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Abstract 
This paper is an extension of a previous paper   [F. di Liberto-Phi. Mag. 87,569 (2007) ] devoted to Lost work and entropy production; 
here we introduce also the Extra work (i.e. vinExtra WWW Re−= ) in an irreversible process and apply both the concepts to the analysis of 
a system with complexity: the stepwise ideal gas Carnot cycle. A stepwise Carnot cycle is performed by means of N small weights, (here 
called dw’s), which are first added and then removed  from  the piston  of the vessel containing the gas. The work performed  by the gas 
can be found  as increase of the potential energy of the dw’s. We identify each  single dw and  thus evaluate its raising i.e. its increase in 
potential energy. In such a way we find  how  the energy output of the cycle is distributed among the dw’s. The size of the dw’s  affects  
the Entropy production and therefore the Lost and Extra work. The raising distribution depends on the removing process we choose. Since 
these processes are N!, there are N! distributions of the raisings of the dw’s 
 
1-Introduction 
As pointed out in a previous paper [1], entropy production and its relation to the available energy are  fascinating 
subjects which in last years have attracted  many physics researches [5-11 ].   
It is well known [1-10] that for some elementary irreversible process, as the irreversible isothermal expansion of 
a gas in contact with a heat source T , the work done by the gas outW  is related to the reversible isothermal work 

vWRe  (i.e. the work performed by the gas in the corresponding reversible process) by the relation  
                        (1)              

 
where US∆  is the total entropy change of the universe (system + environment). The degraded energy UST∆  is 
usually called ‘the Lost work’ LostW   

                    (2) 
 

 The latter can be interpreted as   the  missing work: i.e. the additional work that could have been done in the 
related reversible process (here the reversible isothermal expansion); it is also called ‘energy unavailable to do 
work’. 
On another hand in the irreversible isothermal compression UST∆ is called ExtraW  i.e. the excess of work 
performed on the system in the irreversible process with respect to the reversible one. 

                  vinExtra WWW Re−=                                                                     (3) 
Due to  the energy balance, the same relation holds for the amounts of heat given  to the source T , i.e. we have 

 
(4) 

Therefore UST∆  is also called the ‘Excess of heat’  ( ExtraQ ), i.e. the additional heat that  has been given to the 
source  [8,9]. 
The total variation of Entropy , US∆ , is usually called ‘Entropy production’; we shall call the latter   Uπ .  
The second Law claims  that  0≥Uπ and the entropy is  an extensive quantity  which  in the transfers between 
systems can only increase or stay unchanged.  
 
2-Entropy production , Lost Work and Extra Work in isothermal  irreversible processes.  
Let us first consider the isothermal  irreversible expansion (A B) of an ideal gas in contact with a  
heat sourceT where B A B AV V V e P P P= + ∆ = −∆   with  0 , 0P V∆ > ∆ > . In such simple process some 

heat  ( )in out B AQ W P V P P V≡ = ∆ = −∆ ∆ 1  goes from the heat source T  to the ideal gas. There is an increase of  

entropy of the ideal gas, Re Re
B

v v
gas

A

Q QS
T T

δ
∆ = =∫  and a decrease of the entropy of the heat source ( inQ

T
− ) , 

where  

                                                 
1 The quantities  inQ , outQ , RevQ  are  positive 

Uvout STWW ∆−= Re

outvLost WWW −= Re

Reout v UQ Q T S= + ∆



 2

2
Re Re Re

1ln ln(1 ) ( ) ..
2

B B
B

v v v
A A A AA A

V V V VQ Q W PdV RT RT RT
V V V V

δ
⎡ ⎤∆ ∆ ∆

= = = = = + = − +⎢ ⎥
⎣ ⎦

∫ ∫  

therefore   the entropy production is  Re 0v in
U U

Q QS
T T

π ≡ ∆ = − >                                                      (5) 

Since Rev inQ Q> we find in the ideal gas an amount of entropy greater than that  taken from the heat source T . 

If , for example    3 AV V∆ =    we have      
3ln 4 0,636
4U R R Rπ = − =    

On another hand for the isothermal irreversible  compression of the  ideal gas (B A) some heat  outQ  goes from 

the gas to the sourceT . We have a decrease   of the gas entropy  Re Re
A

v v
gas

B

Q QS
T T

δ
∆ = = −∫   and an increase of 

the source entropy, ( outQ
T

) where ( )out in A B A AQ W P V V P V= = − = ∆  

Therefore in the compression the entropy production, is   
Re 0out v

U U
Q QS
T T

π ≡ ∆ = − >        (since Reout vQ Q> )                                           (6) 

Which, for      3 AV V∆ =    gives  ln(1 ) 3 ln 4 1,614A
U

A

P V VR R R R
T V

π ∆ ∆
= − + = − =   

In order to  find how the previous entropy productions affects the dissipation of energy, we have to remark that 
the irreversibility of a generic process (A B) is due, in general,  to internal and external irreversibility, therefore, 
as shown in [1,2,5]  the related entropy production Uπ   can be expressed as a sum of  two terms: the internal 
entropy production, int 0π ≥   and  the external entropy production, 0extπ ≥  i. e.  

intU extπ π π= +                                                                    (7)    
This result is not trivial since int sysSπ ≠∆ ; there are in fact many processes for which 0,sysS∆ < and  

int 0π ≥ .The system entropy production  intπ  is defined  [1,2,5]  by the relation  

intπ+−=∆ outinsyst SSS                                                      (8) 

where outin SeS are respectively  the quantity of entropy  which comes into and comes out of the system in the 

irreversible process;  
sys

vB

Asyst T
Q

S Reδ
∫=∆  is  the entropy variation  of the system from A  to  B and does not 

depend on the particular process. Similarly the external Entropy production, extπ is given by the relation 
ext ext

ext in out extS S S π∆ = − +                                                                            (9) 
or by   relation (7). It is easy to verify that for both previous  irreversible isothermal processes 0extπ =  and 
therefore that  for both the  expansion   and the compression int Uπ π= . 
In Appendix we give the relations for the Lost  Work and Extra Work for isothermal processes with internal and 
external irreversibility ( 0extπ ≠ ) From relations (A4) and (A6) it follows that  the Lost Work for an isothermal 
expansion at temperature 0T T=   and without external irreversibility ( 0extπ = )  is 
 

Re 0 intLost v outW W W T π= − =                                                                  (10) 

and that the Extra Work for an isothermal compression at BT T=  ( with  0extπ = ) is 

Re intExtra in v BW W W T π= − =                                                                     (11)             
In the next section by means of relations (10) and (11) we study the  Lost Work and the Extra Work for the 
Stepwise Carnot Cycle. 
 
 3-The step-wise ideal gas Carnot cycle and dissipated energy 
In order to perform an ideal gas stepwise cycle we need a heat source, a heat sink, a vessel with a free piston and 
a large number (N) of small “driving weights” to increase or decrease slowly,  step by step, the external pressure 
P. If the steps are infinitesimally small the cycle is “reversible”. 
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In order to evaluate the work performed by the ideal gas during the cycle, the displacements of  the  small driving 
weights (dw) must be  done carefully. We let them move on and off the piston only horizontally. To this end we 
assume that the handle of the piston is endowed with so many shelves that we can move each dw horizontally 
(and without friction)  from (or to) the corresponding fixed shelf which belongs to the dw’s Reservoir. (The dw’s 
Reservoir  is a vertical sequence of horizontal shelves on which the dw’s are initially located). Such an ideal 
device is shown schematically  in Fig.1.  

  
Figure 1 a) The adiabatic vessel with some dw’s on the piston.  
b) Cross section view of the vessel showing two supports for the dw’s  
(the dw’s Reservoir) 
 Therefore at the end of the cycle the overall raising, on the dw’s Reservoir, of the k-th dw from its initial height 
(hk ,0 ) to the final one )( kfh    is 

 0 kkfk hhh −=                                                                         (12) 
Since  a   friction-less  process is assumed, the vertical motion of the dw’s is only due to the gas and the total 
work (W) performed by the ideal gas can be found as increase of potential energy of the dw’s on the Reservoir, 
i.e. 

∑∑
==

=∆=
N

k

k

i

ii hmgVPW
1

  Z

1

                                                            (13) 

where Pi is the external pressure at step i (after the addition or removal of the i-th   dw) 1−−=∆ iii VVV , is the 
volume variation from step (i-1)  to  step i and  mg is the weight of the generic dw.  Relation (13) has been proved 
elsewhere [3]. In the next section the raisings of the single dw on the reservoir are evaluated. 
  
3.1- The raisings of the dw’s for a step-wise Carnot cycle  
 

.  
Figure 2 The step-wise Carnot cycle with very small steps. 

We have considered here N=610 dw's and therefore 2N=1220 steps. The mass of each dw is m=0.1Kg. The 
surface of the piston is S=100 cm2, so that at each step in the compression the pressure increase is ∆P=Po/1033, 
i.e. 

[ ]NiforPiPPi ,1 0 ∈∆+=                                                                                                                    (14a) 
And for each step in the expansion the pressure decreases by  ∆P i.e. 

[ ]NlforPlNPP lN ,1)( 0 ∈∆−+=+                                                                                                    (14b) 
Notice moreover that 02 VV N = and BN VV  =  i.e. the volume at step 2N is the initial volume and the volume at step 
N is the smallest volume in the cycle. 

The cycle we consider  is reported in Figure 3. 
The chosen values of P and V are easily available 
in ordinary conditions. In the first N steps the 
dw's are added on the piston to perform first an 
isothermal compression (O A) and then an 
adiabatic compression (A B). In the remaining 
N steps the dw's are removed from the piston in 
order to return to the initial state (B  C  O). 
The working fluid is the ideal gas and the free 
piston is mass less. The vertical vessel’s walls 
are heat insulating and the  vessel’s  diathermal 
floor  is  made adiabatic when needed. The 
values in Fig. 3 are   P0= 1 at, V0 =22.4 l, T0 
=273.15° K, γ = 1.4, PA =1.3969 at, VA=16.034 l, 
PC =1.1385 at, VC =20.416 l, TC = 283.47°K. 

The cycle we consider  is reported in Figure 2. 
The chosen values of P and V are easily available 
in ordinary conditions. In the first N steps the 
dw's are added on the piston to perform first an 
isothermal compression (O A) and then an 
adiabatic compression (A B). In the remaining 
N steps the dw's are removed from the piston in 
order to return to the initial state (B  C  O). 
The working fluid is the ideal gas and the free 
piston is mass less. The vertical vessel’s walls 
are heat insulating and the  vessel’s  diathermal 
floor  is  made adiabatic when needed. The 
values in Fig. 2 are P0= 1 at, V0 =22.4 l, T0 = 
273.15 K, γ = 1.4, PA =1.3969 at, VA=16.034 l, PC 
=1.1385 at, VC =20.416 l, TC = 283.47 K. 

A  cycle as the Carnot or Stirling cycles, 
in which there are no  isobaric steps, can 
be  performed through Z=2N steps. In 
each of the first N steps one dw  is added 
on the piston   (and removed from the 
Reservoir at its initial height h0 ); in each 
of the following N steps one dw is 
removed from the piston (and brought 
back to the Reservoir at its  final height, 
say h,f). The k-th  dw is the dw which has 
been added on the piston at the k-th step 
in the compression. 
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Keeping in mind how we perform the Carnot cycle, let us take a closer look at the last dw. It is clear that its 
raising in the Reservoir is negative: when it leaves the Reservoir and is added on the piston, it (together with the 
piston and the previous dw's) moves downward; afterwards, at  step N+1, during the expansion, it is removed and 
it goes to rest on the fixed shelf of the Reservoir in front of it. It will stays on the piston  for one step only! i.e. 
  )( 1 SVVh NNN −−= . 
Similarly the last but one dw moves downward for two steps and moves upward for one step. It performs two 
“negative” steps and one “positive” step 

)( 1)( 1
1)1()1(2211 −−−−−+− −=−= NNNNNN VV

S
VV

S
h                                                             (15) 

 
 

 
 
 Fig. 3. Overall raising on the reservoir of each dw.  
In the zoom of the extremity of the graph, one can see  
that the last dw’s and the first ones have negative raising 
 
3.2 Lost work and extra work step by step and the total dissipated energy 
      One may observe that in the cycle there has been an Entropy production: in fact  
in each isothermal step of the  compression (O A) at temperature 0T , from relation (6 )we have 

2 2

1 1
int

0 1 0 1 1 1

1ln(1 )
2 2

i i i i i i i i
i

i i i i

P V V P V V V VRR R
T V T V V V

π + +
−

+ + + +

⎡ ⎤⎛ ⎞ ⎛ ⎞∆ ∆ ∆ ∆ ∆ ∆⎢ ⎥= − + − − ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                          (16a) 

therefore int0Re −−−− =−= iviirreviExtrai TWWW π  

and in each isothermal step in the expansion 
22

int 22
⎟
⎠
⎞

⎜
⎝
⎛ ∆=⎟

⎠
⎞

⎜
⎝
⎛ ∆=− P

PR
V
VR

iπ                                          (16b) 

and intRe −−−− =−= iBirreviviLosti TWWW π  where BT is the temperature of the hot heat source. 
 To evaluate the entropy production in the adiabatic steps we must recall that  for such steps it has been shown [4] 

that 
1

1i i

i i

V P
V Pγ +

∆ ∆
= −     where        

V

P

C
C

=γ            1i i iV V V+ − = ∆ and   1i i iP P P+ − = ∆  

Therefore   the entropy production is  

i

i

i

i
V

i

i
Ui V

V
R

T
T

C
T
QS 11

1

int lnln ++
+

− +==∆= ∫
δπ    which at first order gives 
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intπ and since )()( 111 iiiiiV VVPTTC −−=− +++  

   
2 2

1 1 1 1 1
int

1

( ) 1i i i i i i i i i i i i
i

i i i i i i i i i

P V V V V RP V R V V P V PRR R R
T V PV V V P V P

π γ
γ

+ + + + +
−

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − ∆ ∆ ∆ ∆ ∆
= − + = − + = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   (17) 

Finally we can conclude that the Dissipated energy i.e. 
DW , is 

2

int
1

N

D i i Extra Lost
i

W T W Wπ −
=

= = +∑   where  

By means of relations (15) one can calculate [4] the overall 
raising of each of the N dw's on the Reservoir i.e. the hk‘s. 
The overall raisings are reported in Fig.3, where hN  is 
given for r=0, hN-1  for r=1 and so on .. h1 for r=609. The 
inserts  in the upper part of Fig. 3 show that the last dw's 
and the first ones have negative raisings; it is clear that the 
negative raisings disappear only for the « reversible cycle » 
i.e. in the limit N ∞ (and therefore ∆P 0, m 0 ). 
Therefore for the k-th  dw  

)( 1
12 −− −= kkNk VV

S
h                   

And )( 1
0121 VV

S
h N −= − :  the first dw moves downward 

for N steps and moves upward for N-1 steps. 
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1

int 0 int int
1 1 1

n n nN

Extra i i i i i
i i i n

W T T Tπ π π
+

− − −
= = = +

= = +∑ ∑ ∑                                           (18) 

And 
3

3

2 2

int int int
1 1 1

N nN N

Lost i i B i i i
i N i i N n

W T T Tπ π π
+

− − −
= + = = + +

= = +∑ ∑ ∑                                  (19) 

Where 1 3,n n are the numbers of  isothermal steps and   2 4,n n  are the numbers of adiabatic steps. 
 
3.3 Complexity in the raisings pattern  
The raising  ih depends on the removing process we choose (the number of such processes is N!). In the previous 
sections we have chosen the Simplest Process (SP) (the removing process that starts with the last dw and ends 
with the first dw). Let us see how the raisings of the single dw’s change for a Complex Process (CP), in which we 
start from the (N-L)-th  dw, (L<N), go progressively to the last one, and then from the (N-L-1)-th  dw, go to the 
first. If the first removed dw is the (N-L)-th with 1<L<N the history of each dw will change. For the (N-L)-th dw 
(which has been on the piston for the last L+1 steps of the compression) we clearly have 

)( 1
11 −−

−=

−−− −=−=∆= ∑ LNN

N

LNi

LNNiLN VV
S

HHHh  

which is negative and remains still negative in the N ∞ limit i. e. also for “Reversible cycles” [4]. 
For the (N- (L-1))-th dw, which has been on the piston for the last L steps of the compression and the first step of 
the expansion (i.e. the step in which the (N-L)-th dw has been removed) we clearly have  

)( 1
1

1

)1(

1)1( LNN

N

LNi

LNNiLN VV
S

HHHh −+

+

−−=

−+−− −=−=∆= ∑  

Therefore if we denote with hL
N-r the raisings in such CP for r≤  L we have 

.)( 1
1

1

1

−−−+

−=

−−−+

−+

+=
−

−=

=−=∆+∆= ∑ ∑

rNrLN

N

rNi

rNrLN

rLN

Ni

ii
L

rN

VV
S

HHHHh
                                                                    (20) 

This last relation allows to evaluate the raisings of the dw’s directly from the P-V diagram of the Carnot–cycle. 
We have only to look at the ∆V relative to a pressure variation (∆P)* = (2r+1-L)∆P. 
From the PV diagram we see that for (∆P)* >0 we have ∆V<0 and hence  hL

N-r  <0   and  for (∆P)*<0 we have 
∆V>0 and hence hL

N-r  >0 .  
For r > L the way in which the previous L dw’s have been removed has no influence, therefore for r>L the 
raisings are the same as in the SP i. e.  

)( 1
11 −−−−−−−− −=−== rNrNrNrNrN

L
rN VV

S
HHhh  

 
 
 
 
Figure 4 Overall raising for each dw for  
the removing process which starts  
from the (N- L)-th  dw i.e.  the 560-dw  
 
 4 Summary 
In this paper we have introduced the Extra Work  which together with the Lost Work gives the 
Dissipated energy in the irreversible processes. The analysis is confined  mainly to irreversible 
isothermal process even if the known results [2,4] are used for the adiabatic processes. 

 
Obviously we expect that  

∑∑∑
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==∆≡
N
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k

N
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kk

Z

ii
L

khmghmgVPW
111

                        (21) 

since for each of the N! possible processes the work 
performed by the gas in the cycle is the same. 
In Figure 4 we report the raisings of the dw’s for a 
Complex Process with L=50 Notice that the raisings of 
the last 50 dw’s are here completely different from 
those in the SP. 
The previous removing process is only one of the many 
Complex Process that one can perform. 
The removing process are N! For each process we have 
a different distribution for the raisings  hk . 
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The new and previous results are used to evaluate the Dissipated energy for a stepwise  ideal gas Carnot 
Cycle , a system with complexity. The complexity arises from the fact that there are N! different 
distribution for the raisings  hk ..i.e the  work output of the Carnot cycle can be distributed in N! ways among 
the N dw’s. 
Aknowledgements: I greatly indebted to M. Zannetti and G. Monroy for the useful comments. 
 
Appendix :Lost Work and Extra Work for isothermal processes with external irreversibility 
Here we evaluate the Lost Work for the expansion and the Extra work for the compression when there is external 
irreversibility. 
In sec.2.2  and in sec.3 of  paper[1] an we have  shown that  if the irreversible  isothermal expansion is performed  
by means of a (shorter) contact with an heat source at  extT T>  we have 0extπ ≠   i.e.  

in in
ext

ext

Q Q
T T

π = −                                                              (A1)   

  and for the Endo–reversible process, i.e. the process in which the gas performs the reversible isothermal 
expansion  A B→  

Re ReEndo v v
ext

ext

Q Q
T T

π = −                                                       (A2) 

Similarly if the irreversible  isothermal compression  is performed  by means of a (shorter) contact with an heat 
source at  extT T<  we have 0extπ ≠   i.e.  

out out
ext

ext

Q Q
T T

π = −  and   Re ReEndo v v
ext

ext

Q Q
T T

π = −                                      (A3) 

To evaluate  the Lost Work for the expansion with extT T>  we  calculate  the work available in the related 
Reversible process and subtract from it outW , the effective work done in the irreversible process. This difference 
gives the Lost Work.  
The  Reversible Work is the Reversible work of the gas + the work of an auxiliary reversible engine working 
between extT  and T .  For the gas   Re Re( )v vW gas Q= ; the auxiliary reversible engine, which brings the heat 

vQ Re  to the system (the ideal gas at temperature T ) and  takes from the heat source extT  the heat 
T

T
Q ext

vRe   

performs the Work )1()( ReRe
ext

ext
vv T

T
T

T
QengineW −= , therefore the total reversible work is 

Re Re Re Re Re( ) ( ) (1 )ext
vTotal v v v v

ext

T TW W gas W engine Q Q
T T

= + = + −                  

 The Work performed  by the gas in the irreversible expansion is out inW Q= , therefore 

 Re Re Re Re
Endoext

Lost vTotal out v in v v in ext ext
TW W W Q Q Q Q T T
T

π π= − = − + − = +                 (A4) 

 On the other hand  for the compression with an heat source at  extT T=  

Re Re intExtra in v out vW W W Q Q Tπ= − = − =                                                       (A5) 
but if one uses a  heat source at  extT T< , from the Reversible work necessary to perform the isothermal 
compression at temperature  T we have to subtract the work of the reversible engine which subtracts outQ  from 

heat source T  (the gas  ) and gives to the source  extT   the heat  
out

extMin Q
T

TQ = , i.e. 

extext
out

ext

out
ext

Min
outv

ext T
T

Q
T
QTQQW π=−=−= )(Re

  

therefore the Extra work is 

( )Re Re Re int
ext out

Extra in v v out v out ext ext ext
QW W W W Q Q Q T T T
T

π π= − − = − + − = +                             (A6) 
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