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Preface

The thesis deals with the Digital Soil Mapping (DSM) techniques in case
of limited data about soils, and with the high resolution 4D neurological
analysis of precipitation data.

The rationale behind this focus of my PhD thesis has to be related to
the extremely difficult task of the spatial inference of soils and rainfall in
complex geomorphological settings, which is indeed the case for most if not
all hilly and mountain Italian landscapes.

In order to address these topics, after a general introduction, the the-
sis is articulated into three separate parts. Soils (Part I) and precipitation
(Part II) refer to two different case studies, hence they are developed into
two separated parts respectively. Part III reports general conclusions and
appendix.

Contents is articulated in eight chapters and three appendixes, whose
brief overview is the following:

1. The thesis starts with a general introduction (Chapter 1), which de-
scribes the importance of handling high resolution and accurate soil
and climate spatial information. Conventional soil survey is further in-
vestigated to point out its limitations, while highlighting the strength
of digital soil mapping in gaining higher resolution and accuracy. Main
goals are exposed (§ 1.1) to give the reader the big picture of the entire
work.

2. Chapter 2 describe the materials used to address the spatial inference of
pedological and climatic features. One can find the generalities of the
Telese Valley study area (§ 2.1), information about the soil survey that
bore the punctual soil database (§ 2.2.1), and the gathering of auxiliary
maps (§ 2.2.2).

3. Chapter 3 describes how the former materials are elaborated to com-
pute further continuous auxiliary information. There is the Digital Ter-
rain Analysis (DTA, § 3.1), and the geomorphological segmentation of
landscape in landform elements (§ 3.2).
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4. Chapter 4 itemizes the methods of spatial analysis used including a
brief theoretical introduction, while the specific settings for DSM in
my subcase studies can be found in chapter 6.

5. An Explorative Data Analysis (EDA) is given in Chapter 5, which also
introduces how the EDASS tool, specifically designed in VBA under
Access, implements several tasks in very few time. This chapter is
developed between the theoretical introduction of models of spatial in-
ference (Chapter 4) and the specific settings used to address the spatial
inference of selected features (Chapter 6). This position is justified by
both the use of some models of spatial analysis within EDASS, and the
use of EDASS explorative data analysis and stratification capabilities
in delineating case studies.

6. Results about developed models are presented in Chapter 7, where
the focus is put on the investigated pedological features, such as clay
content and soil colour. The part is also dedicated to the discussion of
techniques and procedures.

7. Chapter 8 is entirely devoted to the spatiotemporal rainfall analysis
based on Artificial Neural Networks (ANN, § 4.3.1), with broadenings
towards other disciplines such as Genetic Algorithms (GA) and Geo-
statistics (Indicator Kriging, § 4.2) for the sake of discovering the best
path to precipitation interpolation in space-time domain. An auton-
omy is given to this study due also to the structure of this research
theme, that was quite fully developed to be organized as a paper to be
submitted.

8. In Appendix a through explanation and concern about tools, functions
and scripts is provided. They are designed to speed up the execution
of time consuming operations. Examples are the MultiFieldAdder
tool (Appendix A) which is able to elaborate automatically a lot of
raster layers in order to quickly get a matching table for spatial anal-
ysis. The EDASS tool (Appendix B) which is designed to facilitate
patterns discovery from the pedological database (pedo-db), to allow
the identification of structured variables in space (existence of autocor-
relation), and to enlarge stimuli necessary to build up a mental model
about the soilscape at hand. Further, a script named ANNvsREGR
(Appendix C) is written in the MatLab M-language (with extension
’.m’) to run a semi automatic spatial analysis with both techniques of
artificial neural networks and of multi linear regression, and to compare
performance on out-of-sample data.
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More satisfying motives are needed for clarifying in readers eye the unusual
setting of contents. There are different levels of complexities each of which
in turn earn a proper enlightenment. The common goal is to achieve a
fluent reading — so I apologize when cross references cause jumping from
one chapter to another for tackling the spatial analysis of a soil feature.

Firstly, there is the soil and precipitation separation/aggregation prob-
lem. Separation is twofold, since a soil database is only available for Telese
valley study area, while neurocomputing requires a number of raingauges
larger than the Telese gauged network. Hence to enlarge number of cases
to a statistical minimum it was chosen a wider area, that is the Campania
region raingauge network. There is no aggregation between precipitation and
soils along this thesis because in precipitation analysis the investigated time
support is not compatible with the spatial inference of soil attributes at hand.
This means that it is not useful coping with decadal (10-days) singletons in
producing spatial predictions of rainfall to support analysis of spatial arrange-
ment of pedological attributes; nevertheless it was unnecessary incommoding
neural nets to make predictions at very coarser time resolution. Indeed, in
my very little experience, precipitation data show a nice autocorrelation, as
pointed out by variography, when for instance one aggregates information to
the average yearly precipitation over a study area. As much as time support
is coarser the more linear statistical models like multivariate regression and
geostatistics express with good accuracy and precision in the spatial analysis
of even highly stochastic phenomena. But here I would like to solve the finer
time support to deliver precipitation information for both physically based
hydrologic models or empirical models at sub-catchment/farm scale that are
outside the objectives of my thesis. Furthermore, in literature there is a lack
of empirical rain models dealing with relative high space-time resolution (see
§ 8.1 and Tab. 8.1).

Secondly, there is the separation and consequent nomenclature problem
of some chapters within the soil part (Part I). As a matter of fact, all aux-
iliary information used throughout the thesis should be put in chapter 2 as
materials, but a distinguo is preferred to separate the preexistent informa-
tion from data obtained after processing — so the adjective postprocessing
given to chapter 3. Another split is made for results by distinguishing be-
tween methodological and applied results. Thus it is kept in readers mind
the endeavour (EDASS, chapter 5, and Inference Setup, chapter 6) spent
in outlining the arrangement of procedures for performing spatial analysis,
giving at the same time an insight about the sequence of operations fulfilled.

At last, there is the attribute problem related to soil mapping. Despite
the relative large number of soil attributes stored in the database — which
carried towards EDASS implementation — only few selected features are
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showed. This meets the obligation to avoid redundancy in the application of
techniques, but more importantly a preliminary selection was made by choos-
ing those functional and meaningful variables to soil management. Moreover
the selection is at increasing cost of surveying: there are (i) the Munsell soil
colour as a field morphological descriptor, (ii) the pH as one of the most
simplest soil analytics, then (iii) the fraction of clay content, and finally (iv)
the oxalate Al + 1

2
· Fe extractions.
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Chapter 1

Introduction

Soil remains one of the most important, yet most abused, natural resources
on the planet, indeed a responsible management of soil resources plays a
critical role in the survival and prosperity of many nations around the world
[White, 2005].

Soil is an unconsolidated or loose combination of inorganic and organic
materials. The inorganic components are principally the products of rocks
and minerals that have been gradually broken down by weather, chemical
action, and other natural processes. The organic materials are composed of
debris from plants and from the decomposition of the many life forms that
inhabit the soil. It also contains air and water which all together with the
solid state forms the complex three-phase system called soil.

The understanding of soil features, properties and behaviour enable sus-
tainable land management. During the last decade, in the world and espe-
cially in Europe (e.g. EU Soil Thematic Strategy), a growing attention has
been focused on the soil resource, to understand both the internal mecha-
nisms that define its nature and its relationship with the other environmental
factors. Together with site studies, large areas of Europe have been mapped
at various scales, also within the frame of regional and interregional projects.
The released soil maps are suitable for a large range of utilizations, and they
are commonly used to plan sustainable land uses. In this way soil maps
are strategic tools for land planning at different levels (farm, municipality,
province, district, region, nation).

Conventional methodologies used for soil mapping are standardized since
long time and, for what is concerning the semi detailed and detailed maps,
soil variability is expressed by the soil series. They are the lowest class of
the most commonly used soil classification system (Soil Survey Staff, 1993).
A soil series is a group of soils, or polypedons, having similar horizons and
a very limited variability in their properties, formed from the same parent

1



2 CHAPTER 1. INTRODUCTION

material.
Conventional soil survey is also based on the soil-lanscape concept [Hud-

son, 1992]. Through field investigation and photo interpretation soil mappers
establish their mental model about the actual soil-landscape model over the
area; therefore they are able to formalize the spatial arrangement of soil series
in the different landscape units.

However, standard soil surveys were not designed to provide the high-
resolution soil information required by some environmental modeling [Band
and Moore, 1995]. Indeed the detail of conventional soil maps are not com-
patible with other landscape data derived from more detailed digital terrain
analysis and remote sensing techniques.

Two major limitations prevent a soil scientist to conduct an accurate
and efficient survey, the polygon-based mapping practice and the manual
production process. Under the polygon-based mapping practice two major
limitations occurs, the generalization of soils in the geographic domain and
the generalization of soils in the parameter domain.

The first problem limits the minimum size of a soil body to be delineated
as a polygon on map; this force soil mappers filtering the small soil bodies
and representing only the dominant ones.

The second limitation arises from the central concepts of soils, for which
natural soil bodies are assigned to a set of prescribed soil classes (e.g. Soil
Taxonomy) according to a Boolean Classification. This means that a natural
soil body is assigned to one and only one platonic soil category. This setting
force soil spatial variability to be depicted by a step function with constant
values within polygons and abrupt soil variation at boundaries.

There are several limitation associated with the manual map production
process, but above all the stereoscopic photo interpretation is a subjective,
time-consuming and error-prone process.

The conventional approach organizes the soil spatial variability following a
discontinuous and deterministic scheme. In such a scheme, the change of the
soil forming factors (clorpt) [Jenny, 1941] in the landscape units corresponds
to the (discontinuous) change between soil series (phases of series).

Soils may not be observed everywhere due to time and money obligations.
Therefore, the main objectives of a soil survey are to predict the distribution
of soil characteristics and properties influencing the use and management
and to transfer the information to land users [Edmonds et al., 1985a]. As a
consequence of these obligations and objectives, the large number of stud-
ies made to ascertain the variability of officially established soil series have
often noticed a larger proportion of included soils than what reported and
published in soil reports.

Attention on spatial variability of soil series started to be focused in
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the second half of the fifties, when different authors started studying the
physical and chemical variability of soil series established in the USA [Jacob
and Klute, 1956, Hammond et al., 1958, Thornburn and Larsen, 1959]. From
then on, there was a growing interest on the subject, even if until the middle
of the seventies the studies were always carried out in the USA. Aljibury
and Evans [1961] reported the remarkable variability of water retention and
bulk density measurements for two soil series previously considered relatively
uniform.

Other studies made in those years [Nelson and McCracken, 1962, Andrew
and Stearns, 1963, Mader, 1963, Wilding et al., 1964] remarked the large
variability of soil series from the USA. Powel and Springer [1965] studied the
composition of three soil series using rectilinear transects and found from 17
to 30% inclusions in the first soil series, up to 30% inclusions in the second soil
series, and up to 40% inclusions in the third soils series. Anyhow, the authors
highlighted that most soil inclusions were not significantly different from the
dominant soils (<15%) for what was concerning their similar interpretation.
Wilding et al. [1965], in a study on the variation of soil morphology in three
map units in Ohio, found that all map units included 30% or more inclusions
of other soils and that only 42% of the 240 studied pedons were correctly
classified at series level. Another study made on 48 properties of 220 pedons
belonging to 6 soils series from Ohio highlighted that only 37% of the studied
pedons were correctly classified [McCormack and Wilding, 1969].

Similar studies made during the seventies concluded that impurity in soil
map units, especially at short distance, may reach up to 50% [Beckett and
Webster, 1971] and that the problem was present also in Europe. Indeed,
Bascomb and Jarvis [1976] found, for a soil series in southern England, that
60% of the studied pedons were satisfying the soil series definition and that
soil physical properties were more uniform than soil chemical properties.
During the seventies, Cassel and Bauer [1975] and Baker [1978] studied the
variability of some physical properties, such as bulk density, water retention
at 15 bar tension, and hydraulic conductivity. These properties, even if very
important for applications, were and are very rarely measured during routine
soil surveys.

Studies made in the last years have reached the same conclusions of past
studies, highlighting the current relevance of the problem. Edmonds et al.
[1985b], in a study on the variability of 3 soil map units, corresponding to 3
different soil series, found that similar pedons were placed in different taxa,
while different pedons were placed in the same taxon. Nettleton et al. [1991]
studied about 1500 pedons from soil series recognised in the field and found
that 75% of those pedons were taxajuncts of the established soil series. The
same authors, working on 56 pedons belonging to 6 soil series, found that
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59% of them were out of the taxonomic limits of the series.
Some authors [McBratney et al., 2000] suggest that in order to approach

such difficult problems it is required to recognise that the soil continuum
cannot be described and analysed using deterministic scheme based on dis-
continuities (standard soil survey applied to soil series).
The mechanistic Jenny’s model [Jenny, 1941] explaining qualitatively soil
development is condensed in the equation:

S = f(cl,o, r,p, t, . . .) (1.1)

Much of early work (for a review see Yaalon [1975]) contemplate at most
mono-factorial qualitative or semi-quantitative description of relationships
between soil-forming factors and soil state. The master aim was to under-
stand and not to predict soil from factors. Therefore climofunctions (e.g.
Jones [1973]), organofunctions (e.g. Noy-Meir [1974]), topofunctions (e.g.
Anderson and Furley [1975]), lithofunctions, and chronofunctions (e.g. Hay
[1960]) have been proposed, disregarding the role of interactions between
soil-forming factors themselves (the dots of Eq. 1.1), whose recognition could
conversely be a useful work so that more detailed spatial patterns on soils
are available.

McKenzie and Ryan [1999] proposed a modified version of Jenny’s func-
tional factorial model in which soil is fitted in space domain by means of an
environmental correlation model of the form:

S = f(Cl,T,PM,M, . . .) (1.2)

where S is the soil property or land quality, Cl, T and PM are explana-
tory variables from spatial layers of climate, terrain and parent material
respectively, while M represents other miscellaneous auxiliary layers from
multispectral sensing, land management, etc.

In 2003 McBratney et al. proposed a review of approaches in making
digital soil maps using GIS co-variable layers, and proposed a generic quan-
titative framework into which various methods of spatial inference can take
place. They replaced the Jenny’s clorpt model with the following one in
which factors of soil formation are treated quantitatively and an objective
high resolution numerical handling of soil spatial variability is given:

S = f (s, c,o, r,p, a,n) (1.3)

where
S: is a soil class or attribute;
s: refers to soil punctual data;



1.1. AIMS 5

c: climate;
o: organisms;
r: (relief) topography and land surface parameters;
p: parent material;
a: age factor;
n: spatial position on ground;

The f(.) function of Eq. 1.3 is an empirical quantitative description link-
ing S to auxiliary scorpan factors. It may assume as many forms as soil
science applications borrow models from statistical techniques. Therefrom
there are generalized linear models (GLMs, see Lane [2002]) such as linear
regression and logistic regression, tree models (regression and classification
trees), geostatistics, fuzzy inference systems, artificial neural networks, ge-
netic algorithms, and knowledge-based systems amongst others. In chapter
4 a group of these statistical techniques are briefly introduced and then ex-
plored for the sake of modeling the soil spatial variability of Telese Valley
case study.

As a result of all these considerations, the soil spatial variability and its
relationship with the usefulness of soil maps is a subject of crucial relevance
for the proper management of agri-forestry environments and, more gener-
ally, for land planning. Climate is an interlinked topic that largely affects
landscape performance. In fact soil data often need to be integrated with cli-
matic data in order to address many practical landscape management issues
(e.g. primary production, irrigation, etc.).

Unfortunately the spatial distribution of climatic data, and especially of
high resolution rainfall data, is largely affected by many causes of uncertain-
ties.

In such a framework, I believe that it is of great concern to carry out
research on these topics of soil and rainfall spatial distribution aiming to set
up and test new methodologies enabling a sustainable analysis and represen-
tation of soil-climate spatial variability.

1.1 Aims

Environmental modeling is functional to explain the state and/or the dy-
namic of natural systems, or to make predictions at unknown space-time
elements. In soil science Scull et al. [2003] refers to predictive soil mapping.

Although soils are anisotropic both vertically and laterally [Park and
Vlek, 2002], the research aim is focused on the lateral variation of soils over
the landscape. This variation is here explored by means of different tech-
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niques of spatial inference: (i) the generalized linear models (GLMs) with
the technique of multiple regression, (ii) geostatistical models with ordinary
kriging, regression kriging, cokriging, indicator kriging, and (iii) the group
of soft computing (also known as artificial intelligence) with artificial neural
networks, genetic algorithms and fuzzy logic.

According to Skidmore [2002] these models can be grouped on the basis
of logic in inductive and deductive, and on the basis of processing method
in deterministic and stochastic. Deterministic models can be further divided
into empirical, knowledge, and process based models. For instance an artifi-
cial neural network is an inductive-stochastic model, a fuzzy inference system
is an inductive-knowledge based model, while regression, geostatistics, and
genetic algorithms produce inductive-empirical models.

The big picture of this thesis is twofold, inasmuch a particular soil at-
tribute is put in a spatial framework and is analysed by means of more avail-
able methods; nevertheless a particular technique is explored and exploited in
order to understand its fitness in making accurate predictions about a fixed
environmental feature. The former task is the especially objective of the
spatial analysis of lateral variability of soil features over the landscape (Part
I). The latter one is addressed in the 4D space-time analysis of precipitation
data by means of stacked artificial neural networks (Part II).



Part I

Soil Features Mapping

7





Chapter 2

Materials

2.1 Study Area

The study area called Telese valley is of great strategic interest for both wine
and olive oil production. Then it is not surprising that here the knowledge of
the soil distribution is crucial to classify the landscape in pedoclimatic homo-
geneous environments, called terroir, to be considered essential for the high
quality cultivation of vineyards and olive trees. In addition to the agronomic
features, Telese valley has a large portions of the carbonate relief covered
by chestnut forests at medium altitudes and beech forests at the summit
(about 1000 m asl). Telese valley have a complex geological, geomorphologi-
cal and soil setting; possibly it is one of the most complex areas throughout
the Campania and probably throughout the south Italy. In this area very
ancient soils (paleosols) coexist with very recent soils, with soil chemical and
physical properties very different and very complex relations between land-
forms and soil types.

This area was chosen also because in the years 1996 and 2006 there has
been an extensive soil study producing the Soil map of Telese valley, which
is the first systematic, comprehensive and scientific knowledge contribution
on soils in this area.

There are the particularly fertile volcanic soils (Andosols), that support
ecosystems between the most productive of both Italy and possibly of Europe
[Di Gennaro et al., 1995, Lulli, 1990]. These soils have unique qualities
and behaviors [Maeda et al., 1977, Quantin, 1990] which, overall, confers a
remarkable sensitivity and fragility in the considered landscape.

Geography Telsese valley study area coincides with the low valley of the
river Calore, bounded on the south by massive Taburno-Camposauro, and

9
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ITALY

CAM PANIA

TELESE VALLEY

SAM PLE PO INTS

Figure 2.1: Location of the project area with soil profile sample points

Northeast and Northwest, respectively, from the mountain relief of M. Croce -
M. Ciesco e Colle Sella (M. Monaco di Gioia) which are the extreme southern
extension of the Matese massif.

The area has an extension of 20.000 hectares and lies in the municipali-
ties of Amorosi, Telese, S. Salvatore Telesino, S. Lorenzello, Guardia Sanfra-
mondi, Solopaca, S. Lorenzo Maggiore, S. Lupo, Ponte, Paupisi and part of
Vitulano.

The minimum altitude are naturally situated at the beds of the main
rivers, in particular the Calore River flowing at 35 m asl when connecting
into the Volturno reaches 95 m asl at Ponte. The lower energy mountainous
relieves have an altitude range between 807 m of Monte Croce and 893 m
s.l.m. of Monte Ciesco, 957 m s.l.m. Colle Sella, the dominant relief area is
the Camposauro that stands up to 1390 m asl.

The hydrography of study area is mainly related to the river Calore,
which lies in the study, the lower valley, with an East-West trend, the area
also includes part of of the Volturno River and Torrente Titerno, having
respectively North-South and East-West trend.
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Geology and Geomorfology The geomorphology highlights very dif-
ferent environments in terms of their genesis and evolution. The main
morphological-structural feature being the dominant depression of tectonic
origin elongated in east-west direction where the Calore river flows.

The inter-mountain plain mainly develop in the right side of the river,
where it is characterized by terraces both recent (Holocene) and in progress,
with gradients lower than 5 m, and ancient terraces (upper-middle Pleis-
tocene) located at 150 m asl, these are set on gravel and polygenic deposits
including interlayered sand having a yellow-orange colours. These terraces
have increasing altitude moving towards Ponte and are broken up by tectonic
movement and by the development of the river networks. The tributary
streams of the River Calore are generally characterized by short paths ad
frequent ramifications. The resulting morphology depicts narrow and elon-
gated plains perpendicular to the river, isolated from each other by narrow
V impluvium.

In the left side of the river Calore, the ancient terraces are reduced to
residual limbs that are found mainly in the south of Ponte and in the area
of the cemetery of Solopaca. The morphology of the foothills detrital band
mainly consists of brecce cemented and reddened of Mindel genesis. This
foothills landscape presents bands having different slopes, reflecting mainly
the type of detrital deposit and its degree of hardening. The central area of
the detrital deposit is characterized by pseudo-karst phenomena with doline
subdetritiche.

Areas having volcanic deposits in primary deposition occur at the right
side of the Calore river, in the western sector of the valley. The Campanian
Ignimbrite (Tufo Grigio Campano) occur at the left of the T. Titerno and
in central and northern basin of Castelvenere. The volcanic deposits appear
only rarely in the eastern sector. The hills are constituted by 3 portions:
the first, elongated in east-west direction, mainly arenaceous-marl, divided
by Castelvenere T. Titerno, and the other, with NW-SE direction, is set on
Mesozoic limestones of the Matese - M. Maggiore, and is located immediately
north of settlement Telese Terme; the third, to the east-west trend, shows a
calcarenitc lithology as in the villages of Guardia Sanframondi, San Lorenzo
Maggiore and San Lupo. In the eastern sector, Glacis flaps are set mainly on
argille varicolori with poor physical-mechanical quality, which explains the
greater tendency of this area to collapse and movement of surface.

The higher slopes and acclivi M. Croce and M. Ciesco are defined by four
major faults in NW-SE trend. They are formed by calcareniti Paleoceniche
and Eoceniche facies of the Transition (Flysch Red) and are surrounded by
Miocene flysch.

The massive carbonate of Mount Camposauro is part of the Taburno-



12 CHAPTER 2. MATERIALS

Camposauro relieves, which is made up of different tectonic units. It is
conceivable that after tectonic stages which gave the appearance today to the
region, the establishment of the new cycle is karst been somewhat delayed
by the presence of heat, the lithologic mioceniche waterproof, and has been
arrested and rejuvenation to the changing climatic conditions Quaternary
and for the deposition of pyroclastic deposited transported by wind.

Agriculture The land use has evolved in recent decades, with the growth
of vineyards at the expense of industrial crops such as tobacco. Another
important feature is the cultivation of olive trees that can better use the en-
vironmental and climate resources and ensure an higher income than pasture,
scrub and forest.

Crops are mainly distributed in the town of Amorosi which account for
75% of SAU, to a lesser extent in S. Salvatore Telesino (45%) and Ponte
(38%). The fruit trees (mainly apple) are poorly represented with 14% of
SAU in the town of Telese, 10% in the municipality of S. Salvatore Telesino
and 5% in the municipality of S. Lorenzello.

2.2 Geo-Database

2.2.1 Punctual Soil Database

Telese valley soil survey and mapping, which produced the dataset employed
in this thesis, has been performed with the following stages which are typical
of the standard soil mapping:

1. Analysis of existing mapping documents.

2. Photo interpretation.

3. Soil survey.

4. Chemical and physical analysis of soils.

5. Classification, correlation and mapping of soils.

6. Soil report.

Soil survey was carried out by means of both hand auger observations and
opening of soil profiles in the different soil-landscape units previously iden-
tified. The soil profiles and drillings have been described in accordance with
the Gardin et al. [1995] methodology and were sampled for chemical and
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physical analysis. The studied soils were finally classified according to Soil
Taxonomy and returned on a map 1:25.000.

The availability of specialized determinations has, for almost all soils
collected, enable to retail the family taxonomic level.

The chemical and physical analysis listed in the database were performed
on fine earth (< 2 mm). Analysis were conducted in accordance with the MI-
PAF et al. [2000] methods with the exception of particle size that was made
by the method of pipette at pH 9.5 to reduce the problems of dispersion of vol-
canic soils due to their charge variable properties [Mizota and Van Reeuwijk,
1989]. This method, while providing better data (greater extraction of clay)
of conventional treatment with the sodium hexametaphosphate, however,
underestimate the fine fractions. Then as Mizota and Van Reeuwijk [1989]
reported, the particle size analysis on volcanic soils must always be evaluated
with suspicion, and it should be used especially on a relative scale comparing
horizons within a profile or between different profiles.

The pH is measured in a soil-water suspension 1/2.5; the content in or-
ganic carbon was determined by oxidation with potassium dichromate, the
cation exchange capacity (CEC) and the saturation bases were determined
with BaCl2, and by analysis with ICP-AES (model Liberty 150, Varian).
The extraction of Fe, Al and Si in oxalate (Feox, Alox, Siox) were performed
using the method of Schwertmann [1964] and the content in Fe, Al and Si
were determined by ICP-AES. Analysis of water retention was done by mea-
suring the water content, by weight, the potential values of 1.500 KPa.

2.2.2 Continuous Auxiliary Database

The basic approach behind to correlate NDVI with soil colour is that, because
NDVI is often considered primarily a function of climate, terrain, vegeta-
tion/ecosystem, and soil variables. Therefore, I assumed NDVI is a function
of soil colour and surface temperature at specific location. Here, I have taken
surface temperature and soil colour together, because surface temperature is
greatly affected by soil colour.

From Bishop and McBratney 2001/pag149-150: General description of
Auxiliary data
Due to high cost and time-consuming nature of soil sampling, research in
developing methods for the creation of soil maps from sparse soil data is
becoming increasingly important. In the past 20 years, the development of
prediction methods that use cheap secondary information to spatially ex-
tend sparse and expensive soil measurements has been a sharpening focus of
research e.g. Odeh et al., 1994; Gessler et al., 1995).
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2.2.2.1 DEM

The digital elevation model (DEM), an important source of information, is
usually used to express a topographic surface in three dimensions and to
imitate essential natural geography. This study analyzed digital elevation
data sources and their structure, the arithmetic of terrain attribute extrac-
tion from DEM (chapter 3) and its applications (chapter 6). DEM is also

Figure 2.2: Digital elevation model for Telese valley

used to account for the spatial analysis of high resolution precipitation data
(chapter 8), in order to make time-series predictions at unknown points, or to
make multi–temporal spatial maps of precipitation of a large area (Campania
region).

2.2.2.2 Vegetation cover

The municipalities most affected in the presence of forests are Solopaca and
Vitulano, with the forests of the Camposauro relieves. Here on the slopes at
medium-low altitude (below 1.000 m) the mixed forest is particularly rich in
arboreal species. This strata is usually composed of black hornbeam (Ostrya
carpinifolia), orniello (Fraxinus ornus), Carpinello (Carpinus orientalis), of-
ten oak (Quercus pubescens), cerro (Quercus cerris), and chestnut (Castanea
sativa). At altitude of about 1.000–1.100 m, where climate becomes cool and
moist, beech wood is present. Beech seems to prefer deep soils, fresh and fer-
tile. The undulating summit plains tends to lead towards the development
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Figure 2.3: Corine Land Cover for Telese valley

of pastures.
On the slopes of Monte Croce and Monte Ciesco in Guardia Sanframondi

and S. Lupo, forests are cerro (Quercus cerris) and oak (Quercus pubescens)
in various stages of degradation.

On the Acero Mount and on the slopes of Colle Sella afforestation are
conifers with a recovery of natural vegetation. Particularly interesting the
presence of holm oak (Quercus ilex) on the side of Mount Acero.

2.2.2.3 Pedo-landscape units

The survey of Telese valley soils led to the recognition of three major land-
scape systems (intermountain plains, Preappennine hills and Preappennine
mountains), further divided into seven landscape subsystems, characterized
by combinations of soil forming factors differentiated and reported in Fig.
2.4. They are:

• Alluvial plain (PIM)

• Areas of complex genesis (AGG)

• Ancient river terraces (TET)
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• Foothill Glacis (GLA)

• Hills (CAP)

• Detrital-colluvium areas (RAC)

• Mountain relieves (MAP)

Figure 2.4: Pedo-landscape units for Telese valley
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2.3 Workstation Configuration

The delivery of high resolution digital soil maps requires better and better
performing workstations. The handling of geo-spatial data made of a lot of
georeferenced large matrices to be manipulated, visualised, and processed,
the storing ability of complex geo-databases, and the high demand from
different software, such as Access, ArcGIS or MatLab, for executing intricate
queries in SQL language call for up to date desktop computers.

The computer hardware configuration used to implement the tasks pre-
sented in this thesis is illustrated in the following box:

CPU Intel Pentium Dual Core 3.2 GB
RAM 2 GB
HDD 1x100 GB, 1x200 GB

Graphic Card ATI Radeon X1050 PCI

The operative system is a Windows XP 64 bits with the following programs
installed on:

Microsoft Office: Excel, Access;

GIS: ArcGIS, SAGA, ILWIS;

Statistics: SPSS, R, GSTAT, ISATIS;

Programming: Visual Basic 6;

Miscellaneous: MatLab;

Typesetting: TeXnicCenter.
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Chapter 3

Postprocessing Materials

The identification of the spatial and temporal scales over which soil-forming
processes operates in a landscape and of the factors that are believed to
influence these processes are key issues in soil mapping.

Surface morphology exerts an important role as it governs how the most
important driving forces in soil genesis and namely mass (water, mineral
nutrients) and energy (light, heat), distributes and flows on the land surface.
Therefore quantitative methods of terrain analysis can be used to predict soil
properties in space domain by means of deterministic or stochastic predictive
relationships which put into relation soil features with auxiliary maps.

I make use of two frameworks of landscape analysis [Zhou et al., 2008].
The continuous framework is represented by the Digital Terrain Analysis,
which is based upon an element-wise pixel-by-pixel attribution of values as a
function of surrounding values. The discontinuous framework is developed in
the task of landform segmentation, which semi-automatically classify land-
scape into geomorphological entities (facets).

3.1 Digital Terrain Analysis

The process of quantitative description and derivation of topographic at-
tributes from digital elevation data is known as Digital Terrain Analysis
(DTA).

It can be classified in different ways according to the neighbourhood ex-
tension from which to pick surrounding values, or to the source of the com-
puted attributes, or further to the purpose of the analysis. Hence, in order
of appearance, tools of terrain analysis can operate on local (3x3, or 5x5
window) or on extended neighbourhood (regional, global); can compute ter-
rain parameters directly from the DEM (the so-called primary attributes)

19
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or involving combinations of primary attributes (secondary attributes); or
can compute ecological, geomorphological, hydrological, climatic and so on
parameters.

Digital terrain parameters are here grouped according to Wilson and Gal-
lant [2000] in primary and secondary parameters.

Primary attributes describe the geomorphometry itself of a landscape and
are calculated from directional first and second order derivatives of topogra-
phy. They include slope (rate of change of elevation along the direction of
steepest descent), aspect (orientation of the facet of steepest descent), plan
curvature (rate of change of aspect along a contour line), profile curvature
(rate of change of slope along a flow line), and upslope catchment area (flow
contributing area above a certain length of contour) amongst others.

Secondary terrain attributes quantify the effect of the topographic surface
on the specific vector field at hand [Shary et al., 2002], such as on the gravi-
tational field in redistributing water in landscape, or on the solar irradiance
field in modifying the amount of solar radiation received at surface. They
are calculated from the combination of two or more primary attributes, and
include the topographic wetness index (TPI), the stream power index (SPI)
and the sediment transport index (STI) [Moore et al., 1993].

A wide variety of algorithms for DEM creation and for calculation of
the terrain attributes are available, and it is necessary to list the specific
algorithms used, to make the research design reproducible. Primary and
secondary terrain attributes are given in Table 5.1.

3.2 Fuzzy Landform Segmentation (FLFS)

Soil genesis at a given point in the landscape is the result of the action and
interaction of soil forming factors over time [Simonson, 1959]. Geographical
allocation of soil taxonomic units in the landscape relies upon the spatial
arrangement of type and intensity of the soil forming processes, which in
turn and to a lesser degree are controlled by landform shape and position
itself.

The Milne’s catena concept Milne [1935] was one of the first soil-landscape
models in which the relationship between soil attributes and landscape po-
sition is pointed out. Up to nowadays several soil-landscape models have
been proposed and quite all encapsulate the same premise of Milne’s catena,
scilicet mass and energy movement are the most important driving forces in
landscape evolution and soil genesis. Therefore much endeavour was spent
in delineating flow paths and in segmenting areas of low or high flow, accu-
mulation or drainage patterns using the land surface parameters (LSP) such
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Figure 3.1: Diagram for fuzzy landform segmentation

as those described in § 3.1.

Any scheme of subdivision is arbitrary in principle, but the usefulness of
such a model should be evaluated in terms of its ability to explain observed
spatial variation in soils, as I make for instance for soil texture (§ 7.1) in
Telese Valley study area.

Here is adopted the landform segmentation approach proposed by MacMil-
lan et al. [2000] and successively implemented by MacMillan [2003] in a com-
puter toolkit, LandMapR R©. The landform facet segmentation is an heuristic
fuzzy rule based procedure that allow continuous (opposed to crisp or hard)
classification of the input land surface parameters and afterward of the out-
put landform elements into which landscape is supposed to be divided.
Fuzzy fundamentals will be given in § 4.3.2.
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The procedure (Fig. 3.1) is articulated in more steps as summarized
below (for more details refers to MacMillan [2003]):

1. application of a low-pass filter for smoothing the raw DEM, with a
3x3 and 5x5 two-dimensional moving average window (under ArcGIS
or MatLab);

2. computation of a depressionless DEM by removing pits, and of the ups-
lope contributing area (with the FlowMapR component of LandMapR);

3. selection of a threshold for the upslope area to define the most likely
locations for stream channels and ridges (ArcGIS);

4. calculation of the input land surface parameters slope, plan and profile
curvature, topographic wetness index (as per Quinn et al. [1991]), and of
the three relative positional attributes (as per MacMillan et al. [2000])
PctZ2Str 1, PctZ2Pit2, and Z2Pit3 (with the FormMapR component);

5. fuzzification of the inputs, that is the conversion of the 7 terrain pa-
rameters into fuzzy landform attributes through a set of predefined
membership functions (MatLab);

6. conversion of the fuzzy land surface parameters into 15 fuzzy landform
facets by means of a fuzzy inference system prepared for the purpose
in MatLab, following the specifics of MacMillan et al. [2000] about the
joint membership functions and the heuristic weights;

7. extraction for each pixel of a single landform facet amongst 15 as the
landform element with highest joint membership function (MatLab).

Steps from 4 to 7 are executed in MatLab employing two private sequential
functions which (i) extract through SQL statements the terrain attributes
from the Fox Pro tables created by LandMapR, and (ii) fulfill any action
from the fuzzification of the input parameters till the extraction for each
pixel of the landform facet from the set of the 15 predefined classes.

1Percent pixel height relative to nearest stream and divide
2Percent pixel height relative to local pits and peaks
3Absolute pixel height above the local pit cell



Chapter 4

Methods of Spatial Inference

Merely a very brief summary on some theoretical concepts is given here,
sending to thorough and exhaustive material cited in case of need along the
chapter.

4.1 Multiple Linear Regression

Regression analysis [Hastie et al., 2001] models the relationship between a
target variable, also called response or dependent variable, and one or more
explanatory variables (the predictor or independent variables) by a least
squares function. The vector of response is a linear combination of one or
more model parameters, the coefficients of regression. The model is written
in matrix notation as:

s = Pβ + ǫ (4.1)

where s is the vector of predicted soil attribute, P is the matrix of predic-
tors, β is the parameter vector, and the error component ǫ represents the
unexplained part of the response variable.

The maximum likelihood principle [Dekking et al., 2005] provides a way to
estimate the parameter involved in regression equation using usually ordinary
least squares (OLS), with following underlying assumptions on error:

(i) independently and identically distributed;

(ii) zero mean and finite variance;

(iii) normally distributed.

Linear regression can be viewed as a particular form of Generalized Linear
Models (GLMs) where we have an identity link function, a normal distri-
bution and a constant variance [Lane, 2002]. An example can be found in

23
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McKenzie and Ryan [1999], where authors model total organic carbon using
terrain parameters such as NDVI, Prescott Index, plan curvature and others.

Because of its ease and availability MLR models have been widely used
for the purpose of deriving relationships between soil attributes and ancillary
variables. In soil science literature MLR is also known as scorpan model (Eq.
1.3) [McBratney et al., 2003].

4.2 Linear Geostatistics

Geostatistics is a collection of statistical methods which where traditionally
used in the analysis of mining processes. First developments in the estimation
procedure was carried out by the pioneering work of D. Krige in South African
gold mines. He quantified spatial correlation between observations through
the basic tool in geostatistics, the variogram. After a synthetic function
was adapted for fitting the experimental variogram, it was used to make
predictions at unobserved locations. This procedure, called kriging, was then
developed in a more robust statistical theory by a mathematician named G.
Matheron.

From theory of regionalized variables [Matheron, 1973] gets down that
the spatial variation of any soil variable S can be expressed as the sum of
three components: (1) a deterministic trend component m(u); (2) a random
spatially autocorrelated component R(u); and (3) a random residual spatially
uncorrelated component ǫ.

S(u) = m(u) + R(u) + ǫ (4.2)

where u is the matrix of (x;y; z) coordinates, and S(u) is the random variable

that governs the realizations of s(u) at each point u over study area A.
The family of random variables over A is a random function (RF), for

which the assumption of stationarity has to be kept. That is all the mo-
ments of a random function should be invariant under translation [Arm-
strong, 1998]. Since only the first two moments (mean and covariance) can
be verified on experimental data, a weaker hypothesis is maintained, called
second order stationarity. A further weaker stationarity, the intrinsic hy-
pothesis, is developed as in the case of trend phenomena to make the first
two moments independent from location u, that is

E[S(u + h) − S(u)] = 0 (4.3)

V ar[S(u + h) − S(u)] = 2γ(h) (4.4)

where γ(h) is called semivariogram (see Eq. 4.6).
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Accounting for a single soil attribute in space three kriging variants can
be distinguished as the ways in which the trend component (Eq. 4.2) can
be considered. In simple kriging m(u) is constant and known for whole
study area A, in ordinary kriging it is unknown and constant only within a
local neighborhood. In universal kriging m(u) varies even within each local
neighborhood W(u) as a multi-linear function of locations u (kriging with
a trend) or of exhaustive secondary information (kriging with external drift,
regression kriging) [Goovaerts, 1997, Hengl et al., 2007].

Kriging belongs to the family of generalized least squares regression al-
gorithms, and can be described as a moving weighted average estimating
property values at unsampled points based on the relative distance of the
neighbouring sampled points. The basic estimator common to all kriging
variants is written as

S∗(u) =

n(u)∑

α=1

λα(u)[S(uα) − m(uα)] + m(u) (4.5)

where S∗(u) is the estimated soil attribute, λα(u) is the vector of weights
assigned to the random variable S(uα) whose outcomes is the attribute s(uα)
at sampled points, finally m(uα) and m(u) are the expected values of S(uα)
and S(u) respectively.

To get started with a geostatistical analysis it is necessary to study the
main features of regionalization through the so-called structural analysis.
It involves three main steps, that is the preliminary checking of data, the
calculation of the experimental semivariogram (Eq. 4.6) and the fitting of an
allowed mathematical model to the experimental variogram. After structural
analysis is fulfilled, the successive step consists in kriging or simulation.

γ(h) =
1

2N(h)

N(h)∑

α=1

[s(uα) − s(uα + h)]2 (4.6)

The synthetic model fitted to the experimantal variogram is used to solve
the kriging weights (λα(u)), which in turn are used in Eq. 4.5 to compute
estimated outcomes of the random variable S(u) at unvisited locations u.

In conditional Geostatistical Simulation (GS) the problem is to build a
RFcs (uα) conditional and isomorphic to RF (uα) [Journel and Huijbregts,
1978]. Hence the requirements of a conditional simulation to be satisfied are:

Isomorphism-I — RFcs (uα) has the same expectation of RF (uα) (Eq.
4.3).

Isomorphism-II — RFcs (uα) has the same second-order moment of RF (uα)
(Eq. 4.4).
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Conditionality — At the experimental data points the simulated and ex-
perimental values must be the same.

A web resource for geostatistics and spatial statistics (lattice data, point
patterns, geoinformatics, etc.) can be found at http://www.ai-geostats.org/.
It is maintained by the Institute for Environment & Sustainability, Joint Re-
search Centre.

4.3 Soft Computing

Soft computing is a consortium of methodologies that model very com-
plex real world phenomena accommodating the guiding principle of toler-
ance for imprecision, uncertainty, partial truth and approximation to achieve
tractability, robustness, low-solution cost and better rapport with reality
[Zadeh, 1994]. Its principal constituents are fuzzy logic (FL), neurocomput-
ing (NC), genetic computing (GC) and probabilistic reasoning (PR) [Tsoukalas
and Uhrig, 1997]. Only the first three members are used in this thesis. FL is
a rule-based system that deals with approximate reasoning, vague, ambigu-
ous, imprecise, noisy, or missing input information. NC tackles problems
of system identification, learning or adaptation, while GC is a technique of
systematized random research used to find approximate solutions to opti-
mization problems.

4.3.1 Artificial Neural Network

From Haykin [1998] I extract an exhaustive definition of what an ANN is:

“A neural network is a massively parallel distributed processor
made up of single processing units, which has a natural propensity
for storing experiential knowledge and making it available for use.
It resembles the brain in two respects: (i) knowledge is acquired by
the network from its environment through a learning process, and
(ii) interneuron connection strengths, known as synaptic weights,
are used to store the acquired knowledge.”

Artificial Neural Networks resemble functionally and topologically the
human brain with its billions of neurons and trillion of synapses. The hu-
man brain is capable of highly complex, nonlinear, and parallel computing
engaging highways of connected neurons. It is able to quickly address func-
tions such as perception, pattern recognition and motility. The brain is the
central part of the three-component nervous system [Arbib, 1987], which con-
verts stimuli from the external environment into electrical impulses (through

http://www.ai-geostats.org/
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receptors) that excite brain, and vice versa (through effectors) when brain
generates an output response.

Figure 4.1: Schematic of biological neuron.

A neuron (Fig. 4.1) is the fundamental structural (cellular) unit and
processing element of the brain. It receives input signals along a dendrite, but
first a signal have to cross the synaptic junction, where its electro-chemical
transduction takes place. The stimulus reach the soma (cell body of neuron);
if it is strong enough the neuron fires and conveys the mediated stimulus to
the other neurons connected through the axon. Plasticity is the ability of
neurons to adjust the impedance or conductance of their synapses, and is the
process that leads to memory and learning.

The neurobiological analogy is now ready to promote a fully comprehen-
sion of the structure and function of an artificial neural network. The basic
information-processing unit of an ANN is the artificial neuron (Fig. 4.2).

It is composed of three characteristic elements: (i) a set of links mediated
by weights (w) that conveys the input signals to the soma; (ii) the summing
junction which generates the so called induced local field (Ik); and (iii) the
activation function whose main task consists in squashing the output of the
neuron within a preset amplitude range.

Different activation functions, also called transfer functions, exist and
they can be grouped in three basic types:

• the threshold function fires the neuron when the induced local field
exceeds the assigned threshold;

• the piece-wise linear function embody a linear region of signal trans-
mission;
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• the s-shaped sigmoid function is the most widespread transfer function
used in the construction of ANNs. Examples are the logistic and the
hyperbolic tangent functions defined respectively by

φ(I) =
1

1 + e−I
(4.7)

φ(I) =
eI − eI

eI + eI
(4.8)

The way in which neurons are structured in a multilayer perceptron (MLP)
depends upon the learning algorithm used to train the net. When a neural
network is stimulated by environment undergoes changes in the synaptic
transmittance strength and therefore react in a new way to the environment.
The way in which the synaptic weights (the free parameters of the model)

Figure 4.2: Model of artificial neuron.

are adjusted is a task of the training algorithm. In this thesis the class of
fully connected back-propagation feedforward neural networks (BP-FFNN)
are trained with a teacher (supervised training).

A MLP is made of two or more parallel layers of fully interconnected
neurons; this means that a three-layered net presents an input layer, one
hidden layer and an output layer. MLPs are generally trained with the
error-correction back-propagation learning algorithm. In this framework sig-
nals flow following two basic directions; an environmental stimulus gener-
ates a forward propagation of function signals while the error signals back-
propagate. The error-correction rule may be viewed as a general case of the
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ubiquitous least mean squares (LMS) algorithm and generates an adjust-
ment in a synaptic weight proportional to the product of the learning-rate
parameter, the error signal and the input signal. put equation?

The training phase is a step-by-step adjustment to the synaptic weights
until the system reaches a stopping criteria or a steady state. The nonlinear
input-output mapping computed by a network could led to overtraining (or
overfitting), a phenomenon in which the net may memorize patterns present
in training dataset but not belonging to the underlying function to be mod-
elled. When a network is overtrained, it loses the ability to generalize when
unseen input is given during simulation phase.

ANNs require specialized skills to be implemented, even if nowadays soft-
wares offer the opportunity to execute hard tasks through simplified user
interfaces which for instance mediate the use of complicated mathematical
formulas and computations. Moreover, results entail difficulty of interpreta-
tion.

4.3.2 Fuzzy Logic

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at
the University of California at Berkley, and presented as a way of processing
data by allowing partial set membership rather than crisp set membership or
non-membership. FL’s approach to control problems mimics how a person
would make decisions, only much faster.

FL incorporates a simple, rule-based IF X AND Y THEN Z approach to
a solving control problem rather than attempting to model a system math-
ematically. The FL model is empirically-based, relying on an operator’s
experience rather than on their technical understanding of the system. For
example, rather than dealing with landform classification in terms such as
Shoulder facet occurs when profile and plan curvatures are less then a thresh-
old, slope angle is equal to zero, etc., terms like IF (profile curvature is planar)
AND (plan curvature is planar) AND (slope angle is near level) AND . . . ,
THEN (landform facet is a Shoulder) are used. These terms are imprecise
and yet very descriptive of what must actually happens.

FL has proven to be an excellent choice for many control system appli-
cations since it mimics human control logic. It uses an imprecise but very
descriptive language to deal with input data more like a human operator.
It is very robust, and often works when first implemented with little or no
tuning.
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Chapter 5

Methodological Results:
EDASS

At this stage a complete set of geospatial information is structured in a georef-
erenced database. On one hand there is the soil database composed of punc-
tual data about the vertical variability of investigated soil profiles. On the
other hand there is the continuous data made of auxiliary maps (Tab. 5.1).
To fulfil statistical analysis it is needed a matching table in which collect site
and profile data, and values from terrain parameters at sample locations. For
the purpose the MultiFieldAdder tool (Appendix A) was specifically designed
in Visual Basic language under ArcMap. It is downloadable for free from the
ESRI website at URL http://arcscripts.esri.com/details.asp?dbid=14826.

The fundamental unit of the matching table is the soil horizon; for each
one the table provides a lot of valuable information concerning its label (e.g.
Ap1, Bw, etc.), the pedological position within the soil profile and its thick-
ness (upper and lower bounds), the soil matrix colour (Munsell), the geo-
graphic location (coordinates), the physical and chemical properties (texture,
pH, organic carbon, etc.), the position in the landscape as codified by the
terrain parameters, the vegetation cover type (CLC), the photosynthetic rate
(NDVI), the pedolandscape unit (UDP), and the landform segmented facet
(FLFS). Together more horizons constitute a soil profile.

The qualitative and quantitative analysis of all these features (related
to soil horizons and/or profiles) via explorative statistics and visualization
of information is a very hard task. Indeed a large number of possible in-
terconnection between variables is possible while a huge amount of feasible
stratifications in different domains are kept. For example it is possible to
stratify in geographic domain if considering only a cluster of nearby loca-
tions, and/or in pedological domain when selecting the topsoil, the subsoil, a
particular horizon type (A, B, C), or the whole profile; and/or finally we can
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Table 5.1: Environmental explanatory variables available across Telese Valley study area

Covariate Description Source or reference

ELEV Elevation above sea level DEM from 1:25000 contour lines
ASP Degrees clockwise from north Burrough and McDonell [1998]
SLO Measured in degrees Burrough and McDonell [1998]

PROFC Generated in ArcGIS
Moore et al. [1991], Zeverbergen
and Thorne [1987]

PLANC Generated in ArcGIS
Moore et al. [1991], Zeverbergen
and Thorne [1987]

MEANC Generated in ILWIS Shary et al. [2002]
NORTH Generated in ILWIS Shary et al. [2002]
ACV Generated in ILWIS Hengl et al. [2003]
SPI Generated in ILWIS Hengl et al. [2003]
STI Generated in ILWIS Hengl et al. [2003]
TWI Generated in ILWIS Hengl et al. [2003]
SOLINS Generated in ILWIS Shary et al. [2002]
NDVIL Landsat NDVI

NDVIS5
MODIS NDVI, sum of June-
September (5 layers)

NDVIS16
MODIS NDVI, sum of March-
November (16 layers)

NDVID5
MODIS NDVI, maximum difference
June-September (5 layers)

NDVID16
MODIS NDVI, maximum difference
March-November (16 layers)

UDP Pedolandscape units
FLFS Fuzzy landform segmentation MacMillan et al. [2000]
CLC Corine Land Cover

stratify in feature space if considering only cases for which particular real-
izations of one or more attributes occur (e.g. only locations above a certain
slope degree and elevation, and belonging to a certain landform element).

Therefore a database can be stratified along three principal axis (Fig.
5.1): location (for geography domain stratification), variable (for feature
space stratification), and depth (for pedological stratification along soil pro-
file). Given a complete database at hand, it is possible to extract any par-
ticular sub-case study by stratifying through this three main directions.

A priority can be established amongst the cube of feasible directions:
firstly a target variable to be investigated is chosen and subsequently both
the possible states of other variables and the covariates are set. Secondly, all
or a part of locations is selected. Finally the amount and types of horizons
per profile are fixed. After that one performs Explorative Data Analysis
(EDA, Martinez and Martinez [2005]) through statistical computation and
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graphical visualization.

(a) Database com-
plexity.

(b) Stratification cube. (c) Stratification path.

Figure 5.1: Database exploration across three main components.

Surveying a soil scientist corroborates his own mental model about the
spatial arrangement of soil bodies in a landscape relative to the factors of soil
formation. Then he use the new acquired awareness to explore relationships
between soil properties and environmental covariates. Multitude, volatility
and complexity of human reasoning should be followed by as much quick and
articulated operative stratification capability on the database.

Unfortunately the delineation of a particular case study from a large
database is cumbersome, as one should fulfill the following steps:

1. Stratify the pedo-db following stratification cube; e.g. this step is per-
formed in Microsoft Access through assisted user interface queries.

2. Export to a specific file format; e.g. in a tab delimited text file.

3. Eventually do preliminary adjustments to file header/corpus to make
it ready for the statistical software used; e.g. re-codifying missing or
no data values (Access/Excel have empty cell, R has NA, MatLab has
NaN, ArcGIS has -9999 ), formatting the file header as required by
GSTAT geostatistical software [Pebesma and Wesseling, 1998], or pon-
dering attributes to a certain depth along soil profiles [Meersmans et al.,
2008].

4. Import the file in the statistical software for computing; e.g. R
(http://www.r-project.org/), GSTAT, SPSS or ISATIS.

This list of operations can grow as more specifically-designed tools are used
to implement each step. Then the time required to carry out several trials
based on different stratifications is exponentially raised, or one should content
about very few selected subcase studies.

http://www.r-project.org/
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To make easy the task of exploring vertical and lateral variability of sam-
pled soils, a user friendly tool, EDASS (Explorative Data Analysis with
Stratification and Statistics), is built in Visual Basic for Applications (VBA)
under Microsoft Access (see Appendix B). The objective is to condense in a
single window the power of fast and intricate queries as per the stratification
cube, the ability to create several graphics such as scatter diagrams, experi-
mental semivariograms, and the possibility to make quick and yet preliminary
statistical computations such as correlations, variography and kriging.

The EDASS tool is a handy interface that links in the background the
power of SQL statements possible in Access with graphical and statistical ca-
pabilities of R statistical software. The interoperability Access-R exploited by
the EDASS tool facilitates patterns discovery from the pedological database,
allows the identification of structured variables in space (existence of auto-
correlation), and enlarges stimuli necessary to build up a mental model about
the soilscape at hand.

In Appendix B you will find a detailed description of how the EDASS
user interface is designed to solve this preliminary steps and how it works on
a selected example.

In the following section EDA is carried out for some soil features and it
is pointed out how the pedo-db is inquired by the EDASS tool to extract the
subcase studies for the Telese Valley landscape. Therefore, for each target
attribute it is showed the peculiar selections made to address spatial analysis
by means of specific techniques (chapter 6).
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5.1 The set of proposed stratifications

5.1.1 Clay content

As regards the soil texture, the pedo-database can be distinguished into two
groups of soil samples; the first was analysed by pipette method during the
first phase of soil survey, while the second group was analysed later on by laser
method to quickly enlarge the number of cases at disposal for an artificial
neural network based model of inference.

In order to address spatial analysis by means of more techniques, three
types of stratifications are fulfilled on clay content:

1. pondering for whole soil profile for those samples analysed by pipette
method, to allow ANOVA computation across FLFS facets (§ 6.4);

2. topsoil for profiles analysed by pipette method to run universal kriging
on sparse locations (§ 6.2.1);

3. all horizons analysed by both pipette and laser methods to accom-
plish performance comparison between the MLR (§ 6.1.1) and the ANN
(§ 6.3.1) techniques.

5.1.2 Soil colour

Soil colour is commonly described qualitatively using Munsell soil colour
Quantitative
analysischarts. Colour is therefore decomposed in hue (dominant wavelength), value

(overall brightness) and chroma (saturation of colour) (Fig. 5.2), and is as-
signed to a single Munsell chip under standardized illumination conditions,
that is at sunlight on a clear day (the so called illuminant D65, see Wyszecki
and Stiles [1982]). Even though the Munsell HVC system is a good choice for
handling soil colour, numerical analysis is not possible since the HVC tris-
timulus describe a perceptual colour space in a discrete form and descriptions
include both letters and numbers.

A table (soil_colors.dat) was downloaded from the Munsell Color Sci-
ence Laboratory website, which contains six variables: the three Munsell
HVC components, and the x, y, and Y components of the CIE xyY colour
system. This file is used to perform multidimensional interpolation from
Munsell data to RGB triplets. Operations involved in the conversion be-
tween colour spaces are written in an R script file reported below, in which
equations are borrowed from the paper of Rossel et al. [2006] and from Bruce
Lindbloom website:

http://www.cis.rit.edu/mcsl/online/munsell.php
http://www.brucelindbloom.com/
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# You should modify "INSERT INPUT" in order to set your case.

# There exist two numbering convenction for RGB: [0.0, 1.0] or [0.0, 255.0].

# Last modify on 24/nov/2008 by Giuliano Langella

# set working directory INSERT INPUT

setwd("C:/Dottorato/pedometrics/color")

# read in the soil colors: munsell + xyY INSERT INPUT

soil <- read.table("soil_colors.dat", header=TRUE)

#convert xyY --> CIE XYZ

attach(soil)

soil_X <- x * (Y/y)

soil_Y <- Y

soil_Z <- (1 - x - y) * (Y / y)

detach(soil)

### convert XYZ --> RGB with a gamma of 2.4

soil_X = soil_X/100

soil_Y = soil_Y/100

soil_Z = soil_Z/100

soil_R = soil_X * 3.2406 + soil_Y * -1.5372 + soil_Z * -0.4986

soil_G = soil_X * -0.9689 + soil_Y * 1.8758 + soil_Z * 0.0415

soil_B = soil_X * 0.0557 + soil_Y * -0.2040 + soil_Z * 1.0570

fun1 <- function(x) { y <- 1.055 * ( x ^ ( 1 / 2.4 ) ) - 0.055 ; y}

fun2 <- function(x) { y <- 12.92 * x ; y}

R <- ifelse(soil_R > 0.0031308, fun1(soil_R), fun2(soil_R))

G <- ifelse(soil_G > 0.0031308, fun1(soil_G), fun2(soil_G))

B <- ifelse(soil_B > 0.0031308, fun1(soil_B), fun2(soil_B))

#clip values to range {0,1}

R_clip <- ifelse(R < 0, 0, R)

G_clip <- ifelse(G < 0, 0, G)

B_clip <- ifelse(B < 0, 0, B)

R_clip <- ifelse(R > 1, 1, R_clip)

G_clip <- ifelse(G > 1, 1, G_clip)

B_clip <- ifelse(B > 1, 1, B_clip)

# Deactivate this three lines if range is to be [0.0, 1.0] INSERT INPUT

R_clip <- round(R_clip*255)

G_clip <- round(G_clip*255)

B_clip <- round(B_clip*255)

#add back to original table:

soil$R <- R_clip

soil$G <- G_clip

soil$B <- B_clip

# plot the manually converted data

library(plotrix)

library(colorspace)

plot( as(RGB(R_clip,G_clip,B_clip), ’LUV’), cex=0.5)

# write the output to a file: INSERT INPUT

write.table(soil,"soil_colors-RGB.dat",sep="\t")

#Delete temporary objects

rm(soil,soil_X,soil_Y,soil_Z,soil_R,soil_G,soil_B,fun1,fun2,R,G,B,R_clip,G_clip,B_clip)
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Figure 5.2: The Munsell colour model represented by a cylindrical coordinate system (from
http://www.britanica.com/)

A new file is created (soil_colors-RGB.dat) with information about
three colour systems, the Munsell HVC, the CIE xyY and the RGB. This
file is further manipulated to create an ILWIS domain identifier, with which
assign to a Munsell soil colour label an RGB triplet in order to display the
soil colour as seen in the field (circles, Fig. 5.3). In ILWIS RGB triplets are

Figure 5.3: Munsell soil colour of topsoil after conversion in RGB

transformed in hue, saturation and intensity, the HSI colour system. RGB

http://www.britanica.com/
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data is highly correlated, hence it is transformed in three statistically decor-
related components, HRGB, SRGB and IRGB [Rossel et al., 2006]. The RGB,
HSI and HSIRGB colour systems are spatially investigated in the framework
of regression kriging in § 6.2.2.1, using the following stratification:

1. feature space: RGB, HSI and HSIRGB triplets as nine dependent vari-
ables, and land surface parameters, remote sensing imagery as auxiliary
information;

2. locations: all samples;

3. pedological domain: topsoil.

Another type of manipulation of Munsell soil colour is addressed by means of
PDI

a quali-quantitative assignment of scores to Munsell HVC colour system. The
main goal is to build an indicator of degree of pedogenesis (PDI, Pedogenetic
Degree Index). We know that soil colour definitely does not account for only
its evolution, however the idea behind the proposed decodification is that
each colour component partly hold an information about the power of soil-
forming factors a soil body experienced over time. This way each of the three
components is studied in order to understand for instance the way in which
it could be profitably put in decreasing order of PDI.

The Munsell HVC components are treated separately into two groups,
the hue component on one hand and the value and chroma components on
the other hand. Hue is defined categorically by an alphanumeric label, i.e.
7.5YR, in which letters are abbreviations of the colours of the spectrum (i.e.
YR for yellow-red), and preceding number (i.e. 7.5) which range from 0 to
10 return a more yellow and less red hue as number increases. Value is
specified on a numerical scale from 0 (absolute black) to 10 (absolute white).
Chroma is also described numerically beginning at 0 for neutral greys (the
achromatic point) to a maximum value of 20, which is never approached with
soil.

For Telese valley landscape it is proposed the set of assignments reported
in Tab. 5.2 for hue and Tab. 5.3 together for value and chroma. Here only
the range of values found in the study area are analysed and decodified in
terms of pedogenetic degree index.

It is assumed that hue goes from R to G as soil obliteration by soil-forming
factors over time decreases, and consequently a larger PDIH is assigned.
Similarly, decreasing values of value and chroma are assigned to smaller
PDIV C . Particular attention is payed for simultaneous occurrences of relative
low values for value and chroma; indeed the dichotomy &/xor is adopted in
order to distinguish between simultaneous/exclusive occurrences respectively
for value and chroma.
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Munsell HUE
PDIH Component

1 10R
2 2.5YR
3 5YR
4 7.5YR
5 10YR
6 2.5Y
7 5Y
8 7.5Y
9 10Y
10 . . . G . . .

Table 5.2: Attribution of pedoclass values to hue component

Munsell Value and Chroma
PDIV C from to Component Relation

1
0 2 VALUE

&
0 2 CHROMA

2
0 2 VALUE

xor
0 2 CHROMA

3
3 5 VALUE

&
3 4 CHROMA

4
3 5 VALUE

xor
3 4 CHROMA

5
6 7 VALUE

&
5 6 CHROMA

6
8 10 VALUE

&
7 8 CHROMA

Table 5.3: Attribution of pedoclass values to value and chroma components

This means for instance that PDIV C equal to 1 is assigned only to those
combinations of value and chroma between range [0, 2], which are solved by &
relation. When only one of the two components is within the aforementioned
range a larger PDIV C (=2) is assigned thanks to the xor operator. Note that
the last two assignments of Tab. 5.3 include only the & operator since the
xor combination for these intervals are already solved by lower PDIV C xor
statements. The PDI for the Munsell soil colour is thus defined by

PDI+ = PDIV + PDIV C (5.1)

where the plus sign of PDI+ is adopted to highlight the sum of the two
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quantities. The PDI+ is inserted into the matching table to start explorative

Figure 5.4: EDASS while pondering PDI+. Steps from 1 to 7 are explained in the text.

analysis with EDASS. Main steps are exposed in the following to take insight
about the usefulness of EDASS toolbox in studying for instance the PDI+

variable. Firstly, it is highlighted the stratification power of the tool with
the help of Fig. 5.4, in which numbers correspond to the following list of
operations:

1. The matching table is selected from the database and then is the turn
of the target variable PDI+.

2. Key fields are loaded to allow pondering through selection of all hori-
zons belonging to a soil profile. Also upper and lower bounds variables
are selected for a thickness weighted pondering.

3. Spatial coordinates are loaded.

4. In this box selections on whatsoever attribute is possible to stratify
data.
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5. This Visual Basic listbox lists fields and cases; it is adjourned with
selections made in step 4 and with operations user is running (as the
pondering task itself depicted in Fig. 5.4).

6. Here user can start the pondering task. It computes a weighted ponder-
ing proportional to the thickness of soil horizons considered per profile.
Pondering can be made along the whole soil profile or stratifications
at step 4 allow different upper–lower bounds possibilities. Once oper-
ation is ended user can save results to a text file or continue with the
statistical computation through EDASS.

7. The progress bar activates to give an idea of elapsed and remaining
time.

Figure 5.5: Statistics in EDASS on PDI+. Steps from 1 to 7 are explained in the text.

The first part of operations is now executed, and pondering PDI+ is calcu-
lated. Anyway user might carry on with the statistical analysis by means of
EDASS tool also without pondering. Steps involved in explorative statistical
analysis (Fig. 5.5) are listed below:
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1. By pressing the ’Start Connection’ button the R software is run in
the background and receive in the form of a table data that user have
selected.

2. Here one can handle the R objects (Fig. 5.6 a), by directly viewing
them as tables.

3. Once goodness of R objects is ascertained (discretionary step), it is pos-
sible to perform a bivariate analysis with selected covariate by means
of Pearson correlation coefficient and scatter diagrams (see Fig. 5.6 b).

4. An xy scatterplot with coordinates is made to investigate spatial pat-
terns of target variable (Fig. 5.6 c). To facilitate spatial analysis
through visualization the tool takes care of three aspect: (i) marker
size is plotted proportional to the target variable magnitude; (ii) if a
covariate is selected the marker is filled with a grey scale color propor-
tional to the magnitude of the covariable; (iii) it is possible to load an
Arc-Info ASCII Raster in order to investigate spatial patterns of target
also in relation to a continuous auxiliary information.

5. In this section of EDASS, a semivariogram of target can be plotted
omnidirectional (Fig. 5.6 d) or along preferred directions (Fig. 5.6 e)

6. User can explicit the synthetic variogram which assumes to best fit
experimental variogram.

7. Here a kriging map (Fig. 5.6 f) is produced accounting for the vari-
ogram model previously selected at unknown locations loaded in the
form of an xy table.

Explorative data analysis with EDASS is intended only as a preliminary task,
however it revealed to be very powerful in highlighting the good structure
of the omnidirectional semivariogram of PDI+ (Fig. 5.6 d). In § 6.2.2.2 will
be presented the spatial inference of pondering PDI+ by means of ordinary
kriging.
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Figure 5.6: Main steps in explorative analysis of PDI+ through EDASS
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Chapter 6

Methodological Results:
Inference Setup

In chapter 4 linear and non-linear statistical models of spatial interpolation
are introduced with a brief theoretical description. Here the focus is on the
specific applications developed.

The development of quantitative soil-landscape models is addressed by
using GIS technologies, a digital elevation model, terrain analysis (§ 3.1),
remotely sensed imagery, the powerful exploration capacity of EDASS tool
(chapter 5 and appendix B), and statistical analysis.

A range of statistical data analysis methods are applied to develop models
for spatial prediction using environmental correlation [McKenzie and Ryan,
1999]. These include neural nets (§ 4.3.1), fuzzy logic (§ 4.3.2), generalized
linear models (§ 4.1), and geostatistics (§ 4.2).

6.1 Multiple Linear Regression

Regression models are developed in a stepwise manner. The multiple linear
regression equations are calculated using the significance F test of Fisher
Snedecor at 0.5% level for entering (pIN) an independent variable and at
1% for removing (pOUT) a predictor already in equation.

The stepwise method starts entering the most significant independent
variable (lowest p-value) if and only if its p-value is less than pIN; each time
a new eligible predictor with lowest p-value is entered (if p-value < pIN) the
stepwise procedure reexamine all the predictors in equation and the variable
with the largest probability of F is removed if the value is larger than pOUT.
This process continues until no variables in the equation can be removed and
no variables outside the equation are suitable for entry.

45
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Regression analysis is carried out in SPSS or in MatLab; the results were
preliminary compared between softwares to capture possible differences in
parameter estimation. The ANNvsREGR script of MatLab (app. C) is
preferred when the dependent variable is also analysed by means of artificial
neural networks, such as the case of clay content.

6.1.1 Clay content

In literature the spatial prediction of clay content is found for instance in
the work of Odeh et al. [1994] in which landform attributes derived from
a DEM were used, and in the work of Odeh and McBratney [2000] where
authors put remotely sensed data in a multivariate spatial prediction model
by using NOAA-AVHRR (National Oceanic and Atmospheric Administration
– Advanced Very High Resolution Radiometer) data.

In this work the complete set of horizons is used for each soil profile as
stated in § 5.1.1. The matching table with clay content and auxiliary maps
is elaborated with the MatLab script ANNvsREGR. The script is printed in
Appendix C where also a useful description about its handling in MatLab
environment is supplied.

6.2 Linear Geostatistics

Geostatistical analysis on soil attributes is performed employing the EDASS
tool only for preliminary discovery of spatial structures (chapter 5), but a
finer study is tuned by means of specifically designed softwares, such as R,
GSTAT stand alone and a MatLab tool called mGstat, which implements
among others the GSTAT package.

6.2.1 Universal Kriging of clay content

Universal Kriging (UK) is mathematically equivalent to Regression Kriging
(RK) [Hengl et al., 2007]. UK solves kriging weights using directly the aux-
iliary predictors, while RK interpolation method profit both by a separate
interpretation of the trend component m(u) and residual stochastic compo-
nent R(u) (see Eq. 4.2), and by the possibility to extend the study of m(u)
to a broader range of regression techniques.

The analysis of clay content is here carried out within the stand-alone
GSTAT package. GSTAT requires a batch file with extension cmd that con-
tains a series of commands executed in order. Various information is provided
to the program, such as the matching table file path (e.g. text052.eas),

http://www.r-project.org/
http://www.gstat.org/
http://sourceforge.net/project/showfiles.php?group_id=102150
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the set of predictors (X=18&20&25) and the synthetic semivariogram model
(variogram(clay)) with which fitting R(u).

Here below the Windows command file ’UK_clay_res.cmd’ necessary to
execute universal kriging of clay in Telese valley study area is fully reported
(see GSTAT examples for more insight):

# UK of clay content in Telese valley study area

points(clay): ’text052.eas’,x=5,y=6,v=8,X=18&20&25;

variogram(clay): 298.01 Nug(0) + 5486.25 Exp(7377.63);

mask: ’acv.asc’,’fill_telese20.asc’,’north.asc’;

predictions(clay): ’Pred_UK_clay_res_2.asc’;

variances(clay): ’Var_UK_clay_res_2.asc’;

The # symbol indicates that the current line does not contain command
statements, but a user description of file content. Auxiliary predictors are
provided in the same order in X (from matching table) and in mask (from the
ASCIIGRID maps). Outlets of universal kriging are the maps of predictions
and variances.

Under the DOS command prompt the command file is addressed to
gstat.exe for computation, through the following statement:

>GSTAT UK_clay_res.cmd

GSTAT is located under root\windows\system32\. Another way to do this,
consists in calling gstat from MatLab environment using the mGstat package

>> gstat(’UK_clay_res.cmd’);

The two statements produce an identical result in quite the same time, 61
seconds for GSTAT and 62 seconds for mGstat. In fact the two ASCIIGRID
maps of predictions, the one by GSTAT and the other one by mGstat, were
imported in MatLab and compared pixel-by-pixel. The ARC/INFO rasters
in ASCII format are imported in MatLab through a personal function, the
ImportAsciiRaster. By clicking the link you open the MatLab central file
exchange from which watch or download the code.

In order to properly design the variogram model to put in command
file, it is necessary to calculate the regression of the dependent variable on
auxiliary variables first. This way the matching table (’texture.dbf’) is
firstly imported in SPSS

GET TRANSLATE

FILE=’C:\Dottorato\PEDOMETRICS\DATA\UOT\RegrKr\TEXTURE\texture052.dbf’

/TYPE=DBF /MAP .

http://www.gstat.org/manual/node30.html
http://www.mathworks.com/matlabcentral/fileexchange/19183
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and secondly a correlation matrix is computed to evaluate the performance
of available environmental covariates:

CORRELATIONS

/VARIABLES=argilla limo_tot sabbia_t acv catch fill_tel glf_chan

glf_plai glf_ridg meanc north planc profc spi sti twi aspect_f

slope_ft

/PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE .

The final step is regression analysis. The stepwise method provides a way to
select eligible predictors on the basis of p-values (pIN and pOUT) for inserting
or removing independent variables:

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA COLLIN TOL

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT argilla

/METHOD=STEPWISE acv catch fill_tel glf_chan glf_plai glf_ridg

meanc north planc profc spi sti twi aspect_f slope_ft

/SCATTERPLOT=(*SDRESID ,*ZPRED )

/RESIDUALS HIST(ZRESID)

/PARTIALPLOT ALL

/SAVE ZPRED COOK LEVER .

Although stepwise method can be applied when experimental design does
not contemplates preexistent relationships amongst variables, it should not
be used as a standard method. Indeed a physical relationship between target
and predictors is not always ensured specially for sparse data, since it could
be a result of chance.

Note also that optional functions are activated in the script, such as the
histogram of regression residuals for normality check, and the set of partial
regressions plots to evaluate graphically the contribution of each predictor to
the explanation of target variance.

Residuals are computed using regression coefficients from stepwise method.
Variographic analysis on R(u) is accomplished in gstatw.exe (Fig. 6.1). The
spatial prediction of clay content is given by the sum of the predicted drift
and residuals:

s∗CLAY (u0) = m(u0) + R(u0) =

= qT
0 · β̂gls + λT

0 · (s − qT
0 · β̂gls) (6.1)
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Figure 6.1: Variography of clay R (u) in gstatw

were s∗CLAY (u0) is the predicted clay content at unvisited location u0, q0 is

the vector of p + 1 predictors at u0, β̂gls is the vector of p + 1 drift model
coefficients estimated using the generalized least squares (GLS) method, λ0

is the vector of n kriging weights, and s is the vector of n sampled points.
The thorough procedure of spatial inference of clay outlined above is also

performed using the logit transformation of clay content. This preliminary
step on target is very precious if one would bound the map of predictions
within a predefined range of possible values. Commonly logit is a transfor-
mation used for linearizing sigmoid distribution of proportions. First the
target variable is standardized to the 0 to 1 range

s+ =
s − smin

smax − smin

; smin < s < smax (6.2)

where s is the proportion of clay content (%), then the standardized s+ clay
is logit transformed with

s++ = ln

(
s+

1 − s+

)
; 0 < s+ < 1 (6.3)

The bounds [smin, smax] can represent the physical minimum and maximum
of s, i.e. [0, 100] in the case of clay content, or can represents the limits
of s within sampled points at hand as the [0.4, 68.8] range of clay across
surveyed Telese valley. Here the range [0, 70] is adopted with limits outside
sampled points bounds, inasmuch where dependent s+ is zero or one s++ will
be missing value.
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Universal kriging of logit clay is fulfilled with a GSTAT command file
similar to the one reported in the box on page 47. The file structure is
the same but v=..., variogram(clay) and output ascii rasters are quite
different. The map of predictions ŝ++ (A) made with Eq. 6.1 is imported in
MatLab with the function ImportAsciiRaster, and then is back-transformed
to the original scale:

ŝ(A) =
eŝ++(A)

1 + eŝ++(A)
· (smax − smin) + smin (6.4)

where ŝ(A) is the map of UK predictions of clay content.
In order to compare results, conditional geostatistical simulation [Goovaerts,

1997] is run on one hundred isomorphic realizations RFcs (uα) (pag. 25) us-
ing the following command file under GSTAT:

# GS of clay content in Telese valley study area

points(ARGILLA): ’text052.eas’,x=5,y=6,v=8,X=18&20&25,max=40;

variogram(ARGILLA): 298.01 Nug(0) + 5486.25 Exp(7377.63);

mask: ’acv.asc’,’fill_telese20.asc’,’north.asc’;

method: gs;

predictions(ARGILLA): ’Pred_GS_clay.asc’;

set nsim=100;

Simulated maps are imported in MatLab with the ImportAsciiRaster func-
tion:

>> [Z R] = ImportAsciiRaster(NaN, ’r’, ’d’);

which creates a three dimensional double array of size [nrows, ncols, nsim-
ulations] = [1200, 1500, 100]. The mean value for each pixel is calculated,
shrinking the stack of GS maps into a single average 2–D [1200, 1500] simu-
lated clay map.

6.2.2 Soil colour mapping

6.2.2.1 Regression kriging of colour triplets

An example of regression kriging on quantitative soil colour components can
be found in Hengl and Langella [2007]. Unfortunately does not exist a com-
puter program in which exhaustively solving RK technique. For instance
in R it is possible to separately solve the trend component within its basic
environment, while the residual stochastic component can be analysed by
internal additive packages, such as geoR or GSTAT.

http://www.mathworks.com/matlabcentral/fileexchange/19183
http://www.mathworks.com/matlabcentral/fileexchange/19183
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Table 6.1: Summary of colour components submitted to statistical analysis

Munsell RGB HSI HSIRGB

Hue Red Hue HRGB

Value Green Saturation SRGB

Chroma Blue Intensity IRGB

Here the analysis is carried out in MatLab environment. I have nine
quantitative colour components (Tab. 6.1) pertaining to three colour systems
computed in § 5.1.2 from Munsell HVC. For each colour component is pointed
out a multilinear regression analysis on auxiliary information followed by a
variographic analysis on residuals (see Eq. 6.1). The matching table is
imported in MatLab1:

%LOAD TABLE ’col_rk’

cd(’C:\Dottorato\PEDOMETRICS\DATA\UOT\RegrKr\COLOR\Layers\MatLab’)

load col_rk.mat

Then coordinates, target and predictors data are extracted:

%PREPARE DATA

%--coordinates

xy = cell2mat(col_rk(2:end,[24:25]));

%--dependent: [R G B HUE SAT INT Hrgb Srgb Irgb]

dep_h = col_rk(1,[96:104]);

dep = cell2mat(col_rk(2:end,[96:104]));

%--independent

indep_h = col_rk(1,[38:57 90:93 105:127]);

indep = cell2mat(col_rk(2:end,[38:57 90:93 105:127]));

Now the system is ready to start the stepwise multiple regression using the
’stepwisefit’ MatLab function. The p + 1 drift model coefficients β̂gls are

computed, and used to obtain the (s − qT
0 · β̂gls) residuals (Eq. 6.1):

%STEPWISE REGRESSION

%--current colour component [1,9]

dependent = 9;

%--stepwisefit

[n,n,n,inmodel,stats,n,n] = stepwisefit(indep,dep(:,dependent));

%--organize output of statistical analysis

inmodel = find(inmodel==1);

stats.inmodel = inmodel;

clear n inmodel

%--initialize vector of predictions PLUS intercept

pred_regr = zeros(size(dep(:,dependent),2),1) + stats.intercept;

1Note that % symbol codify for non-command lines, such as eplanatory text.
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%--compute predictions: ’pred_regr’

for pred = 1:size(stats.inmodel,2)

pred_regr = pred_regr + stats.B(stats.inmodel(pred))*

*indep(:,stats.inmodel(pred))’;

end

clear pred ans

pred_regr=pred_regr’;

%--compute residuals

res = dep(:,dependent)-pred_regr;

Experimental variograms are computed with Eq. 4.6 for both the colour
components and the residuals of colour components after detrending them
with regression analysis.

%VARIOGRAPHY

%--selected colour component

[hc_d,garr_d]=semivar_exp(xy,dep(:,dependent));

%--residuals selected of colour component

[hc,garr]=semivar_exp(xy,res);

For each colour component three plots are performed: (i) the semivariogram
of the colour component at hand, (ii) the scatter diagram of the dependent
variable on the MLR stepwise fit, and (iii) the semivariogram of residuals.
The MatLab code is:

%PLOT

%--fig_1

figure(1)

scatter(hc_d,garr_d,’r+’);

title(dep_h(dependent),’FontWeight’,’b’, ’FontSize’,20)

ylabel(’Variance’,’FontWeight’,’b’, ’FontSize’,18)

xlabel(’Distance (m)’,’FontWeight’,’b’, ’FontSize’,18)

%--fig_2

figure(2)

scatter(hc,garr,’r+’);

title(strcat(’RES (’, dep_h(dependent), ’)’),

’FontWeight’,’b’, ’FontSize’,20)

ylabel(’Variance’,’FontWeight’,’b’, ’FontSize’,18)

xlabel(’Distance (m)’,’FontWeight’,’b’, ’FontSize’,18)

%--fig_3

figure(3)

scatter(pred_regr,dep(:,dependent))

title(strcat(’Stepwise - MLR (’, dep_h(dependent), ’)’),

’FontWeight’,’b’, ’FontSize’,18)

xlabel(’Predictions’,’FontWeight’,’b’, ’FontSize’,18)

ylabel(’Measurements’,’FontWeight’,’b’, ’FontSize’,18)
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6.2.2.2 Ordinary kriging of PDI

A preliminary analysis in EDASS (5.1.2) confirmed that pondering PDI+

exhibit a good spatial structure. A variographic analysis and kriging is com-
puted in ISATIS and GSTAT for comparison purpose.

6.3 Artificial Neural Network

In their work McKenzie and Ryan [1999] reported the statement that the
use of suitable environmental variables is more important than the choice
of prediction method. Here I oppose the contrary assertion, because even
though a plethora of suitable auxiliary data is used, I generally observe better
performance of non-linear models build with ANNs on linear models like
regression and kriging.

Neurocomputing is performed in MatLab environment by means of a set
of scripts suitably written to shape the Neural Network Toolbox and MatLab
Base functions to accomplish analysis on pedological data.

6.3.1 Clay content

From McKenzie and Ryan 1999: I start from following statement to prove
the contrary, i.e. NN are more performing then generalized linear models...
Neural nets were unsatisfactory because of the difficulty of interpretation and
requirement for specialised skills. They also noted that the use of suitable
environmental variables was more important than the choice of prediction
method. The generality of these results is not clear because soil data are
often noisy and conditional relationships appear more common.

6.4 Spatial analysis of clay using Fuzzy logic

Fuzzy logic is used in § 3.2 to implement a heuristic fuzzy segmentation of the
landscape in 15 predefined geomorphological elements. The role of landform
segmentation is to provide experimental facets that can be used to stratify
the study site into functionally distinct units and compare the values of a
soil property across these units.

As an example of possible applications, two-dimensional spatial occur-
rence of clay content over the complex Telese Valley landscape is developed.
Clay particles undergo lateral surface and subsurface traslocation according
to gravitational field and water kinetics. Clay particles are expected to be de-
pleted from facets such as shoulders (surface erosion, subsurface eluviation)
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Figure 6.2: Simple soil-landscape model

and backslopes (mechanical transportation), and to accumulate in facets as
upper depressions, footslopes (colluvium), and toeslopes (alluvium) [Park
et al., 2001].

A one-way analysis of variance (ANOVA) is accomplished in SPSS envi-
ronment. One-way ANOVA is used to test for significant differences between
means of two or more independent groups, thus it is used to discriminate for
average clay content amongst landform facets. In figure 6.2 a simple hill slope
soil-landscape model is depicted, representing the facets found for locations
stratified as follows:

1. feature space: clay content as target variable, FLFS as auxiliary map;

2. locations: all samples analysed by pipette method (about 70 profiles);

3. pedological domain: pondering along whole soil profile.



Chapter 7

Applied Results and Discussion

7.1 Clay content

Clay content (%) is put in a spatial framework and is analysed by means of
a range of data analysis methods. These models of spatial inference are (i)
one-way ANOVA, (ii) multiple linear regression, (iii) universal kriging, and
(iv) finally artificial neural networks.

ANOVA The one-way analysis of variance is conducted to test for trends
across the landform facets segmented by the heuristic fuzzy logic procedure
pointed out in § 3.2. The conditional probability that all group means are
different is 0.050 (Table 7.1). This implies that one-way ANOVA rejects the
null hypothesis that the group means are equal.

Table 7.1: One-way ANOVA on pondering clay across FLFS facets

Sum of Squares df Mean Square F Sig.
Between Groups 3641,725 11 331,066 1,814 ,050
Within Groups 67514,410 370 182,471

Total 71156,136 381

Once differences amongst facets are not a result of chance, it is inves-
tigated if average amounts measured are prone to be explained by driving
forces mechanics. In Fig. 7.1 it is possible to evaluate how amount of pon-
dering clay content changes across geomorphological elements.

As pointed out before (pag. 54), there is an expectation on how clay par-
ticles distributes across landscape, as gravitational field exerts directly but

55
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mostly indirectly through water movement an important role. To understand
if FLFS facets can give reason of lateral redistribution of clay particles, av-
erage clay computed for each geomorphological element should be compared
with expectation about that.

Figure 7.1: Clay content across geomorphological elements.

Expectation is confirmed on shoulders (DSH), upper depressions (UDE),
and terraces (TER) inasmuch it is found higher clay content (%) across UDEs
and lower mean values on the other two.

Situation is more complicated on backslope (BS), footslope (FSL), and
toeslope (TSL) facets for different reasons. Backslopes have a consistent
variability as depicted by boxplot; even if any outlayer can be found it is
quite evident that other source of variability occur and should be investigated
further.

Footslope and toeslope cases are instead less clear because those geomor-
phological elements relies in positions where landscape was obliterated by
much varying soil-forming factors over time.
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The result is that it is not possible to find justifications for clay redistri-
bution across BS, FSL and TSL elements.

Multiple Linear Regression Spatial analysis of clay content is here in-
vestigated by means of a multilinear equation in which DEM derived Land
Surface Parameters (LSP) and remote sensing imageries are employed.

The main difference between this technique and ANOVA relies on the
configuration of the explanatory variables. Both LSPs and FLFS facets are
continuous in geographic space, but while LSPs are measured on a continu-
ous scale in the attribute domain, FLFS procedure (§ 3.2) only produces a
nominal variable. At most geomorphological elements could be organized in
a ordinal variable when facets are ordered in the sense of a specific problem
at hand, as was done for the ANOVA sub-case study.

Regression analysis is run with the assistance of ANNvsREGR MatLab
script (appendix C), which also performs neurocomputing on the same sub-
case study. Figure 7.2 depicts clay pattern (see colour variation) along profiles
in locations stratified as specified in § 5.1.1.
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Figure 7.2: Clay content in 3-D space. Color bar indicates clay values. Note that nearby
vertically aligned circles belongs to the same soil profile.

The general settings for multiple regression is pointed out in § 4.1. Taking
advantage of ANNvsREGR script, few manual selections enabled the outlin-
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ing of regression modeling (see App. C):

-1. col_target = 15 and Threshold = 0.5.

-2. subsets = [0.70 0.30].

The resulting multi linear equation is reported below

CLAY = −0.4241 + 0.0816 · ASP − 0.4071 · NDV IS5

− 0.2971 · NDV ID16 (7.1)

It is highlighted the role of MODIS NDVI (NDVIS5, NDVID16) and of ASP
(Tab. 5.1) in explaining the spatial distribution of clay in soils. Maybe the
vegetation cover type codified by multitemporal-enhanced vegetation indices
derived from the MODIS imagery takes partly account for soil types under-
neath, and consequently of the state and distribution of this soil physical
property in space. However this model shows bad goodness of fit as revealed
by scatter diagram of Fig. 7.1 a.
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Figure 7.3: Clay predictions are made with (a) Eq. 7.1, and (b) Eq. 7.2

One limitation of model in Eq. 7.1 is that it does not consider a predictor
to account for vertical variability of clay, whose pattern inevitably exhibit
a 3-D spatial variation (Fig. 7.2). For this reason a new model is built,
considering the horizon number as an ordinal variable. The stepwise fitting
produced the following model:

CLAY = −0.3021 + 0.1346 · ASP − 0.341 · NDV IS5

− 0.176 · NDV ID16 + 01531 · HOR (7.2)

Though the use of more auxiliary maps even to account for vertical variation
along soil profile, regression modeling demonstrate a low level of performance
in analyzing the spatial variation of clay content.
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Universal Kriging

7.1.1 Regression kriging of colour triplets

Munsell HVC system was designed to arrange colours according to equal
intervals of visual perception, thus the primary advantage of the Munsell
system is its ease of interpretation. However, Munsell HVC coordinates are
based on subjective perception and comparison, thus the system is not uni-
form from quantitative viewpoint. Transformations of hue, value and chroma
in more colour systems are performed in § 5.1.2.

Spatial analysis of RGB, HSI and HSIRGB colour systems by means of re-
gression kriging is tried in § 6.2.2.1. Unfortunately neither the semivariogram
of colour triplets nor the semivariogram of residuals show good spatial struc-
tures to justify the use of a geostatistical inference technique for mapping
purpose (Figures 7.1.1, 7.1.1 and 7.1.1).
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7.1.2 Ordinary kriging of PDI

My scores construct with tales of codification/decodification, that is decodec
(i) variography and kriging -investigate relationship between PDI and Al05Fe,
to state robustness of decodec -compare estimated out-of-sample PDI with
Al05Fe to state robustness of prediction of degree of pedogenesis in landscape.

(i) multiple regression; (ii) ANN
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(a) (b) (c)
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(g) (h) (i)
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Figure 7.4: Selected outcomes of clay geostatistical simulation
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Figure 7.5: Spatial analysis of RGB colour system
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Figure 7.6: Spatial analysis of HSI colour system
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Figure 7.7: Spatial analysis of HSIRGB colour system
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Chapter 8

Rainfall Analysis

8.1 Introduction

Water is a prominent environmental factor that regulates natural ecosystems
by complex functions operating both within and between biotic and abiotic
compartments. Precipitation affects water availability; its geographical dis-
tribution is influenced globally by the general circulation of the atmosphere,
the proximity to large water bodies like oceans and great lakes and by to-
pographical barriers. Despite the importance of the way in which water
distributes on earth surface, gauged measurements of rainfall fields are not
adequate to realistically represent such a high space-time stochastic phenom-
ena and do not provide data of good quality (for quality problems/controls
of climatic dataset see Peterson et al. [1998]). The outcome of this situation
is indeed regrettable when rain information is needed to address environ-
mental vital functions for humans such as watering, agriculture, breeding,
forestry and natural hazards among others. On the other side if high reso-
lution precipitation data can be available than many opportunities in taking
successfully care of aforecited environmental functions open when using ei-
ther physically based hydrological models in specific pieces of a landscape or
spatially distributed data driven models.

Unfortunately the space-time distribution of rainfall is decidedly non-
trivial and consequently it is nigh impossible its description by means of a
white box model, that is by numerically solving a complex set of differen-
tial equations. On the contrary, statistic dynamical models provide a useful
framework within which analyze rain data. A summary of selected studies
published from 1990 to nowadays and involved in the prediction (excluding
the forecasting) of precipitation in space and/or in time using merely gauged
measurements is given in Tab. 8.1.
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Table 8.1: Details of selected studies from 1990 to 2008 involved in precipitation prediction from points gauge measurements

No. Source
Models of in-
ference

Predictors
Rain
gauges

Temporal
extent

Resolution
(time/space)

Study area
Indicators of per-
formance

1
Hevesi and Flint
[1992]

OK, OCoK elevation 42 – average year Yucca Mountain, Nevada
(4,200,000 km

2)
r

2 Daly et al. [1994]
PRISM, OK,
RK, OCoK

elevation 52 1982-1988 month-year/5′
Willamette River basin,
Oregon (29,000 km

2)
MAE, MBE

3
Bacchi and Kotte-
goda [1995]

kriging — 71 1926-1967 —
Lombardia, Italy (3,000

km
2)

r

4
Johnson and Han-
son [1995]

regression
elevation, geo-
graphic location

46 1968-1975 day-month/1km
2 Idaho, USA (234km

2) R
2, RMSE

5
Martnez-Cob
[1996]

OK, OCoK, RK elevation 182 10-20 years average year/5km
2

Aragon, Spain (47,000

km
2)

MAE, MSE

6
Frei and Schar
[1998]

advanced IDW — 6600 1971-1990 day/25km
2 European Alps –

7
Pardo-Igzquiza
[1998]

Thiessen
poligon, OK,
OCoK, KED

terrain parame-
ters

51 20 years average year/4km
2

Guadalhorce river basin,
Spain (2864 km

2)
ME, MSE, MSSE

8
Goodale et al.
[1998]

regression,
modified IDW

elevation, geo-
graphical coordi-
nates

618 1951-1980 average month/1 km
2 Ireland r, MBE, MAE

9
Prudhomme and
Reed [1999]

OK, RK
terrain parame-
ters

1003 10 years
median of annual maxi-
mum daily rainfall/?

Scotland ME, RMSE, MBE

10 Xia et al. [1999b]
Barner, Cress-
man, OI, AA,
IDW, regression

elevation 50 1991-1995 month/1km German R
2, MAE

11 Goovaerts [2000]

Thiessen
poligon, IDW,
OK, SKl, KED,
Co-CoK

elevation 36 1970-1995 month-year/1 km
2

Region of Portugal (5,000

km
2)

MSE

12
Kyriakidis et al.
[2001]

SK, RK
low atmosphere
parameters and
elevation

77
Nov1981-
Jan1982

daily seasonal
average/1km

2

Northern California
(108,000 km

2)
cross-validation
error

13
Antonic et al.
[2001]

hybrid: ANN
and OK

elevation, geo-
graphic location,
dummy time

127 1956-1995 month/300 m Croatia (56,538 km
2) r

14
Brunsdon et al.
[2001]

GWR altitude 10925 1961-1990 average year/1km
2 Great Britain

R
2, cross-

validation error

15 Shen et al. [2001]
hybrid: IDW
and nearest
neighbor

— 927 1961-1997 day/polygons Alberta, Canada RMSE, MAE, MBE

16
Brown and Comrie
[2002]

hybrid: regres-
sion and IDW

terrain parame-
ters

572 1961-1990 winter/1km
2

Arizona and New Mexico,
USA

D, PSE, RMSE,
MBE, R

2
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17 Drogue et al. [2002]
PLUVIA, KED,
Co-CoK

terrain parame-
ters

200 1971-1990
average month-
year/100m

Northeast France (30,000

km
2)

adj-R2, MAE,
MBE

18
Vicente-Serrano
et al. [2003]

global, local,
geostatistical
and mixed

geographic and
terrain parame-
ters

380 1950-2000 year/—
Middle Ebro Valley
(Spain)

MBE, RMSE,
MAE, EF, D

19
Marquinez et al.
[2003]

regression

elevation, dis-
tance from
coastline and
west, slope

117 1966-1990 month/200m
Cantabrian Coast, Spain
(10,590 km

2)
adj-R2, MAE,
MBE

20 Gyalistras [2003]
AURELHY, re-
gression, IDW

elevation 673 1901-2000 month/5km
2 Switzerland

RMSE, MAE,
MARE, MRE, r,
. . .

21
Apaydin et al.
[2004]

IDW, lo-
cal/global
polynomials,
spline, SK, OK,
UK, CoK

elevation 117 1971-1999 year/0.01◦
Southeastern Anatolia,
Turkey

ME, MAE, MRE,
RMSE

22 Lloyd [2005]
MWR, IDW,
OK, SKl, KED

terrain parame-
ters

3000 1999 month/661.1m Great Britain
cross-validation
error

23
Oettli and Camber-
lin [2005]

RK
terrain parame-
ters

305 1950-1990 average month/30′′
Southern Kenya and NE
Tanzania

r, R
2, RMSE,

LEPS, SK

24
Pardo-Iguzquiza
et al. [2005]

UK
topography, lati-
tude, wind direc-
tion

184 July 1999 month/1◦ West Africa (22◦ x 22◦)
AIC, ME, RMSE,
MSSE, r

25
Diodato and Cecca-
relli [2005]

IDW, regres-
sion, CoK

elevation 20 40 years
average month-year/0.5
km

Sannio Mountains, Italy
(1,400 km

2)
MSE, RMSE

26
Sicard and Sabatier
[2006]

local PLS1 re-
gression

sea surface tem-
perature

7 1950-1984 month/— Nordeste, Brazil MSE, SSE

27 Celleri et al. [2007] regression elevation 23 1975-1989 month/—
Paute Basin, Ecuadorian
Andes

—

28 Attorre et al. [2007]
D-IDW, UK,
ANN

geographical
location, terrain
parameters

201 1955-1990 month/200 m
Lazio region, Italy (17,200

km
2)

RMSE

29 Guler et al. [2007] regression
geographical
and climatical
variables

11 ? month/250 m Samsun, Turkey r
2

30
Ninyerola et al.
[2007]

hybrid: regres-
sion and splines

terrain parame-
ters

2825 1950-1999 month/200 m
Iberian Peninsula (583,551

km
2)

RMSE, r
2

31
Carrera-Hernandez
and Gaskin [2007]

OK, OKl, KED,
KEDl, BKED

elevation 200
June-1978,
June-1985

day/200 m Basin of Mexico
cross-validation
error

32
Freiwan and Kadio-
glu [2008]

OK
statistical mo-
ments

16 1971-2000 year/contours Jordan skewness, CV
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It is shown that the rainfall modeling is addressed by means of a plethora
of models that can be sorted from statistical viewpoint in four main groups.
First, there are the commonly used techniques such as Thiessen polygons
[Pardo-Igzquiza, 1998], inverse distance weighting (IDW, Shen et al. [2001])
and polynomials or splines [Apaydin et al., 2004].

Second, multilinear regressions [Goodale et al., 1998, Brunsdon et al.,
2001] are either implemented stand alone using terrain parameters and geo-
graphical coordinates [Marquinez et al., 2003] or integrated in hybrid frame-
works as in Brown and Comrie [2002] with IDW.

The third group of models is based on linear geostatistics [Journel and
Huijbregts, 1978, Goovaerts, 1997, Wackernagel, 2003] with univariate [Frei-
wan and Kadioglu, 2008] or multivariate models that address the rainfall
space-time pattern analysis by using different algorithms of kriging as the
cokriging [Hevesi and Flint, 1992], the kriging with external drift [Lloyd,
2005] and the regression kriging [Prudhomme and Reed, 1999, Kyriakidis
et al., 2001].

Finally, the group of soft computing [Tsoukalas and Uhrig, 1997] is merely
represented by the neurocomputing technology [Haykin, 1998, Bishop, 1995]
which the work of Antonic et al. [2001] belongs to.

The size of space-time support is a key setting for dealing with high
resolution precipitation datasets. Disregarding the type of statistical model
adopted to make predictions, the temporal units most often used range from
instantaneous day [Johnson and Hanson, 1995, Hunter and Meentemeyer,
2005] to year [Daly et al., 1994, Goovaerts, 2000] passing through the more
frequent monthly unit [Ninyerola et al., 2007]. Models that make use of
temporal units averaged on long time series are also developed such as the
works by Martnez-Cob [1996] and Oettli and Camberlin [2005].

The regionalization of points rain signals generally decreases the spatial
resolution as the timescale becomes finer. Indeed papers that deal with
daily temporal units address the spatial interpolation at a coarser resolution,
for instance at 25 km2 in Frei and Schar [1998] using the raster format or
within large polygons [Shen et al., 2001] considering the vector data, with few
exceptions as in Carrera-Hernandez and Gaskin [2007] where geostatistical
interpolations are made on a 200x200 m2 grid.

To cope with high spatial resolution Drogue et al. [2002] employed av-
eraged monthly rain data in the PLUVIA framework getting a mean bias
error ranging from -34.0 to 3.7 and a mean absolute error between 5.3 and
15.2 with a cell size of 100 meters. Attorre et al. [2007] accomplished as
well a neurohydrological model based on the single MLP back propagation
neural network template proposed by Antonic et al. [2001], achieving high
resolution precipitation data, namely at monthly timescale on a 200 meters
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squared grid (RMSE is between 168 and 205).
Artificial neural network modeling is very exiguous when compared with

the plenty of the other groups of models. Different justifications could be
drawn: one exogenous explanation is that the spatial interpolation at grid-
ded points is expanding the use of continuous covariates obtained by whatever
meteorological sensing probe, such as from ground radars [Xiao and Chan-
drasekar, 1997, Chiang et al., 2007] or from orbital satellites [Tsintikidis
et al., 1997, Bellerby et al., 2000], relinquishing or relegating to calibra-
tion/validation the use of gauged observations [Joss and Lee, 1995, Rasmus-
son and Arkin, 1993].

Among intrinsic causes, ANNs require advanced statistical and compu-
tational skills to be implemented and evidently localization, density, dis-
continuity and reliability of measurements at raingauge networks don’t offer
neither the actual intrinsic spatial variability of meteorological events [Bacchi
and Kottegoda, 1995] nor the unbiased huge amount of cases necessary for
training a neural network.

Although space-time neurohydrology is rather developed for instance in
the modeling of rainfall-runoff processes [Dawson and Wilby, 2001, Kumar
et al., 2005, Jeong and Kim, 2005], applications that embed the spatiotempo-
ral domain in an integrated framework are very limited in the case of rainfall
prediction. Only the works by Antonic et al. [2001] and Attorre et al. [2007]
are involved in the space-time modeling of precipitation from gauged net-
works by means of neurocomputing.

Nomenclature

AIC Akaike information criterion
Anchor anchorage gauges

ANN artificial neural network
ASP aspect

BAGNET bootstrap aggregated neural network
Bootsample resampling with replacement (bootstrapping)

D Willmott’s agreement index
EAST easting
ELEV evelation
FFBP feedforward back propagation
FFNN feedforward neural network

I/O input/output
MPL multilayer perceptron

MSEPE percentiles of mean squared error
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NNs neural networks
NORTH northing

PCR principal component regression
Randsample resampling without replacement

RELD relief distance
sBN BAGNET selection

SEAD sea distance
SMAPE standardized mean absolute percentage error

SN single network
Ta rain matrix after imputation
Tb rain matrix before imputation
Ti initial rain matrix

Time time variable
YDP yearly percentage difference index

8.2 Aim and hypothesis

The primary aims of this paper are addressed in the following § 8.3, that is the
creation of a complete rain database by infilling gaps, the predictions at high
resolution, the creation of a slim integrated framework for both space and
time dimensions, the recognition of the best NN settings to make predictions
in each different condition, the calibration of NNs in case of small rain dataset
and the accounting for spatial intermittency of rain distribution by means of
a geostatistical filter.

Reliability, completeness and representativeness of precipitation time se-
ries are essential for any model calibration to give accurate results. This
study has the main objective to tackle high resolution precipitation inter-
polation in space-time domain, but first an automatic procedure is pointed
out for infilling missing rain data through a regression imputation technique
[Xia et al., 1999a, Ramesh and Chandramoulia, 2005, Coulibaly and Evora,
2007].

From Tab. 8.1 it is clear that most statistical models deals essentially with
the spatial dimension and are coerced in reiterating model calibration for
each considered time element. Artificial neural network models embed time
dimension in an integrated framework with geographical space and therefore
exhibit the ability to simultaneously interpolate rainfall variable in space
and in time. Further, models that achieve precipitation predictions at finer
spatiotemporal scale are very exiguous and accordingly here a fine resolution
neurohydrological analysis to calibrate a precipitation model is attempted
with a 20x20 m2 grid at a timescale of 10 days, that is the foundamental
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temporal unit has length 10 days (henceforward this unit is called ’decade’
without mistaking it with the 10 years length).

The main restriction of neurocomputing is the need for large amount of
data for training phase so the bootstrap aggregating technique [Breiman,
1996] is appealing to build a model of inference in case of few calibration
data. Cilento subarea is selected from domain wide case study to test the
bagging forcefulness in yielding quite the same results as the full extent study
area in terms of scale and quality assessment of rainfall predictions.

The regionalization of rainfall values by means of NNs simulate not so
likely the spatial intermittency of rain catchments at gauged network, and
this fallacy might be greater as ungauged pixels are further away from mea-
sured locations. A geostatistical filter based on indicator kriging is fulfilled
to cope with the qualitative (binary) occurrence of rainfall in space, which is
able to model the spatial distribution of non rainy pixels.

8.3 Methods and Data

8.3.1 The study area

Situated in the Southern Italy, Campania (14000 km2) is prevalently a hilly
region (50%) of complex terrain lying between 13◦45′ E and 15◦49′ E, 39◦59′

N and 41◦31′ N.
It can be structurally divided into three clearly defined zones stretch-

ing from Northwest to Southeast parallel to the coastline. Inland rise the
Campania and Lucanian Apennines with a coverage of about 34% of total
area. Along the coast lie the Campano Preapennines, lower in height and of
volcanic origin (the extinct Roccamonfina volcano, Campi Flegrei and Vesu-
vius) or limestone (Lattari mountains). To these two parallel structures a
third one can be added: the discontinuous and much less extensive band
of offshore islands of volcanic origin (Ischia, Procida, Vivara and Nisida) or
limestone (Capri). The Campania Apennines consist of an irregular range of
low mountain groups, broken at intervals by intermontane hollows.

Elevation ranges from zero to 1904 meters above mean sea level, whereas
gauges are within zero and 1211 meters.

8.3.2 The independent variables

The input space define each space-time element by a 11 dimensional vector in
which 6 components are geospatial covariates and 5 components are variables
that take into account the temporal variability of precipitation.
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Figure 8.1: Geography of raingauge network. The symbol types, except the downpointing
triangle that represents the four anchorage stations, identify the four classes of gauges as
they are grouped based upon measurement gaps highlighted in Fig. 8.5.

It was found that using four anchorage stations (Anchor) as time depen-
dent variables (see downward pointing triangles of figure 8.1) gave the best
result considering the terrain complexity of Campania Region. It is notewor-
thy for the reason that the anchorage gauges have complete time series and
quite cover the outermost of the study area: the inner continental zone, the
coastal band and the northern and southern areas.

Time is the fifth time dependent variable and is codified using the ordinal
numbers of the 10 days elements in a year. In other words a year is composed
of 36 decades; the instance of the 36 number-of-decade in a year is presented
to a generic neural network as a particular function f(.) of inverse cosine:

time = cos−1(cos(radians(NumDec · 10))) (8.1)

where NumDec is the ordinal decade number vector of size 1x36 which is
multiplied by 10 to enable the complete revolution on the goniometric circle
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after one year is elapsed; deg2rad is a function converting angles from degrees
to radians; cos and arccos are respectively the cosine and the inverse cosine
functions.
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Figure 8.2: Decadal rain measurements are averaged on both the available Campania
gauge network and the number of years considered in the analysis. The linear scaling in
range [0, 1] of average precipitation and of transformed time variable allows the detection
of a straightforward relation between the two variables (Pearson correlation is 0.9).

Antonic et al. [2001] make use of 12 nodes in the input layer just to
account for dummy wise monthly time variable; this is debatable according to
the acclaimed tendency in reducing the network/layer size through a pruning
technique [Haykin, 1998]. Here a transformation function of the Time input
variable is proposed to take account for the cyclic nature of annual rainfall
and devote only one input node to this discrete transformed variable.

Equation 8.1 is preferred to the common sine and cosine functions adopted
by other authors [Hsieh and Tang, 1998] for describing the annual cycle of
time in ordinal format since the transformed time pattern takes account of
the average intra annual variability of precipitation in the whole study area
at decadal timescale.

In Fig. 8.2, 36 mean decadal rainfall values, that have been averaged on
space (216 stations) and on time (35 years), are plotted with Time trans-
formed by Eq. 8.1.

A digital terrain analysis is carried out in GIS environment on the 20
meters DEM of the study area to derive the set of spatial covariates: ele-
vation (ELEV), easting (EAST), northing (NORTH), aspect (ASP), dis-
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tance from the sea (SEAD) and distance from contiguous orographic barriers
(RELD).

GIS returns for aspect a raster in degrees from 0 to 359.9 clockwise for
those pixels with not null slope, while flat pixels are assigned an aspect of -1.
The same criteria is maintained when transforming aspect with the inverse
cosine function (Eq. 8.1), in which the argument of f(.) is:

argument =

{
180◦ and f(.) = −f(.), if asp = −1

asp, if asp = [0, 359.9]
(8.2)

In the first case −π is obtained for flat pixels, while in the second case the
response belongs to the range [0, π] for all other sloping pixels. This transfor-
mation is useful both to linearize circular data and to put in binary format the
presence/absence of sloping for pixels. For instance Brown and Comrie [2002]
propose four dummy terms to define the entire compass direction of aspect,
contrariwise here a continuous variation is adopted. The SEAD represents
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Figure 8.3: The averaged yearly precipitation is plotted as a function of the mountainous
degree (RELD) of gauged pixels in Campania region. The trend is fitted by LOESS
function to highlight trend in data.

a continentality index and is a buffer computed as the Euclidean distance
from coastline. Another Euclidean distance but from adjacent mountains is
calculated considering for each pixel the sum of minimum lengths from the
three orographic levels above 500mt, 1000mt and 1500mt (8.3). RELD can
be viewed as a measure of the mountainous degree of each pixel.
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The values of the geospatial variables are extracted in correspondence
of the gauged pixels through an ArcGIS tool suitably designed and down-
loadable for free at http://arcscripts.esri.com/details.asp?dbid=14826.
Hence a geospatial matching table is built for the Campania raingauge net-
work to allow the analysis of precipitation through neurocomputing.

The coordinates and the elevation are useful in determining the relative
position of points in 3D geographical domain in such a manner to account
for distance among measured and/or unsampled geopoints during simulation
phase. Elevation, aspect and Euclidean distances are capable to account for
the orographic and convectional rains.

8.3.3 The dependent variable: precipitation data

8.3.3.1 Gathering data

Rainfall measurements are administrated by the Italian Environment Protec-
tion and Technical Services Agency, APAT. Each station is manually down-
loaded from the SCIA website of APAT querying the web GIS archive for the
stations that worked in the Italian Region of Campania during the period of
time from 1860 to 2007 (Fig. 8.4).

A hand made Visual Basic application extracts the compressed files, one
for each of the 222 downloaded rain gauges, and creates a unique table with
rainfall and frequency values for all the stations in an automated fashion.

The period of time from 1951 to 1987 shows the higher number of working
rain gauges; in this time period 6 of the 222 stations are discarded due to
complete missing data. Very few stations (< 20) worked during the years
1965 and 1971, so they are removed from the time series.

The space-time rainfall database (Ti, Tab. 8.3) has dimension 35 years
per 216 stations or alternatively 1260 decades per 216 stations. In figures 8.1
and 8.5 rain gauge observations are explored both in feature space (consis-
tency) and in geographical domain (jointly localization and consistency).

8.3.3.2 Preprocessing of data: the regression imputation to fill
gaps

The histogram of Fig. 8.5 indirectly quantifies the amount of missing data
that the 2D target table stores together with the observed values.

Almost half the number of stations recorded more than one thousand
measurements each; those stations with less than 400 time units are a priori
excluded from the analysis with neural networks, and a new target matrix
Tb (i.e. target before regression imputation) is created for the purpose (see

http://arcscripts.esri.com/details.asp?dbid=14826
http://www.scia.sinanet.apat.it/home.asp
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Figure 8.4: Amount of stations that worked during 1860-2007 in Campania region. The two
arrows indicate the starting (S, 1951) and ending (E, 1987) date of the time series selected
for neurocomputing. Inside S-E time period very few gauges measured precipitation in
the years 1965 and 1971, which are removed from database. Note the straightforward
reduction of the regional gauged network after 1987 to nowadays.

Tab. 8.3 for details). The pruned rainfall database is filled by means of

Table 8.3: Rainfall matrix size (stations per decades) and consistency during data prepro-
cessing phase. The initial 2-D target array (Ti) includes all downloaded gauges. Adopting
the threshold of Fig. 8.5 the Tb array (the target before regression imputation) is out-
lined. The rainfall matrix after gaps filling (Ta) has 4 unavailable gauges of 162 for neural
network analysis because of the input anchorage stations.

Matrix Stations Decades Complete
Stations

Total space–
time elements

Missing
space–time
elements

Regression
Imputation

Ti 216 1260 8 272160 89433 (33%) 42742 (48%)
Tb 174 1260 8 219240 45333 (20%) 42742 (94%)
Ta 162 1260 162 204120 0 —

regression imputation task. This technique consists of substituting a missing
value with a new one predicted by a stepwise multilinear regression method.
The multiple linear regression equations are calculated using the significance
F test of Fisher Snedecor at 0.5% level for entering (pIN) an independent
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Figure 8.5: Amount of gauges that worked in the selected 35 years length time period
(1951-1987). The two histograms, in grey and black color, consider the 400 and 100 decades
time lag respectively. The white vertical dashed line indicates the threshold minimum
number of singleton decades (=400) for a raingauge to be considered in following analysis.

variable and at 1% for removing (pOUT) a predictor already in equation
[Oettli and Camberlin, 2005].

The stepwise method starts entering the most significant independent
variable (lowest p-value) if and only if its p-value is less than pIN; each time
a new eligible predictor with lowest p-value is entered (if p-value < pIN) the
stepwise procedure reexamine all the predictors in equation and the variable
with the largest probability of F is removed if the value is larger than pOUT.
This process continues until no variables in the equation can be removed and
no variables outside the equation are suitable for entry.

An automated algorithm is built around the ’stepwisefit’ function of Mat-
Lab to run the task of regression imputation, that is the computation of
model parameters and the filling of gaps with interpolated precipitaion val-
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ues. The code executes the following steps in sequence, looping for each
singleton decadal missing value of Tb array:

1. Recognize a missing value for a given incomplete station;

2. Find all the stations that worked in that decade to use as potential
predictors;

3. Build sixteen alternative models with MatLab ’stepwisefit’ function
involving an incremental number of predictors (each optional model
is built only if there exist both at least 30 decades throughout and 6
decades per predictor);

4. The quality of each alternative model is tested on a temporal neigh-
borhood astride the missing decade (the neighborhood thickness varies
nearby the year length);

5. The model that outperforms the others on the temporal neighborhood
is selected, or when a nearby temporal neighborhood cannot be selected
(e.g. in case of detached missing time unit in dependent gauge) the
model with the highest overall explained variance is selected.

6. Current missing value is substituted by prediction with selected regres-
sion model.

The ’best’ neighbor station algorithm reported by Gyalistras [2003] for
estimating missing values chooses the set of candidate gauges to use as pre-
dictors by geographical proximity to the predictand station and among them
select those stations with a coefficient of determination (R2) larger than a
preset threshold.

This approach suffer of at least two limitations: first, subdomain proximal
gauges might exhibit not the highest correlation coefficient than domain wise
gauges as pointed out in Bacchi and Kottegoda [1995], particularly in areas
of complex terrain where sharpen changes in slope orientation greatly affects
amounts of rain catchments. Second, the use of stations with higher R2
induces a problem of collinearity among predictors.

In current work the statistical distance of stations is preferred to the ge-
ographical one [Ahrens, 2006] as it is possible to find very similar temporal
precipitation patterns at larger distances and because more robust predic-
tions are made. Furthermore even gauges with low r are presented to the
stepwise algorithm such as to account for variance quota unaccounted for by
more collinear predictors (this is mostly true in the temporal neighborhood).
The complete final target matrix (Ta, 8.3) with no gaps in the data is used
to make the space-time inference with artificial neural networks.
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8.3.4 Indicators of performance

The performance of a model can be evaluated using one or more statistical
indicators. They are based upon the error signal computed as the difference
between observations and predictions. Each indicator has a primary purpose
to fulfil, and therefore it can account for the model accuracy simply by a
strange perspective.

Kumar et al. [2005] warned that there exist no single definite evaluation
test to use in NN modelling, and here the approach of multi criteria assess-
ment suggested by Willmott [1982] is fulfilled and summarized in Tab. 8.4.
The performance of neural networks is evaluated on calibration data during
training phase employing global statistics such as the mean squared error
(MSE) used in this work.

In general artificial neural networks are just designed to minimize the
global error, thus for evaluation and comparison of models of precipitation
inference four often used global measures of prediction accuracy are carried
out. They are the root mean squared error (RMSE), the mean absolute error
(MAE), the mean bias error (MBE) and the Pearson’s correlation coefficient
(r). It is worth noting that only a very brief description of these statistics are
provided here while remanding to other authors such as Brown and Comrie
[2002], Gyalistras [2003] and Vicente-Serrano et al. [2003] for applications in
precipitation domain and to Willmott [1982] for further detailed explanations
about above mentioned statistical measures.

Pearson’s correlation has no physical dimension, depicts the accordance
of element wise trends between predicted and observed data and do not
carry information about precision of fitting. The RMSE is highly influenced
by larger errors and outliers, whereas MAE and MBE are less sensitive to
extreme values; these three measures of goodness of fit are given in the same
unit scale of the predictand variable.

The symmetrical mean absolute percent error (SMAPE) is borrowed from
the field of population forecasts [Tayman and Swanson, 1999] where the asym-
metrical MAPE is the most often summary measure of error. SMAPE pro-
vides a more reliable measure of error because it reduces the influence of
outlying observations while using most of information about the error. To-
gether with SMAPE statistic, the agreement index D proposed by Willmott
[1981] has the advantage of avoiding the amplification of outliers. The Akaike
information criterion (AIC; Akaike [1974], Anders and Korn [1999]) gives a
measure of how much a statistical model is overparameterized inasmuch it is
a trade off between accuracy and complexity.
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Table 8.4: Statistical measures used to assess model accuracy. (O: observed value; P:
predicted value; = average symbol; N = number of observations; K = number of model
parameters).

Statistic Identifier Definition

Root mean square error RMSE 2

√
1
N

∑N

i=1 (Pi − Oi)
2

Mean absolute error MAE 1
N

∑N

i=1 |Pi − Oi|

Mean Bias error MBE 1
N

∑N

i=1 (Pi − Oi)

Correlation coefficient r
∑

N

i=1(Oi−O)(Pi−P)√∑
N

i=1(Oi−O)
2
·
√∑

N

i=1(Pi−P)
2

Symmetrical mean absolute per-
cent error

SMAPE
[

1
N

∑N

i=1
|Pi−Oi|

1
2
(Pi+Oi)

]
· 100

Akaike information criterion AIC − 2
N

ln (RMSE) + 2K
N

Willmott’s agreement index D 1 −
∑

N

i=1(Pi−Oi)
2

∑
N

i=1 (|Pi−O|+|Oi−O|)
2

8.3.5 Topology and functionality of Neural Nets (NN)

The first part of this paragraph deals with the arrangement of a prototype
NN with best general performance. It will constitute the building block
of three inference systems presented later on: the single network ’SN’, the
’BAGNET’ ensemble and a particular subset of BAGNET named ’sBN’.

The optional frameworks are calibrated and tested using three subsets
of the homogeneous I/O data arrays, without the four anchorage stations
just used as predictors. These are the training, validation and testing sub-
sets which are randomly drawn with percentages of about 70, 15 and 15
respectively, using two alternative strategies: (a) the random resampling
without replacement (hereafter called randsample) of the spatial elements
(rain gauges) and (b) the random and redundant (that is with replacement)
resampling of spatial elements through the bootstrap technique (for more
details see e.g. Jia and Culver [2006]).

Each b-th bootstrapped resample is hereafter called bootsample to dis-
tinguish it from the randsample and particularly to highlight the existence of
several resampled replicates in the same subset. The testing and validation
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subsets are always randsampled, while the training subset is randsampled
for SN systems and bootsampled for ensembles of neural networks in order
to accomodate the stacked generalization framework [Wolpert, 1992, Zhang,
1999]. It combines with different techniques (average, regression, PCR, etc.)
the outlet of all NN components where to each one a different bootsampled
training replicate of the learning set is presented.

As a result of preliminary runs the size of each training bootstrap replicate
equals the size of the training subset (i.e. the 70% of the initial learning
set) since any improvement in accuracy arises when decreasing the 36.2%
of the leaved out instances by enlarging the size of the bootstrap replicates
[Breiman, 1996]. Conversely the validation subset is never bootsampled but
randsampled for ensuring the validation of the neural network performance
on the maximum number of available diverse space points.

The adaptation of the free parameters (weights and thresholds) to ad-
dress the input/output mapping function might evolve in overtraining, a
phenomenon in which a NN discovers features present in training data but
that doesn’t belong to the underlying function to be modeled (i.e. noise). To
avoid the overfitting trouble training and testing signals are jointly submit-
ted through the early stopping technique. Moreover, the validation dataset
is submitted in simulation phase to evaluate to which extent the adaptation
of the synaptic weights occurred in training phase produces the goodness of
fit on the out of sample data (i.e. generalization ability on independent data
drawn from the same population of training and testing sets).

The procedure of splitting the complete homogeneous dataset in the three
mentioned subsets consists in randsampling the first random 15% to consti-
tute the validation data, then it is the testing set turn with another random
15% quota in randsample strategy, and finally the residual 70% of data is
bootsampled or randsampled in consideration of how many NNs are trained
in the inference system at hand. The validation subset has the same set of
out of sample gauges in every NN based inference system considered to make
comparable the goodness of fit of the alternative models. In Fig 8.6 a broad
perspective about the main steps involved is given.

8.3.5.1 NN configuration: sensitivity analysis for selecting the
proper prototype

To properly configure a multilayer perceptron (MLP) a long trial and error
procedure is required. Hence three random subsets (training, validation and
testing) occasionally of lesser size are drawn from the Ta matrix (8.5) to
speed up the analysis of how different settings of the parameters could affect
the performance of an ANN. A feedforward backpropagation (FFBP) neural
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Figure 8.6: Flux of information from predictors to interpolated rainfall. A 3-D matrix with all signals is built for the study area and
than from the space domain is extracted the geospatial data relative to gauged locations. Two resampling techniques, randsample and
bootsample (see text for details), are pointed out to calibrate/validate the neural networks for the SN, the BAGNET or the sBN inference
systems. Multi-temporal spatial maps of rainfall are made stratifying the 3-D array for the interested temporal extent and running the
simulation with trained NNs for the domain-wide geographical space. The stratification from the 3-D matrix of one or more ungauged
points for the whole time extent allows the simulation of precipitation time series at unobserved points.
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network topology with three layers and architecture 11 : 11 : 1 with bias
is selected as the initial configuration. A hierarchy between parameters is

Table 8.5: The input subset matrices used in neurocomputing have size GxDxPxB*. The
B dimension does not exist in testing and validation subsets. Target arrays have the
same size of input arrays, except for predictors dimension which is substituted by the
unidimensional dependent variable

Phase Training Testing (r) Validation (r)

Prototype Selection 30x360x11x10 (b) 7x360x11 7x360x11
SN–Campania 118x1260x11 (r) 20x1260x11 20x1260x11
BAGNET–Campania 118x1260x11x100 (b) 20x1260x11 20x1260x11
sBN–Campania 118x1260x11x?? (b) 20x1260x11 20x1260x11
SN–Cilento 28x1260x11 (r) 7x1260x11 7x1260x11
BAGNET–Cilento 28x1260x11x100 (b) 7x1260x11 7x1260x11
sBN–Cilento 28x1260x11x?? (b) 7x1260x11 7x1260x11

pointed out to progressively enable the recognition and the exploitation of
those more performing settings. The imprint idea about the sequence and
type of parameters that should be investigated is to some degree similar to
the neurohydrologic rainfall/runoff modeling template proposed by Dawson
and Wilby [2001].

The template developed and suggested in the present application is artic-
ulated in succeeding steps where the best parameter settings acknowledged
in the previous stage is embodied in the stage in progress (except for the first
one). The MatLab nomenclature and functions reported below are explained
in more detail in Demuth et al. [2008].

1. Selection of the Training function among five inductive backpropaga-
tion learning algorithms:

a. Gradient descent with momentum and adaptive learning rate (traingdx);

b. Resilient (trainrp);

c. BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton (trainbfg);

d. One step secant (trainoss);

e. Levenberg-Marquardt (trainlm).

The best performing learning functions are the trainrp and the trainlm.
The latter algorithm [Hagan and Menhaj, 1994] is faster and more
performant in regression problems.
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2. Selection of the Transfer functions for the artificial neurons. Since the
nodes are arranged in three layers (input, hidden and output) the iden-
tification of the best activation function involve each layer as a unique
block. Two types of transfer functions are reviewed, the linear transfer
function (p) and the hyperbolic tangent sigmoid transfer function (t).
The eight possible combinations of ’t’ and ’p’ units are considered:

’p:p:p’, ’t:t:t’, ’p:p:t’, ’p:t:p’, ’t:p:p’, ’p:t:t’, ’t:p:t’, ’t:t:p’,

with t=tansig and p=purelin. The best combination of transfer func-
tions for training and validation subsets is constantly ’t:t:t’ for both
’trainrp’ and ’trainlm’ algorithms, while for testing it is erratic with a
major redundancy of the ’t’ element in more than one casual positions.
Hence the ’t:t:t’ combination is selected, with the ’trainlm’ training al-
gorithm which outperformes the ’trainrp’ in whatever transfer function
setting.

3. Data cleansing: transformation of precipitation data with a power func-
tion using a coefficient of 0.2. The frequency distribution of untrans-
formed rainfall has a main vertical pattern (Fig. 8.7a). The monolith
of data, that also accounts for the non rainy decadal units, assumes a
wider distribution as coefficient of power function decrease.
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Figure 8.7: Rain histograms for varying coefficients of power transformation. Untrans-
formed has coefficient equal to 1.
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4. To squash the magnitude effect of the input/target variables data stan-
dardization is adopted comparing three alternative ranges: [-1, 1], [-0.9,
0.9], [-0.8, 0.8]. The limits of these ranges are chosen to accommodate
the hyperbolic tangent sigmoid activation function which is bounded
between -1 and 1. The output signal of an artificial neuron never reach
the theoretical minimum or maximum of its sigmoid function [Masters,
1993, Maier and Dandy, 2001]; indeed a neuron equipped with sigmoid
transfer function should be considered fully activated at around 0.9
and turned off at -0.9. The performance of a NN is evaluated on six
cases using the three linear scaling ranges both with row and power
transformed rain data. The ±0.8 range on row rain data and the ±1.0
range on power transformed rain data highlight the higher accuracy.
A decomposition of the rain intensity signal into three ranges (peak,
middle and bottom) is carried out on the validation subset in order to
explore the likelihood of the two best cited cases with respect to this
signal magnitudes. The decomposition is based on the analysis of the
box and whisker plot, from which two thresholds, the lower quartile and
1.5 the interquartile range from upper quartile, are selected to split the
rain data in feature space. The peak signal with the ouliers, the middle
signal groups the higher amount of values that are comprised between
the two mentioned thresholds and finally the bottom signal with values
ranging from the non rainy elements (zero values) to the first quar-
tile. This procedure is useful because breaking up the performance
enables a deeper insight on how a basic NN generalize on different sig-
nal magnitudes. Results are reported in Tab. 8.6. As confirmed by
most indicators the ±0.8 scaling range on row rain data outperforms
the ±1.0 range on power transformed rain data in peak and conversely
the latter case gives better predictions in middle and bottom signals.
Accordingly to the frequencies 5%, 70% and 25% of the precipitation
values within the intensity ranges peak, middle and bottom, it is se-
lected the ±1.0 linear scaling range with 0.2 power transformed rain
data as the best I/O data arrangement to train a neural network.

5. Selection of the proper dimensionality of the hidden layer. The oppor-
tunity of higher dimensionality of the hidden layer discloses a critical
trade off between a global perspective of the trained NN and the unde-
sired storing in synaptic weights of MLP of noise present in the input
space. Four alternative sizes of the hidden layer with 11, 16, 22 and
33 artificial hidden neurons are investigated. The hidden layer topolo-
gies with 11 and 33 artificial neurons give quite the same goodness of
fit on validation data, outperforming all other topologies; therefore ac-



88 CHAPTER 8. RAINFALL ANALYSIS

Range Intensity RMSE MAE r SMAPE AIC

0.8 peak 63.63 51.04 0.4593 32.79 5880.4
middle 19.14 13.43 0.7326 56.76 52750.9
bottom 10.55 5.79 0.1421 804.41 15238.3

1.0 peak 67.61 55.29 0.4585 35.46 5958.3
middle 19.07 13.48 0.7355 53.01 52678.9
bottom 8.39 2.82 0.1149 302.31 13812.8

Table 8.6: Effect of normalization range and intensity decomposition on performance

cording to Ockham’s razor the cheaper model with 11 hidden nodes is
selected (from the Latin statement of the principle: entities should not
be multiplied beyond necessity).

6. Selection of the range of weights and biases (the so called free param-
eters) for initialization: ±10−x, for x ∈ [0, 4].

The finest configuration is a multilayer perceptron backpropagation neu-
ral network with three layers and architecture 11:11:1, training algorithm
Levenberg-Marquardt, activation function of type tansig for all nodes and
custom initialization of thresholds and weights inside range ±100. This will
be the neural network prototype used throughout the paper.

8.3.5.2 Description of learning paradigms

The training paradigms are composed of the multilayer perceptron block
properly tuned and of the input/output (I/O) pair of signals. In the previ-
ous paragraph the behavior of the explored learning parameters led to the
identification of the most successful neural network arrangement able to map
the rainfall pattern from the proposed set of predictors.

This well tuned NN block is embodied in three alternative inference sys-
tems whose architecture and functionality are unfolded afterwards. It might
be of interest to compare the ability of ANNs in addressing the predic-
tors/rainfall mapping using very small I/O pairs such as in the Cilento case
study for a temporal extent from 1973 to 1987. Accordingly, the three in-
ference systems are developed for both the Campania Region and for the
Cilento subarea (Tab. 8.5).

SN The Single Network (SN) system is composed of only one 11:11:1 three
layer MLP BP prototype component. It is trained and then validated with
training, testing and validation subsets drawn in randsample strategy.
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BAGNET The parallel connection of more prototype outlets for compos-
ing an ensemble prediction 8.6 should improve the generalization ability of a
NN based inference system [Hansen and P., 1990].

The bootstrap aggregated neural network framework, called BAGNET in
Zhang [1999], is a stacked ensemble with at most 100 NN prototypes. Each b-
th network component has a unique starting condition defined by a particular
configuration of the initial free parameters (weights and thresholds) and a
peculiar pair of the I/O bootstrap training replicate.

After the training phase with early stopping technique each coached
FFNN becomes an expert of at least a specific region of the potential in-
put/output space to be mapped. The aggregated response is computed
comparing the average (i.e. with all weights being equal) and the princi-
pal component regression (PCR) methods. The former treats all the neural
network components with the same importance careless of the more or less
performance of a single network. Conversely it introduces any hazard in
generalization ability which occurs when ranking the NN performance based
upon the training data.

This drawback partly accounts for the use of the PCR method proposed
by Zhang [1999], where the PC (principal component) weights are computed
on the training set and the selection of the proper number of weights used
to build the BAGNET response is made on the testing set. The use of larger
number of PC weights insinuate the overfitting on calibration data, this way
the shortest number of PC weights with higher accuracy on testing set is
selected.

One limitation is that testing set is considered as the only available source
of real world patterns with which measure the generalization capability of the
PC scores. The number of NN components influence the ability of the stacked
inference system in producing an acceptable goodness of fit, thus a growing
number (1, 5, 10, 25, 50, 100) of NN components is used to investigate as
well the accuracy trend. Starting from an available set of 100 trained neural
networks each BAGNET variant except the BAGNET100, is built 50 times
with diverse and random combinations of NN components to investigate both
accuracy and precision of the nonlinear fitting.

The single component inside BAGNET named Best BAGNET 1 is char-
acterized by the higher accuracy on training set among available NN compo-
nents. This inference system is also fulfilled to ascertain to usefulness of the
more cumbersome BAGNET variants in gaining good results.

The BAGNET system is calibrated with bootsampled training replicates
and randsampled testing subset, whilst it is validated with randsampled val-
idation subset.
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sBN Accuracy of rainfall inference in space-time is highly influenced by
how many NN components are assembled in calculating the BAGNET re-
sponse, but also by which NN components are used. Zhou et al. [2002] states
that it may be better to ensemble many instead of all of the neural networks
at hand, and employs a genetic algorithm (GA) to detect the appropriate
neural networks for composing an ensemble.

Here genetic computing is even run in order to select the proper neural
network components for aggregating the sBN-GA variant. Moreover aside
the GA technology a simpler selection method named MSEPE (percentiles
of mean squared error) is proposed to generate an ensemble with smaller size
than full BAGNET with 100 NN.

It is based on the performance of the training set, that is only those
trained neural networks that behave well in terms of overall MSE on the
calibration data are retained by keeping a threshold value. Instead of select-
ing a subjective threshold, five percentiles of MSE values (5, 10, 25, 50 and
75) are adopted in order to detect differences and recognize the best suit-
able percentile level for components selection. The NN experts selected with
whatsoever method are connected in parallel to compose the sBN ensemble
response. The training phase with early stopping criteria is fulfilled with the
same resampling scheme adopted in BAGNET for drawing out the training,
testing and validation subsets.

8.3.6 Boolean occurrence of rainy space-time elements
with Geostatistics

The spatial intermittency of a rainfall field at level of a single decade segments
the geographical space into two possible states, the rainy and non rainy state.
Indicator kriging is the discrete binary random function [Goovaerts, 1997]
used here to describe such a Boolean condition.

A mobile threshold depth is applied to the precipitation at sampling lo-
cations for each time element and is assigned a value of 0 to locations where
rain catchment is less than or equal to the threshold depth and a value of 1 to
locations where rainfall is greater than the fixed threshold. Thus, indicator
values are calculated for each sampled location u as

I(u|z) =

{
0, if Z(u) ≤ z

1, otherwise
(8.3)

where I(u|z) is the indicator value at location u and for threshold depth z,
Z(u) is the measured rainfall at location u, and z is the threshold depth.
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Figure 8.9: Indicator kriging of discrete binary precipitation. (Year: 1987; Decade: 13;
Threshold: 7mm)

The threshold is mobile in the sense that it is not fixed for all time units
but each decade is characterized by its own z value in order to put in evidence
the spatial structure.

To be more rigorous the two possible states should not be called rainy
and non rainy. In fact a year is composed of 36 decades and only few of
them are non rainy at location u or conversely only few gauges are totally
empty per time unit. Hence instead of considering the rainy quality one
should consider the spatial connectivity of a sort of twofold (low and high)
density cloud probability for that temporal element, interpreted as the spatial
arrangement and time frequency of wet and dry periods within the considered
decade. Variography (Fig. 8.8) and kriging (Fig. 8.9) are carried out in
MatLab with mGstat.

8.4 Results

8.4.1 The regression imputation

The Figure 8.10 gives an idea of the number and performance of the mul-
tilinear regressions involved for the prediction of a single missing data; in
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particular is evidenced the selection of the model believed to be the best one.
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Figure 8.10: Performance on temporal neighbourhood (left ordinate) and on whole avail-
able time series (right ordinate) of the sixteen alternative models built to fill gap of 43rd
incomplete station at 37th missing time unit. Circles select the best performance on both
time lengths and square highlights the model selected to predict current missing value

Each model is characterized by a particular configuration of predictors
both in geographical domain and from statistical viewpoint, in terms of cor-
relation coefficients and p-values (Fig. 8.11). The algorithm is able to predict
the 94% of the total missing values occurring in the Tb target matrix after
running nonstop for about 5 days (Tab. 8.3).

The algorithm exhibits (Fig. 8.12) an overall good performance as more
than 70% of total missing data is predicted by means of multilinear regression
models with at least 90% of variance explained. Bad predictions (less than
70% of variance explained) are very exiguous (about 1%) and consequently
are considered as noise when training a NN.

An important portion of models with less than 90% of explained variance
are the result of how the regression imputation algorithm works when select-
ing the model with the best performance on neighborhood from the set of
possible models.

Model selection based on overall/neighborhood performance is a strategic
trade off: the algorithm put priority on the neighborhood performance as the
indicator of the best possible prediction of a given decadal rainfall value, even
if the overall performance of the model is penalized. This choice is supported
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Figure 8.11: Geographical and statistical configuration of gauges from network population
used to fulfill the 15th multilinear regression model showed in (A). Variability in Pearsons
r and p-value domains is evidenced by symbol size which gives an idea of potential con-
tribution in terms of correlation and significance. In current case correlation coefficient
range from 0.102 to 0.755 and p-value range from 1.678e-232 to 2.867e-004. Note that
similar size of circles doesnt account necessary for collinearity degree among predictors

by trials conducted on non missing data and obviously only account for a
part of not so good models depicted in Fig. 8.12.

8.4.2 The ANN inference systems

The performance of the three inference systems is evaluated on the same
validation data and is summarized in Tab. 8.7. There are the single network
(SN), the BAGNET ensemble in seven variants and the sBN framework with
two selection methods (GA and MSEPE) in six variants.
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Figure 8.12: Gaps filled by regression imputation. Ordinate indicates the absolute num-
ber of predictions made in correspondence of percentage variance accounted for. Upper
abscissa shows the percentage of data predicted at corresponding levels of goodness of fit
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Table 8.7: Indicators are computed on the out-of-sample data (validation subset) with 25200 cases (20 gauges * 1260 decades) for
Campania area and 3870 cases (7 gauges * 540 decades) for Cilento subarea. The ’Best BAGNET 1’ is the single NN within BAGNET
that performs at best on training subset. The ’sBN-Tr’ series is based on the MSEPE method on training data (see text for details).

RMSE MAE MBE r

Average PCR Average PCR Average PCR Average PCR

Cilento SN 23.56 13.70 -3.03 0.844
BAGNET-11 54.03±94.6 36.11±78.5 17.99±80.2 0.781±0.15
BAGNET-51 46.86±32 22.47±0.8 33.28±29.8 13.49±0.5 20.1±34.9 0.72±1.1 0.74±0.13 0.859±0.01

BAGNET-101 38.49±18.3 22.44±0.8 27.79±17.9 13.51±0.5 16.8±23 1.08±0.8 0.79±0.06 0.86±0.01
BAGNET-251 30.57±7.4 22.14±0.4 21.8±7.7 13.43±0.3 12.62±12.1 1.34±0.5 0.83±0.02 0.863±0
BAGNET-501 29.39±4.7 22.21±0.3 21.64±5 13.63±0.2 14.93±7.4 1.87±0.4 0.84±0.01 0.862±0
BAGNET-100 28.14 22.29 20.82 13.75 15.07 2.24 0.849 0.862

Best-BAGNET-1 23.03 13.74 0.19 0.852
sBN-GA 22.30 22.47 12.97 13.90 -3.07 2.41 0.863 0.860

sBN-Tr-5prct 22.98 23.75 13.56 14.15 -0.91 1.79 0.851 0.849
sBN-Tr-10prct 25.53 22.83 15.09 13.68 -0.38 1.54 0.812 0.858
sBN-Tr-25prct 23.23 22.77 13.94 14.02 -1.10 1.89 0.846 0.856
sBN-Tr-50prct 26.86 22.30 19.47 13.73 12.50 2.17 0.846 0.862
sBN-Tr-75prct 24.86 22.25 17.30 13.68 9.24 1.94 0.852 0.862

Campania SN 22.48 12.97 -4.56 0.826
BAGNET-11 23.85±1.3 13.69±0.5 -5.01±1.3 0.804±0.02
BAGNET-51 24.08±4.8 22.46±0.2 13.79±2.7 13.26±0.2 -4.57±2.1 -1.1±0.5 0.806±0.06 0.822±0

BAGNET-101 23.28±1.8 22.34±0.1 13.41±1.3 13.19±0.1 -4.73±1.2 -1.08±0.3 0.815±0.03 0.824±0
BAGNET-251 23.08±0.6 22.22±0.1 13.39±0.6 13.13±0 -4.49±0.8 -1.02±0.2 0.816±0.01 0.826±0
BAGNET-501 22.82±0.2 22.17±0.1 13.19±0.2 13.11±0 -4.61±0.4 -0.95±0.1 0.821±0.01 0.827±0
BAGNET-100 22.73 22.14 13.12 13.09 -4.6 -0.97 0.823 0.827

Best-BAGNET-1 22.79 13.16 -4.55 0.821
sBN-GA 22.67 22.25 12.98 13.14 -4.99 -0.96 0.826 0.826

sBN-Tr-5prct 23.85 23.17 13.73 13.97 -5.33 -0.40 0.807 0.808
sBN-Tr-10prct 23.06 22.43 13.23 13.40 -5.31 -0.65 0.821 0.822
sBN-Tr-25prct 22.73 22.20 13.03 13.20 -5.08 -0.83 0.826 0.826
sBN-Tr-50prct 22.99 22.12 13.43 13.10 -4.17 -0.96 0.816 0.827
sBN-Tr-75prct 22.83 22.14 13.22 13.10 -4.50 -0.99 0.820 0.827

(continued on next page)
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(continued)

SMAPE AIC Willmott’s D

Average PCR Average PCR Average PCR

Cilento SN 82.07 0.144 0.907
BAGNET-11 93.85±24.4 0.144±0 0.828±0.2
BAGNET-51 94.93±19.9 79.17±1.6 0.728±0 0.729±0 0.784±0.16 0.923±0.01

BAGNET-101 94.38±15.1 77.62±2.5 1.458±0 1.459±0 0.83±0.1 0.924±0.01
BAGNET-251 90.5±9 76.48±2.9 3.649±0 3.649±0 0.875±0.04 0.925±0
BAGNET-501 89.97±6 77.11±11.5 7.3±0 7.3±0 0.883±0.03 0.924±0
BAGNET-100 88.22 74.84 14.601 14.602 0.891 0.924

Best-BAGNET-1 80.14 0.144 0.919
sBN-GA 78.63 75.28 9.490 9.783 0.916 0.923

sBN-Tr-5prct 80.15 80.27 0.729 0.729 0.918 0.919
sBN-Tr-10prct 80.90 78.84 1.459 1.459 0.894 0.924
sBN-Tr-25prct 80.38 77.73 3.649 3.649 0.911 0.922
sBN-Tr-50prct 86.79 72.74 7.300 7.300 0.898 0.924
sBN-Tr-75prct 83.42 73.07 10.951 10.951 0.909 0.924

Campania SN 81.41 0.022 0.892
BAGNET-11 83.92±1.6 0.022±0 0.876±0.02
BAGNET-51 82±3.2 79.91±0.9 0.109±0 0.109±0 0.874±0.04 0.901±0

BAGNET-101 81.53±2.1 79.7±0.6 0.219±0 0.219±0 0.882±0.01 0.902±0
BAGNET-251 81.37±1.2 78.86±1 0.547±0 0.547±0 0.883±0 0.903±0
BAGNET-501 80.84±0.7 75.99±9.7 1.095±0 1.095±0 0.886±0 0.904±0
BAGNET-100 80.56 74.98 2.19 2.19 0.886 0.904

Best-BAGNET-1 82.23 0.022 0.893
sBN-GA 80.44 79.30 1.467 1.467 0.887 0.903

sBN-Tr-5prct 83.33 82.01 0.109 0.109 0.867 0.892
sBN-Tr-10prct 81.32 79.98 0.219 0.219 0.879 0.901
sBN-Tr-25prct 80.73 79.58 0.547 0.547 0.884 0.903
sBN-Tr-50prct 81.17 77.45 1.095 1.095 0.884 0.904
sBN-Tr-75prct 80.87 76.94 1.643 1.643 0.885 0.904

1 The value of each indicator is computed on 50 repetitions with diverse and random combinations of the bootsampled training

subset replicates; the aggregation methods ’Average’ and ’PCR’ are evaluated on the same 50 random compositions

of replicates. Standard deviation is reported too.
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Several considerations might be elaborated, therefore I will focus only on
those aspects relevant for the pursuits of the paper.

The use of a single network inference system (SN) is not the best choice
considering the overall trend of indicators. Enlarging the validation subset
size (from 7 to 20 gauges respectively for Cilento and Campania) decreases
the performance of the SN, notwithstanding Campania case study has a
larger and more variegate learning set in terms of representativeness of both
realty and feature space. This suggests that a more complex inference system
represented by ensembles of NN should be selected in order to get better re-
sults in making spatial maps of precipitation, where the number of simulated
ungauged pixels could be very high.

The way of BAGNET is worthwhile. The stacked generalization shows
less precision in case of smaller number of neural network components, and
the truthfulness of this statement is higher for the Cilento subarea and for
the average method (see standard deviation).

The numerousness of space-time elements used in Campania case study
for calibration ensure high accuracy even at lower BAGNET size. The PCR
method quite always outperforms the average aggregation type which is also
outperformed by the ’Best BAGNET 1’ inference system; more probably the
prediction of the time series at one or very few ungauged locations could
be addressed with good likelihood by using the BAGNET best single NN
component.

Comparing the PCR aggregation method in BAGNET learning paradigm
for Cilento and Campania it is remarkable how the performance in the former
case is higher in the 25 components BAGNET model while in Campania case
study the full components model gives the best result. The validation subset
of smaller size in Cilento is maybe more flexible in converging towards target
signals.

Contrariwise the AIC statistic, SMAPE decreases as the learning paradigm
at hand became more cumbersome, highlighting a higher accuracy and a
smaller precision such as in the BAGNET50 of Campania case study where
a standard deviation of about 9.7 units is revealed (the larger value for Cam-
pania BAGNET variants aggregated by PCR). The Pearson coefficient r and
the Willmott’s D don’t represent a good discriminating within the same
learning paradigms as in order of magnitude the AIC, MBE and SMAPE do.

8.4.2.1 Building a time-series at ungauged location

It is used the Best BAGNET 1 variant on validation subset to evaluate the
ability of the best single trained prototype inference system in giving good
results for predicting precipitation values at few ungauged locations.
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Six gauges of one year length are drawn out from the validation set at
random in order to graphically evaluate performance during the 36 decades
(Fig. 8.13). Dashed line put in evidence the underestimation of relative
peaks as pointed out by the Yearly Difference in Percentage (YDP) index
too. It is computed as follows:

Y DP =

∑N

i=1 Pi −
∑N

i=1 Oi∑N

i=1 Oi

· 100 (8.4)

where Pi and Oi are respectively the predicted and the observed values on
decade i, and N=36. It forthwith provides a yearly percentage distance of
predictions from observations.

8.4.2.2 Multitemporal maps of rainfall fields

It is pointed out that a stacked model of inference with more neural network
components is required to draw up a spatial map of precipitation for the
Campania domain wide area at level of a single temporal unit.

In Tab. 8.7 statistical measures are computed for the whole time series,
but here the task consists in building the decadal precipitation field of a
year as an example of possible application. Statistical indicators derived on
validation set and within this restricted temporal window are different with
respect to the values obtained for the entire time series.

An additional statistic for a year selected at random, say the 1979, is run
to identify the more performing model variants. Two comparative models of
inference, the 5th and the 50th percentiles variants of sBN-Tr, are employed
to make the maps reported in figures 8.4.2.2 and 8.4.2.2 for visualizing the
spatial pattern of synthetic rainfall fields.

8.4.3 Spatial intermittency of rainy occurrence

Calibration of inference systems is carried out using large multidimensional
matrices. To make a spatial map of precipitation the sBN-Tr framework is
trained with matrices 118x1260x11x5 or 118x1260x11x50 for respectively the
5th and the 50th percentiles variants.

There exist a great unbalance between the spatial (118) and temporal
(1260) singletons, which is responsible for a better prediction in time (Fig.
8.13) than in space domain (red dotted line, Fig. 8.16). This should justify
the use of further computation to filter the predicted precipitation map.

The indicator kriged map (Fig. 8.9) is multiplied by the map of pre-
dictions and then values are extracted from gauged locations to compare
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patterns. To highlight fitting performance of filtered and unfiltered predic-
tions the network rainfall signature (solid line, Fig. 8.16) is depicted as sorted
in ascending order by rain catchments. The filtered overcome the unfiltered
predictions as correlation coefficient and YDP put in evidence.

8.5 Conclusions

In this chapter the space-time analysis of gauged precipitation is addressed
with artificial neural networks. It was demonstrated that:

Low cost geospatial and temporal covariates
High space-time resolution
Good accuracy (compared with other models in literature at lower reso-

lution e.g. Drogue et al. [2002])
Inference with ensemble of NN in case of few data
Several indicators of performance (to be sure of goodness of fit)
Difference for year 1979 for map and time series (show that inference is

better in time than in space because of the major number of cases in that
dimension)

Machine time consuming for the different elaborations (imputation, cali-
bration, simulation, )

Speak about the possibility to apply a PLS algorithm which takes into
account both the explanatory variables and the response variable (rainfall)
see Sicard and Sabatier [2006] page 1396.

Speak about the possibility to applay a geostatistical filter also to the top
part of network rainfall signature (and not only to the bottom).
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Figure 8.13: Rainfall prediction at six different locations (a-f) belonging to the validation
set and during different years. Note the constant underestimation of higher peaks. YDP:
Yearly Difference in Percentage
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(a) (b)

(c) (d)

(e) (f)

Figure 8.14: Precipitation maps for Campania region study area. Predictions are made
using the sBN-Tr-5prct variant.
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Figure 8.15: Precipitation maps for Campania region study area. Predictions are made
using the sBN-Tr-50prct variant.



104 CHAPTER 8. RAINFALL ANALYSIS

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

Gauges (No)

R
ai

nf
al

l (
m

)

 

 

Measured rainfall
Unfiltered (Corr = 0.46; YDP = 31.7%)
Filtered (Corr = 0.67; YDP = 4.3%)

Figure 8.16: Raingauges are sorted in ascending order based on measured rainfall. Note
the incompetence of neural networks to satisfy target signals at low intensities (red dotted
line, sBN-Tr-5prct variant). The filtered predictions provide higher correlation coefficient
and yearly difference in percentage (YDP)



Part III

Conclusions and Addendum

105





Chapter 9

Conclusions

The major agricultural and environmental problems indeed require a detailed
knowledge of agricultural and forest ecosystems. This knowledge demands
a detailed information about the spatial distribution of soils, climate and
plants.

The major technological innovations produced in the last decades by the
use of satellites enable to obtain detailed land use information at high spatial
and temporal resolution. This unfortunately is not the case for the pedocli-
matic data which by their nature are much more complex to be determined.
Moreover, in the case of climate, while temperature (eg. daily mean temper-
ature) is generally well correlated to some physical land parameters such as
altitude and aspect, this is not true for the rainfall parameter because of its
implicit complexity (non linearity). These difficult problems have been the
focus of this thesis which aimed to approach the two major issues of spatial
inference concerning soils and rainfall comparing different methodologies.

In the case of soils, and only for selected investigated variables such as the
clay content and the soil colour, it was shown that data obtained from the
standard soil map did not well perform in differentiating landscape classes
according to their clay content. More specifically, while some landscape units
resulted well differentiated (mountain relieves against alluvial terraces), other
landscape units (hilly environments) did not show such significant differences
in the comparison with other landscape units.

The fuzzy analysis applied to the digital terrain model for obtaining dis-
crete units of landforms made it possible to clearly differentiate some mor-
phological landscapes with very significant differences in their clay content
but, again, this approach has highlighted that some other morphological
landscape did not significantly differ from others in their mean clay content.

Geostatistical techniques applied by means of Universal Kriging have not
always provided interesting data. In fact many of the obtained variograms
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were not structured and did not enable to obtain a proper spatialisation of
the information.

The multiple regression techniques and the application of neural networks
were much more promising. In particular, the ANN has certainly produced
the best results despite that I did not have an extremely high number of
basic information.

In general, these results clearly show how the most complex techniques
of spatial inference are more promising and more efficient but they are also,
unfortunately, those that require more data and thus are more costly.

Among the investigated variables it is important to quote the example
of the soil colour. We know that this morphological parameter described
using the Munsel soil charts is generally associated with the content of or-
ganic carbon, the presence of Fe and Mn oxides, it depends by the degree
of weathering, by the content of calcium carbonate, etc. The quantitative
analysis of this attribute made after colour transformation has produced very
poor results highlighting the absence of structured variograms and of good
independent variables for a suitable regression analysis. On the other side,
an alternative approach based on a generic interpretation of the soil colour
across the study area made it possible to produce an empirical index of pe-
dogenesis (soil redding and darkening). The PDI showed to have a good
variogram structure and enabled the spatial inference of this powerful soil
information.

The space-time analysis of gauged precipitation, which is addressed with
artificial neural networks, demonstrates that low cost geospatial and temporal
covariates can account with relative very high performance for the high space-
time resolution of precipitation data. It is showed how neurocomputing yield
good accuracy compared with other models in literature at coarser resolution
(e.g. Drogue et al. [2002]).

Inference with ensemble of neural networks in case of few and sparse
data (Cilento subcase study) indicates that bootstrapping neural networks
for building a stack inference system can help in set up satisfactory models
for studying non linear processes such as precipitation distribution.

Also the use of several indicators for evaluating the performance of models
can support a straightforward decision about the best approach.

Predictions for the year 1979, exhibits a less performance in the case of
map productions compared with the building of a time series at a single
ungauged location, due to the use of more temporal singletons then spatial
ones. The application of a geostatistical filter to a rainfall map produced by
neurocompting displays good results, as evaluated on the out-of-sample data.
Maybe an indicator kriging should also be applied to the higher magnitude
area of rainfall spatial signature (Fig. 8.16), since predictions are inaccurate



109

both at the bottom (where nonrainy gauged elements verify too) and at the
top of rain spatial signature.

There exist the possibility to apply a PLS algorithm Sicard and Sabatier
[2006] in combining neural networks components. Indeed it takes into account
both the explanatory variables and the response variable.
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Appendix A

The MultiFieldAdder tool

The MultiFieldAdder is a very useful ArcGIS tool for building a matching
table to be used in the spatial analysis of landscape attributes.

It adds to a point feature (shapefile) loaded in the current ArcMap project
a new field with label equal to the string name of the selected raster layer.
Then the new empty field of the attribute table is compiled with values
picked from the lattice grid where the point feature has sample locations
(points with coordinates).

The MultiFieldAdder is able to load several raster layers at the same
time (multi-selection ability), in order to add many new fields in few seconds.
This tool is very useful if considering the number of available auxiliary maps
that otherwise should be elaborated in a manual fashion so that a complete
matching table is built.

From ESRI website at URL http://arcscripts.esri.com/details.asp?dbid=14826

you can download the zipped file with tool and detailed instructions on how
to install it. In Fig. A it is showed how the user interface works.
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(a) ArcMap project (b) Attribute table

(c) MutiFieldAdder tool (d) Multi-selector

Figure A.1: How the MultiFieldAdder tool works



Appendix B

The EDASS tool

The most important stuff is explaining how to get started with the EDASS
tool. Firstly one should have Microsoft Access installed on workstation, then
should own the database file with EDASS implemented in. Afterwards user
have to:

(i.) install R;

(ii.) install R/Scilab (D)COM Server V2.50;

(iii.) open Access soil database within which the EDASS tool is implemented
and run the EDASS mask (it is developed on a VB form). During
working session a hidden connection is established with R software
across the (D)COM Server platform, and R instructions are conveyed
to run designed operations.

EDASS cannot be released as independent tool, since it is designed in VBA
(Visual Basic for Applications) to specifically work under the database at
hand. This means that it can works within whatsoever Access database, but
is not able to perform tasks independently. Therefore it is my intention to
translate the VBA application into a Visual Basic 6 format in order to allow
anybody enjoying it outside Microsoft Access environment.

The EDASS tool is a user friendly interface that links in the background
the power of SQL statements possible in Access with graphical and statistical
capabilities of R statistical software.
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Appendix C

ANNvsREGR MatLab script

Here is printed the script used to quickly implement a comparison between
multi linear regression and artificial neural networks in explaining the vari-
ance in a target attribute using environmental covariates.

Steps are enumerated from zero to six, and settings to be manually per-
formed are highlighted as bold text:

-0. The matching table is loaded in workspace.

-1. Select the column number of target variable, and the threshold for
Pearson correlation. One can graphically recognize the good predictors
at different levels of thresholds. Then for a selected threshold, the set
of predictors are fixed and used later on; otherwise one manually se-
lect/deselect predictors in pred_sel and head_pred_sel MatLab vari-
ables.

-2. Split the total number of cases in the calibration and validation subsets,
according to a manual selected threshold. Here the input/output
couples are also normalised in range [−1, +1].

-3. The neural network is initialised through a personal function (one can
personalize parameter settings), trained with calibration data, and sim-
ulated with validation subset. In this step following ANN settings are
fulfilled: range of input, topology of network, activation func-
tions, range within which initialization is made for weights and bi-
ases.

-4. Stepwise regression analysis is fulfilled with the same calibration subset
used for ANN, and then model performance is evaluated on validation
set.
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-5. Save the workspace in a .mat file for future visualization through step
6.

-6. Load a saved analysis made with the ANNvsREGR function through
steps 0 to 5, and show graphics and correlations for performance com-
parison of the two statistical methods on the sub case study at hand.

%% ANNvsREGR

%% -0.\ LOAD TABLE

clear

cd(’C:\Dottorato\PEDOMETRICS\DATA\UOT\MatLab’)

load pick_terrain.mat merge

%% -1.\ SELECT COVARIATES

%--------------------

col_target = 15; % clay:15;

Threshold = 0.2; %of correlation coefficient

%--------------------

%-TARGET

TARGET = cell2mat(merge(2:end,col_target));

head_target = merge(1,col_target)

%-PREDICTORS

pred = cell2mat(merge(2:end,[39:74 91:end]));

head_pred = merge(1,[39:74 91:end]);

%-CORRELATION TASK:

c = corr([TARGET pred], ’rows’,’pairwise’);

c_pred = c(2:end,1);

pred_good_c = find(c_pred > +Threshold | c_pred < -Threshold);

%-select good predictors

pred_sel = pred(:,pred_good_c);

head_pred_sel = head_pred(:,pred_good_c);

%--plot

plot(c_pred,’:k’);

hold on; scatter(pred_good_c, c_pred(pred_good_c), ’r’, ’LineWidth’,2); hold off;

title(’Recognize Good Predictors’, ’FontWeight’,’b’, ’FontSize’,14)

xlabel(’# Covariates’, ’FontWeight’,’b’, ’FontSize’,12);

ylabel(’Pearson Correlation’, ’FontWeight’,’b’, ’FontSize’,12);

for i = 1:size(pred_sel,2)

text(pred_good_c(i),c_pred(pred_good_c(i)),[’\’,head_pred_sel(i)])

end

%-clear

clear head_pred pred c pred_good_c ans i Threshold c_pred col_target

%% -2.\ PREPARE IN/OUT ARRAYS

%---------------------------------

%split amount between datasets

subsets = [0.70 0.30];

%---------------------------------

% find nans in predictors/target:

[r1 c1] = find(not(isnan(pred_sel)));

[r2 c2] = find(not(isnan(TARGET)));
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% take all not NaNs values

r = intersect(r1,r2);

t = TARGET(r)’;

p = pred_sel(r,:)’;

xy = cell2mat(merge(1+r,[25 26]))’;

clear c* r* ans

% Normalize

mm = minmax(t);

tn = normalize(t, [mm(:,2) mm(:,1)],-1,+1);

mm = [min(p,[],2) max(p,[],2)];

pn = normalize(p, [mm(:,2) mm(:,1)],-1,+1);

clear mm

% create N random numbers from 1 to N

N = size(tn,2);

F = ceil(N.*rand(1,N));

%data partition

ptr = pn(:,F(1:ceil(N*subsets(1))));

ttr = tn(:,F(1:ceil(N*subsets(1))));

pte = pn(:,F(ceil(N*subsets(1))+1:end));

tte = tn(:,F(ceil(N*subsets(1))+1:end));

% coordinates

xy_p = xy(:,F(1:ceil(N*subsets(1))));

xy_t = xy(:,F(ceil(N*subsets(1))+1:end));

figure(gcf+1); scatter(xy_p(1,:), xy_p(2,:), ’ko’)

hold on; scatter(xy_t(1,:), xy_t(2,:), ’rx’); hold off;

%clear and save

clear N ans subsets

%% -3.\ TRAINING and SIMULATION [WITH LM]

%----------------------------

% The neff_stack function creates five ANN with training algorithms: ’gdx’,

% ’rp’, ’bfg’, ’oss’, ’lm’.

% net = newff_stack(input_ranges, topology, activation_functions,initial_weights_range)

net = newff_stack([-1 +1], [size(p,1) 1], ’tt’, 1);

%----------------------------

% The ’lm’ method is selcted because more performant in preliminary

% analysis:

n = net.lm; clear net

TV.P = pte; TV.T = tte;

[n trainRec] = train(n, ptr,ttr,[],[],[],TV);

pred_ann = sim(n,pte);

c_ann = corr([tte’ pred_ann’]);

figure(2); scatter(pred_ann,tte);

hold on; line([-1 1],[-1 1]); hold off;

title(strcat(head_target(1), ’ (corr=’, num2str(c_ann(2,1)), ’)’),’FontWeight’,’b’, ’FontSize’,14);

xlabel(’ANN Inference’, ’FontWeight’,’b’, ’FontSize’,12);

ylabel(’Measured’, ’FontWeight’,’b’, ’FontSize’,12)

%% -4.\ STEPWISE FIT: REGRESSION MODEL

% stepwisefit

[nan,nan,nan,inmodel,stats,nan,nan] = stepwisefit(ptr’,ttr’);

inmodel = find(inmodel==1);

stats.inmodel = inmodel;

clear nan inmodel

% initialize vector of predictions on testing subset PLUS intercept

pred_regr = zeros(size(tte,2),1) + stats.intercept;

for pred = 1:size(stats.inmodel,2)

pred_regr = pred_regr + stats.B(stats.inmodel(pred))*pte(stats.inmodel(pred),:)’;

end



118 APPENDIX C. ANNVSREGR MATLAB SCRIPT

pred_regr=pred_regr’;

% plot

c_regr = corr([tte’ pred_regr’]);

figure(3); scatter(pred_regr,tte);

hold on; line([-1 0],[-1 0]); hold off;

title(strcat(head_target(1), ’ (corr=’, num2str(c_regr(2,1)), ’)’), ’FontWeight’,’b’, ’FontSize’,14);

xlabel(’Regression Inference’, ’FontWeight’,’b’, ’FontSize’,12);

ylabel(’Measured’, ’FontWeight’,’b’, ’FontSize’,12)

%% -5.\ SAVE

cd(’C:\Dottorato\PEDOMETRICS\DATA\UOT\MatLab’)

eval([’save ANN_’ head_target{1} ’.mat’])

clear

%% -6.\ COMPARE MODELS: ANN vs MULTIPLE REGRESSION

clear

%-load

cd(’C:\Dottorato\PEDOMETRICS\DATA\UOT\MatLab’)

uiload;

%-correlation

c = corr([tte’ pred_regr’ pred_ann’]);

%-VALUE PLOT

figure(4);

subplot(2,1,1);plot(1:size(tte,2),tte,’:k’,’LineWidth’, 2)

hold on;

subplot(2,1,1);plot(1:size(tte,2),pred_regr,’-r’,’LineWidth’, 1)

subplot(2,1,1);plot(1:size(tte,2),pred_ann,’-b’,’LineWidth’, 1)

hold off;

title(’TESTING DATASET’, ’FontWeight’,’b’, ’FontSize’,14)

%xlabel(’Horizons’, ’FontWeight’,’b’, ’FontSize’,12)

ylabel(head_target(1), ’FontWeight’,’b’, ’FontSize’,12)

L1 = legend(’TARGET’, [’REGR (corr=’ num2str(c(2,1)) ’)’],

[’ANN (corr=’ num2str(c(3,1)) ’)’]);

set(L1, ’FontWeight’,’b’, ’FontSize’,11)

%-error

e_reg = (pred_regr-tte);

e_ann = (pred_ann-tte);

%-ERROR PLOT

subplot(2,1,2);subplot(2,1,2);plot(1:size(tte,2),e_reg,’:r’,’LineWidth’, 2)

hold on;

subplot(2,1,2);plot(1:size(tte,2),e_ann,’:b’,’LineWidth’, 2)

line([0 size(pred_regr,2)],[0 0], ’Color’,’k’, ’LineStyle’,’--’)

hold off;

%title(’TESTING DATASET’)

xlabel(’Horizons’, ’FontWeight’,’b’, ’FontSize’,12)

ylabel(strcat(’ERROR (’, head_target(1), ’)’), ’FontWeight’,’b’, ’FontSize’,12)

L2 = legend(’Err\_Regr’, ’Err\_ANN’, ’Location’,’SE’);

set(L2, ’FontWeight’,’b’, ’FontSize’,11)

clear
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