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Introduction  

 

Contrast-induced nephropathy (CIN) accounts for 10% of all causes of 

hospital-acquired renal failure, causes a prolonged in-hospital stay, 

and represents a powerful predictor of poor early and late outcome 

[1,2]. CIN is generally defined as an increase in serum creatinine 

concentration of >0.5 mg/dL (> 44 mol/L) or 25% above baseline 

within 48 hours after contrast administration [3-7]. CIN is the acute 

deterioration of renal function after parenteral administration of 

radiocontrast media in the absence of other causes. CIN has gained 

increased attention in the clinical setting, particularly during cardiac 

intervention but also in many other radiological procedures in which 

iodinated contrast media are used [8].  

There is at present good clinical evidence from well-controlled 

randomized studies that CIN is a common cause of acute renal 

dysfunction. Although the exact mechanisms of  CIN are yet to be 

fully elucidated, several causes have been described [9-11].  

Increased adenosine-, endothelin-, and free radical induced 

vasoconstriction and reduced nitric oxide

 

and prostaglandin-induced 

vasodilatation have been observed [12].    

These mechanisms cause ischemia in the deeper portion of the outer 

medulla, an area with high oxygen requirements and remote from the 
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vasa recta supplying the renal medulla with blood [13]. Contrast 

agents also have direct toxic effects on renal tubular cells, causing 

vacuolization, altered mitochondrial function, and apoptosis [7].  

In Figure 1  is summarized the interplay of the various factors 

contributing to the pathogenesis of CIN, namely vasoconstriction, 

oxidative stress, and direct tubular toxicity leading to hypoxia of the 

outer medulla [14].     

   

Figure 1. Overview of the factors involved in the pathogenesis 
of contrast-induced nephropathy. NO = nitric oxide; OH* =  
hydroxyl radical; O2*- = superoxide radical; PaO2 = arterial 
oxygen pressure.   
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Researchers in early in vitro studies found evidence for direct renal 

tubular cell toxic effects of contrast media [15,16]. In vitro 

experiments are a way to examine the cytotoxic effects of contrast 

media on renal cells because of the absence of confounding variables, 

which can be found in vivo (eg, hypoxia due to hemodynamic changes 

or other systemic mechanisms) [17-19].     
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Overview of renal physiology.    

The kidneys are responsible for a number of important regulatory 

functions such as the maintenance of ion levels in the body, water 

retention/removal, waste excretion, blood pressure regulation and 

maintenance of proper blood acidity [20].   

The kidney receives about 25% of cardiac output and the 80% of 

blood flow goes to the cortex and the remaining  20% portion to the 

medulla.  

The cortex is the outer part of the kidney containing most of the 

nephrons. The medulla is the inner part of the kidney and contains the 

specialised nephrons in the juxta-medullary region, immediately next 

to the medulla. Nephrons are the functional unit of the kidney. Each 

kidney consists of about one million nephrons. The nephron is made 

up of a glomerulus and its tubule.  

The tubule is made up of a number of sections, the proximal tubule, 

the medullary loop (loop of  Henle), and the distal tubule which 

finally empties into the collecting duct [21] (fig.2) 
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Fig.2 Schematic model of nephron   

Filtration takes place through the semipermeable walls of the 

glomerular capillaries which are almost impermeable to proteins and 

large molecules. The filtrate is thus virtually free of protein and has no 

cellular elements. The glomerular filtrate is formed by squeezing fluid 

through the glomerular capillary bed. The driving hydrostatic pressure 

(head of pressure) is controlled by the afferent and efferent arterioles, 

and provided by arterial pressure. About 20% of renal plasma flow is 

filtered each minute (125 ml.min-1) [20].  

The function of the renal tubule is to reabsorb selectively about 99% 

of the glomerular filtrate.  

The Proximal Tubule reabsorbs 60% of all solute, which includes 

100% of glucose and amino acids, 90% of bicarbonate and 80-90% of 

inorganic phosphate and water.  
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Reabsorption is by either active or passive transport. Active transport 

requires energy to move solute against an electrochemical or a 

concentration gradient. It is the main determinant of oxygen 

consumption by the kidney. Passive transport is where reabsorption 

occurs down an electrochemical, pressure or concentration gradient.  

Most of the solute reabsorption is active, with water being freely 

permeable and therefore moving by osmosis. When the active 

reabsorbtion of solute from the tubule occurs, there is a fall in 

concentration and hence osmotic activity within the tubule. Water then 

moves because of osmotic forces to the area outside the tubule where 

the concentration of solutes is higher.  

The Loop of  Henle is the part of the tubule which dips or "loops" 

from the cortex into the medulla, (descending limb), and then returns 

to the cortex, (ascending limb). It is this part of the tubule where urine 

is concentrated if necessary. This is possible because of the high 

concentration of solute in the substance or interstitium of the medulla. 

This high concentration of solutes is maintained by the counter current 

multiplier. A counter current multiplier system is an arrangement by 

which the high medullary interstitial concentration of solute is 

maintained, giving the kidney the ability to concentrate urine. The 

loop of Henle is the counter current multiplier and the vasa recta is the 

counter current exchanger.   
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Actions of different parts of the loop of Henle:  

A: The descending loop of Henle is relatively impermeable to solute 

but permeable to water so that water moves out by osmosis, and the 

fluid in the tubule becomes hypertonic.  

B: The thin section of the ascending loop of Henle is virtually 

impermeable to water, but permeable to solute especially sodium and 

chloride ions. Thus sodium and chloride ions move out down the 

concentration gradient, the fluid within the tubule becomes firstly 

isotonic then hypotonic as more ions leave. Urea which was absorbed 

into the medullary interstium from the collecting duct, diffuses into 

the ascending limb. This keeps the urea within the interstitium of the 

medulla where it also has a role in concentrating urine.  

C: The thick section of the ascending loop of Henle and early distal 

tubule are virtually impermeable to water. However sodium and 

chloride ions are actively transported out of the tubule, making the 

tubular fluid very hypotonic.   

The Vasa Recta is a portion of the peritubular capillary system which 

enters the medulla where the solute concentration in the interstitium is 

high. It acts with the loop of Henle to concentrate the urine by a 

complex mechanism of counter current exchange. If the vasa recta did 

not exist, the high concentration of solutes in the medullary 

interstitium would be washed out. 

Solutes diffuse out of the vessels conducting blood towards the cortex 

and into the vessels descending into the medulla while water does the 
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opposite, moving from the descending vessels to the ascending 

vessels. This system allows solutes to recirculate in the medulla and 

water, in effect, to bypass it.  

In the renal medulla the O2 tension is very small compared to the renal 

cortical portion (20-30 mmHg vs 50-60 mmHg). This effect is trigged 

to the lower O2 contribution due to the reduction of blood flow and to 

the high oxygen need necessary to support the active tubular transport 

against concentration gradient. The direct O2 permeation in vasa recta 

from venous to artery is a further cause of renal medulla hypoxia. 

In normal kidney, the balance between the need of O2 and blood flow 

is regulated by a balance of autocrine mediators with vasoconstriction 

activity (angiotensin, adenosine, ATP, endothelin, ADH) and 

vasodilatation activity (prostaglandins, NO, natriuretic peptide).    
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Oxygen-Free Radicals  

 

A pathway that is proposed for develop of CIN is an increase in 

oxygen-free radicals or a decrease in antioxidant enzyme activity 

triggered by contrast medium administration. In some ways, this could 

be a sequence of the direct tubular cell toxicity pathway if the 

endogenous biochemical disturbances are simply the product of 

tubular cell damage rather than the primary cause of the resultant 

tubular cell damage. Free radicals are atoms or molecules that contain 

one or more unpaired electrons. In vivo, oxygen molecules are 

changed into water molecules after successive reduction reactions. 

Intermediate species are called reactive oxygen species. At high 

concentrations, free radicals have highly deleterious effects on all 

cellular constituents and cause oxidative stress and protein damage. 

Free radicals react with (oxidize) various cellular components 

including  DNA, proteins, lipids / fatty acids and advanced glycation-

end products (e.g. carbonyls). These reactions between cellular 

components and free radicals lead to DNA damage, mitochondrial 

malfunction, cell membrane damage and eventually cell death 

(apoptosis).  

Oxidative stress represents an excess of reactive oxygen species 

(ROS) in the tissues under consideration or in the whole body. This 

implies either an increased production of  ROS, for example, by 

specific oxidase such as NADPH oxidase, xanthine/xanthine oxidase, 
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various arachidonic acid monooxygenases or the mitochondrial 

respiratory chain.  Alternatively, it may derive from a failure to 

metabolize ROS.  The major pathways for metabolism are superoxide 

dismutase (SOD), which is expressed as extracellular, intracellular, 

and mitochondrial isoforms that metabolize superoxide anion (O2
-

) to 

H2O2.  Peroxidases such as catalase and glutathione peroxidase 

(predominantly intracellular) further metabolize H2O2 to O2 and water. 

However, such a definition is highly simplistic because of the other, 

biologically important, ROS such as hydroxyl anion ( OH) formed 

from H2O2, peroxynitrate (ONOO-) formed principally by the 

interaction of nitric oxide (NO) and (O2
-

) or OH, or hypochlorous 

acid formed by myeloperoxidase. There are multiple other reaction 

products with other mediators.  Important interactions occur between 

ROS and NO where (O2
-

) not only reduces NO bioactivity by 

shortening its half-life but also generates highly reactive species such 

as ONOO-  that are themselves implicated in oxidative and nitrosating 

reactions. No less problematic is the quantitative assessment of 

oxidative stress. At the level of the whole animal, use is often made of 

the appearance of oxidized end products of ROS metabolism. (Fig.3) 

These end-products include lipid peroxidation products such 

isoprostanes, which are formed predominantly non enzymically by the 

interaction of  (O2
-

) with arachidonate or malondialdehyde [22].   

Furthermore the intense vasoconstriction and loss of autoregulatory 

capacity can contribute to additional renal injury through the release 
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of reactive oxygen species (eg, superoxide [OH].). Organ injury can 

occur when  hypoperfusion of tissues generates reactive oxygen 

species that exceed the antioxidant reserve of the patient. The ability 

to accommodate oxidant injury decreases with age and is thought to 

contribute to the increased risk of CIN among older patients. 

Moreover, increased oxidative stress is present in chronic renal failure 

and in diabetes. It contributes to enhanced basal vascular tone and to 

impaired endothelium-dependent relaxation in chronic kidney disease. 

There are few data on the role of reactive oxygen species in the 

pathogenesis of CIN [23,24].   

 

Fig 3 Oxidative stress pathway 
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Antioxidant agents  

 

A predominant toxic effect of CM on renal tubules has been shown in 

both clinical trials and animal experiments [4-6]. Furthermore, 

administration of compounds with antioxidant properties such as N-

acetylcysteine (NAC), ascorbic acid, and sodium bicarbonate has 

emerged as an effective strategy to prevent CIN [7,25-28]. Little is 

known about cellular mechanisms underlying CIN, and, as a 

consequence, about the mechanisms for the protective effect of 

compounds, such as NAC, ascorbic acid, and sodium bicarbonate.  

An antioxidant is a molecule capable of slowing or preventing the 

oxidation of other molecules. Oxidation is a chemical reaction that 

transfers electrons from a substance to an oxidizing agent. 

Antioxidants terminate these chain reactions by removing free radical 

intermediates, and inhibit other oxidation reactions by being oxidized 

themselves. As a result, antioxidants are often reducing agents.  

Although oxidation reactions are crucial for life, they can also be 

damaging; hence, plants and animals maintain complex systems of 

multiple types of antioxidants, such as glutathione, vitamin C, and 

vitamin E as well as enzymes such as catalase, superoxide dismutase 

and various peroxidases. Low levels of antioxidants, or inhibition of 

the antioxidant enzymes, causes oxidative stress and may damage or 

kill cells.  
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N-AcetylCysteine (NAC)  

N-AcetylCysteine (NAC, N-Acetyl-L-Cysteine) (Fig 4)  is the amino 

acid L-Cysteine plus an acetyl (-CO-CH3) group attached to the amino 

(NH2) group. The acetyl group functions to speed absorption and 

distribution upon orally cysteine .  Amino acids which contain a sulfur 

group have antioxidant properties.  

  

Fig. 4. N-acetylcysteine chemical structure   

N-acetylcysteine (NAC) reduces the nephrotoxicity induced by 

constra media through antioxidant effects. It also enhances the effect 

of endogenous vasodilator nitric oxide. Some studies revealed 

successful protective effects of NAC as an adjunct to saline hydration 

in low-risk patients [29].       
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Ascorbic acid  

Ascorbic acid is a sugar acid with antioxidant properties. Its 

appearance is white to light-yellow crystals or powder. It is water-

soluble. The L-enantiomer of ascorbic acid is commonly known as 

vitamin C (fig 5). Ascorbate acts as an antioxidant by being available 

for energetically favourable oxidation. Reactive oxygen species 

oxidize ascorbate first to monodehydroascorbate and then 

dehydroascorbate. The reactive oxygen species are reduced to water, 

while the oxidized forms of ascorbate are relatively stable and 

unreactive, and do not cause cellular damage   

 

Fig. 5 Ascorbic Acid chemical structure     
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Sodium bicarbonate  

Sodium bicarbonate or sodium hydrogen carbonate is the chemical 

compound with the formula NaHCO3 (Fig 6). Sodium bicarbonate is a 

white solid that is crystalline but often appears as a fine powder. It is a 

component of the mineral natron and is found dissolved in many 

mineral springs.  The natural mineral form is known as nahcolite. It is 

also produced artificially. 

Sodium bicarbonate has antioxidant effects and scavenging reactive 

free radicals. In kidney environment this effect, it also decreases the 

acidification of urine and renal medulla, which may reduce the 

generation of free radicals and protects the kidney from oxidant injury 

[30].       

 

Fig 6. Sodium Bicarbonate chemical structure      
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Physicochemical Properties of Contrast Agents   

The goal of producing contrast media that combine high attenuation 

with reduced side effects has resulted in a diverse family of 

compounds, each with differing physicochemical properties and 

physiologic effects. Agents such as diatrizoate and others were 

manufactured as polar (ionic) and highly concentrated solutions (high 

osmolarity) in order to ensure good visualization and water solubility.  

Although these high-osmolar contrast media (HOCM) allowed good 

opacification of small structures, they were found to be associated 

with significant pseudoallergic reactions and a significant risk of 

nephrotoxicity in patients at risk. Subsequent compounds (low-

osmolar contrast media [LOCM]) had an osmolarity 2 3 times lower 

than HOCM; most compounds in this group, including iohexol and 

iopamidol, are nonionic, with ioxaglate as the only ionic agent. 

Although these agents were a definite improvement, the osmolarity 

was significantly greater than that of plasma and they were still 

associated with the development of CIN in a lower proportion of 

patients at risk. In patients at increased risk for CIN undergoing intra-

arterial administration of contrast, ionic high-osmolality agents pose a 

greater risk for CIN than low-osmolality agents. Current evidence 

suggests that for intra-arterial administration in high-risk patients with 

chronic kidney disease, particularly those with diabetes mellitus 

nonionic, iso-osmolar contrast is associated with the lowest risk of 

CIN. The CIN Consensus Working Panel considered that there is 



22  

insufficient information to make a definitive statement about the 

relative contributions to renal toxicity. However, it seems clear that 

the osmolarity of the contrast medium, and hence the osmotic load 

delivered to the kidneys, appears to play a critical role in the 

pathogenesis of CIN, either directly or indirectly [18,23].                     
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Pharmacokinetic properties of the Contrast Media.   

Contrast agents are highly water-soluble and their active compound is 

distributed very rapidly througt the interstitial fluid. There is no 

evidence that CM molecules can penetrate plasma  membrane, with 

the exception of renal tubule cells. The dimers increase the viscosity 

of fluids than the monomers. This may have relevance only in the 

proximal tubular lumen, where an increase in viscosity leads to a 

longer retention of CM and increased exposure of renal tubular cells 

to CM. The half-life of distribution is very fast [31].   

The MC (high or low osmolarity) are iperosmolar compared to plasma 

and they generate a rapid passage of fluid from interstitial 

compartment to the vascular one and an increase in plasma volume. 

This phenomenon is transient, is proportional to the osmolarity of 

solution of CM and it lasts a few seconds. Water-soluble organic 

iodates are quickly eliminated by glomerular filtration. Their 

clearance  in a person with normal renal function is 3 hours.          
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Classification of Contrast Media.   

The iodinated contrast agents are different in their physical and 

chemical features, and they can be classified according to:  

a) the osmolality of the solution (high osmolality, low osmolality or 

iso-osmolality), 

b) dissociation  in solution (ionic, non-ionic),  

c) number of benzene rings (monomers, dimers).   

The commonly contrast media used can be distinguished into four 

groups:   

1) monomers, ionic, high osmolality. They are hyper-osmolar (about 

1500 mOsm / kg H2O, ~ 7 times the plasma osmolality). They contain 

3 iodine atoms for every 2 molecules produced in solution (which 

involves the common definition of MDC Class 1.5 or ratio 1.5:1). 

MDC are older and less expensive to use in clinical practice.   

2) monomers, non-ionic low osmolality. Depending on the iodine 

concentration of non-ionic monomers, the osmolarity of these CM can 

range from 300 to 915 mOsm / kg H2O. They contain 3 iodine atoms 

for one molecule (which involves the establishment of MC common 

grade 3 or 3:1 ratio).   

3) dimer, ionic, low osmolality. The molecule is composed of two tri-

iodinated benzene rings (anion) and cations (sodium and meglumine). 
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The anion is a dimer, which contains 6 iodine atoms. When the iodine 

complex is dissociated, it s generates 2 particles: a cation without 

iodine, and an anion with 6 atoms of iodine. The effect is a compound 

with a ratio of  3 atoms for every iodine molecule in solution, with an 

osmolality similar to that of non-ionic solution monomers.   

4) dimer, non-ionic iso-osmolality. These molecules are composed of 

two tri-iodinated benzene rings not dissociated in solution. The 

osmolarity of all non-ionic dimmers based solutions is `similar to 

plasma (290-300 mOsm/kg H2O). Each molecule of this family has 6 

iodine atoms (which involves the common definition of CM (Class 6 

or 6:1 ratio). These kind of CM molecules are larger than the previous. 

Thus their viscosity is higher than that of non-ionic monomers.    

Based on this formula, we also can classify contrast agents:    
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Table 1: Classification of Contrast Media    

GROUP 
IODINE 
ATOMS 

N° 
PARTICLE 

CLASS 

Ionic 
monomer 

3 2 1.5 

Non-ionic 
monomer 

3 1 3 

Ionic dimer 6 2 3 

Non-ionic 
dimer 

6 1 6 
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Iodixanol  

It is a contrast agent, sold under the trade name Visipaque (class 6).  

Visipaque is commonly used as a contrast agent during coronary 

angiography, particularly in individuals with renal dysfunction, as it is 

believed to be less toxic to the kidneys than most other intravascular 

contrast agents. It is an iso-osmolar contrast agent, with an osmolality 

of 290 mOsm/kg H2O, the same as blood (fig 7).       

 

Fig 7 Iodixanol chemical structure         
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Iobitridol    

Is a nonionic low-osmolar class 3 contrast medium approved and 

marketed in Germany as Xenetix (Guerbet, Sulzbach, Germany) since 

1996. Xenetix is commonly used as a contrast agent during coronary 

angiography.  It is an iso-osmolar contrast agent, with an osmolality of  

915 mOsm/kg H2O, lower than blood osmolarity (fig 8).         

  

Fig 8 Iobitridol chemical structure      
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Apoptosis   

The word Apoptosis has greek origin, means "falling off or dropping 

off", in analogy to leaves falling off trees or petals dropping off 

flowers. This analogy emphasizes the death is an integral and 

necessary part of the life cycle of organisms. The apoptotic mode of 

cell death is an active and defined process which plays an important 

role in the development of multicellular organisms and in the 

regulation and maintenance of the cell populations in tissues upon 

physiological and pathological conditions [32].  

During development many cells are produced in excess and eventually 

undergo  programmed cell death and thereby contribute to sculpturing 

many organs and tissues [33].   

Taken together, apoptotic processes have widespread biological 

significance, being involved in e.g. development, differentiation, 

proliferation/homoeostasis, regulation and function of the immune 

system and in the removal of defect and therefore harmful cells. Thus, 

dysfunction or dysregulation of the apoptotic program is implicated in 

a variety of pathological conditions [34].     

Apoptotic cells can be recognized by stereotypical morphological 

changes: the cell shrinks, shows deformation and looses contact to its 

neighbouring cells. Its chromatin condenses and marginates at the 

nuclear membrane, the plasma membrane is blebbing or budding, and 
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finally the cell is fragmented into compact membrane-enclosed 

structures, called 'apoptotic bodies' which contain cytosol, the 

condensed chromatin, and organelles. Those morphological changes 

are a consequence of characteristic molecular and biochemical events 

occurring in an apoptotic cell, most notably the activation of 

proteolytic enzymes which eventually mediate the cleavage of DNA 

into oligonucleosomal fragments as well as the cleavage of a 

multitude of specific protein substrates which usually determine the 

integrity and shape of the cytoplasm or organelles [35]. 

Principally two mechanisms have been identified in mammalian cells 

for the induction of apoptosis: agents that lead to the perturbation of 

mitochondria, resulting in the release of cytochrome C and the 

activation of apoptosis; or agents that directly activate a family of 

death receptors leading to the activation of a parallel apoptotic cascade  

[36] (Fig 9). 

The caspases, cysteine proteases homologous to C. elegans ced-3 are 

of central  importance in the apoptotic signalling network which are 

activated in most cases of apoptotic cell death [37].  

The term caspases is derived from cysteine-dependent aspartate-

specific proteases: their catalytical activity depends on a critical 

cysteine-residue within a highly conserved active-site pentapeptide 

QACRG and the caspases specifically cleave their substrates after Asp 

residues. 

The observation that cell lines derived from those knockout 

experiments are resistant to distinct apoptosis stimuli underlines the 
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importance of caspases as proapoptotic mediators. Indeed, caspase-3, 

caspase-9, caspase-8, and additionally caspases-2, -6, -7, and 10 have 

been recognized to play an important role in the apoptotic signalling 

machinery [38].   

The proapoptotic caspases can be divided into initiator caspases 

including procaspases-2, -8, -9 and 10, and into the group of 

executioner caspases including procaspases-3, -6, and 7. Whereas the 

executioner caspases possess only short prodomains, the initiator 

caspases possess long prodomains, containing death effector domains 

(DED) in the case of procaspases-8 and 10 or caspase recruitment 

domains (CARD) as in the case of procaspase-9 and procaspase-2. 

Via their prodomains, the initiator caspases are recruited to and 

activated at death inducing signaling complexes either in response to 

the ligation of cell surface death receptors (extrinsic apoptosis 

pathways) or in response to signals originating from inside the cell 

(intrinsic apoptosis pathways). In extrinsic apoptosis pathways,  e.g. 

procaspase-8 is recruited by its DEDs to the death inducing signalling 

complex (DISC), a membrane receptor complex formed following to 

the ligation of a member of the tumor necrosis factor receptor (TNFR) 

family [39].    
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When bound to the DISC, several procaspase-8 molecules are in close 

proximity to each other and therefore are assumed to activate each 

other by autoproteolysis [40].  

Intrinsic apoptosis pathways involve procaspase-9 which is activated 

downstream of mitochondrial proapoptotic events at the so called 

apoptosome, a cytosolic death signalling protein complex that is 

formed upon release of cytochrome c from the mitochondria [41].   

In this case it is the dimerization of procaspase-9 molecules at the 

Apaf-1 scaffold that is responsible for caspase-9 activation [40].  

Once the initiator caspases have been activated, they can 

proteolytically activate the effector procaspases-3, -6, and -7 which 

subsequently cleave a specific set of protein substrates, including 

procaspases themselves, resulting in the mediation and amplification 

of the death signal and eventually in the execution of cell death with 

all the morphological and biochemical features usually observed [38].        
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Fig 9. Simplified model of pro- and anti-apoptotic pathways.    
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Aim of study    

The aim of the study is to investigate the molecular mechanisms 

underlying the apoptotic effects of both iso-osmolar  (IOCM) and low-

osmolar (LOCM) CM on patients kidneys, by testing the response of 

non-differentiated human embryonic kidney cells (HEK 293), and of 

differentiated cells, i.e. porcine proximal renal tubular cells (LLC-

PK1) and canine Madin-Darby distal tubular renal cells (MCDK) after 

CM treatment. Futhermore, we aimed to determine the role of 

commonly used antioxidant compounds in clinical investigation on 

preventing CM-induced apoptosis.            
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Experimental Procedures  

Culture conditions and reagents 

 

Three different cell lines were utilized: (i) human embryonic kidney 

(HEK 293), which are undifferentiated human renal cells; (ii) porcine 

proximal renal tubular (LLC-PK1) and canine Madin Darby renal 

epithelial (MDCK) cells which have the characteristics of proximal 

and distal tubule cells, respectively. Cells were grown in a 5% CO2 

atmosphere in Dulbecco's Modified Eagle Medium (DMEM) 

containing 10% heat-inactivated FBS, 2 mM L-glutamine, and 100 

U/mL penicillin streptomycin. Cells were routinely splitted when they 

reached 80 85% confluent. Media, sera, and antibiotics for cell culture 

were from Life Technologies, Inc. (Grand Island, NY, USA). Protein 

electrophoresis reagents were from Bio-Rad (Richmond, VA, USA) 

and western blotting and ECL reagents (GE Health care, Europe SA). 

All other chemicals were from Sigma (St Louis, MO, USA).  

 

Contrast agents 

Two different CM were tested: (i) iodixanol (Visipaque®, GE 

Healthcare Europe; 320 mg iodine/mL) non-ionic, IOCM (290 

mOsm/kg of water) and (ii) iobitridol (Xenetix®, Guerbet, France; 

250 mg iodine/mL) non-ionic, LOCM (915 mOsm/kg of water).  
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Experimental design 

 

Experiments were driven in the following phases: (i) assessment of 

cytotoxicity of both LOCM (iobitridol) and IOCM (iodixanol). In 

order to assess the impact of contrast dose, two different doses of CM 

were tested, 100 and 200 mg iodine/mL. The cytotoxicity of CM was 

tested at 15, 30, 45, 60, 90, 120, 150, 180. The osmolality of DMEM 

alone was 355 mOsm/L, when compared with 395 mOsm/L for 

DMEM plus IOCM and 830 mOsm/L for DMEM plus LOCM. In 

order to clarify the potential major determinants of the cytotoxic effect, 

we further assessed the effect of iodine alone (by incubation with 100 

and 200 mg/mL sodium iodine) [15] and hyperosmolality (by 

incubation in DMEM/8% mannitol, having an osmolality of 830 

mOsm/L); (ii) assessment of the effectiveness of various antioxidant 

compounds (that is, NAC, ascorbic acid, and sodium bicarbonate) in 

preventing contrast cytotoxicity. Different doses of all tested 

compounds were utilized, in order to elicit any dose-dependent effect. 

The doses tested were selected according to the available data in the 

clinical setting. NAC was tested at 1, 10, and 100 mM [16,17]. 

Ascorbic acid was tested at 2, 4, and 8 mM [42]. Sodium bicarbonate 

was tested at 75, 150, and 300 mM [27]. Each concentration was done 

in triplicate.  

  



37  

Protein isolation and western blotting 

Cellular pellets from a singular cell line at time were washed twice 

with cold PBS and resuspended in JS buffer (HEPES 50 mM, NaCl 

150 nM, 1% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 5 mM 

EGTA) containing  Proteinase  Inhibitor  Cocktail (Roche). 

Solubilized proteins were incubated for 1 h on ice. After 

centrifugation at 13 200 rpm for 10 min at 4°C, lysates were collected 

as supernatants. Eighty micrograms of sample extract were resolved 

on a 12% SDS-polyacrylamide gel using a mini-gel apparatus (Bio-

Rad Laboratories, Richmond, CA, USA) and transferred to Hybond-C 

extra nitrocellulose (GE Healthcare Europe). Membrane was blocked 

for 1 h with 5% non-fat dry milk in TBS containing 0.05% Tween-20 

and incubated over night at 4°C with specific antibodies. The 

following antibodies were used for immunoblotting: anti-pro-caspase-

3 (recognizing only the inactive pro-caspase-3) (cell signalling), anti-

beta Actin (Sigma), anti-PARP (Sigma), anti-Bim (Santa Cruz), anti 

Bad (Santa cruz), and anti-Caspase-9, -10, and -8 from Stressgen. 

Washed filters were then incubated for 60 min with HRP-conjugated 

anti-rabbit or anti-mouse secondary antibodies (GE Healthcare, 

Europe) and visualized using chemioluminescence detection (GE 

Healthcare Europe). The activation of caspase was followed by the 

disappearance of the band corresponding to the inactive pro-caspase 

enzyme, utilizing a specific antibody that recognizes this form.  
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Cell-death quantification 

Cell death was evaluated with the CellTiter 96® AQueous One Solution 

Cell Proliferation Assay (Promega, Madison, WI, USA), according to 

the manufacturer's protocol. The assay is based on reduction of 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt (MTS) to a coloured product 

that is measured spectrophotometrically. Cells were plated in 96-well 

plates in triplicate, stimulated, and incubated at 37°C in a 5% CO2 

incubator. Iobitridol, iodixanol, NAC, sodium bicarbonate, and 

ascorbic acid were used in vitro at the doses and time indicated. 

Metabolically active cells were detected by adding 20 µL of MTS to 

each well. After 30 min of incubation, the plates were analysed on a 

Multilabel Counter (Bio-Rad, Richmond, VA, USA). DNA laddering 

was also used to confirm the apoptotic death induced by CM. Briefly, 

after CM exposure, the cells were harvested with 500 µL of DNA lysis 

buffer [5 mM Tris HCl (pH 7.5), 20 mM EDTA (pH 8.0), 0.5% 

NP40], and were incubated on ice for 20 min. After centrifugation at 

13 200 rpm for 30 min, the DNA was then extracted with phenol 

chloroform isoamyl alcohol and finally precipitated with the addition 

of 1.25 mL of cold ethanol 100% and 50 µL sodium acetate (pH 5.2) 

on dry ice for 20 min. The precipitates were centrifuged (30 min, 13 

200 rpm, 4°C), dried at room temperature, solubilized in 10 µl of TE, 

and then incubated with RNase A for 30 min at 37°C. The DNA 

samples were finally separated on 1.5% agarose gel containing 

ethidium bromide (Sigma, St Louis). The gel was photographed under 

UV light. Apoptosis was also analysed via propidium iodide 
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incorporation in permeabilized cells by flow cytometry. The cells (2 x 

105) were washed in PBS and resuspended in 200 µL of a solution 

containing 0.1% sodium citrate, 0.1% Triton X-100, and 50 µg/mL 

propidium iodide (Sigma). Following incubation at 4°C for 30 min in 

the dark, nuclei were analysed with a Becton Dickinson FACScan 

flow cytometer. Cellular debris was excluded from analyses by raising 

the forward scatter threshold, and the DNA content of the nuclei was 

registered on a logarithmic scale. The percentage of elements in the 

hypodiploid region was calculated.  

 

Statistical analysis 

Continuous variables are expressed as mean values ± SD. We 

performed a multiple comparison test using the information derived by 

performing one-way analysis of variance (ANOVA) test on groups of 

independent variables having cell viability as our dependent variable. 

In an ANOVA, we compared the means of several groups to test the 

hypothesis that they are all the same, against the general alternative 

that they are not all the same. However, since the alternative 

hypothesis may be too general and more information is needed about 

which pairs of means are significantly different, and which are not, we 

used the multiple comparison procedure, which allows us to 

comparing all group mean pairs at the same time. Throughout the 

analysis, we have specified a significance level = 0.001 and we 

performed priori comparisons on the outputs derived from ANOVA 

test. Also, main focus was given on the ANOVA outputs where the F 



40  

test resulted significantly. We performed the priori comparisons using 

the Bonferroni t method for both orthogonal and non-orthogonal 

comparisons to reduce multiplicity between group comparisons. The 

Bonferroni t method increases the critical F value needed for the 

comparison to be declared significant. Data were analysed with SPSS 

13.0 (Chicago, IL, USA) for Windows.  
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RESULTS 

 

Effects of contrast medium on cell viability 

 

As shown in Figure 10, both LOCM and IOCM produced a 

concentration-dependent decrease in cell viability as assessed by MTS 

assay. This effect was identical in all the three renal cell lines utilized 

(Figure 10). The toxic effect of CM was further evaluated by DNA 

laddering (Figure 11) and propidium staining and FACS analysis 

(Figure 12). Both methods confirmed that exposure of cells to LOCM 

and IOCM induces apoptosis of renal cells. 
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Figure 10  Effects of contrast media, iodine, and mannitol on renal cells. 

HEK 293 (A), LCC-PK1 (B), and MCDK (C) cells were incubated in the 

presence of 200 mg iodine/mL of iobitridol (IBT) or iodixanol (IXN), of 

iodine alone (sodium iodine, 100 and 200 mg) and 8% mannitol 

(hyperosmolar solution) for 3 h. Cell viability was then assessed with 

CellTiter Proliferation Assay. *P < 0.001 vs. all the other groups; 
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Fig 11 HEK 293, LCC-PK1, and MDCK cells were incubated in the 

presence of 200 mg iodine/mL of iobitridol or iodixanol for 3 h. DNA was 

extracted and loaded on 1.5% agarose gel.  

 

Fig 12 HEK 293, LCC-PK1, and MDCK cells were incubated in the 

presence of 100 and 200 mg iodine/mL of iobitridol or iodixanol for 24, 

48, or 72 h and then DNA fragmentation was measured by flow cytometry. 

Data represent the mean±SD of two separate experiments performed in 

triplicate. 
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The cytotoxic effect, although maximum at 3 h, was mostly ( 85%) 

observed already at 15 min of incubation. In order to better clarify the 

time-dependency effect, we performed a further control experiment in 

which cells were exposed for a short period (only 15 min), then 

washed free of CM, and studied for viability immediately or 3 h later, 

and compared these effects to those observed upon 3 h of incubation. 

Interestingly, we found that the cytotoxic effect induced by 15 min of 

high dose (200 mg iodine/mL) of CM exposure was similar whether it 

was observed immediately or 3 h later (Figure 13)  

There was not any interaction between the cytotoxic effect and the 

type of contrast used (P = 0.22; F = 1.87 by ANOVA model with = 

0.001). Furthermore, neither sodium iodine alone nor hyperosmolar 

solution decreased cell viability or induced cell apoptosis (Figure 14).  
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Figure 13  Role of different time on effect of contrast media. MCDK cells 

were incubated in the presence of 200 mg iodine/mL of iobitridol (A) or 

iodixanol (B), for 15 min, 3 h or 15 min then washed and incubated with 

DMEM, respectively. Data represent the mean±SD of two separate 

experiments performed in triplicate. 
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Fig. 14 HEK 293, LCC-PK1, and MDCK cells were incubated in the 

presence of 200 mg iodine/mL of iobitridol or iodixanol for 72 h and then 

DNA fragmentation was measured by flow cytometry. Data represent the 

mean±SD of two separate experiments performed in triplicateAll cell lines 

were exposed to the same concentrations of CM. On the contrary, in vivo, 

cell apoptosis was mostly found in the more distal tubular cells (MDCK) 

which may be exposed to higher concentrations of CM.  
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Role of caspases in contrast-induced cytotoxicity 

 

To test whether CM stimulate caspase activity, HEK 293 cells were 

incubated in the presence of either LOCM or IOCM at different time 

points and then the activation of caspases-8, -10, -3, -9 was assessed 

by western blot (Figure 14A). Both LOCM and IOCM caused a 

marked increase in caspase-3 and -9 activities at 7 h of exposure, as 

assessed by the reduction of the pro-caspase form (Figure 15A). No 

effect on caspases-8 and -10 was observed, thus indicating that the 

CM activated apoptosis mainly through the intrinsic, or 

mitochondrial , pathway (Figure 14A). This pathway of apoptosis is 

regulated by Bcl2 family members. Hence, we studied the expression 

of Bad and Bim, two pro-apoptotic members of the Bcl2 family, after 

incubation with the CM. Western blotting revealed that exposure to 

CM induce an increase in both Bad and Bim expression (Figure 15B). 

Similar results were obtained in the other cell types (data not shown).  
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Figure 15 Effect of contrast media on caspase activation and on Bcl2 

family proteins expression. HEK 293 cells were incubated in the 

presence of 200 mg iodine/mL of iobitridol or iodixanol for the 

indicated time. Eight micrograms of protein were loaded onto 12% 

SDS PAGE gel. (A) The membranes were incubated with anti-

caspase-3, -8, -9, -10 antibodies and visualized by 

chemioluminescence detection. Contrast media induced an activation 

of caspases-3 and -9 and not of caspases-8 and -10 as assessed by the 

reduction of the pro-caspase levels. (B) Membranes were incubated 

with anti-Bim or anti-Bad antibodies and visualized by 

chemioluminescence detection. Loading control was controlled with 

anti- -actin.  
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Effects of NAC on contrast-induced cytotoxicity  

HEK 293, LLC-PK1, and MDCK cells were pre-incubated with 

different concentrations of NAC and cell viability was assessed with 

the cell proliferation assay. We observed a dose-dependent protective 

effect of NAC on renal cells after 3 h incubation with the high dose 

(200 mg iodine/mL) of both LOCM and IOCM (P < 0.001; F = 396.22 

by ANOVA test; (Figure 16). As compared to baseline, after 3 h of 

incubation, cell viability was <10% in the CM-treated cells, <25% 

with the lowest (1 mM) dose of NAC, <30% with the middle (10 

mM), and approximately 80% with the highest (100 mM) dose of 

NAC. There was not any interaction between the protective effect of 

NAC (for dose 1 and 10 mM) and the type of CM (P = 0.75; F = 0.12 

and P = 0.32; F = 1.31, respectively, both by ANOVA test with = 

0.001). However, results for NAC 100 mM with LOCM appears to be 

slightly better for cell viability when compared with NAC 100 mM 

with IOCM (P = 0.006; F = 28.22). In order to clarify the mechanism 

by which NAC prevented contrast-induced apoptosis, we analysed the 

effect of NAC pre-treatment on Poly(ADP-ribose) (PARP), a final 

substrate of caspase-3. We found that the CM induced the activation of 

PARP as assessed by the marked reduction of the 116 kDa PARP pro-

form. On the contrary, NAC completely prevented this activation, 

suggesting that NAC acts through the inhibition of the intrinsic 

pathway of apoptosis (Figure 17).  
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Figure 16 Pre-treatment with NAC and contrast-induced cell death. HEK 293 

(open columns), LCC-PK1 (black columns), and MDCK (grey columns) cells 

were pre-treated for 2 h with different concentration of N-acetylcysteine (NAC) as 

indicated (1, 10, and 100 mM) and then incubated for 3 h with 200 mg iodine/mL 

of iobitridol or iodixanol. Cell viability was then assessed with CellTiter 

Proliferation Assay. NAC protects the cells from contrast-induced cell death in a 

dose-dependent fashion (HEK 293: P < 0.001; F = 143.51 with iobitridol; P < 

0.001; F = 122.43 with iodixanol. LCC-PK1 cells: P < 0.04; F = 12.9 with 

iobitridol; P < 0.03; F = 14.79 with iodixanol; MDCK cells: P < 0.006; F = 41.19 

with iobitridol; P < 0.01; F = 25.24 with iodixanol). *P = <0.001 vs. baseline 

(CM /NAC ) and [CM+/NAC 100 mM]; P < 0.05 vs. (CM+/NAC 1 mM) and 

(CM+/NAC 10 mM); P = 0.003 vs. (CM+/NAC 100 mM); ¶P < 0.03 vs. 

(CM+/NAC 100 mM); #P < 0.05 vs. baseline (CM /NAC ).  
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Fig 17.  HEK 293 cells were pre-incubated with NAC for 2 h and then incubated 

in the presence of 200 mg iodine/mL of iobitridol or iodixanol for 3 h. Eighty 

microgram of protein was loaded onto 10% SDS PAGE. The membranes were 

incubated with anti-PARP antibody and visualized by chemioluminescence 

detection. PARP activation was detected by the reduction of the 116 kDa non-

cleaved form of PARP. Loading was controlled with anti-b-actin.         
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Effects of ascorbic acid on contrast-induced 

cytotoxicity   

We observed a dose-dependent protective effect of ascorbic acid on 

renal cells exposed after 3 h of incubation with the high dose (200 mg 

iodine/mL) of both LOCM (HEK 293: P = 2.99 x 10 5; F = 1552.67; 

LLC-PK1: P = 0.04; F = 10.85; MDCK: P = 0.04; F = 18.57) and 

IOCM (HEK 293: P = 6.43 x 10 5; F = 933.55; LLC-PK1: P = 0.02; F 

= 16.29; MDCK: P = 0.01; F = 19.98) (Figure 18). When compared to 

baseline, at 3 h of incubation cell viability was <6% in the control 

group, <15% with the lowest (2 mM) dose of ascorbic acid, and <60% 

with in both 4 mM and 8 mM doses of ascorbic acid, respectively. 

There was a significant interaction between the protective effect of 

ascorbic acid and cell viability for both types of CM (Iobitridol: P = 

0.0017, F = 10.09, and Iodixanol: P = 0.0002, F = 16.46, both by the 

ANOVA model).        
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Figure 18.  Effects of ascorbic acid on contrast-induced cell death. HEK 

293 (open columns), LCC-PK1 (black columns), and MDCK (grey 

columns) were pre-treated for 2 h with different concentrations of 

ascorbic acid (AA) (2, 4, and 8 mM) or sodium bicarbonate (75, 150, and 

300 mM) as indicated and then incubated for 3 h with 200 mg iodine/mL 

of iobitridol or iodixanol. Cell viability was then assessed with CellTiter 

Proliferation Assay. *P < 0.03 vs. (CM+/AA 2 mM+), P < 0.001 vs. all 

the other groups.  
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Effects of sodium bicarbonate on contrast-induced 

cytotoxicity   

We did not find any protective effect of sodium bicarbonate on HEK 

293 (LOCM: P = 0.53; F = 0.78; IOCM: P = 0.02; F = 23.02); LCC-

PK1 (LOCM: P = 0.09; F = 6; IOCM: P = 0.94; F = 0.06); and 

MDCK (LOCM: P = 0.88; F = 0.13; IOCM: P = 0.71; F = 0.38) after 

3 h of incubation with the high dose of either LOCM or IOCM. Cell 

viability was quite similar even in the presence of high (300 mM) dose 

of sodium bicarbonate (Figure 19). This lack of any protective effect 

was similar with LOCM and IOCM. There was no difference in pH in 

the medium from the various groups (Table 2) and there was no effect 

on cell viability (Iobitridol: P = 0.72, F = 0.33; Iodixanol: P = 0.49, F 

= 0.73 by the ANOVA model).             
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Figure 19  Effects of ascorbic acid and sodium bicarbonate on 

contrast-induced cell death. HEK 293 (open columns), LCC-PK1 

(black columns), and MDCK (grey columns) were pre-treated for 2 

h with different concentrations of ascorbic acid (AA) (2, 4, and 8 

mM) or sodium bicarbonate (75, 150, and 300 mM) as indicated 

and then incubated for 3 h with 200 mg iodine/mL of iobitridol or 

iodixanol. Cell viability was then assessed with CellTiter 

Proliferation Assay. *P < 0.03 vs. (CM+/AA 2 mM+), P < 0.001 

vs. all the other groups.   
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Table 2 pH in the various treatment groups  

Group Iobitridol* Iodixanol** 

Contrast media alone 7.34 (7.18 7.50) 7.25 (7.06 7.50)

Contrast media plus NAC 7.29 (6.97 7.60) 7.03 (6.96 7.10)

Contrast media plus AA 6.90 (6.80 7.01) 7.04 (7.06 7.10)

Contrast media plus NaHCO3

 

7.30 (7.21 7.40) 7.24 (7.08 7.50)

 

Values are expressed as median and interquartile range.  

NAC, N-acetylcysteine; AA, ascorbic acid; NaHCO3, sodium bicarbonate.  

*P = 0.57 through the groups by ANOVA test, after transforming pH values into 

proton H+ concentrations.  

**P = 0.65 through the groups by ANOVA test after transforming pH values into 

proton H+ concentrations. 
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Effects of co-incubation of NAC with ascorbic acid 

or with sodium bicarbonate 

  

The protective effect of NAC (100 mM) was greater than that of 

ascorbic acid (8 mM) LOCM: P = 1.25 x 10 8, F = 52.21; and IOCM P 

= 9.90 x 10 9, F = 54.03 by the ANOVA model; (Figure 20). We 

performed a further experiment to investigate the effect on cell death 

of 2 h of NAC pre-treatment (100 mM), in the presence of either 

ascorbic acid (8 mM), or sodium bicarbonate (150 mM) on cell death 

after 3 h of incubation with the high dose (200 mg iodine/mL) of 

either LOCM or IOCM. As shown in Figure 20, the combination of 

NAC with another antioxidant agent was less effective than NAC 

alone (P = 0.95; F = 0.54 by the ANOVA test). 
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Figure 20 Effect of NAC, ascorbic acid, and sodium bicarbonate 

alone and in combinations on contrast-induced cell death. HEK 293 

cells were pre-treated for 2 h in the presence of N-acetylcysteine 

(NAC, 100 mM), ascorbic acid (AA, 8 mM), and sodium 

bicarbonate (NaHCO3, 150 mM) alone or in combination and then 

incubated for 3 h with 200 mg iodine/mL of iobitridol or iodixanol. 

Cell viability was then assessed with CellTiter Proliferation Assay. 

*P < 0.001 vs. (CM+/AA+), (CM+/NAC+), (CM+/NAC+/AA+), 

(CM+/NAC+/NaHCO3+), and (CM+/AA+/NaHCO3+); P < 0.001 

vs. (CM+/NAC+), (CM+/NAC+/NaHCO3+), and 

(CM+/NAC+/AA). 
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Discussion  

The main conclusions of the present study are (i) CM induce dose- and 

time-dependent renal cell apoptosis through the activation of the 

intrisinc pathway, (ii) this cytotoxic effect does not seem to be caused 

by iodine or osmolality 830 mOsm/L, and (iii) pre-treatment with 

NAC and ascorbic acid but not with sodium bicarbonate prevents 

apoptosis in a dose-dependent fashion.  

 

Contrast media and renal cell apoptosis 

 

Our study confirms that the CM induce renal cell apoptosis.4 6,16 18

 

In 

order to strengthen this finding, we used three different renal cell lines, 

namely, human epithelial cells (HEK 293) and two cell lines with the 

characteristics of proximal and distal tubule cells [porcine kidney 

proximal tubular epithelial cells (LLC-PK1) and Madin Darby canine 

kidney cells (MDCK)]. The activation of caspase-9 and -3, but not of 

caspases-8 and -10 observed after exposure to CM supports the 

concept that CM induce apoptosis through the intrinsic, or 

mitochondrial , pathway. This finding was also supported by the 

activation of  PARP, a final substrate of caspase-3. In a rat model of 

CIN, cellular injury of the renal medulla consisted of extensive DNA 

fragmentation, which has been attributed to medullary hypoxia [43-

45]. Yano et al. [45] have shown that CM induced apoptosis in the 

porcine tubular cell line, LLC-PK-1, and that the injuries might be due 
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to de-regulation in Bax/Bcl-2 expression, followed by increases in 

caspases-9 and -3 activities. In agreement with these previous 

observations, we found that CM induce an increase of at least two Bcl-

2 pro-apoptotic family members, i.e. Bim and Bad [46-48].  

 

Role of contrast dose and osmolality 

CM induce renal cell apoptosis in a dose- and time-dependent 

manner.18

 

Guidelines recommend to limit the volume of CM usage in 

order to prevent contrast-associated nephrotoxicity [49,50].  It has 

been suggested that using the iodine dose/glomerular filtration rate 

ratio may be a more expedient way of improving risk assessment of 

CIN than the more common practice of estimating CM dose from 

volume alone [50]. After intravascular administration of CM in 

rabbits, a urinary concentration higher than 100 mg/mL of iodine has 

been measured [15]. However, we found that the iodine alone does not 

cause renal cell apoptosis.  

We observed that the cytotoxic effect, although maximum at 3 h, was 

mostly ( 85%) observed already at 15 min of incubation. This 

suggests that even a short period of exposure activates the cascade 

leading to apoptosis and therefore what is being observed at the later 

time periods represents mostly the cumulative effect of that initial 

exposure. This finding highlights the importance of strategies limiting 

the exposure of the kidney to the toxins contained in the contrast agent 

by generating high urine flow in patients.  
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The contribution of osmolality to contrast-induced apoptosis is 

controversial [44,51,52].  Although previous studies demonstrated that 

the cytotoxicity of high-osmolality contrast media (HOCM) is higher 

than that of LOCM [44], we did not find any difference in the extent 

of cell injury between IOCM and LOCM. Furthermore, the cytotoxic 

effect may be related to CM hypertonicity, since equally hyperosmolal 

but less hypertonic urea solution failed to induce DNA fragmentation 

[44]. Factors other than osmolality may contribute to the toxic effect. 

Ionicity and/or molecular structure (monomeric or dimeric) may be of 

importance. Heinrich et al. [18] demonstrated that at an equal iodine 

concentration, no significant differences exist between the direct toxic 

effects of non-ionic monomeric and dimeric CM on renal proximal 

tubular cells in vitro. On the contrary, when comparing the data on a 

molar basis, the dimeric CM showed a significantly stronger effect on 

the tubular cells than did the non-ionic monomeric CM. This suggests 

a greater cytotoxic effect of the dimeric CM molecules. In the last 

generation of CM (which has a non-ionic, dimeric structure), iso-

osmolality has been achieved at the price of an increased viscosity. 

Indeed viscosity is inversely related to osmolality. High viscous CM 

compromise renal medullary blood flux, renal medullary erythrocyte 

concentration, and renal medullary pO2 [53]. Our in vitro experiments 

allow us to examine the cytotoxic effects of CM on renal cells, 

eliminating the effects of confounding variables (e.g. hypoxia due to 

haemodynamic changes or viscosity), which can be found in vivo. 

Therefore, additional studies are necessary to assess whether 
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molecular structure and/or other components of the CM may induce 

this cytotoxic effect.  

 

Antioxidant compounds and contrast-induced apoptosis 

In the last few years, a number of clinical studies have suggested that 

NAC may prevent CIN [7,25]. Recently, two additional antioxidant 

strategies have aroused considerable interest: sodium bicarbonate [27] 

and ascorbic acid [28]. It has been hypothesized that all these 

compounds may be effective due to their antioxidant properties. 

 

Our study supports the clinical observation of the effectiveness of 

NAC and ascorbic acid in preventing contrast-induced apoptosis. This 

effect is dose-dependent: indeed, the greater the dose, the larger the 

cellular benefit. This finding supports the clinical observation of the 

dose-dependency of NAC in preventing CIN [25,54]. The plasma level 

of NAC ranges from 10 mM (with a dosing regimen of 600 mg/day) to 

100 mM (with a dosing regimen of 1200 mg BID) [16,17]. Of note, 

NAC was more effective against contrast-induced apoptosis than 

ascorbic acid. In contrast, sodium bicarbonate does not prevent 

contrast-induced apoptosis. However, recent clinical studies suggest 

that the sodium bicarbonate seems to be effective in preventing CIN 

[27]. This discordance may be explained by alternative mechanisms.  

We recently demonstrated that the combined prophylactic strategy of 

sodium bicarbonate plus NAC, but not the combination of ascorbic 
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acid and NAC, is more effective than NAC alone in preventing CIN. 

We speculated that NAC and ascorbic acid may work through similar 

pathways while the protective action of bicarbonate may be different 

in comparison to NAC and, therefore, additive [26]. The lack of 

benefit of the combination of NAC and ascorbic acid in preventing 

contrast-induced apoptosis observed in the present study supports this 

hypothesis.  

Free-radical formation is promoted by an acidic environment typical 

of distal tubular urine, but is inhibited by the higher pH of normal 

extracellular fluid [55].  It has been hypothesized that alkalinizing 

renal tubular fluid with bicarbonate [27] may reduce injury. At 

physiologic concentrations, bicarbonate scavenges peroxynitrite and 

other reactive species generated from nitric oxide.10

 

In the clinical 

setting, the higher concentration of HCO3 in the proximal convoluted 

tubule may (i) buffer the higher production of H+ due to cellular 

hypoxia and (ii) facilitate Na+ reabsorption through the electrogenic 

Na/HCO3 co-transporter [55]. The result of our in vitro study does not 

support the former mechanism. It may be that NaHCO3 may facilitate 

Na+ reabsorption: this would mitigate the increase in sodium delivery 

to the macula densa induced by CM, an effect that results in 

vasoconstriction of the afferent arteriola through the oricess of 

tubuloglomerular feedback. Furthermore, in our in vitro model, 

NAHCO3 did not raise the pH of the media in comparison to CM 

alone. 
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Conclusion 

 

In conclusion I showed that CM induce apoptosis through the 

activation of the intrinsic pathway. Pre-treatment with NAC and 

ascorbic acid but not with sodium bicarbonate prevents apoptosis in a 

dose-dependent fashion.  
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