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I. Introduction

The analysis of the spectrum of the hydrogen atom has been the starting point of the
development of Quantum Mechanics at the beginning of the last century. The calcula-
tion of the energy eigenvalues and of the corresponding eigenfunctions of this one-electron
system is simple enough both in non -relativistic and in relativistic quantum mechanics.
When the number of the electrons in the atom increases, an exact solution, such as for
the hydrogen atom, is no more possible. A multielectron atom is a many body system in
which the electron-electron interactions together with the fermionic nature of the electrons
as identical particles play a fundamental role. It is necessary to introduce some approxi-
mations. The majority of these approximations use a spherical self-consistent mean field
Vc (r) that includes, in an average way, all the interactions (mainly the electron-electron
and electron-nucleus interactions) and in which the electrons move as independent par-
ticles. The electrons, being fermions of spin ~/2, obey to the Pauli principle and this
circumstance, as it will be shown later, allows one to justify the structure of the periodic
table of the elements, that is the most important regularity property of the electronic
structure of atoms.

The study of the helium atom, which has only two electrons, demonstrates the good-
ness of the mean field approach because it provides a very good agreement with experi-
ments from both a qualitative and a quantitative point of view. The choice of a suitable
central mean potential depending on the atomic number Z provides a description of the
periodic table of the elements. The most important ways to achieve Vc (r) are the Thomas-
Fermi, the Hartree, and the Hartree-Fock methods.

To improve this approximation, the non-spherical part of the electron-electron inter-
action has to be taken into account. The effect of this residual electrostatic interaction
can be estimated as a perturbation on the Slater determinants containing the single parti-
cle states of Vc (r) . The residual electrostatic interaction mixes these determinants giving
states with a total angular momentum L and with a total spin S (the orbital angular
momentum l and the spin s of the single electrons are no more good quantum numbers).

The spin-orbit coupling gives the fine structure of the levels (multiplets) that are

characterized also with the total angular momentum ~J = ~L + ~S, so that the station-
ary states of the atom are eigenstates of ~J2, ~L2, ~S2, Jz. The knowledge of the multiplets
structure allows the interpretation of the complex spectra of many electrons atoms also
in presence of electrical and magnetical fields.
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II. The Helium Atom

The Hamiltonian of the two electrons that includes only the electrostatic interactions
, after the center-of-mass motion separation, is

H =
2X
i=1

Ã
−~

2∇2~ri
2µ

− Ze
2

ri

!
+

e2

|~r1 − ~r2| −
~2

M
∇~r1 ·∇~r2 . (1)

The nucleus, in the origin, has mass M and charge +Ze, the electrons have the reduced
mass µ = Mm/ (m+M) (m is the electronic mass), positions ~r1, ~r2 and charge −e. In
Eq.( 1) the terms ~2∇2/2µ are the kinetic energies of the relative electronic motion; the
electron-electron interaction e2/ |~r1 − ~r2| screens the external coulombian nuclear potential
−Ze2/r. The last term in Eq.(1) represents the mass polarization term which, in first
approximation, will be neglected.

A mean spherical field Vc(r) can be obtained by substituting Z with an effective
charge Zeff.. This charge is estimated within a variational approach using, for the ground
state, the trial wave function

ψ (r1, r2) =
1

πa3
e−(r1+r2)/aχ00 (1, 2)

where the single particle ground state of the potential−Zeffe2/r appears a = ~2/Zeffme2.
Here χ00 (1, 2) is the singlet spin wave function of the total spin ~S . The addition of two
1/2 spins gives a singlet state S = 0,Ms = 0 and a triplet state S = 1,Ms = 0,±1

χ00 (1, 2) =
1√
2
(α (1)β (2)− β (1)α (2))

χ10 (1, 2) =
1√
2
(α (1)β (2) + β (1)α (2)) (2)

χ11 (1, 2) = α (1)α (2) , χ1−1 (1, 2) = β (1)β (2)

where α is the spin-up state, β the spin-down state,while the numbers 1 and 2 distinguish
the electrons. The fermionic wave function is totally antisymmetric having a spatial part
symmetric (exchanging the coordinates) and a spin part antisymmetric (exchanging the
spins). The minimization of the energy provides the following effective charge:

Zeff = Z − 5

16
(3)

InTable 1, the ground state energies calculated with the variational method are compared
with those estimated from experiments for three different two-electron systems (He, Li+

and Be++). As it can be seen the central field approximation overestimates the electron-
electron repulsion.

Z E0 Evar Eexper
He 2 -108 -76.6 -78.6
Li+ 3 -243.5 -195.6 -197.1
Be++ 4 -433 -368.1 -370.0

Table 1 -Values of the ground state energy of two electrons He atom and ions in

eV. Z is the atomic number. E0 is the energy without electron-electron interaction
(with only the coulombian field of the nucleus), Evar is the variational estimate (with
Zeff = Z − 5/16) and Eexper is the experimental value.
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An improvement was been obtained by Hylleraas and Kinoshita using trial wave
functions (depending on r1 + r2, r1 − r2 and |~r1 − ~r2|), that take into account the corre-
lation between the electrons . The density probability of such wave functions is no more
the product of two independent functions of r1 and r2. When the mass polarization,
the relativistic and the radiative effects are included the agreement between theory and
experiment is within the experimental error as the Table 2 shows.

H− He Li+

I∞p non rel. ion. pot 6090.644298 198344.58014348 610120.4882
+reduced mass corr. -3.315791 -27.192711 -47.7689
+mass pol.corr. -3.928 -4.785 -4.960
+relativistic corr. -0.304 -0.562 19.69
+ radiative corr. -0.0037 -1.341 -7.83

=Ith0 6083.092 198310.699 610079.62
Iexp0 6100±100 198310.82±0.15 610079±25

Table 2 - I∞p is the ionisation potential (in cm−1 , 1cm−1 = 1.24× 10−4eV) cal-
culated including the correlation effects of the two electron interaction without the

relativististic corrections. The complete theoretical estimate Ith0 is obtained adding

the correction due the reduced mass, the mass polarization, the relativistic correc-

tions and the radiative Quantum Electrodynamics corrections. It coincides with the

measured value I
exp
0 within the experimental error.

The independent particles scheme applies to the excited states too. The lowest-lying
excited states correspond to the couple of single particle states:

ψ100 (~r) ,ψnlm (~r) (4)

where n is the principal quantum number, l (l + 1)~2 is the eigenvalue of the orbital angu-
lar momentum operator ~l2, m~ the eigenvalue of the operator lz. Now a two independent
particle state (totally antisymmetric) can have either the singlet or the triplet spin part

Φ+nlm =
1√
2
(ψ100(~r1)ψnlm(~r2) + ψ100(~r2)ψnlm(~r1))χ00 (5)

Φ−nlmMS
=

1√
2
(ψ100(~r1)ψnlm(~r2)− ψ100(~r2)ψnlm(~r1))χ1MS

Starting from the coulombian nuclear potential −Ze2/r these states have the energy eigen-
values

En = −Z
2e2

2a0

µ
1 +

1

n2

¶
a0 =

~2

me2
(6)

on which the electron-electron interaction e2/r12 has to be included. The degeneracy with
respect to l and between triplet and singlet states is removed with the energy shifts

ε±nl =
Z
d3r1

Z
d3r2|ψ100(~r1)|2|ψnlm(~r2)|2 e

2

r12
(7)

±
Z
d3r1

Z
d3r2ψ

∗
100(~r1)ψ

∗
nlm(~r2)ψ100(~r2)ψnlm(~r1)

e2

r12
= Inl ±Knl.

where the signs + and − are relative to singlet and triplet states, respectively.
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The first integral is called the Coulomb (or direct) integral. It represents the Coulomb
interaction between the charge distributions of the two electrons. The integral K is known
as the exchange integral and does not have a classical analogue. Since the Coulomb in-
tegral is positive and being in the general case Knl > 0, it turns out that a spin triplet
state has a lower energy than the corresponding spin singlet state with the same n and
l quantum numbers. Though the Hamiltonian does not contains spin-dependent terms
the purely electrostatic electron-electron interaction removes the spin degeneracy. The
exchange term is much stronger than the spin-dependent terms arising from relativistic
effects, such as the spin-orbit interaction. In fact, as Heisenberg first observed, the ex-
change term is strong enough to keep the electron spins aligned in certain solids, giving
rise to the phenomenon of ferromagnetism.

1 s2s ,1 s2p , −5 Ry

I21=0.743 Ry

I 20=0.649 Ry

1 s2p

1 s2s
K20=0.029 Ry

K21=0.009 Ry

2 3S

2 1S

2 3P

2 1P

Figure 1 - Splitting of the first unperturbed excited state n = 2 of the He by the
electron-electron inetraction. The Coulomb and exchange integrals are given in Rydberg

(1Ry=27.2116 eV).

Figure 1 shows the splitting of the unperturbed helium level for n = 2. In the
electric dipole approximation the transitions between the singlet states and the triplet
states are forbidden and the most intense helium spectral lines belong to two independent
families and apparently two different kinds of helium exist: the orthohelium (with S = 1)
and parahelium (with S = 0).

When n → ∞ then Inl and Knl go to zero and the first ionisation limit of two-
electrons atoms (ions) is reached on the energy E∞ = −Z2e2/2a0 (see Eq.(6)). The crude
approximation of non interacting electrons gives for higher energy excited bound states
with n, n0 > 1 the levels

Enn0 = −Z
2e2

2a0

µ
1

n02
+
1

n2

¶
> E∞. (8)

These levels are degenerate with the continuous energy spectrum of the ion starting from
E∞. The electron-electron interaction induces radiationless transition between the bound
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state and the scattering state. These doubly excited states are called autoionising states
because they can de—excite losing one of the electrons. The phenomenon of autoionisation
is known as Auger effect. Not only helium-like (ions) but all atoms or ions with two or
more electrons have such autoionising states.

III. The Periodic Table of the Elements

The Hamiltonian of an atom with Z electrons without relativistic spin-dependent
terms and external fields is

H =
ZX
i=1

µ
p2i
2m
− Ze

2

ri

¶
+
1

2

ZX
i=1

ZX
j(6=i)=1

e2

|~ri − ~rj | . (9)

The ground state and the first excited states can be described using a mean central field
Vc(r) in which the electrons move as independent particles. In this approximation

H w Hc =
ZX
i=1

µ
p2i
2m
− Vc (ri)

¶
(10)

and the overall effect of the electrons is to screen the coulombian nuclear field more and
more increasing the distance from the nucleus: near the nucleus Vc (r) is of the form
−Ze2/r and very far from it Vc (r) w −e2/r. The screening can be represented by an
effective charge depending on the distance r and the spherical mean field is no more
coulombian

Vc (r) = −Zeff (r) e2/r. (11)

The eigenstates of Hc are the Slater determinants Z×Z that can be formed with the
single particle states |nlmlms > which are eigenstates of p2/2m + Vc (r) , of the orbital

momentum operators ~l2 , lz, and of spin z component σz. The single particle energy levels
enl have a 2 (2l + 1) degeneracy (−l < ml < l, ms = ±1/2). The central potential Vc
changes with the atomic number Z but the order in the levels sequence enl is nearly the
same for all the atoms and it is shown in the Table 3.

The total energy is the sum of the individual energy levels and the Pauli principle
allows the occupancy with only one electron of the state |nlmlms > . The distribution
of the electrons with respect to the quantum numbers n and l is called the electron
configuration. The states with the same n and l form a subshell , the subshells with the
same n form a shell. The ground state of an atom has a configuration with filled (closed)
subshells each containing ni = 2 (2l + 1) electrons and an open subshell with n < ni
electrons (called equivalent). A subshell has a degeneracy

di =
ni!

n!(ni − n)!
the closed subshells have di = 1.As an example, the ground state of the carbon atom
Z = 6 has the configuration 1s22s22p2 . The subshells 1s, 2s are non degenerate while the
subshell 2p has a degeneracy:

6!

2!4!
= 15

the total degeneracy of the ground state is 1× 1× 15 = 15.
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Spectroscopic Maximum numer
Quantum numbers notation of electrons allowed

n, l for subshell (n, l) in the subshell
= 2 (2l + 1) 6,2

5,3
7,0

 6d
5f
7s

10
14
2

6,1 6p 6 5,2
4,3
6,0

 5d
4f
6s

10
14
2

5,1 5p 6·
4,2
5,0

·
4d
5s

10
2

4,1 4p 6·
3,2
4,0

·
3d
4s

10
2

3,1 3p 6
3,0 3s 2
2,1 2p 6
2,0 2s 2
1.0 1s 2

Table 3- The ordering of the single particle energies of each subshell. The energy
increases from bottom to top. The levels enclosed in the square brackets have very

near energies and their order can change varying the atomic number Z.

The last tightly bound electrons, which are in the subshell of highest energy, and
are in an insufficient number to form another closed subshell, are called valence electrons.
They are responsible of the bondings between the atoms in the molecules.

All the information that is needed to discuss the electronic structure and the ‘building
up’ (aufbau) of atoms in on hand now.

The list of the elements begin with the hydrogen that has a ionisation potential of
13.6 eV. The next element is helium that has the largest ionisation potential (24.59 eV).
The configuration 1s2 corresponds to the closed shell n = 1. There are no valence electrons
and helium is the first inert rare gas. The third element is lithium (the first alkali atom)
with the ground state configuration 1s22s1. If the screening of the closed n = 1 shell were
perfect, the ionisation potential would be 13.6/4 = 3.4eV (Zeff = 1); but the electron-
electron potential reduces Zeff and rises the ionisation potential to 5.39eV. Berillium has
a configuration 1s22s2. The ionisation potenial is larger (9.32eV) because of the increase
of the nuclear charge. The subshell 2p is progressively filled starting from Boron (Z=5)
up to Neon (Z=10) for which the shell n = 2 is full. Neon is the second inert rare gas for
which the ionisation potential is increased up to 21.56eV. From Z=11 (Sodium, the second
alkali atom) to Z=18 (Argon, the second rare gas) the subshells 3s and 3p are progressively
filled. The filling of the shell n = 3 is interrupted at Z=19 (Potassium, third alkali element)
because the level 4s is lower of 3d level that starts to be filled from Scandium (Z=21) to
Zinc (Z=30). There is a competition between the levels 4s and 3d that are very close
in energy and the filling is not so regular as for the elements with lower atomic number.
The elements with an incomplete 3d subshell belong to first transition or iron group. The
higher incomplete subshells of the chromium (Z=24) correspond to the state [Ar]4s13d5
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([Ar] stands for the noble gas argon configuration 1s22s23s23p6) that is energetically more
favourable of [Ar]4s23d4 configuration. The high number of valence electrons allows the
very rich class of molecules that can be formed with the chromium. The filling competition
of the subshells 5s and 4d characterizes the second transition or palladium group (from
Z=39 (yttrium) to Z=48 (cadmium)) and the third transition or platinum group (from
Z=71 to Z=80 (mercury)) corresponds to the irregular filling of the states 6s and 5d.
The list of elements ends with the actinides beginning from Z=89 (actinium) in which a
competition occurs between 5f and 6d states. The Z=103 (lawrencium) is the element
with the largest atomic number because the actinides are radiactive elements with highly
instable nuclei that decay by spontaneous fission in lighter elements.

The list of the elements can be organized in a table putting in columns the elements
with similar outer subshell. All the alkali metals have a single weakly bound electron in a
subshell s (2s Li, 3s Na, 4s K and so on). All the halogens (F,Cl,Br,I) have a subshell p5

lacking of only one electron. The alkalis and the halogens have high chemical reactivities
because they can reach more stable energetic arrangements losing or acquiring one electron
in such a way to form completely filled subshells. The last column of the table contains
the rare gases (He, Ne, Ar, Kr, Xe, Rn).

The recurrences of similar chemical properties led Mendeleev in 1869, long time before
the existence of the electrons and of the nuclei were known, to classify the elements in the
periodic table. He put elements with similar chemical properties in the same column. The
chemical properties change progressively along the rows that are called periods. There are
seven periods and each of the periods begins with an alkali element and ends with a noble
gas atom, except for the seventh period which is incomplete.

20 40 60 80

5

10

15

20

25

30
Ionisation Potential in eV

Atomic Number Z

H

He

Li

Ne

Na

Ar

K Rb Cs

Kr
Xe

Figure 2 - The first ionisation potential against the atomic number.

The ionisation potential increases along a period and has a sudden drop passing from
a noble gas to the alkali of the next period (Figure 2).
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IV. Beyond the Central-Field Approximation

There are two main corrections to the approximate hamiltonian Hc. The first one is
the correlation due to the electron-electron interaction

H1 = H −Hc = −
X
i

(Z − Zeff (ri)) e2
ri

+
1

2

X
i,j(j 6=i)

e2

rij
(12)

rij = |~ri − ~rj |

that is called the residual electrostatic interaction and is no more spherically symmetric.
The second correction is the spin-orbit term that, within the central field approximation,
is

H2 =
X
i

ξ (ri)~li · ~si (13)

ξ (ri) =
1

2mc2
1

ri

dVc (ri)

dri
.

If we neglect the spin-orbit coupling terms the effect of the residual electrostatic interaction
can be evaluated treating H1 as a perturbation on Hc. The ground state and the first
excited states of Hc are strongly degenerate and the levels of H can be obtained by
diagonalizing H1 in the subspace So of the lowest eigenvalue E0 of Hc. As an example, the
subspace So of the ground state of the carbon atom contains 15 Slater 6× 6 determinants
formed with the 4 states of the two closed subshell 1s2 and 2s2 and two states of the
incomplete 2p subshell, namely:

|− 1, 1
2
>, |− 1,−1

2
>, |0, 1

2
>, |0,−1

2
>, |1, 1

2
>, |1,−1

2
>

where the first number is the eigenvalue of lz, the second one that of sz (in units ~).
The subspace So is called a multiplet. The multiplet is spanned by the eigenvalues of the
angular orbital momenta ~li and of the spins ~si of the single particle levels of the central
potential Vc (r) . If the overall electron-electron interaction is taken into account only

the total angular momentum ~L =
P~li commutes with H, while the single angular orbital

momenta are not conserved (H is invariant only under overall rotations). The perturbation

H1 is diagonal in the multiplet basis
n
~L2, Lz, ~S

2, Sz

o
whose vectors |αLSMLMS > are

eigenvectors of the total orbital momentum, of the total spin and the quantum number α
labels the different vectors having the same total angular momentum and total spin. The
use of this basis, that has the symmetries of the total hamiltonian H, greatly simplifies
the diagonalization of H1

< α0L0S0M 0
LM

0
S |H1|αLSMLMS > (14)

= δLL0δSS0δMLM 0
L
δMSM 0

S
V
(LS)
αα0

and we need only to diagonalize the matrices V
(LS)
αα0 corresponding to each pair of quantum

numbers LS. The complete electron-electron interaction does not removes the degeneracy
with respect to ML and MS because H1 has an overall spherical symmetry and it does
not have a preferential direction. The levels LS (usually denoted as 2S+1C, C being the
capital letter S for L = 0, P for L = 1,D for L = 2 ...) are left by the residual electrostatic
interaction with a (2L+ 1)(2S + 1) degeneracy.
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The vectors |γLSMLMS > can be constructed by summing up the single orbital

momenta ~li, and the single spins ~si. The Slater determinants spanning the subspace So
have to be mixed each other to form the eigenstates of the basis

n
~L2, Lz, ~S

2, Sz

o
. The

antisymmetry of the wave function forbids some values of L and S compatible with the
single particle angular momenta addition. Returning to the example of the carbon atom
ground state and putting apart the Pauli principle, the addition of the single particle
angular momenta of two 2p electrons gives the following spectral terms:

3S,3 P,3D,1 S,1 P,1D

that have an overall degeneracy of 3×1+3×3+3×5+1×1+1×3+1×5 = 36 = 6×6,
while only 15 states are available. It turns out that the terms of this list satisfying the
Pauli principle are

3P,1 S,1D.

As the triplet- and the singlet-spin states are, respectively, symmetrical and antisymmet-
rical in the exchange of the spins, and as the states S and D on the one hand and P
on the other hand, are respectively symmetrical and antisymmetrical in the interchange
of the orbital variables. The number of linearly independent antisymmetrical states is
9 + 1 + 5 = 15 just the number of the Slater determinants in S0.

Although the perturbation H1 does not depend on the spin S the perturbed levels de-
pends on S via the exchange integrals introduced by the two-body operator H1, like those
that appear in the excited levels of the helium. The repulsive electron-electron interaction
decreases with the mutual distance of the electrons, that is, when the orbital part of the
wave function becomes more antisymmetrical. The spin part of the wave function is more
symmetrical for larger S and therefore the orbital part is more antisymmetrical for larger
S. The levels of a given configuration are in order of decreasing total spin (Hund’s rule).
In the ground state of the carbon atom the lowest level is the triplet one 3P, followed first
by the singlet 1D and then by 1S. These two levels have the same spin multiplicity, but
1D has an higher orbital momentum and in this state the electrons are farther away and
the repulsive effect of electron-electron interaction on it is less.

Subshells that contain the same number of occupied or empty states (holes in the
filled subshell) are equivalent each other. It can be seen that the two subshells with k and
4l + 2 − k equivalent electrons have the same LS terms, so the perturbative corrections
due to H1 are the same.

The addition of the spin-orbit coupling H2 to the electrostatic correction H1 gives a
less symmetric perturbative correction to Hc: H1 + H2 commutes with ~J = ~L + ~S, but
neither with ~L nor with ~S. The relative importance of H2 increases rapidly with Z . In the
light and medium atoms |H1| À |H2| ; in heavier atoms (starting from Pb) |H1| and |H2|
are of the same order of magnitude. In the first case H2 is treated as a small perturbation
on LS levels. This scheme is called Russel-Saunders coupling or LS coupling. First,
H1removes the degeneracy of the linear combinations of Slater determinants corresponding
to the values of ~L =

P~li and of ~S =
P
~si allowed by the Pauli principle. Then H2 gives

a different energy eigenvalue to each possible value of J (J = L+ S,L+ S − 1̇..., |L− S|)
with a residual degeneracy of order (2J + 1).

The other scheme relatively simple is the jj coupling in which |H2| À |H1| . The Slater
determinants are formed using single particle states perturbed by spin-orbit interaction
on Vc: first the orbital angular momentum ~li is coupled with the spin ~si as ~ji = ~li +~si by
H2, then H1 removes the degeneracy between the allowed values of ~J =

P
~ji. The level

structure of the ground state of the heavier atoms is intermediate between those given by
LS and jj coupling.
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It turns out that the matrix elements in the subspace of a level (αLS) with a degen-

eracy of the order (2L+1)(2S +1) are the same as those of the operator γ(α, L, S) ~L · ~S,
where γ(α, L, S) is a constant characteristic of the unperturbed level:

hαLSMLMS |H2|αLSM 0
LM

0
Si (15)

= γ
D
αLSMLMS

¯̄̄
~L · ~S

¯̄̄
αLSM 0

LM
0
S

E
This relationship between the matrix elements of

P
i
~li · ~si and ~L · ~S is proved in

the quantum mechanics theory of angular momentum by the theorem of Wigner-Eckart.
The constant γ is proportional to the average value of ξ (r) on the radial orbital part
common to all the single particle states spanning the subspace of the level. The spin-orbit
correction on a closed subshell is null (for it L = S =ML =MS = 0).

↑

↓

↓

↑

↓

↓

2ζ

2ζ
4ζ

4ζ

2ζ

1s22s22p2

L=1,S=1 P

L=2,S=0 D

L=0,S=0 S

J=0 3P0

J=1 3P1

J= 2 3P2

0

16 cm −1

43 cm −1

10195 cm −1

20649 cm −1

Figure 3 - Splitting of the ground state configuration of the carbon atom due to electrostatic

residual interaction and to the spin-orbit coupling. Here ζ = γ(α, L, S)~2/2. The numbers
near the levels (in cm−1) are the experimental values of the energy levels. The Landè interval

rule is approximatively satisfied. The separation between 3P0 and
3P1 gives a value of

ζ = 8cm−1 and the energy of 3P2, above the ground state 3P0, foreseen by the interval rule is
of 6× 8 = 48cm−1, a little bigger than the measured value of 43cm−1.

While H2 is not diagonal in the representation {αLSMLMS}, as LxSx+LySy+LzSz
does not commute with Lz and Sz, it becomes diagonal in the equivalent representation
{αLSJMJ} . Since

~J2 = ~L2 + ~S2 + 2 ~L · ~S (16)

=
1

2

³
~J2 − ~L2 + ~S2

´
one has

hαLSJMJ |H2|αLSJM 0
Ji (17)
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=
1

2
γ~2 (J (J + 1)− L (L+ 1)− S (S + 1)) = E (J)

and the unperturbed level αLS splits into as many levels as the possible values of J(=
L+ S, ..., |L− S|). The degeneracy of these levels is of order (2J + 1) (Figure 3).

The energy separation between adiacent levels E (J) and E (J − 1) is proportional to
J :

E (J)−E (J − 1)
=

1

2
γ~2[J (J + 1)− L (L+ 1)− S (S + 1)−
J (J − 1) + L (L+ 1) + S (S + 1)] (18)

= γ~2J.

This result is known as the Landè interval rule and is well satisfied experimentally for Z
large enough, when among the overall magnetic interactions between the angular momenta

aij~li · ~sj , bij~li ·~lj , cij~si · ~sj
only the diagonal terms aii dominate all the others. For a single open subshell that is
less than half-filled the costant γ is positive and the lowest energy value has the smallest
possible value of J. These multiplets are called regular. On the other hand multiplets
more than half-filled have γ < 0, the order with J is turned upside down and they are
called inverted. Regular and inverted multiplets have opposite spin-orbit corrections¯̄̄̄

¯ X
k∈filled states

~lk · ~sk
¯̄̄̄
¯ (19)

=

¯̄̄̄
¯̄
 X
k∈all shell

−
X

k∈empty states

~lk · ~sk
¯̄̄̄
¯̄ = −

¯̄̄̄
¯̄ X
k∈empty states

~lk · ~sk

¯̄̄̄
¯̄

being ¯̄̄̄
¯ X
k∈all shell

~lk · ~sk
¯̄̄̄
¯ = 0. (20)

When the subshell is just half-filled there is no multiplet splitting.

11



See also: Hartree and Hartree-Fock Methods in Electronic Structure.

PACS: 31.10.+z; 31.25.-v; 31.30.-i; 32.10.-f; 32.10.Hq
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