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Introduction

In the context of stellar evolution and pulsation my PhD thesis is devoted to the con-

struction of a theoretical framework for the interpretation of present and future data on

young intermediate mass pulsating stars. Pre-main sequence (PMS) stars with masses in

the range from 1.5 to 4 M� cross the pulsation instability strip of more evolved classical

pulsators during their evolution toward the main sequence (MS) and, for this reason, it is

expected that at least part of their activity could be due to pulsation.

The first evidence of δ Scuti pulsation in PMS stars was provided by Breger, (1972), who

discovered two candidates in the young cluster NGC 2264. This evidence was confirmed

more than 20 years later by Kurtz & Marang (1995) and Donati (1997) that observed this

kind of pulsation in the Herbig Ae stars HR5999 and HD104237 respectively. The inter-

est in this class of objects has grown up during the last decade and the current number of

known or suspected candidates amounts to about 35 stars. However, only a few stars of

the PMS δ Scuti class have been studied in detail, so that the overall properties of these

pulsators are still poorly determined. In this context it is expected that the satellite CoRoT

will be able to observe PMS δ Scuti stars with more accuracy as well as to discover new

objects.

The investigation of the pulsation properties of Pre-main sequence intermediate mass stars

is a promising tool to evaluate the intrinsic properties of these stars and to constrain cur-

rent evolutionary models.

In this thesis I aim at developing a theoretical approach for the interpretation of observed

frequencies, both from the already available ground-based observations and from the fu-

ture more accurate and extensive CoRoT results in the context of CoRoT ESTA collab-

oration. To this purpose, I present a project devoted to the computations of fine and

extensive grids of asteroseismic models of intermediate mass PMS stars. A linear adi-
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abatic non-radial pulsation code is applied to the models of the grid in order to build a

reference base to reproduce the observed pulsation frequencies. The obtained frequencies

are used to derive an analytical relation between the large frequency separation and the

stellar luminosity and effective temperature, and to develop a tool to compare theory and

observations in the echelle diagram. The predictive capabilities of the proposed method

are verified through the application to test stars. Then, the procedure is applied to true

observations from multisite campaigns and it is verified that I am able to constrain the

stellar parameters of the observed pulsators, in particular the mass, in spite of the small

number of measured frequencies. The thesis is organized as follows:

• in Chapter 1 I describe the physical properties of pulsating stars and the adiabatic

equations for computing pulsation periods, for both radial and non radial modes;

• in Chapter 2 the evolutionary and pulsational properties of pre-main-sequence δ

Scuti stars are investigated, togheter with an outline of the present “theoretical” and

“observational “ status;

• in Chapter 3 I present the evolutionary PMS models, introduce the non-radial pulsa-

tion code adapted by myself to PMS intermediate mass structures and report on the

predicted pulsation frequencies. The computed large separation and its dependence

on luminosity and effective temperature are discussed;

• in Chapter 4 I present a method to reproduce the observed frequencies and a theoret-

ical test of the predictive capabilities of the method; I finally compare the theoretical

results with the observations from multisite campaigns;

• in Chapter 5 I discuss the work done in the context of the CoRoT ESTA collabora-

tion;

• Finally the Conclusions close the thesis.
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An overview of Pulsating stars

In this chapter I describe the pulsating variable stars, their main characteristcs. In par-

ticular I analyze the mechanisms responsible of pulsations, and finally the equations that

consents of obtaining the pulsations periods both for radial and non radial motion.

1.1 Pulsating variable stars

A star is a self-gravitating gaseous sphere that radiates an enormous amount of energy

to its outer space. Energy radiated from the surface is generated in the deep interior by

thermonuclear reaction. A star is by no means a quiet object, but it is in a sense a kind

of heat engine exhibiting various activities. Some stars blow out stellar winds from their

surfaces, while some others are pulsating variables. A pulsating variable is a star that

changes its brightness periodically by changing its volume.

It is interesting to study stellar pulsations for understanding why, and how, certain types

of stars pulsate, but also because it is possible to use the pulsations to learn about the more

general properties of the stars. In this work only intrinsic pulsators are analysed, that is

stars whose luminosity varies periodically due to causes inside the stars themselves.

The first studies of pulsating stars initially were concentrated on stars with large ampli-

tudes, such as the classical Cepheids and long period variables. The luminosity variations
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of these stars could be understood in terms of radial pulsation whith the star expanding

and contracting, while persevering spherical symmetry.

The main emphasis in the early studies was on understanding the causes of the pulsa-

tions, particularly the concentration of pulsating stars in the instability strip. Important

contributions to interpretation of stellar pulsation were made by Eddinton (e.g. Eddinton

1926), but the identification of the actual pulsation mechanism and of the reason for the

instability strip, were achived independently by Zhevakin (1953) and by Cox & Whitney

(1958).

However, subsequently it has be realized that some stars pulsate in more complicate ways

than the Cepheids. Often more than one mode of oscillation is excited simultaneously in

a star; these modes may include both radial overtones, in addition to the fundamental, and

nonradial modes, where the motion does not preserve spherical symmetry. The study of

multiperiodic and non-radial pulsators is extremly important for attemps to use pulsations

to learn about the properties of stars. In fact each observed period is in principle an in-

dipendent measure of the structure of the star. So the amount of information about the

star grows with the number of modes that can be detected.

The classical example is the Sun, where currently several thousand individual modes have

been identified. Helioseismology is the science of learning about solar interior from the

observed frequencies.

Most of observed solar oscillations have periods close to five minutes, considerably shorter

than the fundamental radial period expected for the Sun. Both the solar five-minute oscil-

lations and the fundamental radial oscillation are acoustic modes, or p modes, driven by

pressure fluctuations. This kind of pulsations is expected in other similar stars, and they

are the targets of Asterosismology.

Pulsating stars are found in different evolutionary stages, so that they are located in differ-

ent regions, covering a wide luminosity range in the Hertzsprung-Russel (HR) diagram,

(see Fig. 1.1). The properties of the most important classes of pulsating stars are reported

in Table 1.1.

Classical pulsating stars, including Cepheids, RR Lyrae, δ Scuti, are located in a quite

narrow almost vertical region in the HR’s diagram known as instability strip (see Fig.

1.1). The Cepheids are young (population I) stars with mass ranging from 3 to 12 M�,
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Table 1.1: Physical properties of pulsating variables. The columns report, from left to right: The

variable class, the pulsation period, the absolute visual magnitude, the visual magnitude amplitude,

the spectral type, the population type and the evolutionary state.

Class P (day) MV AV S. Type Pop.Type E. phase

δ Cephei 1 ÷ 100 -7 ÷ 2 ≤ 1.5 F6 -K2 I blue loop

RR Lyrae 0.3 ÷ 1 0.0 ÷1.0 ≤ 2 A2-F2 II HB

W Vir 10 ÷ 50 -3 ÷ 1 ≤ 1.5 F2-G6? II post-HB

BL Her 2 ÷ 10 -1 ÷ 0 ≤ 1.5 F2-G6? II post-HB

AC 0.3 ÷ 2 -2 ÷ 0 ≤ 1.5 A-F ? ”young” massive HB

SX Phoe ≤ 0.1 2 ÷ 3 ≤ 0.5 A-F Ii MS

δ Scuti ≤0.5 2 ÷ 3 ≤ 1.5 A-F I MS

β Ceph ≤ 0.3 -4.5 div -3.5 ≤ 0.5 B1-B2 I MS

Mira ÷ 50 -2 ÷ 1 ≥ 2.5 Me,Re,Ne,Se I,II AGB

SR 100 ÷ 200 -3 ÷ 1 ≤ 2.5 (K)¡M,R,N,S I,II AGB

that cross the instability strip, during the central helium burning phase. In particular they

perform a blueward excursion in the HR diagram, known as blue loop. Thanks to their

characteristic Period-Luminosity relations, discovered by Mrs Leavitt in 1912, Cepheids

are the most important primary distance indicators within the Local Group. Moreover

from the space they can be used to derive the distance of external galaxies and to calibrate

various classes of secondary distance indicators. In this sense they are the basis of an

absolute extragalactic distance scale.

RR Lyrae, instead, are low mass (. 0.8 M�), population II pulsating stars during the so

called horizontal-branch (HB) phase, that is the phase of central helium burning for low

mass stars. They are observed in globular clusters, in the Galactic halo, and are concen-

trated toward the Galactic center.

The absolute magnitude of RR Lyrae and its dependence on metal abundance, make them

useful standar candles for popolation II systems. On this basis they can be used to cali-

brate some secondary distance indicators such as the globular cluster luminosity function.

At the same time they are excellent tracers of the chimical and dynamical properties of old
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Figure 1.1: HR diagram with the position of most common pulsating variable stars.

stellar populations. Beyond RR Lyrae other important classes of radial pulsators are actu-

ally observed in globular clusters and similar metal-poor stellar fields. According to the

current nomenclature we find Population II Cepheids (PII Cs) and anomalous Cepheids

(ACs). These two classes are interpreted as helium burning structures both brighter either

less massive (PII Cs) or more massive (ACs) than RR Lyrae with similar metal content.

Another important class of pulsating star is the δ Scuti one. δ Scuti stars are pulsators

located in the classical instability strip close to the main sequence∗ or moving from the

main sequence to the red giant branch.† In general their period varies from 0.02d to

0.025d. Some δ Scuti stars are pure radial pulsators, while the majority pulsate with a

large number of nonradial p-modes simultaneously for this reason δ Scuti stars represent

a transition class between the cepheid-like large-amplitude radial pulsators and the non-

radial pulsators located in the hot part of the HR diagram.

∗A star on the main sequence is one that is generating light and heat by the conversion of hydrogen (1H)

to helium 4Heby nuclear fusion in its core.
†Red Giant Branch stars are burning hydrogen in a shell surrounding a dormant helium core.
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A recently discovered class of δ Scuti pulsating stars is represented by the Pre-Main se-

quence (PMS) stars. They are intermediate mass (1.5M� < M < 4M�) stars that cross

the pulsation instability strip of more evolved classical pulsators during their evolution

toward the Main Sequence (MS). The pulsation of this class of stars is the main argument

of this work, and their properies will be described in detail in the Chapter 2.

Ather pulsating classes of stars that shown both radial and non-radial oscillations are β

Cepheid and γ Doradus stars. They are main sequence stars (or close), with oscillate

probably with gravity modes, that is non radial modes in which the restoring force is the

gravity. The rapidally oscillating Ap stars are also located in the instability strip, they

oscillate in high-order acoustic modes, rather like the Sun, but the oscillations are closely

tied to the large-scale magnetic field found in these stars.

Red giants show oscillations of very long periods, corresponding to the large dynamic

timescale resulting from their huge radii. In this evolutionary phase Mira variables have

very large amplitudes in the visible band, up to eight magnitudes, although the amplitude

in the luminosity oscillations are more modest. They are typically single periodic. Other

red giant pulsators are irregular variables with lower amplitudes and amplitudes and pos-

sibly period variations.

In the final stages of stellar evolution we find the subdwarf B variable stars, and the pul-

sating white dwarfs.

1.2 The Physics of stellar pulsation

1.2.1 Stellar stability and Oscillations

Three types of stability are fundamental for the equilibrium configuration of a star:

• dinamical stability;

• thermal stability;

• vibrational stability.

The dynamical stability is verified when for an arbitrary small contraction of a star as a

whole, the increment of pressure gradient exceeds that of the gravitational force, and the
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equilibrium structure is restored. In this state of dynamical stability the stars should spend

almost all their lives.

Thermal stability is verified when an excess input of thermal energy causes a perfect gas

star to expand as the virial theorem implies, and the temperature is normally decresed by

hydrostatic adjustment. This is the state of thermal stability.

A dynamically stable system undergoes oscillation if perturbation is applied to it. An

oscillation of a system may or may not grow in time. If it grows, it is said to be vibra-

tionally (or pulsationally) unstable. In order for an oscillatory stable system to mantain a

regular periodic oscillation, external force must be applied periodically. This is a forced

oscillation, on the other hand, free oscillations will continue for at least some time once a

perturbation has been applied initially. In the following the physical properties of radial

and nonradial free oscillations of stars are described .

1.2.2 Radial pulsation

The radial oscillations of a pulsating star are the result of sound waves resonating in the

star’s interior. A rough estimate of the pulsation period, Π, may easily be obtained by

considering how long it would take a sound wave to cross the diameter of a model star

and gives:

Π ≈
√

3π

2γGρ
(1.1)

where ρ is the star density, and γ and G, the ratio of specif heats ( γ = Cp

Cv
) and the

gravitational constant respectively. Qualitatively, this show that the pulsation period of a

star is inversely proportional to the square root of its mean density.

This period-mean density relation explains why the pulsation periods decrease as you

move down the instability strip from the very tenuous supergiants to the very dense white

dwarfs.

The sound waves involved in the radial modes of stellar pulsation are essentially standing

waves, and a star can have several modes of oscillation. In the fundamental mode the gas

moves in the same direction at every point in the star, while in the first overtone mode,

there is a single node with the gases moving in opposite directions on either side of the

node.
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To explain the mechanism that powers these standing waves, Eddinton proposed that pul-

sating stars are like thermodynamic heat engine. The gases comprising the layers of the

stars do work as they expand and contract throughout the pulsation cycle. If the work on

a cycle is positive, the layer does net work on its surroundings and contributes to driving

the oscillations; otherwise the layer tends to damping the oscillations.

As for any heat engine, the net work done by each layer of the star during one cycle is the

difference between the heat flowing into the gas and the heat leaving the gas. For driving,

the heat must enter the layer during the hight-temperature part of the cycle and leave it

during the low-temperature part.

To explain in what region of the star the driving take place, Eddinton suggested a valve

mechanism. If a layer of the star became more opaque upon compression, it could “dam

up” the energy flowing toward the surface and push the surface layers upward. Then, as

this expanding layer became more transparent, the trapped heat could escape and the layer

would fall back down to begin the cycle anew. In Eddinton’s own words, “To apply this

method we must take the star more heat-tight when compressed than when expanded; in

other words, the opacity must increase with compression”.

In most regions of the star, however, the opacity decreases with compression. In fact

the opacity k depends on the density and temperature of the stellar material as k ∝ ρ
T 3.5

(Kramers law). As the layers of a star are compressed, their density and temparure both

increase. But as the opacity is more sensitive to the temperature than to the density, the

opacity of the gases usually decreases upon compression. It takes special circumstances

to overcome the damping effect of most stellar layers, which explains why stellar pulsa-

tion is observed for only one of every 105 stars.

The special conditions responsible for exiciting and maintaining the stellar oscillations

were first identified by the Russian astronomer S. A. Zhevakin and verified in detailed

calculations by Kippenhahn, Baker and Cox. They found that the regions of a star where

Eddington’s valve mechanism can successfully operate are its partial ionization zones.

In these layers of the star where the gases are partially ionized, a significant part of the

work done on the gases as they are compressed produce further ionization rather than

raising the temperature of the gas. With a smaller temperature rise, the increase in den-

sity with compression produces a corresponding increase in Kramers opacity. Similary
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during expansion, the temperature does not decrease as much as expected since the ions

now recombine with electrons and release energy. Again, the density term in Kramers

law dominates, and the opacity decreases with decreasing density during expansion. This

layer of the star can thus absorb heat during compression, be pushed outward to release

the heating during expansion, and fall back down again to begin another cycle. This

mechanism is known as k-mechanism. In a partial ionization zone, the k-mechanism is

reinforced by the tendency of heat to flow into the zone during compression simply be-

cause its temperature is lower than in the adjacent stellar layers. This effect is called

γ − mechanism, after the smaller ratio of specific heats caused by the increased values

of Cp and Cv. Partial ionization zones modulate the flow of energy through the layers of

the star and are the direct cause of stellar pulsation.

In most stars there are two main ionization zones. The hydrogen partial ionization zone

where both the ionization of neutral hydrogen (H −→ HI) and the first ionization of

helium (HeI −→ HeII) occurs in layers with a characteristic temperature of 1.5 · 104K.

The second, deeper zone is called the He II partial ionization zone, and involves the sec-

ond ionization of helium (HeII −→ HeII), which occurs at a characteristic temperature

of 4 · 104K. The location of these ionization zones within the star determines its pul-

sational properties. In fact if the star is too hot (& 8000 K), the pulsation is not active,

because the ionization zones will be located very near to the surface. In this region the

density is quite low and there is not enough mass avaible to drive the oscillations. This

explains the blue (hot) edge of the instability strip on the H-R diagram. Otherwise if a

star’s surface temperature is too low (. 5500 K), the onset of efficient convection in its

outer layers may dampen the oscillations. Because the transport of energy by convection

is more efficient when the star is compressed, the convective stellar material may lose

heat at minumum radius. This could overcome the damming up of heat by the ionization

zones, and so inhibit the pulsation of the star. The red (cool) edge of the instability strip

is belived to be the result of the damping effect of convection.

The mechanism responsible for the pulsation of stars outside the classical instability strip

is not as well understood.
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1.3 Basic equations of pulsation

In this section I present the basic equations governing radial and non-radial oscillations.

I assume that the gas can be treated as continuum, so that the equations of the stellar

interiors are the same of a general fluid.

I neglect viscosity and assume that gravity is the only body force, so that, for example,

magnetic fields are negleted. Then the equation of motion can be written as:

ρ
D~v

Dt
= −∇p + ρ∇Φ (1.2)

where ~v is the velocity, p is the pressure, ρ is the density, and Φ is the gravitational

potential. As usual D/Dt denotes the material time derivative (Df/Dt = ∂f/∂t+~v. ~∇f ).

The density satisfies the equation of continuity,

Dρ

Dt
= −ρdiv~v (1.3)

and Φ is determined by Poisson’s equation,

∇2Φ = −4πGρ (1.4)

where G is the gravitational constant.

To complete the equation system a relation between p and ρ has been computed. This is

determined by the energy equation:

dq

dt
=

dE

dt
+ p

dV

dt
(1.5)

here dq
dt

is the rate of heat loss or gain, and E the internal energy per unit mass. The

equation 1.5, expresses the fact that the heat gain goes partly to change the internal energy,

partly into work expanding or compressing the gas.

By using the equation of continuity and thermodynamic identities, the energy equation

can be expressed in terms of other more convenient variables.

dq

dt
=

1

ρ(Γ3 − 1)
(
dp

dt
− Γ1p

ρ

dρ

dt
) = cv[

dT

dt
− (Γ3 − 1)

T

ρ

dρ

dt
] (1.6)

Here cv is the specific heat per unit mass at constant volume, and Γ1 = (∂lnp
∂ρ

)ad, and

Γ3 − 1 = (∂lnT
∂ρ

)ad are two adiabatic exponents.
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It is evident that the relation between p, ρ and T , as well as Γi’s, depend on the thermo-

dynamic state and composition of the gas.

Now it has been considered the heat gain in more detail. Specifically it can be written as:

ρ
dq

dt
= ρε − div ~F (1.7)

where ε is the rate of energy generation per unit mass, and ~F is the flux of energy. In

general, radiation is the only significant contributor to the energy flux.

In convective zones turbolent gas motion provides a very efficient transport of energy.

Ideally the entire hydrodynamical system, including convection, must be described as a

whole. In this case only the radiative flux would be included in equation 1.7. However, un-

der most circumstances the resulting equations are too complex to be handled analytically

or numerically. Thus it is customary to separate out the convective motion, by performing

averages of the equations over lenght scales that are large compared with the convective

motion, but small compared with other scales of interest. In this case the convective flux

appears as an additional contribution in equation 1.7. The convective flux must then be

determined, from the other quantities characterizing the system, by considering the equa-

tion for the turbolent motion. A familiar example of this is the mixing-lenght theory.

The general calculation of the radiative flux is also non-trivial. In stellar interiors the

diffusion approximation is adequate, and the radiative flux is given by:

~F = −4acT 3

3kρ
∇T (1.8)

where k is the opacity, c is the speed of light and a is the radiation density constant; this

provides a relation between the state of the gas and the radiative flux.

For purpose of calculating stellar oscillation frequencies, the complication of the energy

equation can be avoided to a high degree of precision, by neglecting the heating term in

the energy equation. When the heating can be neglected, the motion occurs adiabatically.

Then equation 1.7 becomes:

dp

dt
=

Γ1p

ρ

dρ

dt
(1.9)

The adiabatic approximation is evidently higt restrictive. In particular, the motion is con-

servative, and hence the total energy is constant. Thus, when considering a single mode

of oscillation in the adiabatic approximation, the amplitude of the mode is constant, and
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therefore it is not possible to treat its excitation or damping. The nonadiabatic effects also

modify the dynamical properties of the motion and hence affect the oscillation frequen-

cies, by small but not negligible amounts.

The equation 1.9, together with the continuity equation 1.3, the equation of motion 1.2

and Poisson’s equation 1.4, form the complete set of equations for adiabatic motion.

1.3.1 Equilibrium states and perturbation analysis

A general hydrodynamical description of a star, using the equations described, in the pre-

vious subsection, is far too complex to handle, even numerically on the largest existing

computers.

Luckly, in the case of stellar oscillations, considerable simplifications are possible. The

observed solar oscillations have very small amplitudes compared with the characteristic

scales of the Sun, and so it can be treated as a small perturbation around a static equilib-

rium state. Even in “classical” pulsating stars, where the surface amplitudes are relatively

large, most of the energy in the motion is in regions where the ampitudes are smaller; thus

many of the properties of these oscillations, in particular their periods, can be understood

in terms of small-perturbation theory.

The equilibrium structure is assumed to be static, so that all time derivatives can be ne-

gleted, and it is assumed that there are no velocities.

Then the equation of motion 1.2 reduces to the equation of hydrostatic support,

∇p0 = ρ0~g0 = −ρ0∇Φ0 (1.10)

where the subscript “0” denotes equilibrium quantities. Then the continuity equation 1.3,

is trivially satisfied. Poisson’s equation 1.4 is unchanged,

∇2Φ0 = 4πGρ0 (1.11)

Finally the energy equation 1.7 is:

0 =
dq

dt
= ε0 −

1

ρ0
div ~F0 (1.12)

The most important example of equilibrium is clearly a spherically symmetric state, where

the structure depends only on the distance r to the centre. Here ~g0 = −g0âr, where âr is
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a unit vector directed radially outward, and the equation 1.10 becomes:

dp0

dr
= −g0ρ0 (1.13)

Integrating once Poisson’s equation:

g0 =
Gm0(r)

r2
(1.14)

where m0(r) is the mass interior to r. The flux is directed radially outward, ~F = Fr,0âr,

so that the energy equation gives:

ρ0ε0 =
1

4πr2

dL0

dr
(1.15)

where L0 = 4πr2Fr,0 is the total flow of energy through the sphere with radius r.

Finally the diffusion expression for the flux may be written:

dT0

dr
= − 3K0ρ0

16πr2acT 3
0

L0 (1.16)

Equations 1.13 - 1.16 are clearly the familiar equations for stellar structure.

Now it is considered small perturbations around the equilibrium state. Thus, e.g., the

pressure is written as:

p(~r, t) = p0 + p′(~r, t) (1.17)

where p′ is a small perturbation; this is the so-called Eulerian perturbation, that is the

perturbation at a given point. The equations are then linearized in the perturbations, by

expanding them in the perturbations, retaining only terms that do not contain products of

the perturbations. The linearized equations are written as follows:

For the momentum equation:

ρ0
∂2δ~r

∂t2
= −∇p′ + ρ0~g′ + ρ′g0 (1.18)

For the continuity equation:

∂ρ′
∂t

+ div(ρ0~v) (1.19)

For Poisson’s equation:

∇2Φ′ = 4πGρ′ (1.20)
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Finally for adiabatic motion, the linearized energy equation is given by:

p′ + ~δr∇p0 =
Γ1,0p0

ρ0
(ρ′ + ~δr∇ρ0) (1.21)

Because of the spherical symmetry and the time indipendence of the equilibrium mode,

it is possible to separate the perturbation quantities in sperical polar coordinates (r, θ, φ)

and time. The equation can be combined in such a way that all derivatives with respect to

θ and φ appear in the form of the tangential Laplace operator:

∇2
t =

1

r2sinθ

∂

∂θ
(sinθ

∂

∂θ
) +

1

r2sin2θ

∂2

∂φ2
(1.22)

In this case, the separation of variables into radial and angular parts is possible for all the

variables, with the angular dependence of Y (θ, φ) satisfying:

[r2∇2
t + Λ]Y (θ, φ) = 0 (1.23)

where Λ is a constant.

It is possible to show that Y (θ, φ) may be chosen as a spherical harmonic Y m
l defined by:

Y m
l (θ, φ) = (−1)mclmP m

l (cosθ)eimφ (1.24)

where m = −l,−l +1, ..., l− 1, l, Λ = l(l +1) with l integer, P m
l is a Legendre function,

and clm is determined by:

c2
lm =

2l + 1

4π

(l − m)!

(l + m)!
(1.25)

such that the integral of |Y m
l |2 over the unit sphere is equal to one. On this basis, the

displacement vector, and the pressur perturbation can be written as:

δ~r(r, θ, φ, t) =
√

4πRe[ξr(r)Y
m
l âr + ξt(r)(

∂Y m
l

∂θ
âθ +

1

sinθ

∂Y m
l

∂φ
âφ)]e

−iωt (1.26)

p′(r, θ, φ, t) =
√

4πRe[p(r)′Y m
l (θ, φ)e−iωt] (1.27)

where âθ and âφ are unit vectors in the θ and φ direction.

By substituting the spherical harmonic representations into Eqs.1.18 - 1.21, the following

relations between the amplitude functions are obtained:

−ω2ρ0ξr = −dp′
dr

− ρ′g0 − ρ0
dΦ′
dr

(1.28)
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ω2[ρ′ + 1

r2

d

dr
(r2ρ0ξr)] =

l(l + 1)

r2
(p′ + ρ0Φ′) (1.29)

ρ′ =
−1

r2

d

dr
(r2ρ0) +

l(l + 1)

r
ρ0ξt (1.30)

1

r2

d

dr
(r2dΦ′

dr
− l(l + 1)

r2
Φ′) = 4πGρ (1.31)

ρ′ =
ρ0

Γ1p0
p′ + ρ0ξr(

1

Γ1p

dp

dr
− 1

ρ0

dρ

dr
) (1.32)

The last equation, that is the adiabatic energy equation, may be used to eliminate ρ′ from

equations 1.28 - 1.31, so that it is obtained a fourth-order system of ordinary differential

equations for the four dependent variables ξr, p′, Φ′ and dΦ′
dr

. On this basis it is shown the

complete set of differential equations:

dp′
r

= ρ0(ω
2 − N2)ξr +

1

Γ1p

dp

dr
p′ − ρ0

dΦ′
dr

(1.33)

where, N is the buoyancy frequency, given by:

N2 = g(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr
) (1.34)

dξr

dr
= −(

2

r
+

1

Γ1p

dp

dr
)ξr +

1

ρ0c2
(
S2

l

ω2
− 1)p′ + l(l + 1)

ω2r2
Φ′ (1.35)

where c2 = Γ1p
ρ

is the square of adiabatic sound speed and Sl the characteristic acoustic

frequency defined by:

S2
l =

l(l + 1)c2

r2
(1.36)

Finally the Poisson’s equation becomes:

1

r2

d

dr
(r2dΦ′

dr
) = 4πG(

p′
c2

+
ρ0ξr

g
N2) +

l(l + 1)

r2
Φ′ (1.37)

This set of differential equation is the start point for the description of linear adiabatic non

radial oscillations.

For radial oscillations, with l = 0, the set of equation is reduced to a second-order system

of differential equations, that is:

dΦ′
dr

= 4πGρξr (1.38)

1

r3

d

dr
(r4Γ1p)

d ξr

r

dr
+

d

dr
[(3Γ1 − 4)p]rξr + ρω2ξr (1.39)
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A nonzero solution to Eqs. 1.33 - 1.37, with the boundary conditions is possible for

selected values of ω2, which is therefore an eigenvalue of the problem. For each value

of l, one obtains a discrete spectrum of eigenfrequencies ωnl, labeled by the radial order

n. The eigenfrequencies depend on l but are degenerate by (2l + 1)-folds in m. The

normal modes belonging to the harmonic index l are further distinguished by the number

of nodes, n, in the radial component of displacement from the center to surface of a star.

The n-values are 0 for the fundamental mode, 1 for the first overtone mode, 2 for the

second overtone mode, etc. The normal modes are classified by the radial number n

and the angular number l. If the star rotates or it is considered the magnetic field, then the

azimuthal number m has to be added, and the frequencies are splitted in a sort of “Zeeman

splitting” of the atomic energetic level.

The richness of nonradial oscillations compared with the radial pulsation is partially due

to the degree of freedom in the horizontal wave number represented by the harmonic

degree l. There is also the physical reason that not only the pressure but also gravity

can act as the restoring force causing nonradial oscillations. Since the change in the

gravitational force is inward in the compressed phase, or outward in the expanded phase,

gravity cannot be the restoring force for radial pulsation. On the other hand, gravity

can act through buoyancy as the restoring force for nonradial oscillations. Thus, while

the radial oscillations has only the spectrum of the pressure mode (p-mode, classified by

n > 0) or acoustic mode, the nonradial oscillations shows the spectrum of the gravity

mode (g-mode, classified by n < 0) as well. The behaviors of the p- and the g-mode

oscillations are determinated by the internal structure of stars.
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2

Physical properties of pre-main

sequence stars

In this chapter I analyze the PMS stars, whith paricular attention to the intermediate mass

once. In particular I describe the evolutionary fase of PMS stars and the pulsational

behaviuor. At the end I summerize the present status of δ Scuti PMS stars both from a

observative point of view than from a theoretical one.

2.1 Pre Main sequence stars

The study of the first stages in the formation of stars is one of the currently most active

research fields in stellar astronomy. Pre-main sequence (PMS) stars are usually found

within star formation regions and they are characterized by a high degree of activity, with

the presence of winds, jets, outflows etc. They are interacting with the circumstellar en-

vironment in which they are embedded. Mostly they have strong infrared and/or UV

excesses and show photometric and spectroscopic variability on time scales from minutes

to years. On time scales of weeks to hours the phenomenon is generated by variable ex-

tinction due to cirumstellar dust, clumped accretion and chromospheric activity. On time

scales of half an hour to some hours the variation may be due to pulsation if the star lies
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in or near the instability strip. Stars over essentially the whole mass spectrum can become

pulsationally unstable during various stages of their evolution. The fact that young stars

during their evolution to the main sequence move across the instability region raises the

possibility that at least part of the observed stellar activity could also be due to stellar pul-

sations. The discovery of pulsation in PMS stars is extremely important, since it provides

a unique means for constraining the internal structure of young stars and for testing evo-

lutionary models. Although it is difficult to put constraints on the characteristics of young

stars and to define whether they are in their PMS phase of evolution or not, two different

types of (possible) PMS objects can be identified, namely the T Tauri and Herbig Ae/Be

stars. T Tauri stars are newly formed low-mass stars that have recently become visible in

the optical range. Joy 1942 first discovered this group of stars in the Taurus-Auriga dark

cloud and named them after their brightest member ’T Tauri’. They are PMS stars of late

spectral type (G, K and M). They show apparently normal photospheres overlain by con-

tinuum and line-emission characteristics of a hotter (about 7000 K to 10000 K) envelope.

T Tauri stars display irregular and large light variations and are associated with the dark or

bright nebulae from which they were born. As they are of late spectral types they do not

provide the necessary scenario for the κ mechanism for driving pulsation. Herbig Ae/Be

stars, are intermediate mass pre-main-sequence stars. In 1960 Herbig suggested that “Be

and Ae stars associated with nebulosity” are PMS stars of intermediate mass (2− 10M�)

in their radiative phase of contraction toward the main sequence. Herbig Ae/Be (HAEBE)

stars are charaterized by the following properties: 1)hot emission line; 2)spectral type B,

A or F; 3) a near- or far-IR excess.

In the following section we describe the evolution of both low and intermidiete mass stars.

The remaining part of the chapter is devoted to the properties of pulsation intermediate

mass PMS stars.

2.2 Pre-Main-Sequence evolution

The pre-main-sequence (PMS) contraction of stars of all masses is a well estabilished

phase of stellar evolution. The first studies of this phase of stellar evolution are due to

Hayashi, Henyey, Iben, Cameron and their collaborators in the early 1960s.
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The pre-main sequence phase of stellar evolution represents the last period of a star’s

youth, before the object begin the hydrogen fusion. As the star begins pre-main-sequence

contraction, is no longer buried within an opaque dust cloud and radiation can emanate

freely from the surface layers. The star becomes a “mature” object and it is relatively easy

to observe by traditional means.

The early phases of stellar evolution are strongly influenced by the conditions inherited

by the stars during the process of star formation. In particular, the PMS “hystory” begins

with the initial conditions set by protostellar evolution which also determines the time

t0 = tproto for PMS models. Therefore, before describing the PMS evolution, here it is

summarized the most important properties of protostars. The formation of a protostars

from the quiescent conditions of dense cores occurs throught the gradual accumulation

of the interstellar gas onto an accreting core. This process requires a large decrease in

gravitational potential energy. A large fraction of this energy is radiated away in radial

or disk accretion shocks that form as a result of the violent change in the velocity of the

freely-falling gas. If no net energy is absorbed by the circumstellar material, the resulting

luminosity is given to a good approximation by :

Lacc =
GM∗Ṁacc

R∗

(2.1)

where M∗ and R∗ are the istantaneous mass and radius of the protostellar core, and

Ṁacc = dM∗

dt
the mass accretion rate. Thus, estimates of the luminosity emitted during

this phase rely on the knowledge of two fundamental quantities, the mass accretion rate,

and the mass-radius relation. The former is determined by the dynamics of the gravi-

tational collapse, while the relation betwen the mass and the radius are established by

processes occuring in the protostellar interior. The radiation produced at the shock is ab-

sorbed, radiated and thermalized in the optically thick dusty infalling envelope. Most of

the observable radiation is emitted at mid- and far-infrared wavelenghts.

The properties of accreting protostars have been determined by several authors (e.g.

Stahler 1988; Palla & Stahler 1991, 1992; Beech & Mitalas 1994; Bernasconi & Maeder

1996; Siess et al. 1997; Norberg & Maeder 2000). Some of the main results of these

initial models are listed below:

• The typical radii of protostars (∼ 5R� for 1M�) are an order of magnitude smaller
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than those assumed in the first study of PMS evolution such as the once performed

by Hayashi and his collaborators;

• For low- and intermidiete-mass protostars is verified a mass-radius relation. The

key physical process that maintains such relation is the nuclear burning of the inter-

stellar deuterium contained in minute abudances (∼ 10−5 relative to hydrogen) in

the accreted gas mixture;

• This mass-radius relation can be used to built a birthline for stars in the HR diagram:

the birthline is the region where young stars first appear as optically visible stars;

• A prediction of this models is that the birthline intersects the Zero Age Main Se-

quence (ZAMAS) at a mass of ∼ 10M�. Thus stars with mass greater than 10M�,

have no a pre-main-sequence phase, because they become optically visible when

they have initied hydrogen yet, that is they are born on the ZAMS.

As the protostar grows in both size and mass, deuterium eventually ignites and drives

convection for low-mass objiect (M∗ . M�). Convection ceases in the intermidiate-mass

protostars, while deuterium continues to burn in a interior shell. If accretion continues,

the protostar contracts, and heats up until ordinary hydrogen ignites.

Disks arise during protostellar evolution from infalling material with too much angular

momentum to impact the star itself. These geometrically thin structures expand rapidly

with the time. Qualitatively, the global effect of accretion through a disk is to yield matter

landing into the star with a lower specific entropy than that which hits the surface directly,

because of the heat loss through radiation from the disk faces.

Once the main phase of accretion is completed, the stellar core becomes an optically vis-

ible star along the birtline. The physical process by which infall stops is still not known,

although stellar winds and bipolar outflows must play a fundamental role. The circum-

stellar matter surrounding these young stars, partly disributed in a disk and the rest in an

extended envelope, still emits at infrared wavelengs, whose spectral energy distribution

is different from a normal stellar one because of the excess emission extending from the

near- to the far-infrared.

A pre-main-sequence star loses internal energy from its surface layers, by emetting ra-

diation. Since the object is gravitationally bound, its total energy, Etot, is negative and
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increases in absolute value with time. The thermal contribution K is positive, in fact,

thanks to the virial theorem (2K + U = 0 where U is the internal energy), it is equal

to −Etot. Thus, the thermal energy and the temperature actually increase. A pre-main

sequence star, as the other stars, is an object with negative heat capacity, one whose the

temperature increases as result of heat loss. This behaviour occurs because of the incresed

gravitational binding.

Pre-main sequence stars can be treated at each instant as objects in hydrostatic and thermal

equilibrium. In fact the energy loss from radiation causes the contraction of the star with

the characteristic time scale of Kelvin Helmholtz TKH
∗, but the stellar interior readjust

to maintain force balance. This readjiustment is achieved through pressure perturbations

and take place over the sound travel time, ts = R�

as
, where as is an appropriately aver-

aged sound speed. The justification for the evolution to be quasi static is that tKH >> ts

throughout the pre-main-sequence phase.

On this basis the calculation of pre-main-sequence evolution utilizes the four, first order

differential equation of stellar structure(see cap1, 1.13 - 1.16) together with the bound-

ary conditions:M = 0: r(0) = 0; Lint(0) = 0; M = M∗: Lint(M∗) = 4πR2
∗σBT 4

eff ;

PM∗
= 2GM∗

3R2
∗kphot

, the last condition derives from the assumptions that P (M∗) must equal

the appropriate photosferic value when Mr = M∗ .

The full four stellar structure equations must be solved as a two-point boundary value

problem, in which the values of pressur and entropy are guessed at the center, while the

stellar radius and luminosity are guessed at the surface. One can integrate the equations

from both directions to an interior fitting point, where the four guesses must be changed

until all variables match.

The evolutionary tracks for pre-main-sequence stars, as caculated by Palla & Stahler

(1993), are plotted in the HR diagram from masses ranging from 1 to 6 M�, see fig.

2.1 For T Tauri stars (low mass stars 1 < M
M�

< 2), it could be noticed that the star’s

emitted luminosity is initially hight enoygh to drive interior convection. Mixing associ-

ated with turbolent convection enforces a spatially constant specific entropy, and the star

∗If a star is not in equilibrium, that is there are no force to opposing the gravitational collapse, it would

slowly contract, radiating away all of its gravitational potential energy. If it does so at its luminosity L, the

time it takes to radiate away its energy is given by the total energy divided by the rate the energy is lost

(which is the luminosity). This time, is given by tKH = GM2/RL
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Figure 2.1: Evolutionary tracks for PMS stars.

contracts in a simple, homologous fashion. Since the effective temperature remain nearly

fixed, the objects descends vertically in the HR diagram. Eventually, the interior opacity

diminishes to the point where radiation can provide energy transport. The effective tem-

perature then increases, and the evolutionary tracks become more horizontal.

The rising central temperature in a pre-main sequence star ignites a sequence of nuclear

reactions. First, the object exhaust whatever deuterium remains from the protostar phase.

This reaction can stall contraction for up to 106 years in the lowest-mass stars. The sub-

sequent fusion of litium is energically trivial. Ordinary hydrogen eventually burns in all

stars more massive than 0.075M�. Here, the released energy completely halts stellar con-

traction.

Objects of even smaller mass have a central temperature that pecks too low for hydro-

gen ignition and then declines further as the radius settles to a finite value. These stars

are known as brown dwarfs, in which the electron degenaracy pressure counteracts self-

gravity.

The evolution of Herbig Ae/Be is influenced more than the one of T Tauri by the prior

accretion hystory and strongly depends on the stellar mass range. Three different regimes

can be identified:

• Stars in the range from 1 to 2.5M� are fully convective stars, due to surface cooling,
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as soon as they appear as optically visible objects. The evolution is undisturbed

by the fusion of residual deuterium: its concentartion is so low, that it is quickly

consumed. They contract along the Hayashi track†, but their path is much reduced

with respect to the T Tauri;

• Stars in the range from 2.5 to 4M� are partially convective stars. They undergo

thermal relaxation and nonhomologous contraction. When they are first optically

visible, they are underluminous , that is the star begins with a modest surface lumi-

nosity and then moves up to join the radiative portion. The Hayashi phase is skipped

entirely and the unrelaxed star first appears below the classical evolutionary track

for that mass in the HR diagram. At this epoch, the star has a relativly shallow

convection zone. During the subsequent relaxation phase, the stellar radius, surface

luminosity and temperature all increase, while outer convection disappears. The

luminosity in this mass range stems almost enterly from gravitational contraction;

• Stars more massive than 4M� are fully radiative stars, and appear immedialtely on

the radiative portion of the track, where they begin to contract homologously under

their own gravity. As the star contracts, the average interior luminosity must rise as

R
−1

2

∗ . This rise is evident in the evolutionary tracks of Fig. 2.1. The specific entropy

decreases with time in all interior mass shells, a sign of homologous contraction.

At any time, the interior is radiative, that is the entropy is incresing outward, except

for a very thin surface layer. As already mentioned, stars with mass larger than

10M�, have not a pre-main-sequence phase, because they become optically visible

after hsving ignited central hydrogen.

†A nearly vertical path of stellar evolution on the Hertzsprung-Russell diagram down which an infant

star progresses on its way to the main sequence. While on the Hayashi track, a star is largely or completely

in convective equilibrium; as it progresses, its luminosity, initially very high, decreases rapidly with con-

traction, but its surface temperature remains almost the same. The sequence runs in reverse for stars leaving

the main sequence to become giants.
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Figure 2.2: Evolutionary tracks for PMS stars together with the instability strip compted by Mar-

coni & Palla(1998).

2.3 PMS δ Scuti stars

Pre-main sequence intermediate mass stars with mass in the range 1.5 < M/M� <

4 cross the pulsation instability strip during their contraction towards the main se-

quence as showed in Fig. 2.2.

The existence of pulsating stars among the PMS intermidiate mass stars was origi-

nally suggested by Breger(1972), who identified the first two candidates, V588 Mon

and V589 Mon in the young cluster NGC2264. About 20 years later, new empirical

evidences for δ Scuti-like pulsation were found by Kurtz and Marang (1995) and

Donati et al. (1997) for the Herbig Ae stars HR 5999 and HD 104237, respectively

and many new members were identified in the following years(see next section).

Pulsation is manifested observationally through small, temporal variation of the

stellar brightness as showed in figure 2.3. expected to be pulsating in a similar way

as the MS and post-MS δ Scuti stars, that is with more than one period of oscillation

due to both radial and non radial motion.

Pulsation arises in this PMS phase of stellar evolution by means of the classical κ

mechanism. Depending on its mass, a given star shows intrinsic pulsation from 5 to

10 percent of its PMS lifetime. Thus, the potential number of candidate sources is
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Figure 2.3: light curves for the δ Scuti PMS star VV Ser from Ripepi et al. 2006. Note that

δV = VV AR−VCOMP . The solid line displays the fit to the data with all the significant frequencies

found for this star.

rather limited, and the actual number of known PMS δ Scuti stars is about 35. In the

following section we describe observational results obtained for δ Scuti pulsations

in intermediate mass PMS stars.

2.4 Present observational status

As mentioned above Breger(1972) was the first to report short-term photometric

variation resembling δ Scuti pulsations in two PMS stars (V588 Mon, V589 Mon).

Only monoperiodicities were detected, with considerable ambiguity on their reality

and large uncertainties on their frequencies, due to the limited amount of data.

This initial finding was confirmed by subsequent observation of δ Scuti-like pul-

sations in other Herbig Ae stars. Recently the interest for this class of objects has

significantly grown up and the actual number of known or suspected candidates

amounts to about 35 (see Table 2.1).

In particular 29 of them have been studied photometrically, but most of them have

insufficient data due both to the short duration of the observations and/or to the poor
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duty cycle. It is very clear that data of much better quality are needed, in particular

data spanning at least a couple of weeks, with improved duty cycles. Multisite cam-

paigns and/or space-based observations are necessary to reach this goal. Up to now

only 6 stars have been observed by means of multisite campaigns and all of them

have been found to be multiperiodic: V588 and V589 Mon (12 and 19 frequencies

respectively, Zwintz et al. 2005), V351 Ori (5 frequencies, Ripepi et al. 2003), IP

Per (9 frequencies, Ripepi et al. 2006), HD 34282 (9 frequencies, Amado et al.

2005), and V346 Ori (17 frequencies, Ripepi et al. in preparation).

Spectroscopic monitoring of PMS stars can also provide information on their δ

Scuti pulsations. Radial velocity curves can be used to study low-degree modes,

with a sensitivity to the various modes which differs from that of photometric ob-

servations. Radial velocity curves therefore provide a tool of investigation for pul-

sations which is indipendent from and complementary to photometry, and can be

used for instance to confirm the frequencies found in photometry. However, only for

few stars spectroscopic monitoring has been carried out. In particular spectroscopic

measurements are avaible for the following stars: V351 Ori (5 frequencies Balona

et al. 2002), β Pic (19 frequencies Koen et al. 2003), HD 104237 (5 frequencies,

Bö hm et al. 2004), and the binary star RS Cha (Alecian et al. 2005, 2006). This

last objiect is very interesting because it is an eclipsing double-line spectroscopic

binary. Results based on high resolution spectroscopy (Alecian et al. 2006) seem to

show that both components are pulsating. This star therefore will offer the unique

opportunity to obtain stringent constraints on pulsating models.

Space-based observations are definitely the best strategy for asteroseismology, pro-

viding both a very good spectral window and a very low level of photometric noise.

Among the ongoing asteroseismology space projects,CoRoT(for Convection, Ro-

tation and planetary Transit) and MOST(Microvariability and Oscillation of STars)

have the possibility of observing PMS stars as part of their programme.

CoRoT (Baglin et al., 2002) is a small space photometry space mission, for astero-

seismology and exoplanet search. It is being developed by CNES, the french space

agency, with a significant partecipation from other european countries, Brasil and

ESA, and includes a 27 cm CCD photometer placed on the low-earth orbit, covering
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a 3 degree field. It will be launched on December 2006 (hopefully). The duty cycle

of the observations will be better than 96%, which also is by far more efficient than

multisite ground based campaigns. CoRoT will observe a few fields for 5 months

continuously, and also a few other fields for 10 - 20 days, in order to perform a

seismological exploration of the HR diagram. There will be a possibility to observe

a few PMS stars in this exploratory phase of the mission, in particular the young

cluster NGC 2264, which falls in the continuous viewing zone instrument. This

will give us the first opportunity to detect and measure low amplitude modes, with

a good frequency resolution and most of all no alias.

MOST is a microsatellite desined to probe stars and extrasolar planets. MOST was

lunched on June 30, 2003, and has as scientific goals the detection and the charac-

terization of: 1) the acustic oscillation in Sun-like stars, to probe seismically their

structure and ages; 2) the reflected light from giant exolanets closely orbiting Sun-

Like stars, to reveal their size and atmospheric compositions; 3) turbolent variations

in massive evolved stars to understand how they add gas to interstellar medium.

The experiments intends to performe ultra-high-precision photometry (i.e., mesaure-

ment of brightness variation to a level od 1 part per million) of stars down to the

magnitude 6 for up to months without interruptions. The instuments is equipped

with an optical telescope with a collecting mirror only 15 cm across, with two CCD

camera (1024X1042 pixels). One CCD is used for science measurements; the other

is read out every second to track guide stars for satellite altitude control. The in-

strument has a single broadband filter which selects in light the wavelengh range

between 350 to 700nm. MOST has already observed the two prototypes of the

class: V588 and V589 Mon. The results will be avaible in the near future.

2.5 Present theoretical status

The observational campaigns performed by Kurutz & Marang (1995), Donati et al.

(1997), which confirmed the δ Scuti like pulsations in the Herbig Ae stars HR5999

and HD104237 respectively, stimulated the first theoretical investigation of pulsa-

tion properties of the PMS intermediate mass stars. Marconi & Palla (1998) cal-
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culated the topology of the PMS instability strip for the first three radial modes,

based on non-linear convective hydrodynamical models (see Fig. 2.2). These au-

thors also pointed out that the interior structure of PMS stars entering the instability

strip differs significantly from that of more evolved Main Sequence stars (with the

same mass and temperature), even thought the envelopes structures are similar. This

property was subsequently confirmed by Suran et al. (2001) who made a compara-

tive study of the seismology of a 1.8 M� PMS and post-MS star. Suran et al. found

that the unstable frequency range is roughtly the same for PMS and post-MS stars,

but that non radial modes are very sensitive to the deep internal structure of the star.

In particular, it is possible to discriminate between the PMS and post-MS stage, us-

ing differences in the oscillation frequency distribution in the low frequency range

(g modes). Recently Grigahcéne et al. (2006) have determined a theoretical PMS

instability strip obtained for the first seventh radial overtones, by performing non-

adiabatic convective pulsations calculations.

However not all the observed frequencies can be interpreted as radial modes, but

some of that seems to be non radial oscillation frequencies. A systematic study of

non radial oscillation has not been performed yet. In this work we have planned

to investigate the pulsation properties of intemediate PMS stars by means of both

radial and non radial models. To this purpose we have built a fine grid of PMS mod-

els with mass ranging from 1.6 to 4 M�, for which we have computed the radial

and non radial pulsation behaviour. The theoretical tools used in this thesis will be

described in the next chapter.
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Table 2.1: Pulsating PMS stars.

Name Spectral Type V logeff logL/L� Type number of freq.

V589 Mon F2 III 3.85 1.51 CM 19

V588 Mon A7 III/IV 3.9 2.05 CM 12

NGC 6823 HP57 - 3.86 1.25 CM 2

NGC 6823 BL50 - 3.86 1.6 CM 2

NGC 6383 198 - 3.87 1.3 CM 1

NGC 6383 170 A5 IIIp 3.91 1.7 CM 5

IC 4996 40 A4 3.93 1.26 CM 1

IC 4996 37 A5 3.91 1.26 CM 1

IC 348 H 254 F0(A8 III-IV) 3.85 1.62 CM 4

NGC 6530 5 - 3.92 1.2 CM 2

NGC 6530 82 - 3.88 1.01 CM3

NGC 6530 85 A1 III 3.86 1.37 CM 5

NGC 6530 263 - 3.87 1.13 CM 1

NGC 6530 278 A0/A5 3.9 1.75 CM 9

NGC 6530 281 - 3.92 1.29 CM 7

V351 Ori A7 IIIe 3.87 1.15 HAEBE 5

V346 Ori A5 III 3.89 0.98 HAEBE 4

UX Ori A3e 3.94 1.49 HAEBE suspected

IP Per A7 V 3.89 0.97 HAEBE 9

HR 5999 A7 III/IVe 3.85 2.12 HAEBE 1

HD 35929 F0 IIIe 3.86 1.92 PMS? 1

HD 142666 A8 Ve 3.88 1.03 HAEBE 1

HD 104237 F4 V 3.93 1.5 HAEBE 2(3?)

CQ Tau F2 IVe - - HAEBE 1

BF Ori A5II-IIevar 3.83 1.48 HAEBE 1(?)

HD 34282 A0e 3.94 1.15 HAEBE 2

V1247 Ori A5 III 3.86 1.2 PMS? 1

β Pic A5V 3.91 1.05 PMS? 2(3?)

VV Ser A2e 3.85 2.13 HAEBE 2(3?)

V375 Lac A7e 3.86 2.08 HAEBE 2

WW Vul A3e - - HAEBE 1(1?)

PX Vul F0Ve - - HAEBE 1(?)
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3

Theoretical tools to reproduce PMS δ

Scuti pulsation

In this section I present the theoretical tools used in this thesis to characterize the

pulsational properties of pre-main-sequence δ Scuti stars. In particular I describe

the evolutionary and pulsational codes. At the end of the chapter, the theoretical

frequencies are presented and a first application to an observed pulsator, namely the

Herbig star VV Ser is discussed.

3.1 Evolutionary models

The first step to analyze the pulsation properties of PMS δ Scuti stars, is to build a

set of PMS evolutionary models, from which the equilibrium stellar structures, that

are the input of any pulsational code, are obtained.

The stellar models used in this thesis have been computed with the CESAM evo-

lutionary code (Morel, 1997) including update physical assumptions (Marques et

al., 2006) and optimized for asteroseismologic purposes. The precise calculation of

the oscillation frequencies of both p and g modes, requires numerically precise and
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adequately dense mesh distributions in the evaluation of the quantities describing

the internal structure and entering the oscillation equations. The PMS models are

obtained by solving the classical equations of stellar structure, (see 1.13 - 1.16). In

the CESAM code the indipendent lagrangian variable is the mass Mr in a sphere

of radius r. The star is assumed as a spherical symmetric object, without magnetic

field, and with rotation, so the equations of the stellar structure are written as:

∂P

∂M
= − GM

4πR4
+

Ω2

6πR
(3.1)

for the hydrostatic equilibrium, where Ω(M, t) is the angular velocity.

∂T

∂M
=

∂P

∂M

T

P
∇ (3.2)

for the thermal balance, where ∇ = ∂lnT
∂lnP

.

∂R

∂M
=

1

4πR2ρ
(3.3)

for the continuity equation.

∂L

∂M
= ε − ∂U

∂t
+

P

ρ2

∂ρ

∂t
(3.4)

for the energy equation and,

∂Xi

∂t
= − ∂Fi

∂M
+ Ψi , 1 ≤ i ≤ nX (3.5)

for the changing in chemical composition, where Xi(M, T ) is the fraction of unit

mass which consist of nuclei of type i, Fi the flow of Xi due to diffusion, Ψi the

creation rate of Xi due to thermonuclear reactions, and nX the number of chemical

species.

The physical and numerical properties of these models are discussed in detail in the

paper by Morel (1997). The main characteristics can be summarized as follows:

– the evolution is initialised with an homogeneous, fully convective model in

quasi-static contraction, with a central temperature inferior to the ignition tem-

perature of deuterium;
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– the OPAL equation of state (Rogers et al. 1996, 2001) and the opacities by

Iglesias & Rogers (1996), complemented, at low temperatures, by the Alexan-

der & Fergusson (1994) molecular opacities, are adopted;

– the temperature gradient in the superadiabatic convective zones is computed

using the standard mixing-length theory (Böhm-Vitense 1958) with l/HP =

1.6.

For the frequencies, the computation of the following variables is needed at each

mesh point in the model:

x =
r

R

a1 =
q

x3
where q =

m

M

a2 =
−1

Γ1

dlnP

dlnr
=

Gmρ

Γ1pr

a3 = Γ1 (3.6)

a4 =
−1

Γ1

dlnP

dlnr
− dlnρ

dlnr

a5 =
4πρr3

m

These are clearly all dimensioneless. The relations between the variable defined

here and more “physical” variables used in the differential sistem equation are:

p =
GM2

4πR4

x2a2
1a5

a2a3

dp

dr
=

−GM2

4πR5
xa2

1a5 (3.7)

ρ =
M

4πR3
a1a5

The Lamb frequency Sl and the buoyancy frequency, Sl, are written as:

S2
l =

l(l + 1)c2

r2
=

GM

R3

l(l + 1)a1

a2
(3.8)

and

N2 =
GM

R3
a1a4 (3.9)
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In addition the following “global” quantities are used in the frequencies computa-

tions code.

D1 = M∗

D2 = R∗

D3 = pc

D4 = ρc (3.10)

D5 = −(
1

Γ1p

d2p

dx2
)c

D6 = −(
1

ρ

d2ρ

dx2
)c

D7 = µ

Here R and M are the photosperic radius and mass of the model (the photosphere

being defined as the point where the temperature equals the effective temperature).

In a complete model pc and ρc are the central pressure and density, and D5 and D6

are evaluated at the centre. In an envelope model D3 and D4 should be set to the

values of pressure and density at the innermost mesh point and D5 and D6 may be

set to zero.

On this basis we have computed 56 models for stellar masses varying from 1.6 to

4M� with a step of 0.2M�. The evolutionary tracks are shown in figure Fig. 3.1,

while he physical properties of the selected PMS models are reported in Table 3.1.

3.2 Pulsational approach

The linear adiabatic non radial oscillations are described completely by the the set

of differential equations derived in chapter one (see Eqs. 1.33 - 1.37). The numer-

ical code I have used for solving those equations calculation is the linear and adia-

batic “Aarhus” code named ADIPS ( http://astro.phys.au.dk/∼jcd/adipack.n/)

built ad “hoc” for the Sun, and adapted in this thesis to PMS δ Scuti stars. The code

has been applied to the PMS stellar equilibrium models described in the previous
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Figure 3.1: PMS evolutionary tracks computed with the CESAM code for the labelled stellar

masses (in M�.)

section.

The general oscillations equations appear quite complicate. In particular, analytical

solutions can only be obtained in certain, very restricted cases. However the under-

standing of the numerical results and the interpretation of the observed oscillations

have been greatly assisted by asymptotic analyses of the oscillation equations. In

the next section I present the asymptotic properties of the oscillation equations and

then the numerical techniques commonly adopted to obtain the solutions.

3.3 Asymptotic theory

The general equations are of fourth order. This is a difficulty in asympotic studies

which generally deal with second-order systems. Luckily enough, the perturbation

to the gravitational potential, Φ′, can be negleted when the harmonic ( l) or radial

(|n|) degree is large. This approximation was first studied carefully by Cowling

(1941), and is therefore known as the Cowling approximation. It reduces the order

of the system of equations to the second, with a corresponding reduction in the

number of boundary conditions. The two equations in the Cowling approximation
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can be combined into a single second-order differential equations for the radial

component of displacement perturbation, ξr:

d2ξr

dr2
=

ω2

c2
(1 − N2

ω2
)(

S2
l

ω2
− 1)ξr (3.11)

This equation represents the crudest possible approximation to the equations of

non-radial oscillations.

From equation 3.11, it is clear that the characteristic frequencies Sl and N , play a

very important role in determining the behaviour of the oscillations. To analyze the

properties of oscillations it is convenient to write equation 3.11 as:

d2ξr

dr2
= −K(r)ξr (3.12)

where K(r) = ω2

c2
(1 − N2

ω2 )(
S2

l

ω2 − 1). The local behaviour of ξr depend on the sign

of K(r). Where K(r) is positive, ξr is locally an oscillation function of r; where

K(r) is negative the solution is locally an exponentially increasing or decreasing

function of r. Thus according to this description the solution oscillates when:

– |ω| > |N | and |ω| > Sl, (p mode);

– |ω| < |N | and |ω| < Sl, (g mode).

and it is exponential when:

– |N | < |ω| < Sl,

– Sl < |ω| < |N |

For a given mode of oscillation there may be several regions where the solution

oscillates, with intervening regions where it is exponential. However, in general,

one of these oscillating regions is dominant. The solution is then said to be trapped

in this region; its frequencies are predominantly determined by the structure of the

model in the region of trapping. There are two distinct type of trapping regions. The

p type region extends from a point in the interior to just below the surface. Modes

corresponding to this type of trapping are the p modes and typically occurs at high

frequencies. The g type region is a region in the interior and modes corresponding

to this trapping are the g modes, tipically occuring at low frequencies. From the
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asymptotic theory derives thar for n � l the p modes have a very regular pattern:

νnl ' ∆ν[n + (1/2)l + ε] +
1

6
Al(l + 1) (3.13)

where A, ∆ν and ε are constants (Tassoul 1980, Gough 1986). The last term is a

rather small correction compared to the first one. It is evident that modes with the

same l and with adjacent values of n are separated by ∆ν, and that frequencies of

modes with degree l and order n, and degree l+2 and order n−1 differ by the small

amount (2l + 3)A/3. The term ∆ν is asymptotically given by: ∆ = (2
∫ R∗

0
dr
c
),

where c is the local sound speed and R∗ is the stellar radius. Then, it is possible to

define the large frequency separation as:

∆νl ≡ νnl − νn−1l (3.14)

between modes of the same order, and the small frequency separation as:

δll+2 ≡ νnlνn−1l+2 (3.15)

between modes whose degrees differ by two.The small separation is sensitive to the

sound speed gradients, particularly in the stellar core. In detail the small separation

is given by δll+2 = ∆νl
(l+1)
2π2νnl

∫ R∗

0
dc
dr

dr
r

.

In the asymptotic limit n � l, g-mode periods become almost equally spaced:

Tnl =
T0(n + l/2 + δ)

L
(3.16)

where Tnl is the period of a g-mode, T0 and δ are parameters.

3.4 Numerical Techniques

The differential equations 1.33 - 1.37, in combination with the boundary conditions,

costitute a two-point value problem. Nontrivial solutions to the problem can be

obtained only at selected values of the frequency ω, which is therefore an eigenvalue

of the problem. Here I describe the general properties of the solution methods.
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3.4.1 Difference Equations

The numerical problem can be formulated generally as that of solving:

dyi

dx
=

I
∑

j=1

aij(x)yj(x)for i=1,....I (3.17)

with suitable boundary conditions at x = x1 and x2. Here the order I of the system

is 4 for the full nonradial case, and 2 for radial oscillations or the Cowling aprroxi-

mation.

To handle these equations numerically, it is useful to introduce a mesh x1 = x(1) <

x(2) < ...x(Nme) = x2, in x where Nme is the total number of mesh points. Similary,

they are defined y
(n)
i = yi(x

(n)), and a
(n)
ij = aij(x

(n)). A very simple representation

of the differential equations is in term of second-order centred differences, where

the differential equations are replaced by the difference equations:

y
(n+1)
i − y

(n)
i

x
(n+1)
i − x

(n)
i

=
1

2

I
∑

j=1

[a
(n)
ij y

(n)
j + a

(n+1)
ij y

(n+1)
j ] i=1,...I (3.18)

These equations allow the solution at x = x(n+1) to be determined from the solution

at x = x(n).

Alternatively, it is possible to approximate the differential equations at each mesh

interval (x(n), x(n+1)) with a set of equations with constant coefficients, as given by:

dy
(n)
i

dx
=

I
∑

j=1

ãn
ijy

(n)
j (x) for i=1,...,I (3.19)

where ãn
ij = 1

2
(an

ij + an+1
ij ) (Grabriel & Noels 1976). These equations may be

solved analytically on the mesh interval, and complete solutions are obtained by

continuos matching at the mesh points. This tecniques becomes very complex for

four order systems, so it is implemented only for systems of order 2, i.e., radial

oscillations or non-radial oscillations in the Cowling approximation. The adopted

code allow us to solve the equation system with two basically different techniques.

The first is a shooting method, where solutions satisfying the boundary conditions

are integrated separately from the inner and outer boundary, and the eigenvalue

is found by matching these solutions at a suitable inner fitting point. The second

is the relaxation tecnique, that solve the equations, togheter with a normalization
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condition and then found by requering the continuity of one of the eigenfunctions

at an interior matching point when all the boundary conditions are satisfied, or by

requiring that the remaining boundary condition be satisfied.

The physical and numerical assumptions used in this thesis for the computation of

pulsation frequencies are:

– The lagrangian perturbation of the pressure is set to zero;

– The equation are solved by means of the shooting method with the standard

second-order centered difference technique;

– The frequencies are corrected for truncation errors through the Richardson

extrapolation.

3.5 The predicted pulsational frequencies:the case of

VV Ser

In order to explore the pulsation frequencies that characterize the PMS stars, as-

sociated to both radial and non radial modes, I have applied the Aarhus adiabatic

non-radial pulsation code to 56 models for stellar masses varying from 1.6 to 4.0

M� with a step of 0.2 M� (see table 3.1). For each selected mass, I have consid-

ered from two to four different effective temperatures in the range 6000 to 10000 K,

along the corresponding evolutionary tracks. These PMS models cover the HR dia-

gram location expected for pulsating PMS intemediate mass stars. For each models

I have computed the frequencies for p and g modes for l = 0, 1, 2 and |n| = 0 to

20. I have analyzed only the mode with l = 0, 1, 2. In fact as underlined by Suran

et al. 2001, Baglin et al. 2000 they are thought to be the easiest to detect, as their

visibility coefficients remain sufficiently large after integration over the whole stel-

lar disk.

In fig. 3.2 I report the predicted frequencies for the models at 3.2 and 3.6 M�, as

a function of the radial degree n . As shown in the figure, the range covered by

the predicted p and g mode frequencies depends on both the stellar mass and the
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Figure 3.2: Predicted frequencies as function of the radial order n for models at 3.2 M�(bottom

panel), and 3.6 M� (upper panel). Symbol are connected by a full line in the case l = 0, by dashed

line for l = 1 and by dotted line for l = 2. The effective temperatures of the models are indicated

for each mass.

effective temperature, moving toward higher values as the stellar mass decreses, at

fixed effective temperature, and as the effective temperature increases, at fixed stel-

lar mass.

As a first application we compare the PMS theoretical frequencies with the ob-

served ones for the star VV Ser.

The variable VV Ser was defined as a young star in the seminal work by Herbig

(1960) on emission line stars associated with reflection nebulae. The star is located

in the Serpens molecular cloud (Chavarria et al. 1988) and has been widely studied

in the literature. Although its properties and position in the HR diagram are still

rather uncertain, the physical properties of this star as reported in literature are re-

ported in table 3.2 .

VV Ser has been observed, by my group, in several runs during 2002, 2003 and

2004, using the Loiano 1.5m telescope. All the data have been reduced following

the usual procedures (de-biasing, flat-fielding) by using standard IRAF routines.

On the basis of our analysis VV Ser is classified as a multiperiodic pulsators and

the computed frequencies are reported in 3.3. In order to compare the observations
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with the theoretical predictions, it is necessary to estimate the position of VV Ser

in the HR diagram. For determining the Teff value it is possible to use the spectral

type and the table which convert it in effective temperature. In table 3.4, I report

(first column) all the independent measurements of spectral type (ST) found in the

literature. There is still a large uncertainty on the ST with values varying from

B1e-B3e to A3e. The determination of the earliest types by [25] is based on the

HeI 5876 Å line which was later found to be associated with the hot regions of

accretion disks (see [61] and references therein) and therefore should not be con-

sidered reliable. However, a Be type has been found by several authors (see Table

3.4), ranging from B5 to B9. On the other hand, Table 3.4 lists six studies where

VV Ser is classified as an Ae star, with typical ST A2. Interestingly, the only paper

exclusively dedicated to VV Ser is that by [14], who assigns an A2e class, based

on high resolution spectroscopy and Strömgren photometry. In this work I rely on

these last results, allowing an uncertainty of two subclasses to take into account the

spread of spectral types found in the literature. Adopting this spectral type range,

and using the [64] conversion tables, the range of allowed effective temperature is

from 8000 to 10000K. For evaluating the luminosity it is necessary to have a good

distance of the star. The distance estimate of VV Ser is related to that of the Serpens

Cloud, that in turn is still matter of debate. In fact, [14] and [19], on the basis of

photometric and spectroscopic observations of 5 stars in the cloud (excluding VV

Ser) calculated a distance of D=311±38 pc, in fair agreement with previous deter-

minations of about 440 pc by [56] and [69]. However, since such large distances

to the Serpens cloud appear unlikely, in the following we will adopt a distance of

300-400 pc.

Concerning the luminosity, I simply decided to investigate all the luminosities in

the range 1.3 < log L/L� < 2.3, covering the empirical estimates in the literature

(see 3.4).

On this basis I have analized all the region showed in figure 3.3, as the large box

in the HR diagram. In particular I have selected all the PMS models in that region,

that are represented as points on the evolutionary tracks. The figure also includes

the theoretical instability strip computed for the first three radial modes by Marconi
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Figure 3.3: PMS evolutionary tracks for the labelled masses and solar chemical composition (Z =

0.02, Y = 0.28) computed with the CESAM code as compared with the estimated uncertainties

on the position of VV Ser (dashed box, see text) and the theoretical instability strip for the first

three radial modes predicted by [43] on the basis of nonlinear convective pulsation models. The

empty circles represent the 32 models run for the pulsational analysis. The filled symbols are for

the best fit models.

& Palla 1998, on the basis of nonlinear convective pulsation models. From this plot

it is possible to see that for the estimated VV Ser effective temperatures it is not

allowed pulsation in the first three radial modes, because the predicted instability

strip is cooler at each luminosity level. However, we can expect pulsation in higher

radial overtones and/or in nonradial modes.

In order to compare the theoretical frequencies with the observed ones I have plot-

ted in Fig. 3.4 the predicted frequencies with l = 0, 1, 2 as a function of the mode

order n; the observed frequencies are represented by the horizontal lines.

As it is shown by these plots, the three lowest frequencies, namely f2, f3 and f4,

cannot be reproduced simultaneously by p modes, in the mass and effective tem-

perature range found in literature. In particular, f2 is only consistent with a g mode

unless the effective temperature is much lower than the estimated empirical range.

At this purpose I plot in Fig. 3.5, the comparison between theoretical and observed
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Figure 3.4: Comparison between predicted (filled symbols) and observed (horizontal solid lines)

periodicities for models at 3.6 M� (bottom panels), and 3.7 M� (upper panels). Symbols are

connected by a dotted line in the case of l=0, by a long dashed line for l=1 and by a dashed line

for l=2. The two panels refer to the labelled effective temperatures. When a predicted frequency

reproduces an observed one the corresponding filled symbol (along the given l slanting line) is

located at the intersection with the horizontal line representing the observed value

frequencies for a significantly cooler model (Teff = 6997K) with mass M = 4M�.

In this case, the range of the lowest observed frequencies is covered with the pre-

dicted l = 0, n = 0, 1, 2 modes, with f2 close to the theoretical result for the

fundamental mde. In other words at such low effective temperature it is possible to

have pulsation in the lowest three radial modes, as predicted by the instability strip

computed by Marconi & Palla(1998) (see Fig.3.3).

A tentative mode identification based on the various plots is summarized in Ta-

ble 3.5. Model frequencies are required to match the observed ones within 2.5µHz,

in order to take into account both the mean error on the measured periodicities (∼
0.5 µHz) and an estimate of the (unknown) model intrinsic uncertainty.
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Figure 3.5: The same of figure 3.4, but for a model of 4 M� and Teff = 6997K

Table 3.5: Preliminary mode identification as a function of
the explored model input parameters. The mass is in solar
units (M�) and effective temperature is in K.

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

mod1 0

2.2 8 749 1 -5 -3

2

mod2 0

2.2 9 913 1 -4 -5 -2

2 -5 -7 -7 -9 -4

mod3 0

2.4 9 304 1 -5 -3

2 -9 -5 -6

mod4 0

2.4 10 000 1 -6,-7 -4

2 -8 -2

mod5 0 1

2.6 8 459 1 1 -1

2 -2

mod6 0

... ... ... ... ... ... ... ... ... ...
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Table 3.5: (continued)

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

2.6 9 319 1

2 -1

mod7 0

2.6 10 023 1

mod8 0 1 3

2.8 8 168 1 -1 2

-2 2

mod9 0

2.8 9 885 1

mod10 0 4

3.0 8 007 1 -4 -2

2 -1 -7 -4 3

mod11 0 1 3

3.0 8 758 1 -1 -5 -2 2

2 -2 -8,-9 -5 2

mod12 0

3.0 9 621 1 -6

2 -3 -10 -5 -6

mod13 0

3.0 10 547 1 -6 -3 -4

2 -4 -11 -6 -7

mod14 0 4

3.2 8 573 1 -4 -2

2 -1 -7 -3 -4 3

mod15 0 1 -5 3

3.2 9 417 1 -1 -9 -2 2

2 2 -8 -4 -5 2

mod16 0 1

3.2 10 375 1 -5 1

2 -3 -10 -5 -6

mod17 0 1 5

3.4 8 086 1 1 -3 -1 2

... ... ... ... ... ... ... ... ... ...
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Table 3.5: (continued)

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

2 -5 -2 -3

mod18 0

3.4 8 762 1 -3 4 4

2 -6,-7 -3 -4

mod19 0 2

3.4 9 538 1 -4 1

2 -7,-8

mod20 0

3.4 10 414 1 -5 -3

2 -9 1 -1

mod21 0

3.6 8 234 1 -1 5

2 1 -5 -1 -2 3

mod22 0 2 3 5

3.6 8 868 1 1 -3 -1

2 -6 -2 -3 2 4

mod23 0 4 4

3.6 9 590 1 -2

2 -7 -3 -4 3 1

mod24 0 1

3.6 10 402 1 -4 -2 2

2 -2 -8 -4 -5 2 0

mod25 0 3 1 6 4 6

3.7 8 211 1 -2 -1

2 2 -4 -1 -2 5 3

mod26 0 1 5

3.7 8 823 1 1 -3 -1 2 5

2 -5 -2 -3

mod27 0

3.7 9 518 1 -3 4

2 0 -6

mod28 0 2

3.7 10 300 1 -4 -2 1

2 -1 -7,-8 -4

... ... ... ... ... ... ... ... ... ...
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Table 3.5: (continued)

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

mod29 0 3 1

3.8 8 155 1 2 -2 6 4 6

2 2 -4 0 -1

mod30 0

3.8 8 727 1 -1 5

2 1 -5 -1 -2 3

mod31 0 2 -3 3 5

3.8 9 376 1 1 -6 -1

2 -5 -2 -3 2 4

mod32 0 4 4

3.8 10 106 1 -2

2 -7 -3 -4 3 1

mod33 0 2

3.9 8 210 1 2 -2 6 4

2 -4 0 -1 6

mod34 0 0 4 6

3.9 8 766 1 -2 -1

2 -4 -1 -2 5 3 5

mod35 0 1 5

3.9 9 392 1 1 -3 -1 2

2 -5 -2 -3 4

mod36 0

3.9 10 092 1 -3 4

2 0 -6

mod37 0 5 1 3 9 9

4.0 6 997 1 1 6

2 4 -2 2 1 8 8

mod38 0 2 7

4.0 8 253 1 2

2 -3 0 -1 6 4 6

mod39 0 3 1 6 4

4.0 8 760 1 -2 6

2 2 -4 -1

mod40 0 1

... ... ... ... ... ... ... ... ... ...
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Table 3.5: (continued)

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

4.0 9 366 1 -1 5 5

2 1 -5 -1 -2

mod41 0 2 3

4.0 10 023 1 -3 -1

2 0 -6 -2 -3 2 4

The models reproducing all the observed frequencies with l=0,1,2 p and/or g (or f )

modes are the ones reported in Table 3.6 and shown in Fig. 3.5 as filled circles.

Among these best fit models I have included the cooler ones (mod37). In this case

all the seven observed frequencies can indeed be reproduced by p modes. There-

fore, I found that either the effective temperature reported in the literature is signif-

icantly overstimated, or that it is possible to have pulsation in at least one g mode.

This possibility is allowed, available studies point towards the existence of unsta-

ble low degree p-modes in PMS δ Scuti stars. Therefore, in my analysis, models

with p-modes in the observed frequency range have been preferred. The possibility

that g modes are also excited to the observed amplitudes has still to be confirmed.

The stellar masses and luminosities associated with this models range from 3.6 to

4.0M� and log L/L� ≈2.1–2.3 respectively. This degeneracy could be removed, if

another physical osservable is known. This could be the large separation between

the frequencies. In the next chapter I discuss a methodology built for reproduc-

ing the observed frequencies on the basis of the knowledge of the large frequency

separation.
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Table 3.1: Physical properties of the selected pre-main sequences models.

Model Mass Radius Luminosity Teff Age
M/M� R/R� L/L� K Gy

mod1 1.6 1.78 7.18 7078 11.21
mod2 1.6 1.52 6.72 7548 16.82
mod3 1.8 2.32 15.23 7493 7.86
mod4 1.8 1.78 9.70 7648 9.83
mod5 1.8 1.61 11.59 8401 11.80
mod6 2.0 1.88 14.27 8184 7.41
mod7 2.0 1.70 18.40 9186 8.89
mod8 2.2 3.67 18.70 6273 4.07
mod9 2.2 3.10 30.04 7681 4.66
mod10 2.2 1.99 20.74 8749 5.82
mod11 2.2 1.77 27.27 9913 6.98
mod12 2.4 4.14 24.06 6288 3.25
mod13 2.4 3.48 39.04 7739 3.72
mod14 2.4 2.09 29.46 9304 4.65
mod15 2.4 2.04 37.54 10000 5.11
mod16 2.6 4.55 33.38 6506 2.82
mod17 2.6 3.92 48.15 7688 3.10
mod18 2.6 3.54 57.56 8459 3.24
mod19 2.6 3.14 66.90 9319 3.38
mod20 2.6 2.18 43.08 10023 4.09
mod21 2.8 4.81 46.39 6876 2.40
mod22 2.8 4.46 55.53 7468 2.51
mod23 2.8 4.08 66.50 8168 2.63
mod24 2.8 3.23 90.99 9885 2.85
mod25 3.0 5.58 46.31 6381 1.90
mod26 3.0 4.96 64.92 7366 2.08
mod27 3.0 4.17 91.89 8758 2.26
mod28 3.0 3.74 107.9 9621 2.35
mod30 3.0 3.32 122.2 10547 2.45
mod31 3.2 6.13 53.10 6301 1.57
mod32 3.2 5.49 74.04 7230 1.73
mod33 3.2 4.67 105.7 8573 1.88
mod34 3.2 4.22 125.5 9417 1.96
mod35 3.2 3.75 146.2 10375 2.04
mod36 3.4 6.46 69.66 6567 1.37
mod37 3.4 5.76 94.50 7502 1.49
mod38 3.4 4.96 130.4 8762 1.61
mod39 3.4 4.53 152.5 9539 1.67
mod40 3.4 4.08 176.0 10414 1.73
mod41 3.6 7.29 67.80 6139 1.09
mod42 3.6 6.46 100.3 7194 1.24
mod43 3.6 5.71 134.7 8234 1.33
mod44 3.6 4.88 180.9 9590 1.43
mod45 3.6 4.44 207.6 10402 1.48
mod46 3.8 7.84 81.15 6194 0.94
mod47 3.8 6.94 116.3 7203 1.06
mod48 3.8 6.21 152.9 8155 1.14
mod49 3.8 5.40 202.2 9376 1.22
mod50 3.8 4.97 231.2 10106 1.26
mod52 4.0 8.25 101.0 6375 0.83
mod53 4.0 7.30 140.7 7369 0.92
mod54 4.0 6.58 180.5 8253 0.98
mod55 4.0 5.80 232.9 9366 1.05
mod56 4.0 5.40 263.8 10023 1.08
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Table 3.2: Stellar parameters for VV Ser found in the literature.

V D AV log(Teff) log(L) M source

mag pc mag K L� M�

12.666 245 6.1 3.95 > 1.62 1

11.87 440 3.0 4.03 1.8 3.3 2

11.92 440 3.4 4.14 2.23 3.8 3

11.63 296 3.4 3.95 1.51 2.1 4

11.58 440 4.03 2.03 5

330 2.7 3.95 1.27 6

1=[14];

2=[37];

3=[36]; 4=[61];

5=[74];

6=[2]

Table 3.3: Computed VVSer pulsation frequency.

Frequency error

(µHz) (µHz)

f1 70.8 ∼ 0.5

f2 31.1 ∼ 0.5

f3 51.7 ∼ 0.5

f4 45.1 ∼ 0.5

f5 115.2 ∼ 0.5

f6 87.5 ∼ 0.5

f7 120 ∼ 0.5
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Table 3.4: Literature values of Spectral Type, Luminosity Class for VV Ser.

Sp. Type Source

A2e Herbig (1960)

A: [17]

B1e-B3e [25]

A2eVβ [14]

B9e1 [37]

B5e [24]

A3IIeβ [27]

A0Vevp2 [49]

B+sh [77]

A2IIIe3 [2]

B6e [36]

1=photometrically determined

2=the Authors quote an error of five classes

3=the Authors quote van den Ancker (private communication) as source for this value
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Table 3.6: Preliminary mode identification as a function of the explored model input parameters

for models reproducing all the seven observed frequencies. The mass is in solar units (M�) and

effective temperature is in K.

Model f1 f2 f3 f4 f5 f6 f7

Mass Teff l Possible value of n

mod24 0 1

3.6 10 402 1 -4 -2 2

2 -2 -8 -4 -5 2 0

mod25 0 3 1 6 4 6

3.7 8 211 1 -2 -1

2 2 -4 -1 -2 5 3

mod26 0 1 5

3.7 8 823 1 1 -3 -1 2 5

2 -5 -2 -3

mod29 0 3 1

3.8 8 155 1 2 -2 6 4 6

2 2 -4 0 -1

mod33 0 2

3.9 8 210 1 2 -2 6 4

2 -4 0 -1 6

mod37 0 5 1 3 9 9

4.0 6 997 1 1 6

2 4 -2 2 1 8 8

mod38 0 2 7

4.0 8 253 1 2

2 -3 0 -1 6 4 6



4

A theoretical approach for the

interpretation of pulsating PMS

intermediate-mass stars

In this chapter I present a theoretical approach for the interpratation of pulsating

PMS intermediate mass stars.

In the previous chapter I have described the theoretical tools used in this work and

analyzed the asymptotic theory of g and p modes. I have also shown the behaviour

of these modes as function of mass and effective temperature. The comparasion be-

tween theoretical and observed periodicities has been found to be not sufficient to

constrain the physical parameters of the star such as its mass and effective temper-

ature. In the following sections it is verified the possibility of using the asymptotic

theory for PMS intermediate mass stars, and it is shown a methodology that allow

us to constrain the stellar parameters.
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Figure 4.1: Large frequency separation as a function of the frequency for models with M =

2.6M� the labelled effective temperatures, for 1 < n ≤ 20. Symbols are connected by a full line

in the case of l=0, by a dashed line for l=1 and by a dotted line for l=2.

4.1 Large frequency separation

As mentioned in Section 3.3, in the asymptotic regime the p-mode frequencies have

a regular pattern, given by:

νn,l ' ∆ν[n + l/2 + ε] +
A

6
l(l + 1) (4.1)

where ∆ = 2
∫ R∗

0
dr
c

∝ (M∗

R∗
)1/2. On this basis, it is possible to define the large

frequency separation as:

∆νn,l = νn,l − νn−1,l ∼ ∆ν (4.2)

The equation 4.1, and 4.2 imply that a relation between the large frequency sepa-

ration, mass and radius can be found. In particular it is possible to link the large

separation to the effective temperature and luminosity. In fact the radius is related

to the effective temperature and the mass to the luminosity for each effective tem-

perature. For this purpose I have computed the large frequencies separation for all

the models reported in Table 3.1 with l = 0, 1, 2 and 0 ≤ n ≤ 20.

In figure 4.1, I show for the models at 2.6M�, and the labelled effective tempera-

tures, the behaviour of large separation, for l = 0, 1, 2, versus the frequency. By



A THEORETICAL APPROACH FOR THE INTERPRETATION OF PULSATING PMS
INTERMEDIATE-MASS STARS 55

Figure 4.2: The linear fit given in eq. (4.3) is represented in the HR diagram by dashed lines,

defined for a constant value of ∆ν (as labelled, in µHz), from 20 µHz to 70 µHz.

analyzing this plot I have verified that for low n values the asymptotic regime is not

verified, but the large separation tends to a constant value for n larger than 5.

For deriving a relation between the large frequency separation, the effective tem-

perature and the luminosity, I have considered the mean of all the ∆ν values for

5 < n ≤ 20. Then I have obtained a linear logaritmic fit through my grid of

models, as following:

logL = (−12.81±0.02)+(4.35±0.05)logTeff −(1.681±0.0015)log∆ν (4.3)

This fit is plotted in fig. 4.2, for selected values of ∆ν, ranging from 20 µHz to 70

µHz, together with the CESAM evolutionary track for models ranging to 1.6M� to

4.0M�.

This relations can be used to have an expected range of the large frequency separa-

tion of an observed pulsating PMS star if the position in the HR diagram is known.

In the next section this fit will be used as the first step of a methodology to charac-

terize a PMS δ Scuti pulsator on the basis of the pulsation models and the observed

frequencies.
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4.2 A methodology to reproduce the observed frequen-

cies

On the basis of the linear fit obtained in the previous section, I present a method to

compare the observed pulsation frequencies, as well as to obtain information on the

stellar structure and physical parameters, such as the mass, the radius, the effective

temperature and the age. To summarize my approch, the steps I follow are:

– to combine the grid of models with the known luminosity and effective tem-

perature to determine a range in mass and in the expected large frequency

separation;

– to estimate the large frequency separation from the frequency data;

– to reduce the mass range by using the observed large frequency separation;

– to use a few models within the possible range of mass and large separation to

reproduce the frequencies in the echelle diagram;

– based on the best representation of the observed frequencies in the echelle

diagram to provide the preferred stellar parameters and a tentative mode iden-

tification.

The capability of this method has been verified by appling it to “test “stars. In par-

ticular I show the application at two test stars, namely “Star1” and “Star2”. The first

one, Star1 corresponds to a model computed using the STAROX code (Roxburgh,

2005), while the second one, Star2, was obtained with the CESAM code (Morel,

1997) after integration of the birthline of Palla & Stahler (1993). The parameters

characterising these models are given in Table 4.1.

I notice that two different evolutionary codes have been adopted for producing the

two test objects, also changing the initial conditions in one of these, because to I

need to ensure that the method does not depend on the adopted evolutionary codes.

Then it has been computed the radial and non radial p and g pulsation modes, for

the two test stars, by using the POSC code (Monteiro, 1996). The Values of the
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Table 4.1: Physical properties (exact values) of the two test stars, and ‘Observed values simula-

tions.

Mass Radius Luminosity log(Teff ) Age

M/M� R/R� log(L/L�) K My

Exact values:

Star1 2.0 1.862 1.1942 3.9251 0.00

Star2 2.4 3.482 1.5915 3.8887 3.72

‘Observed’ values:

Star1 1.19±0.82 3.92±0.06

Star2 1.58±0.07 3.88±0.05

frequencies, the spherical harmonic degree l and the radial order n are reported in

Table 4.2. In both test cases the number of frequencies is high (10 or more) and

with a few of those already in the asymptotic regime. Present data on PMS δ Scuti

stars are not so rich (only a few frequencies) but forthcaming observations, as for

example, from CoRoT, are expected to provided several tens of frequencies per star.

In the frequency calculations, again it has been used a different oscillation code, for

ensuring that the use of the same code, for the test stars and the reference models

used in this work, is not the dominant factor determining the success of the inver-

sion procedure.

These test stars are “theoretically built” by one member of my group, that knew the

real stellar parameters and the “real” frequencies reported respectively in Tables

4.1, 4.2. In particular he has simulated real data by shifting the frequencies, the

luminosity and the effective temperature relatively to the exact values and quoting

an error in same cases not consistent with the original (exact) value. The simulated

observations, as reported in Tables 4.1, 4.2, were the only data available to me. I

have applied the proposed method to these test data by trying to find the best so-

lution reproducing the observed stellar parameters and frequencies, just as if they

were true observed data.
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Table 4.2: Frequencies, spherical harmonic degree, and the radial order as computed using the

POSC code for the two test stars. In the last column the ‘observed frequencies provided as observ-

ables for the two test stars are also given.

νn,l l n ‘Observed’ fi

µHz µHz

Star1

f1 428.4412 0 5 429 ± 4.5

f2 493.4204 0 6 493 ± 4.5

f3 526.5400 1 6 521 ± 4.5

f4 553.4227 2 6 553 ± 4.5

f5 591.5814 1 7 594 ± 4.5

f6 623.5623 0 8 623 ± 4.5

f7 655.9865 1 8 658 ± 4.5

f8 683.0216 2 8 682 ± 4.5

f9 748.6396 2 9 749 ± 4.5

f10 754.4297 0 10 755 ± 4.5

Star2

f1 67.1478 1 -2 68 ± 3.5

f2 83.9724 0 1 84 ± 3.5

f3 108.1624 0 2 108 ± 3.5

f4 112.4021 1 1 111 ± 3.5

f5 134.5490 0 3 134 ± 3.5

f6 168.5343 1 3 166 ± 3.5

f7 183.7885 2 4 183 ± 3.5

f8 188.1748 0 5 188 ± 3.5

f9 196.8293 1 5 196 ± 3.5

f10 224.3726 1 6 224 ± 3.5

f11 240.7379 0 7 242 ± 3.5

f12 265.4323 0 8 266 ± 3.5

f13 268.3870 2 7 268 ± 3.5

f14 294.3213 2 8 293 ± 3.5

f15 296.9251 0 9 297 ± 3.5

4.2.1 The HR diagram

As mentioned above the first step of the method consists in evaluating the range in

mass and large separation of a pulsating PMS δ Scuti stars, by means of its esti-



A THEORETICAL APPROACH FOR THE INTERPRETATION OF PULSATING PMS
INTERMEDIATE-MASS STARS 59

Figure 4.3: Estimated HR diagram position of Star1 (dotted square) together with the CESAM

PMS evolutionary tracks (full lines, for the labelled masses in M�) and the linear fit (dashed lines,

labelled with ∆ν in µHz) of constant large frequency separation obtained in Section 4.1.

mated position in the HR diagram and using the linear fit computed in the previous

section. For this purpose I report in the figures 4.3 and 4.4, the predicted HR dia-

gram position for the two test stars Star1 and Star2 respectively. In the same plots

I also display the set of PMS evolutionary tracks from CESAM for stellar masses

ranging from 1.6 to 4.0 solar masses, together with the linear fit for constant large

separation (ranging from 20 to 70 µHz).

These plots allow me to define the range in mass consistent with each star and also

to determine the possible range of values for the large separation. The obtained

mass and large separation ranges are:

Star1: 1.6 ≤ M/M� ≤ 3.4 and 20 µHz ≤ ∆ν ≤ 80 µHz,

Star2: 2.2 ≤ M/M� ≤ 2.8 and 20 µHz ≤ ∆ν ≤ 50 µHz.

These are quite wide ranges corresponding to the uncertainty on stellar mass when

only the classical observables (luminosity and effective temperature) are available.

However these ranges could be reduced if it is known another osservables, as for

example the large separation. This occurence will be analyzed in the next section.
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Figure 4.4: The same as Fig. 4.3, but for Star2.

4.2.2 The large frequency separation and the echelle diagram

For real stars, the large separation would be ideally extracted directly from the

power spectrum of the light curve based on the expected range reported above.

For the test cases there is not a power spectrum, so I have estimated the large separa-

tion by studying the regularity of the spacing between the frequencies. In particular,

I have plotted the “observed” frequencies in the echelle diagram varying the large

separation in the ranges evaluated above, until the best alignment is obtained. The

use of the echelle diagram is convenient to illustate in detail the properties of the

frequency spectrum. In this kind of diagram the frequencies are reduced modulo

∆ν by expressing them as:νnl = ν0 +k∆ν + ν̃, where ∆ν is the large separation, ν0

is a suitably chosen reference frequency, and k is an integer such that ν̃ is between

0 and ∆ν. The diagram is produced by plotting ν̃ on the abscissa and ν0 + k∆ν on

the ordinate. Graphically, this may be thought of as cutting the frequency axis into

pieces of legth ∆ν and stacking them above each other. If the asymptotic relation

(4.1) were precisely satisfied, the result would produce points arranged on a set of

vertical lines corresponding to the different values of l.

In Fig. 4.5, 4.6, we report the echelle diagrams assuming ∆ν1 = 65 and ∆ν2 =

27.5 for star1 and star2 respectively.
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Figure 4.5: Observed echelle diagram for Star1.

Figure 4.6: The same of fig. 4.5, but for the Star2.

From these plots I obtain an indication of the large separations as being about

∆ν1 ∼ 65µHz and ∆ν2 ∼ 27µHz, for star1 and Star2, respectively. This ap-

proach does not provide an uncertainty, but in a real case this ’error’ could be as

high as σ(∆ν) ∼ 5µHz. Using the best values of the large separation, determined

above, I can reduce the number of models in the empirical box shown in figures 4.3

and 4.4. In fact I select all the models for which the intersection of the constant

lines, around the values of ∆ν1, ∆ν2, with the evolutionary tracks are inside the

assumed uncertainty box. I notice that the knowledge of additional osservable (∆ν)

reduces the number of models to be analyzed.

Only for this subset of models I use the computed frequencies to construct theo-

retical echelle diagrams and search for the one that best reproduce (i.e. matches as
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Figure 4.7: Echelle diagram for Star1, using the theoretical frequencies computed with the Aarhus

code. The parameters used to produce this plot are reported. The observational uncertainties would

correspond approximately to the size of the symbols representing the observed frequencies fi.

Figure 4.8: The same as Fig. 4.7, but for Star2.

many as possible of) the observed frequencies. As a result I obtain (M = 2.0 M�,

Teff = 8184 K) for Star1 and (M = 2.4 M�, Teff = 7739 K) for Star2. The

corresponding echelle diagrams are shown in Figs 4.7–4.8.

As shown in Fig. 4.7, for Star1 all the frequencies are reproduced with the best fit

model, and all the modes are identified with the correct spherical harmonic degree

l and radial order n. The best fit model has also the right mass and an effective

temperature that differs from the true one by only 200 K. This is the case with a

poorly determined luminosity, but we find that the impact on the mass estimation is

weak. Also for Star2 the method reproduce the right mass and effective temperature

and all the 16 frequencies with the right l degree and n order (see Fig. 4.8). The



A THEORETICAL APPROACH FOR THE INTERPRETATION OF PULSATING PMS
INTERMEDIATE-MASS STARS 63

only exception is f1 that corresponds to a g mode and this is the reason why the

echelle diagram has been unable – correctly – to adjust this particular value, even

if the best-fitting model has a g mode that fits f1 within 0.005 µHz. These are

both ideal test cases, but they demonstrate that if enough frequencies are known

with sufficiently high precision the oscillation spectra can be interpreted using as

reference a detailed grid of PMS models and their frequencies as proposed in this

work. The key assumption is that the measured values of the frequencies do not

deviate strongly from the predicted values and relative spacing.

4.3 Application to observed PMS δ Scuti stars

Once tested the theoretical approach on artificial pulsators, I have tried to evalu-

ate how it can be applied to real observations. The difficulty with ground-based

observations of PMS δ Scuti stars is that these do not provide yet a large set of

frequencies for each star. But space observations have already been reported where

several tens of frequencies with very high precision [? ] are measured for a single

star. These will be the ideal cases for applying the approach described above.

In the following section I describe the application of the method to two PMS δ Scuti

stars, observed by my group during multisites campaings.

4.3.1 The case of V351 Ori

As a preliminary application I considered the known multiperiodic PMS δ Scuti star

V351 Ori (see Marconi et al. 2000, 2001, Balona et al. 2002, Ripepi et al. 2003).

This star has been observed, by my group, with a multisite campaign. In partic-

ular six observatories were involved in the observational campaign (see Table 4.3)

spanning two years, with a total of around 180 hours of observations over 29 nights.

As a result of this campaign five pulsation frequencies (for detail see Ripepi et al.

[58] ) have been detected, whose values with the associated uncertainties, are re-

ported in Table 4.4.
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Table 4.3: List of telescopes and instrumentations involved in the multisite campaign for the star

V351 Ori.

Observatory Telescope Instrument

SAAO (S.Africa) 0.5 m Modular Photometer

Roque de los Muchachos (Spain) 10m JKT SiTe2 2048x2048 CCD

Beijing Astronomical Observatory(China) 0.85m Three Channel Photometer

Loiano (Italy) 1.5m Three Channel Photometer(TTCP)

San Pedro Martir (Mexico) 1.5m Banish (uvby) Photometer

Kitt Peak National Observatory (USA) 0.9m SARA 512x512 CCD

Teide (Spain) 1.0m OGS 1024x1024 CCD

For the application of the theoretical methodology, the first step is to evaluete the

empirical box in the HR diagram. For the effective tempearture I have used the

value given by van den Ancker et al. 1998 with an uncertainty of ±0.01dex, while

for the luminosity I use for the lower limit the distance given by Hipparcos, namely

of 210 pc, and for the upper limit the distance obtained by assuming that V351 Ori

is located in the Orion star forming region. The ranges of luminosity and effective

temperature as reported in the literature for V351 Ori are plotted in the HR diagram

(dotted box) in Fig. 4.9, together with the PMS evolution tracks. Similarly to the

plots presented for the two test stars, I also report in the same diagram the lines at

constant large frequency separation. This comparison allows me to obtain a range

in mass and large separation consistent with the estimated HR diagram position of

the star, namely 1.8 < M/M� < 3.0 and 20 µHz < ∆νa < 50 µHz.

In my analysis I mainly focus on reproducing frequencies f1, f2 and f3. This as-

sumption is justified by the fact that as noted by Ripepi et al. [58] the first four

frequencies are well established, whereas f5 is slightly less reliable. Moreover f4

and f5 are quite close to f1 and f3 respectively. As discussed by Breger & Bischof

[12] close frequency pairs should be investigated accurately in order to establish

whether they are real or not. In particular the quoted authors suggest a method to

discriminate which hypothesis (close pair or single mode with amplitude variation)
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Figure 4.9: The same as Fig. 4.3, but for stars V351 Ori (box with dotted square line), IP Per (box

with dot-dashed line).

is correct. Unfortunately, current data on V351 Ori are insufficient to follow this

approach.

Table 4.4: Observed frequencies and uncertainties for V351 Ori reported by Ripepi et al. [58].

Frequency error

µHz µHz

f1 181.6 0.4

f2 165.9 0.4

f3 147.6 0.4

f4 183.8 0.4

f5 148.3 0.4

The next step is to identify from the frequency data if a stronger constraint can be

posed on the large frequency separation. The large separation of V351 Ori is diffi-

cult to estimate directly from the power spectrum, and the number of frequencies is

too low for building observed echelle diagram as I have done for the two test stars.

So I have used the separations between observed frequencies to evaluate for what
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Figure 4.10: The same as figure 4.7, for V351 Ori.

conditions the modes with larger amplitude (expected to be unstable low-order ra-

dial modes) are consistent with the range of ∆ν found from the HR diagram. By

using the reference grid I can extrapolate to the asymptotic regime to find that the

frequencies are consistent with a ∆νa ∼ 40 µHz.

Consequently, to find the best model that reproduces the observed frequencies I

built the theoretical echelle diagram by varying the mass and the large separation

within the constraints indicated above. In doing so I assume that the mode with the

largest amplitude (f1) is a radial mode. As a result, I find that the model in the grid

consistent with the observed frequencies has a mass M = 2.0 M� and an effective

temperature of Teff = 7539 K. As shown in the echelle diagram (see Fig. 4.10),

the frequencies f1 and f3 are associated with radial modes (l = 0), namely to the

first and second overtone respectively, while f2 is a nonradial mode (rather close

to the l = 2 theoretical sequence). As for f4 and f5 their position in the echelle

diagram is between the l = 0 and the l = 1 sequences, but as discussed above and

in particular for f5, the true nature should be investigated carefully on the basis of

more extensive data.

There are key assumptions that were made that require further verification. One

is the assumption that the highest amplitude mode (f1) is a radial mode. This is

required to properly adjust the echelle diagram to the observed spectrum. This

hypothesis, or an equivalent calibration for a radial mode, requires verification from
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spectroscopic mode identification.

4.3.2 The case of IP Per

As second application of the method, I have considered the PMS δ Scuti star ,

IP Per, which has been the target of a recent multisite campaign carried out by my

group. ([59]). In this campaign nine telescopes have been involved (see 4.5), with

a total of about 190 hours of observations over 38 nights.

Table 4.5: List of telescopes and instrumentations involved in the multisite campaign for the star

IP Per.

Observatory Telescope Instrument

Loiano (Italy) 1.5m Three Channel Photometer(TTCP)

Loiano (Italy) 1.5m BFOSCO

Beijing Astronomical Observatory(China) 0.85m Three Channel Photometer

San Pedro Martir (Mexico) 1.5m Banish (uvby) Photometer

SARA(USA) 0.9 CCD

Teide (Spain) 1.0m OGS 1024x1024 CCD

Fairborn(USA) 0.75m T6 SCP

OSN(Spain) 0.9m uvbyPhot.

Serra la Nave 0.9m SCP

SOAO(Korea) 0.6m CCD

As a result nine pulsation frequencies (for detail see [59]) have been measured. The

corresponding values and the associated uncertainties are listed in Table 4.6.

For the empirical HR diagram position I have used the effective temperaure given by

Miroshnichenko et al. (2001), that is Teff ∼ 8000± 1000K and the luminosity ob-

tained by using the distance given by de Zeeww et al. 1999 (D ' 300pc, logL/L� ∼
1) . The estimated position (box with dot-dashed lines) of IP Per in the HR diagram

is shown in Fig. 4.9, together with the reference grid of PMS evolutionary tracks.

From this plot I can restrict the mass and large separation expected for this star to
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the ranges 1.6 < M/M� < 2 and 50 µHz < ∆νb <75 µHz.

Table 4.6: Observed frequencies and uncertainties for IP Per reported by [59].

Frequency error

µHz µHz

f1 264.9 1.3

f2 400.5 1.3

f3 352.4 1.3

f4 558.2 1.3

f5 333.2 1.3

f6 277.6 1.3

f7 107.6 1.3

f8 487.4 1.3

f9 602.3 1.3

Due to the higher number of modes, and considering that five of these have a large

amplitude, the separation between observed frequencies indicates that the data are

consistent, within the expected range, with ∆νb ∼ 50 µHz when extrapolated to

the asymptotic regime. Following these constraints I have then used the echelle

diagram to find the best stellar mass and age that reproduce as many as possible of

the observed frequencies. As a result we find a best fit model with M = 1.8 M�,

and Teffeff = 7773 K. The corresponding echelle diagram is shown in Fig. 4.11.

According to this plot, frequencies from f1 to f4 seem to align along the sequence

for l = 0 modes, whereas f5, f6 and f8 are better in agreement with l = 1 theo-

retical predictions, and f9 could be an l = 2 mode. The discrepancy between the

theoretical and observed frequencies is probably due to a residual uncertainty on

stellar mass, intrinsic to the adopted model grid. A slightly lower mass would prob-

ably allow us to better reproduce the observed frequencies in the echelle diagram.

In any case the frequency f7 is not consistent with a p mode as it lies well below

the expected frequencies for the range of stellar masses of IP Per. This frequency

could correspond to a g mode, but this hypothesis had been confirmed.
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Figure 4.11: The same as figure 4.7, for IP Per.

4.4 Effects of rotation

The rotation of PMS δ Scuti stars is an important factor to be considered in the

mode identification.

On the basis of the asymptotic relation rotation is expected to produce a splitting of

the ”unperturbed” modes. This frequency displacement is given by:

∆f = mfrot = m
(vrotsini)

(2πRsini)
(4.4)

where −l < m < l is the harmonic number, vrot is the rotational velocity, i the

inclination angle and R the stellar radius. I have used this relation to evaluate the

rotational splitting of the modes, of V351 Ori, for which estimates of a relatively

high rotational velocity are given in the literature. In particular I have used the

value estimated by Balona et al. (2002) (v sin i ' 100 km/sec), that gives a dis-

placement of the order of 8 m/ sin i µHz. Such a relatively large splitting removes

the possibility that the separation between f4 and f1 and between f3 and f5 is due to

rotation, once the hypothesis of radial modes for f1 and f3 is abandoned. However,

f2 is shifted by about 10 µHz from the predicted frequency, which may correspond

to a m 6= 0 mode, pending spectroscopic confirmation. It should also be noted that

for such a relatively rapid rotation higher-order effects must be taken into account

[e.g., 22, 29, 67]. These would lead to non-uniform splitting and shifts of modes

with m = 0, including the radial modes. It is likely that such rotational frequency

perturbations will be a substantial complication in the analysis of oscillations of
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PMS stars,which typically are rapid rotators.



5

Connection to the ESTA CoRoT

activity

In this chapter I present the contribution of my PhD thesis to the Evolution and

Seismic Tools Activity (ESTA) in the context of the CoRoT mission.

5.1 CoRoT ESTA

The CoRoT ESTA is a seismology working devoted to the preparation and explo-

ration of the scientific results of CoRoT concerning stellar oscillations. To this

purpose the ESTA aims at:

– providing a grid of reference stellar models and their frequencies of oscilla-

tions, by means of different numerical codes;

– testing, comparing and optimizing numerical tools used to calculate stellar

models, oscillations frequencies and seismic inversions.

In particular the ESTA can rely on seven different evolutionary codes and eight

different pulsational codes (see 5.1).
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Table 5.1: Evolutionary and pulsational codes used in the context of ESTA collaborations. com-

parison.

name references

ASTEC Cristensen-Dalsgaard(1982, 2005)

CESAM Morel(1997) and Pichon & Morel (2005)

CL ’ES Scuflaire (2005)

FRANEC Cariulo et al. (2004) and Degl’ Innocenti & Marconi (2005)

GENEC Meynet & Maeder (2000)

STAROX Roxburg (2005a,b)

TGEC Richard et al. (1996) and Castro (2005).

ADIPLS (http://astro.phys.au.dk/∼jcd/adipack.n/)

FILOU Sua’rez (2002)

GRACO Moya et al. (2004)

LOSC Boury et al. (1975); Sculfaire (2005)

NOC Unno et al. (1989)

OSCROX Roxburg(2005b)

POSC (http://www.astro.up.pt//∼ mjm/)

ROMOSC Suran et al. (1991)

My group enters the CoRoT ESTA with the FRANEC code, and the ADIPLS code,

adapted in this thesis for the first time to PMS δ Scuti stars.

The first step of ESTA consists in comparing stellar models and evolution sequences

produced by the seven partecipating evolutionary codes (see Monteiro et al. 2006).

While the second consist of testing, comparing and optimising the seismic codes

by comparing the frequencies produced by different oscillation codes. In the next

sections I discuss the results alredy obtained for these two steps.
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5.2 Comparisons among evolutionary codes

For comparing the stellar models produced by the different groups, the same phys-

ical assumption has been adopted by the different codes . In particular

– Rotation and magnetic field are negleted;

– The adopted equation of state is the OPAL2001 (Rogers & Nayfonov, 2002),

that is provided in a tabular form;

– The opacities used are the OPAL95 opacities tables (Iglesias & Rogers, 1996)

complemented at low temperatures by Alexander & Ferguson (1994) tables;

– For the reaction rates the basic pp and CNO reaction networks up to the

17O(p, α)14N reaction are used. The nuclear reaction rates are computed us-

ing the analytical formulae provided by the NACRE compilation (Angulo et

al., 1999).

– For the convection and overshooting the classical mixing lenght treatment of

Böhm-Vitense (1958) under the formulation of Henyey et al. (1965) is used;

– For the atmosphere the Eddington’s grey T (τ) law (T = Teff [
3
4
(τ + 2

3
]
1

4 )

where τ is the optical depth, is used. The level where the integration of the

hydrostatic equation starts depends on the codes as well as the level where

the atmosphere is matched to the envelope. The radius of the star is taken

the bolometric radius, i.e., the radius where the local temperature equals the

effective temperature;

– For the initial abundances of the elements, the models are calculated with the

classical Grevesse & Noels (1993) solar mixture of heavy elements.

Models have been selected as reported in table 5.2. The comparison of the evo-

lutionary tracks for these models, computed with the various codes, is reported in

Figs. 5.1 - 5.7. Similar comparisons for relevant physics quantities can be found in

Moneiro et al. 2006, and are avaible upon request.
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Figure 5.1: Comparison of the evolutionary track computed with the different code disponible in

the context of CoRoT ESTA for the models 1.1.

Figure 5.2: The same as Fig. 5.1 for the models 1.2.

Figure 5.3: The same as Fig. 5.1 for the models 1.3.
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Figure 5.4: The same as Fig. 5.1 for the models 1.4.

Figure 5.5: The same as Fig. 5.1 for the models 1.5.

Figure 5.6: The same as Fig. 5.1 for the models 1.6.
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Table 5.2: Models used for ESTA comparisons. In the columns I report: the name of the models,

than the masses (M) in units of solar mass (M�), the helium abundance, the metal abundance, the

central hydrogenum, the central effective temperature in K, the mass of the helium core in units of

solar mass (M�), the overshooting parameters, and the evolutionary phase. while the temperature

is in K.

Case M Y0 Z0 Xc Tc Mass He core overshoot Type

1.1 0.9 0.28 0.02 0.35 - - - MS

1.2 1.2 0.28 0.02 0.69 - - - ZAMAS

1.3 1.2 0.26 0.01 - - 0.1 - Post-MS

1.4 2.0 0.28 0.02 - 1.9x107 - - Pre-MS

1.5 2.0 0.26 0.02 0.01 - - 0.15 Hp TAMS

1.6 3.0 0.28 0.01 0.69 - - - ZAMS

1.7 5.0 0.28 0.02 0.35 - - - MS

Figure 5.7: The same as Fig. 5.1 for the models 1.7.

5.3 Pulsational frequency comparison

For the comparison of seismic properties I have first compared the frequencies ob-

tained with the ADIPLS and POSC codes for the models 1.1 and 1.4 computed

with the CESAM code. For this purpose I have computed the p mode frequencies

for l = 0, 1, 2 for n = 2, 26, for both models and comapared then with the one’s

obtained with the POSC code.
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Figure 5.8: Relative difference between the frequencies computed with the POSC code and the

ADIPLS ones for the models 1.1. The comparison is performed for p modes (l = 0, 1, 2) and for

the radial order ranging from 2 to 26.

Figure 5.9: The same as 5.8, but for the model 1.4.
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Figure 5.10: Comparison of the a1 quantity for the model 1.1 of ESTA CoRoT. FRANEC results

are in red, the CESAM ones in blue.

AS shown in Figures 5.8 - 5.9 the p mode frequencies computed with the two differ-

ent codes are in agreement to less than 0.05%. This comparison allows us to verify

that the two pulsational codes are in very good agreement. As a second step I have

applied the ADIPLS pulsation code to the models 1.1 and 1.4 computed with the

FRANEC evolutionary code.

Before comparing the resulting frequencies with the corresponding ones obtained

from the CESAM models I have compared the ai’s quantities, (see equations 3.6).

Figure 5.10 shows the the comparison of the a1 quantity based on FRANEC and

the same quantity based on CESAM for the model 1.1. We notice that the differ-

ences are very small except for the central region of the star where they can reach a

few percent. We notice that a1 is related to the density (see 3.6) so that the quoted

difference in central zone corresponds to a residual difference in the density profile

between the two evolutionary models.

Figure 5.11 shows the comparison for the a2 quantity. It is linked to the mass, the

pressure, the density and the radius of the stars (see 3.6), that can be obtained easly

as an output of both the code. The differences between the CESAM and FRANEC
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Figure 5.11: The same as 5.10, but for the a2 quantity.

Figure 5.12: The same as 5.10, but for the a3 quantity.

results also in this case are less than 2%.

The a3 quantity is Γ1, and the differencies between the two code predictions remain

less than 4% (see figure 5.12).

The computation of the a4 quantity is more complex. In fact a4 is defined as

a4 = −1
Γ1

dlnP
dlnr

− dlnρ
dlnr

. The first term can be evalueted by means of the hydrostatic

equilibrium condition. The second term dlnρ
dlnr

is evalueted in the CESAM code, by
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Figure 5.13: The same as 5.10, but for the a4 quantity.

approximating the derivative of the density as follos :

dlnρ

dlnr
= α

dlnP

dlnr
− δ

dlnT

dlnr
+ φ

dlnµ

dlnr
(5.1)

where φ = ∂lnρ
∂lnµ

= 1 and 1
Γ1

= α − δ∇ad. On this basis the a4 becomes:

a4 = δ(∇−∇ad)
∂lnP

∂lnR
− φ

∂lnµ

∂lnR
(5.2)

For the computation of this relation the derivatives of all the chemical species with

respect to the radius are needed. This requirement is not verified by the FRANEC

code, so I computed the a4 quantity as follows:

a4 = −GMρ

Γ1pr
− r34π

dm

dρ
(5.3)

wehere the mass has been interpolated as a function of ρ with a spline.

The comparison between the a4 quantities obtained with the CESAM and FRANEC

codes is shown in figure 5.13 for the model 1.1. The differences between FRANEC

and CESAM are more evident in the atmosphere as shown by the zoom plotted in

Fig. 5.13.

Finally the comparison of the a5 quantity (given by 4πρr3

m
) is shown in figure 5.14,

showing an agreement within 1%.

Similar results has been obtained for the model 1.4 and are avaible upon request. .
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Figure 5.14: The same as 5.10, but for the a5 quantity.

As second step I have computed the frequencies using the ADIPLS code for the

models 1.1 and 1.4 either computed with the CESAM code or with the FRANEC

code . igures 5.15 5.16 show the relative differences between the frequencies ob-

tained for both the models with the harmonic degree ranging from l = 0 to l = 2

and the radial order from n = 2 to 26.

The differences appear to be more significant at low radial order suggesting either

some difference in the numerical treatment of same physical ingredients or a non

negligible role of the discrepancies found for the ai.

5.4 FRANEC PMS evolutionary models

One of the objectives of the CoRoT ESTA is to provide reference grid of evolu-

tionary models. Moreover we are interested in optimizing FRANEC to asterosis-

mological purposes and also to use it in the future in our interpretation tecniques

applied to PMD δ Scuti stars. For these reasons we have computed a fine grid of

PMS evolutionary tracks, for the stellar masses ranging from 1.5 to 4 M� and for

solar chemical composition ( see Fig. 5.17).

Several structure models will be selected along each evolutionary track and used to
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Figure 5.15: Relative difference between the frequencies computed with the ADIPLS code for the

model 1.1 obtained with FRANEC and CESAM code.The comparison is performed for p mode

(l = 0, 1, 2) and for the radial order ranging between 2 and 26.

Figure 5.16: The same as 5.15, but for the model 1.4.
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Figure 5.17: PMS Evolutionary tracks computed with the FRANEC code.

compute a fine grid of pulsational frequencies.
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6

Conclusion and future prospect

In this thesis I have analysed the pulsation properties of PMS δ Scuti stars from

the theoretical point of view. In the context of a growing observational interest

for this kind of pulsators and increasing evidences of the simultaneous presence of

radial and non radial modes in these objiects, I have started a theoretical project

devoted to the interpretation of the observed behaviours. I have adapted an existing

non radial linear adiabatic code, originally developed by Christensen Dalsgaard for

the sun, to PMS intermediate mass stars and I have applied it to PMS evolutionary

models existing in the literature. The behaviour of the theoretical frequencies as

a function of the mass and stellar radius has been investigate. As a first applica-

tion I have compared the theoretical periodicities with the observed ones for the

PMS δ Scuti star VV Ser, observed by my research group. In order to compare

the extracted periodicities with model predictions, we have considered a large em-

pirical range both in luminosity and effective temperature, reflecting the existing

uncertainties on the stellar properties. Within this space of physical parameters, we

have computed a fine grid of inner structure models along the CESAM evolution-

ary tracks. The corresponding pulsation frequencies for l=0,1,2 modes have been

compared with the observed ones by requiring an agreement within 2.5 µHz. As a
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result, we have found a number of best fit models corresponding to PMS stars with

mass in the range 3.6–4.0 M� and luminosity log L/L� ≈2.1–2.3, that reproduce

all the observed periodicities with radial and/or nonradial p and g modes. Such an

independent confirmation of the fundamental stellar parameters range previously

estimated for VV Ser is an important byproduct of the main objective of asteroseis-

mology, i.e. of sensing the internal structure of the star. We also notice that if the

effective temperature is significantly lower (∼ 7000 K) than the values based on

the empirical spectral types (' 9000 K), we are able to reproduce all the observed

periodicities with p modes for a stellar mass of 4 M� and a luminosity of 125 L�.

To investigate in more detail the pulsational properties of the PMS δ Scuti stars,

a procedure has been developed, based on an extended grid of models and oscil-

lation frequencies to compare the observed periodicities with the theoretical ones

in order to constrain the physical properties, such as the mass, radius and the age,

of this class of objects. The procedure uses a grid of PMS evolutionary models to

identify in the HR diagram the range of stellar masses. From the frequencies we

estimate the large frequency separation which is then used to reduce the uncertainty

on stellar mass. Finally, from the detailed analysis of the echelle diagram for the

few possible combinations of mass/age, a fit of as many observed frequencies as

possible is obtained. The underlying principle of this approach is to extract se-

quentially the information from the frequencies that are more robust and directly

connected to the global parameters, reducing in this way as much as possible the

effect of the unknown physics in this type of stars. I also notice that the proposed

method is quite general, as it can be applied by using models computed with any

evolutionary code. In order to evaluate the validity of the proposed approach I have

considered two test cases for which estimates of the luminosity and the effective

temperature have been simulated together with a set of frequencies given with re-

alistic uncertainties. In both cases the result was positive, and the parameters were

recovered with considerable precision even when the luminosity of the stars was

poorly known. The consistency between the true and the inferred stellar parame-

ters for both star 1 (computed with STAROX) and star 2 (computed with CESAM),

seems to indicate that the method does not depend on the adopted evolutionary
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code. A comparison with other evolutionary codes (e.g. FRANEC, ATON, Siess

et al. 2000) will be performed when a large number of accurate frequencies, as

expected from CoRoT observations, will be available for PMS δ Scuti stars. The

method proposed is mainly aimed at studying stars whose pulsation data include

several tens of frequencies, as it is expected to be obtained by CoRoT in the near

future. However, I have also considered the possibility of applying it to stars whose

frequency spectrum includes a smaller number of measured frequencies. To do

so I have reported the preliminary applications to two stars that have been targets

of multisite campaigns: V351 Ori and IP Per. The uniqueness of the solution is

strongly dependent on the number of frequencies being used when these are less

than about ten.

However, the results illustrate the capability of this approach to constrain the stellar

parameters, and in particular the stellar mass, even when a small number of fre-

quencies is available. For a higher number of frequencies the stellar mass and age

could be constrained and the frequencies used to test the physics of the models. The

application to a much larger number of frequencies for PMS pulsators (in particular

as expected from space observations) and the adoption of finer model grids could

considerably improve our knowledge of the stellar properties and structure in this

very important phase of stellar evolution. A comparison with other evolutionary

codes (e.g. FRANEC, ATON, Siess et al. 2000), as planned in the context of the

CoRoT/ESTA collaboration, will also be investigated.

I have also presented the work done in the context of the CoRoT/ESTA. In particu-

lar I have compared the results obtained by the FRANEC code with the ones based

on different evolutionary codes for modelling the same selected stellar models. It

has been verified that some differences persist in spite of the adoption of similar

physical inputs, but also that a good agreement is found for the overall behaviour.

Once tested the similarities between the different evolutionary code, I have applied

two pulsation codes, namely ADIPLS and POSC the same CESAM model. The

resulting frequencies are in agreement to less than 0.05%. Then, to verify that the

combination FRANEC plus ADIPLS is good for computing asteroseismological

models I have applied the ADIPLS code to FRANEC and CESAM models for the
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same stellar cases. The results show that some significant differences between the

CESAM plus ADIPLS and FRANEC plus ADIPLS model frequencies remain, in

particular at low radial orders. We plan to investigate in detail the precise causes

of this discrepancy and to complete the optimization of the FRANEC code for as-

terosismological purposes. Moreover, we plan to compute radial and non radial

theoretical frequencies for a fine grid of stellar structures along the PMS evolution-

ary tracks computed with the FRANEC code in the final period of my thesis, in

order to provide an alternative theoretical framework..
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