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Introduction

The KLOE experiment has completed its data taking in March 2006 at DAΦNE, the

e+e− collider of the Laboratori Nazionali di Frascati, operating at the φ resonance

peak (
√

(s) ' 1020 MeV).

DAΦNE delivered an integrated luminosity greater than 2.5 fb−1 on the peak of the

φ resonance and of about 0.25 fb−1 off peak.

The entire KLOE data set corresponds to more than 8 · 109 Φ mesons. This statistics

is enough to perform a considerable number of interesting physics measurements, like

studies on radiative Φ decays in scalar and pseudoscalar mesons, analysis of rare kaon

decays, Vus extraction.

In this thesis, using the decay chain:

φ → ηγ → π+ π− π0 → π+ π− 3γ

the analysis of the dynamic of η → π+ π− π0 decay through a fit to the Dalitz plot

density distribution is reported.

The Dalitz plot is a bidimensional diagram in which the point density is proportional

to the square of the transition amplitude.

The decay of the isoscalar η into three pions accours primarily due to strong isospin

violation and so the decay amplitude Aη→π+ π− π0 is inversely proportional to the

quark mass ratio

Q2 ≡ m2
s − m̂2

m2
d − m2

u

(1)

with m̂ = 1
2
(mu + md) the average of the u, d quark mass.

From a fit to the Dalitz plot density distribution we obtain a precise measurement

of the slope parameters that can improve the knowledge of the decay amplitude and

allows to test theoretical predictions at level of precision needed to extract the quark

mass ratio from the decay rate.
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This thesis is divided into five chapters.

The first chapter is dedicated to a brief description of the DAΦNE collider and of the

KLOE detector. The trigger and the data acquisition system are also pointed out.

In the second chapter, a short review is given of some KLOE measurements on light

meson spectroscopy based on 2001–2002 statisctics. The theoretical aspects connected

to the Dalitz plot distribution of the η → π+ π− π0 decay are described and a review

of the experimental and theoretical results on the Dalitz plot parameter is given at

the end of the chapter.

The third chapter provides a general description of the offline data reconstruction

procedures and of the streaming algorithms used for the event classification, with

more attention to the case of φ → ηγ with η → π+ π− π0 events.

The fourth chapter gives an accurate description of the method applied to fit the

Dalitz plot density distribution. Firstly the criteria used to select η → π+ π− π0

decay are described and particular attention is paid in optimizing the rejection of the

main sources of background.

A very large MonteCarlo sample is used to tune the cuts applied in the analysis and

to evaluate the resolution and efficiency on Dalitz plot variables. The procedure of

fit has been tested on MonteCarlo and the results for the fitted slope parameters are

discussed.

The five chapter is devoted to the measurement of the slope parameters using the

2001–2002 statistics (∼450 pb−1) corresponding to about 1.3 millions of η → π+ π− π0

events in the Dalitz plot. The analysis finds evidences for an unexpected large cubic

slope never measured before.

The contributions to the total errors on these parameters are discussed and quantified.

Finally a comment on the obtained results is reported.



Chapter 1

DAΦNE and KLOE

The KLOE experiment [1] is located at the Frascati φ–factory DAΦNE. The experi-

ment has been designed to perform precision tests on CP violation in the system of

neutral kaons, in particular the primary goal was to measure <
(

ε′

ε

)
with an accuracy

of 10−4.

In March 2006 has completed its data taking integrating a luminosity of ∼ 2.5 fb−1

at the φ resonance peak. The entire KLOE data set corresponding to more than 109φ

mesons is not sufficient for the measurement of <
(

ε′

ε

)
with the desidered accuracy,

it allows other interesting physics measurements: rare Kaon decays, Vus extraction,

light scalar and pseudoscalar meson decays.

In this chapter, a short description of the CP violation phenomenology and the char-

acteristics of the DAΦNE collider and the KLOE detector are given. The trigger logic

scheme and the data acquisition system are also discussed.

1.1 CP violation in the neutral kaon system

The largest part of φ mesons decay into pairs of charged or neutral kaons, as can

be observed in tab.1.1. In 1955 Gell-Mann and Pais [3] pointed out that K0 and

K̄0 mesons are different particles in the strong interactions, but they can transform

into each other by means of second-order weak interactions. The quantum state for

a neutral kaon can be described by a linear combination of |K0 > and |K̄0 > with

3
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Canale BR

K+ K− 49.2 ± 0.6 %
K0

LK0
S 34.0 ± 0.5 %

ρπ + π+ π− π0 15.3 ± 0.4 %
ηγ 1.301 ± 0.024 %
π0γ (1.25 ± 0.07) × 10−3

e+e− (2.97 ± 0.04) × 10−4

µ+µ− (2.86 ± 0.19) × 10−4

ηe+e− (1.15 ± 0.10) × 10−4

π+ π− (7.3 ± 1.3) × 10−5

Table 1.1: Branching ratio of principal decays of φ [65].

coefficients α and β, whose evolution is described by an effective 2×2 Hamiltonian:

i
∂

∂t

(
α(t)

β(t)

)
= H

(
α(t)

β(t)

)
=

(
M − i

2
Γ

)(
α(t)

β(t)

)
(1.1)

where the matrices M and Γ are hermitian. By imposing CPT conservation, the

masses and the decay rates have to coincide for |K0 > and |K̄0 >:

M11 = M22, Γ11 = Γ22 (1.2)

while imposing CP conservation the matrix elements to be invariant under the ex-

change of the indices 1 and 2 if the phase convention such that CP|K0 >= |K̄0 > is

observed, then adding:

M12 = M21 = M∗
12, Γ12 = Γ21 = Γ∗

12 (1.3)

The CP invariance in the neutral kaon system can be likewise expressed independently

of the phase convention as:

|M∗
12 −

i

2
Γ∗

12| = |M12 −
i

2
Γ12| ⇔ arg

(
M12

Γ12

)
= 0 (1.4)

If CP was conserved, the eigenstates of the Hamiltonian should be the masses (MS

and ML) and the widths (ΓS and ΓL) of the KS and the KL physical states.

In such hypothesis, mass and CP eigenstates should be the same:

CP |K1,2 >= ±|K1,2 >, |K1,2 >=
1√
2
[|K0 > ±|K̄0 >] (1.5)
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where the |K1 > is allowed to decay into 2-pion final states and |K2 > into 3-pion

states, which are respectively even and odd CP eigenstates. In 1964 CP violation was

observed [4] by measuring a fraction ∼ 2 · 103 of KL mesons (supposed to be exactly

the |K2 > state) decaying into π+ π− . Therefore, mass eigenstates are obtained by

mixing the |K1 > and |K2 > CP eigenstates:

|KS,L >=
|K1,2 > +ε̃|K2,1 >√

2(1 + |ε̃|2)
(1.6)

with the parameter ε̃ defined as:

1 + ε̃

1 − ε̃
=

√(
M12 − iΓ12/2

M∗
12 − iΓ∗

12/2

)
(1.7)

This is the so-called “indirect CP violation”, which has to be ascribed to KL ↔
KS oscillations with strangeness S undergoing into ∆S = 2 transitions. A second

possible CP-violating effect can be produced by ∆S = 1 weak transitions (“direct

CP violation”) from the odd CP eigenstate |K2 > to a 2-pion final state. Direct

CP violation in ππ final states can be parametrized by decomposing K0 and K̄0

amplitudes in isospin I components:

AIe
iδI ≡< I|CP−1HweakCP |K0 > (1.8)

where δI is the phase shift between the |ππ > physical state and the isospin eigenstate

|I >. CP simmetry allows to obtain

AIe
iδI =< I|CP−1HweakCP |K̄0 >= A∗

Ie
iδI (1.9)

so that A0 can be set to a real value and only the difference between the weak phases,

δ2 − δ0, becomes relevant for CP violation. By introducing the KS and KL decay

widths

η+− =
< π+ π− |Hweak|KL >

< π+ π− |Hweak|KS >
, η00 =

< π0 π0 |Hweak|KL >

< π+ π− |Hweak|KS >
(1.10)

and using the experimental observation (∆I = 1/2 rule) that the final state |I = 0 >

is favoured with respect to |I = 2 >, η+− and η00 can be expressed as

η+− ' ε + ε′, η00 ' ε − 2ε′ (1.11)
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where

ε ' ε̃ε′ ≡ ei(δ2−δ0+π/2)=mA2/(A0

√
(2) (1.12)

The double ratio, defined as

R ≡
∣∣∣∣
η+−

η00

∣∣∣∣
2

=
Γ(KL → π0 π0 )/Γ(KL → π+ π− )

Γ(KS → π0 π0 )/Γ(KS → π+ π− )
(1.13)

represents a powerful experimental method to extract information on the direct CP

violation parameter ε′ by means of the relation:

R ' 1 + 6<(
ε′

ε
) (1.14)

Im(ε′/ε) is expected to be small since the phases of ε and ε′ are almost the same[65],

therefore implying <(ε′/ε) ' ε′/ε. The statistical accuracy in the measurement of R

is mainly driven by the KL → ππ decay statistics (about 3 orders of magnitude less

than KL → 3π decays):

∆R

R
'
√

3

2

1

N(KL → π0 π0 )
(1.15)

where the factor N(KL → π+ π− )/N(KL → π0 π0 ) ∼ 2 has been taken into ac-

count. All measurements of <(ε′/ε) have been performed at fixed target experiment

(E731[5], NA31[6], KTeV[7], NA48[8]), unambiguosly showing the presence of direct

CP violation.

DAΦNE allows to produce φ → K0K̄0 decays, corresponding to coherent superposi-

tions of KLKS states; since the kaons are produced with a well defined momentum (∼
110 MeV) in the φ-meson rest frame, the detection of a KS (KL) tags the presence of a

KL (KS) emitted in the opposite direction, so that very clear neutral kaon beams are

produced. Given the KSKL rates at DAΦNE and the KLOE detector performances,

an accuracy of 10−4 on ε′/ε requires to collect 4.4×104 pb−1.

1.2 The DAΦNE accelerator

The Double Anular φ–factory for Nice Experiments [9], DAΦNE is an electron-

positron collider at the energy of the φ meson resonance (Mφ = 1019.460 ± 0.019
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MeV [65]). The peak cross section is σ(e+e− → φ) ' 3.1µb.

Beside KLOE, two other experiments have been designed to run at DAΦNE : DEAR

and FINUDA to study atomic and nuclear physics. A layout of the DAΦNE accel-

erator complex is sketched in fig. 1.1.

The injection system of the DAΦNE complex is provided by a 60m long linear ac-

celerator (LINAC), that can accelerate e+ and e− up to 550 MeV. Then, particles

are sent to a 33 m long accumulator ring, where they are relaxed to the injection

conditions required by the collider. Two separate rings are used to store electron

and positron beams, which in the project should have been constituted by up to 120

bunches each.

In the rings, shifted in the horizontal plane (see fig.1.1), the two beams circulate simul-

taneously and collide at the two interaction points (IP’s) with a horizontal half cross-

ing angle of ±12.5 mrad, which results in a small momentum component (∼ 13MeV

in the horizontal plane) of the φ mesons produced. The dimensions of the bunches at

the IP are typically:

σx × σy × σz = 2mm × 20µm × 30mm (1.16)

The number of particles (∼ 8.9×1010) stored in a bunch is limited by the beam-beam

interaction, which introduces a strong non-linearity in the beam dynamics, leading

to beam blow-up and loss. The minimum bunch crossing period is Tbunch = 2.7 ns,

corresponding to a crossing frequency of about 370 MHz.

1.2.1 DAΦNE achievements

The operation of DAΦNE with the KLOE experimental detector was successfully

concluded in March 2006. Since April 1999 it delivered an integrated luminosity

greater than 2.5 fb−1 on the peak of the φ resonance and of about 0.25 fb−1 off-peak

(1000 Mev) mostly to reduce the systematic error on the hadronic cross section near

threshold for 2-pion production [10], . Further a scan of the φ resonance (1010, 1018,

1023 and 1030 MeV) with high statistic has been performed for precise measurement

of the φ line-shape.

As shown in fig.1.2 the machine performances have been continuously improving. The

best peak luminosity obtained during the last KLOE run 2004 ÷ 2006 was 1.5·1032
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Figure 1.1: A sketch of the DAΦNEcomplex at the Laboratori Nazionali di Frascati
of I.N.F.N.
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Figure 1.2: Integrated luminosity in pb−1 as function of the number of days of data
taking for the years 2001 ÷ 2005.

cm−2s−1, with typical currents in collision of ∼ 1.4 A for positrons and ∼ 1.7 A for

electrons, in 109 bunches.

Actually the KLOE detector has been moved out from the interaction region and its

low-beta section substitued with a standard magnetic structure allowing for an easy

vertical separation of the beams.

1.3 The KLOE experiment

The layout of the KLOE (K LOng Experiment) experiment has been driven by the

measurement of <(ε′/ε) with an accuracy of 10−4.

The dimensions of the apparatus have been imposed by the KL decay length: as

in a φ-factory neutral kaons are produced with β ' 0.216, and considering their

lifetimes[65], the decay length λ = βγcτ of the KL and KS mesons are found to be

λ(KL) ' 3.43 m and λ(KS) ' 5.6 mm.

For this reason KLOE has to provide a large and uniform geometrical acceptance over

the whole volume in order to detect the charged and the neutral products of the KL.

Due to the low momenta of the kaons, the momenta of all the decay products basically

range between 20 and 300 MeV, then one fundamental goal of the KLOE detector is to

efficiently reconstruct particles having low momentum and energy. The detector [1][2]
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is composed of a large cylindrical drift chamber (DC) and a hermetic electromagnetic

calorimeter (EMC). A solenoidal magnetic field of about 0.52 T is provided by a

superconducting coil and an iron yoke surrounding the whole apparatus, as shown

in fig.1.3. The beam pipe is a sphere of 10 cm radius and 0.5 mm thickness around

S.C.  COIL

Barrel calorimeter

DRIFT CHAMBER

E
n

d
 C

a
p

Cryostat

P
o

le
 P

ie
c

e

YOKE

6 m

7 m

Figure 1.3: Section of the KLOE detector

the IP; it is made of an aluminum-beryllium alloy which minimizes the probability

of both multiple scattering and KS regeneration. Two low-β quadrupole triplets are

inserted in the inner cylinder of the DC, on both sides of the interaction region; they

are instrumented with compact lead-scintillating tile calorimeters, QCAL [13] that

improve the geometrical acceptance for the low-energy photons.
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1.3.1 The drift chamber

The KLOE DC [14] is a big cylindrical drift chamber with internal radius of 25 cm,

external radius of 2 m and length of 3.3 m. These dimensions and all the choices for

the chamber have been driven by requirement to have a large and uniform tracking

volume to detect charged decay products and reconstruct vertices within 1 mm.

The chamber is filled with 12582 single sense wire almost square cells arranged in 58

circular and coaxial layers. Consecutive layers have stereo angles of opposite signs

and absolute values varying with the radius, from 60 mrad to 150 mrad going out-

ward, in order to minimize the distortion in the cell shape along the chamber radius.

The ratio between the number of sense wires and field wires is 1:3 for a total of 52140

wires (including the two guard layers).

This solution ensures the highest homogeneity in filling the sensitive volume, see

fig.1.4, thus obtaining high and uniform track and vertex reconstruction efficiencies.

Figure 1.4: A detail of the configuration of the drift cell at z = 0, in aregion between
the small cells and the big ones. The empty circles represent the field wires, full dots
are the sense wires.

The cell dimension is 2× 2 cm2 in the innermost 12 layers and 3× 3 cm2 in the out-

ermost 46. A picture of the completely strung DC is shown in fig.1.5.

The gas mixture used to fill the detector is 90% He and 10% iC4H10, with a total gas

radiation length of ∼ 1300 m, which becomes ∼ 900 m considering the contribution of

the wires (25 µm diameter for the tungsten sense wires and 80 µm for the aluminum



12

Figure 1.5: Photograph of the KLOE drift chamber after assembly and stringing.

field wires), in order to minimize multiple scattering, photon conversion before the

calorimeter and KS regeneration. Also the choice of carbon-fiber/epoxy for the me-

chanical structures of the DC was designed to improve transparency to low-energy

photons and to reduce to minimum KS regeneration in the inner tube.

The average spatial resolution within the chamber is 150 µm in the (r, φ) plane and

2 mm in the z coordinate.

The measured momentum resolution, obtained using Bhabha events (i.e. for 510 MeV

electrons and positrons), is lower than 1.5 MeV in the range of polar angle between

50◦ and 130◦, see fig.1.6.

m
o
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en

tu
m
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o
lu

ti
o

n
 (

M
eV

/c
)

polar angle (degrees)

Figure 1.6: Momentum resolution as function of polar angle .
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The momentum resolution for large-angle tracks is

σpT

pT
≤ 0.4%. (1.17)

Cosmic ray tracks (i.e. track candidates in the DC with ≥ 96 hit cells) are used to

study the cell efficiency, see fig.1.7. The “software” efficiency is obtained by requiring
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Figure 1.7: Software (left) and hardware (right) efficiencies as functions of the drift
distance.

that the hit found in the cell is used in the track fit, and is measured as 97%, with a

slight decrease for small drift distances due to worse resolution near the wire and to

faults of the pattern recognition algorithm in resolving the left-right ambiguity. The

“hardware” efficiency is considered as the ratio between the number of hits found

in a cell and the number of tracks passing through it: for both small and big cells,

this efficiency has been measured to be higher than 99% and to be constant over the

whole volume of the chamber.

1.3.2 The electromagnetic calorimeter

The KLOE EMC [15] is a high-granularity lead/scintillanting-fiber calorimeter. It

consists of a barrel and two endcaps (fig. 1.8).

The barrel has a cylindrical shape with radius of 2 m and length of 4.4 m; it is

composed of 24 trapezoidal-shaped modules, ∼ 23 cm thick, in which the fibers run
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Figure 1.8: A picture of the KLOE elctromagnetic calorimeter before inserting the
drift chamber.

along the z direction. The endcaps are 32 C-shaped modules in which the fibers

are disposed perpendicularly to the z axis; a 98% coverage of the full solid angle is

achieved. Each module is obtained by alternating 0.5 mm thick lead foils to layers of

1 mm diameter scintillanting fibers (see fig.1.9); in each module 200 layers are glued

together. The resulting volume ratio for fibers:lead:glue is given by 48:42:10, while

the average density of 5 g cm−3 provides a radiation length X0 ' 1.5 cm, in such a

way that the total depth of the calorimeter corresponds to ' 15 X0. At both sides of

the calorimeter the modules are read via light guides coupled with photomultipliers,

contained in aluminum tubes. The total number of channels used for the readout is

4880. In the barrel the channels are disposed in 5 planes (so determining a column

along the azimuthal direction) of 12 cells for each module, while in the two endcaps

the columns (from 2 to 6 depending on the module position) are arranged horizontally.



15

Figure 1.9: Schematic view of the fiber–lead modules in the KLOE electromagnetic
calorimeter.

The readout granularity is ∼ 4.4×4.4 cm2, corresponding to a spatial resolution of ∼
1.3 cm on the transverse position of the cluster apex. The time difference measured

at the two module ends by TDC’s is used to compute the coordinate along the fiber.

The energy deposit in each cell is derived by measuring the charge signal at each

side by means of ADC’s. Then, the z coordinate is constructed from the difference

between the signal arrival times, and its resolution depends on the number of collected

photoelectrons:

σz ' 9 mm√
E(GeV )

. (1.18)

The linearity of the energy response and the energy resolution are extracted from

radiative Bhabha events and from φ → π+ π− π0 events: the track momenta recon-

structed by the DC are used to estimate the photon energy, Eγ , which is compared

with the energy Eclu measured by the calorimeter.

In fig.1.10 (top) the quantity (Eclu - Eγ)/Eγ is plotted as a function of Eγ . The plot,

obtained from radiative Bhabha events, shows that the linearity of energy is better

than 1% over 70 MeV and that at lower energies deviations up to the 5% level are
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Figure 1.10: Up: plot of (Eclu - Eγ)/Eγ for radiative Bhabha events. Down: energy

resolution σ(E)/E . The solid line is the fit to the usual a/
√

E(GeV )+b parametriza-
tion.

evident, to be probably ascribed to the loss of shower fragments in the cluster recon-

struction. In the lower plot of fig. 1.10 the energy resolution σ(E)/E is obtained for

each 10 MeV energy interval by fitting the distribution of Eclu - Eγ with a Gaussian

and extracting σ(E) as its standard deviation. A fit with the function a/
√

E(GeV )+b

produces a negligible constant b, while the stochastic term a = 5.7% proves that the

energy resolution is mainly dominated by sampling fluctuations. The time resolution

as a function of Eγ is studied through the analysis of some radiative φ decays fig.1.11.

The agreement between the various channels is found to be satisfactory down to 100

MeV. In the intrinsic time resolution of the calorimeter[15]

σt =
54 ps√
E(GeV )

⊕ 100 ps (1.19)
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Figure 1.11: Time resolution versus the photon energy Eγ for radiative φ decays.

the first contribution is due to the sampling fluctuations (in agreement with test beam

data [24]) and the second constant term is to be added in quadrature. Beside the

various calorimeter miscalibrations (which amount to ∼ 50 ps), the finite length in

the beam direction of the luminous point produce a spread in the collision time and

determines a further effect ∼ 125 ps, to be added in eq. 1.19.

The photon detection efficiency εγ has been studied on different typologies of events

in which energy and direction of γ’s can be easily extracted by means of DC tracking

information and by suitably closing kinematics. Clusters are searched for in the

EMC within a 3σ cone with axis on the expected flight direction of the photon.

The results of εγ are illustrated in fig. 1.12 for three different categories of events:

e+e− → e+e−γ, φ → π+ π− π0 and KL → π+ π− π0 . A reasonable agreement among

these three samples over all the energy range can be observed. In particular, for the

first two analyses, based on samples of photons emitted from the IP, the detection

efficiency is more than 97% and nearly constant for Eγ > 70 MeV, while a loss is

evident at lower values of Eγ .
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Figure 1.12: Photon detection efficiency versus the photon energy Eγ, for radiative
Bhabha, φ → π+ π− π0 and KL → π+ π− π0 events.

1.4 The trigger

The events of physical interest for KLOE, i.e. φ decays, are only a small fraction of

the events occurring at the DAFNE accelerator. The largest contributions to KLOE

background, few MHz, are given by Coulomb scattering and gas bremsstrahlung in

the vacuum chamber gas, and by Touschek particles in the beam.

Besides, Bhabha scattering occurs with a ∼35 kHz event rate at the project lumi-

nosity of 5×1032cm2s−1 in the polar angle range 20◦ < θ < 160◦. Also cosmic rays

penetrating through the detector represent a relevant background for KLOE, ∼ 3

kHz.

The main goal of the KLOE trigger system [16] is to retain all φ decays, to reject

Bhabha and cosmic ray events (to be used in downscaled samples for calibration),

and to reduce machine background to minimum.

In addition, it has to work in continuos mode, due to the small bunch crossing period

of DAFNE, and to produce a valid signal for starting the data acquisition system
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(DAQ). The KLOE trigger uses information based on the topology of the clusters in

the EMC (energies and positions) and on the hits in the DC (number and spatial

distribution) and is composed by two levels.

The level T1 (fast trigger) provides an immediate signal, within ∼ 200 ns after the

event; it is synchronized with the DAFNE radiofrequency and acts as a common

START for ADC’s and TDC’s connected to the EMC.

The level T2 is generated during a longer lapse of time after T1 signal (∼ 1.5 µs) and

is distributed to the DC TDC’s; it acts as a common STOP and a START signal for

the DAQ. About ∼ 2.6 µs are typically required to form the trigger and the detectors

signals; during this time interval the generation of new T1 signal is inhibited. Apart

from the two levels of trigger signals, the EMC provides separate signals with different

thresholds for detecting Bhabha’s and cosmic-rays.

1.4.1 The EMC trigger

For the EMC trigger adjacent columns of cells are grouped together into about 200

trigger sectors. The sectors are arranged in two series: “normal” and “overlap”, being

the columns of each series staggered by half a sector width. The signals coming from

the photomultipliers corresponding to a sector are summed at each side, shaped and

finally discriminated according to two distinct energy thresholds: ∼ 30 MeV and ∼
20 MeV. The use of this logic scheme, shown in fig. 1.13, is optimized to reduce

the effects of non-uniformity in response versus the coordinate along the direction

of the fibers, due to the light attenuation in the fibers. The two thresholds can be

programmed and different profiles can be applied. The high rate of accidental clusters

(particularly in the endcaps) due to machine background, imposes the use of higher

thresholds in the regions closer to the beam (hot and warm trigger regions), while

the profiles for the ones at larger radius are similar to those of the barrel (cold trigger

region).

The typical threshold values applied for φ events range from 50 MeV in the cold

region, up to 150 MeV for warm and hot regions in the endcaps. The sufficient

condition for an EMC trigger is verified if two or more trigger sectors happen to be

fired (in a ∼ 70 ns time window) and if at least one of them is in the barrel. The

EMC trigger operates in the first level mode (T1 ≡ T2).
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1.4.2 The DC trigger

In order to define the DC trigger, hits in the chamber are grouped into 9 concentric

superlayers, obtained from contiguous plane signals. The sum of the signals is clipped

to a given threshold (therefore limiting the occurrence of spiraling low-momentum

particles induced by DAΦNE), and finally a total number of at least 15 hits in a 250

ns window is required for the production of a T1 signal.

If the number of hits exceeds 125 in an interval of 850 ns following the previous time

window, then the DC condition for the T2 signal is satisfied. Time intervals of ∼ 1

µs are typically needed for the DC signals to be formed. Finally, the trigger requires

for the first level the OR between the EMC trigger and the DC T1 condition; in case

T1 is given by the EMC trigger, the T2 signal is automatically generated ∼ 1.5 µs

later, while if the DC T1 condition is verified the T2 signal is then obtained by the

logical OR between the EMC trigger and the DC T2 condition.

1.5 The data acquisition

The main goal of the KLOE Data Acquisition (DAQ) system [17] was to collect data

at a maximum rate of 50 Mb/s from the ∼ 13000 channels of the DC, the ∼ 5000

ADC’s and TDC’s channels of the EMC and of the trigger system 1. The DAQ system

is required to be exible and the integrity of the events during the acquisition has to be

continuously checked online, with a dead time which is constant and is independent

of event topologies.

The KLOE DAQ is based on two levels of high-speed data concentration for bu ering

data coming from the Front-End Electronics (FEE) connected to the detector and an

online farm of CPU’s for recording events, as shown in fig. 1.14.

The first level (L1) of DAQ is arranged in 10 chains (4 are dedicated to the acqui-

sition of the EMC, 4 of the DC and 2 of the trigger). These chains are composed

of up to six VME crates, each one with 16 slave boards and a Read Out Controller

(ROCK) collecting information from the FEE via the AUX-bus, a custom protocol

developed specifically for the KLOE DAQ. All the ROCK’s in a chain are connected

1Given an average event size of 5 kb, this through put corresponds to 10 kHz, constituted by φ
decays, Bhabha and cosmic-ray events.
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Figure 1.14: The architecture of the Data Acquisition System.

to a controller manager (ROCKM) through a custom fast bus (C-bus).

In the second level (L2), the ROCKM’s build pieces of events produced by the FEE

and tagged by a trigger number (sub-events), which are acquired in streams by VME

processors, equipped with FDDI interfaces. Two software processes – the Collector

and the Sender– running on the processors asynchronously, manage the read-out ac-

tivity: the Collector accesses to ROCKM memory and pushes data frames belonging

to different triggers in a FIFO–structured shared memory (circular buffer), while the

Sender retrieves from the queue a given amount of sub-events and transmits it to the

online farm via a fast FDDI connection.
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A Data Flow Control process (DFC) provides the addresses of the online farm CPU’s,

guaranteeing that all sub-events with the same trigger number are sent to the same

CPU online farm. The Receiver process is in charge of catching these sub-events

and putting them in a circular buffer; subsequently the Builder process merges them

together to build a whole event in a YBOS format [25].

Events are saved on tape and on disks by the Recorder process. Also another process

–the Spy-Daemon– reads formatted events and writes them in a spy buffer to perform

various monitoring and calibration tasks at a third level (L3) (e.g. Bhabha and γγ

events are written on the L3bha buffer, cosmic-ray events are written on the L3cos

buffer).

The uniformity and the stability of the acquired data and of the detector perfor-

mances are controlled continuously by a number of dedicated processes. Among the

procedures implemented, the Trgmon exploits the pattern of the acquired information

from the trigger chains to fastly check luminosity, data/background rates and other

relevant quantities; histogram-servers and event-display also use the shared memory

mechanism to fetch data.

Some procedures are performed run by run, like the measurements of the beam ener-

gies and (the Trkmon process using Bhabha’s) and the monitor of the general quan-

tities of the experiment through dedicated histogram browsers, while other jobs are

done periodically, like the drift chamber and the calorimeter energy/time calibrations.
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Chapter 2

η physics at KLOE

At the φ–factory, visible cross section for φ production is about 3.3 µb and the η

meson is produced in the 2-body decay φ → ηγ with a branching ratio of 1.3%.

The entire KLOE data set correspond to more than 108η meson, thus a rather rich

program of η decay studies is feasible with the KLOE detector. The η decays such as

η → 3π, the subject of this work, η → π0 γγ, and η → π+ π− γ allow important tests

of the Chiral Perturbation Theory: the precise measurement of these decays, which

is presently going on at KLOE, will add significant knowledge in this sector.

Moreover the rare decay φ → η′γ can be used to exploit the direct relation between

the ratio R = Br(φ → η′γ)/Br(φ → ηγ) and the η − η′ mixing angle: the value of

this angle is related to the presence of a valence gluon content in the η′ meson.

In this chapter some analysis on light meson spectroscopy in the KLOE experiment are

described. An overview of the Chiral Perturbation Theory is given with an emphasis

on what can be learned for the η → π+ π− π0 .

2.1 Measurement of the ratio

Br(φ → η′γ)/Br(φ → ηγ)

The ratio of the branching ratios R = Br(φ → η′γ)/Br(φ → ηγ) is related to the

η−η′ mixing angle. The value of this angle is related to the presence of a valence gluon

content in the η′ meson [36]. Here we describe a preliminary KLOE measurement of

this ratio by using the final state π+ π− 7γ.

25
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The final state π+ π− 7γ can be given by two different decay chains:

φ → η′γ, η′ → π+ π− η, η → 3π0

φ → η′γ, η′ → π0 π0 η, η → π+ π− π0

The following requirements are used for the signal events:

• 1 charged vertex in a cylinder with a 4 cm radius and a 16 cm length around

the interaction point;

• 7 clusters in the calorimeter with time |t−r/c| < 5σt where (σt is the calorimeter

time resolution) and angle θγ > 21◦ respect to the beam direction. The angular

cut is used to reject machine background that produces accidental clusters in

the lower angular region of the calorimeter;

• all the events identified as a KS, KL pair are rejected.

A kinematic fit is performed imposing energy-momentum conservation and the χ2 of

the kinematic fit is used as a selection variable.

At the end of the selection procedure 3750 events are identified. The background has

been estimated using a Monte Carlo simulation of the all physical processes that can

be identified as signal together with the full simulation of the detector response. The

main background channels are:

KS → π+ π− , KL → 3π0 KS → π0 π0 , KL → π+ π− π0

KS → π+ π− γ, KL → π0 π0 π0
(2.1)

The first 2 processes emulate the signal if an additional cluster is present, either from

machine background or from cluster splitting in the calorimeter.

The total number of estimated background events is 345, that gives a number of signal

events Nsignal:

Nsignal = Nobserved − Nexpbkg = 3405 ± 65stat. ± 28syst. (2.2)

The systematic error comes from the variation of the background estimated as a

function of the rate of accidental clusters in the detector.

The number of φ → ηγ decays is determined by counting the number of η → 3π0
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decays (Nη→3π0 = 1665000±1300). The ratio of the two branching ratios is extracted

using the following formula:

R =
Br(φ → η′γ)

Br(φ → ηγ)
=

N(η′ → π+ π− 7γ)

N(η → 3π0 )

εη→3π0 Br(η → 3π0 )

Brchargedεcharged + Brneutralεneutral
Kρ (2.3)

where:
Brcharged = Br(η′ → π+ π− η) · Br(η → 3π0 )

Brneutral = Br(η′ → π0 π0 η) · Br(η → π+ π− π0 )
(2.4)

The factor Kρ is a correction factor to the observed decay rate due to the interference

between φ → η(η′)γ and ρ → η(η′)γ. The main source of systematic error comes from

the uncertainty on the η′ → π+π−η and η′ → π0π0η branching ratios (3%). Using

the expression for R we obtain the preliminary result:

R = (4.77 ± 0.07stat ± 0.19sys) · 10−3

Using the current PDG [65] value for BR(φ → ηγ) we extract the:

BR(φ → η′γ) = (6.20 ± 0.11stat ± 0.25sys) · 10−5

The value obtained for R can be related directly to the pseudoscalar mixing angle in

the flavour basis. Using the approach by Bramon et al.[37], where the SU(3) breaking

is taken into account via constituent quark mass ratio ms/m̄, and we take into account

a correction induced by the OZI-rule, which reduce the VP wave-function overlaps

[38], via the two parameters ZNS and ZS:

R =
BR(φ → η′γ)

BR(φ → ηγ)
= cot2ϕP

(
1 − ms

m̄

ZNS

ZS

tanϕV

sin2ϕP

)2(
pη′

pη

)3

where ϕV = 3.4◦ is the deviation from ideal mixing for vector mesons and pη(η′) is the

radiative photon momentum in the φ center of mass. We find the following results:

ϕP = (41.4 ± 0.3stat ± 0.7sys ± 0.6th)
◦

This ϕP value is equivalent to the mixing angle of θP = (−13.2 ± 0.3stat ± 0.7sys ±
0.6th)

◦ in the octet-singlet basis. The mixing angle value has been obtained neglecting

possible gluonium contents of the η′ meson. A gluonium component of the η′ can be

parametrized as following

|η′ >= Xη′

1√
(2)

|uū + dd̄ > +Yη′ |ss̄ > +Zη′ |gluonium >
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via the Zη′ parameter. The normalization gives:

X2
η′ + Y 2

η′ + Z2
η′ = 1

A possible gluonium content of the η′ is revealed by

Z2
η′ > 0 ⇔ X2

η′ + Y 2
η′ < 1

Constraints based on simple SU(3) ideas can be used to check the assumption of

no gluonium contents of the η′ meson. If Zη′ = 0 one has Yη′ = cos ϕP , which is

a resonable approximation if the gluonium component is small. In fig.2.1 we plot

allow band corresponding to SU(3) constraints and our measurement of cosϕP , in

the Xη′ , Yη′ plane. The circumference X2
η′ + Y 2

η′ = 1 correspond to zero gluonium in

the η′.

Figure 2.1: Bounds on X and Y from SU(3) calculations and experimental branching

fractions. The three constraints: Γ(η′→γγ)
Γ(π0→γγ)

; Γ(η′→ργ)
Γ(ω→π0γ)

; Γ(φ→η′γ)
Γ(φ→ηγ)

.

We find

X2
η′ + Y 2

η′ = 0.92 ± 0.06
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2.2 Measurement of the branching fraction

η → π0 γγ

The η → π0 γγ decay has been measured by several experiments in the past. The

experimental value of this branching fraction decreased with time, in step with the

increase in machine luminosities and in the available statistics of the η meson samples

produced, showing that the main issue in the measurement of this branching fraction

measurement is the correct estimate of the background. The 2006 Review of Particle

Physics [65] list only the measurement from the GAMS experiment [41], (7.2±1.4)×
10−4. Two more measurements have been published by the Crystal Ball collaboration.

These two measurements are different analyses of the same data sample; they find

the values: (3.5±0.7stat. ±0.6syst.)×10−4 [42] and (2.7±0.9stat. ±0.5syst.)×10−4 [43].

At KLOE the η → π0 γγ proceeds through the decay chain:

φ → γη, η → π0 γγ, π0 → γγ (2.5)

Therefore there are 5 γ in the final state. The main background processes are:

φ → γf0, f0 → π0 π0 , π0 → γγ φ → γa0, a0 → ηπ0 , η → γγ, π0 → γγ

e+e− → π0 ω, ω → π0 γ, π0 → γγ φ → ηγ, η → 3π0 , π0 → γγ
(2.6)

The background composition in the data sample is determined at an early stage of

the analysis where the signal contribution is negligible, by fitting the spectrum of

the invariant mass of all pairs of photons (mγγ) as shown in fig.2.2. Further analysis

criteria are used to reject background coming from the η → 3π0 channel when one

or more pairs of photons merge in the calorimeter. A likelihood function has been

built to identify merged clusters. At the last stage of the analysis, the spectrum of

the invariant mass m4γ is used to extract the number of signal events. The spectrum

shown in fig.2.2 is fitted with the MC expected distributions of the background and

of the signal. The number of signal events is Nsig = 68±23. To extract the branching

fraction, we have counted the number of η → 3π0 events in the same data sample:

Nη→3π0 = 2288882. The efficiency of the η → π0 γγ analysis has been computed by

MC, using a flat phase space assumption for the π0 γγ dynamics. The efficiencies are

εη→π0 γγ = 4.63 ± 0.09%, and εη→3π0 = 0.378 ± 0.08syst ± 0.01stat. Therefore we can

write:

Br(η → π0 γγ)

Br(η → 3π0 )
=

N(η → π0 γγ) · εη→3π0

N(η → 3π0 ) · εη→π0 γγ

= (2.43 ± 0.82) × 10−4 (2.7)
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Figure 2.2: Left: mγγ distribution used to determine the background content; Right:
m4γ distribution: DATA, dots with error bars, MC signal and MC background are
normalised according the fit result.

Using the value of Br(η → 3π0 ) reported in [40] we obtain the preliminary KLOE

result:

Br(η → π0 γγ) = (8.4 ± 2.7stat ± 1.4syst) × 10−5 (2.8)

This value is lower than the previously published values and it is in agreement with

ChPT prediction at order p6 with VMD resonance saturation assumption for the L6

Lagrangian [44, 45].

2.3 η mass measurement

Recently a new η mass measurement has been performed by the GEM collaboration

[46] that measures a mass value that is 0.5 MeV below the previous NA48 measure-

ment [68], but it is in agreement with the previous η mass measurements [40]. For

this reason KLOE is performing a new measurement of the η mass using a completely

different approach. The mass is measured studying the decay φ → ηγ, η → γγ. To

improve the energy response of the calorimeter a kinematic fit is performed imposing
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Figure 2.3: Left: Dalitz plot of the 3γ final state, the cut chosen to reject background
is shown, Right: mγγ distribution.

energy-momentum conservation. A cut in the Dalitz plot of the 3γ final state is per-

formed in order to reduce the background mainly due to e+e− → γγ, e+e− → e+e−(γ),

φ → π0 γ, fig. 2.3. A sharp peak around the η mass is found with negligible back-

ground (σpeak ∼ 2 MeV), fig. 2.3. The 2001 - 2002 data taking has been divided

into 8 periods, each corresponding to about 50 pb−1 of collected data. In fig. 2.4

the measurements obtained in the 8 periods are shown. The statistical error has

been computed by fitting the 8 measurements with a constant. The fit give the value

Mη = 547765±5stat keV. The systematic error has been studied by studying the effect

of energy, time, vertex position and
√

s miscalibration on the measured value of the

η mass. All the measurement lie in the estimated systematic band. The preliminary

result obtained is:

mη = 547822 ± 5stat ± 69syst keV (2.9)

As a check of the method we have measured also the mass of the π0 by using the de-

cay φ → π0 γ obtaining mπ0 = 134990± 6stat. ± 30syst. keV, that is fully in agreement

with the value reported in [40] mPDG
π0 = 134976.6 ± 0.6 keV.

The preliminary measurement differs from the NA48 measurement, (mNA48
η = 547843±

30stat. ± 41syst. keV) by only 0.24 standard deviations. It disagrees with the GEM
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Figure 2.4: η mass measurement in the several periods. The systematic band, red
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measurement (mGEM
η = 547311 ± 28stat. ± 32syst. keV) by 7 standard deviations.

2.4 Basics of Chiral Perturbation Theory

Chiral perturbation theory (ChPT) provides a systematic framework for investigating

strong-interaction processes at low energies, as opposed to a perturbative treatment

of quantum chromodynamics (QCD) at high momentum transfers in terms of the

“running coupling constant.” The basis of ChPT is the global SU(3)L × SU(3)R

symmetry of the QCD Lagrangian in the limit of massless u, d, and s quarks. This

symmetry is assumed to be spontaneously broken down to SU(3)V giving rise to eight

massless Goldstone bosons. In the following the foundations of ChPT, namely the

symmetries of QCD and their consequences in terms of effective theory is given.
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2.4.1 Chiral symmetry

The QCD Lagrangian obtained from the gauge principle is:

LQCD = −1

2
trGµνG

µν +
∑

f=u,d,s

q̄f (iγµD
µ − mf) qf (2.10)

where:

Gµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (2.11)

Dµ = (∂µ − igAµ) (2.12)

and the color field is given by1

Aµ =
8∑

a=1

Aa
µ

λa

2
(2.13)

In order to fully exhibit the global symmetries of lagrangian, we consider the chi-

rality matrix γ5 = γ5 = iγ0γ1γ2γ3, {γµ, γ5} = 0, γ2
5 = 1,2 and introduce projection

operators

PR =
1

2
(1 + γ5) = P †

R, PL =
1

2
(1 − γ5) = P †

L, (2.14)

where the indices R and L refer to right-handed and left-handed, respectively, as

will become more clear below. Obviously, the 4 × 4 matrices PR and PL satisfy a

completeness relation,

PR + PL = 1, (2.15)

are idempotent, i.e.,

P 2
R = PR, P 2

L = PL, (2.16)

and respect the orthogonality relations

PRPL = PLPR = 0. (2.17)

The combined properties of Eqs. (2.15) – (2.17) guarantee that PR and PL are in-

deed projection operators which project from the Dirac field variable q to its chiral

components qR and qL,

qR = PRq, qL = PLq. (2.18)

We recall in this context that a chiral (field) variable is one which under parity is

transformed into neither the original variable nor its negative.3 Under parity, the

1λa (with a = 1, . . . , 8) are the SU(3) Gell-Mann matrices, operating in color space.
2Unless stated otherwise, we use the convention of Ref. [19].
3In case of fields, a transformation of the argument ~x → −~x is implied.
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quark field is transformed into its parity conjugate,

P : q(~x, t) 7→ γ0q(−~x, t),

and hence

qR(~x, t) = PR q(~x, t) 7→ PRγ0q(−~x, t) = γ0PLq(−~x, t) 6= ±qR(−~x, t),

and similarly for qL.4 The QCD Lagrangian in the chiral limit, where ms = mu =

md = 0, can be written as:

L0
QCD = −1

2
trGµνG

µν +
∑

l=u,d,s

(q̄R,liγµDµqR,l + q̄L,liγµDµqL,l) (2.19)

Due to the flavor independence of the covariant derivative L0
QCD is invariant under




uL

dL

sL


〉UL




uL

dL

sL







uR

dR

sR


〉UR




uR

dR

sR


 (2.20)

where UR,L are the unitary 3 × 3 matrices:

UR,L = exp

(
−i

8∑

a=1

θR,L
a

λa

2

)
(2.21)

L0
QCD is said to have a classical global SU(3)L × SU(3)R symmetry.

Applying Noether’s theorem from such an invariance one would expect a total of

16 conserved currents. The currents associated with the transformations of the left-

handed or right-handed quarks

Lµ,a = q̄Lγµλa

2
qL, ∂µLµ,a = 0,

Rµ,a = q̄Rγµ λa

2
qR, ∂µRµ,a = 0. (2.22)

The eight currents Lµ,a transform under SU(3)L × SU(3)R as an (8, 1) multiplet,

i.e., as octet and singlet under transformations of the left and right-handed fields,

4Note that in the above sense, also q is a chiral variable. However, the assignment of handedness
does not have such an intuitive meaning as in the case of qL and qR.
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respectively. Similarly, the right-handed currents transform as a (1, 8) multiplet under

SU(3)L×SU(3)R. Instead of these chiral currents one often uses linear combinations,

V µ,a = Rµ,a + Lµ,a = q̄γµ λa

2
q, (2.23)

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q, (2.24)

transforming under parity as vector and axial-vector current densities, respectively,

P : V µ,a(~x, t) 7→ V a
µ (−~x, t), (2.25)

P : Aµ,a(~x, t) 7→ −Aa
µ(−~x, t). (2.26)

For each conserved currents, the conserved charged are respectively:

Qa
L (t) =

∫
d3xq†L (~x, t)

λa

2
qL (~x, t) , a = 1, . . . , 8 (2.27)

Qa
R (t) =

∫
d3xq†R (~x, t)

λa

2
qR (~x, t) , a = 1, . . . , 8 (2.28)

which correspond the vector charges:

QV,a = Qa
R + Qa

L (2.29)

and, the axial charges:

QA,a = Qa
R − Qa

L (2.30)

2.4.2 Spontaneous Symmetry breaking and

Effective Lagrangian

We saw that the QCD lagrangian possesses a SU(3)L × SU(3)R symmetry in the

chiral limit in which the light quark masses vanish. One would naively expect that

hadrons organize themselves into approximately degenerate multiplets fittin the di-

mensionalities of irreducible representations of the group SU(3)L × SU(3)R. While

the eight vector charges annihilate the ground state

QV,a|0 >= 0 (2.31)
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the QA,a do not annihilate the ground state

QA,a|0 > 6= 0 (2.32)

i.e., the ground state of QCD is not invariant under “axial” trasformations.

According to Goldstone’s theorem [18], to each axial generator Qa
A, which does not

annihilate the ground state, corresponds a massless Goldstone boson field φa(x) with

spin 0, whose symmetry properties are tightly connected to the in question. The

Goldstone bosons have the same transformation behavior under parity,

φa(~x, t)
P7→ −φa(−~x, t), (2.33)

i.e., they are pseudoscalars, and transform under the subgroup H = SU(3)V , which

leaves the vacuum invariant, as an octet:

[Qa
V , φb(x)] = ifabcφ

c(x). (2.34)

In the present case, we expect eight Goldstone bosons. In the hadron spectrum such

massless 0− states do not exist because the exact chiral invariance is broken by the

small quark mass terms which we have neglected up to this point. Thus what we have

are eight very light (but not massless) pseudo-Goldstone bosons (π±, π0 , K±, K0, K̄0, η)

which make up the pseudoscalar octet. Since such states are lighter than their other

hadronic counterparts, we have a situation where in effective field theory can be

applied—provided one is working at energy-momenta small compared to the ∼ 1

GeV scale which is typical of hadrons, one can describe the interactions of the pseu-

doscalar mesons using an effective Lagrangian. Actually this has been known since

the 1960’s, where a good deal of work was done with a lowest order effective chiral

Lagrangian[20]

L2 =
F 2

π

4
Tr(∂µU∂µU †) +

m2
π

4
F 2

πTr(U + U †) . (2.35)

where the subscript 2 indicates that we are working at two-derivative order or one

power of chiral symmetry breaking—i.e. m2
π. Here:

U(x) = exp

(
i
φ(x)

Fπ

)
, (2.36)

φ(x) =
8∑

a=1

λaφa(x) ≡




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 2√
3
η


 (2.37)
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where Fπ = 92.4 is the pion decay constant. This Lagrangian is unique. It also has

predictive power. Expanding to second order in the fields we find the well known

Gell-Mann-Okubo formula for pseudoscalar masses[21]

3m2
η + m2

π − 4m2
K = 0 . (2.38)

and is well-satisfied experimentally. Expanding to fourth order in the fields we

also reproduce the well-known and experimentally successful Weinberg ππ scattering

lengths. However, when one attempts to go beyond tree level, in order to unitarize the

results, divergences arise and that is where the field stopped at the end of the 1960’s.

The solution, as proposed a decade later by Weinberg[22] and carried out by Gasser

and Leutwyler[23], is to absorb these divergences in phenomenological constants, just

as done in QED. What is different in this case is that the theory is nonrenormal-

izabile in that the forms of the divergences are different from the terms that one

started with. That means that the form of the counterterms that are used to ab-

sorb these divergences must also be different, and Gasser and Leutwyler wrote down

the most general counterterm Lagrangian that one can have at one loop, involving

four-derivative interactions

L4 =

10∑

i=1

LiOi = L1

[
tr(DµUDµU †)

]2

+ L2tr(DµUDνU
†) · tr(DµUDνU †)

+ L3tr(DµUDµU †DνUDνU †) + L4tr(DµUDµU †)tr(χU † + Uχ†)

+ L5tr
(
DµUDµU † (χU † + Uχ†))+ L6

[
tr
(
χU † + Uχ†)

]2

+ L7

[
tr
(
χ†U − Uχ†)

]2

+ L8tr
(
χU †χU † + Uχ†Uχ†)

+ iL9tr
(
F L

µνD
µUDνU † + F R

µνD
µU †DνU

)
+ L10tr

(
F L

µνUF RµνU †)

(2.39)

the constants Li, i = 1, 2, . . . 10 are arbitrary (not determined from chiral symmetry

alone) and F L
µν , F

R
µν are external field strength tensors defined via

F L,R
µν = ∂µF L,R

ν − ∂νF
L,R
µ − i[F L,R

µ , F L,R
ν ], F L,R

µ = Vµ ± Aµ. (2.40)

The bare parameters Li which appear in this Lagrangian are not physical quantities,

but an empirical numbers for each of this ten parameters as been obtained [23].
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The important question to ask at this point is why stop at order four derivatives?

Clearly if two-loop amplitudes from L2 or one-loop corrections from L4 are calculated,

divergences will arise which are of six-derivative character. Why not include these?

The answer is that the chiral procedure represents an expansion in energy-momentum.

Corrections to the lowest order (tree level) predictions from one loop corrections from

L2 or tree level contributions from L4 are O(E2/Λ2
χ) where Λχ ∼ 4πFπ ∼ 1 GeV is

the chiral scale. Thus chiral perturbation theory is a low energy procedure. It is only

to the extent that the energy is small compared to the chiral scale that it makes sense

to truncate the expansion at the one-loop (four-derivative) level. Realistically this

means that we deal with processes involving E < 500 MeV, and, for such reactions

the procedure is found to work very well.

2.5 η → π+ π− π0 decay

The decay of the isoscalar η into three pions occurs primarily due to a strong isospin

violation and so is in principle a process sensitive to the up-down quark mass differ-

ence. The electromagnetic corrections to the decay are small (Sutherland ’s theorem

[48]) and modify neither rate nor the Dalitz plot distributions noticeably [49].

To lowest order in the chiral expansion the decay amplitude is given by [50]:

A(s, t, u) =
1

Q2

m2
K

m2
π

(
m2

π − m2
K

)M(s, t, u)

3
√

3F 2
0

(2.41)

where

Q2 ≡ m2
s − m̂2

m2
d − m2

u

=
m2

K

m2
π

m2
K − m2

π(
m2

K0 − m2
K+

)
QCD

(2.42)

is a combination of quark masses and m̂ = 1
2
(mu + md) is the average u, d quark mass,

F0 = 92.4 MeV is the pion decay constant and M(s, t, u) contains all the dependance

of the amplitude on the Mandelstam invariants. Since the decay rate is proportional

to Q−4,

Γ
(
η → π+ π− π0

)
∝ |A|2 ∝ Q−4 (2.43)

the transition η → 3π represents in principle an extremely sensitive probe, allowing

a determination of Q. Of course, in order to extract the quark mass ratio from the
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decay width, one has to provide an accurate description of M(s, t, u).

At lowest order

M(s, t, u) =
3s − 4m2

π

m2
η − m2

π

. (2.44)

a well known result, already obtained using Current Algebra. To cross-check the va-

lidity of the theoretical description one can use the Dashen theorem 5 [51] to determine

Q:

Q2
Dashen =

m2
K

m2
π

m2
K − m2

π

m2
K0 − m2

K+ + m2
π+ − m2

π0

(2.45)

and integrate M(s, t, u) over the phase space to predict the decay width, which has

been determined quite accurately. Numerically, QDashen = 24.1 and the corresponding

prediction for the decay rate using LO result eq.(2.44) is:

Γtheo
(
η → π+ π− π0

)
= 88 eV (2.46)

in strong contraddition to the experimental result[65]:

Γexp
(
η → π+ π− π0

)
= 291 ± 22 eV. (2.47)

A one-loop calculation within conventional chiral perturbation theory (χPT) [53],

improve the result considerably

Γtheo
(
η → π+ π− π0

)
' 167 ± 50 eV. (2.48)

but still fails in being in agreement with phenomenological value.

Further corrections discussed in the literature [52] may slightly increase the theoret-

ical result, but cannot account for the large discrepancy to the data. On the other

hand, a significant violation of the Dashen theorem (and thus a different value for Q)

could easily account for the discrepancy, but can be demonstrated only after compar-

ison of the theoretical prediction for M(s, t, u) with the experimental findings for the

dynamics of the decay. The above discussion motivates a precise measurement of the

η → 3π dynamics via the study of the Dalitz plot, object of this thesis.

5The Dashen theorem states that in the chiral limit the electromagnetic part of the kaon and

pion electromagnetic mass shifts are the same:
(
m2

π+ − m2
π0

)
em

=
(
m2

K+
− m2

K0

)

em
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Figure 2.5: Relevant phase-space for the decay η → π+ π− π0 .

2.6 Brief review of experimental and theoretical

results on the Dalitz plot parameters

The dynamics of the η → π+ π− π0 decay can be studied with the usual method of

the Dalitz plot analysis. It is based on the fact that in the centre of mass system, a

3-body decay has 2 free parameters. The choice of this pair of variables can be done

in several way. Conventionally one uses the kinetic energies of the particles T+, T−

and T0 in the η rest frame and defines:

X =
√

3
T+ − T−

Qη
=

√
3

2MηQη
(u − t) (2.49)

Y =
3T0

Qη

− 1 =
3

2MηQη

[
((mη − mπ0 )2 − s

]
− 1 (2.50)

Qη = mη − 2mπ+ − mπ0 (2.51)

where X and Y are respectively define in the range [−1, 1] and [−1, 0.895].

In the X−Y plane the accessible phase-space is limited to the region shown in fig.2.5.

The shape of the contour show that we are in an intermediate situation respect to

the fully relativistic situation (a circle) and the non relativistic one (a triangle). The

amplitude decay A(X, Y ) is then expanded about the center of Dalitz-plot as:

|A(X, Y )|2 ' 1 + aY + bY 2 + cX2. (2.52)
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The amplitude is symmetric in X, therefore no odd power of X occurs in |A(X, Y )|2.
The theoretical and experimental measurements of the slopes parameters are listed in

Tab.2.1 and 2.2. Unfortunately both experimental and theoretical scenario are not

a b c

tree -1.00 0.25 0.00
one-loop [53] -1.33 0.42 0.08
dispersive [54] -1.16 0.26 0.10
tree dispersive [52] -1.10 0.31 0.001
absolute dispersive [52] -1.21 0.33 0.04

Table 2.1: Theoretical results for the slope parameters of the various approximations.

Nη a b c

Layter [55] 80884 -1.08 ± 0.14 0.034 ± 0.027 0.046 ± 0.031
Gormley [56] 30000 -1.17 ± 0.02 0.21 ± 0.03 0.06 ± 0.04
Crystal Barrel [57] 1077 -0.94 ± 0.15 0.11 ± 0.27
Crystal Barrel [58] 3230 -1.22 ± 0.07 0.22 ± 0.11 0.06 fixed

Table 2.2: Experimental results for the slope parameters.

clear. All the measurements are characterized by quite large uncertainties, moreover

the parameter values are difficult to compare because making assumptions on the

values of the quadratic slope significantly alters the fitted results of the others. A new

measurement of the spectral shape, with higher statistics, would allow to determine

whether the existing disagreement between experimental findings and the theoretical

predictions based on χPT are caused by an inaccurate value for the d−u quark mass

difference or to the importance of higher order final state interaction effects.
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Chapter 3

Reconstruction procedure and

Event Classification at KLOE

In this chapter we will describe the reconstruction procedure with the event classifi-

cation technique adopted at the KLOE experiment.

The reconstruction of charged particles trajectories and of neutral energy clusters

with high efficiency and good resolution on their parameters plays a key role for suc-

cessing in the main physics analysis at KLOE.

A study of the performance of the reconstruction package is presented in the first

part of this chapter.

In order to perform the analysis of the huge amount of data, that KLOE has acquired,

within reasonable times and computing power, an Event Classification program has

been designed. It selects different topologies of events using only the information

coming from the reconstruction chain, and store them on different data streams. Its

main features for the η → π+ π− π0 analysis is described in the second part of the

chapter.

3.1 Track reconstruction

The algorithms used at KLOE to reconstruct charged tracks are mostly based on

those developed by the ARGUS Collaboration [26], adapted to the KLOE detector.

The reconstruction is performed into three steps, i.e.:

43
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• Pattern Recognition (PR): groups the measured drift chamber hits into track

candidates and gives a first estimate of the track parameters;

• Track Fit (TF): evaluate precisely the track parameters by means of an iterative

procedure;

• Vertex Fit (VF): finds the position of the charged vertices by means of an

iterative procedure.

In the following section we will give some details on these steps.

3.1.1 Pattern recognition

The KLOE drift chamber has a peculiar structure: the wires make alternatively

positive and negative stereo angles with respect to the z direction.

When projected onto the xy plane, the hits are distributed on 2 nearby curves, one

made up by the hits which fire the positive stereo angle wires and the other one by

the hits firing the negative wires.

The pattern recognition procedure first combine the hits of each view separately,

defining 2 track candidates for each view, and using only 2D information. The 2D

candidates are then matched and merged to define the final track candidate. The z

information is extracted from the merging of the two views. A first evaluation of the

parameters describing the trajectory is given.

3.1.2 Track fit

The KLOE track fit [27], [28], [29] is a least-square fit of the track candidates com-

ing from the pattern recognition. The fit yields parameters ~q which minimises1 the

quadratic form:

χ2 = [~dmeas − ~d(~q)]TW [~dmeas − ~d(~q)] (3.1)

1The vector of parameters for a fit to an helix has dimension five, a possible choice of the
parameters being the track curvature k = Q/Pt, the value of cot θ = Pz/Pt, and of φ = Py/Px, d0

and z0 at the first point. In case multiple scattering is considered the scattering angles are treated
as additional parameters and the vector has dimension > 5.
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where ~dmeas are the measured drift distances and ~d(~q) are the theoretical distances

of closest approach and W is the inverse covariance matrix of the measured coordi-

nates.The minimisation is performed using an iterative procedure in which the track

model is linearised.

The positions of the track points and their tangents are determined by using the

values of the position and momentum of the first point (coming from the pattern

recognition) and recurrent relations giving the momenta and positions of successive

hits. Energy loss and multiple scattering suffered by particle in crossing the chamber

are taken in account.

The track fit procedure contains also some additional features designed to increase

the performance of the hits assignment using the parameters available at the TF level,

more refined than the ones available at PR level.

These are:

• Hit Addition: a try is made to add hits that were not associated to any track

candidate by the pattern recognition. Each hit is added or not on the basis of

its contribution to the χ2.

• Hit rejection: hits associated to tracks by the pattern recognition may be

removed if their contribution to the χ2 is too large.

• Track Joining: [30] since the pattern recognition groups the hits to form

the track candidates going from the outer part to the inner part of the drift

chamber, long tracks may be not identified as a whole and split into separated

candidates. One then tries to put these stumps together in order to recover the

original track.

• Track splitting: in a non negligible percentage of cases, a track candidate

coming from the pattern recognition algorithm is composed of two successive

chains of hits belonging to different physical tracks. An algorithm has been

developed [31] in order to correct this situation.
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3.1.3 Vertex fit

After reconstructing tracks, the vertex fit [32] aims to reconstruct the positions of the

decay vertexes in the DC volume.

In order to reconstruct the φ decay vertex tracks are extrapolated toward the nominal

interaction point, taking into account the energy losses on the DC inner walls. For the

other vertexes an iterative procedure is used to obtain the point of closest approach

for all tracks. Pairs of tracks are searched, whose trajectories show an acceptable

crossing point, both in the x−y plane and along the z coordinate. A χ2 minimization

is applied in order to obtain the best possible estimate of the vertex position, and if

such procedure converges, the vertex is kept.

Vertexes are classified according to the quality of the fit. At this level, even more

than one vertex can belong to a given track. A merging procedure is performed

to join 2-tracks vertexes together, so obtaining vertexes with 3 or more tracks (this

is particularly relevant for the K± → π±π+π− decay). An hypothesis test which

compares the 4-tracks verteces versus the 2-tracks verteces is done. On the bases of

the χ2 the two hypotheses are taped.

3.2 Cluster reconstruction

The reconstruction of the event begins from the calorimeter information. Groups

of adjacent or close cells are merged together to build clusters by the clustering

algorithm.

The cells are included in the cluster search only if times and amplitudes are available

from both sides of the fibers. If a cell is missing just one of time and amplitude signals,

it is named ”incomplete” cell. For the barrel, an ”incomplete” cell is recovered on

the basis of the difference ∆φ between its azimuth and that of the closest cluster.

Incomplete cells are assigned to the cluster if |∆φ| < 3◦. A similar procedure is

used for the end-caps using the transverse coordinate x. The cluster energy Ecl, is

the sum of the energies of all the cells assigned to it.
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The cluster position (xcl, ycl, zcl), and the cluster time tcl, are computed as energy-

weighted averages of the cell variables:

xcl =

∑
cells Eixi∑
cells Ei

, ycl =

∑
cells Eiyi∑
cells Ei

, zcl =

∑
cells Eizi∑
cells Ei

, tcl =

∑
cells Eiti∑
cells Ei

.

The coordinate along the direction of the fibers is computed using the times at both

sides, while the two orthogonal coordinates are taken from the nominal position of

the cells.

A significant systematic effect induced by the clustering is the production of spurious

clusters from the splitting of a unique energy deposit in the calorimeter. This effect

is strongly dependent on the energy of the particle releasing its energy and on the

position of the cluster in the EMC and affects the photon multiplicity observed by

the detector in a given event.

For this reason it has been studied on well-define photons samples such as those pro-

duced in e+e+ → e+e+γ events and in φ radiative decays. The probability of having

a cluster splitting is computed as a function of cluster energy and polar angle, and is

finally used to unfold the true multiplicities from the observed ones.

After cluster reconstruction, an estimate of the reference time of the event (the abso-

lute T0) is given by assuming that the first cluster in time is due to a prompt photon

coming from the origin; this photon must have at least 50 MeV and must lie farther

than 60 cm from the collision axis. The hypothesis of the being a prompt cluster

reasonably fits a large set of events as radiative φ decays.

3.3 The KLOE Event Classification EVCL

The aim of the Event Classification program [33], is to perform a fast identification

of the φ decays at the same time data are acquired and to store them in different

streams. In this way tapes with homogeneous data are available, and each different

analysis run only on a reduced set of tapes, with a big saving in time and CPU power.

The KLOE trigger acquires the events with an efficiency greater than 99%. At the

same time, background events (cosmic rays, Bhabha events and machine background)

have to be strongly rejected by the trigger, to avoid to overload the KLOE Data

Acquisition. The raw data are immediately stored on tapes and processed.
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Figure 3.1: Event Classification block scheme.

The Event Classification procedure tags the event type and performs the splitting of

the φ decays in different streams, fig.3.1.

A stream is a collection of events which are all selected by one definite algorithm.

The four main streams are:

• Stream 1: φ → K+K−;

• Stream 2: φ → KLKS;

• Stream 3: φ → ρπ, φ → π+π−π0;

• Stream 4: φ → radiative events; (ηγ, η′γ, π0γ, f 0γ, ..)

In addition to these there are other streams, in which Bhabha and cosmic events used

for detectors calibration are stored for example. An event is assigned to a certain

stream when at least one of its algorithms identifies it. When an event is flagged by

two (or more) algorithms of different streams the strategy followed is to write this
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event in all these streams, in order not to lose efficiency. The identification process

provides a lot of informations about the particles present in the events, which are

collected in a compact way in the ECLO bank, Event CLassification Object (particles)

bank. This bank consists of a set of words, one for each particle tagged by some

algorithm, and these words content a number that identifies the particle (the particle

ID as the GEANT convention), the bank number of the fitted track, for charged

particle, the bank number of the reconstructed cluster, for neutral particle; the bank

number of the vertex connected to the track or to the cluster. Another information

accessible in the ECLO bank is the tagging ID, which have two meanings: it contents

the stream number and a flag that specify the algorithm that selected the event.

3.3.1 Stream 4: Charged/neutral radiative decays

We can define the following set of variables:

• PΣ = |~p1| + |~p2|

• δE = |~p1 + ~p2| − (Mφ −
√

m2
π + |~p1|2 −

√
m2

π + |~p2|2)

• β = rcl/cTcl

• Npnc number of neutral cluster with 0.9 < β < 1.1 and E > 7 MeV

The PΣ variable allow discrimination with respect to the K+ K− and to the KS KL events.

The δE quantity is zero only in the case of π+ π− γ final state, and allow to separate

the three pions final state from other final states characterised by two charged tracks

with high momentum and one prompt photon (π+ π− γ, µ+ µ− γ or e+e−γ). The

selection procedure is the following:

• one and only one charged vertex in the interaction region

• cut on the plane PΣ vs. δE depending on the specific final state (see fig 3.2)

• 0 < Npnc < 3 .AND. Eprompt > 50 MeV

The cuts are tuned for each of the different final states:
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Figure 3.2: Scatter-plot of δE vs. PΣ for π+π−γ, µ+µ−γ and e+e−(γ) events. The MC generation

of π+π−γ and µ+µ−γ is done only for events with Eγ < 100 MeV , so the 2 bands are clearly

artificially cut. The low PΣ tail of π+π−γ events is due to ρ±π± where ρ± → π±γ that are included

in the π+π−γ sample.

• π+ π− γ, µ+µ−γ and e+e−γ

The scatter plot of the δE vs. Pσ (see fig. 3.2) shows very well the cuts that

must be applied in order to identify these three decays. The quantity δE is zero

only for π+ π− γ final states, while it gets positive values for µ+µ−γ and e+e−γ.

• π+ π− + nγ with n ≥ 2

Among the many possible final states belonging to this category the developed

algorithm selects the most relevant from the analysis point of view, i.e. ηγ, a0γ

and η′γ. Again cuts in the δE - Pσ plane are applied (see fig. 3.3). Due to

the similar kinematics the decay chain η′γ → ργγ can be easily (50 % of times)

misidentified as a three pion final state.
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Figure 3.3: Scatter-plot of δE vs. PΣ for ηγ, a0γ and η′γ events. The allowed area for radiative

decays are shown. The second area for the η′γ case partly overlaps the 3-pion area.

3.4 Background rejection (FILFO)

Before the track fit process, which is the most time consuming from the CPU view-

point, data need to be filtered from the residual sources of background. To attain

this goal, a dedicated procedure, FILFO[34], has been devoloped: it is based on al-

gorithms which work on elementary and unreconstructed quantities to identify and

reject cosmic-ray and machine background events that have not been ruled out at the

trigger level. Main categories of background are:

• cosmic rays

• Bhabha scattering

• machine background
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Cosmic rays rejection. Cosmic rays rate with the calorimeter trigger only is

∼ 2.6 kHz and after the cosmic veto is reduced to ∼ 700 Hz.

Simple considerations on the nature of the cosmic radiation help to its rejection.

Cosmic rays come from outside of the detector and then the time on the outer

plane of the earlist cluster must be smaller than the time of the last plane of

the same cluster. The excellent time resolution of the calorimeter allows to see

this tiny time difference that is smaller than 1 ns.

In addition cosmic rays that pass the magnet iron yoke are mainly penetranting

particles, namely muons, that can be identified looking at the ratio between the

energy deposited in the outer and in the inner calorimeter plane.

These simple ideas have been improved trying to minimize the inefficiency on

φ decays. In particular constraints on the time difference between the first two

clusters in time and at the number of hits in the drift chamber can identify a

particle crossing all the detector. Also the shower depth defined as:

D =

∑
i · Ei

Eclus
(3.2)

give a more refined information than the simple ratio between the energy de-

posit in the first and the last plane. The efficiency in cosmic rejection is ∼ 95%

[35].

Bhabha rejection ’Normal’ Bhabha events can be easily identified by the

trigger veto and then rejected or selected for calibration purposes looking at

the corresponding bit in the trigger mask. As particular category of Bhabha

events in which the particles hit the quadrupoles or the calorimeter around the

quadrupoles electromagnetic showers evade the trigger veto since their energy

is partially absorbed by quadrupole material and partially spread out over more

than one trigger sector.

Also in this case, by the way, the event topology keeps memory of Bhabha event

characteristic. Events can be rejected for cuts on: a) the total number of clus-

ters; b) the spread around the axis defined by the line connecting the energy

centroids on the two endcaps; c) the energy of the two most energetic clusters.
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Rejection efficiency on Bhabha events is of the order of ∼ 80%.

Machine background rejection. Machine backgrounds are mainly due to

photons, electrons or positrons produced by some electromagnetic interation

involving the beams: the main sources are Coulomb scattering on residual gas

inside the beam pipe, bremsstrahlung and intra-beam interactions (Touscheck

effect).

All these processes mostly produce particles with very small inclination with

respect to the beam pipe. Some particle at large angle is also observed but is

mainly due to some interaction with quadrupoles inside the detector.

Selection cuts exploit: a) the polar angle with respect to the beam pipe of the

two most energetic clusters; b)the energy weighted average polar angle; c) the

number of planes hit by the most energetic cluster versus its energy; d) the

number of the hits in the inner cells of the drift chamber with respect to the

total number of hits; e) the total calorimeter energy when only few chamber

wires have been hit.

The rejection efficiency of all these cuts depends on the machine background

topology that varies from run to run, so it oscillates between 50 and 90%.

3.5 A minimum bias EVCL filter for φ radiative

decays

In order to study the systematic bias introduced by FILFO and EVCL algorithm, see

sec.5.4.4 a downscaled sample with less stringent event classification cuts for events

in radiative stream has been produced [63].

We have produced streamed files without using both FILFO and EVCL for 2001

and 2002 data taking period. The integrated luminosity of all streamed files for the

η → π+ π− π0 decay is Lint ' 23 pb−1.

The selection uses calorimetric informations and retains events with the following

requirements:

• at least 3 clusters in time, with a time window of 5 σTclu
, and a cutoff of 5 ns;
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• only clusters over 18◦;

• a cut on the total cluster energy
∑

Eall clu > 500 MeV, with no requirements

on track to cluster association, including out of time clusters.

On a MC sample the efficiency of minimum bias algorithm versus the standard ra-

diative stream has been studied. We find that the minimum bias efficiency on events

selected by radiative stream is 84%; if we look at the events not selected by radia-

tive stream, we find that minimum bias recover 54% of them. That means that the

minimum bias events could be a good sample to test standard EVCL performance.



Chapter 4

Analysis of η → π+π−π0

The study of the η → π+ π− π0 dynamic, through a fit to the Dalitz plot distribution,

is presented. The Dalitz plot distribution is conventionally described in terms of two

variables X ∝ T+ − T− and Y ∝ T0 (where T is the kinetic energy of pions in the

η-rest frame) and it is parametrized as following:

|A(X, Y )|2 = 1 + aY + bY 2 + cX + dX2 + eXY

In this chapter we refer only to the MonteCarlo simulation. The selection criteria

for the analysis are defined in section 4.1 while the evaluations of resolution and

efficiencies involved in the measurement are reported in section 4.3.

After a short description of the method applied to fit the Dalitz plot distribution, the

results on MonteCarlo sample are discussed in detail in section 4.5.

4.1 Selection of η → π+ π− π0 decays

At KLOE η is produced throught the process φ → ηγ , so to study the dynamic of

η → π+ π− π0 the final state is π+ π− γγγ which corresponds to a BR value of:

BRTOT = BR (φ → ηγ ) × BR
(
η → π+ π− π0

)
× BR

(
π0 → γγ

)
= 2.9 · 10−3 (4.1)

There is no combinatorial problem in the photon pairing because the φ → ηγ is

characterized by a high energy monochromatic recoil photon, Eγrec
∼ 363 MeV, very

55
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Figure 4.1: MonteCarlo photon energy spectrum. Left: linear scale; Right: log scale.

well separated from the energy of the photons coming from π0 decay (see fig. 4.1).

Background events can rise from:

1. φ → KSKL events with one charged vertex where at least one photon is lost

and the KL is decaying near the interaction point (IP).

2. φ → π+ π− π0 events with an additional photon in the detected due to accidental

photons or splitting of clusters in the electromagnetic calorimeter.

4.1.1 Selection cuts

The events selection is performed through the following step:

1. Events are selected starting from the radiative stream with charged particles,

cfr.3.3.1.

2. One charged vertex is required inside the cylindrical region r < 4 cm, |z| <

8 cm and 3 prompt neutral clusters 1 (pnc) with θγ > 21◦ and Eγ > 10 MeV.

1A pnc is defined as a cluster in the EmC with no associated track coming from the Drift Chamber
(DC) and |(t − r

c
)| < 5σt where t is the arrival time on the EmC, r is the distance of the cluster

from the IP and c is the speed of light and σt = 54 ps/
√

E(GeV) ⊕ 147 ps[60].
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To reduce the problem of cluster splitting a cut on the opening angle between

each couple of photons is done θi,j > 18◦.

3. Eprompt
2 < 800 MeV. This cut is already present in the EVCL algorithm. We

repeat it at the analysis level to remove few events selected in the radiative

stream by different algorithms.

4. A costrained kinematic fit is performed requiring 4-momentum conservation and

the speed of light for each photon, without imposing mass constraint both on

η and π0 . See Appendix A for a details on kinematic fit.

A cut on the χ2 probability is done, P(χ2) > 1%.

The effect of this fit on the event reconstruction is to improve significantly

the resolution on photon energies and invariant masses. We note in passing

that the distribution of the χ2 variable of the fit shows a better agreement

data - MonteCarlo than it was in the past [62](see fig. 4.2) due mainly to the

improvements in MonteCarlo simulations.
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Figure 4.2: χ2 distribution. Left: linear scale; Right: log scale.

5. Finally we require:

• 320 MeV < Eγrec < 400 MeV (reduces the residual background from

φ → KS KL events).

2For every event the prompt energy is defined as the sum of the energies of all the pnc
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• Eπ+ + Eπ− < 550 MeV (reduces the residual background from φ →
π+ π− π0 events).

• Mγγ ∈ [110, 160] 3 (reduces the residual background from φ → ηγ events,

with η → π+ π− π0 and π0 → e+e−γ; and from φ → ηγ events, with

η → π+ π− γ). Fig. 4.3 shows the comparison data MonteCarlo for the

variable used in the cut, the observed discrepancy is due to the presence

of background.

After this cuts the overall selection efficiency is ε = (34.1 ± 0.2)%
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Figure 4.3: Data vs MonteCarlo comparison for the invariant mass of the two softest photons

in π+ π− γγγ events. Left: linear scale; Right: log scale. The arrows show the cut applied. The

histograms are normalized to the same area.

4.2 Selection efficiency

For the different steps of selection the relative efficiencies are estimated. In particular:

• The trigger efficiency evaluated by MonteCarlo is 99.9%, so the effect of trigger

in the uncertainties evaluation has been neglected. The good data-MonteCarlo

agreement for the trigger sector multiplicities is shown in fig. 4.4.

3Mγγ is the invariant mass of the two softest photons in π+ π− γγγ events.
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Figure 4.4: Trigger sector multiplicity. From top to bottom: endcap East, endcap West, barrel.

Left: linear scale. Right: log scale.
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• The effect of the event classification procedure (EVCL) and machine background

filter (FILFO) is evaluated using a downscaled sample, minimum bias, with less

stringent event classification cuts, cfr. 3.5.

The efficiency of minimum bias algorithm has been evaluated on a MonteCarlo

sample, we find on events selected by the analysis

ε = (99.88 ± 0.01)% (4.2)

this means that the minimum bias events provide a good sample to test the

bias introduced by EVCL procedure. The selection procedure has been applied

to this data sample without using the EVCL selection and the result has been

compared to the selection procedure including EVCL applied on the same data

set. A similar analysis has been done to check FILFO. While the FILFO algo-

rithm is absolutely negligible, the EVCL procedure introduces an inefficiency

of ∼ 1.5% on the selected events. In the following, the effect of this bias on the

parameters measurement will be analysed.

No difference between data and MonteCarlo on the overall efficiency is observed:

εdata
EV CL = (98.53 ± 0.07)% (4.3)

εMC
EV CL = (98.55 ± 0.01)%. (4.4)

• The tracking and vertex efficiencies have been checked selecting φ → π+ π− π0 from

raw data. The φ → π+ π− π0 decay is very useful for this kind of study, because

it cover the π+ π− momentum range under study.

We look for events characterized by two tracks in the chamber with momentum

50 MeV<P<400 MeV and two prompt neutral cluster over 25◦. We ask for

|Mγγ − Mπ| < 20 MeV and 850 MeV< Etot <1200 MeV for the total energy.

The background contamination is at level of 1.5%. We studied the vertex effi-

ciency as function of the minimum pion momentum; we compare the MC vertex

efficiency with the one on data.

From the fit with a constant in the range 50 MeV÷ 250 MeV, we found

εV TX
data

εV TX
MC

= 0.990, (4.5)

see fig.4.5-bottom. The same has been done for the track efficiency, with ad-
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Figure 4.5: Left: Tracking (upper plot) and Vertex (lower plot) efficiency as function of minimum

PT of the two tracks. Right: Data (blue) MonteCarlo (red) ratio for the tracking (upper plot) and

vertex (lower plot) efficiencies.

ditional cuts. We ask for other two clusters in the calorimeter with at least

100 MeV and 0.8< β <0.95, in this way we close the event. We study the

efficiency for a single track, so we ask at least one track in the DC with 200

MeV < P <400 MeV. Using this track and the two prompt neutral clusters

we built the missing momentum. We look for a second track in a cone of 35◦

around the direction of the missing momentum. We compare the MonteCarlo

track efficiency with the one on data.

From the fit with a constant in the range 50 MeV÷ 250 MeV, we found

εTRK
data

εTRK
MC

= 0.992, (4.6)
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see fig.4.5-top. The data-MonteCarlo ratio of efficiencies is flat all over the

momentum spectrum, thus introducing no bias in the Dalitz plot fit. We must

stress that all the variables used in the fit are evaluated in the η rest frame, which

is boosted with respect to the laboratory by about 363 MeV. This means that

the content of each bin in momentum in the LAB frame is actually distributed

all over the momentum range in the η cms used for the fit: any data-MonteCarlo

discrepancy in the LAB system is further diluted by this effect.

The data-MonteCarlo ratio of the overall tracking and vertex efficiences is :

(ε2
TRKεV TX)data

(ε2
TRKεV TX)MC

= 0.974 ± 0.006. (4.7)

4.3 Resolution and efficiency on Dalitz-plot

variables

The Dalitz-plot variables are evaluated using the measured momenta of the pions

boosted in to the η rest frame. In particular, the four-momenta of the pions are

obtained: for π±, from the track parameters (curvature, azimuthal-angle φ and cotg

θ) and for π0 , from the information about the photons generated in the π0 decay

(E, x, y, z, t for each photons).

The resolution on the Dalitz variables (X, Y ) is shown in fig. 4.6 where the differences

between the reconstructed values (Xrec, Yrec) and the true values (Xgen, Ygen) are

plotted. A sum of 4 gaussians nicely fits each of the two distribution. The width of

the “core” gaussian

δX = 0.020 δY = 0.026 (4.8)

gives an estimate of the resolution.

In order to improve the resolution on Y variable we note that a second way to com-

pute Y is possible. In fact, we can obtain the kinetic energy of π0 from the π+ and

π− energy:

T ch
0 = Mη − (Eπ+ + Eπ− ) − Mπ0 (4.9)
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Figure 4.6: MonteCarlo distributions of resolutions: X (left) and Y (right). The curves are fitted

to a sum of four gaussians.

so we define:

Ych =
3T ch

0

Qη
− 1 (4.10)

which is slightly better in resolution (see fig. 4.7)
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Figure 4.7: MonteCarlo distributions of resolutions: Ych (left) and YM (right). The curves are

fitted to a sum of four gaussians.

δYch = 0.025. (4.11)

Finally, MonteCarlo studies demonstrate that the best evaluation of Y resolution
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is given using the average between the two variables:

YM =
Ych + Y

2
. (4.12)

and the corresponding resolution, see fig. 4.7, is:

δYM = 0.019 (4.13)

No relevant improvement in the resolution values has been observed imposing the

constraint on the invariant mass of π0 . In the following Y will denote the YM variable,

while we will refer to the variable obtained using only the photon energies as Y0.

Fig.4.8 shows the data-MonteCarlo comparison for the variable Ych − Y0. Applying a
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Figure 4.8: Data (continuos line) vs. MonteCarlo (shaded line) comparison for the variable Ych−Y0.

The curves are fitted to a sum of two gaussians with the same mean. The shift of ∼ 1.33 MeV is

estimated from the difference between the mean value of the two fitting functions.

double-Gaussian fit with the same mean value, a shift of ∼ 1.33 MeV is estimated.

This is due to a wrong evaluation of invariant mass of three pions system (π+ π− π0 )

which value on data (see fig. 4.9), in agreement with PDG [65]:

Mη = 547.75 ± 0.12statMeV (4.14)

is different with respect to the one on MonteCarlo simulation, Mη = 547.30 MeV.

The data-MonteCarlo discrepancy on the Mη value cannot be considered as an energy
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scale effect because for the same events no shift in the peak value of the γγ invariant

mass is observed, see fig. 4.10.

As expected, correcting on data the Mη value the Ych − Y0 shift is reduced to the
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Figure 4.9: Distribution of the invariant mass of three pions system
(
π+ π− π0

)
for the data

sample used in this analysis. The arrows show the range of fit. Right: A zoom of the region of the
fit.
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Figure 4.10: The invariant mass of the two softest photons in π+ π− γγγ events. Left: Data

distribution. Right: MonteCarlo distribution.

value ∼ 0.03 MeV (fig. 4.11). Finally, in order to improve the agreement between

data and MonteCarlo we add to the selection procedure the cut:

|Ych − Y0| < 0.5. (4.15)
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Figure 4.11: Data (continuos line) vs. MonteCarlo (shaded line) comparison for the variable

Ych−Y with the corrected value of Mη. Left: linear scale. Right: log scale. The shift of ∼ 0.03 MeV

is estimated from the difference between the mean value of the two fitting functions. The arrows

show the position of the cut eq: (4.15)

This cut is almost fully efficient on signal. The final selection efficiency is ε =

(34.46 ± 0.01)%. In the region characterized by Nbinx = Nbiny ∈ [7, 20], or changing

the linear dimensions of bins from ∆X = ∆Y = 0.29 to ∆X = ∆Y = 0.10, possible

smearing effects are evaluated. These effects, being the linear dimensions of the bins

used much larger than X and Y resolutions, cfr. eq. 4.8, 4.13, are negligible. In par-

ticular, fig. 4.12 shows the smearing matrix for X and Y variables in correspondence

of a bin width choice:

∆X = ∆Y = 0.13 or Nbinx = Nbiny = 16 (4.16)

Along the straight lines:

Xgen = Xrec Ygen = Yrec (4.17)

there are distributed respectively ∼ 84% and ∼ 76% of events while the rest of events

crosses from a bin to the adjacent ones.

The efficiency as function of Dalitz plot point ε (X, Y ) is defined, for each (X, Y ) bin,

as the ratio between the number of events generated that are fully reconstructed and

selected, or equivalently as the plot obtained with the bin-by-bin division

ε (X, Y ) =
Nrec (X, Y )

Ngen (X, Y )
(4.18)
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Figure 4.12: Smearing matrix distribution. Left: Xvariable; Right: Y variable.

where Nrec (X, Y ) is the reconstructed Dalitz distribution and Ngen (X, Y ) is the orig-

inarily MonteCarlo generated Dalitz distribution. In fact it must be stressed that the

definition of efficiency given above actually contains also the smearing effects inte-

grated bin by bin over the MonteCarlo histogram. This approach is equivalent to the

use of the complete four-dimensional smearing matrix as long as the parametrization

of the Dalitz plot shape used in the simulation is in good agreement with the real

one. As described later in this thesis, we have used a low statistics data sample to

obtain a first estimate of the parameters in order to better the MonteCarlo descrip-

tion and then we have used the improved MonteCarlo for determining the final result

on the full statistics. The ε (X, Y ) (see fig. 4.13) is almost flat in the central region of

Dalitz-plot but presents few peaks on contour because in the corresponding bins the

phase space is reduced and the contribution of nearby bins via the smearing effects

is percentually larger. The projections of ε (X, Y ) on the X and Y axis are plotted

in fig. 4.14. While the efficiency appears to behave quite independently of X and

preserve the symmetry property, it decreases in an approximately linear way as Y

grows in the allowed interval. This can be explained through simple arguments. The

X variable is proportional to a difference between kinetic energies of π+ and π− which

behave similarly in the Drift Chamber and since we don’t ask the track to cluster as-

sociation we expect no asymmetry in the efficiency, apart from the one coming from

possible residual magnetic field effects. In the average, a large value for Y means a
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low-momentum π± in the decay: this reduce the probability to correctly reconstruct

the vertex and explains the slight drop in efficiency as Y rises.
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Figure 4.13: Efficiency as function of Dalitz-plot, before (left) and after (right) removing the bins

crossed by Dalitz-plot contour.
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Figure 4.14: Left: Efficiency versus X . Right: Efficiency versus Y .
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4.4 Fit of Dalitz-plot procedure

The fit is done using a least squares approach. Let |A(X, Y )|2 the theoretical function

|A(X, Y )|2 ' N(1 + aY + bY 2 + cX + dX2 + eXY ). (4.19)

and Nij the number of events in the bidimensional bin (i, j), the χ2 is:

χ2 =

Nbinx∑

i=1

Nbinx∑

j=1




Nij

εij
−
∫ xmax

i

xmin
i

∫ ymax
i

ymin
i

|A(X, Y )|2dPh4(X, Y )

σij




2

(4.20)

where for each bin (i, j):

• εij is the efficiency as function of Dalitz-plot,

• (xmin
i , xmax

i ) and (ymin
j , ymax

j ) are the boundary of bins in X and Y ,

• σij is the statistical error on the ratio
Nij

εij
, according to:

σij =
Nij

εij

√
1

Nij

+

(
(δε)ij

εij

)2

(4.21)

All the bins are included in the fit apart from the bins crossed by the Dalitz-plot

contour, in which fluctuations of efficiency are present.

4.5 Results of fit on MonteCarlo

The procedure of fit described has been tested on MonteCarlo.

In order to exclude possible correlations that can affect the parameters evaluation the

efficiency has been calculated on an independent sample. Initially we have analysed a

sample of ∼ 250000 pure φ → ηγ events, in which the phase space has been generated

with these parameter values:

a = −1, b = c = d = e = 0. (4.22)
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Fig. 4.15 shows how the fitted parameter values change with the number of degrees

of freedom 5, ndf ; at the same time the binning for the Dalitz-plot change from

Nbinx = Nbiny = 7 to Nbinx = Nbiny = 20, in corrispondence the linear dimensions of

bins change from ∆X = ∆Y = 0.29 to ∆X = ∆Y = 0.10. The choice of not increase

further the binning is essentially driven by the resolution of the two variables X, Y

(cfr. eq. 4.8, 4.13): smearing effects can negatively affect the agreement between the

data and the theoretical function.

As can be observed, the fitting procedure allows to find correctly the MonteCarlo

input parameters (in fig. 4.15 pointed out with the straight line) and moreover the

measurements are almost ndf independent, to be precise binning independent.

Some parameters are strongly correlated , table 4.1 gives the correlation coefficients

between the parameters. In particular b and d are anticorrelated with a, on the other

hand c and e are less correlated to the other parameters. Thus we expect that fixing

to zero the value of c and e the other ones will not change. In fact, see fig. 4.16,

considerable variations are not present.

a b c d e
a 1 -0.723 0.011 -0.442 -0.018
b 1 -0.056 0.311 0.053
c 1 0.052 -0.389
d 1 -0.065
e 1

Table 4.1: Correlation matrix from the Dalitz-plot fit.

5ndf is the difference between the number of effective bins fitted, removing the bins crossed by
Dalitz-plot contour, and parameters measured: ndf = Neff

bin − P .
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Figure 4.15: Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization
for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY . The MonteCarlo input
parameters are pointed out with the straight line.
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Figure 4.16: Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization
for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + dX2. The fit is performed by setting to zero
the parameter values c and e. The MonteCarlo input parameters are pointed out with the straight
line.



Chapter 5

Results

In March 2006, the KLOE experiment was sucessfully concluded and a total integrated

luminosity of about 2.5 fb−1 has been collected. The entire KLOE data set correspond

to more 108η meson thus the radiative φ decays make DAΦNE a clear η-factory.

In this chapter a precise measurement of the “slope parameters” of Dalitz plot density

distribution is discussed. The 2001-2002 statistics (∼ 450 pb−1), corresponding to

about 1.3 millions of η → π+ π− π0 events in the Dalitz plot is analyzed, (section

5.1). The various contributions to the systematic uncertainty and the final results

are described in sections 5.4 and 5.5, respectively.

5.1 Analysis on data

In order to give a precise measurement of the slope parameters the statistics,
∫

Ldt =

451 pb−1, collected in 2000 to 2002 data taking is analysed.

The total expected number of η → π+ π− γγγ events has been estimated using the

visible cross section at φ peak [66], and the MC efficiency corrected for the data/MC

ratio of efficiencies for low energy photons, and for the data/MC ratio of tracking and

vertex efficiencies.

σ(ηγ)visible−peak = (40.2 ± 1) nb (5.1)

Nexp = 1.35 ± 0.04 Mevts (5.2)

73
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Whereas, the number of events in the Dalitz-plot, see fig.5.1, is:

Nfound = 1.337 ± 0.001 Mevts (5.3)

We notice a difference at the level of 1.2%, and the two numbers are compatible within

errors. Before analyzing the whole statistics, the procedure of fit has been applied on

a data sample corresponding to
∫

Ldt ∼ 100 pb−1 collected in 2000 and 2001.
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Figure 5.1: Dalitz-plot distribution observed on whole data sample. The plot contains 1.39 millions
of events in 256 bins.

5.2 Results of fit on 2000 − 2001 statistics

As made for the MonteCarlo, we have estimated the parameter values for different

ndf , see fig.5.2. After an initial instability essentially due to the low ndf available

for the fit, the measures catch up a plateau region in which they are almost binning

independent.
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Figure 5.2: Results of the Dalitz-plot fit for different values of ndf . The results refer to a
parametrization for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY .
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ndf Pχ2 a b c d e
74 65% -1.04±0.01 0.14±0.03 -0.001±0.002 0.05±0.02 -0.02±0.03
76 68% -1.04±0.01 0.14±0.03 0.06±0.02
77 52% -1.03±0.01 0.13±0.02

Table 5.1: Results of the fit for different parametrizations of |A|2 and for a total of bins Neff
bin = 80

corresponding to linear dimensions of bins equal to ∆X = ∆Y = 0.17.

In correspondence of N eff
bin = 80 ( or for linear dimensions of bins equal to ∆X =

∆Y = 0.17), where we found the better χ2 probability, we give the final evaluation

of the slope parameters, see table 5.1.

The quoted uncertainties on the parameters are those coming from the fit. The

parameter values obtained fixing to zero the value of c and e have been inserted in

the generator of the new MonteCarlo production used in the rest of this analysis, this

allowed us to improve our simulation of the decay, with a more accurate determination

efficiencies within each bin. We have chcecked our ability to reproduce the values

inserted into the new improved MonteCarlo simulation.

The results are shown in fig. 5.3. We compare the values obained in output from the

fit with the ones used as input for the Monte Carlo production, and build a χ2 variable,

including the full covariance matrix as estimated by the fit. We get good agreement

for each binning choice. In particular e.g. for the binning N bin
eff = 154, which later we

will show being the “best binning choice” on data, one finds a χ2/dof = 3.1/5 with

a χ2 probability of 68% : this gives us confidence that our fitting procedure does not

introduce a bias in the estimation of parameters.

5.3 Results of fit on whole statistics

To fit the Dalitz plot distribution, the efficiency has been estimated using a sam-

ple of 18.7 millions of events from the new MonteCarlo production. Among these

events ∼ 5% are Initial State Radiation (ISR), in which a photon is emitted by the

incoming electron or positron. No discrepancy with the previous measurements is ob-

served when fitting with standard parametrization, see eq: (4.19). With the increased
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Figure 5.3: Results of the Dalitz-plot fit on the Monte Carlo improved simulation for different
values of ndf . The results refer to a parametrization for the decay amplitude |A(X, Y )|2 ' 1+aY +
bY 2 + cX + dX2 + eXY . The horizontal lines show the values used as input for the simulation.
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statistics, both data and MC, the theoretical model seems not to fit adequately the

data: we found values of χ2 probability very low, for each ndf . Consequently we have

expanded the decay amplitude about the center of the Dalitz plot adding the cubic

terms:

|A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3 + gX3 + hX2Y + lXY 2 (5.4)

and we have used this theoretical function to fit the Dalitz plot distribution.

As we expected, for each ndf the values of χ2 probability improve. Moreover we are

sensitive to the cubic slope in Y , never measured before; all the other cubic terms

different from f are consistent with zero.

The behaviour of the parameter values is shown in fig 5.4.

Again the parameters’ values catch up a plateau region, characterized by N eff
bin ∈

[54, 202]1, in which they are almost binning independent.

The final fit results are reported in table 5.2, in corrispondence of N eff
bin = 154, where

we found the better χ2 probability, and for different parametrizations of |A|2.

Par ndf = 147 ndf = 149 ndf = 150 ndf = 150 ndf = 151
a -1.090±0.005 -1.090±0.005 -1.069±0.005 -1.041±0.003 -1.026±0.003
b 0.124±0.006 0.124±0.006 0.104±0.005 0.145±0.006 0.125±0.006
c 0.002±0.003
d 0.057±0.006 0.057±0.006 0.050±0.006
e -0.006±0.007
f 0.14±0.01 0.14±0.01 0.13±0.01

Pχ2 73% 74% < 10−6% < 10−8% < 10−6%

Table 5.2: Results of the fit for different parametrizations of |A|2 and for a total of bins Neff
bin = 154

corresponding to linear dimensions of bins equal to ∆X = ∆Y = 0.13.

Looking at values of χ2 probability, it is evident that is necessary to fit including both

d and f parameters. We clearly observe a quadratic slope in X and a cubic slope in Y

different from zero. As expected from the C-invarance in the η → π+ π− π0 decay the

parameters c and e are consistent with zero, moreover can be removed from the fit

without affecting the other parameters. In any case a good stability of the parameter

1The region Neff
bin ∈ [54, 202] corresponds to linear dimensions of bins changing from ∆X =

∆Y = 0.20 to ∆X = ∆Y = 0.11.
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Figure 5.4: Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization
for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3.
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values is observed.

Fig. 5.5 shows a comparison between the efficiency corrected data and the fitted

function as a function of the bin number, while in fig.5.6 as a function of the Dalitz

plot variables.
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Figure 5.5: In correspondence of Neff
bin = 154 a comparison between data and fitted function,

|A(X, Y )|2 ' 1+aY +bY 2 +cX +dX2+eXY +fY 3, as a function of the bin number. The observed
structure corresponds to Y distributions corresponding to slices in X . Blue points are data and the
histogram is the function.

5.3.1 Check on cubic term ’f ’

We have performed some checks to investigate if the sensitivity to the cubic slope in

Y on data is a possible effect of efficiency.

Neglecting resolution effects ( cfr. fig.4.12 ) the fitted function is actually the follow-

ing:
1

εMC (X, Y )

dN (X, Y )

dXdY fit
=

εREAL (X, Y )

εMC (X, Y )
· |A(X, Y )|2 (5.5)
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Figure 5.6: In correspondence of Neff
bin = 154 a comparison between data and fitted function,

|A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3, as a function of Dalitz plot variables. Left:

X variable. Right: Y variable. Blue points are data and the histogram is the function.

If we assume the cubic term is actually a fake induced by our fitting procedure, the

true expansion for |A(X, Y )|2 is:

|A(X, Y )|2 ' 1 + aY + bY 2 + dX2. (5.6)

in which we have neglected the cubic dependency in Y and the odd powers2 of X.

Now, from the fit we obtain:

1

εMC (X, Y )

dN (X, Y )

dXdY fit
' 1 + a′Y + b′Y 2 + d′X2 + f ′Y 3 (5.7)

we can thus define:

R (X, Y ) ≡ εREAL (X, Y )

εMC (X, Y )
=

1 + a′Y + b′Y 2 + d′X2 + f ′Y 3

1 + aY + bY 2 + dX2
. (5.8)

The ratio of the “real” efficiency to the MC one is of course a function of the Dalitz

variables X and Y, which in case of perfect MC description should be just a costant

equal to 1. We can assume that this function may be expanded itself in powers of X

and Y around 1, and we have considered two different cases:

1. R (X, Y ) = 1 + αY + βX2.

From the eq. 5.8, equating the coefficients of the same order up to third order

2As seen, cfr. tab.5.2, the odd power of X are null.
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one has this equation system:






a′ = a + α;

b′ = b + aα;

d′ = d + β;

f ′ = αb;

βa + αd = 0.

(5.9)

Resolving the system in the resonable hypothesys α < a, (since we know that

a is of order 1) we found:

α = 0.3, β = 0.01. (5.10)

Using these values to reweight the efficiency on MonteCarlo we can compare if

the data - MC agreement is improved by this efficiency correction.

Fig.5.7 shows the data MonteCarlo discrepancy bin by bin normalized, with

efficiency weighed and no. The disagreement observed tells us that the cubic

term cannot be accounted for an efficiency correction of the type discussed

above.
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Figure 5.7: Data vs. MonteCarlo discrepancy bin by bin normalized as function of PT . With full

circles (open circles) efficiency weighed using parameters from eq. 5.10 (not weighed). Left: π+

tracks. Right: π− tracks.
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2. R (X, Y ) = 1 + γY 2.

In the efficiency we assume to neglect the linear dependency from Y . As de-

scribed above we resolve the equation system:





a′ = a;

b′ = b + γ;

d′ = d;

f ′ = γa;

(5.11)

From the fit we obtain for f ′ and a′ respectively a positive and negative value,

consequently γ can only assume negative values. We reweight the efficiency

using the found value γ = −0.14. Again, the comparison between MonteCarlo

weighed and unweighed, see fig. 5.8, confirm the our sensitivity to the cubic

slope in Y on data.
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Figure 5.8: Data vs. MonteCarlo discrepancy bin by bin normalized as function of PT . With full

circles (open circles) efficiency weighed using parameter γ (not weighed). Left: π+ tracks. Right:

π− tracks.
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5.4 Systematic uncertainties

We have grouped the sources of sistematics on the parameter estimations in:

• resolution and binning

• efficiency evaluation

• background contamination

• effect of EVCL procedure

• stability with respect to data taking conditions

Finally the possible effects of the presence of radiated photons, i.e., radiative correc-

tions, have been considered.

We measured the sistematics in each of these cases and the final results are summa-

rized in table 5.3.

Source ∆a ∆b ∆d ∆f
BKG -0.001 +0.006 -0.008 +0.006 -0.007 +0.007 -0.01
BIN -0.008 +0.006 -0.006 +0.006 -0.007 +0.001 -0.02 +0.02

EVCL -0.017 0.005 -0.012 0.01

Table 5.3: For each of the fit parameters a summary of the systematic errors.

5.4.1 Resolution and binning

The η → π+ π− π0 events selected as described in the previous section are used to

study the energy response and resolution of the calorimeter. We therefore have de-

fined:
∆E

E
=

Eγ
cl,i − Eγ

true,i

Eγ
true,i

(5.12)

where for ith photon, Eγ
true is the energy in the output of kinematic fit and Eγ

cl is the

energy measured by calorimeter and we have analyzed its distribution as function
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of Eγ
true. In particular, we have analysed the distribution of ∆E

E
as function of Eγ

true

dividing the spectrum in bins of 20 MeV. The mean value and the sigma obtained from

a gaussian fit are plotted in fig. 5.9 both for data and MonteCarlo. The depenence
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Figure 5.9: Left: distribution of the mean of the gaussian fit to ∆E
E

as a function of Eγ
true. Right:

distribution of the sigma of the gaussian fit to ∆E
E

as a function of Eγ
true

of the mean value of ∆E
E

on Eγ
true is weak for both data and MonteCarlo. In data, the

photon energy tends to be slightly overestimated, while in MonteCarlo, the photon

energy tends to be slightly underestimated; in either case, a drop in response of about

1.5% is observed.

This miscalibration decrease to increasing of the energy. The jitters in the distribution

of < ∆E
E

> are essentially due to the shape of the photon energy spectrum.

Indeed, since the resolution function is almost symmetric around zero, we expect

that in the region where the number of events is increasing as function of Eγ, we get

an average correction ∆E > 0, while the opposite applies to region where N(Eγ) is

decreasing.

This is just related to the fact that the fraction of events in a bin i for which energy

has been underestimated (overestimated) is roughly proportional to the number of

events in bin i + 1 (i − 1).

A reasonable agreement is observed on resolution, see also fig.5.10 in which the RMS

in bins of Eγ
true is plotted. For this reason no attempt to fold the theoretical function

with a resolution or smearing matrix has been done, moreover the linear dimensions

of bin chosen to give the final evaluation for the slope parameters (∆X = ∆Y = 0.13)
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are much larger than the X and Y resolutions (δX = 0.020, δY = 0.019).
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Figure 5.10: Distribution of the rms in bins of Eγ
true.

The systematic effect associated to this choice has been evaluated considering for each

of the parameter values the maximum and minimum spread in the plateau region (cfr.

fig.5.4) characterized from N eff
bin ∈ [54, 202]. A summary of the results is shown in

tab.5.4.

a b c d e f
-0.008 +0.006 -0.006 +0.006 -0.001 +0.0 -0.007 +0.001 -0.002 +0.008 -0.02 +0.02
-0.008 +0.006 -0.006 +0.006 -0.007 +0.001 -0.02 +0.02

Table 5.4: For each of the fit parameters the maximum and minimum spread in the region Neff
bin ∈

[54, 202] or ∆X = ∆Y ∈ [0.20, 0.11] is reported.
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5.4.2 Efficiency evaluation

Since only the shape of the efficiency is relevant for this analysis a reliability check

of the MonteCarlo simulation in reproducing the profile of the efficiency has been

performed. Anyway, as stated before, the agreement between the observed and the

expected overall number of events is within 1.2% (and within errors).

Figs. 5.11 and 5.12 show a data vs. MonteCarlo comparison of PT , PZ , cos θ distri-

butions for tracks, minimum PT and minimum PZ among the two charged pions and

Eγ for photons.

Note that we have used the shift ∼ 500 KeV, associated to the different value of the

η mass in the MonteCarlo simulation respect to the data (cfr. fig.4.9), to correct the

MonteCarlo PT distributions.

All the variables used in the comparisons are evaluated in the η rest frame. Some

discrepancies in the tails of PT and PZ distributions are observed. Cutting on the

sidebands of these distributions no significant change in the parameter values has

been observed. For the same variables a data MonteCarlo ratio has been evaluated,

see figs. 5.13, 5.14 and 5.15.

It is evident a slight slope in PZ distributions. This slope has been used in correcting

the MonteCarlo efficiency, resulting in a negligible effect on the final results.

We use as an estimate of the systematic error the observed discrepancy: ∆ε = 0.03%.

A correction to low energy photon efficiency is applied weighting the MonteCarlo

events. For the photon efficiency we have used a Fermi-Dirac function obtained fit-

ting the photon energy Data-MC discrepancy, see fig. 5.15. For X and Y variables

the ratio between the efficiency weighed and no is shown in fig. 5.16. There is an

effect at level of per mill but this is negligible for the parameters evaluation.
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Figure 5.11: Data vs MonteCarlo comparisons. From top to bottom: PT , PZ for π+ and PT , PZ

for π− . Left: linear scale. Right: log scale.
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Figure 5.12: Data vs MonteCarlo comparisons. From top to bottom: minimum PT and PZ , cos θ

between pion tracks and Eγ for photons. Left: linear scale. Right: log scale.
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Figure 5.13: Bin by bin normalized Data-MC discrepancy. The MonteCarlo histograms are nor-

malized to the same number of events of the data sample. From top to bottom: PT , for π+ and π− ,

minimum PT .
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Figure 5.14: Bin by bin normalized DATA-MC discrepancy. The MonteCarlo histograms are

normalized to the same number of events of the data sample. From top to bottom: PZ for π+ and
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Figure 5.16: Ratio between weighed and not weighed efficiencies as function of X (Left) and Y

(Right). The errors take into account the correlations between the efficiencies.

5.4.3 Background contamination

In order to evaluate the systematic error due to background evaluation we have used

the official MonteCarlo ”ALL PHYS” production. The data-MonteCarlo comparison

for the Y variable ( see fig.5.17) evidences the presence of background. In particular,

the background-signal ratio estimated by MonteCarlo is ∼ 0.3%.
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Figure 5.17: Data vs. MonteCarlo comparison for the Y variable. Left: linear scale. Right: log

scale. The MonteCarlo histograms are normalized to the same number of events of the data sample.

The main source of backgrounds considered are:

1. φ → ηγ with η → π+ π− π0 and π0 → e+e−γ;

2. φ → ωπ0 with ω → π+ π− π0 ;
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Figure 5.18: The different contributions to the background evaluation.

Fig.5.18 shows the estimated amount of these background at the final stage of this

analysis. Special care has been devoted in understanding the dependence of back-

ground on the cut value for the variable Mγγ
3 where significant discrepancies in the

tails are observed between data and MonteCarlo (see fig.4.3).

The different amounts of background (estimated from MonteCarlo) obtained chang-

ing the values of the cut are reported in tab.5.5.

Mγγ(MeV/c2) B
S
(%)

no cut 0.7
∈ [80, 190] 0.4
∈ [90, 180] 0.4
∈ [100, 170] 0.3
∈ [110, 160] 0.3
∈ [115, 155] 0.2
∈ [120, 150] 0.2

Table 5.5: For different cuts applied on Mγγ the related background.

3Mγγ is the invariant mass of the two softest photons in π+ π− γγγ events.
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In particular, B
S

ratio after the cut Mγγ ∈ [110, 160] improves of at least a factor 2,

and the background in the region Y < −1 is totally rejected, see fig.5.19.

Therefore we apply this cut to give the final fit results.
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Figure 5.19: Data-MonteCarlo comparison for the Y distribution. Blue is the MC signal, red dots

are the data and green is background. Left: before the cut Mγγ ∈ [110, 160]. Right: after the cut

Mγγ ∈ [110, 160].

We have estimated the Dalitz-plot parameters changing the values of the cut on Mγγ ,

a summary of the results obtained is shown in tab.5.6.

Pχ2 a b d f
(1) 82% -1.084±0.005 0.116±0.006 0.050±0.006 0.14±0.01
(2) 82% -1.086±0.005 0.117±0.006 0.052±0.006 0.14±0.01
(3) 75% -1.087±0.005 0.118±0.006 0.053±0.006 0.14±0.01
(4) 74% -1.090±0.005 0.124±0.006 0.057±0.006 0.14±0.01
(5) 71% -1.091±0.005 0.128±0.006 0.060±0.006 0.14±0.01
(6) 58% -1.089±0.006 0.130±0.006 0.064±0.006 0.13±0.01

Table 5.6: Results of the Dalitz plot fit after subtracting the background and for different cut
on Mγγ : (1) Mγγ ∈ [80, 190] , (2) Mγγ ∈ [90, 180] (3) Mγγ ∈ [100, 170], (4) Mγγ ∈ [110, 160],
(5) Mγγ ∈ [115, 155], (6) Mγγ ∈ [120, 150]. The final fit results are in correspondence of (4).
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Finally, for each parameter we quote as a systematic error due to the background

evaluation the maximum and minimum spread between the different fits, see tab.5.7

a b d f
-0.001 +0.006 -0.008 +0.006 -0.007 +0.007 -0.01

Table 5.7: For each of the fit parameters the systematic error due to the background subtraction
is reported.

5.4.4 Effect of EVCL procedure

We have evaluated the systematic uncertainty induced by the EVCL procedure using

a data sample of 23 pb−1 (Minimum Bias sample) selected as described in [63].

No bias in reproducing the shape of efficiency is introduced by EVCL procedure. The

Dalitz plot distribution has been fitted both without requiring the EVCL procedure

(i.e. using the full Minimum Bias sample) and requiring the EVCL tag, see tab.5.8.

a b d f
Minimum Bias and evcl −1.050 ± 0.024 0.153 ± 0.027 0.057 ± 0.026 0.080 ± 0.054

Only Minimum Bias −1.067 ± 0.024 0.158 ± 0.027 0.045 ± 0.025 0.090 ± 0.053

Table 5.8: Results of the Dalitz plot fit on Minimum Bias sample. Top: requiring the EVCL tag.
Bottom: without requiring EVCL tag.

For each parameter, we quote as systematic uncertainty the difference among the

two obtained values: this is due to the fact that since the two samples are 98.5%

correlated, any difference between the two fits is statistically significant.

5.4.5 Time stability

We have checked the stability of the parameter values with respect to the data taking

conditions.
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We have checked both large scale uniformity and small scale uniformity.

On a large scale we have split the full data sample in 9 bunches of about 50 pb−1

each and repeated the fit procedure in order to estimate all parameters. The results,

together with the fit to a constant function, are shown in fig. 5.20.

On a small scale the data sample has been split in subsamples of almost equal in-

tegrated luminosity, 5 pb−1, and for each of these we have fitted the Dalitz plot

distribution. Since we have low statistics in each sample we have fitted using a one

dimensional fit procedure (see Appendix) where we are sensitive only to the linear

and quadratic slopes in Y . For both parameters the time dependency is compatible

with a costant function, see fig. 5.21.
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Figure 5.20: Fit parameters as function of time along data taking. The data sample has been
split in subsample having the same integrated luminosity. The results of a fit with costant function
is reported.
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Figure 5.21: Behaviour of the linear and quadratic slopes in Y as function of the time. The data
sample has been split in subsample having the same integrated luminosity. The results of a fit with
costant function is reported.

5.4.6 Radiative correction

Finally we have studied also the possible effects of the radiative corrections in the final

state to the Dalitz plot density. To include the radiative correction in the MonteCarlo

simulation we have used a generator η → π+ π− π0 γ.

In fig.5.22 is shown the distribution of Dalitz plot for the events η → π+ π− π0 γ.

In order to obtain the corrections to the parameter values we have divided bin by

bin the Dalitz plot distribution for the events η → π+ π− π0 and η → π+ π− π0 γ,

(see fig.5.22). Fitting the obtained distribution with the usual expansion we find a

negligible correction to the parameter values.
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Figure 5.22: Left: Dalitz plot distribution for events η → π+ π− π0 γ. The plot contains 10.0

millions of events. Right: Bin by bin ratio of Dalitz distribution of η → π+ π− π0 and η → π+ π− π0 γ

events.

For each of the fit parameters a summary of the most relevant systematic errors are

reported in tab. 5.3.

5.5 Results

The results including the statistical uncertainties coming from the fit and the estimate

of systematics are:

a = −1.090 ± 0.005(stat)+0.008
−0.019(syst) (5.13)

b = 0.124 ± 0.006(stat) ± 0.010(syst) (5.14)

d = 0.057 ± 0.006(stat)+0.007
−0.016(syst) (5.15)

f = 0.14 ± 0.01(stat) ± 0.02(syst) (5.16)

Note that the systematic error has been obtained adding in quadrature all the con-



100

a b d f
a 1 -0.226 -0.405 -0.795
b 1 0.358 0.261
d 1 0.113
f 1

Table 5.9: Correlation matrix from the Dalitz-plot fit.

tributions in table 5.3.

Tab. 5.9 gives the correlation coefficients between the fitted parameters. In fig.5.23

are shown the normalized residuals as function of bin number.
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Figure 5.23: Distribution of the normalized residual. As expected, the residuals fluctuate around

to the zero.

The following comments can be done:

• the fitted value for the quadratic slope in Y is almost one half of the simple

Current algebra prediction (b = a2/4) thus calling for important higher order

corrections;

• the quadratic term in X is unambiguously found different from zero;

• the same applies for the unexpectedly large cubic term in Y ;
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• the strong correlations between parameters imply that much care must be taken

when integrating the polynomial over the phase space, since error propagation

for the result must correctly take correlations into account;

• for the a, b, d parameters, which have not been measured here for the first time,

we observe a reasonable agreement with the ones in literature, see fig. 5.5

especially taking into account that for all previous measurements only statistical

errors were considered.
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Figure 5.24: Comparison between the values of the Dalitz plot parameters obtained in the present

analysis (solid squares) and in the measurements considered by the PDG [65] (red dots). In the plot

the error on the parameters of this analysis has been obtained adding in quadrature the statistical

and systematic error while for the other measurements only the statistical error is reported.
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Conclusions

In this thesis, a precise measurement of the η → π+ π− π0 dynamics via the study of

Dalitz plot density distribution has been presented.

Usually for a 3 body decay the Dalitz plot distribution is described in terms of two

variables X ∝ T+ − T− and Y ∝ T0 (where T is the kinetic energy of pions in the

η-rest frame) and it is parametrized as following:

|A(X, Y )|2 = 1 + aY + bY 2 + cX + dX2 + eXY + fY 3

A MonteCarlo sample has been used to tune the definitions of the selection criteria

applied in the analysis and to give an estimate of the background contamination in

the selected sample.

The efficiency as function of Dalitz plot variables is almost flat in the kinematically

allowed region and its mean value is about 34.50%; while the background is at level

of 0.25 per mill.

The fit to the Dalitz plot is done using a least squares approach. The procedure

tested on MonteCarlo allows to find correctly the MonteCarlo input parameters in-

dependently from the number of degrees of freedom.

In order to obtain a measurement of the slope parameters the 2001–2002 KLOE

statistics, corresponding to about 1.3 millions of η → π+ π− π0 events in the Dalitz

plot, is analyzed.

A complete study of systematic uncertainties, including the effect of resolution, effi-

ciency and background on the parameter estimations, has been achieved. The results

are:

a = −1.090 ± 0.005(stat)+0.008
−0.019(syst) (5.17)

b = 0.124 ± 0.006(stat) ± 0.010(syst) (5.18)
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d = 0.057 ± 0.006(stat)+0.007
−0.016(syst) (5.19)

f = 0.14 ± 0.01(stat) ± 0.02(syst) (5.20)

We clearly observe a quadratic slope in X and a cubic slope in Y never measured

before; all the other cubic terms different from f are zero.

According to the C–invariance in the η → π+ π− π0 decay, the parameter c and e are

consistent withe zero and they are removed from the fit without affecting the other

paramenter values.

For the a, b, d parameters, which have not been measured here for the first time, a

reasonable agreement with the ones in literature is observed.



Appendix

The kinematic fit

A kinematic fit to the observed variables has been performed to improve the resolution

and to suppress the background. Indeed the χ2 of the fit can be used to cut away

events that simulated the signal but have different features.

The kinematic fit procedure is based on the minimisation of the least squares function:

X2 =

N∑

i=1

(Pi − P meas
i )2

σ2
i

where P meas
i are the measured values for the parameters. The minimum of this func-

tion is expected to be distributed as a χ2 fuction.

The minimisation is performed using Lagrange multipliers procedure, which allows

us to find a constrained minimum for a function. We minimise with an iterative pro-

cedure the function:

Y 2 =
N∑

i=1

(P k
i − P meas

i )2

σ2
i

+
M∑

j=1

λk
jCj(P

k
1 . . . P k

N)

where k is the iteration index and the λj ’s are the M additional parameters, the

Lagrange multipliers, used to insure that the minimum is found with the P1 . . . PN

parameters lying on the hyper surface defined by the M conditions (5.5):

Cj(P1 . . . PN) = 0 ∀j = 1, . . .M

The starting values for the fit P 0
i are the measured values P meas

i .

The number of degrees of freedom for this kind of fit is equal to the number of
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constraints because the number of measured quantities is exactly equal to the num-

ber of parameters; Ndgf = (#of measured quantities) − [(#of parameters) −
(#of constraints)] = N − (N − M) = (#of constraints).

In the η → π+ π− π0 decay we have a charged vertex and three photons in the final

state. The parameters used in the fit procedure are the following:

• Energy, time, and position for each photon:

- 5 parameters for each photon;

• Curvature, φ angle and cot θ for each pion track:

- 2 × 3 parameters

• Position of the charged vertex:

- 3 parameters

• Beams energies:

- 2 parameters

for a total of N = 26 parameters.

The errors on these parameters are assigned as follows:

• σclu
E = 5%/

√
E( GeV)

• σclu
t = 50ps/

√
E( GeV)

• σclu
xy = 1.2 cm

• σclu
z = 1.2 cm/

√
E( GeV)

• σCurv, σcot θ, σφ are the square roots of the diagonal elements of the track fit

covariance matrix after vertex fit

• σx,y,z of the vertex are the square roots of the vertex fit covariance matrix

diagonal elements

• σbeam
E = 0.7 MeV are the nominal spread in the beam energy of DAΦNE
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The constraints applied are:

• c · t − d = 0 ∀ photons

- 3 constraints for the two tracks and three photons final states.

• Total four momentum conservation

- 4 constraints

No other constraints are imposed.

One dimensional fit procedure

In this appendix we show the one dimensional fit procedure.

Let |A(Y )|2 ' 1 + aY + bY 2 the amplitude of decay in which we have neglected

every dependency from X. In general, the density of points in the Dalitz-plot is

proportional to the square of the invariant matrix element for the decay, then one

has:

|A(Y )|2 =

∑
Nbinx

N(X,Y )
ε(X,Y )∫

phase space
dx

where

• N(X, Y ) are the number of events in the Dalitz-plot,

• ε(X, Y ) is the efficiency as function of Dalitz-plot,

and when summing over X bins we have applied a phase space correction.

Thus, fitting the eq.5.5 with a polynomial we obtain an estimate of the parameters.

In fig.5.25 are shown the results of fit with two different parametrization.
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Figure 5.25: Results of fit to the Dalitz-plot density. Top: |A(Y )|2 ' N0(1 + aY ). Bottom:

|A(Y )|2 ' N0(1 + aY + bY 2).



List of Tables

1.1 Branching ratio of principal decays of φ [65]. . . . . . . . . . . . . . . 4

2.1 Theoretical results for the slope parameters of the various approximations. . . . 41

2.2 Experimental results for the slope parameters. . . . . . . . . . . . . . . . . . 41

4.1 Correlation matrix from the Dalitz-plot fit. . . . . . . . . . . . . . . . . . . 70

5.1 Results of the fit for different parametrizations of |A|2 and for a total of bins

Neff
bin = 80 corresponding to linear dimensions of bins equal to ∆X = ∆Y = 0.17. 76

5.2 Results of the fit for different parametrizations of |A|2 and for a total of bins

Neff
bin = 154 corresponding to linear dimensions of bins equal to ∆X = ∆Y = 0.13. 78

5.3 For each of the fit parameters a summary of the systematic errors. . . . . . . . 84

5.4 For each of the fit parameters the maximum and minimum spread in the region

Neff
bin ∈ [54, 202] or ∆X = ∆Y ∈ [0.20, 0.11] is reported. . . . . . . . . . . . . 86

5.5 For different cuts applied on Mγγ the related background. . . . . . . . . . . . 94

5.6 Results of the Dalitz plot fit after subtracting the background and for different

cut on Mγγ : (1) Mγγ ∈ [80, 190] , (2) Mγγ ∈ [90, 180] (3) Mγγ ∈ [100, 170],

(4) Mγγ ∈ [110, 160], (5) Mγγ ∈ [115, 155], (6) Mγγ ∈ [120, 150]. The final fit

results are in correspondence of (4). . . . . . . . . . . . . . . . . . . . . . . 95

5.7 For each of the fit parameters the systematic error due to the background subtrac-

tion is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Results of the Dalitz plot fit on Minimum Bias sample. Top: requiring the EVCL

tag. Bottom: without requiring EVCL tag. . . . . . . . . . . . . . . . . . . 96

5.9 Correlation matrix from the Dalitz-plot fit. . . . . . . . . . . . . . . . . . . 100

109



110



List of Figures

1.1 A sketch of the DAΦNEcomplex at the Laboratori Nazionali di Frascati

of I.N.F.N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Integrated luminosity in pb−1 as function of the number of days of data

taking for the years 2001 ÷ 2005. . . . . . . . . . . . . . . . . . . . . 9

1.3 Section of the KLOE detector . . . . . . . . . . . . . . . . . . . . . . 10

1.4 A detail of the configuration of the drift cell at z = 0, in aregion between

the small cells and the big ones. The empty circles represent the field

wires, full dots are the sense wires. . . . . . . . . . . . . . . . . . . . 11

1.5 Photograph of the KLOE drift chamber after assembly and stringing. 12

1.6 Momentum resolution as function of polar angle . . . . . . . . . . . . 12

1.7 Software (left) and hardware (right) efficiencies as functions of the drift

distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 A picture of the KLOE elctromagnetic calorimeter before inserting the

drift chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Schematic view of the fiber–lead modules in the KLOE electromagnetic

calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.10 Up: plot of (Eclu - Eγ)/Eγ for radiative Bhabha events. Down: energy

resolution σ(E)/E . The solid line is the fit to the usual a/
√

E(GeV )+

b parametrization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11 Time resolution versus the photon energy Eγ for radiative φ decays. . 17

1.12 Photon detection efficiency versus the photon energy Eγ , for radiative

Bhabha, φ → π+ π− π0 and KL → π+ π− π0 events. . . . . . . . . . . 18

1.13 Logic scheme of a trigger sector. . . . . . . . . . . . . . . . . . . . . . 20

1.14 The architecture of the Data Acquisition System. . . . . . . . . . . . 22

111



112

2.1 Bounds on X and Y from SU(3) calculations and experimental branch-

ing fractions. The three constraints: Γ(η′→γγ)
Γ(π0→γγ)

; Γ(η′→ργ)
Γ(ω→π0γ)

; Γ(φ→η′γ)
Γ(φ→ηγ)

. . . 28

2.2 Left: mγγ distribution used to determine the background content;

Right: m4γ distribution: DATA, dots with error bars, MC signal and

MC background are normalised according the fit result. . . . . . . . . 30

2.3 Left: Dalitz plot of the 3γ final state, the cut chosen to reject back-

ground is shown, Right: mγγ distribution. . . . . . . . . . . . . . . . 31

2.4 η mass measurement in the several periods. The systematic band, red

rectangle, is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Relevant phase-space for the decay η → π+ π− π0 . . . . . . . . . . . . . . . . 40

3.1 Event Classification block scheme. . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Scatter-plot of δE vs. PΣ for π+π−γ, µ+µ−γ and e+e−(γ) events. The MC

generation of π+π−γ and µ+µ−γ is done only for events with Eγ < 100 MeV , so

the 2 bands are clearly artificially cut. The low PΣ tail of π+π−γ events is due to

ρ±π± where ρ± → π±γ that are included in the π+π−γ sample. . . . . . . . . 50

3.3 Scatter-plot of δE vs. PΣ for ηγ, a0γ and η′γ events. The allowed area for radiative

decays are shown. The second area for the η′γ case partly overlaps the 3-pion area. 51

4.1 MonteCarlo photon energy spectrum. Left: linear scale; Right: log scale. . . . . 56

4.2 χ2 distribution. Left: linear scale; Right: log scale. . . . . . . . . . . . . . . . 57

4.3 Data vs MonteCarlo comparison for the invariant mass of the two softest photons

in π+ π− γγγ events. Left: linear scale; Right: log scale. The arrows show the cut

applied. The histograms are normalized to the same area. . . . . . . . . . . . 58

4.4 Trigger sector multiplicity. From top to bottom: endcap East, endcap West, barrel.

Left: linear scale. Right: log scale. . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Left: Tracking (upper plot) and Vertex (lower plot) efficiency as function of min-

imum PT of the two tracks. Right: Data (blue) MonteCarlo (red) ratio for the

tracking (upper plot) and vertex (lower plot) efficiencies. . . . . . . . . . . . . 61

4.6 MonteCarlo distributions of resolutions: X (left) and Y (right). The curves are

fitted to a sum of four gaussians. . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 MonteCarlo distributions of resolutions: Ych (left) and YM (right). The curves are

fitted to a sum of four gaussians. . . . . . . . . . . . . . . . . . . . . . . . 63



113

4.8 Data (continuos line) vs. MonteCarlo (shaded line) comparison for the variable

Ych − Y0. The curves are fitted to a sum of two gaussians with the same mean.

The shift of ∼ 1.33 MeV is estimated from the difference between the mean value

of the two fitting functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Distribution of the invariant mass of three pions system
(
π+ π− π0

)
for the data

sample used in this analysis. The arrows show the range of fit. Right: A zoom of

the region of the fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 The invariant mass of the two softest photons in π+ π− γγγ events. Left: Data

distribution. Right: MonteCarlo distribution. . . . . . . . . . . . . . . . . . 65

4.11 Data (continuos line) vs. MonteCarlo (shaded line) comparison for the variable

Ych − Y with the corrected value of Mη. Left: linear scale. Right: log scale. The

shift of ∼ 0.03 MeV is estimated from the difference between the mean value of the

two fitting functions. The arrows show the position of the cut eq: (4.15) . . . . 66

4.12 Smearing matrix distribution. Left: Xvariable; Right: Y variable. . . . . . . . 67

4.13 Efficiency as function of Dalitz-plot, before (left) and after (right) removing the

bins crossed by Dalitz-plot contour. . . . . . . . . . . . . . . . . . . . . . . 68

4.14 Left: Efficiency versus X . Right: Efficiency versus Y . . . . . . . . . . . . . . 68

4.15 Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization

for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY . The

MonteCarlo input parameters are pointed out with the straight line. . . . . . . 71

4.16 Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization

for the decay amplitude |A(X, Y )|2 ' 1+ aY + bY 2 + dX2. The fit is performed by

setting to zero the parameter values c and e. The MonteCarlo input parameters

are pointed out with the straight line. . . . . . . . . . . . . . . . . . . . . . 72

5.1 Dalitz-plot distribution observed on whole data sample. The plot contains 1.39

millions of events in 256 bins. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Results of the Dalitz-plot fit for different values of ndf . The results refer to a

parametrization for the decay amplitude |A(X, Y )|2 ' 1+ aY + bY 2 + cX + dX2 +

eXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Results of the Dalitz-plot fit on the Monte Carlo improved simulation for different

values of ndf . The results refer to a parametrization for the decay amplitude

|A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY . The horizontal lines show the

values used as input for the simulation. . . . . . . . . . . . . . . . . . . . . 77



114

5.4 Results of the Dalitz-plot fit for different ndf . The results refer to a parametrization

for the decay amplitude |A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3. 79

5.5 In correspondence of Neff
bin = 154 a comparison between data and fitted function,

|A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3, as a function of the bin

number. The observed structure corresponds to Y distributions corresponding to

slices in X . Blue points are data and the histogram is the function. . . . . . . . 80

5.6 In correspondence of Neff
bin = 154 a comparison between data and fitted function,

|A(X, Y )|2 ' 1 + aY + bY 2 + cX + dX2 + eXY + fY 3, as a function of Dalitz

plot variables. Left: X variable. Right: Y variable. Blue points are data and the

histogram is the function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Data vs. MonteCarlo discrepancy bin by bin normalized as function of PT . With

full circles (open circles) efficiency weighed using parameters from eq. 5.10 (not

weighed). Left: π+ tracks. Right: π− tracks. . . . . . . . . . . . . . . . . . 82

5.8 Data vs. MonteCarlo discrepancy bin by bin normalized as function of PT . With

full circles (open circles) efficiency weighed using parameter γ (not weighed). Left:

π+ tracks. Right: π− tracks. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Left: distribution of the mean of the gaussian fit to ∆E
E

as a function of Eγ
true.

Right: distribution of the sigma of the gaussian fit to ∆E
E

as a function of Eγ
true . 85

5.10 Distribution of the rms in bins of Eγ
true. . . . . . . . . . . . . . . . . . . . . 86

5.11 Data vs MonteCarlo comparisons. From top to bottom: PT , PZ for π+ and PT , PZ

for π− . Left: linear scale. Right: log scale. . . . . . . . . . . . . . . . . . . 88

5.12 Data vs MonteCarlo comparisons. From top to bottom: minimum PT and PZ ,

cos θ between pion tracks and Eγ for photons. Left: linear scale. Right: log scale. 89

5.13 Bin by bin normalized Data-MC discrepancy. The MonteCarlo histograms are

normalized to the same number of events of the data sample. From top to bottom:

PT , for π+ and π− , minimum PT . . . . . . . . . . . . . . . . . . . . . . . . 90

5.14 Bin by bin normalized DATA-MC discrepancy. The MonteCarlo histograms are

normalized to the same number of events of the data sample. From top to bottom:

PZ for π+ and π− , | minimum PZ |. . . . . . . . . . . . . . . . . . . . . . . 91

5.15 Bin by bin normalized Data-MC discrepancy. The MonteCarlo histograms are

normalized to the same number of events in the data sample. From top to bottom:

cos θ between pion tracks, Eγ for photons and Eγ for photons with the fit to the

Fermi-Dirac function superimposed. . . . . . . . . . . . . . . . . . . . . . . 92



115

5.16 Ratio between weighed and not weighed efficiencies as function of X (Left) and Y

(Right). The errors take into account the correlations between the efficiencies. . . 93

5.17 Data vs. MonteCarlo comparison for the Y variable. Left: linear scale. Right: log

scale. The MonteCarlo histograms are normalized to the same number of events of

the data sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.18 The different contributions to the background evaluation. . . . . . . . . . . . 94

5.19 Data-MonteCarlo comparison for the Y distribution. Blue is the MC signal, red

dots are the data and green is background. Left: before the cut Mγγ ∈ [110, 160].

Right: after the cut Mγγ ∈ [110, 160]. . . . . . . . . . . . . . . . . . . . . . 95

5.20 Fit parameters as function of time along data taking. The data sample has been

split in subsample having the same integrated luminosity. The results of a fit with

costant function is reported. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.21 Behaviour of the linear and quadratic slopes in Y as function of the time. The data

sample has been split in subsample having the same integrated luminosity. The

results of a fit with costant function is reported. . . . . . . . . . . . . . . . . 98

5.22 Left: Dalitz plot distribution for events η → π+ π− π0 γ. The plot contains 10.0 mil-

lions of events. Right: Bin by bin ratio of Dalitz distribution of η → π+ π− π0 and

η → π+ π− π0 γ events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.23 Distribution of the normalized residual. As expected, the residuals fluctuate around

to the zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.24 Comparison between the values of the Dalitz plot parameters obtained in the

present analysis (solid squares) and in the measurements considered by the PDG

[65] (red dots). In the plot the error on the parameters of this analysis has been

obtained adding in quadrature the statistical and systematic error while for the

other measurements only the statistical error is reported. . . . . . . . . . . . . 101

5.25 Results of fit to the Dalitz-plot density. Top: |A(Y )|2 ' N0(1 + aY ). Bottom:

|A(Y )|2 ' N0(1 + aY + bY 2). . . . . . . . . . . . . . . . . . . . . . . . . . 108



116



Bibliography

117



118



Bibliography

[1] A. Aloisio et al., A general purpose detector for DAΦNE , LNF-92/019(IR)

(1992).

[2] A. Aloisio et al., The KLOE detector. Technical Proposal, LNF-93/002(IR)

(1993).

[3] M. Gell-Mann and A. Pais, Phys. Rev. 97 (1955) 1387.

[4] J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Phys. Rev. Lett. 13

(1964) 138.

[5] L.K. Gibbons et al., Phys. Rev. Lett. 70 (1993) 1203.

[6] G.D. Barr et al., Phys. Lett. 317 (1993) 233.

[7] A. Alavi–Harati et al., Phys. Lett. 83 (1999) 22.

[8] NA48 Collaboration, “A precise measurement of the direct CP violation param-

eter <(ε′/ε)”, Eur. Phys. J. C22, (2001) 231.

[9] L. Maiani and N. Paver, “The second DAΦNE Physics handbook” , I.N.F.N.

L.N.F. (1995) 51.

[10] A. Aloisio et al., Measurement of sigma(e+e− → π+ π− γ) and extraction of

sigma(e+e− → π+ π− ) below 1-GeV with the KLOE detector, Phys.Lett. B606,

12-24 (2005).

[11] A. BURAS et al., MPI Preprint.

[12] G. Isidori, L. Maiani, A. Pugliese Preprint, 848, Roma (1991).

119



120

[13] M. Adinolfi et al. “The QCAL tile calorimeter of KLOE”, Nucl. Inst. Meth. A

483 (2002) 649.

[14] M. Adinolfi et al. “The KLOE drift chamber”, Nucl. Inst. Meth. A 461 (2002)

25.

[15] M. Adinolfi et al. “The KLOE electromagnetic calorimeter”, Nucl. Inst. Meth.

A 482 (2002) 363-385.

[16] M. Adinolfi et al. “The Trigger of KLOE”, Nucl. Inst. Meth. A 492 (2002) 134.

[17] M. Adinolfi et al. “Data acquisition and monitoring for the KLOE detector”.

[18] J. Goldstone, A. Salam, S. Weinberg, Phys.Rev. 127, 965 (1962).

[19] J.D.Bjorken S.D.Drell, Relativistic Quantum Mechanics, McGraw-hill, NewYork,

(1964).

[20] S. Gasiorowicz and D.A. Geffen, Rev. Mod. Phys. 41, 531 (1969).

[21] M. Gell-Mann, CalTech Rept. CTSL-20 (1961); S. Okubo, Prog. Theo. Phys.

27 (1962) 949.

[22] S. Weinberg, Physica A96 (1979) 327.

[23] J. Gasser and H. Leutwyler, Ann. Phys. (NY), 158, 142 (1984); Nucl. Phys.

B250, 465 (1985).

[24] S. Bertolucci et al. “The LADON test beam of EMCAL:A full report on the data

analysis”, KLOE Note 62 (1993) .

[25] http:www-cdf.fnal.gov/offline/ybos/ybos.html, Fermilab CDF library.

[26] The Argus Collaboration, ARGUS: a Universal Detector at DORIS II, Nucl.

Inst. & Meth. A275, 1-48 (1989).

[27] Kapitza Track Fitting at ARGUS, (1992), not published.

[28] F. Ambrosino et al. Description of the track fit procedure using the drift chamber

of the KLOE experiment , KLOE memo 141, 1998.



121

[29] F. Ambrosino et al. Current status of the track reconstruction using the KLOE

drift chamber KLOE memo 177, 1999.

[30] G. Venanzoni Description of the procedure joining the tracks which have been

split by the pattern recognition program during the track reconstruction with the

KLOE Drift Chamber Kloe memo 143, 1998.

[31] F. Ambrosino, C. Di Donato, G. Saracino Kink identification in the KLOE Drift

Chamber track fit , KLOE memo 151, 1998.

[32] M. Incagli VTXFIN: the KLOE vertex finding algorithm KLOE memo 147, 1998.

[33] F. Ambrosino et al.The event classification procedures KLOE memo 225.

[34] M. Moulson, S. Muller FILFO revisited: A new look at the offline reconstruction

filter and event classification”, KLOE memo 288, 2004.

[35] G. Finocchiaro, A. Menicucci, “Cosmic rays rejection in KLOE” KLOE memo

203. 33, (2006).

[36] F. E. Close: The DAΦNE physics handbook vol. II, ed. L. Maiani, G. Pancheri

and N. Paver, Frascati 1992.

[37] A. Bramon, R. Escribano, M.D. Scadron, Eur. Phys. J. C7 (1999) 271.

[38] A. Bramon, R. Escribano and M.D. Scadron, Phys. Lett. B 503, 271 (2001)

[39] C. Bloise et al.,ACTA Phys.Slov.56, 341-344, 2005.

[40] S.Eidelman et al. Phys. Lett. B 592, 2004, 1.

[41] Alde et al. Z. Phys. C 25, 225, 1984.

[42] S. Prakhov et al. Phys. Rev.C 72, 025201, 2005.

[43] Knecht et al. Phys. Lett.B 589, 14, 2005.
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