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Introduction

The concept of LDPC code was developed by Robert G. Gallager in his

doctoral dissertation at MIT in 1960 ([15]). Impractical to implement, the

LDPC codes were largely overlooked for almost 35 years, but in the last

years, with the development of the iterative decoding algorithms, the in-

terest in LDPC codes has increased dramatically, since their performance

close to the theoretical maximum (i.e. the Shannon Limit), when decoded

iteratively. The construction of a LDPC code falls into two main types

of techniques: pseudo-random techniques and combinatorial approaches.

Construction by a pseudo-random approach builds on theoretical results

stating that, for large block-size, a random construction gives good decod-

ing performance. In general, pseudo-random codes have complex encoding

and decoding, and di�culty in determining the minimum distance. Com-

binatorial approaches can be used to create codes with simple encoders. In

this setting, in some recent studies ([31, 26, 16]), parity{check matrices H

related to �nite geometries are considered and such constructions present

several advantages:

� the matrix H is regular and sparse;

� if the code derives from a partial linear space, then the Tanner graph

(that coincides with the incidence graph of the �nite geometry) does

not have cycles of length 4;

� geometric properties may be immediately translated into structural

properties of the code and allow to determine bounds (or the exact

value, in some cases) for the rank of H and the minimum distance of
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the code;

� the existence of some collineation groups is closely related to the cyclic

or quasi{cyclic structure of the code.

I was introduced to this topic by my supervisor, Prof. G.Lunardon, and

by Dr. Valentino Toschi of NEC Electronics, during his visit at the Di-

partimento di Matematica e Applicazioni "R.Caccioppoli". He showed

us how the companies providing network solutions and communications ser-

vices are interested in the LDPC codes arising from �nite geometries, since

most of them seems to have very good parameters, and for their code{rate,

which is often greater or equal than 239/255u 0.937255, the lower bound

required for optical �ber communication.

Coding theory involves a lot of topics, such as geometry, statistic, infor-

mation theory, engineering, and I have made an e�ort to give my contribute

through my mathematical knowledge, always looking at the developments

of the other �elds of research, trying to take a direction consistent with

them. So far, we have directed our research towards two directions.

In the second chapter, we have studied the quasi-cyclic structures of

the codes arising from �nite geometries, hence the structure of the circu-

lant matrices, the "double" quasi-cyclic structure of some codes and how

we can determine the starters, that is those few rows by which we can con-

struct matrices of large dimension. Most of the results of this chapter are

published in [44].

In the third chapter, we have studied, through geometrical means, the

minimum distance of the codes deriving from �nite geometries, improving

known lower bounds, �nding a new lower bound speci�c to the codes we

have considered, determining when some of them is sharp and, �nally, for

some classes of codes, we have characterized some low weight codewords as

linear combination of codewords of minimum weight. Part of this research

was done during my visit at the Department of Pure Mathematics and

Computer Algebra at Gent University and it is presented in [45].
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Chapter 1

Preliminaries

1.1 A brief review of Coding Theory

Let V (n; q) be the numerical vector space of dimension n over the �nite

�eld GF (q). A [n; k] linear code C over GF (q) is a k{dimensional vec-

tor subspace of V (n; q). The main goal in coding theory is transmitting

information over noisy channel. A simple model for this is the following:

x = sent codeword! Noisy channel ! y = x+ e; e = error vector!

! bx = decoded vector.

A simple class of channel models is the class of Discrete Memoryless

Channel, DMC for short, and consists of

� a discrete input alphabet X,

� a discrete output alphabet Y,

� a conditional probability mass function PYi=Xi
(yi=xi) that tell us the

probability of observing the output symbol yi when the input symbol

xi has been sent,

� the fact that the transmission at di�erent times indices is statistically

independent, i.e., using x := (x1; : : : ; xn) and y := (y1; : : : ; yn) we
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have

PY=X(y=x) =
nY
i=1

PYi=Xi
(yi=xi):

Simple models in this class are the Binary Symmetric Channel(BSC)

and the Binary Erasure Channel (BEC), but a more realistic model is

the Binary{Input Additive Gaussian Noise Channel (AWGNC), which

is a memoryless channel model such that

� X=f0; 1g,

� Y=R, hence it is strictly speaking not a DMC,

� the conditional probability density function is

PYi=Xi
(yi=xi) =

1p
2��

exp(�(yi � xi)
2

2�2
)

where

xi := 1� 2xi :=

8<: +1; if xi = 0;

�1; if xi = 1.

Roughly speaking, we consider a k�dimensional space embedded in a

n�vector space just for error correction; the integer n � k is called the

redundancy of the code and k
n
, that is the bits necessary to send the

messages over the bits actually used in the communication, is the code{

rate of C. A concept strictly related to the error correction capacity of

the code is that of minimum distance. Let x and y be two codewords

of C; the Hamming distance d(x;y) is the number of the components in

which they di�er. The minimum distance d of C is the minimum of the

set fd(x;y);x;y 2 C;x 6= yg. The weight w(x) of a codeword x is d(x;0),

where 0 is the zero of the vector space V (n; q).

Lemma 1.1. ([19]) For a linear code C, minfw(x);x 2 Cnf0gg =

minfd(x;y);x;y 2 C;x 6= yg.

Therefore, suppose that codeword x has been transmitted and we re-

ceive the vector y which may have been distorted by noise; for an assump-

tion that all the codewords are equally likely to be transmitted, the best
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decision (hard decision) is to decode y as that codeword bx such that d(bx; y)
is the smallest possible. Such decoding is calledMaximum{Likelihood de-

coding (ML� decoding). There is the following result that shows how

many errors can be corrected in hard-decision, if we know the minimum

distance.

Theorem 1.2. ([19]) Let d be the minimum distance of the code C;

then C can correct up to t errors if d � 2t+ 1.

So far we have discussed hard decision schemes, but modern coding the-

ory is based on soft decision algorithms, i.e. on iterative probability de-

coding algorithm, for example the Sum{Product Algorithm (SPA), which

is based on belief propagation and assumes that the channel is AWGNC.

We will not describe in details this aspect of the coding theory (we remind

to [9],[15],[30],[40]), but we observe that

� most of the iterative decoding algorithms are based on probabilistic

arguments, and in fact also the ML{decoding can be reformulated as

follows: bx = argmax
x2C

PY=X(y=x) = argmin
x2C

nX
i=1

�ixi

where we have used the log{likelihood ratios (LLRs)

�i := log

 
PYi=Xi

(yi=0)

PYi=Xi
(yi=1)

!

� if we assume that more than t errors may occur (with d = 2t + 1 or

d = 2t + 2), then any deciding algorithm can not guarantee perfect

transmission, but, from a theoretical point of view, the probability

of lost information can be made as small as desired (see Shannon's

�rst theorem, [55]). Anyway, the performance of the probabilistic

algorithms is strictly related to the minimum weight codewords, but

also to low weight{codewords in general.

The decoding procedures for linear codes are valuable. It is well known

that any vector subspace of V (n; q) can be determined by a �nite set of

homogenous equations, in other words by a (m;n){matrix over GF (q) H.
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A matrix H such that xTH = 0 () x 2 C is called a parity{check

matrix of C; we usually refer to the components of x and to the rows of

H as the code bits and the check sums, respectively. We say that a check

sum hi checks the code bit xj if the j�ht component of hi is di�erent than

zero.

The parity{check matrix plays a fundamental role in decoding. First of

all, we want recall a well known result about the connection between the

parity{check matrix H and the minimum distance of a linear code.

Theorem 1.3. ([19]) Let C be a linear [n; k]{code over GF (q) with

parity{check matrix H. Then the minimum distance of C is d if and

only if any d� 1 columns of H are linearly independent but there are

some d columns linearly dependent.

This result is connected to the One{step Majority Logic decoding(see

[34], [46]. A set of parity{check sums given by a parity{check matrix of a

code is said to be orthogonal on a given code bit if each of the parity check{

sums include the code bit but no other code bit is included in more than

one of these parity{check sums. If for each code bit there are 
 parity{check

sums that are orthogonal on it, then the code is majority-logic decodable

up to b

2
e bit errors. Hence the minimum distance is at least 2b


2
e+1. A

Low Density Parity Check Code, LDPC for short, is a binary code such

that

1. each row has � non{zero components,

2. each column has 
 non{zero components,

3. ant two columns have at most one non{zero common components,

4. H is a sparse matrix .

The LDPC codes have a remarkable importance in coding theory because

they were the �rst codes to allow data transmission rates close to the the-

oretical maximum, i.e. the Shannon limit (see [55]).

A linear code C is cyclic if the right shift of x = (x1; x2; : : : xn) 2 C,

that is the codeword (xn; x1 : : : xn�1), is also a codeword of C.
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Let F [x] be the ring of polynomials in the indeterminate x over the �eld

F := GF (q) and let R be the ring of polynomials of F [x] modulo xn � 1,

that is R �= F [x]
(xn�1) , where (x

n � 1) is the ideal generated by xn � 1. Recall

that every ideal I of R has the following form: I �= (f(x))
(xn�1) , where f(x) is a

divisor of xn � 1.

Theorem 1.4. A [n; k] code C is isomorphic, as a vector space, to an

ideal of R generated by a polynomial f(x) of degree n � k; such poly-

nomial is said to be the generator or the characterization polynomial

of the code.

A matrix H is circulant if every row is the right shift of the previous

one.

Proposition 1.5. A cyclic code C has a circulant parity check matrix

and, conversely, if a code C has a circulant parity check matrix, then

C is a cyclic code.

A linear code C is said to be quasi{cyclic of index l if the right shift of

l position of a codeword of C is also a codeword of C; if l = 1, C is cyclic.

Proposition 1.6. A code C with a parity{check matrix

H =

0BBB@
H11 : : : : : : H1t

: : : : : : : : : : : :

Hs1 : : : : : : Hst

1CCCA
such that every Hij is circulant, is quasi{cyclic.

The encoding of quasi{cyclic codes can be implemented with linear

feedback shift register based on their generator polynomials (see [46],[34]).

In order to study the relationship between the code bits and the check

sums, especially referred to the iterative decoding algorithm, Tanner ([50])

introduced a bipartite graph, that is indeed called the Tanner graph. The

Tanner graph consists of two levels of vertices: one level consists of vertices

that represent the code bits, the other one consists of vertices that represent

the check sums. No two vertices of the same level are connected and a code
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bit{vertex xi is connected by an edge to a check sum{vertex hj if and only

if hj checks xi. A cycle in a graph is a sequence of connected edges which

starts and ends at the same vertex and no vertex, except the �rst and the

last one, appears more than once. The number of the edges on a cycle is

called the length of the cycle and the length of the shortest cycle is the

girth of the graph. It is clear that a Tanner graph has girth at least 4. The

performance of an iterative decoding algorithm, like the SPA decoding, is

decreased by short cycles, especially the ones of length 4.

1.2 Finite-Geometry LDPC Codes

Most of the currently used LDPC codes have been generated by com-

puter with a random{matrix approach; encoding and decoding of these

long computer{generated LDPC codes, or determining the minimum dis-

tance, is quite complex due to the lack of code structure. In some recent

studies [31, 26, 16] parity{check matrices related to �nite geometries are

considered. Such constructions present several advantages: geometric prop-

erties | for example the axioms of linear spaces | may be immediately

translated into structural properties of the code, and these might be used

to implement more e�cient decoding algorithms; likewise, the nature of the

automorphism group of the geometry itself is closely related to the cyclic

or quasi{cyclic structure of the code. Furthermore, a geometric approach

allows an easier description of the characteristics of the code and a direct

estimates on the minimum distance.

In order to introduce LDPC codes from �nite geometries, a brief overview

of the geometrical concepts we are going to use is needed. An incidence

structure is a triple I = (P;B; I), where P is a set of points, B is a set

of blocks and I � P � B is an incidence relation. We say that a point

P and a block ` are incident (or, equivalently, that P is on ` or ` passes

through P ) when (P; `) 2 I. A �nite incidence structure I with jPj = n

and jBj = m may be represented by a (m� n){matrix, say H = [hij] over

GF (2) (or, equivalently, by HT ) whose rows are indexed by the blocks and
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whose columns are indexed by the points, and such that hij = 1 when the

i{th block is incident with the j{th point and hij = 0 otherwise.

If any two distinct blocks of I have at most one common point, I is

called a partial linear space and the blocks are usually called lines. A

partial geometry pg(s; t; �) is a partial linear space such that:

1. each line is incident with a constant number s+ 1 of points;

2. each point is incident with a constant number t+ 1 of lines;

3. for any non{incident point{line pair (P; `) the number of lines incident

with P and intersecting ` is exactly �.

The incidence matrix of a partial geometry is regular, in the sense that any

row has constant weight s + 1 and any column has constant weight t + 1.

Let rank2(H) be the rank of the incidence matrix H of a partial geometry

pg(s; t; �) over the �eld GF (2); in [26], it is shown that

rank2(H) � st(t+ 1)(s+ 1)

�(t+ s+ 1� �)
+ 1 (1.1)

and if t+ s+ 1� � � 1 mod 2, then

rank2(H) � st(t+ 1)(s+ 1)

�(t+ s+ 1� �)
: (1.2)

The incidence graph G of an incidence structure I = (P;B; I), is a graph
having as vertices P [ B, such that never two vertices both in P or in B
are connected and two vertices x 2 P and y 2 B are connected if and

only if (x; y) 2 I. A cycle in G is a sequence of connected vertices which

starts and ends at the same vertex and does not contain any other vertex

more than once. The length of a cycle is the number of its vertices and

the girth of G is the length of its shortest cycle (for more details, see [3]).

The graph of a partial linear space does not have cycles of length 4; if � is

greater than one, then G has N6 =
1
3
m(n� s� 1)

�
�
2

�
cycles of length 6 (see

[26]). If � = 1, then the partial geometry is called generalized quadrangle

and the graph G is devoid of cycles of length 4 and 6, while it contains

N8 =
1
4
m(n� s� 1)ts cycles of length 8.
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We say that a LDPC code C derives from a �nite geometry if C has

a parity check matrix H that is the incidence matrix of a �nite incidence

structure I = (P;B; I), mostly of a linear space. If H is the incidence ma-

trix of a partial geometry pg(s; t; �), then we can express some parameters

of the code as function of the parameters of the partial geometry. The code

C turns out to be a [n; n�rank2(H)] binary code, with n = jPj or n = jBj,
according to the fact that we have labeled the columns by the points or by

the lines, respectively. Also we have that rank2(H) is given by (1.1) and

(1.2). Furthermore, the following lemma is proved in [26].

Lemma 1.7. Let H be the incidence matrix of a partial geometry

pg(s; t; �) and let C be the code which has HT as parity{check matrix;

then,

dmin � max

(
(t+ 1) (s+ 1� t+ �)

�
;
2 (s+ �)

�

)
: (1.3)

The following also holds true.

Lemma 1.8. Let H be the incidence matrix of a partial geometry

pg(s; t; �) and C be the code which has H as parity{check matrix, then

we have

dmin � max

(
(s+ 1) (t+ 1� s+ �)

�
;
2 (t+ �)

�

)
: (1.4)

Proof. The matrix HT is the incidence matrix of the dual geometry of the

partial geometry pg(s; t; �), that is a partial geometry pg(t; s; �).

Finally, if any two columns shares at most one non{zero component

(for example, if H is the incidence matrix of a partial linear space and we

have labeled the columns by the points), then we have theMassey's bound

([40]); precisely

dmin � 
 + 2

where 
 is the weight of a column.

These results are expressed in terms of the parameters of the partial

geometry, but they basically derive from formulas that use the values and

the multiplicities of the eigenvalues of HHT ; using geometric arguments,
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we can obtain stronger results about the minimum distance of the code and

about the small weight codewords in general (see Chapter3).

It is easy to see that the Tanner graph of a code from a partial geometry

pg(s; t; �) coincides with the incidence graph G. Hence if � > 1, then the

Tanner graph has girth 6 and if pg(s; t; �) is a generalized quadrangle, then

the Tanner graph has girth 8 and we know exactly how many cycles of

minimum length it has.

One of the most important proprieties of these codes is that they are

either cyclic or quasi{cyclic and this is due to the action of some cyclic

collineation groups. A map of P [ B into itself is called collineation if

it maps points into points, lines into lines and preserves the incidence

relation. Let G = hgi be a cyclic collineation group of I = (P;B; I), acting
semi{regularly on the points and on the blocks; that is the only element

of G that �xes a point or a block is the identity. Let G(P ) (respectively

G(`)) be a point orbit (respectively a line orbit) under the action of G and

label the elements of G(P ) (respect. G(`)) so that Pi = P gi�1 (respectively

`i = `g
i�1

). In this way, we obtain an incidence matrix

H =

0BBB@
H11 : : : : : : H1t

: : : : : : : : : : : :

Hs1 : : : : : : Hst

1CCCA
such that any Hij (the incidence matrix of G(P ) [G(`) for some P and `)

is a circulant matrix. It is clear that, in order to construct the matrix H, it

is enough to know the �rst row of every Hij, that is, it is enough to know

the incidence of t lines `i, i = 1; : : : ; s, such that G(`i) 6= G(`j)8 i 6= j;

we usually call such lines starters. The importance of the quasi{cyclic

codes is well known: they have a linear time encoding (based on their

characterization polynomials, see [46],[34]) and this is not shared by other

LDPC codes in general. But in the LDPC codes deriving from �nite

geometries, studying the action of collineation groups we can also �nd, in

some sense, a regular display of the submatrices Hij and we can �nd a

geometrical characterizations of the line{starters. This is, essentially, the

aim of the Chapter2.
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An example (see [31]) of LDPC codes deriving from a �nite geometry is

the following. Let V be a (d+ 1){dimensional vector space over the �nite

�eld GF (q); with q a prime power. The lattice of the subspaces of V forms

the d{dimensional Projective Geometry � = PG(d; q). The Singer group

of � is a cyclic group S = h�i of collineations of � acting regularly on

points and hyperplanes, that is the only element of S that �xes a point or

a hyperplane is the identity and S is transitive on points and hyperplanes

of �; hence, its order is qd+1�1
q�1 .

Choose as (d+1){dimensional vector space overGF (q) the �eldGF (qd+1)

and let � be a primitive element of GF (qd+1); the collineation � is induced

by the map

x 2 GF (qd+1)! �x 2 GF (qd+1):

The action of S is, in general, not regular on the k{dimensional subspaces

of � (see [10]), with k =2 f0; d� 1g; more precisely, if d is even, then � acts

regularly on the lines, while if d is odd, the subgroup of order q+1 �xes the

regular spread S line-wise and the subgroup of order qd+1�1
q2�1 acts regularly

on the lines of S. Let H be the incidence matrix of the set of points and

lines of �; labeling the points and the lines as discussed above, we see that

H can be written in the following way:

H =

0BBB@
H1

: : :

Ht

1CCCA :

If d is even, then t = qd�1
q2�1 and Hi is a circulant square matrix of order

qd+1�1
q�1 . If d is odd, then t = qd�q

q2�1 , Hi, i > 1, is the incidence matrix of

the set of points of � and the lines not in S (i.e. Hi is a circulant square

matrix of order qd+1

q2�1) and H1 is the incidence matrix of the points of �

and the lines in S (i.e. H1 = (I1 : : : Iq+1) and Ij is the identity matrix of

order qd+1�1
q2�1 ). Hence, the LDPC code arising from the points and lines of

� is a quasi{cyclic code. In Chapter 2, we go further and investigate the

action of some subgroups of the Singer group on the points and lines of

other incidence structures.
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Quasi–cyclic codes from

Hermitian Varieties

2.1 Codes from the Hermitian Curve

Let PG(2; q2) the Desarguesian projective plane of order q2 and represent it

via GF (q6)�modGF (q2)�, where GF (q)� is GF (q)nf0g: we denote a point of
PG(2; q2) by (a), where a 2 GF (q6)� is a representative of the equivalence

class. Let Tr : x 2 GF (q6) 7! x + xq
2

+ xq
4 2 GF (q2) be the trace

function; in this representation, a line ` has equation Tr(ux) = 0, for some

u 2 GF (q3)� and we denote ` by [u].

The function

(x; y) 2 GF (q6)�GF (q6) 7! Tr(xq
3

y) 2 GF (q2)

is a non{degenerate Hermitian sesquilinear form, hence it induces a uni-

tary polarity � of the plane such that

P � = (u)� = [uq
3

]

`� = [u]� = (uq
3

):

The absolute points of such polarity , that is the points of the Hermitian

curve H (2; q2), have equation Tr(xq
3+1) = 0 and jH(2; q2)j = q3+1. Every

line of the plane is tangent or q + 1{secant to H(2; q2): in the former case
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the line are said to be totally isotropic, in the latter one they are said

non{isotropic. From now on, we denote the set of non isotropic lines by

L and we recall that jLj = q2(q2 � q + 1).

Let � be a primitive element for GF (q6); the Singer group S = h�i of
PG(2; q2) has order q4 + q2 + 1 and it is the direct sum of two subgroups:

S1 = h�1i of order q2 + q + 1, with �1 given by

x 2 GF (q6)! �q
2�q+1x 2 GF (q6)

and S2 = h�2i of order q2 � q + 1, with �2 given by

x 2 GF (q6)! �q
2+q+1x 2 GF (q6):

In [2] it is shown that the point orbits of these two subgroups give rise to

two di�erent cyclic partitions of PG(2; q2): a cyclic partition of PG(2; q2)

into Baer subplanes

Baer(u) :=
n
�u+i(q

2�q+1) j i = 0; : : : ; q2 + q
o

for u = 0; : : : ; q2 � q and a cyclic partition of PG(2; q2) into complete arcs

Arc(t) :=
n
�t+i(q

2+q+1) j i = 0; : : : ; q2 � q
o

for t = 0; : : : ; q2 + q. We recall that an arc A of PG(2; q2) is a set of points

of PG(2; q2) no three collinear; A is said to be complete if it is not properly

contained in any other arc. A Baer subplane B is a subplane of PG(2; q2)

which is incident with every line of PG(2; q2), or, dually, such that every

point of PG(2; q2) is incident with a line of B. It is well known that when

the order of PG(2; q2) is q2, then the order of B is q. Thus, for every line

` of PG(2; q2), there exists one and only one subplane Baer(u) such that

j` \Baer(u)j = q + 1; in this case we say that ` contains a Baer subline

of Baer(u); for any other Baer(v) 6= Baer(u), we have j` \Baer(v)j =
1. Let Si (`) be the orbit of ` under the action of Si; we note that if `

contains a subline of Baer(u), then any other line of S1 (`) does; likewise,

if ` is tangent (respect. secant, external) to Arc(t), then any other line

of S2 (`) is. Let PGU(3; q) be the Unitary Group, that is the group of
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linear collineations of the plane �xingH(2; q2); in [7], it's shown that S2 is

a subgroup of PGU(3; q), hence, there is a partition of H(2; q2) into q + 1

complete arcs and a partition of L into q2 orbits under the action of S2.

We are interested in the LDCP code arising from the Unital design (or

Classical Unital ) D = (H(2; q2);L; I), where I is the natural incidence

relation (for more details about the Unital design see [10] or [21]).

Proposition 2.1. The code C arising from D is a [q2(q2�q+1); k] LDPC
code, with k = (q2�q�1)(q2�q+1) if q is even, or k = (q2�q)(q2�q+1),
if q is odd. The code C is capable of correcting any error pattern

with b q+1
2
c or fewer errors using one{step majority logic decoding, its

minimum distance is at least q + 2, its Tanner graph has girth 6 and

precisely it contains 1
6
q4(q3 + 1)(q2 � 1) cycles of length 6.

Proof. Let H be the incidence matrix of D: H is a q3 + 1� q2(q2 � q + 1)

matrix over GF (2), such that every row has weight q2 and every column has

weight q+1, hence the density of H is 1
q2�q+1

. Hiss in [19] proved that when

q is even, then rank2(H) = q3+1; if q is odd, then rank2(H) = q(q2�q+1),
where rank2(H) is the rank of H over GF (2). Let C be the code having H

as parity check matrix: the �rst part of the assert is hence clear. Since any

two rows of H have exactly one non{zero component in common (that is

there is exactly one line through two points), the check sums can be used

for majority{logic decoding of the code to correct any error pattern with

at most b

2
c errors, where 
 is the weight of the columns (see [31]). On

the other hand, the fact that any two columns have at most one non{zero

component in common (that is any two lines have at most one point in

common), implies that the Tanner graph doesn't have cycles of length 4,

but it has cycles of length 6. Indeed, geometrically, a cycle of length 6

is equivalent to the existence of triangle in the design D. For every two

points in a line ` there are q3 + 1 � (q + 1) = q3 � q triangles, hence for `

pass q(q+1)
2

triangles; in this way we have counted every triangle tree times,

hence in D there are 1
6
q4(q3 + 1)(q2 � 1) triangles.
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Now we show how the code C is quasi{cyclic and to �nd starters of such

a code.

Proposition 2.2. The code C is quasi{cyclic.

Proof. Let P1; : : : ; Pq+1 be points of H(2; q2) and `1; : : : ; `q2 be lines of L
that have distinct orbits under the action of S2. Label the elements of

H(2; q2) in the following way: P ((i�1)(q2�q+1)+j+1) := P
�
j
2

i , i = 1; : : : ; q + 1,

j = 0; : : : ; q2 � q; analogously, for the lines let `((i�1)(q
2�q+1)+j+1) := `

�
j
2

i ,

i = 1; : : : ; q2, j = 0; : : : ; q2�q. Hence, the incidence matrix may be written
as

H =

0BBBBBB@
H1;1 : : : H1;q+1

: : : : : : : : :

: : : : : : : : :

Hq2;1 : : : Hq2;q+1

1CCCCCCA ;

whereHi;j is a circulant square matrix of order q
2�q+1 for any i = 1; : : : ; q2

and j = 1; : : : ; q + 1.

Let now B0 be Baer(0) and C = B0 \ H(2; q2). The following result

shows how to �nd points of H(2; q2) and lines of L which have distinct

orbits under the action of S2, that is, respectively, point{starters and

line{starters.

Proposition 2.3. The points of C are point{starters and the lines f[u] j
(u) 2 B0nCg are line{starters; in particular, if q is even, then the set of

line{starters f[u] j (u) 2 B0nCg is f[u] not passing through (1) and (u) 2
B0g.

Proof. In [2], it is proved that jArc(0) \Baer(u)j = 1 for any u = 0; : : : ; q2�
q; the same proof can also be used to show that jArc(t) \Baer(u)j = 1, for

any u = 0; : : : ; q2�q and t = 0; : : : ; q2+q, hence the points of C are starters.

Using duality, we see that S1(`) \ S2(m) consists of one line, for every two

lines ` and m of L, hence the lines of S1(`) \ L are starters. The non{

isotropic lines are f` = P � j P non{absoluteg = f[uq3] j (u) =2 H(2; q2)g.
If ` = [1], then S1(`) \ L = f[u] j (u) 2 B0g \ f[uq3] j (u) =2 H(2; q2)g =
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f[u] j (u) 2 B0 n Cg. If q is even, then f[u] j (u) 2 B0 n Cg = f[u] j (u) 2
B0 and Tr(uq

3+1) 6= 0g = f[u] j (u) 2 B0 and Tr(u2) 6= 0g = f[u] j (u) 2
B0 and Tr(u) 6= 0g = f[u] j (u) 2 B0 and(1) 62 [u]g.

A circulant matrix Hi;j is the incidence matrix of an arc Arc(t) �
H(2; q2) with respect to a S2(`), with ` 2 L, hence every row of Hi;j has

weight at most 2. Our next step is to describe how the q + 1 points of any

given line are arranged in the q+1 arcs, hence providing description of the

submatrices Hij's. This kind of information is useful in case of truncation

of the matrix H: for applicative purpose, in some cases, not the whole

matrix H, but a part of it can be used as parity check matrix for a code.

The truncation may consists in throwing away some lines or rows of the

matrix (see the next subsection) or a few string of Hi;j's; in the latter case,

we preserve a quasi{cyclic structure.

The following two lemmas are proved in [12].

Lemma 2.4. If q is even, then Baer(u)\H(2; q2) is a subline of Baer(u);
if q is odd, then Baer(u) \ H(2; q2) is a subconic of Baer(u), for u =

0; : : : ; q2 � q.

Remark 2.5. A conic of the plane PG(2; q) is, for q odd, the set of

the points represented by vectors v in the underlying vector space,

say V (3; q), which annihilate a non{degenerate quadratic form Q(v).

All conics of PG(2; q) are projectively equivalent and the group of

collineations �xing any given one is the Projective Orthogonal Group

PO(3; q). We observe that PO(3; q) is isomorphic to the group PGL(2; q)

of linear collineations of the line in its 3{transitive permutation rep-

resentation.

Lemma 2.6. If ` contains a subline of Baer(u), then ` is tangent to

the q + 1 arcs containing the q + 1 points of ` \Baer(u).

We can now prove the following theorem.

Theorem 2.7. If q is even, then there exists a unique orbit S2(`) such

that any line of S2(`) is tangent to Arc(t), for any Arc(t) 2 H(2; q2);
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any other orbit S2(m) is such that any of its lines is tangent to the

same, unique, arc of H(2; q2) and secant to the same q
2
arcs of H(2; q2).

If q is odd, then there exist 1
2
q(q + 1) orbits S2(`) such that any line of

S2(`) is tangent to the same two arcs of H(2; q2) and secant to the same
(q�1)

2
arcs of H(2; q2); furthermore, there exist 1

2
q(q � 1) orbits S2(m)

such that any line of S2(m) is secant to the same q+1
2

arcs of H(2; q2).

Proof. Consider in any S2(`), the unique line that contains a subline of B0,

namely `. If q is even, than C = B0 \ H(2; q2) is a subline of B0 and two

cases may occur:

1. ` \ C = C; hence, by Lemma 2.6, the line ` is tangent to any arc of

H(2; q2) as well as any other line of S2(`);

2. j` \ Cj = 1; hence, ` is tangent to a unique arc of H(2; q2) and any

other line of S2(`) is tangent to the same arc.

When q is odd, C = B0\H(2; q2) is a subconic and we have, again, two

possible cases:

1. j` \ Cj = 2; thus, ` is tangent to two arcs of H(2; q2) and any other

line of S2(`) is tangent to the same arcs;

2. otherwise, `\C = ;; hence, ` is not tangent to any arc of H(2; q2) as
well as any other line of S2(`).

We can �nally prove the double cyclic structure of the code C; that is,

we write a circulant display of submatrices Hij.
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Theorem 2.8. If q is even, then

H =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

I1 I2 : : : : : : : : : Iq+1

A1;1 A1;2 : : : : : : : : : A1;q+1

A1;q+1 A1;1 : : : : : : : : : A1;q

: : : : : : : : : : : : : : : : : :

A1;2 A1;3 : : : : : : : : : A1;1

A2;1 A2;2 : : : : : : : : : A2;q+1

A2;q+1 A2;1 : : : : : : : : : A2;q

: : : : : : : : : : : : : : : : : :

A2;2 A2;3 : : : : : : : : : A2;1

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

Aq�1;1 Aq�1;2 : : : : : : : : : Aq�1;q+1

Aq�1;q+1 Aq�1;1 : : : : : : : : : Aq�1;q
: : : : : : : : : : : : : : : : : :

Aq�1;2 Aq�1;3 : : : : : : : : : Aq�1;1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where Ii is the identity matrix of order q2�q+1, for i = 1; : : : ; q+1, while

Aij is a square circulant matrix of order q2 � q + 1, for i = 1; : : : ; q � 1

and j = 1; : : : ; q + 1.



Chapter 2. Quasi{cyclic codes from Hermitian Varieties 22

If q is odd and r = q + 1, then

H =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

A1 A2 : : : : : : : : : : : : : : : Ar

B1;1 B1;2 : : : B1; r
2

B1; r
2
+1 B1; r

2
+2 : : : B1;r

B1; r
2

B1;1 : : : B1; r
2
�1 B1;r B1; r

2
+1 : : : B1;r�1

: : : : : : : : : : : : : : : : : : : : : : : :

B1;2 B1;3 : : : B1;1 B1; r
2
+2 B1; r

2
+3 : : : B1; r

2
+1

B2;1 B2;2 : : : B2; r
2

B2; r
2
+1 B2; r

2
+2 : : : B2;r

B2; r
2

B2;1 : : : B2; r
2
�1 B2;r B2; r

2
+1 : : : B2;r�1

: : : : : : : : : : : : : : : : : : : : : : : :

B2;2 B2;3 : : : B2;1 B2; r
2
+2 B2; r

2
+3 : : : B2; r

2
+1

C1;1 C1;2 : : : : : : : : : : : : : : : C1;r

C1;r C1;1 : : : : : : : : : : : : : : : C1;r�1
: : : : : : : : : : : : : : : : : : : : : : : :

C1;2 C1;3 : : : : : : : : : : : : : : : C1;1

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

Cq�2;1 Cq�2;2 : : : : : : : : : : : : : : : Cq�2;r
Cq�2;r Cq�2;1 : : : : : : : : : : : : : : : Cq�2;r�1
: : : : : : : : : : : : : : : : : : : : : : : :

Cq�2;2 Cq�2;3 : : : : : : : : : : : : : : : Cq�2;1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where Ai, i = 1; : : : ; r, Bij, i = 1; 2 and j = 1; : : : ; r, Cij, i = 1; : : : ; q � 2

and j = 1; : : : ; r are all suitable square circulant matrices of order

q2 � q + 1.

Proof. The set C is either a line or a conic. Since PO(3; q) ' PGL(2; q),

there exists in both cases a cyclic group T = h� i �xing C and isomorphic

to the Singer group of the line (that is jT j = q + 1 and T acts regularly

on the points of C). Since C is contained in H(2; q2), the group T is a

subgroup of PGU(3; q). If C is a line, then T �xes C and also the point

C� = (1) 2 B0. In this case, the other line{orbits in B0 have all order

q+1. On the other hand, when C is a conic of B0, we may, by Remark 2.5,

assume it to have equation y2 = xz. We consider the isomorphism � (see

[21]) between PO(3; q) and PGL(2; q) which associates to f 2 PGL(2; q),
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represented by the matrix A =

0@a b

c d

1A, the collineation �(f) 2 PO(3; q)

represented by

�0(A) =

0BBB@
d2 2cd c2

bd ad+ bc ac

b2 2ab a2

1CCCA :
Let now � be a primitive element of GF (q2) with minimal polynomial

x2 � x + �, where � is a primitive element of GF (q). Such an element

always exists, see [6]. Then, a collineation spanning the Singer group of

the line may be represented by

S =

0@0 ��
1 1

1A :
Hence, � is represented, via �, by

S 0 = �0(S) =

0BBB@
1 2 1

�� �� 0

�2 0 0

1CCCA :

Observe that det(S 0��I) = (���)(�2+(2��1)�+�2). The irreducibility

of x2�x+ � over GF (q) implies that the polynomial x2+(2�� 1)x+ �2 is

irreducible over GF (q); hence, S 0 has one eigenvalue � = � with eigenspace

V (�) = hei = h(2;�1; 2�)i. In particular, the group T �xes the point

P = hei and the line ` = P �, that is the line of equation �x + y + z =

0. Let now Q = hvi where v = (x; y;��x � y) is a point on `; then,

S 0vT = ((1��)x+y;��(x+y); �2x)T ; hence, S 0 induces on ` a collineation

represented by the matrix0@1� � 1

�� ��

1A =

0@ 1 1

�� 0

1A2

;

on the other hand, 0@ 1 1

�� 0

1A =

0@0 1

1 0

1AS
0@0 1

1 0

1A :
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This means that T induces on ` a group of collineations isomorphic to the

subgroup of order q+1
2

of the Singer group of the line | hence, there are

two point orbits on ` of order q+1
2
. Any point not on ` and distinct from

P can be written in unique way as hv + ei, with hvi 2 `; we have that

� k(hv+ ei) = h�2kv+ �kei = h�2kv+ �k(q+1)ei = hv+ ei if k � q+ 1; hence,

the orbit of any such point has order q + 1. By duality, there are two line

orbits of order q+1
2

and q � 1 line orbits of order q + 1. One of these is the

orbit of the tangent lines to the conic, which do not occur in the incidence

structure we are considering. Let now P be a �xed point of C and label the

point starters in the following way: Pi+1 := P � i, i = 0; : : : ; q. If q is even,

then there is a line starter, say `0 that contains the subline C and there

are q � 1 line starters, say `1; : : : ; `q�1 that contain sublines with distinct

orbits under the action of T . In this case label the line starters as follows:

`(0) := `0, and `
((i�1)(q+1)+j+1) := `�

j

i ; i = 1; : : : ; q�1 and j = 0; : : : ; q. If q is

odd, then there is one line starter, say `0, that contains the unique subline

�xed by T ; two further line starters, say `1,`2, that contain sublines with

distinct orbits of order q+1
2

under the action of T ; and, �nally, there are

q � 2 line starters, say `3; : : : ; `q, that contain sublines with distinct orbits

of order q + 1 under the action of T ; hence, we may label the line starters

as follows: `(0) := `0, `
((i�1)( q+1

2
)+j+1) := `�

j

i ; i = 1; 2 and j = 0; : : : ; q�1
2
,

`((i�1)(q+1)+j+1) := `�
j

i ; i = 3; : : : ; q and j = 0; : : : ; q.

Remark 2.9. We explicitly observe that if q is even, then it is enough

to know the incidence of q � 1 lines of S1([1]) n f[1]g passing through a

�xed point of C and not passing through (1) in order to construct the

matrix H.

2.1.1 Extended and shortened codes

The code{rate of an [n; k] linear code is the number k
n
; hence the code

C has code{rate q2�q�1
q2

, for q even, or q�1
q
, for q odd. Observe that, in

general, the higher is q the higher the code{rate turns out to be; however,

high values of q imply high complexity of calculus and, sometimes, overly

long codes.
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It is possible to obtain new good LDPC codes by extending and short-

ening in suitable ways �nite{geometry codes. As it has been shown in [16],

these new codes will have the same Tanner graph girth as the ones given

before and have higher code{rate. However, they will lack some of the

regularity and the quasi{cyclic structure.

Column (or row) splitting is one technique employed in [16] for modi-

fying codes from �nite geometries; in particular it has been applied in [25]

to the classical unital (H(2; q2);L; I). If we split any column of H in s

columns of lower weight, then we obtain a new code from C, say Cext, with

length sn and the same number of linearly independent check{sums; hence,

in this case, Cext has code{rate
sq2�q�1

sq2
for q is even, or sq�1

sq
for q is odd.

Let H 0 be the matrix obtained by H deleting a row which corresponds

to a point P of H(2; q2). The Tanner graph of the code, say C1
sh, which

has H 0 as parity{check matrix, has N 0
6 = N6 � 1

2
(n � 1)(n � q � 1) cycles

of length 6, with n = q3 + 1. We can also delete a column and q + 1 rows

of H, that is a line and the q + 1 points on it; we thus obtain a code, say

C2
sh, whose Tanner graph has N 00

6 = 1
3
(n� q� 1)(m� q2� 1)

�
q+1
2

�
cycles of

length 6, with n = q3 + 1 and m = q2(q2 � q + 1). Finally, deleting a row

and q2 columns of H, that is a point and the q2 lines through it, we obtain

a code, say C3
sh, whose Tanner graph has N 000

6 = 1
3
(n � 1)(m � 2q2 + 1)

�
q
2

�
cycles of length 6 with n = q3 + 1 and m = q2(q2 � q + 1).

Actually, if we are looking for gains in the code{rate, just the codes

Cext and C1
sh are interesting. In the following tables, we compare the

code{rate of the code C and the code{rate of the codes obtained by C

either shortening or extending H:

C Cext C1
sh C2

sh C3
sh

q even q2�q�1
q2

sq2�q�1
sq2

(q�1)2
q2�q+1

� q4�2q3�q2�q�1
(q�1)(q3+q+1)

� q�2
q�1

q odd q�1
q

sq�1
sq

� q�1
q

� (q2�q+1)(q2�q�1)
(q3+q+1)(q�1) � q3�2q2+q�1

q2(q�1)
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C Cext C1
sh C2

sh C3
sh

q = 4,s = 2 0.6875 0.84375 0.69231 � 0.51691 � 0.66667

q = 8,s = 2 0.85937 0.92969 0.85965 � 0.82232 � 0.85714

q = 5,s = 2 0.8 0.9 � 0.8 � 0.76140 � 0.79

q = 7,s = 2 0.85714 0.92857 � 0.85714 � 0.83713 � 0.85374

2.1.2 The construction of H for q even

In this subsection we shall con�ne ourselves to the case when q 6= 4 is even,

which features a geometric characterization of the line starters, determining

a strongly simpli�cation in computing the matrix H; the case when q is

odd can be dealt with by means of standard calculations.

By [6], there is a primitive polynomial over GF (q2), with q 6= 4, of the

form f(t) = t3 + �t + �; let � be a root of f(t) in GF (q6); then, � is a

primitive element of GF (q6) and Tr(�) = 0. Choose the set f1; �; �2g as

a basis of the three{dimensional vector space GF (q6) over GF (q2). Let

P = (x) be a point of PG(2; q2) and take ` = [u] as a line of the same

plane, with x = x0 + x1� + x2�
2 and u = u0 + u1� + u2�

2 2 GF (q6); from

now on we suppose P = h(x0; x1; x2)i and we denote by ` the set of points

(x0; x1; x2) of equation u0x0+�u2x1+�u1x2 = 0. Take the Hermitian curve

H(2; q2) of equation Tr(xq
3+1) = xq+1

0 + Tr(�q
3+1)xq+1

1 + Tr(�2q
3+1)x1x

q
2 +

Tr(�q
3+2)xq1x2 + Tr(�q

3+1)2xq+1
2 = 0; suppose �q

3

to be (0; �; �); then, by

a straightforward calculation, we get Tr(�q
3+1) = �� and Tr(�q

3+2) = ��;

hence, the equation of H(2; q2) is
xq+1
0 + ��xq+1

1 + (��)qx1x
q
2 + ��xq1x2 + (��)2xq+1

2 = 0: (2.1)

The collineation � that spans the Singer group of PG(2; q2) is induced

by the non{singular linear application

x = x0 + x1� + x2�
2 2 GF (q6) 7! x� = �x2 + (x0 + x2�)� + x1�

2 2 GF (q6)

and may be represented by the matrix

S =

0BBB@
0 0 �

1 0 �

0 1 0

1CCCA
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Let Si = h�ii, for i = 1; 2, be the two subgroups of the Singer group

described in Section 2.1; then, �1 is represented by Sq2�q+1 and �2 by

Sqq+q+1.

The set C = H(2; q2)\Baer(0), is a Baer subline of the line [1]; hence,
C has to satisfy the following conditions:8<: x0 = 0

xq+1
0 + ��xq+1

1 + (��)qx1x
q
2 + ��xq1x2 + (��)2xq+1

2 = 0:
(2.2)

We can assume x2 = 1; so x1 must satisfy:

��xq+1
1 + (��)qx1 + ��xq1 + (��)2 = 0,

(��x1 + ��)q+1 + (��)q+1 + (��)3 = 0:

Since (2.1) is a non{degenerate Hermitian curve, (��)q+1+(��)3 2 GF (q)n
f0g. Furthermore, � is a primitive element ofGF (q2); hence, we can assume

(��)q+1 + (��)3 = �k(q+1), for a suitable k 2 f1; : : : ; q � 1g. Thus, we have

x1 = ���1 + ��1�k�1+i(q�1); i = 1; : : : ; q � 1:

If � spans the group T (see the proof of Theorem 2.8), then the action of

� on C is given by:

x1 7! ���1 + �q�1(���1 + x1);

thus, � is represented by the matrix0BBB@
1 0 0

0 �q�1 ���1(1 + �q�1)

0 0 1

1CCCA :
We deduce that the line starters, which have distinct orbits under the action

of T , are exactly those lines ` which, �xed a point P = h(0; x1; 1)i in C,

satisfy the following conditions:

1. ` 2 S1([1]) n f[1]g;

2. ` passes through P and not h(1; 0; 0)i, that is a line ` of equation of

the form x0 + ux1 + ux1x2 = 0, with u 6= 0.
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2.2 Codes from the Hermitian Surface

Let PG(3; q2) be the tree{dimensional projective space over the �nite �eld

GF (q2) and represent it via the vector space V = GF (q6)
L
GF (q2) =

f(u; u0); u 2 GF (q6); u0 2 GF (q2)g; let Tr : x 2 GF (q6) 7! x+ xq
2

+ xq
4 2

GF (q2) be the trace function, hence a plane has equation Tr(ux)+u0x0 = 0

for some (u; u0) 2 V nf0g.
The function

((x; x0); (y; y0)) 2 V � V 7! Tr(xq
3

y) + xq0y0 2 GF (q2): (2.3)

is a non{degenerate Hermitian sesquilinear form, hence it induces a uni-

tary polarity of PG(3; q2), such that the polar plane of a point P = (u; u0)

has equation Tr(uq
2

x)+uq0x0 = 0 and the absolute points, that is the points

of the Hermitian surface H(3; q2), have equation

Tr(xq
3+1

) + xq+1
0 = 0:

A line ` of PG(3; q2) may be either tangent, q + 1{secant or contained in

H(3; q2); from now on, we denote the set of the lines contained inH(3; q2) by
L. We recall that jH(3; q2)j = (q3+1)(q2+1) and jLj = (q3+1)(q+1). The

incidence structure (H(3; q2);L; I), with I the natural incidence relation, is
a generalized quadrangle (for more details about generalized quadrangles

see [43]) with parameters (q2; q), that is every line ` contains q2 + 1 points

and every point P is contained in q + 1 lines, which are the lines for P

contained in the polar plane of P .

The group of linear collineations preserving H(3; q2) is the Unitary

Group � = PGU(4; q). The group � is transitive on the points and the

lines of H, that is for every couple of points P and Q (respect. for every

couple of lines l and m) of H, there is an element 
 of �, such that P 
 = Q

(respect. l
 = m).

Proposition 2.10. Let H be the incidence matrix of the generalized

quadrangle H(3; q2). The code C having H as parity check matrix is a

[(q3+1)(q2+1); k] LDPC code, with k � (q2� q)(q3+1) if q is even, or
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k = (q2 � q)(q3 + 1) if q is odd. The minimum distance is 2(q + 1) and

its Tanner graph has girth 8.

Proof. The matrix H is a regular (q3+1)(q+1)�(q3+1)(q2+1) matrix over
GF (2) with density 1

q3+1
; the rank of H over GF (2) is at most q4 + q2 + 1

and it is q4+ q2+1 for odd q (see [1]). The Hermitian surface H(3; q2) is a
generalized quadrangle and this means that it does not contain triangles;

this is equivalent to have a Tanner graph without cycles of length 3, hence

its girth is at least 4. Finally, in [45] it is proven by geometrical arguments

that the minimum distance is 2(q + 1).

Like in the previous section, we are interested in the partition of H in

circulant submatrices, that is in the cyclicity of the code C and in �nding

a geometrical characterization of the point{starters.

Let P be the point (0; 1) and �1 the plane of equation x0 = 0, that is

the polar plane of P . The sesquilinear form (2.3) induces on �1 a non{

degenerate unitary polarity, hence H(3; q2) intersects �1 in the Hermitian

curve H0 of equation Tr(xq
3+1

) = 0. A line joining P and a point Q of �1
is either tangent or q + 1{secant, according to the fact that Q is in H0 or

not, respectively.

Let � be a primitive element for GF (q6), let M be (q2 + q + 1), N be

(q2 � q + 1) and � = �MN a primitive element of GF (q2). Let S be the

cyclic group of collineation spanned by:

(u; u0) 2 V 7! (u�(q�1)M ; u0) 2 V;

hence S has order N , it is a subgroup of the Unitary Group � and it acts

semi{regularly on the points and lines ofH, that is the only collineation of S
that �xes a point or a line of H is the identity. The group S �xes the point

P and the plane �1, on which induces a cyclic partition in Kestenband

arcs (for the de�nitions and results on this topic see the previous section),

q + 1 of which are contained in H0. Let K(A) be a cone with vertex P

and base the Kestenband arc A of the plane �1: if A is contained in H0,

then K(A) \H(3; q2) = A; if A\H0 = ;, then K(A) \H(3; q2) consists in
(q3 + 1) points not in �1.



Chapter 2. Quasi{cyclic codes from Hermitian Varieties 30

Lemma 2.11. If ` is a line of H(3; q2) and Q is a point of `, then

j` \ S(Q)j � 2.

Proof. If Q is a point of H0, then S(Q) is contained in �1; since the line `

can intersect �1 in at most one point, we have Q = S(Q)\`. If Q = (u; u0)

is a point of H n �1, then a line ` through Q intersects �1 in the point

R = (v; 0) and ` =< (u; u0); (v; 0) >. The orbit S(Q) is f(u�(q�1)Mi; u0); i =

0; : : : ; q2 � qg, hence �nding the intersection ` \ S(Q) is equivalent to �nd
a � in GF (q2)nf0g such that (u; u0) + �(v; 0) �= (u�(q

2�1)Mi; u0) for some

i. In the plane �1, this is equivalent to �nd the intersection the line

`0 =< u; v > and the Kestenband arc through u, and we know that this

intersection consists in at most two points.

In this way, we have proved the following result:

Proposition 2.12. The incidence matrix H of the generalized quad-

rangle H(3; q2) has a decomposition in circulant submatrices of order

N = q2 � q + 1, whose rows have weight at most 2.

Proof. Label the points and the lines in the same way of Theorem (3.16)

of the previous section.

The point{starters for the group S can be chosen in the following way:

let B be the Baer subplane f(�i(q2�q+1); 0); i = 0; : : : ; q2 + qg of �1, then

we may take as point{starters B \ H0 and the q + 1 absolute points of

` = hQ;P i, for Q 2 BnH0. As line{starters we may take the q + 1 lines

through every point of B \H0.

Our goal is to �nd one or more cyclic subgroups of � that map a point{

starters into another, in order to �nd a circulant display of the of the cir-

culant submatrices and construct the incidence matrix H via the incidence

of the smallest number possible of lines, as it is done in [44].

In the previous section we have described a cyclic group of collineations

PG(2; q2), namely T , such that (for more details see the proof of Theorem

(2.8) of the previous section):

� T has order q + 1;
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� T �xes the point (1) and no other one;

� T �xes B \H(2; q2) set{wise and acts regularly on its points;

� T is a subgroup of PGU(3; q).

Therefore, there exists a subgroup of � isomorphic to T and we keep

on denoting this group by T by notation abuse. We have q2+ q+1 point{

starters with di�erent orbits under the action of T , namely Q, R0j, j =

1; : : : ; q + 1, and Rij, i = 1; : : : ; q � 1; j = 1; : : : ; q + 1, where Q is a point

of B \ H0, R0j is the j � th point of the line < P; (1; 0) >, Rij is the

j � th point of the line < P;Ri > and fR1; : : : ; Rq�1g are q � 1 points

of Bnf(1; 0);H0g with di�erent orbits under the action of T . Label the

other points as it is done in the proof of Theorem (3.16) of the previous

section. The line{starters with di�erent orbits under the action of T are

q + 1, namely `1; : : : ; `q+1, which are the q + 1 lines through Q.

Finally, let U be the cyclic group of collineations spanned by:

(u; u0) 7! (u; u0�
q�1):

The group U =< � > has order q+1, it is a subgroup of � and it �xes point{

wise �1 (hence it �xes P ). Let Q be a point of �1nH0: the group U acts

regularly on the absolute points of ` =< P;Q >. Finally, let Q = (u; 0) be a

point ofH0; the polar plane � of Q has equation Tr(uq
2

x) = 0, therefore the

point P belongs to �; consider a q+1{secant through P in �, say `: since the

group U �xes Q and acts regularly on the absolute points of `, the group U

acts regularly on the lines through Q. Consider the before described point{

starters fQ;R0j; j = 1; : : : ; q+1; Rij; i = 1; : : : ; q� 1; j = 1; : : : ; q+1g: the
point Q is �xed by U , while R01; Ri1; i = 1; : : : ; q � 1 have di�erent orbits

under the action of U , therefore label the other ones in the following way:

R0(j+1) := R�j

01; j = 0; : : : ; q;

Ri(j+1) := R�j

i1 ; j = 0; : : : ; q; i = 1; : : : ; q � 1:

The line-starters `1; : : : ; `q+1 form a unique orbit under the action of U ,

therefore label them in the usual way.

We are now able to state the following
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Theorem 2.13. If we order the points and the lines of H(3; q2) in a

suitable way, then the incidence matrix H presents a "double" circulant

display of the circulant submatrices of order N = q2� q+1 and H can

be constructed by means of the incidence of just one line ` with respect

to the points.



Chapter 3

Small weight codewords of

codes from linear

representation

Let K be a set of points in the Desarguesian projective plane PG(2; q) and

embed �1 = PG(2; q) as a hyperplane in PG(3; q). The linear representa-

tion T �
2 (K) has as point set the set of points of AG(3; q) = PG(3; q) n �1,

as line set the set of lines of AG(3; q) intersecting �1 in a point of K, and
it has the natural incidence relation. Each point of T �

2 (K) is incident with
jKj lines and each line is incident with q points. The type of incidence

structure we obtain changes according to the choice of K. Let � and �

be two strictly positive integers. In the following three cases, T �
2 (K) is a

well-known combinatorial structure. References [43],[4] and [5] give more

details about the following geometries.

1. If jl \ Kj 2 f0; � + 1g for all lines l of �1, then T �
2 (K) is a partial

geometry

pg(q � 1; jKj � 1; �). For example, if K is a hyperoval, then T �
2 (K) is

a generalized quadrangle.

2. If jl\Kj 2 f1; �+1g for all lines l of �1, then T �
2 (K) is a semipartial

geometry spg(q� 1; jKj � 1; �). For example, let K be the Hermitian
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curve in PG(2; q2), then we get a spg(q2 � 1; q3; q).

3. If jl \ Kj 2 f� + 1; � + 1g for all lines l of �1, then T �
2 (K) is an

(�; �)-geometry.

The incidence matrix of a linear representation T �
2 (K) is a matrix H

with rows labeled by the points of T �
2 (K), columns labeled by the lines of

T �
2 (K). For q = ph, p prime, h � 1, the p-ary linear code with H as parity

check matrix is a LDPC code of length q2jKj. On the other hand, the code

arising from the dual geometry T �
2 (K)D of T �

2 (K) is a LDPC code of length

q3.

Our main goal is to �nd the minimum distance of these LDPC codes

and to characterize their small weight codewords. The techniques used here

are taken from [27] and they are valid for binary LDPC codes, LDPC codes

over GF (q), or over GF (p).In Table 1, we have denoted by �, B, U and L a

hyperoval, a Baer subplane, a Hermitian curve, and two intersecting lines,

respectively, and we have presented the lower bounds on the minimum

distance dmin of the LDPC codes arising from their linear representations

due to the bit-oriented bound, the parity oriented bound and Massey's

bound [51].

LDPC code Order (�,
) dmin

T �
2 (�) (q + 2,q) � 2q

T �
2 (�)

D (q,q + 2) � 4q

T �
2 (B) (q +

p
q + 1,q) � q + 1

T �
2 (U) (q

p
q + 1,q) � q + 1

T �
2 (L) (2q + 1,q) � q + 1

Table 1: Known results

Using the following geometrical property, we can prove that some of the

lower bounds of Table 1 are sharp, we can �nd larger lower bounds and in

some cases prove their sharpness.

Let C be the LDPC code de�ned by T �
2 (K). A codeword c = (c1; : : : ; cn)

of C is such that cHT equals 0 and supp(c), which is the set of all non-zero

positions of c, de�nes
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(�) a set S of lines of T �
2 (K) such that every point of T �

2 (K) lies on zero

or on at least two lines of S.

If we are considering the dual setting of T �
2 (K), supp(c) de�nes

(��) a set S of points of T �
2 (K) such that every line of T �

2 (K) contains zero
or at least two points of S.

The conditions (�) and (��) are necessary conditions, hence we look for
codewords of C among the subsets of lines (or points) of T �

2 (K) that satisfy
these conditions.

Example 3.1. Let � be an a�ne plane of PG(3; q) that intersects K
in at least two points P and Q, and let S be the set of all the a�ne

lines of � through P and all the a�ne lines of � through Q. Clearly,

every a�ne point lies in 0 or exactly two lines of S, hence S satis�es

condition (�). Take the vector c with 1 in the coordinate positions cor-

responding to the lines through P , with -1 in the coordinate positions

corresponding to the lines through Q, and zero in the other positions.

The vector c is orthogonal to every row of H, and hence, it is a code-

word of weight 2q of the code arising from T �
2 (K), with K arbitrary.

Therefore, if q is even and K is a hyperoval, the lower bound in the

�rst row of Table 1 is sharp.

Example 3.2. Let q be even and let � be a regular hyperoval of PG(2; q),

q = 2h, h � 1. We construct a set S of points that satis�es the condition

(��) using the construction introduced by Segre in [48]. Here we use

the coordinate description by Pambianco and Storme [41] to construct

complete caps. Suppose that the plane at in�nity has equation x2 = x3

and let � be the set f(t2; t; 1; 1)jt 2 GF (q)g [ f(1; 0; 0; 0); (0; 1; 0; 0)g. Let
S be the set C1 [ C2 [ C 0

1 [ C 0
2, where C1 = f(t2; t; 1; 0)jt 2 GF (q)g,

C2 = f(t2; t; 0; 1)jt 2 GF (q)g, C 0
1 = f(t2 + �; t + �; 1; 0)jt 2 GF (q)g and

C 0
2 = f(t2 + �; t + �; 0; 1)jt 2 GF (q)g, with � 6= 0; 1. Then every a�ne

line through � contains zero or two points of S. More precisely, there

are four possibilities for a line that intersects S. A line can intersect
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C1 and C2, or C 0
1 and C 0

2, or C1 and C 0
1, or C2 and C 0

2. The lines

through a point of C1 and a point of C 0
2, and the lines through a point

of C 0
1 and a point of C2 are not in the geometry T �

2 (�).

Let c be the vector with 1 in the coordinates corresponding to the

points of C1 [ C2 [ C 0
1 [ C 0

2, and zero in the other positions. Clearly,

the vector c is a vector of the code arising from T �
2 (�)

D of weight 4q,

hence the lower bound of the second row of Table 1 is sharp for � a

regular hyperoval.

Figure 1: The con�guration of Example 2.

If we replace t2 in the descriptions of �; C1; C2; C
0
1; C

0
2 by t

2v , gcd(v; h) = 1,

we obtain similar codewords of weight 4q by using translation hyperovals

instead of regular hyperovals. In Example 3.2, we use a set of three trans-

lation ovals C1; C2; C, through a same point at in�nity, and having the

same nucleus at in�nity, with the property that any line that intersects

two of them, intersects the third one. From now on, we denote (q+1)-arcs

C1, C2 satisfying this condition with respect to � = C, by corresponding

(q + 1)-arcs w.r.t. T �
2 (�).

Example 3.3. Suppose that K contains a conic C and let S be the set of

lines of a hyperbolic quadric Q+(3; q) intersecting the plane at in�nity

in C. Then the set S satis�es condition (�). Let the quadric Q+(3; q)
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be the union of the two reguli R1 and R2, and take the vector c with 1

in the coordinate positions corresponding to the lines of R1, -1 in the

coordinate positions corresponding to the lines of R2, and zero in the

other positions. Then the vector c is a codeword of weight 2(q + 1).

Remark 3.4. In Example 3.1, we have shown that a codeword of weight

2q exists whatever be K, hence the next step is to determine in which

cases can exist codewords of weight lower than 2q.

Proposition 3.5. Let K be an arbitrary set of points at in�nity, let C
be the LDPC code arising from T �

2 (K), c a codeword of C and let S be

the set of lines de�ned by supp(c). If wt(c) < 2q, then S is contained

in a plane. If wt(c) = 2q, then either:

1. S consists of 2q lines of a hyperbolic quadric having two lines at

in�nity contained in K,
or

2. S = S1 [ S2, where Si, i = 1; 2, is a dual q-arc contained in the

a�ne plane �i, extended by the line at in�nity to a dual (q + 1)-

arc. Let l be �1\�2, then Si, the line at in�nity of �i, and l form a

dual hyperoval, i = 1; 2, and q is even. If l is not a line of T �
2 (K),

then S gives rise to a minimal codeword. On the other hand, if l

is a line of T �
2 (K), then c = c0�c00, where c0 is the codeword derived

from the dual (q+1)-arc S1 [flg, c00 is the codeword derived from

the dual (q + 1)-arc S2 [ flg and wt(c0) = wt(c00) = q + 1, where c0

and c00 have the same symbol in their support.

3. S consists of 2q lines in a plane.

Proof. Let S be the set of lines de�ned by supp(c), with c a codeword of

weight � 2q in the LDPC code de�ned by T �
2 (K). Let � be an a�ne plane

and let X = fl1; : : : ; lig be the set of lines of S contained in �. In order to

satisfy condition (�), every line of X has at least q� i+1 a�ne points that

lie on a line of S nX, hence

i(q � i+ 1) � 2q � i
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from which we get: i � q or i � 2.

If i = q, then the line lk of X has at least one a�ne point contained in

a line of S n X, 8k = 1; : : : ; q, and jS n Xj � q, hence, lk has exactly one

a�ne point contained in a line of S nX and intersects the lines lj, j 6= k,

in di�erent a�ne points, 8j; k = 1; : : : ; q. If l1 is the line at in�nity of �,

then the set fl1; l1; : : : ; lqg is a dual (q + 1)-arc of �. The lines of S n X,

say m1; : : : ;mq, must intersect each other in an a�ne point, hence, they

all lie in the same plane �1 and, using the same arguments, m1; : : : ;mq,

and the line at in�nity of �1, say m1, form a dual (q + 1)-arc. Let l be

�\�1; if l is a line of T �
2 (K), then fl1; l1; : : : ; lq; lg and fm1;m1; : : : ;mq; lg

are two dual hyperovals and they give rise to two codewords of weight

q + 1, say c0 and c00, such that c = c0 � c00. Hence, c0 has a scalar � in the

coordinate positions of the lines l1; : : : ; lq; l, and c
00 has the same scalar � in

the coordinate positions of the linesm1; : : : ;mq; l. If l is not a line of T
�
2 (K)

(this happens when K contains at most q points of a line, for example when

K is a maximal arc of degree q), then the set fl1; : : : ; lq;m1; : : : ;mqg gives
rise to a minimal codeword of weight 2q. Therefore, if i = q, then we obtain

case 2 of the proposition.

Now suppose that in the case i � q + 1, there exists a line of S, say l,

that is not contained in �. This line l has at least q � 1 a�ne points that

must lie on a second line of S not contained in �, hence S nX contains at

least q � 1 lines di�erent from l. This yields

jSj = jXj+ jS nXj � q + 1 + 1 + q � 1 � 2q + 1;

a contradiction. We conclude that all lines of S are contained in �.

Suppose now that i = 2 and let X = fl1;m1g. We also assume that

every plane contains at most two lines of S, since otherwise we are forced

to the previous case. On the lines l1 and m1, there are 2(q � 1) points

that must lie on a line of S n X; let fl2; : : : ; lqg be the lines intersecting

m1 and fm2; : : : ;mqg be the lines intersecting l1. Until now, we have

already counted 2q lines. If there are two lines of fl2; : : : ; lqg, say l2 and

l3, intersecting in a point, then there exists a plane, say �0, that contains

fm1; l2; l3g, but we excluded this possibility.
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Now suppose that both in the set fl1; : : : ; lqg and fm1; : : : ;mqg, the
lines are pairwise skew, hence, li intersects mj, 8i; j = 1; : : : ; q; in other

words, the lines of the set fl1; : : : ; lq;m1; : : : ;mqg form a hyperbolic quadric

intersecting K in two lines, so we get the case 1 of the proposition.

Finally, if X = flg and P is a point on l, then P is contained in at least

a second line of S, say m. It follows that the plane �0 = hl;mi contains at
least two lines of S and so we get again one of the previous cases.

Using Proposition 3.5, we can derive a new lower bound on the minimum

distance of the LDPC code arising from T �
2 (K), with K arbitrary.

Proposition 3.6. Let c be a codeword of weight smaller than or equal

to 2q in the LDPC code arising from T �
2 (K) and let S be the set of

lines de�ned by supp(c). Suppose that the lines of S all lie in the same

plane � and let x be the number of points of � \ K; then we have

wt(c) � q + q=(x� 1).

Proof. Let wt(c) = q + k, with 1 � k � q, and let � \ K = fP1; : : : ; Pxg;
the average number of lines of S through a point of � \ K is (q + k)=x,

hence there exists a point of K, say P1, through which there pass at least

(q + k)=x lines of S. Let l be a line of S through P1; every a�ne point of

l is contained in at least another line of S, hence, there are at least q lines

of S not through P1. This implies that the following inequality must hold:

q + k

x
+ q � q + k;

from which we derive k � q=(x� 1).

If x is the minimum integer, greater than one such that x = j� \ Kj,
then the lower bound of the previous proposition is sharp in a number of

cases.

1. If x = 2, then wt(c) � 2q. The lower bound is sharp because of

Example 3.1 which always occurs, whatever K is.

2. If x = q + 1, then wt(c) � q + 1. Let q be even and let S be a

dual (q + 1)-arc of the plane extended by the line at in�nity to a
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dual (q + 2)-arc. The codeword c having a constant symbol � in the

positions of S has weight q + 1.

3. If x =
p
q + 1, then wt(c) � q +

p
q. If q is even, then let S be

a dual (q +
p
q)-arc of type (0; 2;

p
q) and let the line at in�nity be

the dual nucleus of the arc. The following example of a (q +
p
q)-arc

of type (0; 2;
p
q) is based on a construction due to Korchm�aros and

Mazzocca (see [29]). Then

f(z2 + z2
p
q; z; 1)jz 2 GF (q)g [ f(1; z0; 0)jz0 2 Fpqg

is a (q +
p
q)-arc of type (0; 2;

p
q) with (0; 1; 0) as

p
q-nucleus. The

points (z2 + z2
p
q = �; z; 1), with z 2 GF (q), belong to X = �Z, for

some � 2 Fpq. The points (1; z0; 0), with z0 2 Fpq, are on Z = 0.

So the
p
q-secants through (0; 1; 0) are X = �Z, with � 2 Fpq, and

Z = 0, and these
p
q + 1 lines li form a dual Baer subline. When we

dualize, this gives a line l1 with P1; : : : ; Ppq+1 the
p
q+1 points of a

Baer subline, where we denoted the dual of the line li by Pi.

There are
p
q lines of S through every point Pi intersecting all the

lines with a di�erent direction in an a�ne point. Take a vector c with

in all these q +
p
q lines the same symbol, then c is a codeword of

T �
2 (K) with weight q +

p
q.

4. In general, the lower bound q + q=(x� 1) is sharp if we �nd a set of

lines S that is a dual (0; 2; t)-arc of size q + t in PG(2; q) such that

the line at in�nity is the dual t-nucleus and t = q=(x � 1). A result

of G�acs and Weiner [14] shows that a (0; 2; t)-arc of size q + t always

has a t-nucleus. If such an arc exists, then q is even, unless x = 2.

The following table summarizes the results obtained in the previous part.
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LDPC code Order (�,
) dmin

T �
2 (�) (q + 2,q) 2q (see Example 3.1)

T �
2 (�)

D, � a translation hyperoval (q,q + 2) 4q (see Example 3.2)

T �
2 (B), q even (q +

p
q + 1,q) q +

p
q (see Proposition 3.6)

T �
2 (U), q even (q

p
q + 1,q) q +

p
q (see Proposition 3.6)

T �
2 (L), q even (2q + 1,q) q + 1 (see Proposition 3.6)

Table 2: New results

So far, we have results for even q. In the general case T �
2 (K), with odd

q = ph, we have not been able to determine the minimum weight of the

p-ary linear code of T �
2 (K).

In the following proposition, we present a codeword of weight 2q� 2 in

the LDPC code of T �
2 (K), where K contains a Baer subline, which shows

that most likely in general, the minimum weight of the p-ary linear LDPC

code of T �
2 (K) is smaller than 2q. Note that the following construction is

also valid for q an even square.

Proposition 3.7. When K contains a Baer subline, there exists a code-

word of weight 2q � 2 in the p-ary linear code of T �
2 (K), with q = ph

odd, q square.

Proof. Let L be the Baer subline PG(1;
p
q) at in�nity contained in K.

In PG(2; q), there exist Baer subplanes B1 and B2 which share the Baer

subline L and one extra point P1 (not on the line �L of PG(2; q), extending

L). Then B1 and B2 share
p
q + 2 lines; namely the line L and the lines

through a point of L and P1. So B1 has q� 1 lines not lying in B2, and B2

has q � 1 lines not lying in B1.

Give all the lines of B1, not in B2, symbol 1, and all the lines of B2,

not in B1, symbol -1. All other lines have symbol zero. We show that this

vector gives a codeword of weight 2q � 2.

An a�ne point not lying in B1 [B2 lies on one line of B1 and one line

of B2. If these lines are di�erent, they have respectively symbols 1 and -1,

so the sum is zero. If these lines coincide, they pass through P1, so they

have symbol zero.
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The point P1 only lies on lines with symbol zero.

A point R of B1 n B2 lies on
p
q lines of B1 not in B2. The only line

through R lying in B2 is the line RP1 with symbol zero. So the sum of the

symbols is
p
q � 0 mod p. Similarly, a point R of B2 n B1 lies on

p
q lines

of B2 not in B1. So the sum of the symbols is �pq � 0 mod p.

This shows that for any point, the sum of the symbols of lines passing

through it equals zero, hence, we have found a codeword.

In general, if q is odd and if we are considering the binary code arising

from T �
2 (K), we know that every codeword has an even weight in virtue of

the following result.

Proposition 3.8. Let I = (P;B; I) be a �nite incidence structure such

that every block contains s+1 points, let H be the incidence matrix of

I (labeling the columns by blocks) and let C be the binary linear code

having H as parity check matrix. If s+ 1 is odd, then every codeword

of C has an even weight.

Proof. Let c be a codeword of C and let B be the set of blocks de�ned by

supp(c). Since the code is binary and regarding (�), every point Pi of P is

contained in zero or in an even number of elements of B, say xi. A double

counting argument yields that

jBj(s+ 1) =
X
i

xi:

The right hand side is even, and s+1 is odd, so jBj = wt(c) is even.

3.1 Small weight codewords in T
�
2 (�)

In this section, we take a closer look at the case T �
2 (�), with � a hyperoval,

hence q even. The linear representation T �
2 (�) is known to be (see [43]) a

generalized quadrangle of order (s; t) = (q � 1; q + 1). Let C be the q-ary

LDPC code arising from T �
2 (�); in Example 3.1, we have already showed

that the minimum distance of C is 2q and we have given the geometrical
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description of a codeword of such a weight; if � contains a conic, we have a

geometrical description of a codeword of weight 2(q+1) (see Example 3.3).

Using the same arguments as in the proof of Proposition 3.5, yields that

this is the only possibility for a codeword c with 2q < wt(c) � 2(q + 1),

hence we have the following Proposition.

Proposition 3.9. Let C be the LDPC code de�ned by T �
2 (�), and let S

be the set of lines de�ned by supp(c). If wt(c) � 2(q + 1), then either:

1. S de�nes a set of 2q lines in a plane

or

2. S de�nes a set of 2(q + 1) lines of a hyperbolic quadric Q, inter-
secting � in a conic.

For weights larger than 2(q + 1), q = 2h, h � 7, we will characterize

the codewords of C, up to weight 2 3
p
q(q + 1)=3, as linear combinations of

codewords of weight 2q and 2(q + 1) in a similar way as the authors do in

[27], that is using geometrical arguments.

From now on, let c be a codeword of the code C arising from T �
2 (�),

q = 2h, h � 7, let wt(c) = 2�(q+1) � 2 3
p
q(q+1)=3 and let S be the set of

lines de�ned by supp(c).

Proposition 3.10. For every line l of S, there exists an a�ne plane �

containing l such that � contains at least 2(q�2�+1) lines of S, or there
exists a hyperbolic quadric Q �= Q+(3; q) containing l and intersecting

� in a conic, such that each regulus of Q contains at least q � 4� + 2

lines of S.

Proof. Let l1 be a line of S. In order to ful�ll condition (�), every a�ne

point of l1 needs to lie on a second line of S; let these lines be m1; : : : ;mq.

The lines mi do not intersect each other a�nely (since T �
2 (�) is a GQ),

hence there are q(q � 1) a�ne points on them that must lie on a second

line of S. The average number of points of m1 [ � � � [ mq on one of the

remaining lines is

y =
q(q � 1)

(2� � 1)(q + 1)
>
q � 2

2�
:
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Hence, there exists a line l2 in S that intersects at least y of the lines

mi, say m1; : : : ;mk, with k � y > (q � 2)=(2�). The lines l1 and l2 can be

either skew or can intersect at in�nity.

Case 1: Assume that the lines l1 and l2 intersect at infinity.

Then, the lines l1; l2;m1; : : : ;mk all lie in the same plane �. Let x and

t be the number of the lines of S through the two points of � in �, with

x � t. Then there are t(q � x) + x(q � t) a�ne points on these x+ t lines

that still must lie on a second line of S. A line not in � can contain at

most one a�ne point of �, so, in order to avoid a contradiction, we must

have that

t(q � x) + x(q � t) � 2�(q + 1)� x� t; (3.1)

which implies that

x+ t � 2� +
2xt

q + 1
< 2� + 2x:

Let i be t� x, then i < 2�. Replacing t by x+ i in (3.1) yields:

2x2 � 2x(q + 1� i) + (2� � i)(q + 1) � 0:

Recall that � � 3
p
q=3 and that i < 2�. This implies that x < � + 1=2

or x > q � 2� + 1. Since t is at least k � (q � 2)=(2�), x = t � i must be

at least q� 2� + 1. So there exists a plane � through l1 containing at least

2(q � 2� + 1) lines of S.

Case 2: Assume that the lines l1 and l2 are skew.

Hence, there are k(q�2) a�ne points on the linesm1; : : : ;mk that must

lie on a second line of S, and the average number of these points on the

remaining lines of S is

z =
k(q � 2)

(2� � 1)(q + 1)� 1
>

(q � 2)2

4�2(q + 1)
;

hence, there exists a line l3 of S that intersects h � z > (q�2)2=(4�2(q+1))

lines mi, say m1; : : : ;mh. The lines l1; l2 and l3 are pairwise skew and they

intersect m1; : : : ;mh in di�erent points, hence they de�ne a hyperbolic

quadric Q �= Q+(3; q). Suppose that there are x lines of S in the �rst
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regulus of Q and t lines of S in the opposite regulus, with x � t. On these

lines, there are t(q � x) + x(q � t) a�ne points that must lie on a second

line of S. A line not contained in Q can meet the quadric Q in at most two

points, hence

t(q � x) + x(q � t) � 4�(q + 1)� 2(x+ t) (3.2)

which yields that

x+ t < 4� + 2x: (3.3)

Replacing t by x+ i in (3.2) gives the following inequality

2x2 � 2x(q + 2� i) + 4�(q + 1)� i(q + 2) � 0:

Recall that i < 4� from (3.3), � � 3
p
q=3 and t must be at least h >

(q�2)2=(4�2(q+1)), so the inequality (3.2) is only satis�ed if x > q�4�+2.

This implies that there exists a hyperbolic quadric Q+(3; q) that contains

at least q � 4� + 2 lines of S in each of its reguli.

Proposition 3.10 implies that the lines of S are contained in planes and

hyperbolic quadrics with "many" lines of S in it. Let S be contained in

h of those planes and k of those hyperbolic quadrics. Two planes have at

most one line in common, and a plane and a hyperbolic quadric have at

most two lines in common. Two such hyperbolic quadrics containing at

least 2(q � 4� + 2) lines of S share the same conic contained in �; and

therefore share at most two lines. So we obtain the following inequality:

2h(q� 2�+1)� h(h� 1)

2
+2k(q� 4�+2)� (h+ k� 1)(h+ k) � 2�(q+1);

which implies that

�2(h+ k)2 + (h+ k)(4q � 8� + 7)� h2 + 3k � 8�k � 4�(q + 1): (3.4)

Substituting � for h+ k, the inequality (3.4) becomes

�2�2 + 2�(2q � 8� + 5)� h2 + h(8� � 3) � 4�(q + 1): (3.5)

The inequality (3.5) is satis�ed when � is at most d�e, where dxe denotes
the smallest integer larger than or equal to x. Hence, we have proven the

following proposition.
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Proposition 3.11. The set S is contained in at most d�e planes or

hyperbolic quadrics sharing at least 2(q � 2� + 1) or 2(q � 4� + 2) lines

with S, respectively.

We use Proposition 3.11 to prove the following result.

Proposition 3.12. If X = fX1; : : : ; Xkg, k � d�e, is the set of planes

and hyperbolic quadrics containing S, then each Xi contains at least

2(q � 2k) lines of S which are not contained in any Xj, j 6= i.

Proof. Let X1 be a plane and let l be a line of S in X1 not contained in

X2 [ � � � [ Xk. Then any of the planes or hyperbolic quadrics X2; : : : ; Xk

intersects l in at most two points, hence there are at least q � 2k a�ne

points of l that must be contained in a line of X1 not contained in Xi,

i 6= 1. If the line l goes through the point at in�nity P of X1, then these

q � 2k lines of X1 intersecting l go through the other point at in�nity of

� \ X1. So in X1, there are at least q � 2k lines of S not contained in

Xi; i 6= 1, for any one of the two points at in�nity of X1 in �.

If X1 is a hyperbolic quadric and l a line of S in X1 not contained in Xi,

i 6= 1, then, since any plane or hyperbolic quadric intersects l in at most

two points, the same arguments show that for every regulus in X1, there

are at least q � 2k lines of S not contained in Xi; i 6= 1.

Remark 3.13. It follows from the proof of Proposition 3.12 that a line

l1 in S, contained in Xi and not contained in Xj, j 6= i, contains at

least q� 2d�e points that lie on exactly one other line l2 of S, and that

this line l2 is contained in Xi, but not in Xj, j 6= i.

Using the same techniques as in [27], we will characterize the codewords

of small weight as being linear combinations of codewords of weight 2q and

2(q + 1).

Proposition 3.14. In the LDPC code de�ned by T �
2 (�), q = 2h, h � 7,

every codeword of weight at most 2 3
p
q(q+1)=3 is a linear combination

of codewords of weight 2q or 2(q + 1).
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Proof. We will prove this by induction on the weight of the codewords.

Let c be a codeword of C of weight 2�(q + 1), � � 3
p
q=3, and assume

that all the codewords of C of weight smaller than wt(c) have already been

characterized as being linear combinations of codewords of weight 2q and

2(q + 1).

Let S be the set of lines de�ned by supp(c) and let l1 be a line of S

contained in X1 and not contained in Xj, j 6= 1. According to Remark 3.13,

there exist h points R1; : : : ; Rh, with h = q � 2d�e, on l1 lying on exactly

two lines of S, the line l1 and another line of X1. Denote the second line

of S through Ri by li+1.

Every point Ri, i � h, de�nes a row of the parity check matrix H and

since a codeword has to be orthogonal to every row of H, the codeword c

has (up to a scalar multiple) 1 in the position corresponding to l1 and 1

in the positions corresponding to the lines li+1; i = 1; : : : ; h. The lines li+1

intersect l1, hence, if X1 is a plane, then they are lines through an other

point at in�nity with respect to l1. If X1 is a hyperbolic quadric, then the

lines li+1 belong to the opposite regulus of the one containing l1. Therefore,

there arem lines, lq�2d�e+k; k = 2; : : : ;m+1, withm = q�2d�e�1, through
the same point at in�nity as l1 or in the same regulus of l1 that belong only

to X1. A line lq�2d�e+k can intersect the Xj; j > 1, in at most 2d�e points
(see Remark 3.13), hence, there exists a line among l2; : : : ; lq�2d�e+1 that

intersects lq�2d�e+k in a point not belonging toXi; i > 1. Repeating the same

arguments yields that the codeword c has 1 in the positions corresponding

to l1; lq�2d�e+k, with k = 2; : : : ;m+1; and 1 in the positions corresponding

to li+1; i = 1; : : : ; q�2d�e. If X1 is a hyperbolic quadric, then � is a regular

hyperoval since it contains already at least q� 4� +2 points of a conic [18,

Lemma 8.9]. Let now c0 be the codeword de�ned by taking all symbols in

the positions corresponding to lines of X1 equal to 1, then c and c
0 share at

least 2q � 2d�e non-zero positions and symbols, so wt(c� c0) < wt(c). The

induction hypothesis states that c� c0 is a linear combination of codewords

of weight 2q and 2(q + 1). Hence, c = (c � c0) + c0 is a linear combination

of such codewords too.
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3.2 T
�
2 (�)

D, with � a non-regular translation

hyperoval

In this section, we characterize codewords of small weight of the LDPC

code of T �
2 (�)

D with � a translation hyperoval. Therefore, we �rst give a

detailed description of this dual generalized quadrangle and we distinguish

between the cases � a non-regular translation hyperoval (Section 3.2) and

� a regular hyperoval, i.e. a conic and its nucleus (Section 3.3). This

description relies on the results of Payne and Thas [43].

Let � be the translation hyperovaln
(1; x; x�)jx 2 GF (q)

o
[ f(0; 0; 1); (0; 1; 0)g ;

with � a generator of Aut(GF (q)), embedded in the plane X0 = 0 of

PG(3; q).

Proposition 3.15. T �
2 (�)

D can be described as an incidence structure

(P;L; I) with

P =

8>>><>>>:
A�ne points of T �

2 (�).

A�ne planes through (0; 0; 1; 0) and (0; 1; a; a�); a 2 GF (q):

A�ne planes through (0; 0; 0; 1) and (0; 1; a; a�); a 2 GF (q):

L= A�ne lines through the points (0; 1; a; a�) of �.

I =

8>>><>>>:
An a�ne point lies on an a�ne line if the point lies on that line.

An a�ne plane � through (0; 1; a; a�), and (0; 0; 0; 1) or (0; 0; 1; 0);

is incident with the a�ne lines of � through (0; 1; a; a�):

Proof. Consider the mapping � with �(1; a; b; c) = h(1; 0; c; b�); (0; 1; a; a�)i.
Then � is obviously a bijection that maps points onto objects that will be

the lines of the geometry T �
2 (�)

D. From this de�nition, we get that L
consists of all a�ne lines through the points (0; 1; u; u�); u 2 GF (q).

We determine the image of the lines of T �
2 (�) under �, since this will

be the points of T �
2 (�)

D.

A line h(0; 0; 0; 1); (1; a; b; c)i through R = (0; 0; 0; 1) corresponds to the

set n
h(1; 0; c+ �; b�); (0; 1; a; a�)ij� 2 GF (q)

o
:
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All lines of this set are contained in a plane �1 through (0; 0; 1; 0) and

(0; 1; a; a�), so we can identify this set of lines with �1:

A line h(0; 0; 1; 0); (1; a; b; c)i through N = (0; 0; 1; 0) corresponds to the

set

fh(1; 0; c; b� + ��); (0; 1; a; a�)ij� 2 GF (q)g:
All lines of this set are contained in a plane �2 through (0; 0; 0; 1) and

(0; 1; a; a�), so we can identify this set of lines with �2:

A line through (1; a; b; c) and (0; 1; u; u�) corresponds to the set

n
h(1; 0; c+ �u�; b� + ��u�); (0; 1; a+ �; a� + ��)ij� 2 GF (q)

o
:

Note that the lines of this set all pass through the point P with coor-

dinates (1; u�; c+ au�; b� + u�a�). So we can identify this set of lines with

the point P .

Using these relations, it is clear that � maps collinear points to inter-

secting lines, and intersecting lines to collinear points.

We investigate the small weight codewords of the dual generalized quad-

rangle T �
2 (�)

D using property (�), Hence, we are able to use the methods

developed in Section3.1.

Theorem 3.16. The minimum weight of the LDPC code of T �
2 (�)

D,

with � a translation hyperoval, is equal to 4q. The minimum weight

vectors correspond to the scalar multiples of incidence vectors of a

set of all lines of T �
2 (�)

D in two planes, where these two planes pass

through the same line at in�nity.

We immediately present the proof for codewords of weight � 2�q, with

� � 3
p
q=3, to avoid a too detailed repetition of the techniques of Section 3,

and to build up already to Theorem 3.17.

Throughout this proof, we use R = (0; 0; 0; 1) and N = (0; 0; 1; 0). Let

S be the set of lines de�ned by supp(c), with c a codeword of the LDPC

code of T �
2 (�)

D.
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Proof. Codewords of the LDPC code of T �
2 (�)

D satisfy Property (�), hence
the codeword corresponds to a set S of lines such that every point lies on

zero or on at least two of them. There is only one kind of lines in T �
2 (�)

D,

the a�ne lines through the points with coordinates (0; 1; u; u�), and there

are three kinds of points of T �
2 (�)

D that have to lie on zero or on at least

two lines of S.

A: The affine points.

When we only use the condition that every a�ne point has to lie on

zero or on at least two lines, we can copy the proof for the LDPC code of

T �
2 (�). In that case, the minimum weight of the code equals 2q and this

weight occurs when taking all lines of T �
2 (�) in a �xed plane.

For every line l of S, there are two possibilities: either there exists a

plane through l with at least 2(q�2�+1) lines of S, or there is a hyperbolic

quadric through l with at least 2(q � 4� + 1) lines of S. But in this case,

there are no codewords consisting of hyperbolic quadrics, since there is no

conic lying at in�nity in �. So the initial description of the codewords

becomes: Every possible codeword of weight � 2�q, with � � 3
p
q=3, in

T �
2 (�)

D is a linear combination of codewords of T �
2 (�) of weight 2q,

consisting of the 2q lines of T �
2 (�) in a plane containing two points

(0; 1; u; u�) and (0; 1; v; v�). All lines in such a plane have a �xed symbol

in the corresponding codeword.

We still need to investigate which extra conditions the other two kinds

of points of T �
2 (�)

D impose.

B: The points coming from tangent planes to � (planes through

(0; 0; 1; 0)).

Each tangent plane through a point (0; 1; u; u�) has to contain zero or

at least two lines. Case A implies that the possible codewords of T �
2 (�)

D of

weight � 2�q are linear combinations of codewords of weight 2q of T �
2 (�)

in planes through two points (0; 1; u; u�) and (0; 1; v; v�). Take a codeword

of weight 2q, lying in the plane �, then the tangent planes at �\� contain

only one line of S. So at least two codewords of T �
2 (�) (in planes �1 and
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�2) are needed to construct a codeword. Now there are three possibilities.

� The intersection of �1 \� and �2 \� is empty. In this case, in each

of the points of �1 \ � and �2 \ �, their tangent planes through N

contain only one line, a contradiction.

� There is exactly one intersection point in common in �1 \ � and

�2 \ �. In this case, for the two non-common intersection points, a

tangent plane through them contains only one line, a contradiction.

� The two intersection points of �1 \� and �2 \� coincide.

The only possibility for a codeword consisting of two codewords of

T2(�), hence a codeword of weight 4q, is a codeword arising from two

planes �1 and �2 through the same points at in�nity of �nfR;Ng.

C: The points coming from planes through (0; 0; 0; 1) = R and a

point of �n fR;Ng.
Take a possible codeword found in Case B. Then S has two lines in

common with the planes through R and the intersection points of the planes

�1 and �2 with �. Furthermore, S has zero lines in common with planes

through R and a di�erent point of �. So the possible codeword of weight

4q does occur if we take the same symbol for the lines in the two planes �1

and �2.

Theorem 3.17. The codewords of the LDPC code of T �
2 (�)

D, q = 2h,

h � 7, of weight 2�q, with � � 3
p
q=3, are linear combinations of code-

words of T �
2 (�), with weight 2q, which are coming from 2q lines in

planes through two points of �nfR;Ng, where the sum of the symbols

of the lines through a point of �nfR;Ng has to be zero.

Proof. From Case A, we derive that every codeword of weight at most

2�q, with � � 3
p
q=3, is a linear combination of codewords of T �

2 (�) with

weight 2q. Cases B and C yield the second condition, so that the sum of

the symbols in the coordinate positions corresponding to the lines in each

tangent plane to the q-arc �nfR;Ng equals zero.
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Remark 3.18. Even though we use linear combinations of codewords

of weight 2q of T �
2 (�), there are no codewords of weight 2q in T �

2 (�)
D

(see Theorem 3.16).

We will observe that it is su�cient to make the assumption that the

sum of the symbols in the coordinate positions corresponding to the lines

in one kind of tangent planes, i.e. either through R or through N , equals

zero. In the proof, we use the planes through N .

By Example 3.2, we have already showed that the minimum weight of

the code of T �
2 (�)

D is 4q, giving the description of the geometrical con�g-

uration in the original setting of T �
2 (�)that gives arise to a codeword of

such a weight. Therefore, we want to describe also the codewords of small

weight of Theorem3.17, in terms of points and lines of T �
2 (�). Let � be the

bijection between T �
2 (�)

D and T �
2 (�) de�ned in the proof of Proposition

3.15. When �(x) = y, or �(x) = y, then x and y are called corresponding.

Proposition 3.19. The duality ��1 maps lines of T �
2 (�)

D through the

same point at in�nity to points in the same plane in T �
2 (�).

Proof. The line passing through (1; 0; x; y�) and (0; 1; a; a�) is mapped by

��1 to the point (1; a; y; x). So all lines of T �
2 (�)

D through (0; 1; a; a�) are

mapped to points lying in the plane aX0 +X1 = 0.

Proposition 3.20. All planes in T �
2 (�) with points corresponding to

lines in T �
2 (�)

D contain the points R = (0; 0; 0; 1) and N = (0; 0; 1; 0).

Proof. As seen in Proposition 3.19, all these planes have equation �X0 +

X1 = 0, hence contain the points R and N .

Proposition 3.21. The duality ��1 maps q coplanar lines of T �
2 (�)

D

through a point (0; 1; u; u�); u 2 GF (q), to a q-arc in a plane through R

and N .

Proof. All points of the plane � through (0; 1; u; u�), (0; 1; v; v�) and (1; 0; a; b�)

have coordinates (1; �+ �; a+ �u+ �v; b� + �u� + �v�).

It follows that the a�ne lines through (0; 1; u; u�) and the q points

(1; 0; a+�(u+v); b�+�(u�+v�)), � 2 Fq, in � are mapped to the q points
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(1; u; b+ ��
�1

(u+ v); a+ �(u+ v)), with � 2 Fq. It is easy to see that this

set forms a q-arc. From Proposition 3.20 and 3.21, we get that this q-arc

lies in the plane uX0 +X1 = 0 through R and N .

Proposition 3.22. Under the duality ��1, 2q coplanar lines in T �
2 (�)

D

correspond to two corresponding q-arcs in two planes through RN .

Proof. Consider 2q lines of T �
2 (�)

D lying in the same plane, say �. The

preceding propositions tell us that these 2q lines correspond to a set B

which is the union of two sets of q points, each set lying in a plane through

R and N . Proposition 3.21 states that these sets form q-arcs. The duality

��1 gives us the following correspondences.

By Proposition 3.15, a line through R in T �
2 (�) corresponds to a tangent

plane in T �
2 (�)

D (which is a point of T �
2 (�)

D); a line through N in T �
2 (�)

corresponds to a plane through R in T �
2 (�)

D (which is a point of T �
2 (�)

D).

A tangent plane in T �
2 (�)

D through one of the intersection points of �

with �, say P , contains only one line. So a line through R in the plane

de�ned by P in T �
2 (�) contains only one point of B. The a�ne planes

through R and P contain only one line of � of T �
2 (�)

D, so, applying ��1,

every line through N in T �
2 (�) in the plane de�ned by P contains only one

point of B. The same holds for the plane de�ned by the other intersection

point of � with �.

We are taking q points in the two planes through RN containing the

set B that form q-arcs. The points R and N only lie on tangents to these

q-arcs, so R and N extend these q-arcs to (q + 2)-arcs.

The two sets of coplanar concurrent lines in T �
2 (�)

D are such that a

point lies on zero or exactly two lines of this set. So a line of T �
2 (�) not

through R or N contains zero or exactly two points of B. Connecting a

point of �nfR;Ng with the q points of one q-arc gives rise to the q-arc

in the second plane through RN and vice versa. So the two q-arcs are

corresponding ones (see Remark 3).

Notation: If the points of a set X (e.g. a q-arc) all have the same symbol

� in the corresponding codeword of the LDPC code of T �
2 (�)

D, then we

say brie
y that this set X has symbol �.
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Theorem 3.23. The codewords of the LDPC code of T �
2 (�)

D, q = 2h,

h � 7, described in terms of points and lines of T �
2 (�), with weight

� 2 3
p
qq=3, are linear combinations of incidence vectors of 2 corre-

sponding q-arcs with the same symbol, each in a plane through RN ,

such that the sum of the symbols on a line of T �
2 (�) is zero. In par-

ticular, the sum of symbols of q-arcs in a �xed plane through RN , is

zero. The minimum weight is equal to 4q, corresponding to 2 sets of

corresponding q-arcs, lying in 2 planes through RN .

Proof. This is the dual of Theorems 3.16 and 3.17, using Propositions 3.19,

3.20, 3.22 to dualize.

3.3 T
�
2 (�)

D, with � a regular hyperoval

In this section, we use the same strategy as in Section 3.2 to characterize

codewords of small weight in the LDPC code of T �
2 (�)

D, with � a regular

hyperoval, i.e. the union of a conic and its nucleus. We deal with this case

separately since in this case we are able to characterize codewords up to

a larger upper bound, i.e. up to weight 4q3=2=5. Nevertheless, the argu-

ments of the proofs are more complicated than in the case of the non-regular

translation hyperoval and this seems to come from the fact that for the non{

regular translation hyperoval
n
(1; t; t2

v

)jt 2 GF (q)
o
[ f(0; 0; 1); (0; 1; 0)g,

with q = 2h, gcd(v; h) = 1, there is a point, namely R = (0; 0; 1) or

N = (0; 1; 0), playing a special role in Proposition 3.20 (see also comments

subsequent that Proposition), while we have no such point in the case of

the regular hyperoval. Again, this may come from the fact that a non-

regular translation hyperoval is stabilized by a group of order 2q(q � 1)

�xing fR;Ng while the regular hyperoval is stabilized by a group of order

q3 � q only �xing N = (0; 1; 0).

We �rst describe the structure of T �
2 (�)

D by using the following con-

struction by Payne and Thas [42],[43].

Let S = GQ(s) = (P;L; I) and let x be a regular point, i.e. a point
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for which j fx; yg?? j = s + 1, for all points y 6= x. Then the following

incidence structure (P 0;B0; I 0) is a GQ(s� 1; s+ 1).

P 0 = Pnx?

L0 =
8<: The lines of L not through x:

The hyperbolic lines fx; yg?? ; x � y:

I 0 = Natural incidence.

Applying the preceding construction on T2(�
0), �0 a conic, gives T �

2 (�)

for � the regular hyperoval containing �0. Note that T2(�0) is isomorphic

to Q(4; q), so we can describe T �
2 (�) on Q(4; q). Then T �

2 (�) is the follow-

ing incidence structure (P;L; I). Let P be a �xed point of Q(4; q).

P = The points of Q(4; q) not on P?:

L =

8>>><>>>:
The lines of Q(4; q) not through P:

The conics C = � \Q(4; q) where � is a plane through hN;P i ;
with N the nucleus of Q(4; q):

I = Natural incidence.

We want to characterize small weight codewords of the LDPC code of

T �
2 (�)

D, so the problem is again to �nd sets S of lines such that every point

of T �
2 (�)

D lies on zero or on at least two lines of S in T �
2 (�)

D.

We dualize the incidence structure of T �
2 (�) described on Q(4; q). Since

Q(4; q), with q even, is self-dual (see e.g. [43]), the point P becomes a

line L, and conics become reguli. So T �
2 (�)

D described on Q(4; q) is an

incidence structure ( �P; �L; �I) with
�P =

8<: The points of Q(4; q) not on L:

The reguli through L:
�L = The lines of Q(4; q) not in L?:
�I = Natural incidence.

From now on, let c be a codeword of the LDPC code C arising from

T �
2 (�)

D, let wt(c) � 4�q, with � � p
q=5, and with q = 2h, h � 5, and let

S be the set of lines de�ned by supp(c).

Proposition 3.24. For every line l of S, there exists a hyperbolic

quadric Q �= Q+(3; q) of Q(4; q), containing l and such that each regulus
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of Q contains at least q � 4� + 5=2 lines of S.

Proof. The proof is similar to that of Proposition 3.10.

Proposition 3.25. The set S is contained in at most 2� + 1 hyperbolic

quadrics of Q(4; q), each one containing at least 2(q�4�+5=2) lines of

S.

Proof. Two hyperbolic quadrics of Q(4; q) share at most two lines and a

hyperbolic quadric contains at most q lines of S in each regulus because

the lines of S do not intersect L. In case there are J distinct hyperbolic

quadrics, each one containing at least 2(q�4�+5=2) lines of S, we see that

jSj �
J�1X
i=0

(2q � 8� + 5� 2i):

Filling in J = 2� + 2 and using � � p
q=5 yields a contradiction. So it

follows that J � 2� + 1.

Theorem 3.26. The minimum weight of the LDPC code of T �
2 (�)

D, �

a regular hyperoval, is 4q and the codewords of weight 4q correspond

to two hyperbolic quadrics of Q(4; q), intersecting in two lines m1, m2,

such that m1;m2 intersect L in the same point, where the hyperbolic

quadrics have the same symbol in the corresponding codeword.

Proof. We immediately present the proof for codewords of weight� 4q3=2=5,

to avoid a too detailed repetition of the techniques of Section 3, and to build

up already to Theorem 3.27.

The lines of S lie in at most 2�+1 hyperbolic quadrics of Q(4; q), with

in each regulus at least q � 4� + 5=2 lines of S. If X = fQ1; : : : ;Qkg,
k � 2� + 1, is the set of hyperbolic quadrics of Q(4; q) containing S, then

each Qi contains at least 2q� 12�+4 lines of S which are not contained in

any Qj, j 6= i. In particular, Q1 contains at least 2q � 8� + 4� 4� lines of

S not contained in Qj, j 6= 1. Each of these lines contains at least q � 4�

points of Q(4; q)\ �P lying only in Q1. Take such a line l1 and suppose that

it has symbol 1 in the codeword c. Then there are at least q � 4� lines of
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the opposite regulus of Q1 having symbol 1. Note that we are not using

the secant to L of this opposite regulus.

The other q � 6� + 1 lines of S only lying in the regulus of Q1 through

l1 can intersect already chosen lines of S in the opposite regulus of Q1 with

symbol 1 in a point not only lying on Q1, but this can happen at most 4�

times for a line. Since q � 4� > 4�, there is for each of these q � 6� + 1

lines a point only lying on this line, and on an already chosen line of S in

the opposite regulus of Q1 with symbol 1. We can conclude that all these

q � 6� + 1 lines of S only lying in the regulus of Q1 through l must have

symbol 1 in the codeword. So we have in total already 2q � 10� + 2 lines

in Q1 with symbol 1.

The line L intersects Q1 in a point P , and the sum of the symbols of the

lines of T �
2 (�)

D through the points on the two lines l1 and l2 of Q1 through

P has to be zero. There are points on l1 and l2 that lie only on a line with

symbol 1 of Q1, so these points lie on at least one other quadric Qi, i > 1.

This shows that to obtain a codeword of minimal weight, we have to

take at least two hyperbolic quadrics inQ(4; q). Then the second hyperbolic

quadric has also symbol 1 in most of its lines and passes through l1 and l2,

and since we are only using two quadrics, they both have symbol 1 in all

of their lines not lying in L?. Since in every point, the sum of the symbols

of the lines of S through it is zero, it is possible that this set is a codeword

of T �
2 (�)

D. But to make sure this set is a codeword, we have to check the

other kind of points, the reguli through L.

The reguli of Q(4; q) through L have to contain zero or at least two lines

of the set S. So suppose that a regulus of Q(4; q) through L contains the

line L0 of S in Q1 belonging to the regulus of l2. Then the 3-dimensional

space hL;L0i intersects the 3-space spanned by Q2 in a plane through the

line l1, so there has to lie a second line of S \ Q2 intersecting l1 in hL;L0i.
In order to have a codeword, the sum of the symbols of the lines of each

regulus through L has to be equal to zero. This is here the case since the

two lines of S in this regulus of Q(4; q) through L have the symbol 1.

Theorem 3.27. In the LDPC code de�ned by T �
2 (�)

D, with q = 2h,
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h � 5, � a regular hyperoval, every codeword c with wt(c) � 4q3=2=5 is

a linear combination of incidence vectors of hyperbolic quadrics such

that the symbols corresponding to the coordinate positions of the lines

intersecting L are zero, and such that the sum of the symbols of the

lines in each regulus through L equals zero.

Proof. As seen in the proof of Proposition 3.26, we �nd a set of 2q�10�+2

lines with constant symbol a lying in Qi, i = 1; : : : ; k.

Let l01 be a line in S \ Q1. The 'point' R(l01; L) of T �
2 (�)

D which is the

regulus through l01 and L has to contain a second line l02 of S. Then the line

l02 lies on a hyperbolic quadric Q0 with 2q� 10�+2 lines of S only lying in

Q0. Suppose that one of these lines has the symbol b, then the preceding

arguments lead to 2q � 10� + 2 lines in Q0 with symbol b.

We conclude that to every hyperbolic quadric Qi, there corresponds a

value �i which is the symbol of the lines of Qi, not intersecting L and not

lying in an other quadric Qj, j 6= i, in the codeword.

Consider a point P lying in exactly one hyperbolic quadric Qi, where P

does not lie on the lines of Qi intersecting L. Then both lines of Qi through

P have symbol �i, so the sum of the symbols of the lines of S through P

is zero.

The same arguments prove that for a second point P lying in s hyper-

bolic quadricsQ1; : : : ;Qs, but not lying on any of the lines ofQi intersecting

L, that the sum of the symbols of the lines of Q1; : : : ;Qs through P is zero.

Consider a point P of Q1 lying on a line of Q1 intersecting L. Denote

this line by l1. Since l1 is not a line of T
�
2 (�)

D, but the sum of the symbols

of the lines of S through P is zero, P lies in at least a second hyperbolic

quadric Qj, j > 1. Since this must be valid for all q points of l1 n fPg, in
fact, l1 lies completely in at least a second hyperbolic quadric Qj, j > 1.

Suppose that l1 lies in the hyperbolic quadrics Q1; : : : ;Qr. Using the

same arguments as in [27, Lemma 6.4], we can �nd a point P on l1, lying on

r distinct lines in the opposite reguli of l1 in Q1; : : : ;Qr. So their symbols

are respectively �1; : : : ; �r. Since the sum of the symbols of the lines of S

through P is zero, necessarily �1 + � � �+ �r = 0.
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Consider a regulus R(l01; L), where l01 2 S. Suppose that l01 lies in the

hyperbolic quadrics Q1; : : : ;Qu, having symbols �1; : : : ; �u. Each hyper-

bolic quadric Qi; i = 1; : : : ; u, has a unique line l00i intersecting l01 and L.

For each such l00i , the sum of symbols �i of the hyperbolic quadrics Qi in

which l00i lies is equal to zero.

Vice versa, consider such a line l00i of a hyperbolic quadric Qi lying in

the complementary regulus of R(l01; L). This hyperbolic quadric Qi shares

already one line l00i with the hyperbolic quadric containing R(l01; L), so con-
tains also a line of R(l01; L) n fLg.

Consider all lines of hyperbolic quadrics in Q1; : : : ;Qk lying in the reg-

ulus R(l01; L).
These hyperbolic quadrics contain one line l00i of the opposite regulus of

R(l01; L). Each such hyperbolic quadric has a corresponding symbol �i, and

again for such a line l00i , the sum of symbols �i of the hyperbolic quadrics

Qi in which l00i lies is equal to zero. This implies that if we add up all the

symbols of the lines of S in R(l01; L), then this sum is zero.

We have found a linear combination of hyperbolic quadrics of Q(4; q)

which de�nes a codeword of the LDPC code of T �
2 (�)

D.

This codeword coincides with the original codeword in all positions cor-

responding to the lines of S lying on exactly one of the hyperbolic quadrics

of Q1; : : : ;Qk.

Since two hyperbolic quadrics share at most two lines, they di�er in at

most k(k � 1) � (2
p
q=5)2 = 4q=25 positions. So the di�erence of the two

codewords has at most weight 8q=25. Since the minimum distance is 4q,

the two codewords coincide.

We have found the codewords of small weight of the LDPC code of

T �
2 (�)

D. Now we want to dualize these results to �nd the codewords of the

LDPC code of T �
2 (�)

D, described in terms of points and lines of T �
2 (�).

In Section 5.1, it is proven that T �
2 (�)

D can be described on Q(4; q) by

taking all points not on a special line L of Q(4; q), and all lines not in L?,

with as special points the reguli through L.

From T �
2 (�)

D on Q(4; q), we dualize and get T �
2 (�) on Q(4; q) since
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Q(4; q), q even, is self-dual. We say that a set and its image under this

duality are corresponding.

The minimum weight codewords of T �
2 (�)

D come from two hyperbolic

quadrics of Q(4; q), intersecting in two lines, which intersect L, so a min-

imum weight codeword of the code of T �
2 (�)

D is in the original setting

(P;L; I) = T �
2 (�) (see beginning of Section 5.1) a set of 4q points such

that every line of Q(4; q) not through P contains zero or at least two of

them.

The line L corresponds to the point P , the intersection lines s1 and s2

of Q1 and Q2, the two hyperbolic quadrics de�ning a codeword of min-

imum weight in T �
2 (�)

D, correspond to two points S1 and S2. Since s1

and s2 are not an element of T �
2 (�)

D, S1 and S2 have to be points of

TP (Q(4; q))\Q(4; q), which is the set of all points of Q(4; q) collinear with

P . Since s1, s2 and L are concurrent, S1, S2 and P are collinear. The �rst

hyperbolic quadric Q1 consists of two reguli R1 and R2, one through s1

and one through s2. The reguli R1 and R2 correspond to conics C1 and

C2, respectively, in Q(4; q), with S1 2 C1 and S2 2 C2.

Each line of R1 intersects each line of R2. So dually, every point on

C1 is collinear with every point on C2. Projecting Q(4; q) from its nucleus

N onto a 3-dimensional space PG(3; q), gives W (3; q), a symplectic gener-

alized quadrangle de�ned by a symplectic polarity �. In this projection,

C1 and C2 become two lines M and M�, because then every point of M is

collinear with every point on M�. The only conics that are projected onto

a line under this projection are the conics of Q(4; q) in a plane through N ,

and all conics in such a plane have N as their nucleus. So C1 and C2 are

conics each lying in a plane through N , with N as nucleus.

To go from T �
2 (�) described on Q(4; q) to the original setting T �

2 (�)

as a linear representation in PG(3; q), we project from the point P onto a

3-dimensional space PG(3; q). The points S1 and S2 project onto the same

point S 01 = S 02 on a conic at in�nity with nucleus N 0, so the conics C 0
1 and

C 0
2 which are the projected conics C1 and C2 go through the same point

S 01 = S 02 at in�nity.
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The regulus of Q2 containing s1 corresponds to a conic C 0
3 lying in a

plane through S 01 and N 0. This has to be the same plane as the one con-

taining C 0
1, otherwise the lines through N 0 containing points of C 0

1 cannot

have a second point in that plane. The other regulus of Q2 corresponds to

a conic C 0
4 lying in the same plane as C 0

2.

In order to get a codeword of the LDPC code of T �
2 (�)

D, the conics

have to be corresponding, which means that a line connecting a point of

� n fS 01 = S 02; N
0g with a point of C 0

1 (C
0
3 resp.) intersects in C 0

2 (C
0
4 resp.).

Using this and dualizing Theorem 3.27 gives the following theorem.

Theorem 3.28. In the LDPC code de�ned by T �
2 (�)

D, with q = 2h, h �
5, � a regular hyperoval, described in terms of points and lines of the

linear representation T �
2 (�), every codeword c, with wt(c) � 4q3=2=5, is

a linear combination of incidence vectors of two by two corresponding

conics with the same symbol, lying in tangent planes to the conic in

�, such that the sum of the symbols on a line of T �
2 (�) is zero. In

particular, the sum of symbols of the conics in one tangent plane is

equal to zero.
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