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Introduction

In recent years the role of physical methodologies and models is becoming
important in the study of Biology. The biological process are often very com-
plex and Statistical Physics offer a synthetic picture and explanation of many
behaviors. Statistical physics has the peculiarity to explain the emergence of
complex behaviors from simplified models of microscopic interactions com-
bining statistical principles and dynamical laws.

In this work we show a Statistical Mechanics approach to the study of
Eukaryotic Directional Sensing. Many eukaryotic cells are able to orient (po-
larize) in order to move along a given direction in presence of an external
stimulation (chemotaxis). This process is fundamental for important bio-
logical functions like morphogenesis of organs and tissues, wound healing,
immune response, social behavior of some ameboid cells. It involves different
kind of eukaryotic cells: cells involved in the immune system, endothelial
cells, amphibian eggs, amoebas. This is an indication that the process of
directional sensing is a universal phenomenon. The process of orientation
consists in the pattern formation of domains of two different enzymes de-
termining a symmetry breaking which triggers the directional sensing [11].
Pattern formation happens in answer to an external stimulation, usually a
chemical signal, that activates specific receptors on cell surface and it is
produced by a cascade of chemical reactions leading to the cell polarization
[4]. Experimental observations [15] suggest that the domains formation is a
consequence of self-organization of molecules patches.

It is natural, from a physical point of view, to represent the phenomenon
like a self-organized phase ordering process, where the cell state, sponta-
neously, or driven by an anisotropic external field, decays into a state of
coexistence of two or more chemical phases, spatially localized in different
regions in order to define a front and a rear. We model the process by asso-
ciating a lattice to the cell surface populated by a spin variable whose values
identifies the enzymes. An effective free energy regulates the interactions of
the enzymes with the external chemical source and with a cytosolic reser-
voir. The free energy is able to create the conditions of phase coexistence
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4 Introduction

necessary for the phase separation process [23].
The synthetic description derived from a free energy approach offer the

possibility of a general treatment of the Hamiltonian considered for the lat-
tice model. We study the Hamiltonian as a continuous Landau-Ginzburg
functional in the framework of large N model. The order parameter repre-
sents, in the scalar limit, the concentration difference of the enzymes. The
large N limit is a powerful method of the Statistical Mechanics which yield
the possibility to obtain analytical results. We study numerically and an-
alytically the Langevin equation of motion deriving the phase diagram and
the time behavior of magnetization and structure factor.

The last part of this thesis is devoted to the study of the effect of chemo-
taxis on the dynamical process of cells aggregation in the morphogenesis of
simulated vascular networks. Experiments shows [42] that chemotaxis plays
an important role in the formation of vascular networks in vitro. The de
novo growth of the primary vascular network from initially endothelial cells
is called Vasculogenesis and it is the first step in the development of the circu-
latory system in vertebrates. The endothelial cells produce a chemical factor
which degrades in time creating local gradients which guides the cell chemo-
taxis. The cells autorganize in networks structure showing, during the aggre-
gation, the characteristics of a percolation process [40]. The formed networks
have self-similar structure which can give information about the dynamical
aggregation process from the study of the fractal dimension. It is possible to
associate an effective interaction length to the chemical factor. Our purpose
is to investigate the role of the effective interaction length on the fractal be-
havior of simulated two-dimensional vascular networks. We performed Monte
Carlo simulations by using the Cellular Potts Model [37, 38, 39], a lattice-gas
model, where the endothelial cells are represented by spins of Potts and the
chemical factor is represented as continuous concentration field around the
cells. From the study of different structures, obtained by varying the effec-
tive radius of attractant, it appears clearly that, for scales close to the radius,
the chemical soluble factor determines the dynamical process of aggregation
and for larger scale the shape of structures is influenced only by the initial
random position of cells.

The thesis is organized in five chapters. In the first chapter we describe
the biological characteristic of eukaryotic directional sensing and summarize
the main models previously used for the process. In the second chapter we
illustrate and discuss the spin lattice model. The chapters 3 and 4 are devoted
to the study of the free energy in the large N limit. Finally the chapter 5
contains the study of the fractal behavior of simulated vascular networks.



Chapter 1

The eukaryotic directional

sensing

1.1 Introduction

Animals, plants, fungi are constituted by eukaryotic cell. The word eukary-
ote comes from the Greek ǫυ (eu), meaning ”good”, and καρυoν (karyon),
”nut”. They have this name because they have membrane-bounded nucleus,
enclosing DNA, which differentiates eukaryotic cells from prokaryotic cells
(bacterias) which doesn’t have a nucleus. Until 1800 millions of years ago,
our planet had only procaryotic living organisms. Probably the first eukary-
otic cell was created thanks to the cooperation between two bacterias; one
of them incorporated another creating a cell with a nucleus. After millions
of years of evolution we observe our complex eukaryotic cells.

The simplest form of life is a solitary cell that reproduces by binding in
two. Higher organisms are like cellular cities, in which groups of cell perform
specialized functions and are linked by intricate systems of communication.
The living Eukaryotic cell is itself a little universe where fascinating phenom-
ena happen.

In the nucleus of a single cell there is the DNA, which contains all the
genetic code of the eukaryotic organism. A single cell can read and use the
genetic information, it can breathe, it can communicate with other cells, and
many eukaryotic cells can detect external stimulation, establish a direction
and move along it. Eukaryotic cells are unique in containing a cytoskeleton of
protein filaments that help to organize cytoplasm and provide the machinery
for movement.

Specific moments of the life of a cell living in a multicellular community,
such as migration, proliferation, organization in layers or complex tissues,
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6 The eukaryotic directional sensing

imply spatial organization along some axis of direction. The original spa-
tial symmetry of the cell must be broken to adapt to a highly structured
anisotropic environment. Many eukaryotic cells respond with directional
movement to spatial and temporal gradients of small molecules that bind
to cell surface. This process, called chemotaxis, is crucial in many biologi-
cal functions: immune response of higher animals, wound healing, neuronal
patterning, vascular and embryonic development, as well as the food gath-
ering and social behavior of some amoeboid cells. For instance, migrating
cells must orient towards sources of chemical attractants, mitotic cells must
orient along the spindle-pole axis to bud daughter cells, epithelial cells must
recognize the inner and outer part of tissues to define organ boundaries. In

Figure 1.1: The image shows Dictyostelium discoideum cells chemotax-
ing towards a micropipette emitting the chemoattractant cAMP. The Dic-
tyostelium discoideum is a species of soil-living amoeba. It is a primitive
eukaryote that has been widely used to study the mechanisms of cell move-
ment, chemotaxis and cell signaling.

this thesis we will present a model of Eukaryotic Directional Sensing based
on standard Statistical Mechanics methods.

1.2 Chemotaxis

Chemotaxis is possible after polymerization of the actin filaments which are
the main constituents of cytoskeleton. Actin is a globular protein that as-
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Figure 1.2: Actin Filament Elongation and ATP Hydrolysis. The EM (Elec-
tronic Microscopy) shows an actin filament seed decorated with myosin heads
and elongated with ATP-actin. The association rate constants have units of
µM−1s−1. Dissociation rate constants have units of s−1. The ratio of the
dissociation rate constant to the association rateconstant gives K, the dis-
sociation equilibrium constant with units of µM . Note that the equilibrium
constants for ATP-actin differ at the two ends, giving rise to slow steady
state treadmilling. By Pollard et al. [19].

sembles into biopolymers with filamentous structures with two structurally
distinct ends. The monomers are called globular actin (G-actin) and the fil-
aments are called F-actin. The two distinct ends are a fast and slow growing
end (called the plus and minus end respectively). Polarity of actin filaments
is based on molecular polarity of G-actin which has an arrowhead pattern
created by decoration with myosin, an important protein which participate
with actin to create the cytoskeletal mesh[20]. The first step in actin polimer-
ization is the Nucleation actin trimer from G-actin monomers. This process
is very slow, probably because the actin monomers have to combine in a
precise conformation of trimers. After nucleation, filaments grow rapidly.
The actin monomers stores energy including of ATP nucleotide. The trimer
structure is stable and after the addition of an actin monomer hydrolysis of
ATP in ADP occours. This process is important to preserve polarity for actin
filaments. Infact the ATP hydrolysis polarize the actin filaments in terms
of polymerization rates in two ends. The ATP-containing end (plus end)
is more stable against depolymerization and grows more quickly, whereas
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the ADP-containing and (minus end) is less likely to bind a monomer and
grows slowly Fig. 1.2. Polymerization proceeds until the concentration of
free monomers is below the critical concentration for growth the minus end,
but above that the plus end. The cell can therefore regulate actin polymer-
ization by varying the availability of ATP. The minus end has a critical actin
monomer concentration that is ∼ 6 times higher than that at plus ends.

The polar structure of actine filaments endows the actin cytoskeleton with
directionality on macroscopic scales. When the end of an actin filament (AF)
is exposed to a concentration of monomeric actin that is above its critical
concentration, the filament end binds monomers and grows by polymeriza-
tion. Conversely, when the concentration is below the critical concentration,
monomers detach from the filament end, and the filament shrinks by depoly-
merization. Simply by having these two different critical actin concentrations
at the opposing ends of the filament, AFs can grow asymmetrically, and when
the actin monomer concentration lies between the two values, only the plus
end grows while the minus end shrinks. This process, where the length of the
filament stays roughly constant and the polymerized monomers within the
AF transfer momentum forward due to asymmetric plus end polymerization,
is known as treadmilling. In this way a dynamic process emerges, where
although there is no net growth, there is a net flux of monomers trough the
filament. It is a critical aspect of how polymerizing AFs can generate force
and it is important for the spreading as well as the directional movement of
cells.

Once cell movement begins, the process, which involves the constant re-
structuring of the actin cytoskeleton, can be divided into three stages in most
cells Fig. 1.3. First, a cell propels the membrane forward by orienting and
reorganizing (growing) the actin network at its leading edge. Second, it ad-
heres to the substrate at the leading edge and deadheres (releases) at the cell
body and rear of the cell. Finally, contractile forces, generated largely by the
action of the acto-myosin network, pull the cell forward.

A cell begins to move in response to an external signal in its surrounding
environment. This can be a physical, chemical, diffusive or non-diffusive
signal that is detected by receptor proteins located on the cell membrane,
and transmitted by them via signaling cascades to the cell interior. During
directional sensing cells transduce the external distribution of chemotactic
ligand into an internal distribution of signaling molecules that effect, by a
not yet well known cascade of chemical reactions, the morphological and
mechanical changes necessary for movement.

Cytoskeleton dynamics can be decoupled from directional sensing by use
of inhibitors of actin polymerization so that cells are immobilized but respond
with the some behavior of signaling molecules of untreated cells [1]. Than
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Figure 1.3: A schematic of the three stages of cell movement. After deter-
mining its direction of motion, the cell extends a protrusion in this direction
by actin polymerization at the leading edge. It then adheres its leading edge
to the surface on which it is moving and de-adheres at the cell body and rear.
Finally, it pulls the whole cell body forward by contractile forces generated
at the cell body and rear of the cell. By Ananthakrishnan [24].
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Figure 1.4: Response in fluorescence level of PIK3 enzymes (A) or PTEN
(B) under varying chemotactic gradients. (A Upper) The pipette is located
10 µm below the bottom-left corner of the frame; (B) the location is denoted
by the asterisk. By Janetopoulos et al. [1].

it is possible to treat the directional sensing separately from the cytoskeletal
dynamic. In this thesis we focus on the phenomenon of directional sensing
which break the symmetry of cell membrane.

1.3 The biological mechanism of directional

sensing

During last years, there had been many experimental observations clarifying
the biological mechanism in directional sensing.

The general picture emerging from the analysis of chemotaxis in several
different eukaryotic cell types indicates that the process evolves two enzymes
on their phospholipid products [1]. The enzyme phosphatidylinositol 3-kinase
(PI3K) and his product the trisphosphate (PIP3) phospholipid, and phos-
phatase and tensin homolog enzyme (PTEN) with its bisphosphate (PIP2)
phospholipide play the major role in the process.

An oriented cell shows a strong accumulation of PI3K and PIP3 at leading
edge whereas the most part of PTEN and PIP2 is located at the side of cell
membrane. If the chemoattractant has a gradient, cells respond with strong
accumulation of the enzyme PI3K and its product PIP3 on the plasma mem-
brane side exposed to the highest concentration of chemoattractant whereas
the PTEN enzyme and its product PIP2 accumulates on the opposite side
Fig. 1.4. PI3K catalyze the switch of the phospholipid bisphosphate PIP2 in
the trisphosphate PIP3 states, conversely, the PTEN catalyze PIP3 in PIP2.
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The phospholipids are permanently bound to the inner face of the cell
membrane, while the two enzymes diffuse in the cell volume and become
active when they are adsorbed on the membrane. PI3K adsorption takes
place through binding to receptors of the external attractant. PTEN ad-
sorption takes place through binding to the PTEN product, PIP2, a process
which introduces an amplification loop in the system dynamics [6, 4]. A sec-
ond amplification loop provided by PI3K binding to PIP3 has been recently
observed [7].

The discovery of new proteins and agents add particulars and new ques-
tions to the biochemical intracellular picture of directional sensing but the
observed phenomenon at cell level is well studied and shows very interesting
characteristics, as we describe in the following paragraph.

1.3.1 Characteristics of directional sensing.

In presence of a shallow gradient of chemoattractant the phosphoinsitide and
enzyme distributions do not simply mirror the receptor activation gradient,
but rather a strong and sharp separation in PIP2-PTEN and PIP3-PI3K-
rich zones arises. The process works as an efficient gradient amplifier: a
few percent gradient (∼ 2 %) is sufficient to completely polarize the cell
membrane.

The eukaryotic cells have no a priori directionality, as consequence we
observe that orientation response is reversible: by inverting the gradient
direction the orientation is also inverted. In Fig.1.5 the changing of distri-
bution of PIP3 molecules is showed. This characteristic has an important
consequence on the cell mobility. Infact also the directional motion of cells
inverts its direction, giving the possibility to the cell to adapt in the time to
the changes of the external stimuli. In Fig.1.6 is showed the reorientation of
a populations of rabbit neutrophylis after the gradient inversion.

Two different regimes of membrane polarization may be distinguished:
in presence of gradient of stimulant and with a uniform stimulant. In the
presence of an attractant gradient, anisotropy driven polarization is realized
in a time of the order of a few minutes, and results in the formation of a
PI3K-rich patch on the membrane side closer to the attractant source and of
a PTEN-rich patch in the complementary region [6]. On the other hand, cells
exposed to uniform distributions of attractant polarize in random directions
over a longer timescale.

The average concentration of attractant is of crucial importance, as shown
by experimentally observed dose-response curves [8] Fig. 1.7. The directional
sensing takes places for a wide range of chemoattractant concentration, this
range can variate with the cell type and the kind of attractant but there
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Figure 1.5: Eukaryotic cells are equally responsive at all points on their
perimeters. Discoideum cells expressing PHCrac-GFP (indicator of PIP3

presence) sense a gradient of cAMP released from a micropipette. By flu-
orescence the cell on the right shows concentration of PIP3 binding to the
membrane on the side of the cell exposed to gradient emanating from pipette
1 (dot), and then rapidly (within 60 s) translocates to the other side when
pipette 2 (dot) is turned on (left). By Devreotes et al. [14].

are at least two-three order of magnitude of concentration of attractant that
enhance the directional sensing and chemotaxis. Directional sensing does
not take place neither at very low nor at very high attractant levels, and
there exists an optimal attractant concentration such that the cell response
is maximal.

Postma and coworkers [15] observe that, after a chemical stimulation,
the cell surface show the presence of domains of PHCrac-GFP characterized
by the presence of PIP3. The PIP3 triggers the formation of PHCrac-GFP
domains which are the activated zone for the actin polymerization as in
Fig.1.8. The characteristic that seems to emerge from this experiment is
that the spatial organizing of phosphoinositides (and enzymes) is driven by
a self-organization of signaling patches.

Once there is establishment of cell polarity, the lipid PIP3, accumulates
at the leading edge of chemotacting cells, induces actin polymerization and
protrusions like pseudopoda extension, triggering the cell chemotaxis.

1.4 Directional sensing models

A number of theoretical models have been proposed to explore different po-
tential mechanisms for gradient sensing and polarization [18]. They attempt
to explain the ability of cells to generate, amplified persistent intra-cellular
responses to external chemoattractants. The most part of them hypothesize
a mechanism and describe the process using coupled differential equations as



1.4. DIRECTIONAL SENSING MODELS 13

Figure 1.6: Reversibility in cell motility. Rabbit neutrophila cells were stim-
ulated for orientation in the right direction. The attractant fluid was then
removed and replaced with fresh medium with the direction of the gradient
reversed. After 15 min the reversal the most part of cells is oriented in the
new direction. By Zigmond [8].

method to compute the distributions of molecules evolved in the the process
(see for a review[18]) to mimic the signaling moulecules responce of the cell.

Several models are based on a local excitation of signaling moulecules
(PIP3, PTEN, PH domains) and a global inhibition principle (LEGI mecha-
nism) Fig.1.9. The activator binds to the membrane at a rate proportional
to the local degree of receptor activation. The inhibitor, on the other hand,
responds to the integrated receptor activity. Its activity, therefore is propor-
tional to the average concentration of attractant across length of cell. The
cell determines its front and rear by comparing the local concentration of
the activator on the membrane relative to the global concentration of the
inhibitor. Qualitatively, the LEGI mechanism can account for the observed
gradient sensing response of most of the molecules that have been shown in
neutrophils and Dictyostelium cells to translocate to or be activated tran-
siently on the cell cortex during uniform stimulation and move to or be
activated at the front (like PI3K, PH domains, actin binding proteins) or
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Figure 1.7: Orientation as a function of concentration of attractant. The ori-
entation of cells exposed to a fix concentration gradient. The concentrations
on the abscissa indicate the high concentration of chemoattractant present
in the gradient. By Zigmond [8].

rear (like PTEN, myosin) in a gradient. However, the mechanism does not
amplify external gradients at the some level of the experimental findings [21].

A two-LEGI model, where parallel mechanisms act to regulate membrane
binding sites for PI3K and PTEN, which together regulate PIP3, the main
PH domain binding site was shown to increase the level of amplification in
[21]. In this model, two LEGI mechanisms, acting independently in paral-
lel, induce the complementary regulation of membrane binding/activation
sites for PI3K and PTEN upon chemoattractant stimulation. Each regulator
controls the number of membrane binding sites that allow for enzyme asso-
ciation and activation on the membrane of PI3K and PTEN, respectively.
The two enzymes then catalyze the conversion between phosphatidylinositol
bisphosphate PIP2 and PIP3. The first LEGI mechanism generates PI3K
binding sites on the membrane. The molecule responsible for fast excitation
(EPI3K) is confined to the membrane, whereas the slower inhibitory molecule
(IPI3K) is allowed to diffuse freely in the cytoplasm. This mechanism results
in a transient increase of PI3K binding sites in response to uniform stimulus,
and an accumulation of PI3K binding sites on the side of the cell facing the
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Figure 1.8: Patch formation in stimulated cell cells by cAMP. Cells were
stimulated at time t=0 seconds with 1 µm cAMP and washed with buffer
at t=90 seconds. (Top) The fluorescence intensity and the shape of a repre-
sentative cell section before and after stimulation with cAMP. (Botton) The
fluorescence intensity on the surface for the same cell. By Postma et al [15].

chemoattractant gradient. PTEN binding sites are controlled by a second
LEGI mechanism using separate excitation (EPTEN) and inhibition (IPTEN))
molecules Fig.1.10. In this case, however, the response regulator destroys
active binding sites. This results in a transient depletion of membrane bind-
ing sites for PTEN under uniform stimulation and a localization of binding
sites for PTEN at the posterior membrane under graded inputs. The PTEN
and chemoattractant concentrations are inversely correlated, and thus there
was assigned a linear inhibition of PTEN binding sites. This model assumes
no cross talk between the two channels of binding/activation of PI3K and
PTEN.

A “balanced inactivation” model has been presented recently by Levine
at al [16] to induce the switch-like behavior observed in the spatial distribu-
tion of PH domains. This model shares some of the features of the LEGI
mechanism, including the receptor-mediated production of two opposing sig-
nals, one of which is local, the other global. Its innovative feature is a third
component: a membrane bound inactivator that is mutually antagonistic to
the response. This extra component induces a switch-like response to exter-
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Figure 1.9: Local excitation, global inhibition model of gradient sensing. a)
The premise of the model is that receptor occupancy triggers both a rapid,
excitatory, local excitation as well as a slower, inhibitory, global response,
which can represent the action of a diffusive inhibitor. Together, they reg-
ulate the cellular response. b) In a gradient of receptor occupancy, the ex-
citatory signal at the front is stronger than that of the back. Though the
inhibitory signal is also triggered more strongly at the front, at steady state
it (mostly) equilibrates in space because of diffusion. This leaves a stronger
static response at the front (where excitation exceeds inhibition) than at the
rear (where inhibition exceeds excitation). By Iglesias and Devreotes [18].

nal gradients. In this model a possible candidate for the third component is
a G protein which creates two complex one is ipotized to be the activator of
membrane bound and another is ipotized to be the inactivator, which can
diffuse in the cytoplasm. So the “balance” between activated and inacti-
vated membrane-bounds is given by the rate of production of activator and
inhibitor, originated by the some protein.

There are other hypothesized mechanisms very detailed and involves a
number of additional regulatory proteins see for example [22]. The point of
view of the cited model is more or less biochemicaly precise. The method
is the computations of coupled equations to calculate the concentration of
different species on cell membrane.

Recentely models based on physical mechanism were presented. In phys-
ical terms, the process of directional sensing shows the characteristic phe-
nomenology of phase separation.

A first model made in this sense is the model made by Gamba et al [4].
It is a stochastic reaction-diffusion model, on a spherical lattice, the bind-
ing of PI3K to activated membrane receptors, binding of PTEN to PIP2,
catalytic activity of PI3K and PTEN, and phosphoinositide diffusion within
the plasma membrane. The simulated mechanism shows that even in the
absence of direct enzyme-enzyme or phosphoinositide-phosphoinositide in-
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Figure 1.10: Model for regulation of PIP3 through complementary lo-
cal excitation, global inhibition (LEGI) response regulators. Recep-
tor occupancy regulates two LEGI mechanisms working in parallel. In
LEGI-PI3K, the excitation process activates more binding sites for PI3K
(BSPI3K/BSPI3K), whereas in LEGI-PTEN, excitation destroys binding sites
(BSPTEN/BSPTEN). Binding and activation of the enzymes follows the spa-
tial distribution of the binding sites. Together, the two enzymes enhance the
spatial resolution of PIP3 by increasing phosphorylation of PIP2 (by activated
PI3K) and decreasing dephosphorylation of PIP3 (by activated PTEN) at the
front. By Ma et al [21].
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teractions, catalysis and phosphoinositide diffusion mediate an effective in-
teraction among enzymes, which is sufficient to drive the system toward
phase separation (polarization). Particular attention in this model is dedi-
cated to enstabilish the physical characteristic of the phenomenon; infact a
description of the phase separation by an order parameter is used and there
is the emergence of of phase separation region containing the concentration
of activated receptors and the diffusivity of the lipids in membrane.

The idea of phase separation thogheter with the experimental observation
of the formation of signaling patches [15] motivated the recent model by
Gamba et al. [13]. This is a physical model which represents the eukaryotic
directional sensing as a patch coalescence of phosphoinositides rich-zone, like
a first order phase transition. After stimulation by chemoattractant the PIP2-
PTEN phase in unstable and there is a nucleation of PIP3 (the stable phase)
domains and subsequently a coarsening process of the largest domains which
grow at the expense of smaller patches which shrink, leading to scaling lows
and universal probability distribution of patch sizes.

1.5 A Statistical Mechanics approach

The statistical physics explain the emergence of complex behaviors in physi-
cal systems from simplified models of microscopic interactions and dynamical
laws. It seems likely that these tools will turn more and more useful in un-
derstanding the behavior of biological systems.

In this thesis we study a Statistical Mechanics approach which capture
the physical mechanism which lies behind the details of the biological process
of directional sensing.

At the heart of directional sensing lies a chemical phase separation process
taking place on the inner surface of the cell membrane. We inspirate to the
biological mechanism presented in [4] and resumed in the cartoon showed in
Fig. 1.11. It is easy to observe that from a physical point of view, there
is a spatial organization phenomena which may be seen as self-organized
phase ordering processes. During the process the cell state, spontaneously,
or because driven by an anisotropy of an external field, decays into a state
of coexistence of two chemical phases, spatially localized in different regions
in order to define a front and a rear.

By making the simplest assumption that the dynamics can be derivable
from free energy minimization, one would expect that the coexistence be-
tween the PI3K-rich and the PTEN-rich phase would require a fine tuning of
the chemical potential difference between the two species. Phase separation
takes place instead for a wide range of absolute concentration of the attrac-
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a) b) c)

d)

e)

Figure 1.11: A schematic representation of directional sensing process, as is
simulated by Gamba et al [4]. a) An unstimulated cell presents only PTEN
on cell membrane. b) After stimulation the PI3K goes on surface and part
of the PTEN goes in cytoplasm. d) e) The competing enzymatic actions of
enzymes on lipids produce a segregation between enzymes an lipids of some
kind.

tant, and therefore of absolute values of the chemical potential for PI3K
adsorption.

In the next chapter we present a lattice-gas model based on an Hamilto-
nian formalism, that explains in a natural and simple way the main features of
phenomenology of directional sensing [23]. The model dynamics leads from
an initially unpolarized (anoriented) state to a phase separation polarized
(oriented) state.

Our description is not alternative to more detailed microscopic descrip-
tions using stochastic modeling of the relevant chemical reactions. The two
descriptions are actually complementary. The microscopic description is
closer to reality, but it contains several parameters whose values are not
easily determined with the desired precision, and can be studied only by nu-
merical simulations. On the other hand, a description based on Hamiltonian
approach provide a more synthetic picture to describe the system and it is
also amenable to an analytic study. In chapter 3 we show an analytic and
numerical treatment of the directional sensing Hamiltonian in the framework
of the N large model.
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Chapter 2

Lattice-gas model for

Eukaryotic Directional Sensing

Previous study of a stochastic reaction-diffusion model of eukaryotic polariza-
tion [4] evidenced the existence of a clear separation of timescales between
faster processes, such as cytosolic diffusion and catalysis, and slower pro-
cesses, such as the evolution of phase boundaries leading to phase ordering.
An average over the degrees of freedom with the faster relaxation times may
be performed, allowing to describe the order parameter through the use of
an effective free energy [13].

We therefore considered the probabilities of enzymes to bind and unbind
to the membrane, and interpreted these as obtained from a Hamiltonian
formulation. Very interestingly, when the effective equivalent Hamiltonian is
derived, beside the short range attraction, a long range repulsion appears as
a consequence of the finiteness of the enzyme reservoir. While in presence of
a pure short range attraction phases can coexist only for a definite value of
the chemical potential (represented here by the external chemoattractant),
the long range repulsion makes possible phase coexistence for a wide range
of external chemoattractant. The simulation dynamically approaches a final
polarized stationary state, with a phase coexistence of a PI3K rich and a
PTEN rich domain, as experimentally observed.

2.1 The lattice model

We represent the cell membrane by a square lattice of size L with N sites,
using periodic boundary conditions. The sites i occupied by PI3K (PTEN)
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are described by a Si = +1 (−1) spin 1. We denote by N±
tot the total number

of ±1 enzymes in the cell, which is given by the sum of the number of cytosolic
(free) enzymes and the number of membrane-bound enzymes: N±

tot = N±
free +

N±.
The probability that a PI3K enzyme binds to site i is proportional to

the number of cytosolic PI3Ks and to the density of binding sites (activated
receptors with local concentration ci and PIP3’s). As a first approximation,
the PIP3 concentration can be assumed to be linearly dependent from the
density of PI3Ks. This gives, on site i:

P(−1 → +1) ∝
[

ci + α+

(

c+
0 + β+

∑

j∈∂i

Sj

)]

N+
free (2.1)

where α+, β+, c+
0 are functions of the chemical reaction rates, and ∂i are

the nearest neighbors of i. Similarly, the probability that a PTEN molecule
binds to site i is proportional to the number of free PTENs, and to the
concentration of PIP2:

P(+1 → −1) ∝ α−

(

c−0 − β−
∑

j∈∂i

Sj

)

N−
free (2.2)

We interpret ∆H = ln[P(−1 → +1)/P(+1 → −1)] as an energy difference
(in units of kBT ) between states Si = +1 and Si = −1, depending both on
the local field

∑

j∈∂i Sj and on the number of cytosolic PI3Ks and PTENs.

Since N+ + N− = N , we can express N+
free and N−

free as functions of the
magnetization m = (N+ − N−)/N . Linearizing ∆H around

∑

j∈∂i Sj = 0
and m = 0, we obtain:

∆H = −2J
∑

j∈∂i

Sj − 2hi + 2λm (2.3)

where J = 1
2

(

α+β+

ci+α+c+
0

+ β−

c−
0

)

, hi = 1
2
ln

(

1 + ci

α+c+
0

)

−h0, with h0 = 1
2
ln

(

α−c−
0

m+

α+c+
0

m−

)

,

and λ = 1
2

(

1
m+ + 1

m−

)

, with m± = 2N±
tot/N − 1. If β+

c+
0

< β−

c−
0

we can neglect

the dependence of J on the attractant concentration ci.
Eq. (2.3) corresponds to the variation of the Hamiltonian

H = −J
∑

〈ij〉

SiSj −
∑

i

hiSi +
λ

N

∑

i<j

SiSj. (2.4)

1One can imagine performing a coarse-graining of the system on an appropriate length

scale and associating a +1 sign to PI3K-rich sites and a −1 sign to PTEN-rich sites.
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The model (2.4) contains a short-range ferromagnetic interaction represent-
ing the effective attractive interaction between enzymes, a long-range anti-
ferromagnetic interaction which results from the finiteness of the cytosolic
enzymatic reservoir, and an external site-dependent field representing the
effect of the attractant. The latter depends on the concentration ci of acti-
vated receptors, which we take proportional to the concentration of external
attractant, in the form:

ci = c(1 + ǫ sin2 πxi

L
sin

2πyi

L
), (2.5)

where ǫ is a percentage of anisotropy. We use the form 2.5 to respect the
periodic boundary conditions.

When hi is independent of i, the second and third term of Eq. (2.4) can be
written (apart from a constant) as Nλ

2
(h

λ
−m)2, so that energy minimization

leads the system to self-tune to the magnetization value h/λ. Eq. (2.3) shows
that Si is subject to the action of an effective external field heff,i = hi − λm.
The value heff,i measures the degree of metastability of the PTEN phase, and
tends to zero during the self-tuning evolution of the system.

Beside the external attractant concentration, the model depends on four
independent parameters, J , h0, λ and α+c+

0 . These parameters are functions
of the biological parameters, like molecule concentrations or reaction rates.
We chose the units for the external attractant concentration so that α+c+

0 =
1. To realize phase separation, J has to be larger than the critical value
for the two-dimensional Ising spin model (J ≃ 0.44), here we set J = 1.
h0 measures the relative affinity of PTEN enzymes to the cell membrane
with respect to PI3K enzymes, in the absence of external attractant. The
unstimulated cell membrane is entirely occupied by PTEN, implying h0 ≥ 1,
we set here h0 = 1. Finally, λ measures the relative abundance of the two
type of enzymes in the cell, we set here λ = 1.

2.2 Simulations

We study by Monte Carlo simulations the dynamics and the final state at-
tained by the system, using a square lattice of size L = 2048. For each step
we select a lattice site randomly and we estimate the probability for spin
reversal as follows:

P =







1 if ∆H ≤ 0

exp(−∆H) if ∆H > 0
(2.6)
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Figure 2.1: a) Self-tuning dynamics in the presence of a uniform activation
field h. The magnetization m grows to compensate the external activation
field h. On the right, equilibrium states corresponding to different values of
h. b) Coarsening dynamics leading to random membrane polarization in the
presence a uniform activation field.

We first consider the case ǫ = 0, which corresponds to uniform stimula-
tion. In the absence of stimulation (c = 0, implying h = −1 and m = −1)
the membrane is uniformly populated by PTEN molecules. Setting c > 0
(which implies h > −1), spin up (PI3K) domain nucleation is started in the
spin down (PTEN) sea. The magnetization m tends asymptotically to h,
while the effective field heff tends to zero (Fig. 2.1a), realizing the condition
for phase coexistence. The unit of time is Monte Carlo steps (MCS). The cor-
respondence between MC steps and physical time is not straightforward. We
imposed detailed balance, that regards the ratio between transition probabil-
ities, while physical time depends on the absolute value of those probabilities.
Anyway, one MC step corresponds to the time in which there is a probability
of order one to bind or unbind one enzyme on each site. One MCS has to
be identified with the characteristic binding/unbinding time for one enzyme.
Using realistic values for association/dissociation constants [4] this gives 1
MCS∼ 0.01 seconds.

After a rapid nucleation phase, a domain coarsening dynamics follows:
large domains grow and smaller ones shrink [9] (Fig. 2.1b). The final equi-
librium state is characterized by the coexistence of the PI3K and the PTEN
phase, localized in two complementary clusters. The equilibrium position of
the PI3K cluster, which determines the direction of cell movement, is ran-
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Figure 2.2: Time evolution of the order parameter for different values of the
activation field h, and for a fixed value ǫ = 0.05 of the gradient. At the end
of the polarization process the PI3K cluster (gray in the panels on the right)
is centered around the point of maximum attractant stimulation (crosses).

dom. This behavior is consistent with experiments in which cells exposed to a
uniform attractant distribution orient randomly (stochastic polarization) [8].

In the presence of a gradient in the chemical attractant (ǫ > 0) the PI3K
cluster localizes around the maximum of the attractant density. To measure
the polarization degree we define the following order parameter:

σ =
1

2

∑N
i (ci − c)Si

∑N
i |ci − c|

, (2.7)

which is both a measure of the degree of order in the system and of the corre-
lation of the center of the PI3K cluster with the maximum of the attractant
density (Fig. 2.2).

2.2.1 Dose-response curve

Simulations reproduce the qualitative behavior of experimentally observed
dose-response curves [10, 8], showing no response for either very high or
very low values of the attractant concentration, optimal response for several
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Figure 2.3: a): Orientation degree of a population of cells as a function of
the attractant concentration, for a constant gradient (adapted from [8]). b):
Simulated equilibrium values of the order parameter σ as a function of the
attractant concentration c, for a constant gradient. A null value of the order
parameter (no polarization) corresponds to random movement of real cells
(50% of cells directed towards higher chemotactic concentration). Units in
b) are arbitrary. A realistic scale is obtained by observing that saturation for
high values of c corresponds to uniform +1 configurations, i.e. to receptor
saturation in real cells.

decades of intermediate values (Fig. 2.3). This effect can be explained as
follows. For very low c the critical radius for patch nucleation is larger
than the size of the cell, and no polarization is possible. For very high
c, such that h > 1, the equilibrium magnetization is 1, the whole system is
uniformly populated by the PI3K phase, and again no polarization is possible.
Polarization is possible only for values which are intermediate between these
two limit cases.

2.2.2 Reversibility

Polarization induced by the gradient is reversible. By changing the gradient
direction after the system has reached equilibrium, the position of the PI3K
cluster adjusts to the new direction in a finite time 2.4. This effect reproduces
the observed reorientation of eukaryotic cells under varying attractant gradi-
ents observed in the experiments [11]. Interestingly, after changing the sign
of the relative gradient we observed reorientation taking place by a collective
movement of the PI3K cluster, and not by its evaporation and successive
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∆ ∆ ∆t=0 t=5000 t=10000
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Figure 2.4: Sequence of immage of the system after the inversion of gradient.
The position of the maximum of the chemoattractant concentration is marked
by the circle.

recombination.

2.2.3 Gradient amplification and polarization time

The transient states are characterized by a coarsening dynamics with the ap-
pearance of scaling laws in the process of domain formation [9, 13, 12]. Our
simulations show that, for a condition of uniform distribution of attractant,
in the initial coarsening stage the average cluster radius 〈r〉 grows approxi-
mately as t1/2. In Fig. 2.5a the inverse length of the total cluster boundary
is plotted against time 2. We define the polarization time tp as the time for
which the order parameter σ reaches 90% of its equilibrium value. If the
attractant is uniformly distributed the coarsening process stops when the
average cluster radius becomes of the order of the cell size, r ∼ L, implying
that the spontaneous cell polarization time scales as tp ∼ 1/L2.

In the case of an attractant gradient we observe instead a double scaling
behavior. For t < tǫ, where tǫ is a crossover time depending on the amplitude
of the gradient ǫ, cluster growth proceeds approximately as in the uniform
case, while, for t > tǫ, the process of polarization becomes anisotropic, and
the average cluster size grows approximately linearly in t (Fig. 2.5a). The
presence of this double scaling law implies that the polarization time behaves
as tp ∼ a + b/ǫ + c/ǫ2 (Fig. 2.5b). We can understand the double scaling
law as follows. In the presence of an attractant gradient polarization takes
place in two steps. In the initial (tuning) step the gradient of the attractant
is negligible with respect to the uniform component of the attractant and

2If the system is composed of circular domains, the inverse length of the total cluster

boundary scales as the mean radius of the clusters.
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Figure 2.5: a) Time evolution of the inverse length of the total cluster bound-
ary for different values of the gradient ǫ. The dotted lines show the slope
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gradient (∼ t). Arrows show the position of crossovers between the two scal-
ing behaviors. b) Polarization time as a function of ǫ, and time evolution of
the order parameter σ for different values of ǫ (inset).
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cluster growth is approximately unaffected by its presence. Meanwhile, free
enzymes shuttle from the cytosolic reservoir to the membrane, lowering the
chemical potential for further cluster growth and effectively canceling out the
effect of the uniform component of the attractant. This process continues
until times of order tǫ, when only the effect of the gradient component is left.
At this point, fast polarization in the direction of the gradient takes place.
The anisotropic stage of cluster evolution leading to directed polarization
occurs only if tǫ < tp. Otherwise, the presence of a gradient of attractant
becomes irrelevant and only the stage of isotropic patch growth actually
occurs. The crossover time tǫ increases with decreasing ǫ until it becomes of
the order of tp, implying the existence of a lower threshold ǫth of detectable
gradients. For ǫ > ǫth anisotropy-induced polarization is much faster than
spontaneous polarization. This explains the experimentally observed effect
of gradient amplification in chemotacting cells and the observation [10] of a
lower threshold of detectable gradients, below which there is no directional
sensing. These results also confirm the theoretical predictions of [13].

2.3 Discussion

We have introduced a simple lattice-gas model describing the process of eu-
karyotic directional sensing. Analysis of this model via Monte Carlo sim-
ulations shows that it reproduces important aspects of the observed phe-
nomenology and sheds light on the underlying physical mechanism. The
model maps signaling molecules and enzymes in spin variables, and the ef-
fective interaction between enzymes on the membrane into a ferromagnetic
coupling. Enzymes shuttling from the cytosolic reservoir to the membrane
is shown to provide a fundamental self-tuning mechanism which drives the
system towards phase coexistence and polarization, by counteracting the ef-
fect of the external activation field. In the presence of an attractant gradient
this mechanism cancels out the isotropic component of the attractant distri-
bution in a first (tuning) stage of cluster growth, preparing the ground for
fast directed polarization in the direction of the gradient in the next stage.
The control provided by enzyme shuttling is encoded in the coupling of the
effective magnetic field heff with the local order parameter m, thus realizing
an effective long-range repulsion between enzymes and introducing in the
model an element of self-organization. The existence of two distinct stages
in cluster evolution when an attractant gradient is present is signaled in the
model simulations by the emergence of a double power law for the time evo-
lution of clusters of signaling molecules. This shows up in the dependence of
directed polarization time from the gradient: for ǫ ≪ 1, tǫ scales as ǫ−2.
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We have shown that the phenomenology of eukaryotic directional sens-
ing, including gradient amplification and independence on the absolute value
of the stimulation, may be understood as the result of the peculiar growth
dynamics of clusters of stable chemical phases induced by nonlinearities in
the underlying biochemical network, coherently with previous results [13, 4].
Our approach leads to the prediction of new observable effects, such as the
scaling behavior of polarization times as a function of applied gradients. Our
results are mostly independent on the details of the underlying reaction net-
work, although they were inspired by the particular biochemical mechanism
described in [4]. In a number of recent papers [16, 17] (see also [18] for a
comprehensive review) similar mechanisms, based on the competition of an
activatory and an inhibitory channel, have been proposed. As long as the
nonlinearities contained in the corresponding reaction networks allow for the
formation on the cell membrane of chemically distinct phases, and the in-
trinsic stochasticity of the cellular environment is taken into account, our
analysis should apply with minimal modifications to these models as well.



Chapter 3

Large N model for Eukaryotic

Directional Sensing

Hamiltonian

In complex systems there are various mechanisms that give rise to organiza-
tion and pattern formation. In the living organisms the pattern formation
of two or more substances determines a symmetry breaking which allows the
orientation. In particular the Eukaryotic cells are able to sense and adapt to
external chemicals signals. During the directional sensing a cell transduces
and amplifies the external chemical signal in an internal distribution of sig-
naling molecules: two enzymes or lipids which localize in opposite part of cell
surface. From a physical point of view, these spatial organization phenomena
may be seen as self-organized phase ordering processes, where the cell state,
spontaneously, or driven by an anisotropic external field, decays into a state
of coexistence of two or more chemical phases, spatially localized in different
regions in order to define a front and a rear.

In the previous chapter we gave a physical interpretation of eukaryotic
directional sensing as a phase separation of two components. We showed a
treatment of this phenomenon using a Hamiltonian approach. The biological
process was modeled by a pattern formation in a binary spin system regulated
by Glauber dynamic.

In this chapter, inspirated by the mechanism of eukaryotic directional
sensing, we present a treatment of system with competing short-range at-
traction and long-range repulsion using a Ginzburg-Landau functional in the
limit of infinite order parameter dimension N [28],[27].

We derive a phase diagram in function of the external field and the in-
tensity of the long-range repulsion, which delimits the region of parameters
where the phase coexistence and separation is possible.

31
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We also derive time dependent motion equations in the scheme of non-
conserved order parameter and study the time dependent behavior of mag-
netization and correlation function.

In the next paragraphs we introduce the field theories and the large N
limit, then we treat the model 2.4 in the case of uniform external field first
and after in the case of non-uniform external field.

3.1 Field theory

The Ginzburg-Landau model has its origin in the Landau mean field theory.
The mean fields theories are widely used to reduce the mathematic compli-
cations and find many qualitative and quantitative results. Landau theory is
remarkable in that, under the simple assumptions that the order parameter
is small near Tc, it yields a wealth of informations about phase transitions.

Landau gave a phenomenological expansion of the free energy f in pow-
ers of the order parameter m (the density of magnetization for example).
Supposing that f is analytic function, it is possible to arrest at 4th order
in m. The temperature can be included in the coefficients of the expansion.
For the Ising ferromagnet the free energy must be invariant under time re-
versal. Since m changes sign under time reversal, f must be invariant under
m → −m, i.e. only even powers of m are permitted in the expansion. Then
f assume the following form:

f = a(T )m2 + b(T )m4. (3.1)

Assuming that a(T ) becomes zero for a certain Temperature called critical
Tc and a(T ) and b(T ) are analytic near Tc, at lowest order a(T ) ∼ a0(T −Tc)
and b(T ) ∼ b0. The free energy (3.1) has two minima for T < Tc and one for
T > Tc [25]. The form (3.1) of free energy is sufficient to take in account the
spontaneous magnetization in the phase transition of Ising model.

In order to treat also the role of fluctuations it is often more useful to
introduce semi-phenomenological field theories, all points on a lattice of local
order parameter treated as a continuous classical fields φ(x). It is also con-
venient to set up the description of a system in terms of Landau free energy
functional.

The continuum limit of a lattice model is obtained by allowing the volume
for lattice site v0 to tend to zero, the coordinates of the site i become a
continuous variable ~x, and the spin variable Si to become a field φ(~x) while
keeping the total volume V = nV0 constant (n is the spin number)[26]. In
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Figure 3.1: Typical form of the symmetric double-well potential V (φ(x)).

this limit

v0

∑

i

=

∫

V

ddx (3.2)

The total free energy will be:

F =

∫

ddx
1

2
(∇φ(x))2 + V (φ(x)) =

∫

ddx
1

2
(∇φ(x))2 + rφ2(x) + gφ4(x), (3.3)

Where r ∝ T −Tc and g > 0. V (φ(x)) has a double-well structure of Fig. 3.1,
the two minima of V correspond to r < 0 and they are the two equilibrium
states, while the gradient-squared term in (3.3) associates an energy cost to
an interface between the phases.
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3.1.1 Dynamical models

When a system in high temperature is quenched to a temperature below
its ordering temperature it orders kinetically. A long-wavelength instabil-
ity amplifies the fluctuations in the initial state leading to the formations
of domains of macroscopic size. At late time, phase separating systems are
usually characterized by a single time dependent length, the average domains
size L(t), which grows as a power low L(t) ∼ tz. The growth exponent z is
a characteristic of the mechanism driving the phase separation. Trough it,
phase separating systems may be classified into a small number of univer-
sality classes, where each member of a given class shares the same kinetic
properties. These universality classes depend crucially upon the presence or
absence of conservation laws. The ordering systems exhibit scaling behav-
ior characterized by the growing exponent z. In fact the scaling hypothesis
states that the domain structure is independent of time when lengths are
scaled by the characteristic length L(t)[27]. In terms of the structure factor
(Fourier transform of the equal time order parameter correlation function)
the asymptotic scaling behavior is of the form

C(k, t) ∼ La(t)F (kL(t)), (3.4)

where F (kL(t)) is a scaling function and a is the growing exponent a ∼ z for
the late stage. There are two main universality class of system in the process
of phase ordering, characterized by dynamic [12] of the order parameter.

In the case where the order parameter is not conserved, the appropriate
equation for time evolution of the field φ(x) is given by the variation of the
free energy functional respect the field:

∂φ(x)

∂t
= − δF

δφ(x)
, (3.5)

this kind of equation is called Time-Dependent-Ginzburg-Landau (TDGL)
equation. This dynamic correspond in the spin language to the single spin
flip called also Glauber dynamic. For a system with scalar order parameter
driven by (3.5) the growth is curvature driven with z = 1

2
.

When the order parameter is conserved as in the spinodal decomposition,
there is another dynamic. It requires the local conservation of the value of
the field φ(x):

∂φ(x)

∂t
= −∇2 δF

δφ(x)
, (3.6)

which has the form of a continuity equation, ∂tφ(x) = −∇·j, with the current
j = −∇δF/δφ(x). The equation 3.6 is called Cahn-Illiard equation, which
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correspond in the spin language to the Kawasaky dynamic, which requires,
for a spin flip, the flipping of one of its first neighbors. A kind of dynamic
(3.6) gives z = 1

3
.

In the present thesis we focus on the non conserved order parameter
scheme.

3.2 Large N model

In the study of critical phenomena there are mathematical complication for
the large and strong fluctuation in the order parameter. When you consider
not any more a scalar field φ(x) but an N component vectorial field ~φ(x) in
the space of the order parameter, the fluctuation of the magnitude of the
N-component field vectors is small. Even if each component may fluctuate
a lot, the sum of the squares N field components is a large number and it is
fixed at its average value apart small fluctuations of the order of 1/

√
N . In

the limit N → ∞ the approximation becomes exact [28].
It is always possible, for example using a form (3.3) for the the free

energy, to write the equilibrium probability distribution function of the order
parameter in the form:

P ∝ e−F [~φ(x)] (3.7)

and the physical interesting quantity which are the average values will be:

〈A〉 =

∫

D~φ(x) Ae−F [~φ(x)]

∫

D~φ(x) e−F [~φ(x)]
. (3.8)

The integration
∫

D~φ(x) is on all the possible field configuration. If the 4th
power of φ term of (3.3) is absent, then P would be a Gaussian and the
calculation of quantities (3.8) would be simple. The presence of φ4 term
makes the calculation very difficult. The problem simplify when N is large.
When N → ∞, the ~φ4 term can be written as:

~φ4 = (~φ2)2 = 〈~φ2〉~φ2 (3.9)

So the the free energy functional is:

F [~φ(x)] =

∫

ddx
1

2
(∇~φ(x))2 + (r + g〈~φ2〉)~φ2(x)). (3.10)

By Fourier transform:

F [~φ(k)] =
1

2

∑

α,k<Λ

(k2 + r + g〈~φ2〉)~φ2
α(k)), (3.11)
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where α is the generic component of the field ~φ in the order parameter space,
Λ is a cut-off on wave vector and k is the modulus of the wave vector. The
remarkable fact is that 〈~φ2〉 is a constant and will not affect the average

values calculated via P ∝ e−F [~φ(k)]. The probability is thus a product of
Gaussians, one for each component of the field (α, k) and the average of 〈~φ2〉
is:

〈~φ2〉 = L−d
∑

α,k<Λ

〈φα(k)2〉. (3.12)

As we understood in the previous paragraph, a very important quantity for
the dynamical properties of a system is the equal time correlation function
C(k) = 〈φα(k)2〉 giving:

C(k) = (k2 + r + g〈~φ2〉)−1, (3.13)

being the quantity k2 + r + g〈~φ2〉 the inverse of variance of the gaussian’s

product given by the probability expression. The quantity r + g〈~φ2〉 is the
inverse of the square of the correlation length of the system. Substituting
the (3.13) in the (3.12) we find:

〈~φ2〉 = L−d
∑

α,k<Λ

(k2 + r + g〈~φ2〉)−1

= Kd

∫ Λ

0

kd−1(k2 + r + g〈~φ2〉)−1 (3.14)

where Kd is the solid angle in d dimension, which cames from the integration
in spherical coordinates. The (3.14) give an self-consistence relation winch
has to be respected in each calculation after the N → ∞ limit.

The next part is dedicated to the treatment of a free energy functional
associated to the discrete Hamiltonian (2.4). It contains a short-range at-
traction, a long-range repulsion and an interaction with an external magnetic
field.

3.3 Large N model for a system with compe-

tition between short-range attraction and

long-range repulsion

The competition between a short-range attraction and a long-range repulsion
together with the influence of an external magnetic field can reproduce a very
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remarkable physical feature of the phenomenon of directional sensing: phase
coexistence for wide range of amplitude of an external field.

We study the system using a Hamiltonian model based on Ginzburg-
Landau functional in the framework of N → ∞ limit.

We examine first the case of uniform external field first, which correspond
to the presence of uniform chemoattractant. In this case we obtain the ana-
lytical form for the critical temperature, the behavior of magnetization and
correlation function.

In the next chapter we derived the motion equation the case of an anisotropic
external field which correspond to introduce a gradient in chemoattractant.

3.4 Equations of the motion for uniform h

The model 2.4 can be represented in a continuous formalism by the following
free energy:

H[~φ] =

∫

V

d~x

{

1

2
(∇~φ)2 +

r

2
(~φ · ~φ) +

g

4N
(~φ · ~φ)2 − ~H(~x) · ~φ(~x)

}

+
1

2

λ

V

[
∫

V

d~x ~φ

]2

(3.15)

where ~φ = (φ1, φ2, ..., φN) is the vectorial order parameter and it represents,
in the scalar limit, the difference of concentration of two substances. r <
0, g > 0, | ~H(~x)| ∼ O(N1/2) and V is the volume of the system. The long-
range term λ > 0 is a ferromagnetic term.

We consider the static and dynamic properties of the model for a uni-
form magnetic field. Adopting the dynamical model based on the Langevin
equation

∂~φ(~x, t)

∂t
= −δH[~φ]

δ~φ
(~x, t) + ~η(~x, t) (3.16)

where ~η(~x, t) is the white noise at temperature T , with zero average and
correlator

〈ηα(~x, t)ηβ(~x′, t′)〉 = 2Tδαβδ(~x − ~x′)δ(t − t′)

the equation of motion of the order parameter is given by

∂~φ(~x, t)

∂t
= −

[

−∇2~φ(~x, t) + r ~φ(~x, t) +
g

N
(~φ · ~φ)~φ(~x, t) − ~H(~x)

]

− λ

V

∫

V

d~x ~φ(~x, t) + ~η(~x, t). (3.17)



38 Large N model

This equation must be complemented by an initial condition, in the form of
a probability distribution P [~φ(~x, t0)] of the order parameter configurations
at the time t0. It is convenient to decompose the order parameter into the
sum of components longitudinal and transverse with respect to the external
field ~H(~x)

~φ = ~φ‖ + ~φ⊥ (3.18)

and to split the longitudinal component into the sum

~φ‖(~x, t) = ~M(~x, t) + ~ψ(~x, t) (3.19)

where ~M(~x, t) = 〈~φ‖(~x, t)〉 is the magnetization and the average longitudinal

fluctuations vanish 〈~ψ(~x, t)〉 ≡ 0 by construction.
Inserting Eqs. (3.18) and (3.19) into Eq (3.17), two separate equations

for the longitudinal and transverse components are obtained. Rotating the
1-axis in the order parameter space along the longitudinal direction, the first
one reads

∂(M + ψ)

∂t
= −

[

−∇2M + rM +
g

N
M3

+
g

N
(~φ⊥ · ~φ⊥)M − (h − λM)

− ∇2ψ +
(

r +
3g

N
M2 +

g

N
(~φ⊥ · ~φ⊥)

)

ψ

+
3g

N
Mψ2 +

g

N
ψ3 +

λ

V

∫

V

d~xψ

]

+ η‖ (3.20)

where

M =
1

V

∫

V

d~xM. (3.21)

Assuming, next, M ∼ O(N1/2) and ψ ∼ O(1) and comparing terms of the
same order of magnitude, we obtain

∂m

∂t
= −

[

−∇2 + r + gm2 +
g

N
(~φ⊥ · ~φ⊥)

]

m + (h − λm) (3.22)

at order O(N1/2), while at order O(1)

∂ψ

∂t
= −

[

−∇2ψ +
(

r + 3gm2 +
g

N

(

~φ⊥ · ~φ⊥

))

ψ +
λ

V

∫

V

d~xψ

]

+ η‖ (3.23)

where we have introduced the rescaled quantities

m(~x, t) = M(~x, t)/N1/2, h(~x, t) = H(~x, t)/N1/2. (3.24)
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The remaining contributions along the transverse directions give

∂~φ⊥

∂t
= −

[

−∇2~φ⊥ + r~φ⊥ +
g

N

(

M2 + 2Mψ + ψ2
)

~φ⊥

+
g

N

(

~φ⊥ · ~φ⊥

)

~φ⊥ +
λ

V

∫

V

d~x ~φ⊥

]

+ ~η⊥

(3.25)

which, retaining only the O(1) dominant terms, becomes

∂~φ⊥

∂t
= −

[

−∇2~φ⊥ +
(

r + gm2
)

~φ⊥

+
g

N

(

~φ⊥ · ~φ⊥

)

~φ⊥ +
λ

V

∫

V

d~x ~φ⊥

]

+ ~η⊥.

(3.26)

Taking the large N limit

lim
N→∞

1

N
(~φ⊥ · ~φ⊥) = S(~x, t) =

1

N
〈~φ⊥ · ~φ⊥〉 (3.27)

where the angular brackets denote the average over both the initial condition
and the thermal noise, Eqs. (3.22), (3.23) and (3.26) become

∂m

∂t
= −

[

−∇2 + r + gm2 + gS
]

m + (h − λm) (3.28)

∂ψ

∂t
= −

[

(

−∇2 + r + 3gm2 + gS
)

ψ +
λ

V

∫

V

d~x ψ

]

+ η‖ (3.29)

and

∂~φ⊥

∂t
= −

[

(

−∇2 + r + gm2 + gS
)

~φ⊥ +
λ

V

∫

V

d~x ~φ⊥

]

+ ~η⊥. (3.30)

In the last equation the components of ~φ⊥ are decoupled. Hence, from now
on we shall refer to the equation for the generic component.

If the initial condition yields spaced translation invariant averages and
the external field h is uniform, space translation invariance holds also for all
subsequent times. Fourier transforming with respect to space, Eqs. (3.28),
(3.29) and (3.30) become

∂m(t)

∂t
= −ω(0, t)m(t) + h (3.31)
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∂ψ(~k, t)

∂t
= −

[

ω(k, t) + 2gm2
]

ψ(~k, t) + η(~k, t) (3.32)

∂φ(~k, t)

∂t
= −ω(k, t)φ(~k, t) + η(~k, t) (3.33)

where φ(~k, t) and η(~k, t) are the generic components of ~φ⊥(~k, t) and ~η(~k, t),

ω(k, t) = k2 + 2λδk,0 + r + g(m2 + S) (3.34)

and the noise correlator in Fourier space is given by

〈η(~k, t)η(~k′, t′)〉 = 2TV δ~k+~k′,0δ(t − t′).

With periodic boundary conditions, the allowed wavevectors are given by

~k =
2π

L
~n (3.35)

where ~n is a vector with integer components and Ld = V . Furthermore,
sums over ~k are cutoff to the upper value kmax = Λ, where Λ−1 is related
to a characteristic microscopic length, for instance the lattice spacing of
underling lattice.

Using the definition (3.27) of S(t) and introducing the transverse corre-
lation function

〈φ(~k, t)φ(~k′, t)〉 = C⊥(~k, t)V δ~k+~k′,0 (3.36)

a closed set of equations can be obtained

∂m(t)

∂t
= −ω(0, t)m(t) + h (3.37)

∂C⊥(~k, t)

∂t
= −2ω(k, t)C⊥(~k, t) + 2T (3.38)

S(t) =
1

V

∑

~k

C⊥(~k, t) (3.39)

with ω(k, t) defined in Eq. (3.34). The longitudinal fluctuations do not enter
the self-consistency relation and remain determined either by Eq. (3.32), or
by

∂C‖(~k, t)

∂t
= −2

[

ω(k, t) + (2g/N)m2(t)
]

C‖(~k, t) + 2T (3.40)

where C‖(~k, t) = 〈ψ(~k, t)ψ(−~k, t)〉.
Since the longitudinal structure factor is completely determined, from

now on shall concentrate on the tree coupled equations (3.37), (3.38) and
(3.39).
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3.4.1 Static properties

Let us now analyze the final equilibrium states. In the limit t → ∞ the left
hand side of Eqs. (3.37), (3.38) and (3.39).

If equilibrium is reached, all quantities become time independent. Rewrit-
ing Eq. (3.34) as

ω(k) =

{

λ + µ, for k = 0
k2 + µ, for k 6= 0

(3.41)

with
µ = r + g(m2 + S) (3.42)

and putting to zero the time derivatives, from Eqs. (3.37), (3.38) and (3.39)
we obtain the set of equations

(λ + µ)m = h (3.43)

ω(k)C⊥(~k) = T (3.44)

S =
1

V

∑

~k

C⊥(~k). (3.45)

In order to solve for m and C⊥(~k), the strategy is to use the above equations
to convert Eq. (3.42) into an equation for µ, to solve it and then to insert
the solution back into Eqs. (3.43) and (3.44).

In the case h 6= 0 and T 6= 0, from Eq. (3.36) follows C⊥(~k) ≥ 0, hence
Eq. (3.44) implies ω(k) ≥ 0, which, in turn, because of Eq. (3.41), requires

µ ≥ µmin = −k2
min ∼ L−2 (3.46)

where kmin ∼ 1/L is the minimum allowed value of k 6= 0. Therefore, for a
given λ and for V sufficiently large, λ+µ > 0 and Eq. (3.43) can be rewritten
as

m =
h

λ + µ
. (3.47)

In the same way, from Eq. (3.44) we can write

C⊥(~k) =

{

T/(λ + µ), for k = 0
T/(k2 + µ), for k ≥ kmin

(3.48)

where C⊥(~kmin) diverges as µ approaches µmin. Inserting the above results
into Eq. (3.42), one finds

µ − g

(

h

λ + µ

)2

= r +
g

V

T

λ + µ
+

Tg

V

∑

~k 6=0

1

k2 + µ
. (3.49)
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For V sufficiently large the second term in the right hand side can be ne-
glected and, for the sake of clarity, the equation can be rewritten in the
form

µ − g

(

h

λ + µ

)2

= r +
g

V

T

µ − µmin

+
Tg

V

∑

~k>~kmin

1

k2 + µ
(3.50)

where the kmin term has been extracted from underneath the sum. Letting
µ to vary over [µmin,∞), the left hand side is a monotonously increasing
function of µ, while the right hand side is a function divergent at µmin and
monotonously decreasing with increasing µ. Therefore, for any finite V , there
exists a solution µ∗(V ) > µmin. Therefore, for any finite V , there exists a
solution µ∗(V ) > µmin. Looking at Eqs. (3.47) and (3.48), this means that
the system behaves paramagnetically all over the (T, h) plane, with a finite
structure factor. The difference with respect to what one would have in the
purely ferromagnetic model, due to λ 6= 0, is revealed by the anomaly (3.48)
in the structure factor at k = 0 and by the reduction of the magnetization
in Eq. (3.47). Rewriting the latter as µ∗(V )m = heff with

heff = h − λm, (3.51)

we see that the reduction of the magnetization comes about through a feed-
back mechanism, whereby the external field h, via the antiferromagnetic
interaction, is substituted by heff .

Let us now see what happens in the infinite volume limit. Taking the
infinite volume limit µmin → 0− and there are two possibilities

lim
V →∞

µ∗(V ) =

{

µ∗ > 0
µ∗ = 0.

(3.52)

In the first case, the second term in the right hand side can be neglected and
Eq. (3.50) takes the form

µ − g

(

h

λ + µ

)2

= r + TgB(µ) (3.53)

where

B(µ) = lim
V →∞

1

V

∑

~k 6=0

1

k2 + µ
=

∫

d~k

(2π)d

1

k2 + µ
. (3.54)

Eq. (3.53) does, indeed, to have a positive solution if T is greater than the
h-dependent critical temperature

TC(h) = −r + gh2/(λ)2

gB(0)
(3.55)
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Figure 3.2: Phase diagram for the system. The region such us T < Tc(h)
and h < hc are the zone of phase coexistence and separation. The amplitude
of the phase separation region depends on the value of λ, the coupling of the
long-range anti-ferromagnetic interaction.

with

B(0) = Kd

∫ ∞

0

dk
kd−1e−k2/Λ2

k2
(3.56)

and where Kd is the d dimensional solid angle, while Λ is an high momentum
cutoff. For d ≤ 2, B(0) is a divergent quantity, yielding TC(h) = 0 for any
h. Instead, if d > 2, B(0) is finite and TC(h) reaches the maximum value
TC(0) = −r/gB(0) for h = 0, decreasing to zero when h reaches the limit
value Fig. 3.2.

hC = ±λ(−r/g)1/2. (3.57)

Conversely, if (T, h) are such that T < TC(h), Eq. (3.53) cannot be satisfied.
This means that the second of the two possibilities in Eq. (3.52) applies,
requiring to keep also the second term in the right hand side of Eq. (3.50),
which we rewrite as

µ − g

(

h

λ + µ

)2

= r +
g

V
C⊥(~kmin) +

Tg

V

∑

~k>~kmin

1

k2 + µ
(3.58)

and, since this is satisfied for µ = 0, we finally get

C⊥(~kmin) = V

[

−r

g
−

(

h

λ

)2
]

[

TC(h) − T

TC(h)

]

(3.59)
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showing that C⊥(~kmin), for T < TC(h), diverges like the volume in order to
give a finite contribution.

Summarizing, for any finite V there exists a solution µ∗(V ) > µmin of the
self-consistency Eq. (3.50), which gives

m =
h

λ + µ∗(V )
(3.60)

and

C⊥(~k) =
T

k2 + µ∗(V )
. (3.61)

When the limit V → ∞ is taken, these become

m =

{

h/(λ + µ∗), for T > TC(h)
h/λ, for T < TC(h)

(3.62)

where µ∗ > 0, and

C⊥(~k) =
T

k2 + µ∗
(3.63)

for T > TC(h), while for T < TC(h) a condensate appears

C⊥(~k) =
T

k2
+ M2(T )δ(~k − 0−) (3.64)

where

M2(T ) =

[

−r

g
−

(

h

λ

)2
]

[

TC(h) − T

TC(h)

]

(3.65)

is the condensate at kmin.
The presence of a peak in the correlation function is a manifestation of a

coarsening process and it is sign of phase separation.
In order to understand this result, it should be recalled that in the purely

ferromagnetic large N model the phase transition occurs only on the h = 0
axis, where for T < TC(0) the condensation of fluctuations at k = 0 takes

place [31]. Condensation of fluctuations means that C⊥(~k = 0) becomes
macroscopic in order to equilibrate the system below TC(0) without braking
the symmetry, through a mechanism very similar to that of the Bose-Einstein
condensation [51]. No other mechanism is available, since the large N limit
renders the system effectively Gaussian [31, 32]. However, condensation of

fluctuations, through the appearance of the Bragg peak at ~k = 0, produces
exactly the same phenomenology of the structure factor as that of phase
separation in the nonlinear models [12]. Instead, when h 6= 0 the symmetry
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is broken and equilibrium can be established at any temperature through the
development of a non vanishing magnetization.

In the system with the antiferromagnetic coupling everything remains the
same along the h = 0 axis, since the symmetry is unbroken, the magneti-
zation is zero and the only effect of the λ term is to shift the condensation
Bragg peak from ~k = 0 to ~k = 0+. The novelty appears outside of the
h = 0 axis, where there is a non vanishing magnetization and the feedback
mechanism producing the effective reduction (3.51) of the external field is
operating. So, if for a given λ, the values of (T, h) manage to make heff = 0,
then condensation of fluctuations must take place in order to equilibrate the
system even for h 6= 0. The result is the phase diagram of Fig. 3.2, showing
the expansion of the phase coexistence region outside the h = 0 axis. The
constant λ curves delimit the regions on the (T, h) plane within which the
system self-tunes the final magnetization to the value such that heff = 0
and triggering, therefore, the condensation of the ~k = 0+ fluctuations.

3.4.2 Dynamical properties

Going back to the dynamical problem, the eqs. (3.37), (3.38) and (3.39). can
be easily solved numerically.

We solve the coupled equations (3.37), (3.38) and (3.39) in a discretized
tridimensional Fourier space. The equations are solved with fourth-order
Runge Kutta method with adaptive step size [29]. We use a mesh of L = 1000
with V = Ld.

First let us consider (T, h) in the region of phase separation, namely for
T < Tc(h). The solution of equation for magnetization (3.37), starting from
each initial conditions, reaches the equilibrium value

meq =
h

λ
. (3.66)

which makes heff = 0 in Eq. (3.51), as explained above. The behavior of
the magnetization shown in Fig. 3.3 agrees quite well with that obtained by
Monte Carlo simulations in the discrete spin model of Ref. [23].

For T < Tc(h), we obtain the magnetization behaviors shown in Fig. 3.3,
in agreement with [23], obtained by Monte Carlo simulations. After a short
time the magnetization reaches the equilibrium value.

The transverse structure function shows the appearance of a condensate
a k = kmin (Fig. 3.4). The condensate C(kmin) grows in the late stage
of evolution as a power low C(kmin) ∼ td/2. This is the signature of the
universality class of non-conserved order parameter ordering systems. The
appearance of a condensate is the confirmation of a phase separation in the
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Figure 3.3: Evolution in the time for the magnetization. We chose g = −r =
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.
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Figure 3.4: Evolution of correlation function C(k) for T < Tc(h). Inset:
evolution of the condensate C(kmin)

N infinite scheme. Let us note that the evolution of magnetization density
m(t) is much faster than the phase ordering characterized by a coarsening
of the correlation regions. So we can distinguish a fast process which is the
tuning of the stable value of the magnetization and a lower process which is
the phase separation.

If T > Tc(h) there is a solution of the auto-consistence relation without
condensate. This implies that equilibrium value of magnetization is meq =

h
λ+µ∗

as is showed in Fig. 3.5 and the peak of transverse correlation function

is of order of unityes (inset of Fig. 3.5). The region T > Tc(h) has no phase
separation.
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Figure 3.5: Behavior of magnetization for (T,h) such as T > Tc(h). The
dotted line represents the equilibrium value of magnetization if T < Tc(h).
Inset: behavior of the equilibrium transverse structure factor Ceq(k), for each
k Ceq(k) = T

k2+µ∗
.
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3.5 Discussion

The model presented in the chapter 2 and published in [23] inspirated the
treatment of an Hamiltonian composed by a short-range ferromagnetic in-
teraction, a long-range antiferromagnetic interaction and an interaction with
an external magnetic field. The system has the peculiarity to show phase
coexistence for sub-critical temperature in presence of an external magnetic
field. We investigated this behavior deriving the Langevin motion equations
in the N → ∞ limit. Thanks to the large N scheme we obtained the an-
alytical form of the critical temperature as function of magnetic field and
antiferromagnetic coupling λ. The phase diagram in (T, h) plane shows the
phase coexistence regions for a given λ for all the values of h such that
h < hC = ±λ(−r/g)1/2. The equilibrium value of magnetization meq = h/λ
is in agreement with to one obtained in the Monte Carlo simulation for a
lattice gas system. The systems shows, for T < TC , an increasing Bragg
peak in the transverse correlation function. The peak is the demonstration
of phase separation and represents, in the case of scalar field, the formation
of domains. The late time behavior of the correlation function is character-
ized by a scale invariance which is marked by a power low behavior of the
Bragg peak as function of the time. For a tridimensional system the growing
exponent of power low is 3

2
. It is possible to demonstrate [30] that 3 = d with

d the euclidean dimension, therefore the growing exponent is 1
2

according to
the scheme of non conserved order parameter and to the behavior of mean
cluster size in [23]. The general property of the functional in creating a re-
gion of phase coexistence can be very useful in other systems where a balance
between a magnetic field and long-range repulsion self-tunes the system in a
state of phase coexistence in the presence of an external field.
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Chapter 4

Large N model for anisotropic

magnetic field

In the presence of a gradient in the magnetic field the spatial symmetry of the
system is explicitly broken. In this chapter we derive the Langevin equations
of motion and we present some numerical results regarding the behavior of
magnetization and equal time correlation function when the external field is
anisotropic. Then we discuss the obtained results.

4.1 Langevin equation of motion

Let us now consider the case of the Hamiltonian (3.15) with an anisotropic
magnetic field. To respect boundary periodic conditions we use this magnetic
field

h(x) = h0 + ǫh0cos(2πx/L), (4.1)

where h0 is the average amplitude and ǫ is a little percentage of anisotropy.
We consider the Langevin equation of motion of form (3.17). Fourier trans-
forming with respect to space and introducing the equal-time transverse
structure function, at leading order we have the following close set of equa-
tions (see appendix A and B for the details of calculations):

∂m(~k, t)

∂t
= −(k2 + r)m(~k, t) − λm(0, t)δ~k,0 +

− g

V 2N

∑

~p,~q

m(~k − ~p − ~q, t)m(~p, t)m(~q, t) +

− g

V

∑

~q

S(~k − ~q, t)m(~q, t) + h(~k), (4.2)
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∂C(~k1, ~k2, t)

∂t
= −(k2

1 + k2
2 + 2r)C(~k1, ~k2, t) − λ[C(0, k2, t)δ~k1,0 + C(0, k1, t)δ~k2,0] +

− g

V 2N

∑

~p,~q

{m(~k1 − ~p − ~q, t)m(~p, t)C(~q,~k2, t)

+m(~k2 − ~p − ~q, t)m(~p, t)C(~q,~k1, t)} +

− g

V

∑

~q

S(~k1 − ~q, t)C(~q,~k2, t) + S(~k2 − ~q, t)C(~q,~k1, t)

+2Tδ~k1+~k2
(4.3)

and auto-consistence relation:

S(~k − ~q, t) =
1

V

∑

~p

C(~k − ~p − ~q, ~p, t), (4.4)

where m(~k, t) is the total magnetization, C(~k1, ~k2, t) is the equal time corre-

lation function and h(~k) is the Fourier transform of h(~x). The N → ∞ limit
produces the auto-consistence relation 4.3.

The derived equations are quite complicated. For simplicity we derive
numerical solution in the case of one-dimensional system. In the large N
limit the critical temperature at d = 1 is TC = 0, so we solve the set of
equations (4.3), (4.4) and (4.1) at d = 1 and T = 0.

4.1.1 Numerical solution at d = 1 and T = 0

In the Fourier one dimensional space the expression for the magnetic field is:

h(k) = h0δk,0 + h0
ǫ

2
(δk,kmin

+ δk,−kmin
). (4.5)

Solving the equations (4.3), (4.4) and (4.1) with Runge Kutta method with
adaptive step size [29], we obtain for the equilibrium magnetization an anisotropic
spatial behavior (Fig.4.1). The magnetization anisotropy is as so deep as ǫ
is larger. The component k = 0 is the value the total magnetization, and
after a transient, we have m/V = 1/L

∫

L
m(x)dx ∼ h0

λ
in agreement with the

Monte Carlo results and with the large N isotropic case.
For the equal time correlation function Ceq(k1, k2) we obtain the behavior

shown in Fig.4.2. The function presents two peaks corresponding to the co-
ordinates (k1, k2) = (−kmin, kmin) and (k1, k2) = (kmin,−kmin), this is clearly
an effect of the shape of h(k).

Let us to observe that in the case of T = 0 the final behavior is dependent
on the initial condition for for C(k1, k2, t = 0).
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Figure 4.1: Behavior of equilibrium magnetization for T = 0 for different
values of anisotropy percentage of magnetic field.
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Figure 4.2: Behavior of equilibrium Ceq(k1, k2) at T = 0.

• C(k1, k2, t = 0) > 0 and for any m(k, t = 0). With these initial condi-
tions the system evolves in the configuration for magnetization showed
in Fig.4.1.

• C(k1, k2, t = 0) = 0 and for any m(k, t = 0). In this case the equilib-
rium magnetization behavior is not proportional to the anisotropy. The
magnetization profile amplify the anisotropy and the process is faster
if the anisotropy is larger (Fig. 4.3). The correlation function doesn’t
evolve and it is always null.

The second solution is unstable because for any C(k1, k2, t = 0) > 0 the
system will evolve to reaches the first solution. However in the case of T > 0
for dimension of space d ≥ 3 we expect a magnetization behavior similar to
the observed in (Fig.4.2). In this case, in fact, Ceq(k1, k2) will be greater than
zero also if C(k1, k2, t = 0) = 0, being T > 0.

4.1.2 Observations and discussion

Ferromagnetic anisotropic case To have a complete pictures of the obtained
results it is convenient to consider first the case of magnetization of a simple
ferromagnetic interaction, corresponding to λ = 0. The external field acting
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Figure 4.3: Profile of m(x) at different times for 4 values of anisotropy ǫ.
The phase separation process is faster for the higher values ofǫ but the final
state is the some.
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on a pure ferromagnetic system is not uniform. Then also the equilibrium
magnetization want be not uniform and must satisfy the equation

[

− d2

dx2
+ r + gm2(~x) + gS(~x)

]

m(~x) = h(~x) (4.6)

obtained by (3.28). let us consider the case of a field in the form

h(~x) = ǫf(~x) (4.7)

where ǫ is a small parameter and f(~x) is a smoothly function taking positive
and negative values in such a way that f = 0. We are interested in the
behavior of m(~x) in the infinite volume limit. Neglecting the nabla squared
contribution, from Eq. (4.6) follows

m =

{

b(T )h(~x), for T > TC(h)
m(T )(h(~x)/|h(~x)|) + c(T )h(~x), for T < TC(h)

(4.8)

where m(T ) is the spontaneous magnetization of ferromagnetic system, while
b(T ) and c(T ) are temperature dependent coefficients of order ǫ. Namely, for
T < TC , locally there is spontaneous magnetization with the sign of the
external field. The above result is expected to be correct if the free energy
cost of space inhomogeneities in the magnetization, due to the nabla square
contribution, is smaller than the gain for having a magnetization following
the external field. A simple argument of the type used for the critical radius
of the nucleation droplets, yields

R ≥ 1/ǫ (4.9)

where R is the typical distance for the variations of h(~x).
If the magnetic field is of the form

h(~x) = h0 + ǫf(~x) (4.10)

a little anisotropy ǫ > 0 is not sufficient to amplify the anisotropy of mag-
netization which shows only a very ligth anisotropy. The magnetization is
almost uniformly positive if h0 > 0 and almost uniformly negative if h0 < 0.
Antiferromagnetic anisotropic case Adding the antiferromagnetic coupling λ,
for d = 1 we can write

[

− d2

dx2
+ r + gm2(x) + gS(x)

]

m(x) = h0 − λm + ǫf(x) (4.11)

Let us, then, assume that the non uniform magnetization can be written as

m(x) = m0 + δm(x) (4.12)
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where δm(x) ∼ O(ǫ) and m0 is the solution of the uniform equation

r + gm2 + gS0m0 = h0 − λm0. (4.13)

A similar expansion is assumed to hold for S(x)

S(x) = S0 + δS(x) (4.14)

also with δS(x) ∼ O(ǫ). Keeping only the first order terms, Eq. (4.11)
becomes

[

−∇2 + r + 3gm2 + gS0

]

δm(x) = ǫf(x) − gm0δS(x). (4.15)

Fourier transforming, considering that r + gm2
0 + gS0 = 0 in autoconsistency

way and m0 = h0/λ, we have

δm(x) =
ǫf(k) − gm0δS(k)

k2 + 2gm2
0

(4.16)

which shows that, indeed, δm(x) ∝ ǫ since k2 +2gm2 > 0, in agreement with
the numerical results shown in Fig. 4.1. The above considerations do apply
for T > 0 and also for T = 0, if C(k) 6= 0 in the initial condition, at least
for some k. Instead, if T = 0 and C(k) = 0 in the initial condition, then
S(x, t) = 0 for all time, i.e. the transverse components do not play any role
and the magnetization evolves like in the scalar model governed by the time
dependent Ginzburg-Landau equation

∂m(x)

∂t
= −

[

− d2

dx2
+ r + gm2

]

+ (h − λm). (4.17)

The equilibrium magnetization, in the uniform case, is the solution of (r +
λ)m0 + gm3

0 = h0. Let us than see if the solution in the non uniform case is
analytic in ǫ, as in the previous case. Using (4.13), Eq. (4.17) at equilibrium
yields

[

− d2

dx2
+ r + 3gm2

0

]

δm(x) = ǫf(x). (4.18)

Fourier transforming this gives

[k2 + r + 3gm2
0]δm(k) = ǫf(k) (4.19)

which yields δm(k) ∼ O(ǫ) only if (k2+r+3gm2
0) > 0. However, if the values

of h0 and λ give a solution such that (r+3gm2
0) < 0, than there can be a value

of k such that [k2 + r + 3gm2
0] = 0. In that case, even if the corresponding
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f(k) = 0, it is not guaranteed that there is analiticity in ǫ. This is what seems
to happen from the numerical solution, since δm(x) is not proportional to
ǫ for small ǫ. This argument can explain the behavior observed in Fig. 4.3,
where there is no continuity of the magnetization anisotropy respect to the
external anisotropy.

Large N model and domains The spatial behavior of magnetization for
the stable solution Fig. 4.1 is not in exact agreement with the Monte Carlo
simulations, where the spatial phase separation is very sharp also for very
small gradient of field Fig. 2.5. The discrepancy steads in the different na-
ture of the two models. The discrete model presented in chapter 2 is a scalar
model and there is a straight correspondence between total magnetization m
and magnetization inside the domains mD, in fact m = (mDV+ − mDV−)/V
with V± the volume of the positive and negative phase respectively. In the
large N model, instead, the total magnetization lies in the parallel direction,
but the fluctuations, which characterize the coarsening process are in the
normal direction, so they are decoupled from magnetization. In the large N
description it is not proper to speak of domains and the phase separation pro-
cess doesn’t characterizes the magnetization spatial behavior but produces,
in the transverse structure function, the appearance of a condensate. The
large N results are to be intended exactly corresponding to the scalar cases
for the total magnetization an for the scaling behavior of the condensate in
the time.



Chapter 5

Study of fractal behavior in

Vasculogenesis

Chemotaxis has an important role in the morphogenesis of organs and tissues,
this role is clearly evident in the developing of vascular networks. Here we
show a study of chemoattractant effective radius on fractal behavior of bi-
dimensional simulated vascular networks.

The chapter is organized as follow: a brief introduction on the character-
istic of vasculogenesis process, the description of the lattice-gas model used
for simulation, the general formalism adopted to characterize the simulated
structures and finally the Monte Carlo results and the discussion.

5.1 Introduction

To supply tissues with nutrients in an optimal way, vertebrates have de-
veloped the hierarchical vascular system which starts from big vessels and
terminates in a network of capillaries.

Vascular networks are made of endothelial cells. Their growth is essen-
tially driven by two processes: vasculogenesis and angiogenesis [45]. Vasculo-
genesis is the de novo growth of the primary vascular network from initially
endothelial cells and it is the first step in the development of the circula-
tory system in vertebrates. In the first stages of vasculogenesis, endothelial
cells autorganizes in a network-like structure, called the primary capillary
plexus, which subsequently remodels, with the size of the vacancies between
ribbons of endothelial cells coarsening over time. Angiogenesis is, essentially,
characterized by sprouting of an immature structure and remodeling.

Experiments made with HUVEC (human umbilical vein endothelial cells)
randomly spread on gel matrix, which favors cell motility and has biochem-

59
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ical characteristics similar to living tissues, self-assemble to form geometric
tubular networks Fig. 5.1, which are almost identical to capillary vascular
beds observed in living beings [42].

Several studies have been performed to understand the logic of vascular
network growth. For example Manoussaki and coworkers [43] proposed a
theoretical model based on cellular traction, recently Szabo and coworkers
[44] focus on the attraction between elongated structures and they show a
theoretical model based on this observation.

One of the mechanism most appreciated by biologist has chemotaxis as
fundamental mechanism for cell to cell communication. An accurate statistics
of individual cells trajectories presented in [42], shows that in the first phase
cell motion has marked persistence in the initial direction, pointing toward
zones of higher concentrations of cells. This indicates that cells communicate
among them through the emission of soluble chemical factors that diffuse and
degrade in the surrounding medium, and suggests that they move toward the
gradients of this chemical field. Cells produces specifics attractants which
diffuse and, after some time, degrades. The distribution of chemoattractant
becomes anisotropic leading the endothelial chemotacting cells to follows the
local gradients. First of all this idea was developed by Gamba et al. [40] in
a continuous model and subsequently used in a discrete cell centered model
based on lattice-gas by Merks et al [39].

The study of vascular networks is very useful, in fact the growth of blood
vessels in the developing organs is basically the result of an invasion process
by capillaries into the early organs’s structures. It has been proven and
accepted that during tumorogenesis angiogenesis is essential to provide the
requisite nutritional supply to growing tumors [45].

From a physical point of view, there are two important features in vascu-
logenesis observed in vitro experiments: autosimilarity of formed structures
and the percolative behavior of process. The vascular network is an exam-
ple of natural structure characterized by emerging of self-similarity and non
trivial scaling laws. The formed patterns often show self-similarity and scal-
ing laws similar to those emerging in the physics of phase transitions and
of several kinds of aggregation dynamics. For many of these systems it has
been shown that scaling laws are directly related to the process which led to
the formations of the structure itself.

Self-similar object shows often fractal behavior [46, 48, 42]. Fractal anal-
ysis is widely used in the study of vascularization because it is a convenient
method that defines the complexity and it can discriminate the growing pro-
cess of natural structures. For example normal and tumoral vascular net-
works have different fractal dimensions. Different kind of growing factors
(chemoattractants) or contact conditions for endothelial cells in the vessel
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Figure 5.1: Experimental pictures of the dynamical process of vascular net-
work formation obtained starting with an initial cell density of 200 cells/mm2.
(a) t = 0h ; (b) t = 3h ; (c) t = 6h ; (d) t = 9h . The side of the box is 2
mm. Observe that bright spots and darker edges appearing in the pictures
are an artifact of phase-contrast microscopy but all correspond to the same
kind of cellular matter. On the other hand, the Matrigel background is easily
recognizable from the homogeneous gray color.
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developing can give rise to different kind of fractal behaviors.
Another important characteristic of vascular networks in vitro is the per-

colating behavior [40]. There is specific cell density which permits the for-
mation of a macroscopic connected network which crosses the entire system
(percolating cluster), below this density there are small disconnected parts of
network, whereas for very high density the cells organize in a very compact
structure (swiss cheese configuration) Fig 5.2.

In nature there are different isoforms of growing factors for vasculogenesis.
Experimental observations suggest that different possible kind of chemoat-
tractant can give rise to different fractal structures [46, 47]. In this thesis
we focus on the role of chemoattractant on vascular networks, in particular
we investigate the effect of an effective interaction length generated by the
chemotactic factor. The description in term of a chemoattractant regulated
mechanism offer a natural interaction length given which is an effective at-
tractant radius. It was showed in the model [40] in good agreement with
experiments that this radius has a role in the fractal structures of vascular
networks.

In this chapter we show a study of fractal dimension of simulated vascular
networks for different values of the effective radius of autocrine chemoattrac-
tant. We model the vascular networks by Cellular Potts Model [39].

5.2 The Cellular Potts model

The model used for simulate the system is the Glazier and Grainer’s Cellular
Potts Model [37, 38, 39]. This is a lattice-gas model which represents en-
dothelial cells on a rectangular, numerical grid, where the sites of identical
non zero values represents a cell and a value of zero identifies the Extracel-
lular Cellular Matrix (ECM).

The model is derived by the large q-Potts model describing a collection
of N cells identifies by N spins σ(x) = 1, 2, ...N , where x identifies a lattice
site. A cell consists of all sites in lattice with spin σ. There is a special
spin value σ(x) = 0 which represents the ECM. The binding energy between
cells and cells and ECM is regulated by the coupling J , and for mismatched
bonds between different cells have energy Jσ(x),σ(x′) and bonds between like
spins have energy 0. So the Hamiltonian is

Hpotts =
∑

x,x′

Jσ(x),σ(x′)(1 − δσ(x),σ(x′)). (5.1)

We choose x′ representing the six second order neighbors of x. An energy
penalty increasing with cell’s deviation from designated initial area Aσ con-
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Figure 5.2: Experimental pictures of vascular structures obtained starting
from four different values of the initial cell density. (a) 50 cells/ mm2; (b)
100 cells/ mm2; (c) 200 cells/ mm2; (d) 400 cells/ mm2. The side of the box
is 2 mm. The critical density is about 200 cells/ mm2.
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straints the area of cells. The Hamiltonian becomes

Hpotts =
∑

x,x′

Jσ(x),σ(x′)(1 − δσ(x),σ(x′)) + λ
∑

σ

(Aσ − aσ)2, (5.2)

where λ is a Lagrange multiplier specifying the strength of the area con-
straint and aσ is the temporary area of cell. To model the cell elongation
regulated by cytoskeletal fluctuation a random site x of lattice is chosen and
it is evaluated the probability to copy its spin σ(x) into a randomly cho-
sen neighbor x′. A Monte Carlo Step (MCS) is defined the time to perform
L×L copies of randomly chosen sites. To model the attitude of cells to follow
chemoattractant gradients there is an energy decreasing at time of copy

∆Hchemotaxis = γ (c(x) − c(x′)) , (5.3)

where c(x) is the local concentration of chemoattractant. The total effective
Hamiltonian is

Hvascolo = Hpotts + Hchemotaxis. (5.4)

The description of the chemoattractant diffusion is performed by a macro-
scopic approximation using a concentration, in the some spirit of the model
made by Gamba at [40, 41]. It is assumed that endothelial cells secrete with
a rate α the chemoattractant c(x, t), which degrades with rate ǫ and diffuse
with a diffusivity D, obeing to the equation:

∂c(x, t)

∂t
= α(1 − δσ(x),0) − ǫδσ(x),0c(x, t) + D∇2c(x, t), (5.5)

where δσ(x),0 = 1 out of the cell (on the ECM) and it is zero otherwise. From
Eq. (5.5) c(x, t) is produced on the cells and decays on ECM in a half life time
τ = ǫ−1 creating local gradients. The chemoattractant evolution provides a

natural length scale r0 =
√

Dτ =
√

D
ǫ
, which is the effective range of the

interaction mediate by the soluble factor.
Summarizing, the model contains an effective energy and a diffusion equa-

tion. The movement of the cellular sites mimes the movement of the cell
which extends the filiopoda in the direction of higher stimulation. The in-
teraction of the cell with the substrate, the other cells and the chemoattrac-
tant are modeled by coupling constants in an effective energy function. The
chemoattractant evolves by Eq. (5.5) and it contributes to the Hamiltonian
by Hchemotaxis.

We chose the following values for coupling constants: Jcell,cell = 50,
Jcell,ECM = 20, λ = 50 and γ = 1000; and for diffusion equation: α =
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2, 8× 10−4s−1, D = 10−3m2s−1, for ǫ we choose three values producing three
values r0. We perform a Monte Carlo simulation using the effective Hamil-
tonian then we solve numerically for 15 step the diffusion equation 5.5. The
final time is time = MCS × ∆t × 15 with ∆t the temporal step for solving
the equation. We chose ∆t = 2 s, whereas we chose the ∆x = 3µm. We
set the initial area of a cell to 13 sites, corresponding to a radius of cell of
∼ 8µm. The parameters are chosen similar to [39].

5.3 General formalism

In this section we briefly illustrate the theoretical framework to treat the vas-
cular networks as self-similar structures produced by percolative transition.

5.3.1 Fractal geometry

Fractal objects are scale invariant systems, whose volume scales with the
linear size L following a power law with an exponent D lower that the Eu-
clidean d dimension of the space in which it lives. The volume V (L) may
be measured by covering the fractal with d-dimensional boxes or spheres of
linear dimension l with l ≪ L, therefore V (L) = N(L, l), where N(L, l) is
the number of such spheres. The exponent D is defined through the scaling
of N(L, l) as a function of decreasing L: for mathematical fractals N(L, l)
diverges as L → ∞ following a power law behavior characterized by a non
integer exponent:

N(L, l) ∝ LD (5.6)

where

D = lim
L→∞

ln N(L, l)

ln L
. (5.7)

For fractals having a finite size and infinitely small ramifications, when the
size of the covering balls l → 0, N(L, l) ∝ l−D with

D = lim
l→0

ln N(L, l)

ln(1/l)
. (5.8)

We note that the above definitions for non-fractals objects give a value of D
which coincide with the Euclidean dimensions d of the embedding space.

5.3.2 Percolation

The purely geometric problem of percolation represents one of the simplest
phase transition occurring in nature. It’s s very useful for studying phase
transitions (see appendix D) and for modeling several complex systems.
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The percolation theory had been introduced at the end of 40th years by
Flory and Stockamayer to study polymer physics [33, 34].

Many percolative models show a second-order phase transition in cor-
respondence to a critical value of the density p pc, i.e., the probability of
observing an infinite cluster is 0 for p < pc and 1 for p > pc [35].

It is natural to chose as order parameter the probability P that a ran-
domly chosen site belongs to an infinite cluster. If we define Ns(p) the average
number of clusters of mass s we can be write the order parameter as follow

P = p −
∑

s

Nss (5.9)

while the analog of magnetic susceptivity in a ferromagnetic transition is the
average cluster size

S =

∑

s Nss
2

∑

s Nss
, (5.10)

where Ns is the number of clusters of size s, excluding from the sum the
infinite cluster. S is the average size (number of sites) to which a randomly
chosen occupied site in the lattice belongs.

The correlation (or connectivity) function c(r) is defined as the probabil-
ity that two randomly chosen sites at distance r are occupied on the same
cluster and the correlation (or connectivity) length as

ξ2 =

∑

s c(r)r2

∑

s c(r)
, (5.11)

where the sum is performed over sites.
In proximity of the critical point such quantities have the following be-

havior:

P =







0 if p > pc

(p − pc)
β if p > pc

(5.12)

S ∝ |p − pc|−γ , (5.13)

The correlation length represents the mean cluster size of the finite clus-
ters, and at critical point (p = pc), ξ has a singularity in analogy to the
thermodynamics systems:

ξ ∝ |p − pc|−ν , (5.14)

The values of the critical exponent for Random Percolation are known
exactly at d=2 and numerically at d=3, they are:
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• ν = 4/3 for d = 2, ν = 0.88 for d = 3

• γ = 43/18 for d = 2, γ = 1.80 for d = 3

• β = 5/36 for d = 2, β = 0.41 for d = 3

For random percolation the behavior of percolating cluster is fractal and the
fractal dimension is D = 1.89 for d = 2 and D = 2.53 for d = 3.

5.3.3 Finite -size scaling relations in percolation

Near the critical point a system is scaling invariant and as consequence it
obeys to scaling relations.

The relation of the previous paragraph are valid for infinite systems, for
finite systems, the relations are dependent on the system size. For scales less
than ξ the system will be scaling invariant but for scales greater than ξ the
system will have the behavior of a collection of independent system of linear
length ξ. It possible to demonstrate [35] that for finite size L, the following
relations are valid:

Π(p, L) ∝ Π[(p − pc)
−1/ν ], (5.15)

P (p, L) ∝ L−β/νP [(p − pc)L
−1/ν ], (5.16)

S(p, L) ∝ Lγ/νS[(p − pc)L
−1/ν ], (5.17)

where Π is the percolation probability, P is the probability that a randomly
chosen site belongs the the percolating cluster and S is the mean cluster
size. The percolating cluster has fractal behavior related to its density ρ(r)
at various length r

ρ(r) ∼ rD−d. (5.18)

This behavior is expected for percolating cluster at critical point.

5.3.4 Fractal growth phenomena

The fractal behavior of a system is not only a characteristic of the critical
point but its the signature of a specific process of aggregation. There are
two main class of process of aggregation the Diffusion Limited Aggregation
(DLA) and the Cluster Cluster Aggregation [49].

Diffusion Limited Aggregation
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The process starts with a particle in the center of a lattice. A second
particle diffuses randomly on the lattice until it will meet the first particle.
After the collision the second particle attaches to the first and a third diffusive
particle is introduced in the lattice and the process continues. The DLA
fractal dimension is:

• D = 1.70 ± 0.06 for d = 2

• D = 2.53 ± 0.06 for d = 3

Cluster cluster aggregation

This process characterize the aggregation of particles which diffuse in a
medium. Each particle has a probability to bind another after a collision.
There are different regimes for Cluster Cluster aggregation for different po-
tential of interaction. If the interaction has a deep minimum and a small
repulsive barrier, the process is called “diffusion limited”. In this case, if two
cluster collides they aggregate in a time necessary for a contact. This regime
is characterized by the following fractal dimensions:

• D = 1.44 ± 0.03 for d = 2

• D = 1.78 ± 0.06 for d = 3

• D = 2.07 ± 0.1 for d = 4

If there is an important contribute to the repulsive part of potential, the
process is “reaction limited”. After the binding of some clusters the aggre-
gation of other cluster is inhibited, but if it happens after an higher contact
number, the binding is permanent. The characteristic time is the time to
form a binding. The regime “Cluster-Cluster reversible” happens when the
clusters can dissociate and reorganize.

5.4 Monte Carlo results

We perform Monte Carlo simulations of system with boundary periodic con-
ditions starting from cells in random positions on square lattice of linear
dimension L = 64, 128, 256, 512, corresponding to simulate systems of linear
size L ∼ 0.2mm, 0.4mm, 0.8mm, 1.5mm. Usually the experimental matrix
gel have a linear size of order of ∼ 1mm. We consider the equilibrium struc-
ture after a number of MCS which is sufficient to reaches stable structures.
This time is between 1000 and 5000 MCS, the first for the smaller size and
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Figure 5.3: Pictures of vascular structures obtained from simulations at dif-
ferent time. a) MCS = 0 ∼ 0 h; b) MCS = 500 ∼ 4h; c) MCS = 1000 ∼ 10h;
d) MCS = 4000 ∼ 40h.
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the last for the largest size. The MCS time corresponds to a real time be-
tween ∼ 8 hours and ∼ 40 hours. In Fig. 5.3 is show an example of simulated
system at different time.

We want to investigate to role of attractant effective radius on the fractal
behavior of structures, then we perform simulation for different values of ǫ
the degradation rate of chemotactic factor, corresponding to r0 ∼ 10µm,∼
20µm,∼ 200µm. Form now on we refer to r0 always in unit of µm.

First of all we individuate the critical density pc for the percolative tran-
sition. Using the scaling invariance at critical point we calculate pc from the
intersection point of percolation probability curves obtained for different size
of system Fig. 5.4. The critical density is pc ∼ 0.2 with small differences
between the three values of r0.

Fractal dimension

At critical point we measured the fractal dimension of percolating cluster
using the sandbox method. It consists in choosing a point of percolating
cluster and measuring the density of percolating cluster inside spheres of
increasing radius. To have a good measure of density of percolating cluster
ρ(r), we start from different point of some cluster and made the average value
for each radius. This is convenient method to estimate the fractal dimension
using Eq. (5.18). The behavior of fractal dimension for different r0 is showed
in Fig. 5.5. The functions show clearly the presence of two different regimes in
fractal dimension. At small scales the clusters are characterized of a fractal
dimension close to the cluster-cluster aggregation in the regime diffusion
limited. In particular

• D = 1.50 ± 0.05, for r0 ∼ 10;

• D = 1.44 ± 0.04, for r0 ∼ 20;

• D = 1.45 ± 0.04, for r0 ∼ 200;

For higher scales the fractal dimension is D=1.87 ±0.03 which is compatible
with random percolation. The crossover point in the scale between the two
behaviors is proportional to the effective interaction radius r0.

In our simulation for r0 > 200 we obtain the same behavior of fractal
dimension of r0 = 200, the crossover point doesn’t increases any more. This
effect is probably duo to the finite length of L. Then our simulation has to
be intended as an indications of behavior of fractal dimension for different
r0. The Simulated structures suggest that for scales where the influence of
the affective attractant radius is important the dynamical process of cluster
formation is cluster cluster aggregation. In cluster-cluster aggregation it is
assumed that starting from random initial positions the particles can diffuse
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Figure 5.4: Percolation probability as function of cell density for different
size L at three different values of r0. a)r0 ∼ 10 the percolation threshold is
pc = 0.228±0.005; b)r0 ∼ 20 the percolation threshold is pc = 0.201±0.005;
b)r0 ∼ 200 the percolation threshold is pc = 0.18 ± 0.01. For each point we
compute 150 - 300 realizations of the system, starting from random initial
conditions. The percolation threshold shows a slightly dependence on the
attractant radius. The curves are only guides for eye.
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Figure 5.5: Density of percolating cluster as function of radius for the three
different r0.
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Figure 5.6: Data collapse of a)percolation probabilityΠ, b)mean cluster size
S and c)the probability to belong to percolating cluster P .
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according some rules and stick with a given probability when they get in
touch. In this work, although the particles have not purely diffusive motion
but a also a directed motion because of gradient of attractant, they presents
the fractal dimension of cluster-cluster aggregation.

For higher scale the aggregation process is mainly determined by initial
random positioning of the cells without alteration from dynamical process of
migration.

Other critical index for L ≫ r0

To better understand the critical behavior for scales large respect to r0

we measure the critical index ν, β and γ for r0 ∼ 10. We showed that
these index regulate the critical behavior of the percolation probability Π,
the probability to belong to percolating cluster P and the mean cluster size
S by the scaling equations.

Using the scaling Eqs. (5.15), (5.16), (5.17) we estimate the critical index
by data collapse (Fig. 5.6). Using the values of random percolation, the
curves have a good collapse. This confirms the hypothesis that, for very large
scales respect to effective interaction length produced by chemoattractant,
the fractal behavior is determined only by the random initial conditions.

5.5 Discussion

In this chapter we studied the fractal behavior of simulated vascular networks
using the Cellular Potts Model [39]. The model simulates, toward a lattice-
gas Hamiltonian, a distribution of endothelial cells which auto-organize un-
der the influence of an autocrine chemotactic factor. The chemoattractant is
simulated by a continuous density produced by cells and its secretion, degra-
dation and diffusion is regulated by a diffusion equation. The root square
of diffusivity times the degradation rate offer a natural length scale of the
effective attractant radius r0.

The study was performed to investigate the dependence of fractal behav-
ior as function of r0. From our simulation it is evident that for each r0 there
are of two different regimes in fractal dimension. For small scales, the fractal
behavior is strictly linked to the dynamical mechanism of cell cell aggrega-
tion. For longer scale the critical behavior is regulated by initial random
conditions producing a fractal dimension which is compatible with random
percolation. The behavior of random percolation at large scale is also con-
firmed by the values of critical index which regulate the behavior of Π, P
and S. The chemotactic factor mediates the interaction between cells and a
measure of the interaction length is r0 which characterizes the scale for the
dynamical aggregation process. At scale where the value of r0 is relevant, the
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value of fractal dimension is close to the ones of cluster-cluster aggregation
in the regime diffusion limited. The crossover between the two behaviors is
proportional to r0.
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Conclusion

We have presented a Statistical Mechanics approach to the study of Eukary-
otic Directional Sensing.

Starting from the observation of a phase separation between signaling
molecules in the process of Directional Sensing, we modeled it by standard
statistical mechanics method. We have used Monte Carlo simulations of a
spin lattice model regulated by an effective free energy, to represent the inter-
action between enzymes, with an enzymatic reservoir and with an external
activation field. The model maps the cell surface on a square lattice and
enzymes on a spin variable. The effective interaction between enzymes on
the membrane is represented by a ferromagnetic short range coupling, the
interaction of the enzymes with an external chemoattractant is modeled by
an interaction with an external magnetic field and a long-range antiferromag-
netic interaction plays the role of the interaction with a cytosolic reservoir.
The interplay between the long-range antiferromagnetic interaction (enzymes
shuttling from the cytosolic reservoir to the membrane) and the effect of the
external activation field introduce a feedback mechanism which leads to a
self-organization process. In fact is shown that it provides a self-tuning mech-
anism, which drives the system towards phase coexistence and polarization.
The model reproduces important aspects of the observed phenomenology,
and sheds light on the underlying physical mechanism. The organization of
signaling molecules is modeled as a coarsening process of spin domains, and
the polarized state corresponds to the phase separation. It predicts power
law dependence of the polarization time as function of the gradient of exter-
nal chemoattractant. In particular there are of two distinct time behaviors
in cluster evolution. When an attractant gradient is present it is signaled,
in the model simulations, by the emergence of a double power law for the
time evolution of clusters of signaling molecules. In absence of an external
gradient the cluster size simply evolves in time as t1/2. Our results are based
on fundamentals elements of Statistical Mechanics and, although they were
inspired by the particular biochemical mechanism described in [4], they are
mostly independent on the details of the underlying reaction network.

77



78 Conclusion

In the second part, we have studied the Hamiltonian of the lattice model
in a continuous formalism deriving the associated Ginzburg-Landau func-
tional in the framework of large N limit. We focalized on the phase ordering
process taking place for sub-critical temperature in presence of an external
field. We analyzed the Langevin motion equations and derived the phase
diagram of the system. The resulting phase diagram in the plane (T, h),
where T is the temperature and h the magnetic field, shows an expansion
of the phase coexistence region outside the h = 0 region. The amplitude of
phase coexistence region increases with the increasing of the antiferromag-
netic coupling. For sub-critical temperature a condensation of fluctuations
at k = k0+ takes place. This mechanism, similar to the Bose-Einstein con-
densation, is the manifestation of a phase separation process. We have also
studied the time behavior of magnetization which is in agreement with the
Monte Carlo simulations and the time behavior of fluctuations which is a
power law with a growth exponent 1/2. The investigated general properties
of the self-tuning mechanism of magnetization on phase coexistence can be
relevant in the study of other systems.

Finally we studied the fractal behavior of simulated vascular networks as
function of the interaction radius of the chemoattractant. From our simula-
tions it is evident that there are two regimes characterized by two different
fractal dimensions. For small scales, the fractal behavior is strictly linked to
the dynamical mechanism of cell-cell aggregation. For longer scale the crit-
ical behavior is regulated by initial random conditions producing a fractal
dimension which is compatible with random percolation. The chemotactic
factor mediates the interaction between cells and for scales smaller than the
interaction length the dynamical aggregation process is a cluster-cluster ag-
gregation. For larger scales the aggregation is regulated by the initial random
position of the cells.



Appendix A

Fourier transform

In this section we report the conventions adopted to calculate the Fourier
Transform used in chapter 3 and in chapter 4.

~φ(~k) =

∫

V

d~x~φ(~x)ei~k·~x (A.1)

~φ(~x) =
1

V

∑

~k

~φ(~k)e−i~k·~x (A.2)

1

V

∑

~k

~φ(~k)ei~k·(~x−~x′) = δ(~x − ~x′) (A.3)

∫

V

d~xei~x·(~k−~k′) = V δ~k,~k′ (A.4)
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Appendix B

Equations of the motion for

non-uniform h

Let us consider a non uniform magnetic field h(~x). We start from the equa-
tions 3.22 and 3.23:

∂m(~x, t)

∂t
= −(−∇2 + r)m(~x, t) − λ

V

∫

m(~x, t)dd~x +

− g

N
m2(~x, t) − g

N
(φ⊥ · φ⊥)m(~x, t) + h(~x) (B.1)

∂φ⊥(~x, t)

∂t
= −(−∇2 + r)φ⊥(~x, t) − g

N
m2(~x, t)φ⊥(~x, t) +

− g

N
(φ⊥(~x, t) · φ⊥(~x, t))φ⊥(~x, t)

− λ

V

∫

V

d~xφ⊥(~x, t) + η⊥(~x, t) (B.2)

In the limit N → ∞ we obtain:

1

N
(φ⊥(~x, t) · φ⊥(~x, t)) → S(~x, t) =

1

N
〈φ⊥(~x, t) · φ⊥(~x, t)〉. (B.3)

Using the Eq. (A.2) it is valid for S(~x, t) the following expression:

S(~x, t) =
1

NV 2

∑

~k1,~k2

〈φ⊥(~k1, t)φ⊥(~k2, t)〉e−i(~k1+~k2)·~x. (B.4)

We define the transverse structure factor:

C(~k1, ~k2, t) =
1

N
〈φ⊥(~k1, t) · φ⊥(~k2, t)〉 (B.5)
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After Fourier transform of B.1 and B.2 (we indicate with φ(~k, t) the orthog-

onal component of the field ~φ⊥(~k, t)):

∂m(~k, t)

∂t
= −(k2 + r)m(~k, t) − λm(0, t)δ~k,0 +

− 1

V 2

g

N

∑

~k2,~k3

m(~k − ~k2 − ~k3, t)m(~k2, t)m(~k3, t)

− g

V 2

∑

~k2,~k3

C(~k − ~k2 − ~k3, ~k2, t)m(~k3, t) + h(~k) (B.6)

∂φ(~k, t)

∂t
= −(k2 + r)φ(~k, t) − λφ(0, t)δ~k,0 +

− 1

V 2

g

N

∑

~k2,~k3

m(~k − ~k2 − ~k3, t)m(~k2, t)φ(~k3, t) +

− 1

V 2
g

∑

~k2,~k3

〈φ(~k − ~k2 − ~k3, t)φ(~k2, t)〉φ(~k3, t) + η⊥(~k, t)(B.7)

The motion equation for C(~k1, ~k2, t) can be obtained calculating C(~k1, ~k2, t) =

〈φ(~k1, t)φ(~k2, t)〉:

∂C(~k1, ~k2, t)

∂t
= 〈∂φ(~k1, t)

∂t
φ(~k2, t) + φ(~k1, t)

∂φ(~k2, t)

∂t
〉, (B.8)

substituting B.7 in B.8:

∂C(~k1, ~k2, t)

∂t
= −(k2

1 + k2
2 + 2r)〈φ(~k1, t)φ(~k2, t)〉

−λ(〈φ(0, t)φ(~k2, t)〉δ~k1,0 + 〈φ(0, t)φ(~k1, t)〉δ~k2,0) +

− 1

V 2

g

N

∑

~p,~q

m(~k1 − ~p − ~q, t)m(~p, t)〈φ(~q, t)φ(~k2, t)〉 +

− 1

V 2

g

N

∑

~p,~q

m(~k2 − ~p − ~q, t)m(~p, t)〈φ(~q, t)φ(~k1, t)〉 +

− 1

V 2
g

∑

~p,~q

〈φ(~k1 − ~p − ~q, t)φ(~p, t)〉〈φ(~q, t)φ(~k2, t)〉 +

− 1

V 2
g

∑

~p,~q

〈φ(~k2 − ~p − ~q, t)φ(~p, t)〉〈φ(~q, t)φ(~k1, t)〉 +

+〈η⊥(~k1, t)φ(~k2, t)〉 + 〈η⊥(~k2, t)φ(~k1, t)〉. (B.9)
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Is is useful to write the convolutions as follows:
∑

~k2,~k3

〈φ(~k − ~k2 − ~k3, t)φ(~k2, t)〉m(~k3, t) =

∑

~k3

(
∑

~k2

〈φ(~k − ~k2 − ~k3, t)φ(~k2, t)〉)m(~k3, t) =

V
∑

~k3

S(~k − ~k3)m(~k3, t), (B.10)

where

S(~k − ~k3) =
1

V

∑

~k2

〈φ(~k − ~k2 − ~k3, t)φ(~k2, t)〉 (B.11)

then:

∂C(~k1, ~k2, t)

∂t
= −(k2

1 + k2
2 + 2r)C(~k1, ~k2, t) − λ[C(0, k2, t)δ~k1,0 + C(0, k1, t)δ~k2,0] +

− 1

V 2

g

N

∑

~p,~q

m(~k1 − ~p − ~q, t)m(~p, t)C(~q,~k2, t) +

− 1

V 2

g

N

∑

~p,~q

m(~k2 − ~p − ~q, t)m(~p, t)C(~q,~k1, t) +

− 1

V
g

∑

~q

S(~k1 − ~q, t)C(~q,~k2, t) +

− 1

V
g

∑

~q

S(~k2 − ~q, t)C(~q,~k1, t) +

+〈η⊥(~k1, t)φ(~k2, t)〉 + 〈η⊥(~k2, t)φ(~k1, t)〉 (B.12)

in the case of small anisotropy we can assume the isotropy of noise namely:

〈η⊥(~k1, t)φ(~k2, t)〉 + 〈η⊥(~k2, t)φ(~k1, t)〉 = 2V Tδ~k1+~k2
(B.13)

let us remember the equation for magnetization:

∂m(~k, t)

∂t
= −(k2 + r)m(~k, t) − λm(0, t)δ~k,0 +

− 1

V 2

g

N

∑

~p,~q

m(~k − ~p − ~q, t)m(~p, t)m(~q, t) +

− 1

V
g

∑

~q

S(~k − ~q, t)m(~q, t) + h(~k) (B.14)



84 Equations for non-uniform h

close the system the auto-consistence relation:

S(~k − ~q, t) =
1

V

∑

~p

C(~k − ~p − ~q, ~p, t). (B.15)



Appendix C

Monte Carlo simulations

In the last years computer simulations and numerical methods have revested
a fundamental role in the investigation of complex systems.

The simulations let measure a wide class of properties, ranging from lo-
cal to macroscopic quantities, providing a direct comparison between model
results and experiments.

The Monte Carlo method [50] results to be very useful when studying
systems whose motion equation are complicated and difficult to be solved.
By means of Monte Carlo simulations, the probability distribution which
defines the ensamble of system states is directly sampled introducing an
“effective” dynamics.

The thermal average of an observable A(x), where x is a vector in phase
space describing the considered degrees of freedom, is defined as:

〈A(x)〉 =
1

Z

∫

exp [−H(x)/kBT ] A(x)dx, (C.1)

where

Z =

∫

exp [H(x)/kBT ] dx (C.2)

is the partition function, and H(x) is the Hamiltonian of the model. The
normalized Boltzmann factor P (x) = exp [H(x)/kBT ] /Z plays the role of a
probability density, representing the statistical weight with which the config-
uration x occurs in thermal equilibrium. Within the Monte Carlo method,
the exact Eq. C.1 is approximated with the sum over a subset of phase space
points {x1,x2, ...,xM}, which are used as statistical sample. Clearly, the
discrete sum

A(x) =

∑M
l=1 exp [−H(xl)/kBT ] A(xl)
∑M

l=1 exp [−H(xl)/kBT ]
(C.3)

85



86 Monte Carlo simulations

must approximate Eq. C.1 in the limit M → ∞. It can be shown that
A =< A > +O(N−1/2) [51].

The dynamics arising from Monte Carlo simulation moves along the dis-
crete set of phase space variables {x1,x2, ...,xM}: it takes place in discrete
time steps, each xi univocally determines the probability distribution of the
successive state, and such probability does not depend on time explicitly.
Metropolis et al. [52] advanced the idea to choose the successive states {xl}
building a Markov process, where each state xi+1 is constructed from the pre-
vious xi via a suitable transition probability W (xi → xi+1). They pointed
out that it is possible to choose the transition probability W such that in
the limit M → ∞ the distribution function P (xl) generated by this Markov
process tends towards the desired equilibrium distribution Peq(xl):

Peq(xl) =
1

Z
exp

(

−H(xl)

kBT

)

. (C.4)

To achieve this issue, it is sufficient to impose the principle of detailed bal-
ance:

Peq(xl)W (xl → xl′) = Peq(xl′)W (xl′ → xl). (C.5)

Using Eq. C.4 and Eq. C.5 we obtain:

W (xl → xl′)

W (xl′ → xl)
= exp

(

− δH
kBT

)

, (C.6)

where δH = H(xl′) − H(xl) is the energy variation. The latter equation
does not fix the transition probability uniquely, and some arbitrariness in
the explicit choice of W remains. One of the most common used expression
of the transition probability is the following:

W (xl → xl′) =

{

exp (−δH/kBT ) /τs if δH > 0
1/τs otherwise

where τs is an arbitrary factor, representing the unit of Monte Carlo time.
Hence W is the transition probability per unit time [50].



Appendix D

Phase transitions and critical

exponents

Phase transition are phenomena of sharp variation of behavior of a physi-
cal system in response to the variation of some parameters. For a gas the
variation of the density produce the liquid, a quench in the temperature for
T → Tc produce in a magnetic material the transition from the paramagnetic
state to the ferromagnetic state.

In a phase transition there are phenomena of symmetry breaking. The
ordered phase has an inferior degree of symmetry respect to the Hamiltonian
of the system. A classical example the formation of a spontaneous magneti-
zation in a ferromagnet. The spontaneous magnetization gives to the system
a particular direction but its Hamiltonian is isotropic.

To describe the phase transitions Landau introduced the order parameter
as measure of the degree of the order in a system. For a ferromagnet a good
order parameter is the density of magnetization, for a gas-liquid transition
the difference of the density between the liquid and gas phase describes very
well the ordering process.

It is important to measure the variation of the order parameter after an
infinitesimal variation of an external field i. e.:

χ =
∂OrderParameter

∂ExternalF ield
. (D.1)

Thanks to the fluctuation-dissipation theorem we can say that the fluc-
tuation of the order parameter are proportional to χ.

If the order parameter is defined as 〈σ〉 we can define a correlation function
as:

cij = 〈(σi − 〈σi〉)(σj − 〈σj〉)〉 (D.2)
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After a correlation function we can define a correlation length which define
the linear dimension of fluctuations:

ξ2 =

∑

r2c(r)
∑

c(r)
(D.3)

where r is the distance between i and j.
The behavior of the order parameter, susceptivity and correlation length

at critical point allows to divide the phase transitions in too big classes. We
can distinguish the first order phase transition, characterized by a discon-
tinuity of order parameter and finite χ and ξ at critical point. The second
order phase transition has no discontinuity in the order parameter but the
the order parameter approaches to zero at critical point and, at some time,
ξ → ∞ and χ → ∞.

These behavior have a quantitative characterization in the critical index:

Orderparameter ∼ ǫβ ifǫ > 0, (D.4)

χ ∼ |ǫ|−γ, (D.5)

ξ ∼ |ǫ|−ν , (D.6)

where ǫ = T−Tc

T
if the phase transition is determined by temperature. The

specific heat has a singularity at critical point

CV ∼ |ǫ|−α, (D.7)

and correlation function goes as:

c(r) ∼ |ǫ|−η. (D.8)

The critical exponent are very important because they characterize the
critical behavior. Systems very different each other and very complex can
have the some critical exponents. It is demonstrated that only two exponents
are independent because they are related by scaling relations :

α + 2β + γ = 2, (D.9)

2 − η =
γ

ν
(D.10)
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and the hyperscaling relations which involves the euclidean spatial dimension
d:

2 − α = νd. (D.11)

The previous scaling relations are founded on scaling hypothesis [36], which
is also the basis of renormalization theory. This hypothesis consists in the
idea that at critical point the phenomena are dominated by the fluctuation on
large scale, measured by ξ. The details of the interactions are not important,
the system is characterized only by the global properties:

• spatial dimension d;

• dimension of order parameter;

• symmetries of Hamiltonian.

The critical exponents individuates large classes of phase transitions,
called universality class. The universality is the fundamental idea of mod-
elling complicated systems by simplified scheme. The critical behavior is in
fact independent by the details of interactions.
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