
Università degli Studi di Napoli
Federico II

Tree Based Methods
for Data Editing and Preference Rankings

Antonio D’Ambrosio

Tesi di Dottorato di Ricerca in
Statistica

XX Ciclo

Tree Based Methods

for Data Editing and Preference Rankings

Napoli, 30 novembre 2007

III

Ringraziamenti

É difficile in poche righe ricordare e ringraziare tutte le persone che
hanno contribuito a rendere ”migliori” questi ultimi anni. Mi reputo
davvero fortunato se posso dire che, davvero, sono tante.
I miei piú sentiti ringraziamenti vanno al prof. Roberta Siciliano, mia
guida in questo mio percorso di ricerca. Se non mi sono mai sentito
solo, è soprattutto grazie a lei.
Un sincero ringraziamento va al prof. Natale Carlo Lauro, che con i
suoi sempre puntuali ed opportuni consigli ha saputo fornirmi spunti
di riflessione rivelatisi importantissimi.
Grazie al dott. Massimo Aria, che ha contribuito in maniera determi-
nante ad introdurmi nel mondo della statistica computazionale; se ho
cominciato a ”sbirciare” in ambiente MatLab é merito suo.
Grazie al prof. Antonio Mango, che mi ha insegnato che la ricerca é
confronto continuo.
Grazie a tutti i membri del Dipartimento di Matematica e Statistica,
ai colleghi (e soprattutto amici) dottorandi con i quali ho passato mo-
menti indimenticabili.
Un ringraziamento particolare va al prof. Jaromı́r Antoch che mi ha
insegnato (ma é dura da imparare) cosa vuol dire avere metodo, al
prof. Ab Mooijaart che mi ha insegnato molto in ambiente MatLab,
al prof. Willem Heiser che mi ha introdotto nel mondo dei ”preference
rankings”.

V

Ma sopratutto un ringraziamento va a Brunella, mia moglie, la persona
che mi ha sopportato e supportato con infinita pazienza ed infinito
amore e che non saró mai in grado di ripagare, e a Debora e Luca, i
miei fratelli, che mi sono stati sempre accanto. Dove starei senza di
te, dove starei senza di voi...

VI

ai miei genitori

VII

Contents

Introduction 1

1 Tree-based methods and methodological context 5
1.1 Classification and Regression Trees 5

1.1.1 Splitting criteria 8
1.1.2 Two Stage splitting criterion 11
1.1.3 FAST splitting criterion 14
1.1.4 Stopping rules and assignment of the response

classes/values to the terminal nodes 16
1.1.5 Pruning . 17

1.2 Ensemble Methods . 20
1.2.1 Bagging . 22
1.2.2 Boosting algortihms 23
1.2.3 AdaBoost algorithms for classification and re-

gression problems 24

2 Data Editing 33
2.1 Data pre-processing . 33

2.1.1 Data Editing 33
2.1.2 TREEVAL strategy 36
2.1.3 Missing Data Imputation 40

2.2 Data Fusion . 41

IX

Contents

3 Boosted Incremental Non Parametric Imputation of
Missing Data 43
3.1 Introduction . 43
3.2 Missing data mechanism 45
3.3 Missing data treatment 46
3.4 The incremetal imputation approach 48
3.5 Boosted Incremental Non Parametric Imputation . . . 51
3.6 Simulation study . 53

3.6.1 Binary missing case 53
3.6.2 Numerical missing case 56

3.7 A real dataset: Boston Housing 58
3.8 Concluding remarks . 59

4 Robust Incremental Tree-based Imputation for Data
Fusion 61
4.1 Introduction . 61
4.2 Data Fusion framework 62
4.3 Models for data fusion 64

4.3.1 Explicit models 64
4.3.2 Implicit models 66

4.4 Robust Incremental Imputation algorithm for Data Fu-
sion . 69

4.5 Simulation study: numerical imputations 71
4.6 Simulation study: mixed variables imputation 77
4.7 Concluding remarks . 82

5 Distance-Based Multivariate Trees for Rankings 85
5.1 Introduction . 85
5.2 Multivariate regression trees 86
5.3 Distance-Based Multivariate Trees for Rankings 87

5.3.1 The Kemeny distance 89
5.3.2 Consensus Ranking 93

X

Contents

5.3.3 Prediction error 94
5.3.4 Searching for the consensus ranking 98

5.4 Simulation case study 102
5.5 A real dataset: university rankings 105
5.6 Concluding remarks . 112

Conclusions 115

A MatLab codes 121
A.1 AdaBoost . 122

A.1.1 AdaBoost algorithm for binary classification prob-
lems . 122

A.1.2 AdaBoost algorithm for multiclass classification
problems . 125

A.1.3 AdaBoost algorithm for regression problem . . . 128
A.2 BINPI algorithm . 131
A.3 RTII algorithm . 138
A.4 Distance-Based Multivariate Trees

for Rankings . 143

References 157

XI

List of Tables

1.1 Origin of the splitting variables 9

1.2 Number of possible split generated according the nature
of the predictors . 12

1.3 Bagging algorithm . 22

1.4 AdaBoost algorithm for binary response variable 25

1.5 AdaBoost algorithm for multiclass classifiers 29

1.6 AdaBoost algorithm for regression problems 31

3.1 Simulation setting 1: main results 55

3.2 Simulation setting 2: main results 56

3.3 Simulation setting 3: main results 56

3.4 Simulation setting 4: main results 57

3.5 Simulation setting 5: main results 57

3.6 Simulation setting 6: main results 58

3.7 Simulation setting 7: main results 58

3.8 Boston housing dataset: main results 59

4.1 Simulation settings for numerical case 73

4.2 Simulation 1: main results 76

4.3 Simulation 2: main results 77

4.4 Simulation setting for mixed variables imputation case 78

XIII

List of Tables

4.5 Mixed variables fusion imputation: classification table
for multiclass variable 79

4.6 Mixed variables fusion imputation: classification table
for binary variable . 80

4.7 Mixed variables fusion imputation: main results of nu-
merical case . 81

5.1 Agreement between two judges 91
5.2 Disagreement between two judges 91
5.3 Partial disagreement between two judges 92
5.4 Distance-Based Multivariate Tree for Rankings output

on simulated data . 105
5.5 Distance-Based Multivariate Tree for Rankings output 111

XIV

List of Figures

1.1 Tree-based structure 6

1.2 Ensemble methods working by manipulating training
examples . 21

2.1 TREEVAL strategy . 37

3.1 The incremental imputation process 50

3.2 Boosted Incremental Non Parametric Imputation Algo-
rithm . 52

4.1 Data Fusion mechanism 63

4.2 Multiple imputation by trees 67

4.3 Neighbourhood in the factorial space 68

4.4 Robust Tree-based Incremental Imputation algorithm . 70

4.5 Simulation 1: Test error progress through AdaBoost
iterations . 74

4.6 Simulation 2: Test error progress through AdaBoost
iterations . 75

4.7 Mixed variables fusion imputation: test error progress
through AdaBoost iterations 79

4.8 Mixed variables fusion imputation: box-plot 81

XV

List of Figures

5.1 Example of Distance-Based Multivariate Tree for Rank-
ings . 104

5.2 Distance-Based Multivariate Tree on university rank-
ings data . 109

XVI

Introduction

This work is focused on tree-based methods as:

• complete data pre-processing methods (Data Editing), by han-
dling missing data imputation problems, data validation and
completion of data coming from different sources (Data Fusion);

• new way in the framework of supervised classification in terms
of preference rankings.

Data Editing can be understood as the methods used to edit (e.g.,
clean-up) and impute (fill-in) missing or contradictory data. In this
area segmentation methodologies have a relevant role because they
can be used in every foreseen step: data validation, missing data im-
putation and data fusion, which is a very special case of missing data
imputation. The strength of these techniques, as well known, is that
they are non-parametric, i.e. they work regardless to the nature of
the variables composing the dataset (qualitative or quantitative), they
can be used as learning algorithm forming ensemble classification rules
(Boosting, Bagging, Random Forest).
In the framework of preference rankings, the evaluation of the inter-
actions of a set of predictors associated to a ranking matrix is a topic
dealt only with log-linear models. Treatment of preference rankings
response variables with classification trees is a novelty in the literature.

1

Introduction

This thesis is structured in five chapters.

The knowledge discovery process from databases fits the scientific par-
adigm of Statistical Learning: Data Mining, Inference and Prediction
(Hastie, Tibshirani, Friedman, 2001), representing also the starting
point for the combination of modern statistics and computer science
for Intelligent Data Analysis (Hand, Berthold, 2005).
First chapter is about tree-based models and their methodological con-
text. This chapter deals also with ensemble methods, which are a
classifiers aggregation procedure with the aim of building an aggre-
gated more accurate classifier than every single classifiers with which
it is made. In particular, Bagging and AdaBoost algorithms and their
variants for both regression and classification problems are described.

Second chapter is about Data editing. Knowledge Mining refers to
the statistical and automatic learning finalized to the knowledge dis-
covery from databases through Data Mining and Predictive Learning
in combination with computer science such to exploit the use of avail-
able and upgraded information. Data Editing is a preliminary step of
Knowledge Mining, such to obtain a database characterized by homo-
geneous, complete, coherent, and, in general, validated data from the
quality point of view.
Indeed Statistical Data Editing (SDE) is defined as the set of methods
used to edit and impute missing or contradictory data. The final result
of SDE is obtaining data that can be used for analytic purposes. These
include primary purposes such as estimation of totals and subtotals
for publications that are free of self-contradictory information.

Third chapter is about missing data imputation. The starting point
is the incremental missing data imputation philosophy which is based
on a definition of a lexicographic order that indicates the row and
column position of a missing value in the data matrix. The impu-

2

Introduction

tation is incremental because, step by step, data are updated using
information which were missing in the previous steps to impute data
in the next stage. In this chapter, a lexicographic order only of the
columns is defined, and the imputation is made ”by column” instead
of for single missing-ness. This column, in which there are missing
values, at turn plays a role of response variable for an ensemble pro-
cedure which uses a STUMP for binary imputation variable case, or
both a FAST regression and classification tree for the imputation of
numerical or multiclass missing data respectively. Strong point of this
chapter is the BINPI (Boosted Incremental Non Parametric Imputa-
tion) algorithm: this is tested on several simulated and real data sets
from which data were deleted according a Missing At Random schema
and then used to evaluate the goodness of imputation.

Within the fourth chapter an algorithm for Data Fusion imputation
is proposed. Data Fusion is considered a very special case of miss-
ing data imputation, with the difference that data coming from two
different and independent sources. A data matrix block is common
to both sources, whereas one block is specific for only one of them.
Particularity in Data Fusion is that data are missing because never
they have been collected. Algorithm R.T.I.I. (Robust Tree-based In-
cremental Imputation) is the proposed solution for data imputation for
Data Fusion. Results of the proposed algorithm, in comparison with
other classic techniques used for the same problem, show as R.T.I.I.
algorithm contributes to re-build missing variables in terms of both
mean and variance.

In the fifth chapter a Tree-Based Multivariate Tree for Rankings is
defined.
In the framework of preference rankings, interactions among predictors
which are able to explain a supervised classification when the latter
is characterized by preference rankings as response variable is a nov-

3

Introduction

elty. Such a problem is dealt in literature only with log-linear models.
In this context, the definition of a tree-based structure can extend to
preference rankings response variable the ease of interpretation typi-
cal of tree-based models. Conceptually, a rank can be considered as
a unique multidimensional ”entity”, so that the techniques known in
literature to define split for multivariate response variables are not
able to obtain impurity measure which are feasible in this case. The
idea is to define an impurity measure based on a suitable distance for
rankings, taking in account that in the more realistic cases, ties are
allowed. Metric chosen is the Kemeny distance, and the impurity is
defined as the sum of Kemeny distances within node.

4

Chapter 1

Tree-based methods and
methodological context

1.1 Classification and Regression Trees

Binary segmentation procedure consists of a recursive binary partition
of a set of objects described by some explanatory variables (either nu-
merical or and categorical) and a response variable. In the following,
CART procedure [16] is followed.
The data are partitioned by choosing at each step a variable and a cut
point along it according to a goodness of split measure which allows
to select that variable and cut point that generates the most homo-
geneous subgroups respect to the response variable. The procedure
results in a nice and powerful graphical representation known as de-
cision tree which express the sequential grouping process. Because of
the evident analogy with the graph theory, a subset of observations is
called node and nodes that are not split are called terminal nodes or
leaves (see figure 1.1). Each node has a number such that generic node
t generates the left node 2t and the right node (2t+1). This approach

Tree-based methods and methodological context

Figure 1.1: Tree-based structure

was proposed by authors of statistical software SPAD (Cisia Institute,
France). In this way, it is always possible to recognize the position of
each node given its number deriving the path from the node to the
root node and vice versa. In example, in the above figure, the node
6 is the left node of its parent node 3 which is the right node of its
parent node 1 (the root node).
Once the tree is built, a response value or a class label is assigned to
each terminal node. According to the nature, categorical or numeri-
cal, of the response variable, in the framework of binary segmentation
procedures a distinction is made between Classification Tree (for the

6

1.1. Classification and Regression Trees

categorical response case) and Regression Tree (for the numerical re-
sponse case). In classification tree case, when the response variable
takes value in a set of previously defined classes, the node is assigned
to the class which presents the highest proportion of observations (by
voting); whereas in the regression tree case, the value assigned to cases
in a given terminal node is the mean of the response variable values
associated with the cases belonging to the given node. In both cases
this assignment is probabilistic, in the sense that a measure of error is
associated to it.
The main aim of the procedure is to define a classification/prediction
rule on the basis of a learning set (also called training set), for which
the values of a response variable Y , and of a set of K explanatory
variables (X1, . . . , Xk, . . . , XK) (either numerical or/and categorical)
have been recorded.
The recursive partitioning procedure follows a divide and conquer al-
gorithm, in the sense that in principle the algorithm continues par-
titioning nodes until all leaves contain a single case or cases either
belonging to the same class or presenting the same response value.
This leads to overlarge trees with many rules which are hard to un-
derstand and overfit the data.
In practice, when performing binary segmentation one has to look for
a compromise that allow for the trade-off between the exploratory and
the confirmatory purposes of the tree structures methodology. A dis-
tinction is made between the two problems involved in investigating
the data sets: that is, whether to explore dependency, or to predict
and decide about future responses on the basis of the selected predic-
tors.
Explanation can be obtained by performing a segmentation of the ob-
jects until a given stopping rule defines the final partition of the objects
to interpret.
Confirmation is a completely different problem that requires the de-
finition of decision rules, usually obtained by performing a pruning

7

Tree-based methods and methodological context

procedure soon after a segmentation procedure. Therefore, a further
step, tree simplification, is usually carried out to avoid overfitting and
improve the understandability of the tree by retrospectively pruning
some of the branches.
Summarising, tree based methods involve the following steps:

• the definition of a splitting criterion;

• the definition of a stopping rule;

• the definition of the response classes/values to the terminal nodes;

• tree pruning, aimed at simplifying the tree structure, and tree
selection, aimed at selecting the final decision tree for decisional
purposes

1.1.1 Splitting criteria

Let (Y,X) be a multivariate random variable where X is a set of K
categorical or numerical predictors (X1, . . . , Xk, . . . , XK) and Y is the
response variable. The first problem in tree building is how to deter-
mine the binary splits of the data into smaller and smaller subgroups.
Since the partitioning is just two branches, splitting variables need to
be created from the original explanatory variables. Accordingly, data
partitioning is based on a set of Q binary questions of the form:

is Xk ∈ A?,

so that, if Xk is categorical, A includes subsets of levels, while if Xj is
numeric, Q includes all questions of the form:

is Xk ≤ c?,

for all c ranging over the domain of Xk. For example, if K = 3, X1, X2

are numerical and X3 ∈ {a1, a2, a3}, Q includes all questions of the
form:

8

1.1. Classification and Regression Trees

X1 ≤ 3.5?

X2 ≤ 5?

X3 ∈ {a1, a3} ?

The set of possible splitting variables is finite and the number of
splitting variables that can be created from a given explanatory vari-
able depends on the type of variable, i.e., according to its measure-
ment. Table 1.1 reports the number of splitting variables that can be
generated by any type of explanatory variable according to its scale of
measurement. To each tree node the algorithm generates all the pos-

Explanatory variable Categories # of splitting variables
Numeric N N − 1
Binary 2 1
Ordered M M − 1
Unordered M 2M−1 − 1

Table 1.1: Origin of the splitting variables

sible splitting variables and searches through them one by one, so the
easiest case to deal with is binary variables that can generate just a
single splitting variable, numeric variables are treated as ordered with
N categories. Finally, unordered variables are the most difficult to
deal with because they can generate a very large number of splitting
variables even for a small value of M . Once that, at a given node, the
set of binary questions has been created, some criterion which guides
the search in order to choose the best one to split the node is needed.
As said before, the key idea is to split each node so that each de-
scendant is more homogeneous than the data in the parent node. To
reach this aim, we need a measure of homogeneity to be evaluated by
means of a splitting criterion. In the CART methodology the idea of
finding splits of nodes which generate more homogeneous descendant

9

Tree-based methods and methodological context

nodes has been implemented for classification trees by introducing the
so called impurity function.
Let p(j|t) ≥ 0 be the proportions of cases in node t belonging to class
j with

∑J
j=1 p(j|t) = 1.

An impurity function φ is a function of the set of all J-tuples of num-
bers p(j|t) with the properties ([16], pag 24):

1. φ is maximum only at the point {1/J, 1/J, . . . , 1/J};

2. φ achieves its minimum only at the points
(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1);

3. φ is a symmetric function of p(j|t).

There are several impurity functions satisfying these three properties.
The most common are:

1. the error rate, or the misclassification ratio:

i(t) = 1−maxjp(j|t)

2. the Gini diversity index

i(t) = 1− sumjp(j|t)2

3. the entropy measure

i(t) = −sumj(pj|t)log(j|t)

Talking about regression trees, the splitting criterion is based on the
search of that split that generates the most different descendant nodes
in terms of mean value of the response variable.

i (t) =
1

N

∑
xn∈t

(yn − ȳt)
2 (1.1)

10

1.1. Classification and Regression Trees

which can be meant as the total sum of squares (TSS), divided by N ,
where N is the sample size, ȳt = 1

Nt

∑
xn∈t

yn , Nt is the total number of

cases in the node t where the sum is over all yn such that xn ∈ t. If
s is a proposed split of a generic node t into two offspring tl and tr ,
and pl and pr are the proportions of objects in node t which the split
s puts into nodes tl and tr respectively, then a measure of the change
in impurity which would be produced by split s of node t is given by:

∆i(t, s) = i(t)− [i(tl)ptl + i(tr)ptr] (1.2)

∆i, called decrease in impurity, can be used as splitting criterion: a
high value means that a proposed split is a good one. At a given node
t, a split s∗ maximising equation 1.2 is optimal and used for generate
two descendants tl and tr . Let T̃ be the set of all terminal nodes of
the tree T: the total impurity of any tree T is defined as

I (T) =
∑
t∈T̃

i (t) p(t)

To proceed with tree growing, CART procedure must compute the
decrease in impurity associated to each possible split generated by
each variable. For example, suppose to have a binary response variable
and a set of six predictors as defined in table 1.2. In the root node the
number of decreases in impurity to be computed is 31+63+2+1+4+3
= 104. Therefore, computational cost of CART is really high, because
this procedure must be repeated until a stooping rule in tree-building
occurs.

1.1.2 Two Stage splitting criterion

Mola and Siciliano [86, 85] have proposed a Two-Stage splitting crite-
rion to choose the best split. This approach relies on the assumption

11

Tree-based methods and methodological context

Variable Nature Categories # of split
X1 Nominal 6 25 − 1 = 31
X2 Nominal 7 26 − 1 = 63
X3 Ordinal 3 3− 1 = 2
X4 Binary 2 1
X5 Ordinal 5 5− 1 = 4
X6 Ordinal 4 4− 1 = 3

Table 1.2: Example of generation of splits according to the nature of the predic-
tors

that a predictor Xk is not merely used as a generator of partitions
but it plays also a global role in the analysis. In the first stage, a
variable selection criterion is applied to find one or more predictors
that are the most predictive for the response variable. On the basis
of the set of partitions generated by the selected predictor(s), a par-
titioning criterion is considered in the second stage in order to find
the best partition of the objects at a given node. The criteria to be
used in the two stages depends on the nature of the variables, the
tool of interpretation and the desired description in the final output.
The partitioning algorithm takes account of the computational cost
induced by the recursive nature of the procedure and the number of
possible partitions at each node of the tree. Further developments of
the Two Stage procedure face the computational efficiency problem.
In fact, from a computational point of view, the growing procedure is
crucial when dealing with very large data sets or when dealing with
ensemble methods. At any node t the two stages can be defined as:

• global selection; one or more predictors are chosen as the most
predictive for the response variable according to a given criterion;
the selected predictors are used to generate the set of partitions
or splits. In this stage an index needs to be defined to evaluate
the Global Impurity Proportional Reduction (Global IPR) of the

12

1.1. Classification and Regression Trees

response variable Y at node t, due to the predictor X;

• local selection; the best partition is selected as the most pre-
dictive and discriminatory for the subgroups according to a given
rule. In this stage one has to define an index as the Local Impu-
rity Proportional Reduction (Local IPR) of the response Y due
to the partition p generated by the predictor X

For classification trees the Global IPR is defined as τ index of Good-
man and Kruskal

τt(Y |X) =

∑
i

∑
j p

2
t (j|i)pt(i)−

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

(1.3)

where pt(i), for i = 1, . . . , I, is the proportion of cases in node t that
have category i of X, and Pt(j|i), for j = 1, . . . , J , is the proportion
of cases in the node t belonging to class j of Y given the ith category
of X. Note that the denominator in equation 1.3 is the Gini diversity
index.
For regression trees, Global IPR can be defined as the Pearson’s squared
correlation η2:

η2
Y |X(t) =

BSSY |X(t)

TSSY (t)
(1.4)

where SST is the total sum of squares of the numerical response vari-
able Y and BSS is the between group sum of squares due to the
predictor X.
In a similar way, the Local IPR for both classification and regression
trees are defined as in equation 1.3 and 1.4, with the difference that
in these cases indexes are computed between the response variable Y
and the set of split s generated by the global IPR functions.
More precisely, for classification trees, at each node t of the splitting
procedure, a split s of the I categories of X into two sub-groups (e.g.

13

Tree-based methods and methodological context

i ∈ l or i ∈ r), leads to the definition of a splitting variable Xs with
two categories denoted by l and r. Local IPR is defined as

τt(Y |s) =

∑
j p

2
l (j|tl)ptl +

∑
j p

2
tr(j|r)ptr −

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

(1.5)

whereas for regression trees it is

η2
Y |s(t) =

BSSY |s(t)

TSSY (t)
(1.6)

Two stage splitting criterion works as follow:

1. select the best predictor X∗(t) at t node by maximising equation
1.3 or 1.4 for classification or regression problems respectively:

2. select the best split s∗(t) at node t by maximizing equation 1.5
or 1.6 for all splits of X∗(t) for classification or regression trees
respectively

1.1.3 FAST splitting criterion

FAST algorithm (Fast Splitting for Splitting Tree) [84] provides a
faster method to find the best split at each node when using CART
methodology. As discussed in above section, when applying the two-
stage criterion the best predictor could be found minimizing the Global
Impurity Proportional Reduction factor due to any predictor X, then
the Local Impurity Proportional Reduction factor determines the split
with respect to all partitions derived from the best predictor.
Main issue of FAST is that the measure of Global IPR measure satis-
fies the following property:

γ(Y |X) ≥ γ(Y |s) (1.7)

14

1.1. Classification and Regression Trees

in which γ is the generic Global IPR measure, and s is the set of split
generated by X variable.
FAST algorithm consists in two step:

• computing Global IPR measure as in equation 1.3 or 1.4 for
all variables belonging to the predictor matrix X and sort in
decreasing order these measures;

• computing Local IPR measure as in equation 1.5 or 1.6 for the
first previously ordered variable with maximum Global IPR. If
Local IPR of this variable is higher than Global IPR of the sec-
ond ordered X variable, stop the procedure, otherwise continue
until inequality is satisfied.

The computational cost of FAST algorithm is really lower than the
one of CART procedure, with the advantage that the final trees are
exactly the same. In the example showed at the end of section 1.2.1
in the table 1.2, there is a set of six predictors, 2 nominal with 6 and 7
categories respectively, 3 ordinal with respectively 3, 5 and 4 categories
and one binary variable. It was shown that CART procedure for each
variable must examine each possible split to decide which one is the
best. Considering the root node, CART technique has to compute
(25-1)+(26-1)+2+1+4+3 = 104 splits. FAST algorithm computes at
the beginning only six Global IPR measure (in this case there are
only six predictors) and then only the local impurity reduction factor
until inequality of the second step of the procedure is satisfied. In
this small example, the number of computations made is 6+(25-1) =
30 (it is assumed that Global IPR measure relative to the second-best
predictor is lower than the local impurity reduction factor obtained by
the second one). The computational advantage of using FAST instead
of CART is clear: one obtains the same tree-based structure with a
great gain in terms of computational cost.

15

Tree-based methods and methodological context

1.1.4 Stopping rules and assignment of the re-
sponse classes/values to the terminal nodes

Once the rules for growing the tree has been defined, another set of
rules to stop the building of the structure are needed. There is no
unique rule to define the stopping of the procedure, but there are
several rules used according the discretion of the researcher. Tree
growing can be arrested considering a suitable combination of the
following conditions:

• Bound on the decrease in impurity.
A node is terminal if the reduction in impurity due to the fur-
ther partition of the node is lower than a fixed threshold; a node
should be splitted if their contribution to the total impurity re-
duction is significant;

• Bound on the number of observations.
In general, can be useless to continue splitting nodes with a
few number of individuals: sample size within-node should be
”rational”;

• Tree size.
A further condition could be based on either the total number
of terminal nodes or the number of levels of the tree to limit its
expansion.

Once the tree has been built, terminal nodes must be associated with
a response.
In the case of classification trees the assignment of a response to each
terminal node is based on a simple majority rule. Specifically, node t
is assigned to class j∗ if the highest proportions of objects in node t
belong to class j∗ so that:

p(j∗|t) = max
j∈C

[p(j|t)]

16

1.1. Classification and Regression Trees

In the case the response variable is numeric the response values for
the object falling into a given terminal node t can be summarised by
means of a synthetic measure; in general this is simply given by the
mean, so that Ȳt is assigned to node t where:

ȳt =
1

n(t)

∑
xn∈t

yit

1.1.5 Pruning

Exploratory trees can be used to investigate the structure of data but
they cannot be used in a straightforward way for induction purposes.
For inductive purposes the question is: how large should be the tree?
A very large tree might overfit the data, while a small tree may not
be able to capture the important structure. Tree size is a tuning pa-
rameter governing the complexity of the model, and the optimal tree
size should be adaptively chosen from the data. To choose the ”hon-
est” tree in terms of its size, Breiman et al. [16] defined the minimal
cost-complexity pruning. Before proceeding with pruning description,
the definition of an error measure of a tree structure is necessary.

• For classification trees, the error at the generic node t is defined
as

r(t) =
1

nt

nt∑
i=1

(Ŷt 6= Yi)

where nt is the size at tth node, Ŷt is the classification returned
by the tree in the same node. The error rate of the overall tree
is defined as

R(T) =
∑

h∈HT

r(t)p(t)

17

Tree-based methods and methodological context

where HT is the set of all terminal nodes of the tree T , and p(t)
is the proportion of cases falling into the tth terminal node.

• For regression trees the error rate is defined exactly as in equa-
tion 1.1, that is as the sum of TSS in the tth node divided by the
total sample size, whereas the prediction error of overall tree is
defined as

RR(T) =
R(T)

R(t1)

where R(t1) is the error in the root node.

Pruning procedure works as follow: Let Tmax be the maximum tree, let∣∣∣T̃ ∣∣∣ denote the set of all terminal nodes of Tmax, that is its complexity.

The cost-complexity measure is defined as

Rα(T) = R(T) + α
∣∣∣T̃ ∣∣∣ (1.8)

where α is a non negative complexity parameter which ”governs the
tradeoff between tree size and its goodness of fit to the data” [61].
The idea is, for each α, find the subtree T ∗α ⊇ Tmax to minimize Rα(T).
When α = 0 the solution is the full tree Tmax, and the more α increases
the more the size of the tree decreases.
The pruning procedure is the same for both classification and regres-
sion cases, so the attention can be focused on the classification problem
without loss of generality. The cost complexity measure is defined for
any internal node t and the branch Tt rooted at t as:

Rα(t) = r(t)p(t) + α

Rα(Tt) =
∑
h∈Ht

r(h)p(h) + α
∣∣∣T̃t

∣∣∣
where R(t) is the resubstitution error at node t, p(t) = n(t)

N
is the weight

of node t given by the proportion of training cases falling in it and Ht

18

1.1. Classification and Regression Trees

is the set of terminal nodes of the branch having cardinality
∣∣∣T̃ ∣∣∣. The

branch Tt will be kept as long as:

Rα(t) > Rα(Tt)

the error complexity of node t being higher than the error complexity
of its branch. As α increases the two measures tends to became equal,
this occurs for a critical value of α that can be found solving the above
inequality:

α =
R(t)−R(Tt)∣∣∣T̃t

∣∣∣− 1
(1.9)

so that α represents for any internal node t the cost due to the removal
of any terminal node of the branch.
The pruning process produces a finite sequences of subtrees Ω = T1 ⊂
T2 ⊂ . . . ⊂ Tmax, where T1 is a tree constituted only by the root node.
It can be proved [16] that the minimal cost-complexity pruning pro-
cedure produces the subtrees with the minimum error rate given the
number of its terminal nodes. In other words, if Tα has five terminal
nodes, there is no other subtree Ts ⊆ Tmax having five terminal nodes
with smaller error ([16], pag. 71).
To validate a tree-based structure one has to consider its accuracy:
the misclassification ratio or the prediction error. In both classifica-
tion and regression cases an estimation of the error rate is needed.
There are three possible ways to estimate it:

• Resubstitution estimate
Resubstitution estimate is computed by using the same dataset
used to build the tree. It is an optimistic estimate, therefore it
is not used.

• Test set estimate
If the sample size is sufficiently large, data can be randomly

19

Tree-based methods and methodological context

splitted into two sub-samples (training sample and test sample).
Then training sample is used to grow the tree-based structure
and the test set is used to validate it.

• Cross validation estimate
When sample size is not sufficiently large to be splitted into two
sub-samples, one can use the cross-validation estimate. Data set
is splitted into V sub-samples approximately of the same size,
then V trees are built using the V th sub-sample as test set and
the other V −1 as training set. By averaging over the V test set
estimates, finally the cross-validation estimate of the error rate
is achieved.

A single final tree is then selected either as the one producing the
smallest error estimate on an independent test set (0−SErule) or the
one which error estimate is within one standard error of the minimum
(1−SErule). Denoting byRts(T) the test set error estimate associated
with a generic tree T in the sequence Ω, according to the 0− SE rule
the tree T ∗ will be selected if:

Rts(T∗) = min
T∈S

Rts(T)

whereas, if 1− SE rule is employed tree T ∗∗ will be selected if:

Rts(T∗∗) ≤
[
Rts(T∗)± SE(Rts(T∗))

]
1.2 Ensemble Methods

Ensemble methods are learning algorithm that construct a set of clas-
sifiers and then classify new data points by taking a vote of their
predictions [32]. A necessary and sufficient condition for an ensemble
of classifiers to work better than any single classifier is that the clas-
sifiers to be aggregate must be accurate (e.g. they must have an error

20

1.2. Ensemble Methods

rate better than random choices) and diverse (e.g. the errors of the
classifiers have to be unrelated).
There are several methods for constructing ensemble [32] (by enu-
merating the hypotheses or bayesian voting, by manipulating input
features, by manipulating output targets), but the most popular en-
semble methods work by manipulating the training examples.
These methods manipulate training examples through a re-sampling
technique to generate multiple classifiers, then a learning algorithm is
run several times with a different subset of training examples, as it
can be seen in figure 1.2. The most famous ensembles belonging to
this category are Bagging and Boosting.

Figure 1.2: Ensemble methods working by manipulating training ex-
amples

21

Tree-based methods and methodological context

1.2.1 Bagging

Bagging [13] is an acronym for Bootstrap Aggregating: it forms a
set of classifiers that are combined by voting by generating replicated
bootstrap [40] samples of the data. Table 1.3 shows the pseudo-code
of Bagging algorithm.
Given a learning set L = (xi, yi), . . . , (xn, yn), the aim is to predict y
using x as input by using a classifier h(x,L). By using a sequence of
t learning sets Lt, with t = 1, . . . , T , each consisting of n independent
observations from the same distribution as in L, goal is to get a better
predictor than the single learning predictor set h(x,L) coming from
t bootstrap replications. The aggregating process is quite simple: if
y is numerical the aggregated classifier is the average of each single
classification over all the iterations of the procedure, if y is numerical
the method of aggregating the classifiers is by voting.

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi ∈ R if numerical or yi ∈ {1, . . . , J} if categorical.

• for t = 1 : T

– generate a bootstrap replication LB from L
– run a single classifier on LB

– obtain the estimation ŷt
i from the single classifier

• Output: final bagged classifier

H(X) =

{
aggregation by voting if yi ∈ {1, . . . , J}
avh
(
x,LB

)
if yi ∈ R

Table 1.3: Bagging algorithm

22

1.2. Ensemble Methods

Bagging works well for unstable procedures. Both classification and
regression methods are unstable in the sense that small perturbations
in their training sets or in construction may result in large changes
in the constructed predictor [15]. In general, a classifier is unstable
when it is affected by high variance, whereas a classifier is stable when
it is affected by high bias [118, 129, 49]. So, Bagging is a method of
variance reduction [52] and it works well with classification and re-
gression trees because their are known as methods with high variance.
Bagging returns worse performance than single classifiers when it is
used with stable classifiers, e.g. with a stump [61]. As Breiman says
[13]: Bagging unstable classifiers usually improve them. Bagging stable
classifiers is not a good idea.

1.2.2 Boosting algortihms

Boosting is a general method for improving the accuracy of any given
learning algorithm provided that single classifications are better than
random choices. The main difference between Bagging and Boosting
algorithms is that whereas Bagging uses the bootstrap as resampling
method (that is, the probability of each individual to be included
in the bootstrap training sample through the iterations is constant
and equal to 1/n, where n indicates the sample size), Boosting uses
a weighted bootstrap, in the sense that the probability of each indi-
vidual to be included in the boosted training sample is not constant,
but it is weighted by the (good or bad) classification obtained by the
learning sample. More precisely, starting from a uniform distribution
of weights, these are increased for the ith individual if he has been mis-
classified by the learning algorithm (or weak learner), otherwise these
are decreased. This way, within the next iteration the probability of a
misclassified instance to be included in the boosted training sample is
higher than observations correctly classified, so the learning algorithm
is forced to learn by its errors becoming a strong learner.

23

Tree-based methods and methodological context

Therefore a weak learner is a supervised learning algorithm which
returns a classification just slightly better than random choice, for ex-
ample in the case of binary classification problems it must give back
an error rate smaller than 50%.
Boosting has its roots in a theoretical framework for studying machine
learning called the ”PAC” learning model [121]. In brief, this theory
states that a learning machine which is wrongly trained returns an
incorrect prediction even if it is trained a lot of time, but with high
probability a well trained learning machine will solve the classification
problem after a certain number of tests. In other words, the machine
has to be Probably Approximately Correct.
Several boosting algorithms are developed in the last years [100], such
as polynomial-time boosting algorithm [101] and boosting-by-majority
algorithm [46], but doubtless the most famous boosting algorithm is
AdaBoost developed by Freund and Schapire in 1995 [47].

1.2.3 AdaBoost algorithms for classification and
regression problems

Table 1.4 shows the pseudo-code of AdaBoost algorithm for binary
classification problems. The algorithm takes as input a training set
L = (xi, yi), . . . , (xn, yn) in which yi = {−1,+1} and it calls a given
weak learning algorithm repeatedly in a series of rounds t, . . . , T . Main
idea of the algorithm is to maintain a distribution of weights over L.
These weight are updated at each iteration t according to the weighted
error occurred by the weak learner in the last iteration. Weak learner
has to define a weak hypothesis ht : X → {−1,+1} by which it is
possible to compute the error εt = Pri∼Dt [ht(xi) 6= yi] (note that the
error is computed over the distribution D on which the weak learner is
trained). Subsequently the algorithm chooses an α parameter which
indicates the importance of the weak hypothesis ht to update the dis-

24

1.2. Ensemble Methods

tribution D. The final boosted classifier, or strong learner, is the
weighted majority vote of the T weak hypotheses weighted by αt.
AdaBoost is the acronym of Adaptive Boosting because it adapts to

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi = {−1,+1}

• initialize D1 = 1
n for i = {1, . . . , n}

• for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypotesys ht : X → {−1,+1}
– compute the error εt = Pri∼Dt [ht(xi) 6= yi]

– choose αt =
1
2
ln
(

1− εt

εt

)
– update D distribution:

Dt+1(i) =
Dt(i)
Zt

×

{
ε−αt if ht(i) = yi

εαt if ht(i) 6= yi

=
Dt(i)exp (−αtyiht (xi))

Zt

where Zt is a normalization factor

• Output: final boosted classifier:

H(x) = sign

(
T∑

t=1

αtht (x)

)

Table 1.4: AdaBoost algorithm for binary response variable

25

Tree-based methods and methodological context

the error rates of the individual weak hypotheses. The most basic
theoretical property of AdaBoost concerns its ability to reduce the
training error. It can be proved [47, 80] that the training error of the
final hypothesis is at most

1

n

n∑
i=1

[H(xi) 6= yi] ≤
1

n

n∑
i=1

exp(−yiαtht(xi)) =
T∏

t=1

Zt

By minimizing Zt this limit error can be minimized, and this can
be obtained by choosing the suitable α parameter. The expression

Zt =
n∑

i=1

Dt(i) exp (−αtyiht(xi)) can be write as

Zt =
n∑

i=1

Dt(i) exp (−αtui) (1.10)

where ui = yiht(xi) < 0 if yi 6= ht(xi) and ui = yiht(xi) > 0 if
yi = ht(xi). If Y ∈ {−1,+1}, it follows that

Zt =
n∑

i=1

Dt(i) exp (−αtui) ≤

≤
n∑

i=1

Dt(i)

(
1 + ui

2
exp(−αtui) +

1− ui

2
exp(αtui)

)

26

1.2. Ensemble Methods

Recall that εt is the training error at tth iteration, it can be indicated
as εt = 1−ui

2
and (1− εt) = 1−

(
1−ui

2

)
= 1+ui

2
. Equation 1.10 becomes

Zt =
n∑

i=1

Dt(i) exp (−αtui) ≤

≤
n∑

i=1

Dt(i) ((1− εt) exp(−αtui) + εt exp(αtui))

(1.11)

The last part of equation 1.11 can be wrote as

(1− εt) exp(−αt) + εt exp(αt) (1.12)

so, to minimize Zt one has to minimize expression 1.12 with respect
to α and compute this parameter in that point, namely

αt =
1

2
ln

(
1− εt

εt

)
By substituting this parameter in the expression 1.11 and by reducing,
obtain

T∏
t=1

Zt =
T∏

t=1

[√
4εt(1− εt)

]
=

T∏
t=1

[
2
√
εt(1− εt)

]
(1.13)

If weak learner works better than random choice, εt = 0.5− γt where
γt is some positive parameter, and then γt = 0.5 − εt. Equation 1.13
can be re-wrote as

T∏
t=1

√
1− 4γ2

t ≤
T∏

t=1

exp
(
−2γ2

t

)
= exp

(
−2

T∑
t=1

γ2
t

)
(1.14)

27

Tree-based methods and methodological context

in which the last term is the upper limit over training error of boosted
classifier. Freund and Schapire [47] showed how to bound the general-
ization error of the final hypothesis in terms of its training error, the
sample size n and the VC-dimension d of the weak hypothesis space
(which is a standard measure of the complexity of a space of hypothe-
ses [80]). They proved that the upper bound of the generalization
error, which can be interpreted as the expected value of the test error
[61], is at most [102]

P
[
marginf (x, y) ≤ θ

]
+ Õ

(√
d

nθ2

)

for any θ > 0, in which margin is a number in [0, 1] which is an indi-
cator of the ”confidence” of the classification.
For both multiclass and regression cases, main difference with the
above described AdaBoost algorithm is about a suitable definition of
the error and the computation of a loss function. Table 1.5 shows
the pseudo-code of AdaBoost algorithm for multiclass classification
problems. In a multiclass problem the condition that the error rate
of the base classifier is less than 0.5 can be too restrictive. For this
reason Freund and Schapire [47] introduced a pseudo-loss function of
a confidence-rated classifier to be minimized in the boosting iterations
instead of the error rate. The code in table 1.5 is the modified version
of AdaBoost.M algorithm [47] as made by Eibl and Pfeiffer [38] and
called AdaBoost.M1W.
Table 1.6 shows the AdaBoost code for regression problems. In this

case, the error can be defined as a squared loss function, even if other
loss functions, such as linear or exponential, could be used. In the
regression case the final boosted classifier is obtained, in general, by
averaging the single weak hypotheses through the iterations.
Code showed in the table 1.6 is the modification of AdaBoostR algo-
rithm [47] made by Drucker [36, 56]. The aggregation process in this

28

1.2. Ensemble Methods

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and
yi = {1, . . . , J}

• initialize D1 = 1
n for i = {1, . . . , n}

• for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypotesys ht : X → {1, . . . , J}
– compute the error εt =

∑
i Dt(i)I (ht(xi) 6= yi)

– choose αt = ln
(
|J − 1| (1− εt)

εt

)
– update D distribution:

Dt+1(i) =
Dt(i)e−αtI(ht(xi)=yi)

Zt

where Zt is a normalization factor

• Output: final boosted classifier:

H(x) = argmaxy∈J

(
T∑

t=1

αtI (ht(x) = y)

)

Table 1.5: AdaBoost algorithm for multiclass classifiers

case is the weighted median.

Boosting is a method of bias reduction [61], therefore it can be
used with stable classifiers (e.g. with a stump), but it works really
good also in reducing variance of a classifier. Sometimes it can pro-

29

Tree-based methods and methodological context

duce overfitting phenomenon, but it can occur when weak learner has
a too high error rate or when the boosted training error reaches to
zero too fast [47, 80, 102].

In general, ensemble methods allow to gain in prediction accuracy.
When these are used in combination with tree-based models, if the
goal is predicting as more as possible new observations, ensembles can
help us to it achieve. If our goal is interpreting relationships among
covariates, we could never use ensembles. As Breiman says [13], what
one loses, with the trees, is a simple and interpretable structure. What
one gains is increased accuracy.

30

1.2. Ensemble Methods

Let L = (xi, yi), . . . , (xn, yn) be a training sample, where xi ∈ X and yi ∈ R

• initialize D1(i) = 1
n

• for t = 1 : T

– train weak learner ht using distribution Dt

– obtain a weak hypotesys ht : x → y

– compute the quadratic loss function Lt(i) = (yi − ht(xi))
2

– compute an average loss εDt =
n∑

i=1

Dt(i)Lt(i)

– set βt =
εDt

max
1≤i≤n

Lt(i)− εDt

– set wk(i) =
Lt(i)

max
1≤i≤n

Lt(i)

– set gt(i) = β
1−wk(i)
t Dt(i)

– update D distribution:

Dt+1(i) =
gt(i)∑
i gt(i)

• Output: final boosted classifier:

H(x) = inf

y ∈ Y :
∑

t:ht≤y

log
(

1
βk

)
≥ 1

2

∑
t

log
(

1
βt

)
Table 1.6: AdaBoost algorithm for regression problems

31

Chapter 2

Data Editing

2.1 Data pre-processing

Data pre-processing describes any type of processing performed on raw
data to prepare it for another processing procedure. Commonly used
as a preliminary data mining practice, data pre-processing transforms
the data into a format that will be more easily and effectively processed
for the user’s purpose. There are several tools and methods used for
pre-processing, including Data editing and Data fusion.

2.1.1 Data Editing

Data editing is the process by which data collected in some way (a
statistical survey for example) is examined for errors with the help
of software. Winkler [128] defined Statistical Data Editing (SDE) as
those methods that can be used to edit (i.e., clean-up) and impute (fill-
in) missing or contradictory data. SDE can be used in all phases of
survey process. These phases include frame development, form design,
proposed analytic purposes for which the data are collected, and qual-
ity assurance. The main goal of SDE might be improved procedures

Data Editing

and greater automation to enhance the ability of survey managers and
analysts to provide published estimates and micro-data.

Editing begins with the specification of a set of edits. They are
conditions which should be met by the data. For example, by consid-
ering a socio-economic survey, possible edits are:

• AGE → integer number between 0 and 120

• MARITAL STATUS → one of these categories: SINGLE,
MARRIED, DIV ORCED, WIDOWED

• if AGE < 15 then MARITAL STATUS must be SINGLE

These examples of edits involve data of single respondents, so that
these are micro-edits. Edits which involve data of several respon-
dents are macro-edits.
A given set of edits is not necessarily correct. It may omit important
edits or it may contain edits which are conceptually wrong, too restric-
tive or logically inconsistent. The extent of these problems is reduced
by having subject-matter experts specify the edits of a survey. The
problem is not eliminated however, because many surveys conducted
in practice involve an huge number of items and require hundreds of
edits, which makes their specification a very demanding task. As a
check, a proposed set of edits is applied on test data with known errors
before application on real data. Missing edits or logically inconsistent
edits however, may not be detected. Problems in the edits, if discov-
ered during the actual editing or even after it, cause editing to start
again after their correction, leading to delays and incurring larger costs
than anticipated.

The editing literature does not contain many relevant suggestions,
nevertheless SDE can be broadly subdivided in two subcategories:

34

2.1. Data pre-processing

1. General methods

2. Fellegi-Holt methods and systems

The first category includes traditional methods. These methods
comprise If-Then-Else rules for detecting contradictory information
and various ways of imputing values or variables to replace the contra-
dictory ones. These rules may not be straightforward to develop and
may be difficult to write into computer code. Indeed, slight changes in
the survey form and edit rules can cause the need to rewrite and debug
thousands of lines of code. For that reason other methods have been
studied and developed, such as the one based on Exploratory Data
Analysis (EDA) as point and click method tolls for finding erroneous
data [31].

The second category is characterized by the Fellegi-Holt (FH) model
[45] of editing. In brief the method provides a way of automatically
generating all edits implied by a set of explicitly defined edits. This
reveals all logical inconsistencies in the edits and on the other hand
guarantees that data records which fail edits will be made to satisfy
them with the minimum possible modification. FH methods are so
appealing because most of the If-Then-Else type of edits can be put
in tables which are straightforward to modify and update. Because
the source code does not need any updating, it is possible to create
a FH system for editing which can be developed and maintained for
different surveys by non-programmers such as subject matter special-
ists. A disadvantage, that prohibits the application of the method as
intended is that for reasonably-sized surveys it has great computing
demands, even by today standards. Moreover, the method mainly ap-
plies to categorical data.
Other than that, the editing literature has concentrated on improving
the performance of editing in practical applications, mainly on two
grounds: speed of implementation and number of different types of

35

Data Editing

edits that can be accommodated by a single piece of software.

Recently both a new step in the edit specification process and a
new method for automatically specifying the functional form of edits
have been developed [88]. The new step consists in formally describing
the structure of the phenomenon studied by a given survey (definition
of an abstract data model), the new method follows a new strategy
that considers first tree-based models to derive edits from clean data
and then a statistical criterion to validate new incoming data. This
strategy is called TREEVAL.

2.1.2 TREEVAL strategy

Conceptually each survey, by registering data about distinct indepen-
dent occurrences of a particular real-world phenomenon, results in
a set of corresponding independent observations, materialised collec-
tively in the form of a data set. It is worth stating well in advance,
that the abstract data model of the survey directly reflects the struc-
tural model of the real-world system. Hence, by departing from the
usual concept of a survey data set as a mere collection of data, abstract
model to specify edits can be considered as a system of information,
whose logical structure directly reflects the structure of the specific
real-world system under investigation. It follows that edits are not
just logical expressions involving variables, but they directly reflect
the real constraints on the relationships among the components of
this real-world system and on their properties. So, edits derive from
the model of the system to be investigated, and can be identified by
means of formal analysis of this model.

Tree-based methods can be fruitfully used in data editing to auto-
matically derive probabilistic edits. In fact, all edits are logical state-
ments about the relationship among the involved variables; therefore,

36

2.1. Data pre-processing

by building trees on clean data these statements can be automatically
identified. This way, no subject matter experts will be required to
specify edits, but these will be developed automatically by a software
that implements recursive partitioning algorithm. For example, let
Xi, Xj and Xk be three variables and assume that the relationship
among them goes from Xi and Xj to Xk. Then, Xk will play the role
of response variable in the binary segmentation procedure whereas Xi,
Xj are the explanatory variables. The paths that lead to any terminal
node of the resulting tree state that specific values of Xk can arise
only from given combinations of values of Xi and Xj. The inspection
of these connections can suggest suitable edits which can be jointly
used with those provided by the abstract data model.
Figure 2.1 shows the TREEVAL procedure for automated derivation
of edits [88]. By referring to surveys which are repeated periodically,

Figure 2.1: TREEVAL strategy

37

Data Editing

the survey database is the database storing the data derived for pre-
vious similar surveys. It is assumed to contain clean data because
it refers to data that were validated in the past. The incoming data
is the data that must be validated before being included into the sur-
vey database. The validation process is not applied on the data of the
whole survey simultaneously but on subsets of cases or variables which
are selected according to a stratifying variable to define homogeneous
strata in the data set. This allows to simplify the analysis as well as
to validate cases which are in some way heterogeneous. The steps of
TREEVAL procedures are:

• Collect data from survey database to derive edits.
To this aim a Data Selection and Validation Planning is per-
formed. Practically, once the set of variables to be validated
has been defined, the relative cases are selected from the survey
database in order to form the pilot dataset, which will be used
to derive edits.

• TREE phase.
Pilot dataset is assumed to be formed of N objects and P vari-
ables. The aim is deriving edits for each of the variables com-
posing the pilot dataset. This goal can be achieved by growing
P tree-based structures in such a way that each of the variables
of this dataset is considered in turn as a response variable. Each
final tree is selected by growing the maximal tree and pruning it
according to the test sample criterion or the cross-validation. As
a result, for each terminal node of each tree an edit is derived
considering the different paths and their associated variables.
The ratio between the within group standard deviation of the
response variable in the terminal node over the within group
standard deviation of the response variable in the root node is
considered as a gain measure for each edit. That is, the gain for

38

2.1. Data pre-processing

each edit is

gain(edit) =
σ̂Y (h)

σ̂Y (t1)

where h = 1, . . . , H is the set of terminal nodes and t1 is the
root node of the tree. This gain measure is used to order the
production rules and thus the edits on the basis of their pre-
dictability power. Three groups of edits can be identified using
suitable thresholds, for example strong edits if gain(edit) < k,
middle edits if ≤ k gain(edit) ≤ t, weak edits if gain(edit) > t.

• VAL phase
Once a set of edits have been constructed and selected auto-
matically, it can be used to validate the data. So, in the VAL
(validation) phase the set of previously identified edits is ap-
plied on the new data. On the incoming data the same data
selection criteria used when deriving the pilot dataset in order
to derive the validation sample are applied. Validation sam-
ple is then the partition of the incoming data to be validated.
Briefly, cases of validation sample are passed down the P trees
and the difference between the imputed and the observed values
are measured. This measure changes according to the nature of
the variable which, at turn, plays the role of response variable.
If a case of the validation sample is not consistent with most of
the validation rules, this case is suspected to be an error and
it can be corrected according to the specification of the relative
validation rules or can be deleted from the database. Finally,
the cleaned dataset derived from the validation sample defines
the validated sample.

• Clean data updating.
The validation sample now contains data that passed success-
fully the validation step, so that they can used to upgrade the

39

Data Editing

survey database. In other words it contains clean data and it is
periodically updated as the validation process goes on. There-
fore, new validated cases concur to validate not yet validated
ones.

2.1.3 Missing Data Imputation

Missing data imputation is a really remarkable step in the framework
of data editing. Missing or incomplete data are a serious problem in
many fields of research because it can lead to bias and inefficiency
in estimating the quantities of interest. The relevance of this prob-
lem is strictly proportional to the dimensionality of the collected data.
Particularly, in data mining applications, a substantial proportion of
the data may be missing and predictions might be made for instances
with missing inputs. Specially in the case in which data coming from
different self-updating repositories, and final data sets are really huge,
it is not unusual to have to work with a lot of missing data. Therefore
their imputation is a fundamental preliminary step, the goodness of
final validation of the rules depending on it. In the framework of miss-
ing data imputation, it is worthwhile to distinguish between missing
data completely at random and missing data at random [72]. More
precisely, data is missing completely at random (MCAR) when the
probability that an observation is missing is unrelated to the value
of the variable or to the value of any other variables. Instead, data
can be considered as missing at random (MAR) if the data meets
the requirement that missingness does not depend on the value of
the variable after controlling for another variable. While the MCAR
condition means that the distribution of observed and missing data is
indistinguishable, the MAR condition states that the distributions dif-
fer but missing data points can be explained (and therefore predicted)
by other observed variables. The last condition is the more relevant
one in statistics, because it requires a model-based imputation so that

40

2.2. Data Fusion

the missing value can be understood as the sum of the model function
and the error term.
Chapter three of the present work is dedicated to the framework of
missing data imputation and, in particular, to the use of ensemble
tree-based models as unique tools to proceed to the imputation

2.2 Data Fusion

Data fusion aims at matching two already held surveys in order to
make possible transferring part of information from the first survey to
the second one. Hence, it allows to treat the data coming from the
two distinct surveys as whole.
Data Fusion methods deal with two data sets, the first containing the
information related to a set of p+ q variables observed on n0 subjects,
the second consisting of p variables observed on a sample of n1 sub-
jects. It is assumed that the set of the p variables is common, i.e.
observed on both samples, while the set of q variables are specific, i.e.
not included in the both surveys. Let X, X0 and X1 denote respec-
tively the generic data matrix of the p common variables, the same
one if referred to the donors matrix or if referred to the receiver ma-
trix. Furthermore, let Y be the matrix of q specific variables of the
reference survey.
The aim is to determine the unobserved values of the q variables. In
other word, Y1 is considered as a missing data matrix to be imputed.
As a consequence, the Data Fusion can be considered as a particular
case of data imputation framework, with the difference that in this
case a group of instances is missing as they have not been collected.

According our opinion Data Fusion can be included in Data Editing
schema, Data Editing being a process with which one ”prepares” data
to be analysed in the best way in a second time. On this extent Data

41

Data Editing

Fusion, which has the aim to complete a data matrix by extending
to them results coming from another dataset, can be considered as a
method to ”clean” data and, consequently, to be ready to anlyse them.
Indeed, following Saporta’s words [97], in data fusion, the goal is to
obtain a single data base where all variables have been completed for
the union of units. The resulting base may be analysed afterwards with
data mining tools.

in any case, this is not the right place for discuss if Data Fusion
belongs in the framework of Data Editing or not, doubtless it could be
an arguable point of view. According to our opinion it can be seen as
belonging of data pre-processing category, being Data Fusion a very
special case of missing data imputation.
Chapter four is about Data Fusion framework and, in particular, it
deals with tree-based methods as complete tools to proceed to the
”fusion”.

42

Chapter 3

Boosted Incremental Non
Parametric Imputation of
Missing Data

3.1 Introduction

In this chapter, a general tree-based methodology for missing data
imputation as well as specific algorithms to obtain the final estimates
are provided. Missing or incomplete data are a serious problem in
many fields of research because they can lead to bias and inefficiency
in estimating the quantities of interest. In data mining applications
a substantial proportion of the data may be missing and predictions
might be made for instances with missing inputs. In recent years,
several approaches for missing data imputation have been presented
in the literature. Main reference in the field is the Little and Ru-
bin book [72] on statistical analysis with missing data. An important
feature which characterize an incomplete data set is the missing data
mechanism which takes into account the process generating missing

Boosted Incremental Non Parametric Imputation of
Missing Data

values. In most situations, a common way for dealing with missing
data is to reject records with missing values and restrict the attention
to the completely observed records. This approach is based on the
restrictive assumption that missing data are Missing Completely At
Random (MCAR), i.e., that the missing-ness mechanism does not de-
pend on the value of observed or missing attributes. This assumption
rarely holds, however discarding the records with missing data is not
an option [98].
An alternative and weaker version of the MCAR assumption is the
Missing at Random (MAR) condition. Under a MAR process, the
missigness depends on observed data but not on missing data them-
selves. While the MCAR condition means that the distributions of
observed and missing data are indistinguishable, the MAR condition
states that the distributions differ but missing data points can be ex-
plained (and therefore predicted) by other observed variables.
Last condition requires a model-based imputation for that the miss-
ing value can be understood as the sum of the model function and
the error term. Classical approaches are linear regression [73], logistic
regression [120], generalized linear models [69], whereas more recent
approaches are nonparametric regression [19] and tree-based models
[112]. Parametric and semi-parametric approaches can be unsatisfac-
tory for nonlinear data yielding to biased estimates if model misspecifi-
cation occurs. As an alternative, tree-based models do not require the
specification of a model structure, deal with numerical and categorical
inputs, consider conditional interactions among variables so that they
can be used to derive simple imputation rules. Automatic tree-based
procedures have been already considered for data validation [88] as
well as for data imputation [112].

44

3.2. Missing data mechanism

3.2 Missing data mechanism

Missing data mechanism was formalized by Rubin [96] through the
idea of treating a missing data indicator matrix as random variable
and assigning them a distribution.
Let Y = (yij) be the full data matrix, and let M = (Mij) be the miss-
ing data indicator matrix, with (Mij) = 1 if the corresponding (yij) is
missing, and (Mij) = 0 otherwise.
Missing data mechanism is characterized by the conditional distribu-
tion of M given Y, for example f(M |Y, ψ), where ψ denotes unknown
parameters.
If

f(M |Y, ψ) = f(M |ψ) for all Y, ψ (3.1)

that is, if missingness does not depend on observed and/or missing
values of Y , data are called Missing Completely at Random (MCAR).
When data are MCAR, there is the highest level of randomness. In
other words, it occurs when the probability of an instance having a
missing value for an attribute does not depend on either the known
values or the missing data.
Let Yo be the complete part of Y matrix, and let YM the part of Y
matrix bearing missing data.
If

f(M |Y, ψ) = f(M |Yo, ψ) for all Yo, ψ (3.2)

that is, if missingness depends only on Yo and not on YM , data are
called Missing at Random (MAR). In other words, data are MAR
when the probability of an instance having a missing value for an
attribute may depend on the known values, but not on the value of
the missing data itself;
If the distribution of M depends on the missing values Y , namely if

f(M |Y, ψ) = f(M |Yo, YM , ψ) for all ψ (3.3)

45

Boosted Incremental Non Parametric Imputation of
Missing Data

data are called Not Missing at Random (NMAR). In other words,
data are NMAR when the probability of an instance having a missing
value for an attribute could depend on the value of that attribute.

3.3 Missing data treatment

In general, missing data treatment methods can be divided into the
following categories [72]:

1. Ignoring and deleting data. This category can be splitted in two
sub-categories according the way to discard data with missing
values:

• Listwise deletion, or complete case analysis. It simply con-
sists in deleting all cases with missing data.

• Discarding instances and/or attributes. This method con-
sists of determining the extent of missing data on each in-
stance and attribute, and delete the instances and/or at-
tributes with high levels of missing data. Before deleting
any attribute, it is necessary to evaluate its relevance to the
analysis.

2. Available-case methods. Most famous technique belonging to
this category is the pairwise delection, which works by deleting
information only from those statistics that need the information.

3. Imputation-based procedures. Data imputation is a class of pro-
cedures that aims to fill in the missing values with estimated
ones. The objective is to assume known relationships that can
be identified in the valid values of the data set to assist in esti-
mating the missing values. There are a variety of methodologies
which have been developed in the literature for data imputation.
They can be grouped into two class of models:

46

3.3. Missing data treatment

• Non-model based imputation procedures, such as uncondi-
tional mean imputation, which allows to use the mean value
of a variable in place of missing values for the same vari-
able, and conditional mean imputation (or Buck’s method)
which computes different linear regressions for each pattern
of missing data.

• Model-based imputation procedures. These procedures can
be further spitted in two categories:
Implicit models.
Implicit models are based on implicit assumptions such as
the proximity between individuals belonging to the data set.
Most common techniques in this category are the hot deck
imputation, which involves substituting individual values
drawn from similar respondent units, cold deck imputation,
which replaces a missing value by a constant value from an
external source, substitution method, which replaces non-
responding units with alternative units not selected into
the sample in general at the field-work stage of the survey,
and composite methods, which combines ideas from differ-
ent methods (e.g. hot deck and regression).
Explicit models.
Imputations are based on a formal statistical model of the
predictive distribution of missing data, so the assumptions
are explicit. These procedures can be further described in
terms of two approaches:

– Parametric approach, which includes imputation through
linear regression, the logistic regression, the imputation
via maximum likelihood methods (e.g. with EM algo-
rithm), multiple imputation methods.

– Non parametric approach, which includes the imputa-
tion via non parametric regression [19] and through

47

Boosted Incremental Non Parametric Imputation of
Missing Data

tree-based models [112].

This chapter focuses on non parametric model-based imputation, in
particular by using classification and regression trees combined with
ensemble procedures.

3.4 The incremetal imputation approach

The incremental imputation methodology is based on the assumption
that data are missing at random so that the mechanism resulting in its
omission is independent of its unobserved value. Furthermore, miss-
ing values often occur for more variables. Given a variable for which
data needs to be imputed, and a set of other observed variables, the
method considers the former as response and the latter as predictors
in a tree-based estimation procedure. Indeed, terminal nodes of the
tree are internally homogeneous with respect to the response variable
providing candidate imputation values for this variable. In order to
deal with imputations in many variables the incremental approach is
based on a suitably defined pre-processing schema, generating a lex-
icographic ordering of different missing values [112]. The idea is to
rank missing values that occur in different variables and deals with
these incrementally, i.e, augmenting the data by the previously im-
puted values in records according to the defined order.
Let X be the n× k original data matrix, where there are d < k com-
pletely observed variables and m < n complete records.
Define the matrix R to be the indicator matrix with ij-th entry 1 if xij

is missing and zero otherwise. Summing up over the rows of R yields
to the p-dimensional row vector c which includes the total number of
missing values for each variable. Summing up over the columns of R
yields to the n-dimensional column vector r which includes the total
number of missing values for each record. A two-way re-arrangement of

48

3.4. The incremetal imputation approach

X is performed, one with respect to the columns and one with respect
to the rows. This process allows to define a lexicographic ordering
(Cover and Thomas, 1991; Keller and Ullman, 2001) of the data that
matches the ordering by the number of missing values occurring in
each row and column of X. In particular, the re-arrangement satisfies
the following missing data ranking conditions:

• r1 ≤ r2 ≤ . . . ≤ rn for the rows, with ri the entry for r

• c1 ≤ c2 ≤ . . . ≤ cn for the columns, with cj the entry for c.

As in the X data matrix there are d < k completely observed variables
and m < n complete records, it holds that ri = 0 for i = 1, ...,m and
cj = 0 for j = 1, ..., k.
Let Z be the re-arranged data matrix; it can be partitioned in four
sub-matrices: Am,d, Bm,k−d, Cn−m,d, Dn−m,k−d, where only sub-matrix
D contains missing values while the other three blocks are completely
observed in both rows and columns (see figure 3.1).

The general idea is to use the complete part of Z to impute - via
decision trees - the uncomplete one D, and on the basis of the lexi-
cographic ordering the imputed values enter in the complete part for
the imputation of the remaining missing values. Applying the tree-
based procedure, each variable bearing missing values is considered as
response variable at turn, whereas the remaining variables presenting
either no missing values or imputed values are used as predictors. The
imputation is incremental because, as it goes on, more and more in-
formation is added to the data matrix, block C iteratively is included
in the block A and block D iteratively becomes block B. As a re-
sult, cross-validated trees are used to impute data and the algorithm
performs an incremental imputation of each single data at time.

49

Boosted Incremental Non Parametric Imputation of
Missing Data

Figure 3.1: The Incremental imputation process.
1: The original data matrix X; 2: Re-arrangement according the number of
missing-ness in the columns 3: Re-arrangement according the number of missing-
ness in the rows 4: The final Z matrix partitioned in four blocks. D block contains
missing data, whereas A, B and C blocks are all complete

50

3.5. Boosted Incremental Non Parametric Imputation

3.5 Boosted Incremental Non Paramet-

ric Imputation

The above-mentioned incremental imputation approach is revised in
this section by considering two new concepts:

• the use of ensemble methods (in place of cross-validation) should
provide more robust estimates;

• the incremental imputation of each variable at time (instead of
each single data at time) allows a more efficient algorithm, thus
reducing the computational cost of the overall procedure.

For a n × k data matrix X a lexicographic ordering of the variables
is defined as the k-dimensional vector l =

[
l(1), . . . , l(j), . . . , l(k)

]
such

that l(j) points the column of the variable that is at the j-th position in
the increasing order of all variables in terms of the number of missing
values. It is assumed that at least the first ordered variable presents
no missing values. An imputation algorithm by an ensemble of trees
is considered using as weak learners a stump (a tree with only two
terminal nodes) for imputation of a qualitative binary variable, and
fast trees [84, 83] for the other cases. As ensemble methods, Boosting
algorithms are used [47, 100, 102, 80, 56], and they are preferred to
Bagging [13] specially when a stump is used as learning algorithm
because it is known as a classifier with high bias [61] and, as it is well
known, Bagging works with unstable classifiers. Figure 3.2 shows an
example of the main steps of the basic imputation algorithm. It is
worth noting that numbers associated to the columns correspond to
the values of the lexicographic order vector l(j).

Let Y a n × k matrix bearing missing data where yk is the k-th
variable of Y .

• let R be the number of variable of Y containing missing data;

51

Boosted Incremental Non Parametric Imputation of
Missing Data

Figure 3.2: Boosted Incremental Non Parametric Imputation Algorithm

• for r = 1, . . . , R

– find yr
k∗ as the variable with the smallest number of missing

data, where k∗ : #misk∗ ≤ misk, for k = 1, 2, . . . , k and
#misk > 0;

– sort columns such that the first p variables are complete
and the p+ 1− th is yr

k∗ ;

– sort rows such that the first l rows are complete and the
remaining n− l are missing in the p+ 1− th column;

– let L(r) = {y(r)
nk∗ ,x

(r)
n = (xn1, . . . , xnp)

′
} for n = 1, . . . , l be

the learning sample.
Use a tree-based classifier as weak learner for v-fold Ad-
aBoost iterations to impute the n− l missing data in vari-
able yr

k∗ . Use a STUMP if yr
k∗ is a binary variable, use a

52

3.6. Simulation study

FAST classification tree if yr
k∗ is a multi-class categorical

variable, and use a FAST regression tree if yr
k∗ is a numeri-

cal variable.

• output: all missing data are imputed

3.6 Simulation study

To test how BINPI algorithm works, a simulation study has been
designed. The basic assumption is that missing data are generated
according to a missing at random MAR schema so that a depen-
dence relationship structure among variables is defined. The simula-
tion setting consists in varying both the number of missing values in
the uncompleted variables and the type of relationships between the
uncompleted variables and the complete ones. In each setting, covari-
ates are uniformly distributed in [0, 10] and values are missing with
conditional probability:

Ψ = [1 + exp (α+ β)]−1 (3.4)

BINPI algorithm has been evaluated with respect to standard meth-
ods such as Unconditional Mean Imputation (UMI) and Parametric
Imputation (PI). A further comparison takes account of Incremen-
tal Non Parametric Imputation (INPI). In the following, the case of
missing values generation in nominal covariates (i.e., nominal response
case) is treated separately from the case of missing values generation
in numerical covariates (i.e., numerical missing case).

3.6.1 Binary missing case

In each simulation setting, two different cases are considered, linear as
well as non-linear relationships. Five data structures have been con-
sidered for the nominal response case. The variables under imputation

53

Boosted Incremental Non Parametric Imputation of
Missing Data

are simulated according to the binomial distribution. In the simula-
tion 1, simulation 2 and simulation 3 the parameters characterizing
the distribution of the missing values are expressed as a linear combi-
nation of some of the covariates.

Simulation 1:

Y1 ∼ Bin
(
n, 2+0.35(X1+X2)

10

)
, m1 = {1 + exp [−3 + 0.5 (X1 +X2)]}−1;

Y2 ∼ Bin
(
n, 4+0.35(X2−X3)

10

)
, m2 = {1 + exp [−3 + 0.5 (X2 −X3)]}−1.

Simulation 2 (to simulation 1 the following variable is added up):

Y3 ∼ Bin
(
n, 3+0.35(X3+X4)

10

)
, m3 = {1 + exp [−3 + 0.5 (X3 +X4)]}−1.

Simulation 3 (with respect to simulation 1 the second variable is re-
placed by):

Y2 ∼ Bin
(
n, 5+0.35(X2−X3)

10

)
, m3 = {1 + exp [−3 + 0.5 (X3 +X4)]}−1.

In the simulations 4 and 5 the parameters characterizing the distrib-
ution of the missing values depend on some covariates in a non linear
way.

Simulation 4:

Y1 ∼ Bin (n, |sin (0.3X1 + 0.9X2)|)
m1 = {1 + exp [1.5 + 0.5 (X1 +X2)]}−1;

Y2 ∼ Bin (n, |sin (0.9X2 + 0.3X3)|)
m2 = {1 + exp [1.5 + 5 (0.3X2 + 0.9X3)]}−1.

54

3.6. Simulation study

Simulation 5 (to simulation 4 the following variable is added up):

Y3 ∼ Bin (n, |sin (0.5X3 + 0.5X4)|)
m3 = {1 + exp [1.5 + 0.5 (0.5X3 + 0.5X4)]}−1.

errors Y1 Y2 π1 π2

UMI 0 81 0.2130 0.1620
INPI 2 0 0.2150 0.2430
BINPI 0 0 0.2130 0.2430
TRUE 0.2130 0.2430
missings 203 81

Table 3.1: Simulation 1: main results

Tables from 3.1 to 3.5 show the results of the five simulations con-
cerning the case of missing data presented in dummy variables. Each
simulation was performed with two goals: estimating the expected
value parameter of each binomial distribution (to be compared with
the true value) as well as calculating the number of uncorrect impu-
tations in each variables. Doesn’t matter that an estimation of the
probability of success near to the true value does not imply neces-
sarily a correct imputation. The empirical evidence demonstrates the
overall good performance of BINPI over INPI in terms of accuracy.
This can be justified with two properties of BINPI:

• by definition a larger sample is used to build up the classifier;

• a more accurate learner is considered.

Finally, BINPI provides a variable imputation (instead of a single
data imputation) yielding to a computationally more efficient proce-
dure that can be recommended in the analysis of large data sets such
as in statistical offices surveys.

55

Boosted Incremental Non Parametric Imputation of
Missing Data

errors Y1 Y2 Y3 π1 π2 π3

UMI 0 80 804 0.2120 0.1980 0.1550
INPI 1 0 432 0.2130 0.2780 0.3730
BINPI 0 0 84 0.2120 0.2780 0.7350
TRUE 0.2120 0.2780 0.8190
missings 169 80 808

Table 3.2: Simulation 2: main results

errors Y1 Y2 Y3 π1 π2 π3

UMI 164 78 191 0.6260 0.4350 0.6470
INPI 2 1 1 0.4640 0.5120 0.4570
BINPI 0 0 0 0.4620 0.5130 0.4560
TRUE 0.4620 0.5130 0.4560
missings 169 78 191

Table 3.3: Simulation 3: main results

3.6.2 Numerical missing case

Two different data structures for the numerical response case have
been generated. The variables under imputation are obtained accord-
ing to the normal distribution, and data were missing according to the
conditional probability as in equation 3.4.
Simulation 6 presented missing values in two variables, whereas in
simulation 7 missing data occur in three covariates.

Simulation 6:

Y1 ∼ N (X1 −X2
2 , exp (0.3X1 + 0.1X2))

m1 = {1 + exp [−1 + 0.5 (X1 +X2)]}−1.

56

3.6. Simulation study

errors Y1 Y2 π1 π2

UMI 25 17 0.1630 0.1710
INPI 45 95 0.1870 0.2630
BINPI 24 94 0.1640 0.2620
TRUE 0.1760 0.1880
missings 151 138

Table 3.4: Simulation 4: main results

errors Y1 Y2 Y3 π1 π2 π3

UMI 76 86 77 0.6070 0.6320 0.6190
INPI 70 86 84 0.4510 0.6320 0.5216
BINPI 62 72 66 0.4670 0.6200 0.5600
TRUE 0.5310 0.5460 0.5420
missings 180 170 180

Table 3.5: Simulation 5: main results

Y2 ∼ N (X3 −X2
4 , exp (−1 + 0.5 (0.3X3 + 0.1X4)))

m2 = {1 + exp [−1 + 0.5 (X3 +X4)]}−1.

Simulation 7 (to simulation 6 the following variable is added up):

Y3 ∼ N (X5 −X2
6 , exp (−1 + 0.5 (0.2X5 + 0.1X6)))

m3 = {1 + exp [−1 + 0.5 (X5 +X6)]}−1.

Tables 3.6 and 3.7 show that BINPI algorithm works better than
other techniques. The stump as learning algorithm, even if performs
better than UMI and PI, is not suitable for numerical case. AdaBoost

57

Boosted Incremental Non Parametric Imputation of
Missing Data

µ1 µ2 σ1 σ2

True -28.5621 -27.6313 30.4572 29.8676
UMI -37.3740 -36.2881 23.5282 24.0916
PI -24.1569 -23.4112 36.0030 35.1718

INPI -30.6277 -29.9536 30.4772 30.2005
BINPI -29.2998 -27.9536 29.1428 20.0064

BINPI stump -30.1244 -28.6836 28.8604 28.7842

Table 3.6: Simulation 6: main results

algorithm used in the numerical case is the one as described by Gey
and Poggi [56]. The use of boosting improve imputation performance.

µ1 µ2 µ3 σ1 σ2 σ3

True -28.7185 -28.8756 -28.8333 30.2523 30.1449 30.0950
UMI -37.3008 -38.0560 -37.9888 21.3271 22.8859 24.8487
PI -24.6298 -24.5213 -24.5822 35.3920 35.6813 35.5709

INPI -30.2286 -29.7767 -29.8391 30.6879 30.1415 30.3985
BINPI -29.0670 -29.8364 -28.6490 29.8219 30.2431 30.4518

BINPI stump -29.7880 -30.0284 -29.0653 29.4203 30.0786 29.3984

Table 3.7: Simulation 7: main results

3.7 A real dataset: Boston Housing

Boston housing data set is a well known set of data by UCI machine
learning repository (http://mlearn.ics.uci.edu/). It consists in 13 nu-
merical variables and one dummy variable about housing values in
suburbs of Boston and 506 instances. Data were deleted from three
variables (median value of owner-occupied homes, proportion of resi-
dential land zoned for lots over 25,000 sq.ft, percentage of lower status

58

3.8. Concluding remarks

of the population) according to the conditional probability as in equa-
tion 3.4. Following table summarizes main results of the imputation
process in terms of mean, standard deviation and root mean squared
error (the latter between fitted values and the previously deleted val-
ues from the original dataset).

µ1 µ2 µ3 σ1 σ2 σ3 RMSE
True 11.3636 12.6531 22.5328 23.3225 7.1411 9.1971
UMI 11.1365 12.8810 23.6695 18.8604 5.1030 8.0535 0.4680
PI 11.1015 15.6522 15.5894 11.9853 4.4478 3.7857 0.9753

INPI 11.2378 11.9624 22.0010 19.4274 5.1816 8.9793 0.2653
BINPI 11.3368 12.6649 22.4168 20.0260 6.5952 9.1241 0.1128

Table 3.8: Boston Housing dataset: main results

As it can be seen, always BINPI algorithm works better than
other techniques in terms of mean, standard deviation and root mean
squared error. In general, non parametric techniques tend to impute
missing values better than the parametric ones. The use of AdaBoost
algorithm allows a more accurate imputation. Moreover Fast algo-
rithm is preferred, specially when it is used as weak learner, in terms
of computation cost of the overall procedure.

3.8 Concluding remarks

The incremental non parametric imputation provides a more accurate
imputation compared to other standard methods. The main results
of both the simulation study and the real dataset can be outlined as
follows:

• The non parametric incremental imputation method seems to
impute missing values better than other classic techniques;

59

Boosted Incremental Non Parametric Imputation of
Missing Data

• Within the framework of the incremental imputation approach,
the imputation of a variable at turn is preferred to the imputa-
tion of a single data at turn; this can be understood by thinking
that in the incremental imputation approach, filling in in the
data matrix more informations is better than only one at turn;

• The imputations via boosting algorithm are more accurate than
the ones obtained from single tree-based models. As it is well
known [13], ensemble methods destroy the interpretation of a
tree-based structure because they aggregate several different trees,
but if what we want is a robust and accurate prediction, they
work really well.

In the future, error back-propagation in the framework of the incre-
mental imputation needs to be investigate. In other words, an error
back-propagation, that can occur in the framework of ensemble meth-
ods, and that is part of the incremental approach where the first im-
putation would be characterized by a statistically elevated degree of
error, is likely because the information of every variable in the incre-
mental process results conditioned to the degree of completeness of
themselves.

60

Chapter 4

Robust Incremental
Tree-based Imputation for
Data Fusion

4.1 Introduction

Data Fusion and Data Grafting are concerned with combining files
and information coming from different sources [97]. The problem is
not to extract data from a single database, but to merge information
collected from different sample surveys. The term fusion is used in this
extent. The typical data fusion situation formed of two data samples,
the former made up of a complete data matrix X relative to a first
survey, and the latter Y which contains a certain number of missing
variables. The aim is completing the matrix Y beginning from the
knowledge acquired from the X. As a consequence, the Data Fusion
can be considered as a particular case of data imputation framework,
with the difference that in this case a group of instances is missing as
they have not been observed. In literature, several approaches have

Robust Incremental Tree-based Imputation for Data
Fusion

been introduced dealing with Data Fusion:

• the classical approach such as regression models, general linear
models and logistic regression [72];

• the implicit approach based on the concept of similarity among
the observations deriving from different sources [2];

• the recent non parametric approach that uses non standard re-
gression techniques to impute missing values [7].

In this section, an innovative methodology for Data Fusion, based
on a incremental imputation algorithm using tree-based models, is
proposed. The goal of this approach is the definition of the correla-
tion structure which joins the two data matrices that are object of
the fusion. A recursive use of robust segmentation trees validated by
boosting iterations [47] will be considered. This way, a tree-based in-
cremental data fusion algorithm is defined which proceeds, step by
step, to the completion of the missing instances. This methodology
allows to overcome the situation characterized by the presence of het-
erogeneous kinds of unobserved variables. As a matter of fact, the
tree-based models give the possibility to work, at the same time, with
both qualitative and quantitative data.

4.2 Data Fusion framework

Data Fusion problem can be formalized in terms of two data files [2].
The first data file consists of a whole set of p + q variables measured
on n0 individuals. This data file is called donor file. The second data
file, usually named receptor file, consists in a subset of p variables
measured on n1 units (fig. 4.1).

So, the problem is to merge two different and independent data-
bases. We could imagine two independent surveys named survey A

62

4.2. Data Fusion framework

Figure 4.1: Data Fusion mechanism

and survey B. Say that survey A has been collected in a given su-
permarket, and say that survey B has been collected in a different
supermarket of the same chain. The first set of variables X and X1

are common to both supermarkets, whereas the other set Y is specific
of Survey A. How would customer from second supermarket answers
if we asked the same questions?
The interest in Data Fusion becomes clear at ones: Data Fusion could
be used when there is lack of informations, to cut down costs, to take
profit of existing data, and so on.

Before proceeding with the fusion, pre-fusion conditions should be
verified, indeed the internal relationships of common variables X and
X1 should show a stable pattern [12].
Rius et al. [93, 94] suggests to verify initial conditions by identifying
the common group of variables which define a similar representation
subspace for both data files. Authors choose the common variable
space from the different data sets by performing a Principal Compo-
nent Analysis on X and then they use a branch-and-bound procedure

63

Robust Incremental Tree-based Imputation for Data
Fusion

to eliminate variables in order to find a minimal set of variables of the
common group. In a following step, they analyze the stability of the
common space by bootstrap replications to assure that the association
of the common variables is the same.

4.3 Models for data fusion

In the framework of Data Fusion, usually on distinguish between ex-
plicit models and implicit models [97].

• Explicit models are known as models based on variables.
With explicit models, a model is used to connect Y variables
with the X variables in the donor file and then applying this
model in the receptor file.

• Implicit models are models based on individuals because for
each individual belonging to the receptor file the k-nearest neigh-
bours units of donor matrix are identified to transfer in some way
the values of the Y variables to the receptor observation.

4.3.1 Explicit models

A quite natural idea is to use the cases with complete values of vari-
ables (X, Y) (namely, the donor file) to fit (linear) regressions of Y
on X, and then use these regressions to impute the missing values by
Ŷ . When using regression in this manner some assumptions have to
be verified:

• A good fit of the regression models;

• The constancy of relationship among predictors X and responses
in both surveys;

64

4.3. Models for data fusion

• The null partial correlation of Y given X.

A common problem in the general framework of missing data imputa-
tion when regression models are used to impute missingnes is the lack
of variability of the genuine values [72], because one replaces unknown
values about the regression hyperplane by imputed values on the hy-
perplane [7].

In order to use the EM algorithm, one has to specify a likeli-
hood which requires information or an hypothesis about the generating
mechanism of the data. In fact, EM algorithm provides an iterative
way to maximize the likelihood function of incomplete data. Data im-
puted via EM algorithm suffer from the same lack of variability than
the regression imputed values.

Multiple imputation techniques, based on Bayesian framework
[95], allow to simulate the posterior distribution of the missing values
by imputing each data with several values according to one or more
estimation models. With multiple imputation techniques correct vari-
ances can be achieved, but these tools are really complex and time
consuming [97].

Data Fusion (and missing data imputation) by classification and
regression trees has well known advantages: trees give a unified
treatment of continuous and categorical variables, they provide an easy
tool for multiple imputation, they are relatively insensible to outliers.
Barcena and Tusell [7] defined a data fusion procedure working with a
multiple imputation via classification and regression trees named for-
est climbing algorithm.
Let y1, . . . , yj, . . . , yq be the specific variables belonging to Y block as
shown in fig. (4.1) representing q response variables, and let x1, . . . , xp

be the predictors.

65

Robust Incremental Tree-based Imputation for Data
Fusion

The forest climbing algorithm works by building q classification (or
regression) trees and then by dropping down the trees the individuals
belonging to receptor file. The simplest multiple imputation rule con-
sists in observing terminal nodes in which the ith individual falls for
each tree built according the number of response variable. Figure 4.2
shows this imputation process.
Suppose that in the fusion process we only have two specific variables,
and suppose that the ith individual falls down in the terminal node
number 2 in the tree generated by the first response variable indicated
by T y1

tn2 (the tree on the left side of the figure), and that the same
individual falls down in the terminal node number 6 in the tree gen-
erated by the second response variable indicated by T y2

tn6 (the tree on
the right side of the figure). The intersection Ci

2,6 = T y1

tn2 ∩ T
y2

tn6 of
those two terminal nodes for the same ith individual determines the
multiple imputation rule, since the authors propose to impute for the
ith individual the Y values observed for cases in the training sample
that also fall in C2,6.
If no case in the training sample belongs to one particular intersec-
tion, the algorithm ”climbs” the trees replacing one node at time by
its father until one intersection is verified.

4.3.2 Implicit models

One example of implicit model for Data Fusion is the nearest neigh-
bour imputation. In this way the idea is to replace the missing
values in one case by those of another case in some sense close to it,
according to a pre-defined notion of closeness in the space of common
variables. Nearest neighbours imputation avoids incoherent estima-
tions since the copied values belong to real observations [97] but, in
order to define the closeness which could not be straightforward for
categorical variables, the definition of a suitable distance measure is
needed .

66

4.3. Models for data fusion

Figure 4.2: Multiple imputation by trees.
The arrows represent the path for the same ith individuals for two response vari-
ables. (a) The path for the tree built with the first response variable; (b) The path
for the tree built with the second response variable

The use of factorial techniques as Multiple Correspondence Analy-
sis or Principal Component Analysis provides a Data Fusion procedure
through a file grafting process [93, 3, 4]. File grafting consists in
putting into the same factorial space the information coming from the
(common variables of the) two independent data sets. Provided that
the pattern of relations of X and X1 (see fig. 4.1) is stable, it is pos-
sible to define a common sub-space for both data files by performing
a PCA (or a MCA) on X and then by positioning the elements of X1

upon the same reference space previously obtained. The n1 individuals
belonging to the X1 matrix are positioned as supplementary points,

67

Robust Incremental Tree-based Imputation for Data
Fusion

and the distance between these individuals should be a good approx-
imation of the true distance among these supplementary points.
Once that this grafting procedure is done, Data Fusion consists on
applying a k -nearest neighbors algorithm between the n1 individuals
belonging to the receptor file (which are projected as supplementary
points on the common sub-space created by the factorial technique)
and the n units belonging to the donor file.

Figure 4.3: Neighbourhood in the factorial space.
Circles are individuals belonging to X matrix whereas rhombus are supplementary
points, namely individuals belonging to receptor file. For each individual of X1,
neighbourod is defined by its k -nn in the cloud of individuals of X.

Finally, imputed values for the fusion process are the mean values of
Y variables in the neighbourhood.

68

4.4. Robust Incremental Imputation algorithm for Data Fusion

If a dependence relationship between specific and common vari-
ables is assumed, in the sense that Y block depends on X block,
a Constrained Principal Component Analysis [27] instead of a PCA
can be used as preliminary grafting step for Data Fusion. In this
case, named Data Fusion through Non Symmetrical Grafting [90], the
neighbourhood necessary for the fusion is computed onto the ”asym-
metric” reference sub-space generated by dependence structure of Y
on X.

4.4 Robust Incremental Imputation algo-

rithm for Data Fusion

The incremental approach, showed in the previous chapter, is inte-
grated in a recursive methodology for data fusion that is called Ro-
bust Tree-based Incremental Imputation (RTII).
Figure 4.4 describes the main steps of the proposed imputation algo-
rithm for Data Fusion.
Let the donor file be formed by A and B blocks, let the receptor file
be made by the C block, and let D be the block to impute.
Common variables x1, ..., xp are represented by A and C blocks, whereas
B block symbolizes specific variables y1, ..., yq.

• Step 0.

– Sort B block according to the dependence link with block
A. Build a supervised tree for each y columns, then sort
columns according to the previously obtained best tree.

• Step 1.

69

Robust Incremental Tree-based Imputation for Data
Fusion

Figure 4.4: RTII algorithm. (Grey blocks are missing values)

– Define the input matrix for fusion model; the first ordered
y variable belonging to B block is the response and the
complete variables (A block) are the predictors;

• Step 2.
For k = 1 : q

– Build a supervised tree with V − fold AdaBoost iterations
using blocks A as predictor and Bk as response variable,
and use C to impute missing block Dk;

– Add Bk block to A to make the newA block and add the
imputed block Dk to C one to form the newB block;

• Step 3.

70

4.5. Simulation study: numerical imputations

– The matrix is re-defined to impute a new column.

– back to step 1 until all missing variables are completed;

• Output.

– All variable belonging to D block are imputed

Preliminary step prepares the data matrix to the Fusion process. Spe-
cific variables are sorted according to their dependence link with com-
mon variables. A regression or classification tree is built for each
specific variable, so these variables are sorted according to the best
obtained root mean squared error (or the lower misclassification ratio
for categorical case). The first sorted variable belonging to the block of
the specific ones play the role of response variable in the first iteration
of the iterative imputation process. A supervised tree -as weak learner
for V-fold AdaBoost iterations- is built, as a consequence the common
variables belonging to the receptor file are used to impute the first
missing variable. Both this variable and the specific one are included
in the complete block and then the second sorted variable belonging
to the specific ones is used as response variable. The iterative process
ends when all variables are imputed.

4.5 Simulation study: numerical imputa-

tions

The performance of the proposed method based on Robust Tree-based
Incremental Imputation (RTII) algorithm has been evaluated in a sim-
ulation study.
First example regards the imputation of numerical values, the second
the case of a mixture of variables (both numerical and categorical). In
particular in the latter case, classical procedures cannot work, while

71

Robust Incremental Tree-based Imputation for Data
Fusion

RTII algorithm executes all iterations without problems since tree-
based models deal with both numerical and categorical instances. The
goal is to estimate punctual values of cases to be imputed, and then to
check the overall imputation procedure comparing the imputed vari-
ables with the control set in terms of their distribution. So, goodness
imputation measures are the mean and standard deviation of imputed
variables, the root mean squared error of used method, a measure of
equality of mean between imputed and control variables using t-test,
a measure of equality of variances between imputed and control vari-
ables using Fisher’s test about equality of variances.
Performance of RTII algorithm has been compared with other method-
ologies such as Parametric Imputation via Multiple Regression (PI),
Non Parametric Imputation by Standard Tree (Tree), PCA Fusion ac-
cording to the Aluja et al.’s approach in [3, 4].
Table 4.1 shows the numerical simulation settings.
Simulation study has been defined thinking to reliable situations in
which Data Fusion can be functional, i.e. when the donor file is a
set of socio-economics variables (i.e., age, gender, income, job, etc.).
For that reason, a simulated dataset was built using different random
distributions for the set of common variables (Discrete uniform, Nor-
mal, Continue uniform), whereas specific variables were generated in
both cases without relationship with common variables (according to
normal and uniform distribution) and with linear link with other vari-
ables. Entire data sets were randomly splitted in two sub-sets (donor
file and receptor file), then the part of specific variables belonging to
receptor file was deleted from the data set and used as control set to
check the goodness of imputation.

72

4.5. Simulation study: numerical imputations

Simulation 1
Donor file: 500 observations; Receptor file: 300 obsvervations;

Missing values: 1200
Common variables Specific variables

X1 uniform in {18,65} Y1 = k + 0.3X4 − 0.8X1

X2 uniform in {1,4} Y2 = k − 0.5X5 + 0.1X4 + 2X2

X3 uniform in {1,3} Y3 ∼ N((X1 −X2), exp(0.7X3 + 0.3X1)
X4 ∼ N(100, 10) Y4 uniform in [0,100]
X5 ∼ N(500, 50)

Simulation 2
Donor file: 400 observations; Receptor file: 200 observations;

Missing values: 1000
Common variables Specific variables

X1 uniform in {18,65} Y1 = k + 0.8X2 − 0.2X4

X2 uniform in [10,100] Y2 = k + 0.2X3 + 0.3X1 + 3X6

X3 uniform in [0,100] Y3 = k + 0.6X5 + 0.5X2

X4 ∼ N(200, 30) Y4 uniform in [50,250]
X5 ∼ N(700, 80) Y5 ∼ N(100, 10)
X6 dummy variable

Table 4.1: Simulation settings for numerical case

Figures 4.5 and 4.6 show test error progress through AdaBoost
iterations. The error of boosted tree is always lower than error of
single tree, and it seems to stabilize at the last tens of iterations,
except for the first variable of simulation 2 which reaches a stable rate
of error after about 60 iterations.

73

Robust Incremental Tree-based Imputation for Data
Fusion

Figure 4.5: Simulation 1: Test error progress through AdaBoost iterations

Tables 4.2 and 4.3 show the results of RTII algorithm in comparison
with some standard data fusion technique. For each simulated data
set, tables show in the first two rows the results in terms of mean
and standard deviation of the imputed variables. All mean values are
close to the true means for all techniques, as well as some difference
can be seen in terms of difference in standard deviation. Third row
shows the root mean squared error. Always RMSE of RTII algorithm
is lower than the one of the other methods. Imputations are evaluated
also in terms of t-test for equality of means and F-test for equality of
variances between imputed and control variables. Always t-test is not
significant, as well as F-test is not significant for tree-based methods
(”boosted” and not) in comparison with other techniques (see spe-
cially table 4.3).
As well-known a common problem concerning imputation methods is
to reduce, in a significant way, the variance of imputed distribution.

74

4.5. Simulation study: numerical imputations

Figure 4.6: Simulation 2: Test error progress through AdaBoost iterations

Considering this aspect, a method gives good results when the impu-
tation process does not involve a significant reduction of variance in
comparison with missing distribution [72]. According to this point of
view, Fisher’s test about equality of variances has been used to com-
pare the goodness of the different considered methodologies.
Regarding the tables, it can be noticed how all variables imputed via
Multiple Regression and Factorial approach very often have a P-value
of Fisher’s test close to zero, which drives to refuse the null hypothesis
about equality of variances. On the contrary for the imputation via
RTII algorithm and standard tree, the null hypothesis is never refused
(table 4.3) or the ratio forming the statistical index is sensitively lower
(table 4.2).
In our opinion, this is an important remark because Tree-based meth-
ods, as non parametric tools, are determinant not only for the imputa-
tion of missing values, but above all in terms of variability reconstruc-

75

Robust Incremental Tree-based Imputation for Data
Fusion

tion. Boosting algorithms make the estimate of missing values more
robust, as it can be seen looking at lower root mean squared errors.

Y1 Y2 Y3 Y4
Mean 96.003 253.980 39.688 51.837

Standard deviation 10.671 24.390 3.098 23.601
Root Mean Squared Error 1.794 2.872 3.927 13.746

RTII Fisher’s Variance F stat 1.047 2.872 3.927 13.746
Test P-value 0.347 0.371 0.000 0.000

Compare Means T stat -0.141 -0.069 0.041 0.175
Test P-value 0.444 0.473 0.483 0.430

Mean 95.852 253.990 39.801 49.447
Standard deviation 10.385 22.650 0.000 0.000

Root Mean Squared Error 2.801 4.660 4.934 29.884
Classical Fisher’s Variance F stat 1.109 1.075 2.19E+28 3.33E+28

Tree Test P-value 0.187 0.267 0.000 0.000
Compare Means T stat 0.156 0.373 1.146 -1.278

Test P-value 0.438 0.355 0.126 0.101

Mean 96.569 255.000 39.843 50.176
Standard deviation 7.220 4.967 0.379 4.384

Root Mean Squared Error 7.395 23.472 4.919 30.998
PCA Fisher’s Variance F stat 2.281 23.071 169.870 46.501

(Aluja et al approach) Test P-value 0.000 0.000 0.000 0.000
Compare Means T stat 0.579 0.791 0.834 -0.507

Test P-value 0.281 0.215 0.202 0.306

Mean 95.007 254.080 38.734 50.210
Standard deviation 10.817 23.858 0.312 5.419

Root Mean Squared Error 5.971 6.280 7.880 30.940
Multiple Fisher’s Variance F stat 1.016 1.000 251.190 30.431

Regression Test P-value 0.445 0.500 0.000 0.000
Compare Means T stat -0.140 0.102 0.451 -0.371

Test P-value 0.444 0.459 0.326 0.355

True mean 96.132 253.890 39.605 51.060
True standard Deviation 10.904 23.858 4.942 29.893

Table 4.2: Simulation 1: main results

76

4.6. Simulation study: mixed variables imputation

Y1 Y2 Y3 Y4 Y5
Mean 105.550 206.470 313.250 145.700 100.580
Standard deviation 21.866 54.624 69.789 52.529 39.739

RTII Root Mean Squared Error 3.201 4.192 6.309 10.344 8.439
Fisher’s Variance F stat 1.083 1.006 1.005 1.161 1.117

Test P-value 0.287 0.482 0.486 0.146 0.218
Compare Means t stat 0.132 0.027 -0.084 -0.029 0.043

Test P-value 0.447 0.489 0.467 0.488 0.483

Mean 104.200 205.280 314.550 148.190 101.040
Standard deviation 22034 54.503 69.611 50.490 39.247

Classical Root Mean Squared Error 6.176 8.097 11.701 18.659 15.035
Tree Fisher’s Variance F stat 1,166 1.023 1.013 1.116 1.097

Test P-value 0.140 0.436 0.463 0.220 0.258
Compare Means t stat -0.446 -0.002 -0.073 0.385 0.375

Test P-value 0,328 0.499 0.471 0.350 0.354

Mean 104.170 205.190 311.380 145.890 99.986
Standard deviation 5.454 26.092 35.205 10.522 14.422

PCA Root Mean Squared Error 21.762 46.841 57.996 54.48 38.875
(Aluja et al approach) Fisher’s Variance F stat 17.840 4.462 3.993 28.763 8.441

Test P-value 0.000 0.000 0.000 0.000 0.000
Compare Means t stat -0.673 -0.309 -0.392 0.027 -0.009

Test P-value 0.251 0.379 0.347 0.489 0.497

Mean 103.030 206.753 315.550 146.800 102.210
Standard deviation 28.006 68.402 81.186 68.051 52.131

Multiple Root Mean Squared Error 17.743 19.979 15.960 24.002 29.218
regression Fisher’s Variance F stat 1.478 1.540 1.536 1.541 1.548

Test P-value 0.003 0.001 0.001 0.001 0.001
Compare Means t stat -0.118 0.001 -0.002 0.004 0.047

Test P-value 0.453 0.500 0.499 0.498 0.481

True Mean 105.300 206.520 313.570 145.780 100.010
True Standard Deviation 23.035 55.114 70.349 56.432 41.901

Table 4.3: Simulation 2: main results

4.6 Simulation study: mixed variables im-

putation

A more realistic case occurs when datasets contain both numerical and
categorical data. For this reason a dataset in this way characterized
was simulated. As in previous section, several random distributions
were used to simulate common variables, as well as different relation-
ships bind together specific and common variables.
Table 4.4 shows the simulation setting for the mixed variable impu-
tation. Both common and specific variables are multiclass categorical
(both ordered and unordered), binary and numerical.

77

Robust Incremental Tree-based Imputation for Data
Fusion

In this case, Factorial techniques cannot be suitably used, as well as
classical regression models fail the goal of a unique multiple imputa-
tion of missing data.

Simulation 3

Donor file: 600 observations; Receptor file: 200 observations;

Missing values: 600

G ∼ N(1000, 300): W=k + 1.3X5 − 0.32X4 + exp(0.5X2 − 0.7X3)−1:

X1 = 1 if G < 10th percentile; Y1 = 1 if W < 15th percentile

X1 = 2 if 10th ≤ G < 25th percentile; Y1 = 2 if W ≥ 53th percentile;

X1 = 3 if 25th ≤ G < 75th percentile; Y1 = 3 if 15th ≤ W < 35th percentile;

X1 = 4 if G ≥ 75th percentile Y1 = 4 if 35th ≤ W < 53th percentile;

X2 ∼ N(1500, 450) Y2 = 1 if X5 ∩X4 + exp(0.3X2)−1 < median value

X3 uniform in [1, 350] Y2 = 2 if X5 ∩X4 + exp(0.3X2)−1 ≥ median value

X4 uniform in 1, 10 Y3 = k+uniform in [10, 350]+exp(0.2X3 − 0.5X5)−1 − 1.5X6

X5 ∼ Bin(n, uniform in [0,1])

X6 dummy variable

Table 4.4: Simulation setting for mixed variables imputation case

Figure 4.7 shows the test error progress through AdaBoost itera-
tions for each simulated specific variable.
Goodness of imputation measure for categorical variables is the mis-
classification ratio whereas, as in the previous section, it is the root
mean squared error for the numerical case.
Note how training error for categorical cases reaches to zero after less
than 20 iterations. Note also how test error of boosted classifiers seems
to be stable after about 100 iterations for all imputation cases.

Tables 4.5 and 4.6 show the classification table respectively for the
multiclass and the binary imputation problems.
The misclassification ratio for the multiclass variable is equal to 4%.
Looking at table 4.5, column totals compared to row totals show a

78

4.6. Simulation study: mixed variables imputation

Figure 4.7: Simulation 3: test error progress through AdaBoost iterations

good approximation of the distribution of this variable.
The better predicted category is the second one with an error rate
equal to 1.05%, whereas the worst predicted class is the first one with
a misclassification ratio equal to 12%.

Fitted values
1 2 3 4 Total Error

1 22 0 0 3 25 0.1200
Control 2 0 94 1 0 95 0.0105
values 3 0 0 28 3 31 0.0968

4 0 0 1 48 49 0.0204
Total 22 94 30 54 200 0.0400

Table 4.5: Classification table for four-classes variable fusion imputation

79

Robust Incremental Tree-based Imputation for Data
Fusion

Table 4.6 shows the classification table of the binary variable. Mis-
classification ratio is equal to 3.5% and the boosted classifier classifies
the first category better than the second one.

Fitted values
1 2 Total Error

Control 1 96 2 98 0.0204
values 2 5 97 102 0.0490

Total 102 98 200 0.0350

Table 4.6: Classification table for binary variable fusion imputation

Figure 4.8 shows the box-plot for both control and imputed numerical
variable. As it can be observed, both boxes are similar, even if the
one concerning the imputed variable seems to suggest less variability
with respect to the other one.

Table 4.7 shows the overall good performance of variable imputed
by RTII algorithm in terms of both mean and standard deviation com-
pared to these true indexes. Table shows also t-test and F-test about
equality of respectively mean and variance between control and in-
puted variable. Fisher’s test suggest a good variability reconstruction
of the variable under imputation.

80

4.6. Simulation study: mixed variables imputation

Figure 4.8: Box-plot for both control and imputed variable

Mean 88.0313

Standard deviation 58.9122

Root mean squared error 32.3287

True mean 86.7963

True standard deviation 57.5933

t-stat 0.2120

P-value 0.4161

F-stat 1.0463

P-value 0.3749

Table 4.7: Main results about numerical variable

81

Robust Incremental Tree-based Imputation for Data
Fusion

4.7 Concluding remarks

Data Fusion can be considered as a special case of data imputation
where the values to be imputed are those allowing the merging between
two different sample surveys. This section has provided a methodology
for Data Fusion characterized by three features;

• it considers an explicit non-parametric tool using a tree-based
model;

• the recursive partitioning for data imputation leads to the use
of an incremental approach where more and more information is
added to the data matrix (see section 3);

• the tree validation is robust since boosting iterations are per-
formed.

The overall method, called Robust Tree-based Incremental Imputation,
presents two special advantages;

1. it can be considered for a mixed data structure that includes
both numerical and categorical variables;

2. it allows to better reconstruct the imputed variable distribution
in terms of both mean and variance.

As we remarked at the end of section 3, a possible error back prop-
agation due to the boosted incremental imputation philosophy needs
to be investigated.
Moreover, Data Fusion is more ambitious than ”simple” missing data
imputation: we want to impute never collected values! For this rea-
son pre-fusion conditions need to be more and more deepened. These
aspects will be studied and developed in the next future, always by
recalling Saporta’s words in terms of Data Fusion: one has to be very

82

4.7. Concluding remarks

careful when using data which are estimates and not observations: they
should never used at an individual level. A perverse consequence of
data fusion techniques may result in less effort to collect data, since
we may invert them scientifically [97].

83

Chapter 5

Distance-Based Multivariate
Trees for Rankings

5.1 Introduction

The main achievement of this chapter is the use of a multivariate
tree-structure to understand which predictors and which interactions
of predictors are the most significant to explain the response variable
when this is constituted by rank order preference data or paired com-
parison rankings. A multivariate tree-based structure is the natural
extension of univariate classification and regression trees when the re-
sponse variable is multivariate. Several approaches to this framework
have been developed in the last few years [105, 29, 70, 63] considering
as response variable multivariate distributions. Conceptually, a rank-
ing cannot be considered as a multivariate distribution but, better, as
an unique multidimensional”entity”.

Distance-Based Multivariate Trees for Rankings

5.2 Multivariate regression trees

A Multivariate Regression Tree is the natural extension of univariate
regression trees. Let (Y,X) be a multivariate random variable where
X is a set of K categorical or numerical predictors (X1, ..., Xk, ..., XK)
and Y is the set of J response variables (Y1, ...Yj, ..., YJ). Several split-
ting rules have been investigated to be used in MRT, and consequently
several impurity measures, as well:

∑
i,j

(yij − ȳj)
2 (5.1)

namely the multivariate sums of squared deviations about the mean,
where ȳj = 1

Nt

∑
xi∈t

yi,j

K∑
k=1

(
J∑

j=1

η2
Yj |Xk

wj

)
(5.2)

in which η2 is the Pearson’s squared correlation ratio, and wj is the
proportion of total sum of squares of Yj over the total sum of squares
of all response variables,

i.e. wj =
TSSY j

JP

j=1
TSSY j

.

∑
i,j

|yi,j − ŷj| (5.3)

namely the multivariate sums of absolute deviations about the me-
dian, where ŷj is the median at the node t.

86

5.3. Distance-Based Multivariate Trees for Rankings

1

Nt

∑
i>j,j

d2
ij (y : x ∈ t) (5.4)

namely the sum of squared distances at the node t.
Aim of this work is the use of distance measures as splitting criteria
to discriminate between individuals when Y is a data matrix of rank
orders.

5.3 Distance-Based Multivariate Trees for

Rankings

Building a tree-based structure with rankings as response variable re-
quires the definition of an impurity measure and an assignment. In this
framework, the best way to work with rankings is to define a suitable
distance, which is sufficiently discriminatory to be used as impurity
measure. An important observation is that building a MRT using
the sum of squared Euclidean distances or the multivariate sums of
squared deviations about the mean leads to the same results. Specifi-
cally we have∑

i

∑
j

d2
ij(X) =

∑
i

∑
j

∑
a

(xia − xja)
2

=
∑

i

∑
j

∑
a

((xia − x̄a)− (xja − x̄a))
2

=
∑

i

∑
j

∑
a

(xia − x̄a)
2 +

∑
i

∑
j

∑
a

(xja − x̄a)
2

= n
∑

i

∑
a

(xia − x̄a)
2 + n

∑
j

∑
a

(xja − x̄a)
2

= 2n
∑

i

∑
a

(xia − x̄a)
2

87

Distance-Based Multivariate Trees for Rankings

where double product term is zero because a simple difference of values
around its averages. From previous results we have:

2n
∑

i

∑
a

(xia − x̄a)
2 =

∑
i

∑
j

d2
ij (X)∑

i

∑
a

(xia − x̄a)
2 =

1

2n

∑
i

∑
j

d2
ij (X) =

1

n

∑
i>j

∑
j

d2
ij (X)

In conclusion, there is no difference in growing a MRT choosing
impurity as in equations 5.1 or 5.5 using as metric the Euclidean dis-
tance. In the framework of preference rankings, problems can arise
when someone has to choose a measure of distance between rankings.
A general distance measure should at least ensure that equal prefer-
ence structures must have zero distance, and as the difference in these
structures increases their distance has to increase. Euclidean distance
does not seem the best one to work with rankings, nevertheless other
constraints have to be added to limit the choice of a feasible measure
to be used with such structured response matrix variable.

88

5.3. Distance-Based Multivariate Trees for Rankings

5.3.1 The Kemeny distance

Kemeny [67] introduced several constraints that a suitable distance
measure for rankings should satisfy:

1. The distance measure should be a metric, so it must satisfy the
following properties:

• non negativity: d(A,B) ≥ 0

• symmetry: d(A,B) = d(B,A)

• triangular inequality: d(A,B) + d(B,C) ≥ d(A,C)

2. The measure of distance should not be affected by a relabeling
of the set of objects to be ranked;

3. If two rankings are in complete agreement at the beginning and
at the end of the list and differ only in the middle, than the
distance does not change after deleting these two rankings;

4. The minimum positive distance is one.

Kemeny introduced a convenient representation for a ranking of n
objects. By choosing n = 3, one can represent the ranking A by a
square matrix (called score matrix) A = {aij}, where i, j=1,2,...,n.
He used the following convention

aij =

1 if object i preferred to the object j

−1 if object j is preferred to th object i

0 if they are tied

For example, the ranking [b {ac}] is represented by

a b c
a 0 -1 0
b 1 0 1
c 0 -1 0

89

Distance-Based Multivariate Trees for Rankings

The relationship aij = 1 expresses that i is preferred to j. Such a
preference relation must be asymmetric and transitive. Hence,

• if aij = 1, then aji = −1.

• if aij = 1, and ajk = 1, then aik = 1.

The relationship aij = 0 expresses that i and j are tied. Such an
equivalence relation must be reflexive, symmetric and transitive.
That is,

• aii = 0

• if aij = 0, then aji = 0.

• if aij = 0, and ajk = 0, then aik = 0

The two relations must be consistent, for example,

• if aij = 1, and ajk = 0, then aik = 1

• if aij = 0, and ajk = 1, then aik = 1

In short, these conditions can be expressed more simply as follows:

1. aij = 1, or −1.

2. aij = −aji.

3. if aij ≥ 0 and ajk ≥ 0, then aik ≥ 0; and aik = 0 only if both the
others are 0.

These conditions are uniquely satisfied computing a distance in this
way:

• If there are two judges that have to rate two objects B and A,
distance counts 0 if there is judgement uniformity between the
raters, i.e. B is preferred over A for both judges;

90

5.3. Distance-Based Multivariate Trees for Rankings

First choice Second choice

Judge A

Judge B

Table 5.1: The distance between two judges is 0

• Distance counts 2 if disagreement occurs in the preference of the
judges, i.e. for a rater B is preferred to A and for the other A is
preferred to B;

First choice Second choice

Judge A

Judge B

Table 5.2: The distance between two judges is 2

• Distance counts 1 if one judge prefers an object over the other,
where the other does not make a decision between objects, i.e. B
is preferred to A for the first rater while B and A are considered
tie for the other one.

Although Kemeny never called such distance with a name, it is
known as the Kemeny distance [114, 123].

91

Distance-Based Multivariate Trees for Rankings

First choice Second choice

Judge A

Judge B and

Table 5.3: The distance between two judges is 1

To compute the Kemeny distance one can proceed as follow:
Let Y a n by k data matrix containing the preference patterns of n
individuals for k objects, construct a n by k(k− 1) matrix P in which
each column represents one pair of objects.
After the computation of

pi[KL] = sign(yiK − yiL)

The Kemeny distance is

kemdij =

1
2
k(k−1)∑

[KL]=1

∣∣pi[KL] − pj[KL]

∣∣
It easily can be seen that Kemeny distance is in fact a city-block
distance, while taking the square root of kemdij this measure fits into
Euclidean space [114].

92

5.3. Distance-Based Multivariate Trees for Rankings

As impurity measure we choose the sum of Kemeny distances at the
node t, because it is the unique satisfying all the previously indicated
axioms:

i(t) =
1

Nt

∑
i>j,j

kemdij (y : x ∈ t) (5.5)

5.3.2 Consensus Ranking

Given m rankings of n objects, what ranking best represents the con-
sensus opinion? So, the consensus ranking should be that point which
is in best agreement with the set of selected rankings. Defining a con-
sensus ranking is necessary in the framework of tree-based models,
because we have to assign class ranking in each node (terminal and
internal) of the tree-structure. Kemeny [67] defined two types of con-
sensus rankings, namely the median ranking and the mean ranking.

Let A1, ...AM be a set of points not necessarily distinct.
The median ranking of the set is that point (or these points) B for
which

m∑
i=1

kemd (Ai, B) = min (5.6)

The mean ranking of the set is that point (or these points) B for which

m∑
i=1

kemd (Ai, B)2 = min (5.7)

Unfortunately, finding the consensus ranking is known to be a NP-
hard problem [42]. In fact, the number of orderings of n objects is
closely approximated by:

N(n) ≈
Cn+1 (n!)

2
(5.8)

93

Distance-Based Multivariate Trees for Rankings

where C = 1/ln2
The following table shows how the number of orderings increases when
the number of the objects to be ranked increases.

Objects # of orderings
2 3
3 13
4 75
5 541
6 4683
7 47293
8 545835
9 7087261

10 102E+08

For that reason, several heuristic methods to approximate the con-
sensus ranking have been proposed. For example, the mean rank
numbers for a set of options can be approximated by summing the
rankings for each option, dividing the sum by the number of judges
and rearranging the options according to increasing mean ranks [123].
To approximate the median ranking one can invert adjacents options
in the mean ranking and check if the total number of inversions from
individuals rankings diminishes; if it does not, the search stops, oth-
erwise the current pair of options is inverted and the new ranking is
the candidate for the solution [44].

5.3.3 Prediction error

To evaluate the quality of a tree-based structure, the definition of
a measure of error is necessary. Conceptually, a ranking cannot be
considered as a multivariate distribution but, better, as an unique

94

5.3. Distance-Based Multivariate Trees for Rankings

multidimensional ”entity”. For that reason, to evaluate the quality
of a distance-based multivariate tree for rankings, a comparison of
the distance between the rankings which contribute to build the tree-
based structure and the fitted rankings needs to be made. Suppose
that following table represents the rankings of ten people on six objects
(in the table, the higher is the number the better is the position of the
object in the order: i.e., in the first row the order is b a d c e f, in the
second row the order is e b a (cdf), and so on):

Objects
a b c d e f
4 5 2 3 1 0
2 4 0 0 5 0
4 2 2 5 2 0
4 3 0 5 0 2
2 3 1 2 1 5
5 4 2 2 0 0
3 4 0 1 5 2
4 5 1 3 0 2
2 4 2 1 2 0
4 5 1 0 3 1

Suppose again that the following table represents an imaginary fitted
rankings of a tree-based classifier:

95

Distance-Based Multivariate Trees for Rankings

Objects
fa fb fc fd fe ff
4 5 2 3 1 0
4 4 1 1 1 1
4 2 2 5 2 0
4 3 0 5 0 2
2 4 1 2 1 3
4 4 1 1 1 1
2 4 1 2 1 3
4 5 1 3 0 2
2 4 2 1 2 0
4 5 1 0 3 1

Distance matrix D between observed and fitted rankings (computed
using Kemeny distance) is the following:

96

5.3. Distance-Based Multivariate Trees for Rankings

The error of this imaginary tree-structure can be computed by sum-
ming the Kemeny distances between each pair of observed rankings
and fitted rankings, that is, summing over the diagonal elements of
one of the two off-diagonal sub-matrices involving the distance be-
tween observed and fitted rankings. For example, as the ranking of
the first person is perfectly fitted by the tree, the Kemeny distance
between o1 (observed 1) and f1 (fitted 1) is 0; distance between o2

and f2 is 8, and so on. Calling this sub-matrix offD, we define the
prediction error at generic node t as

R(t) =
∑
i=j

offD
t
ij = tr

(
offD

t
)

(5.9)

where offD
t is the distance sub-matrtix relative to the generic node

t, and R(t) is the error at tth node. By the definition of impurity
of the distance-based multivariate tree for rankings follows that the
maximum error is the one computed in the root node, so a measure
for the relative error in the generic t node is

R(t) =

∑
i=j

offD
t
ij∑

i=j
offDroot

ij

=
tr (offD

t)

tr (offDroot)
(5.10)

If T̃ is the set of all terminal nodes, the error of the overall tree-
structure is

R(T) =
∑
t∈T̃

R(t) (5.11)

This definition of prediction error allows reaching for an error equal
to zero if the tree perfectly fits, and equal to one if the tree is not
discriminatory at all.

97

Distance-Based Multivariate Trees for Rankings

5.3.4 Searching for the consensus ranking

Emond & Mason [42] showed that an extension of Kendall’s tau,
named τX (tau extension) is equivalent to the Kemeny distance, while
it is not true for the ”classical” τ . The difference between Kendall’s
tau and this new correlation coefficient concerns only the way in which
ties are handled. Briefly, for any ranking A of n objects Kendall de-
fined a score matrix {aij}

aij =

1 if object i is ranked ahead of object j

−1 if object i is ranked behind object j

0 if objects are tied, or if i = j

For example, if one person judges four objects (A,B,C,D) in this way

Ordering
B C
A
D

the score matrix is

A B C D
A 0 -1 -1 1
B 1 0 0 1
C 1 0 0 1
D -1 -1 -1 0

Kendall’s coefficient is then

98

5.3. Distance-Based Multivariate Trees for Rankings

τb (A,B) =

∑
i

∑
j

aijbij√∑
i

∑
j

a2
ij

∑
i

∑
j

b2ij

(5.12)

Emond and Mason showed that the metric distance associated to this
coefficient fails the triangular inequality. Representing the score ma-
trix in the following way

aij =

1 if object i is ranked ahead of object j, or if they are tied

−1 if object i is ranked behind object j

0 if i = j

Score matrix relative to the previous ordering is

A B C D
A 0 -1 -1 1
B 1 0 1 1
C 1 1 0 1
D -1 -1 -1 0

Emon and Mason define the new correlation coefficient as

τX (A,B) =

∑
i

∑
j

aijbij

n(n− 1)
(5.13)

and they proved that it is equivalent to

1− 2d(A,B)

n(n− 1)

where d(A,B) is the Kemeny distance.

99

Distance-Based Multivariate Trees for Rankings

Consensus ranking

Given m weak orderings of n objects, A1, ..., Am, where each order-
ing carries a positive weight wk, consensus ranking S is the one that
maximizes the weighted average correlation with the m input rank-
ings, or equivalently is the one that minimizes the weighted average
distance to the m input rankings.

maximize :

∑m
k=1wkτX(S,Ak)∑wk

k=1

(5.14)

If {sij} and
{
ak

ij

}
are the scoring matrices for S and Ak, the problem

is:

maximize :
m∑

k=1

wk

{
n∑

i=1

n∑
j=1

sija
k
ij

}
= maximize :

n∑
i=1

n∑
j=1

sijcij

(5.15)

Where cij =
∑n

k=1wka
k
ij

Score matrix {cij} is called by Emond and mason Combined Input
Matrix (CI) because it is the result of a summation of each input
ranking. So, as all the rankings information can be summarized in a
single matrix, this way to find the best approximation to consensus
ranking seems the more tractable. Moreover, score matrix {cij} is a
natural and accredited candidate to be the consensus ranking.
Authors conceived a branch-and-bound algorithm to maximize equa-
tion 5.15 by defining an upper limit on the value of that dot product.
This limit, considering that the score matrix consists only of the values

100

5.3. Distance-Based Multivariate Trees for Rankings

1, 0 and −1, is given by the sum of absolute values of its elements:

V =
n∑

i=1

n∑
j=1

|cij|

If a weak ordering of n objects is given as initial solution, it is possi-
ble compute the associated score matrix {sij} and evaluate the value
of expression 5.15. Then it is possible define an initial penalty P by
subtracting this value from V . The problem is to search the set of all
weak orderings of n objects to find those with the minimum penalty.
This set can be divided into three mutually exclusive branches based
on the relative position of the first two objects in the ordering rep-
resented in the initial solution, labeled as i and j. An incremental
penalty for each of the branches can be calculated, by considering the
corresponding elements cij and cji of the CI matrix, as follow;
Let δP be the incremental penalty:

• object i is preferred to object j (Branch 1):
if cij > 0 and cji < 0, then δP = 0
if cij > 0 and cji > 0, then δP = cji
if cij < 0 and cji > 0, then δP = cji − cij

• object i is ex aequo with object j (Branch 2):
if cij > 0 and cji < 0, then δP − cji
if cij > 0 and cji > 0, then δP = 0
if cij < 0 and cji > 0, then δP = −cij

• object j is preferred to object i (Branch 3):
if cij > 0 and cji < 0, then δP = cij − cji
if cij > 0 and cji > 0, then δP = cij
if cij < 0 and cji > 0, then δP = 0

If the incremental penalty for any branch is greater than the initial
penalty, then stop considering it because all orderings on the branch

101

Distance-Based Multivariate Trees for Rankings

will have a total penalty larger than the initial one.
If the incremental penalty of a branch is less than (or equal to) the ini-
tial penalty, consider the next object in the initial solution and create
new branches by placing this object in all possible positions relative
to the objects already there.
Continue in this way (by including all other objects) until all branches
are exhausted or until a branch is followed to the end.
A weak ordering of n objects whose total penalty is less than or equal
to the (current) minimum penalty have been found. The current
penalty is then updated and continue in this way until the entire set
has been searched [42].

5.4 Simulation case study

The codes to run the Distance-Based Multivariate Tree for Rankings
were wrote in MatLab environment. To evaluate the goodness of our
code, a set of rankings was simulated to check if codes were correct.
The following table shows the simulation settings.

Without considering ties, the set of 24 rankings coming from 4
objects was extracted with probability indicated in the last column.
To get this probability distribution, a number in [1, 24] was extracted
from a uniform distribution 150 times, then a random number from
standard normal distribution was added to the proportion of each
extracted number. The sample size was equal to 274 units and a
vector indicating each rank (without noise) was used as predictor. The
following figure shows the resulting Distance-Based Multivariate Tree
for Rankings (DBMTR), as well as table 5.4 summarizes the output
of the tree (up to the terminal nodes).

102

5.4. Simulation case study

Ranking Probability
A B C D
1 2 3 4 0.069
1 2 4 3 0.017
1 4 2 3 0.044
4 1 2 3 0.035
4 1 3 2 0.065
1 4 3 2 0.055
1 3 4 2 0.033
1 3 2 4 0.001
3 1 2 4 0.060
3 1 4 2 0.342
3 4 1 2 0.045
4 3 1 2 0.058
4 3 2 1 0.067
3 4 2 1 0.054
3 2 4 1 0.013
3 2 1 4 0.030
2 3 1 4 0.068
2 3 4 1 0.067
2 4 3 1 0.023
4 2 3 1 0.065
4 2 1 3 0.042
2 4 1 3 0.026
2 1 4 3 0.060
2 1 3 4 0.001

As expected, there are 24 terminal nodes (one for each ranking),
and the impurity at terminal nodes (namely, the kemeny distance
within each termninal node) is equal to zero.

103

Distance-Based Multivariate Trees for Rankings

Figure 5.1: Example of DBMTR

104

5.5. A real dataset: university rankings

Terminal # terminal Size at Ranking Kemeny distance
nodes node node A B C D at node

1 5 5 1 4 2 3 0
2 9 3 1 2 4 3 0
3 13 19 4 1 3 2 0
4 29 15 1 3 4 2 0
5 121 13 3 1 4 2 0
6 241 7 3 1 2 4 0
7 489 19 4 3 1 2 0
8 491 9 3 4 2 1 0
9 987 25 2 3 1 4 0
10 989 11 2 4 3 1 0
11 1983 5 2 4 1 3 0
12 63 4 2 1 3 4 0
13 8 30 1 2 3 4 0
14 12 11 4 1 2 3 0
15 28 11 1 4 3 2 0
16 240 3 1 3 2 4 0
17 488 7 3 4 1 2 0
18 490 20 4 3 2 1 0
19 492 6 3 2 4 1 0
20 986 5 3 2 1 4 0
21 988 12 2 3 4 1 0
22 990 16 4 2 3 1 0
23 1982 5 4 2 1 3 0
24 62 13 2 1 4 3 0

Table 5.4: DBMTR output on simulated data

5.5 A real dataset: university rankings

University rankings dataset was analysed by Dittrich et al. to inves-
tigate paired comparison data concerning European universities and
student’s characteristics with the goal to show that university rank-
ings are different for different groups of students [34].
A survey of 303 students studying at the Vienna University of Eco-

105

Distance-Based Multivariate Trees for Rankings

nomics was carried out to examine the student’s preference of six uni-
versities, namely London, Paris, Milano, St. Gallen, Barcelona and
Stockholm. The data set contains 23 variables. The first 15 digits in
each row indicate the preferences of a student. For a given compar-
ison, responses were coded by 1 if the first preference was preferred,
by 2 if the second university was preferred, by 3 if universities are
tied and by 4 if response was missing. All rows containing value 4
(missing response) were skipped, as suggested by authors. The first
question was how to prepare the matrix of response variable Y to
built the DBMTR. We have 6 universities and 15 variables indicating
paired comparison. For each student, the number of time in which, in
comparing ith and jth university the ith university was preferred was
counted.

List of the

(
6

2

)
= 15 paired comparison variables is:

• LP: comparison of London to Paris;

• LM: comparison of London to Milano

• PM: comparison of Paris to Milano

• LSg: comparison of London to St. Gallen

• PSg: comparison of Paris to St. Gallen

• MSg: comparison of Milano to St. Gallen

• LB: comparison of London to Barcelona

• PB: comparison of Paris to Barcelona

• MB: comparison of Milano to Barcelona

• SgB: comparison of St. Gallen to Barcelona

106

5.5. A real dataset: university rankings

• LSt: comparison of London to Stockholm

• PSt: comparison of Paris to Stockholm

• MSt: comparison of Milano to Stockholm

• SgSt: comparison of St. Gallen to Stockholm

• BSt: comparison of Barcelona to Stockholm

In example, the following are 2 rows of the paired comparison matrix:

LP LM PM LSg PSg MSg LB PB MB SgB LSt PSt MSt SgSt BSt

1 3 2 1 2 1 1 2 1 1 1 2 1 1 2

1 1 2 1 1 1 1 2 2 2 1 3 1 3 1

In the first row, London is preferred to Paris, St. Gallen, Barcelona
Stockholm (LP, LM, LSg, LB and LSt are always equal to 1), and there
is no preference between London and Milano (they are tied); Milano
is preferred to Paris (PM = 2), St. Gallen, Barcelona and Stockholm;
and so on. So, response matrix Y for this example is:

L P M Sg B St
4 0 4 1 2 1
5 1 3 0 4 0

The ranking of the first individual is [{London Milano} Barcelona {St.
Gallen Stochkolm} Paris] as well as the ranking for the second unit is
[London Barcelona Milano Paris {St. Gallen Stochkolm}].

The following 8 digits represent the subject-specific covariates, namely:

• X1: (S) Main discipline of study: 1 = commerce; 2 = other;

• X2: (Eng) Knowledge of English: 1 = good; 2 = poor;

107

Distance-Based Multivariate Trees for Rankings

• X3: (Fra) Knowledge of French: 1 = good; 2 = poor;

• X4: (Spa) Knowledge of Spanish: 1 = good; 2 = poor;

• X5: (Ita) Knowledge of Italian: 1 = good; 2 = poor;

• X6: (W) Full-time employment while studying: 1 = no; 2 = yes;

• X7: (D) Intention to take an international degree: 1 = no; 2 =
yes;

• X8: (Sex) Sex: 1 = female; 2 = male;

Note that all predictors of this (real) data set are binary (yes/no,
good/poor, etc.). Nevertheless the resulting tree-structure is quite
extensive, as it can be seen looking at figure 5.5.
Circles represent parent nodes, as well as rectangles symbolize terminal
nodes.
The number above nodes indicate node number, whereas strings below
nodes indicate split variable.
The figure has to be read together with table 5.5.
The shortest path is the one getting to terminal nodes 10 and 11. Stu-
dents having poor knowledge of French and good knowledge of Italian
and willing to take an international degree express the ranking: [Lon-
don Milano Paris Barcelona {St. Gallen Stochkolm}]. If they have
no intention to take international degree, the preferred university is
Milano, then London and St. Gallen are tied to the second place and
all the other are tied at the third place.
In general, students with good knowledge of Italian and Spanish show
preference for Milano (terminal nodes 11 and 29) and Barcelona (ter-
minal node15) respectively. Paris is preferred by working-students
that have good knowledge of French and Italian and that don’t study
business sciences, as well as it is preferred for students of commer-
cial disciplines that speak Spanish. London is preferred by students

108

5.5. A real dataset: university rankings

speaking good English and having intention to take an international
degree. Second best are, in this case, Paris and sometimes Barcelona.
Language skills govern the preferences for the universities. Probably
Stockholm is less attractive than others because Swedish language is
not well known as other languages.

Figure 5.2: DBMTR on university rankings data

The last column of table 5.5 shows the impurity at each node, defined
as the sum of within-node kemeny distance. Impurity at root node is

109

Distance-Based Multivariate Trees for Rankings

equal to 1336.90, whereas the overall impurity of the tree is equal to
51.38. The difference between these two measures is 1285.52, which
means that the decrease in impurity is equal about to 96%.
The performance of the analysis in terms of prediction error as defined
in equation 5.9 is quite poor: the error at the root node is equal to
14.98 whereas the error of the tree-structure is equal to 7.70 with the
meaning that the error rate of the tree is equal to 51.42%.
Doubtless this depends on the nature of predictors (all binary vari-
ables), nevertheless according our opinion it is normal to obtain low
error rates with this kind of response variable: recall that, consider-
ing ties, there are 4683 possible orderings (see equation 5.8) when 6
objects have to be ordered.

110

5.5. A real dataset: university rankings

Node Size at Parent Impurity
number node Rule node Ranking at node

1 212 Knowledge of French: poor’ Root node L P {M Sg B} St 1336.90
2 74 Knowledge of Italian: poor’ 1 L B Sg {P M St} 168.30
4 59 Intention of international degree: yes’ 2 L B Sg St {P M} 102.25
8 20 Knowledge of Spanish: poor’ 4 L Sg {B St} {P M} 11.01
16 18 Full-time employment: yes’ 8 L Sg B St {P M} 8.75
33 17 Knowledge of English: poor’ 16 L Sg B St {P M} 7.93
9 39 Knowledge of English:poor’ 4 L B P {M Sg St} 44.00
18 18 Main discipline of study: commerce’ 9 L {B P} {M Sg St} 8.09
19 21 Knowledge of Spanish: poor’ 9 {L B} Sg P {M St} 13.09
5 15 Intention of international degree: yes’ 2 M L P {Sg B St} 5.97
3 138 Knowledge of Italian: poor’ 1 L P {M Sg B} St 524.25
6 117 Main discipline of study: commerce’ 3 L P {M Sg B} St 372.91
12 47 Knowledge of Spanish: poor’ 6 {L P} B {M Sg} St 51.10
24 38 Sex: male’ 12 {L P} {B M Sg} St 32,91
48 21 Knowledge of English: poor’ 24 P L Sg B {M St} 10.40
97 17 Intention of international degree: yes’ 48 P L B Sg {M St} 6.25
49 17 Knowledge of English: poor’ 24 L P M B {Sg St} 5.58
99 15 Intention of international degree: yes’ 49 L P M {Sg B St} 4.53
13 70 Full-time employment: yes’ 6 L P {M Sg B} St 142.17
27 64 Intention of international degree: yes’ 13 L P Sg {M B St} 118.58
54 19 Knowledge of English: poor’ 27 {L P} Sg {M B} St 10.34
109 16 Sex: male’ 54 L P {M Sg B} St 6.86
55 45 Knowledge of English: poor’ 27 L P Sg {M B St} 57.30
111 39 Sex: male’ 55 L P Sg {M B St} 43.56
222 21 Knowledge of Spanish: poor’ 111 L P Sg {M B St} 12.38
7 21 Knowledge of Spanish: poor’ 3 L M P {Sg B} St 10.73
14 15 Main discipline of study: commerce’ 7 {L M} P Sg B St 4.70
17 2 Terminal node 8 B L St {P M Sg} 0.07
67 7 Terminal node 33 L Sg B P St M 1.34
37 14 Terminal node 18 L P B {M St Sg} 4.78
39 8 Terminal node 19 L B {P Sg} {M St} 1.45
11 8 Terminal node 5 M {L Sg} {P B St} 1.13
25 9 Terminal node 12 P L B M {Sg St} 1.59
195 5 Terminal node 97 P L B {M Sg St} 0.50
199 8 Terminal node 99 {L P} {M B} {Sg St} 1.30
219 10 Terminal node 109 P L Sg {M B} St 2.52
223 18 Terminal node 111 L St {P Sg} {M B} 9.08
445 3 Terminal node 222 L Sg St P {M B} 0.16
15 6 Terminal node 7 B L P {M Sg} St 0.76
29 7 Terminal node 14 M L Sg P B St 0.88
32 1 Terminal node 16 Sg L St M M P 0.00
66 10 Terminal node 33 {L Sg} St {P M B} 2.52
36 4 Terminal node 18 L St B {P M Sg} 0.25
38 13 Terminal node 19 L B {Sg St} {P M} 5.29
10 7 Terminal node 5 L M P B {Sg St} 1.42
96 4 Terminal node 48 P {L Sg} M {B St} 0.39
194 12 Terminal node 97 P L Sg B M St 3.00
98 2 Terminal node 49 L P {M Sg B} St 0.01
198 7 Terminal node 99 P L M {B St} Sg 0.90
26 6 Terminal node 13 P {L M B} Sg St 0.80
108 3 Terminal node 54 {L Sg} {M B} P St 0.25
218 6 Terminal node 109 L P {M Sg B St} 0.83
110 6 Terminal node 55 L {P M} Sg {B St} 0.76
444 18 Terminal node 222 L P Sg {M B St} 9.13
28 8 Terminal node 14 {L P} M {Sg B St} 1.13

Table 5.5: DBMTR output

111

Distance-Based Multivariate Trees for Rankings

5.6 Concluding remarks

In this chapter a tree-based model dealing with preference rankings
response matrix has been introduced.
Preference decisions usually depend on the characteristics of both the
judges and the objects being judged. This theme has been handled in
literature with log-linear representation of generalized Bradley-Terry
model [34, 35].
This new approach is neither better nor worst than the other: it is
just a new method. Of course there are several advantages in using
tree-based methods: interpretation easiness, they provide an intuitive
graphical representation, don’t require the specification of a model
structure, consider conditional interactions among variables.
As well known, tree-based models have two main aims: explanatory
and confirmatory.
When they are used in the former sense, trees allow observing inter-
actions between rankings and covariates, and catching the differences
in preference for different groups of individuals. As confirmatory tools
trees can be used to predict preference rankings.
There are several phases in tree growing:

• the definition of an impurity measure;

• the definition of a splitting criterion;

• the assignment of classes at each node;

• the definition of a prediction error.

As impurity measure the sum of Kemeny distance at the generic node
was chosen. There are several distance models dealing with preference
rankings [78, 62, 1], but we chose Kemeny distance because it is the
unique metric which satisfies a set of axioms that a suitable distance
measure for rankings should satisfy [67].

112

5.6. Concluding remarks

As a consequence, the minimization of the within-node Kemeny dis-
tance was chosen as splitting criterion.
We chose the consensus ranking as class-assignment rule, in the sense
that the generic node is assigned to the ranking that represent the
best representation of the overall set of preferences. The consensus
ranking is defined as that ranking for which the sum between itself
and the entire set of rankings is a minimum [67, 42].
Within the framework of classification and regression trees, the pre-
diction error is defined as the misclassification ratio when referred to
classification trees, whereas it coincides with the impurity when re-
ferred to regression trees. For the Distance-Based Multivariate Tree
for Rankings the prediction error was defined as the sum of the diago-
nal elements of the distance sub-matrix between the ith observed and
fitted ranking (see equation 5.9).
Tree growing stops when a stopping rule occurs (bound on the de-
crease in impurity, bound on the number of observations, bound on
the tree size).

New developments will be about DBMTR. In example the investi-
gation of the prediction error definition to develop a pruning proce-
dure, or a faster way to generating split. Indeed the second aim of
a tree-based method (the confirmatory purpose) needs to be investi-
gated. Moreover, the computational cost of the DBMTR is quite hard:
recall that finding the consensus ranking is known to be a NP-hard
problem. A binary tree with n terminal nodes has a total of 2n − 1
nodes, as a consequence of the computation of 2n− 1 consensus rank-
ings. A way to define fastest splits according the FAST philosophy
[84] has our highest research priority.

113

Conclusions

Tree-based models have been reaching a great interest in the scientific
community, considering two main purposes: explanatory and confir-
matory. With respect to the former, so far in literature partitioning
procedures have been proposed taking into account different types of
variables, such as nominal, ordinal and numerical. As a matter of fact,
trees have been never dealt with preference rankings. This thesis has
provided a suitable methodological approach to exploratory tree-based
modeling preference ranking. As it concerns the confirmatory purpose,
several methods based on decision trees have been proposed but their
use to specific context applications require further investigation and
methodological development. This is the case of statistical data edit-
ing, in particular missing data imputation and data fusion, for that
suitable decision tree-based methods and algorithms have been pro-
vided.

As a result, this thesis has focalized the attention on two differ-
ent frameworks: data editing (within the confirmatory approach) and
preference rankings (within the exploratory approach).

As it concerns the first framework, trees have been recently pro-
posed as nonparametric method for statistical data editing. The main
goal of statistical data editing is to define improved procedures and

115

Conclusions

greater automation to enhance the ability of survey managers and an-
alysts to get published estimates. Data editing is a preliminary step
of Knowledge Mining, such to obtain a database characterized by ho-
mogeneous, complete, coherent, and, in general, validated data from
the quality point of view. In this context, the thesis has focalized
the attention on missing data imputation and data fusion working on
the definition of suitable methods based on decision trees in order to
improve the accuracy of tree-based data imputation as well as to get
the tree-based fusion of data sets discarding the nature of variables,
respectively.

A general tree-based methodology for missing data imputation as
well as specific algorithms to obtain the final estimates have been pro-
vided in this work. Following the incremental imputation philosophy
based on cross-validated decision trees and a lexicographic ordering of
the single data to be imputed, this work has considered an ensemble
method characterized by boosting algorithms where tree-based models
have been used as learner. Furthermore, the incremental imputation
has concerned missing data of each variable at turn.
As a result, the BINPI algorithm (Boosted Incremental Non Para-
metric Imputation) has been developed: it uses a STUMP as weak
learner when the variable under imputation is binary, whereas it uses
a tree when the variable to be imputed is multi-class or numerical.
The algorithm was tested on several simulated data sets as well as
on a well known real data set from UCI machine learning repository:
Boston housing. Both the simulations and the real data have shown
the overall good performance of the proposed method against some
classic competitors (standard parametric imputation tools, uncondi-
tional mean imputation).
Main results of the study can be summarized in this way:

• Imputation of a variable at turn is preferred to the imputation

116

Conclusions

of a single data at turn;

• Boosting algorithms allow for a more accurate imputation;

• STUMP is ideal for a two-class problem in terms of computation
efficiency;

• Fast tree is preferred to Stump for imputation of numerical or
multi-class missing values in terms of accuracy.

It is working in progress a study of the back-propagation error of
imputed data due to the incremental approach.

In chapter four, an innovative methodology for Data Fusion based
on an incremental imputation algorithm in tree-based models has been
provided. In particular, we have considered robust tree validation by
boosting iterations.
Data Fusion can be considered as a special case of data imputation
where the values to be imputed are those allowing the merging be-
tween two different sample surveys. The resulting developed algo-
rithm, named Robust Tree-based Incremental Imputation algorithm
(RTII), belongs to the explicit models family for data fusion. Several
data sets were simulated to test how RTII algorithm works; as bench-
marking methods both explicit (such as standard trees and multiple
regression) and implicit methods (based on factorial techniques) were
considered. The proposed methodology presents two special advan-
tages:

• it can be considered for a mixed data structure that includes
both numerical and categorical variables. In this case, factorial
techniques cannot be suitably used, as well as classical regression
models fail the goal of a unique multiple imputation of missing
data;

117

Conclusions

• it allows to reconstruct the imputed variable distribution in
terms of both mean and variance. A common problem con-
cerning to classical imputation methods is to reduce, in a sig-
nificant way, the variance of imputed distribution. Simulation
studies show how all methods work well in mean reconstruction,
whereas tree-based methods reconstruct better than other tech-
niques the variability of the variable under imputation. The use
of boosting algorithms get the imputation more accurate.

Data fusion is more ambitious than ”simple” missing data imputation:
values are missing because they never have been collected. The risk
is to get banal imputations. For this reason, the study of pre-fusion
conditions will be studied in the near future.

As it concerns the second framework, the Distance-Based Multi-
variate Tree for Rankings (DBMTR) introduced in this thesis is a new
explanatory method to investigate which predictors and which inter-
actions of predictors are the most significant to explain the response
variable when this is constituted by rank order preference data or
paired comparison rankings.
Preference rankings depend on the characteristics of both the judges
and the objects being judged: in the literature this specific topic has
been handled with log-linear models.
To grow a tree structure, both the definition of an impurity measure
and a class-assignment rule in the nodes are necessary. Impurity cho-
sen is the sum of Kemeny distance within node whereas the ranking-
class assignment rule is the consensus ranking. The Kemeny distance
satisfies a set of axioms that a suitable distance measure for rankings
should satisfy:

• it is a metric, so that satisfies the well known properties of non
negativity, symmetry and triangular inequality;

118

Conclusions

• the minimum positive distance is one;

• the measure of distance should not be affected by a relabeling of
the set of objects to be ranked;

• if two rankings are in complete agreement at the beginning and
at the end of the list and differ only in the middle, than the
distance does not change after deleting these two rankings.

The consensus ranking is defined as that ranking for which the sum
between itself and the entire set of rankings is a minimum.
These two measures are the foundation on which the resulting DBMTR
is grown. This new approach is neither better nor worst than the log-
linear models: it is just a new method. It is doubtless better inter-
pretable.
Future perspectives about DBMTR concern the definition of fastest
splits because of the hard computational cost in computing the con-
sensus ranking. In addiction a suitable pruning procedure needs to
be investigated to extend the DBMTR from the explanatory to the
confirmatory point of view.

The scientific results of this work can be improved: the hope is that
they have induced curiosity in the reader.

119

Appendix A

MatLab codes

121

MatLab codes

A.1 AdaBoost

A.1.1 AdaBoost algorithm for binary classifica-
tion problems

function [classifier,Btest_error,Etest,Etraining,test,training,E]=adaboost...

(trainingX,trainingY,testX,testY,k_max,sm)

%Esegue k_max iterazioni di boosting (Adaboost; weak learner CART)

% per problemi di classificazione, variabile risposta binaria.

%Parametri di input

%-TrainingX Matrice dei predittori

%-TrainingY Vettore delle variabili risposta

%-TestX Matrice dei predittori da utilizzare come campione test

%-TestY Vettore delle variabili risposta da associare a TestX quale campione

%test

%-K_max Numero di iterazioni di boosting

%-sm numerosità minima per poter splittare

%Output

%-classifier classificatore aggregato

%-E_boo Errore test del classificatore aggregato

%-E_iter Andamento dell’errore (test) del classificatore aggregato attraverso le

%iterazioni

%-test Stima del tasso di errata classificazione attraverso il campione test

%dell’albero singolo

%-E Errore ponderato durante le iterazioni

%-E_learning Andamento dell’errore di training del classificatore aggregato attraverso

%le iterazioni

%%%

if nargin < 6

sm=5;

end

%Calcolo della stima dei tassi di malclassificazione dell’albero singolo per

%risostituzione e attraverso il test set

T_single=treefit(trainingX,trainingY,’method’,’c’,’splitmin’,sm); %Albero max

[cc,ss,nn,bb]=treetest(T_single,’test’,testX,testY);

tt=treeprune(T_single,’level’,bb); %pruning

Ctraining=treeval(T_single,trainingX);

Ctest=treeval(tt,testX);

training=sum(Ctraining~=trainingY)/size(Ctraining,1); %errore di training albero singolo

test=sum(Ctest~=testY)/size(Ctest,1); %errore test albero singolo

122

A.1. AdaBoost

fullY=[trainingY;testY];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

[ri,co]=size(testX);

%[rig,col]=size(fullX);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

Hx=zeros(size(fullX,1),1);

%%%

%inizio della manipolazione del training set per il boosting

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indices = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1; %aumenta la probabilità di estrazione

%delle osservazioni con i pesi più elevati

if isempty(loc)

indices(t) = 1;

else

indices(t) = loc; %indicizzazione del training set

end

end

%Addestramento del weak learner

T_boost = treefit(trainingX(indices,:),trainingY(indices,:),...

’method’,’c’,’splitmin’,sm); %Albero max

Ctestboost=treeval(T_boost,fullX); %weak hypotesys

%%

E(k) = sum(D.*(Ctestboost(1:r) ~= trainingY)); %Errore ponderato attraverso le

%iterazioni

if (E(k) == 0)

disp(’error equal to zero’)

break

end

alpha_k = 0.5*log((1-E(k))/E(k)); %Calcolo del parametro alpha

D = D.*exp(alpha_k*(Ctestboost(1:r)~=trainingY)*2-1); %Aggiornamento dei pesi

D = D./sum(D); %normalizzazione dei pesi

%indicator=[Ctestboost==1 Ctestboost==2];

123

MatLab codes

Ctestb=Ctestboost-1;

Hx=Hx+alpha_k*((2*Ctestb)-1);

classifier=(Hx>0)+1;

Etest(1,k)=mean(classifier(r+1:end)~=testY); %errore classificatore boosted sul

%campione test

Etraining(1,k)=mean(classifier(1:r)~=trainingY); %errore classificatore boosted

%sul campione training

if (k/IterDisp == floor(k/IterDisp))

disp([’Completed ’ num2str(k) ’ boosting iterations’])

end

end

classifier=classifier(r+1:end);

Btest_error=Etest(end);

H=menu(’Do you want plot the figure?’,’Yes’,’No’)

if H==1

plot([1:1:k_max],Etraining,’k’,[1:1:k_max],Etest,’r’,[1:1:k_max],...

ones(1,k_max)*test,’:’)

legend(’training error AdaBoost’,’test error AdaBoost’,’test error single tree’)

xlabel(’AdaBoost iterations’)

ylabel(’Error’)

end

124

A.1. AdaBoost

A.1.2 AdaBoost algorithm for multiclass classifi-
cation problems

function [classifier,Btest_error,Etest,Etraining,test,training,E] = ...

adaboostM(trainingX,trainingY,testX,testY,k_max,sm)

%%Algortimo AdaBoost per classificaioni multiclasse, versione di Eibl &

%%Pfeiffer

%Esegue k_max iterazioni di boosting (Adaboost; weak learner CART).

%Parametri di input

%-TrainingX Matrice dei predittori

%-TrainingY Vettore delle variabili risposta

%-TestX Matrice dei predittori da utilizzare come campione test

%-TestY Vettore delle variabili risposta da associare a TestX quale

%campione test

%-K_max Numero di iterazioni di boosting

%-sm numerosità minima per poter splittare

%Output

%-classifier classificatore aggregato

%-Btest_error Errore sul test set del classificatore aggregato

%-Etest Andamento dell’errore (test) del classificatore aggregato

%attraverso le iterazioni

%-Etraining Andamento dell’errore di training del classificatore aggregato

%attraverso le iterazioni

%-test Stima del tasso di errata classificazione attraverso il campione

%test dell’albero singolo

%-training errore sul training set dell’albero singolo

%-E Errore ponderato durante le iterazioni

%%

disp(’Le classi G della variabile risposta devono essere codificate...

come (1,...,g,...G)’)

if nargin < 6

sm=5;

end

%Calcolo della stima dei tassi di malclassificazione dell’albero singolo per

%risostituzione e attraverso il test set

T_single=treefit(trainingX,trainingY,’method’,’c’,’splitmin’,sm); %Albero max

[cc,ss,nn,bb]=treetest(T_single,’test’,testX,testY);

tt=treeprune(T_single,’level’,bb); %pruning

Ctraining=treeval(T_single,trainingX);

testset=treeval(tt,testX);

training=mean(Ctraining~=trainingY); %errore di training albero singolo

test=mean(testset~=testY); %errore test albero singolo

125

MatLab codes

fullY=[trainingY;testY];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

[ri,co]=size(testX);

%[rig,col]=size(fullX);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

classifier = zeros(1, size(testY,1))’;

targets_matrix=zeros(k_max,size(testY,1))’;

learning_classifier=zeros(1,size(trainingY,1))’;

%%

G=size(tabulate(trainingY),1);

g=tabulate(trainingY);

g=g(:,1);

%inizio della manipolazione del training set per il boosting

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indices = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1; %aumenta la probabilità di estrazione

%delle osservazioni con i pesi più elevati

if isempty(loc)

indices(t) = 1;

else

indices(t) = loc; %indicizzazione del training set

end

end

%Addestramento del weak learner

T_boost = treefit(trainingX(indices,:),trainingY(indices,:),’method’,’c’,...

’splitmin’,sm);

%Albero max

Ctestboost=treeval(T_boost,fullX);

%%%

E(k) = sum(D.*(Ctestboost(1:r) ~= trainingY)); %Errore ponderato attraverso le

%iterazioni

if (E(k) == 0),

disp(’errore pari a zero’)

break

end

126

A.1. AdaBoost

alpha_k=log(((G-1)*(1-E(k)))/E(k)); %Calcolo del parametro alpha

D=D.*exp(-alpha_k*(Ctestboost(1:r)==trainingY));

D=D./sum(D);

conf(1,k)=alpha_k;

Hx(:,k)=Ctestboost;

for w=1:G

Indicator=Hx==g(w);

confidence(:,w)=Indicator*conf’;

end

[maxc fullclassifier(:,k)]=max(confidence,[],2);

Etraining(1,k)=mean(fullclassifier(1:r,end)~=trainingY);

%errore boosted sul training set

Etest(1,k)=mean(fullclassifier(r+1:end,end)~=testY);

%errore boosted sul test set ad ogni iterazione

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completate ’ num2str(k) ’ iterazioni di boosting’])

end

end

classifier=fullclassifier(r+1:end,end);

Btest_error=Etest(end);

H=menu(’Do you want plot the figure?’,’Yes’,’No’)

if H==1

plot([1:1:k_max],Etraining,’k’,[1:1:k_max],Etest,’r’,[1:1:k_max],...

ones(1,k_max)*test,’:’)

legend(’training error AdaBoost’,’test error AdaBoost’,’test error single tree’)

xlabel(’AdaBoost iterations’)

ylabel(’Error’)

end

127

MatLab codes

A.1.3 AdaBoost algorithm for regression problem

function [Classifier,E_iter,E_test,Beta,E_te_s] = adaboostR(trainingX,trainingY,...

testX,testY,k_max,sm)

%Parametri di input

%-TrainingX Matrice dei predittori

%-TrainingY Vettore delle variabili risposta

%-TestX Matrice dei predittori da utilizzare come campione test

%-TestY Vettore delle variabili risposta da associare a TestX quale campione test

%-K_max Numero di iterazioni di boosting

%-sm numerosità minima per poter splittare

%Output

%-Classifier classificatore aggregato

%-E_iter Andamento dell’errore (test) del classificatore aggregato attraverso

%le iterazioni

%-E_test Errore test del classificatore aggregato

%-E_te_s Stima del tasso di errata classificazione attraverso il campione

%test dell’albero singolo

%-Beta Andamento della "confidenza" della classificazione

%%

if nargin < 6

sm=round(0.05*size(trainingX,1));

end

%Calcolo della stima dei tassi di malclassificazione dell’albero singolo per

%risostituzione e attraverso il test set

T_single=treefit(trainingX,trainingY,’method’,’r’,’splitmin’,sm); %Albero max

[cc,ss,nn,bb]=treetest(T_single,’test’,testX,testY);

tt=treeprune(T_single,’level’,bb); %pruning

Ctraining=treeval(T_single,trainingX);

Ctest=treeval(tt,testX);

E_tr_s=sqrt(mean((Ctraining-trainingY).^2)); %RMSE errore training

E_te_s=sqrt(mean((Ctest-testY).^2)); %Rmse errore test

fullY=[trainingY;testY];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

[ri,co]=size(testX);

[rig,col]=size(fullX);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

%%%

128

A.1. AdaBoost

%inizio della manipolazione del training set per il boosting

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indices = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1; %aumenta la probabilità di estrazione

%delle osservazioni con i pesi più elevati

if isempty(loc)

indices(t) = 1;

else

indices(t) = loc; %indicizzazione del training set

end

end

%Addestramento del weak learner

T_boost = treefit(trainingX(indices,:),trainingY(indices,:),...

’method’,’r’,’splitmin’,sm); %Albero max

Ctestboost=treeval(T_boost,fullX);

%%%

L=(Ctestboost(1:r)-trainingY).^2;

%Vedi Gey-Poggi Boosting and instability for regressio trees

LMed=sum(L.*D); %errore medio

Beta(k)=LMed/(max(L)-LMed); %parametro Beta di confodenza della regressione

DK=L./max(L);

Pesi(k)=log(1/Beta(k)); %peso che servirà a calcolare la mediana ponderata

% Pesi=Pesi./sum(Pesi);

learner(:,k) = Ctestboost; %stima del weak learner ala k-ma iterazione

%% procedura di aggregazione%%%

for qw=1:rig %media ponderata per ogni osservazione

learning=learner(qw,:);

[learning Indici]=sort(learning);

%indicizzazione delle realizzazioni per ogni individuo

G=[cumsum(Pesi(Indici));learning;Indici];

%matrice (di controllo) dei pesi cumulati associati

%ad ogni osservazione

Ind2=find(G(1,:)>0.5*sum(Pesi));

%cerca la posizione mediana ponderata

Best=G(2,Ind2(1,1));

%indice della mediana ponderata

ClassTemp(qw,1)=Best;

%miglior realizzazione per ogni osservazione al tempo k

end

129

MatLab codes

%%Fine aggregazione

Be=Beta(k).^(1-DK);

D=D.*Be; %Aggiornamento della distribuzione secondo i pesi

D=D./sum(D); %Normalizzazione della distribuzione

E_iter(k)=sqrt(mean((ClassTemp(1:r)-trainingY).^2));

%Root mean squared error di learning durante le iterazioni

E_test(k)= sqrt(mean((ClassTemp(r+1:end)-testY).^2));

%Root mean squared error del campione test durante le iterazioni

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completed ’ num2str(k) ’ boosting iterations’])

end

%%%

end

Classifier = ClassTemp(r+1:end); %classificatore Boosted

Errore_Test = sqrt(mean((Classifier-testY).^2));

PP = menu(’Vuoi visualizzare il grafico?’,’si’,’no’)

if PP==1

plot([1:1:k_max],E_iter,’b-’,[1:1:k_max],E_test,’r-’,[1:1:k_max],...

[ones(1,k_max).*E_te_s],’k:’)

legend(’Training error AdaBoost’,’Test error AdaBoost’,...

’Test error single tree’)

xlabel(’AdaBoost replications’)

ylabel(’Root Mean Squared Error’)

end

130

A.2. BINPI algorithm

A.2 BINPI algorithm

function newy=BINPI(X,tipoX,k_max,sm)

%INPUT

%X matrice contenente dati mancanti

%TipoX vettore indicante il tipo dele colonne di X (0 se nominali ordinabili,

%1 se nominali non ordinabili, 2 se numeriche)

%Metodo 1=Exploratory Tree, 2=Decision Tree (test set 33%)

if nargin < 4

sm = 5;

end

mis=0;

ri=sum(X,2);

col=sum(X,1);

N = find(isnan(col));

NN = find(~isnan(col));

indcol=[NN N];

M = find(isnan(ri));

MM = find(~isnan(ri));

indri=[MM;M];

y=X(indri,indcol);

%matrice con permutazione righe e colonne senza ordine

%lessicografico(creazione y)

% per esempio A=[1 2 3 3 3 y=[1 3 3 2 3

% 2 X 1 1 4 1 3 5 2 4

% 5 3 2 X 2 2 1 4 X 1

% 3 X 4 5 2 5 2 2 3 X

% 4 2 3 X 6 3 4 2 X 5

% 1 2 3 4 5] 4 3 6 2 X]

newtipo=tipoX(indcol);

index1=find(newtipo==1);

P=size(N,2);

for k=1:P

if tipoX(N(k))==2;

disp(’imputing numerical variable’)

[newy,y,miss]=adaboost_Reg_incrimp(y,index1,newtipo,k_max,sm);

elseif tipoX(N(k))<2;

if size(tabulate(X(:,N(k))),1)<3;

disp(’imputing binary variable’)

[newy,y,miss]=adaboost_incrimp(y,index1,newtipo,k_max,sm);

else

disp(’imputing multiclass variable’)

[newy,y,miss]=adaboostM_incrimp(y,index1,newtipo,k_max,sm);

end

end

131

MatLab codes

end

[kr,rig]=sort(indri);

[kc,colo]=sort(indcol);

%%per tornare indietro all’ordine della matrice iniziale X

newy=newy(rig,colo);

%%

function [newy,y,miss] = adaboost_incrimp(y,index,newtipo,k_max,sm)

nacol=sum(y,1);

ab=find(isnan(nacol));

abb = find(~isnan(nacol));

abindcol=[abb ab];

Y=y(:,1:ab(1));

nari=sum(Y,2);

bc = find(isnan(nari));

bcc = find(~isnan(nari));

abindri=[bcc;bc];

Y=Y(abindri,1:ab(1));

[nakr,narig]=sort(abindri);%per ritormare a matrice trasformata

[nakc,nacolo]=sort(abindcol);

indices=find(~isnan(sum(Y,2)));

indicetest=find(isnan(sum(Y,2)));

trainingX=Y(indices,1:(end-1));

testX=Y(indicetest:end,1:(end-1));

miss=sum(isnan(Y(indicetest:end,end)));

trainingY=Y(indices,end);

risp=newtipo(size(testX,2)+1);

tip=newtipo(1:size(trainingX,2));

index=find(tip==1);

fullY=[trainingY];

%fullX=[trainingX;Xsupp];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

% [ri,co]=size(testX);

[rig,col]=size(fullX);

[rigY,colY]=size(fullY);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

Hx=zeros(size(fullX,1),1);

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indicesB = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1;

132

A.2. BINPI algorithm

if isempty(loc)

indicesB(t) = 1;

else

indicesB(t) = loc;

end

end

T_boost = treefit(trainingX(indicesB,:),trainingY(indicesB,:),’method’,...

’c’,’splitmin’,sm);

Ctestboost=treeval(T_boost,fullX);

E(k) = sum(D.*(Ctestboost(1:r) ~= trainingY));

if (E(k) == 0)

disp(’errore pari a zero’)

break

end

alpha_k = 0.5*log((1-E(k))/E(k));

D = D.*exp(alpha_k*(Ctestboost(1:r)~=trainingY)*2-1);

D = D./sum(D); %normalizzazione dei pesi

Ctestb=Ctestboost-1;

Hx=Hx+alpha_k*((2*Ctestb)-1);

classifier=(Hx>0)+1;

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completate ’ num2str(k) ’ iterazioni di boosting’])

end

end

Classifier=classifier(rigY+1:end);

FullX=[trainingX;testX];

FullY=[trainingY;Classifier];

matricecomp=[FullX FullY];

YY=matricecomp(narig,:); %matrice completa e riversa (STEP2)

y=[YY y(:,size(YY,2)+1:end)]; %deve andare in input

newy=y;

%%

function [newy,y,miss] = adaboostM_incrimp(y,index,newtipo,k_max,sm)

nacol=sum(y,1);

ab=find(isnan(nacol));

abb = find(~isnan(nacol));

abindcol=[abb ab];

Y=y(:,1:ab(1));

nari=sum(Y,2);

bc = find(isnan(nari));

bcc = find(~isnan(nari));

abindri=[bcc;bc];

133

MatLab codes

Y=Y(abindri,1:ab(1));

[nakr,narig]=sort(abindri);

[nakc,nacolo]=sort(abindcol);

indices=find(~isnan(sum(Y,2)));

indicetest=find(isnan(sum(Y,2)));

trainingX=Y(indices,1:(end-1));

testX=Y(indicetest:end,1:(end-1));

miss=sum(isnan(Y(indicetest:end,end)));

trainingY=Y(indices,end);

risp=newtipo(size(testX,2)+1);

tip=newtipo(1:size(trainingX,2));

index=find(tip==1);

fullY=[trainingY];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

[rig,col]=size(fullX);

[rigY,colY]=size(fullY);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

G=size(tabulate(trainingY),1);

g=tabulate(trainingY);

g=g(:,1);

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indicesB = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1;

if isempty(loc)

indicesB(t) = 1;

else

indicesB(t) = loc; %indicizzazione del training set

end

end

T_boost = treefit(trainingX(indicesB,:),trainingY(indicesB,:),’method’,...

’c’,’splitmin’,sm);

Ctestboost=treeval(T_boost,fullX);

E(k) = sum(D.*(Ctestboost(1:r) ~= trainingY));

if (E(k) == 0),

disp(’errore pari a zero’)

break

end

134

A.2. BINPI algorithm

alpha_k=log(((G-1)*(1-E(k)))/E(k));

D=D.*exp(-alpha_k*(Ctestboost(1:r)==trainingY));

D=D./sum(D);

conf(1,k)=alpha_k;

Hx(:,k)=Ctestboost;

for w=1:G

Indicator=Hx==g(w);

confidence(:,w)=Indicator*conf’;

end

[maxc fullclassifier(:,k)]=max(confidence,[],2);

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completate ’ num2str(k) ’ iterazioni di boosting’])

end

end

Classifier=fullclassifier(rigY+1:end,end);

FullX=[trainingX;testX];

FullY=[trainingY;Classifier];

matricecomp=[FullX FullY];

YY=matricecomp(narig,:);

y=[YY y(:,size(YY,2)+1:end)];

newy=y;

%%%

function [newy,y,miss] = adaboost_Reg_incrimp(y,index,newtipo,k_max,sm)

nacol=sum(y,1);

ab=find(isnan(nacol));

abb = find(~isnan(nacol));

abindcol=[abb ab];

Y=y(:,1:ab(1));

nari=sum(Y,2);

bc = find(isnan(nari));

bcc = find(~isnan(nari));

abindri=[bcc;bc];

Y=Y(abindri,1:ab(1));

[nakr,narig]=sort(abindri);

[nakc,nacolo]=sort(abindcol);

indices=find(~isnan(sum(Y,2)));

indicetest=find(isnan(sum(Y,2)));

trainingX=Y(indices,1:(end-1));

testX=Y(indicetest:end,1:(end-1));

miss=sum(isnan(Y(indicetest:end,end)));

trainingY=Y(indices,end);

135

MatLab codes

risp=newtipo(size(testX,2)+1);

tip=newtipo(1:size(trainingX,2));

index=find(tip==1);

fullY=[trainingY];

fullX=[trainingX;testX];

[r,c] = size(trainingX);

[rig,col]=size(fullX);

[rigY,colY]=size(fullY);

D=ones(1,r)/r;

D=D’;

IterDisp=10;

inizio della manipolazione del training set per il boosting

for k=1:k_max

randnum = rand(1,r);

cD = cumsum(D);

indicesB = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1;

if isempty(loc)

indicesB(t) = 1;

else

indicesB(t) = loc;

end

end

L=(Ctestboost(1:r)-trainingY).^2;

LMed=sum(L.*D);

Beta(k)=LMed/(max(L)-LMed);

DK=L./max(L);

Pesi(k)=log(1/Beta(k));

learner(:,k) = Ctestboost;

for qw=1:rig

learning=learner(qw,:);

[learning Indici]=sort(learning);

G=[cumsum(Pesi(Indici));learning;Indici];

Ind2=find(G(1,:)>0.5*sum(Pesi));

Best=G(2,Ind2(1,1));

ClassTemp(qw,1)=Best;

end

Be=Beta(k).^(1-DK);

D=D.*Be; %Aggiornamento della distribuzione secondo i pesi

D=D./sum(D); %Normalizzazione della distribuzione

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completate ’ num2str(k) ’ iterazioni di boosting’])

end

end

Classifier = ClassTemp(rigY+1:end); %classificatore Boosted

FullX=[trainingX;testX];

136

A.2. BINPI algorithm

FullY=[trainingY;Classifier];

matricecomp=[FullX FullY];

YY=matricecomp(narig,:); %matrice completa e riversa

y=[YY y(:,size(YY,2)+1:end)]; %deve andare in input

newy=y;

137

MatLab codes

A.3 RTII algorithm

function [fit,E_iter,E_test]=FRTII(X,Y,X1,Y1,k_max,sm,type,...

catidx);

%%INPUT

%X X1: common variables

%Y: specific variables

%Y1: Control variables

%k_max: boosting iterations

%sm: minimum size at node to split

%type: column to be imputed type: 0=categorical, 1=numerical

%catidx: index of nominal categorical variable in X matrix

%%OUTPUT

%fit: fitted values

%E_iter: Training errors through boosting iterations

%E_test: Test errors through boosting iterations

[r c]=size(X);

[ri co]=size(X1);

[rY cY]=size(Y);

fullX=[X;X1];

[rig,col]=size(fullX);

if nargin < 8

catidx=[]

end

for cx=1:cY %for1

disp([’Imputation column number ’ num2str(cx)])

%%%

if type(1,cx)==1 %%%Regression%%%%%

disp([’Fusion on numerical variable’])

D=ones(1,r)/r;

D=D’;

IterDisp=10;

T_single=treefit(X,Y(:,cx),’method’,’r’,’splitmin’,sm);

[cc,ss,nn,bb]=treetest(T_single,’test’,X1,Y1(:,cx));

tt=treeprune(T_single,’level’,bb); %pruning

Ctest(:,cx)=treeval(tt,X1);

E_te_s(cx)=sqrt(mean((Ctest(:,cx)-Y1(:,cx)).^2));

%%%

%inizio della manipolazione del training set per il boosting

for k=1:k_max %for2

randnum = rand(1,r);

cD = cumsum(D);

138

A.3. RTII algorithm

indices = zeros(1,r);

for t=1:r %for3

loc = max(find(randnum(t) > cD))+1;

if isempty(loc)

indices(t) = 1;

else

indices(t) = loc; %indicizzazione del training set

end

end %end for3

T_boost = treefit(X(indices,:),Y(indices,cx),’method’,’r’,’splitmin’,...

sm);

Ctestboost=treeval(T_boost,fullX);

L=(Ctestboost(1:r)-Y(:,cx)).^2;

LMed=sum(L.*D); %errore medio

Beta(k)=LMed/(max(L)-LMed);

DK=L./max(L);

Pesi(k)=log(1/Beta(k));

learner(:,k) = Ctestboost;

for qw=1:rig %%for4

learning=learner(qw,:);

[learning Indici]=sort(learning);

G=[cumsum(Pesi(Indici));learning;Indici];

Ind2=find(G(1,:)>0.5*sum(Pesi));

Best=G(2,Ind2(1,1));

ClassTemp(qw,1)=Best;

end %end for4

Be=Beta(k).^(1-DK);

D=D.*Be; %Aggiornamento della distribuzione secondo i pesi

D=D./sum(D); %Normalizzazione della distribuzione

E_Iter(k)=sqrt(mean((ClassTemp(1:r)-Y(:,cx)).^2));

E_Test(k)= sqrt(mean((ClassTemp(r+1:end)-Y1(:,cx)).^2));

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completed ’ num2str(k) ’ boosting itrations’])

end

%%%

end %end for2

Classifier = ClassTemp(r+1:end);

fit(:,cx)=Classifier;

E_iter(:,cx)=E_Iter’;

E_test(:,cx)=E_Test’;

%%%

elseif type(1,cx)==0

if size(tabulate(Y(:,cx)),1)==2 %classification with 2 classes

disp([’Fusion on binary variable’])

139

MatLab codes

D=ones(r,1)/r;

D=D./sum(D);

IterDisp=10;

Hx=zeros(size(fullX,1),1);

T_single=treefit(X,Y(:,cx),’method’,’c’,’splitmin’,sm);

[cc,ss,nn,bb]=treetest(T_single,’test’,X1,Y1(:,cx));

tt=treeprune(T_single,’level’,bb); %pruning

Ctest(:,cx)=treeval(tt,X1);

E_te_s(cx)=1-mean(Ctest(:,cx)==Y1(:,cx));

for k=1:k_max %beginning boosting

randnum = rand(1,r);

cD = cumsum(D);

indicesB = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1;

if isempty(loc)

indicesB(t) = 1;

else

indicesB(t) = loc;

end

end

T_boost = treefit(X(indicesB,:),Y(indicesB,cx),’method’,’c’,...

’splitmin’,sm);

Ctestboost=treeval(T_boost,fullX);

%%%

E(k) = sum(D.*(Ctestboost(1:r) ~= Y(:,cx)));

if (E(k) == 0),

disp(’errore pari a zero’)

break

end

alpha_k = 0.5*log((1-E(k))/E(k));

D = D.*exp(alpha_k*(Ctestboost(1:r)~=Y(:,cx))*2-1);

D = D./sum(D); %normalizzazione dei pesi

Ctestb=Ctestboost-1;

Hx=Hx+alpha_k*((2*Ctestb)-1);

classifier=(Hx>0)+1;

E_Iter(k)=1-mean(classifier(1:r)==Y(:,cx));

E_Test(k)=1-mean(classifier(r+1:end)==Y1(:,cx));

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completed ’ num2str(k) ’ boosting iterations’])

end

140

A.3. RTII algorithm

end %end boosting

Classifier=classifier(r+1:end);

fit(:,cx)=Classifier;

E_iter(:,cx)=E_Iter’;

E_test(:,cx)=E_Test’;

else %%Multiclass classification

disp([’Fusion on multiclass variable’])

D=ones(r,1)/r;

D=D./sum(D);

IterDisp=10;

G=size(tabulate(Y(:,cx)),1);

g=tabulate(Y(:,cx));

g=g(:,1);

T_single=treefit(X,Y(:,cx),’method’,’c’,’splitmin’,sm);

[cc,ss,nn,bb]=treetest(T_single,’test’,X1,Y1(:,cx));

tt=treeprune(T_single,’level’,bb); %pruning

Ctest(:,cx)=treeval(tt,X1);

E_te_s(cx)=1-mean(Ctest(:,cx)==Y1(:,cx));

for k=1:k_max %boosting begin

randnum = rand(1,r);

cD = cumsum(D);

indicesB = zeros(1,r);

for t=1:r

loc = max(find(randnum(t) > cD))+1;

if isempty(loc)

indicesB(t) = 1;

else

indicesB(t) = loc; %indicizzazione del training set

end

end

T_boost = treefit(X(indicesB,:),Y(indicesB,cx),’method’,’c’,...

’splitmin’,sm);

Ctestboost=treeval(T_boost,fullX);

E(k) = sum(D.*(Ctestboost(1:r) ~= Y(:,cx)));

if (E(k) == 0),

disp(’errore pari a zero’)

break

end

alpha_k=log(((G-1)*(1-E(k)))/E(k));

D=D.*exp(-alpha_k*(Ctestboost(1:r)==Y(:,cx)));

D=D./sum(D);

conf(1,k)=alpha_k;

Hx(:,k)=Ctestboost;

for w=1:G

Indicator=Hx==g(w);

confidence(:,w)=Indicator*conf’;

141

MatLab codes

end

[maxc fullclassifier(:,k)]=max(confidence,[],2);

E_Iter(k)=mean(fullclassifier(1:r,end)~=Y(:,cx));

E_Test(k)=mean(fullclassifier(r+1:end,end)~=Y1(:,cx));

if (k/IterDisp == floor(k/IterDisp)),

disp([’Completed ’ num2str(k) ’ boosting iterations’])

end

end %boosting end

Classifier=fullclassifier(r+1:end,end);

fit(:,cx)=Classifier;

E_iter(:,cx)=E_Iter’;

E_test(:,cx)=E_Test’;

end %elseif end

end

end %for1 end

142

A.4. Distance-Based Multivariate Trees
for Rankings

A.4 Distance-Based Multivariate Trees

for Rankings

function [tree matrix Matrix sintfather sintchildren Imptree imp sintesi2...

trees]=ranktree(X,Y,num,decrmin,indnom,graph)

%%%Distance-based Multivariate tree for Rankings using Kemeny Distance

%X -> Predictors matrix

%Y -> Response variables matrix

%num -> Minimum size at node to split

%decrmin -> Minimum impurity decreasing

%indnom -> Index of nominal variables; 0 = ordinal, 1 = nominal

%(i.e. [0 1 1 0 0 0 1])

%graph -> 0 = shows figure of error rate; 1 = no figure

%%%%%Output

%tree -> struct array with description of MRT at each node

%matrix -> block final matrix: [Number terminal node, X, Y]

%Matrix -> block final matrix:[Id individual, number terminal

%node, Y, X]

%sintfather -> struct array with description of father nodes

%sintchildren -> synthesis of children nodes for the left and right

%branch of the tree: [node number, size at node, imputed value,

%impurity at node]

%Imptree -> Overall impurity of the tree

%imp ->struct array showing the decrease of impurity at

%each node which generates a split

%sintesi2 -> synthesis of all terminal nodes:

%[node number, size at node, fitted value at node,

%impurity at node(last column)]

%trees -> struct array: contains all subtrees for pruning procedure

%%%%%%%%

%%%Antonio D’Ambrosio; Leiden, 2007 (February - April)

%%%%%If we need more memory, use this code below

% cwd=pwd;

% cd(’F:\temp’);

% pack;

% cd(cwd);

%%%%%End code for more memory

tree.indnom=indnom;

cicciput=X;

[N C]=size(Y);

[r c]=size(X);

id=(1:1:N)’;

it=0;it2=0;

tree.nodo(1).X=X;

143

MatLab codes

tree.nodo(1).Y=Y;

tree.nodo(1).term=0;

tree.nodo(1).father=0;

tree.nodo(1).n=size(X,1);

tree.nodo(1).impur=rankimpurity(Y);

[Cons Err]=consrank(Y);

tree.nodo(1).class=Cons;

tree.nodo(1).error=Err;

tree.fiteval=Y;

tree.num=num;

tree.decrmin=decrmin;

%tree.typeimpurity=impurity;

L=1;

cont=0;

imp.decimpurita=0;

imp.nodo=0;

memnodo=[0,1];

lung=length(memnodo);

nodo1(1:size(Y,1),1)=1;

matrice=[nodo1(:,1) X Y];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%splitting and stopping rules

while memnodo(lung) ~= 0

it=it+1;

while size(X,1)>=num

[XL XR YL YR indpred valsplit Impadre decr synt errornode ...

ImpL ImpR slvalue vsplit Valsplit]=ranksplit(X,Y,N,indnom);

if decr <= decrmin

if isempty(YL) | isempty(YR)

tree.nodo(L).decrimp=[];

else

tree.nodo(L).decrimp=decr;

end

tree.nodo(L).term=1;

break

end

% 0;

% if isempty(YL) | isempty(YR)

% tree.nodo(L).decrimp=[];

% tree.nodo(L).term=1;

% break

% end

%

cont=cont+1;

sintfather.numnode(cont)=L;

sintfather.varsplit(cont)=valsplit; %variable which generates

%the split and rule of the split

sintfather.sizenode(cont)=length(X(:,1));

144

A.4. Distance-Based Multivariate Trees
for Rankings

sintfather.impurity(cont)=Impadre;

if indnom(1,indpred)==0 % ordinal case

indiceL=find((matrice(:,indpred+1)<=vsplit)&...

(matrice(:,1)==L));

matrice(indiceL,1)=L*2;

indiceR=find(matrice(:,1)==L);

matrice(indiceR,1)=L*2+1;

else %nominal case

for ii=1:length(slvalue)

indiceL=find((matrice(:,indpred+1)==slvalue(ii))...

& (matrice(:,1)==L));

matrice(indiceL,1)=L*2;

end

indiceR=find(matrice(:,1)==L);

matrice(indiceR,1)=L*2+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%end splitting and stopping rules

L=L*2;

R=L+1;

tree.nodo(L).X=XL;

tree.nodo(R).X=XR;

tree.nodo(L).Y=YL;

tree.nodo(R).Y=YR;

tree.nodo(L/2).term=0;

tree.nodo(L).father=L/2;

tree.nodo(R).father=L/2;

tree.nodo(L/2).nom=indnom(indpred);

tree.nodo(L/2).split=slvalue; %categories belonging

%to splitting rule

tree.nodo(L/2).col=indpred;

tree.nodo(L/2).valsplit=valsplit; %%splitting rule

tree.nodo(L).impur=ImpL;

tree.nodo(R).impur=ImpR;

tree.nodo(L/2).decrimp=decr;

tree.nodo(L).class=synt(1,2:end-1);

tree.nodo(R).class=synt(2,2:end-1);

tree.nodo(L).n=size(XL,1);

tree.nodo(R).n=size(XR,1);

tree.nodo(L).number=L;

tree.nodo(R).number=R;

tree.nodo(L).error=errornode.L;

tree.nodo(R).error=errornode.R;

sintchildren.R(cont,:)=[R synt(2,:)]; %node number,

145

MatLab codes

%size at node,

%rankings,

%impurity at node

sintchildren.L(cont,:)=[L synt(1,:)];

memnodo=[memnodo,R,L];

X=tree.nodo(L).X;

Y=tree.nodo(L).Y;

lung=length(memnodo);

memnodo(lung)=[];

it2=it2+1;

imp.decimpurita(it2)=decr;

imp.nodo(it2)=(L/2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%

end %end del secondo while

if size(X(:,1)) < num

tree.nodo(L).term=1;

end

lung=length(memnodo);

L=memnodo(lung);

if size(X(:,1)) < num | decr < decrmin

memnodo(lung)=[];

lung=length(memnodo);

end

if L > 1

X=tree.nodo(L).X;

Y=tree.nodo(L).Y;

end

end

%%%

if tree.nodo(1).term==1

noditot=0;

noditot2=0;

sintchldren=0;

sintfather=0;

sintesi=0;

sintesi2=0;

decr=0;

matrix=0;

else

noditot=[sintchildren.R(:,1:2) ; sintchildren.L(:,1:2)];

146

A.4. Distance-Based Multivariate Trees
for Rankings

%node number and size

noditot2=[sintchildren.R; sintchildren.L];

noterm=sintfather.numnode’;

noterm(1)=[];

noterm;

n=length(noterm);

m=length(noditot(:,1));

cont=0;

%% Terminal nodes listing

for j=1:m

term=1;

for i=1:n

if noterm(i) == noditot(j,1)

term=0;

i=n;

end

end

if term==1

cont=cont+1;

sintesi(cont,1:2)=noditot(j,1:2); % Terminal nodes

%and their size

sintesi2(cont,:)=noditot2(j,:); %nTerminal node number,

%frequence, rankings and

%impurity

end

end

matrix=matrice; %Terminal node nmber, then X matrix and Y matrix

end

Matrix=[id matrix(:,1) matrix(:,c+2:end) matrix(:,2:c+1)];

%id individual, Node number, Y and X matrices

fit=zeros(N,C+1);

valorimedi=sintesi2(:,3:end-1);

valorimedi=[valorimedi sintesi2(:,1)];

for g=1:size(sintesi2,1);

igg=find(Matrix(:,2)==sintesi2(g,1));

for w=1:C+1

fit(igg,w)=valorimedi(g,w);

0;

end

end

fitm=[id fit]; %id, fit(for all Y variable),

%terminal node number (

%in the last column)

[trees,seq,nodint,alfa,prune]=sequenzeMT(tree,sintfather...

,sintchildren,sintesi2);

tree.alpha=[0 alfa];

147

MatLab codes

tree.prunenode=prune;

tree.pruningseq=seq;

tree.fitvalue=fitm;

[aa bb]=size(tree.nodo);

for p=1:bb;

if tree.nodo(p).term==1

treeerr(p,1)=tree.nodo(p).error;

treeimp(p,1)=tree.nodo(p).impur;

else

treeimp(p,1)=0;

treeerr(p,1)=0;

end

end

Imptree.imp=sum(treeimp);

Imptree.error=sum(treeerr);

if graph==0

ME=menu(’Do you want see learning error rate progress...

through sub-tree sequence?’,’yes’,’no’);

if ME==1

evaltreeMT(cicciput,tree,trees);

end

end

%%

%%

function [XL XR YL YR indpred valsplit Impadre decr synt errornode ImpL...

ImpR slvalue vsplit Valsplit]=ranksplit(X,Y,N,indnom);

%X -> Matrix of predictors

%Y -> Matrix or rensponse variables

%indnom -> index of nominal and ordinal variables

%%Output:

%XR -> X matrix on the right node; YR -> Y matrix on the right node

%XL -> X matrix on the left node; YL -> Y matrix on the left node

%indpred -> Variable belonging to X matrix which generates the split

%valsplit -> splitting rule

%decr -> Maximum impurity decreasing

%ImpL -> Impurity at left node

%ImpR -> Impurity at right node

id=(1:1:size(Y,1))’;

[r c]=size(X);

for k=1:c;

h=tabulate(X(:,k));

148

A.4. Distance-Based Multivariate Trees
for Rankings

h=h(:,1);

[rh ch]=size(h);

0;

if rh == 1

for s=1:rh

Decrementi(s,k)=0;

modr(s)=h(s);

end %end3

else

if indnom(1,k)==1

[Xleft,Yleft,Xright,Yright,Bestdecr,indu,combsplit]=...

nominalsplit(X,Y,k,Impadre,N);

BestDecrXs(k)=Bestdecr;

Decrementi(1,k)=Bestdecr;

ind(k)=indu;

value(1,k)=nan;

spvalue(k).split=combsplit.L;

Valsplit(k).split={[’X’ num2str(k) ’ ==...

’ num2str(combsplit.L)]};

Left(k).Y=Yleft;

Left(k).X=Xleft;

Right(k).Y=Yright;

Right(k).X=Xright;

else

for s=1:rh-1;

iL=find(X(:,k)<=h(s));

%Index of categories of X distribution to send to left

Yleft=Y(iL,:); %Y distribution on the left

nL=size(Yleft,1);

GL=rankimpurity(Yleft);

iR=find(X(:,k)>h(s));

%Index of categories of X distribution to send to right

Yright=Y(iR,:); %Y distribution on the right

nR=size(Yright,1);

GR=rankimpurity(Yright);

Decrementi(s,k)=Impadre-((GL/N)+(GR/N));

modr(s)=h(s);

end %end del for s=1:rh-1;

[BestDecrXs(k) ind(k)]=max(Decrementi(:,k));

value(1,k)=modr(ind(k));

spvalue(k).split=modr(ind(k));

Valsplit(k).split={[’X’ num2str(k) ’ <= ’ num2str(value(1,k))]};

end %end del if indnom(1,k)==1

end %end del if rh==1

end

if sum(Decrementi)==0 %if 1

tabella = zeros(3,c);

XL=[];

149

MatLab codes

XR=[];

YL=[];

YR=[];

indpred=[];

valsplit=[];

Impadre=[];

decr=0;

synt=[];

errornode=[];

ImpL=0;

ImpR=0;

slvalue=[];

vsplit=[];

Valsplit=[];

else

tabella=[BestDecrXs;ind;value];

[decr indpred]=max(tabella(1,:));

%%%%%%%%%%%%%

valsplit=Valsplit(indpred).split;

slvalue=spvalue(indpred).split;

if isnegative(decr)==1 %if 2

disp(’warning’)

decr=0;

XL=[];

XR=[];

YL=[];

YR=[];

indpred=[];

valsplit=[];

Impadre=[];

decr=0;

synt=[];

errornode=[];

ImpL=[];

ImpR=[];

slvalue=[];

vsplit=[];

Valsplit=[];

else

vsplit=[];

if indnom(1,indpred)==0 %if 3

vsplit=tabella(3,indpred);

XL=X(find(X(:,indpred)<=vsplit),:);

XR=X(find(X(:,indpred)>vsplit),:);

YL=Y(find(X(:,indpred)<=vsplit),:);

YR=Y(find(X(:,indpred)>vsplit),:);

else

XL=Left(indpred).X;

150

A.4. Distance-Based Multivariate Trees
for Rankings

YL=Left(indpred).Y;

XR=Right(indpred).X;

YR=Right(indpred).Y;

end %end if 3

if isempty(YL) | isempty(YR) %if 4 %if matrix cannot be splitted

%disp(’non posso splittare’)

decr=0;

synt=[];

errornode=[];

ImpL=[];

ImpR=[];

Impadre=[];

valsplit=[];

indpred=[];

else

ImpL=rankimpurity(YL)*size(YL,1)/N;

ImpR=rankimpurity(YR)*size(YR,1)/N;

[consL errorL]=consrank(YL);

[consR errorR]=consrank(YR);

errornode.L=errorL*size(YL,1)/N; %risk (or error) at left node

errornode.R=errorR*size(YR,1)/N; %risk (or error) at rigth node

synt(1,:)=[size(YL,1) consL ImpL]; %synthesis of left side of

%matrix Y [size of part, mean

%of Y, Impurity at node]

synt(2,:)=[size(YR,1) consR ImpR]; %synthesis of rigth side of

%matrix Y [size of part, mean

%of Y, Impurity at node]

end %end if 4

end %end if 2

end %end if 1

%%

%%

function [Xleft,Yleft,Xright,Yright,BestDecr,ind,combsplit]=...

nominalsplit(X,Y,indnorm,Impadre,N);

tabXi=tabulate(X(:,indnorm));

indice=find(tabXi(:,2)==0);

tabXi(indice,:)=[];

XX=[1:length(tabXi)];

[comb,numcomb]=splitcomb(tabXi(:,1));

for i=1:numcomb

indice=[];

for j=1:length(comb.split(i).L)

combsplit=tabXi(comb.split(i).L’,1);

indiceL=find(X(:,indnorm)==combsplit(j));

indice=[indice; indiceL];

151

MatLab codes

end

Xright=X(indice,:);

Yright=Y(indice,:);

nR=size(Yright,1);

Xleft=X;

Xleft(indice,:)=[];

Yleft=Y;

Yleft(indice,:)=[];

nL=size(Yleft,1);

GL=rankimpurity(Yleft);

GR=rankimpurity(Yright);

splitnum.split(i).XL=Xleft;

splitnum.split(i).XR=Xright;

splitnum.split(i).YL=Yleft;

splitnum.split(i).YR=Yright;

splitnum.split(i).R=tabXi(comb.split(i).L’,1);

splitnum.split(i).L=tabXi(comb.split(i).R’,1);

Decrementi(i,1)=Impadre-((GL/N)+(GR/N));

end

[BestDecr ind]=max(Decrementi);

0;

Xleft=splitnum.split(ind).XL;

Yleft=splitnum.split(ind).YL;

Xright=splitnum.split(ind).XR;

Yright=splitnum.split(ind).YR;

combsplit.L=splitnum.split(ind).L’;

combsplit.R=splitnum.split(ind).R’;

%%

%%

function SS=rankimpurity(Y);

[r c]=size(Y);

SS=kemenyd(Y);

SS=SS/r;

%%

%%

function [kemeny kemenysq kem Y M]=kemenyd(X);

%%%kemeny = sum of kemeny distances

%%% kemenysq = sum of squared kemeny distances

[r c]=size(X);

M=kemenymatrix(X);

M=M*1;

152

A.4. Distance-Based Multivariate Trees
for Rankings

kem=pdist(M,’cityblock’);

kemeny=sum(kem);

%kemeny=sum(kem);

kemenysq=sum(kem.^2);

Y=squareform(kem);

%%

%%

function M=kemenymatrix(X);

%%Design matrix to computing Kemeny distance

[r c]=size(X);

column=combntns(1:c,2); %-> combination of pairwise

%comparison among abjects

c=size(column,1);

for k=1:r

for j=1:c

M(k,j)=sign((X(k,(column(j,1)))-X(k,(column(j,2)))));

end

end

%%

%%

function [consensus error cij]=consrank(X)

%%%%%%%according Emond & Mason, 2002%%%

%%%% The higher is the number in X matrix

%%%% the more the object is preferred

[M N]=size(X);

if M==1

consensus=X;

error=0;

cij=0;

else

[kemeny kemenysq kemnorm kem t]=kemenyd(X);

if sum(t,2) ~= 0

wk=1./sum(t,2);

wk=wk./sum(wk,1); %the lower is the kemeny distance,

%the higher is the weight

else

wk=ones(M,1);

end

153

MatLab codes

wk=ones(M,1);

cij=zeros(N);

for k=1:M

s=squareform(scorematrix(X(k,:)));

sl=triu(s);

sl=sl+sl’*-1;

a=find(abs(sl)==(N*(N-1))+1);

if ~isempty(a)

sl(a)=1;

end

% CIM(k).aij=sl;

cij=cij+(wk(k)*sl);

end

candidate=findconsensus(cij);

[kemeny kemenysq kemnorm kem t]=kemenyd([X;mean(X);...

candidate]);

somma=sum(t(M+1:end,1:M),2);

[error b]=min(somma);

error=error/M;

if b==2 | somma(1,1)-somma(2,1)==0;%b(1,1)==b(2,1)

consensus=candidate;

else

consensus=mean(X);

disp(’consenso medio’)

end

end

% si=squareform(scorematrix(meanr));

% sil=triu(si);

% sij=sil+sil’*-1;

% a=find(abs(sil)==(N*(N-1))+1);

% if ~isempty(a)

% sij(a)=1;

% end

% V=sum(sum(abs(cij)));

% B=sum(sum(sij.*cij));

% P=V-B;

function Y=scorematrix(X);

%%Design matrix

[r N]=size(X);

column=combntns(1:N,2); %-> combination of pairwise

%comparison among abjects

c=size(column,1);

154

A.4. Distance-Based Multivariate Trees
for Rankings

for k=1:r

for j=1:c

Y(k,j)=sign((X(k,(column(j,1)))-X(k,(column(j,2)))));

if Y(k,j)==0

Y(k,j)=N*(N-1)+1;

end

end

end

function X=findconsensus(cij)

X=ones(1,size(cij,2));

[M N]=size(X);

indici=combntns(1:N,2);

for j=1:size(indici,1)

if (sign(cij(indici(j,1),indici(j,2)))>=1 & sign(cij(indici(j,2)...

,indici(j,1)))==-1) %%if object i is ranked ahead of ogject j

X(indici(j,1))=X(indici(j,1))+1;

X(indici(j,2))=X(indici(j,2))+1;

end

end

155

Bibliography

[1] Agresti A. (2002). Categorical Data Ananlysis. J. Wiley.

[2] Aluja-Banet T., Morineau A., Rius R. (1997). La greffe de fichiers
et ses conditions d’application. Méthode et exemple. In: Brossier
G., Dussaix A.M. (Eds), Enquêtes et sondages. Dunod, Paris, 94-
102.

[3] Aluja-Banet T., Rius R., Nonell R., Mart́ınez-Abarca M.J. (1998)
Data Fusion and File Grafting. Analyses Multidimensionelles Des
Données. NGUS 97. 1 ed. Paŕıs: CISIA-CERESTA, Eds. A.
Morineau, K. Fernández Aguirre, P. 7-14.

[4] Aluja-Banet T., Daunis-i-Estadella J., Pellicer D. (2007).
GRAFT, a complete system fro data fusion. Computational sta-
tistics and data analysis 52, 635 - 649.

[5] Aria M., D’Ambrosio A., Siciliano R. (2007) Robust Incremental
Trees for Missing Data Imputation and Data Fusion. Classifica-
tion and Data Analisys 2007, Book of short papers (Macerata,
September 12-14, 2007), EUM Macerata, 287-290.

[6] Aria, M., Siciliano, R. (2003). Learning from Trees: Two-Stage
Enhancements. In Proceedings of Classification and Data Analysis
Group (CLADAG 2003), 22-24 Settembre, Bologna.

157

Bibliography

[7] Barcena, M.J., Tusell, F. (1999). Enlace de encuestas: una prop-
uesta metodológica y aplicación a la Encuesta de Presupuestos
de Tempo. Qüestiio, vol. 23, núm. 2, pp. 297–320.

[8] Batista G., Monard M. C. (2003). An Analysis of Four Missing
Data Treatment Methods for Supervised Learning. Applied Arti-
ficial Intelligence

[9] Benzecri, J.P. (1973). L’Analyse des Données, 2 Vols. Dunod,
Paris, France.

[10] Bogart K.P. (1975). Preference structure II: distances between
asymmetric relations. SIAM Journal on Applied Mathematics 29.

[11] Bolasco, S. (1997). Analisi Multidimensionale dei Dati, Metodi,
Strategie e Criteri di Interpretazione. Carocci.

[12] Bonnefous S., Brenot J., Pagés J.P. (1986). Méthode de la greffe
et communication entre enquêtes. Data analysis and Informatics
IV.

[13] Breiman, L. (1996). Bagging Predictors, Machine Learning, 26,
46-59.

[14] Breiman L. (1996). Bias, Variance and Arcing Classifiers. Dept.
Of Statistics, University of California. Technical Report.

[15] Brieman L.(1998). Arcing classifiers. The Annals of statistics,
26(3).

[16] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984).
Classification and Regression Trees. Wadsworth International
Group, Belmont, California.

158

Bibliography

[17] Buja, A., Lee, Y.S. (1999). A data mining criteria for tree based
regression and classification. Technical report, At & T Labs.
www.research.att/andreas/papers/tree.ps.gz.

[18] Cherkassky V., Mulier F. (1998). Learning from Data: concepts,
theory, and methods. John Wiley & Sons., New York, USA.

[19] Chu C.K., Cheng P.E. (1995). Nonparametric regression estima-
tion with missing data. Journal of Statistical Planning and Infer-
ence, 48, 85-99.

[20] Ciampi, A. (1994). Classification and discrimination: the REC-
PAM approach, COMPSTAT’94, Dutter R. and Grossmann W.
eds, Phisica-Verlag, Heidelberg, 129-147.

[21] CISIA - CERESIA (2001), SPAD version 5.0, Manuel de Prise en
Main, CISIA-CESTA, Montreuil, France.

[22] Clogg, C.C., Shihadeh E.S. (1994). Statistical Models for Ordinal
Variables, Thousand Oaks, CA.: Sage Publications.

[23] Conversano, C., Mola, F., Siciliano, R. (2001). Partitioning and
Combined Model Integration for Data Mining, presented at the
Symposium on Data Mining and Statistics (Augsburg, November
2000), Journal of Computational Statistics, 16, 323-339, Physica
Verlag, Heidelberg (D).

[24] Conversano, C., Mola, F., Siciliano, R. (2000). Generalized Ad-
ditive Multi-Model for Classification and Prediction, in H.A.L.
Kiers, J.P. Rasson, P.J.F. Groen, M. Shader (Eds.): Data Analy-
sis, Classification and Related Methods, Springer Verlag, Berlin
(D), 205-210.

[25] Conversano, C., Siciliano, R., Mola, F., (2000). Supervised Clas-
sifier Combination through Generalized Additive Multi-Model, in

159

Bibliography

F. Roli, J. Kittler (Eds.): Proceedings of the First International
Workshop on Multiple Classifier Systems, Lecture Notes in Com-
puter Science, Physica Verlag, Heidelberg (D), 167-176.

[26] Cover, T., Thomas, J. (1991). Elements of Information Theory.
Wiley, New York.

[27] D’Ambra L., Lauro N.C. (1982). Analisi in componenti principali
in rapporto ad un sottospazio di riferimento. Rivista di Statistica
Applicata, 15, 1-25.

[28] D’Ambrosio A., Aria M., Siciliano R. (2007). Robust Tree-based
Incremental Imputation Method for Data Fusion. Advances in
Intelligent Data Analysis, Springer-Verlag, pp 174-183.

[29] De’ath G. (2002). Multivariate regression trees: a new technique
for modeling species-environment relationships. Echology 83

[30] de Leeuw, J., van der Heijden, P.G.M. (1991). Reduced-rank mod-
els for contingency tables, Biometrika, 78, 229-232.

[31] DesJardins D. (1997). Coursebook for exploratory data analysis
and graphics. Statistical Research Division, U.S. Bureau of the
Census, Washington DC, 202333-91100, USA.

[32] Dietterich T.G. (2000). Ensemble methods in machine learning.
In J.Kittler and F.Roli, editors, multiple classifier system. First
International Workshop, MCS 2000,Cagliari, volume 1857 of lec-
ture notes in computer science. Springer-Verlag.

[33] Dietterich T.G., Bakiri G. (1995) Solving multiclass learning
problems via error-connecting output codes. Journal of Artificial
Intelligence Research, 2.

160

Bibliography

[34] Ditrich R., Hatzinger R., Katzenbeisser W. (1998). Modelling the
effect of subject-specific covariates in paired comparison studies
with an application to university rankings. Applied Statistics 47.

[35] Ditrich R., Katzenbeisser W, Hatzinger R.,. (2000). The analy-
sis of rank order preference data based on Bradley-Terry Type
models. OR Spectrum 22.

[36] Drucker H. (1997). Improving regressors using boosting tech-
niques. In proceedings of the 14th International Conference on
Machine Learning, pages 107-115. Morgan Kaufmann.

[37] Duda, R., Hart, P., Stork, D. (2000). Pattern Classification (Sec-
ond Edition). Wiley, New York.

[38] Eibl, G., Pfeiffer, K. P. (2002). How to make AdaBoost.M1 work
for weak base classifiers by changing only one line of the code.
Machine Learning: ECML 2002, Lecture Notes in Artificial In-
telligence. Springer.

[39] Efron, B., (1979). Bootstrap methods: Another look at the Jack-
knife, Annals of Statistics, 7, pp. 1-26.

[40] Efron, B., Tibshirani, R.J. (1993). An Introduction to the Boot-
strap. Monographs on Statistics and Applied Probability 57. Lon-
don: Chapman and Hall.

[41] Efron, B., Tibshirani, R.J. (1993). Statistical analysis in the com-
puter age, Science, 253: 390-395.

[42] Emond E.J., Mason D.W. (2002). A new rank correlation coeffi-
cient with application to the consensus ranking problem. Journal
of Multi-Criteria Decision Analysis.

[43] Fabbris, L. (1997). Statistica Multivariata. McGraw-Hill.

161

Bibliography

[44] Feigin P.D., Cohen A. (1978). On a model for concordance be-
tween judges. Journal of the Royal Statistical Society, B, 40, 203-
213.

[45] Fellegi I. P., and Holt D. (1976). A systematic approach to auto-
matic edit and imputation. Journal of American Statistical As-
sociation, 71, 17-35.

[46] Freund Y. (1995) Boosting a weak learning algorithm by majority.
Information e computation.

[47] Freund Y., Schapire R.E. (1997) A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal
of computer and system sciences, 55(1).

[48] Friedman, J.H.F., (1994). An overview of predictive learning and
function approximation, in V.Cherkassy, J.Friedman, H.Wechsler
(eds), From Statistics to Neural Networks, Vol.136 of NATO ISI
Series F, Springer Verlag, New York.

[49] Friedman J.H. (1997) On Bias, Variance, 0/1-Loss, and the Curse-
of-Dimensionality. Data Mining and Knowledge Discovery 1.

[50] Friedman, J.H.F., Hastie, T., Tisbshirani, R. (2000). Additive
logistic regression: a statistical view of boosting, Annal of Statis-
tics, 28, 377-386.

[51] Friedman, J.H., Popescu, B.E. (2005). Predictive Learning via
Rule Ensembles, Technical Report of Stanford University.

[52] Friedman J.H., Hall P. (1999). On Bagging and Nonlinear Es-
timation. Tecnical report, University of Stanford, ttp://www-
stat.stanford.edu/ jhf/#Reports.

162

Bibliography

[53] Fligner M.A., Verducci J.S. (1988) . Multistage rankings models.
Journal of the American Statistical Association 83.

[54] Francis B., Ditrich R., Hatzinger R., Penn R. (2002). Analysing
partial ranks by using smoothed paired comparison methods: an
investigation of value orientation in Europe. Applied Statistics 51.

[55] Geman S., Doursat E.B.R. (1992) Neural Networks and the
Bias/Variance dilemma. Neural Computation,4.

[56] Gey, S., Poggi, J.M. (2006). Boosting and instability for regression
trees. Computational Statistics and Data Analysis, 50, 533-550.

[57] Goodman, L.A., Kruskal, W.H. (1954). Measures of association
for cross-classification. Journal of American Statistical Associa-
tion, 48, 732-762.

[58] Gordon, A. (1999). Classification (Second Edition), Chapman and
Hall/CRC Press, London.

[59] Hand, D., (1998). Data Mining,: Statistics or more?. Am.Statist.,
52, 112-118.

[60] Hand.D., Mannila H., Smyth P. (2001). Principles of Data Min-
ing. A Bradford Book, The MIT Press, Cambridge, Massa-
chusetts, London, England.

[61] Hastie, T.J., Tibshirani, R.J., Friedman, J.H. (2001). The Ele-
ments of Statistical Learning. Springer Verlag.

[62] Heiser W.J. (2004). Geometric representation of association be-
tween categories. Psychometrica.

[63] Hsiao W.C., Shih Y.S. (2007). Splitting variable selection for mul-
tivariate regression trees. Statistics & Probability Letters 77, pag.
265-271.

163

Bibliography

[64] Jobson, J.D.,(1992). Applied Multivariate Data Analysis Volume
I: Regression and Experimental Design. Springer-Verlag, New
York.

[65] Jobson, J.D.,(1992). Applied Multivariate Data Analysis Volume
II: Categorical and Multivariate Methods. Springer-Verlag, New
York.

[66] Kim, H., Loh, W.Y. (2001). Classification Trees with Unbiased
Multiway Splits, Journal of the American Statistical Association,
96, 454, 589-604.

[67] Kemeny J. G. (1962). Mathematical Models in the Social Sciences.
Ginn and Company.

[68] Kohavi R., Wolpert D.H. (1996) Bias plus Variance Decomposi-
tion for Zero-One Loss Functions. Machine Learning: Proceedings
of the Thirteenth International Conference.

[69] Ibrahim, J.G., Lipsitz, S.R., Chen, M.H. (1999). Missing Covari-
ates in Generalized Linear Models when the missing data mech-
anism is nonignorable. Journal of the Royal Statistical Society,
Series B, 61(1). 173-190.

[70] Larsen D.R., Speckman C.L. (2004). Multivariate regression trees
for analysis of abundance data. Biometrics, 60. 543-459.

[71] Lauro, N.C., Siciliano, R. (1989). Exploratory methods and mod-
elling for contigency tables analisys: an integrated approach. Sta-
tistica Applicata, 1.

[72] Little J.R.A, Rubin, D.B. (1987). Statistical Analysis with Miss-
ing Data. John Wiley and Sons, New York.

164

Bibliography

[73] Little J.R.A. (1992). Regression with missing X’s: A review. Jour-
nal of the American Statistical Association, 87(420), 1227-1237.

[74] Litvak B.G. (1983). Distances and consensus rankings. Cybernet-
ics and System Analysis.

[75] Loh, W., Vanichsetakul, N. (1988). Tree-Structured Classification
via Generalized Discriminant Analysis. Journal of the American
Statistical Association, 83, 715-728.

[76] Lubinsky, D. J. (1995). Increasing the performance and consis-
tency of classification trees by using the accuracy criterion at the
leaves. In Proceedings of the Twelth International Conference on
Machine Learning, 371-377 Taho City, Ca. Morgan Kaufmann.

[77] Maclin R., Optiz D. (1997). An empirical evaluation of Bagging
and Boosting. Fourteenth National Conference on Artificial In-
telligence. Providence, Rhode Island.

[78] Marden J.I. (1995). Analyzing and modelling rank data. Chapman
& Hall, London.

[79] Martinez W.L., Martinez, A.R., (2002). Computational Statis-
tics Handbook with MatLab. Chapman & Hall/CRC, Boca Raton,
Florida.

[80] Meir R., Ratsch G. (2003). An introduction to Boosting and
Leveraging. In S. Mendelson and A. Smola, editors, Advanced
Lectures on Machine Learning, LNCS. Springer, 2003.

[81] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and
Teller, E. (1953). Equations of state calculations by fast computing
machines. J Chem Phys, 21:1087-1091.

165

Bibliography

[82] Mola, F. (1993). Aspetti metodologici e computazionali delle tec-
niche di segmentazione binaria: Un contributo basato su una fun-
zione di predizione. Unpublished Ph.D. thesis, Dipartimento di
Matematica e Statistica, Universitá degli Studi di Napoli Fed-
erico II.

[83] Mola, F., Siciliano, R. (1998). A general splitting criterion for
classification trees, Metron, 56, 3-4.

[84] Mola, F., Siciliano, R. (1997). A Fast Splitting Procedure for
Classification and Regression Trees, Statistics and Computing, 7,
Chapman Hall, 208-216.

[85] Mola, F., Siciliano, R. (1994). Alternative strategies and
CATANOVA testing in two-stage binary segmentation, in E. Di-
day, Y. Lechevallier, M. Schader, P. Bertrand, B. Burtschy (Eds.):
New Approaches in Classification and Data Analysis: Proceedings
of IFCS 93, Springer Verlag, Heidelberg (D), 316-323.

[86] Mola, F., Siciliano, R. (1992). A two-stage predictive splitting
algorithm in binary segmentation, in Y. Dodge, J. Whittaker.
(Eds.): Computational Statistics: COMPSTAT 92, 1, Physica
Verlag, Heidelberg (D), 179-184.

[87] Murphy, P. M. and Aha, D. W. (1993). UCI repository of machine
learning databases. Machine-readable data repository. University
of California, Department of Information and Computer Science,
Irvine, CA.

[88] Petrakos, G., Conversano, C., Farmakis, G., Mola, F., Siciliano,
R., Stavropoulos, P. (2004) New ways to specify data edits. Jour-
nal of Royal Statistical Society, Series A, volume 167, part 2,
249-274.

166

Bibliography

[89] Piccolo D. (2000) Statistica. Il Mulino.

[90] Piscitelli A. (2005). Data fusion: un approccio non simmetrico al
file grafting. Unpublished Ph.D. thesis, Dipartimento di Matem-
atica e Statistica, Universitá degli Studi di Napoli Federico II.

[91] Quinlan, J. R. (1993). C4.5: Programs For Machine Learning.
Morgan Kaufmann, Los Altos.

[92] Rizzi, A. (1985). Analisi dei Dati. La Nuova Italia Scientifica.

[93] Rius R., Nonell R., Aluja-Banet T. (1996). File grafting: A data
sets communication tool. In proceedings in Computational Statis-
tics COMPSTAT 9́6.

[94] Rius R., Aluja-Banet T., Nonell R. (1999). File grafting in market
research. Applied Stochastic Models in Business and Industry 15,
451 - 460

[95] Rubin, D.B. (2003). Discussion on multiple imputation. Internan-
tiona statistical review 71, 3, pp. 619-625.

[96] Rubin, D.B. (1976). Inference and Missing Data (with Discus-
sion). Biometrika 63, pp.581-592.

[97] Saporta, G. (2002) Data fusion and data grafting. Computational
Statistics and Data Analysis 38, 465-473.

[98] Sarle, W.S. (1998). Prediction with Missing Inputs Technical Re-
port, SAS Institute.

[99] Schafer, J. L., (1997). Analysis of Incomplete Multivariate Data.
Chapman & Hall.

167

Bibliography

[100] Schapire R. E. (1999). A brief introduction to Boosting. Proceed-
ings of the Sixteenth International Joint Conference on Artificial
Intelligence.

[101] Schapire R.E. (1990) The strength of weak learnability. Machine
learning 5(2).

[102] Schapire R.E., Freund Y., Barlett P., Lee W.S. (1998). Boosting
the margin: A new explanation for the effectiveness of voting
methods. The Annals of Statistics, 26(5).

[103] Schapire R.E., Singer Y. (1999). Improved boosting algorithms
using confidence-rated predictions. Machine learning 37(3).

[104] Shannon W.D., Banks, D. (1999). Combining classification trees
using mle. Statistical in Medicine, 18:727-740.

[105] Siciliano R., Mola F. (2000). Multivariate data analysis and
modelling through classification and regression trees. Computa-
tional Statistics & Data Analysis.

[106] Siciliano R., Aria., D’Ambrosio A. (2006), Boosted incremental
tree-based imputation of missing data. Data Analysis, Classifica-
tion and the Forward Search. Springer series in Studies in Clas-
sification, Data Analysis, and Knowledge Organization. Springer-
Verlag, pp. 271-278.

[107] Siciliano R., Aria., D’Ambrosio A. (2005), Boosted stump algo-
rithm for missing data incremental imputation. CLADAG 2005,
Book of Short Papers (Parma, June 6-8, 2005), MUP, Parma,
161-164.

[108] Siciliano, R. (1999). Latent budget trees for multiple classifi-
cation, in M. Vichi, P. Optitz (Eds.): Classification and Data

168

Bibliography

Analysis: Theory and Application, Springer Verlag, Heidelberg
(D).

[109] Siciliano, R. (1998). Exploratory versus Decision Trees, invited
lecture to COMPSTAT ’98 (Bristol, August 24-28), in R. Payne,
P. Green (Eds.): Proceedings in Computational statistics: 13th
Symposium of COMPSTAT, Physica Verlag, Heidelberg (D).

[110] Siciliano, R., Mola, F. (2000). Multivariate Data Analysis
through Classification and Regression Trees, Computational Sta-
tistics and Data Analysis, 32, 285-301, Elsevier Science.

[111] Siciliano, R., Mola, F. (2002). Discriminant Analysis and Fac-
torial Multiple Splits in Recursive Partitioning for Data Mining,
in Roli, F., Kittler, J. (eds.): Proceedings of International Con-
ference on Multiple Classifier Systems (Chia, June 24-26, 2002),
118-126, Lecture Notes in Computer Science, Springer, Heidel-
berg.

[112] Siciliano R., Conversano C. (2002). Tree-based Classifiers for
Conditional Missing Data Incremental Imputation. Proceedings
of the International Conference on Data Clean (Jyväskylä, May
29-31, 2002), University of Jyväskylä.

[113] Siciliano, R., Mooijaart, A. (1999). Unconditional Latent Budget
Analysis: a Neural Network Approach, in S. Borra, R. Rocci, M.
Vichi, M. Schader (Eds.): Advances in Classification and Data
Analysis, Springer-Verlag, Berlin, 127-136.

[114] Steverink M.H.M., Heiser W.J., van der Kloot W.A. (2002).
Avoiding degenerate solutions in multidimensional unfolding by
using additional distance information. Technical report of Univer-
sity of Leiden.

169

Bibliography

[115] Stone, M. (1974). Cross-validatory choice and assessment of sta-
tistical predictions, Journal of the Rojal Statistical Society, Series
B, Vol. 36, pp. 111-133.

[116] Takeuchi, K., Yanai, H., Mukherjee, B. (1982). The Foundations
of Multivariate Analysis, Wiley Eastern, New Dehli.

[117] Thisted, R.A., (1988). Elements of Statistical Computing: Nu-
merical Computation. London, Chapman and Hall.

[118] Tibshirani R. (1996). Bias, variance and prediction error for clas-
sification rules. Technical report, University of Toronto.

[119] Urbanek, S. (2002). Different ways to see a tree - KLIMT, in
Proc. of the 14th Conference on Computational Statistics, (Comp-
stat 2002), p303-308, Physica, Heidelberg.

[120] Vach, W. (1994). Logistic Regression with Missing Values and
Covariates, Lecture Notes in Statistics, vol. 86, Springer Verlag,
Berlin.

[121] Valiant L.G. (1999). A theory of the learnable. Communication
of the ACM 27/11.

[122] van der Ark, L.A. (1999). Contributions to Latent Budget Analy-
sis. A Tool for the Analysis of Compositional Data. DSWO Press,
Leiden University.

[123] van Brokland-Vogelesang R. (1990). Unfolding and group con-
sensus anking for individual preferences. PhD thesis, University
of Leiden.

[124] van der Putten, P. (2000). Data Fusion for Data Mining: a Prob-
lem Statement. Coil Seminar 2000, Chios, Greece, June 22-23.

170

Bibliography

[125] van der Putten, P., Kok, J.N., Gupta, A. (2002). Data Fusion
through Statistical Matching. MIT Sloan School of Management
Working Paper No. 4342-02, Cambridge, MA.

[126] Vapnik, V. (1995). The Nature of Statistical Learning Theory.
Springer-Verlag, Berlin.

[127] Vapnik, V. (1998). Statistical Learning Theory. Chichester, John
Wiley & Sons, United Kingdom.

[128] Winkler W. E. (1999). State of statistical data editing and cur-
rent research problems. Working paper No 29 in the UN/ECE
Work Session on Statistical Data Editing, Rome, 2-4 June 1999.

[129] Wolpert D. (1997). On bias plus variance. Neural Computation
9[6], pp. 1211 - 1243.

[130] Zani, S. (2000) Analisi dei dati statistici, vol. II, Osservazioni
multidimensionali, Giuffré ed., Milano.

[131] Zani, S. (1998) Analisi dei dati statistici, vol. I, Osservazioni in
una e due dimensioni, Giuffré ed., Milano.

171

	Introduction
	Tree-based methods and methodological context
	Classification and Regression Trees
	Splitting criteria
	Two Stage splitting criterion
	FAST splitting criterion
	Stopping rules and assignment of the response classes/values to the terminal nodes
	Pruning

	Ensemble Methods
	Bagging
	Boosting algortihms
	AdaBoost algorithms for classification and regression problems

	Data Editing
	Data pre-processing
	Data Editing
	TREEVAL strategy
	Missing Data Imputation

	Data Fusion

	Boosted Incremental Non Parametric Imputation of Missing Data
	Introduction
	Missing data mechanism
	Missing data treatment
	The incremetal imputation approach
	Boosted Incremental Non Parametric Imputation
	Simulation study
	Binary missing case
	Numerical missing case

	A real dataset: Boston Housing
	Concluding remarks

	Robust Incremental Tree-based Imputation for Data Fusion
	Introduction
	Data Fusion framework
	Models for data fusion
	Explicit models
	Implicit models

	Robust Incremental Imputation algorithm for Data Fusion
	Simulation study: numerical imputations
	Simulation study: mixed variables imputation
	Concluding remarks

	Distance-Based Multivariate Trees for Rankings
	Introduction
	Multivariate regression trees
	Distance-Based Multivariate Trees for Rankings
	The Kemeny distance
	Consensus Ranking
	Prediction error
	Searching for the consensus ranking

	Simulation case study
	A real dataset: university rankings
	Concluding remarks

	Conclusions
	MatLab codes
	AdaBoost
	AdaBoost algorithm for binary classification problems
	AdaBoost algorithm for multiclass classification problems
	AdaBoost algorithm for regression problem

	BINPI algorithm
	RTII algorithm
	Distance-Based Multivariate Treesfor Rankings

	References

