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Abstract
This paper is an extension of a previous paper [F. di Liberto-Phi. Mag. 87,569 (2007) ] devoted to Lost work and entropy production;
here we introduce also the Extra work (i.e.\W =W,, —Wpg,, ) inanirreversible process and apply both the concepts to the analysis of

a system with complexity: the stepwise ideal gas Carnot cycle. A stepwise Carnot cycle is performed by means of N small weights, (here
called dw’s), which are first added and then removed from the piston of the vessel containing the gas. The work performed by the gas
can be found as increase of the potential energy of the dw’s. We identify each single dw and thus evaluate its raising i.e. its increase in
potential energy. In such a way we find how the energy output of the cycle is distributed among the dw’s. The size of the dw’s affects
the Entropy production and therefore the Lost and Extra work. The raising distribution depends on the removing process we choose. Since
these processes are NI, there are N! distributions of the raisings of the dw’s

Extra Rev

1-Introduction

As pointed out in a previous paper [1], entropy production and its relation to the available energy are fascinating
subjects which in last years have attracted many physics researches [5-11 ].

It is well known [1-10] that for some elementary irreversible process, as the irreversible isothermal expansion of

a gas in contact with a heat source T, the work done by the gas W_ . is related to the reversible isothermal work

out

W, (i.e. the work performed by the gas in the corresponding reversible process) by the relation
W, =W, — TAS, 1)

Rev

where AS,; is the total entropy change of the universe (system + environment). The degraded energy TAS, is
usually called ‘the Lost work” W

Lost

W 2)

out

WLost =W

The latter can be interpreted as the missing work: i.e. the additional work that could have been done in the
related reversible process (here the reversible isothermal expansion); it is also called ‘energy unavailable to do
work’.

On another hand in the irreversible isothermal compression TAS; is called W, i.e. the excess of work
performed on the system in the irreversible process with respect to the reversible one.

Rev

WExtra :Win _WRev (3)
Due to the energy balance, the same relation holds for the amounts of heat given to the source T, i.e. we have
Qout = QRev + T ASU (4)

Therefore TAS, is also called the ‘Excess of heat’ (Qg,,, ). i.e. the additional heat that has been given to the
source [8,9].

The total variation of Entropy , AS,, , is usually called ‘Entropy production’; we shall call the latter 7, .

The second Law claims that 7, > 0and the entropy is an extensive quantity which in the transfers between
systems can only increase or stay unchanged.

2-Entropy production , Lost Work and Extra Work in isothermal irreversible processes.
Let us first consider the isothermal irreversible expansion (A->B) of an ideal gas in contact with a

heat source T where V; =V, +AV e P, =P, —AP with AP >0, AV >0. In such simple process some
heat Q,, =W, =P,AV = (P, —AP)AV * goes from the heat source T to the ideal gas. There is an increase of

B
entropy of the ideal gas, AS = J. % = % ?_i”

A

and a decrease of the entropy of the heat source (—

),

where

' The quantities Q,,, Q,,;,Qge, are positive
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therefore the entropy production is 7, = AS Q_lFfeV —% >0 (5)
Since Qg,, > Q,, we find in the ideal gas an amount of entropy greater than that taken from the heat source T .

If, forexample AV =3V, wehave 7, = RIn4—%R =0,636R

On another hand for the isothermal irreversible compression of the ideal gas (B> A) some heat Q

_A5Qev__Qev
-] ToTT

goes from

out

and an increase of

the gas to the source T . We have a decrease of the gas entropy ASgaS

Qo
—2L) where
T ) Q

B

the source entropy, ( =W, =P, (Vz -V,) =P, AV

out

Therefore in the compression the entropy production, is

7y =AS :%——Q_?ev >0

P, AV

(sinceQ,,; > Qge ) (6)

Which, for AV =3V, gives 7, =

V—) 3R-RIn4=1614R

A
In order to find how the previous entropy productions affects the dissipation of energy, we have to remark that
the irreversibility of a generic process (A->B) is due, in general, to internal and external irreversibility, therefore,

as shown in [1,2,5] the related entropy production 7, can be expressed as a sum of two terms: the internal
entropy production, r;,, =0 and the external entropy production, 7, >0 i.e.

ext —

Ty =Ty + gy (7)

int
This result is not trivial since 7;, #AS, ; there are in fact many processes for which AS_ <0,and
> 0.The system entropy production .. is defined [1,2,5] by the relation
AS g = Sin = Sout t iy (8)

out
are respectively the quantity of entropy which comes into and comes out of the system in the

@ev
_-[;T—R

|nt int

where S, €S

out

irreversible process; AS is the entropy variation of the system from A to B and does not

syst
sys

depend on the particular process. Similarly the external Entropy production, 7, is given by the relation

AS,, =S2 — S + 1, 9)

out

or by relation (7). It is easy to verify that for both previous |rreversible isothermal processes r,,, =0 and

therefore that for both the expansion and the compression 7, =7 .

In Appendix we give the relations for the Lost Work and Extra Work for isothermal processes with internal and
external irreversibility (7, # 0) From relations (A4) and (A6) it follows that the Lost Work for an isothermal

expansion at temperature T =T, and without external irreversibility ( 7, =0) is

ext

WLost =VVRev o W =T 07int (10)
and that the Extra Work for an isothermal compression at T =Ty (with 7, =0)is
WExtra Wln WRev T 87%int (11)

In the next section by means of relations (10) and (11) we study the Lost Work and the Extra Work for the
Stepwise Carnot Cycle.

3-The step-wise ideal gas Carnot cycle and dissipated energy

In order to perform an ideal gas stepwise cycle we need a heat source, a heat sink, a vessel with a free piston and
a large number (N) of small “driving weights” to increase or decrease slowly, step by step, the external pressure
P. If the steps are infinitesimally small the cycle is “reversible”.
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In order to evaluate the work performed by the ideal gas during the cycle, the displacements of the small driving
weights (dw) must be done carefully. We let them move on and off the piston only horizontally. To this end we
assume that the handle of the piston is endowed with so many shelves that we can move each dw horizontally
(and without friction) from (or to) the corresponding fixed shelf which belongs to the dw’s Reservoir. (The dw’s
Reservoir is a vertical sequence of horizontal shelves on which the dw’s are initially located). Such an ideal

device is shown schematically in Flg.;. A cycle as the Camot or Stirling cycles,

in which there are no isobaric steps, can
be performed through Z=2N steps. In
each of the first N steps one dw is added
on the piston (and removed from the
Reservoir at its initial height hy); in each
of the following N steps one dw is
removed from the piston (and brought

_ back to the Reservoir at its final height,
L_ - say hy). The k-th dw is the dw which has
been added on the piston at the k-th step
in the compression.

IA R KA
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Figure 1 a) The adiabatic vessel with some dw’s on the piston.
b) Cross section view of the vessel showing two supports for the dw’s
(the dw’s Reservoir)

Therefore at the end of the cycle the overall raising, on the dw’s Reservoir, of the k-th dw from its initial height
(h« o) to the final one (h,,) is

hk = hi - hio (12)
Since a friction-less process is assumed, the vertical motion of the dw’s is only due to the gas and the total

work (W) performed by the ideal gas can be found as increase of potential energy of the dw’s on the Reservoir,
ie.

W= ZZPiAVi = mgihk (13)
i1 k=1

where P; is the external pressure at step i (after the addition or removal of the i-th dw) AV, =V, -V, ,, is the

volume variation from step (i-1) to step iand mg is the weight of the generic dw. Relation (13) has been proved
elsewhere [3]. In the next section the raisings of the single dw on the reservoir are evaluated.

3.1- The raisings of the dw’s for a step-wise Carnot cycle S o
The cycle we consider is reported in Figure 2.

i I The chosen values of P and V are easily available
" % in ordinary conditions. In the first N steps the
5. dw's are added on the piston to perform first an
isothermal compression (O>A) and then an
B P adiabatic compression (A->B). In the remaining
| N steps the dw's are removed from the piston in
P order to return to the initial state (B > C > 0).

124 The working fluid is the ideal gas and the free
piston is mass less. The vertical vessel’s walls
are heat insulating and the vessel’s diathermal
104 v floor is made adiabatic when needed. The

) s 5 e 2 il values in Fig. 2 are Po=1 at, Vo =22.4 |, Ty =

v 273.15 K, y=1.4, P, =1.3969 at, VA=16.034 |, P¢

=1.1385 at, V¢ =20.416 |, Tc = 283.47 K.

Figure 2 The step-wise Carnot cycle with very small steps.

We have considered here N=610 dw's and therefore 2N=1220 steps. The mass of each dw is m=0.1Kg. The
surface of the piston is S=100 cm?, so that at each step in the compression the pressure increase is AP=P0/1033,
i.e.

Pi=Po+iAP forie[L,N] (14a)
And for each step in the expansion the pressure decreases by AP i.e.
Pnv+i=Po+(N-1AP forle[l,N] (14b)

Notice moreover that Van =Voand Vn =V i.e. the volume at step 2N is the initial volume and the volume at step
N is the smallest volume in the cycle.



Keeping in mind how we perform the Carnot cycle, let us take a closer look at the last dw. It is clear that its

raising in the Reservoir is negative: when it leaves the Reservoir and is added on the piston, it (together with the

piston and the previous dw's) moves downward; afterwards, at step N+1, during the expansion, it is removed and

it goes to rest on the fixed shelf of the Reservoir in front of it. It will stays on the piston for one step only! i.e.
hv=(Wn—Vn-1)/S .

Similarly the last but one dw moves downward for two steps and moves upward for one step. It performs two

“negative” steps and one “positive” step

th=§(\/N+l—VN2)=%(\/2N(Nl)—V(Nl)l) (15)

o By means of relations (15) one can calculate [4] the overall
h 23] raising of each of the N dw's on the Reservoir i.e. the hy's.
) The overall raisings are reported in Fig.3, where hy is
given for r=0, hy; for r=1and so on .. h; for r=609. The
inserts in the upper part of Fig. 3 show that the last dw's
and the first ones have negative raisings; it is clear that the
| S - \_\ negative raisings disappear only for the « reversible cycle »
P | / \ i.e. in the limit N> (and therefore AP>0, m—>0).
-/ Therefore for the k-th dw

/ hk = é (Van -k —=Vk-1)

r

1 .
Fig. 3. Overall raising on the reservoir of each dw. And i = § (Van -1=Vo): the first dw moves downward

In the zoom of the extremity of the graph, one can see for N steps and moves upward for N-1 steps
that the last dw’s and the first ones have negative raising '

3.2 Lost work and extra work step by step and the total dissipated energy
One may observe that in the cycle there has been an Entropy production: in fact

in each isothermal step of the compression (O>A) at temperature T, , from relation (6 )we have

2 2
ﬂ.i—int _ PH—lAV Rln(l-l— AVl ) ~ I:)H—lAVi -R AVl _1 AVl ~ B A_\/I (168.)
TO i+1 TO Vi+1 2 Vi+1 2 Vi+l
therefore Wi—Extra =Vvi—irrev _Wi—Rev T oZi—int
2 2
and in each isothermal step in the expansion 7;_;,, = E ﬂ = B A—P (16b)
2\ V 2\ P
and W,_ o =Wi_rev =Wi_irrey = To7i_ine Where Ty is the temperature of the hot heat source.
To evaluate the entropy production in the adiabatic steps we must recall that for such steps it has been shown [4]
that Vo 18R hee =" V.V -AV and P,-P-AP
i 7 Pa v

Therefore the entropy production is

| int

i+1
=AS, J'éQ =C, In _I'_*l + Rln V which at first order gives

T.-T V., -V
Tisim = Cy HlT_ - +R Hlv_ - andsince C, (T,,, - T;) =-P,,(V.,;, -V})
2 2
T =— Pi+1(Vi+1 _Vi) + RVi+1 -Vi — RP|+1AV RAV, -R AV, 1_& =Ry A_Vu — E A_Pu (17)
T Vv RV, Vv Vv R Vv Pa

Finally we can conclude that the Dissipated energy i.e. w_ , is

W Z Tisim = Extra +WLost where



N n+n,
WExtra = Z | —int ZT 7Z-I int + Z | —int (18)
i=1 i=n+1
And
N-+n,
Lost - z it = z T 8 7iint + z Tizint (19)
i=N+1 i=N+ny+1

Where N, N, are the numbers of isothermal stepsand N, , N, are the numbers of adiabatic steps.

3.3 Complexity in the raisings pattern
The raising h, depends on the removing process we choose (the number of such processes is N!). In the previous

sections we have chosen the Simplest Process (SP) (the removing process that starts with the last dw and ends
with the first dw). Let us see how the raisings of the single dw’s change for a Complex Process (CP), in which we
start from the (N-L)-th dw, (L<N), go progressively to the last one, and then from the (N-L-1)-th dw, go to the
first. If the first removed dw is the (N-L)-th with 1<L<N the history of each dw will change. For the (N-L)-th dw
(which has been on the piston for the last L+1 steps of the compression) we clearly have

hn-L= ZAHl—HN—HN L- 1——(\/N— N-L-1)
i=N-L
which is negative and remains still negative in the N->o limit i. e. also for “Reversible cycles” [4].
For the (N- (L-1))-th dw, which has been on the piston for the last L steps of the compression and the first step of

the expansion (i.e. the step in which the (N L)-th dw has been removed) we clearly have
N+1

hn-(L-1n= ZAHl—HN+1—HN—L=—(VN+1 Vn-1)

i=N—(L-1)
Therefore if we denote W|th ht\. the raisings in such CP for r< L we have
N+L-r
Z AHi + ZAHI: Hy+t-r—Hn-r-1=
i=N-r i=N+1 (20)

1
= —_ + —r—V e .
S(\/N L N-r-1)

This last relation allows to evaluate the raisings of the dw’s directly from the P-V diagram of the Carnot—cycle.
We have only to look at the AV relative to a pressure variation (AP)* = (2r+1-L)AP.

From the PV diagram we see that for (4P)* >0 we have AV<0 and hence h'y., <0 and for (4P)*<0 we have
AV>0 and hence h'y., >0 .

For r > L the way in which the previous L dw’s have been removed has no influence, therefore for r>L the
raisings are the same as in the SP i.e.

hlr\]—r:hN—r:HN r_ N-r-1 — (VN—r—VN r- 1)

Obviously we expect that

. Z N N
”c—l B W = ZPiAVi = mekhkz mekh: (21)
6] T 1 k=1 k=1

4 / \ since for each of the N! possible processes the work

Figure 4 Overall raising for each dw for
the removing process which starts
from the (N- L)-th dw i.e. the 560-dw

4 Summary

performed by the gas in the cycle is the same.

In Figure 4 we report the raisings of the dw’s for a
Complex Process with L=50 Notice that the raisings of
the last 50 dw’s are here completely different from
those in the SP.

The previous removing process is only one of the many
Complex Process that one can perform.

The removing process are N! For each process we have
a different distribution for the raisings hy

In this paper we have introduced the Extra Work which together with the Lost Work gives the
Dissipated energy in the irreversible processes. The analysis is confined mainly to irreversible
isothermal process even if the known results [2,4] are used for the adiabatic processes.
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The new and previous results are used to evaluate the Dissipated energy for a stepwise ideal gas Carnot
Cycle , a system with complexity. The complexity arises from the fact that there are N! different
distribution for the raisings h, .i.e the work output of the Carnot cycle can be distributed in N! ways among
the N dw’s.

Aknowledgements: | greatly indebted to M. Zannetti and G. Monroy for the useful comments.

Appendix :Lost Work and Extra Work for isothermal processes with external irreversibility

Here we evaluate the Lost Work for the expansion and the Extra work for the compression when there is external
irreversibility.

Insec.2.2 and in sec.3 of paper[1] an we have shown that if the irreversible isothermal expansion is performed
by means of a (shorter) contact with an heat source at T, >T we have 7, #0 i.e.

T =0 20 (A1)
T Text
and for the Endo—reversible process, i.e. the process in which the gas performs the reversible isothermal
expansion A— B
Endo — QRev _ QRev (AZ)

ext T T

ext

Similarly if the irreversible isothermal compression is performed by means of a (shorter) contact with an heat
sourceat T, <T wehave 7., #0 i.e.

ext ext
Ty = Qout _ Qout and ::do — QRev _ QRev (A3)
Text T Text T
To evaluate the Lost Work for the expansion with T, >T we calculate the work available in the related
Reversible process and subtract from it W

out !
gives the Lost Work.
The Reversible Work is the Reversible work of the gas + the work of an auxiliary reversible engine working

between T, and T . Forthe gas W, (gas) =Q ., ; the auxiliary reversible engine, which brings the heat

the effective work done in the irreversible process. This difference

Q ., to the system (the ideal gas at temperature T ) and takes from the heat source T,

ext

T
the heat Q .., 'Ie;Xt

: T
performs the Work W, (engine) = Qg,, —=* (1—L) , therefore the total reversible work is

T ext
. Text T
WRevTotaI :WRev (gaS) +WRev (englne) = QRev + QRev (1_ _)
T Text
The Work performed by the gas in the irreversible expansion is W, , = Q,,, therefore
T,
WLost :WRevTotaI - Wout = QRev _Qin + QRev - _QRev :Tﬂ-in +Text ﬂ-:(rt]do (A4)

T
On the other hand for the compression with an heat sourceat T, =T

WExtra :Win _WRev = Qout - QRev = Tﬂ-int (A5)
but if one uses a heat source at T, <T , from the Reversible work necessary to perform the isothermal
compression at temperature T we have to subtract the work of the reversible engine which subtracts Q out from

heat source T (the gas ) and gives to the source T, the heat Q'V”” = MQM, i.e.
T

ex in Q Q
W tRG-‘V:Qout _QM = ext(TLm_TLm):Text”ext

ext
therefore the Extra work is

WExtra =Win - (WRev _WI::I/) = Qout - QRev + Qout _Text QOUt

T

= T ”int + Textﬂ-ext (AG)
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