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Abstract

In this Thesis we present the implementation and characterization of a practical impact oscillator: the cam-
follower system. Complex dynamics experienced by the system after variation of the rotational speed of
the cam ω taken as parameter, are analyzed through experimental, numerical and analytical tools. The most
representative feature captured experimentally and reproduced after accurate simulation of the model, is the
coexistence between a single-impacting periodic orbit and a multi-impacting trajectory with chattering, all
of this occurring over a representative range of parameter values. Exhaustive numerical and analytical inves-
tigation including: Monte Carlo simulations, numerical continuation, calculation of basins of attraction and
local analysis of perturbations, allowed to demonstrate that the interruption of complete chattering motion
creates a sudden transition to chaos in the multi-impacting orbit characterized by a scaled and translated
sequence of grazing bifurcations. An expression for the map local to the interruption of complete chattering
is derived after performing expansion in series of the solutions; i.e. by analysis of variational equations,
with further numerical validation. Additional work includes the extension of the local results for an accurate
derivation of the equivalent Poincaré map describing the periodic chattering orbit.
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Chapter 1

Introduction and motivation

Studying the interaction of components in multivariate and complex structures, has been considered tra-
ditionally as an interesting challenge for researchers in many disciplines, specially when addressing large
scale problems. Examples include the analysis and modelling of populations, economies, climates and most
modern problems dealing with networking and information management. The level of applicability, devel-
opment and extension of the mathematical models is in general conditioned by the quantity of interacting
elements that can be handled, suggesting in most of the cases employment of reduced equivalent representa-
tions, using the lowest allowable set of features describing accurately the particular situation, or in technical
terms, using the minimum number of degrees of freedom [18].

Dynamical systems can then, be considered as a set of stimuli-response schemes on a given environment,
that in the most simple case will reflect the behaviour of a fundamental entity as a result of external influ-
ences. Specifically, this last approach has been employed in mechanics for the analysis of single-degree
of freedom (SDOF) models, when studying dynamics associated to particles, excited generally by smooth-
periodic forces. For instance, the pioneering work of Budd and Dux [20] reduces the problem associated
with dynamics of flows in a boiler, into a SDOF model with sinusoidal excitation. There, interactions of
fluids with walls of a heat-exchanger were considered as instantaneous collisions, well modelled in terms
of restitution laws. Hence, preliminary work and results on impacting oscillators by Holmes [81], Whis-
ton [99, 98], Thompson [88] and Peterka [68, 69, 70], could then be successfully applied.

1.1 Impact oscillators as PWS systems

Piecewise-smooth (PWS) systems represent dynamical models where solution trajectories in the state-space
are constrained to delimited areas, each described by particular sets of differential equations. Therefore,
depending on the type of discontinuity experienced by the system flow between such areas, a rough classifi-
cation of PWS systems can be obtained, contributing towards a new general theory of nonsmooth dynamical
systems, as described in [33] and later in Chapter 2. Of particular interest for this Thesis are hybrid PWS
systems where in a SDOF model, a rigid boundary maps the velocity component instantaneously. Consider
as an illustration, the toy model employed by Budd and Dux in [20, 22], where dynamics of a normalized
single degree of freedom harmonic oscillator composed of an undamped-driven mass bouncing against a
wall, can be described in terms of the hybrid structure (see Figure 1.1):

ẍ+ x = g(t), x < σ
ẋ→ −rẋ, x = σ,

(1.1)
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Chapter 1. Introduction and motivation

with g(t) = cos(ωt) representing an external periodic driving-force and 0 < r < 1 being the coefficient of
restitution for inelastic collisions, applied over the state each time the mass reaches the boundary x = σ.

Figure 1.1 — A simple impact oscillator, reproduced from [22].

These type of nonsmooth models are denominated impact oscillators and have been the subject of much
research effort in dynamical systems and control for many years. Starting with the preliminary work of
Whiston, Peterka and Nordmark [99, 68, 69, 56], it has been shown that this class of dynamical systems
can exhibit a rich bifurcation scenario involving the occurrence of both classical bifurcations (saddle-node,
period-doubling, etc) and so-called discontinuity-induced bifurcations (DIBs) [33].

DIBs are unique to piecewise-smooth dynamical systems and are associated with the nontrivial interaction
between system trajectories and discontinuity boundaries (or manifolds) in phase-space where the states
(or vector field) become non smooth. In impacting systems, the most notable type of DIB is the grazing
bifurcation of a limit cycle, observed when, under parameter variations, a limit cycle becomes tangential to
the system discontinuity manifold. Grazing bifurcations have been shown to be associated to a wide range of
dynamical transitions including nonsmooth folds and sudden transitions from periodic to chaotic behaviour
(see [33] and references therein for further details).

1.2 Novel dynamical scenario

Apart from grazing, another important feature of impacting systems is the possibility for an infinite sequence
of impacts to accumulate in finite time. This phenomenon, also termed as chattering or Zeno behaviour in
the literature [22, 58, 57, 80], has been shown to be the key to uncover the intricate structure of the system
dynamics, as for example to predict the topology of its basins of attraction or regions where sticking occurs.
Figure 1.2, illustrates a trajectory experiencing periodic complete-chattering motion.

Sticking in impact oscillators corresponds to the mass remaining in contact with the impacting obstacle
over a finite time interval and has been recently related to the occurrence of so-called sliding solutions in
piecewise-smooth flows [34]. In [57], it has been proposed that a new type of DIB occurs in impacting
systems when, under parameter variations, a complete chattering sequence (leading to sticking) is inter-
rupted. Basically, when one or more parameters are varied, a periodic orbit characterized by an infinite
number of impacts accumulating in finite time suddenly looses its stability as the chattering sequence be-
comes incomplete with the trajectory escaping the sticking region after a finite (large) number of impacts.
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Figure 1.2 — Periodic multi-impacting orbit with chattering, depicting the trajectory of a particle colliding infinitely with a rigid body
before being released.

The phenomenon described above has been observed by some authors in the existing literature and given
the name of “rising bifurcation” or “chattering interruption”. Figure 1.3 depicts annihilation of sticking in
an orbit with complete chattering.

A reference to this phenomenon can be found in [92], while numerical evidence of its occurrence in a two-
degree-of-freedom impacting oscillator is reported in [95], [96], [97]. Therefore a pressing open problem
is to fully investigate this novel bifurcation phenomenon which is unique to impacting systems. It is worth
mentioning here that despite its theoretical and numerical observation, this phenomenon has seldom been
shown to occur experimentally.

1.3 Application-driven research

As the analysis of bifurcations in piecewise-smooth systems is further expanded, it is becoming increasingly
important to carry out an extensive experimental investigation and validation of the theoretical results ob-
tained. Complex behaviour in impacting systems has been observed experimentally in a number of papers
in the literature. Examples include the early work on impact oscillators in [12], [14], [46], [63], [91], [84].
More recent papers include the work by Wiercigroch et al reported in [101] and the results of Piiroinen et al
on impacting pendula [73]. For further details see also the books [17], [100] and references therein.

Particularly cumbersome dynamics can be observed in the case of impact oscillators with moving bound-
aries. For example, in [24], it is suggested that a novel bifurcation phenomenon termed as corner-impact
can occur in discontinuously-forced impact oscillators.

In applications, the occurrence of complex behaviour in impacting systems has been recently detected in
an important class of devices: cam-follower systems [6, 65, 66]. These are widely used in a large range
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Figure 1.3 — Evolution in time of solution trajectory with chattering, in the case complete (solid) for ω = 152.65 rpm and interrupted
(dashed) for ω = 152.69 rpm, with τ denoting the interval of sticking. This graph is a 2D version of Figure 1.2 with φ ≡ t.

of mechanical devices, most notably in internal combustion engines [44] [61]. In these systems, an ap-
propriately shaped rotating cam imparts to the follower a desired motion that is used to operate a device
of interest (see [61] for further details). In [65, 66] it was observed that cam-follower devices can exhibit
complex behaviour which was conjectured to be due to chattering and its interruption. Figure 1.4 depicts a
cam-follower system interacting with the valve train of an internal combustion engine (ICE).

Cam-follower systems can be modelled and consequently treated, as SDOF impact oscillators with a moving
boundary [6, 65, 66].

Figure 1.4 — An overhead camshaft automotive valve-train, reproduced from [61].
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1.4 Motivation and outline

The aim of this Thesis is the analytical study and experimental validation of the complex behaviour of
impacting dynamical systems with particular attention to those phenomena caused by the interruption
of complete chattering motion in a practical impact oscillator: the cam-follower system.

The content of the Thesis is organized as follows:

Chapter 2. Smooth and nonsmooth dynamical systems: an overview. Definitions of theoretical
concepts on which subsequent Chapters are based. In particular, an overview of dynamical systems
is given from continuous systems of differential equations and their smooth bifurcations, until inter-
action of flows and maps in discontinuity-induced events. Impact oscillators are formally defined, as
well as related concepts as chattering and sticking.

Chapter 3. Numerical analysis of PWS dynamical systems. Main tools and procedures for nu-
merical analysis of dynamical systems are described, with special emphasis on simulation and path-
following techniques. Time-stepping and event-driven simulation approaches are addressed, with a
novel extended version for particular application on impacting models. Also, an additional topic on
continuation for nonsmooth systems is introduced as an open problem with promising preliminary
results.

Chapter 4. Cam-follower systems and the valve-float phenomenon in combustion engines. The
application context of the general theory of piecewise-smooth dynamical systems introduced in Chap-
ter 2, is formulated in terms of an experimental rig composed of an oscillating rocker-arm driven by
a rotating profile, emulating the interaction between the cam-shaft and valves of an internal combus-
tion engine (ICE). Description of design tips, implementation, modelling, parameter fitting and the
experimental procedure for characterization of dynamics, are performed.

Chapter 5. Numerical bifurcation analysis. Numerical results obtained by simulating the equiv-
alent model of motion derived in Chapter 4 are included, showing remarkable agreement with the
experimental dynamics of the physical system. Particularly, a smooth period-doubling route to chaos
is detected to coexist with a non-smooth sudden transition to chaos caused by interruption of periodic
complete-chattering motion. Numerical evidence for both, the smooth and nonsmooth scenarios, is
shown, as well as for its coexistence, by performing calculation of the corresponding basins of attrac-
tion (BA). A pseudo-analytical approximation for the map in a vicinity of the non-smooth event is
also developed.

Chapter 6. Bifurcations involving Chattering in impacting systems. The numerical map derived
in Chapter 5, is complemented with theoretical analysis based on variational equations. An equivalent
unidimensional map is generated in the low-velocity impact region, for three study cases of the SDOF
impact oscillator. Namely: a triple integrator model, a general periodically forced harmonic oscillator
and the cam-follower impacting model. For this last, validation of the results generated with the
analytical approximation of the map is performed by comparison with numerical simulations of the
system flow.

Chapter 7. Conclusions. Main contributions of the research and future tasks as open problems, are
listed.
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1.5 Glossary of terms

The following acronyms are employed throughout the contents:

ABE - algebraic branching equation,

BA - basin of attraction,

BC - bottom-center crank position,

CEP - critical extreme position,

CPM - critical path motion,

DIB - discontinuity induced bifurcation,

DM - discontinuity mapping,

DOF - degree of freedom,

ICE - internal combustion engine,

IFT - implicit function theorem,

IVP - initial value problem,

LCP - linear complementary problem,

ODE - ordinary differential equation,

PWS - piecewise smooth,

RDFD - rise-dwell-fall-dwell motion program,

RF - rise-fall motion program,

RFD - rise-fall-dwell motion program,

rpm - revolutions per minute,

SDOF - single degree of freedom,

TC - top-center crank position.

6



Chapter 2

Smooth and nonsmooth dynamical systems:
an overview

2.1 Introduction

Systems of differential equations are the most representative way to express mathematically physical phe-
nomena. As a consequence, there are many available numerical and analytical tools aimed at solving explic-
itly in time (i.e. for dynamic evolutions) those systems of differential equations by means of the so-called
initial and boundary value problems [41] [52]. This is particularly true for trajectories with a high order of
differentiability. Therefore, it is possible to apply a broad set of techniques devoted to analyze and predict
related behaviour in linear and nonlinear systems of equations [85] [102]. On the other hand, if disconti-
nuities and other sources of non-smoothness are introduced, the explicit resolution of trajectories as well as
further analysis will require a specific treatment that reduces the validity of traditional methodologies with
an additional increase of complexity [33].

Hence, given the limitations in operational ranges introduced by practical environments, discontinuities
appear to be a natural feature of realistic representation of systems, and consequently should not be ne-
glected during analysis. Therefore, in addition to the vast existing literature on smooth dynamical sys-
tems [41] [52] [102] [85], a general theory of nonsmooth or piecewise-smooth dynamical systems has been
recently developed [33], in order to explain the many phenomena associated with discontinuities, affecting
the dynamics of continuous (flows), discrete (maps) and hybrid representations of systems.

In this Chapter, general ideas behind this new theory will be addressed, presenting a consistent framework
to develop the analysis of nonsmooth bifurcation scenarios in impacting oscillators, the main scope of the
Thesis.

2.2 Smooth dynamical systems

The qualitative theory of differential equations begins with a general definition of a dynamical system. This
is written in terms of an n−dimensional state space (or phase space) X ⊂ <n with the usual topology, and
an evolution operator φ that takes elements x0 of the state space and evolves them through a “time” t, into
a state xt:

φt : X → X, xt = φt (x0) .

7
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The time t takes values in an index set T , which can be both discrete (the integers Z) or continuous (the real
numbers <).

Definition 2.1 (Dynamical system). A state space X , index set T and evolution operator φt are said to
define a dynamical system if

φ0 (x) = x ∀ x ∈ X,
φt+s (x) = φs

(
φt (x)

)
∀ x ∈ X, t ∈ T, s ∈ T. (2.1)

The set of all points φt for all t ∈ T is called the trajectory or orbit through the point x. Equivalently, the
phase portrait of the dynamical system is the partitioning of the state space into orbits.

Definition 2.2 (Smoothness). A dynamical system satisfying (2.1), is said to be smooth of index r, or Cr, if
the first “r” derivatives of φ with respect to x exist and are continuous at every point x ∈ X .

It is important to define also the repeatability or recurrent character of dynamics, allowing to gain under-
standing on the structure of the phase space from specific sets that remain invariant:

Definition 2.3 (Invariant set). An invariant set of a dynamical system (2.1), is a subset Λ ⊂ X such that
x0 ∈ Λ implies φt (x0) ∈ Λ for all t ∈ T . Additionally, an invariant set that is closed and bounded is called
an attractor if:

1. for any sufficiently small neighborhood U ⊂ X of Λ, there exists a neighborhood V of Λ such that
φt (x) ∈ U for all x ∈ V and all t > 0, and

2. for all x ∈ U , φt (x)→ Λ as t→∞.

The set of all attractors of a given system typically describes the long-term observable dynamics. A dynam-
ical system may have then many competing attractors, with their relative importance being indicated by the
size of the set of initial conditions they attract:

Definition 2.4 (Domain of attraction). The domain of attraction or basin of attraction, of an attractor Λ, is
the maximal set U for which x ∈ U implies φt (x)→ Λ as t→∞.

Another useful notion to define, are points in the phase space eventually approached infinitely often in the
future, or approached infinitely often in the past:

Definition 2.5 (Limit point). A point p is an ω−limit point of a trajectory φt (x0), if there exists a sequence
of times t1 < t2 < ... with ti → ∞ as i → ∞, such that φti (x0) → p as ti → ∞. If instead there exists
a sequence of times with t1 > t2 > ... and ti → −∞ and φti (x0) → p, then we say that p is an α−limit
point of x0. The ω−limit set of x0, is the set of all possible ω−limit points. The set of all such ω−limit
points for all x0 ∈ X , is called the ω−limit set of the system. This set is closed and invariant. A similar
discourse applies for α−limit points.

8
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2.2.1 Differential equations and flows

Given a system of ordinary differential equations (ODEs):

ẋ = f (x) , x ∈ D ⊂ <n, (2.2)

where D is a domain, according to what stated previously,
{
X,T, φt

}
will define a dynamical system after

setting X = D, T = < and letting φt (x) ≡ Φ (x, t) be the solution operator, of flow that takes initial
conditions “x” up to their solution at time t; i.e.

∂
∂tΦ (x, t) = f (Φ (x, t)) , Φ (x, 0) = x. (2.3)

As an illustration, consider the periodically forced system:

ü+ 2ζu̇+ ku = a cos (ωt) , (2.4)

where by setting X = <2 × S1 ⊂ <3, with x3 = mod (t, 2π/ω), we obtain:

ẋ1 = x2,
ẋ2 = −kx1 − 2ζx2 + a cos (x3) ,

ẋ3 = 1.
(2.5)

A phase portrait of (2.5) is depicted in Figure 2.1.

�

6

-

-qqx1

x2

x3 = mod (t, 2π/ω)

Figure 2.1 — Schematic description of the cylindrical phase space associated with the periodically forced system (2.5).

The case is the often considered of parameter dependence of system dynamics, we should write:

ẋ = f (x, µ) , (2.6)

where µ ∈ <p is a set of parameters. If we claim that f is smooth, we mean that the dependence on µ is as
smooth as it is on x. Unless it is crucial, the notation employed will avoid the explicit parameter dependence
of f .

Systems of ODEs can exhibit the following kinds of invariant sets, as depicted in Figure 2.2:

9
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Equilibria. The simplest form of an invariant set of an ODE, is an equilibrium solution x∗ which
satisfies f (x∗) = 0. These are also called stationary points of the flow, since Φ (x∗, t) = Φ (x∗, 0)
for all t.

Limit cycles. The next most common complex kind of invariant set, would be a periodic orbit, which
is determined by an initial condition xp and a period T . Here T is defined as the smallest time T > 0
for which Φ (xp, T ) = xp. Periodic orbits form closed curves in the phase space. A periodic orbit that
is isolated – i.e. does not have any other periodic orbit in its neighborhood – is termed a limit cycle.

Invariant tori. These are the nonlinear equivalent of two-frequency motion. Flow on a torus, may
be genuinely quasi-periodic in that it contains no periodic orbits, or it may be phase locked into
containing a stable and an unstable periodic orbit, which wind a given number of times around the
torus.

Homoclinic and heteroclinic orbits. Another important class of invariant sets are connecting orbits,
which tend to other invariant sets as time asymptotes to +∞ and −∞. Consider for example, orbits
that connect equilibria. A homoclinic orbit is a trajectory x (t) that connects an equilibrium x∗ to
itself; x (t) → x∗ as t → ±∞. A heteroclinic orbit connects two different equilibria x∗1 and x∗2;
x (t) → x∗1 as t → −∞ and x (t) → x∗2 as t → +∞. Homoclinic and heteroclinic orbits play an
important role in separating the basins of attraction of other invariant sets.

Chaos. More complex invariant sets are chaotic, a term that might be defined in a number of different
ways. Then following [33], we define:

Definition 2.6 (Chaotic invariant set). A closed and bounded invariant set Λ, is called chaotic if it
satisfies the two additional conditions:

1. It has sensitive dependence on initial conditions; i.e. There exists an ε > 0 such that, for
any x ∈ Λ, and any neighborhood U ⊂ Λ of x, there exists y ∈ U and t > 0 such that∣∣φt (x)− φt (y)

∣∣ > ε.

2. There exists a dense trajectory that eventually visits arbitrarily close to every point of the attrac-
tor; i.e. There exists an x ∈ Ω such that for each point y ∈ Ω and each ε > 0 there exists a time
t, positive or negative, such that

∣∣φt (x)− y
∣∣ < ε.

The first property says that initial conditions in the invariant set diverge from each other locally.
The second property says that there is at least one trajectory in the invariant set such that not only
eventually comes back arbitrarily close to itself, but to every point of the invariant set. This property
ensures that we are talking about an attractor composed of a single piece, not two separate ones. This
property is also known as topological transitivity.

2.2.2 Iterated maps

Given a discrete system or map, defined by the rule:

x 7→ f (x) , x ∈ D ⊂ <n, (2.7)

then T = Z; that is, time is integer-valued, and the operator φ is just f . Evolving through time m > 0
involves taking the m-th iterate of the map;

φm (x0) = xm = f (xm−1) = f (f (xm−2)) = ... := f (m) (x0) ,

10
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Figure 2.2 — Phase portrait representation of invariant sets of smooth flows: (a) equilibrium, (b) limit cycle, (c) invariant torus, (d)
homoclinic orbit, (e) heteroclinic orbit and (f) chaotic attractor.
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where a superscript (m) means m−fold composition

f (m) (x0) =

m−times︷ ︸︸ ︷
f ◦ f ◦ ... ◦ f (x0) .

Once again, it is possible to write f (x, µ) for systems that depend on parameters µ ∈ <p.

A useful way of studying one-dimensional maps is via cobweb analysis, that plot xn+1 against xn by re-
flecting in the main diagonal. As an example , consider the logistic equation:

x 7→ µx (1− x) , x ∈ [0, 1] , 0 < µ ≤ 4, (2.8)

with associated cobweb diagrams depicted in Figure 2.3.
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Figure 2.3 — Cobweb diagrams for the logistic map (2.8) showing: (a) convergence to a stable fixed point for µ = 1.5, x0 = 0.8; (b)
convergence into a periodic attractor for µ = 3.3, x0 = 0.6; and (c) chaotic behaviour for µ = 3.8, x0 = 0.1.

Definition 2.7 (Invertibility). A mapping (2.7) is said to be invertible for x ∈ D ⊂ <n if given any x1 ∈ D,
there is a unique x0 ∈ D such that x1 = f (x0). In such a case, we define the inverse mapping f (−1) by
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Figure 2.4 — Bifurcation diagram for the logistic equation (2.8), showing the period-doubling cascade to chaos as the parameter µ is
increased.

x0 = f (−1) (x1) for all points x1 in f (D).

Smoothness of the dynamical system in the case of maps is given by the smoothness of the function f .
Smooth – that is, at least C1 – invertible maps, with smooth inverses, are referred to as diffeomorphisms.

Some important types of invariant sets for maps are listed below and illustrated in Figure 2.5:

Fixed points. The simplest kind of invariant set of a map is a fixed point, which is a point x∗ such
that f (x∗) = x∗. Fixed points of maps have a close connection to periodic orbits of flows, through
the induced map.

Periodic points. Next in order of complexity come periodic points, which satisfy f (m) (x∗) = x∗ for
some m > 0. We refer to such a point as a period-m point of the map and its orbit as a period-m
orbit. Clearly, each point f (i) (x∗), i ≤ m − 1 of a period-m orbit, is also a period-m point. These
again are the close analogs of periodic orbits of flows, implying more intersections with a hyperplane
of the state space to be defined later in the Chapter: the Poincaré section.

Invariant circles. Analogous to invariant tori of flows are invariant closed curves of a map, which
again may be defined by taking a Poincaré section of a torus. Such closed curves are topologically
circles, and we can reduce the dynamics on an invariant curve, to that of a map of the unit circle to
itself, a so-called circle map. Typically, as parameters vary, such curves lose their smoothness and
eventually fail to exist as continuous invariant sets.

13
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Chaos. Definition 2.6 of chaotic invariant sets also applies to maps. In contrast to flows where the
phase space must be at least three-dimensional, non-invertible maps of dimension one can exhibit
chaos. In the invertible case, at least two dimensions are required for this to occur.

As an illustration let’s take again the logistic equation (2.8), where for µ > 1, there are two fixed
points at x = 0 and x = (µ− 1) /µ; for 1 < µ < 3, the non-trivial one is the unique attractor of the
system; for µ > 3, there are also two period-two points given by:

x =
1 + µ±

√
µ2 − 2µ− 3

2µ
.

As µ is further increased, a chaotic attractor is born via a so called period-doubling cascade. See
Figure 2.4 for an illustration. Note that in the chaotic range of µ-values, the attractor actually alternates
between parameter intervals of chaos and intervals of periodic orbits appearing in the bifurcation
diagram.

Π
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q
Π

�

qq
(a) (b)

�

^

O

Π

(c)

Figure 2.5 — Relationship between maps and flows obtained by taking a Poincaré surface Π (see section 2.2.5 below), through
the phase space of the flow and considering the induced map from Π → Π. Specifically, the graph illustrates the correspondence
between: (a) fixed points and period-T limit cycles, (b) period-m points – for m = 3 – and higher-period limit cycles, (c) invariant
circles and invariant tori.

2.2.3 Asymptotic stability

When considering dynamical systems with physical application, we are usually only interested in stable be-
haviour. Important notions of stability in dynamical systems, include that of either Lyapunov or asymptotic
stability of an invariant set. In general, the former means stability in the weak sense that trajectories starting
nearby to the invariant set remain nearby for all time, whereas the latter is more or less synonymous with the
conception of an attractor in Definition 2.3. In any case, the stability is referred with respect of perturbations
of initial conditions at fixed parameter values.
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To formally define Lyapunov stability, consider a generic nonlinear system of the form (2.2) and assume
that it has an equilibrium point that, without loss of generality, is at the origin; i.e. f (0) = 0.

Definition 2.8 (Lyapunov stability). The equilibrium state at the origin is said to be Lyapunov stable if for
any ε > 0, there exists a δ > 0 such that:

‖x0‖ < δ ⇒ ‖Φ (x0, t)‖ < ε, ∀ t > 0.

Otherwise, the equilibrium will be assumed as unstable.

Definition 2.9 (Asymptotic stability). The equilibrium state at the origin is said to be asymptotically stable
in the sense of Lyapunov, if:

1. it is stable;

2. lim
t→∞

Φ (x0, t) = 0.

Thus, stability refers to the ultimate state of the dynamics not being altered under small changes to the initial
conditions.

2.2.4 Structural stability

Another notion of stability, implies perturbation to the system itself rather than to initial conditions. This
introduces the concept of structural stability: structurally stable systems are ones for which all “nearby”
systems have qualitatively “equivalent” dynamics. In a more formal way:

Nearby, refers to any possible perturbation of the system f (x), including variation in parameters.

Equivalence between two systems, relates the same dimension in their corresponding phase spaces,
containing the same number and type of invariant sets, in the same general position with respect to
each other. Mathematically, we want to say that two phase portraits are the same if there is a smooth
transformation that stretches, squashes, rotates, but not folds one phase portrait into the other. Such
transformations are called homeomorphisms, which are continuous functions defined over the entire
phase space whose inverses are also continuous.

Definition 2.10 (Topological equivalence). Two dynamical systems
{
X,T, φt

}
and

{
X,T, ψt

}
are topo-

logically equivalent if there is a homeomorphism h that maps the orbits of the first system onto orbits of the
second one, preserving the direction of time.

For discrete time systems, two topological equivalent maps f and g, that satisfy:

f (x) = h−1 (g (h (x)))⇒ h (f (x)) = g (h (x)) ,

for some homeomorphism h, are said to be topologically conjugate, and we can write more simply:

f = h−1 ◦ g ◦ h. (2.9)

For ODEs, the homeomorphism should apply at the level of the flow:

15
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Definition 2.11 (Topological conjugate in flows). Two flows Φ (x, t) and Ψ (h (x) , t), that correspond re-
spectively to ODEs ẋ = f (x) and ẏ = g (x), are said to be topologically conjugate if there exists a
homeomorphism h such that:

Φ (x, t) = h−1 (Ψ (h (x) , t)) . (2.10)

Actually, for topological equivalence of flows, the conjugacy does not need to apply at each time t. Rather,
we require the weaker condition that there is an invertible, continuous mapping of time t 7→ s (t).

Having defined what we mean by topological equivalence, we can now define structural stability:

Definition 2.12 (Structural stability). A flow – or discrete map – is structurally stable if there is an ε > 0
such that all C1 perturbations of maximum size ε to the vector field (map) f lead to topological equivalent
phase portraits.

One key application of topological equivalence is to show that normally dynamical systems in the neighbor-
hood of an invariant set, are topologically equivalent to the linearization of the system about that set.

Consider first an equilibrium x∗ of ẋ = f (x). Now, for small y = x − x∗, we can expand f as a Taylor
series about x∗ to write:

ẏ = fx (x∗) y +O
(
y2
)
,

where fx (x∗) given by (fx)i,j = ∂fi/∂xj
is the Jacobian derivative of the vector field evaluated at x∗. Then,

by dropping the O
(
y2
)
-term, the general solution to the linear system is:

y (t) = exp (fx (x∗) t) y (0) .

Usually, this can be expressed in terms of the eigenvalues and eigenvectors of fx (x∗). So, if the spectrum
(set of eigenvalues) of fx (x∗) is in the left half-plane, then the solution of the linear system tends to zero as
t→∞ and the equilibrium of the linear system is stable.

Definition 2.13 (Hyperbolic equilibrium). We shall refer to the eigenvalues of an equilibrium x∗ of an ODE
ẋ = f (x), to mean the eigenvalues of the associated Jacobian matrix fx (x∗). An equilibrium is said to be
hyperbolic if none of its eigenvalues lie on the imaginary axis.

Similarly, consider a fixed point x∗ of a map x 7→ f (x) (period-m points can be treated as well, since
they are fixed points of f (m)). Linearizing about this fixed point, we get y 7→ fx (x∗) y, with solution
yn = |fx (x∗)|n y0.

Hence, yi → 0 as i → ∞, satisfying the second of the conditions for asymptotic stability of the linearized
system, if all eigenvalues µi of fx (x∗) lie inside the unit circle:

Definition 2.14 (Hyperbolic equilibrium maps). We shall refer to the multipliers λi of a fixed point x∗ of a
map x 7→ f (x) to mean the eigenvalues of the associated linearization fx (x∗). A fixed point is said to be
hyperbolic if none of the multipliers lie on the unit circle.
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2.2.5 Poincaré maps

One of the main building blocks of the dynamics of a set of ODEs are its periodic solutions, and these
provide a natural way to transform between flows and maps. Consider a limit cycle solution x (t) = p (t) to
(2.2) of period T > 0; that is, p (t+ T ) = p (t). To study the dynamics near to such a cycle, we construct a
Poincaré section, which is an (n− 1)- dimensional surface Π that contains a point xp = p (t∗) on the limit
cycle and which is transverse to the flow at xp. Let us introduce a notation that:

Π = {x ∈ <n : π (x) = 0} , (2.11)

for some smooth scalar function π. Then the transversality condition is that the normal vector πx (xp) to Φ
at xp has a non-zero component in the direction of Φt (xp, 0) = f (xp). That is we require:

πx (xp) f (xp) 6= 0, (2.12)

where a subscript means differentiation with respect to that variable, so that πx (xp) is the normal vector to
Π at x = xp.

Now, we can use the flow Φ to define a map P from Π to Π, called the Poincaré map, which is defined for
x sufficiently close to xp via:

P (x) = Φ (x, τ (x)) ,

where τ (x) is defined implicitly as the time closest to T for which:

π (Φ (x, τ (x))) = 0. (2.13)

We can study the stability and possible bifurcations of the periodic solution, by studying the linearization
Px of the Poincaré map at xp. Then, computing the total derivative with respect to x, we have:

Px (xp) = Φx (xp, T ) + Φt (xp, T ) τx (x− p) ,

and from implicit differentiation of (2.13):

τx (xp) = −πx (xp) Φx (xp, T )

πx (xp) Φt (xp, T )
.

Hence, a rank-one update of the time-T map Φx (xp, T ) around p (t) can be defined as:

Px (xp) =

(
I − Φt (xp, T )πx (xp)

πx (xp) Φt (xp, T )

)
Φx (xp, T ) =

(
I − f (xp)πx (xp)

πx (xp) f (xp)

)
Φx (xp, T ) . (2.14)

The n× n matrix Φx (xp, T ) is referred to as the Monodromy matrix, and corresponds to the fundamental
solution matrix up to time T of the linear variational equations:

ẏ = fx (p (t)) y, (2.15)

around the periodic orbit p (t). The direction of the flow Φt (xp, t) = f (xp) can easily be shown to solve
(2.15) and, hence, f (xp) is an eigenvector of Φx (xp, T ) corresponding to the multiplier 1. Letting (2.14)
act on f (xp), we see that this corresponds to an eigenvalue 1 of the linearized Poincaré map Px. However,
since this eigenvector does not lie in the linear approximation to Π, we will never see its effect when com-
puting the Poincaré map taking only points x ∈ Π.
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Other than this trivial eigenvalue, the eigenvalues of the Monodromy matrix are precisely the multipliers λi

of the Poincaré map. We say therefore that a hyperbolic periodic orbit p (t) is one whose Poincaré map has
multipliers λi, i = 1, 2, ..., (n− 1) that are all off the unit circle.

Poincaré maps do not necessarily require a periodic orbit in order to be defined. A Poincaré section Π can
be taken anywhere in the phase space, provided the flow is everywhere transverse to it (as in Figure 2.5).
For transversality, we require that a condition equivalent to (2.12) applies through Π. So if we define Π as
before, to be the zero set of a smooth function (2.11), then we are only interested in defining a Poincaré map
for points x for which:

π (x) = 0; πx (x) f (x) 6= 0.

The map is defined by the first intersection with Π in the same sense. That is, P (x) = Φ (x, τ (x)), where
τ (x) is the first time t > 0 such that π (Φ (x, t)) = 0, and πxf (Φ (x, 0))πxf (Φ (x, t)) > 0; see Figure
2.6. Note that the map P may not be defined for the whole Poincaré section, since not all points need to
return.

Π

-

q q
�

6

Φ (x, T )

p (t)

xxp

P (x)

πx

Figure 2.6 — Construction of a Poincaré map close to a periodic orbit p (t).

One of the benefits of studying Poincaré maps rather than flows, is that they drop by one the dimension of
the sets we need to consider. Thus, limit cycles of flows correspond to isolated fixed points of Poincaré
maps; invariant tori correspond to closed curves of the map; and chaotic invariant sets decrease their fractal
dimension by one.

2.2.6 Smooth Bifurcations

Broadly speaking, there are two notions of bifurcation, one analytical and the other topological. From the
first point of view, bifurcations are branching points of parameterized sets of solutions x (µ) to nonlinear
operators G (x, µ) = 0. In simple words, a bifurcation is a point at which the Implicit Function Theorem
IFT fails (see Chapter 3 for an alternative definition of the IFT, taken from [79]):

Theorem 2.1 (Implicit function theorem). Suppose that for some µ = µ0 there exists a solution x = x0

to a smooth nonlinear equation G (x, µ) = 0, where G : <n × < → <n; then provided Gx (x0, µ0) is
nonsingular, a smooth path of solutions x (µ) can be continued locally, with x (x0) = x0.

Of particular importance, are changes to the number and nature of the attractors of the system. Then, we
define bifurcation simply in terms of loss of structural stability upon varying a parameter for systems either
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in the form of a smooth vector field or map

x = f (x, µ) ; x 7→ f (x, µ), (2.16)

for x ∈ <n, µ ∈ <p.

Definition 2.15 (Bifurcation). A bifurcation occurs at a parameter value µ0, if the dynamical system{
X,T, φt

}
is not structurally stable. An unfolding of a bifurcation is a simplified system that for small

µ 7→ µ0, contains all possible structurally stable phase portraits that arise under small perturbations of
the system at the bifurcation point. The codimension of a bifurcation, is the dimension of parameter space
required to unfold the bifurcation. A bifurcation diagram, is a plot of some measure of the invariant set of
a dynamical system, against a single bifurcation parameter µ, which indicates stability.

Hence, there are two main types of bifurcations:

Definition 2.16 (Local and global bifurcations). A local bifurcation arises due to the loss of hyperbolicity
of an invariant set upon varying a parameter. All other bifurcations can be considered as global.

Codimension-one smooth local bifurcations are depicted in Figure 2.7, with corresponding normal forms
related to (2.16), given by:

- fold: ẋ = µ− x2;

- transcritical: ẋ = µx− x2;

- pitchfork: ẋ = µx− x3;

- Hopf (flows):

[
ẋ1

ẋ2

]
=

[
µ1 −µ2

µ2 µ1

] [
x1

x2

]
−
[
x1

x2

] (
x2

1 + x2
2

)
;

- period doubling (maps): x 7→ (1 + µ)x− x3.

For a deeper insight on local bifurcations see [41, 52, 102, 85, 33] and references therein.

Equivalently, examples of global bifurcations can be:

- homoclinic bifurcation, where the stable and unstable manifolds of the same invariant set form an
intersection or tangency at a fixed parameter value (see Figure 2.8); and

- boundary crisis bifurcation, where stable and unstable manifolds of different invariant sets form an
intersection in a heteroclinic connection that can cause the sudden appearance or disappearance of a
chaotic attractor.

An interesting feature of smooth-dynamical systems is that they can exhibit cascades of local bifurcations
under parameter variation. A well-known example is the period-doubling cascade, where a supercritical
period-doubling at a parameter value µ1 creates a stable period-2 orbit, followed by a further period dou-
bling of the period-2 orbit at µ = µ2, creating a stable period-4 orbit, and so on, as shown in Figure 2.4.
Remarkably, we observe an universal scaling law, established by Feigenbaum:

lim
k→∞

µk − µk−1

µk+1 − µk
≈ 4.669. (2.17)

19



Chapter 2. Smooth and nonsmooth dynamical systems: an overview

-

6

µ

x

-

6

µ

x

(a) (b)

-

6

µ

x

-

6

µ

x

6
?

(c) (d)

-

6

µ

x

6
?

Π

�

Π

�

q qµ1

µ2

µ1

q q
µ2

(e)

Figure 2.7 — Main codimension-one local bifurcations in smooth dynamical systems: (a) fold, (b) transcritical, (c) pitchfork, (d) Hopf,
and (e) period-doubling on maps. In all graphs, a tick line means for stability of the branch, while a thinner represents instability.
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Figure 2.8 — Illustration for a homoclinic global bifurcation where, from a saddle node equilibrium, a single stable limit cycle is
created.
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That is, the period-doubling sequence converges to a finite µ-value and in the limit, the rate of convergence
is the same for all systems.

Another interesting rule is given by Sharkovskii, predicting the existence of chaotic windows in smooth
bifurcation cascades of unidimensional maps (See for instance [85]).

Non-smooth dynamical systems have shown to experience other types of cascades of stable periodic orbits
close to a bifurcation point. These cascades do not generally follow standard rules to chaos, but experiences
new features as non periodic windows or period-adding type of orderings [59], for which there are intervals
of periodic motions of period n obeying the simple ordering n < (n+ 1) < (n+ 2) < ... Additionally,
in successive Chapters we will demonstrate evidence for more complex sequences of chaotic behaviour
experienced in impacting oscillators as novel phenomenon introduced by discontinuities.

2.3 Piecewise-smooth dynamical systems

Moving now towards a systematic study of non-smooth dynamics, three particular classes of piecewise-
smooth dynamical systems will be addressed: flows, maps and a combination of both in the so-called hybrid
dynamical systems. Rather than rigorous mathematical proofs conditioned by the existence and uniqueness
of solutions, a rather loose classification and description on non-smooth dynamics will be given, proven to
be useful in explaining the dynamics observed in several application examples [33].

2.3.1 Piecewise-smooth ODEs

Definition 2.17 (Piecewise-smooth flow). A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi (x, µ) , ∀ x ∈ Si, (2.18)

where
⋃
i
Si = D ⊂ <n and each Si has a non-empty interior. The intersection Σij := S̄i ∩ S̄j is either

an <(n−1)-dimensional manifold, included in the boundaries ∂Sj and ∂Si, or is the empty set. Each vector
field Fi is smooth in both, the state x and the parameter µ, and defines a smooth flow Φi (x, t) within any
open set U ⊃ Si. In particular, each flow Φi is well defined on both sides of the boundary ∂Sj .

A non-empty border between two regions Σij , will be called a discontinuity set, discontinuity boundary
or, sometimes, switching manifold. We suppose that each piece of Σij is of codimension-one, i.e. is an
(n− 1)-dimensional smooth manifold embedded within the n-dimensional phase space. Moreover, we shall
demand that each such Σij is itself piecewise-smooth. That is, it is composed of finitely many pieces that
are as smooth as the flow. See Figure 2.9.

Definition 2.18 (Degree of smoothness). The degree of smoothness at a point x0 in a switching set Σij

of a piecewise-smooth ODE, is the highest order “r” such the Taylor series expansions of Φi (x0, t) and
Φj (x0, t) with respect to “t” and evaluated at t = 0, agree up to terms of order (r − 1). That is, the first
non-zero partial derivative with respect to “t” of the difference [Φi (x0, t)− Φj (x0, t)]|t=0 is of order “r”.
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Figure 2.9 — Illustration for trajectories of a piecewise-smooth flow.

Now, consider an ODE local to a single discontinuity set Σ12 that can be written

ẋ =

{
F1 (x, µ) ; x ∈ S1

F2 (x, µ) ; x ∈ S2,

where F1 generates a flow Φ1 and F2 a flow Φ2. We have

∂Φi(x,t)
∂t

∣∣∣
t=0

= Fi (x) ,

∂2Φi(x,t)
∂t2

∣∣∣
t=0

= ∂Fi

∂t = ∂Fi

∂Φi

∂Φi

∂t = Fi,xFi (x) ,

where a second subscript “x” means partial differentiation with respect to x. Similarly

∂3Φi (x, t)

∂t3

∣∣∣∣
t=0

= Fi,xxF
2
i (x) + F 2

i,xFi (x) ,

etc. So, if F1 and F2 differ in an m-th partial derivative with respect to the state x, we find that the flows Φ1

and Φ2 differ in their (m+ 1)-st partial derivative with respect to t.

Therefore, if F1 (x) 6= F2 (x) at a point x ∈ Σ12, then we have degree of smoothness one there. Systems
with degree one are said to be of Filippov type.

Definition 2.19 (Sliding region). The sliding region of the discontinuity set of a system with degree of
smoothness one, of the form

ẋ =

{
F1 (x) ; H (x) > 0
F2 (x) ; H (x) < 0,

(2.19)

where F1 (x) = F2 (x) if H (x) = 0, is given by that portion of the boundary of the scalar function H (x)
for which

(HxF1) . (HxF2) < 0.

That is, HxF1 – the component of F1 normal to H – has the opposite sign to HxF2. Thus, the boundary is
simultaneously attracting (or repelling) from both sides.

See Figure 2.10 for an illustration of sliding motion of flows, depicting attracting and repelling sliding
regions.
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Figure 2.10 — A typical discontinuity boundary of a two-dimensional Filippov system, showing the behaviour of the vector fields at
both sides. Solid and dashed intervals of the discontinuity boundary Σ, represents respectively: attracting and repelling sliding motion.

Two approaches exist in the literature for formulating the equations for flows that slide when written in the
general form (2.19). These are the Utkin’s equivalent control method and Filippov’s convex method. For
a deeper insight on such methods and further development and application examples on Filippov systems,
readers are advised to consult [33].

2.3.2 Piecewise-smooth maps

Definition 2.20 (Piecewise-smooth map). A piecewise-smooth map, is described by a finite set of smooth
maps

x 7→ Fi (x, µ) ∀ x ∈ Si, (2.20)

where
⋃
i
Si = D ⊂ <n, and each Si has a non-empty interior. The intersection Σij between the closure (set

plus its boundary) of the sets Si and Sj – that is Σij := S̄i ∩ S̄j – is either an <(n−1)-dimensional manifold
included in the boundaries ∂Sj and ∂Si, or is the empty set. Each function Fi is smooth in both the state x
and the parameter µ, for any subset U of Si.

A set Σij for a piecewise-smooth map is usually termed a border or discontinuity boundary that separates
regions of phase space where different smooth maps apply. Examples of piecewise-smooth one-dimensional
maps are given in Figure 2.11.

6

-
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-
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-

(a) (b) (c)

Figure 2.11 — Examples of piecewise-smooth one-dimensional maps: (a) piecewise-linear continuous map, (b) piecewise-linear
discontinuous map, and (c) square-root piecewise-smooth map. In each case S1 = {x < 0}, S2 = {x > 0} and Σ12 = {x = 0}.
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Definition 2.21 (Order of singularity on maps). The order of singularity of a point x̂ ∈ Σij of a continu-
ous piecewise-smooth map, is the order of the first non-zero term in the formal power-series expansion of
F1 (x)− F2 (x) about x = x̂.

Maps that are locally piecewise-linear and continuous – such as in Figure 2.11.(a) – are said to have an order
of singularity one. Clearly, differentiation of these one-dimensional maps with respect to x leads to maps
with singularities of one order lower. Then a point of discontinuity for a map with a jump – as in Figure
2.11.(b) – has a zero-order singularity at a point x ∈ Σij if 0 < ‖F1 (x)− F2 (x)‖ <∞.

2.3.3 Hybrid dynamical systems

Hybrid dynamical systems are combinations of maps and flows, giving rise to discontinuous, piecewise-
smooth flows. They can arise both as models of impacting systems or in the context of the interaction
between digital and analog systems. The notion of a hybrid dynamical system is a broad concept that en-
compasses a number of different formalisms in the literature. For example, hybrid automata are defined
as dynamical systems with a discrete and a continuous part. The discrete dynamics can be represented as
a graph whose vertices are the discrete states (or modes) and whose edges are transitions. The continuous
states take values in <n and evolve along trajectories, typically governed by ODEs or differential algebraic
equations.

Definition 2.22 (Piecewise-smooth hybrid system). A piecewise-smooth hybrid system, comprises a set of
ODEs

ẋ = Fi (x, µ) , ∀ x ∈ Si, (2.21)

plus a set of reset maps

x 7→ Rij (x, µ) , ∀ x ∈ Σij := S̄i ∩ S̄j . (2.22)

Here
⋃
i
Si = D ⊂ <n and each Si has a non-empty interior. Each Σij is either an <(n−1)-dimensional

manifold included in the boundary ∂Sj and ∂Si, or is the empty set. Each Fi and Rij are assumed to be
smooth and well defined in open neighborhoods around Si and Σij , respectively.

The application case considered in this Thesis, motivate to give particular emphasis to the special type of
hybrid systems constituted by impact oscillators:

Definition 2.23 (Impacting hybrid system). An impacting hybrid system, is a piecewise-smooth hybrid
system for which Rij : Σij 7→ Σij , and the flow is constrained locally to lie on one side of the boundary;
that is, on S̄i = Si ∪ Σij .

We shall often refer to the reset map Rij in this context as being the impact law or impact rule. The discon-
tinuity boundaries Σij will be referred to as impact surfaces and the event of a trajectory intersecting Σij as
an impacting event or just an impact.

We shall also consider a restrictive class of impacting hybrid systems that contain just one impact surface
Σ. Suppose that such a surface Σ can be defined by the zero set of a smooth function H (x),

Σ = {x : H (x) = 0} , (2.23)
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and let S+ = {x : H (x) > 0}, such that the dynamics can be constrained to S+ as in Figure 2.12.

� � �

R

-
j

*

S+F (x)

Σ
RR R

Figure 2.12 — The surface Σ, and a multiple impacting trajectory for an impacting hybrid system with a single discontinuity boundary.

Impacting systems, can be thought of as describing the dynamics local to any impact surface in a general,
multiple region system. Locally, the dynamics may be written in the form:

ẋ = F (x) ; H (x) > 0,
x 7→ R (x) ; H (x) = 0,

(2.24)

for a smooth vector field F (which is well defined in a full neighborhood of Σ including for H (x) < 0) and
a reset map R. Suppose an impact occurs at time t0. Let x− and x+ represent the intersection of the flow
with Σ, both, immediately before and immediately after the impact, so that x− = lim

t→t−0

, x+ = lim
t→t+0

. Hence,

we can write the impact surface as:

x+ = R
(
x−
)
. (2.25)

In order to be definite, we shall also assume a restrictive class of impact law that depends on the normal
velocity v (x) at which the trajectory approaches the impact manifold, given by:

v (x) = dH/dt = HxF. (2.26)

Specifically, we suppose that:

R (x) = x+W (x)HxF = x+W (x) v (x) , (2.27)

for a some smooth function W (x) ∈ <n. To motivate why (2.27) is a reasonably form to take, note that we
would like an impact law that takes a grazing trajectory (i.e. one for which v (x) = 0) to itself and that is a
smooth function of v (x) otherwise. More complex expressions are needed for dynamics with friction.

Given an impact rule of the form (2.27), the surface Σ can therefore be divided into three separate regions:
Σ−, Σ+ and Σ0, according to whether the normal velocity is, respectively, negative, positive or zero:

Σ− = {x ∈ Σ : v (x) < 0} ;
Σ+ = {x ∈ Σ : v (x) > 0} ;
Σ0 = {x ∈ Σ : v (x) = 0} .

(2.28)

In general, if we write the impact law in the form (2.25), then we have x− ∈ Σ− and x+ ∈ Σ+. In this case
a flow in S+ intersects Σ−, is mapped to Σ+ and then continues in S+. The set Σ0 is called the grazing set,
and impacts close to it lead to subtle interesting dynamics that will be analyzed in Chapter 6.

Other formalisms for non-smooth systems including: complementarity systems, differential inclusions and
control strategies, can be found in [33].
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2.4 Impacting motion

Let us now consider the basic flow of the simple impacting system (2.24)-(2.27). Starting from an initial
condition x (0) = x0 in S+, the ODE (2.24) generates a smooth flow Φ (x0, t) up until the flow strikes Σ,
say at time t0. Suppose that this impact is transversal, so that the normal velocity v (x (t0)) < 0. Hence
x− = x (x0) ∈ Σ−. This point is then mapped instantaneously under the action of the reset map to the point
x+ = R (x−). If v (x+) > 0, so that x+ ∈ Σ+, then the flow moves away from Σ back into the set S+ and
is described by the flow Φ (x+, t). In principle, this scenario can repeat arbitrarily often, as illustrated by
Figure 2.12.

However, this is not the only possible dynamics of the system. Consider a grazing point for which v (x−) =
0, where the impact map becomes the identity. In order to understand what happens, it is useful to define
the normal acceleration of the flow with respect to the boundary:

a (x) =
d2H

dt2
= (HxF )x F = HxxFF +HxFxF. (2.29)

Now, in the case where a (x−) > 0 at a grazing point, the curvature of the flow will cause the trajectory to
immediately leave Σ. However, if a (x) < 0, then the flow will become stuck to the boundary, rather akin
to the sliding flow of a Filippov system. Thus the sticking subset of the grazing set Σ0 is determined by the
conditions

Σ0
− ≡

{
x : H (x) = 0, v (x) = 0, a (x) < 0

}
.

The sticking motion evolves under the action of the vector field F , constrained to lie on the surface Σ. If we
define the impact law according to (2.27), then it is possible to express the sticking vector field as

ẋ = Fs (x) = F (x)− ρ (x)W (x) , (2.30)

where

ρ (x) =
a (x)

(HxF )xW
. (2.31)

To see that this corresponds to a sticking flow, note that in order to stick we require H (x (t)) = v (x (t)) ≡
0. Differentiating the conditions H (x) = 0 and v (x) = 0 with respect to time, we have Hxẋ = 0 and
vxẋ = 0. The first of these conditions is satisfied identically when HxW = 0, and the second condition if

0 = (HxF )x F − ρ (HxF )xW = a (x)− ρ (HxF )xW, (2.32)

which defines ρ according to (2.31). Note that (2.30)-(2.31) defines a smooth flow Φs (x, t), which is also
defined within a neighborhood of Σ, but for which the set Σ = {x : H (x) = 0} is invariant. For the hybrid
system, the sticking flow ceases to apply when the trajectory leaves Σ0

−. At such a point a (x) = 0, but
da(x)

dt := ax (x) ẋ > 0 and hence the system moves into S+ where the original flow Φ applies. The condi-
tion that the vector field remains in the sticking region is ρ (x) > 0.

Typically, unlike the sliding motion in Filippov systems, impacting systems do not enter a sticking region
directly, but via a chattering sequence, also known in control theory as a Zeno phenomenon. Such a sequence
begins if an impact occurs within Σ−, close to the set Σ0 with v (x+)� 1 and a (x+) < 0. There follows an
infinite sequence of impacts, of successively reduced velocity, which converges in finite time, onto a point
in the sticking set. After the accumulation of such a sequence, the motion will evolve in the sticking set in
the manner described above and depicted in Figure 1.2.
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2.4.1 Zeno phenomenon

For an illustration of the Zeno phenomenon, let consider the dynamics of a ball released under the action of
gravity bouncing against a rigid wall, in correspondence with Figure 2.13.
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ẏ (t)

t

t

t0 t1 t2 t3 t∞

v0

v01 = −v0

v1 = rv0

v12 = −v1

σ

Figure 2.13 — Illustration of Zeno behaviour in the motion of a ball falling under the action of gravity.

Dynamics of motion are described by the set of equations

ÿ = −g; y > σ,
ẏ+ = −rẏ−; y = σ,

(2.33)

for 0 < r < 1 being the coefficient of restitution for inelastic collisions and g representing the constant
acceleration of the gravitational field.

The free-flight motion between collisions can be solved from (2.33) as

ẏ (t− t0) = −g (t− t0) + ẏ (0) ;

y (t− t0) = − g
2 (t− t0)2 + ẏ (0) (t− t0) + y (0) ,

(2.34)

with y (0) ≡ y (t− t0)|t=t0
= y0 and ẏ (0) ≡ ẏ (t− t0)|t=t0

= v0.

Without loss of generality let’s consider t0 = 0, y0 = σ and v0 > 0.

The time for the next impact, say t1, should satisfy

y (t1 − t0) = y (t1) = σ = − g
2 (t1 − t0)2 + v0 (t1 − t0) + σ

⇒ 0 = − g
2 (t1 − t0)2 + v0 (t1 − t0) = − g

2 t
2
1 + v0t1

⇒ t1 =

{
0;

2v0
g .

(2.35)

The trivial solution t1 = 0 = t0 will be not considered under forward flowing in time. Then t1 = 2v0
g , and

the velocity immediately before the collision can be calculated from (2.34) as

ẏ (t1 − t0) = ẏ (t1) ≡ v01 = −g (t1 − t0) + v0

⇒ v01 = −gt1 + v0 = −g 2v0
g + v0 = −v0.

(2.36)
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Using the boundary condition in (2.33), the velocity immediately after the collision becomes

ẏ (t1 − t0)+ = v1 = −rẏ (t1 − t0)− = −rv01

⇒ v1 = rv0.
(2.37)

Repeating the procedure, we can get the time for the next collision t2 in terms of the quantities at t = t0, by

y (t2 − t1) = σ = − g
2 (t2 − t1)2 + v1 (t2 − t1) + σ

⇒ 0 = − g
2 (t2 − t1)2 + v1 (t2 − t1)

⇒ g
2 (t2 − t1) = v1 ⇒ t2 = 2v1

g + t1 = 2
g rv0 + 2v0

g = 2v0
g (r + 1) .

(2.38)

Hence, the velocity before the second collision becomes

ẏ (t2 − t1) = v12 = −g (t2 − t1) + v1

⇒ v12 = −g
[

2v0
g (r + 1)− 2v0

g

]
+ rv0 = −2v0r + rv0 = −rv0,

(2.39)

and immediately after

ẏ (t2 − t1)+ = v2 = −rẏ (t2 − t1)− = −rv12

⇒ v2 = r2v0.
(2.40)

From calculations for the third collision, we can easily get

t3 = 2v0
g

(
1 + r + r2

)
; v23 = −r2v0; v3 = r3v0, (2.41)

that can be generalized for the (n+ 1)th impact as

tn+1 = 2v0
g

(
1 + r + r2 + ...+ rn

)
; v[n,n+1] = −rnv0; vn+1 = rn+1v0. (2.42)

Given that the acceleration is constant and negative, the particle is expected to experience complete chat-
tering motion before get stuck. Then, an infinite number of collisions will occur. From (2.42) we have

lim
n→∞

tn+1 ≡ t∞ =
2v0

g

∞∑

i=0

ri ≡ 2v0

g

[
1

1− r

]
, (2.43)

where the existence of the limit is assured given the conditions assumed for the coefficient of restitution; i.e.
|r| < 1.

Equation (2.43) confirms that under complete chattering regime, an infinite number of collisions accumulate
in finite time. The possibility of handling with an infinite number of events is a challenge from the imple-
mentation viewpoint and will be treated later for simulation in Chapter 3.

Also in Chapter 6 a generalization of the results just derived, will be employed to explain the transition to
chaos experienced by a practical periodically-forced impact oscillator.
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2.5 Stability and bifurcations of non-smooth systems

The extension of well-established concepts for smooth systems – as those in section 2.2 – to the case of non-
smooth systems, is still an open research area. Here, a pragmatic approach is established for studying the
asymptotic and structural stability of the classes of piecewise-smooth flows, maps and hybrid systems given
respectively by Definitions 2.17, 2.20 and 2.22. The aim is then to come up with an utilitarian definition
of a discontinuity induced bifurcation (DIB) that allows to explain the dynamical transitions experienced in
piecewise-smooth systems.

2.5.1 Asymptotic stability

It is a particularly cumbersome task, to provide necessary and sufficient conditions that guarantee the asymp-
totic stability of an invariant set of a piecewise-smooth system, if that set straddles the boundary between
two regions Si and Sj . Even the problem of assessing the asymptotic stability of an equilibrium that rests on
a discontinuity boundary, is an open problem in general. As an example, let’s consider the piecewise-linear
system:

ẋ =

{
A−x; CTx ≤ 0
A+x; CTx ≥ 0,

(2.44)

whereA± ∈ <n×n and C ∈ <n. We assume that the overall vector field is continuous across the hyperplane{
x : CTx = 0

}
, but the degree of smoothness is uniformly one. For the planar case, i.e. n = 2, a complete

theory is possible and it can be shown that the equilibrium point x = 0 of (2.44) is asymptotically stable
under certain strict conditions, provided the system obeys the property of observability often used in control
theory:

Definition 2.24 (Observability). Two matrices A ∈ <n×n and CT ∈ <p×n, are said to be observable, if the
observability matrix, O, defined as:

O =




CT

CTA
...

CTAn−1




has full rank. Equivalently, for single-output systems, where V ∈ <1×n, observability implies |O| 6= 0.

Theorem 2.2 (Asymptotic stability in piecewise-linear systems). Consider the system (2.44) with n = 2.
Assume that the pair

(
CT , A−) is observable. Then:

1. The origin is asymptotically stable if and only if

a) neither A− nor A+ has a real non-negative eigenvalue, and

b) if both A− and A+ have non-real eigenvalues, then σ−

ω−
+ σ+

ω+ < 0, where σ± ± iω± (ω > 0)
are the eigenvalues of A±.

2. The system (2.44) has a non-constant periodic solution if and only if both A− and A+, have non-real
eigenvalues and σ−

ω−
+ σ+

ω+ = 0, where σ±±iω± (ω > 0) are the eigenvalues ofA±. Moreover, if there
is one periodic solution, then all other solutions are also periodic, and any such periodic solution has
period equal to π

ω−
+ π

ω+ .
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In higher dimensions, the problem becomes considerably more difficult. A seemingly paradoxical situation
can occur where by the individual systems ẋ = A−x and ẋ = A+x, the origin is asymptotically stable, but
is unstable for the combined system (2.44). In essence, the paradox is caused by the geometric relationship
between the eigenvectors of the matrices A− and A+. Clearly, if the eigenvectors of the two matrices were
perfectly aligned, the stability of the matrices A− and A+ would be sufficient to establish stability of the
piecewise-linear system.

In the control theory literature, more general tools have been proposed for the stability analysis of piecewise-
smooth dynamical systems. One of such techniques consists in providing a common Lyapunov function – or
function V (x) that is positive definite and decreasing along trajectories – for each of the vector fields defin-
ing the system dynamics in each of the phase space regions. However, finding such functions in practice is
at best difficult.

A rather different approach, will be instead focusing on structural stability and bifurcation rather than on
asymptotic stability of individual states or invariant sets. Since proving stability from first principles can be
hard, one should instead attempt to classify all the mechanisms that can lead to instability as a parameter is
varied. Along with the classification should come techniques, both analytical and numerical, for identifying
which case occurs in a particular example system and for understanding the nearby dynamics.

2.5.2 Structural stability and bifurcation

Consider a general invariant set of a piecewise-smooth dynamical system as defined in Definitions 2.17,
2.20 and 2.22. Bifurcations that involve invariant sets contained within a single region Si for all parameter
values of interest, can be studied using smooth bifurcation theory. Also, it may be that the invariant set of
a flow crosses several discontinuity boundaries, but nevertheless the Poincaré map associated with that in-
variant set is smooth. Thus, all the bifurcations discussed in section 2.2 can also occur in piecewise-smooth
systems. However, other bifurcations are unique to PWS dynamics, and involve non-generic interactions of
an invariant set with a discontinuity boundary.

For piecewise-smooth systems such as (2.18), (2.20) and (2.21)-(2.22), which define a dynamical system,
one can adopt the same notion of bifurcation as in Definition 2.15, applied to the entire system. However,
we may wish to highlight other events that might not be a bifurcation of the entire system in this classical
sense. In control systems for example, it may be important to identify whether a certain switch is activated.
In mechanical systems, we may need to know whether an attractor contains trajectories that impact or go
beyond a certain threshold.

The transition that causes such an event, will typically represent an invariant set forming a new crossing
of a discontinuity boundary, as a parameter is varied. For example, at a parameter value µ = µ0, a limit
cycle of a piecewise-linear flow, may become tangent to a discontinuity boundary Σij at a grazing point.
Alternatively, an equilibrium of a flow, or fixed point of a map, may approach a discontinuity boundary as
µ → µ0. Now, if the degree of smoothness is sufficiently high, this will not affect the stability of these
invariant sets and there will be no bifurcation in the sense of Definition 2.15.

In the Russian literature, the term C-bifurcation has been adopted for such transitions that involve an invari-
ant set doing something structurally unstable with respect to a discontinuity boundary. When the invariant
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set is the fixed point of a map, these have also been termed border-collision-bifurcations. A broader con-
cept, such of a discontinuity-induced-bifurcation (DIB), has been recently introduced in [33], and will be
employed here to identify qualitative changes to the topology of invariant sets with respect to the disconti-
nuity boundaries.

Then, proceeding in an analog manner as in the case of smooth systems, in order to define a bifurcation, let’s
first state proper definitions of topological equivalence and structural stability in piecewise-smooth systems:

Definition 2.25 (Piecewise-topological equivalence). Let
{
T,<n, φt

}
and

{
T,<n, φ̄t

}
, be two hybrid piece-

wise-smooth dynamical systems of the form (2.21)-(2.22), defined by countably many different smooth flows
φi (x, t) and φ̄i (x, t), in finitely many phase space regions Si and S̄i, respectively, i = 1, ...N , with smooth
resets Rij and R̄ij applying, respectively, at each non-empty discontinuity boundaries Σij and Σ̄ij . Two
such piecewise-smooth systems are called piecewise-topological equivalent if:

1. They are topological equivalent; that is, there is a homeomorphism h that maps the orbits of the first
system onto orbits of the second one, preserving the direction of time, so that φt (x) = h−1

(
φ̄s (h (x))

)

where the map t 7→ s (t) is continuous and invertible.

2. The homeomorphism h, can be chosen so as to preserve each of the discontinuity boundaries. That
is, for each i and j, h (Σij) = Σ̄ij .

Despite the definition has been made for the case of hybrid dynamical systems, corresponding definitions
for piecewise-smooth maps and flows can be stated in a similar way.

Definition 2.26 (Piecewise-structural stability). A piecewise-smooth system is piecewise-structurally sta-
ble, if there is an ε > 0 such that all C1 perturbations of maximum size ε of the vector field (map) f , that
leave the number and degree of smoothness properties of each of the boundaries Σij unchanged, lead to
piecewise-topological equivalent phase portraits.

Definition 2.27 (Discontinuity-induced bifurcation). A discontinuity-induced bifurcation (DIB) occurs at
a parameter value at which a piecewise-smooth system is not piecewise-structurally stable. That is, there
exists an arbitrarily small perturbation that leads to a system that is not piecewise-topological equivalent.

2.5.3 Types of discontinuity-induced bifurcations

According to [33], the most commonly occurring types of codimension-one DIBs, are listed below and
depicted in Figure 2.14:

- Border collisions of maps. These are conceptually the simplest kind of DIB and occur when, at a
critical parameter value, a fixed point of a piecewise-smooth map lies precisely on a discontinuity
boundary Σ. For maps with singularity of order one, there is now a mature theory for describing
the bifurcation that may result upon varying a parameter through such an event. Remarkably, the
unfolding may be quite complex. Even in one dimension, a period-one attractor can jump to a period-n
attractor for any arbitrary n, or to robust chaos without any periodic window. In general n-dimensional
maps, bifurcation information on only the simplest kinds of periodic points is known.
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Figure 2.14 — Examples of DIBs: (a) border-collision in a map, (b) boundary equilibrium bifurcation, (c) grazing bifurcation of a limit
cycle, (d) sliding bifurcation in a Filippov system and (e) a boundary intersection crossing.
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- Boundary equilibrium bifurcations. The simplest kind of DIB for flows, occurs when an equilib-
rium point lies precisely on a discontinuity boundary Σ. In Filippov systems and hybrid systems with
sticking regions, there is also the possibility of pseudo-equilibria, which are equilibria of the sliding
or sticking flow but are not equilibria of any of the vector fields of the original system. There are
thus possibilities where the equilibrium lies precisely on the boundary between a sliding or sticking
region and a pseudo-equilibrium turns into a regular equilibrium. There is also the possibility that a
limit cycle may be spawned under parameter perturbation of the boundary equilibrium, in a Hopf-like
transition.

- Grazing bifurcation of limit cycles. One of the most commonly found DIBs in applications, is
caused by a limit cycle of a flow becoming tangent to (i.e. grazing) with a discontinuity boundary. One
might naively think that this can be completely understood as a border collision. However, this is not
necessarily the case. Instead one has to analyze carefully what happens to the flow in the neighborhood
of the grazing point. In fact, one can derive an associated map, the so-called discontinuity map. But
the link between the singularity of the map and the degree of smoothness of the flow, is a subtle one
that also depends on whether the flow is uniformly discontinuous at the grazing point.

- Sliding and Sticking bifurcations. There are several ways that an invariant set, such as a limit cycle,
can do something structurally unstable with respect to the boundary of a sliding region in a Filippov
system. The Poincaré maps developed for those kind of systems, have the property of typically being
non-invertible in at least one region of phase space, owing to the loss of information backward in
time inherent in sliding motion. Dynamics implying relay-control and dry-friction falls into such
description. Also impacting systems, where sticking regions can be approached by infinite chattering
sequences of impacts. In particular, the aim of this Thesis is such of bring evidence of a bifurcation
phenomenon experienced on a practical impact oscillator: the cam follower system, after interruption
of complete chattering sequences in the so-called Chattering bifurcation. See Chapter 6, for further
details.

- Boundary intersection crossing/corner collision. Another possibility for a codimension-one event
in a flow, is where an invariant set (e.g. a limit cycle) passes through the (n− 2)-dimensional set
formed by the intersection of two different discontinuity manifolds Σ1 and Σ2. An interesting case
is such where the jumps in the vector field across Σ1 and Σ2 are such that their intersection can be
considered as a corner in a single discontinuity surface. See [33] for applications of it in explana-
tion for the dynamics of electronic power converters. Also in [66], Osorio et al have shown how a
corner-collision bifurcation is the mechanism to loss stability in a cam-follower system, modelled as
a discontinuously periodically-forced impact oscillator.

- Some possible global bifurcations. One example, involves a connection between the stable and the
unstable manifolds of pseudo-equilibria, which are equilibria of a sliding flow but not of the individual
flows either side of a discontinuity boundary.

2.6 Discontinuity mappings

The analysis of discontinuity-induced bifurcations in maps, is relatively straightforward; one merely has to
consider the fate of iterates that land either side of the discontinuity. DIBs in piecewise-smooth flows or
hybrid systems are far harder to analyze, because one must establish the fate of topologically distinct trajec-
tories close to the structurally unstable event that determines the bifurcation. The concept of a discontinuity
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map (DM), first introduced by Nordmark [59] [60], is a key analytical tool that enables to study DIBs involv-
ing limit cycles and other invariant sets more complex than mere equilibria. This is a synthesized Poincaré
map that is defined locally near the point at which a trajectory interacts with a discontinuity boundary. When
composed with a global Poincaré map (for example around the limit cycle), ignoring the presence of the dis-
continuity boundary, one can then derive a (typically non-smooth) map whose orbits completely describe
the dynamics in question.
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Figure 2.15 — (a) Simple periodic orbit p (t) in a piecewise-smooth ODE that does not intersect any discontinuity surface. (b) Simple
periodic orbit that intersects a single surface twice. (c) Equivalent to (b) but for an impacting hybrid system. (d) A grazing periodic
orbit.

To illustrate why discontinuity maps are both necessary and useful, consider the piecewise-smooth flow
illustrated in Figure 2.15-(a)(b), for which there is a Poincaré surface Π lying in one of the regions Si,
which is intersected transversally at the point xp by a periodic orbit p (t) of period T . For points x̂ ∈ Π,
close to xp, we may define a Poincaré map P : Π → Π. It is natural to ask what form P takes when
‖x− xp‖ is small. The answer to this question takes three forms, and depends crucially upon the nature
of the orbit p (t). If p (t) lies wholly inside Si, as in Figure 2.15-(a) then nearby orbits will also lie inside
Si. In this case the time-T map starting from x will be the smooth flow map P (x) = Φ (x, t), which has a
well-defined Taylor series:

P (x) = Φi,x (xp, T ) +O
(
‖x− xp‖2

)
, (2.45)

where Φi,x (xp, T ) is the Jacobian derivative with respect to x of the flow Φi around the periodic orbit,
evaluated at x = xp.

More interesting things happen if the periodic orbit p (t) intersects discontinuity surfaces Σij . Consider
next the case illustrated in Figure 2.15-(b) where p (t) has two transverse intersections with a discontinu-
ity set Σ. In this case, it is tempting to write that the linearization of the Poincaré map, takes the form
P (x) = J1J2J3. (x− xp), where J1, J2 and J3 are linearizations of the flows Φ1, Φ2 and Φ3, respectively,
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for the appropriate times for the trajectory starting at xp to, respectively, reach Σ for the first time, to pass
between the first and second intersections of Σ, and to pass from Σ back to Π. However, this is not the case
because, each time Σ is crossed transversally, one must apply a correction to the Poincaré map. This correc-
tion is necessary because the time taken from trajectories at points x close to xp, to reach the discontinuity
boundary Σ, will in general vary, and so a small error will be made in assuming that the linearization re-
quired is that of Φ1 for a constant time. The correction to this error, is the discontinuity map in this case. The
effect of the DM on the matrix J1, is to multiply it by a so-called saltation matrix. A similar correction must
be applied to the matrix J2. Not introducing these corrections, will in general result in wrong conclusions
being made about the Floquet multipliers of the periodic orbit p (t). Note in this case, provided the form
of the jump in the vector fields upon crossing Σ, is described by a smooth function, then the discontinuity
mapping and the associated global Poincaré map around p (t), will both be smooth. Similar considerations
apply to impacting hybrid systems where a periodic orbit p (t), has a single impact with a discontinuity
surface as in Figure 2.15-(c).

Now consider for a moment the special case where the velocity normal to Σ is zero, so that the periodic
orbit grazes the discontinuity surface, as in Figure 2.15-(d). Note that the trajectories starting from some
initial condition x ∈ Π near xp, do not intersect Σ at all, whereas others intersect Σ with a low normal
velocity. The discontinuity mapping in this case, is the identity for orbits that do not cross Σ, but is defined
as the local correction that must be applied to initial conditions that do cross Σ, so that a Poincaré map can
be applied as if Σ were not there. The effect of applying the DM to the map (2.45) in this case, is to in-
troduce additional terms proportional to fractional powers of ‖x− xp‖, such as ‖x− xp‖1/2 or ‖x− xp‖3/2.

In the case that trajectories intersect discontinuity boundaries transversally, then typically one still has to
compute a discontinuity mapping in order to derive a globally correct Poincaré map. This is because even
through the trajectory itself may be continuous, there is a correction that must be to the first and higher
derivatives of the flow. This correction arises because the discontinuity boundary acts like a new Poincaré
section that is distinct from the fixed time-t section that is implicity defined for the flow.

In [33], detailed calculations for the DM of a single-degree-of-freedom impact oscillator are given. Also,
these results are employed to explain the suddenly transition to chaos experienced after a periodic solution
hits tangentially (grazes) the discontinuity boundary. Results are confirmed numerically and experimentally.

In Chapter 6 we will address the problem of creating an equivalent map for the overall trajectory again,
when performing local analysis of a periodic orbit with complete chattering, in a practical cam-follower
model. That implies additional difficulties in the analysis, given the theoretical possibility of handling an
infinite series of events.
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Chapter 3

Numerical analysis of PWS dynamical
systems

3.1 Introduction

The analysis of dynamical systems described by sets of ordinary differential equations (ODEs), can be suc-
cessfully performed by studying trajectories computed numerically in accordance with accurate models.
This is particularly useful when it is not possible to derive analytical solutions in closed-form; a situation
often experienced when handling realistic models as those including non-linearities and discontinuities.

In the particular case of piecewise-smooth dynamical systems (PWS), the integration algorithm employed
to solve the initial value problems (IVP), should incorporate an additional routine aimed at the detection
of intersections with the discontinuity surfaces. This results in an hybrid programming structure termed as
event-driven, mixing a continuous operator (integrator) with a handler of discrete events. See Figure 3.1 for
an illustration.

?

6

Initial conditions

Initial value problem

?

Decisional block

Reset law for jump between modes

Figure 3.1 — Event-driven approach for scheduling between different operational modes.

Traditionally, such event-driven schemes have been employed to solve the dynamics of systems with dis-
continuous vector fields. See for example the algorithm proposed in [100]. A more flexible philosophy of
programming, was recently proposed by defining decisional blocks in terms of Lie derivatives of the discon-
tinuity boundaries along the vector field [33]. The term “flexible” is referred to the possibility of applying
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the code easily to any generalized PWS system by just providing the vector fields and the discontinuity sur-
faces. Routines have been developed for the case of Filippov systems [72] and more recently for impacting
systems with chattering [58].

Besides the time-simulation of the dynamics, it is necessary to develop complementary routines in order
to perform a complete characterization of the system dynamical scenarios. A clear example is the study
on the parameter dependence of equilibria (bifurcation behaviour) by mean of the so-called “brute-force”
techniques, where a rough exploration in the parameter space is made by assaying sets of initial conditions.
A more effective strategy is that of introducing “path-following” techniques often called “continuation al-
gorithms”. There are several available continuation packages as Auto [36], Loca [76] and Matcont [32], all
of them allowing to locate and trace codimension-one and codimension-two smooth bifurcations for multi-
variate and arbitrarily higher order systems, with a reasonable computational effort.

Therefore, given the associated complexity and the incomplete characterization of novel (non-smooth) bi-
furcation scenarios, just few attempts have been performed in order to extend traditional methodologies of
numerical analysis into PWS systems. Examples include the open-source SICONOS platform [2] and the
improved package for Auto: T̂C [89, 90], employed successfully for tracing trajectories with a handleable
number of events. Hence, new developments and adaptation of conventional numerical techniques for the
case of branch tracing in PWS dynamical systems, constitutes an interesting and open topic of research with
many possibilities to explore.

In what follows, numerical strategies for the characterization of the dynamics of PWS systems are described
and illustrated through examples derived from applications.

3.2 Simulation

As stated before, numerical solutions for systems with discontinuous and constrained trajectories can be
approximated by a combination of continuous and discrete operators in particular algorithm configurations.
Some representative examples are described below.

3.2.1 Time-stepping

As suggested by the name, this kind of algorithms perform calculations in a discrete-time based scheme,
with a certain fixed step-size schedule. In terms of hybrid systems, this has been commonly formulated as
a linear complementarity problem (LCP); i.e. a linear programming problem in which the solution space is
partitioned in the many available modes. Therefore, existence and unicity conditions of solutions should be
verified during each particular application.

Here, instantaneous jumps in the system states are smoothed by stiff (or fast in time) equivalent equations.
Such situation allows to solve the equations by integration ignoring the exact location of the discontinuous
events. After proper discretization, solutions to the LCP can be formulated as recursive “one-step” calcu-
lations. Hence, the step-size will constitute a critical design feature affecting the accuracy and even the
existence of a given solution.

As an example of LCP in PWS dynamical systems, let’s consider the approach developed by Çamlibel et
al in [25] where a piecewise-linear model for friction in mechanical systems and commutation in electrical
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circuits, has been approximated with relay switches. Specifically, the system considered is given by:

ẋ(t) = Ax(t) +Bū(t)
ȳ(t) = Cx(t) +Dū(t)
ūi(t) = sgn (−ȳi(t)),

(3.1)

with ū ∈ <m, x ∈ <n, y ∈ <m and A, B, C and D matrices of appropriate dimensions. Each pair
(−ȳi, ūi) satisfies an ideal relay characteristic ūi = sgn (−ȳi), where sgn (.) denotes the signum relation,
often referred as (−ȳi, ūi) ∈ Frelay. Then, after applying a backward Euler time-stepping discretization,
system (3.1) becomes:

xj+1−xj

h = Axj+1 +Būj+1

ȳj+1 = Cxj+1 +Dūj+1

(−ȳj+1,i, ūj+1,i) ∈ Frelay,

(3.2)

where h is the chosen step-size and ūj , xj , ȳj denote approximations at time instants tj = jh, j = 0, 1, 2, ...

Consequently, equation (3.2) constitutes the algebraic one-step problem

ȳj+1 = C (I −Ah)−1 xj +
[
C
(

1
hI −A

)−1
B +D

]
ūj+1

(−ȳj+1,i, ūj+1,i) ∈ Frelay,
(3.3)

with state-update

xj+1 = (I −Ah)−1 xj +

(
1

h
I −A

)−1

Būj+1. (3.4)

Given an initial state x (0) = x0, the scheme starts by setting xj = x0 and j = 0. Solving the one-step
problem for j in (3.3) results in ūj+1 and ȳj+1. Next, we can determine xj+1 from (3.4) as xj and ūj+1 are
known. The counter j can be increased resulting in a new one-step problem. This cycle is repeated until a
desired end-time T is reached. For a given step-size h, this procedure results in a sequence of approxima-
tions provided the one-step problems are solvable. Hence, a family of approximations, all functions of the
step-size h, can be defined.

A linear complementarity problem is stated and solved in [25], demonstrating the convergence of solutions
even when an infinite number of events (Zeno phenomenon or chattering, defined in Chapter 2) is expected
to occur.

A disadvantage of this kind of approach, is the increased computational effort added by solving stiff equiv-
alent problems (i.e. with small time steps) and the necessity of establish convergence conditions for each
particular case of study.

Interested readers can check [48], [11] and [1] for further insights on time-stepping.

3.2.2 Event-driven

An alternative simulation approach is obtained by considering instantaneous resets at the discontinuity
boundaries (events). This implies the accurate location of the time-instants at which such discontinuity
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boundaries are reached, representing a fundamental difference with time-stepping strategies where events
are just ignored.

Recently in [72] and [58], a flexible way to detect events on a discontinuity surface1 has been proposed by
locating the zero level of a scalar function H (x) in the domain of the state vector x. This general event-
checking can be performed directly by the built-in subroutine of the ODE solver in Matlab, allowing to
schedule transitions for successive modes by analyzing quantities derived from vector fields. Additional
events; e.g. Poincaré surfaces, can be defined by users for general purposes in an equivalent way.

The decisional block, where simulation modes and state jumps are selected, depends on the particular PWS
system under analysis. As an illustration, let’s consider the treatment of Filippov systems developed in [72]
taking a dynamical system of the form

ẋ =

{
Fi (x) , x ∈ Si,
Fj (x) , x ∈ Sj ,

(3.5)

for x ∈ <n and Fi, Fj being vector fields sufficiently smooth.

The state space consists of only two regions Si and Sj :

Si = {x ∈ <n|Hij > 0} ;
Sj = {x ∈ <n|Hij < 0} , (3.6)

separated by a discontinuity surface Σij defined in terms of a smooth scalar function Hij (x) as:

Σij = {x ∈ <n|Hij (x) = 0} . (3.7)

An important subset of Σij is the one for which the vector fields are both pointing towards or away from the
discontinuity boundary. Such a set constitutes the sliding surface and will be denoted as Σ̂ij , representing
an open segment between the points Σ̂+

ij and Σ̂−
ij . In the same way, these end points delimit two tangent

surfaces defined by:

Σ−
ij = {x ∈ <n|LFi

(Hij) = 0} ;
Σ+

ij =
{
x ∈ <n|LFj

(Hij) = 0
}
,

(3.8)

with LF denoting the Lie derivative of H (x) in the direction of F , or equivalently:
〈
dH

dx
, F

〉
, (3.9)

for 〈., .〉 as the scalar product operator.

Hence, as shown in Figure 3.2 there are 6 possible regions (or operational modes) available for selection,
depending on the detection of the following events:

e (x, t) =





Hij (x) = 0;
LFi

(Hij) = 0;
LFj

(Hij) = 0,
(3.10)

1Here all the treatment will be done by considering a single discontinuity boundary. Nevertheless, it can be extended to higher
orders with an increased complexity in the corresponding routines derived.
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Figure 3.2 — Boundaries for operational regions in the event-driven approach for simulation of Filippov systems.

and the direction of the corresponding crossings.

These establish the set of conditions to be evaluated numerically as the event-driven strategy. Additional
numerical considerations and results are clearly illustrated in [72].

3.2.3 Extended event-driven

A similar approach to the one described above for the case of Filippov systems, has been developed and im-
plemented in [58] for impacting systems with chattering. We will refer to it in some detail, because most of
the numerical results contained in this Thesis have been generated on the basis of this particular simulation
strategy.

Essentially, by considering again a single discontinuity boundary represented by the zero set of a scalar func-
tion of the system states H (x), the main question to solve by the decisional block is whether the particle
will experience one of the operational modes: impacting with rejection, sticking (equivalent to the sliding
condition) or chattering. Therefore, in an attempt to reproduce in a realistic manner the dynamics of the
motion, an accurate set of events should be defined for detection of all the possible transitions.

Notice that from the beginning, the problem of including an infinite evaluation of events in finite time;
i.e. chattering, has been considered and this imposes limitations in the performance of the event-driven
approach.

Following Piiroinen and Nordmark in [58], consider the dynamical system described by:

ẋ = F (x) , x ∈ S ⊂ <n, (3.11)

where S is a subset of <n and F a vector field on S. By defining an impact surface (discontinuity surface)
as the zero level of a scalar function H : S → <, the motion can be constrained to the subset of S for which
H (x) ≥ 0.

Thus, it is possible to define – as in (3.9) – quantities relating H in terms of Lie derivatives in the direction
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of F :

LF (H) (x) =
〈

dH
dx , F

〉
;

Lk
F (H) (x) ≡ LF

(
Lk−1

F (H) (x)
)

;

L0
F (H) (x) = H;

v (x) = L1
F (H) (x) ;

a(x) = L2
F (H) (x) .

(3.12)

Through this fundamental operator, dynamical modes can be established by means of the following subsets
of the state space S:

S+
k =

{
x ∈ S|Lk

F (H) (x) > 0
}
, S0

k =
{
x ∈ S|Lk

F (H) (x) = 0
}
, S−

k =
{
x ∈ S|Lk

F (H) (x) < 0
}
,

Σ+
k =

(
k−1⋂
m=0

S0
m

)
∩ S+

k , Σ0
k =

(
k−1⋂
m=0

S0
m

)
∩ S0

k , Σ−
k =

(
k−1⋂
m=0

S0
m

)
∩ S−

k ,

(3.13)

for non-negative integers k.

Therefore, if an impact occurs x ∈ Σ−
1 and we should apply an impact law given by:

R (x) = x+W (x) v (x) , (3.14)

for some analytic function W : S → <n, that in the case of a periodically forced SDOF (single-degree of
freedom) impact oscillator corresponds to:

W =




0
− (1 + r)

0


 , (3.15)

for 0 < r < 1 being the coefficient of restitution for inelastic collisions. Hence, for x ∈ <3 and v (x) ≡ x2

the impact law reduces to the model of restitution of Newton:

R (x) ≡ R





x1

x2

x3




 = x+




0
− (1 + r)

0


 v (x) =




x1

x2 − v (x)− rv (x)
x3


 ≡




x1

−rx2

x3


 . (3.16)

Now, as already discussed in Chapter 2, under acceleration attracting the particle towards the surface an
infinite number of collisions of decreasing velocity will be experienced. Moreover, as demonstrated later in
Chapter 6 (see also [22] [57] [58]) by assuming a low-velocity impacting regime, it is possible to develop an
equivalent mapping for the complete chattering event allowing to estimate numerically the locations of the
accumulation time t∞ and the state vector x|t=t∞

just before entering the sticking condition. In [58] these
quantities have been approximated to the first order by:

t∞ = q (x) = 1
1−r(x)

(
2

a(x)r (x)
)
v (x) + v (x)2O (1) ,

x|t=t∞
= Q (x) = x+ 1

1−r(x)

(
2F (x)
a(x) r (x) +W (x)

)
v (x) + v (x)2O (1) ,

(3.17)

with r (x) ≡ − (1 + LWLF (H) (x)), equivalent to the scalar value “r” in (3.16). See [58] for details.
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In this way the chattering can be scheduled as an event, and then included in the set of modes and conditions
constituting the decisional block of the hybrid algorithm. Following [58] the continuous trajectories are
given by a sequence of functions Xk : Ik → <n, k = 0, 1, ..., where Ik = [tk, t̄k] is a sequence of time
intervals. Also, there is a sequence of discrete states Sk ∈ f, s (f for free flight and s for sticking) and
vector fields Fk : <n → <n where:

Fk =

{
F, Sk = f ;
F̄ , Sk = s.

(3.18)

By denoting the initial and final points of each trajectory as xk = Xk (tk) and x̄k = Xk (t̄k) respectively, it
is possible to define also a function of event mappings Ek : <n → <n, ek : <n → <, such that:

xk+1 = Ek (x̄k) ,
tk+1 = t̄k + ek (x̄k) .

(3.19)

Thus Xk is a trajectory of Fk in the time interval Ik, and for tk < t < t̄k we have Xk (t) ∈ Σ+
0 if Sk = f ,

or Xk (t) ∈ Σ−
2 if Sk = s. All of this taking place at an event surface defined as the zero level set of a scalar

function Hk : <n → <. There are three possible events:

1. If there is a complete chattering event, then Ek = Q (x), ek = q (x), Hk = H , and we require
x̄k ∈ Σ−

1 , Sk = f , xk+1 ∈ Σ−
2 , Sk+1 = s;

2. If there is a regular impact, then Ek = R (x), ek = 0, Hk = H , and we require x̄k ∈ Σ−
1 , Sk = f ,

xk+1 ∈ Σ+
1 , Sk+1 = f ;

3. And, if there is a release from sticking, then Ek is an identity mapping, ek = 0, Hk = a (x), and we
require x̄k ∈ Σ+

3 , Sk = s, Sk+1 = f .

In order to give a better numerical approximation in a vicinity of a tangent collision (grazing), it is convenient
to extend the definition for the vector fields in (3.18), by:

Fk =

{
F, Sk ∈ {f+, f−}
F̄ , Sk = s

, (3.20)

with:

Sk =





f+, x ∈ S+
1

f−, x ∈ S−
1

s, x ∈ Σ−
2 .

(3.21)

Under this new assumption five events can occur, namely: “i” - an impact with negative velocity, “ii” - a
complete chattering event, “iii” - release from sticking, “iv” - negative velocity becomes positive and “v” -
positive velocity becomes negative. An illustration of the flow-diagram with the corresponding transitions
is depicted in Figure 3.3.

Another important consideration related with the singularity of the impact map for collisions with zero-
velocity, implies unbounded values of Jacobians when tracing trajectories with complete chattering (see [23]
and references therein). In order to overcome this inconvenience, an augmented state vector has been also
proposed in [58] for compensation of divergence in calculations.
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Figure 3.3 — Flow-chart for state transition in the extended vector field approach of an hybrid event-driven simulator.

Essentially, a new state vector x̂ ∈ <n+2 is considered during low-velocity impacts:

x̂ =



x
h
u


 , (3.22)

with u representing the outgoing velocity (after impacts) and h the quotient relating H (x) /u.

Hence, the extended impact mapping, the extended impact surface function and the extended vector field,
can be defined respectively as:

x̂← R̂ (x̂) =




R (x)
0

v (R (x))


 ,

Ĥ (x̂) = h,

˙̂x = F̂ (x̂) =




F (x)
v (x) /u

0


 .

(3.23)

Such an extended simulator is then capable to approximate a trajectory under complete chattering motion
with an improved precision, allowing to detect transitions into non-sticking mode of particular relevance
for the application case considered in this Thesis. In Figure 1.3, simulated trajectories depict motions with
complete chattering in solid and with null sticking-time (τ in Figure) dashed.

Additional references, procedures and explicit examples can be found in [58].

3.3 Characterization of the dynamics

As stated before, a simple way to get an insight on the behavioural features of a given system, is by studying
the qualitative changes of stationary solutions under parameter variations. This can be particularly useful in
a practical sense, given that modifications on environmental conditions can alter drastically characteristics of
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performance. Analogously, available theory of bifurcations and the possibility to obtain parametric models
under deterministic external influences, allow to explain and predict with a mathematical basis, stability
conditions. In the following, some numerical approaches aimed at construction of bifurcation diagrams are
illustrated.

3.3.1 Brute-force bifurcation diagrams

A natural and intuitive manner to extract information on the parameter dependence of a dynamical model,
consists in performing time simulations for different parameter values over the range of interest. It is then
important to have a certain clarity about the allowed range of variations (parameter space) as well as an
appropriate modelling describing accurately the case under analysis. Consequently, by plotting stationary
values of system quantities as function of parameter(s), a general picture of the dynamical behaviour can be
straightforwardly constructed.

As an example, consider Figure 5.1 showing the motion history of a constrained harmonic oscillator. In
particular, dynamics are described by the evolution of an angular position θf (solid) driven by a perio-
dic force θ̂c (dashed). The parameter corresponds with the forcing frequency ω, varied within the interval
ω ∈ [130, 160] rpm. The qualitative and quantitative changes for the stationary value of θf at a certain given
phase φ0 (representing the maximum of θ̂c), are showed as a function of the parameter by dots in the main
panel of the Figure. Each point represents the last 100 stroboscopic samples after simulation of 300 forcing
cycles, in an attempt for annihilate transient components. Initial conditions for each simulation are the same;
i.e. equal angle for the particle and the forcing at φ0. The parameter has been swept bidirectionally in order
to overcome hysteretic behaviour.

From the graph it is then evident that there are different solutions of motion, for different parameter values.
Also there are coexistence and abrupt transitions between modes. This gives a general idea about the dy-
namical features of motion observed by variations of ω, as claimed.

An alternative way for characterization of dynamics in constrained harmonic oscillators is given by plotting
information on the states at each collision during a forcing period. This is commonly referred as a numerical
“impact-mapping”, and can be employed to show – as depicted in Figure 5.9 – the transition between pe-
riodic regimes. It is then possible to develop impact-based bifurcation diagrams. See [63] for an interesting
discussion on advantages and disadvantages of impact and stroboscopic maps in impacting oscillators.

3.3.2 Monte Carlo approach: an improved brute-forcing technique

It is well known that the dynamics of nonlinear systems (including PWS) are characterized by multiple so-
lutions in state-space. This is actually reflected in the geometry of associated basins of attraction, justifying
dynamical effects on a global scale. Then, as a way to cover a wider spectrum of solutions during brute-
forcing procedures, a representative set of initial conditions should be strategically selected for simulation
under each parameter value.

Such scheduling of initial conditions, often uses statistical considerations for enrichment of data samples
by the so- called Monte Carlo method of programming [55], where by definition, repeated calculations of
a given algorithm employing random information, allows to bring a better estimation for a deterministic
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solution. Mathematically, consider the dynamical system:

ẋ = f (x, t, µ) ; x ∈ <n; µ, t ∈ < (3.24)

for a certain parameter µ and x as the state vector in time t, with solution trajectories defined in terms of the
flow function Φ : <n ×< → <n satisfying:

∂
∂tΦ (x, t) = f (Φ (x, t) , µ) ; Φ (x, 0) = x. (3.25)

A solution trajectory starting from x0 at t0, can be expressed at an arbitrary time instant t in terms of the
flow function Φ, as x(t) ≡ Φ (x0, t− t0). Moreover, given the parameter dependence assumed for (3.24),
stability conditions in solution trajectories are expected to be affected by variations on µ.

Hence, a set of initial conditions X0 can be defined as:

X0 =
{
x0 ∈ <n|xi

0 ≡ ρ (σ, η) , i = 1, 2.., n
}
, (3.26)

for ρ representing a probability density function with standard deviation σ and mean value η.

As an illustration, consider Figure 5.12 where a Monte Carlo brute-force simulation has been performed
for the exemplification case of section 3.3.1. Here, ρ (σ, η) was chosen to be uniformly-distributed with
η = 1/2 and σ2 = 1/12. Therefore, by defining a boundary of interest in the state-space, a grid of points
belonging to it will be uniformly selected. Notice the appearance of several solution branches, invisible
when simulating for a single initial condition (compare with the same parameter range on Figure 5.1).

3.3.3 Continuation

An evident disadvantage of brute-forcing techniques is related with the excessive computational effort de-
rived from the many simulations needed to characterize efficiently a given range of parameters. Also,
brute-force methods based on time simulations can only account for stable solutions. These situations can
be avoided by introducing path following or “continuation” techniques, that employing a theoretical-based
framework, allows to improve calculation of solution branches, even when they are unstable. This will
concern the main subject of the remaining sections of the Chapter.

3.4 Path following techniques

So far, we have briefly described how to perform numerical evaluation of the qualitative changes in dynami-
cal properties of systems by varying parameters. It is also possible to integrate mathematical tools in such a
process, in order to reduce the amount of calculations involved. In this context, the Implicit Function Theo-
rem (IFT), brings the theoretical foundation to develop a numerical method employed to trace or “continue”
solution branches [49,79,37,52]. In the following, the basic principles of continuation and some application
examples are given.

3.4.1 Implicit function theorem and fundamentals on continuation

Roughly speaking, in a multivariate mathematical formulation it is always possible to express a given vari-
able as a function of the others, whenever the set of conditions given by the IFT holds. This result can be
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further employed to describe the parameter dependence of equilibria in dynamical systems.

Hence following [79], let’s consider the vector field composed of the n differential equations:

ẋ = f (x, µ) , (3.27)

with x ∈ <n and µ ∈ <, as in (3.24). The equilibria of such dynamical system is then defined by all the
elements of the (n+ 1)-dimensional space (x, µ) for which f (x, µ) = 0. The function f is often defined
only on a subset of the (n+ 1)-dimensional space.

In general, the equation 0 = f (x, µ) defines implicity one or more curves in its domain. The question
is whether an equation 0 = f (x, µ) implicity defines a function x = F (µ), in such a way that 0 =
f (F (µ) , µ) is still verified. The general statement is as follows:

Theorem. Implicit Function Theorem: Given f : <n → <n, assume that

1) f (x∗, µ∗) = 0.

2) f is continuously differentiable on its domain, and

3) ∂f
∂x

∣∣∣
(x∗,µ∗)

is nonsingular.

Then, there is an interval µ1 < µ∗ < µ2 about µ∗, in which a vector function x = F (µ) is defined
by: 0 = f (x, µ), with the following properties holding for all µ with µ1 < µ < µ2:

a) f (F (µ) , µ) = 0,

b) F (µ) is unique with x∗ = F (µ∗),

c) F (µ) is continuously differentiable, and

d) ∂f
∂x

dx
dµ + ∂f

∂µ = 0.

By considering µ as the parameter of interest, the result just stated allows to trace a branch of equilibria for
the dynamical system (3.27), within the parameter interval µ1 < µ < µ2.

For an illustration, let’s consider once more the last condition on the IFT; i.e:

∂f
∂x

dx
dµ + ∂f

∂µ ≡ d
dµf (x (µ) , µ)

⇒ f (x (µ) , µ) = 0

⇒ d
dµf (x (µ) , µ) = 0

⇒ ∂f
∂x

dx
dµ + ∂f

∂µ = 0⇒ dx
dµ = −∂f

∂µ

/
∂f
∂x
,

(3.28)

Therefore, integration of (3.28) with respect to µ allows to solve for the equilibria of f . This constitutes
the fundamental continuation algorithm, having a strong constraint in the nullity of the denominator term
∂f
∂x , representing the Jacobian of the vector field f in terms of the state vector x. It is well known that
such a Jacobian will have singularities at bifurcation points, and then the basic continuation procedure must
be complemented by additional routines overcoming singularities and allowing detection and commutation
between solution branches.
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3.4.2 Predictors

A simple change of parameter, should be enough to avoid the singularity in (3.28). This redefinition of
parameter is known as Parameterization, and essentially refers to a new measure taken along the branch of
solutions chosen strategically to facilitate calculations [79]. As an example consider the Arclength, that for
small segments of a curve can be defined as (see Figure 3.4 for an illustration):

∆s2 = ∆x2
1 + ∆x2

2 + ...+ ∆x2
n + ∆µ2

⇒ 1 =
∆x2

1
∆s2 +

∆x2
2

∆s2 + ...+ ∆x2
n

∆s2 + ∆µ2

∆s2

⇒ lim
∆s→0

, 1 =
(

d
dsx1

)2
+
(

d
dsx2

)2
+ ...+

(
d
dsxn

)2
+
(

d
dsµ
)2
.

(3.29)

6

- µ

x

∆s

9
�

Figure 3.4 — Arclength in terms of the variable s, as the new parameter to express dependence of system quantities; i.e. x ≡ x (s),
µ ≡ µ (s).

Taking the finite-differences approximation for the derivative of the extended state vector X = (x, µ) in
terms of the new parameter s, we have:

dX
ds ≈

X(k+1)−X(k)

s(k+1)−s(k)
;

⇒ X(k+1) ≈ X(k) +
[
s(k+1) − s(k)

]
dX
ds = X(k) + ∆s

[
d
dsx1

d
dsx2 ... d

dsxn
d
dsµ

]

≡ X(k) + ∆s~vs,

(3.30)

where ∆s is the variation step of the parameter and ~vs represent a vector tangent to f (X) = 0 at X(k).
Therefore, as depicted in Figure 3.5, (3.30) represents a tangent predictor for the next point of X .

*

s
s

X(k)

X(k+1) ~vs

f (X) = 0

Figure 3.5 — Tangent predictor, showing a projection for the new coordinate of the extended state vector X = (x, µ).

In order to accomplish the continuation procedure, it is then necessary to constraint the prediction (3.30)
to fit or to be as close as possible, to the branch of solutions; i.e. such that f

(
X(k+1)

)
= 0. This can be
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performed by recalling the condition given at (3.29) as:

1 = d
dsx

2
1 + d

dsx
2
2 + ...+ d

dsx
2
n + d

dsµ
2

≡
[

d
dsx1

d
dsx2 ... d

dsxn
d
dsµ

]




d
dsx1
d
dsx2

...
d
dsxn
d
dsµ




=
〈
~vs, ~v

T
s

〉
,

(3.31)

and consequently ~vs is required to be a normalized tangent vector [52].

By considering now the derivative of f (X) with respect to s:

f (X) = 0

⇒ d
dsf (X) = ∂f

∂x
dx
ds + ∂f

∂µ
dµ
ds = 0

⇒
[

∂f
∂x

∂f
∂µ

]
~vT

s = 0,

(3.32)

it is possible to combine it with (3.31) to create the system of (n+ 1) equations and (n+ 1) unknowns:
[
Js

~vs

]

(k)

~vT
s =

[
0
1

]
, (3.33)

for Js representing the Jacobian of the extended state vector X . Then, under assumption of nonsingularity
on the left hand side of (3.33), ~vs at instant (k + 1) can be solved with information of the previous calcula-
tion and consequently from the tangent projection of X in (3.30).

Alternatively, predictors can be constructed by projecting the secant (instead of the tangent) or by simple
extrapolation of points.

3.4.3 Correctors

The term predictor is usually associated with an algorithm of two stages, where prediction errors are im-
proved by corrections. Basically, the idea consists in the creation of a system of (n+ 1) equations by adding
an extra constraint to f (X) = 0 given by gk (X) = 0. Actually, the procedure is similar to what previously
developed for calculation of the tangent vector ~vs.

More specifically, gk (X) will constrain the corrected values X(k+1) to fall into a specific hyperplane con-

taining the predicted value X̃(k+1) (See Figure 3.6 for an illustration). The predictions are then based
on the convergence of a Newton-Raphson algorithm, used to locate the zeros of the extended function

G (X) ≡
[
f (X)
gk (X)

]
. Such an algorithm, take the first order expansion in series of the function around an

initial guess X0:

G (X1) ≈ G (X0) +
dG

dX

∣∣∣∣
X=X0

(X1 −X0) , (3.34)

and then, in order for X1 to be a zero of G (X), it is necessary to schedule:

0 = G (X0) + dG
dX

∣∣
X=X0

(X1 −X0) ,

⇒ −G(X0)
dG
dX |X=X0

= δX = (X1 −X0) ,

⇒ X1 = X0 + δX,

(3.35)
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If G (X1) 6= 0, the process will be repeated until it reaches a given tolerance. For an initial guess close to a
zero of the function, the algorithm is expected to converge in few iterations.

Following Kuznetsov [52], a possible choice of the hyperplane gk (X) can be:

1. Natural continuation [Figure 3.6-(a)], for gk (X) = X(k+1) − X̃(k+1); where the solution is con-
strained to fall in a plane perpendicular to a selected direction, that in practice is usually chosen as the
one with the higher variation rate.

2. Pseudo-arclength continuation [Figure 3.6-(b)], for gk (X) =
〈
X(k+1) − X̃(k+1), ~vs

〉
; where solu-

tions are constrained to fall in the direction orthogonal to the unitary tangent vector ~vs. The method
is evidently not recommended for tracing dynamics with quick variations.

3. Moore-Penrose continuation [Figure 3.6-(c)], for gk (X) =
〈
Xi

(k+1) − X̃(k+1), ~v
i
s

〉
; this is an opti-

mized version of the previous, where a number of “i” intermediate calculations of the unitary tangent
vector ~vs, are incorporated to the partial results; in other words, “i” intermediate predictions are ac-
complished during corrections.

*s
s

X(k)

f (X) = 0

sX̃(k+1)

X(k+1)

gk (X) = 0

∆s~vs

*

s
s

X(k)

f (X) = 0

s
X̃(k+1)

X(k+1)

gk (X) = 0

∆s~vs

(a) (b)

3

s
s

X(k)

f (X) = 0

s
X̃(k+1)

q

gk
0 (X) = 0

gk
1 (X) = 0

∆s~v0
s

∆s~v1
s

X1
(k+1)

(c)

Figure 3.6 — Illustration of hyperplane selection during the correction stage of continuation algorithms: (a) Natural continuation, (b)
Pseudo-arclength continuation and (c) Moore-Penrose continuation.

3.4.4 Step control

The rate of convergence of a predictor-corrector scheme is evidently affected by the prefixed value assigned
to the parameter variation-rate ∆s. Also, a convenient assignment to this value will determine a better pre-
cision on predictions, therefore reducing the required amount of correction steps.
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Hence, it is possible to think in many sophisticated ways to schedule ∆s, ranging from fixed heuristic values
until dynamic adaptive assignments. Let’s consider as an illustration, the recipe suggested in [52]:

- Decrease the step size and repeat the corrections, if no convergence occurs after a prescribed number
of iterations;

- Increase the step size, if the convergence requires only a few iterations; and

- Keep the current step, if the convergence happens after a “moderate” number of iterations, shown to
be efficient in practice.

3.4.5 Test functions and branch-selection

All the results on continuation developed so far, are applicable over a single branch of solutions. Then,
in order to link the dynamical behaviour of many equilibria, it is necessary to detect whether a bifurcation
takes place along the branch.

This is accomplished by detection of the zero-crossing of a monitor or “test” scalar function, say Ψ, evalu-
ated in parallel to the calculation of branch points. Then, if:

Ψ
(
X(k)

)
Ψ
(
X(k+1)

)
< 0, (3.36)

a bifurcation has been verified to take place between X(k) and X(k+1).

Usual choice for Ψ (X) can be:

- max {< (λI − J)}, for J as the system Jacobian, looking forward for an eigenvalue with zero real
part,

-
∣∣ d
dxf (x, µ)

∣∣, given the singularity of the Jacobian at a bifurcation point.

Once located, the bifurcation point should verify the algebraic branching equation (ABE) [49] [52]:

aγ2
1 + 2bγ1γ0 + cγ2

0 = 0, (3.37)

with γ0 and γ1 being the basis of a plane tangent to the intersection of two branches in a single bifurcation
point, and {a, b, c} the coefficients of the quadratic multivariate expansion of f (x, µ) in a vicinity of the
bifurcation (see [52] for further details).

Therefore, by considering one of this basis to follow the direction of the unitary vector ~vs tangent to the
branch calculated until the detection of the bifurcation, (3.37) can be solved for the remaining. In such a
way, the predictor (3.30) can be selected (commuted) to trace the new bifurcation branch.

3.5 Path following in PWS dynamical systems

Path following techniques – as described through the Chapter – allow the possibility of tracking branches of
equilibria in dynamical systems. The same idea should be extensible for tracing of periodic solutions (un-
able to exhibit single equilibrium points) and for detection of non-smooth bifurcations of branches. More
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specifically, path-following techniques should be employed to continue piecewise-smooth dynamical sys-
tems.

In the following, some application examples for tracing of periodic solutions in PWS dynamical systems
are given as an attempt to overcome difficulties appearing naturally when trying to address continuation of
nonsmooth dynamics.

3.5.1 Shooting method continuation in impact-oscillators

Dynamical systems exhibiting periodic solutions of the form:

Φ (X∗, T ) = X∗,
Φ (Φ (X∗, t) , T ) = Φ (X∗, t) ∀ t ∈ [0, T ),

(3.38)

with Φ (X, t) representing the system flow as defined in (3.25), X = (x, µ) and T the period of the solution,
can be manipulated numerically by considering a simple translation:

f̄ (X∗) = Φ (X∗, T )−X∗ = 0, (3.39)

allowing to apply all the treatment of section 3.4.

In particular following [71], let’s consider the predictor given by the linear extrapolation:

µ(k+1) = µ(k) + ∆µ,

x(k+1) = x(k) +
(

µ(k+1)−µ(k−1)

µ(k)−µ(k−1)

) (
x(k) − x(k−1)

)
,

(3.40)

assuming the period of the solution as parameterization; i.e. µ ≡ T , and then X = (x, T ).

Therefore, by choosing ḡk (X) as a convenient Poincaré section, the corrections will be constrained to fall
in the hyperplane that allows to accomplish the boundary condition; i.e. Φ (X ∗, 0) = Φ (X∗, T ). As an
example, take the case of a periodically forced harmonic oscillator, where x3 represents the phase of the
motion. If ḡk (X) = x3 − φ0, solutions will be constrained to converge into a fixed phase value x3 = φ0.
See Figure 3.7 for an illustration.

-

�

gk (X) = x3 − φ0

s
Φ (X∗, 0) = Φ (X∗, T )

T

X∗

Figure 3.7 — Poincaré section containing the boundaries of a solution trajectory, after completion of an orbit with period T .
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From a numerical point of view, location of the X points implies the convergence for the Newton-Raphson

iterations on the extended system Ḡ (X) =

[
f̄ (X)
ḡk (X)

]
:

[
X
T

]

(k+1)

=

[
X
T

]

(k)

−D
[

Φ
(
X(k), T(k)

)
−X(k)

gk
(
X(k)

)
]
,

D = d
dX Ḡ (X)

∣∣
X=X(k)

=

[
d
dxΦ (X, t)− I d

dtΦ (X, t)
d
dxg

k (X) 0

]

X=X(k)

.
(3.41)

In doing so, after having an initial guess about X∗ and T for a periodic orbit of type (3.38), variations on T
will lead to convergence of (3.40)-(3.41) into the next point of the branch X∗

(k+1).

Despite these results are being applicable to smooth systems, they have also a strong relevance for dynamics
of constrained (PWS) harmonic oscillators, given the periodic nature of the solutions involved. Figure 3.8
shows results for continuation of a periodic branch on an impact oscillator model. Here, the discontinuous
shape of the motion is remarkable from subfigure (a). Analogously, the evolution of eigenvalues – in subfig-
ure (b) – confirms the crossings of the unit-circle during the period doubling and saddle node bifurcations
depicted in subfigure (c).

More interesting is the numerical analysis of non-smooth bifurcations, where criteria for detection depends
on the specific type of applications. For example, again in the case of a constrained harmonic oscillator,
interruption of chattering will lead to a discontinuity induced bifurcation (See Chapter 6 for a deeper discus-
sion on it). Then, the bifurcation will take place if the sticking time τ is null, and therefore Ψ (X) = τ (X).
Figure 3.9 depicts this situation in detail, showing a branch tracing for the main solution in (a) and detection
of the first bifurcation point in (c) with detailed criterion in (b). Notice that in this case the monitor function
Ψ doesn’t cross the zero, and consequently the general condition (3.36) cannot be verified. This can be
taken as a proof of the exceptions representing nonsmooth phenomena.

3.5.2 Multiple-shooting in a PWS continuation package

We now discuss how to verify a boundary value problem over the entire cycle of the trajectory. This in gen-
eral, is not a convenient procedure given the risk of divergence in the Newton approach for points calculated
far from solutions. As an alternative, it is possible to split the periodic orbit in many subintervals, assuring
the correction to work locally in any of them.

In other terms, consider once more the periodic solution (3.38) with period T. Let’s divide the boundary
value problem for its existence in m subintervals of T ; i.e. T ≡ [0, T0) ∪ [T0, T1) ∪ ... ∪ [Tm−2, Tm−1),
satisfying the boundary condition Φ (X, 0) = Φ (X,Tm−1) = X∗

0 . See Figure 3.10 for an illustration.

Then, it is possible to perform calculations on the extended system Ḡ (X) =

[
f̄i (X)
ḡk (X)

]

for i = 0, 1, ..., (m− 1), by

Φ (X,T0)−X∗
1 = 0;

Φ (X,T1)−X∗
2 = 0;

...
Φ (X,Tm−1)−X∗

0 = 0;
gk
0 (X) = 0,

(3.42)
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Figure 3.8 — Numerical continuation of PWS dynamics. (a) Discontinuous periodic trajectory. (b) Evolution of eigenvalues across
the unit-circle. (c) Solution branch and superposition of continuation estimates.
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Figure 3.9 — Numerical continuation of a solution branch involving a nonsmooth bifurcation. (a) Branch tracing showing replication of
main solution by path following. (b) Detection of bifurcation by monitoring the zero of the sticking time τ . (c) Verification of bifurcation
detection by comparing values on horizontal axis.
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Figure 3.10 — Poincaré sections containing the boundaries of a solution trajectory, after completion of subintervals in an orbit with
period T .

in a similar way to what performed in (3.41). Moreover, it is possible to approximate accurately the func-
tions describing the flow for every subinterval by optimized routines known as “collocation” methods.

In particular, T̂C, a special toolbox developed for the AUTO continuation package, employs orthogonal
collocation to perform path following of PWS dynamical systems.

In essence, by employing the same ideas expounded in section 3.2, the routines just need information about
the vector fields of the system and the discontinuity boundaries for the associated reset mappings, in order
to construct the periodic trajectory and apply on it the multiple shooting technique of (3.42).

As an illustration, Figure 3.11 depicts the discontinuous flow of a periodic solution of an impact oscillator.
Notice that here two main discontinuities are present: 1) the reset of phase at the completion of any forcing
period and 2) the jump in the velocity by means of the impact mapping. Analogously, Figure 3.12 contains
the continuation of the periodic branch. From it is remarkable the overcoming of singularity in the turning
point (saddle-node). Compare with results of the single shooting in Figure 3.8.

For further details on T̂C, see [89, 90].
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Chapter 4

Cam-follower systems and the valve-float
phenomenon in combustion engines

4.1 Introduction

A number of dynamical systems contain discontinuities due to the presence of structural components with
displacement constraints. Examples include bouncing or hopping systems, vibro-mechanical impacts in
machine vibrations, loosely connected members, and gearing systems with fatigue-induced over-tolerances.
All represent situations where impacting oscillator models can provide a valuable insight to understand the
observed dynamical behaviour [33]. Although such systems typically operate in linear regimes over certain
parameter ranges, the discontinuities in the force-deflection relationship have been shown to produce cha-
racteristic non-linear behaviour, such as amplitude jumps, subharmonics and chaos [91]. An impact could
be either desirable, when it represents the base of operation, as for example in pneumatic hammers, impact
printers and heat exchangers, or undesired when is destructive and should be eliminated, as for instance in
gear-boxes [100].

In this context, cam-follower systems can be chosen as a very general and relevant benchmark problem,
since they are widely used in various machines and mechanical engineering devices [61]. For instance, all
types of automated production machines including screw machines, spring winders and assembly machines,
rely heavily on this kind of systems for their operation.

The most common application is to the valve train of internal combustion engines (ICE) [44], where the
effectiveness of the ICE is based on the proper working of a cam-follower system. For this specific applica-
tion, the presence of discontinuities can be really critical and must be avoided or controlled since the purpose
of the valve train is to open and close both the intake and exhaust valves of the ICE. A typical pushrod valve
train contains the following components: cam, follower, pushing rod, rocker arm and valve springs. As the
camshaft rotates, the cam imparts a translation motion to the follower and pushrod (see Figure 1.4). The
pushrod then pivots the rocker-arm which opens the valve. The valve springs provide the restoring force to
close the valve after the maximum lift is obtained.

During operation, it is important to keep all the mechanical parts in close contact with each other so that the
motion of the mechanism perfectly reflects the motion of the cam. Unfortunately, in practice, as the engine
speed increases, the valve train motion can be different from the ideal kinematic behaviour due to inertia of
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components, and the surge of valve springs. These phenomena lead to valve floating and bouncing, which
can seriously deteriorate the engine performance. For instance, valve floating occurs when the inertial force
of the valve train components exceeds the force of the valve springs, thus allowing components to separate
and causing the valve to exceed the maximum lift of kinematic motion and close with an abnormally high
velocity. Valve bouncing instead occurs when the valve closes against the seat with a sufficiently high ve-
locity, such that it physically bounces off the seat and remains open as the piston begins the compression
cycle, thus allowing the air-fuel mixture going out of the combustion chamber. Reduction in valve bounc-
ing and/or valve floating is established as primary goal of valve designs including cam-follower mechanisms.

All the applications based on a cam-follower, require a deeper insight in the system dynamics; i.e. tak-
ing explicitly into account the occurrence of gaps between connecting components. Obviously, embedding
possible collisions in the representative model, generates discontinuities and nonlinearities in the system
equations, reducing the applicability and the effectiveness of traditional model analysis tools.

To this aim, the general theory of piecewise-smooth dynamical systems described so far in Chapter 2, can be
successfully applied to explain the main dynamical scenarios experienced by cam-follower devices, mod-
elled as lumped-parameter single-degree-of-freedom impacting oscillators. Also, as the analysis of bifurca-
tions in piecewise-smooth systems is further expanded, it is becoming increasingly important to carry out an
extensive experimental investigation and validation of the theoretical results obtained. Complex behaviour
in impacting systems has been observed experimentally in a number of papers in the literature. Examples
include the early work on impact oscillators in [12], [14], [46], [63], [91], [84]. More recent papers include
the work by Wiercigroch et al reported in [101] and the results of Piiroinen et al on impacting pendula [73].
(For further references see also the books [17], [100] and references therein). Particularly cumbersome dy-
namics can be observed in the case of impact oscillators with moving boundaries. For example, in [24],
it is suggested that a novel bifurcation phenomenon termed as corner-impact can occur in discontinuously
forced impact oscillators.

This Chapter will be concerned with the description and implementation of an experimental rig composed
of an oscillating rocker-arm driven by a rotating profile, emulating the interaction between the cam-shaft
and valves on an ICE. Modelling and validation between numerical simulations and experimental data will
be performed. More extensive analysis will be presented in Chapters 5 and 6.

Related results have been published in [6] and [10].

4.2 Cam-follower systems

Following [61], a cam can be defined as a specially shaped piece of metal or other material arranged to move
the follower in a controlled fashion. The follower motion may be either rotational or translational. As an
example, Figure 4.1-(a) shows a rotating cam driving an oscillating (rotating or swinging) follower. Notice
that a spring is used to maintain the contact between cam and follower. This is referred to as a force-closed
cam joint, meaning that an external force is needed to keep them together.

Figure 4.1-(b), shows an alternative arrangement to connect the follower to the cam, that does not need a
spring. A track to groove in the cam traps the roller follower and now can both push and pull. Actually it
just pushes in both directions. This is called a form-closed joint, as the cam is formed around the follower,
capturing it by geometry. This type of cam, when used for valve actuation in engines, is also known as
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desmodromic, from the French word desmodromique meaning to force to follow contour [61]. Both, form
and force closed cams, are used extensively in machinery.

(a) (b)

Figure 4.1 — Illustration of types of cam-follower joint: (a) force-closed and (b) form-closed configurations, reproduced from [61].

4.2.1 Typical arrangements and geometries

Cam-follower systems can be classified in several ways: by type of follower motion, by type of joint closure,
by type of follower, by type of motion constraints or by type of motion program:

Type of follower motion

Figure 4.1-(a) shows a system with an oscillating (rotating or swinging) follower. All three terms are used
interchangeably. An alternative configuration can be a translating (sliding) follower. The choice between
these two types of cam-follower is usually determined by the type of output motion desired. If true rectilinear
translation is required, then the translating follower is needed. If a pure rotation output is needed, then the
oscillator is the obvious choice.

Type of joint closure

Force and form closure were introduced earlier. Another variety of form-closed cam-follower arrangement
is the conjugate cams, with two cams fixed on a common shaft that are mathematical conjugates of one
another. Desmodromic cams can be also conjugate. See Figure 4.2, for an illustration of a conjugate cam
pair.

Type of follower

Follower in this context, refers only to that part of the follower link which contacts the cam. Three common
arrangements are: flat-faced (Figure 4.1-(a)), mushroom (curved, Figure 4.3) and roller. The roller follower
has the advantage of lower (rolling) friction than the sliding contact of the other two, but can be more expen-
sive. Flat-faced followers can package smaller than roller followers for some cam designs; they are often
favored for that reason, as well as cost for some automotive valve trains. Many modern automotive engine
valve trains now use roller followers for their lower friction. Roller followers are commonly used in pro-
duction machinery where their ease of replacement and availability from bearing manufacturers’stock in any
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Figure 4.2 — A conjugate desmodromic cam pair, reproduced from [61].

quantities are advantages. Flat-faced or mushroom followers are usually custom designed and manufactured
for each application.

Figure 4.3 — Mushroom type of follower shape, reproduced from [61].

Type of cam

The direction of the follower’s motion relative to the axis of rotation of the cam determines whether it is a
radial or axial cam. Cams in Figures 1.4-4.3, are all radial cams because the follower motion is generally
in a radial direction. Figure 4.4, shows an axial cam whose follower moves parallel to the axis of cam
rotation. This arrangement is also called a face cam if open (force-closed) and a cylindrical or barrel cam,
if grooved or ribbed (form-closed). Another possible configuration is the three-dimensional cam or camoid
in a combination of a radial and axial cams. This is a two-degree-of-freedom system. The two inputs are the
rotation of the cam about its axis and translation of the cam along its axis. The follower motion is a function
of both inputs. The follower tracks along a different portion of the cam depending on the axial input.

Type of motion constraints

There are two general categories of motion constraint: critical extreme position (CEP – also called endpoint
specification) and critical path motion (CPM). CEP refers to the case in which the design specifications
define only the start and finish positions of the follower (i.e. the extreme positions) but do not specify any
constraints on the path motion between those extreme positions. This case is easier for design because of
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Figure 4.4 — Axial, cylindrical or barrel cam with form-closed translating follower, reproduced from [61].

the freedom to choose the cam functions that control the motion between the extremes. CPM is a more
constrained problem, because the path motion and/or one or more of its derivatives are defined over all
or part of the interval of motion. This requires the generation of a particular function to match the given
constraints.

Type of motion program

The motion program rise-fall (RF), rise-fall-dwell (RFD) and rise-dwell-fall-dwell (RDFD), all refer mainly
to the CEP case of motion constraint. They define how many dwells are present in the full cycle of motion,
either none (RF), one (RFD), or more than one (RDFD). Dwells, defined as no output motion for a specified
period of input motion, are an important feature of cam-follower systems. See Figure 4.5 for an example of
a timing diagram including path restrictions and dwells on a cam program specification.

(a) (b)

Figure 4.5 — Motion functions for a multi-dwell cam: (a) cam program specifications and (b) plots of cam-follower’s position s, velocity
v, acceleration a and jerk j, reproduced from [61].
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4.2.2 Applications

Another possible application of cam-follower devices are in automated assembly machines, as illustrated
in Figure 4.6. Two cams are shown, each of which drives a linkage that actuates tooling in one of several
assembling stations along a conveyor line. The tooling will insert a part, crimp a fastener, or do some other
operation on the product that is being automatically assembled as it is carried along on the conveyor. A
machine of this type, may have several dozens of these cam-follower trains arrayed along one or more large
camshafts that run the length of the machine (ten meters or more).

Figure 4.6 — Cam-follower mechanisms for one station of an automated assembly machine at the Gillette Co. Boston, MA, repro-
duced from [61].

Additional details on design and implementation of cam-follower systems are out of the scope of the current
Chapter.

4.3 Internal combustion engines and the valve-float phenomenon

As stated in [44], internal combustion engines (ICE) date back to 1876 when Otto first developed the spark-
ignition engine and 1892 when Diesel invented the compression-ignition engine. Since that time these
engines have continued to develop as our knowledge of engine processes has increased, new technologies
became available, demand for new types of engines arose, and environmental constraints on engine use
changed. Internal combustion engines, and the industries that develop and manufacture them and support
their use, play a dominant role in the fields of power, propulsion and energy. The purpose of internal

62



Chapter 4. Cam-follower systems and the valve-float phenomenon in combustion engines

combustion engines, is the production of mechanical power from the chemical energy contained in the fuel.
In internal combustion engines, as distinct from external ones, this energy is released by burning or oxidizing
the fuel inside the engine. The fuel-air mixture before combustion and the burned products after combustion
are the actual working fluids. The work transfers which provide the desired power output occur directly
between these working fluids and the mechanical components of the engine.

4.3.1 The four-stroke cycle

Internal combustion engines are reciprocating engines; i.e. where the piston moves back and forth in a
cylinder and transmits power through a connecting rod and crank mechanism to the drive shaft (as in Figure
4.7). The steady rotation of the crank produces a cyclical piston motion. The piston comes to rest at the top-
center (TC) crank position and bottom-center (BC) crank position when the cylinder volume is a minimum
or maximum, respectively.

Figure 4.7 — A reciprocating engine, reproduced from [44].

The majority of reciprocating engines operate on what is known as the four-stroke cycle. Each cylinder
requires four strokes of each piston – two revolutions of the crankshaft – to complete the sequence of
events which produces one power stroke. This four-stroke cycle comprises (see Figure 4.8 for a schematic
illustration):

1. An intake stroke, which starts with the piston at TC and ends with the piston at BC, which draws
fresh mixture into the cylinder. To increase the mass inducted, the inlet valve opens shortly before the
stroke starts and closes after it ends.

2. A compression stroke, when both valves are closed and the mixture inside the cylinder is compressed
to a small fraction of its initial volume. Toward the end of the compression stroke, combustion is
initiated and the cylinder pressure rises more rapidly.
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3. A power stroke, or expansion stroke, which starts with the piston at TC and ends at BC as the high-
temperature, high-pressure, gases push the piston down and force the crank to rotate. About five
times as much work is done on the piston during the power stroke as the piston had to do during
compression. As the piston approaches BC the exhaust valve opens to initiate the exhaust process and
drop the cylinder pressure to close to the exhaust pressure.

4. An exhaust stroke, where the remaining burned gases exit the cylinder: first, because the cylinder
pressure may be substantially higher than the exhaust pressure; then as they are swept out by the
piston as it moves toward TC. As the piston approaches TC the inlet valve opens. Just after TC the
exhaust valve closes and the cycle starts again.

Therefore, synchronized motion between piston and valves is mandatory for achievement of the required
performance of the engine and avoidance of undesired emission of residuals to the environment. Such
synchronization is assured by connecting the crank-shaft to the cam-shaft, this last transmitting the desired
motion to the valve train (as in Figure 1.4).

Figure 4.8 — Illustration of the four-stroke cycle in an internal combustion engine ICE, reproduced from [44].

4.3.2 Valve floating and bouncing

As stated previously, it is necessary to keep a controlled motion of the valves for a better performance of
an ICE, situation translated in assurance of a permanent contact between the cam and follower bodies along
the valve train. This is a crucial design tip related with maximum operational conditions allowed on the
engine. Under such mode of operation, the rotation of the cam will exert a force on the valve (proportional
to the torque) which exceeds the restoring force supplied by the spring in the force-closed joint configura-
tion, allowing the bodies to detach and eventually to bounce (after impact) [51] [87] [29]. Moreover, it has
been experimentally observed, that at a certain engine speed termed limit speed, the valve bounce amplitude
increases dramatically, thereby resulting in what seems to be a chaotic valve motion [61].

Although the occurrence of the impacts sets narrow bounds onto the maximal engine velocity, there is a
generic trend to advance the limit speed in both passenger and racing automobiles and/or motorbikes. In-
creasing the engine limit speed allows the engine to run faster and in turn to produce more power. In
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addition, operating at higher engine speed is also strongly desirable since it is possible to design smaller and
lighter engines that produce the same power as larger, heavy engines.

For all of the above mentioned reasons, the reduction in valve bouncing and/or valve floating, as the velocity
increases, is established as a primary goal of valve design based on the cam-follower mechanism [29], [54].
We remark that in current technology engines, a prefixed and sufficiently large spring force (and pre-load) is
always applied to the cam follower joint to keep the contact throughout the entire rotation [74]. As a natural
consequence, there is an increase in the contact force, which induces higher stresses possibly leading to
early surface failure of the parts. Moreover, the high friction valve train reduces the efficacy of the engine
system, that works harder to push the follower through its motions [93].

Understanding the complex dynamics of these systems can then be relevant in these applications where it is
essential to avoid unwanted impacting behaviour. Indeed, a deeper insight of the post-detachment dynamics
could unveil less conservative solutions for detachment avoidance. For example, bifurcation and chaos
control techniques or active controllers could be used without requiring the use of a stiff closing spring or
the design of much more complex desmodromic valves [26]. Also, an exhaustive study on the occurrence
of gaps between connecting components will also allow a better understanding of the nature of the resulting
noise, vibration, wear and mechanical stress often observed in applications.

4.4 Experimental rig

Figure 1.4 shows a cam-follower system used in automotive valve actuation. This is an overhead camshaft
engine. The camshaft operates against an oscillating follower arm that in turn opens the valve. The cam-
joint is force-closed by the valve spring. Maximum cam-speed in these kind of applications can range from
about 2500 rpm in large automobile engines to over 10000 rpm in motorcycle racing engines. From the
application viewpoint, the velocity is a crucial parameter to be properly controlled to induce a desired be-
haviour. Essentially, unwanted nonlinear behaviour, may be caused by impacts that have to be avoided.

Inspired by these kind of problems, a test-bench for a radial cam with a flat-faced follower was designed
and built at the University of Naples - FEDERICO II. Details on design, modelling and instrumentation tips
have been published in [6]. A summary of them is given as follows:

4.4.1 Design tips

Since our attention is focused on the nonlinear behaviour of the cam-follower mechanism, it is not necessary
at this stage to explicitly consider the engine in the rig. Without loss of generality, a simple mechanical
system composed by two rigid contacting bodies (the cam and the follower) is used as an experimental rig
sufficient for the practical visualization of all the phenomena related with the bouncing of a follower over
a cam surface. The presence of the spring tied to the follower/rocker arm, provides the necessary restoring
force. An electric servo motor provides the motion of the cam according to a prefixed velocity profile. An
illustration of the experimental rig, detailing the geometry of the mechanical core, is given by Figure 4.9.

Notice that it has been also possible to design a push-road translational cam-follower system, but the choice
of a rotational rig seemed to be preferable for our experimental purposes, since an oscillating flat-faced
follower provides a lower friction, lower wear rates and ease of replacement. Furthermore, our experimental
and theoretical effort is based on the detection of multiple impacts, chattering, grazing contacts and so on.
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(a)

(b)

Figure 4.9 — Experimental rig: (a) schematic overview of system including mechanical and sensing/acquisition devices, and (b) detail
of the mechanical core showing the particular geometry to be implemented.
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This implies the necessity to perform reliable contact measurements. By choosing a push-road translational
cam rig, this cannot be done easily, since the high frequency impacts do not suggest to employ proximity
transducers, such as the piezoelectric ones, forcing to choose optical sensors, like high speed lasers, which
are efficient, but expensive. Instead, by designing a rig based on a rotational geometry, measurements of the
cam and follower positions are simply performed by incremental encoders placed on the cam-shaft and the
follower-shaft.

4.4.2 The cam profile

An important aspect of cam-follower systems is the cam profile. This is typically designed in order to pro-
vide the forcing to the follower which is required for it to operate in some desired manner. Usually, the cam
profile is obtained by solving a constrained optimization problem (see [61] for further details). Given the
wide range of applications, there is a wide variety of possible cam geometries ranging from cycloidal cams
to those designed using splines that can even provide discontinuous acceleration to the follower [62]. For
this reason, the experimental rig was designed in order to allow easy and direct access to the cam and the
flywheel for their possible replacement.

Currently two different types of cam can be alternatively mounted on the experiment which provide, respec-
tively, a simple harmonic motion (eccentric circular cam) and a profile characterized by discontinuities in
the acceleration. In this Thesis we will show experiments related to an eccentric circular cam, which are
often used to produce motion in pumps or to operate steam engine valves [61]. Other examples of various
applications based on the eccentric circular cam can be found in [19], [28], [35], [42], [94]. The use of cir-
cular cams in the automotive field is instead reported in [27] and [82]. On-going research activity is dealing
with evaluating the effects on the follower motion of a discontinuity in the forcing [65] [66].

It is worth mentioning here that by appropriately designing the cam profile it would be possible to impart
any type of desired motion to the follower. This makes the experiment described in this Thesis an extremely
versatile and flexible tool to investigate the nonlinear dynamics of impacting mechanical systems.

4.4.3 Implementation

The physical implementation of the experimental rig described above is depicted in Figures 4.10 and 4.11,
where the mechanical device is shown to be appropriately coupled to electronic systems for the acquisition,
sampling, storage and processing of experimental data. The main features of the experimental set-up can be
summarized as follows:

- The cam motion is controlled by a brushless motor driven through an embedded controller. Notice
that the angular position and velocity of the cam and the driving motor are assumed to be identical
because of a rigid coupling connecting the cam to the motor shaft.

- The measures of the cam and the follower angular positions are obtained through high-resolution
optical encoders mounted respectively on the cam and follower shafts.

- The measure of the follower angular variation rate, is obtained with a gyroscope [86] fixed at its
rotational axis. Notice that the follower performs partial circular motion (non complete revolutions),
and then its rotational velocity should be measured as an angular rate. See Figure 4.11-(a).
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(a)

(b)

Figure 4.10 — Physical implementation of the experimental rig: (a) view from above; (b) front view.
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(a) (b)

Figure 4.11 — Additional hardware incorporated into the experimental rig: (a) gyroscope for measurement of the follower angular
rate (for incomplete revolutions or swings); (b) hardware triggering for stroboscopic acquisition of samples.

- Reliable AD/DA conversions and signal processing are implemented through DSPACE [39], a widely
used commercial data-acquisition integrated hardware/software system (16 bit, 250 MHz, PCI inter-
face).

- External hardware triggering has been configured on the acquisition unit, in order to perform strobo-
scopic sampling. A circuit based on an opto-isolated device [64], has been built for this purpose. See
Figure 4.11-(b) for an illustration.

- All signals acquired are processed and analyzed using MATLAB [45].

Additional details are included in Tables 4.1 and 4.2. A more extensive description of the experimental rig
can be found in [10].

Table 4.1 — Details on materials and dimensions

Part Description

cams, flywheels and follower contact surface made of low-alloy hardened stainless steel UNI38NiCrMo4

follower body made of aluminium Al

cam internal radius 30 mm

cam external radius 60 mm

cam eccentricity 15 mm

flywheel radius 80 mm

follower length 600 mm

follower width 16 mm

follower height 60 mm
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Table 4.2 — Details on the instrumentation

Device Description

servo (motor-driver) system Sanyo-Denki Q-series [77]

data acquisition system dSPACE ACE-kit ACE1104CLP [39]

follower position encoder HENGSTLER RI-58 D [43]

cam position resolution 5000 pulses per revolution

follower position resolution 10000 pulses per revolution

follower velocity sensor BAE systems, VSG 100◦/s bipolar gyroscope [86]

reflective object sensor for trigger Phototransistor OPTEK, OPB703 [64]

4.5 Modelling

In order to detect and study the main qualitative dynamical features of the follower motion and to validate
the observed experimental behaviour, a proper mathematical model of the system should be derived [6]. The
formulation of an appropriate model can be a challenging task for most applications. In the case of cam-
follower systems, various models have been proposed characterized by different degrees of complexity,
ranging from simple models with 1 DOF (Degree Of Freedom) [50] to complex models with 21 DOF [78]
that use the additional DOF to include the effects of camshaft torsion and bending, backlash, squeeze of
lubricant in bearings and so on. Nevertheless, there is general agreement, confirmed by experience in dif-
ferent applications, that a lumped parameter single degree of freedom model is adequate to represent most
of the aspects of the dynamical behaviour of a cam-follower system (see for example [4], [13], [38] and [50]).

Rather than neglecting the presence of impacts, the cam-follower is regarded here as a single degree of
freedom impacting oscillator with an unilateral constraint. More precisely, as explained in [18], we model
the follower dynamics under the external forcing u(t) ∈ < provided by the cam, as

q̈ = g (q, q̇, u) ,
f (q, t) ≥ 0,

(4.1)

where q ∈ <n is the vector of generalized coordinates of the follower motion, g is the system vector field
and the real valued function f represents the unilateral constraint on the follower position q. Note that u(t)
is nonzero only when the two bodies are in contact (i.e. when f(q, t) = 0). Using the terminology of
complementarity systems, we are able to say that the two variables f and u, are complementary in the sense
that 0 ≤ u ⊥ f ≥ 0 (see [18] for further details).

The hybrid structure of model (4.1) allows to deal mathematically with the presence of intermittent contacts
between the system bodies. In particular, we can distinguish between two different phases of motion:

1. Unconstrained mode, when no contact occurs between the cam and the follower. From the modelling
viewpoint, the follower dynamics simply reduces to an unforced harmonic oscillator; i.e. f (q, t) > 0
and u(t) = 0;

2. Constrained mode, when permanent contact between the two bodies is established. Here the follower
dynamics are induced by the specific cam profile1; i.e. f(q, t) = 0 and u(t) > 0.

1The follower motion is constrained to a phase space region bounded by the angular position of the cam.
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In the following, each particular mode of the follower motion will be modelled in accordance with both the
schematic diagram depicted in Figure 4.12 and the general notation reported in Table 4.3.

Table 4.3 — Summary of the general notation used in section 4.5

Symbol Description

θf angular position of follower with counterclockwise sense of rotation

θc angular position of cam with counterclockwise sense of rotation2

θ̂c angular displacement of the follower joint when in contact with the cam

(t̂, n̂) reference system attached to the follower

(x̃, ỹ) reference system obtained by translating the axes (x, y) to (x0, y0)

(x̃c, ỹc) reference system pivoted at the cam with origin (x0, y0)

p0 = (x0, y0) coordinates of the rotational center in the (x, y) system

pA = (xA, yA) hooking point for spring

pB = (xB , yB), pP = (xP , yP ) ending points of the mechanical element that avoids rotation of spring

pC = (xc, yc) point on the cam surface which is nearest to Σ

pE = (xE , xE) intersection between vertical line passing through pA and g(x) = tan(θf )x

pF = (xf , yf ) point of follower surface that will impact on the cam3

pG = (xg, yg) geometric center of the rotating cam

d half height of follower

d0 relaxed spring length

d1 distance between pB and pP

d2 distance between pP and pE

e cam eccentricity

K spring stiffness

J follower moment of inertia

ρ distance between the origin of the axis (x, y) and pE

Σ boundary of follower surface that becomes in contact with cam

h distance between pC and Σ4

d intersection between Σ and the axis y (it is equal to −d/ cos(θf ))

4.5.1 Follower motion

To derive a valid mathematical model, we use a standard Lagrangian approach, with system description
obtained by solving

d

dt

∂L

∂θ̇f

− ∂L

∂θf
= τ (4.2)

where L is the Lagrangian function, defined as the difference between the potential energy (U ) and the
kinetic energy (T ) of the system

L = T − U, (4.3)
2Measured as the relative rotation of the coordinate system (x̃c, ỹc) with respect to (x̃, ỹ).
3This point is (l,−d) in the coordinate system (t̂, n̂) and (xf , yf ) in the coordinate system (x, y).
4It is straightforward that under contact h is zero and Σ is tangent to the cam at point pC .
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Figure 4.12 — Schematic diagram of the cam-follower system: (a) unconstrained mode; (b) constrained mode. All the labels are
defined in Table 4.3.

and τ is the external torque given by the non conservative forces.

Let fe be the elastic force exhibited by the spring. The change in the potential energy of the system can be
stated as

δU , −fT
e (pA − pB) =

= −K (yA − yE − d0 − d1 − d2)
[

0 1
]
δ

[
xB

yB

]

= −K (yA − yE − d0 − d1 − d2)
[

0 1
]
δ

[
xB

yE + d1 + d2

]

= −K [(yA − d0)− (yE + d1 + d2)] δ (yE + d1 + d2)

= δ

[
1

2
K [(yA − d0)− (yE + d1 + d2)]

2

]
. (4.4)

Here, only the potential energy of the spring has been considered, because the center of mass of the follower
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is assumed to be placed at a fixed point. Consequently the variation of the potential energy related to the
gravity is assumed to be null.

Integration of (4.4) allows to generate an explicit expression for U

U =
1

2
K [(yA − d0)− (yE + d1 + d2)]

2 . (4.5)

Notice that from Figure 4.12, d2 can be expressed as function of the angular position of the follower θf and
the parameter d, by

d2 (θf ) =
d

cos(θf )
(4.6)

and since any spring rotation is avoided by design; i.e. xE = xA, it is straightforward to write

yE(θf ) = xA tan(θf ). (4.7)

Given that T = 1
2Jθ̇f

2
, after substitution of (4.6) and (4.7) into (4.5), an expression for L is found to be

L =
1

2
Jθ̇f

2 − 1

2
K

[
(yA − d0)− (xA tan(θf ) + d1 +

d

cos(θf )
)

]2

. (4.8)

Unconstrained Mode

Considering the result given by expression (4.8), the mathematical description for the unconstrained motion
of the follower can be simply obtained by solving (4.2) in terms of its angular position θf , thus yielding

Jθ̈f +K

(
xA tan(θf ) +

d

cos(θf )
− (yA − d0 − d1)

)(
xA

cos2(θf )
+ d

sin(θf )

cos2(θf )

)
= 0. (4.9)

Notice that the right hand side of the above equation is zero, since during unconstrained mode only the
conservative elastic force has to be taken into account.

Constrained Mode

An expression for the contact mode, can be obtained by treating the cam as an external input acting directly
on the follower. Let θ̂c(t) be the angular position of the follower when the two bodies are in contact, then
the torque τ provided by the cam has to be such that θf = θ̂c. Including the external forcing of the cam τ
into (4.9), we derive the dynamical equation during permanent contact as:

Jθ̈f +K

(
xA tan(θf ) +

d

cos(θf )
− (yA − d0 − d1)

)(
xA

cos2(θf )
+ d

sin(θf )

cos2(θf )

)
= τ(t). (4.10)

4.5.2 Impact law

To model the transient contact between the follower and the cam, we need to incorporate the action of a
collision rule into the system equations. Letting tk be the time instant when a generic impact occurs, such
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a rule gives the post-impact velocity, say ḣ(t+k ), as a function of the pre-impact velocity ḣ(t−k ). In general,
we have

ḣ(t+k ) = −rḣ(t−k ) (4.11)

where r is the so-called coefficient of restitution [18], estimated later in the Chapter.

In the case of interest, if the velocity of the contact point pC is continuous, we have

∇Σ · ˙pF (t+k ) = ∇Σ · ˙pC(tk)− rḣ(t−k ), (4.12)

where Σ is the lower side of the follower (assumed flat) oriented towards the cam (see Figure 4.12). There-
fore, the impacting law will be obtained after recasting the quantities in (4.12) as functions of the angular
position and velocity of the follower, relatives to the coordinates of the contact point pC .

From the geometry depicted in Figure 4.12, h is the distance between the straight line of slope tan(θf ),
passing through the point (0,−d̄) in the (x, y) coordinate system and the point on the cam pC = (xc, yc).
Then, simple geometric arguments yield to the following expression for h:

h(xc, yc, θf ) = sin(θf )xc − cos(θf )yc − d. (4.13)

Differentiating (4.13) with respect to time, we have

ḣ(xc, yc, θf ) = sin(θf )ẋc − cos(θf )ẏc + (cos(θf )xc + sin(θf )yc) θ̇f . (4.14)

It is also possible to express Σ in the (x, y) coordinate system. Namely, from Figure 4.12, it follows that

Σ := {(x, y) : y = tan(θf )x− d

cos(θf )
} (4.15)

and then, by defining ∇Σ =
[
− sin(θf ) cos(θf )

]
we obtain

∇Σ · ˙pC = − sin(θf )ẋc + cos(θf )ẏc. (4.16)

Analogously, noticing that pF has coordinates (xf , yf ) related to (l,−d) by the rotation matrix Ξ(θf ),
defined as

Ξ(θf ) =

[
cos(θf ) − sin(θf )
sin(θf ) cos(θf )

]
, (4.17)

it is possible to derive, after simple algebraic manipulations, an expression to ∇Σ · ˙pF given by

∇Σ · ˙pF =
[
− sin(θf ) cos(θf )

] [ − sin(θf )l + cos(θf )d
cos(θf )l + sin(θf )d

]
θ̇f = lθ̇f . (4.18)

When an impact occurs, we also have pF ≡ pC , and therefore

l = t̂T
[
xc

yc

]
= cos(θf )xc + sin(θf )yc. (4.19)
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Then, after substitution of (4.14),(4.16) and (4.18) into (4.12), the impact law can be finally expressed in
terms of the follower angular position θf and velocity θ̇f , as

θ̇f (t+k ) = −rθ̇f (t−k ) + (1 + r)
cos(θf )ẏc − sin(θf )ẋc

cos(θf )xc + sin(θf )yc
. (4.20)

Equation (4.20) depends explicitly on the coordinates of the contact point pC ≡ (xc, yc) and its derivatives.
Such coordinates, are themselves functions of the cam geometry, position and velocity.

For the particular profile considered; i.e. eccentric and circular, the coordinates of the contact point in terms
of the rotational angle of the cam θc, can be obtained by first subtracting the radius R from the distance
between the point pF (see Figure 4.12) and the geometric center of the cam pG = (xg, yg). The coordinates
of pG can be expressed in terms of the rotational center (x0, y0) and the eccentricity e of the profile, as:

{
xg(θc) = e cos(θc) + x0

yg(θc) = e sin(θc) + y0.
(4.21)

Therefore, straightforward algebraic manipulations give:

h (θf , θc) = [e sin(θc) + x0] sin(θf )− [e sin(θc) + y0] cos(θf )− d−R. (4.22)

Notice that for a generic θc, it is possible to solve h(θf , θc) = 0; giving the angular displacement at the fol-
lower joint during contact mode. Hence, by equating (4.22) to zero, we can obtain an analytical expression
for θ̂c, as:

θ̂c (θc) = arcsin

(
d+R√

(e cos(θc) + x0)2 + (e sin(θc) + y0)2

)
− arctan

(
− e sin(θc) + y0

e cos(θc) + x0

)
. (4.23)

Now, let n̂ be the unit vector lying along the direction of the lower side of the follower in contact with the
cam. Clearly, n̂ is given by:

n̂(θ̂c(θc)) =
[
− sin(θ̂c(θc)) cos(θ̂c(θc))

]T
. (4.24)

Then, by adding the vector having modulus equal to R (the radius of the cam) and direction orthogonal to
n̂, to the coordinates of the cam geometrical center pG given in (4.21), the coordinates of the contact point
pC can be expressed as

{
xc(θc) = e cos(θc)−R sin(θ̂c(θc)) + x0

yc(θc) = e sin(θc) +R cos(θ̂c(θc)) + y0
(4.25)

with corresponding derivatives, after time differentiation
{
ẋc(θc) = −e sin(θc)θ̇c −R cos(θ̂c(θc))

∂θ̂c

∂θc
(θc)θ̇c

ẏc(θc) = e cos(θc)θ̇c −R sin(θ̂c(θc))
∂θ̂c

∂θc
(θc)θ̇c

(4.26)

where θ̂c (θc) refers to the angular position of the follower under contact mode.

The model derived above contains several nonlinearities and can be ill-conditioned (high stiffness coeffi-
cient). These are well-known obstacles for numerical integration schemes that may require extremely small
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time steps and robust integrators. It is not the purpose of the present Chapter to discuss integration methods
but we are completely aware of the difficulties resulting from both non-linearities and high frequencies. To
overcome the numerical problems here we used an integration algorithm with adaptive step-size available
in the commercial platform MATLAB [45]. For further reference on the simulation method employed to
evaluate the system equations (4.9), (4.10) and (4.20), check the extended event-driven algorithm described
in Chapter 3.

4.6 Parameter fitting

Now that expressions for description of the follower motion have been derived, proper assignation of para-
meter values will confirm the correctness of the model by resembling the experimental data acquired from
the physical implementation of the system. In doing so, two main set of parameters can be considered,
namely: geometric and physical. Geometric includes all the main distances depicted in Figure 4.12, plus
cam’s eccentricity and radius, as listed in Table 4.4. On the other hand, physical parameters depend on the
materials employed, including follower inertia J , spring coefficient K and the restitution coefficient r for
inelastic impacts. This last is of remarkable importance for the dynamics, and will be treated later in section
4.6.1.

Table 4.4 — Model parameters

Parameter Value Units

R cam radius 0.045 [m]

e cam eccentricity 0.015 [m]

(x0, y0) center of rotation of the cam (0.249, 0) [m]

d half of the follower height 0.021 [m]

J moment of inertia of the follower 0.043 [kg · m2]

K spring coefficient 105 [N/m]

xA x-coordinate of the spring hanging point −0.031 [m]

yA − d0 − d1 spring elongation distance 0.173 [m]

The nominal values for J and K are reported in Table 4.4. The ratio of these nominal values, M = J
K , has

been optimized to fit the experimental unconstrained motion of the follower, as illustrated by Figure 4.13.
As expected, the model shows a good agreement with the experimental data as highlighted from the time
history of the error shown in Figure 4.13-(b).

The validity during constrained motion can be also verified by incorporating the information of the profile
derived in expression (4.23). In this way, simulation of motion equations (with the extended event-driven
approach described in Chapter 3) under low rotational speed ω, allows to confirm the accuracy on calcula-
tions by appreciating the similarity between experimental and numerical trajectories, as illustrated in Figure
4.14. Low values of ω will become clear in section 4.7.
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Figure 4.13 — Unconstrained mode, validation results. Time history of the free-fall motion of the follower: (a) θf (t) experimental
(dashed) vs. numerical (solid); (b) estimation error corresponding to difference between data plotted in (a).
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Figure 4.14 — Constrained mode, validation results. Time evolution of θ̂c (dotted line) and θf (solid line) for ω = 110 rpm, showing:
(a) experimental and (b) simulated data. Notice the agreement achieved in values of amplitude and period of the forcing.
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Figure 4.15 — Coefficient of restitution r as function of the cam velocity ω: identified values of r (asterisks) by matching simulated
first bouncing amplitude with experimental data, and corresponding linear approximation (solid line).

4.6.1 Estimating the coefficient of restitution

The coefficient of restitution r is an index of how elastic a collision is. The problem of estimating r ex-
perimentally has been discussed in a large number of papers in the literature on impacting systems and it is
usually based on bouncing ball experiments, see for example [3] and [83]. The most common methods are
formulated in terms of high-speed data collection of the impact sounds as explained in [15], or on detailed
analysis based on the use of high-speed cameras and force sensors as in [53]. The most basic approach is
to consider r as a constant coefficient, whereas in practice it is well known that r is actually an unknown
function of the impact speed [15].

Since the impact velocity is not easy to measure, in this work we assume that the coefficient of restitution r
is a function of the cam rotational speed ω. This is motivated by the observation that higher cam velocities
lead to larger detachment of the follower and hence higher approach speed at the impact. In particular, we
identified different values of r by running a set of experiments at different constant values of ω ranging
from 130 rpm to 155 rpm where the system experienced periodic multi-impacting motion (as will be evident
in section 4.7). Hence, given a fixed cam velocity in the range of interest, the coefficient r is estimated
by tuning its value in such a way to match the amplitude of the first bounce between the simulated and
experimental data. Then, a least-square approach provides a linear interpolation of r as a function of ω.
This last procedure is depicted in Figure 4.15.

Although using the cam velocity instead of the actual approach speed in estimating r is a strong approxima-
tion, the good agreement between simulations and experiments seems to confirm the validity of the adopted
approach. This can be confirmed by the numerical results in Figure 4.16, where preservation of dissipative
features after the first bounce are reflected under several values of ω.
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Figure 4.16 — Impact law, validation results. Comparison between sections of simulated (dashed) and experimental (solid) differential
time series for (a) ω = 135 rpm, (b) ω = 143 rpm, (c) ω = 148 rpm and (d) ω = 150 rpm. This results evidence the preservation of
dissipative features in the numerical approach from the first bounce. The vertical axis ∆θ, represents the difference θf − θc.
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4.7 Experimental bifurcation diagram

Traditionally in a wide range of engineering applications, cam-follower systems are designed by assuming
a constant speed. Nevertheless, especially in high speed cams, the presence of unavoidable camshaft fluc-
tuations can affect the accuracy of the follower motion [31] [103]. Starting from the pioneering work of
Rothbart [75], engineers have highlighted the potential advantages of using variable speed cams and em-
bedding their variable-speed explicitly as a parameter into the design process. We wish to emphasize that
the experimental investigation of the nonlinear dynamics of the follower after its detachment from the cam,
can be used to improve the cam design. For example, bifurcation diagrams can be obtained to evaluate the
influence on the cam-follower dynamics of various parameters including: the cam rotational speed, variable
stiffness characteristics, different cam profiles, etc [104].

In so doing, and as a way to uncover and fully characterize the dynamical scenarios of the system introduced
in section 4.4, Figure 4.17 shows the complete experimental bifurcation diagram containing the story of mo-
tion behaviour in the follower θf , as the angular velocity of the cam ω varies between 120 and 200 rpm.
Here, the cam-follower system exhibits a complex dynamic behaviour characterized by different coexisting
solutions, several bifurcations and chaos.
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Figure 4.17 — Complete experimental bifurcation diagram. The diagram is characterized by different coexisting solutions. Red:
Scenario 1. Blue: Scenario 2. The automated process of acquisition is described in [5].

In order to capture experimentally the two evident coexisting scenarios, different experimental runs were
performed in an automated process described in [5]. Firstly, the cam velocity was swept forward from 120
to 200 rpm. For each value of the cam speed, 10 seconds after one minute transient in the measure of the
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Figure 4.18 — Experimental bifurcation diagram: (a) forward parameter sweep; (b) backward parameter sweep.

angular position of the follower θf , were stored and the resulting stroboscopic points plotted. As a result,
the forward bifurcation diagram has been obtained as depicted in Figure 4.18-(a). A second experiment was
executed with the same philosophy as before, but this time for ω being decreased from 200 to 150 rpm. The
resulting backward bifurcation diagram is plotted in Figure 4.18-(b). The complete bifurcation diagram of
Figure 4.17, was then generated by overlapping the forward and backward experimental diagrams. It shows
two main different coexisting routes to chaos, namely :

• a sudden transition to chaos seemingly due to the transition from a complete chattering sequence to
an incomplete one; labelled as Scenario 1 in the rest of the contents; and

• a classical period doubling cascade; labelled as Scenario 2.

In what follows, we study each of these scenarios in greater detail, complementing the experimental bifur-
cation diagram with experimental time series, phase-portraits and stroboscopic maps at the most significant
values of the cam rotational speed ω.

The stroboscopic map Π, is obtained experimentally by measuring periodically at each T = 2π/ω, both the
angular position θf and velocity θ̇f of the follower. Hence, it is defined as

(θfn , θ̇fn) −→ (θfn+1 , θ̇fn+1) (4.27)

where θfn = θf (nT ), θ̇fn = θ̇f (nT ), and n is the number of forcing periods (or cam revolutions).

A generic nT -periodic orbit characterized by m impacts per period will be labelled as a P (m,n) orbit.
Therefore, nT -periodic orbits with sticking – characterized by the accumulation of an infinite number of
impacts in finite time – will be denoted as P (∞, n).
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4.7.1 Scenario 1: Chattering interruption

For the first scenario, four regions of different qualitative behaviour associated to different values5 of ω, can
be highlighted:

1. Permanent contact (ω < 125 rpm), where the cam and the follower stay in contact for all time.

2. Periodic impacting behaviour (125 < ω < 155 rpm), where the existence of a P (∞, 1) orbit is
detected.

3. Sudden transition to chaos due to chattering interruption (155 < ω < 160 rpm).

4. Aperiodic motion and chaos (ω > 160 rpm).

We now give some experimental evidence for each of these scenarios.

Permanent contact - low velocity regime (ω < 125 rpm)

The experimental investigation starts by using low values of the cam rotational speed. Experiments confirm
the presence of permanent contact between the cam and the follower in this range of ω values. For example,
in Figure 4.19, the dynamics of the follower at a constant cam angular velocity ω = 120 rpm, are shown.
At this velocity value, the restoring force of the follower is higher than the force exerted by the constraint
represented by the cam. In this condition, the cam and the follower remain in contact for all time, hence we
have θf = θ̂c where θ̂c is the cam angular displacement at the follower joint, function of the cam angular
position θc. It is important to note that permanent contact is experimentally detected up to approximately
125 rpm. We wish to emphasize the extremely small experimental measurement error shown in Figure 4.19
(ε ≈ 10−3).

Periodic impacting behaviour (125 < ω < 155 rpm)

For values of ω ∈ [125, 155] rpm, the follower motion is observed to exhibit 1T -periodic behaviour charac-
terized by an infinite number of impacts per period (P (∞, 1)-orbit).

One example of such periodic sticking orbit is depicted in Figure 4.20, where time histories of both the
experimental cam and follower angular positions are shown, together with their difference at ω = 150
rpm. Here, it is apparent that during every period an infinite number of impacts accumulate in finite time
(complete chattering) before the sticking phase.

Chattering interruption (155 < ω < 160 rpm)

For 155 < ω < 160 rpm, the system is observed to exhibit a sudden transition to chaos. A closer look
at this parameter region shows that the transition is observed from a complete to an incomplete chattering
sequence. Namely, as ω is varied past a critical value, a P (∞, 1) orbit turns into a P (N, 1) solution with
N � 1. Experimental evidence of such a transition is depicted in Figure 4.21, where a periodic orbit with
sticking (a) is shown to turn into a periodic orbit without sticking (c), resulting in the interruption of the

5The maximum cam velocity during the experimental analysis is limited to ω = 200 rpm. For higher velocity regimes the
follower displacement is very close to the maximum admissible value and the energy dissipated in the impacting behaviour can
even destroy the experimental rig.
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Figure 4.19 — Experimental results. Permanent contact at ω = 120 rpm. Left frame: time history of the cam (dashed line) and
follower (solid line) angular positions (top panel), with their corresponding difference ∆θ (bottom panel). Dash-dot line: maximum
angular displacement of the follower. Right frame: phase portrait (θf v.s. θ̇f ). Red dots symbolize samples of the stroboscopic map Π
given by (4.27).
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Figure 4.20 — Experimental results. P (∞, 1) orbit at ω = 150 rpm. Left frame: time history of the cam (dashed line) and follower
(solid line) angular positions (top panel), with their corresponding difference ∆θ (bottom panel). Dash-dot line: maximum angular
displacement of the follower. Right frame: phase portrait (θf v.s. θ̇f ). Red dots symbolize samples of the stroboscopic map Π given
by (4.27).
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Figure 4.21 — Experimental results. Chattering interruption. Time history of difference ∆θ between cam and follower angular
positions at (a) ω=155, (b) ω=158 and (c) ω=160 rpm.

complete chattering sequence. This bifurcation scenario will be studied in further details with additional
numerical tools in Chapters 5 and 6.

Past the critical value of the cam velocity, corresponding to ω = 160 rpm, the follower starts exhibiting
aperiodic behaviour and sensitive dependence on initial conditions. A representative case of this chaotic
behaviour is shown in Figure 4.22, where the time history of the chaotic dynamics together with the corre-
sponding phase portrait and stroboscopic points at ω = 165 rpm, are depicted.

4.7.2 Scenario 2: period doubling cascade

As mentioned above, in the range 150 < ω < 200 rpm, the experimental system also undergoes a coexisting
classical period-doubling cascade similar to those reported in the literature on impact oscillators [40] [16].
In particular, for ω ∈ [150, 188] rpm, the system exhibits large-amplitude periodic behaviour characterized
by one impact per period, such as the one depicted in Figure 4.23 for ω = 165 rpm.

When increasing the cam angular velocity beyond 188 rpm, the follower motion exhibits a period doubling
bifurcation (see Figure 4.24). The resulting P (2, 2) orbit persists for all the admissible values of the cam
speed. The sharp corner in the P (2, 2) branch observed in the experimental bifurcation diagram at ω ≈ 191
rpm, is only due to the transition of one of the impacts characterizing the P (2, 2) solution through the max-
imum of the cam profile.

84



Chapter 4. Cam-follower systems and the valve-float phenomenon in combustion engines

0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

PSfrag replacements

t [s]

θ f
,θ̂

c
[r

ad
]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

PSfrag replacements

θ̇f [rad/s]
θ f

[r
ad

]

Figure 4.22 — Experimental results. Chaotic motion at ω = 165 rpm. Left frame: time history of the cam (dashed line) and follower
(solid line) angular positions. Dash-dot line: maximum angular displacement of the follower. Right frame: phase plane portrait (θf v.s.
θ̇f ). Red dots symbolize samples of the stroboscopic map Π given by (4.27).
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Figure 4.23 — Experimental results. P(1,1) orbit at ω = 165 rpm. Left frame: time history of the cam (dashed line) and follower (solid
line) angular positions. Dash-dot line: maximum angular displacement of the follower. Right frame: phase portrait (θf v.s. θ̇f ). Red
dots symbolize samples of the stroboscopic map Π given by (4.27).
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Figure 4.24 — Experimental results. P(2,2) orbit at ω = 188 rpm. Left frame: time history of the cam (dashed line) and follower (solid
line) angular positions. Dash-dot line: maximum angular displacement of the follower. Right frame: phase portrait (θf vs. θ̇f ). Red
dots symbolize samples of the stroboscopic map Π given by (4.27).

4.8 Discussion

The experimental results described so far, show several interesting features in the dynamical behaviour of
the cam-follower impacting system described in section 4.4. In particular, the coexistence of two different
scenarios is observed together with the novel sudden transition to chaos caused by interruption of complete
chattering sequences. To better investigate these phenomena, exhaustive numerical analysis should be ap-
plied to the representative model of system motion given by equations (4.9), (4.10) and (4.20).

In the next Chapters, it will be demonstrated that after validation of the correctness of the model in captur-
ing the main dynamical features experienced by the original system, the techniques described in Chapter
3, constitutes a powerful resource to unveil the mechanisms for bifurcations and changes of stability. More
precisely, in Chapters 5 and 6 numerical local analysis will be performed in a vicinity of the chattering
interruption to explain the novel bifurcation phenomenon involved. This degree of precision is unfeasible at
an experimental level, and therefore will not be possible to perform such kind of analysis directly from real
measurements.
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Chapter 5

Numerical bifurcation analysis

5.1 Introduction

An important feature of impacting systems is the possibility for an infinite sequence of impacts to ac-
cumulate in finite time. This phenomenon, also termed as chattering or Zeno behaviour in the litera-
ture [22] [58] [57] [80], has been shown to be the key to uncover the intricate structure of the dynamics
of an impacting system, as for example to predict the topology of its basins of attraction or regions where
sticking occurs. Sticking in impact oscillators corresponds to the mass remaining in contact with the impact-
ing obstacle over a finite time interval and has been recently related to the occurrence of so-called sliding
solutions in piecewise-smooth flows [34]. In [57], it has been proposed that a new type of DIB occurs in
impacting systems when, under parameter variations, a complete chattering sequence (leading to sticking) is
interrupted. Basically, when one or more parameters are varied, a periodic orbit characterized by an infinite
number of impacts accumulating in finite time suddenly looses its stability as the chattering sequence be-
comes incomplete, with the trajectory escaping the sticking region after a finite (large) number of impacts.
The phenomenon described above has been observed by some authors in the existing literature and given
the name of “rising bifurcation” or “chattering interruption”. A reference to this phenomenon can be found
in [92], while numerical evidence of its occurrence in a two-degree-of-freedom impacting oscillator is re-
ported in [95], [96] and [97]. Therefore, a pressing open problem is to fully investigate this novel bifurcation
phenomenon which is unique to impacting systems.

It is worth mentioning here that despite its theoretical and numerical observations, this phenomenon has
seldom been shown to occur experimentally before, making it even more important to study the complex
behaviour exhibited by the physical implementation of the cam-follower device described in Chapter 4,
where as conjectured, complex behaviour seems to be due to chattering and its interruption [65] [66].

The scope of this Chapter is to provide evidence that allows to unfold the observed bifurcation behaviour
and characterize the dynamics of the system under investigation, by applying numerical analysis on the
representative model of motion derived. In particular, emphasis will be given to showing that the interruption
of a complete chattering sequence is indeed the mechanism that explains the sudden transition to chaos
observed in the bifurcation diagram. Also, to analyze the coexistence of this novel discontinuity induced
phenomenon with a traditional period-doubling cascade. To this aim, numerical simulation, continuation
and computation of basins of attraction are performed, showing excellent agreement with results achieved
experimentally. Related work and results are going to be published in [5] and [7].
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Figure 5.1 — Numerical bifurcation diagram. Vertical axis contain the steady state values of the follower angular position θf at
different cam forcing frequencies ω, taken as bifurcation parameter. The diagram is complemented in Figure 5.2 with some numerical
time series of the most meaningful follower dynamics, showing agreement with the experimental behaviour of the system described in
Chapter 4.

5.2 Numerical bifurcation diagram

The bifurcation diagram predicted by numerical simulations of the analytical model given by equations
(4.9), (4.10) and (4.20), is shown in Figure 5.1 (see also the time series in Figure 5.2). Simulations have
been performed by implementing the extended event-driven approach described in Chapter 3. The diagram
is obtained by brute-force simulation of the system for increasing and decreasing values of ω. For each
parameter value, 300 cycles of the forcing were simulated and the last 100 stroboscopic points stored. The
qualitative agreement between this numerical result and the experimental bifurcation diagram of Chapter
4, is remarkable. In particular, the model captures the coexistence of different solutions, the non-smooth
chattering route to chaos and the smooth period-doubling cascade1.

The only detectable difference between the experimental and numerical bifurcation diagrams, is related to
the ranges of ω in which some of the scenarios described above are observed to take place. In Table 5.1,
the quantitative comparison of the experimental and simulated behaviour of the cam-follower system is
reported. Namely, the most significant dynamical scenarios are summarized together with the values of ω
at which they occur in the experiments, ωexp, and in the simulations, ωsim. Despite the good qualitative
agreement, results highlight that the most significant mismatch occurs at high velocity regimes when all
the nonlinear effects, neglected into the model – such as for example friction, the presence of bearings or
fluctuations in the torque acting on the cam – become more relevant. Other sources of uncertainty are the
coefficient of restitution and the unavoidable presence of unmodelled dynamics. For example, the coefficient

1Actually, the existence of the period-doubling cascade was not detected experimentally at first. It was only because of the
model prediction that ad hoc experiments were carried out to confirm its existence in the real physical system!
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Figure 5.2 — Time series of the most meaningful follower dynamics observed in the numerical bifurcation diagram of Figure 5.1.

of restitution is theoretically an unknown nonlinear function of the approach speed and materials, all physical
characteristics. Since the impact velocity cannot be measured easily with a sufficient precision, r can be
estimated in the whole range of the operating conditions of the system with only a certain degree of accuracy.
Furthermore, all the geometrical parameters necessary to describe the follower motion are obtained in the
permanent contact region in the absence of impacts. In this operating condition, the spring works in its
linear region and thus, by supposing a constant elastic coefficient, a good agreement between experiment
and model can be achieved for the unconstrained follower motion [6]. Obviously, the hypothesis of a linear
and constant spring introduces some approximation in the model which explains the mismatch between
the predicted values of ω for higher velocity regimes or when the follower works around its maximum
displacement.

5.2.1 Period-doubling cascade

The coexisting (large-amplitude) smooth period doubling cascade, can be observed numerically for ω ∈
[135, 160] rpm in accordance with the experimental observations reported in Chapter 4. The fundamental
branch experiences a first period doubling close to ω = 152 rpm. Another period doubling is then detected
at ω ≈ 157.5 rpm. Figures 5.3, 5.4 and 5.5, illustrate this situation in detail by showing respectively the
time series for the P (1, 1), P (2, 2) and P (4, 4) orbits, also detected experimentally. Notice the excellent
qualitative agreement between the experiments and the numerical predictions of Figures 5.3 and 5.4. Notice
also that the orbit depicted in Figure 5.5 cannot be observed in practice, as its amplitude is greater than the
maximum follower displacement allowed in the experiment.

To isolate with greater accuracy the period doubling bifurcation points, numerical continuation routines
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Table 5.1 — List of the different values of ω at which the main dynamical events occurs respectively in experiments (ωexp) and
simulations (ωsim)

Main Dynamical Events ωexp [rpm] ωsim [rpm]

Permanent Contact < 125 < 125
Detachment 125 125
P (∞, 1) orbits ]125, 155] ]125, 152]
Chattering route to Chaos ]155, 160] [152.6, 154]
Chaos [160, 170] [154,154.5]
P (1, 1) orbits ]150, 188] [135, 151]
P (2, 2) orbits ]188, 200] [152, 170]

103.4 103.6 103.8 104 104.2 104.4 104.6
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

PSfrag replacements

t [s]

θ f
,θ̂

c
[r

a
d
]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

PSfrag replacements

θ̇f [rad/s]

θ f
[r

a
d
]

Figure 5.3 — Numerical results. P (1, 1) orbit at ω = 145 rpm. Left frame: cam (dashed) and follower (solid) trajectories. Dash-dot
line: maximum angular displacement of the follower. Right frame: phase portrait.
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Figure 5.4 — Numerical results. P (2, 2) orbit at ω = 152 rpm. Left frame: cam (dashed) and follower (solid) trajectories. Dash-dot
line: maximum angular displacement of the follower. Right frame: phase portrait.
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Figure 5.5 — Numerical results. P (4, 4) orbit at ω = 158 rpm. Left frame: cam (dashed) and follower (solid) trajectories. Dash-dot
line: maximum angular displacement of the follower. Right frame: phase portrait.

were adapted in order to cope with the discontinuous impacting nature of the cam-follower system. The
results of such a continuation are reported in Figure 3.8 and were obtained using T̂C, a novel toolbox for
AUTO developed by Thota and Dankowicz (see [89, 90] and Chapter 3 for further details). As shown in
Table 5.2, the computed multipliers of the periodic orbit along the P (1, 1) branch show the occurrence of
two smooth bifurcations. In particular at ω ≈ 135.946 rpm, one real multiplier is observed to cross the point
+1 indicating the occurrence of a fold bifurcation through which the whole P (1, 1) branch originates. Also
at ω = 151.65 rpm, another real multiplier crosses the unit circle at−1. This confirms that a flip bifurcation
is causing the period doubling observed in both the numerical and experimental bifurcation diagrams. This
scenario can therefore be fully explained in terms of classical smooth bifurcations similar to those already
studied in impact oscillators [40]. An interesting feature shown in Figure 3.8, is the seemingly global bifur-
cation involving the unstable solution branching from the fold and the chaotic evolution born as a result of
the chattering interruption. This explains the abrupt disappearance of that chaotic attractor when ω = 154.5
rpm.

We move now to the analysis of Scenario 1, which is instead organized by discontinuity-induced bifurcations
unique to impacting dynamical systems [33].

Table 5.2 — Eigenvalue evolution across P (1, 1) branch computed by using a continuation algorithm

ω value [rpm] eigenvalue 1 eigenvalue 2

135.946698873817 0.212856564951 0.996008664393

135.946850039257 0.214199564174 0.989769009976

135.947353924057 0.216351137284 0.979943000383

135.949033540057 0.220281698370 0.962513414400

135.951832900057 0.224549930832 0.944309362903

147.941373499943 -0.467436119698 - 0.300839993821i -0.467436119698 + 0.300839993821i

148.962048199932 -0.521622451717 - 0.214489798539i -0.521622451717 + 0.214489798539i

150.186857839919 -0.467765740979 -0.703735852712

151.656629407902 -0.353243069838 -0.970265166132

153.420355289483 -0.297944998464 -1.206154145399
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5.2.2 Chattering route to chaos

The other scenario detected experimentally and captured by the numerical bifurcation diagram, emerges
from the permanent contact solution shown in Figure 5.6. It consists of a branch of P (∞, 1) solutions un-
dergoing a sudden transition to chaos when ω ≈ 152.67 rpm. The experimental investigation reported in
Chapter 4, strongly suggested that the mechanism causing such a transition is the interruption of a complete
chattering sequence. The numerically predicted P (∞, 1)-orbit is shown in Figure 5.7, again in good quali-
tative agreement with the equivalent experimental time series.
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Figure 5.6 — Numerical results. Permanent contact at ω = 120 rpm. Left frame: cam and follower trajectories (up) and their
corresponding difference ∆θ (bottom). Dash-dot line: maximum angular displacement of the follower. Right frame: phase portrait.
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Figure 5.7 — Numerical results. P (∞, 1) orbit at ω = 148 rpm. Left upper frame: cam (dashed) and follower (solid) trajectories
and their corresponding difference ∆θ at bottom. Dash-dot line: maximum angular displacement of the follower. Right frame: phase
portrait.

Careful numerical simulations reported in Figure 5.8 confirm that the interruption of a chattering sequence
is indeed the key phenomenon to explain the observed jump to chaos. Further confirmation is provided in
Figure 5.9 where the system attractors are plotted before and after the transition to aperiodic regime. As ω
is increased through the critical value, we observe the emergence of a fingered attractor – Figure 5.9 (c) –
typical of discontinuous dynamical systems often associated to the occurrence of grazing bifurcations. The
chaotic time series exhibited by the system when ω = 154.1 rpm is shown in Figure 5.10.
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Figure 5.8 — Numerical results. Time evolution for the difference ∆θ between cam and follower angles, showing: (a) complete chatter
at ω = 151 rpm, (b) slightly interrupted chatter at ω = 153.5 rpm and (c) highly interrupted chatter at ω = 153.9 rpm.

The derivation of the numerical bifurcation diagram close to the transition to chaos shown in Figure 5.11,
reveals that a cascade of grazing bifurcations is taking place in a small neighborhood of the transition point.
Such intricate cascade cannot be observed experimentally given that it accumulates over an extremely thin
range of ω (about 0.003 rpm) further below the degree of resolution available experimentally. A more
in-depth explanation of this cascade will be presented later in section 5.4 by applying local analysis. At
the time being, we first chose to analyze only those phenomena that are relevant over a realistic range of
ω. Therefore, we look now at the extremely important issue of understanding how large the regions of
asymptotic stability (basins of attraction) are for different coexisting solutions and how these regions evolve
under variation of the cam rotational speed ω.

5.3 Coexistence

A fundamental characteristic exhibited numerically and experimentally in the dynamics of the cam-follower
system, is the coexistence of different attractors. In particular, by looking at the numerical bifurcation
diagram of Figure 5.1, it can be highlighted that:

• for ω ∈ [135, 151] rpm, the multi-impacting orbits P (∞, 1) coexists with the periodic motion P (1, 1)
characterized by one impact per period;

• for ω ∈ [152, 152.6] rpm, the P (∞, 1) orbits coexists with P (2, 2) solutions;

• for ω ∈ [152.6, 154] rpm, the chaotic motion originated from the interruption of complete chattering
sequences coexists with the branch of P (2, 2) orbits.

A more careful Monte Carlo-based bifurcation diagram, in the region ω ∈ [152, 160] rpm, is reported in
Figure 5.12. Here, we see that there are actually three coexisting cascades occurring within this range: the
interruption of the chattering sequence and the period-doubling cascades mentioned above together with the
period-doubling of a period-three solution, which has not been detected experimentally.
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Figure 5.9 — Numerical results: chattering route to chaos. Impact maps showing relative velocity at impacts (vertical axis) vs.
impact phase (horizontal axis) along P (∞, 1) chattering orbits: (a) complete chattering sequence at ω = 152.66 rpm; (b) incomplete
chattering sequence at ω = 152.882 rpm; (c) chaotic impacting orbit at ω = 153.45 rpm.
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Figure 5.10 — Numerical Results. Chaotic motion at ω = 154.1 rpm. Left frame: cam (dashed) and follower (solid) trajectories.
Dash-dot line: maximum angular displacement of the follower. Right frame: phase portrait.
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Figure 5.11 — Numerical results: chattering route to chaos. Detailed stroboscopic map close to aperiodicity onset for the multi-
impacting orbit. Chain of chaotic windows with periodic frames in between.

5.3.1 Basins of attraction

The simultaneous existence of such different attractors makes the system behaviour dependent on the choice
of initial conditions. Basins of attractions (BA) are an invaluable tool to characterize the coexistence and
stability of different solutions [67]. A standard numerical method employed to approximate BA in dynami-
cal systems, is the cell mapping method developed by Hsu [47].

Essentially, in the cell-to-cell algorithm the dynamics of the system are described by using a Poincaré map.
The region of feasible initial conditions is subdivided into a large number N of small cells. All unfeasible
initial conditions are regarded as a small number m of large cells, so-called sink cells. The mapping is
applied to each center point (initial condition) and the cell containing the image is then located.

All of the N + m cells point to initial conditions inside one of the other cells, except the sink cells which
point to themselves by definition. Starting with cell 1, a sequence of cells is mapped by following the point-
ers defined by the system flow. This sequence either ends in a sink cell or in a repetitive cycle. This cycle
can consist of one self-repeating cell (a fixed point, which could be a sink cell), or a number of cells. The
repetitive cycle is identified and all cells in the sequence are labelled as belonging to the basin of attraction
of that cycle. Then the procedure is repeated with all N cells. See Figure 5.13 for an illustration of the
method. Interested readers are referred to [47] for further details.

Hence, by adapting the cell-to-cell mapping method to the cam-follower system of interest, several basins
of attraction were computed for different values of the bifurcation parameter ω. Figure 5.14 shows the basin
of attraction of both the period-one coexisting solutions P (∞, 1) and P (1, 1), reported in Figure 5.15 when
ω = 145 rpm. We notice that both solutions are associated to well defined basins of attraction, with the
P (∞, 1) orbit belonging to a consistent region of asymptotic stability for low values of initial position and
velocity.
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(a)

(b)

Figure 5.12 — Monte Carlo bifurcation diagram showing coexistence of solutions. The bifurcation diagram has been obtained by
plotting stroboscopic samples of: θf in (a) and θ̇f in (b), taking the last 50 forcing cycles of 100, for 20 initial conditions distributed
uniformly at several parameter values within the range ω ∈ [152, 160] rpm.
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Figure 5.13 — Schematics of a cell mapping method.
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Figure 5.14 — BA of the two period-one coexisting solutions at ω = 145 rpm. Blue area correspond to P (∞, 1) basin, light blue ones
to the P (1, 1) basin. The point A label the initial condition [0.42092, 1.84]T , while the point B corresponds to [0.33704, 0.13333]T .

As ω is increased, such coexistence persists with the basin of attraction of the P (∞, 1) orbit becoming more
and more intricate, assuming a clearer fractal structure as can be noticed from Figures 5.16 and 5.18.

In Figure 5.16, we notice the presence of the P (2, 2) solution originating form the flip of the P (1, 1) orbit,
as shown in the related time series depicted in Figure 5.17. In Figures 5.18 and 5.19, the fractalization of
the basins becomes increasingly clear, with the blue region corresponding now to the basin of the chaotic
solution originating from the interruption of the complete chattering sequence.
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Figure 5.15 — Time series of the follower angular position θf corresponding to initial conditions A and B in Figure 5.14. Left frame:
P (1, 1). Right frame: P (∞, 1).
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Figure 5.16 — BA of the two period-one coexisting solutions at ω = 152.3 rpm. Blue area correspond to P (∞, 1) basin, light blue
ones to the P (2, 2) basin. The point C label the initial condition [0.33704, 0.24]T , while the points D1 correspond to [0.37253, 1.7867]T

and D2 correspond to [0.430593, 1.9466]T .
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Figure 5.17 — Time series of the follower angular position θf corresponding to initial conditions C and D in Figure 5.16. Left frame:
P (∞, 1). Right frame: P (2, 2).
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Figure 5.18 — BA of the two period-one coexisting solutions at ω = 154.2 rpm. Blue area correspond to the basin of the chaotic
regime originated by chattering interruption, light blue ones to the P (2, 2) basin. The time series related to the initial conditions E
([0.36365, 0.008]T ) and F1 ([0.34623, 1.704]T ) are in Figure 5.19.
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At higher values of ω, the basins of attraction now associated to the coexistence of periodic and chaotic
attractors, show a high degree of mixing and fractalization. See for example Figure 5.20, obtained by
computing the BA at ω = 156 rpm. Here, we see the coexistence of the P (2, 2) solution (blue region) with
the P (6, 6) solution uncovered in the bifurcation diagram shown in Figure 5.12. Note that the latter solution
is associated with a thin basin of attraction (yellow region in Figure 5.20) explaining the fact that it was not
detected experimentally. For the sake of completeness we show the BA when ω = 160.5 rpm in Figure
5.22. We notice that the regions of initial conditions associated to periodic solutions have become extremely
thin or even disappeared. The zoom of the basin at ω = 160.5 rpm shown in Figure 5.23, reveals a ring-like
structure of the BA which is highly reminiscent of the BA structure for impacting dynamical systems with
chattering predicted analytically in the classical paper by Budd & Dux [22]. This offers further evidence
that the interruption of a chattering sequence is undoubtedly at play in causing the sudden transition to chaos
which was observed both experimentally and numerically.

5.4 Chattering interruption: local analysis

In Figure 5.1 we see that the solution branch denoted as Scenario 1, has a stable period-one solution for
ω < 152.67 rpm and high-periodic or chaotic motion for ω > 152.67 rpm. Thus, it seems like the system
has gone through a transition from period-one motion to period-n or chaotic motion, without performing the
standard period-doubling route, and this occurred at ω ≈ 152.67 rpm. In Figure 5.9-(c), a chaotic (fingered)
attractor for ω = 153.45 rpm was shown, which further indicates a non-standard transition from stable
period-one to chaotic motion. The relationship between such sudden transition to chaos and the interruption
of chattering motion is suggested by results of Figures 1.3 and 5.24, where a critical value of ω ≈ 152.67
rpm is detected to cease the occurrence of sticking in the periodic trajectory.

The phenomenon, which is associated with the interruption of complete-chattering sequences, was studied
by Budd & Dux [22] [23]. They analyzed what basins of attraction of periodic multi-impacting trajecto-
ries with complete chattering look like and how they are stretched due to the large number of low-velocity
impacts. Furthermore, the change from periodic to high-periodic or chaotic motion was explained by con-
sidering the high sensitivity of the initial conditions for multi-impacting orbits close to this transition.

Given the discontinuous nature of the transition from stable to aperiodic motions, it can be classified as a
DIB event. Discontinuity here has two meanings. One is associated to the discontinuous character of the
flow, which is reflected in the instantaneous reset applied on the direction of velocity by the impact rule.
The other, is related to the impact map, that is a valid discrete representation of an impact oscillator, where
a grazing or zero-velocity collision, creates a discontinuity by missing an impact.

It was recently shown by Nordmark [57] that this transition or route to chaos is characterized by a sequence
of periodic and chaotic windows that increases in size according to some scaling law. This is shown in
Figure 5.11, depicting a zoom-in of a bifurcation diagram about ω ≈ 152.67 rpm. The periodic and chaotic
windows are clearly visible and it seems like the size of the attractor grows according to some scaling law.
We will concentrate our effort in approximating the local map associated with the transition from periodic
motions with complete chattering to incomplete ones.
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Figure 5.19 — Time series of the follower angular position θf corresponding to initial conditions E and F in Figure 5.18. Left frame:
chaos. Right frame: P (2, 2).
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Figure 5.20 — BA at ω = 156 rpm. Blue area corresponds to P (2, 2) basin, while the orange ones corresponds to higher periodic
regimes. As an example, the time series related to the initial conditions G1 ([0.33268, 1.656]T ) and H1 ([0.4226893,−2.552]T ) are in
Figure 5.21.
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Figure 5.21 — Time series of the follower angular position θf corresponding to initial conditions G and H in Figure 5.20. Left frame:
P (2, 2). Right frame: P (6, 6).
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Figure 5.22 — BA at ω = 160.5 rpm. The orange area corresponds to the chaotic regimes.
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Figure 5.23 — Zoom of the BA at ω = 160.5 rpm. The θf range is restricted to [0.3, 0.8]; θ̇f to [-4, 3.2].
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Figure 5.24 — Sticking time τ during each forcing period, as a function of the parameter ω, demonstrating a square-root shape in
qualitative changes for system dynamics near the interruption of chattering.
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5.4.1 Numerical derivation of the map

In order to get a better understanding of the particular phenomenon experienced by the system across Sce-
nario 1 (Figure 5.1), a local map in the vicinity of the critical parameter value (ω∗ = 152.67 rpm) can be
approximated in three steps:

1) Define a Poincaré section Σ by

Σ =
{
x ∈ R

3 | x3 = φ0

}
, (5.1)

for some φ0. Let

x∗ =




x∗1
x∗2
x∗3


 =




θ∗f
θ̇∗f
ω∗t∗




correspond to a periodic orbit such that x∗ ∈ Σ. Now we can define a map Π(x) from Σ to Σ by
simulating the system forward over a time T = 2π/ω∗, which corresponds to one forcing period.

2) Let

δ =




δθ
δθ̇
δω




and
x̃ = Π(x∗ + δ),

i.e. x̃ is the forward map of a point in the vicinity of x∗.

3) Find a graphical relationship between x∗ + δ and x̃ under the map Σ for all δ in an interval I .
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Figure 5.25 — Numerical deviation of local map close to DIB event at ω = 152.6 rpm. Horizontal axis depicts current iteration while
vertical does for the next iteration mapped. The perturbation δθ , corresponds with a percentage of θ∗

f
= 0.3371 rad equivalent to 1%.

Figure 5.25 depicts the numerically approximated map for ω∗ = 152.6 rpm, displaying the set of perturbed
initial conditions x∗ + δ on the horizontal axis and its mapped image on the vertical one (here δθ̇ = 0,
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δω = 0). Lobe-shaped features are immediately evident from this graph, which is in accordance with pre-
dictions by Nordmark [57].

There is a strong relationship between the repetitive structure of the lobes in Figure 5.25 and the periodic
and chaotic windows shown in Figure 5.11. To understand the relationship between the map and the bi-
furcation diagram, one can study the evolution of fixed points of iterated maps under parameter variation.
Basically, a change in a parameter value causes a horizontal translation of the map, see Figure 5.26. Initially
only one unstable fixed point, a period-one solution with incomplete chattering, exists (see Figure 5.26-(a)).
When a parameter is varied, the identity line becomes tangent to the middle lobe (Figure 5.26-(b)) then two
new fixed points are created in a saddle-node bifurcation. When changing the parameter further, three fixed
points exist locally, the original unstable one, and two new ones. The next thing that happens as the parame-
ter is varied is that the original fixed point is annihilated in a grazing bifurcation (a DIB) (Figure 5.26-(c)).
Further variation of the parameter makes the stable fixed point lose its stability in a period-doubling bifur-
cation (Figure 5.26-(d)) followed by a period-doubling cascade to chaos. At some point in this process two
new fixed points are born in a saddle-node bifurcation, cf. Figure 5.26-(b). As the parameter is varied further
the chaotic regime is annihilated where the slope of the map is infinite. This is due to the square-root term
that models low-velocity impacts (grazing). Further varying the parameter value, this process is repeated for
each lobe, that is increasing in size, and thus the dynamics shown in the bifurcation diagram of Figure 5.11
will follow this sequence.

Next we will try to use the numerically observed structure, to create an approximated analytical expression
of the local map.

5.4.2 An approximated analytical mapping

In order to capture and understand the observed bifurcation scenario in Figure 5.11, we will introduce an
analytical expression of the map Π that takes all visible features into account. To build the approximate map
we will use the numerical results we have so far. The map Π will have the following features:

- To the left (or right) of a critical point on the x-axis, say xc, the map is represented by a constant
value associated with the unique fixed-point of Π, corresponding to the period-one orbit with complete
chattering.

- The map Π(x) is composed by an infinite sequence of lobes, given by Πk(x), k = 0, 1, . . . ,∞, as
predicted by Nordmark [57]. The size of each lobe is approximated by a scaling law. For instance, if
xk and xk+1 represent the right- and leftmost points, respectively, of the kth lobe and xk−1 represents
the rightmost point of the (k − 1)st lobe then we have

log

(
xk+1 − xk

xk − xk−1

)
= M. (5.2)

The coefficient M is assumed to be constant and is calculated by linear fitting of pairs of points for
successive lobes. A similar estimation is done for Πk(x) to find a coefficient Q, which gives the
”height” of the lobes. For later reference we also define

∆x = x1 − x0 and ∆Π = Π(x1)−Π(x0).
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Figure 5.26 — Illustration of main bifurcations of the local map approximation, based on the cobweb diagram principle with dashed
trace meaning for the unit-slope tangent line: (a) solution branch in the previous lobe, (b) saddle-node event where a new fixed point is
created, (c) annihilation of solution branch in the previous lobe by a border collision event, (d) beginning of a period-doubling sequence
followed by a sudden transition to chaos, (e) new saddle-node bifurcation after intersection with a successive lobe and (f) annihilation
of chaotic regime at square-root border of the lobe, as in (c).
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- Each lobe is approximated by a nth-order polynomial curve of the form

p(x) =
n∑

i=0

cix
i + d

√
x0 − x, (5.3)

where the square-root term is included to take into account the infinite slope at the right-hand side
of each lobe, due to low-velocity (grazing) impacts. The degree of the polynomial, n, depends on
the precision required for the numerical approximation. For n = 3 we have been able to get an
approximation that is accurate enough for the current study. The unknown coefficients ci and d can
be calculated by solving a linear system, so that the left- and rightmost points are correctly placed and
the points where the first derivative is −1, 0 and 1 have a perfect match.

Following the above procedure, the local mapping Π(x) can now be expressed as

Π (x) =





Π0 (x) , x ∈ [x1, x0) = I0,
Π1 (x) , x ∈ [x2, x1) = I1,

...
...

ΠN (x) , x ∈ [xN+1, xN ) = IN ,
ΠN+1 (x) , x ∈ [xN+2, xN+1) = IN+1,

...
...

(5.4)

where
Ij = {x ∈ R | x ∈ [xj − βj∆x, xj)} ,

and

Πj (x) = γjp

(
x0 +

x− xj

βj

)
+ αj ,

with p (x) defined as in equation (5.3) and

γj = ejQ, Q < 0,

βj = ejM , M < 0,

αj = ∆π

j−1∑

k=0

γk + p (x0) [1− γj ],

xj = x0 −∆x

j−1∑

k=0

βk.

In Figure 5.27 a schematic of the map Π(x) is shown.

For continuity we must have
lim

x→xj+1

Πj+1 (x) = Πj (xj+1) .

Also, as a consequence of the square-root term,

lim
x→xj

dΠj (x)

dx
= −∞.

107



Chapter 5. Numerical bifurcation analysis

Notice further that:
lim

j→∞
γj = 0 ≡ γ∞,

lim
j→∞

βj = 0 ≡ β∞,

lim
j→∞

αj = ∆π

∞∑

k=0

γk + p (x0) [1− γ∞] = ∆π

(
1

1− eQ

)
+ p (x0) ≡ α∞, (5.5)

lim
j→∞

xj = x0 −∆x

∞∑

k=0

βk = x0 −∆x

(
1

1− eM

)
≡ x∞,

and therefore
Π (x∞) = lim

j→∞
Πj (xj) = α∞.

This means that Π(x∞) = x∞, which is an expected result given the equilibrium (fixed point) nature of the
accumulation point x∞ in terms of the map Π.

Table 5.3, contains calculated values for Q, M , ∆π, ∆x, x0, the coefficients of p(x) in expression (5.3) and
any other constant involved in derivation of the map equation.

It is important to remark the strong influence that the value of the fixed point xc ≡ x∞ has for the quantita-
tive agreement on the dynamical features of the system obtained by iterating the equivalent local map (5.4).
Therefore by applying the continuation methods described in Chapter 3, an accurate estimation of such
fixed point has been found to be xc ≡ θf = 0.33717 rad. This value is easily reproduced after evaluation of
equation (5.5) with the quantities of Table 5.3.

X

Π(x)

Π0(x)

Π1(x)ΠN (x)

x0x1x2xNxN+1

Π0 (x0)

Π1 (x1)
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x∞
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I0

.......

.......

.......

.......

Figure 5.27 — Graphical interpretation of mathematical expressions defining local map at bifurcation of the multi-impacting orbit.

Then, after finding a reliable approximation of the map, its iteration under several parameter values can be
used to obtain information about the dynamics of the system. As a result, Figure 5.28 shows fixed points
of the iterated map, capturing successfully the qualitative features of Figure 5.11; i.e. showing a cascade of
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windows of increasing amplitude developing a period-doubling sequence ending with a sudden transition.
This is also in accordance with the graphical analysis of Figure 5.26.

Table 5.3 — Values for constants employed in analytic expression of local map at the non-smooth event.

Parameter Description Value

Q scale coefficient on π−direction −0.62

M scale coefficient on x−direction −0.535

∆π Π(x1) − Π(x0) 2.243 ∗ 10−4

∆x x1 − x0 1.022 ∗ 10−3

c3 in (5.3) coefficient of x3 in polynomial −44486.71

c2 in (5.3) coefficient of x2 in polynomial 44927.06

c1 in (5.3) coefficient of x in polynomial −15119.51

c0 in (5.3) polynomial independent term 1695.91

d in (5.3) coefficient for square-root term 0.12089

x0 X− starting point from the left 0.33964

p (x0) Π(x)− starting point from below 0.33667

α∞ critical value at limit 0.33715

x∞ accumulation point on x−axis 0.33717

5.5 Discussion

The results presented in this Chapter, confirmed the validity of the model developed in Chapter 4, by captur-
ing the main dynamical features of the system observed numerically and experimentally. In particular, the
coexistence between a traditional period-doubling route to chaos and an abrupt discontinuity-induced event
were replicated. Of special interest is then to uncover the novel bifurcation phenomena experienced by the
system at Scenario 1, associated with the interruption of complete chattering sequences, as demonstrated
by the numerical evidence supplied. The local analysis performed numerically, gave a remarkable approx-
imation of the transition exhibited by a multi-impacting period-one orbit, into aperiodic regime, showing a
repetitive structure in the local map characterized by square-root singularities. The question to solve now
is how to perform a more accurate investigation and classification of the discontinuity-induced bifurcations
involved. This can be achieved by applying an analytical treatment, based on series expansion of the motion
trajectories near the critical event. This will allow the derivation of a rigorous mathematical expression of
the local map. In doing so, some degree of complexity will be added by the realistic character of our model
including strong nonlinearities in the flow and a non-transcendental formulation. This will be the main
subject of next Chapter.
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Figure 5.28 — Bifurcation diagram within the sudden transition to chaos after chattering interruption generated by iteration of analytical
expression of the local map. The diagram shows qualitative agreement with dynamical features generated by strobing system flow at
Figure 5.11.
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Bifurcations involving Chattering in
impacting systems

6.1 Introduction

Impacting oscillators experiencing complete chattering motion have been studied first by Budd & Dux [22],
who explained the intricate geometry of their basins of attraction with repetitive patterns representing the
so-called grazing manifold. A recent derivation, can be also found in [33] (Chapter 6). A remarkable fea-
ture detected under such regime is the robustness experienced by the multi-impacting orbits being attracted
towards the sticking set.

Chattering and sticking are natural features of motion for periodically forced impact oscillators, just because
of the possibility of the forcing to attract the particle into the collision surface. Therefore, it is important
to understand how chattering – the infinite number of collisions before stick – and its interruption, can af-
fect the dynamics of such robust motion. In [22], it has also been shown that for trajectories evolving near
the boundary of the grazing manifold, the robust trajectory will experience a sudden jump into a chaotic
attractor. This was confirmed in [21] by relating the observed aperiodic behaviour with the intermittency
generated by a mixture of high-velocity and low-velocity collisions. Furthermore, by isolating the low-
velocity collisions it was demonstrated that a one-dimensional discontinuous map is sufficient to describe
the properties between a low-velocity impact and the next. When such a low-velocity impact reaches the
zero velocity condition, a grazing bifurcation takes place and consequent irregular behaviour is experienced
by the system. Grazing bifurcations have been verified to occur often in dynamics of impacts oscillators,
from the early predictions of Nordmark [59] till nowadays [101] [73].

Despite its relevance, few contributions have been presented in the literature explaining the possible tran-
sitions associated to chattering. Numerical evidence associated with the interruption of chattering in a
two-degree-of-freedom impact oscillator can be found in [95], [96] and [97], under the name of “rising bi-
furcations” but without proofs. On the other hand, one of the few analytical treatments available was done
recently by Lenci and Demeio [30], where an asymptotic estimate of the chattering time in multi-impacting
motion of an inverted pendulum shows a square-root proportionality with the amplitude of the forcing.

A relevant result is also given by Nordmark and Piiroinen in [58] when approximating a mapping for the
accumulation of events at the sticking phase during periodic-chattering motion, developed for simulation
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purposes. The counterpart of it has been treated in [57], with an analytical formulation for derivation of the
local map after chattering interruption in the case of a simplified harmonic oscillator.

The scope of this Chapter, is then to employ and generalize derivations of [57], for the application case of
interest; i.e. the cam-follower system. As shown in previous Chapters, the dynamics of the cam-follower
model includes a sudden transition to chaos after the interruption of periodic complete-chattering motion.
Therefore, the analytical local map will confirm the mechanism under which the system reaches such ape-
riodic condition, confirming the pattern of translated and scaled lobes obtained by means of the pseudo-
analytical approach presented in Chapter 5.

Related results have been discussed in [9] and [8].

6.2 The Chattering phenomenon

Consider the dynamics of a normalized single degree of freedom harmonic oscillator, composed of an
undamped-driven mass bouncing against a wall. This can be described as the PWS dynamical system [22]
[23]:

ẍ+ x = g(t), x < σ
ẋ→ −rẋ, x = σ,

(6.1)

with g(t) = cos(ωt) representing an external periodic driving-force, as depicted in Figure 1.1.

As can be noticed, Newton’s restitution law with coefficient 0 < r < 1, is applied over the state each time
the mass reaches the boundary x = σ. This reset map has been proposed to model with sufficient accuracy
the transition between collisions of rigid bodies, when working at arbitrary macroscopic scales [18].

By considering that parameters in (6.1) are fixed, there are two main possible long-term modes of oscillation
depending on the value assigned to σ:

- an unconstrained mode when |x (t)| < σ, for the which the system is just a pure harmonic oscillator;

- and a constrained mode with collisions when |x (t)− g (t)| > σ.

It is the class of oscillations characterized by constrained modes that is particularly interesting in the analysis
of systems with impacts. Therefore, in the following we should assume to be working on such a special
case. Moreover, the parameter dependence will be focused mainly on the forcing frequency ω (excluding
the resonance value ω = 1 rad/s) setting the remaining quantities to constant values. Interested readers are
advised to consult [23] for a detailed study of the parameter dependence of (6.1).

6.2.1 Chattering

There is a possibility for the mass hitting the wall of remaining temporarily in contact with the boundary at
x = σ, depending on acceleration conditions. In other words, a positive acceleration of the particle1 will
exert a force pushing the mass towards the surface itself, and then in the absence of impacts the two bodies

1Here, the reference for the horizontal axis has been taken as the zero of g (t), being consequently positive onto the right. For a
different formulation of the problem, the sticking condition can be associated with negative acceleration values.
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should stick. In general, this sticking condition is reached after dissipation of bouncing amplitudes through
an infinite succession of inelastic impacts occurring in finite time, giving rise to what is technically termed
as the Zeno phenomenon (already defined in Chapter 2) or chattering. See Figure 1.2 for an illustration.

More rigorously, let’s consider that the driving force and parameters in (6.1) have been chosen to allow
multi-impacting behaviour during a forcing period. Then, if the acceleration of the particle is positive, we
have

ẍ(t) + x(t) = g(t)
⇒ ẍ(t) = g(t)− x(t) > 0⇒ g(t) > x(t);

(6.2)

i.e. g(t) > x(t) = σ under constrained motion. This latter condition generates a boundary condition for
the existence of sticking, that can be easily expressed by introducing a new variable φ ≡ mod (t, T ) with
T = 2π/ω, taking advantage of the periodic character of the forcing. Therefore, according to (6.2) it is
possible to define the sticking set Z , including the phase values from which the particle will be attracted
towards the surface along one forcing period as:

g (t) ≡ g (φ) = cos (ωφ) > σ
⇒ Z = {(x, ẋ, φ) : x = σ; ẋ = 0; cos (ωφ) ≥ σ} ≡ (σ, 0, [0, φα] ∪ [φβ , T ]) .

(6.3)

In particular, setting σ = 0 we have:

Z = {(x, ẋ, φ) : x = 0; ẋ = 0; cos (ωφ) ≥ 0} =

(
0, 0,

[
0,
T

4

]
∪
[
3T

4
, T

])
. (6.4)

The term φα acquires a great relevance, given that it represents the boundary where the sticking condition
vanishes. In the following, φα will be refereed as the “releasing” phase.

Then, by starting from an impact at φ = φ0 that occurs with non-null velocity v0, the particle will be pushed
instantaneously away from the boundary, following the trajectory:

x (φ− φ0) =
(

1
1−ω2

)
cos (ω [φ− φ0]) +

(
x0 − 1

1−ω2 cos (ωφ0)
)

cos (φ− φ0) +

+
[
−rv0 + ω

1−ω2 sin (ωφ0)
]
sin (φ− φ0) ,

(6.5)

which is the solution of the unconstrained motion of (6.1), with x0 = x (0) = σ and dx
dφ

∣∣∣
φ=φ0

≡ −rv0.

Under the assumption of positive acceleration, the particle will hit back the surface at a given phase φ =
φ1 > φ0 ∈ Z , satisfying:

x (φ1 − φ0) = σ =
(

1
1−ω2

)
cos (ω [φ1 − φ0]) +

(
σ − 1

1−ω2 cos (ωφ0)
)

cos (φ1 − φ0) +

+
[
−rv0 + ω

1−ω2 sin (ωφ0)
]
sin (φ1 − φ0) .

(6.6)

The motion then restarts from φ1 till the next impact at some φ = φ2, after updating the mass velocity
according to the restitution law. Iterations will then continue infinitely between successive impacts, when-
ever (6.2) holds. During each collision, the particle dissipates energy by reduction in the starting velocity
and consequently the amplitude of the bouncing and flight times will decrease, accumulating into a single
point of the set Z where the two bodies finally stick together, as in Figure 1.2. The sticking regime will
be maintained until the acceleration becomes negative at φ = φα, when the particle is released again. This
describes qualitatively an orbit with complete chattering.

113



Chapter 6. Bifurcations involving Chattering in impacting systems

6.2.2 Impact map

As the dynamics of system (6.1) is closely related with the collision condition, we can construct an equiva-
lent discrete representation of the motion by evolving (6.6) through impacts.

Consequently, following [22] let’s consider the low-order series expansion of the trajectory around φ0, where
a low-velocity impact under positive acceleration is expected to occur. Then, after defining Λ = φ − φ0,
equation (6.6) can be written as:

x (φ− φ0) ≡ x (Λ) = x|φ=φ0
+ dx

dφ

∣∣∣
φ=φ0

(φ− φ0) + 1
2

d2x
dφ2

∣∣∣
φ=φ0

(φ− φ0)
2 +O

(
(φ− φ0)

3
)

≡ x|φ=φ0
+ dx

dφ

∣∣∣
φ=φ0

Λ + 1
2

d2x
dφ2

∣∣∣
φ=φ0

Λ2 +O
(
Λ3
)
.

(6.7)

If Λ is small enough, a parabolic approximation for the trajectory is admissible, and then, the next collision
phase φ = φ1 can be estimated by using the condition:

x (φ1 − φ0) = σ ≈ x|φ=φ0
+ dx

dφ

∣∣∣
φ=φ0

(φ1 − φ0) + 1
2

d2x
dφ2

∣∣∣
φ=φ0

(φ1 − φ0)
2

≡ σ − rv0Λ + a0
2 Λ2 ⇒ a0

2 Λ2 − rv0Λ = 0,
(6.8)

with v0 and a0 representing respectively, the velocity and acceleration of the particle at the collision phase
φ0.

Solving (6.8) for Λ, we get Λ = 0 or Λ = 2r v0
a0

; i.e. φ1 = φ0 or φ1 = φ0 + 2r v0
a0

.

Analogously, from the velocity expression, we get:

ẋ (φ1 − φ0) = v1 ≡ dx
dφ

∣∣∣
φ=φ0

+ d2x
dφ2

∣∣∣
φ=φ0

(φ1 − φ0) +O
(
(φ1 − φ0)

2
)

≡ −rv0 + a0Λ +O
(
Λ2
)
≈ −rv0 + a0Λ = −rv0 + a0

(
2rv0
a0

)
= rv0.

(6.9)

Expressions (6.8) and (6.9) constitute a single-return map PI between consecutive impacts, that can be
formalized as:

[
φ
v

]

k+1

= PI

([
φ
v

]

k

)
∆
=

[
φ
v

]

k+1

=

[
1 2r

ak

0 r

] [
φ
v

]

k

. (6.10)

The map (6.10) is valid in a strictly local sense and under the assumption of positive acceleration. Hence
by starting at a phase value belonging to Z , an infinite set of low-velocity collisions (iterations of (6.10))
is expected to converge onto the fixed point (φ∞, 0), i.e. the particle eventually will reach the sticking
condition after performing a complete chattering sequence. This can be easily computed from (6.10) by
noticing that

φk+1 = φk +
2r

ak
vk ≡ φk +

2

ak
vk+1.

Then, after n iterations of (6.10) from a given initial condition (φ0, v0) the mapped coordinates become:

(
φn

vn

)
=

(
φn−1 + 2

an−1
vn

rnv0

)
.
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Hence, in the limit

lim
n→∞

(
φn

vn

)
= lim

n→∞

(
φn−1 + 2

an−1
vn

rnv0

)
,

this can be reduced to

lim
n→∞

(
φn−1

0

)
,

(
φ∞
0

)
,

given that 0 < r < 1 and therefore vn → 0 for a large n.

This last remark reflects the stability of the chattering regime, associated to a wide range of initial conditions
leading to the sticking condition. In other words, a fixed point of (6.10) obtained under complete chattering
regime, should necessarily belong to Z , given that in the absence of impacts the velocity of the particle
is null, and then the particle sticks. For a complete determination of the set of values leading to complete
chattering in the system (6.1), see [22].

The structural stability of the trajectory can be dramatically modified for φ∞ → φα, given that in the limit-
ing case the last impact occurs with zero velocity at the releasing point, leading to a non-transversal collision
or graze. It is well known that grazing constitutes the main mechanism for losing stability in impact oscilla-
tors [59] and, consequently, the map governing the dynamics close to the boundary of a complete chattering
motion contains the mechanism for the transition to aperiodic behaviour. For additional considerations on
grazing, transversality conditions and motion of impacting trajectories see section 2.4.

Budd et al [23], performed an estimation of the Jacobian of the impact map PI , directly from (6.6):

JPI
=

[
∂φ1

∂φ0

∂φ1

∂v0
∂v1
∂φ0

∂v1
∂v0

]
⇒ |JPI

| = r2
v0
v1
, (6.11)

with:

∂φ1

∂φ0
= 1

v1

∂x
∂φ0

∣∣∣
x=σ

, ∂φ1

∂v0
= − 1

v1

∂x
∂v0

∣∣∣
x=σ

,

∂v1
∂φ0

= ∂v
∂φ0

∣∣∣
φ=φ1

+ d2x
dφ2

∣∣∣
x=σ

∂φ1

∂φ0
, ∂v1

∂v0
= ∂v

∂v0

∣∣∣
φ=φ1

+ d2x
dφ2

∣∣∣
x=σ

∂φ1

∂v0
,

(6.12)

showing the singularity of the map when predicting an impact with zero velocity. Obviously, this result
should have a counterpart in the local result given by expression (6.10) developed under the assumption of
positive acceleration. In such a case the singularity is verified for ak = 0, being the only possible way for an
impact with zero velocity to occur during a complete chattering motion. This confirms that the qualitative
behaviour of the multi-impacting trajectory is associated to the stretching in the state-space derived from
the dissipative effect of impacts, inducing certain boundaries on the state-space where the map should be
reformulated.

6.2.3 Local unidimensionality of map

The impact map (6.10), constitutes a continuous discrete representation of the discontinuous dynamical
system (6.1). Nevertheless, as shown in (6.11), under impacts of null velocity the smoothness of the map
can be lost. This includes a discontinuity of the map associated with the possibility of missing an impact.
Then, following an analogous treatment as in [21], Figure 6.1 depicts this situation in a sequential way.
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It shows a trajectory (A) that experiences a low-velocity collision, a one footed in (B) that experiences a
zero-velocity impact and one eventually missing the collision in (C).

Figure 6.1 — Impacting trajectory depicting the situation where an impact is missed, reproduced from [23].

It is then convenient to define at this point, the set of coordinates (φ, v) say S1, leading to a zero-velocity
collision at the releasing phase, after mapping once through PI :

S1 = {(φ, v) : PI (φ, v) = (φα, 0)} , (6.13)

that in the following will be referenced as the discontinuity set of the map (6.10). Consequently B ∈ S1

in Figure 6.1. The set S1 can be alternatively defined as the pre-image of the point (φα, 0) through PI ; i.e.
S1 ≡ P−1

I (φα, 0).

Equivalently, the dual of S1 or the images of (φα, 0) through PI , can be also defined as:

W1 = {(φ, v) : (φ, v) = PI (φα, 0)} , (6.14)

with further iterated versions of both:

Sn = P−n
I (φα, 0) ;

Wn = Pn
I (φα, 0) ,

(6.15)

from whichW1 ≡ P 2
I

(
S1
)
.

The sets Sn andWn delimit the loci on the state-space for points of a multi-impacting trajectory including
a zero velocity impact. In other words, the sets Sn andWn constitute the grazing manifold G, i.e:

G =
n⋃

i=0
Si ∪

n⋃
j=0
Wj . (6.16)

In particular, G represents a fundamental structure affecting the dynamics at a global level. This can be
demonstrated by analyzing the intricate structure of the associated basins of attraction for systems experi-
encing chattering, as shown in Chapter 5. Moreover, in [33] an alternative formulation of G has been done
by taking stroboscopic samples of a trajectory with grazing, traced backwards in time. Such an approach,
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Figure 6.2 — Fundamental structure of the grazing manifold G, reproduced from [33].

employs different choices of an initial point corresponding to a zero velocity impact for phase values out-
side Z . Intersections with an appropriately chosen Poincaré section are then plotted as shown in Figure
6.2. There, an inner-looped structure is evident, differentiating trajectories by the number of collisions, and
most remarkably, converging all into a fundamental branch where a new collision is created (or equivalently
destroyed) by a graze.

Figure 6.3 includes detailed time series for labelled points of Figure 6.2, when the Poincaré surface is located
at φ = t = 0. Here, labelA represents an orbit with no impacts and one graze;B an orbit with an impact and
a graze; C an intersection point where a new collision in the orbit is created by a graze; D a trajectory close
to C with an additional impact; E the special case where the starting point belongs to Z with consequently
sticking and F where infinite collisions take place during a complete chattering sequence.

Analogously, Figure 6.4 shows the incidence of that single structure at a more global level, by flowing back-
wards 5 forcing periods. From here, it is evident the complex structure derived for coexisting solutions that
creates a strong sensitivity on initial conditions, affecting the overall dynamical scenario.

As chattering is a local phenomenon, we will restrict ourselves to work in a vicinity of the boundary of Z
represented by F in Figure 6.3. It has been demonstrated by Budd and Dux [22] that in the limit:

C = lim
n→∞

Sn, (6.17)

the set Sn constitutes an invariant region under the action of the map PI , or equivalently PI(C) = C,
and consequently any trajectory starting from a point belonging to C will necessarily experience complete
chattering with a final coordinate (φα, 0). Furthermore, the sets Sn accumulate as parabolas in a vicinity of
C, reducing the map PI into an equivalently scalar function f (λ), with the argument λ parameterizing the
set of curves given by:

Tλ =
{

(φ, v) : v = ωλ (φα − φ)2
}
. (6.18)

For the specific case of system (6.1), the function f takes the form:

f (λ) =

[
−rλ+ sin (ωφα) s− 1

2 sin (ωφα) s2
]

(1− s)2
, (6.19)
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Figure 6.3 — Time series resembling selected points of Figure 6.2, reproduced from [33].

Figure 6.4 — Global portrait of the grazing manifold G, reproduced from [33].

118



Chapter 6. Bifurcations involving Chattering in impacting systems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PSfrag replacements

λ̄ λ∞ λmax

λ

f
(λ

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PSfrag replacements
λ̄

λ∞

λmax

λ

f
(λ

)

(a) (b)

Figure 6.5 — Scalar function f (λ) approximating the map PI in a vicinity of the invariant set C in solid line, with the unit-slope
bisectrix dashed. (a) The map as a discontinuous function in the overall range of λ and (b) detail for fixed points in the left branch.

with s ≡ s (λ) = 3
2 − 1

2

√
9−24rλ
sin(ωφα) .

Hence, the invariant set C can be expressed in terms of a special value of the parameter λ = λ∞ accom-
plishing f (λ∞) = λ∞, i.e. such that:

C ≡
{

(φ, v) : v = ωλ∞ (φα − φ)2
}
. (6.20)

Then, from (6.19), the function f (λ) or the scalar equivalent for the map in a vicinity of C, can be charac-
terized as having the following features [22]:

- The function is discontinuous at λ = sin(ωφα)
3r ;

- The map has a fixed point at λ̄ = 0;

- The map has a non-zero fixed point at λ̄ < λ∞ < sin(ωφα)
3r ;

- The slope of the map fλ ≡ df
dλ , is monotonically increasing from fλ|λ=λ̄ = r < 1, passing through

fλ|λ=λ∞

= 1, until fλ|λ=
sin(ωφα)

3r

→∞;

- The map is stable for the condition associated with complete chattering regime λ < λ∞, and

- the map is real-valued for λ < λmax = 3 sin(ωφα)
8r .

A graphical illustration of f (λ) taking sin(ωφα)
r = 1, is given in Figure 6.5.

The last condition referring the upper boundary on the domain of f (λ), is directly related with the set S 1,
as demonstrated in [22]:
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Lemma: If φ is close to φα, then S1 has a component which coincides with the parabola Tλmax .

In other words, the map f (λ) comprises the accumulation of the sets Sn for n → ∞, ∀ λ ∈ (λ∞, λmax].
This important remark is fundamental to perform the analysis of interrupted chattering sequences by study-
ing the map f (λ) in a vicinity of the critical value λ∞, as we will show later in the Chapter.

Finally, the sets C in (6.20) and Z in (6.4), enclose a region D invariant under the action of the map PI , i.e:

D ⊆ {C ∪ Z} , (6.21)

and then under the assumption that there is not a fixed point of PI belonging toD, any trajectory falling into
it should experience complete chattering with sticking. The set D will be referenced in the following as the
chattering region (or trapping region).

6.3 The Chattering map

The results presented in the previous section have proven the conditions under which a system of the form
(6.1) can undergo a complete chattering regime, by establishing the trapping region D. Another important
result is the limit condition in a vicinity of the releasing point φα that allows an equivalent representation
for the map PI in terms of the scalar function f of the parameter λ. This serves as the preamble for studying
the transition to aperiodic regime experienced by the system including multiple low-velocity impacts.

Previous studies in impact oscillators have shown the interaction between system modes in solution trajec-
tories combining high and low-velocity collisions, during intermittent motion between pure-periodic and
chaotic regimes. By isolating low-velocity collisions, it is possible to show the destabilizing effects of zero
velocity impacts in terms of one-dimensional maps (see [21] and [59] for further details). Therefore, the
scope of this section is to extend these concepts to the case of a trajectory with an infinite number of such
low-velocity collisions. Specifically, based on the developments of Nordmark et al [57], an expression for
the map describing a trajectory with complete chattering will be formulated for a generic impact oscillator,
giving a further explanation for the transition into aperiodic regime by perturbing. Those developments will
be employed to uncover the particular bifurcation scenario experienced by a real cam-follower impacting
model.

6.3.1 The case of a triple integrator

Consider the system described by the set of differential equations

F (x, v, a) = F (X) =



ẋ
v̇
ȧ


 =



v
a
1


 , (6.22)

i.e, the vector field relating dynamics of a triple integrator with a solution vectorX =
[
x (t) v (t) a (t)

]T
,

subjected to the constraint:

Φ (X, t− t0) =

{
X; x > 0

R (X) ; x = 0,
(6.23)
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where Φ(X, t − t0) represents the system flow, or coordinates in state space at a given time t by flowing
from an initial time t0. Analogously, R (X) corresponds with an instantaneous reset applied each time the
position is null through the trajectory, mapping coordinates before (-) and after (+) the event, by:

X+ = R
(
X−) = X− +




0
−(1 + r)

0


 v−, (6.24)

with coefficient of restitution 0 < r < 1 for inelastic collisions. This situation reflects the interaction with a
boundary surface, that in the following we should interpret as an impact; i.e. the boundary is rigid.

Impacts are the main phenomena introduced by nonsmoothness in (6.23). Then in order to analyze the
system dynamics, it is necessary to develop accurate expressions for the maps describing trajectories with a
single (λ map) and an infinite sequence (β map) of collisions.

The λ map

The free-flight motion or unconstrained mode between impacts for (6.22) can be easily solved to be:

a (t− t0) =
v (t− t0) =
x (t− t0) =

(t− t0) + a0
1
2 (t− t0)2 + a0 (t− t0) + v0
1
6 (t− t0)3 + a0

2 (t− t0)2 + v0 (t− t0) + x0,

(6.25)

with a0 = t0 and 

x0

v0
a0


 = X0 = Φ (X, 0) .

Then, defining a trajectory that starts at t = t0 < 0 with x (t0) = 0, v (t0) = v0 6= 0, under the action
of negative acceleration (meaning that the particle will be attracted towards the surface), the time t1 for the
next collision must satisfy:

x(t1 − t0) = 0 =
1

6
(t1 − t0)3 +

a0

2
(t1 − t0)2 + v0 (t1 − t0) , (6.26)

given that x0 = x(0) = 0 by definition. Now, by taking Λ = t1 − t0, the time between impacts can be
calculated as:

Λ =
−3a0

2
+ 3

√(a0

2

)2
− 2v0

3
, (6.27)

where the choice of the positive root is justified for the next impact occurring forward in time.

Additionally, by using the particular formulation for acceleration and phase given at (6.25), a parabolic
relationship between phase and (low) velocity at impacts can be assumed, i.e. such that for some λ we have:

λ =
v

t2
, (6.28)

then expression (6.27) can be reformulated in terms of λ and t, as:

Λ =
−3t0

2
+

3t0
2

√
1− 8

3
λ0, (6.29)
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where:

λ0 =
v0
t20
≡ v0
a2

0

. (6.30)

Finally, the time for the next impact will be:

t1 = Λ + t0 =
−t0
2

+
3t0
2

√
1− 8

3
λ0 =

(
3s− 1

2

)
t0, (6.31)

with:

s = s (λ0) =

√
1− 8

3
λ0. (6.32)

Equation (6.31) defines a mapping for the next impact phase in terms of the previous value of λ, i.e:

t1 =

(
3s− 1

2

)
t0 , h (λ0) t0. (6.33)

Consider now the next value of λ. We have:

λ1 =
v1
t21

=
−rv01

(h (λ0) t0)
2 = f (λ0, r) , (6.34)

with v01 representing the final value of the velocity in the interval Λ, that after combining (6.25), (6.30),
(6.32) and (6.33), can be expressed as:

v01 = v (t1 − t0)
= 1

2 (t1 − t0)2 + t0 (t1 − t0) + λ0t
2
0

= 1
2 (h (λ0) t0 − t0)2 + t0 (h (λ0) t0 − t0) + λ0t

2
0

= t20

[
1
2(h (λ0)− 1)2 + (h (λ0)− 1) + λ0

]

= t20

[
1
2h (λ0)

2 − 1
2 + λ0

]

= t20

[
1
2

(
3s−1

2

)2 − 1
2 +

(
3(1−s2)

8

)]
.

(6.35)

Then, after substituting (6.35) into (6.34), a mapping from λ0 to λ1 can be derived as:

λ1 = f (λ0, r) ≡ f (s, r)

=
−r

�
t20 � 12( 3s−1

2 )
2− 1

2
+

�
3(1−s2)

8 �����
(( 3s−1

2 )t0)
2

=
−r

���
(3s−1)2

8 � − 1
2
+

�
3(1−s2)

8 �	�
( 3s−1

2 )
2

=
−r

�	�
(3s−1)2+3(1−s2)

2 � −2 �
(3s−1)2

=
−r(3s2−3s)

(3s−1)2
= r 3s(1−s)

(3s−1)2
= r

(
√

9−24λ0−3+8λ0)
(
√

9−24λ0−1)
2 .

(6.36)
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Finally, equations (6.33) and (6.36) allow to construct the evolution of a low-velocity multi-impacting tra-
jectory, by multiple iteration of the single-return map:

[
tk+1

λk+1

]
=

[
h (λk) tk
f (λk, r)

]
. (6.37)

Note that from (6.36), the dynamics of λn is completely decoupled from that of tk. Hence, we will refer to
(6.37) as the λ-map.

The β map

The λ map given by (6.37) defines the transition of velocity and phase coordinates from one impact to the
next under the assumption of impacts occurring with low velocity.

Supposing that now we are interested in developing an expression to describe the interruption of a sequence
of infinite iterations of such a map, let’s consider the limiting case when the last impact of a trajectory with
complete chattering occurs at the phase where the acceleration becomes positive (i.e. t∞ = tα = 0). Then,
by defining the Poincaré section:

P =
{
X ∈ <3 : a = aP = tP > tα

}
, (6.38)

a series expansion of the trajectory around tα allows to express the velocity and position at P with infinite
precision, whenever the low-velocity assumption at a = aP holds, i.e. a parabolic relationship between
phase and velocity being valid at t = tP . Hence, this can be expressed mathematically (for instance in the
case of the velocity) as:

vP = v (tP )

= v (tα) +
(

dv
dt

∣∣
t=tα

)
(tP − tα) +

(
d2v
dt2

∣∣∣
t=tα

)
(tP−tα)2

2 +O
(
(tP − tα)3

)

= vα + aα (tP − tα) + 1
2 (tP − tα)2

= vα + aαtP − aαtα +
t2P
2 − tP tα + t2α

2

= vα − t2α
2 +

t2P
2

=
t2P
2 + t2α

[
λα − 1

2

]
,

(6.39)

where the subindex “α” indicates a coordinate evaluated at the last impact time, when t = tα. Furthermore,
by employing the λ map, (6.39) can be reformulated in terms of the last impact before tα (that we will label
as “1”):

vP =
t2P
2 + t2α

[
λα − 1

2

]

=
t2P
2 + (h (λ1) t1)

2 [f (λ1, r)− 1
2

]
,

(6.40)

or equivalently in the limit, as:

vP =
t2P
2 + (h (λ1) t1)

2 [f (λ1, r)− 1
2

]

=
t2P
2 + (h (λ1)h (λ2) t2)

2 [f (f (λ2, r) , r)− 1
2

]

= ...

=
t2P
2 + lim

n→∞

(([
n∏

i=1
h (λi)

]
tn

)2 [
fn (λn, r)− 1

2

]
)
,

(6.41)
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PSfrag replacements

tα

t1

tn

Figure 6.6 — Illustration for a trajectory with complete chattering and sticking labelling the impacts in accordance with developments
of expression (6.41).

See Figure 6.6 for an explanation of the notation employed in (6.41).

Labelling “∗” the coordinates of the first impact considered to satisfy the low-velocity condition (equivalent
in (6.41) to tn), the velocity coordinate at the Poincaré surface (6.38) when the trajectory experiences a
complete chattering sequence finishing exactly at α, can then be expressed from (6.41) as:

vP =
t2P
2 + β (λ∗) t∗2, (6.42)

where

β(λ∗) , lim
n→∞



(

n∏

i=1

h (λi)

)2 [
fn (λn, r)−

1

2

]
 , (6.43)

contains information about the infinite sequence of impacts through the variable λ.

More interestingly, β(λ) contains information about finite sequences of low-velocity impacts, when the
perturbation of the critical value λ̄ – depicted as a fixed point in Figure 6.5 – causes interruption of chatter,
that is:

β
(
λ̃+ λ̄

)
=





(
N∏

i=1
h
(
λ̃i

))2 [
fN
(
λ̃+ λ̄, r

)
− 1

2

]
; λ̃ > 0

0 ; λ̃ < 0,

(6.44)

for N representing a finite value of n in (6.43); λ̃ = λ∗ − λ̄, the deviation of the critical value λ̄ satisfying:

f
(
λ̄, r
)
− λ̄ = 0; (6.45)

and λ̃i ≡ f i
(
λ̃+ λ̄, r

)
.

Here it is important to note that being β(λ) a composition of (6.33) and (6.34) iterated infinitely, the domain
of its argument, that is of λ, should be automatically scaled at each iteration.
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The scaling-law

A perturbation in the first low-velocity impact, will cause a shift in the location of the last collision. The
amount of such deviation will depend on the number of iterations of the map λ in β, or equivalently, on how
many impacts occur before release.

Taking the fundamental iteration, that is from λ∗ to the next value of λ, the function β(λ) will lead to:

β (λ∗) = h (λ∗)2
[
f (λ∗, r)− 1

2

]

=
(

3s−1
2

)2 (
r 3s(1−s)

(3s−1)2
− 1

2

)

= s2
[−3

4

(
r + 3

2

)]
+ s

[
3
4 (1 + r)

]
− 1

8

= (3 + 2r)λ∗ + 1
4 (r + 1)

√
9− 24λ∗ − 1

4 (3r + 5) ,

(6.46)

after combining (6.32), (6.33), (6.36) and (6.42).

Equation (6.46) represents an extremely important result, given that it defines analytically the fundamental
structure of the map between two points inside the chattering region D in (6.21), and therefore will allow to
confirm the transition into aperiodic regime suggested by the graphic cobweb-analysis performed in Chapter
5 for the numerical approximation of the map .

Because of (6.44), where the meaning of λ̄ was introduced, the domain of λ∗ in (6.46) is constrained to be:

If =

{
λ∗ ∈ < : λ̄ ≤ λ∗ ≤ 3

8

}
. (6.47)

Hence, the fundamental structure (6.46) will be repeated continuously on a given interval of perturbations
of λ̄, with subintervals representing the transition between impacts before release, each corresponding with
scaled versions of (6.47). Mathematically:

I =
{
λ ∈ < : λ ≥ λ̄

}

=
∞⋃
i=1
Ii ≡

∞⋃
i=1

If

qi ,
(6.48)

with a scale factor q, given by:

q =
1

fλ

(
λ̄, r
) ≡

(
∂f

∂λ

)−1
∣∣∣∣∣
λ=λ̄

, (6.49)

taking advantage of the linear approximation of f and its reciprocal, in a vicinity of λ̄.

Each time an impact is lost, the amplitude of the map is increased by a given factor, let’s say p. In order to
define it, we need to establish conditions for the convergence of (6.44) in the limit when N → ∞, that is,
for the existence of (6.42). This can be reduced to simply studying the convergence of:

lim
n→∞

n∏

i=1

h (λi). (6.50)

Then, for such a limit to exist, any sequence of its partial sums must converge. This can be assured by
rewriting (6.50) as:

lim
n→∞

n∏

i=1

h (λi) ≡
(

lim
n→∞

n∏

i=1

h (λi)

h
(
λ̄
)n
)
h
(
λ̄
)N

, (6.51)
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where:

h
(
λ̄
)
≥ h (λi) ∀i = 1, 2, ..., n. (6.52)

Then if N → ∞ in (6.51), the equality applies. If not, the remaining “convergent” expression will be in-
creased by a factor p = h

(
λ̄
)

each time an impact is missed, and consequently from (6.44) the amplitude
of β(λ) will be scaled by p2.

In summary, a perturbation in the critical value λ̄ under which a complete chattering sequence accumulates
at the point of release (where acceleration becomes positive), will cause the interruption of chattering with
an evolution described by the map β behaving in patterns following a fundamental structure that is being
translated and scaled. In particular, the evolution of an attractor experiencing such a transition is expected
to be enveloped by |β| ≤ λ̃κ, where:

κ =
log
(
p2
)

log (q)
, (6.53)

or equivalently qκ = p2.

Coordinates at the Poincaré surface

Following the same procedure as in (6.40), an expression for xP can be found to be:

xP =
t3P
6

+ t2α

[
tP

(
λα −

1

2

)
+ tα

(
1

3
− λα

)]
, (6.54)

that under the assumption of tα ≈ 0, can be approximated by:

xP =
t3P
6 + t2α

[
tP
(
λα − 1

2

)]
=

t3P
6 + β (λ∗) t∗2tP , (6.55)

employing extension of results in (6.41) and (6.42).

In this way, we are able to express the coordinates at the Poincaré surface P in terms of the map β(λ) by:

vP = 1
2 t

2
P + β (λ∗) t∗2

xP = 1
6 t

3
P + β (λ∗) t∗2tP

aP = tP .
(6.56)

In other words, equation (6.56) describes the final state XP = [xP , vP , aP ]T of a trajectory with low-
velocity impacts starting at X∗ = [0, v∗, a∗]T . As an illustration, consider Figure 6.7 where a periodic
trajectory with complete chattering is depicted. Here, the mapping is performed between theX ∗ coordinates
denoted by a triangle in the Figure and the Poincaré surfaceXP with corresponding squares. Figure 6.7 will
be recalled later in section 6.7.1, where numerical calculations on a realistic application model are detailed.

126



Chapter 6. Bifurcations involving Chattering in impacting systems

−1

−0.5

0

0.5

2 2.2 2.4 2.6 2.8 3 3.2

0

0.01

0.02

0.03

PSfrag replacements

t [s]

∆
θ

[r
a
d
]

∆θ̇ [rad/s]

Figure 6.7 — Illustration of a trajectory with periodic chattering motion denoting the chattering region D on which the local analysis
is applied. Equation (6.56), will map information from a point labelled by a triangle in the Figure into a point in the Poincaré surface
represented by a square. These results will be treated again in section 6.7.1.

6.4 The case of a general periodically forced impact oscillator

Consider the vertical undamped-harmonic motion of a particle hanging from a spring with unitary elastic
coefficient, attached to a fixed surface. Such unforced non-autonomous system, can be described by the set
of differential equations:

F (y, v, t) = F (Y, t) =

[
ẏ
v̇

]
=

[
v(t)
−y(t)

]
. (6.57)

Suppose now that a constrain, consisting of a vertically oscillating rigid-boundary of the form:

g (t) = sin (ωt) + σ, (6.58)

is imposed over (6.57). Then, by defining the vector of relative coordinates:

Ȳ =

[
ȳ
˙̄y

]
=

[
y − g
ẏ − ġ

]
, (6.59)

the analysis of the forced dynamics can be equivalently accomplished in terms of the relative motion between
the mass and the boundary; i.e:

F
(
Ȳ , t

)
= F (ȳ, ˙̄y, t) =

[
˙̄y
¨̄y

]
=

[
¨̄y

−ȳ − (g̈ + g)

]
, (6.60)

subject to the constraint:

Φ
(
Ȳ , t− t0

)
=

{
Ȳ ; ȳ > 0

R
(
Ȳ , t

)
; ȳ = 0,

(6.61)

where: F
(
Ȳ , t

)
is the vector field with solution Ȳ (t), Φ(Ȳ , t − t0) represents the system flow at a given

time t from t0 and R
(
Ȳ , t

)
defines an instantaneous reset:

Ȳ + = R
(
Ȳ −) = Ȳ − +

[
0

−(1 + r)

]
˙̄y−, (6.62)
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with coefficient of restitution 0 < r < 1 for inelastic collisions.

Given the similarity between equations governing dynamics of the relative motion in (6.61)-(6.62) and those
of the triple integrator (6.23)-(6.24), the aim of this section is to establish the conditions over which results
developed in section 6.3.1 can be extended for studying the interruption of sequences with complete chatter,
in a more general class of impact oscillator.

6.4.1 Equations of motion

During the unconstrained mode (ȳ > 0), the trajectory in (6.61) is described by the equation:

¨̄y + ȳ = − (g + g) =
(
ω2 − 1

)
sin (ωt)− σ, (6.63)

that can be solved for ȳ employing elementary theory of ODE.

For the non-homogeneous case, the particular solution of (6.63) is given by:

ȳp = A cos (ωt) +B sin (ωt) + C ⇒
˙̄yp = ωB cos (ωt)− ωA sin (ωt) ;
¨̄yp = −ω2A cos (ωt)− ω2B sin (ωt) .

(6.64)

Substituting (6.64) in (6.63), we have;

¨̄yp + ȳp =
(
ω2 − 1

)
sin (ωt)− σ[

−ω2A cos (ωt)− ω2B sin (ωt)
]
+ [A cos (ωt) +B sin (ωt) + C] =

(
ω2 − 1

)
sin (ωt)− σ

A
(
1− ω2

)
cos (ωt) +B

(
1− ω2

)
sin (ωt) + C =

(
ω2 − 1

)
sin (ωt)− σ,

(6.65)

and then, by equating coefficients:

ȳp = − sin (ωt)− σ. (6.66)

For the homogeneous case, solution of (6.63) is given by:

ȳh = D cos (t) + E sin (t) , (6.67)

with D and E satisfying conditions on the general solution, defined by:

ȳ (t) = ȳh + ȳp = D cos (t) + E sin (t)− sin (ωt)− σ, (6.68)

and hence:

ȳ (0) = D − σ ⇒ D = ȳ (0) + σ;
˙̄y (t) = E cos (t)−D sin (t)− ω cos (ωt)⇒ E = ˙̄y (0) + ω.

(6.69)

Finally, the dynamics of the relative free-flight motion between impacts can be written as:

ȳ (t− t0) = [ȳ (t0) + σ] cos (t− t0) + [ ˙̄y (t0) + ω] sin (t− t0)− sin (ω [t− t0])− σ, (6.70)

with corresponding relative velocity, acceleration and jerk (acceleration time-derivative), given by:

˙̄y (t− t0) = [ ˙̄y (t0) + ω] cos (t− t0)− [ȳ (t0) + σ] sin (t− t0)− ω cos (ω [t− t0]) ;
¨̄y (t− t0) = ω2 sin (ω [t− t0])− [ȳ (t0) + σ] cos (t− t0)− [ ˙̄y (t0) + ω] sin (t− t0) ;...
ȳ (t− t0) = ω3 cos (ω [t− t0]) + [ȳ (t0) + σ] sin (t− t0)− [ ˙̄y (t0) + ω] cos (t− t0) .

(6.71)
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6.4.2 Extension of the λ map

An interesting question to answer at this point is what is the expression for the next impact time, because evi-
dently, applying the same procedure as in (6.26) to (6.70) will lead to an unsolvable transcendental equation.

In order to overcome such a difficulty, we must restrict ourselves to work in a highly local sense by consid-
ering that (t− t0) → 0. Physically, this means that the bouncing time should be sufficiently small, as it is
often the case when working inside the low-velocity impact region.

Then, considering the low-order Taylor approximation for the trigonometric terms in (6.70):

cos (t− t0) ≈ 1− (t−t0)2

2 ;

sin (t− t0) ≈ (t− t0)− (t−t0)3

6 ,
(6.72)

we get:

ȳ (t− t0) ≈
[ȳ (t0) + σ]

(
1− (t−t0)2

2

)
+ [ ˙̄y (t0) + ω]

(
(t− t0)− (t−t0)3

6

)
−
(
ω (t− t0)− ω3(t−t0)

3

6

)
− σ. (6.73)

Now, by defining Λ = (t− t0), a rearrangement of (6.73) yields:

ȳ (Λ) ≈ Λ3
[

1
6

(
ω3 − ω − ˙̄y (t0)

)]
+ Λ2

[
−1

2 (ȳ (t0) + σ)
]
+ Λ [ ˙̄y (t0)] + ȳ (t0)

≡ 1
6

...
ȳ0Λ

3 + 1
2
¨̄y0Λ

2 + ˙̄y0Λ + ȳ0.
(6.74)

Considering an impact as the starting point (i.e. ȳ (t− t0)|t=t0
= ȳ0 = ȳ (t0) = 0), allows to solve (6.74)

in terms of Λ for the next collision, obtaining:

Λ =
− 1

2
¨̄y0+ 
 ( 1

2
¨̄y0)

2− 4
6
c ˙̄y0

1
3
c

, (6.75)

where the positive value in the square root term again is such that, for the next impact to occur forward in
time, and

c =
...
ȳ0 =

...
ȳ (t− t0)|t=t0

. (6.76)

The equations above are a generalization of such previously presented in section 6.3.1, and therefore equa-
tion (6.75) should reflect the compression factor between impact times introduced by the function h in
(6.33). In order to achieve it, let’s consider first c ˙̄y0 = λ¨̄y2

0 in (6.75). Hence, we obtain:

Λ = 3
c

(
−1

2
¨̄y0 +

√(
1
2
¨̄y0

)2 − 4
6λ¨̄y2

0

)

= 3
c

(
−1

2
¨̄y0 + ¨̄y0

√
1
4

(
1− 8

3λ
))

= 3¨̄y0

2c (s− 1) ,
(6.77)

after use of (6.32).

If the system described by equations (6.61)-(6.62) is under period-one complete chattering motion, an infi-
nite number of impacts is expected to accumulate, in general, at a certain phase where the relative accelera-
tion in still negative.
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Now, for derivation of the map λ in the case of a periodically-forced impact oscillator, we assume once again
the critical case when the accumulation point corresponds with the phase at which the relative acceleration
changes from negative to positive, let’s say at t = tα > 0. Therefore, claiming that (t1 − t0)→ 0 implies:

(t1 − t0) ∆
= [(tα − t0)− (tα − t1)]→ 0 ∀ 0 ≤ t0 ≤ t1 ≤ tα, (6.78)

and then, by working locally to the point where the acceleration crosses the zero, it is possible to consider
for its associated function, a linear equivalent of the form:

¨̄y (t− t0) ∆
= ¨̄y ([tα − t]− [tα − t0]) = c (t− t0) + ¨̄y0 ∀ t ∈ [t0, t1], (6.79)

with c as defined in (6.76).

If tα = t1, then:

¨̄y (tα − t0) = 0 = c (tα − t0) + ¨̄y0 ⇒ ¨̄y0 = c (t0 − tα)
⇒ ¨̄y (t− t0) = c (t− t0) + c (t0 − tα) = c (t− tα) ∀ t ∈ [t0, tα].

(6.80)

Noticing that h(λ0) in (6.33) represents a contracting function for negative values of t towards zero, or – as
defined earlier – a proportionality factor, the same behaviour should be achieved in (6.77) when considering
contraction in the distance (tα − t) from tα, or which is the same, for negative values towards zero of a new
variable τ ≡ (t− tα).

According to this:

Λ = (t1 − t0) ∆
= (tα − t0)− (tα − t1) = −τ0 + τ1

⇒ τ1 = τ0 + Λ = τ0 + 3 ¨̄y0

2c (s− 1) ;

¨̄y0 = c (t0 − tα)
∆
= cτ0

⇒ τ1 = τ0 + τ0
3
2 (s− 1) = τ0

(
3s−1

2

)
= τ0h (λ0)

⇒ (tα − t1) = h (λ0) (tα − t0) ,

(6.81)

where a replication of (6.33) in terms of τ is evident. It implies that the assumption on the quantity c ˙̄y0

made for (6.77) is valid, and then for λ ≡ λ0 it yields:

λ0 =
c ˙̄y0

¨̄y2
0

≡ c ˙̄y0

(cτ0)
2 =

˙̄y0

cτ2
0

=
˙̄y0

c (t0 − tα)2
, (6.82)

with c accomplishing the condition of zero acceleration at t = tα.

An extension of (6.81) and (6.82) through (6.80), can be formulated for an arbitrary interval between im-
pacts in a vicinity of tα, based on the assumption that the linear approximation for the acceleration still
applies. This is enforced by noticing that ¨̄y is not considered in the reset law (6.62).

Therefore:

Λ = (tk+1 − tk) ∆
= (tα − tk)− (tα − tk+1) = −τk + τk+1

⇒ τk+1 = τkh (λk)
⇒ (tα − tk+1) = h (λk) (tα − tk) ,

(6.83)
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with:

λk =
˙̄yk

c (tk − tα)2
≡

˙̄yk

cτ2
k

, (6.84)

and c accomplishing again the condition of zero acceleration at t = tα; i.e. calculated at the last impact of
the sequence.

Now, in an analogous way to what developed for (6.34) and (6.35), consider the variation of λ between
impacts:

λ1 =
˙̄y1

c (t1 − tα)2
=

˙̄y1

cτ2
1

=
−r ˙̄y01

cτ2
1

, (6.85)

where ˙̄y01 represents the value of the relative velocity at the end of the trajectory between two consecutive
collisions, labelled as “0” and “1”, with associated expression:

˙̄y01 = ˙̄y (t1 − t0) ≡ ˙̄y ([tα − t0]− [tα − t1]) = ˙̄y (−τ0 + τ1) = ˙̄y (τ1 − τ0)
= [ ˙̄y0 + ω] cos (τ1 − τ0)− [ȳ0 + σ] sin (τ1 − τ0)− ω cos (ω [τ1 − τ0])
≈ [ ˙̄y0 + ω]

(
1− (τ1−τ0)

2

2

)
− [ȳ0 + σ]

(
(τ1 − τ0)− (τ1−τ0)3

6

)
− ω

(
1− ω2(τ1−τ0)2

2

)

≈ [ ˙̄y0 + ω]
(
1− [h(λ0)τ0−τ0]2

2

)
− [ȳ0 + σ]

(
[h (λ0) τ0 − τ0]− [h(λ0)τ0−τ0]

3

6

)
− ω

(
1− ω2[h(λ0)τ0−τ0]

2

2

)

≈ ˙̄y0 + ω − [ ˙̄y0+ω][h(λ0)τ0−τ0]2

2 − [ȳ0 + σ]
(
[h (λ0) τ0 − τ0]− [h(λ0)τ0−τ0]

3

6

)
− ω + ω3[h(λ0)τ0−τ0]

2

2

≈ cτ2
0λ0 − [ ˙̄y0+ω]

2 [h (λ0)− 1]2 τ2
0 + ω3

2 [h (λ0)− 1]2 τ2
0 − [ȳ0 + σ]

(
[h (λ0)− 1] τ0 − [h(λ0)−1]3

6 τ3
0

)

≈
[
cλ0 +

[ω3− ˙̄y0−ω]
2 [h (λ0)− 1]2

]
τ2
0 − [ȳ0 + σ]

(
[h (λ0)− 1] τ0 − [h(λ0)−1]3

6 τ3
0

)
,

(6.86)

generated after substitution of (6.72), (6.81) and (6.82) in (6.71), and valid when (τ1 − τ0)→ 0.

Also, from (6.71) we know that:

...
ȳ (t− t0)|t=t0

≡ ...
ȳ 0 = ω3 − ˙̄y0 − ω = c;

¨̄y (t− t0)|t=t0
≡ ¨̄y0 = − [ȳ0 + σ] ≡ cτ0, (6.87)

τ0 → 0⇒ t0 → tα, and consequently the cubic term in (6.86) can be neglected.

Hence, an equivalent reformulation of (6.86) is:

˙̄y01 ≈
[
cλ0 + c

2 [h (λ0)− 1]2
]
τ2
0 + cτ0 [h (λ0)− 1] τ0

≈
[

1
2 [h (λ0)− 1]2 + [h (λ0)− 1] + λ0

]
cτ2

0 =
[

1
2h (λ0)

2 − 1
2 + λ0

]
cτ2

0 ,
(6.88)
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that after substitution into (6.85) yields:

λ1 = f (λ0, r) = f (s, r) = −r ˙̄y01

cτ2
1

= −r ˙̄y01

c[h(λ0)τ0]
2 = −r ˙̄y01

c[h(λ0)2τ2
0 ]

≈ −r [ 1
2
h(λ0)2− 1

2
+λ0]cτ2

0

c[h(λ0)2τ2
0 ]

= −r [ 1
2
h(λ0)2− 1

2
+λ0]

h(λ0)2

=
−r � 12( 3s−1

2 )
2− 1

2
+

�
3(1−s2)

8 ���
( 3s−1

2 )
2

=
−r � � (3s−1)2

8 � − 1
2
+

�
3(1−s2)

8 ���
( 3s−1

2 )
2

=
−r � � (3s−1)2+3(1−s2)

2 � −2�
(3s−1)2

=
−r(3s2−3s)

(3s−1)2
= r 3s(1−s)

(3s−1)2
= r

(
√

9−24λ0−3+8λ0)
(
√

9−24λ0−1)
2 ,

(6.89)

resembling, as expected, the analogous expression given in (6.36).

Finally, a combination of (6.83) and (6.89) constitutes the generalized version of the two-dimensional single-
return impact map, for the case of a periodically forced harmonic oscillator:

[
τk+1

λk+1

]
=

[
h (λk) τk
f (λk, r)

]
. (6.90)

6.4.3 Extension for the β map

Similarly to the case of the triple integrator model, in order to develop an expression for the map describing
a complete chattering sequence in a general periodically forced harmonic oscillator, we need to firstly define
the chattering regionD, or equivalently the subset of the state space accomplishing the parabolic relationship
of λ in (6.84). Mathematically:

D =
{(
Ȳ , τ

)
: ˙̄y (τ)→ 0, ¨̄y(τ) ≤ 0

}
∪
{(
Ȳ , τ

)
: τα ≤ τ ≤ τP

}
= Dλ ∪ DP , (6.91)

with Ȳ as in (6.59) and τP defining the location of a Poincaré surface given by:

P =
{
Ȳ (τ) ∈ <2 : τ = τP > τα

}
, (6.92)

where the linearity condition for the acceleration should be satisfied; i.e. such that:

¨̄y (t− t0)|t=tP
≡ ¨̄y (τ − τ0)|τ=τP

= ¨̄y (τP − τ0) , cτP ∀ τP < 0 . (6.93)

Hence, Dλ allows to define the initial point (that we will define as “∗”) from the which multiple iteration
of (6.90) will lead to the last impact of the sequence before release (defined as “α”). In other terms, (6.90)
will map a boundary of D, let’s say D∗

λ ≡ λ∗, into another Dα
λ ≡ λα, through multiple iterations. Then, the

coordinates for velocity and position at the end of the chattering region, can be projected through DP as a
series expansion around τα.
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Therefore, by considering that an impact occurs at τα = τ0 using (6.80) and (6.84), the velocity at the
Poincaré surface (6.92) can be expressed as:

˙̄yP ≡ ˙̄y (τ − τ0)|τ=τP
= ˙̄y (τP − τ0)

= ˙̄y (τα − τ0) +

[
d ˙̄y
dτ

∣∣∣
τ=τα

]
[τP − τα] +

[
d2 ˙̄y
dτ2

∣∣∣
τ=τα

]
[τP−τα]2

2 +O
(
[τP − τα]3

)

≈ ˙̄yα + ¨̄yα [τP − τα] +
...
ȳ α

1
2 [τP − τα]2

= λαcτ
2
α + cτα [τP − τα] + c1

2 [τP − τα]2

= λαcτ
2
α + cτατP − cτ2

α + c1
2

[
τ2
P − 2τP τα + τ2

α

]

= λαcτ
2
α + cτατP − cτ2

α + 1
2cτ

2
P − cτP τα + 1

2cτ
2
α

= λαcτ
2
α − 1

2cτ
2
α + 1

2cτ
2
P

= 1
2cτ

2
P + cτ2

α

[
λα − 1

2

]
.

(6.94)

Equivalently for the position, we have:

ȳP ≡ ȳ (τ − τ0)|τ=τP
= ȳ (τP − τ0)

= ȳ (τα − τ0) +

[
dȳ
dτ

∣∣∣
τ=τα

]
[τP − τα] +

[
d2ȳ
dτ2

∣∣∣
τ=τα

]
[τP−τα]2

2 +

[
d3ȳ
dτ3

∣∣∣
τ=τα

]
[τP−τα]3

6 +O
(
[τP − τα]4

)

≈ ȳα + ˙̄yα [τP − τα] + ¨̄yα
1
2 [τP − τα]2 +

...
ȳ α

1
6 [τP − τα]3

= λαcτ
2
α [τP − τα] + cτα

1
2 [τP − τα]2 + c1
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2
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2
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2
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3
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2cτP τ
2
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3
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2
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3
α − 1

2cτ
2
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3cτ
3
α + 1

6cτ
3
P

= 1
6cτ

3
P + cτ2

α

[
λατP − λατα − 1

2τP + 1
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= 1
6cτ

3
P + cτ2

α

[
τP
[
λα − 1

2

]
+ τα

[
1
3 − λα

]]
≈ 1

6cτ
3
P + cτP τ

2
α

[
λα − 1

2

]
.

(6.95)

Equations (6.94) and (6.95) give information about the coordinates of P from an impact experienced at
τα. Taking into account that such an impact represents the history of events accumulated through infinite
iterations of the relationship given by (6.90) under a complete chattering regime starting at D∗

λ ≡ λ∗, the

generalization for the map β describing the final state ȲP = [ȳP , ˙̄yP ]
T of a trajectory with low-velocity

impacts starting at Ȳ ∗ = [0, ˙̄y∗]T , can be given as:

˙̄yP = 1
2cτ

2
P + β (λ∗) cτ∗2

ȳP = 1
6cτ

3
P + β (λ∗) cτ∗2τP

¨̄yP = cτP ,
(6.96)

where:

β (λ∗) = lim
n→∞

(
n∏

i=1

h (λi)

)2 [
fn (λ∗, r)− 1

2

]
, (6.97)

being applicable to any dynamical system of the form (6.61)-(6.62) experiencing period-one complete
chattering regime, under the assumptions considered.

6.5 The map in terms of variational equations

Developments performed through the Chapter, allowed for derivation of expression (6.96) giving a mapping
inside the chattering region D for a generic periodically-forced impact oscillator. Now, it is time to employ

133



Chapter 6. Bifurcations involving Chattering in impacting systems

such information to evaluate the stability of a periodic orbit experiencing complete-chattering motion. Then,
as introduced in Chapter 2, this should be done in terms of the structural stability associated with variations
of parameters in the system.

Therefore, it is fundamental at this stage to incorporate an explicit parameter dependence on (6.96), that
given the application problem considered, should rely on the forcing frequency ω. This correspondence will
be approximated numerically later in section 6.7.3 for a real cam-follower impacting model, on the basis of
local perturbations. The latter is the aim of current section, where we will introduce the linear approxima-
tion for the problem of perturb locally a periodic orbit with chattering. This procedure is commonly termed
as analysis of the first variational equations.

According to the conditions over which the map (6.96) has been defined, the multi-impacting orbit with
chattering should be critical; i.e. the accumulation point is also the releasing one. Then, in order to study
the transition under such a critical condition, the analysis of perturbations around the equilibrium must be
performed. In so doing, let’s start by consider the non-linear nature of λ in terms of its arguments:

λ
∆
=

v

c (t− tα)2
= l (v, t) . (6.98)

Expansion in series of λ about λ∗ = l (v∗, t∗) ∀ λ ∈ D, gives:

λ = l (v, t) ≡ l (v∗, t∗) +
∂l

∂v

∣∣∣∣
(v∗,t∗)

(v − v∗) +
∂l

∂t

∣∣∣∣
(v∗,t∗)

(t− t∗) +O
(
(t− t∗)2

)
, (6.99)

that can be approximated to the first order by assuming small perturbations, deriving:

λ̃ = λ− λ∗ ≡ l (v, t)− l (v∗, t∗)
≈
[

∂l
∂v

∂l
∂t

]∣∣
(v∗,t∗)

[
v − v∗
t− t∗

]

=
[

1
c(t−tα)2

−2v
c(t−tα)3

]∣∣∣
(v∗,t∗)

[
v − v∗
t− t∗

]

=
[
C1 C2

] [ v − v∗
t− t∗

]

≡ C
[
ṽ
t̃

]
.

(6.100)

In this way, (6.97) can be expressed in terms of variations of λ∗ = λ̄, as:

β (λ) = β
(
λ̃+ λ̄

)
≡ β

(
λ̄+ C

[
ṽ
t̃

])
=





lim
n→∞

(
n∏

i=1

h
(
λ̄
))2 [

fn
(
λ̄, r
)
− 1

2

]
; λ̃ = 0

(
N∏

i=1

h
(
λ̃i

))2 [
fN

(
λ̄+ C

[
ṽ
t̃

]
, r

)
− 1

2

]
; λ̃ > 0

0 ; λ̃ < 0,

(6.101)

with λ̃i ≡ f i

(
λ̄+ C

[
ṽ
t̃

]
, r

)
and f

(
λ̄, r
)
− λ̄ = 0, in an equivalent way to what developed for (6.44).

On the other hand, from (6.94) and (6.95), the action of β (λ) at the last impact before release, can be
expressed in terms of ε ≡ ε (τ, λ) as:

[
˙̄yP

ȳP

]
=

[
1
2cτ

2
P + cτ2

[
λ− 1

2

]
1
6cτ

3
P + cτP τ

2
[
λ− 1

2

]
]

=

[
1
2cτ

2
P + cε

1
6cτ

3
P + cτP ε

]
=

[
Γ (ε)
Ω (ε)

]
. (6.102)
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Therefore, expansion of (6.102) around εα ≡ ε (τα, λα) gives:
[

˙̄yP

ȳP

]
=

[
Γ (ε)
Ω (ε)

]
≡
[

Γ (εα)
Ω (εα)

]
+
[

dΓ
dε

dΩ
dε

]T ∣∣∣
ε=εα

(ε− εα) +O
(
(ε− εα)2

)

⇒
[

˙̄yP

ȳP

]
−
[

Γ (εα)
Ω (εα)

]
∆
=

[
ṽP

x̃P

]
≈
[

c
cτP

]
(ε− εα) =

[
c
cτP

]
ε̃ = Bε̃,

(6.103)

where ε̃ corresponds to the propagation through β to the perturbation taken at the chattering region. There-
fore, perturbations at the Poincaré surface (6.92) can be expressed in terms of perturbations at λ∗ = λ̄,
as:

[
ṽP

x̃P

]
= Bε̃

∆
= Bβ

(
λ∗ + λ̃

)
= Bβ

(
λ̄+ C

[
ṽ
t̃

])
. (6.104)

6.6 Constructing the Poincaré map of a Chattering orbit

In the more general case of PWS dynamical systems, the concept of discontinuity mappings was introduced
in section 2.6. There, the dynamics of the events associated to the interaction with discontinuities were
coupled with the global behaviour of the trajectory by composition between the corresponding local and
global maps. In this section we study a periodic orbit with chattering. This is illustrated in Figure 6.8 by
a trajectory crossing two boundaries, representing each the map associated with the local β, and global Θ,
dynamics.

r
�

rr
β

λ∗

Θ

ȲΘ

D

Ȳ (τ)

ȲP

Figure 6.8 — Graphical illustration of the composition between local and global behaviour of a trajectory with chattering. For all the
calculations of section 6.6, ȲΘ = Ȳ ∗ ≡ λ∗ ≡ D∗

λ. In the graph, they were taken as different points for illustration of the concept.

According to the Figure, for all the following calculations ȲΘ = Ȳ ∗ ≡ λ∗ ≡ D∗
λ.

The qualitative behaviour of an orbit with period-one complete chattering accumulating at the releasing
point, is essentially the same when thinking about the interaction between the system flow and the restitu-
tion map after collisions. The key in order to establish a boundary, is the definition of the chattering region
D in (6.91), containing the subset of the state space in which the chattering map (6.96) can be applied.

Once this set has been defined, the remaining part of the trajectory Ȳ (τ) is confined to the complementary
set by a mapping Θ from P in (6.92) to D∗

λ ≡ λ∗; i.e.

Θ : P ∈ <2 → Π∗ ∈ <2 ≡ (vP , xP )→ (v∗, t∗) , (6.105)
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with Π∗ defining the region:

Π∗ =
{
Ȳ (τ) ∈ <2 : τ = τ∗ ∈ Dλ

}
. (6.106)

In general, we can assume that such a map is smooth without grazings or complete chattering outside D.
Then a linear approximation of the map Θ around D∗

λ can be obtained in terms of variational equations.
Therefore, it is possible to perform analysis of variations (perturbations) of the equilibrium in the periodic –
of period τ = T – multi-impacting trajectory with chattering.

As defined in section 2.2.5, the linear equivalent of the map Θ around the equilibrium Ȳ ∗, corresponds to:

Θ∗
Ȳ = A ≡

(
I −

F
(
Ȳ ∗)H∗

Ȳ

H∗
Ȳ
F
(
Ȳ ∗)

)
ΦȲ

(
Ȳ ∗, T − [τP − τ∗]

)
, (6.107)

where H∗
Ȳ

represents the gradient of the constraint H = ȳ, evaluated at λ∗; F
(
Ȳ
)

the system vector
field as in (6.60) and ΦȲ

(
Ȳ ∗, T − [τP − τ∗]

)
the Jacobian of the multi-impacting trajectory within the set

D̄ = <3 −D, evaluated at the boundary of Dλ ≡ λ∗; or equivalently, the Monodromy matrix.

Using (6.107), it is then possible to write:
[
ṽ
t̃

]
≈ A

[
ṽP

x̃P

]
, (6.108)

and hence, by appending the results generated for β in equation (6.104), variations (perturbations) across
the overall trajectory can be approximated by the composition of the linear equivalent of the mappings, as:

[
ṽ
t̃

]

k+1

= ABβ

(
λ∗ + C

[
ṽ
t̃

]

k

)
∆
= Θ ◦ β

(
λ∗ + λ̃

)
. (6.109)

Notice that despite the dimension is preserved under the action of Θ in (6.105), there is not a correspondence
between coordinates. This is a direct consequence of the reduction of dimensionality performed inside the
chattering region, that essentially annihilates information in the direction of position. The matrixB will play
a key role in matching coordinates between the composed maps, as will be shown later in the application
example of section 6.7.4.

Also, notice that according to equation (6.101), the contribution of β in the overall dynamics (6.109) can
be neglected when no variations are applied to the equilibrium. This is an expected result, given that under
small (or null) perturbations the linearity assumption holds and therefore the composition of the maps can
be translated in superposition of the individual effects.

6.7 Chattering bifurcation in a practical case: the cam-follower model

Results presented so far, have demonstrated that it is possible to perform a local description of the transition
into aperiodicity experienced by a general impact oscillator of the form (6.57), after interruption of a com-
plete chattering regime. Then, these can be employed to explain the bifurcation scenario derived from the
interaction between the cam and follower bodies in the configuration depicted in Figure 4.9-(b), resembling
the mechanical core governing synchronization in the motion of valves of an internal combustion engine [6].
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This kind of cam-follower systems has been discussed in Chapter 4, together with their physical implemen-
tation, modelling and experimental results. For the sake of clarity, some of the expressions given in Chapter
4 will be repeated here.

The motion of the follower can be described with the time evolution of its angular displacement and velocity,
being modelled in terms of a hybrid scheme with two main modes of operation:

Jθ̈f +K

(
xA tan(θf ) +

d

cos(θf )
− (yA − d0 − d1)

)(
xA

cos2(θf )
+ d

sin(θf )

cos2(θf )

)
=

{
0,

M(t).
(6.110)

Namely: 1) a free flight when the follower detaches from the cam behaving as an unforced harmonic oscil-
lator and 2) a constrained mode corresponding with the two bodies being in contact; i.e. when the periodic
forcing exerted by the cam, M(t), is non zero.

The transition between such modes at the discontinuity boundary is given by the restitution law:

θ̇f (t+k ) = −rθ̇f (t−k ) + (1 + r)ω
d

dφ
θ̂c, (6.111)

with 0 < r < 1 being the restitution coefficient for inelastic collisions, ω the rotational velocity of the
cam (taken as parameter), φ ≡ ωt the forcing phase and θ̂c the angular projection of the contact point. See
Chapter 4 for further details.

The system (6.110)-(6.111) is formulated in a way which fits the description of (6.61)-(6.62) and therefore
the results described in section 6.4 can be applied to it, as will be shown in what follows.

6.7.1 The Chattering region

In order to study the transition from an orbit with complete chattering in a vicinity of the releasing phase
φα ≡ mod (tα, T ) with T = 2π/ω̄, the first thing we need to define is the critical parameter value ω̄ for
which the last impact of a period-one complete chattering motion occurs close enough to the releasing point;
i.e. such that |φα − φ∞| → 0, justifying a local analysis of it.

In doing so, continuation of the multi-impacting trajectory with a test function based on monitoring the time
of sticking was performed as described in section 3.5.1. As a result, an estimated value of ω̄ ≈ 152.67658
rpm, with a precision of 10 decimal digits was calculated. See Figure 3.9 for details.

Then, under such a critical parameter value, the numerical error detected or the difference between last im-
pact and releasing phases corresponds to ∆φ = φα − φ∞ ≈ 0.4201 ∗ 10−5 [s]. This difference, constitutes
a reference for quantification of the analysis in a local sense and therefore should be employed as criterion
for choosing the valid set of points defining the boundaries of D in (6.91).

Hence, by selecting a value of ω̄∗ = 152.67 rpm, an orbit with complete chattering accumulating in a
vicinity2 of the releasing phase is expected to occur. The set of values defining the chattering region for
such ω̄∗ are given in Table 6.1 and depicted in Figures 6.9 and 6.10.

2The validity of the local sense for such a value is confirmed by the results obtained numerically, as will be shown later in the
Chapter.
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Figure 6.9 — Periodic trajectory with complete chattering for ω̄∗ = 152.67 rpm. Time evolution for relative position in (a) and relative
velocity in (b) of the particle – the follower – with a combination of the two in (c). In all graphs, a triangle represents the boundary of D
equivalent to D∗

λ as analogously a square depicts the location for φP ∈ DP .
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Figure 6.10 — Detail for a trajectory with complete chattering for ω̄∗ = 152.67 rpm, depicting the region where local analysis can be
applied. Time evolution for relative position in (a) and relative velocity in (b) of the particle – the follower – with a combination of the
two in (c). In all graphs, a triangle represents the boundary of D equivalent to D∗

λ as analogously a square depicts the location for
φP ∈ DP . In addition, a diamond is intended to denote Dα

λ .
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Table 6.1 — Boundaries of the set D in (6.91) with τ ≡ φ, and related quantities defining the chattering region for ω̄∗ = 152.67 rpm.

Set of points coordinates in Y = (θf , θ̇f , φ) coordinates in Ȳ = (∆θ, ∆θ̇, φ)

D
∗

λ (0.30531, 0.86956, 0.33474) � 2.72953 ∗ 10−10,−5.00814 ∗ 10−8, 0.33474 

D

α
λ (0.30698, 0.84854, 0.33668) � 2.76467 ∗ 10−10,−0.02595 ∗ 10−8, 0.33668 


φP T [s] T [s]

yP ≡ θf (φP ) 0.33717 [rad] 0.00494 [rad]

ẏP ≡ θ̇f (φP ) 0.22313 [rad/s] 0.22315 [rad/s]

T ≡ 2π/ω̄∗ 0.39300 [s] 0.39300 [s]

∆φ = φα − φ∞ 0.00194 [s] 0.00194 [s]

The parabolic relationship between state variables inside D – fundamental condition for applying the map-
ping (6.96)-(6.97) – is proven to be extensible even for choices of D∗

λ slightly far from φα, as demonstrated
by the replication of the impacting trajectory in Figure 6.11 after use of (6.90), where the location of the
“∗” point was selected 5 impacts before such referenced in Table 6.1. Here, the accuracy in prediction of
the accumulation point for the multi-impacting trajectory is remarkable. Associated values can be found in
Table 6.2. Notice that there the time has not been taken in modulus. Nevertheless from the definition of the
mapping, same behaviour is expected to occur when t = φ ≡ mod (t, T ).
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Figure 6.11 — Validation for the local impact map. Circles showing the prediction for impact events by iteration of (6.96), demonstrating
agreement with results generated by simulation of the system flow. The dashed line at the right indicates the accumulation time t∞
calculated numerically.

An important quantity: c in (6.84), has been estimated numerically from system equations (6.110)-(4.23),
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Table 6.2 — Parameter values employed to reproduce the local impacting behaviour within the set D for ω̄∗ = 152.67 rpm for a single
forcing period.

Quantity description value

∆θ∗ relative initial velocity 4.03908 ∗ 10−7 [rad/s]

tα releasing time 2.3017041 [s]

t∗ initial time 2.2997622 [s]

c jerk at zero acceleration 238.81

λ∗ λ initial ≡ ∆θ∗

c(t∗−tα)2
4.48514 ∗ 10−4

t∞ accumulation time calculated numerically 2.2997661 [s]

t̂∞ accumulation time predicted by mapping 2.2997664 [s]

as:

c ≡ ∆
...
θ |φ=φα

⇒
∆θ̈ = M(t)− K

J

[
xA tan (θf ) + d

cos(θf)
− (yA − d0 − d1)

] [
xA+d sin(θf)

cos2(θf)

]
≡M(t)−m(θf )

⇒M ≡ d2

dφ2 θ̂c
d2

dt2
φ = ω2 d2

dφ2 θ̂c ⇒ ∆θ̈ = ω2 d2

dφ2 θ̂c −m(θf )

∆
...
θ = d

dt∆θ̈ = ω3 d3

dφ3 θ̂c − d
dθf

m d
dtθf = ω3 d3

dφ3 θ̂c − θ̇f
d

dθf
m

⇒ c = ω3 d3

dφ3 θ̂c − θ̇f
d

dθf
m
∣∣∣
φ=φα

.

(6.112)

An illustration of the jerk ∆
...
θ and the location of c on it, are depicted in Figure 6.12.

6.7.2 Local behaviour: perturbation of states

Once the chattering region has been defined, it is possible to perform the local analysis of the system dy-
namics in terms of variational equations, by employing the results derived in section 6.5.

Hence, by considering a multi-impacting trajectory with complete chattering described locally in terms
of the set of points listed in Table 6.1, the validation of the predictions of the map can be performed by
comparison with the results generated by simulating perturbed versions of the trajectory, as schematically
depicted in Figure 6.13. Here, the perturbation at the beginning of the chattering regionD∗

λ, has been applied
on a single direction, the velocity, in order to analyze independently its effect in the overall dynamics, as an
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Figure 6.12 — Numerical calculation of jerk value at releasing. (a) Time evolution for relative position of the particle – the follower –
under periodic chattering. (b) Relative acceleration (solid); i.e. d2∆θ/dt2 and relative jerk (dashed); i.e. d3∆θ/dt3, showing the value
of c in (6.112) at zero acceleration by an asterisk. Note that this zero acceleration phase φα coincides with the accumulation point of
the multi-impacting trajectory and is periodic.
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Figure 6.14 — Reconstruction of variations in absolute coordinates for: (a) velocity and (b) position; at the Poincaré surface (6.92)
by employing information of the local map between boundaries of the set D. The perturbation λ̃ has been applied in the direction of
velocity. For both, the solid line represents calculations performed by simulation of system flow, with dashed mapping predictions.

illustration of the subsequent composed behaviour. Therefore from (6.104):

λ̃ , C

[
ṽ
t̃

]
=
[

1
c(t−tα)2

−2v
c(t−tα)3

]∣∣∣
(v∗,t∗)

[
v − v∗
t− t∗

]

⇒ λ̃ =
[

1
c(φ−φα)2

−2∆θ̇
c(φ−φα)3

]∣∣∣
(∆θ̇∗,φ∗)

[
θ̇f − θ̇∗f
φ− φ∗

]

=
[

1
c(φ∗−φα)2

−2∆θ̇∗

c(φ∗−φα)3

] [ δθ̇∗f
0

]
=

δθ̇∗f
c(φ∗−φα)2

⇒ λ = λ∗ + λ̃ ≡ D∗
λ +

δθ̇∗f
c(φ∗−φα)2

⇒
[
ṽP

x̃P

]
≡
[
δθ̇f (φP )
δθf (φP )

]
, Bβ

(
D∗

λ +
δθ̇∗f

c(φ∗−φα)2

)
=

[
c

c (φP − φα)

]
β

(
D∗

λ +
δθ̇∗f

c(φ∗−φα)2

)

⇒ ŶP =



θf (φP )

θ̇f (φP )
φP


+



δθf (φP )

δθ̇f (φP )
0


 ,

(6.113)

with ŶP denoting an estimate of the absolute coordinates YP at the Poincaré section P in (6.92), generated
after simulation of the system equations.

Results obtained numerically for δθ̇∗f , equivalent to a percentage of 0.05% for θ̇∗f in Table 6.1, are depicted
in Figure 6.14. Here it is evident the good matching obtained when resembling the variation of coordinates
at the Poincaré section P , confirming the validity of the mapping and of the assumptions for local analysis.
Note also that a large degree of precision (i.e. for infinitesimally small perturbations), is constrained by the
finite resolution available in the numerical representation and manipulation of data.
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Taking into account the linearization performed by the local analysis, an analogous matching between nu-
merical and analytical predictions is expected when perturbing only the direction of φ, and consequently for
a superposition of both. Nevertheless, for such a case the higher sensitivity of the time derivatives doesn’t
allow to illustrate associated results in a clear manner as in the case of velocity, and then have been avoided.

6.7.3 Local behaviour: parameter incidence

Following and analogue procedure to what just developed for the case of perturbation in coordinates of the
chattering region, it is possible to address the relevant problem of studying the parameter dependence of
system dynamics in terms of variation of the forcing frequency ω.

Then, in order to be performed, it is necessary to include an additional term in the series expansion of λ in
(6.100), representing the action of ω̃∗. Physically, this corresponds with a change in the location of φα and
consequently of c, and hence:

λ̃ = λ− λ∗ ≡ l
(
∆θ̇, φ, ω

)
− l
(
∆θ̇∗, φ∗, ω̄∗

)

≈
[
∂l/∂∆θ̇ ∂l/∂φ ∂l/∂ω

]∣∣
(∆θ̇∗,φ∗,ω̄∗)



θ̇f − θ̇∗f
φ− φ∗
ω − ω̄∗




=
[
C1 C2 C3

]


θ̇f − θ̇∗f
φ− φ∗
ω − ω̄∗




≡ C



δθ̇f

φ̃
ω̃∗


 .

(6.114)

Analogously, the distance (φP − φα) necessary for reproduction of the coordinates at the Poincaré section,
is affected by ω̃∗. Therefore, from (6.103) we have:

[
∆θ̇ (φP )
∆θ (φP )

]
=

[
1
2c (ω) [φP − φα (ω)]2 + c (ω) ε

1
6c (ω) [φP − φα (ω)]3 + c (ω) [φP − φα (ω)] ε

]

=

[
Γ (ε, ω)
Ω (ε, ω)

]
≡
[

Γ (ε∗, ω̄∗)
Ω (ε∗, ω̄∗)

]
+

[
∂

∂ωΓ ∂
∂εΓ

∂
∂ωΩ ∂

∂εΩ

]∣∣∣∣
(ε∗,ω̄∗)

[
ω − ω̄∗

ε− ε∗
]

+O
([

ω − ω̄∗

ε− ε∗
]2
)

⇒
[

∆θ̇ (φP )
∆θ (φP )

]
−
[

Γ (ε∗, ω̄∗)
Ω (ε∗, ω̄∗)

]
≡
[
δθ̇f (φP )
δθf (φP )

]
≈
[

∂
∂ωΓ ∂

∂εΓ
∂

∂ωΩ ∂
∂εΩ

]∣∣∣∣
(ε∗,ω̄∗)

[
ω − ω̄∗

ε− ε∗
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=

[
∂

∂ωΓ ∂
∂εΓ

∂
∂ωΩ ∂
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]∣∣∣∣
(ε∗,ω̄∗)

[
ω̃∗

ε̃∗

]
= B

[
ω̃∗

ε̃∗

]
,

(6.115)

with ε denoting the contribution of the map β (λ) at the releasing phase.

Given the transcendental nature of the system equations, it is not straightforward to solve for explicit ex-
pressions indicating the dependence of c and φα on ω. Therefore, heuristic estimation for the quantities
∂l
∂ω

∣∣
(D∗

λ
,ω̄∗), ∂Γ

∂ω

∣∣
(ε∗,ω̄∗)

and ∂Ω
∂ω

∣∣
(ε∗,ω̄∗)

, has been accomplished by taking advantage of the linear character
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Table 6.3 — Numerical values employed to reconstruct the variation on coordinates at the Poincaré surface, by perturbing the
parameter ω̄∗.

Quantity description value

ω̄∗ reference parameter value 152.67 rpm

ω̃∗ maximum deviation percentage 0.1%
∂

∂ω
l �� (D∗

λ
,ω̄∗) coefficient for dependence of λ on ω 3.9

∂
∂ω

Γ �� (ε∗,ω̄∗)
coefficient for dependence of Γ on ω 0.009647

∂
∂ω

Ω �� (ε∗,ω̄∗)
coefficient for dependence of Ω on ω 0.0002305
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Figure 6.15 — Reconstruction of variations in absolute coordinates for: (a) velocity and (b) position; at the Poincaré surface (6.92)
by employing information of the local map between boundaries of the set D. The perturbation has been applied in the direction of
the parameter ω̄∗. For both, the solid line represents calculations performed by simulation of system flow, with dashed mapping
predictions.

of local expansions; i.e. by isolating the contribution of perturbations in the direction of the parameter ω̃∗

and superimposing the remaining ponderation terms, previously calculated for the case of non-parameter
dependence. Related results are listed in Table 6.3 and validated in Figure 6.15 with a remarkable resem-
blance. Note that essentially the effect characterizing the variation of the parameter, is a rotation (tilt) on the
mean value of the map, whilst preserving – as expected – its lobed shape.

6.7.4 Global behaviour: closing the loop

Adoption of results developed in section 6.6 allows the accurate estimation of the Monodromy matrix and
related quantities at D∗

λ, in order to develop the linear equivalent for the map Θ in (6.107). Table 6.4
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summarizes the main quantities employed in calculations of equation (6.116):


δθ∗f
δθ̇∗f
φ̃∗




k+1

= B


Kββ


λ∗ +KCCA



δθ∗f
δθ̇∗f
φ̃∗




k





 , (6.116)

with:

B =



c (φP − φα) 0

0 c
0 0


 ; C =

[
0 1

c(φ∗−φα)2
−2∆θ̇∗

c(φ∗−φα)3

]
. (6.117)

Notice that an attempt has been done in order to attenuate sources of mislead in computations by limiting,
for example, the local region to the minimum allowable set D = Dλ ∪ {∅}, with |φα − φ∞| → 0 and
by applying the minimum range of perturbations detected numerically. Nevertheless, the sensitivity of the
variations in a fine range implies the necessity of a scale compensation in order to overcome the impossibility
of having an infinite resolution in data. In such a way it is possible to approximate the map for an entire
period, as depicted in Figure 6.16, where effects of nonlinearities and round-off errors become evident.

Table 6.4 — Numerical values employed to reconstruct the variation on coordinates at the releasing phase φα, by perturbing in the
direction of velocity during a complete forcing period.

Quantity description value

ω̄∗ reference parameter value 152.67658 rpm

D
∗

λ ≡ λ∗ initial coordinate for iteration of the chattering map β (0.30697, 0.84867, 0.33665)

δθ∗

f maximum deviation percentage 0.0001%

φα − φ∞ error on estimation of the zero sticking time 0.4201 ∗ 10−5 [s]

ΦȲ Monodromy Matrix for an entire period �� 0.00026 0.00005 0.05310
0.01247 0.00235 −0.69201

0 0 1 ��
Θ∗

Ȳ = A Linearization of Θ map in a vicinity of D∗

λ �� 0 0 0
0.01597 0.00301 0.00130
−0.04830 −0.00912 −8.55305 ��

1/Kβ inverse of the compensation in y-scale for the mapping β 3.145 ∗ 10−10

KC compensation in x-scale for the mapping β 5.24 ∗ 10−12

6.8 Discussion

After developing an analytical study of the transition into aperiodicity of a stable multi-impacting trajectory
with chattering, the following results were obtained.

- An equivalent normal form, for the local map in a vicinity of the phase where periodic sequences
with complete-chattering are interrupted has been developed and generalized for smooth-periodically
forced impact oscillators.
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Figure 6.16 — Reconstruction of variations in absolute coordinates for: (a) velocity and (b) position; at the releasing phase φα by
employing (global) information of the local map through a complete period. The perturbation λ̃ has been applied in the direction of
velocity. For both, the solid line represents calculations performed by simulation of system flow, with dashed mapping predictions.

- Numerical analysis has shown good agreement between the analytical predictions and the simulation
results when perturbations are considered close to the boundary of the chattering region D for a
realistic cam-follower system.

- Numerical results have also demonstrated, that the extension of local analysis across the overall pe-
riodic trajectory is constrained by the impossibility to perform perturbations at an infinitesimal range.

- In practical terms, this implies the necessity to compensate by appropriate scaling the analytical for-
mulas, taking advantage of the repetitive structure of the mapping.
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Chapter 7

Conclusions

In this Thesis we presented the analysis and explanation of the complex dynamics experienced by a prac-
tical impact oscillator: the cam-follower system. The study of the system was performed by combining
experimental, numerical and analytical procedures that allowed to unveil the coexistence between a classi-
cal period-doubling route to chaos and a novel discontinuity-induced bifurcation phenomenon generated at
interruption of a periodic complete-chattering motion.

In particular, after introducing in Chapter 2 some background of the general theory of piecewise-smooth
dynamical systems, in Chapter 3 the description was developed of the main techniques used to perform the
numerical study of models with discontinuities. Attention was focused onto the specific case of complex
dynamics introduced by the detachment of the follower from the cam.

Chapter 4 dealt with this topic in detail within the context of the practical problem associated to valve-float
in combustion engines. Main contributions of this Chapter included the design, modelling, implementation
and instrumentation of a versatile experimental rig for the analysis and verification of the analytical predic-
tions related with complex dynamics and bifurcation behaviour of piecewise-smooth dynamical impacting
systems. Results of this Chapter were published in [6, 10, 5]. The work presented in this Chapter was partly
carried out together with: Stefania Santini, Umberto Montanaro, Gustavo Osorio, Giuseppe Giordano and
Giovanni Rea, from the University of Naples - FEDERICO II.

Chapter 5 presented a more in depth numerical study of the cam-follower impacting model resembling the
dynamical features captured experimentally. The main contributions of this Chapter are: the employment
of novel simulation and continuation techniques for explanation of the most representative zones depicted
in the stroboscopic bifurcation diagram. Additionally, a novel semi-analytic approach for approximation
of the map in a vicinity of the interruption of complete chattering sequences was performed numerically.
The results of this Chapter will be submitted for publication in [5, 7]. The work presented in this Chapter
was partly carried out together with: Petri Piiroinen (from the National University of Ireland - Galway),
Phanikrishna Thota and Joanna Mason (from the University of Bristol - U.K.) and Gerard Olivar Tost (from
the National University of Colombia - Manizales).

Chapter 6 complemented with some analysis the numerical predictions generated in Chapter 5 for the multi-
impacting orbit with chattering. In particular, the main contributions of this Chapter included the linking
performed between the preliminary results of Budd & Dux in [22] and those of Nordmark & Kitisu in [57].
Also, the adaptation of the results in the latter for a realistic cam-follower impacting model through the
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development of the equivalent analytical expression for the local map, describing the abrupt transition into
aperiodicity experienced by the system after interruption of periodic complete-chattering motion. Related
results have been discussed in [9] and [8]. Collaborators of the work presented in this Chapter were: Chris
Budd and Stephen Pring (from the University of Bath - U.K.) and again Petri Piiroinen (from the National
University of Ireland - Galway).

In summary, we have performed the derivation of experimental, numerical and analytical evidence for a
novel discontinuity-induced-bifurcation phenomenon not fully explained before in the literature, by means
of a structured and integrated study of the dynamical behaviour of a representative model inspired from
applications.

7.1 Further research topics

The work described in this Thesis can be continued in many different directions. Some ideas for possible
future work are described below.

• Development of the discontinuity mapping (DM) for a multi-impacting orbit with chattering by com-
position of the chattering map just derived, with the representative equivalent of the remaining part
of the trajectory. In this way, generalization of results currently available for single-grazing trajec-
tories [33] will be achieved. In doing so, refinement of calculations in the vicinity of the chattering
interruption should be performed, as well as to derive a generalized linear equivalent for a multi-
impacting, non-chattering orbit.

• Experimental verification of the incidence on the dynamics of a cam-follower impacting system for
discontinuous profiles. To this aim, preliminary results achieved by Osorio et al [65] [66], can be em-
ployed in parallel with the facilities of the experimental rig, for testing the discontinuous-acceleration
profile currently available.

• Analysis of further novel bifurcation scenarios generated by modifying the features of the discontinu-
ity boundary. As an example, consider a multi-impacting trajectory experiencing complete chattering
motion being accumulated into a boundary intersection of corner type. Hence, it will be likely for the
system to experience some sort of corner-chattering phenomenon.

• Implementation of control strategies to manipulate in a desired manner the dynamics of the cam-
follower system.

• Further investigation in continuation algorithms of piecewise-smooth dynamical systems, pointing
towards detection of DIBs (i.e. monitor functions) and the possible employment of predicted solution
branches as a priori information for online control purposes.
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