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INTRODUCTION 

 

Cancer cells escape normal growth control mechanisms as a 

consequence of activating (i.e., gain-of-function) mutations and/or 

increased expression of one or more cellular proto-oncogenes and/or 

inactivating (i.e., loss-of function) mutations and/or decreased 

expression of one or more tumor suppressor genes. Most oncogene 

and tumor suppressor gene products are components of signal 

transduction pathways that control cell cycle entry or exit, promote 

differentiation, sense DNA damage and initiate repair mechanisms, 

and/or regulate cell death programs. Several oncogenes and tumor 

suppressor genes belong to the same signaling pathway. Nearly all 

tumors have mutations in multiple oncogenes and tumor suppressor 

genes, indicating that cells employ multiple parallel mechanisms to 

regulate cell growth, differentiation, DNA damage control, and death.  

The PTEN gene was discovered only in 1997 as a new tumor 

suppressor, and yet it is now known to play major roles not only in 

suppressing cancer but also in embryonic development, cell migration 

and apoptosis (reviews include Maehama and Dixon, 1999; Cantley 

and Neel, 1999; Besson et al., 1999; Tamura et al., 1999c; Ali et al., 

1999; Di Cristofano and Pandolfi, 2000; Vazquez and Sellers, 2000; 

Bonneau and Longy, 2000; Simpson and Parsons, 2001). Altough an 

increasing numbers of biologically important phosphatases are being 

characterized (Li and Dixon, 2000; Tonks and Neel, 1996), but PTEN 

has been the focus of particularly intense interest because of its central 

role in suppressing malignancy.  
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CLONING OF PTEN  

The PTEN (phosphatase and tensin homolog deleted on 

chromosometen)/MMAC (mutated in multiple advanced cancers) was 

identified virtually simultaneously by two groups (Ling al., 1992; 

Webster et al., 1998) as a candidate tumor suppressor gene located at 

10q23; another group (Moscatello et al.1998) identified the same gene 

in a search for new dual-specificity phosphatases  and named it TEP-1 

(TGF-β-regulated and epithelial cell-enriched phosphatase). The 

PTEN protein sequence suggested that is was a member of the 

protein-tyrosine phosphatase (PTP) gene superfamily . PTEN catalytic 

domains contain the canonical sequence HCXXGXXRSyT, known as 

the PTP ‘‘signature motif’’ (Rasheed et al. 1997) (see figure 1A); the 

presence of this motif within any protein makes it a virtual certainty 

that it has PTP activity. In particular, the PTEN sequence suggested 

that it was a dual-specificity phosphatase, an enzyme that, as its name 

implies, typically dephosphorylate phosphotyrosine, phosphoserine, 

and/or phosphothreonine in vitro. However, PTEN is an unusual 

phosphatase in the sense that it dephosphorylate both lipids and 

proteins. PTEN protein contains 403 amino acids and can be divided 

into three domains: a phosphatase domain (1–185), a C2 domain 

(186–352), and a tail domain (353–403) (Lee et al. 1999) (see figure 

2).  
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Figure1. A. Conserved amino acid sequence motif present in inositol 
phosphatases. The amino acid sequence of human PTEN, Salmonella 
dublin SopB, Salmonella flexneri IpgD, human inositol 
polyphosphatase type I and type II are indicated. B.Alignment of 
PTEN signature motifs. The amino acid sequences of human (Homo 
sapiens), mouse (Mus musculus), rat (Rattus norvegicus), dog (Canis 
familiaris), worm (Caenorhabditis elegans), fly  (Drosophila 
melanogaster) and yeast (Saccharomyces cerevisiae) PTEN are 
shown. The crucial catalytic cysteine and the invariant basic residues 
are highlighted in red and blue, respectively. 
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Figure 2. The N-terminal-phosphatase domain (amino acids 1 185) is 
shown with the catalytic core. The C-terminal domain (amino acids 
186 403) C2 domain -lipid-bindin PEST domains-regulate protein 
stability PDZ domain-is important in protein-protein interactions. CK2 
phosphorylation sites -are important for stability 
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The phosphatase and C2 domains are required for efficient membrane 

binding (Das et al. 2003). Mutations of the phosphatase motifof PTEN 

do not perturb membrane binding but inhibit PIP3 catalysis. 

Interestingly, amino acids 1–14 encode a PIP2 binding domain and 

recent evidence demonstrates that PIP2 binding at this site enhances 

PTEN catalytic function (Campbell et al. 2003). The tail domain is an 

important region for negative regulation of PTEN. Deletion of the tail 

activates PTEN’s ability to inhibit AKT while reducing its half-life 

(Vazquez et al. 2000). Several groups have reported that the tail 

region is a site of constitutive serine and threonine phosphorylation on 

multiple sites (Vazquez et al. 2000). Casein kinase II appears to be 

responsible for PTEN phosphorylation. It should be noted that the 

stoichiometry and sites of phosphorylation varied from group to 

group. Alanine mutations that block phosphorylation at three or more 

sites behave like tail deletions in that they have increased potency and 

reduced stability.  The mechanism through which the tail inhibits 

PTEN function appears to be through the regulation of access to the 

plasma membrane. In fact mutants that remove the tail or its 

phosphorylation sites (serine 380, threonine 383) are found on the 

plasma membrane. Interestingly, stable expression of these mutants 

requires that the catalytic site be inactivated (C124A). Therefore, it 

appears that increasing phosphorylation of the PTEN tail is likely to 

have oncogenic consequences by sequestering PTEN away from the 

plasma membrane.  
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MOLECULAR TARGETS OF PTEN 

As stated above, PTEN phosphatase activity has been observed 

against both lipid and protein substrates. Overall, the primary 

physiological substrate of PTEN appears to be the signaling lipid 

Phosphatidylinositol, (3, 4, 5) P3 (since now PIP3) (see figure 3A) 

(Maehama and Dixon, 1998; Myers et al., 1998). PIP3 is a major 

product of PI 3-kinase, which is activated by cell receptors including 

various tyrosine kinase growth factor receptors and integrins (Rameh 

and Cantley, 1999; Leevers et al., 1999). PTEN cleaves the 

3’phosphate from PIP3 to generate PIP2 (Maehama and Dixon, 1998), 

which lacks the activities of PIP3 but has its own actions on 

cytoskeleta lfunction. By antagonizing the action of PI 3-kinase (see 

figure 3B), PTEN affects a number of cell biological processes (see 

below). In addition, it can dephosphorylate the signaling molecule 

inositol (1,3,4,5)-tetrakisphosphate (Maehama and Dixon, 1998), 

although the biological importance of this activity is not yet clear.  

In vitro, PTEN can also remove phosphate residues from 

phosphotyrosine-containing peptides and proteins (Li and Sun, 1997; 

Myers et al., 1997; Tamura et al., 1998; Gu et al., 1998; Gu et al., 

1999), although the relative importance of this enzymatic function in 

vivo compared with its lipid phosphatase activity has been 

controversial.  
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 Figure 3. A.PtdIns contains a myo-inositol headgroup connected to 
diacylglycerol by a phosphodiester linkage. The numbering system of 
the inositol ring is indicated. B.The class I PI3K enzymes can 
phosphorylate the 3 position of PtdIns, PtdIns-4-P, or PtdIns-4,5-P2 to 
produce PtdIns-3-P, PtdIns-3,4-P2, or PtdIns-3,4,5-P3, respectively. 
PtdIns-3,4-P2 can also be produced by dephosphorylating the 5 
position of PtdIns-3,4,5-P3, and one enzyme that does this is an SH2-
containing 5-phosphatase called SHIP. In addition, PtdIns-3,4-P2 can 
be produced by phosphorylating the 4 position of PtdIns-3-P 
[reviewed by Fruman et al. (76)]. PTEN has been shown to 
dephosphorylate the 3 position of both PtdIns-3,4,5-P3 (26, 43) and 
PtdIns-3,4-P2 (44) to reverse the reactions catalyzed by PI3K. C. 
Major enzymatic function of PTEN. The tumor suppressor PTEN 
opposes the action of phosphoinositide 3-kinase (PI 3-kinase) by 
dephosphorylating the signaling lipid phosphatidylinositol (3,4,5)-
trisphosphate. 
.
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Two cytoplasmic phosphoprotein substrates of PTEN are focal 

adhesion kinase (FAK) and the adapter protein Shc (see figure 4), 

whereas a number of other cellular tyrosine-phosphorylated proteins 

appear unaffected by PTEN (Tamura et al., 1998; Gu et al., 1999). 

FAK and Shc are central components of distinct signaling pathways . 

The FAK signaling pathway is activated by integrins and other 

receptors and is linked to cell migration and other cellular activities. 

The Shc pathway is activated by receptors that include various 

tyrosine kinase receptors and integrins, and is part of a pathway that 

leads to activation of ERK MAP kinases. Although these in vitro 

effects have proven valuable for dissecting pathways that regulate cell 

migration (see below), analyses of cells from PTEN-knockout 

embryos fail to show changes in basal FAK phosphorylation or ERK 

activity (Stambolic et al., 1998; Liliental et al., 2000). These findings 

indicate that the major target of PTEN under steady-state conditions is 

PIP3 and not FAK, although transient changes in PTEN levels might 

nevertheless still have physiological effects on FAK/Shc activity. 

Furthermore, the G129E PTEN mutation abrogates most PTEN 

activity against PIP3, but it retains activity against peptide and protein 

substrates (Myers et al., 1998); this mutation is found in some cancers.  
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Figure 4. Reported sites of action of PTEN. Extracellular interactions 
trigger signaling from integrins and growth factor receptors. The 
majorfunction of PTEN appears to be downregulationof the PI 3-
kinase product PtdIns(3,4,5)P3, which regulates Akt and complex 
downstream pathways affecting cell growth, survival and migration. 
In addition, PTEN has weak proteintyrosine phosphatase activity, 
which may target focal adhesion kinase (FAK) and Shc, and thereby 
modulate other complex pathways. The phosphatase domain of PTEN 
(red) dephosphorylates and downregulates (red lines) substrate 
molecules. 
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MECHANISM OF PTEN TUMOR SUPPRESSION 

PTEN regulates the PI-3 kinase pathway by removing the third 

phosphate from the inositol ring of the PIP3 second messenger (Sulis 

et al. 2003; Vivanco and Sawyers , 2002). Interestingly PTEN has 

conserved this function in many animal species including mammals, 

Drosophila, and C. elegans. (see figure 1 B). Although PIP3 is able to 

bind to over one hundred cellular proteins, genetic studies have 

demonstrated that a major output of PIP3 is AKT/protein kinase B. 

Lack of PTEN in a cell leads to increased PIP3 levels and AKT kinase 

activity.  Mammalian cells lacking PTEN have increased proliferation, 

reduced apoptosis, altered migration, and increased size—all 

phenotypes that favor tumorigenesis. Downstream substrates of AKT 

that are altered genetically in malignancy include TSC2, a tumor 

suppressor mutated in the hamartoma syndrome tuberous sclerosis that 

regulates mTOR, and MDM2, an oncogene amplified in sarcomas that 

suppresses p53 function. Other AKT substrates include the FOXO 

transcription factors, p27, p21, GSK3, and BAD, which have 

important roles in the regulation of the cell cycle and apoptosis (see 

figure 5).  Re-expression of PTEN in tumor cell lines lacking the gene 

led to inhibition of AKT and a variety of outputs that included 

inhibition of the cell cycle, activation of apoptosis, rearrangement of 

the cytoskeleton, altered cellular migration, and suppression of 

angiogenesis—phenotypes that varied depending upon the cell line 

and dose of PTEN. While most PTEN phenotypes require that PTEN 

be in a catalytically active state, observations on the control of  
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Figure 5. Akt, principal effector of PTEN , interacts with several 
substrates that control various phenomena of  cell life, such as for 
example progression of cell cycle, (i.e. p27kip1 and p21cip1) and 
apoptosis (i.e.Bad and Caspase 9). 
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migration, the cytoskeleton, and the p53 pathway suggest that PTEN 

exerts PIP3-independent phenotypes (Tamura et al. 1998, Freeman et 

al. 2003). 

 

PTEN IS DEVELOPMENTALLY REGULATED AND 

NECESSARY FOR EMBRYONIC DEVELOPMENT        

Although substantial progress has been made in understanding the role 

of PTEN in tumor suppression, much less is known about its role in 

normal embryonic development (except that PTEN-knockout mice die 

early in development) or about its regulation during normal tissue 

function. 

Expression levels of PTEN protein are low in development until 

approximately day 11, when levels rise substantially in multiple 

tissues (Podsypanina et al., 1999), and the protein becomes widely 

distributed (Gimm et al., 2000). Soon after its discovery, several 

laboratories generated null mutations of the PTEN gene in mice to 

assess its function in vivo. The phenotypes differed considerably, 

presumably because of genetic differences between the mice used by 

each group.  Nevertheless, all PTEN-knockout mice die before birth, 

demonstrating a requirement for PTEN in embryogenesis (Di 

Cristofano et al., 1998; Suzuki et al., 1998; Podsypanina et al., 1999). 

The phenotypes differed substantially: one study identified major 

defects in proper differentiation and organization of the ectoderm, 

mesoderm and endoderm (Di Cristofano et al., 1998) and observed 

death by embryonic day  (E) 7.5; another found severe malformations 
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of cephalic and caudal regions, which suggested an imbalance of 

growth and patterning, and observed death by E9.5 (Suzuki et al., 

1998); a third study found severe defects by approximately E6.5, 

indicating that even the low level of PTEN protein present in early 

embryos is needed for successful embryonic development  

(Podsypanina et al., 1999). These differing results suggest a major role 

for context in PTEN functions. For example, PTEN may play 

important roles in germ layer organization or differentiation in one 

genetic background, but not in another; it may instead play crucial 

roles in regulating local apoptosis or proliferation in another setting.  

 

PTEN IN GROWTH, APOPTOSIS AND ANOIKIS 

Because a tumor suppressor might be expected to suppress cell 

proliferation, several research groups have tested whether restoration 

of PTEN expression to cells that have mutated PTEN alleles 

suppresses growth. Transient expression using plasmid or adenoviral 

PTEN vectors suppresses proliferation.  However, results are not 

always consistent, even in the same cell line. Most studies have shown 

suppression of proliferation due to arrest in G1 phase of the cell cycle 

and corresponding increases in the levels of cell cycle inhibitors such 

as p27KIP1 and decreased levels of retinoblastoma (Rb) protein 

phosphorylation (Furnari et al., 1998; Li and Sun, 1998;  reviewed by 

Tamura et al., 1999c and Simpson and Parsons,  2001). The G1 phase 

cell cycle arrest is due to the lipid phosphatase activity of PTEN 

against PIP3 (Ramaswamy et al., 1999). In fact, cell cycle effects of 

PTEN can be mimicked by SHIP-2, an enzyme that hydrolyzes 
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another phosphate group on PIP3 (Taylor et al., 2000). However, 

results using the G129E mutant provide evidence for phosphatase 

activity in G1 cell cycle arrest (Hlobilkova et al., 2000).  It should be 

emphasized that in these experiments PTEN has not been shown to be 

a physiological regulator of the normal cell cycle, since the above 

studies involved sudden restoration (and possibly overexpression) of 

an enzyme in cells adapted to proliferate in its absence. Moreover, 

normal cells expressing PTEN can undergo rapid proliferation. In fact, 

one group found that rates of cell proliferation and levels of p27KIP1
 

were normal in PTEN-null fibroblasts, despite being abnormal in 

PTEN-null embryonic stem cells (Liliental et al., 2000; Sun et al., 

1999). Thus, even though sudden reconstitution of PTEN can suppress 

proliferation, the long-term role of this activity in cancer progression 

remains unclear.   

The role of PTEN in apoptosis is clearer. Re-expression of PTEN in 

several carcinoma cell lines can induce apoptosis directly (Li et al., 

1998), even though an apoptotic stimulus is often needed (Stambolic 

et al., 1998; reviewed by Tamura et al., 1999c; Simpson and Parsons, 

2001). A particularly important role of PTEN is in the anoikis, a form 

of apoptosis characterized by loss of contact with the extracellular 

matrix (Frisch and Ruoslahti, 1997). This property may be a central 

feature of normal epithelial cell function (and perhaps certain other 

cell types) that prevents growth at abnormal sites, especially in 

suspension. This anchorage dependence of survival is defective in 

many transformed and malignant cells. Reconstitution of PTEN in 

cells that have PTEN mutations restores anoikis  (Davies et al., 1998; 
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Tamura et al., 1999a; Davies et al., 1999; Lu et al., 1999).  Anoikis 

has been linked to the signaling and scaffold protein FAK (Frisch et 

al., 1996). PTEN modulates apoptosis by reducing levels of PIP3. This 

signaling lipid regulates activation of Akt Newton, 2000; Persad et al., 

2000), a well known regulator of apoptosis. Re-expression of PTEN in 

various tumor cell lines decreases PIP3 levels and reduces Akt 

activation (Stambolic et al., 1998; Haas-Kogan et al., 1998; Myers et 

al., 1998; Davies et al., 1998). The role of FAK in anoikis may 

involve at least in part its ability to increase levels of PIP3 by 

enhancing PI 3-kinase activity (Tamura et al., 1999a).  

Dephosphorylation of FAK by PTEN would enhance the effects of 

PTEN on PIP3, since FAK phosphorylation enhances PI3-kinase 

activity (Reiske et al., 1999); the combined effects of reduced PI 3-

kinase activity and direct reductions in PIP3 levels by PTEN would 

block Akt activation and enhance apoptosis.  

 

PTEN IN CELL ADHESION, MIGRATION AND INVASION 

PTEN reconstitution or overexpression inhibits cell migration 

(Tamura et al., 1998; Liliental et al., 2000). This inhibition can be 

accompanied by transient effects on cell adhesion and spreading: the 

number of focal contacts specialized contacts mediating cell-substrate 

adhesion - is reduced, and the actin cytoskeleton is altered (Tamura et 

al., 1998), although the remaining focal contacts often appear to be 

larger. The mechanisms by which focal contacts can be modulated by 

PTEN include effects on the FAK-p130-signaling pathway  (Gu et al., 

1999) and selective effects on focal contact constituents caused by 
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changes in PIP3 levels, as suggested by unrelated studies showing that 

PDGF can modulate focal contacts through PIP3 (Greenwood et al., 

2000).  PTEN suppresses migration of a variety of cell types, 

including primary human fibroblasts, non-transformed mouse 

fibroblasts, and tumor cells (Tamura et al., 1998; Tamura et al., 

1999b). PTEN-null mouse fibroblasts also show enhanced rates of 

migration, which are reduced by reintroduction of PTEN (Liliental et 

al., 2000). PTEN also suppresses tumor cell invasion, as measured by 

in vitro assays of invasion across barriers of basement membrane 

extract (Tamura et al., 1999b). It reduces rates of migration through 

several mechanisms.  

 

THE ROLE OF PTEN IN SPORADIC TUMOUR  

Several studies confirmed that PTEN was mutated in a wide variety of 

human cancer. Mutation of PTEN could occur early in tumor 

development as seen in Cowden disease and endometrial tumors (see 

figure 6) (Levine et al. 1998).  

In most cases, however, mutation of PTEN occurrs in advanced 

cancers. Such is the case for tumors of the brain, prostate, colon, and 

cervix (Rasheed et al. 1997). Early studies indicated that 10q, where 

PTEN maps (see figure 7), abnormalities are more common in 

advanced tumors  (hence the appellation MMAC). In fact the initial 

cloning studies reported PTEN/MMAC/TEP-1 (hereafter, PTEN) 

mutations in a large fraction of glioblastoma multiforme cell lines, 

xenografts, and primary tumors, as well as in smaller samples of  
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Figure 6. PTEN mutations found in human tumours and Cowden 
disease. The mutations in breast cancer (black), glioma/glioblastoma 
(blue), other tumours (green) and Cowden disease (red) are 
represented by vertical lines. Vertical lines above (or below) represent 
the frequency at which missense mutations (or nonsense and 
frameshift mutations) are found at each particular residue. The grey 
and black boxes represent the phosphatase domain and the catalytic 
core motif, respectively. 
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Figure 7. Localization of PTEN on the longe arm of chromosome 10.

Chr 10 

PTEN 
10q233 
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breast and prostate cancers (Liu et al 1997, Steck et al. 1997)), and 

subsequent analyses confirmed that homozygotic inactivation of 

PTEN occurs in a large fraction of glioblastomas (at least 30% of 

primary tumors and 50–60% of cell lines) but not in lower-grade (i.e., 

less advanced) glial tumors (Liu et al. 1997). PTEN mutations also are 

extremely common in melanoma cell lines (50%) (9), advanced 

prostate cancers (Risinger et al. 1997)), and endometrial carcinomas 

(30–50%) (Tashiro et al.1997). Although PTEN mutations are found 

predominantly in advanced glial and prostate tumors, mutations occur 

with equal frequency at all stages of endometrial cancer (Tashiro et al. 

1997), suggesting that PTEN activation is an early event in 

endometrial carcinogenesis. Whereas germ-line PTEN mutations lead 

to increased breast cancer incidence, PTEN mutations are not a 

frequent cause of familial breast cancer (Chen et al. 1998). Occasional 

PTEN mutations are reported in head and neck  (Okami et al. 1998) 

and thyroid (Dahia et al. 1998) cancers, but not in other tumors 

associated with 10q abnormalities, including meningioma (8) and lung 

cancer (Okami et al. 1998). Regarding hematological tumors, 

mutation of PTEN occurs but is uncommon in multiple myeloma and 

non-Hodgkin’s lymphoma. Moreover, PTEN protein expression is 

reduced in many types of cancer. To highlight the common cancers, 

reduced PTEN expression has been documented in 66% of 

glioblastoma, 61% of endometrial cancer, 24% of non-small cell lung 

cancer, 38% of breast cancer, 27% of ovarian cancer, 20% of prostate 

cancer, 41% of colorectal cancer with microsatellite instability, and  
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Table I. Percenteage of reduced expression of PTEN in various type 
of tumors. 
 
 
 
 
 
 

 

TUMORS 
Reduced 
expression 
of PTEN (%) 

GLIOBLASTOMA  

ENDOMETRIAL CANCER  

 
 

 

COLORECTAL CANCER  

66% 

61% 

38% BREAST CANCER 
 

 

NON-SMALL CELL LUNG CANCER  

PROSTATE CANCER 

OVARIAN CANCER  27% 

24% 

20% 

41% with microsatellite 
Instability and 17% without  
Microsatellite instability 
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 17% of colorectal cancer without microsatellite instability (see table 

I). As has been seen for mutations, reduced expression was associated 

with advanced disease. Studies of PTEN expression in breast, brain, 

tongue, gastric, esophageal, and endometrial cancer also indicated that 

reduced PTEN protein was associated with a poor prognosis for 

patients (Depowoski et al. 2001). Examination of leukemia and 

lymphoma has demonstrated that half of B cell chronic lymphocytic 

leukemias have reduced PTEN protein and that most acute myeloid 

leukemias have activated AKT associated with inactivated, 

hyperphosphorylated PTEN (Leupin et al. 2003) The weight of the 

evidence indicates that PTEN is a powerful tumor suppressor that is 

inactivated late in the course of development for most kinds of human 

cancer. 

Many reductions of PTEN protein are not due to genomic mutation 

and are of undetermined origin. In addition, reduced PTEN protein 

expression comes in many flavors. PTEN may be absent or merely 

reduced relative to normal cells; loss of expression can be seen in the 

cytoplasm, the nucleus or both.  

 

THE ROLE OF PTEN IN FAMILIAL TUMOURS 

Germ-line mutations in PTEN cause three rare autosomal dominant 

inherited cancer syndromes with overlapping clinical features: 

Cowden disease (Liaw et al. 1997;Nelen et al. 1997), Lhermitte–

Duclos disease  (Liaw et al. 1997), and Bannayan–Zonana syndrome 

(Nelen et al. 1997). These syndromes are notable for hamartomas, 

benign tumors in which differentiation is normal, but cells are highly 
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disorganized.  

Cowden disease is characterized by hamartomas in multiple sites, 

including the skin, thyroid, breast, oral mucosa, and intestine. In 

addition, about a third of patients will have macrocephaly. Affected 

females have a 30–50% incidence of breast cancer, and Cowden 

disease patients have increased risk of thyroid carcinoma ('10% 

incidence) and meningiomas (Liaw et al. 1997). Lhermitte–Duclos 

patients have multiple hamartomas, together with macrocephaly, 

ataxia, and seizures, caused by cerebellar glial tumors. Besides their 

hamartomas, Bannayan–Zonana patients exhibit macrocephaly,  

retardation, and unusual pigmentation of the penis (Nelen et al. 1997). 

Hamartomas from Cowden disease patients exhibit loss of 

heterozygosity around the PTEN locus, indicating that homozygotic 

loss of PTEN function probably is required for hamartoma formation. 

Whether the type of mutation in PTEN contributes to the distinct 

features of these three hamartomatous syndromes remains unclear, but 

other (i.e., modifying) loci probably play the primary role in 

determining the spectrum of abnormalities evoked by a given 

mutation. Indeed, recent analyses of mutant mice   suggest that genetic 

background can significantly affect the PTEN-deficient phenotype. 

However, in Cowden disease patients,  the type of PTEN mutation 

may affect the number of affected sites andyor the presence of breast 

disease (Nelen et al. 1997).  These genetic data strongly suggest that 

PTEN function is required for normal development and that loss of 

PTEN function contributes to carcinogenesis. Gene transfer and 

knockout studies have confirmed these ideas.  
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TESTICULAR TUMOURS 

Mice heterozygous for one null Pten allele (Pten+/-) are prone to 

develop different types of tumors, including teratocarcinomas (Suzuki 

et al., 1998; Di Cristofano et al., 1998; Podsypanina et al., 1999). 

Furthermore, the conditional knockout of the pten gene in primordial 

germ cells causes the development of bilateral testicular teratomas, 

which resulted from impaired mitotic arrest and outgrowth of cells 

with immature characteristics (Kimura et al., 2003). However, the 

question as to whether PTEN is involved in human germ cell tumors 

has not yet been addressed.  

Germ cell tumors of the testis (GCT) are a heterogeneous group of 

neoplasms seen mainly in young men (ages 20–40 years; Schottenfeld 

et al. 1982). Over the past several decades, the incidence of GCTs has 

been steadily increasing in the Western world (Bergstrom et al. 1996). 

Several risk factors for GCT development have been identified, which 

include cryptorchidism, spermatogenic or testicular dysgenesis, 

Klinefelter’s syndrome, prior history of a GCT, and a positive family 

history . Positive family history indicates the involvement of inherited 

predisposing factors and hence is of importance in identifying novel 

genes that may play a role in GCT development. 

GCTs are classified as seminomatous (SE-GCT) and non-

seminomatous (NSE-GCT) tumors, both of which appear to arise from 

intratubular germ cell neoplasias (ITGCN) (Ulbright, 1998; Chaganti 

& Houldsworth, 2000). SE-GCTs retain the morphology of 

spermatogonial GCs and are exquisitely sensitive to treatment by 
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radiation as well as chemotherapy (Ulbright et al. 1993). NSE-GCTs 

display embryonal and extra-embryonal differentiation patterns which 

include primitive zygotic (Embryonal Carcinoma), embryonal-like 

somatically differentiated (Teratomas), and extra-embryonally 

differentiated (Choriocarcinomas, Yolk Sac Tumours) phenotypes 

(see figure 8) Ulbright et al. 1993). They are, as a group, sensitive to 

chemotherapy, although they are less sensitive to radiation treatment 

than are SE-GCTs (Bosl et al. 1997). NSE-GCTs usually occur as 

mixed tumors, with both differentiated and undifferentiated elements 

(Ulbright et al. 1993). Among tumors with differentiated elements, 

mature teratomas exhibit the most complete differentiation, often 

presenting such cell types as cartilage, neural tissue, and mucinous 

and nonmucinous glands. These tissue elements within a teratoma, 

however, develop in an unorganized fashion. On occasion, mature cell 

types in teratoma lesions undergo malignant transformation into 

neoplastic elements that show histological features characteristic of de 

novo tumors affecting multiple cell lineages (Motzer et al. 1998). 

GCTs of all types are frequently associated with ITGCN that, often, 

progresses to invasive cancer (Vos et al., 1990; Houldsworth, 1997). 

In nearly all cases, ITGCN lesions progress to invasive lesions. Both 

SE- and NSE-GCTs are suggested to arise from cytologically identical 

ITGCN lesions, indicating a common cell of origin of all GCTs. 
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Figure 8. Different morphology of Non Seminomatous Germ Cell 
Tumors (NSGCT). embryonal and extra-embryonal differentiation 
patterns which include primitive zygotic (Embryonal Carcinoma), 
embryonal-like somatically differentiated (Teratomas), and extra-
embryonally differentiated (Choriocarcinomas, Yolk Sac Tumours) 
phenotypes 

Diff. germ cells Diff. embr/extra-embryonal 

zygote 

somatic Extra-embryonal 

ITGCN 
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MATURATION OF PRIMORDIAL GERM CELLS 

Primordial germ cells (PGCs) are first recognized in the epiblast of the 

mammalian gastrulating embryo. They migrate to the primitive streak 

mesoderm, move on to the endoderm via the allantois, and passing 

through the hindgut, reach the genital ridges. In the human, they are 

incorporated in the developing gonad by the seventh or eighth week of 

fetal life, when they are sometimes termed the gonocytes, which 

differentiate into spermatogonia during the second and third trimesters 

of pregnancy (Figure 9). In the postnatal testis, the spermatogonial 

cells in the seminiferous tubules undergo a series of mitotic divisions 

leading to the development, successively of type A, intermediate, and 

type B spermatogonia. The type B spermatogonium undergoes 

premeiotic replication and enters meiosis as the primary spermatocyte. 

A protracted prophase comprising the leptotene, zygotene, pachytene, 

diplotene, and diakinesis stages is followed by mitoses I and II, 

culminating in four haploid cells that develop into spermatids and 

spermatozoa. Extensive cell death is a striking feature of 

spermatogenesis (Matsui et al. 1998). Apoptotic cell death plays an 

important role during development by regulating the size of a lineage 

in relation to it’s local environment, survival itself being dependent 

upon availability of growth factors and their regulatory stimuli 

(Conlon et al. 1999). In the postnatal murine testis, apoptosis is 

detected in type A spermatogonia through to meiotic spermatocytes  
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Figure 9. Pathway of development of a normal spermatozoo, from the 
stage of Primordial Germ Cell (PGC) in the gastrula to mature sperm 
in adult male. Here is underlined the changing of ploidy following 
mitosis and meiosis that led from PGC, to mature sperm and finally to 
the generation of a new embryo.
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The spermatogenous cells in the adult human testis similarly undergo 

apoptosis. 

For a GCT to develop, transformation has to occur in a PGC at some 

point during these highly complex proliferation and differentiation 

programs regulated by apoptosis. The fact that adult male GCTs 

display pluripotentiality for embryonal and somatic differentiation 

suggest that, to initiate a pluripotential tumor, a PGC committed to a 

differentiation path that leads to gametogenesis must overcome a 

restriction on proliferation and initiate differentiation cascades 

normally associated with embryogenesis. The transformed PGC must 

accomplish this differentiation program without the benefit of 

reciprocal parental (genetic) contributions from fertilization, which is 

an obligate prerequisite for normal embryonal differentiation of the 

totipotential zygote. Therefore, an understanding of the mechanisms 

of human male GCT development has considerable relevance for the 

understanding of normal GC development, mechanisms of GC 

transformation, as well as the regulation of embryonal differentiation 

pathways in mammals. 

 

MOLECULAR GENETICS OF GCTS 

The molecular basis of germ cell malignant transformation is poorly 

understood. The most common genetic alterations detected in GCT 

and ITGCN are a triploid/tetraploid chromosomal complement and an 

increased copy number of 12p, which results in the hyper-expression 

of the product of the CCND2 gene, i.e.G1 cyclin D2 (Houldsworth et 
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al., 1997). On the other hand, GCTs are often accompanied by hyper-

expression of autocrine and/or paracrine growth and angiogenic 

factors (Viglietto et al., 1996; Baldassarre et al, 1997).  

Although the ITGCN cell is generally regarded as the precursor of all 

adult male GCTs, the target stage of GC development at which 

transformation occurs is not known. Two models of origin of ITGCN 

cells have been put forward. One was proposed by Skakkebaek et al. 

(see figure 10) (Skakkebaek et al. 1997; Skakkebaek et al. 1998). This 

model suggested that fetal gonocytes, which have escaped normal 

development into spermatogonia, may undergo abnormal cell division 

mediated by a kit receptor/SCF paracrine loop, leading to the origin of 

ITGCN cells. The kit receptor is normally expressed by GCs during 

the first trimester and postnatally during meiosis, whereas SCF is 

expressed by the Sertoli cells (Loveland et al. 1997) . Gonocytes 

derailed in their normal development have been postulated to be 

susceptible to subsequent invasive growth through the mediation of 

postnatal and pubertal gonadotrophin stimulation.. A second model 

proposed by Ulbright and Chaganti (Figure 11) took into account four 

established genetic properties of GCTs, i.e., increased 12p copy 

number, expression of cyclin D2 in CIS, consistent near triploid-

tetraploid chromosome numbers, and abundant expression of wild-type 

p53 (Chaganti et al. 1997) . They have postulated that the most likely 

target cell for transformation during GC development may be one with 

replicated chromosomes that expresses wild-type p53, harbors DNA 

breaks, and may be prone to apoptosis. Such a stage is represented by 

the zygotene-pachytene spermatocyte, at which a "recombination  
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Figure 10. Model of genesis of ITGCN by Skakkebaek. A normal 
PCG escaped normal development and undergoes abnormal cell 
division mediated by a kit receptor/SCF paracrine loop, leading to the 
origin of ITGCN cells . Then, loss of PTEN contributes to enforce 
neoplastic-phenotype.

PTEN loss 

Kit 
PDGFR 
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Figure 11. A diagrammatic representation of male GC development 
during a normal life span and the proposed model of GC 
transformation. The key genetic events that underlie normal male GC 
fate and embryonal development are shown with respect to their spatial 
and temporal relationships. GCT development is depicted in the 

context of normal GC biology as discussed in the text. 
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checkpoint" appears to operate (Schwartz et al. 1999) , which can 

provide an apoptotic trigger in the presence of unresolved DNA 

double-strand breaks. This stage is temporally the longest phase 

during spermatogenesis with the cell cycle machinery halted to permit 

recombinational events to complete. It also contains replicated DNA, 

and based on murine data, wild-type p53 protein is temporally 

expressed at this stage (Schwartz et al. 1999) . According to this 

model, aberrant chromatid exchange events associated with crossing-

over during zygotene-pachytene may lead to increased 12p copy 

number and overexpression of cyclin D2. Such a cell may escape 

recombination checkpoint-associated apoptotic response through the 

oncogenic effect of cyclin D2, leading to aberrant reinitiation of cell 

cycle and genomic instability (Chaganti et al. 1997). 
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AIM OF THE WORK 

 
During my work of thesis, we sought to determine whether the tumor 

suppressor lipid and protein phosphatase PTEN plays a role in the 

pathogenesis of germ cell tumors. We investigated: (1) PTEN 

expression in 60 male germ cell tumors (32 seminomas and 22 

embryonal carcinomas and 6 teratomas); (2) PTEN expression in 

intratubular germ cell neoplasia; and (3) the effects of PTEN re-

expression in an embryonal carcinoma cell line.  

We have investigated PTEN expression in 60 bioptic specimens of 

germ cell tumors (32 seminomas, 22 embryonal carcinomas and 6 

teratomas) and 22 intratubular germ cell neoplasias adjacent to the 

tumors for PTEN protein and mRNA expression. Ten testicular 

biopsies were used as controls. In the testis, PTEN was abundantly 

expressed in germ cells whereas it was virtually absent from 56% of 

seminomas as well as from 86% of embryonal carcinomas and 

virtually all teratomas. On the contrary, intratubular germ cell 

neoplasias (ITGCN) intensely expressed PTEN, indicating that loss of 

PTEN expression is not an early event in testicular tumor 

development. The loss of PTEN expression occurs mainly at the RNA 

level as determined by in situ hybridization of cellular mRNA (17/22) 

but also it may involve some kind of post-transcriptional mechanisms 

in the remaining 25% of cases. Analysis of microsatellites D10S551, 

D10S541 and D10S1765 in GCTs (n=22) showed LOH at the PTEN 
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locus at 10q23 in at least 36% of GCTs (3 embryonal carcinoma, 3 

seminoma, 2 teratoma); two  seminomas and one embryonal (13%) 

carcinoma presented an inactivating mutation in the PTEN gene 

(3/22). Finally, we demonstrated that the phosphatidylinositol 3’-

kinase/AKT pathway, which is regulated by the PTEN phosphatase, is 

crucial in regulating the proliferation of the NT2/D1 embryonal 

carcinoma cells, and that the cyclin-dependent kinase inhibitor p27kip1 

is a key downstream target of this pathway. 

The findings reported herein indicate that loss of PTEN expression 

may play a role in the development of testicular germ cell tumors and 

that the cyclin-dependent kinase inhibitor p27kip1 is a key PTEN target 

in embryonal carcinoma cells. 
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RESULTS 

A. PTEN EXPRESSION IN NORMAL TESTIS  

Normal germ cell epithelium showed positive cytoplasmic staining for 

PTEN, as observed in prostatic and endometrial epithelium (Mutter et 

al., 2000; McMenamin, et al., 1999). Intense nuclear staining also 

occurred in several cells, as reported for thyroid and endocrine 

pancreatic tumor cells (Gimm et al., 2000; Perren et al., 2000), though 

the functional meaning of nuclear PTEN staining remains unclear. See 

Figure 12 for a representative experiment. In normal testis, PTEN 

expression was heterogeneous: the outer layer of cells (spermatogonia, 

spg) stained irregularly, with several cells showing positivity for PTEN 

expression; spermatocytes (spc) and spermatids (spt) also stained 

positive for PTEN antibodies (Figure12 and 14 A). Endothelial cells 

and Sertoli cells stained positive for PTEN (Figure 12 and 14A). 

 

B. PTEN EXPRESSION IN MOUSE TESTICULAR CELLS .  

To better define the cells in which PTEN is expressed in normal testis, 

immunohistochemical analysis was performed on serial sections of 

mouse testis using antibody against PTEN protein. PTEN protein was 

widely expressed in the germinal epithelium (spermatogonia, 

spermatocytes, spermatids) and Sertoli cells, while it was not detectable 

in spermatozoa (Fig 13A). The antiserum used in this study fulfils the 

criteria of specificity. In particular, immunoadsorption tests revealed 

that the labeling was totally blocked by preincubation of the antibody 

with 10-6 M of the cognate peptide (data not shown). 
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Figure 12. Here is re-proposed the pathway of differentiation that lead 
from PGC to mature sperm (also seen in figure 9). Added with  
immunoistochemical staining to underline PTEN expression in 
spermatogonium (SPG) and spermatocyte (SPC) stage (panel on the 
right). As red line and blue arrows stress, the expression of PTEN 
drives apoptotis necessary for correct development and maturation of 
spermatozoa. 
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It has been confirmed the differential expression of PTEN in the 

different cell types in the mouse testis, by Western blot analysis of cell 

extracts from adult mouse testis fractionated in interstitial, Sertoli, 

spermatogonia, spermatocytes, spermatids, and spermatozoa. 

Immunoblot analysis performed on cell types enriched in the different 

types of germ cells, showed a single product migrating as a 55 kDa 

protein (Fig. 13B). Among germ cells, PTEN was abundant in 

spermatogonia, present in spermatocytes and spermatids, absent in 

spermatozoa in agreement with immunohistochemical results. PTEN 

protein was also present in the interstitial and Sertoli extract cells. 

 

C. PTEN EXPRESSION IN GERM CELL TUMORS    

Subsequently we have analysed the expression of PTEN in GCTs. 

ITGCN was present in 22 tumor samples. In all cases, the neoplastic 

cells present in ITGCN showed strong PTEN staining. As with normal 

germ cells, PTEN occurred both in the nuclear and in the cytoplasmic 

compartment of precancerous cells (Figure 14B). Interestingly, in cases 

in which tubules with ITGCN were entrapped inside a fully malignant 

tumor, strong PTEN expression was observed in the cells from ITGCN 

but not in the adjacent area (Figure 14B): in fact, PTEN staining was 

weak in the nuclei and cytoplasms of cancer cells. Conversely, 

endothelial cells showed moderate to strong PTEN expression, and thus 

served as internal positive controls. 
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Figure 13.  PTEN expression in the mouse testicular cells.  
A. Localization of the PTEN protein in sections of adult mouse testis 
by immunocytochemistry. A representative seminiferous tubule 
showing staining in spermatogonia (spg), spermatocytes (spc), 
spermatids (spt), and Sertoli cells (ser) Magnification 400X. B. 
Western blot analysis of PTEN protein in mouse adult testis (lane 1), 
interstitium (lane 2), Sertoli cells (lane 3), and in normal mouse testis 
germ cells (lane 4-7) (50g/lane). Whole lysates were detected by anti-
PTEN monoclonal serum or with anti-ERK antibodies used as internal 
standard. ERK antibodies recognize both ERK1 and ERK2, which are 
expressed at similar levels in all cell types with the exception of 
spermatozoa (Sette et al., 1999). 
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PTEN protein expression was reduced in tumors as witnessed by the 

low signal obtained per single cell and by the decreased number of 

cells/field stained with the anti-PTEN antibody (Table II). In particular, 

most embryonal carcinomas (19/22), approximately 60% of seminomas 

(18/32) and virtually all teratomas (6/6) showed no staining with anti-

PTEN antibody. Moreover, the remaining tumors showed weak and 

focal PTEN staining. A representative immunodetection experiment of 

PTEN expression is reported in Figure 14, where PTEN-negative 

seminoma, embryonal carcinoma and teratoma are shown (Figure 14C, 

D, and E, respectively).  

To verify that the monoclonal anti-PTEN antibody (clone A2B1) was 

suitable for immunostaining experiments (Figure 14 F), serial 5-� the 

signal induced by the anti-PTEN antibody, demonstrating the 

specificity of the reaction. Similar results were obtained with another 

monoclonal anti-PTEN antibody (#26H9) from Cell Signaling (not 

shown). Recently, a testis-specific PTEN homologue, denoted PTEN2, 

has been described (Wu et al., 2001). However, since the C-terminal 

peptides used for the generation of antibodies used in this study, are 

present in PTEN but absent in PTEN2, it is highly unlikely that the 

antibodies recognized PTEN2 in immunostaining.  

It has been next compared the immunoistochemical PTEN expression 

with immunoblot data. First the specificity of the monoclonal PTEN 

antibody to be used in immunoblot experiments was tested. As positive 

control, it has been used the breast cancer cell line MCF7, which is 

known to express PTEN, and as negative control it has been used the 

breast cancer cell line MDA-MB-468 that bears a hemizygous deletion  
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Figure 14.  Immunoistochemical analysis of PTEN expression in 
normal testis, in situ neoplasia and germ cell tumors. A. PTEN 
expression in human normal testis. Magnification 400X . spg, 
spermatogonia; spc, spermatocytes; spt, spermatids; ser, Sertoli cells. 
B. PTEN expression in intratubular neoplasia. Magnification 400X. C. 
Seminoma with rare focal and faint positivity for PTEN. Magnification 
400X D. Embryonal carcinoma negative for PTEN staining. 
Magnification 400X. E. Teratoma negative for PTEN staining. 
Magnification 400X. F. Peptide neutralization assay. Serial sections 
derived from the same biopsy were incubated with monoclonal anti-
PTEN antibody with and without (inset) a molar excess peptide 
antigen. Magnification 150X. sections of the same samples were 
incubated with anti-PTEN antibody with and without a 10-fold excess 
of a competing peptide. As shown in the inset of Figure 1F, peptide 
competition almost completely abolished  
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No. samples Diagnosis PTEN immunohistochemistry 

10 Normal testis 
 

+++ (10/10) 

22 ITGCN 
 

+++ (22/22) 

32 Seminoma +/- (14/32) 
- (18/32) 

22 Embrional carcinoma +/- (3/22) 
- (19/22) 

6 Teratoma 
 

- (6/6) 

 

 

 

 

 

 

 

 

 

Table II. PTEN expression in germ cell tumors 
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of PTEN and a truncating mutation in exon 2 of the remaining allele, 

which results in the loss of PTEN expression (Li et al., 1999). 

The anti-PTEN antibody recognized a single band of 55-60 kDa only in 

the MCF-7 cells but not in the MDA-MB-468 cells (Figure 15A).  

Then it has been determined PTEN expression in 16 primary germ cell 

tumors (8 seminomas and 8 embryonal carcinomas) using 

immunoblotting, selecting them on the basis of PTEN expression, 

among the samples undergone immunohistochemical analysis. Proteins 

from 4 non-neoplastic testes served as controls (NT, normal testis). The 

amount of PTEN protein was high in normal testis (Figure 15B, lane 1) 

and low in several tumors (6/8 seminomas and 6/8 embryonal 

carcinomas presented low PTEN expression, respectively). See for an 

example figure 15 B. A good correlation between the immunostaining 

and immunoblot data was observed. 

Because PTEN activity prevents AKT activation in a variety of human 

tumors and cell lines (Haas-Kogan et al., 1998; Bruni et al., 2000), it 

has been investigated whether the down-regulation of PTEN observed 

in testicular tumors resulted in AKT activation, measured as increased 

phosphorylation at specific serine (ser473) and threonine (thr308) 

residues. To this end, it has been determined the expression and the 

phosphorylation status of AKT in the same representative set of tumors 

(Figure 15B). As expected, AKT phosphorylation on Ser473 was 

higher in some tumors (Figure 15B, lanes 1, 3, 4, 6, 7, 8, 10, 11, 14, 15, 

and 16) than in normal testis. Ten out of eleven tumors with low PTEN 

expression had high levels of phosphorylated Akt (Figure 15B, lanes: 1,  
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 Figure 15. Western blot analysis of PTEN expression in normal 
and neoplastic testis A. The monoclonal anti-PTEN antibody 
recognized PTEN protein in MCF7 cells but not in MDA-MB-468 cells 
used as positive and negative controls, respectively. B. PTEN 
expression and AKT phosphorylation in germ cell. Forty micrograms 
of total proteins were resolved on 10% SDS-PAGE, transferred to 
nitrocellulose filters and western blotted with anti-PTEN monoclonal 
antibody, anti-phospho-Ser473 AKT and anti-total AKT. Antibodies to 
�-tubulin served as loading control. Lane NT: normal testis; 
seminomas: lanes 1-4, 9-12 ; embryonal carcinomas: lanes 5-8, 13-16. 
Films were scanned and the intensity of bands was quantified by the 
NIH Image 1.57 program.  
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4, 6, 7, 8, 10, 11, 12, 14, 15 and 16). Anti-β-tubulin antibody was used 

as a loading control. In general, PTEN expression inversely correlated 

with the level of phosphorylated Akt. Exceptions were tumor SE2 in 

lane 2, which showed low Akt phosphorylation in the presence of low 

PTEN expression and tumor SE3 in lane 3, which showed high Akt 

phosphorylation in the presence of high levels of PTEN protein. While 

we do not have any reasonable explanation for tumor SE2, Akt 

hyperexpression or activating mutations in the PI3K catalytic subunit 

may account for increased Akt activity in the case of tumor SE3 as 

recently reported (Samuels et al., 2004). 

 

D. ANALYSIS OF PTEN’S mRNA LEVEL IN GERM CELL 

TUMORS 

In order to assess whether loss of PTEN protein, demonstrated by 

immunohistochemistry and confirmed by immunoblot, was a 

consequence of reduced mRNA expression, it has been performed 

mRNA In Situ Hybridization (ISH) on a subgroup of germ cell tumors 

selected for being negative for the expression of PTEN protein (12 

seminomas, 6 embryonal carcinomas, 4 teratomas). Results are 

reported in Table II. It has been observed a direct correlation between 

the amount of PTEN protein and PTEN-specific mRNA in 75% of 

cases. The majority of seminomas (9/12, 75%), embryonal carcinomas 

(5/6, 83%) and teratomas (3/4, 100%) analysed showed reduced or no 

mRNA in tumor cells (Fig. 16B and C). An example of seminoma 

positive for PTEN’s mRNA expression is shown in figure 16 D. 

Staining for PTEN mRNA was observed instead in the samples  
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Figure 16.  In situ hybridization analysis of PTEN expression in 
normal testis and germ cell tumors. A. Expression of PTEN mRNA 
in human normal testis. Magnification 400X . B. Expression of PTEN 
mRNA in a PTEN deficient seminoma. Magnification 400X C. 
Expression of PTEN mRNA in an embryonal carcinoma negative for 
PTEN staining. Magnification 400X. D. Expression of PTEN mRNA 
in seminoma positive for PTEN staining. Magnification 400X. 
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positive for PTEN protein (not shown). In all cases, non-neoplastic 

atrophic tubules, adjacent to the tumor, showed nuclear and 

cytoplasmic staining of germinal cells, thus functioning as internal 

control (Fig. 16A). Conversely, 5 out of 22 cases (23%) analysed 

retained PTEN mRNA despite absence of protein expression (Table 

III).  

 

 

E. GENETIC ANALYSIS OF PTEN IN GERM CELL TUMORS   

PCR-based analysis to determine LOH of markers spanning the PTEN 

locus was performed on a series of 22 germ cell tumor samples (12 

seminomas, 6 embryonal carcinomas and 4 teratomas) and the 

corresponding adjacent normal tissues. Results are reported in Table 

III. All samples were analysed for microsatellite markers surrounding 

the PTEN locus at 10q23 (D10S551, D10S1765 and D10S541). In 

particular, these markers present a centromere-to-telomere orientation, 

covering 5 MB of chromosome 10 that includes the PTEN locus. The 

5’ end of the PTEN gene is approximately 20 Kb downstream 

D10S1765 and the 3’ end 270 Kb upstream of D10S541 (see figure 

17). Three samples were non informative (NI) for D10S551 (see Table 

III), three were non informative for D10S1765 and four for D10S541. 

Overall, the LOH frequency in germ cell tumors was 41% (9 of 22). 

Four of 19 informative samples were homozygous for D10S551, 7 

samples exhibited apparent LOH for D10S1765 and 3 for D10S541.  
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 Figure 17. Here it is shown the position of microsatellites analyzed for 
LOH of PTEN, on chromosome 10. The 5’end of PTEN is about 20kb 
downstream of DS1765 while the 3’end about 270 kb  upstream 
D10S541
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Table III . Here they are summarized results concerning the 
investigation on LOH and point mutations. It has been used the 
following formula to calculate LOH: (peak height of normal allele 2)/ 
(peak height of normal allele 1) divided by (peak height of tumor allele 
2)/ (peak height of tumor allele 1). LOH at a single locus was 
considered present when the difference between the two alleles was 
50%. NI, not informative 

  ▲  22 

    21 

    20 

R233H NI  NI 19 

  ▲  18 

 ▲ ▲  17 

    16 

   NI 15 

 ▲ ▲ ▲ 14 

Y138Term   ▲ 13 

   ▲  12 

 NI ▲  11 

V119G  ▲ ▲ 10 

    9 

  NI  8 

   ▲ 7 

   ▲ 6 

   NI 5 

  NI  4 

 ▲ ▲ ▲ 3 

    2 

 NI NI  1 

PTEN D10S541 D10S176D10S551 Tumor 
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Five samples showed LOH at two loci while the majority of samples  

showed LOH for just one marker. LOH was slightly more frequent in 

embryonal carcinomas and teratomas (3 of 6 and 2/4, respectively) than 

in seminomas (3/12).  

Subsequently, we analyzed the same 22 germ cell tumors for the 

presence of mutations in the coding region of the PTEN gene by PCR 

amplifying all the nine exons of the PTEN gene and subsequent direct  

automated DNA sequencing of the PCR products. Genomic DNA 

extracted from paraffin-embedded samples was amplified using intron-

specific primers that flanked exons 1-9 as previously described (Bruni 

et al., 2000). Samples from the corresponding adjacent normal tissues 

were included as controls. Results are reported in Table III. DNA 

sequencing of exons 1-9 of PTEN gene demonstrated the existence of a 

pathogenetic mutation in three samples (2 embryonal carcinomas and 1 

seminomas): a TAT->TAG transversion at the codon 138 in exon 5 that 

caused the formation of a premature termination codon (Y138->term) in 

a patient affected by a seminoma (# 13); a transversion in the codon 

119 GTT->GGT that causes V119->G mutation in a patient affected by 

embrional carcinoma (# 10) (see figure 18); a transition CGC->CAC at 

the codon 233 in exon 7 that caused a R233->H missense mutation in 

another  patient affected by an embryonal carcinoma (# 19). These 

mutations likely impair PTEN function: the missense mutation (R233-

>H) hits a residue that has been reported to be germline mutated in a 

family affected by Cowden Disease (Liaw et al. 1997). On the other  
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Figure 18. Chromatogram inherent to mutation GTT->GGT which 
determines the mutation V119G in the 5 exon. In this example of 
seminoma, PTEN expression is manteined (see panel on the right) but 
its function is lost.

GTT 

V119 
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hand, the mutation Y138term generates a truncated protein whose 

function is impaired. Accordingly, a mutation that hits the residue 139 

has been found in a patient affected by Cowden Disease. 

Finally, the other mutation in  the 5 exon , probably impair right 

phosphatase activity of PTEN, since it is located in the catalytic 

domain. Thus, our analysis demonstrated the presence of somatic 

mutations (at a frequency of about 9%) in sporadic germ cell tumors.  

 

 

F. REGULATION OF PTEN EXPRESSION IN EMBRYONAL 

CARCINOMA CELLS  

The finding that post-transcriptional mechanisms are involved in the 

loss of PTEN expression in at least a quarter of GCTs, made us 

investigate whether protein degradation was involved in the loss of 

PTEN expression by using the embryonal carcinoma NT2/D1 cell line 

as a model system.  

To determine the molecular mechanisms whereby PTEN expression is 

lost in neoplastic germ cells, we used a well-known model of human 

embryonal carcinoma cells: the NTERA-2 cell line (NT2/D1) 

(Andrews, 1984). Though this cell line derives from a late stage lesion 

(embryonal carcinoma cell line), and does not allow to reproduce the 

transition from early-lesion (ITGCN) to late lesion (full blown cancer), 

it still represents a good model because is amenable to manipulation in 

vitro, allows to study the mechanisms whereby PTEN expression is 

regulated in EC cells and finally allows to pinpoint the relevant 
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pathways downstream PTEN.  

Treatment of NT2/D1 cells with two highly specific proteasome 

inhibitors (the peptide aldheyde N-acetyl-leucyl-leucine norleucinal or 

LLnL and the inhibitor MG132) increased the level of PTEN. 

Treatment of NT2/D1 cells for 2, 8 or 12 hours with 20 �M of MG132 

(Figure 19A, lanes MG), or 50 �M of LLnL (not shown) resulted in 2-

4.5 fold increase in the level of PTEN expression compared to DMSO-

treated cells (Figure 19A, lanes C), suggesting that in embryonal level 

of PTEN RNA and protein (Figure 19B), suggesting that PTEN 

promoter methylation is not implicated in the down-regulation of PTEN 

expression in NT2/D1 cells.  

 

G. ADOPTIVE EXPRESSION OF PTEN INTO EMBRYONAL 

CARCINOMA CELLS INDUCES GROWTH ARREST  

Subsequently, we used the NT2/D1 cells also as a model system to 

determine the effects exerted by PTEN in neoplastic germ cells. 

NT2/D1 cells were plated in 10-mm dishes and transfected with wild 

type or mutant (C124S, G129E) FLAG-tagged PTEN constructs 

(FLAG-PTEN, FLAG-PTEN/C124S or FLAG-PTEN/G129E) or with 

the control empty vector. Forty-eight hours after transfection, cells 

were collected and analysed by FACS. Enforced PTEN expression in 

NT2/D1 cells resulted in G1 arrest but not apoptosis at 24-48 hours 

(Figure 20A). In fact, 50.3% of NT2/D1 cells transfected with wild 

type FLAG-PTEN were in G1 phase versus 29.4% of vector-transfected 

cells. Neither C124S nor G129E PTEN mutants suppressed growth 

(30% and 30.5% of cells were in the G1 compartment, respectively).  
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A.  

Figure 19.  Regulation of PTEN expression in embryonal 
carcinoma cells  
A. Treatment of NT2/D1 cells with with 20 �M DMSO (C) or MG132 
(MG) for the indicated times (2, 8, 12 hours). B. Northern blot analysis 
of PTEN expression in NT2/D1 cells treated with solvent alone or 5 
�M 5-azacytidine for 2 days. 
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Because the G129E PTEN mutant has lost the lipid phosphatase 

activity but not the protein phosphatase activity, these findings 

demonstrate that the growth suppression induced by PTEN in NT2/D1 

cells requires the ability to dephosphorylate lipid but not protein 

substrates. Statistical analysis was performed using the one-way 

ANOVA with post-hoc multiple comparisons assessed with the 2-tailed  

Dunnett’s t test, and the differences resulted significative (p<0.05). 

Treatment with pharmacological PI3K inhibitors LY294002 or 

wortmannin for 24 h decreased the proliferation of breast cancer cell 

lines (Lu et al., 1999). To determine the relevance of the 

PI3K/PTEN/AKT pathway in embryonal carcinoma cells, we 

investigated the effects exerted by PI3K inhibitors (LY294002 and 

wortmannin) on NT2/D1 cells. As with PTEN, treatment of NT2/D1 

cells with 20 �M LY294002 (or 25 �M wortmannin, not shown) 

greatly reduced S phase entry as determined by flow cytometry (Figure 

20B) and BrdU incorporation (Figure 12A). Therefore, inhibition of the 

PI3K pathway induces G1 arrest in NT2/D1 cells.  

 

H. PTEN-DEPENDENT GROWTH ARREST IN EMBRYONAL 

CARCINOMA CELLS REQUIRES P27 KIP1  

Previously, it has been have demonstrated that p27kip1 is a key regulator 

of the growth and differentiation of NT2/D1 cells (Baldassarre et al.,  
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 Figure 20.  PTEN-induced growth suppression in NT2/D1 cells. A. 
Flow cytometry of NT2/D1 cells transfected with wild type and mutant 
PTEN constructs. Values are means ± SD, of 3 experiments. Statistical 
analysis was performed using the one-way ANOVA with  post-hoc 
multiple comparisons assessed with the 2-tailed Dunnett’s t test. * 
p<0.05 vs Control. B. Flow cytometry analysis of NT2/D1 cells treated 
with DMSO alone or with the PI3K inhibitor LY294002. Values are 
means ± SD, of 3 experiments. Data are mean value  SD. Data are 
mean value  SD. Statistical analysis was performed using the unpaired 
2-tailed Student’s t test. *p<0.05, †p<0.01, ‡p<0.005 vs Control. 
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1999; Baldassarre et al., 2000). The function of p27kip1 is regulated by 

the activity of the PTEN/PI3K/Akt pathway through different 

strategies. In different cell lines the PTEN/PI3K/Akt pathway regulates 

both expression and localization of p27kip1 (Da-Ming & Hong, 1998; 

Bruni et al., 2000; Viglietto et al., 2002). Therefore, it has been 

investigated: (1) whether inhibition of PI3K signalling either by PTEN 

or by change of localization and (2) whether p27kip1 up-regulation was 

required for the growth-inhibitory effects exerted by blocking the PI3K 

pathway.  

FLAG-PTEN expression in NT2/D1 cells or treatment with the PI3K 

inhibitor LY294002 reduced AKT phosphorylation (Figure 21A, lanes 

2 and 3, and Figure 21B, lanes 2-4, respectively), and induced a two-

fold increase in the levels of p27kip1 (Figure 21A, lane 2, and Figure 

21B, lanes 2 and 3, respectively).  

Furthermore, adoptive expression of PTEN and/or treatment of 

NT2/D1 cells with LY294002 induced cytoplamic re-localization of 

p27kip1 (Figure 22A). The effects exerted by PTEN or by LY294002 on 

p27kip1 were similar, in agreement with the concept that wild type 

PTEN as well as LY294002 block PI3K-dependent activation of Akt; 

conversely, the mutant PTEN allele G129E has no effect on the 

localization and the phosphorylation of p27kip1 (see figure 22B). 
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 Figure 21. Up-regulation of p27kip1 in NT2/D1 cells by blockage of 
the PI3K pathway. A. Immunoblot analysis of PTEN, AKT and 
p27kip1 expression in NT2/D1 cells transfected with PTEN constructs. 
Lane 1, FLAG-transfected cells; lane 2, FLAG-PTEN-transfected cells; 
lane 3, FLAG-PTEN-transfected in the presence of p27kip1 antisense 
oligonucleotides. B. Immunoblot analysis of analysis of PTEN, AKT 
and p27kip1 expression in LY290042-treated NT2/D1 cells, in the 
presence or in the absence of anti-p27kip1 antisense oligonucleotides. 
Lane 1, proliferating NT2/D1 cells; lane 2, LY290042-treated NT2/D1 
cells; lane 3, LY290042-treated NT2/D1 cells in the presence of control 
oligonucleotides; lane 4, LY290042-treated NT2/D1 cells in the 
presence of p27kip1 antisense oligonucleotides. 
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 Figure 22. Nuclear accumulation of p27kip1 in NT2/D1 cells by   
blockage of the PI3K pathway.  
A.Immunoblot analysis of p27kip1 localization on cytoplasmic and 
nuclear extracts of NT2/D1 cells treated with LY294002 or transfected 
with PTEN constructs. Lane 1, untreated mock-transfected cells; lane 
2, mock-transfected cells treated with 10 �M LY294002; lane 3, wild 
type FLAG-PTEN-transfected cells; lane 4, G129E FLAG-PTEN-
transfected cells. �-tubulin and SP1 were used as controls of 
fractioned proteins. B. Immunoblot analysis of p27kip1phosphorylation 
on cytoplasmic and nuclear extracts of NT2/D1 cells treated with 
LY294002 or transfected with PTEN constructs. Lane 1, untreated 
mock-transfected cells; lane 2, mock-transfected cells treated with 10 
�M LY294002; lane 3, wild type FLAG-PTEN-transfected cells; lane 
4, G129E FLAG-PTEN-transfected cells
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To determine whether p27kip1 was necessary for the growth arrest 

induced by wild type PTEN and LY294002 in NT2/D1 cells, we 

suppressed p27kip1 expression by using antisense oligonucleotides, and 

measured S phase entry by determining the rate of BrdU incorporation. 

Antisense oligonucleotides (1 �M) spanning the ATG initiation codon  

of p27kip1 efficiently blocked the increase in p27kip1 expression induced 

by PTEN or LY294002 in NT2/D1 cells (Figure 23A, lane 3, and 

Figure 23B, lane 4) and almost completely rescued the growth arrest 

induced by PTEN or by PI3K inhibitors (Figure 23A and B, 

respectively).  

Transfected cells were identified by cotransfection of relevant plasmids 

with pEGFP, a plasmid encoding the eukaryotic green autofluorescent 

protein (EGFP). pFLAG-transfected cells incorporated BrdU (yellow 

arrows); whereas FLAG-PTEN-transfected cells did not (white 

arrows).However, when NT2/D1 cells were transfected with FLAG-

PTEN inthe presence of 1 �M of p27kip1 antisense oligonucleotides, 

PTEN-transfected cells incorporated BrdU (yellow arrow). Analogous 

results were obtained when cells were treated with LY294002. Taken 

together, these results indicate that the cyclin-dependent inhibitor 

p27kip1 is required for PTEN growth-suppressing activity in embryonal 

carcinoma cells and that this effect is mediated by AKT. 
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Figure 23.  PTEN exerts its growth suppression activity through 
p27kip1 A. BrdU incorporation assay of NT2/D1 cells transfected with 
PTEN constructs in presence or absence of p27kip1 antisense 
oligonucleotides. First column: green FLAG-transfected cells 
incorporate BrdU (yellow arrow). Second column: green FLAG-PTEN-
expressing cells do not incorporate BrdU (white arrows). Third column: 
green FLAG-PTEN-transfected NT2/D1 cells incorporate BrdU in the 
presence of p27kip1 antisense oligonucleotides (yellow arrow). A 100X 
Neo-Achromat Zeiss lens was used. Data are mean ± SD, of 3 
experiments; p<0.01. B. BrdU incorporation assay of NT2/D1 cells 
treated with DMSO alone (column 1), LY294002 (column 2) or with 
LY294002 in the presence of excess of p27kip1 antisense 
oligonucleotides (column 3). First row: transfected cells are identified 
by green fluorescence of EGFP; second row: cells that incorporate 
BrdU are stained with Texas Red –conjugated secondary antibodies 
(red); third row: cell nuclei stained with Hoechst (blue). A 100X Neo-
Achromat Zeiss lens was used. Data are mean ± SD, of 3 experiments; 
p<0.01. 
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DISCUSSION 

 
Inactivation of the tumor suppressor gene PTEN leads to the 

development of testicular germ cell cancer in heterozygous mice 

(Suzuki et al., 1998; Di Cristofano et al., 1998; Podsypanina et al., 

1999; Kimura et al., 2003). In this study we address whether PTEN is 

also implicated in the development of human GCTs (seminomas, 

embryonal carcinomas and teratomas). Our results clearly demonstrate 

that the loss of PTEN expression marks the transition from non-

invasive ITGCN to invasive cancer, being PTEN expression retained in 

ITGCN, the presumed precursor lesion of germ cell tumors, and lost in 

tumors. Since ITGCN frequently progresses to invasive cancer, the 

findings reported in this study, suggest that PTEN loss is required at 

later stages of cancer development to facilitate the emergence of a more 

aggressive phenotype.  

This conclusion is in agreement with the concept that PTEN may be 

inactivated at different stages of tumor development (initiation and/or 

progression) in different tissues, and thus serves for different purposes 

depending on cell type (Iqbal, 2000): In endometrial cancer PTEN 

expression/activity is already absent in early, precancerous lesions 

(complex atypical hyperplasia) (Mutter et al., 2000); conversely, PTEN 

loss is associated with a high Gleason score in prostate cancer 

(McMenamin et al., 1999); with advanced pathological stage in high-
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grade glioblastomas (Wang et al., 1997; Rasheed et al., 1997), and late 

stage disease (metastatic) in melanomas (Zhou et al., 1998).  

In situ hybridization analysis of GCT samples which had lost PTEN 

protein supported the hypothesis that loss of PTEN protein reflect the 

reduction of PTEN mRNA levels. Moreover, the genetic analysis of 

GCTs performed in this study with microsatellites spanning about 5 Mb 

around the PTEN locus at 10q23 (D10S551, D10S1765 and D10S541), 

clearly implicated PTEN loss in the development of a subset of GCTs 

(approximatively 35%). Consistent with the idea that PTEN is the 

major target of deletion at 10q23 in GCTs, LOH was most frequent for 

D10S1765, which is closest to PTEN (Table III). In GCTs, loss of 

genetic material associated with chromosome 10q23 is observed in 

seminomas, embryonal carcinomas and teratomas. Moreover, DNA 

sequence analysis of exons 1-9 of the PTEN gene uncovered the 

presence of mutations in the PTEN gene in three cases (13%); in all 

cases, the inactivating mutation was found in a sample that retained a 

certain degree of PTEN expression (#10, #13, #19) and was not 

accompanied by LOH. Overall, our results demonstrate that one copy 

of PTEN is lost in 50% of GCTs. These results are consistent with 

previous studies on the cytogenetic profile of human tumors, that have 

shown a range of 10-15% loss of chromosome 10q in GCTs (Mertens 

et al., 1997), and with the report of 60% LOH and 33% mutations in 

cultured testicular cancer cell lines (Teng et al., 1997). The observation 

that about 25% of GCTs retain PTEN mRNA expression despite 

decreased PTEN protein levels, along with the finding that, in NT2/D1 

cells, PTEN expression is up-regulated by pharmacological inhibition 
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of the proteasome, indicate that increased turnover pf PTEN protein 

may account for the loss of PTEN expression in an additional 25% of 

GCTs.  

These results are in agreement with the recent finding that the 

regulation of PTEN expression may occur through the control of the 

stability of the protein (Torres J, & Pulido R, 2001; Wu et al., 2003; 

Okahara et al., 2004). However, we can not rule out the existence of 

other mechanisms, such as promoter methylation, that contribute to 

inactivate PTEN gene in GCTs, especially in those cases that did not 

apparently show LOH, mutations or retainment of PTEN mRNA.  

Previous works have failed to detect the presence of PTEN protein in 

the seminiferous tubule of the 17-day embryo in the human (Gimm et 

al., 2000) and PTEN mRNA in the mouse embryo (Lukko K et al., 

1999). However, PTEN mRNA is easily detected by Northern blot in 

the whole testis (Suzuki et al., 1998) and by immunoblot and 

immunostaining in maturating germ cells in adult testis (this work). 

Furthermore, targeted inactivation of Pten in mouse predisposes for 

development of teratocarcinomas and teratomas (Suzuki et al., 1998; 

Di Cristofano et al., 1998; Podsypanina et al., 1999; Kimura et al., 

2001).    

In the testis, germ cells undergo a complex program of proliferation 

and differentiation to form mature sperms (Chaganti & Houldsworth, 

2000). Correct proliferation and apoptosis is required to regulate the 

size of cell lineages and the timing of differentiation (Matsui, 1998; 

Chaganti & Houldsworth, 2000). Therefore, the loss of PTEN 

expression observed in GCTs may serve multiple purposes in germ cell 
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transformation. The window in which PTEN is expressed in mouse and 

human testis, as observed in this work (spermatogonia -> 

spermatocytes -> spermatids), overlaps the timing of massive apoptosis 

that occurs during maturation of germ cells in the seminiferous tubule 

after birth (Chaganti & Houldsworth, 2000). By preventing apoptosis-

driven germ cell selection and maturation, PTEN loss would allow 

clones of germ cells to elude programmed cell death and undergo 

malignant transformation. In agreement with this thought, the targeted 

disruption of Akt1 in the mouse, as well as the “knockin” mice of Stem 

Cell Factor/Kit receptor mutated in the docking site for the regulatory 

subunit of the PI3K, attenuates spermatogenesis and induces testicular 

atrophy, due to increased apoptosis restricted to the germ cell 

compartment (Chen et al., 2001).  

PTEN loss may also result in unrestrained cell cycle progression and 

prevention of terminal differentiation. Accordingly, a recent paper has 

suggested that estrogen-mediated PTEN down-regulation markedly 

increases the growth of primordial germ cells in culture and that PTEN-

deficient germ cells are much more sensitive to tumorigenic 

transformation induced by proliferative stimuli (Moe-Behrens et al., 

2003). Indeed, primordial germ cells from pten-/- mice exhibit an 

increased proliferative capacity (Kimura et al., 2003). 

The serine/threonine kinase PKB/Akt is an important cellular target 

downstream PTEN that transmits proliferative and anti-apoptotic 

signals (Datta et al., 1999). Accordingly, the loss of PTEN in GCTs 

inversely correlated with Akt activation. Moreover, the adoptive 

expression of PTEN in embryonal carcinoma NT2/D1 cells and 
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pharmacological inhibition of the PI3K pathway induced a reduction in 

the level of Akt activation.  

Blockage of the PI3K/PTEN/Akt pathway arrests the growth of 

embryonal carcinoma cells. PTEN-transfected or LY294002-treated 

NT2/D1 cells accumulate in G1 phase but show no sign of apoptosis, at 

least after 24-48 h. Defective regulation of cell cycle progression in 

PTEN-deficient germ cells may depend either on increased expression 

of cyclins or on decreased expression of CDK inhibitors. In fact, Akt 

increases the stability of cyclin D1 by suppressing glycogen synthase 

kinase-3 (GSK-3) activity, which targets cyclin D1 to phosphorylation-

mediated degradation (Diehl et al., 1998). As the threonine residue 

phosphorylated by GSK-3 is highly conserved in all D-type cyclins, it 

is likely that Akt regulates also the levels of cyclin D2 and D3. Thus, 

the loss of PTEN function may contribute to the overexpression of 

cyclin D2 frequently observed in germ cell tumors (Chaganti & 

Houldsworth, 2000).  

On the other hand, the cyclin-dependent kinase inhibitor p27kip1 is a key 

target downstream the PI3K/Akt signalling pathway (Bruni et al., 

2000). Also in embryonal carcinoma cells the effects exerted by 

inhibition of the PI3K/Akt pathway on cell cycle progression are 

dependent on p27kip1. In fact, our results demonstrate that the adoptive 

expression of PTEN and the pharmacological inhibition of PI3K 

activity with LY294002 moderately up-regulates p27kip1 in NT2/D1 

cells and that suppression of p27kip1 synthesis by antisense 

oligonucleotides prevents growth arrest induced either by PTEN or by 

LY294002. It is noteworthy that the PTEN mutant, which lacks lipid 
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phosphatase activity but retains protein phosphatase activity (i.e. 

G129E) neither induces p27kip1 expression nor blocks S phase entry. 

The PI3K pathway also regulates sub-cellular localization of p27kip1 

through Akt-dependent phosphorylation of p27kip1 (Viglietto et al., 

2002). Accordingly, PTEN-dependent inactivation of Akt in NT2/D1 

cells results in the accumulation of p27kip1 in the nuclear compartment. 

This suggests that regulation of p27kip1 localization may contribute, 

along with regulation of p27kip1 expression, to the proliferative arrest 

induced either by PTEN or by LY294002 in NT2/D1 cells. 

In conclusion, inactivation of PTEN is a critical step in the progression 

of germ cell cancer, and the cyclin-dependent kinase inhibitor p27kip1 is 

a key target of PTEN signalling pathway. Further studies are necessary 

to identify the molecular targets that act downstream PTEN in the 

transformation of the germ cell.  

 

MATERIALS AND METHODS 

Preparation of mouse testicular cells 

Testicular cells were prepared from testes of adult CD1 mice (Charles 

River Italia). Testes were freed from the albuginea membrane, and 

digested for 15 min in 0.25% (w/v) collagenase (type IX, Sigma) at 

room temperature under constant shaking. Seminiferous tubules were 

cut into pieces, with a sterile blade and further digested in minimum 

essential medium containing 1 mg/ml trypsin for 30 min at 30°C. 

Digestion was stopped by adding 10% fetal calf serum; released germ 

cells were collected after sedimentation (10 min at room temperature) 

of tissue debris. Germ cells were centrifuged for 13 min at 1,500 rpm at 
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4°C and the pellet resuspended in 20 ml of elutriation medium (120.1 

mM NaCl, 4.8 mM KCl, 25.2 mM NaHCO3, 1.2 mM MgS4 (7H2O), 1.3 

mM CaCl2, 11 mM glucose, 1X essential amino acid (Life 

Technologies, Inc.), penicillin, streptomycin, 0.5% bovine serum 

albumin. Pachytene spermatocyte and spermatid germ cells were 

obtained by elutriation of the unfractionated single cell suspension as 

described elsewhere (Meistrich, 1977). Homogeneity of cell 

populations ranged between 80 and 85% (pachytene spermatocytes) 

and 95% (spermatids), was routinely monitored morphologically. 

Mature spermatozoa were obtained from the cauda of the epididymus 

of mature mice as described previously (Sette et al., 1997). 

Spermatogonia and Sertoli cells were obtained from prepuberal mice as 

previously described (Rossi et al., 1993; Grimaldi et al., 1993). 

 

Cell lines and Reagents 

The embryonal carcinoma NT2/D1 and the breast MCF7 and MDA-

MB-468 tumor cell lines that have been used in this study are described 

elsewhere (Lu et al., 1999; Andrews, 1984). Cells were grown in 

Dulbecco’s modified Eagle's Medium (DMEM) containing 10% foetal 

calf serum (FCS) (Invitrogen). MG132 and 5-aza-cytidine were from 

Sigma-Aldrich (St. Louis, MO, USA).  

 

Tissue samples and Immunohistochemistry  

Paraffin-embedded specimens were obtained from the di Scienze 

Biomorfologiche e Funzionali, Università Federico II (Naples, Italy). 

For PTEN detection, sections were dewaxed and incubated with 



 72 

primary antibody for 1 h at room temperature. The conventional avidin-

biotin complex procedure was used according to manufacturer’s 

protocol (LSAB Plus DAKO, Carpinteria, CA, USA). Monoclonal anti-

PTEN antibodies were purchased from Santa Cruz Biotechnology Inc. 

(clone A2B1) and from Cell Signaling (#26H9). Positive signal was 

revealed by DAB chromogen, according to the supplier's conditions. 

Nuclei were counterstained with Mayer hematoxylin. For peptide 

neutralization control, the reaction with anti-PTEN antibody was 

preceded by overnight incubation with a ten-fold excess of the 

corresponding peptide antigen (Santa Cruz Biotechnology, Inc.). 

 

In Situ Hybridization 

In situ hybridization was performed using biotin-labelled probes at 

5’OH, which were obtained tailing reaction using biotin-dUTP as 

marker. Hybrid detection was achieved by amplification using 

biotinylated tyramide (Gen Point K620 Kit, DAKO, Carpinteria, CA, 

USA). Sections were prepared from each sample and assayed according 

to the instructions of the Dako Gen Point K620 Kit. Briefly, sections 

were deparaffinized, re-hydrated, treated with proteinase K (6g/ml) in a 

buffer of Tris-HCl 0.05M, pH7.6, and then incubated in 0.3% H2O2, at 

RT, for 20 minutes, to quench endogenous peroxidase. Optimal 

hybridization and stringent wash temperatures were determined and 

slides were rinsed in the stringent solution provided with the kit. 

Amplified detection was performed using an anti-digoxigenin antibody 

coupled to a peroxidase (HRP) which precipitated biotinylated 

tyramide. The precipitated biotin bound to streptavidin-linked HRP, 
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which in turn precipitated the dimethylaminobenzidine (DAB) 

chromogen provided with the kit. Nuclei were counterstained with 

Mayer's hematoxylin. Negative controls were obtained using an anti-

sense probe. 

 

Protein extraction and immunoblotting 

Total proteins were prepared as described (Baldassarre et al., 1999a). 

Differential extraction of nuclear or cytoplasmic proteins was obtained 

by lysing cells in ice-cold Nonidet-P40 (NP-40) lysis buffer (0.2% NP-

40, 10 mM Hepes pH 7.9, 1 mM EDTA, 60 mM KCl) supplemented 

with protease and phosphatase inhibitors (aprotinine, leupeptine, 

PMSF, and okadaic acid) and incubated on ice for 5 min. The cytosolic 

fraction was collected by centrifugation. Nuclei were separated through 

a 30% sucrose cushion and lysed by resuspension in ice-cold 

hypertonic buffer (250 mM Tris-HCl pH 7.8, 60 mM HCl 

supplemented with phosphatase and protease inhibitors) followed by 

repeated cycles of rapid freeze and thaw. Proteins were separated by 

electrophoresis in SDS-containing polyacrylamide gels, transferred to 

nitrocellulose membranes (Hybond C, Amersham Pharmacia Biotech, 

Inc.), blocked in 5% non-fat dry milk, incubated with primary and 

secondary antibodies for 2 hours and 1 hour, respectively, and revealed 

by enhanced chemiluminescence (ECL, Amersham Pharmacia Biotech, 

Inc.). Polyclonal antibodies to phospho-AKT-Ser473 and AKT were 

purchased from New England Biolabs (Lake Placid, NY); monoclonal 

anti-p27kip1 and anti-ß-Tubulin were acquired, respectively, from 

Transduction Laboratories and NeoMarkers. Two PTEN antibodies 
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were used in this study both for immunoblot and immunostaining: a 

monoclonal antibody elicited to a C-terminal peptide (clone A2B1) 

from Santa Cruz inc. and a monoclonal antibody elicited to a C-

terminal peptide (PTEN 26H9) from Cell Signaling. The anti phospho-

Akt motif antibody was from Cell Signaling (#9611).  

 

Vectors and Transfections 

The PTEN constructs are described elsewhere (Bruni et al., 2000). 

Transfection experiments were performed as described (Baldassarre et 

al., 1999). NT2/D1 cells were seeded at a density of 2x106 cells per 

100-mm dish. The next day, cells were transiently transfected by the 

lipofectamine 2000 procedure (Invitrogen). Forty-eight hours post-

transfection, cells were scraped into ice-cold PBS and lysed in NP-40 

lysis buffer. Where needed, the p27kip1 antisense oligonucleotides (5'– 

GTCTCTCGCACGTTTGACAT -3') were used at a concentration of 1 

M. 

 

DNA preparation and mutation analysis by direct DNA sequencing 

Paraffin-embedded germ cell tumors and the corresponding adjacent 

normal tissue samples were selected from the pathology files of 

Dipartimento di Anatomia Patologica, Università Federico II (Naples, 

Italy). Genomic DNA from 22 testes (normal or cancer tissues) was 

isolated with a High Pure polymerase chain reaction (PCR) Template 

Preparation Kit (Roche Molecular Biochemicals, Mannheim, Germany 

and the PTEN mutation status was determined. Briefly, DNA from 

tumor samples and from the corresponding normal tissues was 
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extracted from 3-4 8-� thick serial sections and subjected to PCR 

amplification for exons 1-9 as previously described (Scala et al., 1998; 

Bruni et al., 2000). PCR amplification of each single PTEN exon was 

performed by use of intronic primers designed at the 5’ and 3’ ends of 

each exon, followed by reamplification with nested primer pairs. 

Primer sequences for PCR amplification of each PTEN exon were 

previously reported (Steck et al, 97). Amplified DNA was purified 

using Microspin S300HR Columns (Pharmacia Biotech) and sequenced 

using the Big Dye Terminator cycle sequencing kit (ABI PRISM, 

Applied Biosystems, CA) and the ABI 3100 PRISM DNA sequencer 

(Applied Biosystems). 

 

LOH analysis at the PTEN locus 

LOH on chromosome 10 was studied by PCR-based microsatellite 

analysis as previously described (Mutter et al., 2002). Three 

polymorphic markers spanning the PTEN gene (D10S551, D10S1765, 

D10S541) were selected to cover deletions at the whole PTEN locus on 

chromosome 10q23. DNA from normal testis adjacent to tumors on 

histological sections from the same patient was used as reference. LOH 

was calculated according to the following formula: (peak height of 

normal allele 2)/(peak height of normal allele 1) divided by (peak 

height of tumor allele 2)/(peak height of tumor allele 1). LOH at a 

single locus was considered present when the signal corresponding to 

one allele showed at least a 45% reduction of intensity.  

 

Immunofluorescence analysis 
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5-Bromo-2’deoxyuridine-5’-monophosphate (BrdU) incorporation 

assay was performed as described previously (Baldassarre et al., 1999). 

Briefly, 5 X 105 cells were transfected with 6 g each of control empty 

vector or of wild type or mutant PTEN constructs, respectively, 

together with 3 g of a vector encoding green fluorescent protein 

(Clontech). Labelling was carried out as recommended by the 

manufacturer (Roche). Fluorescence was visualized with Zeiss 140 

epifluorescent microscope equipped with filters that discriminated 

between Texas Red and fluorescein. All assays were performed 3 times 

in duplicate.  

 

Fluorescence-activated cell sorter (FACS) analysis 

Cells were washed into ice-cold PBS and fixed by adding drop-wise 

ice-cold 70% ethanol. Fixed cells were washed with cold PBS, labelled 

with 10 �g/ml propidium iodide (Sigma) and 5 �g/ml Rnase A (New 

England Biolabs) and analysed with a FACScan flow cytometer 

(Becton Dickinson, San Jose, CA) interfaced with a Hewlett Packard 

computer (Palo Alto, CA). Cell cycle analysis was performed with the 

CELL-FIT programme (Becton Dickinson). All FACS were performed 

in triplicate. 

 

Northern blot analysis  

Northern blot analysis was performed according to a standard 

procedure. In brief, equal amounts of total RNA (20 �g/lane) were 

denatured and resolved electrophoretically through formaldehyde-

agarose gels. The RNA was transferred onto a nylon membrane and 
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cross-linked by UV irradiation, Human PTEN cDNA was labeled with 

32P-dCTP using a random primer labeling kit (Amersham Pharmacia 

Biotech), and hybridization was performed at 42°C in the presence of 

50% formamide. 
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