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Abstract. In this paper, we investigate some mathematical structures underlying the physics
of linear optical passive (LOP) devices. We show, in particular, that with the class of LOP
transformations on N optical modes one can associate a unitary representation of U(N) in the
N -mode Fock space, representation which can be decomposed into irreducible sub-representations
living in the subspaces characterized by a fixed number of photons. These (sub-)representations
can be classified using the theory of representations of semi-simple Lie algebras. The remarkable
case where N = 3 is studied in detail.

1. Introduction

Quantum Mechanics (QM) in finite-dimensional Hilbert spaces is considered nowa-
days as an extremely important subject, especially for the central role that it plays
in Quantum Information Processing (QIP) and Quantum Computation (QC) —
see, for instance [1, 2] and the rich bibliography therein. The most relevant mathe-
matical objects attached to finite-dimensional Hilbert spaces are — from the point
of view of QM, and, in particular, of QIP and QC — the associated unitary groups,
and, more in general, the unitary representations acting in such spaces; in partic-
ular, irreducible unitary representations (i.u.r.’s) enjoy a special status, by virtue
of the fact that every non-trivial vector in the carrier Hilbert space of a i.u.r. is a
cyclic vector for such a representation [3].

Since many quantum-mechanical systems are characterized by intrinsically
infinite-dimensional carrier Hilbert spaces, the problem of how to single out a
finite-dimensional Hilbert space such that the evolution of the system can be con-
fined in it, and, moreover, suitable for the applications (in particular, to QIP and
QC) that one has in mind is of paramount importance. Fortunately, at least in
principle, in the domain of quantum optical systems there is a simple and con-
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ceptually clear scheme for achieving this scope: to use states with a fixed total
number of photons and linear optical passive (LOP) devices. This scheme plays,
in fact, a central role in linear optical QC (see the review paper [4], and references
therein).

Aim of the present paper is to describe some mathematical structures under-
lying the physics of LOP devices; in particular, we will study the unitary repre-
sentations that are associated in a natural way with LOP transformations. We
believe that this study, which further develops some ideas introduced in a previ-
ous paper [5] devoted to an algebraic approach to linear optical QC, may allow a
deeper insight into the potential applications of LOP devices.

The paper is organized as follows. In Sect. 2, we show that with the class of
LOP transformations on N optical modes is associated a unitary representation of
the N -dimensional unitary group U(N) in the N -mode Fock space, representation
which can be decomposed into sub-representations living in the subspaces char-
acterized by a fixed number of photons; such (sub-)representations of U(N) will
be called, for reasons that will be clarified later on, ‘N -mode Jordan-Schwinger
representations’. Next, in order to give a complete characterization of the Jordan-
Schwinger representations, we will introduce, in Sect. 3, the so-called ‘Jordan-
Schwinger map’. This technical tool allows to apply in a straightforward way the
theory of representations of semi-simple Lie algebras which will enable us to prove,
in Sect. 4, the main result of the paper: the N -mode Jordan-Schwinger representa-
tions are i.u.r.’s that form, for N = 2, a maximal set of inequivalent i.u.r.’s, while,
for N ≥ 3, they form a special non-maximal set of inequivalent i.u.r.’s that can
be characterized by means of their ‘highest weights’ (for the sake of simplicity, we
will focus on the case where N = 3). Finally, in Sect. 5, conclusions are drawn.

2. LOP Transformations

The linear optical passive (LOP) transformations are defined as the class of linear
transformations that act on a system of N optical modes leaving unchanged the
total number of photons in the process (see e.g. [6]). In this section, we will discuss
the mathematical framework underlying such important physical processes.

As it is well known, the fundamental mathematical object that describes a
N -mode quantized e.m. field is the (N -mode) Heisenberg-Weyl algebra W(N),
i.e. the (2N + 1)-dimensional operator algebra generated by the basis elements
{âk, â

†
k, Î}N

k=1 — where

âk = Î ⊗ · · · ⊗ Î ⊗
k︷︸︸︷
â ⊗ Î ⊗ · · · ⊗ Î , (1)

with â (resp. â†) denoting the standard annihilation (resp. creation) operator —
which satisfy the canonical commutation relations:

[âk, â
†
l ] = δkl Î , [âk, âl ] = [â†k, â

†
l ] = 0 , k, l = 1, 2, . . . , N . (2)
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The carrier Hilbert space of this operator algebra is the N -mode (bosonic) Fock
space H(N)

F endowed with the orthonormal basis {|n1, . . . , nN 〉}∞n1,...,nN=0, with

|n1, . . . , nN 〉 =
( N∏

k=1

1√
nk!

(â†k)
nk

)
|0〉 , |0〉 ≡ |

N︷ ︸︸ ︷
0, . . . , 0 〉 . (3)

A generic LOP device is usually depicted as 2N -port, namely, as a ‘black box’
with N inputs and N outputs — N ≥ 2 — respectively corresponding to the
field operators {âk}N

k=1 and {b̂k}N
k=1. Thus, it is described by a linear transfor-

mation on span{â1, . . . , âN} mapping the basis element âk into the operator b̂k,
k = 1, . . . , N ; the property of photon-number conservation is expressed by the
following condition:

N∑
k=1

â†kâk =
N∑

k=1

b̂†k b̂k . (4)

A simple calculation shows that this condition is sufficient to guarantee that the
canonical commutation relations (2) still hold for the operators {b̂k, b̂

†
k, Î}N

k=1, which
then form another basis for the algebra W(N), and can indeed be interpreted as
the field operators of the output modes. Precisely, denoting by U the N × N
matrix representing the LOP transformation

b̂k =
N∑

l=1

Ukl âl , (5)

from condition (4) one can easily prove that U U † = U † U = Id, where Id is
the identity matrix. Hence, with any LOP transformation it can be naturally
associated a unitary matrix U ; conversely, any unitary matrix defines a LOP
transformation. Thus, there is a one-to-one correspondence between LOP 2N -
ports and the elements of the group U(N).

On the other hand, formula (5) implies also that the output field operators
{b̂k, b̂

†
k}N

k=1, together with the identity operator Î, form another irreducible set of
generators of the algebra W(N). Hence, according to the Stone-von Neumann
theorem [7] on canonical commutation relations, they must be unitarily equivalent
to the input field operators {âk, â

†
k}N

k=1, i.e.

b̂k = Û † âk Û , k = 1, . . . , N , (6)

where Û is a suitable unitary operator in H(N)
F , uniquely defined up to an arbitrary

phase factor; therefore: with any LOP transformation, identified by a unitary
matrix U and (5), one can associate a unitary operator Û — satisfying relation (6)
— which is unique up to a phase factor.

Let us highlight an important property of every unitary operator Û satisfying
relation (6). To this aim, let us decompose the N -mode Fock space H(N)

F as the



418 P. Aniello, C. Lupo, and M. Napolitano

orthogonal sum of all subspaces with a fixed number of photons:

H(N)
F =

∞⊕
n=0

H(N)
n , H(N)

n := span
{
|n1, . . . , nN 〉 ∈ H(N)

F : n1 + . . . + nN = n
}

;

(7)
notice that from a simple calculation one finds that the dimension of the n-photon
subspace is given by

dim(H(N)
n ) =

(n + N − 1)!
n! (N − 1)!

. (8)

Denoting by P̂(N)
n the orthogonal projector onto the n-photon subspace H(N)

n , with
n = 0, 1, 2, . . . , and by n̂(N) :=

∑N
k=1 n̂k, n̂k ≡ â†kâk, the total number of photons

operator, we have the following spectral decomposition:

n̂(N) =
∞∑

n=0

n P̂(N)
n . (9)

Using the definition of n̂(N) and condition (4), one can easily check that the unitary
operator U commutes with n̂(N) :

Û n̂(N) = Û n̂(N) Û † Û =
N∑

k=1

(
Û b̂†k b̂k Û †

)
Û =

N∑
k=1

â†kâk Û = n̂(N) Û . (10)

From the spectral decomposition (9) it follows that the commutation relation (10)
is equivalent to the fact that the n-photon subspace H(N)

n is invariant with respect
to the unitary operator Û , i.e. ÛH(N)

n = H(N)
n , n = 0, 1, . . .; in particular, we have:

Û |0〉 = eiφ(�U)|0〉 , for some φ(Û) ∈ [0, 2π[ (hence: Û † |0〉 = e−iφ(�U) |0〉) . (11)

Thus, eiφ(�U) can be regarded as the phase factor which is left undetermined in
relation (6); as a consequence, if we set once and for all eiφ(�U) = 1, then, there is
a unique unitary operator Û associated with a given unitary N × N matrix U by
means of relations (5) and (6) such that

Û |0〉 = |0〉 . (12)

Therefore, by this association, we can define the map

Υ̂(N) : U(N) � U �→ Υ̂(N)(U ) ∈ U(H(N)
F ) , (13)

where U(H(N)
F ) is the unitary group of the N -mode Fock space, i.e. the group of

all unitary operators in H(N)
F .

Observe, now, that the map Υ̂(N) satisfies the following property:

Υ̂(N)(U U ′) = Υ̂(N)(U ) Υ̂(N)(U ′) , ∀ U, U ′ ∈ U(N) ; (14)
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indeed, given any couple of unitary N × N matrices U, U ′, we have:

Υ̂(N)(U ′)† Υ̂(N)(U )† âkΥ̂
(N)(U ) Υ̂(N)(U ′) =

N∑
l,m=1

Ukl U
′
lm âm (15)

= Υ̂(N)(U U ′)† âkΥ̂
(N)(U U ′) ,

for every k ∈ {1, . . . , N}, and

Υ̂(N)(U ) Υ̂(N)(U ′) |0〉 = |0〉 . (16)

By property (14), the map Υ̂(N) is a homomorphism of the group U(N) into the
unitary group of the N -mode Fock space, namely, Υ̂(N) is a unitary representation
of U(N) in H(N)

F .
Notice that we have obtained this result using only the powerful theorem of

Stone and von Neumann on canonical commutation relations; up to this point, we
did not exploit the explicit form of the operator Û = Υ̂(N)(U ), actually we did not
even exhibit such form. In order to obtain the expression of the unitary operator
Υ̂(N)(U ), one can first observe that

[Υ̂(N)(U ), P̂(N)
n ] = 0 , ∀ U ∈ U(N) , ∀ n ∈ {0, 1, . . .} ; (17)

then, one can write the following decomposition:

Υ̂(N)(U ) =
∞∑

n=0

Υ̂(N)
n (U ) , Υ̂(N)

n (U ) := Υ̂(N)(U ) P̂(N)
n = P̂(N)

n Υ̂(N)(U ) P̂(N)
n . (18)

Hence, the representation Υ̂(N) is not irreducible and can be decomposed as the
orthogonal sum of finite-dimensional sub-representations. Precisely, let us define
the finite-dimensional unitary representation Υ (N)

n of U(N) in H(N)
n by

Υ (N)
n (U )|ψ〉 = Υ̂(N)

n (U )|ψ〉 , ∀ U ∈ U(N) , ∀ |ψ〉 ∈ H(N)
n ; (19)

then, we have:

Υ̂(N) =
∞⊕

n=0

Υ (N)
n . (20)

The representation Υ (N)
0 is, obviously, just the trivial representation of U(N).

The representation Υ (N)
1 plays, instead, a special role. In fact, setting Û ≡

Υ̂(N)(U ), we have:

〈0|âkÛ â†l |0〉 = 〈0|Û(Û †âkÛ)â†l |0〉 = 〈0|̂bkâ
†
l |0〉 =

N∑
m=1

U km〈0|âmâ†l |0〉 , (21)

where we have used the fact that Û †|0〉 = |0〉 and Û †âkÛ = b̂k; then, from rela-
tion (21) it follows that

〈0|âkΥ
(N)
1 (U )â†l |0〉 = 〈0|âkΥ̂

(N)(U )â†l |0〉 = Ukl , k, l ∈ {1, . . . , N} . (22)
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Thus, Υ (N)
1 turns out to be a realization of the fundamental representation of U(N)

in the one-photon subspace of H(N)
F . The remaining representations {Υ (N)

n }n≥2 can
be determined, in principle, using the same technique, but obtaining for the matrix
elements, in general, cumbersome expressions having the form of a homogeneous
polynomial of degree n (for Υ (N)

n (U )) in the variables {Ukl}k,l=1,...,N . It is then
natural to ask the following questions:

1. Is there a way for expressing the representations {Υ (N)
n }n≥2 of U(N) by a

compact formula?

2. Are the representations {Υ (N)
n }n≥2 irreducible, and do they form, together

with the trivial and the fundamental representations, a maximal set of in-
equivalent irreducible unitary representations of U(N)?

It will be shown in the following that there exists a mathematical tool that al-
lows one to give a straightforward answer to such questions, namely, the so-called
‘Jordan-Schwinger map’ (shortly, J-S map).

3. The Jordan-Schwinger Map

The general formulation of the J-S map [8, 9, 10] gives a simple procedure allowing
one to obtain the so called bosonic realization of a Lie algebra. Consider the
operator realization of the gl(N) algebra generated by the basis elements

d̂kl := â†kâl , k, l = 1, . . . N (hence: [d̂kl, d̂pq] = δlpd̂kq − δqkd̂pl) . (23)

Next, let A be an M -dimensional matrix Lie algebra, and let {A(m)}M
m=1 be a basis

of A consisting of, say, N ×N matrices (M ≤ N2). Then, one can define the linear
operators

Â(m) :=
N∑

k,l=1

A
(m)
kl d̂kl , m = 1, . . . , M , (24)

acting in the N -mode Fock space H(N)
F . The linear operators {Â(m)}M

m=1 form a
basis of the M -dimensional ‘bosonic realization’ Â of the matrix Lie algebra A
since, as the reader may verify using the commutation relations in (23), the opera-
tors {Â(m)}M

m=1 preserve the commutation rules of the basis matrices {A(m)}M
m=1:

[Â(m), Â(r)] =
N∑

k,l=1

[A(m), A(r)]kld̂kl , m, r = 1, . . . , M . (25)

The one-to-one correspondence A(m) �→ Â(m), m = 1, . . . , M — extended by linear-
ity — is the J-S map associated with the matrix Lie algebra A: JSA : A → Â . In
the special case of the Lie algebra u(N) of U(N), i.e. the matrix algebra consisting
of all antihermitian N × N matrices, we will set: Ῠ(N)(A) ≡ JSu(N)(A).
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At this point, one can prove (see ref. [5]) that the following important relation
holds:

Υ̂(N)(exp(A)) = exp(Ῠ(N)(A)) , ∀ A∈ u(N) . (26)

We stress that this formula holds unambiguously ; namely, recalling that the ex-
ponential map for unitary groups is surjective but not injective, nevertheless we
have: exp(A) = exp(A′) ⇒ exp (Ῠ(N)(A)) = exp (Ῠ(N)(A′)).

Relation (26) allows to decompose the unitary representation Υ̂(N) into ir-
reducible sub-representations (that, with U(N) being compact, must be finite-
dimensional). In fact, the classification of the irreducible representations of U(N)=
U(1)×SU(N) can be trivially reduced to the classification of the irreducible repre-
sentations of SU(N); hence, since SU(N) is simply connected, to the classification
of the irreducible representations of the complexified Lie algebra su(N)C, task
that can be accomplished by virtue of the well known theory of representations
of semi-simple Lie algebras. As it will be shown in the next section, by virtue of
the J-S map, this theory translates beautifully from its abstract setting into the
language of the N -mode Fock space H(N)

F and of LOP transformations on this
space. In particular, one can prove the following fact. The finite-dimensional sub-
representations of Υ̂(N) that appear in the decomposition formula (20) are actually
irreducible. Moreover — differently from the case of U(2), case where the sequence
{Υ (2)

n }∞n=0 is a maximal set of inequivalent irreducible unitary representations (see
ref. [5]) — the irreducible representations {Υ (N)

n }∞n=0 of U(N), for N ≥ 3, are
mutually inequivalent but do not form a maximal set.

We will call the representations of U(N), with N = 2, 3, . . . , implementable by
means of LOP devices acting in the subspaces {H(N)

n }∞n=0 (characterized by a fixed
number of photons) of the N -mode Fock space, i.e. the unitary representations
{Υ (N)

n }∞n=0 — which will be shown, in the next section, to be irreducible — N -
mode Jordan-Schwinger representations.

4. Characterizing the 3-Mode Jordan-Schwinger Representations

Let us now focus on the J-S representations of U(3): first, as anticipated, N = 3
is the simplest case where the J-S representations do not form a maximal set of
inequivalent irreducible unitary representations; second, it contains all the basic
features of the general case N ≥ 3; third, the case of three optical modes (with a
small number of photons) corresponds to a feasible experimental setup.

We will consider the basis of the complex Lie algebra su(3)C formed by the
eight 3 × 3 matrices {σ1,2

z , σ2,3
z , σ1,2

± , σ2,3

± , σ1,3

± }, where:

σ1,2
z =

( 1 0 0
0 −1 0
0 0 0

)
, σ2,3

z =

( 0 0 0
0 1 0
0 0 −1

)
, σ1,2

+ =

( 0 1 0
0 0 0
0 0 0

)
= σ1,2

−
†
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σ2,3

+ =

( 0 0 0
0 0 1
0 0 0

)
= σ2,3

−
†, σ1,3

+ =

( 0 0 1
0 0 0
0 0 0

)
, σ1,3

− =

( 0 0 0
0 0 0
1 0 0

)
= σ1,3

+
†.

(27)
Notice that the linear span σ1,2 of {σ1,2

z , σ1,2

+ , σ1,2

− } is a subalgebra of su(3)C isomor-
phic to su(2)C (as it can be seen by ignoring the third row and the third column
in each matrix). Similarly, σ2,3 := span{σ2,3

z , σ2,3

+ , σ2,3

− } is another copy of su(2)C

embedded in su(3)C. Thus, we have the following commutation relations:[
σ1,2

z , σ1,2

±
]

= ±2σ1,2

± ,
[
σ2,3

z , σ2,3

±
]

= ±2σ2,3

± ,
[
σ1,2

+ , σ1,2

−
]

= σ1,2
z ,

[
σ2,3

+ , σ2,3

−
]

= σ2,3
z .

Next, we list the commutation relations linking the two subalgebras σ1,2 and σ2,3,
namely,[

σ1,2
z , σ2,3

±
]

= ∓σ1,2

± ,
[
σ2,3

z , σ1,2

±
]

= ∓σ1,2

± ,
[
σ1,2

± , σ2,3

±
]

= ±σ1,3

± ,
[
σ1,2

± , σ2,3

∓
]

= 0.

Besides, we have:[
σ1,2

z , σ1,3

±
]

= ±σ1,3

± ,
[
σ2,3

z , σ1,3

±
]

= ±σ1,3

± ,
[
σ1,2

± , σ1,3

∓
]

= ∓σ2,3

∓ ,
[
σ2,3

± , σ1,3

∓
]

= ±σ1,2

∓ .

Notice that the element of the algebra that one could naturally denote by σ1,3
z does

not appear in the chosen basis of generators since it can be written as the sum of
the basis elements σ1,2

z and σ2,3
z ; indeed:

[
σ1,3

+ , σ1,3

−
]

= σ1,2
z +σ2,3

z . All the remaining
matrix commutation relations involving the generators (27) vanish.

Now, let � be a representation of the complex Lie algebra su(3)C in a finite-
dimensional (complex) Hilbert space V ∼= C

K ; by means of the exponential map
from su(3) onto SU(3), one can associate with � a unitary representation R of
SU(3) in V : R(exp(σ)) v = exp(�(σ)) v, for any σ ∈ su(3) (with su(3) regarded as
a real form of su(3)C) and any v ∈ V . The group representation R is irreducible if
and only if the corresponding algebra representation � is. According to results from
the theory of representations of semi-simple Lie algebras [11], the fact whether the
representation � is irreducible or not can be decided by determining the associated
‘weights’ and ‘roots’. We recall that a pair of complex numbers µ = (µ1, µ2) is
called a weight for � if there exists a nonzero vector v ∈ V such that

� (σ1,2
z )v = µ1 v , � (σ2,3

z )v = µ2 v , (28)

where the common nontrivial eigenvector v of � (σ1,2
z ) and � (σ2,3

z ) is called a weight
vector for �. Similarly, a pair α = (α1, α2) ∈ C

2 is called a root if

• |α1| + |α2| �= 0, i.e. α1 and α2 are not both zero;
• there exists a nonzero element σ ∈ su(3)C such that

[σ1,2
z , σ] = α1σ , [σ2,3

z , σ] = α2σ , (29)

where the element σ, which is nothing but a weight vector for the adjoint
representation of su(3)C, is called a root vector corresponding to the root α.
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The commutation relations involving the generators (27) reveal what the roots for
su(3)C are. There are six roots that we list below together with the corresponding
root vectors:

α σ

(2,−1) σ1,2

+

(−1, 2) σ2,3

+

(1, 1) σ1,3

+

(−2, 1) σ1,2

−
(1,−2) σ2,3

−
(−1,−1) σ1,3

−
It will be convenient to single out the two roots α̇ = (2,−1) and α̈ = (−1, 2); they
are called positive simple roots and have the property that all other roots can be
expressed as linear combinations of α̇ and α̈ with integer coefficients, which are
(for each root) either all greater than or equal to zero, or all less than or equal to
zero, as the reader may easily check. By means of the positive simple roots we can
introduce a partial ordering relation among the weights. We will say that a weight
µ is higher than another weight µ̃ (in symbols, µ � µ̃) if µ − µ̃ can be written in
the form

µ − µ̃ = ċµ,µ̃α̇ + c̈µ,µ̃α̈ , (30)

with ċµ,µ̃ ≥ 0 and c̈µ,µ̃ ≥ 0.
At this point, a complete characterization of the finite-dimensional representa-

tions of su(3)C is provided by the well known Theorem of the Highest Weight :

1. every finite-dimensional representation of su(3)C has at least one weight, and
it is irreducible if and only if it admits a unique highest weight;

2. two irreducible representations of su(3)C have the same highest weight if and
only if they are equivalent;

3. for every irreducible representation of su(3)C, its highest weight is of the form
µ = (µ1, µ2) with µ1 and µ2 being non-negative integers; conversely, if µ1 and
µ2 are non-negative integers, then there exists an irreducible representation
of su(3)C (unique up to equivalence) with highest weight µ = (µ1, µ2).

Moreover, we recall that from the Weyl character formula one can derive the
following relation for the dimension of the vector space Vµ1,µ2 of the representation
of su(3)C associated with the highest weight µ = (µ1, µ2):

dim(Vµ1,µ2) =
1
2
(µ1 + 1)(µ2 + 1)(µ1 + µ2 + 2) . (31)

Let us now apply the above results to the characterization of the J-S repre-
sentations of U(3). First, let �n be the representation of su(3) in H(3)

n defined by:
�n(A)ψ = Ῠ(3)(A)ψ =

∑3
k,l=1 Akld̂kl ψ, with A ∈ su(3), ψ ∈ H(3)

n . Thus, �n is
the finite-dimensional sub-representation of Ῠ(3) naturally associated, via the ex-
ponential map, with the finite-dimensional unitary representation Υ (3)

n of U(3) in
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H(3)
n : Υ (3)

n (eiφ exp(A)) = einφ exp(�n(A)), with eiφ ∈ U(1), A ∈ su(3). Hence, the
group representation Υ (3)

n is irreducible if and only if the algebra representation
�n is, or equivalently, if and only if the corresponding complexified representation
�n of su(3)C is irreducible (�n(A+ iA′) = �n(A) + i�n(A′), A, A′ ∈ su(3)). Next,
observe that Ῠ(3)(σ1,2

z ) = â†1â1− â†2â2 = n̂1−n̂2, Ῠ(3)(σ2,3
z ) = â†2â2− â†3â3 = n̂2−n̂3.

Then, for the finite-dimensional representation �n of su(3)C in H(3)
n we have:

�n(σ1,2
z ) |n1, n2, n3〉 = (n1 − n2) |n1, n2, n3〉 , n1 + n2 + n3 = n , (32)

�n(σ2,3
z ) |n1, n2, n3〉 = (n2 − n3) |n1, n2, n3〉 , n1 + n2 + n3 = n ;

i.e. |n1, n2, n3〉 ∈ H(3)
n is a weight vector for �n with weight (n1 − n2, n2 − n3). It

is easy to show that the weight µn ≡ (n, 0), corresponding to the state |n, 0, 0〉, is
higher than any other weight for �n. Indeed, the difference between the weights
µ, µ̃ corresponding to a couple of nonzero vectors |n1, n2, n3〉, |ñ1, ñ2, ñ3〉 ∈ H(3)

n is
of the form µ − µ̃ = (∆n1 − ∆n2, ∆n2 − ∆n3), with ∆nj = nj − ñj . Thus, if we
set (∆n1−∆n2, ∆n2−∆n3) = (2 ċµ,µ̃− c̈µ,µ̃ , − ċµ,µ̃ +2 c̈µ,µ̃) — recall relation (30)
— taking into account that

∑3
j=1 ∆nj = 0, we find: ċµ,µ̃ = ∆n1, c̈µ,µ̃ = −∆n3.

Therefore, for |n1, n2, n3〉 = |n, 0, 0〉 and µ = µn, the integers ċµ,µ̃ and c̈µ,µ̃ are
always non-negative, hence, µn � µ̃; this proves that µn is the (unique) highest
weight for �n, which is then an irreducible representation of su(3)C. The situation
for the case of the one-photon, two-photon and three-photon subspaces H(3)

1 , H(3)
2

and H(3)
3 is illustrated in the following scheme:

|1, 0, 0〉

|0, 1, 0〉

|0, 0, 1〉

���

���

H(3)
1 :

|0, 0, 2〉

|0, 1, 1〉
���

|1, 0, 1〉
���

H(3)
2 : |0, 2, 0〉

���

|1, 1, 0〉
������

|2, 0, 0〉
���

|3, 0, 0〉
���

|2, 1, 0〉
������

|1, 2, 0〉
������

|2, 0, 1〉
���

|0, 3, 0〉H(3)
3 :

���

|1, 1, 1〉
������

|0, 2, 1〉
���

|1, 0, 2〉
���

|0, 1, 2〉
���

|0, 0, 3〉

In this scheme the arrows go from higher to lower weights. Furthermore, each
arrow ↙ corresponds to an application of the operator of â†2â1 in the subspace
H(3)

1 (resp. H(3)
2 , H(3)

3 ), i.e. to the action of �1(σ
1,2

− ) (resp. �2(σ
1,2

− ), �3(σ
1,2

− )),
while each arrow ↘ corresponds to an application of the operator of â†3â2 in
the subspace H(3)

1 (resp. H(3)
2 , H(3)

3 ), i.e. to the action of �1(σ
2,3

− ) (resp. �2(σ
2,3

− ),
�3(σ

2,3

− )). In general, for n ≥ 1, one can easily show that by suitable applications
of the operators {�n(σ1,2

± )}, {�n(σ2,3

± )} one can generate from every vector of the
standard basis {|n1, n2, n3〉}n1+n2+n3=n of H(3)

n any other element of this basis.
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5. Conclusions

In this paper, we have shown, by means of the theorem of Stone and von Neumann
on canonical commutation relations, that with the class of LOP transformations
on N optical modes, N ≥ 2, is associated a unitary representation of the group
U(N) in the N -mode Fock space H(N)

F , representation which has been denoted
by Υ̂(N). This representation can be decomposed as an orthogonal sum of the
sub-representations {Υ (N)

n }n∈{0}∪N
, where the representation Υ (N)

n lives in the

n-photon subspace H(N)
n . By virtue of the J-S map, one can express the repre-

sentation Υ̂(N) by a compact formula and, applying results from the theory of
representations of semi-simple Lie algebras, characterize the ‘N -mode J-S rep-
resentations’ {Υ (N)

n }n∈{0}∪N
. It turns out that, only in the special case where

N = 2, the J-S representations form a maximal set of inequivalent irreducible
unitary representations, while, for N ≥ 3, the N -mode J-S representations form
a certain non-maximal set of inequivalent irreducible unitary representations that
can be characterized by means of the associated ‘highest weights’. In the case
where N = 3 — the case which, for the sake of simplicity, has been studied in
detail — we can do a simple check of the results obtained, comparing formula (8)
with formula (31), formulae that should both give the dimension of the vector
space where the irreducible representation Υ (N)

n acts; in fact, we get:

dim(Vn,0) =
1
2

(n + 1)(n + 2) =
(n + 2)!
2(n!)

= dim(H(3)
n ) . (33)

We believe that these results may pave the way to an intriguing ‘experimental
exploration’, via LOP devices, of the representations of unitary groups and to
interesting applications to QIP and QC.
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