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1.1 Overview of the NF-kB pathway 

NF-kB is a family of transcription factors that regulates a broad number of genes 

involved in immune response, cell survival, differentiation and proliferation 

(Hayden and Ghosh, 2008). This family consists of five members, p65, RelB, c-

Rel, p100/p52 and p105/p50, which share a common Rel Homology Domain 

(RHD) in the N-terminal portion that is responsible for DNA-binding and homo- 

or hetero-dimerization (Figure 1A). Each member of the family, in fact, can 

potentially dimerize with all the other members, even if the most common 

dimers found in the cells are the p65/p50 or the p100/p100 (Hayden and Ghosh, 

2008). In their inactive state, NF-kB dimers are associated to one of the Inhibitor 

of NF-kB (IkB) proteins, which are part of a gene family that contains six 

members, IkBα, IkBβ, IkBε, IkBγ, Blc-3 and IkBζ, all characterized by the 

presence of multiple Ankirin repeats, which are responsible for the interaction 

with NF-kB via its RHD (Malek et al., 1998). The classical cascade of NF-kB 

activation takes place through the activation of the IkB Kinase (IKK) complex, 

which is composed by two catalytic subunits, IKKα and IKKβ, and the 

regulatory subunit NEMO/IKKγ (Ghosh and Karin, 2002; Hayden and Ghosh, 

2008).  IKKα and IKKβ share a common domain structure consisting in a N-

terminal Kinase domain, a Leucine Zipper domain necessary for their 

dimerization, an Helix-Loop-Helix and a NEMO-Binding Domain in the C-

terminal region (Figure 1A). These two proteins seem to have redundant 

functions, even if it has been shown that IKKβ is both necessary and sufficient 

for the phosphorylation of IkBα on Ser32 and Ser36, and IkBβ on Ser19 and 

Ser23. The role of IKKα in these events is unclear, although recent studies 

suggest that it may regulate gene expression in the nucleus by modifying the 

phosphorylation status of histones (Yamamoto et al., 2003). IKKα, however, is 

necessary for the activation of NF-kB in the so called “alternative” pathway 

(discussed below). NEMO/IKKγ represents the key regulatory subunit of the 

IKK complex (Yamaoka et al., 1998). It is composed by two coiled-coil motifs  
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necessary for the interaction with IKKα, IKKβ and with many upstream 

intermediates, a Leucine Zipper and a Zinc Finger domain in the C-terminal 

region and by a recently characterized Ubiquitin Binding Domain (UBD) that 

confers to NEMO the ability to bind to polyubiquitinated proteins (Figure 1A), 

(Sebban et al., 2006). 

 

1.2 Signaling to NF-kB 

The basic scheme of NF-kB signaling counts several positive and negative 

regulators. NF-kB signaling is generally considered to occur through either the 

“canonical” or the “alternative” pathway (Figure 1B) (Bonizzi and Karin, 2004). 

In the canonical pathway, inducing stimuli trigger the activation of the IKK 

complex, which results in the phosphorylation and subsequent ubiquitination 

and degradation of IkB proteins (classically p65/p50-bond IkBα). Free NF-kB is 

able to translocate into the nucleus and activate the transcription of its targets.  

The non-canonical or “alternative” pathway operates mainly in B-cells in 

response to stimulation of a subset of the TNF-receptor superfamily, including 

receptors for BAFF, lymphotoxin-β (LTβ) and CD40 ligand. Stimulation of 

these receptors activates only the IKKα subunit, that then phosphorylates the 

p100/p100 dimers, thus causing its inducible processing to p52, entry into the 

nucleus and transcription of its targets.  

While this NEMO- and IKKβ-independent pathway is restricted only to a subset 

of  activating stimuli, the predominant NF-kB signaling pathway is the 

“canonical”, that comes into play upon the ligation of many receptors such as 

the Toll-like Receptors (TLRs) in the innate immune response, T cell Receptor 

(TCR) in the adaptative immunity, TNF Receptor (TNFR) or Interleukin-1 

Receptors (IL-1R) in inflammation or upon stimulation of a variety of 

endogenous ligands (such as viral DNAs or RNAs) or chemical and physical 

stresses (such as oxidative or genotoxic stress) (Hayden and Ghosh, 2008). The 

binding of ligands to each receptor is able to activate a complex cascade of 
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events in which are involved many downstream molecules, although many of 

the signaling intermediates among the different pathways are shared. Beside the 

diversity of stimuli and molecules involved in the activation of NF-kB, the 

common feature of all the “canonical” pathways is the activation of the IKK 

complex (Figure 2). Consequently, this is the most important regulatory step in 

determining the NF-kB response to a given stimulus. Current evidence show that 

the activation of the IKK complex is mediated by its recruitment to receptor-

containing complex signalosomes, where the final event for IKK activation 

seems to be its phosphorylation at specific Serines in the Kinase domain of 

IKKα or IKKβ (Figure 1A) (Hacker and Karin, 2006). However, the mechanism 

through which this phosphorylation occurs remains unclear. In particular, the 

fundamental question remains if the IKK phosphorylation occurs by 

transautophosphorylation or through phosphorylation by upstream kinases. In 

any case the regulatory role that NEMO plays in the activation of the IKK 

complex is essential. NEMO, in fact, represents the point of convergence of 

most stimuli activating NF-kB and in particular the physical interaction of 

NEMO with upstream signaling intermediates is essential for the IKK complex 

recruitment and activation. Indeed, numerous proteins producing either NF-kB 

activation or inhibition have been shown to interact with NEMO (Table 1) 

(Sebban et al., 2006). The interaction of NEMO with upstream molecules allows 

the formation of signaling complexes that could serve to position the IKK 

complex near to an IKK-kinase; alternatively, the oligomerization of NEMO-

interacting proteins present in the signaling complexes, such as RIP, my provide 

a scaffold for oligomerization (Inohara et al., 2000), thus determining IKK 

transautophosphorylation and activation; this hypothesis is supported by the 

evidence that enforced NEMO oligomerization is sufficient to mediate IKK 

activation (Poyet et al., 2000) and that NEMO mutations in sequences required 

for the oligomerization results in a loss of IKK activity (Vinolo et al., 2006).  
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In addition to the physical interaction of NEMO with upstream molecules, a 

novel mechanism of IKK recruitment and activation is linked to the ability of 

NEMO to recognize polyubiquitinated signaling intermediates.  

 

1.3 Ubiquitin in the NF-kB signaling pathway 

Ubiquitin (Ub) is a highly conserved protein of 8 Kd that is covalently attached 

to lysine (Lys) residues of target proteins (Haglund and Dikic, 2005). Protein-

linked Ub is a substrate for the attachment of further Ub residues, which leads to 

the formation of a polyubiquitin chain. Classically, polyubiquitination is a signal 

that directs proteins to the proteasome, where the Ub is recycled and the protein 

is degraded (Hershko and Ciechanover, 1992). Diverse forms of Ub 

modifications exist: monoubiquitination is the attachment of a single Ub to a 

protein; multiubiquitination occurs when several Lys residues of the target 

protein are tagged with single Ub molecules; and polyubiquitination, that 

consists in the addition of a Ub chain made of several ubiquitins in which an Ub 

molecule is linked to the next through a specific internal Lys residue (Haglund 

and Dikic, 2005). In particular, there can be at least seven different linkages 

between ubiquitins, because there are seven internal lysines in Ub. The role of 

different linkages in polyubiquitin chains has begun to be elucidated in recent 

years. Linkage through Lys48 is mainly used for targeting to the proteasome, 

and Lys63 linkages seem to play important roles in signal transduction. 

Ubiquitination is a reversible covalent modification that is catalyzed by three 

enzymatic steps (Figure 3). In the first step, ubiquitin is activated by a ubiquitin-

conjugating enzyme (E1) in the presence of ATP. In the second step, the 

activated ubiquitin is transferred to another Ub-conjugating enzyme (E2). In the 

third step,  a Ub-protein ligase (E3) mediates the attachment of the C-terminus 

of the ubiquitin to a Lys of the target protein. In the case of the 

polyubiquitination, Ub is attached to a Lys of the Ub molecule already linked to 

the target protein. Ubiquitination is a dynamic and reversible modification. The  
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rapid removal of Ub from substrates is catalyzed by De-Ubiquitinating enzymes 

(DUBs) (Sun, 2008). 

Ubiquitination plays a fundamental role in the NF-kB pathway (Chen, 2005). In 

addition to the Lys-48 mediated polyubiquitination of phosphorylated IkBs that 

targets them to the proteasomal degradation with the subsequent translocation of 

NF-kB into the nucleus, Lys-63 mediated polyubiquitination of signaling 

intermediates upstream the IKK complex is an essential event to activate NF-kB 

in many signaling pathways, such as TNF-R, TCR  or IL1R/TLR (Figure 4) 

(Chen, 2005). Upon stimulation, the activation of downstream E3 ubiquitin 

ligases, mainly belonging to the TNF-R Associated Factor (TRAF) family, 

mediates the polyubiquitination of several signaling intermediates, determining 

the recruitment and the activation of the IKK complex. This can occur because 

of the ability of NEMO to recognize polyubiquitinated intermediates. Upon 

stimulation of the above mentioned receptors, K63-lynked polyubiquitination of 

downstream molecules such as RIP (Li et al., 2006; Wu et al., 2006), IRAK1 

(Conze et al., 2008), MALT1 (Oeckinghaus et al., 2007) and Bcl10 (Wu and 

Ashwell, 2008), promotes the binding of NEMO to these molecules, thus 

determining the recruitment and activation of the IKK complex. Although 

NEMO can directly bind to some of these molecules, their polyubiquitination is 

the essential event for their binding in vivo. This is the case of RIP, whose  

mutations in the Ub-acceptor lysines abrogates NEMO binding and IKK 

activation (Ea et al., 2006; Li et al., 2006). Although NEMO and RIP can 

directly interact in vitro (Zhang et al., 2000a), the polyubiquitination of RIP 

upon TNF stimulation seems to be the event determining their interaction in 

vivo. The example of RIP may serve as a paradigm for the role of Lys-63 

ubiquitin in the NF-kB pathway and can be expanded to other molecules that 

operate in similar ways. 

The TRAF family of E3 ubiqutin ligases plays a fundamental role in all these 

events. Seven members of this family have been identified (TRAF1-7) 
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 (Bradley and Pober, 2001). Among them, TRAF2 and TRAF6 have been better 

characterized. 

TRAF2 (probably together with TRAF5) is involved in the TNF pathway and 

represents the E3 ligase catalyzing the polyubiquitination of RIP upon TNF 

stimulation (Au and Yeh, 2007).  

TRAF6 is the E3 ligase working in most NF-kB pathways such as those 

emanating from IL-1R (Cao et al., 1996), TLRs (Takeda and Akira, 2004), 

Nerve Growth Factor Receptor (NGFR) (Khursigara et al., 1999) or TCR (Sun 

et al., 2004), thus catalyzing the polyubiquitination of many molecules such as 

TRAF6 itself (necessary for its activation) (Yang et al., 2004), IRAK1 

(Windheim et al., 2008), MALT1 (Oeckinghaus et al., 2007) or the NGF 

receptor TrkA (Geetha et al., 2005), all essential modifications for the activation 

of NF-kB. NEMO itself can undergo TRAF6-mediated Lys-63 

polyubiquitination (Sebban-Benin et al., 2007), but the role of this event remains 

controversial.  

The importance of Ub in the NF-kB pathway is also strengthened by the 

evidence that the overexpression of E3 ubiquitin ligases such as TRAF2 or 

TRAF6 is sufficient to activate NF-kB (Pineda et al., 2007), while 

overexpression of DUBs, such as CYLD or A20, that de-ubiquitinate several 

molecules belonging to the NF-kB pathway, inhibits it (Mauro et al., 2006; 

Regamey et al., 2003). However the targets on which both DUBs act to inhibit 

the NF-kB activity remain unclear.  

 

1.4 Physiological roles of the NF-kB components 

The diversity of inducers of NF-kB and the variety of processes in which it is 

involved highlight the intriguing and complex regulation of NF-kB activation, in 

which many signal transduction pathways from a wide variety of inducing 

mechanisms converge on a single target. Given the pivotal role that NF-kB plays 

in processes such as cell survival, inflammation, immunity, stress response and 

development it appears evident that dysfunctions in such a regulation, 



15 

 

determining an aberrant NF-kB activation, result in the pathogenesis of a variety 

of diseases including those related to enhanced cellular proliferation, viral or 

bacterial infection, inflammatory or genetic diseases (Figure 5).  

Gene-knockout studies in mice have been useful to understand the physiological 

roles of each component of the NF-kB pathway and have revealed both specific 

and redundant functions of each member of NF-kB family. For example, the 

deletion of the RelA (p65) gene in mice causes embryonic lethality due to 

extensive apoptosis in the liver (Beg et al., 1995), which indicates that the 

function of p65 cannot be compensated for by other NF-kB family proteins and 

is indispensable for the survival of the mouse embryo. On the other hand, mice 

lacking p50 or RelB are immunodeficient but develop normally to adulthood 

(Burkly et al., 1995; Sha et al., 1995; Weih et al., 1995). Mice lacking other NF-

kB proteins, including c-Rel and p52, also have immune defects (Kontgen et al., 

1995). The knockouts of multiple members of NF-kB family results in even 

more severe phenotypes, which suggests that there is some functional 

redundancy between the NF-kB family members (Li and Verma, 2002). 

The gene-targeting experiments have also revealed the importance of other key 

components of NF-kB signaling pathways in mouse development. Although 

both IKK-α and IKK-β are necessary for survival of mouse embryos, their 

respective roles in embryonic development and survival are quite different 

(Hayden and Ghosh, 2008). IKK-α has a unique function in skin and skeletal 

development, as well as in B cell maturation, and its absence cannot be 

compensated for by IKK-β (Hu et al., 1999). In contrast, IKK-β appears to play 

an indispensable role in inducible NF-kB activation in response to pro-

inflammatory and pro-apoptotic stimuli. Lack of IKK-β leads to embryonic 

lethality and liver degeneration in knockout mice similar to p65 knockout mice 

(Li et al., 1999). Severe liver degeneration and early lethality were also observed 

in embryos that were deficient in the IKKγ/NEMO subunit of IKK complex 

(Rudolph et al., 2000). The NEMO gene is located on the q28 region of the X  
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chromosome. While the nemo knock-out is lethal in males, nemo+/- females can 

survive developing a phenotype that is very similar to the Incontinentia Pigmenti 

disease in Humans (Makris et al., 2000; Schmidt-Supprian et al., 2000), that is 

caused by mutations in the NEMO gene of affected females (Fusco et al., 2004). 

The clinical presentation of the disease is characterized by skin defects, that can 

be quite dramatic, although the most significant medical problems in IP are 

blindness, due to retinal detachment, and Central Nervous System (CNS) 

defects, which cause mental retardation or seizures (Nelson, 2006). A few minor 

signs include hair loss, conical or absent teeth and nail dystrophy . 

Incontinetia Pigmenti is not the only disease in which an impaired NF-kB 

activity correlates with CNS defects. An abnormal regulation of NF-kB has also 

been correlated to neurodegenerative diseases such as the Alzheimer or 

Parkinson diseases, multiple sclerosis, atherosclerosis, demonstrating that 

alterations in NF-kB activity could play important roles in both developmental 

or neurodegenerative diseases in the CNS (Memet, 2006). 

 

1.5 NF-kB and the Central Nervous System 

NF-kB activity in the Nervous system is involved in neuron survival, 

neurodegeneration, injury response, cognitive functions and behavior (Meffert 

and Baltimore, 2005). NF-kB activation during development reflects diverse 

functions according to stages and/or cell types. The neuroprotective function of 

NF-kB during neural development is now well established and has been shown 

to be cell- and/or time-restricted. Complete abrogation of NF-kB activity in 

IKKα-/-IKKβ-/- mice leads to  demise at E12.5 of embryos, which present defects 

in neural tube closure due to enhanced apoptosis in the neuroepithelium, as well 

as increased apoptosis of sensory neurons is also described in p65-/- mouse 

embryos (Hayden and Ghosh, 2008). If NF-kB activity results to be essential for 

its neuroprotective roles, on the other hand it can participate to the pathogenesis 

of neurodegenerative disorders. NF-kB-dependent production of 
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proinflammatory mediators is crucial for autoimmune demyelinating disease 

such as multiple sclerosis. CNS specific KO of NEMO or IKKβ has been shown 

to ameliorate the phenotype in mice with Experimental Autoimmune 

Encephalomyelitis (EAE) (van Loo et al., 2006), the best known model of 

multiple sclerosis in mice. Moreover the NF-kB signaling pathway results to be 

altered in neurodegenerative diseases such as Alzheimer, Parkinson or 

Huntington diseases (Memet, 2006). 

In addition to its opposite role in contributing both to neuroprotection, by 

controlling the transcription of neuronal anti-apoptotic genes, and 

neurodegeneration, by regulating proinflammatory genes, NF-kB plays 

important roles also in CNS specific processes. Indeed many stimuli specific of 

neuronal cells, such as NGF (Carter et al., 1996; Wood, 1995), glutamate 

(Guerrini et al., 1995; Kaltschmidt et al., 1995), amiloid β peptide (Behl et al., 

1994), membrane polarization and sleep deprivation (Brandt et al., 2004; Chen 

et al., 1999), can activate NF-kB. NF-kB plays also essential roles in regulating 

growth of neural processing in developing nervous system. Indeed, inhibition of 

NF-kB activity with super-repressor IkBα resulted to substantially reduce the 

complexity of neurite arbors of sensory neurons (Gutierrez et al., 2005). 

Moreover, neurite outgrowth during NGF-induced differentiation of PC12 cells 

requires several components of the NGF-induced NF-kB activating pathway, 

such as TRAF6 (Geetha et al., 2005), p62 (Wooten et al., 2005) or 

IKKβ (Azoitei et al., 2005). 

In the nervous system, the features of the canonical NF-kB activation cascade 

are conserved. Among the specific stimuli activating NF-kB in the nervous 

system, those emanating from the TrkA and p75NTR receptors  in the NGF 

pathway are well characterized. Binding of NGF to TrkA induces dimerization 

(Khursigara et al., 1999), autophosphorylation (Friedman and Greene, 1999) and 

internalization to signaling vesicles (Riccio et al., 1997), which mediates NGF-

induced differentiation (Zhang et al., 2000b). An important role in this process is 
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played by the E3 ubiquitin ligase TRAF6. The interaction of TRAF6 with the 

adapter molecule p62 (Sanz et al., 2000) allows both the dimerization of the 

TrkA and p75NTR receptors (Wooten et al., 2001) and the TRAF6-mediated 

polyubiquitination of TrkA (Geetha et al., 2005). This last modification seems to 

be necessary for the receptor internalization and signaling to NF-kB (Geetha et 

al., 2005). All these events occur at specific time points upon NGF stimulation 

(Figure 6).  

Also atypical PKCs have been shown to be involved in NGF pathway by 

binding to p62 (Samuels et al., 2001); it has been demonstrated that their 

overexpression can induce NF-kB activation in neurons (Wooten et al. 1999)  

probably by determining the phosphorylation of IKKβ, as it has been shown to 

happen in vitro (Lallena et al., 1999), although it is not clearly understood how 

the IKK complex can be recruited and activated. 

 

NESCA/RUSC1 and RUSC2  

NESCA (new molecule containing a SH3 carboxy-terminal, vedi) and RUSC2 

(RUN and SH3 containing protein 2) are two paralagous proteins that share a 

common domain structure consisting in a RUN, a LZ and a SH3 domain. 

NESCA is an ubiquitous protein 433 aminoacids long, whose function has been 

described by MacDonald et al (2004). By a Yeast Two-Hybrid screen using the 

TrkA receptor of the NGF as a bait, the authors found  NESCA as a novel 

molecule involved in the NGF pathway. Moreover they showed that this 

molecule is important in the NGF-mediated neurite growth of neurites in PC12 

cells because this process can be enhanced or repressed by overexpression or 

downregulation by RNAi of NESCA. 

RUSC2 is a 1516 aa long protein that has been found as a Rab1b interacting 

protein (Bayer et al., 2005). Rab1b is a molecule involved in the trafficking of 

vesicles from Endoplasmic Reticulum to Golgi, but what is the function of 

RUSC2 in this process is to date unknown. 
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NF-kB is an ubiquitous transcription factor involved in a variety of biological 

processes, such as inflammation, immunity, cell survival and development. In 

most pathways, NF-kB activation occurs upon the activation of the IKK 

complex, which mediates the phosphorylation and subsequent degradation of the 

IkB inhibitory proteins, so that NF-kB can translocate into the nucleus and 

promote the transcription of its target genes. The IKK complex is composed by 

two catalytic subunits, IKKα and IKKβ, and by NEMO, which is the key 

regulatory subunit of this complex and represents the point of convergence of 

most stimuli activating NF-kB. NEMO contains two coiled-coil motifs, a leucine 

zipper, a C-terminal Zinc Finger domain and a recently characterized Ubiquitin-

binding domain. These domains are required for the correct assembly of the IKK 

complex and for the recruitment of upstream signaling molecules, whose 

interaction with NEMO is essential for the IKK-mediated NF-kB activation. 

Indeed, numerous proteins producing either NF-kB activation or 

inhibition(Kovalenko et al., 2003; Mauro et al., 2006; Zhang et al., 2000a) have 

been shown to interact with NEMO/IKKγ; the ability of NEMO to interact with 

upstream components as well as its ability to bind to signal-induced 

polyubiquitinated-intermediates of the NF-kB pathway is essential for the 

correct recruitment and activation of the IKK complex, and for this reason 

NEMO represents a key fundamental element for the activation of NF-kB in 

most pathways. 

In the nervous system, the features of the canonical NF-kB activation cascade 

are conserved. NF-kB in this tissue can be activated by a wide array of stimuli, 

among which those specific of neuronal cells, such as NGF (Carter et al., 1996; 

Wood, 1995), glutamate (Guerrini et al., 1995; Kaltschmidt et al., 1995), amiloid 

β peptide (Behl et al., 1994), membrane polarization and sleep deprivation 

(Brandt et al., 2004; Chen et al., 1999). NF-kB activation in CNS is involved in 

many processes such as neuron survival, cognitive functions and behavior 

(Meffert and Baltimore, 2005) and also in regulating growth of neural 
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processing in developing nervous system. Moreover NF-kB can contribute to 

neurodegeneration and aberrant NF-kB activation has been correlated to CNS 

disorders. To date, the molecular link(s) between NEMO activity and central 

nervous system function is still unclear. Mutations in the NEMO gene are the 

most common cause of Incontinentia Pigmenti, an X-linked pathology often 

associated with severe defects such as mental retardation, microcephaly or 

seizueres (Fusco et al., 2004; Fusco et al., 2008; Smahi et al., 2000) suggesting 

that NEMO has an important role in the nervous system development.  

Despite its well understood mechanism of activation in the immune system, the 

molecular interactions determining the activation of NF-kB in the CNS are 

poorly characterized. Most studies concerning NF-kB in this tissue focused on 

the type of inducing stimuli and on the effect of NF-kB 

inhibition/hyperactivation in neuronal cells, but there is a little knowledge on the 

molecules converging on the IKK complex to mediate its activation. Given the 

important role that NF-kB plays in CNS development and pathogenesis, 

clarifying the modality of NF-kB activation in this tissue results to be essential. 

The aim of my thesis is to get insight in the molecular mechanisms activating 

NF-kB in CNS. Given the importance of NEMO in the NF-kB pathway and in 

particular of the molecular interactions with upstream signaling intermediates, I 

searched for new NEMO-interacting proteins in the CNS, by the Yeast Two-

Hybrid method. The finding of new players in this tissue could be important to 

better understand the complex regulation of IKK/NF-kB activation in this tissue, 

that is necessary in developing new drugs for the treatment of pathological 

conditions.  
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Cell Culture and Biological Reagents  

HEK293 cells were maintained in Dulbecco's modified Eagle's medium 

(Invitrogen) supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 

100 mg/ml streptomycin, and 1% glutamine. PC12 cells were grown in RPMI 

(Invitrogen) containing 10% horse serum,  5% fetal bovine serum, 1% glutamine 

and antibiotics (100 units/ml penicillin, 100 mg/ml streptomycin). 

Monoclonal and polyclonal antibodies against HA epitope and polyclonal 

antibodies against NEMO/IKKγ were purchased from Santa Cruz 

Biotechnologies. Monoclonal and polyclonal anti-FLAG antibodies coupled to 

agarose or not were purchased from Sigma.  

 

Plasmids  

NESCA, RUSC2 and TRAF6 were amplified by PCR from a Human Fetal Brain 

cDNA library (Clontech) and cloned into pcDNA3.1-HA and –FLAG 

(Invitrogen) for expression in mammalian cells. NEMO/IKKγ, IKKβ, and 

ubiquitin expression vectors were already present in the lab. NESCA, RUSC2 

and NEMO deletion mutants were prepared by conventional PCR and cloned 

into pcDNA3.1-HA or -FLAG vectors. 

 

Yeast Two-hybrid Screening 

The cDNA encoding the N-terminal part of Human NEMO/IKKγ (amino acids 

1–399) was cloned in-frame into the GAL-4 DNA-binding domain vector 

pGBKT7 (Clontech). The resulting plasmid pGBKT7-NEMO/IKKγ was used as 

a bait in a yeast two-hybrid screening of a Human Fetal Brain cDNA library 

(Clontech) in Saccharomyces cerevisiae strain AH109. 

This strain was transformed with the bait vector and grown for a week in 

selective medium (SD-Leu), then was transformed with the cDNA library and 

grown on selective media to select colonies in which the bait interacted with a 

clone of the library. About fifty colonies were selected and their plasmidic 
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DNAs extracted and transformed in the DH5α E. coli strain to specifically select 

the vectors of the cDNA library, that putatively interacted with the bait, that 

were subjected to direct sequencing. 

 

Transfection and Immunoprecipitation Assay 

Transfections were performed by using Lipofectamine or Lipofectamine 2000 

(Invitrogen). DNA complexes were prepared and mixed to Lipofectamine or 

Lipofectamine 2000 in a 1:2 (μg DNA:μL Lipofectamine) ratio in Optimem 

medium (Invitrogen) without antibiotics. Each mix was added to 90% confluent 

cells (plated 24 hours before) and was replaced with fresh medium 5 hours later. 

Cells were lysed 24 hours after transfection. 

All transfections included supplemental empty vector to ensure that the total 

amount of transfected DNA was kept constant in each dish culture. 

 

Coimmunoprecipitation assays 

For immunoprecipitation of transfected proteins, HEK293 cells (4 x 106) were 

transiently transfected with Lipofectamine and 24 hours after transfection cells 

were lysed in Triton X-100 lysis buffer (20 mM Hepes, pH 7.4, 150 mM NaCl, 

10% glycerol, 1% Triton X-100, and Complete Protease Inhibitor mixture). 

After an additional 10 min on ice, cell extracts were centrifuged for 10 min at 

14000 x g at 4 °C and supernatants were incubated for 4 hours at 4 °C with anti-

FLAG antibodies bound to agarose beads (M2, Sigma). The immunoprecipitates 

were washed five times with Triton X-100 lysis buffer, subjected to SDS-PAGE 

and Western Blot analysis using anti-HA antibodies. Total extracts were 

previously analyzed by anti-HA or anti-FLAG Western Blotting to verify the 

correct expression of transfected proteins. 

 

In Vivo Ubiquitination Assays  
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HEK293 cells (1 x 105) were transfected with expression vectors containing 

Epitope-tagged Ubiquitin, FLAG-NEMO/IKKγ, HA-NESCA and HA-TRAF6, 

in different combinations. 24 hours after transfection, cell lysates were prepared 

as above, proteins were dissociated by heating for 10 min at 95 °C in 1% SDS, 

samples were diluted 1:10 in Lysis Buffer and immunoprecipitated with anti 

FLAG antibodies as described above. Immunoprecipitated extracts were 

analyzed for polyubiquitination of NEMO/IKKγ or NESCA by Western blot 

with anti-HA antibodies. 
 

In Vitro Translation 

 In vitro transcription and translation were carried out according to the TNT 

Quick Coupled Transcription/Translation System protocol (Promega). This kit 

contains all the transcriptional and translational machinery. T7 promoter-

containing vectors can be transcribed by the T7 RNA polymerase and then 

translated by the rabbit reticulocyte translational machinery. 1 μg of each 

plasmid was added to 49 μL of the mix and incubated 90 minutes at 30°C. 

Proteins were immunoprecipitated as described above.  

 

Confocal analysis 

PC12 cells were plated on poly-L-lysine-coated glass slides, transfected with 

Lipofectamine 2000; 24 hours later were fixed in 4% paraformaldehyde and 

treated with 1% Triton X-100 in phosphate-buffered saline. Non-specific protein 

binding was prevented by blocking cells with 3% bovine serum albumin in 

phosphate-buffered saline. Cells were stained with the appropriate primary 

antibodies (1:250 dilution) for 1 hour at room temperature. After three washes in 

phosphate-buffered saline the slides were stained with the appropriate secondary 

antibodies (labeled with Alexa Fluor 488 or Texas Red, 1:250 dilution) for 1 

hour and washed with phosphate-buffered saline. Images were acquired with the 

TCS AOBS SP2 scan head mounted on the DM IRE2 microscope (Leica 
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Microsystems Heidelberg GmBH, Wetzlar, Germany). Data acquisition and 

analysis were done using Leica Confocal Software v.2.45. 
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4.    RESULTS 
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4.1 RUSC1/NESCA and RUSC2 are two novel NEMO-interacting proteins 

The molecular mechanisms driving NF-kB activation through NEMO in the 

CNS are to date unclear. To get insight into how NEMO modulates the 

activation of NF-kB in this tissue, I decided to search for new NEMO interacting 

proteins, via the yeast two-hybrid system. For this purpose, I cloned the cDNA 

encoding for the amino acids 1-399 of NEMO, lacking of the C-terminal Zinc 

Finger domain to avoid non-specific interactions, into the pGBKT7 vector in 

frame with the GAL4 DNA binding domain. This vector was used as a bait to 

screen a Human Foetal Brain cDNA library, in which each cDNA is fused to the 

trans-activation domain of GAL4. About fifty clones encoding for putative 

NEMO-interacting proteins were isolated and sub-cloned in frame with the HA- 

or FLAG- epitopes in mammalian expression vectors in order to test their 

effective interaction with NEMO in coimmunoprecipitation experiments. In 

particular, three of them encoded for overlapping fragments of a 1516 aa long 

protein of unknown function, RUSC2, previously reported to bind to Rab1b, that 

is involved in the transport of vesicles from the Endoplasmic Reticulum to 

Golgi. Furthermore I found another clone encoding for the paralagous of 

RUSC2, RUSC1/NESCA, a 433 aa long protein that has been recently shown to 

be involved in the NGF pathway emanating from the TrkA receptor and to be 

required for the NGF-mediated growth of neurites in PC12 cells.  

RUSC1/NESCA and RUSC2 share a common domain structure consisting of a 

RUN domain, a Leucine Zipper and an SH3 domain; furthermore they present a 

high sequence similarity (49% in the C-termianl region, 73% in the conserved 

domains such as RUN, LZ and SH3) (Figure 7). 

In order to confirm the interaction between NEMO and RUSC1/NESCA or 

RUSC2 I cloned the full-length cDNA encoding for NESCA and RUSC2 in 

expression vectors in fusion with the HA- epitope (HA-NESCA and HA-

RUSC2). Each of these constructs was transfected in HEK293 cells together 

with the construct containing the full-length cDNA of NEMO fused to the 
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 FLAG- epitope (FLAG-NEMO) and cell lysates were immunoprecipitated with 

anti-FLAG antibodies. Anti-HA western blotting on immunoprecipitated 

extracts revealed that both HA-NESCA and HA-RUSC2 interact with NEMO 

(Figure 8).  

Given the absence of data about the function of RUSC2 and since NESCA has 

been demonstrated to be involved in the NGF pathway, that is specific of the 

CNS and that culminates in the activation of various transcription factors among 

which NF-kB, I decided to focus my attention mainly on the study of the 

NEMO-NESCA interaction, although I will also present preliminary results on 

RUSC2. 

 

4.2 Mapping the NEMO interaction site 

In order to biochemically characterize the interaction between NEMO and 

NESCA I decided to map the site by which NESCA can interact with NEMO. 

For this reason I cloned several N- or C-terminal deletion mutants of NESCA 

(Figure 9A) in frame with the HA- tag: HA-NESCA 304-433, lacking of the N-

terminal portion and containing only the SH3 domain; HA-NESCA 1-306, 

lacking only of the SH3 domain and containing the RUN, LZ and WW domains; 

HA-NESCA 1-203 contains the RUN and the LZ domains; HA-NESCA 1-136 

covers the first 136 amino acids of NESCA, in which is present only a part of 

the RUN domain and lacking of the LZ, WW and SH3 domains. HEK293 cells 

were co-transfected with FLAG-NEMO together with HA-NESCA or each of 

the HA-NESCA mutants. Upon immunoprecipitation of lysates with anti-FLAG 

antibodies, anti-HA western blotting on immunoprecipitates revealed that only 

HA-NESCA, HA-NESCA 1-306 and 1-203 were able to co-precipitate with 

NEMO (Figure 9b), although all mutants are expressed in the total fractions, 

revealing that the region necessary for the interaction is located between amino 

acids 137-305; this region contains part of the RUN and the LZ domain. 
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4.3 Mapping the NESCA binding site of NEMO 

In order to define the region of NEMO that is critical for the interaction with 

NESCA, I generated three N-terminal deletion mutants of NEMO (Figure 10A): 

NEMO 61-419, lacking the first 60 amino acids; NEMO 92-419 lacks of a small 

part of the first Coiled-Coli domain (CC1); NEMO 251-419 lacks of the entire 

CC1 but still contains the CC2, NUB, LZ and ZF domains. These mutants were 

cloned in frame with the FLAG- epitope. FLAG-tagged mutants and HA-

NESCA were co-transfected in HEK293 cells and their interaction was 

examined by coimmunoprecipitation experiments. From this screening I found 

that HA-NESCA was able to co-precipitate only with FLAG-NEMO and FLAG-

NEMO 61-419, demonstrating that the region from amino acid 61 to 92 is 

essential for the association between the two proteins (Figure 10B).  

As the NESCA-binding site overlaps with the IKK-binding region of NEMO 

(Leonardi et al., 2000), I wondered if the interaction between NEMO and 

NESCA can interfere with the stability of the IKK complex. To test this 

hypothesis I co-transfected increasing amounts of HA-NESCA together with 

FLAG-NEMO and HA-IKKβ in HEK293 cells and I examined their interaction. 

Upon incubation with anti-FLAG antibodies, immunoprecipitates were 

subjected to SDS-PAGE and anti-HA western blotting. I found that NEMO is 

able to bind to both IKKβ and NESCA in all experimental points (Figure 10C), 

demonstrating that the interaction with NESCA does not disrupt the IKK 

complex.  

 

4.4 NEMO and NESCA co-localize in PC12 cells in an NGF-dependent 

manner 

To establish the subcellular localization of NESCA and to know whether  this 

protein is able to co-localize with NEMO, I co-transfected HA-NESCA and 

FLAG-NEMO in the neuronal cell line PC12. After transfection, cells were 

incubated with monoclonal anti-HA and polyclonal anti-FLAG antibodies,  
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respectively recognized by Red anti-mouse and Green anti-rabbit antibodies. As 

shown in the Figure 11, HA-NESCA and FLAG-NEMO co-localize in the 

cytoplasm of PC12 cells, although NESCA shows also a nuclear localization. Of 

note, the distribution of the two proteins seems to change in the presence of 

NGF. In particular, 15 minutes upon NGF stimulation, the two proteins appear 

with a spotted pattern while they are also localized under the cell membrane 

upon 30 to 60 minutes of NGF stimulation. This localization seems to 

recapitulate the events that have been shown to occur upon NFG stimulation 

(Figure 6), in which the receptor  is internalized in signaling vesicles upon 10-15 

minutes of NGF stimulation and it re-localizes under the cell membrane upon 

30-60 minutes. 

 

4.5 NESCA directly associates with TRAF6 by its N-terminal portion 

Adapter molecules are generally involved in regulating the dynamics of 

molecular interactions. Since NESCA represents a new adapter in the NGF-

pathway (MacDonald et al., 2004), I sought to verify the presence of other 

NESCA-interacting proteins belonging to the NGF-mediated NF-kB pathway. In 

particular, when I transfected the mutant HA-NESCA 1-203, western blot 

analysis revealed the presence of upper bands (Figure 9B, lanes 8-9), that could 

be the result of covalent post-translational modifications, such as 

polyubiquitination. Since TRAF6 is the E3 ubiquitin ligase involved in the NGF 

pathway, I wondered if NESCA and TRAF6 could interact.  

I cloned TRAF6 in frame with the FLAG- epitope by amplifying it from a 

Human Brain cDNA library. Coimmunoprecipitation experiments in HEK293 

cells revealed that NESCA is able to interact with TRAF6 when both proteins 

were co-transfected in HEK293 cells (Figure 12A). To further confirm the direct 

interaction between the two proteins I produced in vitro translated proteins; also 

in this case I could detect the interaction between FLAG-TRAF6 and HA-

NESCA, demonstrating the direct interaction between the two proteins (Figure 

12B). 
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To map the region of NESCA responsible for the interaction with TRAF6, I co-

transfected the HA-tagged deletion mutants of NESCA already used to map the 

interaction with NEMO together with FLAG-TRAF6 in HEK293 cells (Figure 

13A). Coimmunoprecipitation assays revealed that all the C-terminal deletion 

mutants are able to co-precipitate with TRAF6, while NESCA 304-433 is not 

able to do it, revealing that the N-terminal region of NESCA is required for the 

binding to TRAF6 and in particular the first 136 amino acids of NESCA, that 

contain part of the RUN domain, are sufficient to produce this interaction 

(Figure 13B). 

 

4.6 NESCA is Lys-63 polyubiquitinated by TRAF6 

Polyubiquitination of signaling intermediates of the NF-kB pathway has been 

shown to be an essential modification occurring upon stimulation of many 

external triggers (Chen, 2005; Perkins, 2006), including the NGF. Since NESCA 

is able to interact with TRAF6, I sought to verify whether it may undergo 

polyubiquitination. To test this hypothesis, I performed a polyubiquitination 

assay using NESCA as a substrate. I transfected HEK293 cells with NESCA in 

the absence (Figure 14, lane 3) or in the presence of exogenous ubiquitin (Figure 

14, lane 4). Cell extracts were boiled in 1% SDS and then subjected to anti-

FLAG immunoprecipitation. Western blotting analysis on immunoprecipitates 

with anti-HA antibodies  revealed that NESCA undergoes polyubiquitination 

(Figure 14, IP panel, lane 4). Of note, NESCA polyubiquitination was strongly 

enhanced in the presence of TRAF6, indicating that this molecule acts as an E3 

ubiquitin ligase for NESCA (Figure 14, lane 5). Under stringent SDS-denaturing 

conditions, TRAF6 did not co-immunoprecipitate with NESCA, excluding the 

possibility that the polyubiquitination observed was the result of auto-

ubiquitinated TRAF6 (not shown). 
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4.7 NEMO polyubiquitination is affected by the overexpression of NESCA 

NEMO is a well characterized target for TRAF6-mediated polyubiquitination 

(Sebban-Benin et al., 2007). Because NESCA interacts with both NEMO and 

TRAF6, I wondered whether NESCA may have a role in the process of 

polyubiquitination of NEMO. To test this hypothesis I transfected FLAG-

NEMO in the presence of HA-Ubiquitin and HA-TRAF6 without (Figure 15A, 

lane 4) or with HA-NESCA (Figure 15A, lane 5). This experiment revealed that 

the overexpression of NESCA completely abolished the TRAF6-mediated 

polyubiquitination of NEMO, as it appears by using either anti-HA (Figure 5A) 

or anti-NEMO (Figure 15B) antibodies on immunoprecipitated extracts. 

TRAF6 is a well known activator of NF-kB and its overexpression results in 

both polyubiquitination of signaling proteins and NF-kB activation (Conze et al., 

2008; Sebban-Benin et al., 2007; Sun et al., 2004). Although the overexpression 

of NESCA is able to abolish the polyubiquitination of NEMO, this event does 

not seem to correlate with an impaired NF-kB activation, measured by an NF-kB 

driven luciferase plasmid transfected in each experimental point (data not 

shown). 

 

4.8 Preliminary results on the protein RUSC2 

In order to characterize the interaction between NEMO and RUSC2 I begun to 

verify if this binding can occur through the same regions necessary for the 

NEMO-NESCA interaction. For this reason I generated various HA-tagged 

deletion mutants of RUSC2 lacking several portions of the protein, that I tested 

for their ability to bind to NEMO in coimmunoprecipitation assays in HEK293 

cells (Figure 16A). From this screening emerged that only the mutants 

containing the region between amino acids 904-1182 of RUSC2, containing the 

RUN and the LZ domain, are able to co-precipitate with FLAG-NEMO, 

demonstrating that this region is responsible for the interaction (Figure 16B).  
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In order to map the RUSC2-interaction site of NEMO, I used the same FLAG-

NEMO-deletion mutants shown in Figure 10. Each of these mutants was co-

transfected with HA-RUSC2 in HEK293; coimmunoprecipitation assays 

revealed that RUSC2 is able to co-precipitate only with FLAG-NEMO and 

FLAG-NEMO 61-419, demonstrating that the NESCA- and RUSC2-interaction 

sites are the same (not shown). Finally, HA-RUSC2 is also able to co-precipitate 

with FLAG-TRAF6 in HEK293 cells (Figure 17), suggesting that redundant 

functions between NESCA and RUSC2 may occur. 
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5. DISCUSSION 
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In the present study I report on the identification of two novel NEMO and 

TRAF6 interacting protein: NESCA and RUSC2. These are two paralogous 

protein sharing a common domain structure and a high sequence similarity. 

While RUSC2 is a protein of unknown function, NESCA has been previously 

shown to be part of the TrkA-mediated NGF pathway and to be important in the 

NGF-mediated neurite growth of PC12 cells (MacDonald et al., 2004). NF-kB is 

one of the transcription factors activated upon NGF stimulation, whose activity 

is necessary for neuronal differentiation (Carter et al., 1996),(Foehr et al., 

2000a). Several molecules have been shown to belong to the NGF-induced NF-

kB pathway, such as the E3 ubiquitin ligase TRAF6 (Khursigara et al., 1999), 

the adapter molecule p62 (Wooten et al., 2005) and the PKC atypical kinases 

(Wooten, 1999; Wooten et al., 2001). Albeit the effects of overexpression or 

downregulation of these molecules impact on neuronal survival or 

differentiation and on NF-kB activation (Foehr et al., 2000b; Joung et al., 2005; 

Yeiser et al., 2004), it is not known how these molecules can recruit and regulate 

the IKK complex. NESCA represents (one of) the molecular link(s) connecting 

the IKK complex to upstream molecules. Because it is able to bind to the TrkA 

receptor (MacDonald et al., 2004) and also to TRAF6 and to NEMO, NESCA 

can be considered a novel central adapter in the NGF-induced NF-kB pathway. 

This raises the question of which is the functional role of NESCA in such 

pathway. In general, NF-kB signaling requires adapter molecules, such as RIP, 

which binds to NEMO to recruit the IKK complex to the receptor and therefore 

to induce its activation (Poyet et al., 2000). A central event in this process is the 

polyubiquitination of RIP upon TNFα stimulation. Therefore, polyubiquitinated 

RIP provides a platform for the recruitment and modulation of the IKK complex 

through the Ubiquitin-binding domain of NEMO (Ea et al., 2006; Li et al., 2006; 

Wu et al., 2006). One can imagine that NESCA may operate in a way quite 

similar to RIP. This hypothesis is supported by some experimental findings: 

first, despite its binding to the region between amino acids 61-91 of NEMO, that 
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overlaps with the IKK-binding region, NESCA does not disrupt the IKK 

complex, considering that NEMO can interact with both NESCA and IKKβ 

simultaneously (Figure 10C) and that IKKβ can co-immunoprecipitate with 

NESCA in the presence of NEMO (not shown). Second, NESCA can be 

polyubiquitinated by TRAF6, because we observed that TRAF6 overexpression 

strongly enhances the polyubiquitination of NESCA (Figure 14). Third, 

polyubiquitinated forms of NESCA are able to co-immunoprecipitate with 

NEMO, as it appears both by transfecting HA-NESCA and exogenous ubiquitin 

(not shown) or by transfecting a  deletion mutant of NESCA (HA-NESCA 1-

203) that seems to be constitutively ubiquitinated (Figure 9B, lane 9). These data 

suggest that NESCA could be poly-ubiquitinated by TRAF6 and that this event 

could stimulate the IKK complex recruitment.  

Which is the functional significance of the NESCA–IKK complex binding? 

Since NESCA can bind to both NEMO and TRAF6, we wondered whether 

polyubiquitination of NEMO could be altered by the overexpression of NESCA. 

Surprisingly, NESCA overexpression completely abolishes the TRAF6-

dependent NEMO polyubiquitination, without producing any changing in NF-

kB activity, measured by luciferase assay. The polyubiquitination of NEMO has 

been generally accepted to have a positive effect on the activation of the IKK 

complex (Tang et al., 2003; Yamamoto et al., 2003; Zhou et al., 2004), although 

some recent papers bring this thesis into question. Indeed, it has been shown that 

a point mutation in the C-terminal region of NEMO (K392R) results in a 

defective LPS-induced NEMO polyubiquitination, without affecting the 

activation of NF-kB (Ni et al., 2008). Moreover, another C-terminal NEMO 

mutant (K399R) shows a defective CARMA1-Bcl10-Malt1 induced 

polyubiquitination, even if this mutation has only a slight effect on inducible 

NF-kB activation in T cells (Oeckinghaus et al., 2007). These last data are in 

agreement with my findings suggesting that additional and not yet clearly 
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understood mechanisms of IKK complex regulation through the 

polyubiquitination of NEMO may occur. 

In summary, I have identified NESCA as a novel adapter involved in the NGF-

mediated NF-kB pathway. In addition to its ability to bind to the TrkA receptor 

(MacDonald et al., 2004), NESCA can also bind to NEMO and to TRAF6, 

which in turn catalyzes the polyubiquitination of NESCA. The functional 

consequence of these interactions is that NESCA could recruit the IKK complex 

and regulate the levels of NEMO polyubiquitination, even if the functional 

significance of this latter event in the NGF signaling remains to be established 

(Figure 18).  

It still remains to establish which role RUSC2 can play in these events, in 

particular whether it has redundant functions, as it is suggested by the similarity 

between NESCA and RUSC2 interaction with NEMO and TRAF6. RNAi 

experiments downregulating both NESCA and RUSC2 expression could help to 

understand the redundant or individual role that each of the two proteins may 

play in the NGF-mediated NF-kB pathway. 
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