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Chapter 1

Introduction

Brownian motion is the evidence of thermal energy, that animates molecules
and atoms, allowing them to rapidly exchange their positions, like in liquids,
or to vibrate around their equilibrium position, like in solids. The amazing
feature of colloids is that due to their relatively large size (it spans from few
nanometers to few microns), we can directly see the effect of this molecu-
lar agitation through the motion of the colloidal particle, and this can be
done with very simple methods like optical microscopy. Through colloidal
Brownian motion, in fact, Einstein proved the molecular structure of matter
[1].

In addition to Brownian motion, colloids experience a number of micro-
scopic forces that generate amazing assemblies and structures of the parti-
cles [2]. These forces can be very different in nature spanning from purely
entropic, to enthalpic like Van der Waals and hydrogen bonding, to electro-
static and finally to elastic [3]. The most simple case one can imagine is
an hard-sphere dispersion; the inter-particle interaction is characterized by
an infinite repulsion at contact. Remarkably, even in such a simple system,
depending on particle volume fraction, particles organize in gas, liquid or
crystal structures[4]. In fact even if at very small concentrations particles
don’t interact, thus behaving like gas molecules, by increasing concentration
a short range order is induced; the range of the order increases until when,
at volume fraction of about 0.5, a crystalline structure is reached. What is
really surprising is that entropy induces order to maximize the free volume
around each particle at expenses of configurational entropy. Although very
simple, the hard sphere model is still subject of intense studies since it is
the experimental model through which liquid theories [5], crystal mechanics
[6] and crystal formation kinetic theories [7] may be proved. In addition
to the equilibrium phases, also a glassy state can be obtained [4], in which
the particle mobility is extremely reduced, but the structure is still that of
a liquid. Colloidal glasses have been proven to be invaluable to study the
particle and cage dynamics approaching the glassy state [8, 9]
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Chapter 1

Most of the technologically interesting colloidal systems are affected by
more complex inter-particle forces. The DLVO (Derjaguin, Landau, Ver-
wey, Overbeek) theory, developed during the 40’s, describes the total inter-
particle potential induced by the combined effects of Van der Waals at-
traction and electrostatic repulsion[3, 10]. The equilibrium configurations,
competing to a minimum free energy, are, however, rarely reached, the par-
ticles remaining trapped in non-equilibirum states like a gel [11]. A gel is a
disordered network of particles kept together by the attractive forces. The
network spans the whole available volume enabling the dispersion to store
elastic energy. Theories accounting for the kinetic of aggregates and gel
formation are based on the pioneer work of Smoluchowsky on doublets for-
mation [2], developed during the 20’s. The structure of the aggregates has
been investigated only much later, starting from the works of Weitz in the
80’s [12]. He proved that the aggregates have a fractal-like structure that is,
they are self similar on different length scales. The fractal dimension char-
acterizes the openness of the flocs and depends on the modality of cluster
formation [13].

Although not exhaustive, this description may already seem quite reach.
However an even reacher behavior can be obtained by using a macromolecu-
lar liquid as/in the suspending medium. The interactions of a polymer chain
and a surface vary depending on their affinity, leading to structures whose
origin are different in nature [14]. If, for example, a polymer is added to a
colloidal dispersion in which the medium is a good solvent for the macro-
molecules and these do not adsorb on the particle surface, whose dimension
is quite bigger than the chains, a depletion interaction is produced [15].
This is an effective attractive potential between the particles arising from
excluded volume entropy. If instead the polymer-particle affinity is good,
one chain can adsorb at the particle surface and assume different possible
conformations. In general different sites of the chain will adsorb on two or
more particles resulting in a polymer bridge, which is still reflected in an
effective inter-particle attractive force. In both cases, the elasticity of the
eventually formed particle network will mix to the viscoelastic feature of the
polymer, giving rise to a complex dynamic response that depends on both
particle and polymer concentrations.

Up to now the, description has been limited to rigid spherical particles.
Rod or disc like colloidal particles are of extreme technological interest; the
first constitute the base of liquid crystals, and the second, resulting from
clay, are widely mixed to polymer melts to improve physical and mechanical
properties of the hosting matrix. The thermodynamic phase behavior of
these geometries is extremely reach and would be really too long to describe
here.

Finally, the particle rigidity may be controlled by using organic parti-
cles obtained by cross-linking a polymer. Internally each particle resembles
a polymer gel and, when suspended in a medium, the size of the particle

2



Introduction

is controlled by the free energy of the gel which generates an effective os-
motic pressure inside the particle [16]. If suspended in a good medium for
the polymer, the particles swell and the inter-particle hard-sphere-like po-
tential at contact changes from a steep to a softer repulsion. The softness
depends on the relation between internal polymer concentration and osmotic
pressure. Because of their internal structure, these colloidal dispersions are
named microgel. Microgel properties are unique. Their size can generally
be controlled by external parameters like temperature or pH [17]. This
makes them technologically relevant, since the particles behave like smart
materials. A microgel dispersion can be concentrated by compressing the
particles and the result is a material with rheological properties reminiscent
of pastes and glasses [18]. The origin of the phase behavior, particle dy-
namics and elasticity of the dispersion are still quite obscure and subject of
intense studies.

Of course in this thesis I only touch a very small fraction of the arguments
described above, mainly focusing on the microscopic origin of the viscoelastic
properties of two classes of dispersions.

The first is represented by attractive particles dispersed in a polymer
melt, in the case of poor polymer particle affinity. The particles are spherical
and of nano-metric size. The resulting aggregates are Brownian and as a con-
sequence can form an elastic network whose response to small deformations
mixes with the intrinsic viscoelasticity of the suspending non-Newtonian liq-
uid. Different model systems are used to give a general description of the
volume fraction and frequency dependence of the linear viscoelastic moduli.

The second class is represented by concentrated microgel dispersions.
The particle size is both temperature and pH dependent. I study the rhe-
ological response showing that, depending on temperature the viscoelastic
response is characteristic of a glass, a liquid and a gel.

Finally in the last chapter, the microscopic dynamics of the compressed,
swollen particles are analyzed. The liquid of particles approaches a glassy
state as function of the degree of compression. The dynamics of the super-
cooled liquid are extremely reach and both structural relaxation and corre-
lations in the cage are compared to hard-sphere counterparts.
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Chapter 2

Experimantal

2.1 Materials

Two polymeric matrices have been used as suspending mediums.
The first is an entangled polypropylene (PP, Moplen, HP563N by Basell)

with an average molecular weight Mw=245 KDa and polydispersity index
Mw/MN ' 1.9. The glass transition temperature Tg ' 6 oC and melting
temperature Tm = 169 oC are measured by differential scanning calorimetry
(DSC, TA Instruments.) at a rate of 2.5 oC/min.

Figure 2.1: Frequency dependence of the complex viscosity η∗ and linear
viscoelastic moduli for the Polypropylene matrix.

The radius of gyration Rg ' 13 nm in the melt is obtained from the
relation Rg = l(1/6N)1/2 [1], where N is the number of Kuhn segments
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in a chain and l is their length. The zero-frequency complex viscosity is
ηo = 2 · 103 Pa · s as shown in figure 2.1 where the frequency dependence
of the viscoelastic moduli is also reported. The linear viscoelastic mod-
uli approach the terminal regime at ω ' 0.1 rad/s which is well inside the
frequency range investigated.

The second matrix is polystyrene (PS, polimeri Europa). We use two
different molecular weights Mw=125 and 268 KDa. For completeness in
this section, data for an intermediate molecular weight Mw= 192 KDa are
also reported. The glass transition temperature doesn’t change much with
molecular weight being, Tg ' 100 oC. All molecular weights are in the en-
tangled regime for the PS as evident from the scaling ηo ∼M3.5

w reported in
the inset of figure 2.2. In figure 2.2 the shear rate γ̇ dependence of the viscos-
ity is also reported together with the frequency dependence of the complex
viscosity η∗. The linear viscoelastic moduli approach the terminal regime
at ω ' 0.1 rad/s which is well inside the frequency range investigated.

Figure 2.2: Flow curves (open symbols) for three polystyrene matrices at
molecular weights Mw= 125 (circles), 192 (diamonds) and 268 (triangles)
KDa. Solid symbols represent the complex viscosity η∗ as function of fre-
quency. In the inset the dependence of the zero shear viscosity is reported
as function of molecular weight.

Three kinds of nanoparticles are used.
Titanium dioxide (TiO2 nanopowder by Sigma Aldrich; density: 3.9

g/mL; surface area: 190÷ 290 m2/g; average primary particles diameter
d=15 nm).

Alumina (Al2O3 nanopowder by Sigma Aldrich; density: 4 g/mL; surface
area: 35÷ 43 m2/g; average primary particles diameter d=40 nm).

Fumed silica (SiO2 nanopowder by Degussa; density: 2.2 g/mL; surface
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area: 135÷ 165 m2/g; average primary particles diameter d=14 nm).

2.2 Preparation methods

Hybrids with polypropylene matrix are prepared using a co-rotating inter-
meshing twin-screw extruder (Thermohaake, Rheomex PTW 24/p). Prior
to mixing, the polymer and the powders are dried under vacuum for three
hours at 90 oC, and dosed into the extruder by using two distinct metering
feeders; the filler is always added to the polymer melt. The presence of three
mixing blocks along the screws ensures a good degree of powder distribution.
We maintain a temperature profile ranging from 160 oC to 190 oC along the
extruder, and collect the materials at the die exit, cooling them in water at
room temperature in order to quench the internal structure of the hybrids.
The diameter of the capillary die is 2mm and the rotation frequency of the
screw is set to '80 rpm, which results in residence times of the order of two
minutes.

The PS/SiO2 hybrids have been prepared using a counter-rotating mini-
extruder (Minilab Microcompounder, ThermoHaake). Prior to mixing, the
polymer and the powders are dried under vacuum for three hours at 90 oC.
The residence time of the material in the extrusion chamber may be changed
at will, thanks to the presence of a feed-back with a volume of 5 cm3. The
diameter of the die is D = 1 mm. Samples are extruded at T=190 oC and
the following procedure has been used: with the screws in rotation at 50 rpm
half of the polymer amount is added to the chamber, then the powders are
slowly loaded and finally, after about 3 minutes, the remaining polymer is
added. The speed of the screws is raised to 100 rpm and after about five
minutes the feed-back is opened and the material cooled down in water at
room temperature.

The pure PP and PS, used as a reference in the rheological investigations,
are extruded under the same conditions of the relative hybrids to allow
quantitative rhelogical comparisons.

2.3 Characterization methods

The internal morphology of the hybrids is observed using transmission elec-
tron microscopy (TEM Philips, mod. EM 208). The state of filler dispersion
is quantified through the analysis of many TEM images at different mag-
nifications. All samples are microtomed using a diamond knife at room
temperature in order to guarantee a thickness of 100-150 nm.

Rheological tests are carried out by means of a strain-controlled ro-
tational rheometer (Rheometric ScientificTM, ARES L.S.) and a stress-
controlled rotational rheometer (TA Instruments ARG2) using parallel plate
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geometry; the diameter of the plates is either 25 mm or 50 mm. The mea-
surements are performed in an atmosphere of dry nitrogen at T=190 oC
after melting the solid hybrid between the rheometer plates; the time re-
quired to do this is about three minutes, which is enough to obtain suitable
disks for rheological analyses.

Oscillatory shear strain scans are performed at a fixed frequency of 0.063
rad/s to determine the critical strain γc that separates the linear and non-
linear viscoelastic responses.

Oscillatory shear frequency scans are performed at a fixed strain in lin-
ear regime to determine the dynamical response of the samples to a small
perturbation.

Application of large amplitude oscillatory shear (LAOS) for different
deformation amplitudes is sometimes performed to analyze the effect of shear
history on the linear viscoelastic moduli.

Low-frequency (ω=0.063 rad/s) time-sweeps are performed at a fixed
strain to investigate the temporal evolution of the viscoelastic properties in
linear regime.

Stress relaxation experiments consist on imposing a constant strain, γ,
in linear regime, subsequently following the transient stress, σ(t). An algo-
rithm developed by Mead [2, 3] and that is available with the RSI Orchestra-
tor software of the ARES rheometer is used to evaluate the relaxation-time
spectra starting from the stress relaxation modulus, G(t) = σ(t)/γ. The
frequency-dependent elastic (G′) and viscous (G′′) moduli are then calcu-
lated as:

G′(ω) =
N∑
i=1

Gi
(ωλi)2

1 + (ωλi)2
(2.1)

G′′(ω) =
N∑
i=1

Gi
ωλi

1 + (ωλi)2
(2.2)

where Gi and λi are, respectively, the modulus and characteristic time
of the n Maxwell-mode of the spectrum.

Finally, as a result of the marked sensitivity of the sample rheology on
filler content, we evaluate the amount of inorganic phase in each sample by
performing thermogravimetrical analyses (TGA) at the end of the rheolog-
ical experiments.
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Chapter 3

Brownian motion: Gelation
and Aging

One of the most important features characterizing the difference between
nano or micro particles as fillers for a polymer melt, is the relevance of
Brownian motion. To characterize how much Brownian motion is important,
it’s convenient to estimate the self diffusion time of a particle [1]

τs =
6πηR3

kBT
' 6 · 103ηR3 s (3.1)

at ordinary temperatures and where the solvent viscosity η is expressed in
Pa · sec and the particle radius R in µm. From this simple formula one easily
estimates the well known result, that in simple Newtonian solvents charac-
terized by η ' 10−3Pa · s, Brownian motion becomes important for particles
of a few µm. On the contrary, since polymer melts are characterized by zero-
shear viscosities of the order ηo ∼ 103 − 104 Pa, only particles of a few tens
of nanometers display a relevant Brownian displacement in the time scales of
interest. The result is that, unlike for their micro-composite counterparts,
polymer nano-composites are reminiscent of well known phenomenologies
characterizing colloidal dispersions. When dealing with sub-micron parti-
cles dispersed in a medium, Van der Waals forces are of major importance,
generally determining the stability of the system. In fact, since the refrac-
tive indexes of medium and particles are usually different, attractive forces
on the nanometer scale lead to formation of aggregates and particle gel. Ag-
gregation, gelation and phase separation in colloidal dispersions have been
studied for decades both from the kinetic [1], and structural point [2, 3] of
view. In this chapter I show phenomenologies of polymer nanocomposites
that are easily understood in the framework of colloidal dispersions.

During extrusion hydrodynamic forces are high and can break up aggre-
gates down to dimensions of a few particles [4]. As an example in figure
3.1 is reported the quenched mesostructure of three samples at filler volume
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fraction φ ' 0.045 right after extrusion. The samples are made with differ-
ent polymer matrices and nano-fillers; as a result the aggregates are quite
different, but all of sub-micrometric dimension.

a b c

Figure 3.1: Tem micrographs of the morphologies quenched after extrusion
for samples at φ ' 0.045. a) PP-TiO2, b) PP-Al2O3, c) PS-SiO2.

A direct consequence of the random rearrangements of these elements,
is that they assemble and build bigger structures because of Van der Waals
attractions. Rheological parameters such as the linear viscoelastic mod-
uli G′ and G′′ are extremely sensitive to the internal microstructure and
can be used to follow such internal rearrangements. We fix the frequency
ω = 0.063 rad/s and strain γ = 0.01 and measure how G′ and G′′ change in
time at constant temperature. Since the test is performed in linear regime,
the strain applied is a small perturbation that does not affect the equilib-
rium morphology. The results plotted in figure 3.2 show that qualitatively
the three samples share the same phenomenology: the elastic modulus in-
creases during the first stage, reaching a plateau after a certain time ta,
while the loss modulus remains constant. Such increase of the elasticity is
related to the inorganic phase, rearranging on a time scale of order τs, since
the neat matrices display a constant value of the moduli in time.

The morphology of the particles after aging is shown in figure 3.3. The
distribution is now worse, particles and aggregates forming bigger clusters.
The high values of the plateau elastic modulus suggest that at these volume
fractions the particles form a whole space spanning network that can bear
the stress for long times.

To further prove that the increase of the elasticity is related to network
formation as a consequence of particle rearrangements, we can increase τs by
varying η or R. For high values of τs we expect that the hybrid’s elasticity
does not significantly increase because of the reduced particle mobility. As a
first test, we increase the zero shear viscosity ηo of the matrix by ten times,
by using a high molecular weight polystyrene. In figure 3.4 we show aging
curves for two hybrids obtained by mixing SiO2 nanoparticles at volume
fractions of 0.03 and 0.045 in such a matrix. The growth of G′ is small and
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Figure 3.2: Aging curves at ω = 0.063 rad/s and in linear regime. PP-
TiO2-φ=0.038 (squares); PP-Al2O3-φ=0.042(triangles); PS-SiO2-φ=0.045
(circles). G′ solid symbols, G′′ open symbols

a b c

Figure 3.3: Tem micrographs of the morphologies obtained after 3 hours
in quiescent state at T=190oC for samples at φ ' 0.045. a) PP-TiO2, b)
PP-Al2O3, c) PS-SiO2.
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G′′ dominates over G′ suggesting that micro-structural changes are negligible
in the time scale of the test .

Figure 3.4: Aging curves at ω = 0.063 rad/s and in linear regime of a PS-
SiO2 sample with an high molecular weight of the matrix and at φ= 0.03
(circles) and 0.045 (diamonds). G′ solid symbols, G′′ open symbols

To better characterize the differences emerged between the PS-SiO2 hy-
brids, we analyze the frequency spectrum of the moduli for aged samples.
The response of two hybrids at the same particle volume fraction, φ = 0.045,
but with different molecular weights of the PS matrix is shown in figure 3.5.
The high frequency regime ω > 1 rad/s is dominated by the viscoelastic re-
sponse of the matrices which show a dominating elasticity. However below
the relaxation time of the polymers, the differences between the elasticities of
the inorganic structures emerge. At ω < 1 rad/s the hybrid at high molec-
ular weight shows a liquid-like response with the loss modulus dominating
over the elastic one. On the contrary, the low molecular weight hybrid dis-
plays a clear low frequency plateau of G′ which dominates over G′′ down to
the smallest frequency investigated. Such a plateau characterizes the pres-
ence of a network that can store elastic energy for times much longer than
the relaxation time of the polymer molecules.

As a second test, we use TiO2 particles with radius R ' 2µm, dispersed
in the PP matrix at a volume fraction φ = 0.045. Again, the moduli remain
stable during the aging test. Also the effect over the viscoelastic response
of the aged hybrids is really small when compared to the relative nano-
composite. This is shown in figure 3.6; the micro-particles induce a negligible
effect over the linear viscoelastic response of the neat PP which reduces to
a mere vertical shift of the muduli in the whole frequency range. This is
an hydrodynamic effect that can be accounted for through the method of
Gleissle [5] as will be shown in chapter 5. In the case of nanoparticles, the
filler effect becomes evident at low frequencies, when the matrix elasticity
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Figure 3.5: Frequency scans in linear regime of PS-SiO2 samples at φ=0.045,
with two different molecular weights of the matrices: 125000 Da (diamonds);
268000 Da (circles). G′ solid symbols, G′′ open symbols

Figure 3.6: Frequency scans in linear regime of PP-TiO2 samples at
φ ' 0.045, for micro (triangles) and nano (circles) fillers. The solid line
represents the neat PP.
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is negligible. Again, in this region, we find a very weak dependence of the
moduli on frequency that suggests the presence of a network.

To summarize, the viscoelastic response of a filled polymer is highly af-
fected by the particle mobility. When the diffusion time of particles and
aggregates formed after the extrusion is too high, the clusters remain iso-
lated and produce a small perturbation of the polymer viscoelastic response.
When the particle or aggregates mobility is enhanced, random motion and
attractive Van der Waals forces lead to assembly of the primary aggregates
and eventually to formation of a whole space spanning network. Since the
network is a solid, a plateau of the elastic modulus emerges at low frequen-
cies, characterizing the elastic energy storage for long times.
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Chapter 4

Scaling of the viscoelasticity
of PP-TiO2 hybrids

4.1 Introduction

Polymers filled with inorganic particles receive industrial and scientific at-
tention over more than 50 years [1]. When the characteristic filler particle
size is on the nanometers scale, polymer-nanocomposite systems (PNS) are
formed. A general feature characterizing PNS is the significant increase of
the viscoelastic properties of the hosting polymers upon addition of even
extremely low loadings of nanoparticles [2, 3]. Such enhancement generally
arises from the presence of a three dimensional network that may result
from either direct interaction between particles [3, 4] or from inter-particle
polymer-bridging mechanisms [5, 6]. For this reason, continuum rheological
models [7] that successfully capture the main features of polymers filled with
micron-sized particles break down when the composites are nano-structured.
Furthermore, when compared to colloidal suspensions with low viscosity
matrices, a higher complexity stems from the viscoelastic nature of the sus-
pending medium and from the wide variety of microstructures and possible
dynamics that arise from these multiple particle-particle [2] and polymer-
particle interactions [5] . Because of this high complexity, a general descrip-
tion of how the frequency dependent storage and loss moduli, G′(ω) and
G′′(ω), vary with the filler volume fraction, φ, is still poorly understood and
controversial. A possible starting point is provided by colloidal suspensions
in Newtonian fluids, where new complexities can be added step by step.
In these simpler systems, the arrest of particle dynamics leads to a kinetic
phase transition from a liquid-like to a solid-like state; this can happen in
several disparate ways and always leads to a disordered solid. For instance,
at high φ crowding of hard sphere particles results in a colloidal glass, whose
solid-like features originate from the trapping of individual particles within
the cages formed by the nearest neighbours [8]. At much lower volume

23



Chapter 4

fractions, inter-particle attractions can cause the formation of clusters of
particles and eventually a colloidal gel interspersed within the suspending
medium [9]. From the knowledge of the phase behavior [10], the dynamics
[11] and rheology [12] of these systems has been understood through a model
that combines the elasticity of the particle network and the viscosity of the
suspending liquid.

In this chapter we generalize this approach to the case of a viscoelas-
tic medium in which the enthalpic interaction between the polymer chains
and the nano-sized suspended particles may be neglected. We explain the
drastic increase of G′(ω, φ) and G′′(ω, φ) at low ω, generally characterizing
PNS, without eluding to polymer bridging mechanisms. We show that the
complex variation of the moduli with φ can be dramatically simplified by
separating the particle network and the matrix contribution to the elastic-
ity, as a result of the different temporal relaxation scales. We prove that
the onset of the particle network exhibits critical behavior as a function of
a rescaled φ, reminiscent of elasticity percolation [13, 14]. The critical be-
havior of the elasticity at the percolation threshold φc is due to crowding
of particle clusters. Above the percolation transition, the crowding is re-
flected in a long-time structural relaxation that depends on particle volume
fraction φ. During these structural rearrangements we find a φ independent
glass-like relaxation mechanism where the elastic modulus, G′, scales with
frequency, as G′ ∼ ω0.3.

4.2 Results

The internal microstructure of the quenched PNS is visualized using TEM.
The nanohybrids at φ=2.4% and φ=3.8%, consist of sub-micron sized clus-
ters interspersed in the polymer matrix, as shown in figure 4.1 a-b. We
emphasize that the spatial distribution of the clusters is most likely not rep-
resentative of their state in the melt, since TEM observations are performed
over solid samples. Each cluster consists of several primary particles, which
are highly packed inside the aggregate.

We measure the area, Ai, occupied by each cluster and take as represen-
tative cluster size, Di, the diameter of a circle with the measured area of
the cluster. In this way, we can construct the normalized cluster size distri-
bution (CSD) and determine the number-average cluster-size, D =

P
i NiDiP

i Ni
,

with Ni the number of clusters of size Di. The CSD for samples with φ=2.4%
and φ=3.8% is determined measuring the area of ∼300 clusters in various
TEM images of the same sample; the results are shown in figure 4.1 c-d.
The distributions are broad and are not very much affected by the filler con-
tent; the average size of the clusters only slightly grows from D ∼135 nm at
φ=2.4% to D ∼150 nm atφ=3.8%. As a result, the increased filler volume
fraction mainly results in an increased number of clusters, which causes a
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Figure 4.1: TEM micrographs of the as extruded samples at φ=2.4% (a)
and 3.8% (b). The corresponding cluster sizes distributions are shown in (c)
and (d) respectively.

reduction in the cluster-cluster mean separation distance.

In the melt, after extrusion, the clusters evolve in time. We monitor
such internal rearrangements by imposing a low-frequency (ω=0.063 rad/s)
oscillatory shear in the linear regime and measuring the elastic and loss
moduli as a function of time. The results at 190 oC are plotted in figure
4.2 for three representative particle volume fractions. At φ=2.4%, there is
no evolution of the moduli suggesting that microstructural changes, if any,
do not affect either the elasticity or the viscosity of the bulk material. At
this volume fraction, the sample is predominantly viscous, with G′′ > G′. At
φ=3.4%, the storage modulus slowly and slightly increases with time, almost
reaching G′′, which remains stable during the test. At even larger volume
fractions, however, G′ dramatically increases in time, eventually overcoming
G′′ and reaching a final plateau value at some time ta. As an example, we
show in figure 4.2 the moduli for φ=3.8%; in this case ta ≈ 4 · 103s.

The increase of G′ for φ >3.4% must be related to the presence of the
inorganic phase, since it is never observed for the neat polymer alone. We
thus hypothesize that the clusters grow, rearrange and crowd giving rise to
a space-spanning network. Formation of a network is necessary in order to
cause the observed increase of sample elasticity; if clusters remain isolated,
rearrangements alone cannot significantly change the elasticity of the whole
system. This hypothesis is supported by evaluating the Smoluchowski time
[15] for two clusters to come at contact, which we roughly estimate for the
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Figure 4.2: Temporal evolutions of G′ (full symbols) and G′′ (empty sym-
bols) at ω=0.063 rad/s for the samples at φ = 2.4% (reverse triangles), 3.4%
(circles) and 3.8% (squares).

sample at φ=3.8% using the relationship

ta =
πηsD

3

8φkBT
(4.1)

where ηs is the viscosity of the suspending medium, kB is the Boltzmann
constant and φ is the volume fraction of the clusters. We set ηs = 2 · 103

Pa·s, which is the zero-shear viscosity of the neat PP, and D =150 nm, as
determined by TEM. To estimate φ , we assume that the primary particles
are highly packed inside the clusters, as suggested by the TEM images; we
thus consider that each cluster consists of primary particles packed at a
volume fraction of ∼ 60%, which is close to random close packing. Then we
get φ = φ/0.6 =6.3%. Using these values, we obtain ta ≈ 4 · 103s, which is
in good agreement with the result shown in figure 4.2.

Despite the low filler content and the low polymer-particle affinity, the
filler greatly affects the rheological properties of the hybrids. This is further
reflected in the frequency dependence of both G′ and G′′, which we show in
figure 4.3 for φ=3.8% and also for the neat polymer. The measurements are
performed after 2 hours of equilibration time, which is enough to reach the
stationary state values of the moduli (see figure 4.2).

The neat polymer is predominantly viscous throughout the whole fre-
quency range and exhibits the terminal behavior of a viscoelastic fluid,
G′ ∼ ω2 and G′′ ∼ ω1, for ω < 1 rad/s, with a crossover at ω ' 102 rad/s
reflecting the dominant relaxation mode of the polymer. In marked con-
trast with this behavior, the presence of multiple crossovers characterizes
the viscoelasticity of the hybrid. We note, however, that the high-frequency
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Figure 4.3: Frequency dependencies of G′ (full symbols) and G′′ (empty
symbols) obtained from frequency scan for the neat polymer (squares) and
the PNS at φ=3.8% (diamonds). The lines represent G′ (solid line) and
G′′ (dashed line) for the PNS obtained by Fourier transforming its stress
relaxation modulus, G(t), which is shown in the inset.

(ω > 101 rad/s) relaxation behavior of the PNS approaches that of the neat
polymer, suggesting that the relaxation modes of the polymer chains and
sub-chains are only slightly affected by the presence of the filler at these
high frequencies [3]. For intermediate frequencies (10−2 < ω < 101 rad/s),
the viscoelastic response of the hybrid exhibits a much weaker frequency-
dependence as compared to the pure polymer. Such a pseudo-solid-like be-
havior characterizes the viscoelasticity of polymer/layered-silicates nanocom-
posites and it is generally explained assuming the existence of a filler space-
spanning network [2, 3, 16]. The absence of a clear low-frequency plateau for
G′ suggests that instead of a permanent filler network, our hybrids consist of
a transient three-dimensional structure, which slowly and continuously re-
laxes with a broad spectrum of relaxation times [17, 18]. To further explore
this unexpected feature, we vary the nanoparticle volume fraction within
the range 0 6 φ 6 0.64% and measure the frequency dependence of the vis-
coelastic moduli. The results are shown in figure 4.4.

Irrespective of the frequency, both moduli increase monotonically with
increasing filler loading, although, as noted earlier, the faster relaxation
modes of the hybrids are essentially those of the polymer melt. The vis-
coelastic response of the hybrids is mainly altered, with respect to that
of the PP, at low frequencies, where G′ and G′′ exhibit weak frequency-
dependences. Interestingly, in agreement with the time-dependent behavior
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Figure 4.4: Frequency dependencies of G′ (a) and G′′ (b) for samples at
different φ: neat polymer (solid lines), 0.8% (crosses), 1.8% (plus), 2.4%
(reverse triangles), 3.4% (circles), 3.8% (diamonds), 4.5% (squares), and
6.4% (triangles). Full symbols indicate the low-frequency crossover points
occurring at φ >3.4%. The insets show the relative increase of the hybrid
moduli at ω=0.063 rad/s with respect to those of the neat polymer (G′o and
G′′o) as a function of φ.

of the moduli (figure 4.2), the effect of the filler only becomes significant
in these experiments for φ >3.4%. This is clearly appreciated in the insets
of figure 4.4 a-b, where we plot the relative increase of both moduli with
respect to those of the neat polymer as a function of φ, for ω=0.063 rad/s.
Since the increase of G′ is much more sensitive to the filler content than
that of G′′, the moduli of the hybrids at φ >3.4% futher cross at lower fre-
quencies as shown by the solid symbols in figure 4.4. Both the cross-over
frequency, ωcl, and the cross-over modulus, Gcl at this cross-over increase
with filler content. The resultant viscoelastic behavior is reminiscent of the
behavior of attractive colloidal gels in a Newtonian matrix [12]. In this
simpler system, the dependence of the elastic modulus with filler content
scales along the fluid viscosity as a result of the increase of the network
elasticity with φ. We follow a similar approach for our samples and consider
that the main contribution to the elasticity of the hybrids at low frequencies
arises from the number of elements contributing to the filler structure. In-
terspersed throughout this structure is the polymer, which has an intrinsic,
filler-independent viscoelastic response that mixes with the network dynam-
ics giving rise to the complex frequency and volume fraction dependences
shown in figure 4.4. Despite this complexity, however, because of the dif-
ferences in temporal relaxation scales of the filler network and the polymer
melt, the viscoelasticity of the hybrids can be approximately decomposed
into the independent responses of the elastic particle network, primarily de-
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pendent on filler content and governing the long time scale response, and
that of the suspending medium, dominating the high-frequency behavior.

Within this simple picture, the network elasticity will eventually equal
the viscous contribution of the polymer matrix, and the previously discussed
additional crossover sets the elasticity of the network. Hence, shifting the
curves for φ >3.4% with respect to Gcl and ωcl should lead to their col-
lapse onto a single pair of master curves. We thus independently scale both
the moduli and the frequency of each data set by factors a = 1/ωcl and
b = 1/Gcl, respectively, as shown in figure 4.5 .

Figure 4.5: Master curves showing the elastic (full symbols, left axis) and
viscous (empty symbols, right axis) scaled moduli for φ >3.4%. Symbols are
the same of figure 4.4. The inset shows the common scaling of the functions
b = b(a) (reverse triangles) and G′′o = G′′o(ω) of the neat polymer (solid line).

The scaled moduli lie on top of each other over more than six decades
in frequency, corroborating the simple physical picture proposed. The anal-
ysis of the shift factors further supports the two-component model since the
elasticity of the hybrids at the crossover, which is given by the relationship
between b and a, shown in figure 4.5 scales along the viscous modulus of
the background polymer, G′′0 = G′′(ω). For ω · a &10, there are deviations
of G′′ from the master curve; this is a direct consequence of the viscoelastic
response of the polymer matrix, which dominates the high-frequency vis-
coelastic properties of the PNS and whose relaxation time is independent
of filler content. The overall scaling supports the approach by Trappe and
Weitz, emphasizing the separability of the particle structure and suspending
medium dynamics, and the additivity of the elasticity of the two phases; in
our system, this could be a direct consequence of the small polymer-filler in-
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teraction. The scaling of figure 4.5 greatly clarifies the frequency dependence
of the hybrid elasticity. Two different relaxation dynamics are evident, for
ω · a greater and smaller than 1. For ω · a >1, the elastic modulus approxi-
mately scales as G′ ∼ ω0.6. According to our simple two-component model,
such dependence must reflect the storage component of the suspending poly-
mer with the solid network in it. As will be shown in the next chapter, at
these high frequencies hydrodynamic interactions between the two phases
must be taken into account to explain the observed value of the exponent
[12]. For ω · a <1, the polymer contribution to the elasticity becomes unim-
portant and the relaxation kinetics of the cluster network emerges. The
scaling emphasizes that the filler relaxation mechanism is the same for all
volume fractions, provided φ >3.4%. In contrast to permanent solidlike net-
works, which are characterized by a frequency independent elastic modulus,
we find that G′ scales with frequency as a power-law: G′ ∼ ω0.3; this empha-
sizes the transient character of the cluster network, which must suffer from
cluster rearrangements. Interestingly, this slow dynamic is reminiscent of
colloidal glasses [19, 20] and has been observed in many other soft materials
[21].

To further inquire about this analogy, we perform stress relaxation ex-
periments to access the dynamics of our PNS at longer times. The measured
time dependence of the relaxation modulus is shown in the inset of figure
4.3 and the results for the Fourier transformed moduli are plotted, as lines,
in figure 4.3. There is excellent agreement between these results and the
moduli directly determined in oscillatory tests, emphasizing the robustness
of our experiments. Remarkably, the stress relaxation results reveal the ex-
istence of an ultimate relaxation time, τr = 1/ωr, that we identify with the
third crossover of G′ and G′′ at very low frequencies (see figure 4.3). This
final characteristic time is φ-dependent, as shown in the extended scaling
curve of G′ (figure 4.6). The observation of this long-time relaxation sug-
gests that above φc, the percolating network of aggregates is strong enough
to bear the applied stress, but still weak enough to allow rearrangements at
sufficiently long times; the cluster network is thus transient in this sense.
As φ increases, the mobility of each network-building cluster is slowed down
by the increased number of surrounding clusters, setting the time-scale for
the macroscopic relaxation. Such idea is consistent with that of Segrè et al.
[22], which states that the gel transition is a consequence of the arrest of
clusters in cages of neighboring clusters, underlining the similarities between
gel and glass transitions.

For times shorter with respect to the structural relaxation time of the
network, the elasticity of our hybrids can be described with the notion of
a percolating network. Shih et al. developed a scaling theory based on a
fractal gel model to describe the φ-dependence of both the elastic modulus
and the critical strain separating the linear and non-linear regions [23]. The
model predicts power-law dependences of the form G′ ∼ φx, γc ∼ φy where
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Figure 4.6: Extended master curve showing the scaled elastic moduli of the
samples at φ >3.4% as obtained by means of oscillatory scans (full circles)
and Fourier transformation of the stress relaxation moduli, G(t) (empty
symbols). Symbols are the same of figure 4.4. The inset shows the in-
crease of the ultimate relaxation time τr with the reduced volume fraction
ψ = φ/φc − 1 (φc=3.2%).
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x and y depend on the fractal dimension of the structures being formed.
This model successfully describes several experimental data for flocculated
suspensions [23]. More recent developments of fractal gel models predict
different values of the exponents [24]. Close to the percolation threshold,
alternative models describe the mechanical properties of the structure in
terms of well-defined transition points, such as the φc found for our PNS [12,
25]. These models propose power-law scalings of the form G′ ∼ (φ/φc − 1)ν

and γc ∼ (φ/φc − 1)−λ, which characterize the approach to φc and rigorously
hold only in the vicinity of the percolation boundary [14].

Since our results are near the percolation threshold, we follow the per-
colation approach and critically test the previous hypothesis pertaining the
existence of a percolation threshold around φ =3.4%. We thus plot the
cross-over elastic modulus Gcl and the critical strain γc as a function of the
reduced volume fraction, ψ = φ/φc − 1. By adjusting φc to 3.2%, we find
power-law scalings for both variables, with ν=1.7 and λ=0.43, as shown
in figure 4.7; this supports the idea of rigidity percolation occurring at φc.
The values of our exponents are in good agreement with those reported for
three-dimensional systems characterized by a stress-bearing network with
bond-stretching mechanisms [26, 27]. In particular, the value of ν is close
to the value reported by Rueb and Zukoski for octadedecyl silica gels in
Newtonian liquids, nu=(2.0± 0.3) [25].

Figure 4.7: Critical behavior of the hybrid elasticity, Gcl, and critical strain,
γc, for the samples at φ >3.4%. Data are plotted against the reduced volume
fraction ψ = φ/φc − 1 (φc=3.2%).

Finally, we emphasize that the characteristic time for the long-time struc-
tural relaxation, τr, increases linearly with ψ, with φc=3.2% (inset figure
4.6). Similar qualitative behavior has also been observed in many different
systems, including hard-sphere colloidal glasses [28] and depletion floccu-
lated colloidal gels, both at high [29] and low [22, 17] concentrations. In
all cases, the structural relaxation time is found to increase with particle
volume fraction or attraction strength, reflecting the increased difficulty for
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cluster cage breakup. Remarkably, in these systems, the increase of τr with
φ is more pronounced when compared to what we have found. Further work
must aim at elucidating the origin of this difference.

4.3 Conclusions

We have successfully extended the framework to understand the rheology
of colloidal particle gels in Newtonian liquids to a polymer nanocomposite
system with small polymer-particle interactions. Despite the apparent com-
plex behavior of the frequency dependent moduli with filler concentration,
the viscoelasticity of the system can be scaled onto a single pair of master
curves over eight frequency decades reflecting the separation of the various
time scales that characterize PNS; this is achieved above a critical volume
fraction, φc, which establishes the boundary for percolation of the filler. The
space-spanning structure that results from this percolation exhibits a final
relaxation at long times that depends on particle volume fraction and that
is approached by a slow dynamic process. This reflects the transient charac-
ter of the network and suggests that gelation could result from crowding of
clusters, emphasizing the similarity between the gel and the glass transition:
while the latter is driven by kinetic arrest of single particles, the gel arises
from crowding and consequent arrest of clusters. Overall, the proposed anal-
ysis is expected to be useful to understand a wide variety of complex fluids in
which a superposition of the elasticity of the components is possible. In par-
ticular, the elastic modulus has recently been suggested to follow a universal
behavior with volume fraction also in case of polymer bridging mechanisms
[30]. As a consequence, this would allow a separation of the contributions
to the total elasticity following the present analysis. The generalization of
our approach to such systems and other technologically relevant PNS, such
as polymer-layered silicate nanocomposites still remains to be proved.
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Chapter 5

Refinement of the scaling:
PS-SiO2 hybrids

5.1 Introduction

A way to enhance the mechanical, thermal and physical properties of poly-
mers is to fill them with inorganic particles. Since such improvements de-
pend on the interfacial properties between phases, the importance of using
nanoparticles to increase the total surface area is easily understood. A
direct consequence of incorporating nanoparticles in polymer melts is a pro-
found change in the viscoelastic properties of the resulting nanocomposite.
Such a change is the result of inter-phases interactions and of micro and
meso-structures formation in the hybrid material. In particular, attractive
colloidal particles are well known to form gels in simple liquids. Such gels are
generally fractal networks that build up as the result of particle aggregation.
Nevertheless, when the suspending liquid is a polymer, other networks of dif-
ferent nature may be formed. For example if the particles are close enough,
a polymer chain may adsorb on the surfaces of the two particles forming a
bridge between them. In this case a polymer-particle gel is formed. Among
different additives, fumed silica is a widely used filler in polymer industry,
made of primary particles of few nanometers fused together in aggregates
whose dimensions span from tens to hundreds of nanometers. If the sur-
face of the clusters is not organo-modified, attractive inter-particle forces
are important when the particles are dispersed in a polymer melt. Then, if
the viscosity of the suspending medium is low enough, Brownian motion of
the clusters becomes relevant and leads to formation of agglomerates which
eventually self-assemble to form a whole space spanning network of parti-
cles. Depending on the nature inter-phase affinity, either particle-particle
or polymer-particle gels may be formed. In any case, since the network
may bear stress, its main consequence on linear rheology is reflected in the
appearance of a low frequency plateau of the elastic modulus G′. On the
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contrary, inter-particle steric repulsion is induced by organo-modifying the
particle surface. This reduces formation of agglomerates and the effect of
the particles on the rheological response of the hybrid is weaker.

Although a wide literature exists, dealing with the linear viscoleastic
moduli of polymer-nanoparticle hybrids, general physical models that allow
interpreting their frequency response as function of volume fraction and type
of interaction are still scarce. Such models are the key relating the struc-
ture to the final macroscopic properties of the material. A two-component
model has been proposed in the previous chapter to describe the frequency
dependence of the linear moduli of polymer-nanoparticle hybrids, when the
enthalpic interactions between polymer and particles are negligible. The un-
derlying physics of the model lies on the independent rheological responses of
the polymer and the particle network. Then, for times longer than the poly-
mer relaxation time, the only contribution to G′ comes from the network.
This elastic contribution depends on volume fraction φ and scales along the
matrix viscosity allowing for a universal scaling of the frequency dependent
moduli measured at different φ. Although the scaling works well, there are
still unresolved issues regarding the interpretation and correctness of the
values used to scale the curves. In this chapter the approach is extended
to describe the frequency and particle volume fraction dependences of the
viscoelastic moduli of a model nanocomposite system made of silica nanopar-
ticles dispersed in a polystyrene (PS) matrix. This system is characterized
by negligible polymer particle interactions. Once hydrodynamic contribu-
tions are removed, the physical meaning of the two-component model gets
evident. This is reflected in the excellent scaling of the G′ curves of sam-
ples at different φ. The scaling, in turn, allows estimating the elasticity of
networks which are too tenuous to be appreciated by a viscoelastic measure-
ment. The analysis of the scaling factors allows investigating accurately the
structure and elasticity of the particle network. We do this using both the
percolation and fractal approaches, underlying the difficulties to get reliable
values for the critical parameters.

5.2 Results

The hybrids are prepared by extruding a polystyrene with molecular weight
Mw=125 KDa and the silica (SiO2) nanoparticles with the procedure de-
scribed in chapter 2. Due to their large specific surface area, colloidal fumed
silica particles typically form stable aggregates during the fabrication pro-
cess. The quenched internal morphology of two hybrids at particle volume
fractions φ=0.025 and φ=0.045 soon after the extrusion process is shown in
the TEM micrographs of figure 5.1.

In both samples, aggregates of a few hundred nanometers appear well
distributed on microscale. Such a mesostructure, resulting from the shear
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Figure 5.1: Tem micrographs representing the quenched microstructure of
PS/SiO2 samples after extrusion. Volume fractions are: φ=0.017 (left) and
φ=0.035 (right). The scale-bar is 500 nm.

and elongational stresses experienced by the materials during extrusion, is
far from equilibrium and the clusters are favorable to self-aggregation. In
aggregating Newtonian colloidal dispersions, a growth during time of the lin-
ear viscoelastic moduli is generally observed, reflecting the rearrangements
of the particles. Above a critical filler volume threshold, this leads to for-
mation of a whole space-spanning network of particles [1, 2]. A similar
behavior has been reported for polymer-based nanocomposites above the
matrix melting or glass transition temperature [3, 4, 5] . Following previ-
ous arguments, we monitor the clustering in our systems by measuring the
temporal evolutions of G′ and G′′ during an oscillatory shear in the linear
regime at ω=0.05 rad/s. Since at this frequency the polymer can be con-
sidered fully relaxed, the structural rearrangements of the solid phase are
monitored. The results at 200 oC are plotted in figure 5.2 for hybrids at
different compositions.

The elastic modulus increases during time at all volume fractions, the
rate of growth progressively decreasing up to the reaching of a time-independent
value. This ageing effect reflects the flocculation of the SiO2 aggregates
formed during extrusion, as shown in the TEM micrographs in figure 5.3
taken upon the samples at φ=0.025 and φ=0.045 after 4-hours ageing at
200 oC. In both samples the pristine aggregates assemble to form bigger,
stringy-shaped structures. The formation of a percolating filler network,
however, can be only guessed from the visual inspection of figure 5.3 due to
the intrinsic two-dimensional feature of TEM micrographs.

To address the effect of nanoparticle concentration over the viscoelas-
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Figure 5.2: Time dependence of the linear viscoelastic moduli measured
at ω=0.05 rad/s for PS/SiO2 at volume fractions φ= 0.01 (circles), 0.017
(diamonds), 0.022 (crosses), 0.028 (triangles), 0.035 (arrows). The solid line
is the neat PS

Figure 5.3: Tem micrographs representing the microstructure of PS/SiO2

samples after 4 hours at 200 oC in quiescent state. Volume fractions are:
φ=0.017 (left) and φ=0.035 (right). The scale-bar is 500 nm.
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ticity of the hybrids we measure G′(ω) and G′′(ω) as a function of φ for
0 6 φ 6 0.041 and plot the results in figure 5.4. The pure PS is predomi-
nantly viscous, with the loss modulus higher than the elastic one throughout
the investigated frequency range.

Figure 5.4: Frequency dependence of the elastic (left) and viscous (right)
moduli at volume fractions φ= 0.01 (circles), 0.013 (squares), 0.017 (dia-
monds), 0.022 (crosses), 0.023 (half squares), 0.025 (plus), 0.028 (triangles),
0.03 (inverse triangles), 0.035 (right arrows), 0.041(left arrows)

It exhibits viscoelastic Maxwellian behavior (G′ ∼ ω2, G′′ ∼ ω1) at low
ω. Both moduli of the hybrids increase monotonically with increasing filler
loading in the whole frequency range. The faster relaxation modes of the
hybrids, however, are essentially those of the unfilled polymer, the filler only
causing a mere vertical shift of the curves for ω & 101rad/s. Gleissle and
Hochstein accounted for a similar behavior in non-Newtonian melts filled
with micron sized particles by introducing the concept of shear stress equiv-
alent deformation [6]: the rigid particles reduce the effective gap distance
available for the suspending medium by an amount proportional to the filler
content. As a consequence, the inner shear amplitude experienced by the
polymer is higher than the externally imposed, and the measured complex
modulus, G∗, increases at all frequencies by the same factor B(φ). We ar-
gue that a similar hydrodynamic effect holds also for our nanohybrids in
the high frequency region. Over longer timescales, however, the polymer
matrix is relaxed and the filler significantly alters the viscoelastic response.
In this regime, both G′ and G′′ exhibit diminished frequency-dependences
when compared to the PS. Such deviations indicate the occurrence of non-
hydrodynamic stress contributions. The filler mainly affects the storage
modulus, which exhibits a clear plateauGo(φ) at low ω for φ > 0.022. Taking
into account the negligible polymer-particle interactions, this truly solid-like
behavior supports the idea of an elastic, whole-space spanning network of
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particles above a critical volume fraction, φc. Interspersed throughout this
structure is the suspending polymer phase, whose intrinsic viscoelastic fea-
ture mixes with the network dynamics giving rise to the complex frequency
and volume fraction dependencies shown in figure 5.4. As a consequence of
the different relaxation timescales, however, the rheological properties of the
hybrids at φ > φc can be rationalized with a simple two-component model,
first proposed for colloidal gels in Newtonian matrices, which combines the
elasticity of the particle network and the viscosity of the suspending liquid
[7, 8] . Following this approach, the elastic modulus is expected to scale
with φ along the viscosity of the neat matrix as a result of the increase of
the network elasticity with filler content. We have recently shown that the
two-component model allows describing the elasticity and dynamics of tita-
nium dioxide nanoparticle gels in a polypropylene melt [9]. By normalizing
the moduli of the hybrids at φ > φc with respect to the gel elasticity the
curves collapse onto a single pair of master curves, validating the model.

Figure 5.5: Volume fraction dependence of the hydrodynamic factor B(φ).
The inset shows the frequency dependence of the complex modulus G∗. The
ω at which non-hydrodynamic effects become relevant increases with φ. The
sub-division in the hydrodynamic and non-hydrodynamic regions is hand-
made to show the concept.

Till now, however, hydrodynamics effects have not been taken into ac-
count in the scaling procedure, and the curves have been scaled with respect
to the low-frequency crossover between G′ and G′′ of the hybrids [10]. Such
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criterion does not reflect exactly the physical meaning of the model, in which
the elasticity of the filler network should be scaled along the merely ω de-
pendent loss modulus of the neat matrix, once hydrodynamics effects related
to the presence of the solid phase have been taken into account. Using the
approach of Gleissle and Hochstein we evaluate B(φ) as B(φ) = G∗(φ)/G∗PS
in the hydrodynamic region (inset of figure 5.5), which is reported in fig-
ure 5.5. Once amplified the loss modulus of the neat polymer by B(φ), we
identify the horizontal (a) and vertical (b) shift factors to build the master
curve of G′ as the points where the particle gel elasticity, Go(φ), equals the
viscous component of the matrix corrected for the hydrodynamic effects,
B(φ) ·G′′PS . An example of how a and b are obtained for the hybrid at
φ=0.028 is shown in the inset of figure 5.6.

Figure 5.6: Master-curve of the elastic modulus obtained by scaling the G′

curves of the hybrids at φ > φc (open symbols). The procedure through
which the scaling factors a and b are obtained is shown in the inset for a
sample at φ= 0.028 and discussed in the text. The frequency dependence
of the elastic moduli reported in the inset are for: the hybrid at φ=0.028
(triangles), neat PS (dashed line) and the neat PS multiplied by B(φ =
0.028) (solid line). Solid points in the main figure is the curve for the sample
at φ=0.017, shifted to obtain the best collapse on the master-curve.
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We test the validity of our approach by scaling the G′ curves of the
hybrids at φ > 0.022, in which the existence of the particle network can
be argued from the presence of a clear low-frequency plateau. The result-
ing master curve shown in figure 5.6 (open symbols) supports the approach
adopted: the scaled moduli lie on top of each other in the low-scaled fre-
quency range, while deviations emerge for ω/a greater than ' 101. This
is not unexpected, however, as it stems from the viscoelastic feature of the
polymer matrix, dominating the high-frequency behavior and whose relax-
ation time is not scalable since it is independent on φ.

The master curve demonstrates that the contributions to the hybrids
elasticity of filler network and polymer matrix can be separated due to their
different temporal relaxation scales. The two-component model, however,
only applies for samples with filler volume fractions φ greater than a crit-
ical value φc, representing the minimum volume fraction necessary for the
formation of an elastic stress-bearing network. Detecting such percolation
threshold represents a critical issue, and many different approaches can be
used.

The liquid-solid transition for suspensions in which the filler particles
aggregate into sample spanning complexes share the same features of chem-
ical gelation, namely the divergence of the longest relaxation time, and a
power law spectrum [11]. Using sol-gel arguments, Inoubli et al. estimated
φc ' 0.025 for polybutylacrylate-silica nanocomposites [12]; similarly, Cas-
sagnau found φc ' 0.033 for ethylene vinyl acetate copolymer-silica hybrids
[13]. Using light scattering methods, Piau et al. estimated φc ' 0.01 for
silica-silicone gels [14].

On the other hand, percolation theories predict the elastic modulus of
the particle network near the percolation threshold to grow in a critical
fashion with φ, Go ∼ (φ− φc)ν [15] suggesting a simple way to estimate
φc. Following this approach, the vertical shift factors b(φ) = Go(φ) of the
samples at φ > 0.022 were fitted to the equation

Go = K · (φ− φc)ν (5.1)

in which K and ν were set as fitting parameters and φc was arbitrarily
varied. The results of the fitting procedure are summarized in table 5.1 for
different values of φc and the corresponding fitting curves are shown in figure
5.7.

A weak dependence of the regression R2 on the value of φc can be noticed,
suggesting that a mere best fitting approach is not a reliable method for
the detection of the percolation threshold. Instead, we use the following
procedure: first, at each φc we extrapolate the values of Go for the hybrid at
φ=0.017, which are reported in table 5.1 as well. From figure 5.4 we estimate
that the maximum acceptable value of Go to be Go(φ = 0.017) ' 40Pa,
which is the lowest value of G′ experimentally accessible for this sample.
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Figure 5.7: Volume fraction dependence of the network elasticity Go (sym-
bols). Open and solid symbols have the same meaning as in figure 5.6. Lines
are fitting of the data to equation 5.1 varying φc. From left to right φc= 0,
0.5, 1, 1.5, 2.

φc K ν R2 Go(φ = 0.017)
[%] [Pa] [ ] [ ] [Pa]
0 20.2 4.9 0.9880 280
0.5 97 4.2 0.9875 215
1 413 3.5 0.9867 120
1.5 1527 2.8 0.9850 20
2 4670 2.0 0.9806 N.A.

Table 5.1: Fitting parameters to equation 5.1
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Thus, by comparing the estimated value of Go with the extrapolated ones
we conclude that values φc < 0.015 must be discarded. On the other hand,
we observe that R2 drops rapidly when passing from φc=0.015 to φc=0.02.
On the basis of previous observations we assert that φc=0.015 is the most
reasonable value for the percolation threshold in this system, irrespective
of the analysis of the R2 values. This value is also in agreement with that
found by Pouchelon and Vondracek through rheological analyses [16], and
the one inferred by Barthel from theoretical considerations [17]. Further
support to the reliability of our estimation of φc comes from the analysis
of the master curve. Actually, an important consequence of the scaling
shown in figure 5.6 is that the network elasticity can be estimated for all
samples above φc from the factor b required to scale the data. This allows
determining Go even for weak networks, whose modulus is too low to be
measured directly through a simple frequency scan [10]. This is the case of
the sample at φ=0.017, which is above the estimated percolation threshold
but whose plateau modulus cannot be inferred from the experimental data
of figure 5.4. Shifting the curve of this sample on the master curve (solid
symbols in figures 5.6, 5.7) allows estimating its elasticity. We observe that,
once added to the data of figure 5.7, the extrapolated point (solid symbol)
follows well the critical behavior previously found, supporting the validity
of the procedure employed. The value of the critical percolation exponent ν
depends on the stress-bearing mechanism of the percolating filler network,
and it ranges from ν ' 2.1 for systems in which the particles are free to
rotate about each other, to ν ' 3.75 in the case of networks in which the
chains can resist stress either by stretching or bending of single-bonds of
the chain [18, 19]. For φc=0.015 we find ν=2.8, in line with the result
of Grant and Russell, who found a universal response with ν = 3 ± 0.5
for suspensions of octadecyl silica particles irrespective of the strength of
interparticle attraction [20]. Looking at the data of table 5.1, however,
we stress the high sensitivity of the ν on φc, which makes hard to draw
any conclusion about the actual stress bearing mechanism of the system.
The particle network characterizing our systems at φ > φc is expected to
exhibit scale invariance and can be described as a fractal structure. The
mass of the network is therefore predicted to scale as LD, where L is the
size and D 6 3 is the Hausdorff or fractal dimension [21]. The value of D
depends on the mechanism of particle assembling, ranging from D ' 1.75
for diffusion-limited aggregation (DLA) to D ' 2.05 for reaction-limited
aggregation (RLA) [22]. The viscoelastic properties of aggregating colloids
can be described using a fractal approach since the structure transmits stress
through the chains of the elastic backbone. Modelling the colloidal gel as
resulting from the aggregation of fractal flocs, Shih and co-workers have
developed a scaling theory for a gel far from the gelation threshold for both
the elastic modulus, Go, and the maximum strain at which linear elastic
behavior vanishes, γcr [23]. Provided that the links between the flocs are
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stronger than those between the particles in the flocs, their model predicts
that Go ∼ φx, with x = (3 + b)/(3 − D), and γcr ∼ φ−y, with y = (1 +
b)/(3−D). Here, b < D is the backbone fractal dimension, and it has values
greater than unity in the case of spherical particles to provide a connected
path.

To estimate the limit of linearity of the samples, the viscoelastic moduli
are recorded at increasing oscillation amplitude γ at ω = 0.05rad/s, that is
a frequency low enough to consider the response of the hybrids governed by
the particle network. We set the critical strain γcr for network breakdown
as the point at which G′ deviates of 5% from its constant low-strain value.
Go and γcr for the samples at φ > 0.017 are plotted as a function of φ in
figure 5.8.

Figure 5.8: Volume fraction dependence of the network elasticity Go (circles)
and critical strain γcr (triangles). Solid symbols are considered far from the
threshold and are fitted to the Shih’s equations (solid and dashed line)

Fitting a power-law to the data at φ > 0.024 (solid symbols of figure
5.8) to fulfill the requirement of the Shih’s model to be far from φc, we get
x = 4.7±0.3 and y = 2.5±0.2. This leads to fractal dimensions D = 2.1±0.2
and b = 1.3± 0.2, in agreement with the results by Shih et al. for aqueous
suspensions of bohemite alumina nanopowders. The value of D, is also in
good agreement with the findings by Yzquiel et al. [24] and Paquien et
al. [25] for silica based suspensions. The experimentally deduced backbone
fractal dimension b indicates a slightly tortuous connection path between
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the flocs, which appears in agreement with TEM investigations. However,
as for the percolation exponents, we remark that the high variability of D
and b make hard to drive any conclusion about the reliability of the Shih’s
model.
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Chapter 6

Formation and yielding of
the elastic network

6.1 Introduction

Polymer nanocomposites have attracted a great interest in the last decade
because of their potential as technological materials, due to a dramatic in-
crease of interfacial area and reduction of the wall to wall distance between
fillers if compared to the relative microcomposites [1]. Melt state viscoelas-
tic properties are strongly influenced by interface characteristics, particles
size and shape and internal mesostructures [2, 3], making rheology a pow-
erful and handling characterization technique of complex fluids. However,
correlations between rheological parameters and microstructures is still am-
biguous because of the complexity of these systems. The most successful
rheological models [4] introduce various simplifying assumptions that are
difficult to validate. The filler size effect on the overall material behaviour
was attributed to either particle-particle [5, 6, 7] or polymer-particle [8, 9, 10]
affinities. A shared feature of different nanocomposites, is the dramatic en-
hancement of the elastic modulus, G′, at low frequencies with respect to
the hosting polymer, reflecting the presence of slow relaxation dynamics
[8, 9, 10, 11]. Another feature, shared by many colloidal systems in gen-
eral, is the growth of both storage and loss moduli during aging above the
matrix melting temperature[8, 11, 12]. In colloidal systems and suspension
literature [13, 14] this effect is generally addressed to cluster formation and,
above a critical particles volume fraction, φc, to the presence of a whole
space spanning network of flocs. In this chapter I report the morphology
and dynamics of a polypropylene filled with alumina nanospheres around
the critical volume fraction. I show that particles aggregate in the melt,
forming a three-dimensional network. This network is responsible for the
liquid-like to solid-like transition of the nanohybrid. The application of large
amplitude oscillatory shear progressively destroys the network leading to a
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flow induced structure that cannot significantly contribute to the elasticity
of the hybrid.

6.2 Results

Al2O3 nanoparticles are difficult to disperse in PP because of their large
specific surface area and incompatibility in surface characteristics between
their hydrophilic oxide surfaces and the hydrophobic non polar solvent [15].
The high stresses during extrusion, however, break the aggregates, reducing
the clusters dimensions, D. The minimum cluster size depends on the applied
stress and the composite Hamaker constant for two surfaces of a medium 1
interacting through a medium 2 [16]. The quenched internal morphology of
the extruded hybrids at particle volume fraction, φ, of 0.042 soon after the
exit from the die is shown by TEM images in Figure 6.1 a, b.

Figure 6.1: Tem micrographs showing the quenched microstructure resulting
after extrusion for the hybrid at φ= 0.042.

Although a homogeneous distribution can be observed on mesoscopic
scale (figure 6.1 a), higher magnifications highlight the presence of aggre-
gates of a few hundred nanometers (figure 6.1 b). The aggregates appear
as open structures formed of tens of nanospheres of different sizes. These
non-equilibrium structures rearrange towards a more favourable thermody-
namic state during a subsequent aging above the PP melting temperature.
The rearrangement was followed by observing the evolutions of the linear
viscoelastic moduli during a low frequency (0,0628 rad/sec) time sweep test,
as reported in 6.2 for two samples at different particle volume fractions.

The sample at φ=0.026 shows a weak increase of both moduli during the
first seconds of test. Then, a stationary condition is reached with negligible
changes during time. The system at φ=0.042 shows a very different be-
haviour: its elastic modulus drastically increases and a stationary final value,
significantly higher than that at the beginning of annealing, is reached after
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Figure 6.2: Time dependence of the elastic (solid symbols) and viscous (open
symbols) moduli for PP-Al2O3 hybrids at φ=0.026 (circles) and φ= 0.042
(triangles).

about 2000 seconds. Conversely, the viscous component remains almost con-
stant during the test. This leads to a liquidlike to solidlike quasi-quiescent
transition indicative of the inorganic phase structuring during time. Mor-
phological rearrangements after a 3-hours annealing were visualized by TEM
images on the solid samples at φ=0.042. The microstructure was investi-
gated by observing the same samples used during rheological investigations.
The samples were cooled after rheological tests by using gaseous nitrogen,
and the disks were removed from the plates of the rheometer and treated for
morphological analyses. As reported in figure 6.3 the individual aggregates
resulting from the extrusion form an interconnected network after annealing
[17].

Figure 6.3: Tem micrographs showing the microstructure of the hybrid at
φ= 0.042 after 3-hours aging at 190 oC.
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This network can store the elastic energy of the applied deformation
for times much longer than the neat polymer or non-structured hybrids, as
shown in figure 6.4. The relaxation dynamics may be indifferently monitored
by stress relaxation (figure 6.4 a) or frequency sweep tests (figure 6.4 b, c.)

In linear regime, these tests may be compared by Fourier transforming
G(t). For both the 3-hours aged samples at the two particle volume frac-
tions, the Fourier transformed G′(ω) and G′′(ω) agree well with the directly
measured ones from oscillatory experiments as shown in figure 6.4 b, c).
However, a step shear strain allows to monitor a longer time response than
oscillatory experiments, because of limitation of the experimental time in
the low frequency range. Moreover, typical experimental times in stress re-
laxation tests on extruded samples are no longer than 50 seconds, so that
the changes of viscoelastic properties due to aging can be neglected. At
frequencies higher than 1 rad s−1, all materials share similar fast relaxation
dynamics, related to relaxation of polymer molecules.

The low frequency responses the of the 3-hours aged sample at φ=0.026
and as extruded sample at φ=0.042 are qualitatively similar to that of the
neat PP, the hybrid full relaxation only occurring at times longer than the
homopolymer ones. Differently, a new long time relaxation dynamic char-
acterizes the behaviour of the sample at φ=0.042 after aging. A pseudo-
solidlike behaviour is observed in the frequency range between 10−2÷102

rad/s, while the slowest dynamic (below 10−2 rad/s) accounts for the Brow-
nian relaxation of the filler network. The results shown suggest that a crit-
ical particle volume fraction around 0.04 exists for the studied PP-Al2O3

nanohybrids. In fact, little differences in volume fraction or state of dis-
persion determine very different rheological responses. Its well known that
glasses and physical gels remain trapped in metastable configurations be-
cause the energy barriers associated to particles rearrangement are very
large compared to thermal energies [2, 13, 18, 19].

Application of large strains after aging may provide an excess energy to
overcome these barriers and the system evolves toward a different configura-
tion. In figure 6.5, G(t) is reported after the application of large amplitude
oscillatory shear (LAOS) for different deformation amplitudes on the 3-hours
aged sample at φ=0.042. LAOS was applied until the moduli reached a con-
stant value in time (no more than 1000 seconds were needed in any case) at
a frequency of 0.0628 rad/s. Subsequently, time sweep tests in linear regime
were performed on the sample (inset in figure 6.5) in order to let the moduli
stabilize before stress relaxation testing. Figure 6.5 clearly shows that each
LAOS has a drastic effect on G(t), the more the deformation amplitude, the
faster the relaxation dynamics.

The morphology of the sample after the LAOS at γ=5 is reported in
6.6. The network formed during aging is no more visible and the presence
of many small clusters characterizes the sheared system. The analysis of
TEM images allowed getting a cluster size cumulative distribution (CSD),
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Figure 6.4: Stress relaxation moduli (a) and elastic (b) and viscous (c)
moduli for: neat polypropylene (crosses), 3-hours aged hybrids at φ=0.026
(circles) and φ= 0.042 (triangles). The as-extruded sample at φ=0.042 is
also reported (diamonds). In b, c, solid symbols represent direct measure-
ments from oscillatory test, while open symbols are the Fourier transformed
dynamic moduli from stress relaxation data. 55
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Figure 6.5: Relaxation moduli of the 3 hours annealed nanohybrid at
φ=0.045 after oscillatory shear flows at strain amplitudes of 0.008 (solid
circles), 0.1 (open circles), 0.25 (triangles), 0.5 (squares), 1 (crosses), 2.5
(reverse triangles), 5 (diamonds) and neat polymer (solid diamonds). The
recovery during time of the linear elastic moduli after the large amplitude
shear flows is shown in the inset. The symbols used are the same of the
stress relaxation moduli.
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reported in figure 6.7 for the as extruded, aged, and sheared after aging
samples at φ=0.042.

Figure 6.6: Morphology of the 3-hours annealed sample at φ=0.042 after
the LAOS at γ=5 as obtained from TEM

The analysis of TEM images allowed getting a cluster size cumulative
distribution (CSD), reported in figure 6.7 for the as extruded, aged, and
sheared after aging samples at φ=0.042.

Figure 6.7: Cumulative cluster size distribution for the sample at φ=0.042,
as-extruded (solid line), the 3-hours annealed sample (dotted line), and three
hours annealed after LAOS at γ=5 (dashed line).

The CSD of the extruded sample is rather sharp, indicating the efficiency
of the extrusion process. The effect of thermal annealing is a significant
smoothening of the CSD, with the appearance of very large clusters. This
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confirms the metastability of the samples, evolving toward states of less free
energy under the push of the strong particle-particle interactions. Finally,
the large deformation after the annealing strongly affects the sample mi-
crostructure: a relevant sharpening of the CSD can be observed, with the
disappearance of the bigger clusters formed during the aging and the recov-
ery of an as extruded-like microstructure. However, the presence of smaller
aggregates characterizes the sheared system respect to the as extruded one.
In summary, we have used a simple polymer-nanoparticles model system
to describe many common features shared by nanocomposites and colloidal
suspensions. The drastic increase of the rheological properties respect to
the matrix in the studied systems characterized by poor polymer-particles
interactions has been related to the formation of a network above a crit-
ical particles volume fraction, as a consequence of particles and clusters
rearrangement. The elasticity of the network adds to that of the polymer,
storing the stress induced by a deformation in linear regime for times much
longer than those of the polymer molecules. The dynamics of this transient
network are well observable in stress relaxation tests in which the long time
decay of G(t) is addressed to the network Brownian relaxation. The ap-
plication of large amplitude oscillatory shear provides an excess energy to
the system to escape from the metastable configuration in which is trapped,
destroying the network and leading to a flow-induced structure which can
no more significantly contribute to the system elasticity.
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Chapter 7

Temperature dependence of
elasticity and dynamics of
dense microgel suspensions

7.1 Introduction

Microgels are particles made by chemically cross-linking a polymer to form a
gel with a colloidal size [1, 2]. Like for their macro-gel counterparts the par-
ticles can be swollen by a solvent, the degree of swelling depending on solvent
quality [3]. Since the gel rigidity is usually determined by the cross-linking
density, swelling leads to softness and deformability of the particle. In many
cases the solvent quality may be controlled by external parameters making
the microgels extremely versatile materials for applications like controlled
drug delivery or to modify the rheological properties of pharmaceutical and
industrial products [4, 5, 6]. In particular the size control of p-NIPA parti-
cles is very promising since p-NIPA has a low critical solution temperature
(LCST) at about T ' 33oC. So, by controlling the external parameters,
it is possible to change the relative polymer-solvent and polymer-polymer
interactions which in turn determine the swelling ratio. The internal struc-
ture and the swelling behavior of p-NIPA microgels have been extensively
studied as function of temperature and cross-linking density [7, 8, 9, 10].

Unlike for their macro-gel counter parts, swollen microgel can be highly
concentrated to form dense colloidal suspensions [11]. Experimentally, one
finds that with colloidal suspensions made of rigid spherical particles, the
volume fraction φ for random close packing is φrcp = 0.64. However, since
microgels are swollen, one can continue packing well above φrcp by com-
pressing and deforming the particles. To describe the degree of packing
and compression it is convenient to generalize the volume fraction φ to
ζ = n · v. Here, n is the particle number concentration and v the volume
of the particle measured in dilute conditions (n→ 0) with the same values
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of the external parameters; with this definition ζ = φ when ζ < 0.64. For
ζ close to, or above 1, a particle does not reach its swelling equilibrium
because of the steric compression due to the other particles; in this case
ζ describes how much the particle is far from such equilibrium condition.
At these high concentrations, the soft inter-particle repulsion leads to dy-
namics and viscoelastic properties that are reminiscent of those of pastes
and colloidal glasses [12]. The key to the origin of elasticity in a dense
repulsive microgel suspension is its dependence on ζ. This intrinsic relation-
ship and the microscopic mechanisms for elastic energy storage have only
been suggested recently in analogy to emulsions [13]. For Pnipa microgel
suspensions the viscosity and the linear viscoelastic moduli dependence on
particle concentration and temperature have been studied below the LCST.
In most cases the behavior of the zero-shear viscosity resembles that found
for hard sphere suspensions once it is plotted against ζ [7, 11, 14, 15]. For
packed suspensions the elastic modulus G′ shows a frequency independent
plateau G′p. It also seems that G′p values measured at various temperature
and weight concentrations, collapse on a single master-curve once plotted
against ζ [7, 11]. These re-scaling suggest that, at least below the LCST,
temperature doesn’ t appreciably affect the inter-particle potential. In the
case of Pnipa, however, the inter-particle interaction may be changed from
repulsive to attractive by crossing the LCST. In fact it has been shown that
above the LCST p-NIPA particles form aggregates [9]. However the effect
of the attraction on the viscoelastic properties of concentrated suspensions
is still unknown. In this work we show that the elasticity of p-NIPA dense
suspensions exhibits critical-like behavior as function of temperature both
above and below the LCST. Depending on temperature, the frequency de-
pendence of the moduli reflects the behavior of a colloidal glass, a liquid
and a colloidal gel. In the glassy state the moduli show qualitative analogies
with hard sphere (HS) glasses and compressed emulsions [16, 17, 18]. In
this region the elasticity scales with volume fraction as G′ ∼ (ζ − ζc)µ. The
dynamic behavior of a liquid is un-expectedly reached at volume fractions
above packing and for temperatures very close to the LCST, suggesting a
change in the inter-particle interaction close to the transition temperature.
Above the LCST particles become attractive and a whole space spanning
network is formed, the elastic properties of this gel depending on temper-
ature. Surprisingly, the elasticity in all the phases can be described by a
common critical behavior with temperature, the critical temperature Tc be-
ing the LCST. Finally, this picture is somehow suggesting analogies between
glass and gel phases.
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7.2 Experimental

7.2.1 Particle synthesis and characterization methods

The microgel particles were synthesized with a standard precipitation poly-
merization method [2]. All reagents were purchased by Sigma Aldrich. A
solution of 385 ml of water with 3.69 g N-isopropylacrylamide (NIPA), 0.029g
N,N’-methylenebisacrylamide (BIS) and 0.29g Acrylic acid AAc was intro-
duced in a 500 ml three necks flask equipped with a stirrer, nitrogen flow
and water cooling. Under stirring the solution temperature was raised to
68 oC in a nitrogen saturated environment. When the solution reached the
target temperature T ' 68oC a solution of 10 ml water and 0.29g of initia-
tor, potassium persulfate (KPS) was added. After about ten minutes from
the introduction of the initiator, the solution became milky, indicating that
colloidal nuclei were formed. The system was left reacting for five hours.
At the end of the reaction the flask was removed from the oil bath and left
cooling down to 25 oC. After extensive (about 15 days) dialysis against
pure water, the microgel dispersion was freeze-dried. The resulting powder
was then re-dispersed in water at 15% polymer weight fraction wt%. This
solution was left in agitation at T ∼ 27oC for about 10 days to allow ho-
mogenization between the phases. Samples at different concentrations were
then obtained by dilution from this batch.

The particle radius as function of temperature is determined in by Dy-
namic light scattering (DLS) using an ALV 5000 correlator and a laser of
wavelength λ = 532nm. We use solutions at about 0.01% polymer mass
which is dilute enough to avoid multiple scattering at all temperatures. At
all temperatures we measure the intensity auto-correlation function f(q, t) at
a wavevector q = 7.6µm−1. At this small q the f(q, t) is well represented by
a single exponential decay representing the Brownian motion of the spherical
particle. For q & 15 this simple decay is lost and the f(q, t) becomes a more
complex function suggesting that for these large values of q we are probing
both the Brownian motion of the particle and its internal dynamics.

To measure the intrinsic viscosity of microgel solutions we use an Ubbe-
lohde capillary immersed in a water bath. We can control the temperature
of the bath with a precision of 0.01oC. The volume fraction at different tem-
peratures is obtained by measuring the relative viscosity η/ηo of dilute sus-
pensions at different polymer concentrations wt as shown in figure 7.1. Us-
ing the Einstein-Batchelor relation η/ηo = 1 + 2.5(k · wt) + 6.2(k · wt)2 we
fit the data at fixed temperature to obtain the intrinsic volume fraction
k(T ) = φ/wt.

The temperature dependences of both the particle volume V (T ) and
the intrinsic volume fraction k(T ) are reported in figure 7.2. Let’s observe
that k = V/mp where mp is the average polymer mass per particle; for this
reason k and V must have the same temperature dependence allowing for
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Figure 7.1: Dependence of the relative viscosity on polymer weight fraction
w at different temperatures. The lines are fits to the data according to the
Einstein-Batchelor model. From top to bottom the temperatures are 10,15,
20, 22, 24, 26, 28, 30 oC

cross-checking the DLS and intrinsic viscosity measurements. In the inset
of figure 7.2 we show that the linear relation between k and V is in fact
respected and mp can be extracted from the slope of this linear fitting.

Rheological measurements of concentrated dispersions are made with a
Malvern Gemini HR nano rheometer using cone-plate geometry. We use a
solvent trap that allows to obtain reproducible measurements over a couple
of days. We have checked that our suspension is not affected by slip at the
wall [19]. This is done by measuring flow curves for a fixed temperature and
concentration with different surfaces. One roughened surface is obtained
by sand blasting 1µm PMMA particles on the cone and plates geometry.
The other is a roughened aluminum parallel plate geometry. In any case
we don’t find any difference with the flat surface. The viscoelastic moduli
G′, G′′ are measured at a strain γ=0.01 that is well inside the linear regime
at all temperatures. Below the LCST, the linearity is lost for γ & 0.03 irre-
spective of temperature and polymer concentration. Above the LCST the
linear viscoelastic range depends on concentration and temperature. We
perform temperature scans of the samples fixing frequency ω=1rad/sec and
strain, and increasing temperature at 0.2oC/min. Once a given temperature
is reached, samples may take a certain time to equilibrate or may even age
[20], resulting in a time dependence of the viscoelastic properties. When
performing frequency sweep tests we make sure that the measurement is re-
producible when repeating it after 1 hour. Below the LCST, samples become
stable after a few minutes that the target temperature is reached. Above
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Figure 7.2: Temperature dependence of the intrinsic volume fraction k
(squares) and particle volume (circles). The inset shows the linear rela-
tionship between the intrinsic volume fraction k and particle volume V. The
slope of the linear fitting represents the inverse of the average mass of poly-
mer per particle mp

the LCST instead, the viscoelastic moduli decrease in time over a period
of about 1 hour. We show in the next section that at these temperatures
the particles form a gel. Data are presented for samples left at constant
temperature for more than 1 hour.

7.3 Results

To follow the temperature dependence of the linear viscoelastic moduli of a
dense microgel suspension we fix the frequency and the strain applied to the
sample and scan it by slowly varying temperature. A typical response is re-
ported in figure 7.3 for a sample at a polymer weight fraction of 0.062± 0.005
and a frequency ω=1 rad/sec.

The variation of volume fraction ζ as measured both by DLS and vis-
cosimetry is reported in the same figure. At low temperatures T . 26oC, the
elastic modulus dominates over the viscous one. As temperature increases in
the range 10− 26oC both moduli decrease and their difference gets smaller.
Such a solid-like behavior and the absence of any visible Bragg-peak suggest
that the suspension behaves like a glass. As temperature increases above
26oC G′ and G′′ become comparable. G′′ overcomes G′ at T ∼ 28oC sug-
gesting that the sample response is liquid-like. Interestingly ζ is still above
0.64. Finally the moduli suddenly increase for temperatures higher than
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Figure 7.3: Temperature dependence of: linear viscoelastic moduli G′(solid
circles) and G′′ (open circles); volume fraction ζ as obtained by viscosity
measurements (stars) and DLS (diamonds)

30oC. Around the LCST it’s well known that the interaction changes from
repulsive to attractive and cluster formation has been studied with p-NIPA
microgels. We then expect a colloidal gelation induced by the attractive
interaction between particles. As a consequence, the steep increase of the
moduli reflects the increasing elasticity and dissipation of a particle network.

A better understanding of the dynamics in the different phases is ob-
tained from the moduli frequency dependence. At low temperatures G′

shows a frequency independent plateau and G′′ shows a marked minimum
at a frequency ωm, as shown in figure 7.4 for three different temperatures.
These features are characteristic of glassy dynamics of the suspension.

For ω > ωm G′′(ω) increases with frequency as G′′ ω0.5. Flow calcula-
tions predict this high frequency asymptotic dependence for concentrated
suspensions of Brownian spheres interacting through a continuous repulsive
potential [21]. Experiments with spherical particles stabilized by grafted
polymer layers also suggest such a dependence [16, 22]. The increase of G′′

with decreasing ω for ω < ωm is reminiscent of HS glasses. Physically, this is
due to the additional energy loss produced by a particle when escaping from
the cage induced by the surrounding neighborhoods. It reflects the increas-
ing dissipation that generates approaching the structural relaxation. At the
glass-transition volume fraction ζg ≈ 0.58 an HS suspension loses its low
frequency relaxation and becomes non-ergodic. This implies a finite, ideal
zero- frequency elastic modulus and no rise in G′′(ω) toward low ω. Instead
our microgel suspension shows evidence of a low-frequency relaxation even
for volume fractions ζ � ζg where the particles are highly compressed. This
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Figure 7.4: Frequency dependence of the elastic G′(solid symbols) and vis-
cous G′′ (open symbols) moduli in the glassy region. Circles, squares and
triangles indicate temperatures of 10, 20 and 24 oC respectively

difference suggests that the non-zero compressibility and deformability of
the particles allow for persistent relaxation through rearrangements. Quali-
tatively, the measured frequency dependencies of G′(T, ω) and G′′(T, ω) for
concentrated, swollen microgels, resemble those of glassy hard spheres and
concentrated emulsions suspensions [16, 17]. However the origin of the elas-
tic response is different. In HS the elasticity is entropic, stemming from
the different relative particle configurations at and out of equilibrium. In
emulsions such an entropic contribution is expected up to ζg. From this
point the droplets start deforming and the elasticity linearly increases with
volume fraction as G′ ∼ ζ − ζc; this is due to the energy associated to the
additional surface area created by deformation, which opposes to Laplace
pressure and to the random microstructure of the system [17, 23] . Surpris-
ingly, in this region the shear modulus is nearly the same as the osmotic
pressure Π, G′ ∼= Π, whereas the bulk modulus shows a discontinuity at ζg.
This behavior persists up to ζ . 1 that is the dry foam limit.

On the other hand, swollen microgels may deform and compress and,
as a consequence, they can be packed at generalized volume fractions well
above 1 as shown in figure 7.3.

For 0.64 . ζ . 1 we expect the particles to deform without changing
their volume. In fact far from the transition point of the gel, the bulk
modulus B of a particle is higher than the particle shear modulus [24]. As a
consequence particles will form facets at contact. This microscopic picture is
analogous to that for emulsions suggesting that in this region G′ ∼ (ζ − ζc)
[13]. At ζ ≈ 1 however, the particles start deswelling. It has been suggested
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that in this region, the suspension elasticity increases as a consequence of the
increasing bulk modulus of the single particle as it de-swells with increasing
concentration [13].

At temperatures above 25 oC the suspension dynamics changes. Both G′

and G′′ show a frequency dependence that becomes more marked as temper-
ature increases. This is plotted in figure 7.5 for three different temperatures.
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Figure 7.5: Frequency dependence of the linear viscoelastic moduli G′(solid)
and G′′(open) as function temperature: 26 oC (squares), 27 oC (circles),
28oC (stars). The solid lines show the terminal behavior of a viscoelastic
liquid

Although at 26oC the G′ frequency dependence is weak, it becomes
marked at 27oC where a structural relaxation is evident for ω ∼ 0.1 rad/sec.
Finally at 28oC the frequency dependences of both moduli, approach the ter-
minal behavior of a viscoelastic liquid, G′ ∼ ω2 and G′′ ∼ ω1 reflecting the
liquid-like nature of the sample.

Above the LCST, the moduli frequency dependence changes. We find
that both G′ and G′′ are characterized by a power law of the type G ∼ ω0.3

in the whole frequency range investigated. Such a dependence is reported in
figure 7.6 for three different temperatures. A power law relaxation spectrum
characterizes transient particle networks [30] and in particular gel charac-
terized by a long range attractive potential [27].

At these high temperatures, the inter-particle attraction is related to
the Flory parameter χ which increases with temperature. The observed
increment of the moduli is a direct consequence of the increasing attrac-
tion [25] with temperature. Unexpectedly the ratio between the moduli
G′′/G′ = tan δ ≈ 0.6 remains almost constant with attraction and frequency.
This is quite different from classical colloidal gels of rigid particles where,
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Figure 7.6: Frequency dependence of G′ (solid) and G′′ (open) as function
of temperature, after an aging time of 150 minutes. T= 35 oC (circles), T=
33 oC (squares), T= 31 oC (triangles)

increasing attraction, increases the elasticity of the network interdispersed
within the liquid, while keeping dissipation almost constant [26, 27]. There
are two main differences in the structural properties of gels of microgels and
classical colloidal gels of solid particles. One, is that even at high tempera-
tures a microgel particle contains a high amount of water so that the total
friction between gel and water is higher than expected for impermeable par-
ticles. Second, P-Nipa particles form stable aggregates which size depends
on temperature. As a consequence, we expect the elasticity to arise as the
result of crowding of stable clusters rather than from an incipient cluster
that spans the whole volume [28]. Within this picture, for these peculiar
particles gelation would be more likely interpreted as a glass of clusters
rather than an arrested state produced during spinodal decomposition [29].

7.4 Critical behavior at the LCST

The previous analysis highlights an unexpected behavior around the LCST.
In fact we have shown that the liquid phase can be reached with ζ still being
above packing. This suggests that, in contrast to hard spheres, ζ is not the
only variable depending on temperature and determining the mechanical
response. To better focus on this phenomenon, we analyze the variation of
the elastic modulus plateau G′p as function of temperature. This is plotted
in figure 7.7 for two different polymer concentrations, 0.062 and 0.112. Close
to the liquid state, where G′ does not show a plateau, G′p is taken as the
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inflection point of the elastic modulus. In the gel state we choose to take G′p
as the value of G′ at 0.1 rad/sec. Not too far from the LCST the data are well
fitted to the equation G′p ∼ (T − Tc)γ describing critical behavior. While γ
increases with polymer content, we find that the critical temperature Tc
remains almost constant: Tc ' 29oC 'LCST.
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Figure 7.7: Temperature dependence of G′p at two different polymer con-
centrations: 0.062 (circles) and 0.112 (squares). The lines are fitting to the
equation G′p = A(T − Tc)γ

The independence of Tc on ζ supports our idea that approaching the
LCST the rheological response is controlled by a decreasing repulsive po-
tential. However, we recognize that here the rheological moduli are subject
to the effect of decreasing both the inter-particle repulsion and ζ. In a
quantitative analysis, aiming to extrapolate the temperature dependence of
the repulsive potential, ζ should be fixed. This can be done, for example,
by measuring G′p for different temperatures and polymer concentrations. As
consequence of a varying potential, the G′p should not scale on a single curve
when plotted as function of ζ. In figure 7.8, in fact, we observe that not
all the values of G′p scale on a single curve, the deviations appearing for the
sample at the highest polymer concentration and for temperatures close to
Tc. Finally, a surprising frequency response is found for dense samples at
28oC. At this temperature it is not possible to determine a value for G′p
since the samples display a liquid-like rheological response which is indepen-
dent on ζ. This remarkable behavior is shown in the inset of figure 7.8 for
two concentrations above packing.

Although we have extensively shown that the inter-particle repulsion
depends on temperature and decreases close to the LCST, the reason deter-
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mining this unexpected response is still unknown. One possibility is related
to the softening of a single particle bulk modulus at the LCST. Hirotsu [24]
has measured the bulk and shear moduli on p-Nipa hydrogels. He found that
at the LCST the shear modulus increases while the bulk modulus drops down
to zero as predicted by the theory of Flory. In a concentrated, disordered
suspension of repulsive particles, the link between the elastic properties of
the single particle and the longitudinal and transverse components of the
stress of the suspension as a whole are, however, still controversial [13, 23].
As a consequence our hypothesis, remains a conjecture. However we hope
that our findings will promote more experimental and theoretical works
aiming to elucidate the peculiar elastic behavior at the transition and the
microscopic origins of the fascinating elastic properties of these materials.
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Figure 7.8: Dependence of G′p on ζ for different polymer concentrations
and temperatures. For each polymer concentration the temperatures are
reported from top to bottom: 0.112 (squares: 10, 20, 24, 26, 27, 27,5 oC);
0.062 (circles: 10, 20, 24, 26, 27 oC); 0.042 (triangles: 10, 15, 20 oC);
0.031 (stars: 15, 20oC).The inset shows the frequency dependence of the
linear viscoelastic moduli for two samples at polymer concentrations of 0.112
(ζ=1.62) (squares) and 0.062 (ζ= 0.87)(circles) at T=28 oC.

7.5 Conclusions

The viscoelastic properties of a concentrated suspension of temperature-
sensitive microgel particles have been analyzed. The system experiences
rheological transitions, showing glass, liquid and gel like dynamics as tem-
perature is increased. Although volume fraction plays an important rule, it
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does not seem to be the only parameter determining the macroscopic me-
chanical response of the system. As expected, in the gel state the effective
inter-particle potential is the key-parameter determining the viscoelastic re-
sponse. This phase, may only partially be described within the general
framework of attractive colloids. Surprisingly, we have found that also in
the transition between glassy and liquid states, the elasticity may not be
described within the framework of hard spheres. Even by adjusting for effec-
tive volume fraction, we found the elastic modulus to be orders of magnitude
smaller than expected for hard spheres. We pointed out that temperature
might not just be playing a mere volume fraction effect, but effectively chang-
ing the inter-particle potential, for example by changing the bulk modulus
of the particles.
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Microscopic dynamics

8.1 Introduction

Colloidal dispersions display transitions similar to those observed in atomic
or molecular systems [1]. Although such phase transitions have been studied
for decades, predictions of phase diagrams are not always realized because
the systems remain kinetically trapped in out of equilibrium states. Discrep-
ancies between predictions and actual observations rely on the intricacies of
the dynamics of phase transitions. Recent advances in optical and imaging
techniques have allowed at looking directly at particle movement in col-
loidal samples; fundamental insights into the structure of the metastable
states and the underlying mechanisms of their local dynamics have been ob-
tained [2, 3]. One of the most intriguing out of equilibrium states which is
common to a variety of systems is the glass. Understanding the microscopic
dynamics underlying the kinetic arrest during the approach to the glassy
state is an important scientific goal. If the colloidal particles interact with a
simple Hard Sphere (HS) potential, the only thermodynamic variable is the
particle volume fraction φ; even in this simple case the system experiences
phase transitions and may remain trapped in a glassy state as shown in
figure 8.1.

Figure 8.1: Phase diagram of a dispersion of hard spheres. Both equilibrium
and out of equilibrium phases are reported together with phase boundaries.

Studies of optical microscopy on colloidal supercooled liquids HS have
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shown the presence of domains of particles which, through cooperative mo-
tion, bring to local rearrangements. The resulting dynamic heterogeneities
among particles are maximum at the relaxation time, proving the impor-
tance of local dynamics on structural relaxation of super-cooled liquids.

A soft repulsive potential may be introduced by using compressible col-
loidal particles; micro-particles made of a polymer gel suspended in a good
solvent combine the nanoscopic characteristics of a gel with a microscopic
colloidal behavior. The microgel compressibility introduces an intrinsic en-
ergetic scale which is absent in HS systems. Boundaries between phases
and transport properties are greatly affected by the introduction of a finite
bulk modulus if compared to hard spheres [4]. The use of microgel colloidal
particles has many advantages: because the particles exist in the swollen
state, both density and index of refraction are homogeneous throughout the
system. Those are ideal conditions to avoid buoyancy and reduce inter-
particle attraction [5]. The latter is also the optimal condition to work with
microscopy techniques.

The high degree of swelling allows concentrating microgel suspensions at
volume fractions ζ > 1; this is reflected in a compression of each particle.
Highly concentrated suspensions have been used as model systems to study
glassy dynamics and ageing phenomena common to many different materials
[6] and to find correlations between microscopic dynamics and bulk rheology
in the glassy state. However the most complex and intriguing dynamics in
the approach to the glass are observed in the supercooled liquid state.

In this contribution we study the dynamics of soft repulsive particles
at different volume fractions focusing on the behavior of the supercooled
liquid. Local dynamics, on the single particle scale, are obtained through
dynamic light scattering (DLS) and confocal microscopy (CM) studies. By
increasing ζ, we increase the degree of compression and observe complex
particle dynamics. From confocal data we may extract the particles dis-
placement distribution, from which we observe non-Gaussian statistics for
the dynamics in the deeply quenched supercooled liquid.

8.2 Experimental

The particles’ synthesis was described in the previous chapter. Rhodamine
monomer was added during the polymerization to obtain fuorescent parti-
cles. At pH > 6 and low salt concentrations ([NaCl] ' 10−4 M) the charged
groups of the acrylic acid are almost all dissociated and the particles remain
fully swollen at all temperatures because of the osmotic pressure induced
by the counter-ions in the gel network. All the experiments were conducted
at temperature T ' 20oC on samples at 8 < pH < 9, so that temperature
fluctuations and small pH differences between samples at different concen-
trations do not affect particle dimensions [7].
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An ALV CGS-3000 light scattering apparatus was used to measure the
time averaged intensity correlation function < g2(k, τ) >t of the light scat-
tered by the particles in homodyne experiments. Here k is the wavevec-
tor and τ the lag-time. The incident beam is a laser with wavelenght
λ = 633 nm.

From < g2(k, τ) >t, the ensemble averaged electric field correlation func-
tion < g1(k, τ) >E can be extracted. Assuming the range of correlation
between particle positions much smaller than V 1/3, with V the scatter-
ing volume, the instantaneous electric field of the scattered light is a zero
mean Gaussian variable [8]. This measures the intermediate scattering func-
tion or dynamic structure factor F (k, τ) which is the quantity of inter-
est. For ergodic systems time and ensemble averages are the same and
from the Siegert relation [8] the ensemble averaged field correlation func-
tion is obtained by the time average of the intensity correlation function:
F (k, τ) =< g2(k, τ) >= 1 + [< g1(k, τ) >]2. For non-ergodic samples the
ensemble averages may be obtained by measuring the intensity of the light
scattered by different sub-ensembles of the sample (for example by changing
the position of the vial with respect to the incident beam) and then averag-
ing. However, a much simpler and less tedious procedure was suggested by
Pusey and van Megen [9] and is used here.

To analyse a light scattering experiment it is necessary to construct a
particular model for the dynamic structure factor. In many cases this is a
formidable task that is generally resolved by making a number of assump-
tions which can be more or less justified. In the present case we are mainly
interested to extract the self dynamic structure factor from which the par-
ticle mean square displacement can be easily obtained. Here we use a very
simple model: non-interacting scatterers restricted by the neighborhoods of
random fixed positions by weak harmonic forces.

For identical scatterers, F (k, τ) reduces to

F (k, τ) =
N∑
j=1

N∑
k=1

〈exp{ik · [rj(0)− rk(τ)]}〉E (8.1)

where N is the number of scatterers in the volume and rj , rk the particle
positions. It’s useful to define a normalised dynamic structure factor by:

f(k, τ) = F (k, τ)/F (k, 0) (8.2)

Let’s observe that for k ·R > 1, F(k, 0)=1, where R is the particle ra-
dius. For non-interacting scatterers, < g1(k, τ) >E expresses the self dy-
namic structure factor [8]

f(k, τ) =
1
N

N∑
j=1

〈exp{ik · [rj(0)− rj(τ)]}〉E (8.3)

79



Chapter 8

If the particle displacements r are Gaussian variables (which is actually the
case for weak harmonic forces), the particle MSD ∆r2(τ) can be extracted
from [9]

f(k, τ) = exp{−(k2/6) · 〈∆r2(τ)〉} (8.4)

We have verified that this relation holds in concentrated samples. This is
shown in figure 8.2 where the mean square displacements for a sample at
polymer concentration of 0.56%, which is in the concentrated regime, are
plotted as function of lag-time τ for different wavevectors. The relative
electric field correlation functions < g1(k, τ) >E from which the MSD are
extracted are reported in the inset of figure 8.2.
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Figure 8.2: MSD curves for different wavevectors k(1/µm). k =9 (squares),
13.2 (circles), 17 (triangles), 20.2 (reverse triangles), 22.9 (diamonds) as a
function of lag-time τ . In the inset the time average correlation function of
the electric field is reported as function of lag-time. Symbols are the same
of the main plot.

Although the k2 scaling is respected, the assumption of non-interacting
scatterers, leading to equation 8.3 remains quite unjustified.

A confocal microscope (Zeiss) was used to capture sequences of images
in time at a fixed focal plane which was always at least 15 µm far from the
glass. The particle tracking software written by Crocker [10] was used to
determine the locations of the center of mass of the fluorescent particles in
each frame and then to construct the particle trajectories.

Particle volume fractions are calculated as ζ = Aw where w is the poly-
mer weight fraction and A a proportionality constant. A = 218 is obtained
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from a fit to the suspension relative viscosity ηrel at low volume fractions,
with the Batchelor equation

ηrel = 1 + 2.5ζ + 6.2ζ2 (8.5)

8.3 Results

Different mechanisms for particle dynamics are observed as ζ changes. In
figure 8.3 the mean square displacement is reported as function of lag-time
in a double logarithmic plot. At ζ=0.02, a slope of the MSD curve equal
to 1 expresses a purely diffusive particle dynamic at all time intervals in
dilute regime. An example of particle trajectory shows that the motion is in
fact a random walk. At ζ=0.5 the dynamic is still diffusive at all times. In
HS systems at this volume fraction, hydrodynamic and direct interactions
between particles reduce the diffusion coefficient of a factor 50 with respect
to the dilute case [11]. We find that the reduction is just a factor of 3 in our
case, reflecting the extreme softness of the particles [12].

Figure 8.3: Left: Dependence of the MSD on lag-delay time τ for particle
volume fractions ζ= 0.02 (squares); 0.5 (circles); 1.22 (triangles); 1.96 (dia-
monds); 2.77 (stars). Empty symbols are from DLS and solid symbols from
CM. The images on the right represent particle trajectories at ζ =0.02 (top)
and ζ =1.96 (bottom) of duration 26 and 500 seconds respectively.

At 1 < ζ < 2 we observe dynamics typical of supercooled liquids. At
short time scales particle motion is diffusive but, as displacement becomes
large enough, the presence of a cage formed by the neighboring particles
determines a constraint to the motion. This is manifested by an inflection
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in the MSD at ζ=1.22 but becomes a plateau that extends over two decades
in time as ζ increases to 1.96. Cage rearrangement leads to an upturn in
MSD at the end of the plateau and at even longer lag-times, the motion
again becomes diffusive: this behavior is known as cage-effect. This picture
is confirmed by inspection of a particle trajectory, as reported in figure
8.3, showing both motion in the cage and cage rearrangement. For higher
volume fractions the behavior is sub-diffusive even at the shortest time-
scales and cage rearrangement is not observed; the system is trapped in a
glassy state. In HS systems it has been shown that the presence of cage
effect is manifested through a heterogeneity among particles’ dynamics: at
a fixed lag-time, particles involved in cage rearrangements are allowed to
move over longer distances than trapped particles. Since particles behavior
is inhomogeneous, displacements at fixed lag-times have a non-Gaussian
distribution. Deviations from gaussianity can be used to quantify cage effect
through the non-Gaussian parameter

α2(τ) =
< ∆x4 >

3 < ∆x2 >2
− 1 (8.6)

with ∆x the one-dimensional displacement. α2 is zero for a perfectly gaus-
sian distribution, while it increases as the distribution deviates from gaus-
sianity. As shown in figure 8.4 α2 remains close to zero at all ζ except for
the deeply quenched supercooled liquid.

0 . 1 1 1 0 1 0 0 1 0 0 0

0

1

2

 α 2 ( )  
 

τ ( s )

Figure 8.4: Left: displacement distributions for samples at ζ=0.02 (top)
and ζ=1.96 (bottom). Lines are Gaussian fits to the data. For each sample,
solid and empty symbols are for shorter and longer tau values respectively.
Right: Non Gaussian parameter α2 for samples at different ζ as function of
lag-time. Symbols are the same as in figure 8.3

At ζ=1.96, α2 strongly depends on lag-time; it shows a maximum for
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ζ '100 seconds, comparable to the relaxation time scale. This behavior
suggests that dynamic heterogeneities, and hence cage rearrangement, are
greatest at the relaxation time, emphasizing the fundamental rule played by
local rearrangements in the structural relaxation.
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