.523	.439				.409				
V14_1_7				.522	.401	.418	461						
V5_1_7				.517					.424	449			
V5_3_1			448	516								.423	
V4_2_5	.418			514									476
V6_11_2				514	414				.488				
V5_11_2				511					.460				
V1_10_4			451	511			.444						
V10_4_4				.506	420								
V18_2_7	.420	484		500									
V12_2_5	.466			500									462
V12_4_6				.499		.420							
V18_4_9	.439			.497					468				
V16_4_8		.407	.436	.496									
V9_2_2				495		.494							
V13_2_5	.442	.413		494	.465								
V2_5_8	2	414		488	.105			487					
V5_11_5				484								.474	
V12_3_6				.484						.477			
V3_4_8				.484						, ,			
V18_2_6	.407			480							.432		
V3_4_4	.+07			.473	450						.432		
V4_9_3		.440		.472	.450								
V1_11_4		.412	.401	471									
V12_4_4		.712	.401	.462	456							412	
V8_11_6	418			456	.+50	.452						.712	
V4_12_3	+10			.453		.+52	.431						
							51						
V14_4_8				.444	- 821		51						
V14_4_8 V2_11_9	- 445				821		.+31						
V14_4_8 V2_11_9 V9_1_2	445				.780		.+31						
V14_4_8 V2_11_9 V9_1_2 V12_1_2	445 421				.780 .769		.+31						
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V12_1_2 V14_3_5	421				.780 .769 .769								
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5	421 461				.780 .769 .769 .730		417						
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4	421				.780 .769 .769 .730 .727	- 435							
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4	421 461				.780 .769 .769 .730 .727 .722	435		484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6	421 461	531			.780 .769 .769 .730 .727 .722 .721	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2	421 461	.531			.780 .769 .769 .730 .727 .722 .721 .717	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2	421 461 532	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4	421 461	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4	421 461 532	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2	421 461 532	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687	435							
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7	421 461 532 .401	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682	435		.484					
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5	421 461 532	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676	435				- 440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_1_2	421 461 532 .401	.531		.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675	435				440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_3_2 V16_5_7 V14_2_5 V16_1_2 V14_1_2	421 461 532 .401	.531			.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671	435				440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_5_7 V14_2_5 V16_1_2 V14_1_2 V8_1_7	421 461 532 .401	.531		.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671 .668	435				440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_5_7 V14_2_5 V16_1_2 V14_1_2 V8_1_7 V6_5_7	421 461 532 .401	.531		.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671 .668 .667	435				440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_5_7 V14_2_5 V16_1_2 V14_1_2 V8_1_7 V6_5_7 V6_12_9	421 461 532 .401	.531		.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671 .668 .667 .667					440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_1_2 V14_1_2 V8_1_7 V6_5_7 V6_12_9 V11_10_6	421 461 532 .401			.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671 .668 .667 .667 .665	435				440			
V14_4_8 V2_11_9 V9_1_2 V12_1_2 V14_3_5 V17_1_5 V17_1_4 V14_3_4 V16_5_6 V13_1_2 V18_1_2 V18_1_2 V14_2_4 V10_11_4 V14_3_2 V16_5_7 V14_2_5 V16_5_7 V14_2_5 V16_1_2 V14_1_2 V8_1_7 V6_5_7 V6_12_9	421 461 532 .401	.531		.444	.780 .769 .769 .730 .727 .722 .721 .717 .710 .707 689 .687 .682 .676 .675 .671 .668 .667 .667					440			

V12_11_4		.433		471	658				
V17_5_7				.544	.651				
V14_1_4				.519	.647				
V2_1_2					.640	.482			
V2_11_7					637				
V2_1_5	465				.632				
V3_1_9					.630				
V11_10_7					.629	.437			
V13_5_7			.450		.626				
V8_1_2					.626			461	
V2_5_3					.624				
V9_1_5	470	.433			.622				
V8_1_3		.522			.622				
V17_1_2		.522			.617		572		
V1_1_2 V1_1_2	416				.614		572		
V2_4_4	410						550		
					.612		.559	510	
V8_5_7		5 0.4			.610			.519	
V13_1_5		.594			.610				
V12_11_3		.584			609				
V14_10_5					.607				521
V8_1_5		.446			.607			422	
V3_1_5					.604				
V14_5_4					.603				
V15_5_9		494			.601				
V15_5_8				459	.600				
V14_10_2		450			.599				
V16_2_7	.541				.598				
V13_5_6			.516		.598			.461	
V3_11_4					592				
V2_1_4	501				.590				
V17_1_7		.483	.432		.587				
V14_2_2			.132		.586	.490			
V16_1_5			.535		.584	.190			
V14_3_3			.555		.583	542			
V6_11_4			.486		582	542			
V3_1_4			.400						
V16_1_7		5(1			.580				
		.561		515	.577				
V18_11_7			400	515	576				
V6_2_9			.433	.468	.575				
V15_4_9	.539				.575				
V13_1_4		.528			.569				
V12_11_5				504	569				
V16_4_6	.508				.567				
V5_4_8					.566				
V4_11_4		.433		497	566				
V1_3_4		.415			.559			.410	
V18_4_8	458			.478	.558				
V18_1_5		.532			.558				
V1_2_1	.487			523	.555				
V8_1_4		.501			.554				
V9_1_4	493	.480			.554				

.479

.450

V14 5 2		401			550						
V14_5_3 V10_11_5		.401			.553					160	
V10_11_5 V5_1_9					553				400	462	
V8_5_6					.550			101	.488		
V8_5_0 V1_9_8	151				.545			.484			
V1_9_8 V5_3_4	454				541			.463			
V14_8_3	.513				.541						
V14_0_3 V10_1_2	.515 509				541 .538						
V8_3_4	309	.443	532		.536						
V4_11_3		.443	552		535						
V1_3_5		.430	418		.533			.411			
V7_11_8		.421	410		533			.411	.466		
V11_2_3	.416	.721		453	532				.+00		
V10_2_6	.458			+55	.520						
V2_11_6	.+50		455		516						
V6_11_5			.433		515						
V10_2_7			.155		.515						
V14_3_1					.513						
V15_1_5	446				.513		457	449			
V18_5_7		450			.512		.423				
V3_1_8					.502			458		.436	
V9_1_3	464	.454	.431		.502						
V12_8_3	.487				500						
V6_1_5	488				.499						
V3_11_5				487	494						
V12_10_6				.450	.490						
V10_2_1					485			441			
V17_3_4			449	425	.483						
V14_2_1	.421				.471			458			
V14_4_2					.460		.455				
V15_2_9	.426				.446						
V18_1_9		.402		.420	.446						
V3_1_1					.418		416				
V12_10_7					.417						
V12_11_6						.797					
V14_11_1 V8_11_1						763					
V8_11_1 V17_2_2	176					.722					
V17_2_2 V12_11_7	.476					.720 .717					
V12_11_/ V1_1_1					400	.717 716					
V17_2_5	.434				.+00	.715					
V18_5_6	. 194					713					
V6_12_8		.594				700					
V17_2_4	.426			453		.682					
V6_2_4	.509			444		.669					
V4_2_2						.658					
V1_11_6		.470				.655					
V17_11_1						.653	456				
V4_8_6	594					.651					
V15_2_2	.520					.648					
V16_11_6		.507			.470	.647					

V4_11_8						.645						
V7_2_3		430				.645						
V16_2_2	.428			436		.643						
V6_2_5	.504			444		.642						
V12_8_6	547			.435		.640						
V2_3_7	.548	.419				634						
V8_2_2	.465					.633						
V11_11_6		.494				.631						
V11_2_2	.486			464		.631						
V17_9_4		.622				.631						
V9_1_9			.495			631						
V12_12_8						629						.502
V17_2_3				476		.627						
V7_5_8					.428	624						
V15_2_3	.447			521		.621						
V14_11_6				.457		.621						
V16_10_6					.526	.615						
V7_2_2				533		.612						
V13_1_1						611				477		
V16_2_5	.544			412		.606						
V6_9_9					.562	.605						
V9_2_9		446	.566			604						
V7_2_5				528		.603						
V17_9_5	.465	.582				.597						
V11_11_7		.508				.593						
V11_9_7	580					.590						
V2_5_9						590		525				
V15_2_5	.575			422		.590						
V14_11_2						584				578		
V4_3_9	.455					582			.416			
V10_5_8					.562	580						
V6_2_3		491				.576						
V13_5_8					.477	575						
V16_2_3	.560	424				.574						
V8_2_5	.540				.426	.571						
V6_1_8					448	562						
V9_2_3	.480					.559						
V15_1_1						558				410		
V1_1_7					.456	.551						
V12_3_9	.488	.440				551						
V10_9_6	452					.550						
V4_9_1		.532		.410		.549						
V9_4_8						.548			.494			
V10_2_2				406		.547						
V9_11_1		446			437	.546	404					
V8_2_3	.471					.539						
V5_2_2						.539					.501	
V3_12_8						538						.476
V6_3_3						.536			470			
V14_11_7					511	.535						
V10_11_6		.420	.407			.533						

V10_11_7		.478				.532							
V5_12_8		.513				531							
V1_11_7		.473		.423		.523				.403			
V10_2_3						.523		448					
V3_12_3		.444				521	.504						
V6_2_2	.449			465		.519							
V2_2_7		441		483		512							
V18_3_9						511			.449				
V12_2_2						.508							
V4_10_9		.445		490		505							
V11_12_8	438					504							
V18_1_1	1.00			.408		501							
V13_11_8		.476				.500		475					
V3_2_2		.469				.497							
V18_2_3		.109				.495		460					
V11_3_8		.470				495		.100	.490				
V5_11_1		434	492			495 .494			.+70				
V12_9_6	458	+UT.	. 772			.494							
V12_J_0 V16_12_3				.431		458			416				
V5_9_4		.429		.431		458 .457			+10				
V3_9_4 V3_10_7		.427		.++2		.457 455							
V11_12_3						433 449							
V11_12_3	.417					449 .446							
V14_2_3 V18_2_2	.417					.440							
V7_4_2	.415					.414	019						
V14_5_9	120						.918						
V14_3_9 V11_10_2	.428						.812 .809						
V7_4_5													
V17_10_5							.808						
V6_10_2							.792						
V0_10_2 V1_4_8							.790						
	4.40						780						
V10_10_1	.443						.779						
V15_10_2							.777						
V7_4_1							.763						
V18_5_9							.763					4 5 4	
V5_10_1							.755				.4	454	
V17_10_4		FO C					.754						
V7_10_2		506					.751						
V7_10_5		481					.750						
V15_12_1	500						738						
V16_10_1	.530						.734						
V6_10_5			452		.462		.732						
V11_4_8	419				150		722						
V17_10_2					.453		.722						
V7_10_4		427			.416		.720						
V16_10_2		417					.720						
V10_10_2			432				.717						
V15_10_5			535				.711						
V6_10_1	.533						.709						
V17_10_7		.426	519				693						
V17_1_1							691						

V11_10_5			509				.685			
V13_10_2			501				.685			
V1_2_8							.682	455		
V1_4_5			525				.679			
V3_10_1	.565						.678			
V15_10_9	.414	.443					675			
V8_5_8		425					.671			
V18_10_2			559				.662			
V7_4_8			.522				662			
V4_10_1					.498		.657			
V2_10_1				522			.655			
V11_5_9	.408						.654			
V17_3_1						410	653			
V7_4_4		497					.647			
V2_10_2		416					.647			
V7_10_1	.402						.646			
V17_12_1	.402				.438		643			
V2_10_4		446					.643			
V8_10_1	.614						.636			
V1_2_9	.424		422				.630			
V14_1_6			.467	.454			630			
V4_10_2							.629			
V5_10_2							.624			.420
V10_10_5							.620		539	
V17_10_6		.477	525				620			
V15_3_8	.472			.410			620			
V2_1_9						522	.619			
V14_5_8			.558				.619			
V2_4_8			.601				617			
V4_9_9	404						610			
V13_10_1	.477			421			.609			
V2_10_5		505					.608			
V8_5_9	.550						.608			
V13_10_5			546				.606			
V13_10_8		.435					603			
V15_4_8				.520			600			
V2_10_7		.472					595			
V4_9_8							583			402
V18_5_8				421		562	.580			
V9_12_3		.465					.577			
V6_10_4			555		.520		.573			
V9_10_9		.480					569			
V3_10_2			537		.411		.569			
V2_12_3		.417				541	.561			
V5_12_3							.559			
V1_5_8	.500				.468		.550			
V9_10_2		540			.456		.549			
V14_1_1				.514			544			
V12_10_5			446				.538			.415
V12_10_2			500				.538			-
V15_1_2					.462		538	438		

V13_5_9	.481						.535	423					
V16_5_9	.464		.449				.532						
V2_9_8	.476			471			531						
V1_11_8		.436				.402	.528						
V10_12_3		.403					.510						
V11_1_1							509			407			
V1_2_2				422	.425	.415	.503						
V16_11_1						.401	502						
V15_4_1			422	.451			.500						
V3_3_9	.492			.416			500						
V15_3_9		.411		.466			499						
V6_2_8			.412			427	.495						
V15_12_3				.438			.494						
V15_10_6	432						485	.409					
V10_4_5			477	.410			.481		.472				
V14_12_1				.408			474				.406		
V3_5_3			436				.457						
V18_2_8			.150				.452						
V3_11_6							.417						
V17_11_9		.468						762					
V9_1_6	463	.+00						703					
V17_5_9	.+05		.491					700					
V17_12_9			.171	.549				695					
V17_12_8		.402		.478				695					
V13_1_3		.402	.466	. 770				.672					
V4_8_8	425		.400			.439		661					
V17_11_8	423	.420				.+39		658					
V9_5_8		.420	.456					658					
V13_12_6	445		.580					.652					
V13_12_0 V13_3_6	++.)		.565					.647					
V13_5_0 V11_5_3			420					.644					
V9_1_7	485		420 .450					.044 639					
V15_3_7	465		.430		.494								
V15_3_7 V16_3_3		.454			.494	.468		.628					
V10_5_5 V13_11_9		.434			450	.408		613 611					
V15_11_9 V17_3_8		167			452								
V17_3_8 V17_4_9		.467				.480		611 506					
V1/_4_9 V2_1_6		410				.480		596					
V2_1_0 V13_3_7		.418		126				.594					
		402		.436	450			.591					
V3_1_3 V16_3_5		.483			.452			589	402				
	105	.449	400					587	402				
V17_5_3	485		490	472			422	.582					
V18_12_3		520		.473			.432	.581					
V10_9_3 V16_2_6		.529		40.4	411			.581	400				
			551	424	.411			.576	.482				
V13_11_6			.551					.565					
V1_3_3		.477			.414	40.4		.565					
V17_4_8			10 -			.484		562					
V13_11_7			.486					.560		1.00			
V18_12_9	551	407				40.4		552		.469			
V14_11_9		.487				434		551					

V16_3_2								543	483				
V7_12_8						515		.541					
V4_1_7	455							540					
V4_1_6	458		.402					539					
V12_1_7					.427			536					
V13_4_6			.500					.531					
V15_3_6			.434		.510			.525					
V2_3_8		.521						525					
V2_12_1					.418			.523					
V1_2_3	.430						.436	522					
V5_12_7	407							.520					
V2_11_8						.485		513					
V12_1_6						.105		510		.412			
V7_4_9	.496					467		503		.112			
V6_5_8	.464					412		505					
V0_5_0 V2_4_9	.404			150		412				402			
				.452	410			500		402			
V9_1_1	100	105			.416			497		413			
V2_9_9	.406	425						.492					
V13_9_8								.470					
V13_4_7			.424					.464					
V1_5_9								460		417			
V7_10_6			404	.420			406	.438					
V15_10_7								.415					
V14_10_4									725				
V5_5_6									.698		427		
V5_10_6									.697		456		
V5_4_6									.687				
V18_11_2		.426							.663				
V14_10_9									.651				
V6_10_6									651				
V6_10_7							408		638	.456			
V3_1_6									589		.448		
V8_10_8		.538							588				
V12_11_2		.250		440					.587				
V5_2_6	.479			.++0					.584				
V8_11_2	.+//	.542							.572				
V0_11_2 V11_3_9	.459	.542				125							
	.439					435			.570	4.4.4			
V5_11_6 V8_9_8							474	A 1 A	.564	444			
		4.00				41 -	474	.414	555				
V12_11_8		.460		175		.415			555				
V14_10_7				.477					546				
V3_4_9	.433			.406					543	.400			
V17_3_3						.437			541				
V11_10_8		.401						.516	.539				
V14_9_8							444		.529				
V3_11_2				512					.528				
V6_11_1			523				440		.523				
V18_8_3	.516								.521				
V3_10_4									520		430	.424	
V10_11_1						.464			.510				
V5_3_6									.510				

V5_11_7					406				.501	414			
V5_11_7 V5_12_6					400			.413	.301	414			
V10_12_9			.406			420		.415	.490				
V11_9_1	.480	.456	.400			420			492				
V5_5_3	.400	.450	480						.492				
V16_1_6		.417	480		.412				.492				
V3_5_6		.417			.412				462		428		.424
V10_10_7					.443				402 458		428		.424
V3_10_3					.445				458				
V14_11_3										730			
V14_11_5 V18_3_7	.423									.675			
V18_9_7 V11_9_8	.425							.522	.438	.675			
V11_9_0 V14_11_4						588		.322	.436				
V14_11_5						588 617				627 623			
V14_11_5 V16_5_1			420			017			.535				
V18_9_8			420						.555	618			
V5_1_6				.409					.553	.617			
V15_1_6	ECE			.409					.335	615			
V15_1_0 V1_4_9	565					440		444		612			
V7_9_8						449		444		610			
V9_10_8							121	.563		.604			
						400	434			.601			
V16_1_9						480		421		.595			
V1_3_9			10.0			523		431		593			
V1_8_3	F 60		.496							.582			
V18_3_6	.569							520		.576			
V11_1_6			40.4		400			539		.573			
V13_1_9			.404		.422	4.40				.546			
V5_1_2	510				.448	.448				519			
V1_8_4	.512					402		10.1		.517			
V16_1_1			125	457		483		494		516			
V1_12_1			.435	457			4.40			.513			
V8_1_1							440	41.5		501			
V9_12_9		4.4.1				442		415		.495			
V4_11_9		.441						44.0		.494			
V15_11_1	10.6						4.47	.418	11.0	.461			
V5_9_8	406						447	.421	416	.461			
V8_4_9		150							415	.459			
V12_11_9		.453		10.1						.454			
V12_3_7				.434						.450	70.6		
V5_4_1											.736	175	
V3_12_7											.735	475	
V5_2_3											.734		10.1
V5_1_1 V4_1_0											.695		.424
V4_1_9 V5_4_2			51 4								.679		
V5_4_2			514								.664		
V12_2_3											.661	401	
V3_1_7	410										.652	421	
V12_1_9	412										.633		
V3_10_8		.537	4-1								626		
V5_4_5			471								.616		
V3_10_9		.573									613		

V10_12_1							449				.611			
V3_2_3				470							.598	421		
V4_10_4									500		581			
V12_1_8	467										.575			
V10_11_2	.+07				434						574			
V12_10_4					4.)4				467		563			
V12_10_4 V10_1_1									407					
V10_1_1 V14_9_4		417									.560			
		.417			1.00						.551			
V14_10_1					.462						.544			
V8_4_1			451								.532			
V5_10_7									.466		530			
V12_1_1						494					.523			
V14_9_7	440										.515			
V5_10_3			410								509	.431		
V5_2_5				463		.465					.505			
V5_4_9					.467						.504			
V10_10_4							.425				500			
V5_8_6	418										498			
V10_8_4	.447										487			
V3_12_6									467	452	.482			
V4_10_5							.441				480	.434		
V12_12_1	.445							.403			.466		.433	
V5_4_4				.405							.465			
V5_12_1				455							.459	448	.400	
V14_4_9	.407			.403							.453	.110	.100	
V14_9_9	.+07			.+05							.453			
V3 5 8												836		
V3_5_8 V5_5_2												.836 802		
V5_5_2												802		
V5_5_2 V5_5_5												802 773		
V5_5_2 V5_5_5 V5_5_8												802 773 .744		
V5_5_2 V5_5_5 V5_5_8 V5_2_1			470									802 773 .744 .732		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5			479									802 773 .744 .732 673		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2			466									802 773 .744 .732 673 673		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4											.525	802 773 .744 .732 673 673 651		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5			466									802 773 .744 .732 673 673 651 .646		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1			466 437								.525	802 773 .744 .732 673 673 651 .646 627		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5			466 437 497								.525	802 773 .744 .732 673 673 651 .646 627 625		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2			466 437 497 605								.525	802 773 .744 .732 673 673 651 .646 627 625 624		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2			466 437 497								.525	802 773 .744 .732 673 673 651 .646 627 625 624 612		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3		.520	466 437 497 605								.525	802 773 .744 .732 673 673 651 .646 627 625 624		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2		.520	466 437 497 605								.525	802 773 .744 .732 673 673 651 .646 627 625 624 612		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3		.520	466 437 497 605 485				.450				.525	802 773 .744 .732 673 673 673 651 .646 627 625 624 612 .608		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3 V4_5_4		.520	466 437 497 605 485				.450				.525	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608		
V5_5_2 V5_5_5 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3 V4_5_4 V5_5_9		.520	466 437 497 605 485				.450				.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606		
V5_5_2 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3 V4_5_4 V5_5_9 V5_10_4		.520	466 437 497 605 485 500				.450				.525 482	802 773 .744 .732 673 673 673 651 .646 627 625 624 612 .608 608 .606 .598		
V5_5_2 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V12_5_2 V5_11_3 V4_5_4 V5_5_9 V5_10_4 V3_5_5		.520	466 437 497 605 485 500	464			.450				.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587		
$\begin{array}{c} V5_5_2\\ V5_5_5\\ V5_5_8\\ V5_2_1\\ V4_5_5\\ V4_5_2\\ V5_5_4\\ V5_10_5\\ V5_5_1\\ V12_5_5\\ V3_5_2\\ V12_5_2\\ V5_11_3\\ V4_5_4\\ V5_5_9\\ V5_10_4\\ V3_5_5\\ V12_5_4\end{array}$.491	.520	466 437 497 605 485 500	464			.450				.525 482	802 773 .744 .732 673 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587 .570		
V5_5_2 V5_5_8 V5_2_1 V4_5_5 V4_5_2 V5_5_4 V5_10_5 V5_5_1 V12_5_5 V3_5_2 V12_5_2 V5_11_3 V4_5_4 V5_5_9 V5_10_4 V5_5_9 V5_10_4 V3_5_5 V12_5_4 V5_11_4	.491		466 437 497 605 485 500	464			.450		428		.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587 .570 .540		
$\begin{array}{c} V5_5_2\\ V5_5_8\\ V5_2_1\\ V4_5_5\\ V4_5_2\\ V5_5_4\\ V5_10_5\\ V5_5_1\\ V12_5_2\\ V3_5_2\\ V12_5_2\\ V5_11_3\\ V4_5_4\\ V5_5_9\\ V5_10_4\\ V3_5_5\\ V12_5_4\\ V5_11_4\\ V3_2_1\\ V4_5_1\end{array}$.491	.520	466 437 497 605 485 500 532 506	464			.450		428		.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587 .570 .540 540		
$V5_5_2$ $V5_5_5$ $V5_5_8$ $V5_2_1$ $V4_5_5$ $V4_5_2$ $V5_5_4$ $V5_10_5$ $V5_5_1$ $V12_5_5$ $V3_5_2$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V5_5_2$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V12_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V12_5_2$ $V5_5_2$ $V12_5_2$ $V12_5_2$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V12_5_2$ $V5_5_1$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V5_5_2$ $V12_5_2$ $V5_5_2$ V	.491		466 437 497 605 485 500	464			.450		428		.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587 .570 .540 540 .538		
$\begin{array}{c} V5_5_2\\ V5_5_8\\ V5_2_1\\ V4_5_5\\ V4_5_2\\ V5_5_4\\ V5_10_5\\ V5_5_1\\ V12_5_2\\ V3_5_2\\ V12_5_2\\ V5_11_3\\ V4_5_4\\ V5_5_9\\ V5_10_4\\ V3_5_5\\ V12_5_4\\ V5_11_4\\ V3_2_1\\ V4_5_1\end{array}$.491		466 437 497 605 485 500 532 506	464			.450		428		.525 482	802 773 .744 .732 673 673 651 .646 627 625 624 612 .608 608 .606 .598 596 587 .570 .540 540		483

V3_5_1		.442	411									500		
V4_2_8			.469									.495		
V4_4_5			424									494		
V12_5_8												.490		
V12_3_4												.485		
V4_5_9												.468		
V3_5_4		.417	431									447		
V4_4_4												431		
V4_3_4												.408		
V12_5_9														
V4_10_8													827	
V14_5_6													.801	
V10_5_6					.456								.740	
V3_12_4						447							.701	
V12_9_8	414												654	
V3_12_5													.632	
V5_12_4		.430											.628	
V3_9_8							519						594	
V3_11_1			480						.409				.591	
V12_12_4		.461											.576	
V12_3_8													568	
V5_12_5		.401	.447										.567	
V3_5_7												.456	.563	
V4_12_9	472					405							.558	
V12_12_5		.524											.549	
V3_12_9						456							.549	
V3_3_8										442			533	
V4_12_5		.487	.424										.530	
V4_12_4		.458	.470										.525	
V5_12_9								427					.513	
V12_12_9	429	.422				423							.497	
V3_9_3	.467	.409								.418			482	
V4_5_7				.422									.469	.413
V12_1_3	404												459	
V4_5_8												.432	454	.433
V4_5_6													.413	.699
 V4_2_1												.402		667
V4_2_3											.513			647
V4_3_6	.408										.010			.591
V4_1_3	.400 454													573
V4_4_6	. 194		.412											.573
V4_4_2			475											.572
Extractio	on Motho	d. Dring		nonant	nolucio									.577

Extraction Method: Principal Component Analysis. a 14 components extracted.