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Introduction 1 

INTRODUCTION 

 

 
In the framework of the mechanics of heterogeneous media, multi-scale 
homogenization techniques and micromechanical approaches are widely adopted 
for characterizing materials that exhibit porous structure at the nano-, micro- or 
macroscopic level. These efforts are aimed to design new engineered materials 
and explore their possible applications in civil engineering, aerospace, 
mechanics, material and chemical science. Also, due to the hierarchical 
structure and the heterogeneity of biological tissues when observed at different 
scales, anisotropic porous materials also play a crucial role for understanding 
mechanical-based growth and remodelling phenomena of complex biological 
systems, as well as to trace new trends in biomechanics and  tissue engineering. 
On the other hand, it is well known the difficulty of finding closed-form 
solutions to problems involving anisotropic and inhomogeneous materials, 
needed for obtaining information about the influence of geometrical and 
mechanical parameters in a selected phenomenon. Analogously, no many 
Literature works present rational and unified formulations for estimating overall 
homogenized stiffness or compliance of porous materials. 
In the present work, specific attention is given to porous elastic materials in 
which the fluid phase can be assumed inessential with reference to the 
estimating of the mechanical response. This is the case, for example, of drained 
or not-saturated porous solids, as well as the situation in which the loads are 
applied quasi-statically. 
The porous skeleton of the RVE (Representative Volume Element) – or RVE 
matrix – is elastic and it can be oriented (anisotropic) or not (isotropic), and 
characterized by low or high volume fraction. Under these assumptions, inspired 
by Fabric Tensor-based micromechanical approaches, the work introduces a new 
consistent measure of the matrix orientation, proportional to the Inertia of the 
RVE mass, and then establishes a proposal for an unified constitutive elastic law 
for  porous media, in which the inhomogeneity remains depending upon the 
point-wise variation of the volume fraction. The new model, validated by means 
of both numerical experiences and closed-form solutions for dilute 
concentrations of elliptical voids (High Volume Fraction, HVL) and Flugge-like 
arrangement of the RVE matrix (Low Volume Fraction, LVF), allows to utilize 
micro-geometrical information directly obtainable from standard techniques and 
3D vector codes,  for constructing the Fabric Tensor. This yields to avoid several 
difficulties present in all the previous treatments and furnishes an extremely 
useful tool for introducing in Finite Element-based computational strategies 
anisotropic and inhomogeneous characters of the porous media, 
straightforwardly. At the end, a possible use of the proposed model is also 
shown in the framework of Topological Optimization problems. 
 
 



2 Introduction 

The Ph.D. dissertation is articulated in five chapters.  
Chapter I furnishes some basic remarks on theory of elasticity, recalling the 
concepts of finite deformation and kinematical compatibility, equilibrium and 
Cauchy’s and Piola-Kirchhoff’s stress tensors, linear anisotropic elasticity. 
Chapter II describes continuum mechanics approaches for heterogeneous media, 
also presenting some recent results aimed to obtain closed-form solutions for 
inhomogeneous, anisotropic elastostatic problems. At the end, a 
micromechanical approach based on second order Fabric Tensors is treated in 
detail, with reference to the most recent literature results.  
Chapter III provides an introduction to the theory of homogenization. In 
particular, some mathematically well-posed homogenization approaches are 
presented such as the direct methods – Eshelby’s solution – and the variational 
methods – based on the Hashin Shtrikman variational principles. 
Micromechanics of porous materials is finally shown in detail. 
Chapter IV presents constitutive relations for porous elastic materials, following 
a way that considers three different class of porous media:  with microstructure 
randomly arranged, with oriented microstructure and low volume fraction and 
with oriented microstructure and high volume fraction. In the first case, by 
means of numerical analyses based on Finite Element Method, constitutive 
relations as function of the sole volume fraction are derived, by using analytical 
solutions for low volume fraction (Flugge’s solutions) and high volume fraction 
(dilute distribution of voids). In the last two cases, constitutive relations based 
on the fabric tensor are determined. In particular, a proposal for a direct 
estimation of the Fabric Tensor by means of the use of Inertia tensors is 
presented. Some 2D examples that validates such proposal are then illustrated.  
Chapter V is devoted to isotropic and anisotropic topological optimization, 
involving the proposed model for porous anisotropic and inhomogeneous 
materials. Hence, an example application is illustrated with reference to the 
minimization of the strain energy where internal variables are represented by the 
RVE volume fraction and Inertia-Fabric tensors. 
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CHAPTER I 

 

REMARKS ON THE THEORY OF ELASTICITY 

 
 
1. DEFORMATION THEORY 

 
A central problem in nonlinear, three-dimensional elasticity consists in finding 
the equilibrium position of an elastic body that occupies a reference 

configuration Ω  in the absence of applied forces, where Ω  is a bounded open 
connected subset of 3

R  with a Lipschitz-continuos boundary. When subjected to 

applied forces, the body occupies a deformed configuration ( )Ωϕϕϕϕ , 

characterized by mapping 3: Ω →Rϕϕϕϕ that must be in particular orientation-

preserving in the set Ω  and injective on the set Ω , in order to be physically 
acceptable. 
Such mapping ϕϕϕϕ  are called deformations, and in the next sections their 
geometrical properties are studied. It is shown in particular that the changes in 
volume, surfaces and lengths associated with a deformation ϕϕϕϕ , are respectively 

governed by the scalar ϕϕϕϕ∇∇∇∇ , the matrix Cof ϕϕϕϕ∇∇∇∇  and the right Cauchy-Green 

strain tensor Τ=C ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇ .  
 
1.1. Deformation in 

3
R  

 
We assume once and for all that an origin o and an orthonormal basis 

{ }1 2 3, ,e e e have been chosen in three-dimensional Euclidean space, which will 

therefore be identified with the space 3
R . From the notational viewpoint, we 

identify the point x  with the vector ox . Whenever we consider components of 
vectors in 3

R , or elements of matrices in 3
M , we make the convention that 

Latin indices (i, j, p,….) always take their values in the set {1, 2, 3}, and we 
combine this rule with the standard summation convention.  
Let there be given a bounded, open, connected, subset Ω  of 3

R  with a 
sufficiently smooth boundary (specific smoothness assumptions will be made 
subsequently). We shall think of the closure Ω  of the set Ω  as representing the 
volume occupied by a body “before it is deformed”; for this reason, the set Ω  is 
called the reference configuration. 
A deformation of the reference configuration Ω  is a vector field: 
 

 3: Ω →Rϕϕϕϕ  (1.1) 
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that is smooth enough, injective possibly on the boundary of the set Ω , and 
orientation–preserving. 
Remarks. 

1. The reason a deformation may loose its injectivity on the boundary of 
Ω  is that “self-contact” must be allowed. 

2. The expression “smooth enough” is simply a convenient way of saying 
that in a given definition, theorem, proof, etc. the smoothness of 
deformations involved is such that all arguments make sense. As a 
consequence, the underlying degree of smoothness varies from place to 
place. For instance, the existence of the deformation gradient (to be next 
introduced) implies that a deformation is differentiable at all points of 
the reference configuration; Theorem 1.1 relies on the Piola identity, 
which makes sense, at least in a classical setting, only for twice 
differentiable deformations; the characterization of rigid deformations is 
established for deformations that are continuously differentiable, etc.  

3. Deformations are synonymously called configurations, or placements, 
by some authors. 

We denote by x  a generic point in the set Ω , by 
i

x  its components with respect 

to the basis { }ie , and by 
i i

x∂ = ∂ ∂  the partial derivative with respect to 

variable 
i

x . Given a deformation 
i i

ϕ= eϕϕϕϕ , we define at each point of the set Ω  
the matrix  
 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

∂ ∂ ∂ 
 

= ∂ ∂ ∂ 
 ∂ ∂ ∂ 

ϕϕϕϕ∇∇∇∇ . (1.2) 

 
The matrix ϕϕϕϕ∇∇∇∇  is called the deformation gradient. Since a deformation is 
orientation-preserving by definition, the determinant of the deformation gradient 
satisfies the orientation-preserving condition: 
 
 ( )det 0>xϕϕϕϕ∇∇∇∇ for all x∈Ω  (1.3) 

 
In particular, the matrix ( )xϕϕϕϕ∇∇∇∇  is invertible at all points x  of the reference 

configuration Ω . 
 
Remarks.  

1. The notations =F ϕϕϕϕ∇∇∇∇  and detJ = ϕϕϕϕ∇∇∇∇  are commonly used in the 
literature. 

2. The notation ϕϕϕϕ∇∇∇∇  is confusing, since the gradient of a real-valued 
function f is the column vector formed by the first partial derivative 
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i
f∂ , while ( ) j iij

ϕ= ∂ϕϕϕϕ∇∇∇∇  (this explains why we used the notation 

fgrad , and not f∇ . Indeed, the deformation gradient is simply the 
matrix representing the Fréchet derivative of the mapping ϕϕϕϕ , which for 
real-valued functions, it is identified with the transpose of the gradient. 

 
Together with a deformation ϕϕϕϕ , it is often convenient to introduce the 

displacement u , which is the vector field: 
 
 3: Ω →u R  (1.4) 
 
defined by the relation 
 
 = +id uϕϕϕϕ , (1.5) 

 
where id  denotes the (restriction to Ω  of the ) identity map from 3

R  onto 3
R . 

Notice that the displacement gradient  
 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

u u u

u u u

u u u

∂ ∂ ∂ 
 

= ∂ ∂ ∂ 
 ∂ ∂ ∂ 

u∇∇∇∇  (1.6) 

 
and the deformation gradient are related by the equation 
 
 = + ∇I uϕϕϕϕ∇∇∇∇ . (1.7) 

 
Given a reference configuration Ω  and a deformation 3: Ω →Rϕϕϕϕ , the set 

( )Ωϕϕϕϕ  is called a deformed configuration. At each point 

 
 ( ):ϕ =x xϕϕϕϕ  (1.8) 

 
of a deformed configuration, we define the three vectors (Fig. 1.1)  
 
 ( ) ( )j j i i

ϕ∂ = ∂x x eϕϕϕϕ . (1.9) 

 
Each vector ( )j

∂ xϕϕϕϕ  measures the “local deformation in the direction of the 

vector 
j

e ” in the sense that, to within the first order with respect to dt , the 

vector 
j
dte  is transformed into the vector ( )j

dt∂ xϕϕϕϕ . Equivalently, the vector 
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( )j
∂ xϕϕϕϕ  is the tangent vector to the jth coordinate line passing through the point 

ϕ
x  (i.e. the image by the deformation ϕϕϕϕ  of a segment parallel to the vector 

j
e  

containing the point x  in its interior, and parametrized by t). Since the vector 

( )j
∂ xϕϕϕϕ  is precisely  the jth column of the matrix ϕϕϕϕ∇∇∇∇ , the knowledge of the 

deformation gradient completely define the local deformation to within the first 
order. 
 
Remarks.  

1. While the deformation gradient ϕϕϕϕ∇∇∇∇  clearly depends upon the basis 
i

e , 
it is possible to exhibit the intrinsic geometrical character of the 
deformation at the point x , by means of the polar factorization of the 
matrix ( )xϕϕϕϕ∇∇∇∇ , which then appears as the product of a “rotation tensor” 

by a “stretch tensor”. For details about this classical results, see for 
instance Germain (1972), Gurtin (1981), Truesdell&Noll (1965). 

2. If the point ( )ϕ =x xϕϕϕϕ  belongs to the interior of the deformed 

configuration ( )Ωϕϕϕϕ , the three vector 
j

∂ ϕϕϕϕ  define in the terminology of 

differential geometry the tangent vector space at the point x  of the 

manifold ( )Ωϕϕϕϕ . This space is of dimension three since the matrix 

( )xϕϕϕϕ∇∇∇∇ is invertible (by definition of a deformation).  

3. The points x∈Ω  and the corresponding points ( )ϕ ∈ Ωx ϕϕϕϕ  are often 

called material points and spatial points respectively, and they are often 
denoted X and x respectively, in the continuum mechanics literature. 

 
We next compute the volume, area, and length elements in the deformed 
configuration. In each case, the objective is, for a given deformation, to express 
quantities (volumes, surfaces, lengths) defined over the deformed configuration 
in terms of the same quantities, but defined over the reference configuration. To 
emphasize the crucial distinction between both types of quantities, we adopt the 
following notational device: the superscript “ϕϕϕϕ ”is systematically attached to a 
quantity defined over the deformed configuration, while the related quantity over 
the reference configuration is designed by the same letter, but without the 
superscript “ϕϕϕϕ ”; this rule has already been applied, for denoting a generic point 

∈Ωx  and the corresponding point ( ) ( )ϕ ∈ ∈ Ωx xϕ ϕϕ ϕϕ ϕϕ ϕ . 
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Fig. 1.1.  
Geometry of a deformation: the volume element, the area element, the unit outer normal, 

are denoted dx , da , n  in the reference configuration Ω , and dx
ϕ , da

ϕ , 
ϕ

n  in the 

deformed configuration ( )Ωϕϕϕϕ . The vectors ( )j
∂ xϕϕϕϕ  define the deformation at a point 

x ∈ Ω  to within the first order. 

 
 

This correspondence between a quantity defined as a function of the Lagrange 
variable x , and a similar quantity defined as a function of the Euler variable 

( )ϕ ∈x xϕϕϕϕ , can be extended to other quantities than volume, surfaces, and 

lengths. As we shall see, it applies equally well to divergences of tensor fields 
and applied forces. 
 
Remark.  

1. This idea can be systematized through the notions of “pullback” and 
“push-forward”, familiar in differential geometry. In this respect, see for 
instance Choquet-Bruhat, Dewitt-Morette and Dillard-Bleick (1977), or 
Marsden and Hughes (1983). 
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1.2. Volume element in deformation configuration 

 
Let ϕ  be a deformation. If dx denotes the volume element at the point x  of the 

reference configuration, the volume element dxϕ at the point ( )ϕ =x xϕϕϕϕ  of the 

deformed configuration (Fig. 1.1) is given by 
 
 ( )detdx x dx

ϕ = ϕϕϕϕ∇∇∇∇ , (1.10) 

 
since ( ) ( )det det 0x x= >ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  by assumption. 

The volume element dxϕ  is used for computing volumes in the deformed 
configuration: If A denotes a measurable subset of the reference configuration 
Ω , the volume of the set A and the volume of the deformed set ( ):A A

ϕ = ϕϕϕϕ  are 

respectively given by: 
 

 ( ): , : det
A AA

vol A dx vol A dx x dx
ϕ

ϕ ϕ= = =∫ ∫ ∫ ϕϕϕϕ∇∇∇∇ . (1.11) 

 
Notice that the last equality is nothing but a special case of the formula for 
changes of variables in multiple integrals: Let ( ): A A A

ϕ→ =ϕ ϕϕ ϕϕ ϕϕ ϕ  be an 

injective, continuously differentiable mapping with a continuous inverse 
1 : A Aϕ− →ϕϕϕϕ . Then a function :u x Aϕ ϕ∈ → R  is dxϕ -integrable over the set 

A
ϕ if and only if the function 

 

 ( )( ) ( )detx A u x x∈ → �ϕ ϕϕ ϕϕ ϕϕ ϕ∇∇∇∇  (1.12) 

 
is dx-integrable over the set A and if this is the case,  
 

 ( )
( )

( )( ) ( )det
AA A

u x dx u x x dx
ϕ

ϕ ϕ

ϕ=

=∫ ∫ �ϕ ϕϕ ϕϕ ϕϕ ϕ∇∇∇∇ . (1.13) 

 
It should be remembered that the validity of this formula hinges critically on the 
assumption that the mapping ϕϕϕϕ  is injective. Otherwise, it must be replaced by 
the more general relation: 
 

 ( ) ( ) ( )( ) ( )
( )

1' ' ' det
A A

u x card x dx u x x dx
ϕ

− =∫ ∫ �ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇∇∇∇  (1.14) 

 
where card B denote in general the number of elements in a set B. For details, 
see Schwartz (1967), Rado & Reichelderfer (1955), Federer (1969), Smith 
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(1983), Bojarski & Iwaniec (1983), Marcus & Mizel (1973), Vodopyanov, 
Goldshtein & Reshetnyak (1979) for its extension to Sobolev space-valued 
mappings. 

These properties hold in n
R , for arbitrary n. The volume 

A

dx∫  of a dx-

measurable subset of n
R  is denoted dx-means A. 

 
1.3. The Piola transform; area element in the deformed configuration 
 
As a preparation for computing the area element in the deformed configuration 
in terms of the area element in the reference configuration, it is convenient to 
introduce a particular transformation between tensors defined over the reference 
configuration Ω  and tensors defined over the deformed configuration ϕΩ . 
Besides, this transform plays a crucial role in the definition of the first Piola-
Kirchhoff tensor, following introduced. 
Let us first review some definitions and results pertaining to tensor fields 
defined over either sets Ω  or ϕΩ . By a tensor, we mean here a second-order 
tensor 

( )ijT=T , i: row index, j: column index. 

Since we ignore the distinction between covariant and controvariant 
components, the set of all such tensors will be identified with the set 3

M  of all 
square matrices of order three. 
Given a smooth enough tensor field 3: Ω →T M  defined over the reference 
configuration Ω , we define at each point of Ω  its divergence div T  as the 
vector whose components are the divergences of the transposes of the row 
vectors of the matrix T . More explicitly, 
 

11 12 13 1 11 2 12 3 13

21 22 23 1 21 2 22 3 23

31 32 33 1 31 2 32 3 33

:
ij j ij i

T T T T T T

T T T T T T T T

T T T T T T

∂ + ∂ + ∂   
   

= = ⇒ = ∂ + ∂ + ∂ = ∂   
   ∂ + ∂ + ∂   

T div T e . (1.15) 

 
Of course, a similar definition holds for the divergence ϕ ϕdiv T  of tensor fields 

3:ϕ ϕ →T B M  defined over the deformed configuration: 
 

 ( ) :ij j ij iT div T T
ϕ ϕ ϕ ϕ ϕ ϕ= ⇒ = ∂T e  (1.16) 

 
where :

j j
x

ϕ ϕ∂ = ∂ ∂  denote the partial derivatives with respect to the variables 

j
x

ϕ . 
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A Simple application of the fundamental Green’s formula over the set Ω  shows 
that the divergence of a tensor field satisfies: 
 

 
j ij i ij j idX T dx T n da

Ω Ω ∂Ω

  
= ∂ =   
   

∫ ∫ ∫div T e e  (1.17) 

 
or equivalently in matrix form: 
 

 dx da
Ω ∂Ω

=∫ ∫divT Tn  (1.18) 

 
Recall that a vector is always understood as a column vector when viewed as a 
matrix; thus the notation Tn  in the previous formula represents the column 

vector obtained  by applying the matrix T to the column vector n . This Green 
formula is called the divergence theorem for tensor fields. A tensor field 

3ϕ ϕ= Ω →T M  likewise satisfies: 
 

 dx da
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

Ω ∂Ω

=∫ ∫div T T n , (1.19) 

 
where ϕ

n denotes the unit outer normal vector along the boundary of the 
deformed configuration. 
We now come to an important definition. Let ϕϕϕϕ  be a deformation that is 

injective on Ω , so that the matrix ϕϕϕϕ∇∇∇∇  is invertible at all points of the reference 

configuration. Then if ( )ϕ ϕ
T x  is a tensor defined at the point ( )ϕ =x xϕϕϕϕ  of the 

deformed configuration, we associate with ( )ϕ ϕ
T x  a tensor ( )T x  defined at the 

point x  of the reference configuration by: 
 

                
( ) ( )( ) ( ) ( ) ( ) ( )( )

( )

: det ,

.

T
x x x

ϕ ϕ ϕ ϕ

ϕ

−
= =

=

T x T x T x Cof

x x

ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ

ϕϕϕϕ

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇
 (1.20) 

 
In this fashion, a correspondence, called the Piola transform, is established 
between tensor fields defined over the deformed and reference configurations, 
respectively. 
 
 
 
 
 



Chapter I – Remarks on the Theory of Elasticity 11 

Remark.  
1. It would be equally conceivable, and somehow more natural, to start 

with a tensor field 3: Ω →T M  and to associate with it its “inverse Piola 
transform” 3:ϕ ϕΩ →T M  defined by  

  ( ) ( )( ) ( ) ( )
1

: det ,
T

x x x
ϕ ϕ −

= ∈ΩT x T xϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇ . 

The reason we proceed the other way is that the starting point in 
elasticity is a tensor field defined over the deformed configuration (the 
Cauchy stress tensor field), and it is its Piola transform over three 
reference configuration (the first Piola –Kirchhoff stress tensor field) 
that subsequently plays a key role. 

 
As shown in the next theorem, the main interest of the Piola transform is that it 
yields a simple relation between the divergences of the tensors ϕ

T  and T  and 
(as a corollary) the desires relation between corresponding area elements daϕ  
and da . 
 
Theorem 1.1. (properties of the Piola transform). Let 3: Ω →T M  denote the 
Piola transform of 3:ϕ Ω →T M . Then 
 

       ( ) ( )( ) ( ) ( )det for all ,x div x
ϕ ϕ ϕ ϕ= = ∈ΩdivT x T x x xϕ ϕϕ ϕϕ ϕϕ ϕ∇∇∇∇ , (1.21) 

                       ( ) ( ) ( )for all ,da da x
ϕ ϕ ϕ ϕ ϕ= = ∈ΩT x n T x n x xϕϕϕϕ . (1.22) 

 
The area elements da  and daϕ  at the points x∈∂Ω  and ( )x x

ϕ ϕ= ∈∂Ωϕϕϕϕ , with 

unit outer normal vectors n  and ϕ
n  respectively, are related by  

 

 ( ) ( ) ( )det
T

x x da x da da
ϕ−

= =n Cof nϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ . (1.23) 

 
 
Remarks. 

1. Of course, the conclusions of Theorem 1.1 still hold if we replace the set 
Ω  by any sub-domain A of Ω , in which case the corresponding area 
elements and outer normal vectors are to be under-stood as being 
defined along the corresponding boundaries A∂  and ( )A A

ϕ∂ = ∂ϕϕϕϕ . 

2. While the relation between the vectors div T  and ϕ ϕdiv T  has been 
established here for deformations ϕϕϕϕ  that are twice differentiable, the 
relations between the area elements established in Theorem (1.1) still 
hold under weaker regularity assumptions on the deformation. 
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3. The last equation in Theorem 1.1 shows that the unit outer normal 
vectors at the points ( )x x

ϕ = ϕ= ϕ= ϕ= ϕ  and x are related by 

( )
( )
x

x

ϕ =
Cof n

n
Cof n

ϕϕϕϕ

ϕϕϕϕ

∇∇∇∇

∇∇∇∇
.  

 
We now have everything at our disposal to specify how areas are transformed: If 
∆  is a measurable subset of the boundary A∂  of a sub-domain A, the area of the 

deformed set ( )ϕ ϕ∆ = ∆  is given by  

 

 ( )area : detda da
ϕ

ϕ ϕ

∆∆

∆ = =∫ ∫ n−Τ−Τ−Τ−Τϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.24) 

 
 
1.4. Length element in the deformed configuration; Strain Tensor 

 
If a deformation ϕϕϕϕ  is differentiable at a point x∈Ω , then (by definition of 

differentiability) we can write, for all points x + ∈Ωδx : 
 

 ( ) ( ) ( ) ( )x x x o+ − = +δx δx δxϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇∇∇∇  (1.25) 

 
and whence 
 

 ( ) ( ) ( ) ( ) ( )2 2T
x x x x o+ − = +δx δx δx δx

ΤΤΤΤϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.26) 

 
The symmetric tensor 
 
 :C = ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.27) 

 
found in the above expression is called in elasticity the right Cauchy-Green 

strain tensor. Notice that the associated quadratic form:  
 

 ( ) ( ) ( )3 3 2, T
x x∈ × → =R R ξ C ξ ξξ ξ ϕξ ξ ϕξ ξ ϕξ ξ ϕ∇∇∇∇  (1.28) 

 
is positive definite at all points x∈Ω , since the deformation gradient ϕϕϕϕ∇∇∇∇  is 
everywhere invertible by assumption. As expected, this quadratic form is used 
for computing lengths: Let 
 
 ( ) , : , :compact interval off I f I Iγ = → Ω R  (1.29) 
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be a curve in the reference configuration (Fig. 1.2). Denoting by 

i
f  the 

components of the mapping f , the length of the curve γ  is given by 

( )' /f df dt= : 

 

 ( ) ( ) ( ){ }
1/ 2

length : ' ' '
L L

f t dt f t f t dtγ = =∫ ∫ , (1.30) 

while the length of the deformed curve ( ):ϕγ γϕϕϕϕ  is given by 

 

 ( ) ( )( ) ( ) ( ){ }
1/ 2

length : ' ' 'ij

L L

f t dt C f t f t f t dt
ϕγ = =∫ ∫�ϕϕϕϕ  (1.31) 

 
Consequently, the length elements dl  and dlϕ  in the reference and deformed 
configurations may be symbolically written as: 
 

 { } { }
1/ 2 1/ 2

,T T
dl dl

ϕ= =dx dx dx Cdx . (1.32) 

 
If in particular 

j
dt=dx e , the corresponding length element in the deformed 

configuration is { }
1/ 2

jj jdt dt= ∂C ϕϕϕϕ .  

 
Remark. 

1. In the language of differential geometry, the manifold Ω  is equipped 
with a Riemannian structure through the data of the metric tensor 

( )ijC=C , often denoted 
ij

g=g  in differential geometry, whose 

associated quadratic form, often denoted 2ds , is called the first 
fundamental form of the manifold. For details, see e.g. Lelong 
Ferrand(1963), Malliavin (1972). 
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Fig. 1.2. 

The length elements { }
1/ 2

T
dl = dx dx  and { }

1/ 2
T

dl
ϕ = dx Cdx  in the reference and 

deformed configurations. The tensor =C
ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  is the right Cauchy-Green tensor. 

 
Although is has no immediate geometric interpretation, the left Cauchy-Green 
strain tensor 
 
 :B ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.33) 

 
which is also symmetric, is equally important; in particular, it plays an essential 
role in the representation theorem for the response function of the Cauchy stress 
tensor. For the time being, we simply notice that the two matrices T=C F F  and 

T=B FF  have the same characteristic polynomial, since this is true in general of 
the products FG  and G F  of two arbitrary matrices F  and G  of the same 

order. When T=G F , this result is a direct consequence of the polar 
factorization theorem. 
In view of showing that the tensor C  is indeed a good measure of “strain”, 
understood here in its intuitive sense of “change in form or size”, let us first 
consider a class of deformations that induce no “strain”: A deformation is called 
a rigid deformation if it is of the form 
 
 ( ) 3, , , for allx o x+= + ∈ ∈ ∈Ωa Q x a R Q Oϕϕϕϕ , (1.34) 
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where 3

+O  denotes the set of rotations in 3
R , i.e., the set of orthogonal matrices 

of order 3 whose determinant is +1. In other words, the corresponding deformed 
configuration is obtained by rotating the reference configuration around the 
origin by the rotation Q  and by translating it by the vector a : this indeed 
corresponds to the idea of a “rigid” deformation, where the reference 
configuration is “moved”, but without any “strain” (Fig. 1.3). Observe that the 
rotation Q  may be performed around any point 3∈x� R  (Fig. 1.3), since we can 
also write  
 
 ( ) ( )x x= + Q x x� �ϕ ϕϕ ϕϕ ϕϕ ϕ  (1.35) 

 
If ϕϕϕϕ  is a rigid deformation, then ( ) 3

x += ∈Q Oϕϕϕϕ∇∇∇∇  at all points x∈Ω , and 

therefore 
 

 ( ) ( )in , i.e., for all
T

x x I xΩ = ∈ΩC = I ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇ . (1.36) 

 
It is remarkable that conversely, if C = I  in Ω  and det 0>ϕϕϕϕ∇∇∇∇ , the 
corresponding deformation is necessarily rigid.  
 
Theorem 1.2. (characterization of rigid deformations). Let Ω  be an open 
connected subset of Rn , and let there be given a mapping  
 

 ( )1 ,∈ Ω nϕϕϕϕ RC  (1.37) 

 
that satisfies  
 

 ( ) ( ) =x x I
ΤΤΤΤ

∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  for all ∈Ωx  (1.38) 

 
then there exists a vector ∈ na R and an orthogonal matrix ∈ nQ O such that  
 
 ( ) = +x oϕϕϕϕ a Q x  for all ∈Ωx . (1.39) 

 
The result of theorem 1.2 can be viewed as a special case (let ψ be any rigid 
deformation in the theorem 1.3) of the following result, which shows that two 
deformations corresponding to the same tensor C  can be obtained from one 
another by composition with a rigid deformation. 
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Theorem 1.3. Let Ω  be an open connected subset of Rn , and let here be given 
two mappings  
 

 ( )1, ,∈ Ω nϕ ψϕ ψϕ ψϕ ψ RC  (1.40) 

 
such that  
 

 ( ) ( ) ( ) ( )∇ ⋅∇ = ∇ ⋅∇
T T

ϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψx x x x  for all ∈Ωx  (1.41) 

 
: Ω → nψψψψ R  is injective, and let ( ) 0∇ ≠ψψψψ x  for all ∈Ωx . 

Then here exist a vector ∈ na R  and an orthogonal matrix ∈ nOQ  such that : 
 
 ( ) ( )= +x xϕ ψϕ ψϕ ψϕ ψa Q  for all ∈Ωx . (1.42) 

 
The previous two theorems are useful for understanding the role played by the 
tensor C . First, theorem 1.2. shows that the difference 
 
 2 := −E C I  (1.43) 
 
is a measure of the “deviation” between a given deformation and a rigid 
deformation, since =C I  if and only if the deformation is rigid. Secondly, 
theorem 1.3. shows that the knowledge of the tensor field 3: >Ω →C S  
completely determines the deformation, up to composition with rigid 
deformations (the question of proving the existence of deformations for which 
the associated tensor field 3: >Ω →C S  is equal to a given tensor field is quite 
another matter). These considerations are illustrated in figure 1.3. 
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Fig. 1.3. 
The right Cauchy-Green tensor C  is equal to Ι  if and only if the deformation is rigid. 

Two deformations corresponding to the same tensor C differ by a rigid deformation. 

 
 
The tensor E  is called the Green-St Venant strain tensor. Expressed in terms of 
the displacement gradient u∇∇∇∇ , in lieu of the deformation gradient uϕϕϕϕ∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇  

(recall that id uϕϕϕϕ = += += += + ), the strain tensor C  becomes  
 
 2= + + + = +T TC Ι u u u u Ι EΤΤΤΤϕ ϕ =ϕ ϕ =ϕ ϕ =ϕ ϕ =∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇  (1.44) 

 
with  
 

 ( ) ( )1
2:= = + +T T

E u E u u u u∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  (1.45) 

 
whose “first order” part ( )1

2 +T
u u∇ ∇∇ ∇∇ ∇∇ ∇  coincide with the linearized strain tensor, 

which played a key role in the earlier linearized theories that prevailed in 
elasticity.  
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2. THE EQUATION OF EQUILIBRIUM 

 
A body occupying a deformed configuration ϕΩ , and subjected to applied body 
forces in its interior ϕΩ  and to applied surfaces forces on a portion ( )1 1

ϕ ϕΓ = Γ  

of its boundary, is in static equilibrium if the fundamental stress principle of 
Euler and Cauchy is satisfied. This axiom, which is the basis of continuum 
mechanics, implies the celebrated Cauchy theorem, according to which there 
exists a symmetric tensor field 3:ϕ ϕΩ →T S  such that 
 

 
1

in

on

divϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω


= Γ

T

T n

f

g
 (1.46) 

 
where ϕf  and ϕg  denote the densities of the applied body and surface forces 

respectively, and ϕ
n  is the unit outer normal vector along 1

ϕΓ . These equation 

are called the equilibrium over the deformed configuration, and the tensor ϕ
T  is 

called the Cauchy stress tensor. 
A remarkable feature of these equations is their “divergence structure”, which 
makes them amenable to a variational formulation; a disadvantage is that they 
are expressed in terms of the unknown ( )ϕ ϕ=x x . In order to obviate this 

difficulty while retaining the divergence structure of the equations, we use the 
Piola transform 3: Ω →T M  of the Cauchy stress tensor field, which is defined 

by ( ) ( ) ( )Cof
ϕ ϕ=T x T x xϕϕϕϕ∇∇∇∇ . In this fashion, it is found that the equilibrium 

equations over ϕΩ  are equivalent to the equilibrium equations over the 
reference configuration Ω , 
 

 
1

in

on

div− = Ω


= Γ

T

Tn

f

g
 (1.47) 

 
where n  denotes the unit outer normal vector along 1Γ , and the fields 

3: Ω →f R  and 3
1:Γ →Rg  are related to the fields 3:ϕ ϕΩ →Rf  and 

3
1:ϕ ϕΓ →Rg  by the simple formulas dx dxϕ ϕ=f f  and dx dxϕ ϕ=g g . Because 

they are still in divergence form, these equations can be given a variational 
formulation, known as the principle of virtual work. This principle plays a key 
role as the starting point of the theory of hyperelastic materials, as well in the 
asymptotic theory of two-dimensional plate models. 
The tensor T  is called the first Piola-Kirchhoff stress tensor. We also introduce 
the symmetric second Piola-Kirchhoff stress tensor 1− TϕϕϕϕΣ = ∇Σ = ∇Σ = ∇Σ = ∇ , which naturally 
arises in the expression of the constitutive equations of elastic materials. 
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2.1. Applied Forces 

 
We assume that in the deformed configuration ϕΩ  associated with an arbitrary 
deformation ϕϕϕϕ , the body is subjected to applied forces of two types: 

(i) applied body forces, defined by a vector field 
 

 3:ϕ ϕΩ →Rf , (1.48) 

 
called the density of the applied body forces per unit volume in the deformed 
configuration; 

(ii) applied surface forces, defined by a vector field 
 

 3
1:ϕ ϕΓ →Rg  (1.49) 

 
on a daϕ -measurable subset 1

ϕΓ  of the boundary  
 
 :ϕ ϕΓ = ∂Ω  (1.50) 
 
called the density of the applied surface force per unit area in the deformed 
configuration. 
Let :ϕ ϕρ Ω →R  denote the mass density in the deformed configuration, so that 

the mass of every dxϕ -measurable subset A
ϕ of ϕΩ  is given by the integral 

( )
A

x dx
ϕ

ϕ ϕ ϕρ∫ . We assume that  

 

 ( ) 0 for allx x
ϕ ϕ ϕρ > ∈Ω  (1.51) 

 
The applied body forces can be equivalently defined by their density 

3:ϕ ϕΩ →b R  per unit mass in the deformed configuration, which is related to 
the density ϕf  by the equation 
 
 ϕ ϕ ϕρ= bf  (1.52) 

 
The applied forces describe the action of the outside world on the body: An 

elementary force ( )x dx
ϕ ϕ ϕ

f  is exerted on the elementary volume dxϕ  at each 

point xϕ  of the deformed configuration. For example, this is the case of the 

gravity field, for which ( ) ( ) 3x g x
ϕ ϕ ϕρ= − ef  for all xϕ ϕ∈Ω  (assuming that 
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the vector 3e  is vertical and oriented “upward”), where g  is the gravitational 
constant. Another example is given by the action of electrostatic forces. 

Likewise, an elementary force ( )x dx
ϕ ϕ ϕ

g  is exerted on the elementary area 

daϕ  at each point xϕ  of the subset 1
ϕΓ of the boundary of the deformed 

configuration (Fig. 1.3). Such forces generally represent the action of another 
body (whatever its nature its may be) along the portion 1

ϕΓ  of the boundary. 
 
 

 
 

Fig. 1.3. 

Applied forces comprise applied body forces ( ) ,x dx x
ϕ ϕ ϕ ϕ∈Ωf  and applied surface 

forces ( ) 1,x dx x
ϕ ϕ ϕ ϕ∈Γg . The stress principle of Euler and Cauchy asserts in addition 

the existence of elementary surface forces ( ), ,da x A
ϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , along the 

boundary A
ϕ∂ , with  unit outer normal vector 

ϕ
n , of any sub-domain A

ϕ
of the 

deformed configuration 
ϕΩ . 

 
 
Remark. 

1. In order to avoid  introducing too many notations, we use the same 
symbol to denote distinct quantities in the same figure. For instance in 
Fig. 1.3. the symbol xϕ  stands fro three different points, and the 
symbols daϕ and 

ϕ
n  stand for two different area elements and normal 

vectors. 
Applied surface forces that are only “partially” specified (for instance, only the 
normal component ( )x

ϕ ϕ⋅g n  could be prescribed along 1
ϕΓ ) are not excluded 

from our analysis; but in order to simplify the exposition, we solely considered 
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at this stage the “extreme” cases where either the density ϕg  is fully known on 

1
ϕΓ , or is left completely unspecified, as on the remaining portion 

 
 0 1:ϕ ϕ ϕΓ = Γ − Γ  (1.53) 

 
of the boundary of the deformed configuration. This being the case, we shall see 
that it is the deformation itself that should be specified on the corresponding 

portion ( )1
0 0: ϕϕ−Γ = Γ  of the boundary of the reference configuration, in order 

that the problem be well posed. 
 
2.2. The stress principle of Euler and Cauchy 

 
Continuum mechanics for static problems is founded on the following axiom, 
named after the fundamental contributions of Euler (1757,1771) and Cauchy 
(1823,1827a). Note that the exterior product in 3

R  is denoted ∧ . 
 
Axiom 1. (stress principle of Euler and Cauchy). Consider a body occupying 
a deformed configuration ϕΩ , and subjected to applied forces represented by 
densities 3:ϕ ϕ= Ω →Rf  and 3:ϕ ϕ= Ω →Rg . Then there exists a vector field 
 

 { }3 3
1 1: , where ; 1S S v

ϕ ϕΩ × → = ∈ =t v�R , (1.54) 

 
such that: 

(a) For any sub-domain A
ϕ of ϕΩ , and at any point 1 Aϕ ϕ ϕ∈Γ ∩ ∂x  where 

the unit outer normal vector ϕn  to 1 Aϕ ϕΓ ∩ ∂  exists: 

( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n g x . 

(b) Axiom of force balance: For any sub-domain A
ϕ of ϕΩ ,  

 

 ( ) ( ),
A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

+ =∫ ∫f x t x n 0  (1.55) 

 
where ϕn  denotes the unit outer normal vector along Aϕ∂ . 

(c) Axiom of moment balance: For any sub-domain A
ϕ  of ϕΩ ,  

 

 ( ) ( ),
A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

∧ + ∧ =∫ ∫ox f x ox t x n 0 . (1.56) 
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The stress principle thus first asserts the existence of elementary surface forces 

( ), da
ϕ ϕ ϕ ϕ

t x n  along the boundaries of all domains of the reference 

configuration (Fig. 1.3.). 
Secondly, the stress principle asserts that at a point ϕ

x of the boundary Aϕ∂  of a 
sub-domain A

ϕ , the elementary surface force depends on the sub-domain A
ϕ , 

only via the normal vector ϕn  to Aϕ∂  at ϕ
x . While it would be equally 

conceivable a priori that the elementary surface force at ϕ
x  be also dependent on 

other geometrical properties of the sub-domain A
ϕ , for instance the curvature of 

Aϕ∂  at ϕ
x , etc., it is possible to rigorously rule out such further geometrical 

dependences by constructing a general theory of surfaces forces, as shown by 
Noll (1959). 
Thirdly, the stress principle asserts that any sub-domain A

ϕ  of the deformed 
configuration ϕΩ , including ϕΩ  itself, is in static equilibrium, in the sense that 

the torsor formed by the elementary forces ( ), ,da x A
ϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , 

ϕ
n  normal 

to Aϕ∂  at ϕ
x , and the body forces ( )d

ϕ ϕ ϕ
f x x , A

ϕ ϕ∈x , is equivalent to zero. 

This means that its resultant vector vanishes (axiom of force balance) and that its 
resulting moment with respect to the origin (and thus with respect to any other 
point, by a classical property of torsos) vanishes (axiom of moment balance). 
Hence the stress principle mathematically express, in the form of an axiom, the 
intuitive idea that the static equilibrium of any sub-domain A

ϕ of ϕΩ , already 

subjected to given applied body forces ( )d
ϕ ϕ ϕ

f x x , A
ϕ ϕ∈x , and (possibly) to 

given applied surface forces ( )da
ϕ ϕ ϕ

g x  at those points 1 Aϕ ϕ ϕ∈Γ ∩ ∂x  where 

the outer normal vector to 1 Aϕ ϕΓ ∩ ∂  exists, is made possible by the added effect 
of elementary surfaces forces of the specific form indicated, acting on the 
remaining part of the boundary Aϕ∂ . 
 
Remark.  

1. Gurtin (1981a, 1981b) calls system of forces the set formed by the 
applied bodu forces, corresponding to the vector field 3:ϕ ϕ= Ω →Rf  
and by the surface forces, corresponding to the vector field 

3
1: Sϕ ϕ= Ω × →Rt . 

 

Let ϕ
x  be a point of the deformed configuration. The vector ( ),ϕ ϕ ϕ

t x n  is called 

the Cauchy stress vector across an oriented surface element with normal ϕ
n , or 

the density of the surface force per unit area in the deformed configuration. 
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2.3. Cauchy’s theorem; The Cauchy stress tensor 

 

We now derive consequences of paramount importance from the stress principle. 
The first one, due to Cauchy (1823,1827a), is one of the most important results 
in continuum mechanics. It asserts that the dependence of the Cauchy stress 

vector ( ),ϕ ϕ ϕ
t x n  with respect to its second argument 1S∈n  is linear, i.e., at 

each point ϕ ϕ∈Ωx , there exists a tensor ( ) 3ϕ ϕ ∈T x M  such that 

( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n T x n  for all 1S∈n ; the second one asserts that at each point 

ϕ ϕ∈Ωx , the tensor ( )ϕ ϕ
T x  is symmetric; the third one, again due to Cauchy 

(1827b, 1828), is that  the tensor field 3:ϕ ϕΩ →T M  and the vector fields 
3:ϕ ϕΩ →Rf  and 3

1:ϕ ϕ= Γ →Rg  are related by a partial differential equation 

in ϕΩ , and by a boundary condition on 1
ϕΓ , respectively. 

 
Theorem 1.2. (Cauchy’s theorem). Assume that the applied body force density 

3:ϕ ϕΩ →Rf  is continuous, and that the Cauchy stress vector field  
 

 ( ) ( ) 3
1: , ,S

ϕ ϕ ϕ ϕ ϕ ϕ∈Ω × → ∈t x n t x n R  (1.57) 

 
is continuously differentiable with respect to the variable ϕ ϕ∈Ωx  for each 

1S∈n  and continuous with respect to the variable 1S∈n  for each ϕ ϕ∈Ωx . 
Then the axioms of force and moment balance imply that there exists a 
continuously differentiable tensor field 
 

 ( ) 3:ϕ ϕ ϕ ϕ ϕ∈Ω → ∈T x T x M , (1.58) 

 
such that the Cauchy stress vector satisfies 
 

 ( ) ( ) 1, for all and all S
ϕ ϕ ϕ ϕ ϕ ϕ= ∈Ω ∈t x n T x n x n , (1.59) 

 
and such that  
 

 ( ) ( ) for alldiv
ϕ ϕ ϕ ϕ ϕ ϕ ϕ− = ∈ΩT x f x x , (1.60) 

 ( ) ( ) for all
Tϕ ϕ ϕ ϕ ϕ ϕ= ∈ΩT x T x x , (1.61) 

 ( ) ( ) 1for allϕ ϕ ϕ ϕ ϕ ϕ ϕ= ∈ΓT x n g x x  (1.62) 
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where ϕ
n  is the unit outer normal vector along 1

ϕΓ . 

The symmetry tensor ϕ
T  is called the Cauchy stress tensor at the point ϕ ϕ∈Ωx . 

It is helpful to keep in mind the interpretation of its elements ( )ϕ ϕ
ijT x : Since 

( ) ( ),ϕ ϕ ϕ ϕ= ⋅j ij ixt e T x e , the elements of the j-th row of the tensor ( )ϕ ϕ
xT  

represent the components of the Cauchy stress vector ( ),ϕ ϕ
xt n   at the point ϕ

x  

corresponding to the particular choice =
j

n e  (Fig. 1.4. where  the case j=1 is 

considered). The knowledge of the three vectors ( ),ϕ ϕ
jxt e  in turn  completely 

determines the Cauchy stress vector ( ),ϕ ϕ
xt n  for an arbitrary  vector 

1= ∈
i i

n Sn e , since  
 

 ( ) ( ), ,ϕ ϕ ϕ ϕ= j jx n xt n t e  (1.63) 

 
This observation is used in the drawing of figures, where the Cauchy stress 
vector is often represented on three mutually perpendicular faces of a rectangular 
parallelepiped. 
 

e3

e1

2e

xda T21 2e

T11 1e

T31 3e

t ( )x e1, =Ti1
e

 
Fig. 1.4. 

Interpretation of the elements 1
ϕ
i

T  of the Cauchy stress tensor ( )ϕ ϕ=
ij

TT . 
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2.4. The equation of equilibrium and the principle of virtual work in the 

deformed configuration 

 
As shown un Theorem 1.2., the axioms of force and moment balance imply that 
the Cauchy stress tensor field 3:ϕ ϕΩ →T S  satisfies a boundary value problem 
expressed in terms of the Euler variable ϕx  over the deformed configuration , 
comprising the partial differential equation ϕ ϕ ϕ− =div T f  in ϕΩ  and the 
boundary condition ϕ ϕ ϕ=T n g  on 1

ϕΓ . A remarkable property of this boundary 
value problem, due to its “ divergence form”, is that it can be given a variational 
formulation, as we now show . In what follows, ⋅ =

i i
u vu v  denotes the 

Euclidean vector inner product, = = T

ij ji
A B trA : B A B  denotes the matrix inner 

product, and ϕ ϕ∇∇∇∇ θθθθ  denotes the matrix ( )ϕ ϕθ∂ j i . 

Theorem 1.3. The boundary value problem:  
 

 
1

in

on

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω

= Γ

div T f

T n g
 (1.64) 

 
Is formally equivalent to the variational equations: 
 

 
1

:
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕθ
Ω Ω Γ

∇ = ⋅ + ⋅∫ ∫ ∫dx dx dxT f gθ θθ θθ θθ θ  (1.65) 

 
valid for all smooth enough vector fields: 3:ϕ ϕΩ →�θθθθ  that satisfy 
 
 1on :ϕ ϕ ϕ ϕ= Γ = Γ − Γ

o
0θθθθ . (1.66) 

 
The equation  
 

 ( )

1

in ,

in ,

on ,

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω

= Ω

= Γ

T

div T f

T T

T n g

 (1.67) 

 
are called the equations of equilibrium in the deformed configuration, while the 
associated variational equations (1.65) of Theorem 1.3. constitute the principle 
of virtual work in the deformed configuration . 
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2.5. The Piola-Kirchhoff stress tensors 

 
Our final objective is to determine the deformation field and the Cauchy stress 
tensor field that arise in a body subjected to a given system of applied forces. In 
this respect, the equations of equilibrium in the deformed configuration are of 
not much avail, since they are expressed in terms of the Euler variable 

( )x
ϕ ϕ=x , which is precisely on of the unknows. To obviate this difficulty, we 

shall rewrite these equations in terms of the Lagrange variable x that is attached 
to the reference configuration, which is considered as being given once and for 
all. More specifically, we shall transform the left-hand sides divϕ ϕT  and ϕ ϕ

T n  
and the right-hand sides ϕf  and ϕg  appearing in the equations of equilibrium 

over ϕΩ into similar expressions over Ω . 
We defined the Piola transform: 3: Ω →T M  of a tensor field 

( ) 3:ϕ ϕ ϕΩ = Ω →T M  by letting 

 

 ( ) ( )( ) ( ) ( ) ( )det ,
T

x x x x x x
ϕ ϕ ϕ−

= =T ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇T . (1.68) 

 
We shall therefore apply this transform to the Cauchy stress tensor ϕ

T , in which 
case its Piola transform T is called the first Piola-Kirchhoff stress tensor. As 
shown in theorem 1 (chapter 1a), the main advantage of this transform is to 
induce a particularly simple between the divergences of both tensors: 
 

 ( ) ( )( ) ( ) ( )det ,div x x div x x
ϕ ϕ ϕ ϕ ϕ= =T T xϕϕϕϕ∇∇∇∇ . (1.69) 

 
As a consequence, the equations of equilibrium over the deformed configuration 
will be transformed into equations over the reference configuration  that have a 
similar divergence structure. This property in turn makes it possible to write 
these partial differential equations in variational form.  

On can likewise transform the Cauchy stress vector ( ) ( ),x x
ϕ ϕ ϕ ϕ ϕ=t n T n  into a 

vector ( ),xt n  in such a way that the relation  

 
 ( ) ( ),x x=t n T n , (1.70) 

 
holds, where ( )xT  is the first Piola-Kirchhoff stress tensor and where n  and 

ϕ
n  are the corresponding normal vectors at the points x and ( )x

ϕ ϕ=x  of the 

boundaries of corresponding sub-domains A  and ( )A A
ϕ ϕ= . Notice that there 

is no ambiguity in this process since the normal vector ϕ
n  at the point 
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( )x
ϕ ϕ=x  is the same for all sub-domains whose boundary passes through the 

point x with n  as the normal vector there. In view of the relation 

( ) ( )x da x da
ϕ ϕ ϕ ϕ=T n T n  established in Theorem 1.1., it suffices to define the 

vector ( ),xt n  by the relation: 

 

 ( ) ( ), ,x da t x da
ϕ ϕ ϕ ϕ=t n n . (1.71) 

 
Since ( ) ( ),x x

ϕ ϕ ϕ ϕ ϕ=t n T n  by Cauchy’s theorem, the desired relation 

( ) ( ),x x=t n T n  holds. 

The vector ( ),xt n  is called the first Piola-Kirchhoff stress vector at the point 

x of the reference configuration, across the oriented surface element with normal 
n . The vector field 3

1: SΩ × →t R  defined in this fashion thus measures the 
density of the surface force per unit area in the reference configuration. 

While the Cauchy stress tensor ( )x
ϕ ϕ

T is symmetric (Theorem 1.2.) the first 

Piola-Kirchhoff stress tensor ( )xT  is not symmetric in general; instead one has: 

 

 ( ) ( ) ( ) ( )
1T T

x x x x
− −

=T T∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ . (1.72) 

 
It is nevertheless desirable to define a symmetric stress tensor in the reference 
configuration, essentially because the constitutive equation in the reference 
configuration then takes a simpler form. More specifically, we define the second 

Piola-Kirchhoff stress tensor ( )xΣΣΣΣ  by letting 

 

               
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

1 1
det ,

T
x x x x x x x

x x

ϕ ϕ

ϕ ϕ

− − −
= =

=

Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕT T
 (1.73) 

 
 
Remarks. 

(1) In fact, the question of whether or not the matrix ( )xT  is symmetric 

does not make sense for, as a tensor, it has one index attached to the 
reference configuration and one index attached to the deformed 
configuration. A complete discussion of these aspect can be found in 
Marsden & Hughes (1983)- 

(2) Historical reference on the Piola-Kirchhoff stress tensors are given in 
Truesdell & Toupin (1960). 
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The Piola-Kirchhoff stress tensor ( )xT  and ( )xΣΣΣΣ  both depend on the 

deformation ϕϕϕϕ , first through the Piola transform itself, secondly because the 

Cauchy stress tensor also dependent on ϕϕϕϕ .  
 
2.6. The equation of equilibrium and the principle of virtual work in the 

reference configuration 

 
It remains to transform the applied forces densities that appear in the equilibrium 
equations over the deformed configuration. First, with the density 3:ϕ ϕΩ →Rf  
of the applied force per unit volume in the deformed configuration, we associate 
a vector field 3: Ω →Rf  in such a way that  
 

 ( ) ( )ϕ ϕ ϕ=x dx x dxf f  for all ( )ϕ ϕϕ= ∈Ωx x  (1.74) 

 
where dx  and ϕdx  denote the corresponding volume elements. Since  
 

 ( )( ) ( ) ( )det ,ϕ ϕ ϕ ϕ ϕ= =dx x x x xf∇∇∇∇ϕϕϕϕ , (1.75) 

 
so that the vector ( )xf  depends on the deformation ϕϕϕϕ , via the factor 

( )det x∇∇∇∇ϕϕϕϕ  on the one hand, and via the possible dependence of the density ϕf  

on the deformation ϕϕϕϕ  on the other hand. Notice that this relation displays the 

same factor ( )det x∇∇∇∇ϕϕϕϕ  as the relation between the vectors ( )xdivT  and 

( )ϕ ϕ ϕ
xdiv T .  

The vector field 3: Ω →Rf  measures the density of the applied body force per 

unit volume in the reference configuration; the vector ( )xf  is defined in such a 

way that the elementary vector ( )x dxf  is equal to the elementary body 

force ( )ϕ ϕ
x dxf  acting on the corresponding volume element ϕdx  at the point 

( )ϕ ϕ=x x  (Figure 1.5.). 

Let: :ρ Ω →R  denote the mass density in the reference configuration. 

Expressing that the mass of the elementary volumes dx  and ( )detϕ =dx x dx∇∇∇∇ϕϕϕϕ  

is the same, we find the mass densities :ρ Ω →R  and :ϕ ϕρ Ω →R  are related 
by the equation  
 

 ( ) ( ) ( ) ( )det ,ϕ ϕ ϕρ ρ ϕ= =x x x x x∇∇∇∇ϕϕϕϕ . (1.76) 
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Incidentally, this relation also shows that, regardless of any consideration 
concerning the preservation of orientation, the Jacobian ( )det x∇∇∇∇ϕϕϕϕ  should not 

vanish in an actual deformation, since mass density is always 0> , at least 
macroscopically. 
 
 

 
 

Fig. 1.5. 
The applied body force and surface force densities in the deformed configuration and in 

the reference configuration 
 
 
Then if we define the density 3: Ω →b R  of the applied body forces per unit 
mass in the reference configuration by letting  
 
 ( ) ( ) ( )ρ=x x xbf  for all ∈Ωx  (1.77) 

 
it follows that the densities of the applied force per unit mass are related by 
 

 ( ) ( ) ( ),ϕ ϕ ϕ ϕ= =x x x xb b . (1.78) 

 
Secondly, in order to transform the boundary condition ϕ ϕ ϕ=T n g  over 

( )1 1
ϕ ϕΓ = Γ  into a similar condition over 1Γ , it suffices to use the first Piola-

Kirchhoff stress vector, which was precisely defined for this purpose: With the 
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density 3
1:ϕ ϕΓ →g R  of the applied surface force per unit area in the deformed 

configuration, we associate the vector field 3
1: Γ →g R  defined by  

 

 ( ) ( )ϕ ϕ ϕ=x da x dag g  for all ( ) 1
ϕ ϕϕ= ∈Γx x  (1.79) 

 
where da and ϕda  are the corresponding area elements. Hence by Theorem 1.1 
(Properties of the Piola transform), the vector ( )xg  is given by  

 

 ( ) ( ) ( ) ( )det ϕ ϕ−
=

T
x x xg n g x∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ . (1.80) 

 
Notice that the vector ( )xg  depends on the deformation ϕϕϕϕ , via the formula 

relating the corresponding area elements on the one hand and via the possible 
dependence of the density, ϕg on the deformation ϕϕϕϕ  on the other hand. The 

vector field 3
1: Γ →g R  measures the density of the applied surface force per 

unit area in the reference configuration; it is defined in such a way that the 

elementary vector ( )x dag  is equal to the elementary surface force ( )ϕ ϕ ϕ
x dag  

acting on the corresponding area element ϕda  at the point ( )ϕ ϕ=x x  (Fig. 1.5).  

We can now establish the analogous of Theorem 1.3 over the reference 
configuration:  
Theorem 1.4. The first Piola-Kirchhoff stress tensor  
 

 ( ) ( )( ) ( ) ( )det ϕ ϕ −
=

T
x x xT T x∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  (1.81) 

 
satisfies the following equations in the reference configuration Ω : 
 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 1

, ,

, ,

,

− = ∈Ω

= ∈Ω

= ∈Γ

T T

x x x

x x x x x

x x x

div T

T T

T n g

f

∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  (1.82) 

 
where ϕ ϕ=dx dxf f , ϕ ϕ=da dag g . The first and third equations are together 
equivalent to the variational equations:  
 

 
1

:
Ω Ω Γ

= ⋅ + ⋅∫ ∫ ∫dx dx daT f g∇∇∇∇θ θ θθ θ θθ θ θθ θ θ , (1.83) 
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valid for all smooth enough vector fields 3: Ω →�θθθθ  that satisfy  
 
 0 1on Γ = Γ − Γ0====θθθθ . (1.84) 
 
In terms of the second Piola-Kirchhoff stress tensor, the above result becomes: 
Theorem 1.5. The second Piola-Kirchhoff stress tensor  
 

 ( ) ( )( ) ( ) ( ) ( )
1

det ϕ ϕ− −
=

T
x x x x xTΣ ∇ ∇ ∇Σ ∇ ∇ ∇Σ ∇ ∇ ∇Σ ∇ ∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  (1.85) 

 
satisfies the following equations in the reference configuration Ω :  
 

 

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( ) 1

, ,

, ,

,

− = ∈Ω

= ∈Ω

= ∈Γ

T

x x x x

x x x

x x x x

div

n g

f∇ Σ∇ Σ∇ Σ∇ Σ

Σ ΣΣ ΣΣ ΣΣ Σ

∇ Σ∇ Σ∇ Σ∇ Σ

ϕϕϕϕ

ϕϕϕϕ

 (1.86) 

 
The first and third equations are together equivalent to the variational equations  
 

 
1

:ϕ
Ω Ω Γ

Σ = ⋅ + ⋅∫ ∫ ∫dx dx daf g∇ ∇∇ ∇∇ ∇∇ ∇θ θ θθ θ θθ θ θθ θ θ  (1.87) 

 
valid for all smooth enough maps 3: Ω →�θθθθ  that satisfy 
 
 0 1on Γ = Γ − Γ0====θθθθ  (1.88) 
 
The equations satisfied over Ω  and 1Γ  by either stress tensor are called the 
equations of equilibrium in the reference configuration, and their associated 
variational equations constitute the principal of virtual work in the reference 
configuration. The equation on 1Γ  is called a boundary condition of traction. 
 
3. LINEAR ANISOTROPIC ELASTIC MEDIA 

 
The relation between stress and strain in an anisotropic elastic material are 
presented in this section. A linear anisotropic elastic material can have as many 
as 21 elastic constants. This number is reduced when the material possesses a 
certain material symmetry. The number of elastic constants is also reduced, in 
most cases, when a two-dimensional deformation is considered. An important 
condition on elastic constants is that the strain energy must be positive. This 
condition implies that the 6x6 matrices of elastic constants presented herein must 
be positive definite. 
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3.1. Elastic Stiffnesses 

 

Referring to a fixed rectangular coordinate system 1x , 2x , 3x , let 
ij

σ  and 
ij

ε  be 

the stress and strain, respectively, in an anisotropic elastic material. The stress-
strain law can be written as  

 
 

ij ijkl kl
Cσ ε=  (1.89) 

 

in which 
ijhk

C , are the elastic stiffnesses which are components of a fourth rank 

tensor. They satisfy the full symmetry conditions 

 
 , ,

ijkl jikl ijkl ijlk ijkl klij
C C C C C C= = = . (1.90) 

 
Before we present justifications for the three conditions in (1.90), we show that 
(1.90)1 and (1.90)3 imply (1.90)2. Using (1.90)3, (1.90)1 and (1.90)3 in that order 
we have  
 

ijkl klij lkij ijlk
C C C C= = =  

 
which proves (1.90)2. Therefore the three conditions in (1.90) are written as 
 
 

ijkl jikl klij
C C C= = . (1.91) 

 
One can also show that (1.90)2 and (1.90)3 imply (1.90)1.  
The first equation of (1.90) follows directly from the symmetry of the stress 
tensor 

ij ji
σ σ= . The second equation of (1.90) does not follow directly from the 

symmetry of the strain tensor 
ij ji

ε ε= . However, if the 
ijkl

C  in (1.90) do not 

satisfy (1.90)2, we rewrite (1.90) as  
 

1 1 1 1
2 2 2 2ij ijkl kl ijkl kl ijkl kl ijlk lk
C C C Cσ ε ε ε ε= + = +  

 
or since 

lk kl
ε ε= , 

 

 ( )1
2ij ijkl ijlk klC Cσ ε= + . (1.92) 

 

The coefficients of 
kl

ε  are symmetric with the subscripts kl. We can therefore 

redefine the coefficients of 
kl

ε  in (1.92) as the new 
ijkl

C  which satisfy (1.90)2.  
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The third equation follows from the consideration of strain energy. The strain 
energy W  per unit volume of the material is 
 

 
0 0

pq pq

ij ij ijkl kl ijW d C d
ε ε

σ ε ε ε= =∫ ∫ . (1.93) 

 
We demand that the integral be independent of the path 

ij
ε  takes from 0 to 

pq
ε .  

If not, say path 1 yields a larger integral than path 2, one can consider loading 
the material from 0 to 

pq
ε  through path 1, and unloading from 

pq
ε  to 0 through 

the reverse of path 2. The energy gained is the difference between the W ’s for 
path 1 and path 2. If we repeat the process we can extract unlimited amount of 
energy from the material, which is physically impossible for a real material. 
Therefore the integral in (1.93) must be independent of the path taken by 

ij
ε , 

and W  depends on the final strain 
pq

ε  only. This implies that the integrand 

must be the total differential dW , i.e.,  
 

 
ijkl kl ij ij

ij

W
C d dW dε ε ε

ε

∂
= =

∂
. (1.94) 

 
Since 

ij
dε  is arbitrary we must have  

 

 
ij ijkl kl

ij

W
Cσ ε

ε

∂
= =

∂
 (1.95) 

 
in which the first equality follows from (1.89). Differentiation of (1.95) with 

kl
ε  leads to  
 

2

ijkl

kl ij

W
C

ε ε

∂
=

∂ ∂
 

 

The double differentiations on the right are interchangeable. Therefore 

 

ijkl klij
C C=  

 

is the condition for the integral in (1.93) to be Independent of the loading path.  
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This proves (1.90)3. With (1.90)3, (1.94) is written as 

 

( )1
2ijkl kl ij ijkl ij kldW C d d Cε ε ε ε= = . 

 
Hence 
 
 1 1

2 2ijkl ij kl ij ij
W C ε ε σ ε= = . (1.96) 

 
and since the strain energy must be positive, it results 
 
 0

ijkl ij kl
C ε ε >  (1.97) 

 
for any real, nonzero, symmetric tensor 

kl
ε . 

 
3.2. Elastic Compliances 
 
The inverse of (1.89) is written as 
 
 

ij ijkl kl
Sε σ=  (1.98) 

 
where 

ijkl
S  are the elastic compliance which are components of a four rank 

tensor. They also possess the full symmetry  
 
 , ,

ijkl jikl ijkl ijlk ijkl klij
S S S S S S= = =  (1.99) 

 
or, as in (1.91)  
 
 

ijkl jikl klij
S S S= = . (1.100) 

 
The justifications of the first and second equations in (1.101) are similar to their 
counterparts in (1.102). The justification of (1.103)3 also follows from the 
energy consideration. Integration by parts of (1.104)1 leads to  
 

0 0

pq pq

pq pq ij ij pq pq ijkl kl ijW d S d
σ σ

σ ε ε σ σ ε σ σ= − = −∫ ∫ . 

 
If W depends on the final strain 

pq
ε  it depends on the final stress 

pq
σ . The last 

integral which represents the complementary energy must be independent of the 
path 

ij
σ  takes from 0 to the final stress 

pq
σ . Following a similar argument for 
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ijkl
C , we deduce that (1.105)3 must hold for the integral to be path independent. 

Since the strain energy must be positive, the substitution of the (1.98) into the 
(1.96) yields  
 
 0

ijkl ij kl
S σ σ >  (1.106) 

 
 
3.3. Contracted Notations 
 
Introducing the contracted notation (Voigt, 1928; Lekhnitskii, 1963; 
Christensen, 1979) 
 

 11 1 22 2 33 3

32 4 31 5 12 6

, , ,

, , ,

σ σ σ σ σ σ

σ σ σ σ σ σ

= = =

= = =
 (1.107) 

 11 1 22 2 33 3

32 4 31 5 12 6

, , ,

2 , 2 , 2 ,

ε ε ε ε ε ε

ε ε ε ε ε ε

= = =

= = =
 (1.108) 

 
the stress-strain law (1.89) and (1.90) can be written as 
 
 ,C C Cα αβ β αβ βασ ε= = , (1.109) 

 
or, in matrix notation,  
 
 , T= =C C CT E . (1.110) 

 

In the above T  and E  are 6 1×  column matrices and C  is the 6 6×  symmetric 
matrix given by 

 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

=  
 
 
 
  

C  (1.111) 
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The transformation between 
ijkl

C  and Cαβ  is accomplished by replacing the 

subscripts ij (or kl) by α  (or β ) using the following rules: 

 

 

( )(or ) or

11 1

22 2

33 3

32 or 23 4

31 or 13 5

12 or 21 6

ij kl α β↔

↔

↔

↔

↔

↔

↔

 (1.112) 

 
The presence of the factor 2 in (1.108)4-5-6 but not in (1.107)4-5-6 6 is necessary 
for the symmetry of C . 
Analogously, with reference to the equation (1.107) and(1.108), the stress-strain 
law in the form (1.98) may be expressed in a matrix form, as it follows: 
 
 , T= =S S SE T  (1.113) 

 
where the compliance tensor S  is expressed in form of the 6 6×  symmetric 
matrix, given by: 
 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 

=  
 
 
 
  

S  (1.114) 

 
Note that the transformation between 

ijkl
S  and Sαβ  is similar to that one between 

ijkl
C  and Cαβ  except the following: 

 

 

if both , 3

2 if either or 3

4 if both , 3.

ijhk

ijhk

ijhk

S S

S S

S S

αβ

αβ

αβ

α β

α β

α β

= ≤

= ≤

= >

 (1.115) 
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From (1.110)1 and (1.113)1, it is obtained the expression of the strain energy, the 
strain energy W becomes:  
 
 1 1

2 2
T T T

W = = =T E E E T TC S  (1.116) 

 
and, for the positiveness of W, it must be: 
 

 
0

0

T

T

>

>

E E

T T

C

S
 (1.117) 

 
This implies that the matrices C  and S  are both positive definite. Moreover, 
the substitution of the (1.113)1 into the (1.110)1 yields: 
 
 = =C S I SC  (1.118) 

 
where the second equality follows from the first one which says that C  and S  
are the inverses of each other and, hence their product commute. 
 
3.4. Material Symmetry 
 
The 6 6×  matrices C  and S  contain 21 independent elastic constants. The 
number of independent constants is reduced when the material possesses a 
certain material symmetry.  
Under an orthogonal transformation  
 
 * *or

i ij j
x Q x= = Qx x  (1.119) 

 
in which Q  is an orthogonal matrix that satisfies the that satisfies the relations: 
 
 T T⋅ = =Q Q Q QΙΙΙΙ , (1.120) 

 
the four rank elasticity tensor *

ijkl
C , referred to the *

i
x  coordinate system becomes  

 
 *C C

ijkl ip jq kr ls pqrs
Q Q Q Q=  (1.121) 

 
If it results *

ijkl ijkl
C C= , i.e.,  

 
 C C

ijkl ip jq kr ls pqrs
Q Q Q Q=  (1.122) 
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material is said to possess a symmetry with respect to Q . 
An anisotropic material possesses the symmetry of central inversion if (1.122) is 
satisfied for  
 

 

1 0 0

0 1 0

0 0 1

− 
 = − = − 
 − 

Q I . (1.123) 

 
It is obvious that the (1.122) is satisfied by the Q  given in the (1.123) for any 

ijkl
C . Therefore, all the anisotropic materials have the symmetry of central 

inversion. 
If Q  is a proper orthogonal matrix, the transformation (1.119) represents a rigid 
body rotation about an axis. So, an anisotropic material is said to possess a 
rotational symmetry if the (1.122) is satisfied for: 
 

 ( )
cos sin 0

sin cos 0

0 0 1

r

θ θ

θ θ θ

 
 = − 
  

Q  (1.124) 

 
which represents, for example, a rotation about the 3x -axis an angle θ .  
An orthogonal transformation Q  is a reflection if  
 
 2 T= − ⊗Q I n n  (1.125) 

 

where n  is a unit vector normal to the reflection plane. If m  is any vector on 
the plane,  

 
 ,= − = −Qn n Qm m . (1.126) 

 

Thus a vector normal to the reflection plane reverses its direction after the 
transformation while a vector on the reflection place remains unchanged. When 
(1.122) is satisfied by the Q  of (1.125), the material is laid to possess a 
symmetry plane. For example, let  

 
 [ ]cos ,sin ,0T θ θ=n  (1.127) 
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the symmetry plane. In this case, the orthogonal matrix Q  of the (1.125) has the 
following expression 
 

 ( )
2 cos2 sin 2 0

sin 2 2 cos2 0 ,
2 2

0 0 1

θ θ
π π

θ θ θ θ

+ 
 = − − < ≤ 
  

Q , (1.128) 

 
which is an improper orthogonal matrix. Since θ  and θ π+  represent the same 
plane, θ  is limited to the range shown in (1.128)2.  
When 0θ = , Q  becomes: 
 

 ( )
1 0 0

0 0 1 0

0 0 1

− 
 =  
  

Q  (1.129) 

 

which represents a reflection about the plane 1 0=x . When (1.122) is satisfied 

by (1.129), the material has a symmetry plane at 1 0x = . If (1.122) is satisfied by 

(1.128) for any θ , the material is transversely isotropic. The 3x -axis is the axis 

of symmetry. Two extreme cases of anisotropic elastic materials are triclinic 

materials and isotropic materials. A triclinic material possesses no rotational 
symmetry or a plane of reflection symmetry. An isotropic material possesses 
infinitely many rotational symmetries and planes of reflection symmetry.  
 
 
 
 
3.5. The Elasticity Tensor for Materials with Symmetry Planes 
 
Depending on the number of rotations and/or reflection symmetry a crystal 
possesses, Voigt (1928) has classified crystals into 32 classes. (See also Gurtin, 
1972; Cowin and Mehrabadi, 1987; and Mehrabadi and Cowin. 1990). In terms 
of the 6 6×  matrix C  however there are only 8 basic groups. For a non-
crystalline material the structure of C  can also be represented by one of the 8 
basic groups. We list below the 8 basic groups for C  according to the number 
of symmetry planes that each group has. Consideration of rotational symmetry 
does not change the structure of C  in each group. Without loss in generality we 
choose the symmetry plane (or planes) to coincide with the coordinate planes 
whenever possible. We will therefore employ the orthogonal matrix Q  (1.128) 
which represents a reflection with respect to a plane whose normal is on the 
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( )1 2,x x  plane making an angle θ  with the 1x -axis. We will also employ the 

orthogonal matrix  
 

 ( )
1 0 0

ˆ 0 cos 2 sin 2 ,
2 2

0 sin 2 cos2

π π
ψ ψ ψ ψ

ψ ψ

 
 = − − − < ≤ 
 − 

Q  (1.130) 

 
which represents a reflection with respect to a plane whose normal is on the 

( )2 3,x x  plane making an angle ψ  with the 2x -axis, (Fig. 1.6.). The plane 

2 0x =  can be represented by either 2θ π=  or 0ψ = .  
 
 

 
 

Fig. 1.6. 

 
 
 

I. Triclinic Materials. No symmetry planes exist. 
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21

C C C C C C
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C C C C C C
n

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

= = 
 
 
 
  

C  (1.131) 
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II.  Monoclinic Materials. One symmetry plane. 
 

(a) Symmetry plane at 1 0x = , i.e., 0θ = . 
 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0
13

0 0

0 0 0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C C C

C C

C C

 
 
 
 

= = 
 
 
 
  

C  (1.132) 

 
 

(b) Symmetry plane at 2 0x = , i.e., 2θ π=  or 0ψ = . 
 

 

11 12 13 15

12 22 23 25

13 23 33 35

44 46

15 25 35 55

46 66

0 0

0 0

0 0
13

0 0 0 0

0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C

C C C C

C C

 
 
 
 

= = 
 
 
 
  

C  (1.133) 

 
 

(c) Symmetry plane at 3 0x = , i.e., 2ψ π= . 
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13

0 0 0 0
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  

C  (1.134) 

 
 
 
 
 

II. Orthotropic (or Rhombic) Materials. The three coordinate planes 
0θ = , 2π , and 2ψ π=  are the symmetry planes. 
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C  (1.135) 

 
 

III. Trigonal Materials. Three symmetry planes at 0θ =  and 3π± . 
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14 2
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6

0 0 0
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n
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C
−

 
 − 
 

= = 
− 

 
 
  

C  (1.136) 

 
 

IV. Tetragonal Materials. Five symmetry planes at 0θ =  4π± , 2π  

and 2ψ π= . 
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C  (1.137) 

 
 
 
 

V. Transversely Isotropic (or Hexagonal) Materials. The symmetry 
planes are the 3 0x =  plane and any plane that contains the 3x -axis. 

The 3x -axis is the axis of symmetry.  
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C  (1.138) 

 
 

VI. Cubic Materials. Nine planes of symmetry whose normals are on 
the three coordinate axes and on the coordinate planes making an 
angle 4π  with the coordinate axes. 

 

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0
3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
n

C

C

C

 
 
 
 

= = 
 
 
 
  

C  (1.139) 

 
 

VII. Isotropic Materials. Any plane is a symmetry plane.  
 

 
11 12

11 12

11 12

11 12 12

12 11 12

12 12 11

2

2

2

0 0 0

0 0 0

0 0 0
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C

C C

C C

C C C

C C C

C C C
n−

−

−

 
 
 
 
 = =
 
 
 
 
 

C  (1.140) 

 
 
Note that while the number of nonzero elements in C  may increase when 
different coordinate system are employed, the number of independent elastic 
constants n does not depend on the choice of the coordinate systems. 
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3.6. Restrictions on Elastic Constants 

 
As shown above, the positiveness of the strain energy, yields that the stiffness 
tensor C  is positive defined, as well as, the positive definiteness of the stress 
energy, yields that the compliance tensor S  is defined positive. In particular, in 
the contracted notation, the (1.97) is equivalent to the (1.117)1 which implies 
that the 6 6×  matrix C  is also positive definite and, therefore, all its principal 
minors are positive, i.e.: 
 

( )0 not summed
ii

C i> , 

( )0 , not summed
ii ij

ij jj

C C
i j

C C
> , 

( )0 , , not summed
ii ij ih

ij jj jh

ih jh hh

C C C

C C C i j k

C C C

> , 

�  
 

where i, j, h are distinct integers which can have any value from 1 to 6. 
In particular, according to the theorem which states that a real symmetric matrix 
is positive definite if and only if its leading principal minors are positive, the 
necessary and sufficient conditions for the 6 6×  matrix C  to be positive definite 
are the positivity of its 6 leading principal minors. Same considerations may be 
applied to the compliance tensor S . By imposing these conditions of positivity 
on the minors of the matrices, some restrictions on the elastic coefficients can be 
found. 
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CHAPTER II 

 

HETEROGENEOUS MATERIALS 

 
 
1. INHOMOGENEOUS SOLIDS: SAS/DAS THEOREMS 

 
It is well known the difficulty to find solutions to anisotropic inhomogeneous 
material problems. A very few restricted classes of these problems are solved in 
a general way.  
One example of these solutions is for cylinders subjected to pure torsion and 
possessing cylindrical orthotropy, with a variation of the shear moduli with the 
local normal direction to the family of curves of which the lateral boundary is a 
member (Cowin, 1987). This solution is a generalization, to a set of arbitrary 
cross-sectional shapes, of a problem solved by Voigt (Voigt, 1928) for a circular 
cross-section with radial variation of its cylindrical anisotropy. These cylinders 
are said to possess shape intrinsic orthotropy since it is the boundary of the 
cylinder that establishes the possible directional variation of the elastic moduli. 
A second example was given by Chung & Ting (Chung & Ting, 1995) who 
presented an exact solution for the case of an anisotropic half-space with elastic 
moduli dependent upon one coordinate, the angle θ , when the loads on the half-
space are represented by a straight line of force. These kinds of problems were 
called angularly inhomogeneous problems by the authors. Closely related to 
these solutions is a third example called radially inhomogeneous problems 

(Alshits and Kirchner, 2001). As the name suggests, the variation of the elastic 
constants is in the radial direction in this case.  
In spite of this difficulty, in the last years, it has been a growing interest about 
the mechanical behaviour of anisotropic and inhomogeneous solids, above all in 
biomechanics. Moreover, the necessity to build thermodynamically consistent 
theories for this kind of materials, by means the employment of the 
mathematical theory of the homogenization, has determined the necessity to find 
exact analytical solutions in the ambit of this more complex section of the theory 
of elasticity, (Lions, 1985), (Maugin, 1993). 
In the next sections, it is presented a useful method enables one to find solutions 
for inhomogeneous, anisotropic elastostatic problems under particular conditions 
by means of the use of two theorems, S.A.S. theorem and D.A.S. theorem (Fraldi 
and Cowin, 2004).  
 
1.1. Stress Associated Solutions (SAS) Theorem for inhomogeneous 

elasticity 
 
The Stress Associated Solution Theorem lets to find solutions for 
inhomogeneous, anisotropic elastostatic problems if two conditions are satisfied: 
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(1) a knowledge of the solution for a homogeneous elastic reference problem 
(the associated problem) whose solution has a stress state with a zero eigenvalue 
everywhere in the domain of the problem, and (2) an inhomogeneous anisotropic 
elastic tensor related to the homogeneous anisotropic elastic tensor of (1) by 
 
 ( ) , ( ) , ( ) 0,I H

Bϕ ϕ ϕ α α += ∀ ∈ > > ∈Rx x x xC C  (2.1) 

 
where 

T
H H=C C  is the elasticity tensor of a generic anisotropic homogeneous 

elastic material of the reference problem, IC  is the elasticity tensor of the 
corresponding anisotropic inhomogeneous elastic problem, B  is the domain 
occupied by both the homogeneous object H

B  and the inhomogeneous one I
B , 

α +∈R  is an arbitrary positive real number, while ( )ϕ x  is a 2 ( )C B  scalar 
function. The assumption (2.1) means that the inhomogeneous character of the 
material is due to the presence of a scalar parameter producing the 
inhomogeneity in the elastic coefficients. 
This method makes it possible to find analytical solutions for an inhomogeneous 
anisotropic elastic problem if the elastic solution of the corresponding 
homogeneous anisotropic reference problem is known and characterized 
everywhere by a stress state with a zero eigenvalue. The solutions to the 
inhomogeneous anisotropic elastic problem are called the associated solutions of 
the homogeneous problem. 
 
1.1.a. Zero-eigenvalue stress and zero-eigenvalue strain fields 
 
A zero-eigenvalue stress state (zero-eigenvalue strain state) is characterized by 
the condition that the determinant of the stress (strain) is zero 
 
 det 0, (det 0)T = E = . (2.2) 

 
It is easy to show that a zero-eigenvalue stress (strain) state is a necessary 
condition for a plane stress (strain) state. The components of the stress tensor T  
(strain tensor E ) are denoted by 

ij
σ  (

ij
ε ). The strain tensor E  is related to the 

displacement field u  by  
 

 
1

) ) ]
2

T= sym B[( ⊗ + ( ⊗ = ⊗ ∀ ∈E u u u x∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (2.3) 

 
in which     grad u= (∇∇∇∇ ⊗ u)  and the symbol ⊗  represents the tensor 

product. In components we have 
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 , ,

1
( )

2ij i j j i
u uε = + , (2.4) 

 
where the comma denotes differentiation and u  is the displacement field. 
 
1.1.b. Stress Associated Solutions (SAS) Theorem 
 
Consider the following mixed boundary-value elastostatic homogeneous and 
anisotropic problem H

P  in the absence of action-at-a-distance forces 
 
 0( ) in , ( ) on ,  on H H H

t u
B B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇∇∇∇  (2.5) 

 
where H

B  is the domain occupied by the homogeneous elastic object, 
{ }H H H

t u
B B B∂ = ∂ ∪ ∂  is its boundary and t  and 0u are the traction field and the 

displacements assigned on the corresponding partition of the boundary, 
respectively (Barber, 1992; Gurtin, 1972). The notation for the divergence of the 
stress tensor is   ∇∇∇∇ ⋅T(u) = divT (u) , where the del operator is a vectorial 
differential operator defined by   ∇∇∇∇ ≡ ∂

i
e

i
, ∂ i ≡ ∂ / ∂x i = (∗),i  is the partial 

differential operator and   e i  is the base unit vector of the i-axis. 
The anisotropic Hooke’s law is written  
 

 ( ) : ( ) : ( ) : ( )H H Hsym= = ⊗ = ⊗T u E u u uC C C∇ ∇∇ ∇∇ ∇∇ ∇  (2.6) 
 

or, in components 
 
 ,

H H

ij ijhk hk ijhk h k
C C uσ ε= = . (2.7) 

 
Let { , , }H H H H= u E TS  be the solution of the homogeneous problem (2.5).  

Consider now an associated anisotropic elastic inhomogeneous problem I
P , 

described by modifying the system (2.5), with     t
I

= ϕ t  representing the traction 

field applied on I

t
B∂  and the inhomogeneous anisotropic elasticity tensor given 

by (2.1), thus 
 
 0( ) in , ( ) on ,  on I I I I

t u
B B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇∇∇∇  (2.8) 

 
The solid domains H

B  and I
B , as well as their corresponding boundary 

partitions made on HB∂  and IB∂ , are geometrically the same in the 
homogeneous and inhomogeneous problems. Then, if we expand the equation 
(2.8)1 it is possible to write 
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:

: :

( ) [ ( ) ( )]

( ) [ ( )] [ ( )] ( )

ϕ

ϕ ϕ

⋅ = ⋅ =

= ⋅ + ⋅ =

∇ ∇∇ ∇∇ ∇∇ ∇

∇ ∇∇ ∇∇ ∇∇ ∇

T u x E u

x E u E u x

C

C C

H

H H 0
 (2.9) 

 
where ∇∇∇∇(∗) = grad(∗)  is the gradient operator applied on a generic scalar-
valued function ( )∗ . Consider now the situation in which the displacements are 
equal for the homogeneous and inhomogeneous problems. Then, by substituting 
the displacement solution Hu  obtained for the homogeneous problem H

P  in 
(2.9) in place of the displacement vector u , we have that 
 
      H H H H Hϕ ϕ⋅ = ⋅ ] + ⋅ = 0T u x T u T u x∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇( ) ( ) [ ( ) [ ( )] ( )  (2.10) 

 
But, since [ ( )] [ : ( )]H H H H⋅ = ⋅ =C 0T u E u∇ ∇∇ ∇∇ ∇∇ ∇ , it follows that 
 
 [ ( )] ( )H H IBϕ⋅ = ∀ ∈0T u x x∇∇∇∇  (2.11) 

 
By excluding the trivial case in which ( ) constantϕ =x , it follows that 
 
 det 0,H HB= ∀ ∈T x  (2.12) 

 
This means that the stress state at x of the reference homogeneous problem is 
required to be a zero eigenvalue stress state everywhere in the domain. To 
investigate the geometrical meaning of the equation (2.11), since (2.11) must be 
true everywhere in I

B , we consider, without loss of generality, the local 
principal stress reference system { }1 2 3ξ , ξ , ξ , in which the stress tensor H

T  

takes the component form 
 

 
1

2

3

H
ξ

H H
ξ

H
ξ

σ 0 0

T = 0 σ 0

0 0 σ

 
 
 
 
  

. (2.13) 

 
Representing the gradient of the scalar function ϕ  as 
 
 T

ξ ξ ξϕ ϕ ϕ ϕ=∇∇∇∇
1 2 3, , ,( ) [ ]ξξξξ , (2.14) 

 
the three scalar equations implied by (2.11) are written as 
 
 

1 2 2 3 3, , ,= 0, = 0, = 0H H H

ξ ξ ξ ξ ξ ξσ ϕ σ ϕ σ ϕ
1

. (2.15) 
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The system (2.15) is satisfied if the stress tensor H

T  for the reference 
homogeneous problem H

P  is, at each internal point HB∈x , a locally variable 
zero eigenvalue stress state. If there is only one zero eigenvalue, say in the 3ξ -

direction, the only non-zero component of the vector ϕ∇ , is 
3

,ξϕ �at the 

corresponding points IB∈x . If there are two zero eigenvalues there can be two 
non-zero components of ϕ∇ . The case of three zero eigenvalues of the stress 

tensor H
T  is trivial and will not be mentioned further. It follows that, at each 

internal point, the equipotential surfaces of ϕ  admit as a tangent plane the plane 
whose normal is coaxial with the eigenvector associated with the zero stress 
eigenvalue (or a direction, in the case of two zero stress eigenvalues). This is 
illustrated in Figure 2.1. for the case of one zero eigenvalue of stress.  
 

I I
∂B

tangent plane at x to the

equipotential surfaces of  

B

stress plane in x

2

inhomogeneous object

elementary

volume in x

equipotential

surfaces of  

∇

x
1

C C
I H

2
3

2

11

3 = 0

 
 

Fig. 2.1.  

Geometrical interpretation of the relationship between the equipotential surfaces of ϕ  

and the distribution of the planes of stresses in the associated anisotropic problem 

 
 

The geometrical relationship (2.11) between the stress tensor H
T  and the vector 

ϕ∇  may be rewritten in the form 
 
 { } { , : ( ) 0}H HVϕ ϕ⋅ = ⇔ ∀ ∈ ⊗ =0T v T v∇ ∇∇ ∇∇ ∇∇ ∇  (2.16) 
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where   v  is any unit vector defined in the three-dimensional Euclidean space 3E  
and V  represents the corresponding vector space. It follows that the stress vector 
on the plane whose normal is   v  is always orthogonal to the vector ϕ∇ .  
Then, it is possible to establish the following theorem: 
 
Stress Associated Solution (SAS) Theorem. Consider two geometrically 

identical elastic objects 
H

B  and 
I

B , one  homogeneous and the other 

inhomogeneous, respectively. Let HC  and ( )ϕ=I HxC C  be the corresponding 

elasticity tensors (Figure 2.2.). The two elastostatic problems associated with the 

two objects are 

 
0

0

: { ( ) in , ( ) on ,  on },

: { ( ) in , ( ) on ,  on },ϕ

⋅ = ⋅ = ∂ = ∂

⋅ = ⋅ = ∂ = ∂

H H H H

t u

I I I I

t u

P B B B

P B B B

0

0

T u T u n t u u

T u T u n t u u

∇∇∇∇

∇∇∇∇
 

 
where 

 

 2( ) ( ) , ( ) 0,C B Bϕ ϕ α α +∈ ∀ ∈ > > ∈Rx x x . 

 
If Hu  is the solution of the homogeneous problem 

H
P , then I H=u u  if and 

only if 0,H
Vϕ ⊗ = ∀ ∈:T v v∇∇∇∇{ ( ) }, i.e. 

 

 { , , :( ) 0}I H I HB V ϕ∀ ∈ ∀ ∈ ⊗ = ⇔ =x v T v u u∇∇∇∇ . 

 
Proof. The necessary condition has been established in the preamble. To prove 
the sufficient condition: 
 
 { , ( ) 0}H I HV ϕ∀ ∈ ⊗ = ⇒ =:v T v u u∇∇∇∇ , 

 
we first recall (2.16). Consequently, if   u

H  is the displacement solution of the 

homogeneous problem H
P , we can write 

 

 

[ ( )] , [ ( )

[ : ( )] , [ : (

[ : ( ] [ : ( ] ,

ϕ

ϕ

ϕ ϕ

⋅ = ] ⋅ = ⇒

⇒ ⋅ ⊗ = ⊗ )]⋅ = ⇒

⇒ ⋅ ⊗ ) + ⊗ ) ⋅ =

H H H H

H H H H

H H H H

0 0

0 0

0

T u T u

u u

u u

{∇ ∇ }{∇ ∇ }{∇ ∇ }{∇ ∇ }

{∇ ∇ ∇ ∇ }{∇ ∇ ∇ ∇ }{∇ ∇ ∇ ∇ }{∇ ∇ ∇ ∇ }

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

C C

C C

 

 
from which it follows that 
 
 [ : ( )]⋅ ⊗ =I H 0u∇ ∇∇ ∇∇ ∇∇ ∇C , 
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when (2.1) is considered. Then, if we rewrite the inhomogeneous elastostatic 
problem I

P  in terms of displacements, that is 
 

0:{ [ : ( )] in , [ : ( )] on ,  on }I I I I I I I I I

t u
P B B Bϕ⋅ ⊗ = ⊗ ⋅ = ∂ = ∂0C Cu u n t u u∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

 

we can observe that Hu  satisfies all these field and boundary equations. 
Therefore, from the uniqueness theorem, it follows that   u

I
= u

H  and, 
consequently, : ( )I H H Hϕ ϕ= ⊗ =CT u T∇∇∇∇ . This proves the sufficiency 
condition.  
It is convenient to increase the similarity between the elastic problems for the 
homogeneous and the inhomogeneous materials by writing the boundary 
conditions in the same way. Thus we substitute for the prescribed boundary 
tractions a corresponding prescribed displacement field; this converts the portion 
of the boundary upon which the surface tractions are prescribed to a portion of 
the boundary upon which the displacements are prescribed. Due to uniqueness of 
solution, this is always possible in a linear elastic problem. Then, the two 
problems may be written in the equivalent forms as 
 

0

0

: { ( ) in , on ,  on },

: { ( ) in , on ,  on },

H H t H H

t u

I I t I I

t u

P B B B

P B B B

⋅ = = ∂ = ∂

⋅ = = ∂ = ∂

0

0

T u u u u u

T u u u u u

∇∇∇∇

∇∇∇∇
 

 
where tu  represents the prescribed displacement on 

t
B∂  and where, now, the 

tractions   t  and   ϕ t  represent the reactions of the constraints on 
t

B∂  specified by 
tu . It follows that, when a solution { , , }H H H H= u E TS  for an anisotropic 

homogeneous elastic problem H
P  is known, the Stress Associated Solution 

Theorem yields the corresponding solution for an inhomogeneous problem I
P  

as { , , }I H H Hϕ= u E TS , if and only if     T
H

⋅ ∇∇∇∇ϕ = 0  everywhere in the object 
and the displacement boundary conditions are the same for both the 
homogeneous and the inhomogeneous objects. Thus the solution 

{ , , }H H H H= u E TS  is used to construct a solution of the associated 
inhomogeneous problem.  
Finally we note that the restriction (2.1) may be relaxed in many different ways. 
For example the Associated Solutions could involve only some selected elastic 
moduli of the homogeneous elasticity tensor, so that the solutions do not depend 
on all stiffness coefficients. This means that it is possible to extend the validity 
of the proposed theorem by rewriting the assumption (2.1) in the weaker form  
 

ˆ ˆI H

ijhk ijhk
C Cϕ= , 
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where ˆ H

ijhk
C  represents only those elastic coefficients explicitly involved in the 

specific anisotropic homogeneous problem used to construct the associated 
solution. In the next section it is shown that components of the elasticity tensor 
not involved in the solution of the homogeneous problem will not be involved in 
the solution of the associated inhomogeneous problem. 
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Fig. 2.2.  

The homogeneous and inhomogeneous bodies with their boundary conditions 
 
 
 
 
1.2. Generalization of the SAS theorem to piecewise defined 

inhomogeneities 
 
Two types of composite materials are considered in this section, one in which ϕ  
is constant, but piecewise discontinuous and another in which ϕ  is a piecewise 

continuous function. These two cases extend the domain of applicability of the 
condition (2.1), and therefore the domain of applicability of the SAS theorem. In 
the first case the extension is to composite materials for which each phase is 
characterized by elastic moduli that are constant within their own phase, but are 
different from the constant elastic moduli of the other phases. In the second case 
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the extension is to composite materials for which each phase is characterized by 
the possibility of each phase having variable elastic coefficients inside the phase 
domain and discontinuous elastic coefficients across phase boundaries. 
 
1.2.a. Composite materials where ϕ  is constant, but piecewise discontinuous 

 
In the following two sections we extend the SAS theorem to heterogeneous 
materials where there is not a smooth variation of the elastic moduli. To achieve 
this, we will make reference to some results obtained previously and formulate 
new hypotheses about the features of composite inhomogeneous bodies 
considered. In particular, for each phase p  present of a composite material, we 
will assume here that the elasticity tensor can be written as 
 
 , {1, 2,..., }ϕ= = ⊂H H

p p
p n NC C  (2.17) 

 
where HC  is the elasticity tensor of a reference isotropic or anisotropic 
homogeneous material and ϕ

p
 is a positive scalar parameter. This hypothesis 

does not constitute the most general case for describing the relation between the 
elastic tensors of the different phases for a composite material, but it is widely 
utilized in literature because many artificial and natural composites exhibit 
mechanical properties that are well represented by the proposed assumption 
(Lekhnitskii, 1963; Ting, 1996; Fraldi and Guarracino, 2001; Nemat-Nasser and 
Hori, 1993). 

Let us consider a partition of the inhomogeneous body 
1

{ ( ) ( )}
=

Ω ≡ Ω∪
n

p p

p

B B B , 

where ( , )∂Ω
p q

 represents the interface boundary between two generic sub-

domains Ω
p

 and Ω
q
 of the partition, with elasticity tensors H

p
C  and H

q
C , 

respectively.  
If we assume that the solution for the anisotropic homogeneous reference 
problem is known, and the geometries of the homogeneous and composite 
material objects are the same, we can study the conditions under which the stress 
tensor for the inhomogeneous material (multi-phase material) assumes the form 
 
 , ( )ϕ= ∀ ∈ΩH H

p p p
BT T x  (2.18) 

 
required by the SAS theorem. Note that the stress (2.18) satisfies the equilibrium 
equations in each sub-domain of the partition,  
 
 , ( )ϕ⋅ = ⋅ ∀ ∈ ΩH H

p p p
B= 0T T x∇ ∇∇ ∇∇ ∇∇ ∇ . (2.19) 
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Moreover, by virtue of the assumed constitutive relationships, 
 
 1 1 , { , }− −= = = ∀ ∈ ∀ ∈ΩH H H H H H

p p p p
p NE T T E xC C  (2.20) 

 
the satisfaction of the compatibility condition on the surfaces of discontinuity 
between the different materials of the composite object is automatic. From the 
force equilibrium on the interfaces between two adjacent phases, it follows that 
 
 ( , ) ( , ) ( , ), { { , } , }⋅ = ⋅ ∀ ∈ ∀ ∈ ∂ΩH H

p p q q p q p q
p q NT n T n x  (2.21) 

 
where ( , )p q

n  is the unit normal vector to the interface between the phases p  and 

q . By virtue of (2.18), the equation (2.21) is satisfied if 

 
 ( , ) ( , ),⋅ = ∀ ∈∂ΩH

p q p q
0T n x . (2.22) 

 
Equation (2.22) requires that for each point belonging to the interface surfaces 
between two phases, the stress tensor H

T  must possess at least one zero-
eigenvalue, that is ( , ){det 0, }= ∀ ∈ ∂ΩH

p q
T x . This hypothesis is necessary in 

order to orient the plane of the stress on the interface surfaces such that the 
eigenvector associated with a zero eigenvalue of the stress tensor is coaxial with 
the unit normal vector to the tangent plane to the interface. For structures 
sometimes consistent with this hypothesis one can consider the interfaces 
between layers of certain plant structures, for example, onions and leeks. In the 
literature of this subject examples that conform to this hypothesis include the 
piece-wise angularly inhomogeneous elastic wedges considered by Ting (Ting, 
1996a), the intrinsically orthotropic layered cylinders under torsion, described by 
Cowin (Cowin, 1987), as well as in other examples analyzed by Lekhnitskii 
(Lekhnitskii, 1963). 
To complete the elastic solution for the composite material (2.17) using the 
known solution of a homogeneous reference problem, we note the satisfaction of 
the compatibility and equilibrium conditions on the external boundary. The 
satisfaction of the compatibility conditions is easily verified by virtue of (2.20). 
The equilibrium equation on the part of the external boundary where the 
tractions are prescribed is given by  
 
 ( ),ϕ⋅ = = ∀ ∈ ∂H H H

e e e t e
BT n t t x  (2.23) 

 
where ( )∂

t e
B  represents a typical element of the partition of the external 

boundary on which the tractions Ht  are prescribed in the homogeneous 
reference problem. The total stress boundary is the sum over all the typical 
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distinct boundaries, ( )
1=

∂ = ∂∪
k

t t e

e

B B , where k  represents the total number of 

phases that have a projection of their boundary on the external boundary on 
which the tractions are assigned. Then, if the conditions (2.22) and (2.23) are 
satisfied, we can build the elastic solution of composite multi-phase materials 
from a knowledge of the displacements and the stresses for a homogeneous 
object with analogous geometry using the extension of the SAS theorem. 
Note that, in order to utilize the results of the proposed theorem for 
inhomogeneous materials in which ϕ  was assumed to be a continuous scalar 

function, the stress tensor H
T  had to exhibit a zero-eigenvalue at each point of 

the body. However, in order to generalize the SAS theorem to composite 
materials where ϕ  is constant, but piecewise discontinuous, it is sufficient that 

the stress tensor H
T  related to the associated homogeneous problem possesses a 

zero-eigenvalue ( )det 0=H
T  only in the points belonging to the internal 

interfaces between the different phases. This means that, in the case of materials 
where ϕ  is a constant, but piecewise discontinuous, H

T  can be a three-
dimensional stress field in any other point of the solid domain.  
 
1.2.b. Composite materials where ϕ  is piecewise continuous 

 
In this subsection we consider the new and more general situation in which each 
phase p  of the heterogeneous solid (composite material) can be represented by 
the following elasticity tensor 
 
 ( ) ,ϕ= ∀ ∈Ω ⊂H H

p p p p p
Bx xC C  (2.24) 

 
where HC  is the elasticity tensor of a homogeneous reference material, while 
ϕ

p
 is now a positive scalar function, not necessarily constant, but continuous 

inside each phase (or sub-domain defined by the partition described above). We 
relax some of the hypotheses for the situation when ϕ  is constant, but retain the 

previous notation; 
1

{ ( ) ( )}
=

Ω ≡ Ω∪
n

p p

p

B B B  is again the partition of the 

inhomogeneous object, with ( , )∂Ω
p q

 representing the interface boundary 

between two generic adjacent sub-domains Ω
p

 and Ω
q
 of the partition whose 

elasticity tensors are H

p
C  and H

q
C , respectively, see Figure 2.3.. The 

representation of the stress tensor of the phase p  required by the SAS theorem 
is 
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 ( ) , ( )ϕ= ∀ ∈ΩH H

p p p p p
BT x T x . (2.25) 

 
Equilibrium is satisfied if the divergence of the stress for each phase is zero; 
 
      , ( )ϕ ϕ ϕ⋅ = ⋅ ⋅ ⇒ ⋅ ∀ ∈ΩH H H H

p p p p p p
B+ = 0 = 0T T T T x∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  (2.26) 

 
From this result it follows, using (2.17) and (2.20), that 

, { , }= ∀ ∈ ∀ ∈ΩH H

p p p
p NE E x . The equilibrium conditions (2.21)-(2.22) 

across the interface between two phases are then satisfied as well the external 
boundary conditions (2.23) considered previously. This means that, in order to 
extend the SAS theorem to piecewise continuous composite materials, one has to 
first establish two facts about the stress tensor H

T , namely: 1) at each internal 
point of each phase p, the stress tensor H

T  possesses at least one zero-
eigenvalue and 2) at every point in the interface between two adjacent phases the 
normal to the tangent plane has to be coincident with the direction of the 
eigenvector associated with the zero eigenvalue.  
 
 

Ω  (B)1

I
I

∂B
B
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Ω  (B)2

Ω  (B)p
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Fig. 2.3.  

A representation of a possible spatial distribution of the phases inside a piecewise 
inhomogeneous material. 
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1.3. Displacement Associated Solutions (DAS) Theorem for inhomogeneous 

elasticity 
 
Analogously to the SAS theorem, the Displacement Associated Solution 
(D.A.S.) theorem lets to find solutions for inhomogeneous anisotropic 
elastostatic problems, if two conditions are satisfied, (Fraldi, Cowin, 2004): (3) 
the solution of the homogeneous elastic reference problem (the associated one) 
is known and it has a local plane strain state, with a zero eigenvalue everywhere 
in the domain of the problem and (4) the inhomogeneous anisotropic compliance 
tensor is in relation with the homogeneous associated one according to the 
following equation:  
 

     ( )
11

, ( ) , ( ) 0,
( )

I H H
Bλ λ λ β β

ϕ

− += = ∀ ∈ > > ∈Rx x x x
x

S C S  (2.27) 

 
where 

T
H H=S S  is the compliance tensor of the anisotropic homogeneous 

elastic reference problem, IS  is the compliance tensor of the corresponding 
anisotropic inhomogeneous elastic problem, B  is the domain occupied by both 
the homogeneous object H

B  and the inhomogeneous one I
B , β +∈R  is an 

arbitrary positive real number, while ( )λ x  is a 2 ( )C B  scalar function.  
The second condition implies that the inhomogeneous character of the material 
is due to the presence of a scalar parameter, ( )λ x , producing the inhomogeneity 
in the compliance coefficients. It can be also relaxed and, so, written in a weaker 
form:  
 

 ˆ ˆI H

ijhk ijhk
S Sλ=  (2.28) 

 

where ˆH

ijhk
S  represents only those compliance coefficients explicitly involved in 

the specific anisotropic homogeneous problem used to construct the associated 
solution. 
This means that components of the compliance tensor not involved in the 
solution of the homogeneous problem will not be involved in that one of the 
associated inhomogeneous problem. 
If the conditions (3) and (4) are satisfied, starting from the known solution of the 
homogeneous problem, the associated solution, that is the solution to the 
inhomogeneous problem, is derived. 
In particular, the stress field solution is identical with the stress field of the 
homogeneous reference solution, while the strain field of the inhomogeneous 
problem is equal to ( )λ x  times the strain field of the homogeneous problem. 
The advantage of this method is in the fact that its use yields exact solutions for 
several new interesting inhomogeneous and anisotropic problems.  
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More in detail, let us to consider an anisotropic homogeneous elastic object, that 
occupies a volume H

B , with mixed boundary-value (see Figure 2.2.a). 
In presence of action-at-a-distance forces and taking into account the 
compatibility of the solution by writing the equilibrium equations in terms 
of displacements, the following equilibrium equations can be written 
 

 

( )

( )

( ) 0

in

on

on

H

H

t

H

B

B

B

∇ ⋅ =

⋅ ∂

⋅ ∂

0T u

T u n = t

T u n = 0

 (2.29) 

 
where 

i i
∇ = ∂ e  is a vectorial differential operator, H

t
B∂  is the boundary partition 

of the homogeneous continuum on which the traction field is assigned, 0
HB∂  is 

the boundary partition of the homogeneous continuum in absence of both 
traction and displacements fields.  
On the boundary partition on which the displacements field is assigned, the 
following relation has to be satisfied  
 
  on H

u
B= ∂u 0  (2.30) 

 
where H

u
B∂  is the boundary partition of the homogeneous continuum on which 

the displacements field is assigned.  
The anisotropic Hooke’s law, in a linear elastic stress-strain relation, is written 
in the form 
 
 ( ) ( ) ( ) ( ): : :H H H

sym= ∇ ⊗ = ∇ ⊗T u = E u u uC C C  (2.31) 

 
or 
 
 ( ) ( ) ( ):H

sym ∇ ⊗ =u = E u T uS  (2.32) 

 
in components 
 
 ,

H H

ij ijhk hk ijhk h k
C C uσ ε= =  (2.33) 

 
or 
 
 H

ij ijhk hk
Sε σ= . (2.34) 
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Let us to consider, now, an anisotropic inhomogeneous elastic object, that 
occupies a volume I

B , geometrically the same of H
B , with mixed boundary-

value (see Figure 2.2.b).  
In presence of action-at-a-distance forces and taking into account the 
compatibility of the solution by writing the equilibrium equations in terms of 
displacements, in an analogous manner to what has been done before, the 
following equilibrium equations can be written  
 

 

( )

( )

( ) 0

in

on

on

I

I

t

I

B

B

B

∇ ⋅ = −

⋅ ∂

⋅ ∂

bT u

T u n = t

T u n = 0

 (2.35) 

 
where I

t
B∂  is the boundary partition of the inhomogeneous continuum on which 

the traction field is assigned. It is geometrically the same of that one in the 

homogeneous problem and 0
IB∂  is the boundary partition of the inhomogeneous 

continuum in absence of both traction and displacements fields. It is 
geometrically the same of that one in the homogeneous problem. 
On the boundary partition on which the displacements field is assigned, the 
following relation has to be satisfied  
 
  on I

u
B= ∂u 0  (2.36) 

 
where I

u
B∂  is the boundary partition of the inhomogeneous continuum on which 

the displacements field is assigned. It is geometrically the same of that one in the 
homogeneous problem. 
Let us to assume the stress tensor H

T  as the solution for the homogeneous 
problem, and let us to assume, also, the hypothesis that 
 
 I H

T = T . (2.37) 
 
In this way, the equations in the differential system (2.29) are automatically 
satisfied. Moreover, if H

T  is the solution of the first anisotropic and 
homogeneous problem, we have that the compatibility condition 
 

 ( ):H H ∇ × ∇× =  0TS  (2.38) 

 
have to be also satisfied. As well-known, this ensures that a displacement field 

Hu  exists. So, it is possible to write the strain-displacement relationship  
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 ( ):H H H H
sym= = ∇ ⊗E T uS  (2.39) 

 
where Hu  is displacements field, solution of the homogeneous problem. Then, 
in order to accept the hypothesis (2.37), the following equation  
 

 ( ) ( ): :I I H Hλ   ∇ × ∇× = ∇ × ∇ × =    0T TS S  (2.40) 

 
becomes necessary and sufficient condition for the existence of a displacement 
field Iu , where Iu  is the displacements field, solution of the inhomogeneous 
problem, and it is given by  
 

 ( ) : :I I I I H H
sym λ∇ ⊗ = = =u E T TS S . (2.41) 

 
The compatibility condition (2.40), in general, is not satisfied. Therefore, it is 
necessary to find the conditions under whose it becomes true, (Fraldi, Cowin, 
2004). Without loss of generality, let us consider  
 
 3( )λ λ= x  (2.42) 

 
that means that the 3x  is the direction locally coaxial with the gradient of 
λ , i.e.,  
 
 [ ]30,0,T

xλ λ∇ = ∂ ∂ . (2.43) 

 
So, by recalling that Hu  is the solution of the homogeneous problem, and by 
operating some algebraic manipulations, the set of compatibility equations (2.40) 
can be reduced to five differential equations as it is shown  
 

 

( )

( )

( )

( )

( ) ( ) ( )

,33 1,1 ,3 1,3 3,1 ,1

,33 2,2 ,3 2,3 3,2 ,2

,3 1,2 2,1 ,1

,3 1,2 2,1 ,2

,33 1,2 2,1 ,3 1,3 3,1 2,3 3,2,2 ,1

0

0

0

0

0

H H H

H H H

H H

H H

H H H H H H

u u u

u u u

u u

u u

u u u u u u

λ λ

λ λ

λ

λ

λ λ


+ − =


+ − =


− =


 − =

  + + − + − =
  

 (2.44) 
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where, obviously, is absent any prescribed constrain about the relation between 
the first and the second derivatives of the parameter λ .  
It can be noted that the terms in the parentheses represent the skew components 
of the H∇ ⊗ u , that are local rotations, while the only present strain components 

are ( )( )3 3 ,1 1 H

i j i juδ δ− − , having indicated with 
hk

δ  the standard Kronecker 

operator.  
It has to be noted that: 

1. the displacement field for the reference homogeneous problem has to be 
related, at each internal point HB∈x , with a local plane strain field, 
where any plane with support the axis 3x  can be the plane of the strains 

2.  
 det 0=HE ; (2.45) 

 
3. the vector λ∇ , the corresponding points IB∈x , has to be coaxial with 

the support axis 3x  of plane of the strains in the homogeneous problem; 

4. ( )H
curl u  must be independent from 3x -direction, i.e. the λ∇ -

direction. 
In the previous statements, analogously to what has been done with the stress 
state, it has been implicitly considered the definition about the "plane strain": a 
strain state will be said plane if, in a fixed point x  of the solid, there is a plane 

of the strains to which all the strain components 
ij

ε  belong. It is easy to 

demonstrate that this plane exists if the strain tensor E  has a zero eigenvalue. 
So, if { }1 2 3ξ , ξ , ξ  is the orthogonal principal reference frame of the strain 

tensor E  and if 3ξ  is assumed, for example, as the eigenvector associated to the 

zero eigenvalue of E , the plane of the strains must coincide with 1 3ξ ξ−  
plane. 
It follows that a necessary and sufficient condition for the existence of a plane 

strain is given by 
 
 det 0=E . (2.46) 
 
It has to be noted that the satisfaction of the compatibility condition (2.40) yields 
that the displacements field of the homogeneous problem has to satisfy the 
equations (2.44). 
This compatibility condition (2.40), therefore, may be rewritten in the form  
 

          
( ){ }

( ) ( ){ }

:

: 0, , 0

H H

H H

curl curl

V curl sym

λ

λ

  = ⇔ 

∀ ∈ ∇ ⋅ = ∇ ⊗ = ∇ ⊗ ⋅ =

0

0

T

h h u h u h h

S
 (2.47) 
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where ( )2( ) , ( ) 0,C B Bλ λ α α +∈ ∀ ∈ > > ∈Rx x x , h  is any unit vector 

defined in the three-dimensional Euclidean space 3E  and V  is the 
corresponding vector space. 
Moreover, it is worth to note that the assumed position (2.27) and the hypothesis 
(2.37), that is true if the equation (2.40) is satisfied, imply 
 
 I Hλ=E E . (2.48) 
 
So, at this point, it can be stated that any anisotropic and homogeneous elastic 
problem that possesses a solution represented by the displacement equations can 
be considered a Displacement Auxiliary Solution for the corresponding dual 
inhomogeneous elastic problem.  
In other words, it can be possible to demonstrate the following theorem: 
Displacement Associated Solution (DAS) Theorem 
Consider two geometrically identical anisotropic elastic objects, one 
homogeneous, H

B , and the other inhomogeneous, I
B , respectively. Let be HS  

and ( )I Hλ= xS S  the corresponding compliance tensors. The two elastostatic 

Cauchy problems associated with the two objects, in presence of the body forces 
and of mixed boundary-value, are 
 

 

( ) ( )

( ) ( )
0

0

:{ ( ) in , on , on ,  on },

:{ ( ) in , on ,  on ,  on }.

H H H H H

t u

I I I H H

t u

P B B B B

P B B B B

⋅ = − ⋅ = ∂ ⋅ = ∂ = ∂

⋅ = − ⋅ = ∂ ⋅ = ∂ = ∂

b 0 0

b 0 0

T u T u n t T u n u

T u T u n t T u n u

∇∇∇∇

∇∇∇∇

 (2.49) 
 
If H

T  is the solution of the homogeneous problem Hp , then I H
=T T  if and 

only if the second part of the equation (2.47) is verified, i.e. if  
 

( ),= ∀ ∇ ⊗ = ∧H H H H
curl skeww u v u v w v  

 
we have that 
 

 ( ) ( ){ } { }0, , 0 .λ∀ ∈ ∇ ⋅ = ∇ ⊗ = ∇ ⊗ ⋅ = ⇔ =H H I HV curl sym0h h u h u h h T T

 (2.50) 
 
In other words, when a solution { }, ,ε =H H H H

u E TB  for an anisotropic 

homogeneous elastic problem Hp  is known, the DAS theorem yields the 
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corresponding solution for an inhomogeneous elastic problem Ip  as 

{ },ε λ=I H H
E TB , if and only if the anisotropic and homogeneous elastic 

problem possesses, everywhere in the object, a displacement solution satisfying 
the equations (2.44) and if the displacements boundary conditions are the same 
for both the homogeneous and inhomogeneous objects.  
The solution Iu , for the inhomogeneous problem, in general, have to be 
integrated with reference to the specific case. 
It is worth to underline that in the case where displacement boundary-value u  is 
not equal to zero, the elastic mixed problem can be rewritten as the 
corresponding first type one, in which only the traction and reaction fields are 
considered. 
For more details on D.A.S. demonstration, see (Fraldi, Cowin, 2004).  
It is useful to underline, now and again, the geometrical interpretation of the 
result of the theorem, constituted by the observation that, in order to find an 
analytical solution for a given elastic inhomogeneous and anisotropic body in the 

form { },ε λ=I H H
E TB , a necessary and sufficient condition is that the 

displacement solution for the corresponding anisotropic and homogeneous 
problem is related with a local plane strain field that has as plane of the strains 
any plane with support an axis coaxial with the gradient of λ , with rotational 
part depending on this gradient direction, only. 
The D.A.S. theorem can be generalized to comprise different types of composite 
materials. For example, it is possible to consider the case of a multi-linear law 
for λ , i.e.: 
 
 0 1 1 2 2 3 3λ λ λ λ λ= + + +x x x  (2.51) 

 
with λ

i
, { }0,...,3=i  arbitrary constants.  

In this case, it is obtained that the second derivatives of the differential system 
(2.44) go to zero, therefore, the compatibility equation system becomes as it 
follows 
 



64 Chapter II – Heterogeneous Materials 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

* * * *
1 1,2 2,1 2 1,2 2,1,2 ,1

* * * *
2 2,3 3,2 3 2,3 3,2,3 ,2

* * * *
3 1,3 3,1 1 1,3 3,1,1 ,3

* * * * * * * *
1 1,2 2,1 1,3 3,1 2 1,3 3,1 3 1,2 2,1,3 ,2 ,1 ,1

* * * * *
2 2,1 1,2 1,3 3,1 1 2,3,3 ,1

λ λ

λ λ

λ λ

λ λ λ

λ λ

− = −

− = −

− = −

 − + − = − + −
 

 − + − = −
 

u u u u

u u u u

u u u u

u u u u u u u u

u u u u u( ) ( )

( ) ( ) ( ) ( )

* * *
3,2 3 2,1 1,2,2 ,2

* * * * * * * *
3 3,1 1,3 3,2 2,3 1 3,2 2,3 2 3,1 1,3,2 ,1 ,3 ,3

λ

λ λ λ











 + −

  − + − = − + −  

u u u

u u u u u u u u

(2.52) 

 
Because of the arbitrary of the assumption about the constants in the λ  law, by 
setting to zero all skew components of ∇ ⊗ Hu , a very closed solution of the 
system can be found in the classical strain potential form, (Barber, 1992), that is 
 
 φ= ∇Hu  (2.53) 

 
where ( )φ φ= x  is a scalar function. The displacement in the form of the 

equation (2.52) produces, as well-known, an irrotational deformation field and 
constitutes the irrotational part of the Papkovich-neuber representation in the 
isotropic elasticity, (Barber, 1992). The reason for which this particular case 
could result very useful is related to the fact that many fundamental solutions in 
isotropic and anisotropic elasticity have a representation as described in (2.52), 
as the axisymmetric, thermoelastic and heat-conduction problems. 
It is, also, interesting to observe that, for the case of multi-linear law of λ , not 
any prescription on the form of the strain tensor H

E  is necessary and, so, it is 
possible to use as Displacement Associated Solutions all the three dimensional 
solutions about anisotropic elasticity, satisfying the equation (2.52), that is, all 
the three dimensional solutions that satisfy the equation 
 
 =Hcurl 0u  (2.54) 

 
For the examples of applicability of the DAS theorem and for more details on its 
formulation, let us to send to the references being in literature, (Fraldi, Cowin, 
2004).  
It is worth to note that the DAS theorem, like the SAS one, yields the possibility 
to find a closed-form solution for some inhomogeneous materials and it 
evidences that this possibility depends, in general, on the relation between the 
geometry of the strain distribution in the homogeneous material and the 
structural gradient, λ∇ , of the inhomogeneous material. 
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2. ANISOTROPIC MEDIA: VOLUME FRACTION AND FABRIC TENSORS 

 
In multiphase or damage materials, mechanical properties are closely related to 
the underlying microstructure or crack distribution. Although the volume 
fraction is the primary parameter in the geometric characterization of the 
microstructure of such materials, it does not provide information about the 
arrangement and the orientation of the microstructure. It is therefore necessary to 
introduce further parameters able to describe such orientations. The approach 
commonly use to modelling the material microstructure consists on introducing 
tensors of higher rank which characterize the microstructural architecture. In 
particular, in many application, microstructural anisotropy seems to be 
sufficiently well described by a scalar and a symmetric second rank fabric 
tensor, which restricts the material symmetry to orthotropy.  
Fabric tensors may be defined in a wide number of ways but it is required to be a 
positive define tensor that is a quantitative stereological measure of the 
microstructural architecture, a measure whose principal axes are coincident with 
the principal microstructural direction and whose eigenvalues are proportional to 
the distribution of the microstructure in the associated principal direction. The 
fabric tensor may be measure on a finite test volume and it is considered a 
continuous function of the position in the material. It should be highlight that 
since the fabric tensor is a continuum point property, its applicability to solve 
real problem is really difficult because would require a wide number of 
measures. In other words it would be necessary evaluate the fabric tensor in each 
point of the material.  
In the next sections, some way to construct fabric tensors proposed in scientific 
literature are illustrate.  
 
2.1. Mean Intercept Length (MIL) Tensor 

 
In order to characterize the microstructural anisotropy in orthotropic materials, 
Harrigan and Mann (1984) proposed a particular second order tensor – the so-
called mean intercept length (MIL) tensor – related to the stereological 
measurement of the microstructural arrangement. In particular, the MIL in a 
material is define as the average distance, measured along a particular straight 
line, between two interfaces of the two different constituents. The value of the 
MIL is a function of the slope θ  of the line along which the measurement is 
made in a specific plane. If, by plotting in a polar diagram the MIL – measured 
in the selected plane passing through a particular point in the specimen – as 
function of θ , the polar diagram produced ellipses (see Figure 2.4), than the 
values of all MILs in the plane may be represented by a second-order tensor in 
two dimension. By extending these consideration to a three-dimensional case, 
the MILs in all direction would be represented by an ellipsoid that is by a 
positive define second rank tensor M  which is commonly related to the mean 



66 Chapter II – Heterogeneous Materials 

intercept length ( )L n  by the relationship ( )21/ = ⋅L n n M n , where n  is the unit 

vector in the direction of the mean intercept length measurement.  
 

 
 

Fig. 2.4.  
Polar diagram of the Mean Intercept Length function of a cancellous bone  

 
 
The MIL approach as well as other stereological methods – e.g. the volume 
orientation method, the star volume distribution method – were proposed to 
construct the fabric tensor for biphasic materials, with particular reference to a 
specific porous material, the cancellous bone (Odgaard et al., 1997). However, it 
is worth to highlight that for particular microstructure – e.g. planar fibre 
networks or materials made of a set of plates – the MIL distribution is not in 
general elliptic and so it may not be analytically expressed in terms of a second-
order tensor (Tözeren and Skalak, 1989).  
Cowin (Cowin,1986) defined a fabric tensor H  related to the MIL tensor M  by 

-1/2
=H M . Such tensor is well defined being the positive square root of the 

inverse of the positive define symmetric tensor M . The difference between H  
and M  is in the shape of ellipsoid while the principal axes coincide.  
 
2.2. Orientation Distribution Function (ODF) 

 
Let ϕ  be some macroscopic scalar property of a material. At a given instant, ϕ  
generally depends on the material point, identified with the reference position 
vector x , and on the orientation, specified by the unit vector n ; that is, 

( ),ϕ ϕ= x n . Since only the dependence of ϕ  on n  is concerned in subsequent 

investigations, it is convenient to consider x  as fixed and drop the dependence 
of ϕ  on x . Then we write  
 
 ( ) , :ϕ = →nf f L R  (2.55) 
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and call f, the scalar-valued function defined on the unit sphere L , the 
orientation distribution function (ODF) of the property ϕ . Concretely ϕ  may be 
the effective surface density of the microdefects, Young’s modulus, the wave 
speed, the electrical resistivity, the fatigue limit, etc. (Lemaitre et al., 1987).  
The function ( )nf  must satisfy the condition 

 
 ( ) ( ) ,= − ∀ ∈n n nf f L , (2.56) 

 
because any material property ϕ  in a direction is independent of the geometrical 
choice made between n  and −n  for defining that direction. It is possible to 
prove that the invariance requirement (2.56) is satisfied if and only if there exists 

a function f̂  from = ⊗N L L  to R  such that  
 

 ( ) ( ) ( )ˆ ˆ ,= ⊗ = ∀ ∈n n n N nf f f L . (2.57) 

 

In the following we only consider the function ( )ˆ Nf  for which the condition 

(2.56) is verified. 

Assume ( )ˆ Nf  to be squre-integrable: 

 

 ( )
2ˆ < +∞∫ Nf da

L
, (2.58) 

 
where sinθ θ φ=da d d  is an infinitesimal surface element of the unit sphere L . 

It is that known (Vilenkin, 1969; Bunge, 1982; Jones, 1985) that ( )ˆ Nf  can be 

expanded in the following Fourier series:  
 

 
( ) ( ) ( ) ( )

( ) ( )
0 1 2

ˆ ...

: :: ..., ,

= + + +

= + + + ∀ ∈

N N N N

G' F N ' N NG F

f f f f

g N
 (2.59) 

 
which is convergent in mean, i.e. 
 

  ( ) ( ) ( ) ( ) ( ) ( )
2

0 1
ˆlim 0, : ...

→∞
− = = + + +∫ N N N N N Nn n n

n
f s da s f f f

L
. (2.60) 

 

In the equation (2.59), ( ) ( ){ }, , ,...I F N NF  are generalized spherical 

harmonics (Kanatani, 1984; Onat, 1984; Jones, 1985) and form a complete 
orthogonal basis for the squere-integrable functions on L .  
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The first two tensor spherical harmonics ( )F N  and ( )NF  are of particular 

interest. In view of the tensor products of Kronecker-type, they may be written 
in the coordinate-free forms: 
 

      ( )
1

3
= −F N N I   (2.61) 

      
( ) ( )

( )

1
7

1
35

= ⊗ − ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ +

⊗ + ⊗ + ⊗

N N N I N N I I N N I I N N I

I I I I I I

F
 (2.62) 

 
The orthogonality of the basis functions ( ) ( ){ }, , ,...I F N NF  means that  

 

 
( ) ( )

( ) ( ) ( ) ( ) 6

,

,...

= =

⊗ = ⊗ =

∫ ∫

∫ ∫

F N N

F N N N F N

F �

F F

da da

da da

0 O

O

L L

L L

 (2.63) 

 
where 6O  denotes the sixth-order zero tensor. It is important to remark that 

( )F N  is symmetric and traceless:  

 
 ; : 0= =F F I FT , (2.64) 

 
and that ( )NF  is completely symmetric and traceless:  

 

( ) ( ) ( ); :: :: , , ;= ⊗ = ⊗ = ⊗ ∀ ∈ =I I Y X Y X X Y IF F F F F FT T
0L . (2.65) 

 
The first three expansion coefficients of equation (2.59) can be determined from 

( )nf  via the integrals (Kanatani, 1984):  

 

 
( ) ( ) ( )

( ) ( )

1 15ˆ ˆ, ' ,
4 8

315 ˆ' .
32

π π

π

= =

=

∫ ∫

∫

N G N F N

N NG F

g f da f da

f da

L L

L

 (2.66) 

 
Due to equations (2.64) and (2.65), 'G  turns out to be symmetric and traceless 
and 'G  to be completely symmetric and traceless. With these properties, in the 
most general case, 'G  and 'G  contain five and nine independent components, 
respectively.  
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It is readily seen from equations (2.59) and (2.60) that any square-integrable 

ODF ( )f̂ N  is fully characterized by its scalar and tensor expansion coefficients 

{ }, , ,...g ' 'G G . If only the leading terms (for example, the first three ones) of the 

series expansion, (2.59), are retained, a finite or discrete description is then 

obtained for ( )f̂ N . Theoretically speaking, the accuracy of such a description 

increases with the number of the leading terms being employed; in practice, the 
maximum value of this number is determined by the degree of accuracy with 
which the directional data of the property ϕ  are experimentally acquired.  
The importance of this result resides in the fact that only the tensors of zero or 
even orders are usable for a finite description of the ODF of a scalar-valued 
physical or mechanical property ϕ .  
 
2.3. Fabric Tensor and Microcrack Distribution 

 
In the characterization of mechanical response of damaged materials, a central 
problem is represented by the development of the formalism which enables a 
traditional continuum representation of the statistical distribution of microcracks 
compiled from the stereological data measured on a statistically homogeneous 
volume of damaged microstructure. The selection of the damage parameter 
approximating the measured data is not unique due to the contradictory 
requirements of accuracy and simplicity.  
In the framework of damage mechanics, the effective continuum theories 
(Krajcinovic, 1996) are based on the assumption that the exact location of a 
microcrack within a representative volume element is not very important for the 
determination of the effective properties. This statement is, rigorously speaking, 
valid only in the dilute concentration limit. In other case, it is necessary to 
determine the distribution of crack surface densities as a function, for example, 
of the orientation of their bedding planes. For this purpose, the damage at a 
material point x  is defined by a finite set of doublets [ ],ρ

i i
n  ( )1,2,...,=i m  

where ρ
i
, is the microcrack density in a plane with normal 

i
n . Geometrically 

this set of doublets represents a binned histogram. Each bin defines the 
microcrack density in planes with orientations belonging to a particular range of 
angles. To determine the density of microcracks sharing a particular orientation 
(defined by a normal n  to their bedding plane) it is necessary to make a large 
number of parallel cuts through a representative volume element of the actual 
material which maps on the observed material point in the effective continuum. 
In the limit of a very large number of orientations the density function ( )ρ n  

tends to a continuous distribution of the densities of microcracks in planes with 
normals n  passing through the material point 0x  (Ilankamban and Krajcinovic 
1987, Curran, et al. 1987).  
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The principal problem in the formulation of an analytical representation of the 
experimental data is related to the representation of the raw statistical data in a 
frame indifferent (objective) manner. This question was explored and answered 
by Kanatani (1984) and later elaborated upon in connection to the damage 
distribution by Budiansky and O'Connell (1976), Onat and Leckie (1984), Wong 
(1985) and Lubarda and Krajcinovic (1993). The central task is to establish a 
procedure relating a measured distribution of microcrack densities as a function 
of their orientation ( )ρ n  to an appropriate damage measure in form of a tensor 

invariant to coordinate transformations. This procedure must provide a criterion 
needed to measure the fit between the experimental data and various analytical 
descriptions of the microcrack distributions. The empirical function ( )ρ n , 

typically determined for a limited number of bedding planes and samples, is 
seldom smooth. Depending on the heterogeneity of the material, size of the 
representative volume element, experimental technique, available equipment and 
finally the chance itself the function ( )ρ n  may substantially change from one 

sample to the other. A large number of samples and sections may be needed for 
a statistically valid characterization of the function ( )ρ n . In most cases a task 

like this is not cheap enough to be feasible. It is possible to utilize the measured 
or conjectured directional dependence of the crack surface area density ( )ρ n  

directly into an appropriately formulated computational model (Ilankamban and 
Krajcinovic 1987, Curran, et al. 1987). For the present purposes it is obviously 
advantageous to use a tensor function which approximates the distribution ( )ρ n  

with sufficient accuracy. The procedure, shown in the previous section, is 
developed in order to derive a tensor approximation of the raw data arranged 
into the histogram, expanding the function ( )ρ n  into a Fourier-type series of 

certain families of Laplace spherical harmonics (Kanatani 1984, Onat and 
Leckie 1988) which represent the dyadic products of the unit vector n  and the 
Kronecker delta tensor δ . Since a surface is defined by an axial vector the 
analytical expression for the distribution ( )ρ n  can involve only even order 

tensors. A rigorous approximation of an empirical or actually measured function 

( )ρ n  involves an infinite series of tensors of even order. In many cases the 

details of this distribution may not have a discernible effect on the macro 
properties and may not be reproducible when testing "identical" specimens 
under "identical" circumstances. For purely practical purposes this series must 
be truncated to a rather moderate number of terms limited to the lowest order 
tensors. The truncation introduces inevitable errors into the selected 
representation and some non-physical effects which were not noticed until 
recently.  
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Fig. 2.5.  
Geometry of a penny-shaped crack 

 
 
With reference to penny-shaped cracks defined by their radii a  and two Euler 
angles ( ),θ φ , shown in Figure 2.5., it is possible to write (Krajcinovic, 1996) 

the average crack density within a selected unit sphere centered at a material 
point as  
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= =

=
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a

a
w a a da d d

N a d d N a n

 (2.67) 

 

where ( )3 3ϑ
+

−
= ∫

a

a
N a a a da  is the non-dimensional microcracks density. 

To be able to compare different microcrack distributions with respect to the 

orientations ( ) ( ) ( )3 3 ,ρ ρ φ θ= =w N a N an n  the product 3 1=N a  will be 

fixed in the sequel.  
 
Scalar Representation of the Damage Variable. The microcrack distribution can 
be assumed to be approximately isotropic when the microcrack density is a weak 
function of the plane orientation (defined by the normal n  to the bedding plane 
through the material point). In this special case (which is preferred primarily by 
analysts if not by the geometry, nature and the physics of defect nucleation and 
growth) the microcrack distribution is fully defined by a single scalar 0ρ  which 
represents the total microcrack density or by the density ρ  averaged over the 
solid angle. These two scalar measures of the crack distribution are related by 
the well known formula 
 

 ( )0 0 4ρ ρ πρ
Ω

≡ = Ω =∫D n d . (2.68) 
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The integration in (2.68) is extended over all orientations within the solid angle 
4πΩ = . In this, simplest of all cases, the damage is defined by a single 

parameter 0ρ  (microcrack density). All symmetries of the original solid are 
preserved. The scalar damage variable (2.68) is introduced for the sake of 
consistency and uniformity. Due to its simplicity the scalar damage variable 
representation has been extensively utilized in the past (see, for example, 
Lemaitre and Chaboche 1978, Lemaitre 1986, 1992).  
 
Second Order Tensor Representation of the Damage Variable. The isotropic 
distribution of microcracks is a relatively rare phenomenon which may occur in 
rocks in crustal conditions (i.e. well confined in all directions) which are 
exposed to large temperatures and internal pressures and/or expansive 
exothermic reactions. In a general case the microcracks distribution is 
characterized by a varying degree of anisotropy. In a frequently encountered 
class of problems and tests the microcrack distribution may render the specimen 
statistically (macro) orthotropic. The orthotropy may also be a function of the 
variations of strength and stiffness with direction. This may happen in 
sedimentary rocks characterized by a strong dependence of the cohesive strength 
on the primary depositional petrofabric and also in laminate composites made of 
fiber reinforced laminae. The microcrack induced orthotropy can also be stress 
induced. The damage density in an initially isotropic solid subjected to 
proportional loading will reach maximum densities in the planes perpendicular 
to the largest principal stress. Similarly, the microcrack densities will be minimal 
in planes which are orthogonal to the minimum principal stress. The principal 
planes of the damage density will often be perpendicular assuming that the state 
of stress is simple and the loads proportional. This class of microcrack 
distributions may be adequately represented by a second order tensor. The 
microcrack density in planes with a normal n  can be in this case defined by the 
expression 
 
 ( )ρ ρ=

ij i j
n nn  (2.69) 

 
(Lubarda, Krajcinovic 1993) where ρ

ij
 is a symmetric second order tensor. 

Integrating (2.69) over the entire solid angle, and using the identity 
 

 
4

3

π
δ

Ω
Ω =∫ i j ij

n n d  (2.70) 

 
where δ

ij
 is the Kronecker (identity) delta tensor, it follows that the first 

invariant (trace) of the second order tensor ρ
ij
 is  
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 03

4
ρ ρ

π
=

kk
 (2.71) 

 
The scalar damage variable 0ρ  in (2.71) is defined by (2.68). Multiplying both 

sides of (2.69) by 
m n

n n  and integrating the product over the solid angle while 
making use of the identity 
 

 
4

5

π
Ω

Ω =∫ i j m n ijmn
n n n n d I  (2.72) 

 
leads to the following expression 
 

 ( )
8 1

15 2

π
ρ ρ δ ρ

Ω

 
+ = Ω 

 
∫ij kk ij i j

n n n d . (2.73) 

 
The fourth order tensor I  in (2.72) is defined by the tensor products of two 
delta second order tensors as  
 

 ( )1

3
δ δ δ δ δ δ= + +

ijmn ij mn im jn in jm
I  (2.74) 

 
The microcrack density tensor can now be derived by substituting (2.71) into 
(2.73)  
 

 
015

8 5

ρ
ρ δ

π

 
= − 

 
ij ij ij

D  (2.75) 

 
where  
 

 ( )ρ
Ω

= Ω∫ij i jD n n n d  (2.76) 

 
is referred to as the second order damage tensor. The microcrack density 
distribution (2.69) is, in view of (2.75), a function of the scalar and second order 
tensor damage parameters  
 

 ( ) 015 3

8 8
ρ

π π
= −

i j ij
n n n D D . (2.77) 
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2.4. Relationship between Fabric Tensor and Elasticity Tensor 

 
From a mathematical point of view, identifying the dependence of the elastic 
behaviour of the material on its microstructure consists in analyzing the formal 
relationship between the fabric tensor and the elasticity tensor.  
The main attempt to relate a fabric tensor describing microstructure to a fourth 
rank elasticity tensor – with specific reference to porous materials – is due to 
Cowin (Cowin, 1985). He proposed a model based on a normalized second rank 
fabric tensor and developed a general representation of C  as a function of the 
solid volume fraction γ  and of the invariants of the fabric tensor H  based on 
the notion that the matrix material of the porous elastic solid is isotropic and that 
the anisotropy of the porous elastic solid itself is due only to the geometry of 
microstructure represented by the fabric tensor. The mathematical statement of 
this notion is that the stress tensor T  is an isotropic function of the strain tensor 
E  and the fabric tensor H  as well as the solid volume fraction γ . Thus, the 
tensor valued function 
 
 ( ), ,γ=T T E H  (2.78) 

 
has the property that  
 

 ( ), ,γ=T T T
QTQ T QEQ QHQ  (2.79) 

 
for all orthogonal tensors Q . This definition of an isotropic tensor valued 
function is given, for example, by Truesdell and Noll (1965). In accord with the 
isotropy assumption, the stress tensor T  has the representation  
 

               
( )

( ) ( ) ( )
2 3 4 5 6

7 8 9

+ + + + + +

+ + + + + +

2 2

1

2 2 2 2 2 2 2 2

= f f f f f f

f f f

T I H H E E HE EH

H E EH HE E H H E E H
 (2.80) 

 
where 

1
f  through 

9
f  are function of the ten invariants TrH , 2

TrH , 3
TrH , 

TrE , 2
TrE , 3

TrE , TrHE , 2
TrH E , 2

TrHE , 2 2
TrE H . This representation is 

reduced by the requirement that T  be linear in E  and that T  vanish when 
E  vanishes, thus 
 

        ( ) ( )2 3 4 6 7+ + + + + + +2 2 2

1= f f f f f fT I H H E HE EH H E EH  (2.81) 
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where 
1

f , 
2

f , 
3

f  must be of the form  
 

 

1 2 3

1 1 2

2 3 3

,

,

,

= + +

= + +

= + +

2

1

2

2

2

3
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 (2.82) 

 
and where 1a , 2a , 3a , 1b , 2b , 3b , 1d , 2d  and 3d , are function of TrH , 2

TrH  

and 3
TrH . It follows then that  
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c

T I E HE H E H E HE H E

H E HE H E E HE EH

H E EH

 (2.83) 

 
where we have set 4 12=f c , 6 22=f c  and 7 32=f c . This result may be expressed 
in indicial notation as 
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 (2.84) 
 
Comparison of this result with the constitutive equation =

ij ijhk hk
T C E  suggests 

that 
ijhk

C  should be of the form 
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 (2.85) 

 
In order to satisfy the symmetry conditions (1.90) we must set 1 2=d a , 2 3=d a , 

and 3 2=d b  and take the symmetric parts of the terms multiplied by 12c , 22c , 

and 32c  with respect to hk and ij. The final results may be express as follow 
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 (2.86) 

 
where 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  are functions of γ  and TrH , 2

TrH  

and 3
TrH . 

It is possible to show that the representation (2.86) for the fourth rank elasticity 
tensor is not capable of representing all possible elastic material symmetry. The 
last material symmetry that may be represented by is orthotropy. In fact, 
expanding in indicial notation in the coordinate system that diagonalized the 
fabric tensor ( 12 13 23 0= = =H H H ), only the following nine components of the 

elastic tensor are non-zero and are function of the nine coefficient 1a , 2a , 3a , 

1b , 2b , 3b , 1c , 2c , 3c  and of the three eigenvalues of H , 11H , 22H  and 33H   
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3 33 22

1212

) ( )

( ) ( ) ( )

( ) ( ) ( )

+ + +

+

= + + + + + + +

+

= + + + + + + +

+

=

H b H H b H H H H

b H H

C a a H H a H H b H H b H H H H

b H H

C a a H H a H H b H H b H H H H

b H H

C c
2 2

1 2 11 22 3 11 22

2 2
1313 1 2 11 33 3 11 33

2 2
3232 1 2 33 22 3 33 22

( ) ( )

( ) ( )

( ) ( )

+ + + +

= + + + +

= + + + +

c H H c H H

C c c H H c H H

C c c H H c H H

 (2.87) 
 
Note that these nine components of the elasticity tensor are distinct if and only if 
the eigenvalues of H  are distinct. In fact, it is easy to see that by setting 

22 33=H H  in the (2.87), only the following six constants are different  
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2 3 4

1111 1 1 2 2 11 3 1 3 11 2 11 3 11

2 3 4
2222 3333 1 1 2 2 22 3 1 3 22 2 22 3 22

2 2 2 2
1122 1133 1 2 11 22 3 11 22 1 11 22 2 11 22 22 11

2 2
3 11 22

2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2

( ) ( ) ( )

= + + + + + + + +

= = + + + + + + + +

= = + + + + + + +

+

C a c a c H a b c H b H b H

C C a c a c H a b c H b H b H

C C a a H H a H H b H H b H H H H

b H H

2 2 2 2
3322 1 2 33 22 3 33 22 1 33 22 2 33 22 22 33

2 2
3 33 22

2 2
1212 1313 1 2 11 22 3 11 22

2 2
3232 1 2 33 22 3 33 22

( ) ( ) ( )

( ) ( )

( ) ( )

= + + + + + + +

+

= = + + + +

= + + + +

C a a H H a H H b H H b H H H H

b H H

C C c c H H c H H

C c c H H c H H

 (2.88) 
 
and only five of which are independent being 2222 2233 23232= +C C C . Thus, the 
represented material symmetry is the transversely isotropy. In the same way, if 
the eigenvalues of H  are all equal the represented material symmetry is the isotropy, 
being only the following three constant different  
 

       

2
1111 2222 3333 1 1 2 2 11 3 1 3 11

3 4
2 11 3 11

2 2
1122 1133 2233 1 2 11 22 3 11 22 1 11 22

2 2 2 2
2 11 22 22 11 3 11 22

2 2
1212 1313 3232 1 2 11 22 3 11 22

2 2( 2 ) (2 4 )

2

( ) ( )

( )

( ) (

= = = + + + + + +

+ +

= = = + + + + +

+ + +

= = = + + + +

C C C a c a c H a b c H

b H b H

C C C a a H H a H H b H H

b H H H H b H H

C C C c c H H c H H )

 (2.89) 

 
and only two of which are independent, being 1111 1122 12122= +C C C .  

The nine functions 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  depending upon γ , 

TrH , 2
TrH  and 3

TrH , can be determine by means of experimental tests.  
 
Following this method, Zysset and Curnier (1995) introduce a general approach 
for relating the material microstructure to the four rank elasticity tensor. In 
particular, they describe the microstructure by means of a scalar and a 
symmetric, traceless second rank fabric tensor. By using a representation 
theorem for anisotropic function with tensorial arguments, they derive a general 
expression for the elastic free energy and discuss the resulting material 
symmetry in terms of the fabric tensor.  
Specifically, they hypothesize that the mechanical anisotropy of the material is 
identical to that of a single microstructural property ( ) 0= >f f N , where 

= ⊗N n n  is the dyadic product of the unit vector n  specifying the orientation 
(He et al., 1995). By following the procedure shown in section 2.2, assuming 



78 Chapter II – Heterogeneous Materials 

that the function f  to be square integrable, it can be expanded in a convergent 
Fourier series  
 
 ( ) ( ) ( ): :: ...,= ⋅ + + + ∀f gN I G F N N NG F  (2.90) 

 
where I , ( )F N  and ( )NF  are even ranked tensorial basis functions – in 

particular I  is the second order unit tensor, while ( )F N  and ( )NF  are given 

by the (2.61) and (2.62), respectively – and g , G  and G  are the corresponding 
even ranked tensorial coefficients, called fabric tensor and given by the 
equations (2.66). As highlight in section 2.2., the accuracy of the series 
expansion improves with the number of retained leading terms. However, in 
most applications, the first and second terms provide a sufficient description of 
material anisotropy. So, the orientation distribution function f  is approximate 
with  
 
 ( ) ( ):= ⋅ +f gN I G F N  (2.91) 

 
which implies a restriction on material symmetry – that can be orthotropy if all 
three eigenvalues of G  are distinct, transerse isotropy if only two eigenvalues of 
G  are distinct or isotropy if the tensor G  vanishes.  
By using the second rank tensor representation Q  of the orthogonal group Orth, 
the material symmetry group G can be characterized by the fabric tensors:  
 

 
( ) ( )




∈ ⇔ 
⊗ ⊗

…

T

T

T

g = g
=

=

Q IQ I
Q GQ G

Q
Q Q Q Q

G
G G

 (2.92) 

 
Following this hypothesis, a scalar valued function ( )ψ E  invariant with respect 

to the elements of the symmetry group G can be identified with an isotropic 
function ( )ψ̂ …,g, , ,E G G  of the same argument and the corresponding fabric 

tensor (Boehler, 1987)  
 

( ) ( )ψ ψ ∀ ∈T
,E = Q EQ Q G , 

( ) ( ) ( )( )ˆ ˆψ ψ ⊗ ⊗ ∀ ∈…
TT T

,g, , , ,g, , ,E G = Q EQ Q GQ Q Q Q Q Q OrthG G . 

 

Representation theorems then provide the most general form of the isotropic 
scalar function ( )ψ̂ …,g, , ,E G G  in terms of invariants of the arguments.  
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For a scalar g and two second rank tensor arguments E  and G , with G  being 

traceless, a set of irreducible invariants is given by (Boehler, 1987) ( )Tr E , 

( )2
Tr E , ( )3

Tr E , g, ( )2
Tr G , ( )3

Tr G , ( )Tr EG , ( )2
Tr E G , ( )2

Tr EG , 

( )( )2
Tr EG . Retaining only quadratic terms in E  to come up with linear 

elasticity, general form of the elastic free energy is 
 

      

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 231 2

22 2 25 6
4 7

2 2
8 9

, ,
2 2 2

2 2

ψ ψ= = + +

+ + + +

+ +

2 cc c
g Tr Tr Tr

c c
c Tr Tr Tr c Tr Tr

c Tr Tr c Tr Tr

E G E E EG

E G EG EG E EG

EG EG E EG

 (2.93) 

 
where 

i
c  are functions of g and the two invariants of G . 

The constitutive equation for the stress tensor is obtained by derivation of the 
free energy potential ψ  with respect to the strain E  
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2 3 4

5 6 7

8 9

, ,

.

ψ∂
= =

∂

+ + + +

+ + + +

2 2

2 2 2 2

g c Tr c c Tr c

c Tr c c Tr Tr

c Tr Tr c Tr Tr

T E G E I + E + EG G + EG + GE
E

EG G GEG EG I E G

EG G EG G EG I E G

(2.94) 

 
The elasticity tensor is obtained by further derivation 
 

  

( )

( )
( ) ( ) ( )

2

2 2
1 2 3 4 5 6

2 2 2 2
7 8 9 .

ψ∂
=

∂
= ⊗ + ⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗

2
,g,

c c c c c c

c c c

C E G
E
I I I I G G G I + I G G G G G

I G G I G G G G I G G I

 (2.95) 

 
The material symmetry represented by the elasticity tensor in the form (2.95), 
like which one in (2.86), is at least the orthotropy that may degenerate into 
transverse isotropy when two eigenvalues of G  are identical and into isotropy 
when the fabric tensor G  vanishes. 
By using the spectral decomposition of G : 
 

i i
= gG G , ⊗

i i i
=G g g , 
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where 
i

g  are the eigenvalues and 
i

g  are the unit orthogonal eigenvectors of G , 

and the property 
1 2 3
+ + =G G G I , the elasticity tensor (2.95) may be translated 

in the general orthotropic form  
 

        ( ) ( )* 2λ λ µ= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ii i i ij i j j i ij i j j iG G G G G G G G G GS , (2.96) 

 
where summation is performed for i < j  due to symmetrization of tensor 
products. The identification of the coefficients leads 
 

   ( ) ( ) ( )
( )

2 4 2 3 2
1 2 3 4 5 6 7 8 9

* 2 2 2 2 2 2
1 3 5 7 8 9

1 1 1
2 4 62 2 2

2 2 2 ,
,

.

λ

λ

µ

= + + + + + + + +

= + + + + + + + +

= + + +

ii i i i i i i i

ij i j i j i j i j j i i j

ij i j i j

c c c g c g c g c g c g c g c g

c c g g c g g c g g c g g g g c g g

c c g g c g g

 (2.97) 

 
At this stage, additional assumption are necessary to guide the choice of the nine 
function 

i
c . The hypothesis they made, consists in introducing a homogeneity 

property for the set of fabric tensor { }g,G , which means that anisotropy of the 

elastic constitutive law is independent of the size or physical units of the 
microstructural properties ( ) ( ), , 0λ λ λ= ∀ >k

gG GS S , where ≠k 0  is the 

degree of the homogeneity property.  

By considering the isotropic elasticity tensor, 2λ µ= ⊗ + ⊗
c c
I I I IS , and 

substituting the identity tensor I  by the tensor g +I G : 
 

 ( ) ( ) ( ) ( )2λ µ= ⊗ + ⊗
c c

g + g + g + g +I G I G I G I GS  (2.98) 

 
where λ

c
 and µ

c
 are Lamé like constants, a particular form of the previous 

model is provided: 
 

 

2 2
1 2 3

4 5 6

7 8 9

, 2 , ,
2 , 0, 2 ,

, 0, 0.

λ µ λ
µ µ

λ

= = =
= = =
= = =

c c c

c c

c

c g c g c

c g c c

c g c c

 (2.99) 

 
In the principal reference frame of G :  
 

 
( ) ( )( ) ( )

( )( )( )
( )( )( )
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2

λ µ

λ

µ

= + + ⊗

+ + + ⊗ + ⊗
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2

c c i i i

c i j i j j i

c i j i j j i

g g g

g g g g

g g g g

S G G G

G G G G

G G G G

 (2.100) 
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Comparison with the general orthotropic form gives  
 

 
( )( )

( )( ) ( )
( )( ) ( )

*

2 , ,

, , ,

, , .

λ λ µ

λ λ

µ µ

= + + ∀

= + + ∀ <

= + + ∀ <

2

ii c c i

ij c i j

ij c i j

g g i

g g g g i j i j

g g g g i j i j

 (2.101) 

 
Sufficient but not necessary to satisfy the homogeneity condition, the 
substitution (2.98) provides the most simple orthotropic model that degenerates 
into transverse isotropy if two eigenvalues of G  are identical and into isotropy if 

= 0G .  
In order to generalize the previous approach, it is considered now the 
substitution (2.98) for an arbitrary strictly positive power k of the tensor g +I G . 

In the principal reference frame of G , the elasticity tensor becomes:  
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( )
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2

λ µ

λ

µ

= + ⊗
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k
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c i j i j j i

k k

c i j i j j i

g m

m m

m m

S G G G

G G G G

G G G G

 (2.102) 

 
where = +

i i
m g g . The coefficient exhibit the more general form:  
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λ λ
µ µ

= + ∀

= ∀ <
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k

ii c c i

k k
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m i

m m i j i j

m m i j i j

 (2.103) 

 
In this case, the anisotropic elastic behaviour of the material is completely 
described by the two constants λ

c
 and µ

c
, the exponent k and the fabric tensor 

{ }g,G  and the overall elasticity tensor assumes the form: 
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CHAPTER III 

 

THEORY OF HOMOGENIZATION 

 
 
1. THERMODYNAMIC FRAMEWORK AND MATHEMATICALLY WELL-POSED 

HOMOGENIZATION APPROACHES 
 
Homogenization is the modelling of a heterogeneous medium by means of a 
unique continuous medium. A heterogeneous medium is a medium of which 
material properties (e. g., elasticity coefficients) vary pointwise in a continuous 
or discontinuous manner, in a periodic or nonperiodic way, deterministically or 
randomly. While, obviously, homogenization is a modelling technique that 
applies to all fields of macroscopic physics governed by nice partial differential 
equations, we focus more particularly on the mechanics of deformable bodies.  
 
1.5. Representative Volume Element (RVE) 
 
Two different scales are used in the description of heterogeneous media. One of 
these is a macroscopic (x) scale at which homogeneities are weak. The other 
one is the scale of inhomogeneities and is referred to as the microscopic (y) 
scale. The latter defines the size of the representative volume element (Fig. 3.1). 
The basic cell of a periodic composite is an example of RVE.  
 

 
 

Fig. 3.1. 
Representative Volume Element 
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From the experimental point of view, we can say that there exists a kind of 
statistical homogeneity in the sense that any RVE at a specific point looks very 
much like any other RVE taken at random at another point. 
The mathematical problem presents itself in the following manner. Let ( )yσσσσ  

and ( )yεεεε  be the stress and strain at the micro scale in the framework of small-

perturbation hypothesis. We denote by ΣΣΣΣ  and ΕΕΕΕ  the same notion at the macro 
scale. Let ...  indicate the averaging operator. For a volume averaging we have  

 

 

( ) ( )

( ) ( )

1

1

V

V

x, y dy
V

x,y dy
V

= =

= =

∫

∫

ΣΣΣΣ

ΕΕΕΕ

x

x

σ σσ σσ σσ σ

ε εε εε εε ε

 (3.1) 

 
where V is the volume of the RVE.  
It is important to notice that any quantity that is an additive function is averaged 
in the micro-macro transition. Thus, if ρ ρ=  denotes the averaged density, 

then we have 
 

 

, internal energy,

, entropy,

, dissipation.

E e

S

ρ ρ

ρ ρη

φ

=

=

Φ =

 (3.2) 

 
1.2. Localization Problem 
 
We can state the following 
• the process that relates ( ),Σ ΕΣ ΕΣ ΕΣ Ε  by means of equations (3.1) and (3.2) and the 

microscopic constitutive equations is called homogenization; 
• the inverse process that consists in determining ( )yσσσσ  and ( )yεεεε  from ΣΣΣΣ  

and ΕΕΕΕ  is called localization. 
Therefore, the data are ΣΣΣΣ  and ΕΕΕΕ  in the localization process which corresponds 
to the following problem: 
 

 ( )
div

 =


=
 = 0

σσσσ

εεεε

σσσσ

ΣΣΣΣ

ΕΕΕΕP L  (3.3) 

 
This problem is original, because of the following two reasons: 
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i. the load is the averaged value of a field and not a prescription at points in the 
bulk or at a limiting surface; 

ii. there are no boundary conditions. 
It follows from (ii) that the problem (3.3) is ill-posed. The missing boundary 
condition must, in some way, reproduce the internal state of the RVE in the most 
satisfactory manner. They therefore depend on the choice of RVE, more 
specifically on its size. As a rule, different choices of RVE will provide different 
macroscopic laws. 
The following give some examples of boundary conditions: 
 
 on uniform traction onV V⋅ = ⋅ ∂ − ∂σσσσ n n   ΣΣΣΣ ; (3.4) 

 on uniform traction onV V= ⋅ ∂ − ∂u y   ΕΕΕΕ . (3.5) 
 
With this and div = 0σσσσ , in V, it is verified that (3.1) holds good. Indeed, for 
(3.5) we have 
 

     ( ) ( )1 1 1

2 2 2
ji

i j j i ik k j jk k i
V V V

j i

uu
dv u n u n ds y n y n ds

y y ∂ ∂

 ∂∂
+ = + = Ε + Ε  ∂ ∂ 

∫ ∫ ∫  (3.6) 

 
or 
 

 ( ) =εεεε ΕΕΕΕu  (3.7) 

 
The proof for (3.4) is self-evident. 
The above reasoning does not apply to the case of a periodic structure. In that 
case, σσσσ  and εεεε  are locally periodic (they are only quasi-periodic for a large 
sample) and the periodicity condition read as follows: 
• the traction ⋅σσσσ n  are opposite on opposite faces of V∂  (where n  

corresponds to -n ); 
• the local strain ( )εεεε u  is made of two part, the mean ΕΕΕΕ  and the fluctucation 

part ( )εεεε u*  such that  

 

 ( ) ( ) ( ), 0= =ε ε εε ε εε ε εε ε εu u* u*Ε +Ε +Ε +Ε + , (3.8) 

 
where u*  can be shown to be periodic. Therefore, the condition are 
 

 
is antiperiodic,

, periodic.

⋅


⋅ = Ε += Ε += Ε += Ε +

n 

u y u* u*

σσσσ
 (3.9) 
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On account of (3.4), (3.5) and (3.9), the problem (3.3) now is theoretically well-
posed, but this must be verified for each constitutive behaviour. 
 
1.3. The Hill-Mandel principle of macrohomogeneity 
 
Let σσσσ  and u  be, respectively, a statistically admissible (SA) stress field and a 
kinematically admissible (KA) displacement field. Then it is possible to prove 
that 
 

 ( ): = :σ εσ εσ εσ ε u Σ ΕΣ ΕΣ ΕΣ Ε . (3.10) 

 
The remarkable expression (3.10) is called the prinpiple of macrohomogeneity of 

Hill and Mandel (Hill, 1965a, Mandel 1971) or the Hill-Mandel relation between 
micro and macro scales. In statistical theories this condition is viewed as an 
ergodic hypothesis. This condition, in fact, plays in the end a much more 
important role than the boundary conditions applied at the RVE. 
1.4. The example of pure elasticity 

In this section the localization problem in the case of anisotropic linear elastic 
components are examined.  
 
1.4.a. The localization problem 
 
This problem is written in the following form (here ( )yC  is the tensor of 

elasticity coefficient at the micro scale): 
 

 

( ) ( ) ( ) ( ) ( )( ): :

div

boundaryconditions

y y y y * y  = = + 
=




0

σ ε εσ ε εσ ε εσ ε ε

σσσσ

uΕΕΕΕC C

 (3.11) 

 
where ΕΕΕΕ  or ΣΣΣΣ  is prescribed. Accordingly, the fluctuation displacement u*  is 
the solution of the following problem:  
 

 
( )( ) ( )div : div :

boundaryconditions

* = −



εεεε u ΕΕΕΕC C
 (3.12) 

 
Whenever ΕΕΕΕ  is constant for each constituent component, it can be shown that 
 

 ( ) � �( ) ( )div : : Sδ= nΕ ΕΕ ΕΕ ΕΕ ΕC C , (3.13) 
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where � �= + −−C C C , ( )Sδ  is Dirac’s distribution, and n  is the unit normal 

oriented from the ‘ − ’ to the ‘ + ’ side of the surface S separating components. 
Then we can state the following: 
 
Proposition. Under classical working hypotheses applying to C  (symmetry and 
positivity), the problem (3.12) admits a unique solution for all three types of 
boundary condition. 
 
To prove this we must distinguish whether it is ΕΕΕΕ  or ΣΣΣΣ  which is prescribed. 
 
1.4.b. Case where ΕΕΕΕ  is prescribed 
 
For the existence and uniqueness proofs one can see Suquet (1981b). We shall 
only give the representation of the solution. As the problem is linear, the solution 

( )εεεε u*  depends linearly on the prescribed field ΕΕΕΕ . The latter can be 

decomposed into six elementary states of macroscopic strains (stretch in three 
directions and three shears). Let ( )kl

χεεεε  be the fluctation strain field induced by 

these six elementary states at the microscopic level. The solution ( )εεεε u*  for a 

general macrostrain ΕΕΕΕ  is the superposition of the six elementary solutions, so 
that we can write (summation over k and l) 
 
 ( ) ( )kl kl

χ= Εε εε εε εε εu* . (3.14) 

 
In all we have 
 

 ( ) ( ) ( )( )= + = +ε ε ε χε ε ε χε ε ε χε ε ε χu u*Ε Ε ΙΕ Ε ΙΕ Ε ΙΕ Ε Ι  (3.15) 

 
or, in components, 
 
 ( ) ( ):

ij ijkl kl ij
Dε = Ε =u D ΕΕΕΕ  (3.16) 

 
where  
 
 ( )ijkl ijkl ij kl

D I ε χ= +  (3.17) 

 

Here ( )1
2klij ik jl il jkI δ δ δ δ= +  is the tensorial representation in 3

R  of the unity of 
6
R  and 

ijkl
D  is called, depending on the author, the tensor of strain 

localization, or tensor of concentrations (Mandel, 1971) or the tensor of 

influence (Hill, 1967). 
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Homogenization  
We can write in an obvious manner 
 

 ( ): : : : := = =σ εσ εσ εσ ε u D DΣ = Ε ΕΣ = Ε ΕΣ = Ε ΕΣ = Ε ΕC C C  (3.18) 

 
so that 
 
 hom hom: :, = DΣ = ΕΣ = ΕΣ = ΕΣ = ΕC C C . (3.19) 

 
We note that  
 

, T= =D I D I . 

 
Equation (3.19)2 shows that the tensor of ‘macro’ elasticity coefficients is 
obtained by taking the average of ‘micro’ elasticity coefficients, the latter being 
weighted by the tensor of strain localization. It is possible to prove that the 

tensor homC  is symmetric. For a direct proof we compute :T σσσσD  for an 

admissible field σσσσ , obtaining thus 
 

( ): :T T

ijkl kl ijkl kl ij kl ij
ij

D Iσ ε χ σ = = + = σσσσD ΣΣΣΣ  

 
i.e.,  
 

( ): : : : : :T T T= =σ εσ εσ εσ εD D u D DΣ = ΕΣ = ΕΣ = ΕΣ = ΕC C , 

 
so that 
 

 hom : :T= D DC C , (3.20) 

 
which is symmetric. 
 
1.4.c. Case where ΣΣΣΣ  is prescribed 
 
The localization problem than reads  
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( ) ( ) :

div

boundaryconditions

* = +


=


=



0

Ε =Ε =Ε =Ε =

ΣΣΣΣ

u uε ε σε ε σε ε σε ε σ

σσσσ

σσσσ

S

 (3.21) 

 

where S  is the tensor of the ‘micro’ elastic compliance and ΕΕΕΕ  is an unknown. 
The existence and uniqueness of the solution may be proved (Suquet, 1981b). 
Thus, here, we assume that a unique solution σσσσ  exists. This solution depends 
linearly on data by virtue of the linearity of the problem. Let us call 

kl
S  the 

solution of the problem (3.21) for the datum 
kl

Σ =Σ =Σ =Σ = Ι  - note that ( )ijkl kl ij
Ι ==== Ι .  

Then the general solution, obtained by superposition, is written 
 

 
( ) ( )

( )

: , i.e., ,

or , ,

kl kl

ij ijkl kl ijkl kl ij

= y = A y

A Aσ

Σ

= Σ =

ΣΣΣΣA

A

σ σσ σσ σσ σ
 (3.22) 

 
where A  is the tensor of stress localization. 

The homogenized compliance tensor homS  is evaluated thus. We have directly 
 

 ( ) hom: : : := = =Ε Σ = ΣΕ Σ = ΣΕ Σ = ΣΕ Σ = Σu Aε σε σε σε σS S S , (3.23) 

 
whence 
 
 hom := AS S . (3.24) 

 

We note that  

 

 T =A I , (3.25) 

 

and for any admissible field ( )uεεεε  we can write  

 

( ) ( ) ( ) ( ) ( ) ( )T T:
ijkl kl ij kl ij kl ij

kl klij
A A Aε ε ε= = = = ΕA u u u uεεεε  

 
so that  
 

( )T T T: : : : : := =Ε = ΣΕ = ΣΕ = ΣΕ = ΣA u A A Aε σε σε σε σS S , 
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hence 
 

 hom T : := A AS S  (3.26) 

 
and thus homS  is symmetric. 
 
1.4.d. Equivalence between ‘prescribed stress’ and ‘prescribed strain’ 
 
First we note that homC  and homS  are inverse tensors (in 6R ) of one another if 
they correspond to the same choice of boundary conditions in the localization 
problem. Indeed, using the symmetry of homC  we can write 
 

 ( )hom hom hom hom: : : : :
T

T= = D AC S C S C S � (3.27) 

 
in which the first factor is an admissible stress field (from the definition of D  
and A ) and the second factor is an admissible strain field. The principle (3.10) 
therefore applies and we can write ( ): =C S I   

 

 hom hom: : : : : :T T T= = = =D A D A D A IC S C S . (3.28) 

 
However, if different boundary conditions are used, one then has the estimate of 
Hill (1967) and Mandel (1971), 
 

 ( )( )3hom hom: O d l= +C S I , (3.29) 

 
where homC  is evaluated by using the condition (3.5), while homS  is computed 
through use of the condition (3.4), d is a characteristic size of an inhomogeneity 
and l is the typical size of the RVE. If l d	 , then the choice of boundary 
condition is hardly important. For periodic media where ( )1d l O= , this choice 

is most important. 
 
 
2. COMPOSITE HETEROGENEOUS MATERIALS: DERIVATION OF 

COMPLIANCE AND STIFFNESS TENSORS 

 
The overall properties of a composite material depends not only upon the 
constitutive properties of each phases, but also on the microstructural 
architecture and define a relationship between the overall field variables – such 
as the deformation and the stress. The determination of the overall deformation 
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and stress obviously needs of the preventive determination of the deformation 
and stress, and than the solution of an elastic PDE problem which involves the 
equilibrium, compatibility and constitutive equations of each phase, as well as 
the continuity conditions of the interphase. In other words, between two different 
phases – called here (1) and (2) – it must results 
 
 (1) (2) (1) (2),= =u u n nσ σσ σσ σσ σ  (3.30) 
 
being ( )iu  the displacement field of the i-phase, ( )iσσσσ  the stress field of the i-
phase and n  is the outer normal vector of a point on the interphase. From such 
procedure – which may be see as a direct approach to the homogenization 
problem – seems clear that the homogenized properties depend upon the 
microstructure architecture. Consequently, this procedure is often extremely 
difficult to apply because of the equations (3.30), and may be developed only in 
vary particular – and often ideal – cases.  
In the following section, alternative approaches to determine the overall 
properties of composite materials are presented. In particular, the direct 

approach requires the exact evaluation of the microscopic fields for some 
specific geometries, and so it is the more efficient, the more the microstructural 
geometry is similar to that one used in the model.  
The variational approaches are always able to furnish upper and lower bounds 
of the overall properties of the composite materials. In particular, such 
approaches are the only ones that may solve the homogenization problem when 
the microstructural geometries are particular irregular or not completely known. 
Obviously, the wider the range defined by the upper and lower bounds gets, the 
less the practical utility of these methods is. 
 
2.1. Direct Methods – Eshelby solution 

 
Let consider an homogeneous, linearly elastic and infinitely extended medium, 
subjected to a uniform prescribed strain ∗ΕΕΕΕ  on the domain Ω . Generally, the 
resulting strain ΕΕΕΕ  is variable on Ω , but Eshelby proved that if Ω  is an ellipsoid 
then the resulting strain ΕΕΕΕ  and hence the stress ΤΤΤΤ , are also uniform in Ω , the 
former being given by 
 
 ∗

PΕ = ΕΕ = ΕΕ = ΕΕ = Ε  (3.31) 
 
where the four-order tensor P  is called Eshelby’s tensor and it shows the 
following propeties: 
• it is symmetric with respect to the first two indices and the second two 

indices, 
ijkl jikl ijlk

P P P= = , while, in general, it is not symmetric with respect 

to the exchange of ij and kl, i. e., in general, 
ijkl klij

P P≠ ; 

• it is independent of the material properties of the inclusion Ω ; 
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• it is completely defined in terms of the aspect ratios of the ellipsoidal 
inclusion Ω , and the elastic parameters of the surrounding matrix; 

• when the surrounding matrix is isotropic, then P  depends only on the 
Poisson’s ratio of the matrix and the aspect ratios of Ω . 

In the following this results is proving in the case of isotropic matrix with 
Poisson’s ratio ν  and shear modulus µ .  
Let  
 

 ( ) ( )*
/ ' 'i jkmn mn ij ku C G dε

Ω
= − −∫x x x x  (3.32) 

 
be the solution of the PDE problem of the considered problem, where the Green 
function ( )'−G x x  for the homogeneous and isotropic medium is  

 

 ( )
( )

( ) ( ) ( )
3

3 4 ' '1
'

16 1 ' '

ν

πµ ν

 − − ⊗ −
− = + 

− − −  

I x x x x
G x x

x x x x
 (3.33) 

 
where I  is the second order identity tensor. Being Ω  an ellipsoid of equation  
 

 
22 2
31 2

2 2 2
1 2 3

1
xx x

a a a
+ + ≤  (3.34) 

 
through simple algebraic manipulation it result 
 

 ( )
( )

( )
*

2

'

8 1 '

jk

i ijk

d
u g

ε

π ν Ω

−
=

− −
∫

x
x l

x x
 (3.35) 

 
where  
 

 ( ) ( )( )1 2 3ijk ij k ik j jk i i j kg l l l l l lν δ δ δ= − + − +l  (3.36) 

 
being l  the versor of ( )− −x' x x' x . 

By assuming that the point x  is inside the region Ω , the integral into the (3.35) 
may be explicitly calculated. To achieve this goal, the volume element 'dx  may 

be written as 2r drdω , being r = −x x'  and dω  the superficial element of a 

unit sphere centred in x . The integration of the (3.35) with respect to r, yields 
 

 ( )
( )

( ) ( )
*

8 1
jk

i ijku r g d
ε

ω
π ν Σ

−
=

− ∫x l l , (3.37) 
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where ( )r l  is the positive root of  

 

 ( ) ( ) ( )
2 2 22 2 2

1 1 1 2 1 2 3 3 3 1x rl a x rl a x rl a+ + + + + = , (3.38) 

 
that is  
 

 ( ) 2 2
r f g f g e g= − + +l  (3.39) 

 
with 
 

 

2 2 2 2 2 2
1 1 2 2 3 3

2 2 2
1 1 1 2 2 2 3 3 3

2 2 2 2 2 2
1 1 2 2 3 31 .

g l a l a l a

f l x a l x a l x a

e x a x a x a

= + +

= + +

= − − −

 (3.40) 

 
By posing 2

i i i
l aλ = , the (3.37) becomes 

 

 ( )
( )

*

8 1
m jk m ijk

i

x g
u d

g

ε λ
ω

π ν Σ
=

− ∫x  (3.41) 

 
from which the strain inside Ω  may be calculated  
 

 ( )
( )

*

16 1
i jmn j imnmn

ij

g g
d

g

λ λε
ε ω

π ν Σ

+
=

− ∫x  (3.42) 

 
which depends upon ∈Ωx . 
So, the components of Eshelby’s tensor P  introduced in the equation (3.31) are: 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

2
1111 1 11 1

2
1122 2 12 1

2
1133 3 13 1

2 2
1 2

1212 12 1 2

3 1 2

8 1 8 1

1 1 2

8 1 8 1

1 1 2

8 1 8 1

1 2

16 1 16 1

P a I I

P a I I

P a I I

a a
P I I I

ν

π ν π ν

ν

π ν π ν

ν

π ν π ν

ν

π ν π ν

−
= +

− −

−
= −

− −

−
= −

− −

+ −
= + +

− −

 (3.43) 
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with 
 

 

2
1

1 2
1

4
1

11 4
1

2 2
1 2

12 2 2
1 2

3 .

l
I d

a g

l
I d

a g

l l
I d

a a g

ω

ω

ω

Σ

Σ

Σ

=

=

=

∫

∫

∫

 (3.44) 

 
All the other non-zero components may be obtained through a cyclic 
permutation of the indexes (1, 2, 3).  
Such solution may be particularized for many cases of practical interest. By 
means of the solution (3.43), it is possible to determine the concentration strain 
tensor in an ellipsoidal inclusion of elasticity tensor (2)

C  embedded in a 
homogeneous, isotropic and infinitely extended medium of elasticity tensor 

(1)
C . Then, under the uniform strain field 0ΕΕΕΕ , the medium, supposed 
homogeneous, would be subjected to a uniform stress (1) 0

CΤ = ΕΤ = ΕΤ = ΕΤ = Ε . This uniform 
stress field is perturbed by the presence of the inclusion. But the stress field 

( ) ( )(2)2 2
=CΤ ΕΤ ΕΤ ΕΤ Ε  in a generic point of the inclusion is the same that we would have 

in the inclusion imagining to substitute the inclusion with the matrix subjected to 
0ΕΕΕΕ  as well as to the strain ∗ΕΕΕΕ , such as 

 

 ( ) ( )( )(2) (1)2 2 ∗= −C CΕ Ε ΕΕ Ε ΕΕ Ε ΕΕ Ε Ε . (3.45) 

 
As proved by Eshelby, a uniform strain ∗ΕΕΕΕ  applied on an ellipsoidal region 
yields – as unique equilibrated and compatible solution – a uniform strain in the 
region given by the equation (3.31). In this case, being also 0ΕΕΕΕ , it results 
 

 ( ) ( )2 2 0 ∗= = + PΕ Ε Ε ΕΕ Ε Ε ΕΕ Ε Ε ΕΕ Ε Ε Ε . (3.46) 
 
The (3.46) and (3.45), yield 
 

 ( ) ( )( )
( ) ( ) ( )

11
1 2 1

−
−

2 0  = + −   
I P C C CΕ ΕΕ ΕΕ ΕΕ Ε . (3.47) 

 

Being ( )2
ΕΕΕΕ  uniform in Ω , the concentration strain tensor into the inclusion is 

 

 ( ) ( )( )
( ) ( ) ( )

11
1 2 1

−
−

2   = + −   
A I P C C C . (3.48) 
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2.2. Variational Methods – Hashin Shtrikman Variational Principle 

 
The homogenization problem of an heterogeneous RVE is equivalent to solve 
one of the following variational problems: 
 

 

( ) ( )

( ) ( )

1 1 1

2 2

1 1 1

2 2

inf

inf

d

d

d d

E E V

d d

T T V

dV
V

dV
V

∈

∈

⋅ = + ⋅ +

⋅ = + ⋅ +

∫

∫

E E E E E E

T T T T T T

C C

S S

 (3.49) 

 
where: ΕΕΕΕ   is compatible periodic strain field space, whose average value is 
equal to zero, T  is  equilibrated periodic stress field space, whose average value 
is equal to zero, C  is  homogenized stiffness tensor, S  is homogenized 
compliance tensor, T  is the generic symmetric stress field, and E  is the generic 
symmetric strain field.  
The first members of the (3.49)1 and (3.49)2 represent the elastic energy density 
and the complementary energy density of the homogenized material. In 
particular, solving the first problem of the (3.49)1 is equivalent to determine, 
among the compatible strain fields, whose prescribed average value is E , the 
sole one that is also equilibrated. On the contrary, solving the (3.49)2 is 
equivalent of determining, among the equilibrated stress fields, whose prescribed 
average value is T , the sole one that is also compatible.  
It is possible to demonstrate that, if the stiffness tensor C  and the compliance 
one S  have, uniformly in V, all the eigenvalues lower down bounded by a 
positive constant, then the equations (3.49) admit one and only one solution. 
Since the functionals in the first members of the (3.49) are conjugate each other, 
(Giangreco, 2003), it follows that the homogenized properties of the material are 
well defined, hence: 
 
 -1

=S C . (3.50) 
 
In this framework, the basic physic idea of the Hashin and Shtrikman’s 
principles is to substitute the heterogeneous medium with a reference 
homogeneous one, having a stiffness tensor, HC , and a compliance tensor, HS . 
In order to simulate the actual micro-structure, eigenstress and eigenstrain fields 
are prescribed on the reference homogeneous medium, as already seen in the 
previous section. So, the Hashin and Shtrikman’s variational principles are 
characterized from two tumbled variational problems: 
• the first problem, defined as auxiliary problem, is related to the elastostatic 

response of the reference homogeneous solid, subjected to a prescribed field 
of polarization (eigenstress or eigenstrain); 
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• the second problem, defined as optimization problem, has the objective to 
found the unknown field of polarization. 

In the follows, the four classic Hashin and Shtrikman’s variational principles are 
reported. It is worth to underline that two of these are minimum principles, while 
the other two are saddle principles. Obviously, the minimum principles are 
particularly useful, because each numeric approximation of them, for example 
by using the Finite Element Method, represents an upper estimation of the 
solution. 
In particular, consider a reference homogeneous material which is more 
deformable than each phase included in the heterogeneous RVE, such that 

H−C C� is positive definite everywhere in V. Hence, the following identity is 
verified: 
 

     ( )
*

* * *1 1 1

2 2 2
supH H

V V

dV dV
∈

   
⋅ − ⋅ = ⋅ − − ⋅  

    
∫ ∫

T H

E E E E T E T TC C C C  (3.51) 

 
where H  is  the space of symmetric second-order periodic tensors, *

T  is 
polarization field (eigenstress) prescribed on the reference homogeneous 
medium in order to simulate the actual micro-structure of the heterogeneous 
RVE. 
In particular, by taking: 
 

 ˆE = E + E  (3.52) 
 

where Sym∈E  and ˆ ∈E E , and by remembering that HC  is constant in V, the 
(3.51) assumes the following form:  
 

( )( )

( )
*

1* * * *

1 1ˆ ˆ
2 2

1 1ˆ ˆ ˆ
2 2

sup

H

V

H H

V V

dV

dV dV
−

∈

 
+ + − ⋅ =  

     
= ⋅ − − ⋅ + ⋅ + ⋅         

∫

∫ ∫
T H

E E E E E E

T E T T T E E E

C C

C C C

 (3.53) 

 

where *
T  denotes the average value of *

T  in V. 

Therefore, by considering the lower bound with respect to Ê , changing the 
minimization with the maximization and by dividing for V, it is obtained:  
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( )
*

1* * *

ˆ

1 1 1 1 *

2 2 2 "
sup inf

H H

V

dV
V CF

−

∈
∈

 
  

⋅ − ⋅ = ⋅ − − ⋅ +  
   
∫

T H
E E

TE E E E T E T TC C C C

 (3.54) 
 

where the quadratic functional 
*

"C
F T  is defined by: 

 

 
* *
"

1ˆ ˆ ˆ ˆ
2

H

C

V

F E dV
 

= ∈ → ⋅ + ⋅ 
 
∫

T E T E E EC . (3.55) 

 
Consider, now, a reference homogeneous material which is stiffer than each 
phase included in the heterogeneous RVE, such that H−C C� is negative definite 
everywhere in V. Hence, in analogous manner, it is obtained the following 
equation:  
 

 

( )
*

1* * *

ˆ

1 1 1 1 *

2 2 2 "
inf inf

H H

V

dV
V CF

−

∈
∈

 
  

⋅ − ⋅ = ⋅ − − ⋅ +  
   
∫

T H
E E

TE E E E T E T TC C C C

 (3.56) 
 
The equations (3.54) and (3.56) represent the Hashin and Shtrikman’s 
variational principles, based on the eigenstress. In particular, the (3.54) is a 
saddle principle, while the (3.56) is a minimum principle. From them, by 
imposing stationariness principles with respect to *

T , it is obtained: 
 

 ( )
1 * ˆH

−

− = +T E EC C�  (3.57) 

 
that confirms that stress field *

T  is the correction which has to be prescribed to 

the reference homogeneous material stress field ( )ˆH +E EC�  in order to obtain 

the stress field in the actual material ( )ˆ +E EC . 

It is possible to obtain other two variational principles, having similar 
expressions to the (3.54) and the (3.56) and involving the overall compliance 
tensor S . About them, the sole results will be shown, directly, since they are 
reached with similar considerations to those ones already done. 
Therefore, consider a reference homogeneous material which is stiffer than each 
phase included in the heterogeneous RVE, such that H−S S� is positive definite 
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everywhere in V. Hence, in analogous manner, it is obtained the following 
equation: 
 

 

( )
*

1* * *

ˆ

1 1 1 1 *

2 2 2 "
sup inf

H H

V
T

dV
V SF

−

∈
∈

 
  

⋅ − ⋅ = ⋅ − − ⋅ +  
   
∫

E H
T

ET T T T E T E ES S S S

 (3.58) 
 

where the quadratic functional 
*

"S
F E  is defined by:  

 

 
* *

"

1ˆ ˆ ˆ ˆ
2

H

S

V

F T dV
 

= ∈ → ⋅ + ⋅ 
 
∫

E T E T T TS  (3.59) 

 
and where H  is  the space of symmetric second-order periodic tensors, *

E  is 
polarization field (eigenstrain) prescribed on the reference homogeneous 
medium in order to simulate the actual micro-structure of the heterogeneous 
RVE. 
Consider, on the contrary, a reference homogeneous material which is more 
deformable than each phase included in the heterogeneous RVE, such that 

H−S S� is positive definite everywhere in V. Hence, in similar form, it is 
obtained the following equation:  
 

 

( )
*

1* * *

ˆ

1 1 1 1 *

2 2 2 "
inf inf

H H

V
T

dV
V SF

−

∈
∈

 
  

⋅ − ⋅ = ⋅ − − ⋅ +  
   
∫

E H
T

ET T T T E T E ES S S S

 (3.60) 
 
The equations (3.58) and (3.60) represent the Hashin and Shtrikman’s 
variational principles, based on the eigenstrain. In particular, the (3.58) is a 
saddle principle, while the (3.60) is a minimum principle. From them, by 
imposing stationariness principles with respect to *

E , it is obtained: 
 

 ( )
1 * ˆH

−

− = +E T TS S  (3.61) 

 
that confirms that strain field *

E  is the correction which has to be prescribed to 

the reference homogeneous material strain field ( )ˆH +T TS  in order to obtain 

the strain field in the actual material ( )ˆ +T TS .  
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It has to be considered that the Hashin and Shtrikman’s variational principles 
involve auxiliary problems, consisting in the minimization of the functionals, 

*

"C
F T  (or 

*

"S
F E ). The goal is to solve an equilibrium (or a compatibility) problem, 

for the reference homogeneous solid, subject to a prescribed eigenstress, *
T , (or 

an eigenstrain *
E ). For such problem, however, only few particular cases has a 

solution. 
In particular, it can be remembered the Eshelby’s solution for the case in which 
the polarization field is constant and different from zero, only in an ellipsoidal 
region. This solution lets to use the Hashin and Shtrikman’s variational 
principles for determining the homogenized properties of a biphasic composite, 
with a low concentration of inclusions. In order to do it, the same matrix or the 
inclusions can be chosen as reference homogeneous material, but the matrix and 
the inclusions have to be well ordered, that means, M Ω−C C  has to be defined 
in sign. 
In case of periodic composite, the auxiliary problem is easier to solve, because it 
is possible to transform the RVE domain into a Fourier domain. It is not our 
interest to expose this procedure, so the interested reader is referred to  
(Giangreco, 2003). 
The calculation of the elastic energy density and of the complementary one, 
according to the two equations (3.49), requires the execution of very difficult 
minimization with respect of functionals, that are defined on unbounded space. 
Operating such minimizations is equivalent to solve the elastostatic problem for 
the RVE, in the cases of displacements approach and tractions approach, 
respectively. A numeric minimization, obtained, for example, by using the 
Element Finite Method, can be employed on finite subspaces, 

f
E  and 

f
T , of the 

above mentioned spaces, E and T. 
Consequently, numeric minimization will yield the following expressions of the 
tensors, +C  and +S :  
 

 

( )( )

( )( )

1 1 1

2 2

1 1 1

2 2

inf

inf

d
f

d
f

d d

E V

d d

T V

dV
V

dV
V

+

∈

+

∈

⋅ = + +

⋅ = + +

∫

∫

E

T

E E E E E E

T T T T T T

C C

S S

 (3.62) 

 
which, for constructions, satisfy the following inequalities: 
 

 

1 1

2 2
1 1

.
2 2

+

+

⋅ ≤ ⋅

⋅ ≤ ⋅

E E E E

T T T T

C C

S S

 (3.63) 
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By naming with −C  and −S , respectively, the inverse of the tensors +S  and 
+C , the upper and lower limitations for the elastic energy, and the 

complementary one, of the homogenized material are obtained, as given by: 
 

 

1 1 1

2 2 2
1 1 1

.
2 2 2

− +

− +

⋅ ≤ ⋅ ≤ ⋅

⋅ ≤ ⋅ ≤ ⋅

E E E E E E

T T T T T T

C C C

S S S

 (3.64) 

 
Elementary estimations on C  and S  are obtained by choosing the simplest 

f
E  

and 
f

T , i.e., coinciding with the space constituted by the sole null tensor. In this 

way, the well known Voigt and Reuss’ estimations are reached; in particular, for 
a biphasic composite, they are:  
 

 
( )

( )

1

1

M M M M

M M M M

f f f f

f f f f

−

Ω Ω Ω Ω

−

Ω Ω Ω Ω

+ ≤ ≤ +

+ ≤ ≤ +

S S C C C

C C S S S
 (3.65) 

 
with: 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

,

,

V V

M M M M

R R

M M M M

f f f f

f f f f

− −+ −

Ω Ω Ω Ω

− −− +
Ω Ω Ω Ω

+ = + =

+ = + =

C C C C C S

S S C S S S

 (3.66) 

 
where the superscript V and R stands for Voigt and Reuss. 
At the same manner, the Hashin and Shtrikman’s variational principles (3.54), 
(3.56), (3.58) and (3.60) yield estimations on the stiffness and compliance 
tensors, if the optimization with regard to the polarization fields is employed 
above a finite underspace 

f
H , of the above unbounded mentioned space H  of 

all possible polarization fields. 
In particular, it results 
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 (3.67) 
 
and 
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if the reference homogeneous material is more deformable than each phase 
included in the heterogeneous RVE; on the contrary, it results 
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and 
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 (3.70) 
 
if the reference homogeneous material is stiffer than each phase included in the 
heterogeneous RVE. 

A numeric estimation of the inferior extreme of 
*

"C
F T  and of 

*

"S
F E  implies  that 

only the minimum principles (3.68) and (3.69) yield upper estimations for the 
density of the elastic complementary energy and for the elastic one,  respectively, 
for the homogenized material. The saddle principles (3.67) and (3.70), instead, 
are able to yield an estimation that cannot be read as an upper or lower 
estimation.  
 
3. MICROMECHANICS OF POROUS MATERIALS: J-TENSOR AND DILUTE 

DISTRIBUTION OF VOIDS CASES 
 
In this section, the overall stress-strain/strain stress relations are developed with 
reference to an RVE consisting of a linearly elastic material which contains 
stress-free cavities.  
Consider an RVE with total volume V, bounded externally by surface V∂ . On 
this surface, either uniform tractions, 
 

0 0 on V= ⋅ ∂σσσσt n , (3.71) 
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or linear displacements, 
 
 0 0 on V= ⋅ ∂εεεεu x , (3.72) 
 
are assumed to be prescribed, where 0σσσσ  and 0εεεε  are second-order symmetric 
constant stress and strain tensors for the macro-element. It is emphasized that 
either (3.71) or (3.72) (4.1.1 a), but not both, can be prescribed. In other words, 
if the traction boundary data (3.71) corresponding to the constant macrostress 

0= σσσσΣΣΣΣ , are prescribed, then the surface displacements on V∂ , corresponding to 
these tractions, in general, are not spatially linear, being affected by the 
microstructure of the RVE. Similarly, if the linear displacement boundary data 
(3.72) corresponding to the constant macrostrain 0= εεεεΕΕΕΕ , are prescribed, then the 
surface tractions on V∂ , produced by these displacements, are not, in general, 
spatially uniform. In the sequel, therefore, the two cases are treated separately 
and independently, and then the relation between the results is discussed.  
 

 
 

Fig. 3.2.  

Matrix M and microcavities αΩ  

 
 
Assume that the material of the RVE is linearly elastic and homogeneous (but 
not necessarily isotropic). The inhomogeneity, therefore, stems solely from the 
presence of cavities. Denote a typical cavity by αΩ , with the boundary α∂Ω  

( )1,2,...,nα = , so that there are a total of n individual cavities in V. The union of 
these cavities is denoted by Ω , having the boundary ∂Ω  which is the union of 
all α∂Ω , i.e., 
 
 1 1

n n

α α α α= =Ω ≡ ∪ Ω ∂Ω ≡ ∪ ∂Ω  (3.73) 
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The remainder of the RVE (i.e, when Ω  is excluded) is called the matrix. The 
matrix is denoted by M. The boundary of M is the sum of V∂  and ∂Ω , Figure 
3.2.,  

 
 M V M V≡ − Ω ∂ ≡ ∂ − ∂Ω . (3.74) 
 
 
 

 
 

Fig. 3.3.  
M

α∂Ω  and 
c

α∂Ω  

 
 

The total boundary surface of the RVE can include some portion of ∂Ω . For 
simplicity, however, exclude this possibility. Thus, all cavities are within the 
RVE, each being fully surrounded by the matrix material. For a typical cavity, 

αΩ , two faces of its surface boundary, α∂Ω , may be distinguished, as follows: 

• the exterior face of the cavity, denoted by c
α∂Ω  which is the face toward the 

matrix material, denned by the direction of the exterior unit normal n  of the 
cavity;  

• the exterior face of the surrounding matrix, denoted by M
α∂Ω , which is the 

face toward the interior of the cavity, denned by the direction of the exterior 
unit normal ( )−n  of the matrix (i.e., the interior unit normal of the cavity). 

α∂Ω  coincides with c
α∂Ω , for the cavity αΩ , while M∂  at the cavity αΩ  

coincides with M
α∂Ω  (Fig. 3.3). In view of this convention, the integral of a 

surface quantity taken over M∂  can always be decomposed as 
•  
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=
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 (3.75) 
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Thus ∂Ω  always stands for the union of c
α∂Ω  ( )1,2,...,nα = . 

To distinguish the boundary of M at the cavities from that at the exterior of the 
RVE, which is V∂ , the exterior unit normal on V∂  is systematically denoted by 
n  (as before), and the exterior unit normal on the surface α∂Ω  for a typical 

cavity αΩ , by n , pointing from the inside of the cavity toward the matrix M. 
The matrix material is linearly elastic and homogeneous. Denote the 
corresponding constant elasticity tensor by C  and the compliance tensor by S . 
 
3.1. Average strain for prescribed macrostress 

 
Suppose that uniform tractions 0 0= ⋅σσσσt n  are prescribed on V∂ , associated with 
the constant symmetric macrostress 0= σσσσΣΣΣΣ . If the RVE is homogeneous, having 
no cavities, then the corresponding average strain associated with the average 
stress 0σσσσ  would be 
 
 0 0:=ε σε σε σε σS � , (3.76) 
 

and hence, in conjunction with 0σ σσ σσ σσ σ==== , the average strain would be 0εεεε . The 
presence of cavities disturbs the uniform stress and strain fields, producing the 
variable stress field ( )=σ σσ σσ σσ σ x  and strain field ( )=ε εε εε εε ε x , in M, with =σσσσ 0000  in 
Ω . Nevertheless, from the (3.1) 
 

 
1 1

V M
dv dv

V V

0= = = =∫ ∫σ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ . (3.77) 

 
On the other hand, the average strain is not, in general, equal to 0εεεε . Instead,  

 

 0 c= = +ε ε ε εε ε ε εε ε ε εε ε ε ε , (3.78) 

 
where 0εεεε  is defined by (3.76), and cεεεε  is the additional strain due to the presence 
of cavities. 
To calculate the additional strain cεεεε  due to cavities, one may apply the 
reciprocal theorem, as follows. Consider two sets of loads, one defined by 
 

 
0

(1)

0

on

on

Vδ

δ

 ⋅ ∂
= 

− ⋅ ∂Ω

σσσσ

σσσσ

n
t

n
 (3.79) 

 

which corresponds to uniform virtual stress 0δσσσσ  and strain 0 0:δ δ=ε σε σε σε σS  within 
the entire RVE (as illustrated in Figure 3.3, −n  is the interior unit normal on the 
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cavity surface ∂Ω , or the exterior unit normal to the boundary of the matrix), 
and the other defined by 
 

 
0

(2) on

on

V ⋅ ∂
= 

∂Ω0

σσσσn
t  (3.80) 

 
which is the actual loading considered for the RVE. 
Denote the displacement, strain, and stress fields associated with the first loading 
(3.79) by  
 

 { } ( ){ }(1) (1) (1) 0 0 0, , , ,δ δ δ=ε σ ε ε σε σ ε ε σε σ ε ε σε σ ε ε σu x .  (3.81) 

 
which follows from the fact that, for loading (3.79), the strain and stress fields 
are both uniform throughout the matrix M. And denote the fields associated with 
the second (i.e., the actual) loading (3.80) by  
 

 { } { }(2) (2) (2), , , ,=ε σ ε σε σ ε σε σ ε σε σ ε σu u . (3.82) 

 
From the reciprocal theorem, it follows that  
 

 ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ

∂ ∂ ∂Ω
⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅∫ ∫ ∫σ ε σ σσ ε σ σσ ε σ σσ ε σ σn x . n u n u  (3.83) 

 
which can be written as 
 

 ( ){ }{ }0 0: : 0
V V

ds ds dsδ
∂ ∂ ∂Ω

⊗ ⋅ − ⊗ + ⊗ =∫ ∫ ∫σ σσ σσ σσ σx n n u n uS . (3.84) 

 
Since 0δσσσσ  is an arbitrary symmetric tensor, the symmetric part of the quantity 
within the braces must vanish identically. Noting that the first integral within the 
braces yields 
 

 ( ){ } { }0 0 01
: :

V
ds

V ∂
⊗ ⋅ = ⋅ =∫ σ Ι σ εσ Ι σ εσ Ι σ εσ Ι σ εx nS S , (3.85) 

 
and using the averaging scheme, it follows that 
 

 ( ){ } ( )01 1 1 1

2 2
T

V
+ dv + ds

V V ∂Ω
= ∇ ⊗ ∇ ⊗ = + ⊗ ⊗∫ ∫u u n u u nε εε εε εε ε .(3.86) 
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Comparison with (3.78) shows that the additional strain cεεεε  due to cavities, is 
given by 
 

 ( )
1 1

2
c + ds

V ∂Ω
= ⊗ ⊗∫εεεε n u u n . (3.87) 

 
 
3.2. Overall compliance tensor for porous elastic solids 
 
Define the overall compliance S  of the porous RVE with a linearly elastic 
homogeneous matrix, through 
 
 0: = :ε σ σε σ σε σ σε σ σS� S� ==== , (3.88) 
 
where the macrostress, 0= σσσσΣΣΣΣ , is regarded prescribed, and the average strain is 
given by (3.78). To obtain the overall compliance in an explicit form, the strain 

cεεεε  due to cavities will now be expressed in terms of the applied stress 0σσσσ . 
Since the matrix of the RVE is linearly elastic, for a given microstructure the 
displacement ( )u x  at a point x  on ∂Ω  is linearly dependent on the uniform 

overall stress 0σσσσ , as show following. By remembering that the displacement 
field may be expressed in terms of Green function as  
 

 ( ) ( ) ( ),
V

ds
∂

= ⋅∫u x G x y t y  (3.89) 

 
where ( )t y  are the self-equilibrating surface traction prescribed on the 

boundary V∂  of the RVE, if the applied tractions (3.71) are substituting into 
(3.89), to arrive at 
 

 ( ) ( ) ( ){ }0,
V

ds
∂

= ⋅ ⋅∫ σσσσu x G x y n y , (3.90) 

 
where the integration is taken with respect to y  over the boundary V∂  of the 

RVE. Since 0σσσσ  is a symmetric constant tensor, (3.90) can be expressed as 
 
 ( ) ( ) 0

i ijk jk
u K σ=x x  (3.91) 

 
where the third-order tensor,  
 

           ( ) ( ) ( ) ( ) ( ) ( ){ }1
, ,

2ijk ijk ij k ik j
V

K K G n G n dS
∂

= = +∫x x x y y x y y , (3.92) 
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depends on the geometry and the elastic properties of the matrix of the RVE.  
To obtain the additional overall strain, cεεεε , due to the presence of cavities in 
terms of the prescribed overall stress, 0σσσσ , substitute from (3.92) into (3.87), to 
arrive at 
 
 0c

ij ijkl kl
Hε σ= , (3.93) 

 
where the constant fourth-order tensor, H , is given by  
 

               ( ) ( ) ( ) ( ){ }1 1

2ijkl jikl ijlk i jkl j ikl
H H H n K n K dS

V ∂Ω
≡ ≡ ≡ +∫ x x x x . (3.94) 

 
Hence, for an RVE with a linearly elastic matrix containing cavities of arbitrary 

shapes and sizes, the following general result is obtained, when the overall 
macrostress is regarded prescribed (Horii and Nemat-Nasser, 1983): 
 
 :c 0=ε σε σε σε σH . (3.95) 
 
It should be noted that this exact result is valid whether or not the linearly elastic 
constituent of the RVE is homogeneous. The requirements are:  

• the matrix of the RVE is linearly elastic; 

• the microstructure of the RVE remains unchanged under the applied 
macrostress 0= σσσσΣΣΣΣ . 

To obtain the overall elastic compliance tensor S , in terms of the constant 
compliance of the matrix, S , and the constant tensor H , substitute (3.76), 
(3.88) and (3.95) into (3.78), and noting that the resulting equation must hold for 
any macrostress 0σσσσ , arrive at 
 
 = +S�S H , (3.96) 
 
Note that in many situation, the tensor H  can be computer directly, using the 
(3.87). 
 
3.3. Average stress for prescribed macrostrain 

 
Suppose that the linear displacements 0 0= ⋅εεεεu x  (associated with the constant 
symmetric macrostrain 0= εεεεΕΕΕΕ ) are prescribed on V∂ . The matrix of the RVE is 
assumed to be homogeneous, as marked before. In the absence of cavities, the 
corresponding average stress associated with the prescribed macrostrain, 0εεεε , 
would be 
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 0 0:=σ εσ εσ εσ εC � . (3.97) 
 
Due to the presence of cavities, the actual field quantities are nonuniform. From 
the (3.6),  
 

 ( ) 01 1 1

2V V
dv ds

V V ∂
= = = ⊗ + ⊗ =∫ ∫ε ε ε εε ε ε εε ε ε εε ε ε εn u u n  (3.98) 

 
which is valid for any RVE of any material and microstructure. Note that the 
surface integral in (3.98) extends over the exterior boundary, V∂ , of the RVE 
only. It does not include the cavity boundaries ∂Ω . Equation (3.98) is the direct 
consequence of the fact that the average strain for an RVE is given in terms of 
its boundary displacements which are prescribed here to be 0 0= ⋅εεεεu x .  
In general, for a prescribed macrostrain, the average stress is not equal to 0σσσσ  but 
 
 0 c= = +σ σ σ σσ σ σ σσ σ σ σσ σ σ σ , (3.99) 

 

where 0σσσσ  is defined by (3.97), and cσσσσ  is the decrement in the overall stress due 
to the presence of cavities.  
As in Subsection 3.1., the reciprocal theorem will be applied to calculate the 
average stress a in (3.99). To this end, a third set of boundary data defined by 
 

 
(3) 0

(3)

on

on .

V= ⋅ ∂

= ∂Ω0

u n

t

σσσσ
 (3.100) 

 
The displacement, strain, and stress fields associated with these boundary 
conditions are denoted by 
 

 { } { }(3) (3) (3), , , ,=u uε σ ε σε σ ε σε σ ε σε σ ε σ  (3.101) 

 
which are actual fields, in general, different from those given by (3.82) for the 
boundary conditions (3.80). The actual tractions on the boundary of the RVE 
now are 
 
 ( ) ( ) ( )= ⋅t x n x xσσσσ , (3.102) 

 
where x  is on V∂ . These tractions are required in order to impose the boundary 
displacements prescribed by (3.100). 
Applying the reciprocal theorem to the two sets of loads, (3.79) and (3.100), it 
follows that  
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           ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ δ

∂ ∂ ∂Ω
⋅ = ⋅ ⋅ − ⋅ ⋅∫ ∫ ∫t x . n x . n uε σ ε σε σ ε σε σ ε σε σ ε σ  (3.103) 

 
which can be written as  
 

     ( ){ } ( ){ }0 0: : : 0
V V

ds ds dsδ
∂ ∂ ∂Ω

⊗ − ⊗ ⋅ + ⊗ =∫ ∫ ∫t x x n n uε εε εε εε εC C  (3.104) 

 
where, in using loading (3.81), the quantity 0δεεεε  is regarded as a virtual spatially 
constant strain field with the corresponding stress field, 0 0:δ δ=σ εσ εσ εσ εC � . Since 

0δεεεε  is an arbitrary symmetric tensor, the symmetric part of the quantity within 
the braces in (3.104) must vanish identically. Noting that the second integral 
within the parentheses can be expressed as 
 

 ( ){ } { }0 0 01
: :

V
ds

V ∂
⊗ ⋅ = ⋅ =∫ x n ε Ι ε σε Ι ε σε Ι ε σε Ι ε σC C , (3.105) 

 
and using the averaging procedure, it now follows that 
 

 ( )01 1 1
:

2V
ds + ds

V V∂ ∂Ω

 
= ⊗ = − ⊗ ⊗ 

 
∫ ∫t x n u u nσ σσ σσ σσ σ C  (3.106) 

 
Comparison with (3.99) shows that the decremental stress cσσσσ  due to the 
presence of cavities, is given by 
 
 :c c= −σ εσ εσ εσ εC  (3.107) 
 
where cεεεε  is the strain due to the presence of cavities given by (3.87), which now 
must be computed for the prescribed boundary displacements 0 0= ⋅u x εεεε . 
 
3.4. Overall elasticity tensor for porous elastic solids 

 
When the overall macrostrain is regarded prescribed, 0= εεεεΕΕΕΕ , designate the 
overall elasticityJensor of the porous RVE with a-linearly elastic and 
homogeneous matrix, by C , and define it through 
 
 0= :σ εσ εσ εσ εC� . (3.108) 
 
Substitution of (3.97), (3.107), and (3.108) into (3.99) then yields 
 

 ( ) 0: : c− + =ε εε εε εε εC� C � C 0000 . (3.109) 
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For a given microstructure (i.e., for existing cavities with fixed shapes, sizes, and 
distribution), the response of the RVE is linear. Hence, the displacement field 
anywhere within the linearly elastic matrix of the RVE is a linear and 
homogeneous function of the prescribed overall constant strain 0εεεε . Therefore, in 
line with results (3.91) and (3.92) for the case when the macrostresses were 
considered to be prescribed, at a typical point x  on the boundary of the cavities, 
∂Ω , 
 
 ( ) ( ) 0

i ijk jk
u L ε=x x  (3.110) 

 
where ( )L x  is a is a third-order tensor-valued function with the symmetry 

property, 
ijk ikj

L L= . Now, from the definition of cεεεε , given by the (3.87),  

 
 0c

ij ijkl kl
Jε ε= , (3.111) 

 
where the constant fourth-order tensor, J , is given by 
 

           ( ) ( ) ( ) ( ){ }1 1

2ijkl jikl ijlk i jkl j ikl
J J J n J n J dS

V ∂Ω
≡ ≡ ≡ +∫ x x x x . (3.112) 

 
Hence, for an RVE with a linearly elastic matrix (whether homogeneous or not) 
containing cavities of arbitrary shapes and sizes, the following general result is 
obtained, when the overall macrostrains are regarded prescribed: 
 
 :c 0=ε εε εε εε εJ . (3.113) 
 
To obtain an expression for the overall elastic moduli of the porous RVE, 
substitute (3.113) into (3.109) and, noting that the resulting expression must be 
valid for any constant symmetric macrostrain 0εεεε , arrive at  
 
 := −C C C J . (3.114) 
 
It should be noted that in many practical problems the tensor J, similarly to the 
tensor H , can be calculated directly from (3.87), and therefore, the overall 
elastic moduli can be estimated from (3.114). 
It may, however, be instructive to seek to construct the tensor J  in terms of the 
Green functions ( ),G x y  and ( ),-1

G x y . 
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To this end, for the linear displacements, 0 0= ⋅u z εεεε , prescribed on the outer 
boundary V∂  of the RVE, by remembering that the resulting tractions, ( )t y , 

may be written as 
 

 ( ) ( ) ( ),-1 0

V
ds

∂
= ⋅ ⋅∫t y G y z z εεεε , (3.115) 

 
where the integration is taken with respect to z  over the outer boundary V∂  
(excluding the traction-free cavity boundaries) of the RVE. Substituting (3.115) 
into (3.89), the displacement field for points on ∂Ω  is obtained in terms of the 
prescribed macrostrain 0εεεε , as 
 

 ( ) ( ) ( ) ( ){ }0, ,-1

V V
ds ds

∂ ∂
= ⋅ ⋅ ⋅∫ ∫u x G x y G y z z εεεε  (3.116) 

 
where both the y - and z -integral are taken over V∂ . Noting that 0εεεε  is a 

symmetric tensor, tensor L  in (3.110) may now be written in terms of G  and 
-1G , as 

 

          ( ) ( ) ( ) ( ){ }1 11
, , ,

2ijk im mj k mk j
V V

L G G z G z ds ds
− −

∂ ∂

 
= + 

 
∫ ∫x x y y z y z . (3.117) 

 
Therefore, from comparison of (3.113) with (3.117), a fourth-order tensor, 

( ),j x y , can be introduced as  

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

, , , ,1
,

4 , , , ,

i jm mk l i jm ml k

ijkl
V

j im mk l j im ml k

n G G z n G G z
j dS

n G G z n G G z

− −

− −∂

 + + 
=  

+ +  
∫

x x y y z x x y y z

x x y y z x x y y z

 (3.118) 
 
where the integral is taken with respect to z  over V∂ . The constant tensor J  in 
(3.113) now becomes 
 

 ( )
1

,
V

ds ds
V ∂Ω ∂

= ∫ ∫J j x y , (3.119) 

 
where the y -integration is over V∂ , and the x -integration is over ∂Ω . 
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CHAPTER IV 
 

ISOTROPIC FUNCTIONS, ENERGY DENSITY POTENTIAL AND 

SECOND ORDER FABRIC TENSORS FOR POROUS MEDIA  

 
 
1. EVALUATION OF THE ELASTIC MODULI FOR POROELASTIC SOLIDS: 

RANDOMLY ARRANGED MICROSTRUCTURE  

 
The micromechanical characterization of porous materials is of primary 
importance in the study of biomaterials, in many problems of tissue mechanics 
as well as in the application of engineering of materials.  
In fact, porous media made by a solid matrix and isolated or linked voids – 
which determine the porosity of the medium – form the microstructure of a wide 
number of materials such as the geotechnical materials (soils and rocks), cellular 
conglomerates, ceramic materials, synthetic biomaterials or biological tissues 
(e.g. cancellous bone, soft tissue). The mechanical interpretation of the elastic 
and ultra-elastic behaviour of such materials requires the homogenization of the 
overall physic and geometrical properties inside RVE of the considered poro-
elastic solid. In this way, it is than possible to establish the constitutive 
relationship for such solids, to analyze the structural response under specific 
load conditions as well as – in biomedical circles – to have mathematical models 
useful to simulate problems of permeability or drug delivery.  
If the volume fraction is strongly variable inside the considered solid, it is not 
possible apply standard homogenization procedure which usually require 
periodic microstructure, namely constant porosity.  
With specific reference to cancellous bone, many author determined the elatic 
moduli and the strength as function of the volume fraction by means of 
mechanical experimental tests on a large number of bone specimens taken in 

situ.  
In particular, Rho (1995) – by means of experimental tests – obtained 
interpolation functions between the stiffness and the volume fraction of the bone 
that sometimes show a too high value of standard deviation. The dispersion of 
the results and the dependence upon the specific type of bone are the main limits 
of such experimental relations.  
Besides, further studies are based on numerical approaches. Analyses based on 
Finite Element (FE) method are implemented on micro-models whose micro-
architecture has been accurately reconstructed. Unfortunately, this kind of 
analysis do not furnish general relations between the elastic moduli and the 
density because of the dependence of the results upon the specific densitometry 
of the specimen.  
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1.1. The Rho law for bone tissue 
 
Most FE models of bone have used one average Young’s modulus for cortical 
bone and typically less than six average values for different cancellous areas 
even if it is well known that the mechanical properties among species and among 
bones are extremely variable. Beyond relying on average mechanical properties, 
better approximations of bone elasticity have been obtained through correlation 
with density. From the densities measured on the particular bone, the elastic 
properties are calculated by means of published correlations of elasticity with 
bone density. Many author (Edidin et al., 1991; Keyak et al., 1990; Marom et 

al.) used CT numbers to predict the mechanical properties needed for a finite 
element model by founding a relationship between CT numbers and the apparent 
density. In particular, Rho derived specific relationships between various 
properties of bone for each different bone type and different direction in the 
same bone type by means of experimental investigations on a wide number of 
human bone specimens. The bone specimens were CT scanned transversely in 
the proximal-to-distal direction. Raw CT values were obtained from the same 
anatomic position as cubic specimens cut for the measurement of mechanical 
properties. The raw CT values were converted into Hounsfield Units ( )H  by 

relating the bone values to nearby water ( )0H =  and air values ( )
14

1000H = −  

through the formula, w

w a

CT CT
1000

CT CT
H

−
=

−
 where wCT  and aCT  are the CT  

values of water and air, respectively. Bone density is defined as mean value 
expressed in Hounsfield units in each pixel. The density of cortical bone was 
determined by Archimedes’ principle, while the apparent density of cancellous 
bone was determined by wet weight divided by volume of the overall physical 
dimensions of the specimens. The elastic properties of each specimen was 
estimated through ultrasonic techniques which offer some advantages over 
mechanical testing such as the ultrasonic specimens can be smaller and several 
anisotropic properties can be evaluated from one specimens. Both advantages 
are significant due to the inhomogeneity, anisotropy and limited size of bone. 
The experimental results were interpolated by linear ( y c bx= + ) and power 

( a
y bx= ) relations. Their predictive capabilities were evaluated using t-test of 

the estimated coefficients of the general nonlinear ( a
y c bx= + ) relation which 

included both power (if 0c = ) and linear (if 1a = ) models.  
For cortical bone, the linear relationship between axial modulus and density was 
found to be the best fit based on the t-tests of the estimated coefficients of the 
general nonlinear relationship for the data obtained from all examined type of 
bone – tibia, femur, humerus, mandible.  
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Bones 
Dependent 

variable 
Independent 

variable 
Regression equations r2 

     

Tibia E3 ρ E3=-3.842+0.013ρ 0.53 
     

Femur E1 ρ E1=-6.087+0.010ρ 0.61 

 E2 ρ E2=-4.007+0.009ρ 0.47 

 E3 ρ E3=-6.142+0.014ρ 0.77 
     

Humerus E1 ρ E1=-9.212+0.011ρ 0.69 

 E2 ρ E2=-8.540+0.011ρ 0.66 

 E3 ρ E3=-6.326+0.015ρ 0.72 
     

Mandible E1 ρ E1=-13.05+0.013ρ 0.54 

 E3 ρ E3=-23.93+0.024ρ 0.37 
 

Tab. 4.1.  
Linear relationship for cortical bone between elastic modulus and density obtained by 

Rho (1995). Values of elastic modulus (E) are expressed in GPa and the density (ρ) in 

kg/m
3
. Subscripts 1, 2 and 3 indicate the radial circumferential and superior-inferior 

direction, respectively.  
 
 
On the other hand, for cancellous bone the power model for moduli and apparent 
density had a statistically better fit based on t-tests of the estimated coefficients 
of the general nonlinear relationship for data obtained from the proximal tibia, 
proximal femur, and distal femur.  
Both power and linear model for moduli and apparent density produced good fits 
for the humerus and patella, while for the lumbar spine the linear model was 
better than the power one. 
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Bones 
Dependent 

variable 
Independent 

variable 
Regression equations r2 

     

E1 ρ E1=-657+3.91ρ 0.9 Proximal 
Femur E2 ρ E2=-506+3.64ρ 0.89 

 E3 ρ E3=-331+4.56ρ 0.9 
     

 E1 ρ E1=0.004ρ2.01 0.91 

 E2 ρ E2=0.01ρ1.86 0.89 

 E3 ρ E3=0.58ρ1.30 0.94 
     

 E3 CT# E3=269+4.86CT# 0.8 
 ρ CT# ρ=131+1.067CT# 0.84 

 
Tab. 4.2.  

The relations between the mechanical properties and apparent density of the proximal 

femur cancellous bone obtained by Rho (1995). Values of elastic modulus (E) are 

expressed in MPa, the apparent density (ρ) in kg/m
3
, and the CT number in Hounsfield 

values.  Subscripts 1, 2 and 3 indicate the anterior-posterior, medial-lateral and 

superior-inferior direction, respectively.  
 
 
1.2. Generalization of the Rho law for Cubic/Isotropic Media 
 
As recalled in the previous sections, the determination of the elastic constant of 
porous material such as the bone tissue is a complex problem. The relations 
between elastic constants and apparent density obtained by fitting experimental 
data often show a not negligible dispersion of the results. It is probably due to 
the fact that being the density a scalar quantity, it is not able to describe other 
microstructural features such as the orientation. Moreover, the Rho’s laws 
depend upon the specific type of bone. On the other hand, FEM-analyses of 
micro-models whose micro-architecture has been accurately reconstructed 
require too heavy computer’s elaborations and, moreover, do not furnish general 
relationships between the elastic moduli and the density because of the 
dependence of the results upon the specific densitometry of the specimen.  
In order to overcome this problems, many authors also employ analysis based on 
the finite element method on micro-models with a regularized micro-geometry 
(Wagner and Gibson, 2000; Kouznetsova et al., 2001; Gonzáles et al., 2004). 
This approach permits to simulate mechanical tests on three-dimensional RVE 
by introducing both material and geometrical non-linearities, in order to predict 
the elastic moduli of the heterogeneous media, the yield strengths as well as 
possible post-elastic stress-strain curves.  



Chapter IV – Isotropic Function, Energy Density Potential and  Second Order    Fabric 
Tensor for Porous Media 115 

However, no explicit investigations are available on the determination of overall 
elastic response of porous RVEs with strongly variable volume fraction, i.e., 
RVEs characterized by the presence of symmetrically arranged voids growing 
from low porosity to low volume fraction of the matrix. 
Thus, with the aim of establishing a closed relationship between averaged 
moduli and volume fraction for porous materials, FE analyses are performed to 
estimate the mechanical properties of a three-dimensional cubic anisotropic 
porous material, whose micro-structure is geometrically modelled as periodic 
arrangement of cubic cells with a centred void. The shape of such voids is a cube 
with smoothed corner, called here dice cavity (see Fig. 4.1.). The matrix of the 
RVE is supposed to be isotropic.   
 

 
 

Fig. 4.1.  
3D representation of the dice void porous RVE. 

 
 
In particular, the upper and lower bounds of the effective elastic constants as a 
function of the volume fraction are evaluated, by considering displacement and 
traction-prescribed boundary conditions. 
More in detail, a wide number of FE simulations on the 3D models with 
increasing dimension of the void are examined, and, for each value of the 
volume fraction, elastic analyses are performed to obtain overall elastic moduli 
as a function of the cell density. For each isotropic elastic constant, the 
corresponding set of computational data is interpolated by means of a specific 
analytical function, in order to relate density to moduli in a closed form. This 
law is based on the third polynomial regression and is solved through limit 
conditions defined to make it obeying to the Flugge’s theory – in case of high 
porosity – and to the theory of dilute distribution of voids – valid in the case of 
high volume fraction.  
Moreover, in order to also evaluate the influence of the shape of cavities on the 
overall mechanical properties of the RVE at a fixed value of the volume fraction, 
voids of three different shapes are considered, that is a sole centred spherical 
void, eight overlapping spherical voids and seven overlapping ellipsoidal voids 
(see Figure 4.2.). For reaching lowest volume fractions, in the last mentioned 
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case, voids are able to intersect RVE sides, to describe the mechanical response 
for more complicated shapes of the porous material. 
 

 
 

Fig. 4.2.  
3D representation of cubic RVEs showing different types of cavities and with increasing 

volume fraction: a) single sphere void porous RVE, b) eight spheres void porous RVE, 

c)seven ellipsoids void porous RVE. 

 
 
1.2.a. Finite Element Model 
 
Starting from an heterogeneous porous material, homogenization criteria can be 
developed through different ways. To predict homogenized behaviour of a 
porous cubic symmetric material, it is useful to adopt a cubic cell RVE oriented 
towards material symmetry direction, in way to obtain a cubic symmetric RVE. 
By the shape and distribution of voids investigated in this work, two different 
cubic symmetric RVE are available: a cubic cell centred on void and cubic cell 
with voids eroding its corners, Fig 4.3.  
3D representative sketches of cells eroded symmetrically at the eight corners by 
decreasing volume voids with dice form are shown in Fig. 4.4.  
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Fig. 4.3.  
3D representation of cubic RVE position in a porous material with periodic voids 

arrangement, for 0γ →  on the left, for 1γ →  on the right. Type A) corner eroded, type 

B) void centred. 

 

 
 

Fig. 4.4.  
3D representation of corner eroded void porous RVE through increasing volume 

fraction sketches. 

 
 
Therefore, in order to estimate the influence of the volume fraction on the 
overall mechanical behaviour of the porous media, a model of cubic porous RVE 
centred on void is studied, namely the cubic RVE introduced above (Fig 4.1.). 
Model’s density varies within a characteristic voids length. Smoothed edge cubic 
volume is subtracted from the RVE and the diagonal of the subtracted cubic 

volume varies from 2L  to 3 2L⋅ , where L  is the length of the RVE’s side. 
Thanks to symmetrical subtractions, the varying density of the cell keeps cubic 
anisotropy in every porous configuration. The volume fraction of the models, γ , 

varies in the range [ ]0.06,1 . In particular, a typical dilute porous material 

arrangement is obtained when γ  is close to 1, while a structure made of 
orthogonal linked shells – like the Flugge’s porous material model (Flugge, 
1972) – is obtained γ  tends to 0, see Fig. 4.3. Material properties of the matrix 
of cubic cell is assumed to be linear, elastic and isotropic, characterized by the 
Young modulus 0 17200E MPa=  and the Poisson’s ratio 0 0.3ν = .  

A A 

B 

B 
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The 3D model is meshed by using ten nodes three dimensional isoparametric 
tetrahedral elements which have a quadratic displacement shape function and 
thus are well suited to model irregular geometry. 
A routine for the automatic generation of both geometric models and mesh is 
created. In particular, the algorithm allows the automatic generation of a wide 
number of FE models, in which the dimension of the voids progressively 
increases, in a way able to obtain a population of results sufficient to draw with 
accuracy the relations between average mechanical properties and volume 
fraction. Representation sketches of FE mesh is shown in figure 4.5. where, for a 
better voids visualization, corner eroded RVE type is reported. 
Two different load conditions are considered, that is uniform tractions and 
uniform displacements prescribed on cubic cell surfaces. In both cases, over 
three of the others faces of the cubic cell, symmetric boundary conditions in 
terms of displacements are applied.  
 
 

 
 

Fig. 4.5.  
3D representation of meshed FE model of corner eroded RVE trough increasing volume 

fraction sketches. 

 
 
1.2.b. Model’s accuracy 
 
Fine element local population defines fidelity both of geometrical and material 
model behaviours. FEM model mesh accuracy is generally intended to assure an 
high precision of the performed analysis results. Principal mesh thickness upper 
bound is marked by solving process time directly related to clock speed of 
implemented machine. Fixing results error tolerance, finite element mesh is to be 
lower populated as possible, in way to obtain an easily handling model. 
An error tolerance percentage of 3% is assumed here, model mesh densities is 
tested to ensure this accuracy level and it shows less than 35.600 elements for 
cases of highest complexity of cavity geometry (see fig 4.6.). So, it is able to 
perform a large number of analyses. 
The geometry of the porous modelled RVE varies with a single geometrical 
parameter, in way to obtain a variable RVE’s density. For each value of such 
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parameter a specific routine aims to obtain the generation of a local parametric. 
In no one case a wall of less than three finite elements thickness appears and the 
generally coarse mesh becomes automatically more and more fine whereas the 
cavity surface curvature drastically increase. 
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Fig. 4.6.  

Finite Element population in modelled dice void RVE. 

 
 
1.2.c. Cavities of different shapes 
 
The mechanical behaviour of the RVE is generally related to shape and direction 
of voids. In way to investigate this aspect three different cavity types are adopted 
to model cell’s porosity. Cubic symmetry is at least preserved over all three 
types, and different volume fraction range is allowed for each of them. The 
density for each model varies within a characteristic voids length. Models 
reproduce a cubic cell with constant length side, L , with different types of 
cavity. The three cavity types are: one centred spherical cavity, eight centred 
overlapping spherical cavity of the same radius and finally seven centred 
overlapping ellipsoidal cavity of common dimensions, Fig. 4.2.  
In the first model, the centre of the spherical void coincides with the centre of 
cubic cell and the radius increases from the minimum value of 20L  until the 
maximum value of L , where L  is the length of the RVE cubic cell side, and the 

related volume fraction varies in the range [ ]0.5,1 , (see fig.4.2.a.).  

In the second model, eight overlapping spherical voids are considered. Every 
sphere has the centre located on the semi-diagonal of the cubic cell and passes 
for its centre, that is the position of the centre of each sphere depends on their 
radius, (see fig.4.2.b). The volume fraction of this model varies in the range 
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[ ]0.48,1 . The increasing sphere radius r must satisfy the inequality 323r L<  

in order to avoid intersection between cubic cell surface and cavity.  
In the last model, the centre of each of the seven ellipsoidal cavities is placed at 
the centre of the cell, the major diameters of three of them lying on the three axis 
orthogonal to the cell faces, and the other four ellipsoids major diameters lie on 
the four RVE diagonals. The major ellipsoidal axes varies between 20L  and 

1.21L . The upper limit of axes length value is imposed by the geometrical 
consistency of the model and for this cavity type the intersections with the faces 
of the cubic cell are allowed, (see fig.4.2.c). In this way, a wider range of the 

volume fraction is obtained, in fact it is included in the range [ ]0.14,1 .  

The matrix of the cubic cell is assumed to be linear, elastic and isotropic, 
characterized by the Young modulus 0 17200E MPa=  and the Poisson’s ratio 

0 0.3ν = .  
 
 
 
1.2.d. Homogenized elastic constants 
 
Numerical mechanical tests are performed on the L  side cubic cell with a 
centred dice cavity which gives to the RVE a cubic symmetry. Thus, to define its 
elastic behaviour, three elastic constants are needed. The variation of the 
dimension of the cavity produces a variation of the volume fraction in a wide 
range of value, and so it is possible to obtain all the homogenized elastic 
properties as function of the volume fraction.  
The model is tested both under uniform tractions and uniform displacements 
normal to a face of the RVE cubic cell. Moreover, cubic symmetric RVE models 
are even tested both under pure share uniform tractions and angular deflection 
parallel to a RVE face, and loaded by hydrostatic pressure as well as uniform 
triaxial displacements. These tests are aimed to obtain the relation between 
average stresses and average deformations in way to define homogenized elastic 
properties of the porous RVE.  
Analyses performed under uniform displacements give as result the average 
stress tensor while the average deformation tensor is directly deduced by 
uniform displacements applied at the RVE surface. Thus, the elastic constants, 
such as the first and second Lamé constant, anisotropic shear modulus and bulk 
modulus, of the porous RVE are calculated.  
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In case of normal displacements, in a coordinate system parallel to cubic sides, 
the elastic constants are defined by the meaning of:  
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, (4.1) 

 
where λ  and G  are first and second Lamé constant, respectively, 'G  is a 
further elastic constant which defined the cubic symmetry of the material and, 
calling L  the RVE cubic cell side length, zw Lε=< > ⋅  is the applied 
displacement on positive z normal cubic cell face in z direction, see figure 4.7.  
In case of angular deflection:  
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, (4.2) 

 
where 2 yzγ ε= ⋅ < >  is the applied angular deflection on x and y normal cubic 

cell faces in the xy plane, see figure 4.7. 
When a uniform triaxial displacements is applied to the cubic RVE, the bulk 
modulus is  
 

 
1

3
x y z

k
σ σ σ

ε

< > + < > + < >
= ⋅

< >
, (4.3) 

 

where x y zL L L Lε ε ε ε< > ⋅ =< > ⋅ =< > ⋅ =< > ⋅  is the uniform displacement 

applied normally to three adjacent faces of the cubic RVE.  
The analyses performed under uniform tractions give as result the average 
deformation tensor while the average stress tensor is directly deduced by 
uniform tractions applied at the RVE surface. Thus, the elastic constants, such as 
Young modulus, Poisson ratio, anisotropic shear modulus and bulk modulus, of 
the porous RVE are calculated.  
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In case of normal tractions, constants are defined by the meaning of:  
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where E  and v  are Young’s modulus and Poisson ratio respectively, and 

2
zp

L

σ< >
=  is the applied traction over positive z normal cubic cell face in z 

direction. 
In case of shear tractions: 
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where 2

yz
t

L

τ< >
=  is applied pure shear traction over x and y positive normal 

cubic cell faces.  
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When hydrostatic pressure p is applied to the cubic RVE, the bulk modulus k is:  
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where 
3

x y z
p

σ σ σ< > + < > + < >
= .  

According to Voigt and Reuss theory, prescribed tractions and prescribed 
displacement numerical tests give the upper and lower bounds of the 
investigated elastic properties, respectively. The models is tested in the available 
volume fraction range by a wide number of FE analyses. Both prescribed 
displacements and tractions tests are performed whether to obtain elastic 
isotropic characterization or to define cubic constant. Totally 20 finite element 
porous RVE models are processed under 6 different load cases. 
Two constant are needed to describe isotropic elastic behaviour for all of the 
porous RVE cavity types, that is the Lamé constants λ  and G  or equivalently, 
the Young’s modulus E  and the Poisson ratio ν . A generic uniform normal 
displacement is applied over a face of the cubic RVE cell on a wide range of 
density, that means applying the average deformation tensor to the RVE. Finite 
element analysis gives as result the RVE average stress tensor, it allows direct 
calculation of the Lamé constants by means of the equation (4.1). Furthermore, a 
generic pressure is applied over a face of the cell, to perform tractions prescribed 
isotropic analysis. As results RVE average deformation tensor is obtained; 
starting from imposed average stress tensor Young’s modulus and Poisson’s 
ratio are directly calculated by means of the equation (4.4). As well known, the 
two couples of elastic constants λ  and G , and E  and ν are related by the 
following laws  
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and both of them can equivalently characterize RVE isotropic elastic behaviour. 
In the follow Young’s modulus and Poisson’s ratio will be used.  
Moreover, it is here recall the relationship between the bulk modulus and the 
two isotropic elastic constants E  and ν :  
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In the follow, they are reported three graphs that shown the variation of the 
Young’s modulus, Poisson’s ratio and bulk modulus with the volume fraction. 
The Young’s moduli are normalized by defined value of the Young’s modulus 
of the matrix.  
 

 
 

Fig. 4.7.  
FE contour plot results of displacement applied test on porous RVE models, an 

inspection hole let see the interior, spots of the FE mesh are even highlighted. In the 

upper section first direction stresses are plotted in case of normal displacement for three 

different density type model; on the left, respective cinematic conditions are sketched. In 

the lower section shear stresses in deflection plane are plotted in case of angular 

deflection for three different density type model; on the left, respective cinematic 

conditions are sketched. 

 
The graph in figure 4.8. shows that the normalized modulus tends to unit value 
when volume fraction is close to one, whereas while volume fraction diminishes 
results give values gradually lower and lower.  
The graph in figure 4.9. shows the dependence of the Poisson’s ratio by the 
volume fraction. The values are normalized by the value of the Poisson’s ratio of 
the matrix, and, as expected, coincide to unit when cell is a full matrix RVE, 
instead, for lower value of the volume fraction, tend to a specific not zero value. 
Although the processed RVE model shows a cubic anisotropy, the bulk modulus 
depends upon the sole constants of the first diagonal block of its elasticity tensor 
– that is the Young’s modulus and Poisson’s ratio. This evidence is remarked by 
the correspondence between bulk modulus calculated by means of the law (4.7) 
and which one calculated by means of the results of triaxial FEM analyses. The 
graph in figure 4.10. shows that the normalized modulus tends to unit value 
when volume fraction is close to one, whereas while volume fraction diminishes 
results give values gradually lower and lower.  

Volume fraction 

L 

L 

[MPa] 

γ 

γ 

w 
w=0.01 mm 
L=1 mm 
γ=0.1° 
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According to Voight and Reuss theory, the elastic constant calculated by means 
of prescribed displacements analyses are grater then which ones calculated by 
prescribed tractions ones.  
Figure 4.7 shows FE results through contour value range related to normal 
displacement applied test on dice porous RVE model with volume fraction 0.2%. 
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Fig. 4.8.  
Volume fraction trend of Young’s modulus normalized over matrix value in FE analyses 

of a cubic RVE showing a centred dice cavity. 
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Fig. 4.9.  
Volume fraction trend of Poisson’s ratio normalized over matrix value in FE analyses of 

a cubic RVE showing a centred dice cavity. 

 



126 Chapter IV – Isotropic Function, Energy Density Potential and  Second Order    
Fabric Tensor for Porous Media 

Overall bulk modolus

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

volume fraction

n
o

rm
a

li
zz

ed
 b

u
lk

 m
o

d
u

lu
s

prescribed
displacements

prescribed
tractions

 
 

Fig. 4.10.  
Volume fraction trend of bulk modulus normalized over matrix value in FE analyses of a 

cubic RVE showing a centred dice cavity. 
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Fig. 4.11.  
Volume fraction trend of shear modulus normalized over matrix value in dice cavity 

RVE. The normalized II Lamé constant  trend is also highlighted. 

 
 
Due to the cubic symmetry of the RVE, more numerical tests has been necessary 
to estimate the only anisotropic constant, that is 'G , the shear modulus. A 
prescribed pure shear and angular deflection tests are implemented. In both of 
case, elastic constants dependence on the volume fraction is obtained through 
the relations (4.2) and (4.5).  
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The analyses show significant difference between the two considered load 
conditions – prescribed tractions and displacements – (see figure 4.11.). 
However, in both of cases, normalized modulus rise with density from zero to 
the unit. In the graph in figure 4.11. is even represent the second Lamé constant 
variation, normalized by the corresponded matrix one. 
 
 
1.2.e. Cavity’s shape influence  
 
Numerical mechanical tests are performed on porous RVEs characterized by 
three different cavity types, with the volume fraction variable in quite all the 
range zero-one, in way to obtain a density function of all the homogenized elastic 
constants of the porous RVEs. Two of the three porous RVEs model types shows 
a cavity geometry realized by spheres, one is a single centred sphere cavity, the 
other is a polar symmetric eight sphere union (see section 1.2.c.). In both cases 
the models may be considered isotropic and so two sole constants are needed to 
define the elastic homogenized RVE behaviour. In the third model, the cavity is 
made of seven centred polar symmetric ellipsoides (see section 1.2.c.). This 
model shown a cubic symmetry and so one more constant is needed to define its 
elastic behaviour. 
Each model is tested both under uniform tractions and uniform displacements 
normal to a face of the RVE cubic cell. Moreover, cubic symmetric RVE models 
are even tested both under pure share uniform tractions and angular deflection in 
a plane parallel to a RVE face. These tests are aimed to obtain the relation 
between average stresses and average deformations in way to define 
homogenized elastic properties of the porous RVE, following the same procedure 
above described. 
Each of three cavity’s types models are tested in the available volume fraction 
range by 20 analyses per type. Both prescribed displacements and tractions tests 
are performed in order to obtain the homogenised elastic constants of the RVEs. 
Totally 60 finite element porous RVE models are processed under 6 different 
load cases. All this data set is added to one obtained through dice cavity RVE 
models tests in way to estimate cavity shape influence on elastic constants density 
trend. 
In the graph in figure 4.12., the variation of the normalized Young modulus 
within the volume fraction is reported. It is possible to note that the normalized 
moduli tend to unit value when volume fraction is closed to one, and decrease 
when the volume fraction decreases. This trend is quite the same for both 
prescribed displacement and tractions tests. In figure 4.12. the difference 
between these two calculation methods is highlighted; according to Voight and 
Reuss theory, the Young modulus evaluated in prescribed traction tests is always 
greater than that one evaluated in prescribed displacements tests. However, not 
relevant differences in Young modulus density function are detected both in 
prescribed displacements and tractions tests throughout different cavity shapes.  



128 Chapter IV – Isotropic Function, Energy Density Potential and  Second Order    
Fabric Tensor for Porous Media 

In the graph in figure 4.13, Poisson’s ratio variation within volume fraction is 
plotted for one sphere, eight spheres and seven ellipsoides cavity types. The 
homogenized Poisson’s ratios are normalized by constant value of matrix 
Poisson’s ratio. As the volume fraction goes down, values trend goes from unit to 
specific lower value in case of applied displacement tests for every cavity types 
but not for the seven ellipsoides cavities that has seems to rich zero value 
corresponding to zero volume fraction. Instead, for prescribed traction, the values 
remain close to unit, thus they appear grater then traction prescribed ones for all 
types of cavity but not for dice cavity one, whose trend is displacement like. Each 
kind of results seems to be significantly affect from cavity shape.  
The same graphic is performed for bulk modulus. The moduli related to each 
cavity’s shape are normalized by constant value of matrix bulk modulus. In the 
graph in figure 4.14. a regular trend is highlighted, where applied displacement 
applied tests values are grater than prescribed tractions ones. In both of case the 
results are similar for every cavity types, and when volume fraction decreases the 
normalized bulk modulus goes from unity to zero. 
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Fig. 4.12. 
Volume fraction trend of Young modulus normalized over matrix value in FE analyses 

performed on RVE showing different cavity’s shapes. (SC one sphere, 8S eight spheres, 

7E seven ellipses, DC dice). 
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Fig. 4.13. 
Volume fraction trend of Poisson’s ratio normalized over matrix value in FE analyses 

performed on RVE showing different cavity’s shapes. (SC one sphere, 8S eight spheres, 

7E seven ellipses, DC dice). 
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Fig. 4.14. 
Volume fraction trend of  bulk modulus normalized over  matrix value in FE analyses 

performed on RVE showing different cavity’s shapes. (SC one sphere, 8S eight spheres, 

7E seven ellipses, DC dice). 
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1.2.f. Algebraic formulation  
 
In scientific literature, it is available a self-consistent evaluation of the elastic 
moduli of porous media in case of dilute distribution of voids – that is for high 
value of the volume fraction (Christensen, 1979). On the other hand, Flugge’s 
model (Flugge, 1972) allows to evaluate the homogenized elastic properties of a 
RVE made of three dimensional orthogonal shell arrangement and so that shown 
an high value of porosity. In particular, by means of the above mentioned theory, 
the following expressions of the homogenized bulk modulus as function of the 
volume fraction are found out: 
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where 0k  is the matrix’s bulk modulus, γ  is the volume fraction and 

2 (1 2 )

3 (1 )
c

ν

ν

−
= ⋅

−
 with ν  equal to the matrix’s Poisson’s ratio. So, the equations 

(4.8) allow to calculate the overall elastic constants when the volume fraction is 
closed to one or to zero.  
By starting from these theories, it is possible to establish a single law of variation 
for the overall elastic constant valid all over the range [ ]0,1  of the volume 

fraction.  
In particular, the experimental results previously presented are interpolated by a 
third polynomial regression ( )χ γ .  

 
 ( ) [ ]2 3

1 2 3 4 0,1C C C Cχ γ γ γ γ γ= + ⋅ + ⋅ + ⋅ ∈ . (4.9) 

 
The four polynomial constants are determined by imposing that in limit condition 
– when 0γ =  and 1γ =  – the interpolation polynomial function have to verified 
the relations (4.8). So, the boundary conditions are  
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and furnish the follow values of the polynomial constants 
 

            
2 2

1 2 3 4

1 3 2 1 2
0, , ,
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C C c C C

c c

− ⋅ + ⋅ − + ⋅ −
= = = − = − . (4.11) 
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In this way, the function ( )χ γ  is consistent with the theories above mentioned 

and it is defined all over the volume fraction range.  
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Fig. 4.16. 
Confrontation between the algebraic function and the experimental ones of the overall 

bulk modulus. The experimental functions are obtained by means of prescribed 

displacements and tractions tests, respectively. 
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Fig. 4.17. 
Confrontation between the algebraic function and the experimental ones of the overall 

Young modulus. The experimental functions are obtained by means of prescribed 

displacements and tractions tests, respectively. 
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Through an analogous procedure and utilizing the Christensen and Flugge’s 
solutions for the Young modulus, it is possible to obtained an algebraic function 
which well interpolates the experimental results for the Young modulus, too.  
In graphs in figure 4.16 and 4.17 the results obtained for the bulk modulus and 
Young modulus in case of RVE with dice cavity are shown. In both cases the 
algebraic functions well match the experimental results.  
It is important to note that although in scientific literature some laws for the 
determination of the overall elastic constant of isotropic porous materials were 
proposed, they are not of general validity. In fact, the proposed laws – e.g. the 
Rho’s law for bone tissue – are found out by means of experimental tests and 
then they are valid for the sole considered material. On the contrary, the laws 
proposed in this section have general validity being determine independently 
from the specific material or microstructural morphology.  
 
 
2. EVALUATION OF THE ELASTIC MODULI FOR POROELASTIC SOLIDS: 

ORIENTED MICROSTRUCTURE  
 
In this section materials that shown an orientated microstructure are treated. 
Such materials may be considered inhomogeneous and anisotropic because of 
the orientation of the microstructure.  
In scientific literature, continuum models are proposed to describe the 
mechanical behaviour of anisotropic poroelastic materials, some of which are 
illustrated in Chapter II and III. Particular attention is here given to the 
micromechanical approach based on fabric tensor which, in spite of the 
mechanical consistency, is difficult to employ because it requires the evaluation 
of the fabric tensor which is variable with the position.  
In the follow, some procedures to mechanically characterize anisotropic 
poroelastic materials are shown. In particular, the oriented microstructure 
materials with low and high volume are studied separately because in the first 
case the anisotropic behaviour is governed by the microstructural architecture, 
while in the second case by the voids orientation.  
For poroelastic materials with low volume fraction a constitutive relationship is 
given starting from Flugge’s solution generalized to the orthotropic case. This 
strategy conducts to an identification of the fabric eigenvalues which suggests to 
identify the fabric tensor with the inertia tensor opportunely normalized. In the 
complementary case – high volume fraction – the constitutive relation are found 
starting from the elastic solution of an ellipsoidal void in an infinite linear elastic 
solid.  
In order to bear out the hypotheses of identifying the fabric tensor with the 
inertia tensor, some examples shown the analogies and the differences between 
the mean intercept length tensor and the inertia tensor for bidimensional RVE. 
Such examples seem to confirm the advisability to use the inertia tensor like 
microstructural parameter.  
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2.1.  Flugge’s solution for orthotropic porous material – Low Volume 

Fraction (LVF) 
 
In this section, it is derived the overall elasticity tensor for the idealized porous 
material shown in Figure 4.18, (Flugge, 1972). It consists of many thin isotropic 
and homogeneous walls of different thickness, say 


i
t a , parallel to the 

coordinate planes of a Cartesian system { }1 2 3, ,x x x . Then, 
i

t  represents the 

thickness of the wall whose unit normal vector is coaxial with the 
i

x -axis, while 
the size a of the regularized pores have to be assumed small compared with the 
characteristic length L  of the cubic RVE.  
 

 
 

Fig. 4.18.  
Flugge’s idealized porous RVE 

 
 
In each of the walls a plane stress system is possible. This means that, for 
example, the Hooke’s stress-strain laws in the walls parallel to the 1 2−x x  plane 
can be written in the following form 
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where E  and ν  are the Young modulus and the Poisson ratio of the isotropic 
and homogeneous matrix, respectively.  
By starting from the micro-mechanical approach, it is immediately evident that 
the architecture of the considered RVE exhibits three planes of mirror symmetry. 
Then, by recalling that an element with sides parallel to the planes of elastic 
symmetry, after deformation under the action of any normal stress, remains a 
rectangular parallelepiped, it is easy to verify that all the coefficients of mutual 
influence and the coefficients of Chentsov vanish in a coordinate system the 
direction of whose axes coincides with the principal directions of elasticity. 
Then, in order to determine the overall elasticity tensor in Voigt contracted 
notation for the porous RVE, a classical homogenization procedure is employed 
and the equivalent orthotropic material is obtained. 
To prove this, consider the RVE under several boundary conditions. In 
particular, to explore the elastic behaviour of the porous material, we assign 
several states of strain, applying corresponding forces on the faces of the porous 
cube, assuming the side characteristic length =L na , with n { , 1}∈ 	n nN  
representing the number of walls for side. Then, we first consider the case in 
which a simple stretching is imposed, i.e. 11ε  in the horizontal 1x direction, with 

22 33 0ε ε= = , as well as { 0, }ε = ∀ ≠
ij

i j . On the face 1 const=x  this requires 

stresses 11σ  in the vertical and in the horizontal walls, from which we can write  
 

 2 2
11 2 3 11 2 3 112

( ) ( ) ,
1

σ ε
ν

Σ = + = +
−

E
n a t t n a t t  (4.13) 

 
where 11Σ  represents the total force in the 1x  direction on the face whose normal 

is 1x . In general, in the follows, we will consider Σ
ij
 as the total force acting on 

a face whose normal is parallel to the 
i

x  axis, in the 
i

x  direction. 

All the vertical walls normal to the 1x  axis have no strains and no stresses, while 

on the faces 2 const=x  and 3 const=x  there is only a contribution from the 
horizontal and vertical walls, respectively: 
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It is worth to note that no shear forces are present. Now, in order to define for 
the porous material the “gross stresses”, or equivalently the “macro-stresses”, we 
have to divide each force by the nominal area 2 2( )= =A L n a  of the face in 
which it is transmitted. By following this procedure we obtain 
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where Σ

ij
 represents the macro-stresses. Moreover, considering the other two 

strains producing simple stretching in 2x  and 3x  directions and combining all the 
three conditions, we obtain 
 

 11 2 3 11 3 22 2 332
[( ) ( )]

(1 )
ε ν ε ε

ν
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−

E
t t t t
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 (4.16) 

 
as well as the analogous normal macro-stresses in the other two directions. The 
shear gross stresses in the walls can be found as follows  
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Finally, we are able to define the overall elasticity tensor for the porous media, 
that shows the orthotropic symmetry in the Cartesian coordinate system. Then, 
by means of some algebraic manipulations, the Voigt elasticity tensor can be 
expressed in the following matrix form 
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It is worth to note that if the thickness of the different walls are all the same, that 
means 1 2 3= = =t t t t , the overall elasticity tensor becomes  
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and so the RVE shows a cubic symmetry.  
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2.2. Constitutive relations for LVF porous material by means of inertia 

tensor 

 
Let consider a RVE of a real material that show a low volume fraction and an 
oriented microstructure. In order to describe the mechanical behaviour of such 
material, an heuristic approach is followed. This means to select a priori some 
parameters the mechanical response of material depends on. Here, they are 
chosen the volume fraction and the inertia tensor which naturally gives 
information about the distribution of the mass inside the RVE. It should be noted 
that both volume fraction and inertia tensor may be easily evaluated by means of 
specific software – e.g. AUTOCAD, RHINOCEROS, ANSYS – from a vectorial 
image of the RVE.  
The real cell of considered material is reduced to an equivalent Flugge’s cell 
showing the same volume fraction and inertia tensor of the real RVE, but the 
regular microstructure of Flugge’s model – isotropic and homogeneous walls of 
different thickness orthogonal to each other. Two different morphologies are 
considered for the equivalent cell, following denoted with the letters A and B 
(see figure 4.19).  
 

 
 

Fig. 4.19. 
The two different morphologies of the equivalent Flugge cell; A) the RVE of size H is 

made of two parallel walls for each direction; the cell’s geometry is completely 

described by the three thicknesses ti and the pitch α; B) the RVE of size H is made of n 

parallel walls for each direction; the cell’s geometry is completely described by the 

three thicknesses ti and the number n.  

 
 
In the case A the thicknesses it  and the parameter α  which characterizes the 
pitch of the walls, have to be determine under the conditions that the volume 
fraction and the inertia tensor of the ideal cell is the same of the real RVE.  
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In other words, the four unknown parameters – it  and α  – are calculated by 
solving the following system of equations 
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where 11J , 22J , 33J  and γ  are the three eigenvalues of the inertia tensor and the 
volume fraction of the real RVE – estimated by means of specific software – 
while 11I , 22I , 33I  and f  are the eigenvalues of the inertia tensor and the 
volume fraction of the equivalent RVE computed as function of the geometric 
characteristics of the cell – that is the thicknesses it , the size H and the pitch α .  
The solution of the (4.20) gives  
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with 5 2c
h Tr H = = J  where cJ  is the inertia tensor of a cubic cell of side H, 

and [ ]c
k Tr Trγ = − J J . 

In case of morphology B the thicknesses it  and the number n of parallel walls 
completely characterize the geometry of the equivalent cell whose side is equal 
to H as in the previous case.  
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By solving the system of equations  
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 (4.22) 

 
the four unknowns are calculated  
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. (4.23) 

 
Known the geometric characteristics of the two kinds of ideal cells, by means of 
Flugge’s solution it is possible to determine the elasticity tensor of the real RVE 
as function of the parameters chosen as significant for the mechanical response 
of the material – that is the volume fraction and the inertia tensor of the real 
RVE. So, the elastic constants are expressed as function of the matrix elasticity 
and of the microstructural parameters 11J , 22J , 33J  and γ   
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                                        (4.24) 

 
It is important to note that the elastic constants do not depend on the morphology 
of the equivalent RVE. In fact, by choosing the morphology A or B the same 
value of elastic constants is obtained. However, the ultra-elastic response of the 
considered porous material could depend on such choice – e.g. the RVE called B 
is not able to describe the buckling because of its specific morphology.  
Finally, it must be highlight that the comparison between the expression of the 
elastic constant in the form (4.24) and which one proposed by Cowin (Turner 
and Cowin, 1987), suggests to identify the fabric tensor with an appropriate 
normalization of the inertia tensor. In fact, the Cowin’s solutions rewritten in the 
easier form ( ) ( ) ( ) 2

1 2 3c f f G f Gγ γ γ= + +  – where c denotes the generic elastic 

constant, the ( )if γ  are function of the volume fraction and G  are the 

eigenvalues of the fabric tensor – show the same structure of the (4.24) provided 
that the second order terms 2G  are neglected.  
 
2.3. Compliance tensors of ellipsoidal inclusions – High Volume Fraction 

(HVF) 

 
The Kachanov’s elastic solution for ellipsoidal inclusions  having arbitrary 
elastic constants is here presented, (Sevostianov and Kachanov, 1999).  
It is considered an ellipsoidal inclusion *V , with boundary *V∂  and compliance 
tensor *

0
D  in an infinite linear elastic solid with compliance tensor 

0
D  and 

assume that, in its absence, the stress field would have been uniform and equal 
to stress 0

ij
σ  at infinity. The overall strain per certain reference volume V 

bounded by surface V∂  containing the inclusion is  
 
 0 0

ij ijkl kl ij
Dε σ ε+ ∆====  (4.25) 
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where 

ij
ε∆  is the extra strain due to inclusion (it vanishes if the elastic 

“contrast” between the inclusion and the matrix vanishes).  
Due to linear elasticity, 

ij
ε∆  is a linear function of applied stress 0

ij
σ :  

 
 0

ij ijkl kl
Hε σ∆ ====  (4.26) 

 
thus defining the inclusion compliance tensor H . Tensor H  can be derived in 
various ways. It is here expressed in terms of the elastic constant between the 
matrix and the inclusion, using the solution of Eshelby’s problem in the form 
given by Kunin and Sosnina (1971) that does not use Eshelby’s concept of 
equivalent eigenstrain. The results are as follows.  
If 0

ij
σ  is a uniform stress at infinity, the resulting uniform stress inside the 

ellipsoidal inhomogeneity can be represented in the form 
 

                 (int) 0
ij ijkl kl

Bσ σ==== , with (((( ))))
1

*
ijkl ijkl ijmn mnkl mnklB J Q D D+

−−−−
    = −= −= −= −      (4.27) 

 

where (((( )))) 2ijkl ik lj il kjJ δ δ δ δ+====  is the unit fourth rank tensor and the inverse of 

symmetric fourth rank tensor 1
ijkl

X
−−−−  is defined as 1 1

ijmn mnkl ijmn mnkl ijkl
X X X X J

− −− −− −− −= == == == = . 

Tensor Q  is expressed in terms of Eshelby’s tensor S  as follows: 
 
 (((( ))))ijkl ijmn mnkl mnkl

Q B J S= −= −= −= −  (4.28) 

 
Utilizing this solution yields tensor H : 
 

 (((( )))) (((( ))))
* * 11* *:

V V

V V

−−−−−−−−    = − = − += − = − += − = − += − = − +        0 0 0 0
H D D B D D Q  (4.29) 

 
It is now analyzed the case of oblate and prolate spheroids. Let us consider a 
spheroid with semiaxes 1 2a a a= == == == =  and 3a . The following notations will be 
used: 
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 (4.30) 

 
where the shape coefficient g  is expressed in terms of aspect ratio 3a aα ==== : 
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 (4.31) 

 
In the case of spheroidal inhomogeneity, it is convenient to express the fourth-
rank tensors that appear in (4.28) and (4.29) in terms of the following tensorial 
basis (m denotes the unit vector along the spheroid’s axis of symmetry and 

ij ij i j
m mθ δ= −= −= −= − ) 
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In terms of this basis, tensors (((( ))))
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G q
====
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following coefficients: 
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 (4.33) 
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where *

K , *G , K  and G  are the bulk and shear moduli of the inclusion and the 
matrix, respectively.  
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In the case of ellipsoidal cavity, 0K Gδ δ= == == == =  and  
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Cartesian components of the tensor H  in coordinate system 1x , 2x , 3x  ( 3x  axis 

is along the spheroid’s axis of symmetry) can be expressed in terms of 
i

h  as 
follows: 
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 (4.36) 

 
So, from the (4.25) and (4.26), the overall compliance tensor D  is given by  
 
 = +

0
D D H . (4.37) 

 
 
2.4. Constitutive relations for HVF porous material by means of inertia 

tensor 
 
Let consider a RVE of a real material characterized by an high volume fraction 
and an oriented microstructure. In order to describe the mechanical behaviour of 
such material a procedure analogous to which one presented for LVF porous 
materials is proposed. Thus, the volume fraction of the voids and the inertia 
tensor are a priori chosen as parameters meaningful for the mechanical response 
of the material. As already highlighted, these parameters may be easily evaluated 
by means of specific software – e.g. AUTOCAD, RHINOCEROS, ANSYS – 
from a vectorial image of the porous RVE.  
The overall compliance tensor of the real material is found out starting from the 
analytical Kachanov’s solution presented in the previous section. Specifically, 
the real cell of considered material is reduced to an equivalent cell showing the 
same porosity and inertia tensor of the real RVE, but a sole elliptic cavity for 
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which the overall compliance tensor is given by the (4.37). It is important to 
underline that the solution (4.37) is referred to an elliptic cavity in an infinity 
medium that means it is valid for dilute distribution of voids. This condition 
occurs in the considered equivalent RVE because of the hypothesis of HFV. 
Moreover, note that the inclusion compliance tensor H  in the form (4.36) was 
obtained when two of the ellipse’s diameters are equal. So, disposing of such 
analytical solution, it will be assumed that two diameters of the ellipse which 
characterizes the equivalent cell are equal to each other.  
Firstly, the two different diameters – a and b – of the elliptic void inside the 
equivalent cell and the dimension H of the cell must be determined by imposing 
that the porosity and the inertia tensor of the equivalent RVE are the same of 
which ones of the real RVE here denoted with φ  and J , respectively. In other 
words the three unknowns are evaluated by solving the system:  
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 (4.38) 

 
where 11I , 33I  and p  are the moments of inertia and the porosity of the 
ellipsoidal cavity into the equivalent RVE – expressed as function of the two 
diameters a and b and of the size H of the cell – while 11J , 33J  and φ  are the 
moments of inertia and the porosity of the real RVE.  
The solution of the (4.38) gives  
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In particular, the aspect ratio b aβ ====  is 
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By considering the case of prolate spheroid where it results 33 11 11J J Jδ= <= <= <= < , the 
aspect ratio β  may be expressed as function of the ratio between the moments 

of inertia 33 11J Jδ ====   
 

 
2

δ
β

δ
====

−−−−
. (4.41) 

 
By substituting the (4.41) inside the (4.37) and by means of a series expansion 
around the zero in δ  arrested to the first order, the overall compliance tensor is 
determined whose independent components are  
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 (4.42) 
 
where φ  is the porosity and E , ν  and µ  are the Young modulus, the Poisson’s 
ratio and the second Lamé constant of the matrix.  
 
 
2.5. Validation of the proposal for the Fabric Tensor – comparison between 

MIL tensor and inertia tensor 
 
In this section MIL tensor and inertia tensor are compared with reference to 
porous bidimensional RVE. Specifically, the developed examples display that 
for particular microgeometries the inertia tensor is able to describe anisotropies 
that the MIL tensor do not reveal. Moreover, when the MIL tensor describes a 
material orientation, by showing an elliptic shape, the inertia tensor is elliptic too 
and the eigenvectors of the two tensors coincide. This last statement means that 
both tensors furnish the same directions of anisotropy.  
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It is firstly considered the case in which MIL tensor, unlike the inertia tensor, do 
not reveal material anisotropies. 
In the first example it is considered a 2-D square cell of side 2H  with a centred 
square cavity (fig. 4.20 A). By remembering that the MIL function ( )L θ  

associates each orientation θ  to the scalar given by the ratio between the length 
of the segment which intercepts the solid material and the total length of the 
segment which intercepts the RVE, it is easy verify that for the considered cell 
the MIL function is a circumference. For this specific geometry the inertia tensor 
is a circumference, too. Hence, the degree of anisotropy A – which is the ratio 
between the two eigenvalues of the tensor which describes the microstructure – 
is equal to one if it is used both the MIL and the inertia tensor to describe the 
microstructure. This result means that the microstructure does not show a 
particular orientation and than an anisotropic mechanical behaviour. The values 
of the geometric characteristics and of the degree of anisotropy shown in figure 
4.20 A are obtained setting 1H =  and the thickness of the matrix equal to 0.5 so 
that the radius of the MIL circumference is 0.5.  
 

 
Fig. 4.20 

For the three bidimensional RVE’s the MIL tensor (unbroken line) and the inertia tensor 

(broken line) are represented. For each microgeometries, they are also indicated the 

values of the volume fraction γ, of the mean intercept length functions L(θ), of the 

moments of inertia Ix1, Ix2 and of the degree of anisotropy evaluated as ratio between the 

eigenvalues of the MIL tensor (A
MIL

) or of the inertia tensor (A
J
). 

 A) The matrix inside the RVE is not oriented; both MIL and inertia tensor are 

circumferences; B) and C) The matrix inside the RVE is oriented; the inertia tensor, 

unlike the MIL tensor, describes such material orientation showing an ellipsoidal shape 

and a degree of anisotropy minor than one. 

 
 
 
 

γ =0.59      L(θ)=0.5 
Ix1=0.77     Ix2=0.66 
AMIL =1     AJ =0.85 

x2 

x1 

x2 

x1 

x2 

x1 

A B C 

γ =0.60      L(θ)=0.5 
Ix1=0.92     Ix2=0.71 
AMIL =1     AJ =0.77 

γ =0.75      L(θ)=0.5 
Ix1=1.25     Ix2=1.25 
AMIL =1     AJ =1 
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The distribution of the material inside the square cell is now perturbed but 
preserving the value of the MIL function. The obtained geometries are shown in 
fig. 4.20 B and C where are also shown the inertia ellipse which are able to 
describe the evident orientation of the material that is not caught by the MIL 
function.  
In order to correlate the mechanical anisotropy to the morphological one, let us 
consider a beam in bending regime. The mechanical degree of anisotropy α  
may be defined like  
 

 1

2

k

k
α ====  (4.43) 

 
where 1k  and 2k  are the stiffness in 1x  and 2x  directions, respectively. By 

remember the solutions for a bending beam, the degree of anisotropy α  become  
 

 2

1

I

I
α ====  (4.44) 

 
where 1I  and 2I  are the moments of inertia respect 1x  and 2x  directions, 
respectively. Thus, by imaging that the cross section of the considered beam is 
the cell represented in fig. 4.20 B, the morphological and mechanical 
anisotropies A and α coincide.  
It is also interested to note that by increasing the number of cells that compose 
the cross section of the beam the mechanical response of the structure becomes 
isotropic in the sense that 1I  and 2I  tend to assume the same value. In fact, with 

reference to figure 4.21, it is easy to prove that through Huygens’ theorem 1I  

and 2I  may be expressed as function of the number 2n  of elementary cells that 
composed the cross section of the beam as 
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where c

i
I  (((( ))))1,2i ====  is the inertia of elementary cell.  

Figure 4.22 shows the parameter α  as a function of n. The different curves are 
obtained for different value of the degree of anisotropy A of the elementary cell. 
In particular, the blue arrow indicates increasing value of A. Note that – for each 
value of A – α tends to one when n increases. This means that the effect of local 
orientation of the single cell – responsible of the anisotropic response of the 
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structure – vanishes when the number of cells increases. In other words, the 
material made of a great number of elementary cells is – from a mechanical 
point of view – like a material with microstructure randomly arranged which 
shows an isotropic behaviour.  
 

 
 

Fig. 4.21 
Cross section of a bending beam made of n

2
 elementary cells which show a 

morphological degree of anisotropy A.  

 

 
 

Fig. 4.22 

Plot of the mechanical degree of anisotropy α as function of the number of cell that 

made the cross section of the bending beam. The different curves are obtained for 

different value of the degree of anisotropy A of the elementary cell. The blue arrow 

indicates increasing value of A. Independently on the value of A, α tends to one when n 

increases. 
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Let now analyze the case in which the MIL tensor shows an elliptical shape. The 
following examples point out possible correlation between the MIL tensor and 
the inertia tensor. In particular, by assuming that the elliptical MIL tensor is 
prescribed, the corresponding material distribution inside the RVE is evaluated. 
Thus, the inertia tensor of the RVE is calculated and compared with the MIL 
tensor. Remember that such study is motivated by the idea of using the inertia 
tensor to describe the microstructural arrangement of a porous material with the 
advantage that the inertia tensor may be more easily calculated than MIL one, 
e.g. by means of CAD programs.  
The considered RVE are 2-D square cell of side 2H  centred in the origin of the 
reference frame ( )1 2,x x  with a centred cavity of unknown shape (fig. 4.23). The 

prescribed MIL function ( )L θ  – which represents the ratio between the length 

of the segment which intercepts the solid material and the total length of the 
segment for each orientation θ  – is assumed to be an ellipse of equation 
 

 ( )
( ) ( )

1

22 2

2 2 2 2

2

Cos 2

a b
L

a b b a
θ

θ φ

 
 =
 + + −  −   

 (4.46) 

 
where a  and b  are the semimajor and semiminor axes and φ  is the angle 

between the semimajor axis a  and the 1x -axis.  
From the definition of MIL function just recalled, note the (4.46) and the total 
length of the segment ( )l θ  which intercepts the square cell for each orientation 

– easily computable being note the cell’s dimension – the shape of the cavity 
may be evaluated in terms of a so-called thickness function ( )t θ  defined as  

 
 ( ) ( ) ( )t L lθ θ θ=  (4.47) 

 
which represents the length of the segment that intercepts the solid material for 
each orientation.  
Hence, note the distribution of the material inside the considered RVE, the 
corresponding inertia tensor is calculated.  
In (fig. 4.23) they are reported the results obtained by setting 1H = , 1 3a =  

1 6b =  and considering eight different inclinations φ  of the MIL ellipse. For 
each of the eight cases the inertia and MIL ellipse are coaxial even if the ratio 
between their eigenvalues – which furnish the degree of anisotropy α  – is 
higher in the case of inertia tensor.  
The obtained results highlight that when the MIL tensor describes an anisotropic 
attitude of the porous material, the inertia tensor is able to describe the same 
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attitude. Moreover, the coaxiality between the two tensors proves that both of 
them furnish the same directions of anisotropy.  
 

 
 

 φφφφ    ψψψψ    I1 I2 αααα
MIL

    αααα
J
    γγγγ    

1 0 0 0.90 0.77 0.50 0.85 0.39 

2 p/12 0.39 0.92 0.76 0.50 0.82 0.40 

3 p/6 0.62 0.95 0.74 0.50 0.77 0.40 

4 15p/54 0.83 0.97 0.73 0.50 0.75 0.40 

5 p/3 0.94 0.95 0.74 0.50 0.77 0.40 

6 21p/54 1.08 0.93 0.75 0.50 0.80 0.40 

7 5p/12 1.17 0.92 0.76 0.50 0.82 0.40 

8 p/2 p/2 0.90 0.77 0.50 0.85 0.39 

 
 

Fig. 4.23. 
Coaxiality between MIL tensor (unbroken line) and inertia tensor (dot line) for eight 

different bidimensional RVE’s.  

In the table for each RVE’s they are reported the direction cosines of the MIL and of the 

inertia tensors φ and ψ; the moments of inertia I1 and I2; the degree of anisotropy 

evaluated by means of MIL and inertia tensor αMIL
 and αJ

; the volume fraction γ.  
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CHAPTER V 
 

OPTIMIZATION PROBLEMS FOR ENGINEERED MATERIALS 

 
 
1. STANDARD TOPOLOGICAL OPTIMIZATION  

 
The area of computational variable-topology shape design of continuum 
structures is presently dominated by methods which employ a material 
distribution approach for a fixed reference domain in the spirit of the so-called 
`homogenization method' for topology design, (Bendsøe et al., 1988). That is, 
the geometric representation of a structure is similar to a grey-scale rendering 
of an image, in discrete form corresponding to a raster representation of the 
geometry. This concept has proven very powerful, but it does involve a number 
of difficulties. One is the issue of existence of solutions, another the issue of 
solution method.  
In many applications, the optimal topology of a structure should consist solely 
of a macroscopic variation of one material and void, meaning that the density 
of the structure is given by a (0 1)−−−−  integer parametrization (often called a 
black-and-white design). Unfortunately, this class of optimal design problems is 
ill-posed in that, for example, nonconvergent, minimizing sequences of 
admissible designs with finer and finer geometrical details can be found, see 
(Cheng et al., 1981; Kohn et al., 1986). Existence of black-and-white solutions 
can be achieved by confining the solution space to limit the complexity of the 
admissible designs, making the designs dependent on the choice of parameters 
in the geometrical constraint. Such a restriction of the design space can be ac- 
complished in a number of ways, e.g. by enforcing an upper bound on the 
perimeter of the structure (Ambrosio et al. 1993; Haber, et al.,1996; Petersson, 
1998), one can introduce a filtering function that effectively limits the minimum 
width of a member, (Sigmund, 1994); or one can impose constraints on slopes 
on the parameters defining the geometry, (Chenais,  1975; Bendsøe, 1983; 
Niordson, 1983; Petersson et al., 1998).  
For reasonable raster representations of the (0 1)−−−−  black-and-white design, the 
solution of the resulting large-scale integer programming problem becomes a 
major challenge. Recently, dual methods have been shown to be effective, in 
the absence of local constraints, (Beckers,  1999). However, the most 
commonly used approach is to replace the integer variables with continuous 
variables, and then introduce some form of penalty that steers the solution to 
discrete (0 1)−−−−  values. A key part of these methods is the introduction of an 
interpolation function that expresses various physical quantities, e.g. material 
stiffness, cost, etc., as a function of continuous variables. The continuous 
variables are often interpreted as material densities, as in the so-called penalized, 
proportional “fictitious material” model. Inspired by the relaxed formulations 
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that introduce composites, some methods use interpolations derived from 
employing composite materials of some given form together with penalizations 
of intermediate densities of material.  
Existence of solutions can also be achieved through relaxation, leaving the 
concept of a black-and-white design. Relaxation is sometimes attained by 
expanding the solution space to include microstructures and using homogenized 
properties to describe their behaviour, as seen in (Bendsøe et al., 1988; Lurie et 
al., 1982). In these formulations, the design is allowed to exhibit high-
frequency oscillations at an indeterminate, microscopic length scale. 
Alternatively, we may describe these nonconventional designs through 
mathematical relaxation, e.g., quasi-convexification, etc. (Goodman et al., 
1986; Buttazzo et al., 1993). In general, these approaches lead to designs that 
can only be realized by incorporating microstructure; however, there is no 
definite length scale associated with the microstructure. Relaxed formulations 
provide an appropriate basis for direct synthesis where composite materials are 
allowed to constitute part of the final design, simply because microstructure is 
admissible. Indeed, the demand for ``ultimate'' performance can lead one to 
consider all possible materials in the design formulation, (Ringertz, 1993; 
Bendsøe et al., 1994). In general, relaxation yields a set of continuously 
variable design fields to be optimized over a fixed domain, so the algorithmic 
problems associated with the discrete (0 1)−−−−  format of the basic problem 
statement are circumvented; this was one of the main motivations for the initial 
use of the relaxation concept. Sometimes, a subset of the design fields is 
optimized analytically, leaving a reduced problem for numerical optimization, 
(Allaire et al., 1993; Jog et al., 1994). It should be emphasized that the 
continuum relaxation approach can be very involved theoretically. As of today, 
it has been mathematically fully worked for minimum compliance design of 
structures only (for both single and multiple loads) and for a broader class of 
problems involving the Laplace operator (Goodman et al., 1986 ; Allaire et 

al., 1993; Allaire et al., 1997; Cox et al., 1996; Díaz et al., 1997; Olhoff et 
al., 1998).  
 
1.1. Basic problem statements 

 
The continuum topology design problems considered are defined on a fixed 
reference domain Ω  in 2

R  or 3
R . In this domain, we seek the optimal 

distribution of material, with the term `optimal' being defined through choice 
of objective and constraint functions, and through choice of design 
parametrization. The objective and constraint functions involve some kind of 
physical modelling that provides a measure of efficiency within the framework 
of a given area of applications, for example structural mechanics.  
The basis for our discussion is the minimum compliance problem for a 
linearly elastic structure in 2-D (or 3-D, when specified as an example only; 
the micromechanical considerations in the sequel are not restricted to this 
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setting). We thus consider a mechanical element as a body occupying a domain 
mΩ  which is part of a the reference domain Ω , on which applied loads and 

boundary conditions are defined Fig. 5.1. This reference domain is often 
referred to as the ground-structure, in analogy with terminology in truss 
topology design, (Bendsøe, 1995). Referring to the reference domain Ω  we 
can define the optimal topology-shape design problem as a minimization of 
force times displacement, over admissible designs and displacement f ields 
satisfying equilibrium  
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Here, the equilibrium equation is written in its weak, variational form, with U  
denoting the space of kinematically admissible displacement fields, u  the 
equilibrium displacement, p  the body forces, t  boundary tractions and (((( ))))uε  

linearized strains. Moreover, (((( ))))Geo mΩ  denotes a constraint function limiting 

the geometric complexity of the domain mΩ , imposed here to obtain a well-
posed problem.  
In problem (5.1), 0

ijkl
C  denotes the stiffness tensor of a given elastic material 

from which the structure is to be manufactured, with a total amount of material 
V ; (((( ))))xΘ  denotes the pointwise volume fraction of this material, and for a 

black-and-white design this can only attain the values zero or one.  
Problem (5.1) is a discrete optimization problem, and for many applications it 
is useful to consider reformulations in terms of continuous variables, with the 
goal of using derivative based mathematical programming algorithms. This 
means that one changes the model for material properties, i.e., the relations 
defined in (5.1) as  
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to a situation where the volume fraction is allowed any value between zero and 
one. It may also involve finding an appropriate method for limiting geometric 
complexity, for example, exchanging the total variation of a density for the 
perimeter of a domain. 
 

 
 

Fig. 5.1. 
The generalized shape design problem of finding the optimal material distribution 

 
 
In the subsequent sections we will concentrate solely on the interpolation 
models for the material properties, and will not address in further detail other 
aspects of the modelling and solution procedures connected with various 
choices of objective and constraint functions, physical modelling, discretization 
schemes, and optimization algorithms. 
 
 
1.2. Isotropic models for solid-void interpolation in elasticity  

 
In this section the so-called penalized, proportional “fictitious material” model, 
also names as the solid isotropic material with penalization model (SIMP), is 
presented (Bendsøe, 1989; Zhou et al., 1991; Mlejnik et al., 1993; Rozvany 
et al., 1994). Here, a continuous variable γ , min0 γ γ≤ ≤≤ ≤≤ ≤≤ ≤ , is introduced, 
resembling a density of material by the fact that the volume of the structure is 
evaluated as  
 

 (((( ))))Vol .x  dγ
Ω

Ω==== ∫∫∫∫  (5.3) 

 
In computations, a small lower bound, min0 γ γ< ≤< ≤< ≤< ≤ , is usually imposed, in 
order to avoid a singular FEM problem, when solving for equilibrium in the 
full domain Ω .  
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The relation between this density and the material tensor (((( ))))ijkl
C x  in the 

equilibrium analysis is written as  
 
 (((( )))) 0p

ijkl ijkl
C Cγ γ==== , (5.4) 

 
where the given material is isotropic, i.e. 0

ijkl
C  is characterized by just two 

variables, here chosen as the Young' s modulus 0
E  and the Poisson ratio 0ν .  

The interpolation (5.4) satisfies that  
 
 (((( )))) (((( ))))0 0, 1 .0

ijkl ijkl ijkl
C C C= == == == =  (5.5) 

 
This means that if a final design has density zero or one in all points, this design 
is a black-and- white design for which the performance has been evaluated with 
a correct physical model. For problems where the volume constraint is active, 
experience shows that optimization does actually result in such designs if one 
chooses p sufficiently big (in order to obtain true (0 1)−−−−  designs, 3p ≥≥≥≥  is 
usually required). The reason is that, for such a choice, intermediate densities 
are penalized; volume is proportional to γ , but stiffness is less than 
proportional. 
 
1.3. Microstructure realizing the SIMP-model 

 
For the SIMP interpolation (5.4),  it is not immediately apparent that areas of 
grey can be interpreted in physical terms. However, it turns out that, under 
fairly simple conditions on p ,  any stiffness used in the SIMP model can be 
realized as the stiffness of a composite made of void and an amount of the 
base material corresponding to the relevant density. Thus using the term 
“density” for the interpolation function γ  is quite natural. 

The stiffness tensor (((( ))))ijkl
C γ  of the SIMP model is isotropic, with a Young's 

modulus varying with γ  and a constant Poisson ratio, independent of γ . If 
this tensor is to correspond to a composite material constructed from void and 
the given material at a real density γ ,  the bulk modulus k and the shear 

modulus µ  of the tensor (((( ))))ijkl
C γ  should satisfy the Hashin-Shtrikman bounds 

for two-phase materials, (Hashin et al.,  1963), written here for plane 
elasticity and for the limit of one phase being void  
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Here 0k , 0µ  are the bulk and shear moduli, respectively, of the base material. 
This implies that the Young modulus should satisfy (Torquato et al. ,  1998) 
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From (5.7), the SIMP model should satisfy 
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which is true if and only if 3p ≥≥≥≥ . However, the SIMP model presumes that the 
Poisson's ratio is independent of the density, and this leads to a stronger 
condition. From the relationship 
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the condition (5.6) for the SIMP model can be written for all 0 1γ≤ ≤≤ ≤≤ ≤≤ ≤  as  
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After some algebra, this leads to a condition on the power p in the form  
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which in itself implies 3p ≥≥≥≥ . The inequality 02 1p ν≥ −≥ −≥ −≥ −  comes from the 

bulk modulus bound, while the inequality 04 1p ν≥ +≥ +≥ +≥ +  is due to the shear 

modulus bound. Example values of *p  are  
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and * 3p ====  holds only for 0 1 3ν ==== . 
It is important to note that the condition (5.11) implies that the SIMP model 
can be made to satisfy the Hashin-Shtrikman bounds, so that it makes sense to 
look for composites which realize the stiffness tensor for the model. The form 
of this composite can be computed through a design process, where the desired 
material properties of a periodic medium are obtained by an inverse 
homogenization process, (Sigmund, 1994; Sigmund, 1995). The geometry of 
the composite may depend on the density, and one can normally not expect to 
obtain the wanted properties by analytical methods.  
It is still an open problem if all material parameters satisfying the bounds also 
can be realized as composites of the given materials. For two materials, one 
infinitely stiff, one infinitely soft, it is shown in (Milton et al. ,  1995) that 
composites can be build for any positive definite material tensor. However, in 
topology design the stiffness is restricted and the density specified. 
 
 
2. ANISOTROPIC TOPOLOGICAL OPTIMIZATION 

 
Minimization of the strain energy density is of considerable significance when 
stiff structures or structured materials must be achieved for a given loading, 
whereas its maximization is an outstanding feature when a large amount of 
energy absorption under impact loading is demanded. Contrary to isotropic 
solids, in presence of elastic anisotropy the strain energy density changes when 
any material element is rotated to the principal directions of stress or strain. 
Accordingly, the orientation of the material axes can be employed as design 
variable to achieve the desired maximum or minimum value of the strain energy 
density. In designing living tissues, nature somehow employs this kind of 
strategy, and adjusts the microstructure of the material (i.e., its anisotropy), to 
enhance the mechanical performances. On the other hand, the same idea is 
artificially adopted when some man-made materials are produced. Among these, 
fibrous composites represent the most common example of materials 
intrinsically anisotropic and susceptible to be properly designed for given 
purposes. 
In literature some procedures were proposed with the aim to rationalize the 
problem of finding the extrema for the strain energy density, with reference to 
linear elastic solids in presence of material symmetries (Rovati, et al., 2003). 
Referring to a linearly elastic anisotropic solid, defined by an elasticity tensor 
with components 

ijhk
C , subjected to a constant strain state characterized by given 

principal strains, this goal can be achieved by answering to the following 
questions: (a) which conditions must be satisfied by the stress and the strain 
fields to make the strain energy density stationary, and (b) which are explicitly 
the corresponding mutual orientations of the strain and the elasticity tensors that 
satisfy these conditions? 
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The answer to the first question is partially known. The results obtained up to 
now, which will be briefly reviewed later, concern essentially the determination 
of qualitative conditions to be satisfied by absolute maxima and minima for the 
strain energy density, and the number of such critical points. The problem of the 
explicit evaluation of the orientations corresponding to all the stationarity values 
of the strain energy density has only partially been solved. On the last point in 
following section it is widely explained a procedure proposed by Rovati et al. 
(2003), where for some classes of anisotropy (namely, tetragonal system, 
transverse isotropy and cubic symmetry) all the orientations of the principal 
directions of strain to the material symmetry axes at the critical points are found 
and discussed.  
 
2.1. State of – the – art  

 
Pioneering works where extreme values of the strain energy density in 
anisotropic bodies are sought are those by Banichuk (1981, 1983). Here, the 
problem of simultaneously evaluating the most efficient shapes for anisotropic 
rods in torsion and the orientation of the anisotropy axes which minimize the 
structural compliance is dealt with. The problem of defining the local values of 
the elastic coefficients, with fixed directions of material axes, which minimize 
the energy density is also considered in plane elasticity. These results have been 
extended in Banichuk and Kobelev (1987) to the case of ideally elastic-plastic 
solids. Anisotropic plates with variable elastic moduli and material axes 
orientation have been also studied by Kartvelishvili and Kobelev (1984), 
referring to optimal design for compliance and natural vibrational frequency. 
Beside these structural formulations, the study of the best positioning of elastic 
symmetry planes in three-dimensional orthotropic bodies for minimum potential 
energy of deformation has been carried out in a general way in Seregin and 
Troitskii (1981). In this work, through the application of the Lagrangian 
multipliers method, it is shown that the solution is locally characterized by a 
mechanically meaningful condition, that is, coaxiality of the stress and strain 

tensors. Contrary to isotropic elasticity, where the strain and stress tensors are 
always coaxial, in anisotropic elasticity this feature is, in general, lost. The non-
trivial result obtained by Seregin and Troitskii emphasizes a requirement that 
must always be fulfilled when extreme values of the global stiffness are sought; 
consequently, it should be assumed as a guidance for an optimal spatial 
arrangement of the material symmetry axes. 
Later, but independently, the same problem has been dealt with in Rovati and 
Taliercio (1991, 1993) where orientations of the material symmetry axes which 
maximize or minimize the global elastic stiffness of a general1y anisotropic 
three-dimensional continuum are sought. Necessary stationarity conditions for 
the strain energy density are directly computed, assuming the strain state to be 
given, and their mechanical interpretation (that is, collinearity of principal 
directions of stress and strain) is highlighted. Some closed form solutions for 
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cubic and transversely isotropic materials are found, and a material parameter, 
responsible of the relative shear stiffness of the solid, is introduced. It is shown 
how two classes of solutions can be defined according to its value: one, where 
stationarity of the strain energy density is accompanied by full collinearity of 
principal directions of stress, strain and material axes; the other one, where this 
collinearity is only partially preserved. 
Due to pertinence to practical applications, much effort has been devoted to two-
dimensional solids. In particular, the elastic problem previously described has 
been reformulated for plane elasticity in Sacchi Landriani and Rovati (1991), 
and conditions for absolute maximum and minimum structural stiffness are 
found; an extension to plates in bending is given as well. Careful investigations 
in this direction should be mentioned, such as those given by Pedersen (1989), 
where it is found that the best orientations of the material axes depend on a 
dimensionless material parameter, plus the ratio of the two principal strains. 
Coaxiality of the material axes and the principal strain directions always 
corresponds to stationary values for the energy density (trivial solutions); 
however, in some strain conditions, stationarity can also be achieved at some 
non-trivial orientations. In addition to these considerations referred to any 
material point, analyses are also carried out for the whole solid (Pedersen, 1990), 
through applications of sensitivity analysis, finite element analysis, and 
optimization procedures. Homogenization techniques, coupled with finite 
element analyses and design for optimal structural performances, have led to the 
very effective method of topology optimization (see Eschenauer and Olhoff, 
2001, and the references therein). 
A modern formulation of the problem of finding the best orientations of the 
material symmetry axes in a three-dimensional continuum is given by Banichuk 
(1996), where the application of spectral methods of tensor analysis makes it 
possible to clarify general features of the problem itself, and to discuss some 
qualitative properties. Further accounts on spectral decomposition of the 
anisotropic elasticity tensor can be found in Sutcliffe (1992) and Theocaris and 
Sokolis (2000a,b). Banichuk deals with several problems, such as minimization 
of the compliance functional, the dynamic stiffness and the distortion energy. 
These problems are then generalized to the case of bodies consisting of several 
anisotropic phases; accordingly, the medium is represented as a polycrystalline 
aggregate. 
The problem of extremizing the strain energy density by varying the mutual 
orientation of a fixed stress state to the material symmetry axes (regardless of the 
considered symmetry class) has also been developed by Cowin (1994). After 
showing that the stress and strain tensors commute at the stationarity (or critical) 
points of the strain energy, Cowin looks for absolute maxima and minima of the 
energy in a subset of orientations at which the gradient of the strain energy 
density vanishes respect to a second-order orthogonal tensor, representing the 
coordinate transformation. It is shown that the symmetry coordinate system of 
cubic symmetry is the only situation in linear anisotropic elasticity for which a 
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strain energy density extremum can exist for all stress states. The stationarity 
conditions for materials with other symmetries depend on the given stress state. 
In particular, the conditions for the energy extrema for transversely isotropic and 
orthotropic solids are found for uniaxial stress states. In Vianello (1996a) and 
Sgarra and Vianello (1997a,b) attention is paid to showing the existence of 
rotations of the material axes with respect to the principal directions of strain, at 
which the energy density is stationary. By means of Weierstrass’ theorem the 
existence of at least two such rotations is proved, which parametrically depend 
on the strain tensor for any material symmetry. At a first glance, this result 
seems to contradict the statement given in Cowin (1994); nevertheless, the 
difference with Cowin’s formulation is that here the elastic symmetry is held 
fixed for a specific strain state, whereas in Cowin (1994) a general state is 
considered. This difference is exhaustively clarified in Cowin (1997). The 
extension to finite anisotropic elasticity is tackled by Blume (1994). and 
Vianello (1996b), where the properties of the extrema are shown to be the same 
as in the linear case. Further developments in this direction concern the problem 
of extremizing the strain energy density, with respect to both the orientation of 
the anisotropy axes and the type of material symmetry (Cowin and Yang, 2000), 
for a given, but arbitrary, stress state. This formulation reveals a strict 
connection with analogous problems concerning the generation of optimal 
topologies (Eschenauer and Olhoff, 2001), where it is essentially the 
microstructure of the solid that plays the role of design variable. 
Finally, it is interesting to notice that the previously illustrated problems 
spontaneously arise not only in the study of the behaviour of man-made 
materials, but also in the mechanics of living tissues. For instance, Fyhrie and 
Carter (1986) develop a relationship between cancellous bone apparent density, 
trabecular orientation and applied stress, assuming the bone to be an orthotropic, 
self-optimizing material. It is shown that the trajectories of the material axes and 
the apparent density can be described by a unifying minimization principle 
involving a quadratic functional, similar to the strain energy density, and a 
purely quadratic Tsai-Wu failure criterion. The results predict the alignment of 
the material axes to the principal stress directions, in agreement with the 
previously reviewed results. Mechanisms of local changes in anisotropic 
properties, that more efficiently allow the living bone to carry the loads, are 
shown in Cowin (1987, 1995). These results suggest that .the bone is designed 
by nature to have the greatest stiffness in axial direction and the greatest impact 
load resistance in the transverse one. The intimate relationship between 
trabecular architecture of cancellous bone and mechanics is also described by 
Odgaard et al. (1997). 
 
2.2. Stationarity of the strain density for some classes of anisotropic solids 
 
The problem of finding critical points of the strain energy density function, in 
linearly elastic anisotropic solids, is dealt with. In this problem, the local 
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orientation of the anisotropy axes is assumed to be varying from a point to 
another through the body, and it is conceived as variable of the problem itself. 
The solid is supposed to be endowed with a positive definite strain energy. At 
first, no restriction on the type of elastic anisotropy is made. In an orthogonal 
reference system 1 2 3z z z , the constitutive law can be written in the form of the 
generalized Hooke’s law:  
 
 

ij ijhk hk
T C E=  (5.13) 

 
where 

ij
T  and 

hk
E  are the Cartesian components of the symmetric second-order 

stress and linearized strain tensors, respectively. 
ijhk

C  are the components of the 

elasticity tensor of rank 4. From here onwards, summation over repeated indices 
(here ranging from 1 to 3) is understood. The type of anisotropy of the material 
is reflected by the symmetry group to which the elasticity tensor belongs (Smith 
and Rivlin, 1958; Gurtin, 1972). Symmetry of the strain and stress tensors, along 
with the postulated existence of an energy function, lead to the usual symmetries 
of the elasticity tensor:  
 
 

ijhk jihk ijkh hkij
C C C C= = = . (5.14) 

 
In the most general case, the elasticity tensor depends on 21 independent 
coefficients (triclinic system; Gurtin, 1972): this is the case of complete 
anisotropy, and no restriction is placed on the elasticities 

ijhk
C  by any material 

symmetry property. Conversely, if the material possesses some planes or axes of 
elastic symmetry, the number of independent elastic coefficients is accordingly 
reduced. Constraints imposed by material symmetry on the elasticity tensor, 
classification of symmetry classes, and number of the different types of 
anisotropy, are topics widely discussed in the literature (see, among others, 
Love, 1994; Hearmon, 1961; Gurtin, 1972; Ting, 1996; Forte and Vianello, 
1996; Huo and Del Piero, 1991; Cowin and Mehrabadi, 1995; Chadwick et al., 
2001). For any material symmetry, it is customary to define, at each point P of 
the body, a ‘principal’, or ‘material’, orthogonal reference system 1 2 3x x x  in 
which the elasticity tensor shows the fewest number of independent non-
vanishing components. 
The relationship between the Cartesian components of the elasticity tensor in the 
global frame 1 2 3z z z , and those in the local material system 1 2 3x x x , denoted by 
ˆ

mnpq
C , is given by the transformation law: 

 

 ˆ
ijhk im jn hp kq mnpq

C Q Q Q Q C=  (5.15) 
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where 
ij

Q  are the components of a proper orthogonal second-order tensor Q .  

The anisotropy of the solid is supposed to be given. The state of strain at each 
point P of the solid is characterized by the given values of the three principal 
strains and by the orthogonal principal strain directions 

I II III
x x x . 

Accordingly, at each point P of the solid three Cartesian orthogonal systems of 
axes are defined: 1 2 3z z z , parallel to the global system of coordinates, which form 

a set of axes common to all points in the body; 1 2 3x x x , aligned with the material 

axes, which can vary point by point; and 
I II III

x x x , the system of the principal 
directions of strain. 
When the material symmetry axes are locally rotated at any point in the body 
with respect to the fixed system 1 2 3z z z , the local orientations of the principal 
directions of strain change as well. Thus, any change in the energy density 
 

 1 1
2 2

ˆ
ijhk ij hk im jn hp kq mnpq ij hk

W C E E Q Q Q Q C E E= =  (5.16) 

 
is due to a change in the mutual orientation between material axes 1 2 3x x x  and 

principal axes of strain 
I II III

x x x . Accordingly, in equation (5.16) the 
ij

Q  must be 

understood as components of a proper orthogonal tensor that rotates the material 
axes with respect to the principal directions of strain.  
It is expedient to replace the three-dimensional formulation adopted so far with a 
suitable formulation of the constitutive law in the six-dimensional space. 
Different possible notational conventions can be found in the literature to 
express the stress-strain relationship (Walpole, 1984; Cowin and Mehrabadi, 
1987; Mehrabadi and Cowin, 1990; Nadeau and Ferrari, 1998; Ting, 1996; 
Helnwein, 2001). Here, the description adopted is given by the following linear 
transformation is six dimensions (Walpole, 1984; Rychlewski, 1984; Cowin and 
Mehrabadi, 1992): 
 
 =t eC  (5.17) 
 
where the two arrays t  and e  gather the six independent stress and strain 
components, respectively:  
 

 ( )23 31 12

T

11 22 33= T T T 2T 2T 2Tt  (5.18) 

 

 ( )23 31 12

T

11 22 33= E E E 2E 2E 2Ee  (5.19) 

 
The elasticity tensor is then consistently transformed into the 6 6×  matrix, C :  
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1111 1122 1133 1123 1131 1112

1122 2222 2233 2223 2231 2212

1133 2233 3333 3323 3331 3312

1123 2223 3323 2323 2331 2312

1131 2231 3331 2331 3131 3112

1112 2212 3312 2312 3

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C

=C

112 12122C

 
 
 
 
 
 
 
 
 
 
 

 (5.20) 

 

According to this representation, the stress and strain tensors are mapped into the 
six-dimensional space in the same manner, contrary to the more frequently 
adopted Voigt’s notation where only the shearing strains are affected by a 
multiplicative factor 2 (Love, 1994; Lekhnitskii, 1981; Sirotin and Chaskolkaïa, 
1984; Mehrabadi and Cowin, 1990). The advantage of the Voigt’s choice is that 
the components of the strain vector have the physical meaning of engineering 
strains. It has been proved by Mehrabadi and Cowin (1990) that the 6 6×  matrix 
in (5.17) contains the components of a second-order tensor in six dimensions, 
whereas this tensorial character is lost in the Voigt’s notation (Nye, 1957; 
Hearmon, 1961; Fedorov, 1968; Ting, 1996). 
For the sake of conciseness, vector and tensor components in six dimensions will 
be denoted by lowercase letters, and the usual contraction of indices, which 
replaces any pair of indices with a single index 

( )i.e., 11 =1, 22 = 2, 33 = 3, 23 = 32 = 4, 31 = 13 = 5 and 12 = 21 = 6  is assumed. In 

such a way the matrix representation (5.17) can be explicitly written as  
 

 

1 11 12 13 14 15 16 1

2 12 22 23 24 25 26 2

3 13 23 33 34 35 36 3

4 14 24 34 44 45 46 4

5 15 25 35 45 55 56 5

6 16 26 36 46 56 66 6

t c c c c c c e

t c c c c c c e

t c c c c c c e

t c c c c c c e

t c c c c c c e

t c c c c c c e

    
    
    
    

=    
    
    
        
    

 (5.21) 

 
The components of the elasticity tensor in six-dimensions referred to the 
material symmetry axes will be denoted by ( )ˆ , 1,...,6

ij
c i j =  and collected into 

the matrix Ĉ . To express the components of the second-rank elasticity tensor in 
any reference frame, 

ij
c , in terms of the elastic constants 

îj
c , a suitable rotation 

tensor q  in six dimensions must be defined, such that 
 
 ˆ

ij im jn mn
c q q c= . (5.22) 
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This equation represents the six-dimensional counterpart of the equation (5.15). 
The definition of the orthogonal tensor q  can be found in Mehrabadi and Cowin 
(1990), where its matrix representation is given as  
 

 AA AB

BA BB

=
 
 
 

q q
q

q q
 (5.23) 

 
with 
 

 

2 2 2

11 12 13

2 2 2

AA 21 22 23

2 2 2

31 32 33

Q Q Q

= Q Q Q

Q Q Q

 
 
 
 
 

q  (5.24) 

 

 

12 13 13 11 11 12

AB 22 23 23 21 21 22

32 33 33 31 31 32

2Q Q 2Q Q 2Q Q

= 2Q Q 2Q Q 2Q Q

2Q Q 2Q Q 2Q Q

 
 
 
 
 
 

q  (5.25) 

 

 

21 31 22 32 23 33

BA 31 11 32 12 33 13

11 21 12 22 13 23

2Q Q 2Q Q 2Q Q

= 2Q Q 2Q Q 2Q Q

2Q Q 2Q Q 2Q Q

 
 
 
 
 
 

q  (5.26) 

 

 
22 33 23 32 21 33 23 13 21 32 22 31

BB 32 13 33 12 31 13 33 11 31 12 32 11

12 23 13 22 11 23 13 21 11 22 12 21

Q Q Q Q Q Q Q Q Q Q Q Q

= Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q

+ + + 
 

+ + + 
 + + + 

q  (5.27) 

 
When the problem is written in the six-dimensional space, the energy density 
function (5.16) takes the form 
 
 1 1

2 2
ˆ

ij ij i j im jn mn i j
c c e e q q c e e= =  (5.28) 

 
with , 1,2,...,6i j = . 
In the following the necessary condition for stationarity of the strain energy 
density is first briefly reviewed. This condition can be obtained in several ways 
(Seregin and Troitskii, 1981; Rovati and Taliercio, 1991, 1993; Cowin, 1994; 
Banichuk, 1996). Here it is preferred to recall the direct approach that makes use 
of the formulation in three dimensions (Cowin, 1994), where the physical 
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meaning of the stationarity condition turns out in explicit form. 
The objective stated in the previous section is to find stationarity points for the 
strain energy density function (5.16), according to the orthogonality constraint 
on tensor Q , which, in terms of components, reads 
 
 

ik jk ij
Q Q δ=  (5.29) 

 
where 

ij
δ  is the Kronecker’s delta. By means of the Lagrangian multipliers 

method, this constrained probleml can be reformulated as an unconstrained one, 
consisting into the search for the stationarity of the augmented (or Lagrangian) 
function L  (Cowin, 1994), defined as 
 

 ( ) ( )1
2;ij ij ijhk ij hk ij ik jk ijQ C E E Q Q δΛ = − Λ −L , (5.30) 

 
where 

ij
Λ  are the components of a symmetric tensor ΛΛΛΛ  of rank 2. Stationarity 

of function L  with respect to the Lagrangian multipliers 
ij

Λ  restores the 

constraint (5.29), whereas stationarity with respect to variables 
ij

Q  that is, with 

respect to the local orientation of the anisotropy axes, is given by 
 

 ( )ˆ2 0
mspq im hp kq ir hk rj js

rs

C Q Q Q E E Q
Q

∂
= − Λ =

∂

L
, (5.31) 

 

where minor and major symmetries (5.14) of the elasticity tensor have been 
taken into account. After some a1gebraic manipulations, it is not difficult to 
show that 
 
 

ik ir rk
T E = Λ , (5.32) 

 
which, by virtue of the symmetry of tensors T , E  and ΛΛΛΛ  allows one to write 
 
 =TE ET . (5.33) 
 
The commutativity of this product implies that the two tensors T  and E  are 
coaxial. Thus, the stationarity points of the strain energy density correspond to 
those orientations of the principal directions of strain to the material symmetry 
axes which make the principal directions of strain collinear with the principal 
directions of stress. Two second-order tensors are coaxial if they have a common 
triad of orthogonal eigenvectors. In isotropic elasticity, tensors T  and E  are 
always coaxial; this does not apply to anisotropic solids unless special conditions 
are fulfilled, which will be explicitly derived later for some classes of elastic 
symmetries.  
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This coaxiality requirement is the starting point for the solution procedure 
leading to the analytical determination of the orientation of the anisotropy axes 
to the principal directions of strain here proposed. 
When the strain energy density is stationary, at each point P of the anisotropic 
body and in the Cartesian coordinate system 

I II III
x x x  of the principal directions 

of stress and strain, condition (5.33) implies  
 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0 0

0 0

0 0

I I

II II

III III

c c c c c ct e

c c c c c ct e

c c c c c ct e

c c c c c c

c c c c c c

c c c c c c

    
    
    
    

=     
    
    
        

    

 (5.34) 

 

which can be written, for notational purposes only, in concise form as  
 

 AA ABp p

BA BB

=
    
    

    

C Ct e

C C0 0
 (5.35) 

 
(with T

BA AB
=C C ). Therefore, coaxiality of the stress and strain tensors can be 

expressed as  
 

 
14 24 34

15 25 35

16 26 36

0,
0,
0.

I II III

BA p I II III

I II III

c e c e c e
= c e c e c e

c e c e c e

+ + =
⇒ + + =

+ + =

C e 0    (5.36) 

 
Clearly, system (5.36) is identically satisfied for any value of the principal 
strains , ,

I II III
e e e  if all the coefficients 14 24 36, ,...,c c c  simultaneously vanish. This 

occurrence may happen only for those material symmetry classes for which at 
least a material coordinate system can be found where all the entries of 
submatrix 

BA
C  vanish (Cowin, 1994, 1997), provided that, at the same time, 

these material axes are aligned with principal directions of stress and strain. 
These elastic symmetries correspond to the cubic system (characterized by 3 
elastic coefficients), hexagonal(5) system (transverse isotropy, 5 coefficients), 
tetragonal(6) system (6 coefficients) and orthorombic symmetry (9 coefficients) 
(see Gurtin, 1972). For the other elastic symmetries, i.e. hexagonal (with 6 and 7 
elastic coefficients), tetragonal (7 coefficients), monoclinie (13 coefficients) and 
triclinic (complete anisotropy, 21 coefficients), in any reference system the 
submatrix 

BA
C  is different from the null matrix (Gurtin, 1972). Therefore, for 

such symmetries, no particular reference frame exists in which system (5.36) can 
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be satisfied for any non-vanishing value of the principal strains. Equations (5.36) 
show that, for those elastic symmetries such that 

BA
=C 0  in some coordinate 

system, stationarity of the energy can be achieved, in particular, for 
simultaneous coaxiality of principal directions of stress, strain and material 
symmetry axes. This is the special case considered by Cowin (1994).  
 
2.3. Cowin-Taliercio minimization of the strain energy involving Inertia-

Fabric tensors: an explicit strategy 
 
In the previous section it was shown that the necessary condition for stationarity 
of the strain energy density may be written in the form (5.33) which implies that 
the two tensors T  and E  are coaxial. Thus, as above underlined, the 
stationarity points of the strain energy density correspond to those orientations of 
the principal directions of strain to the material symmetry axes which make the 
principal directions of strain collinear with the principal directions of stress. Two 
second-order tensors are coaxial if they have a common triad of orthogonal 
eigenvectors. In anisotropic elasticity, tensors T  and E  are not always coaxial 
unless some specific classes of elastic symmetries are considered – orthotropic 
symmetry.  
In the following, an explicit strategy of optimization of the elastic constant of an 
orthotropic material based on the minimization of the strain energy is developed. 
To this aim, it is considered the constitutive relation  
 
 :====T EC  (5.37) 
 
where C  is the overall elasticity tensor expressed in the form (see Chapter IV) 
 
 (((( )))), , 1 to 3

i
m iγ= == == == =C C  (5.38) 

 
where γ  is the volume fraction of the material and the 

i
m -s are the eigenvalues 

of the fabric tensor in the main reference frame. Remember that in the (5.38) the 
anisotropy is governed by the eigenvalues of the fabric tensor in the sense that if 
all the 

i
m -s are different, the corresponding material symmetry is the orthotropy, 

if only two of the 
i

m -s are different, the corresponding material symmetry is the 

transverse isotropy, while if the 
i

m -s are all equal the corresponding material 
symmetry is the isotropy.  
The energy density function is 
 
 ( )1 1

2 2 ,
ijhk ij hk ijhk i ij hk

W C E E C m E Eγ= =  (5.39) 
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and the problem of the minimization of the energy density function ( ),
i

W mγ  

may be written as  
 

 ( )1
2min ,ijhk i ij hkC m E E dVγ

Ω∫  (5.40) 

 
subject to 
 

 dV V V Vγ γ
Ω

= = <= = <= = <= = <∫∫∫∫ . (5.41) 

 
With specific reference to the results obtained in Charter IV in cases of both 
LVF and HVF, namely by identifying the fabric tensor with an appropriate 
normalization of the inertia tensor, the eigenvalues 

i
m -s takes the form  

 
 (((( ))))i ii

m f Jγ====  (5.42) 

 
where (((( ))))f γ  is a function to determine, while 

ii
J  are the eigenvalues of the 

inertia tensor. In particular, it was shown that  
 

 (((( ))))ii ii jJ J ξ====  (5.43) 

 
The parameters 

j
ξ  depend on the specific microstructure and are hare 

considered 
 

 
(((( ))))
(((( ))))

, for LVF,

, for HVF,
i

j

t γ
ξ

β γ


==== 


 (5.44) 

 
where 

i
t  are the thicknesses of the walls of the Flugge’s equivalent RVE (see 

Chapter VI, Section 2.2.), β  is the ratio the diameters of the equivalent 
ellipsoidal void (see Chapter VI, Section 2.4.) and γ  is the volume fraction. 
Note that in Section 2.4. of the Chapter VI, with reference to the study of HVF 
materials, the porosity φ  is considered instead of the volume fraction γ  but 
because of the relation 1φ γ= −= −= −= −  choosing a parameter rather that the other is 
substantially the same.  
By virtue of the relations (5.42), (5.43) and (5.44), the minimization of the 
energy density (5.40) is reduced to solving the set of 1j ++++  equations 
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i

W

W

γ

ξ

∂∂∂∂
 ∂∂∂∂
∂∂∂∂

∂∂∂∂

 (5.45) 

 

under the constrain dV Vγ γ
Ω

====∫∫∫∫ .  

In order to better clarifying the illustrated procedure, later on it will be 
developed a simple example.  
 

 
 

Fig. 5.2. 
Beam in bending regime. Rectangular cross section before and after the optimization 

which gives a density linear in x2. 
 
 

Let us considered a beam of length l  in bending regime (see Fig. 5.2). The 
rectangular cross section of the beam have the dimensions b  and h . It is well 
known that the sole non-zero stress component inside the beam is the 33σ  given 
by 
 

 33 2

M
x

I
σ ==== . (5.46) 

 
The volume fraction inside the considered body is in general variable with the 
position x  but it is here assumed variable with the sole component 2x  
 
 (((( )))) (((( ))))2xγ γ====x . (5.47) 

 
The energy density W  takes the form 
 

 
2
331 1

33 332 2
V V

W dV dV
E

σ
σ ε= == == == =∫ ∫∫ ∫∫ ∫∫ ∫  (5.48) 
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where E  is the overall Young modulus.  
In order to give an explicit form to E , the transverse strains are neglected – that 
means to assume 0ν ==== . In this way the term the term 1111C  of the elasticity 
tensor coincides with the Young modulus. Moreover, with reference to the 
Flugge’s overall elasticity tensor for the cubic case - 

i
t t====  - we may conclude 

that  
 

 1111

2

3
E C E kγ γ= = == = == = == = =  (5.49) 

 
where E  is the Young modulus of the matrix, 3t aγ ====  and 2 3k E==== .  
By substituting the (5.46) and the (5.49) inside the (5.48), the strain energy 
density becomes 
 

          (((( )))) (((( ))))

(((( )))) (((( ))))

2 22 2
2 2

2 2
2 2
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2 2 2
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1 2 3 22 20 2 2 2

2 2
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l b h h

b h h

x xM M
W dV dV

I k x I k x

x xM M
dx dx dx lb dx

I k x I k x

γ γ

γ γ− − −− − −− − −− − −

= = == = == = == = =

====

∫ ∫∫ ∫∫ ∫∫ ∫

∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫
 (5.50) 

 

By setting 
2

2

1

2

M
A lb

I
==== , the (5.50) becomes  

 

 
(((( ))))

2
2

2
22

2

h

h

x
W A dx

k xγ−−−−
==== ∫∫∫∫ . (5.51) 

 
The optimal distribution of material inside the cross section of the beam - (((( ))))2xγ  

- is found out by means of the minimization of the energy density (5.51) 
according the constraint  
 

 (((( )))) (((( ))))
2

2 2 22

h

V h
x dV lb x dx V V Vγ γ γ

−−−−
= = = <= = = <= = = <= = = <∫ ∫∫ ∫∫ ∫∫ ∫  (5.52) 

 
By means of the Lagrangian multipliers method, this constrained probleml can 
be reformulated as an unconstrained one, consisting into the search for the 
stationarity of the augmented (or Lagrangian) function F , defined as 
 

 ( )
( )

( )
2

2 2
2

2 2 22 2
2

,
h h

h h

x
A dx lb x dx

k x
γ λ λ γ

γ− −
= +∫ ∫F  (5.53) 
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where λ  is the Lagrangian multiplier. The stationarity of the function F  with 
respect to the volume fraction γ  is given by 
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F . (5.54) 

 
The (5.54) gives  
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The substitution of the (5.55) into the constrain condition (5.52) gives 
 

 
2

2 22

h

h

A
lb x dx V

Bkλ−−−−
====∫∫∫∫  (5.56) 

 
which solved furnishes the value of the Lagrangian multiplier as 
 

 
2

4

ABh

kV
λ ==== . (5.57) 

 
By substituting the (5.57) into the (5.55), it results  
 

 2

2
V x

Bh
γ ==== . (5.58) 

 
The optimal distribution of the volume fraction inside the cross section of the 
beam is linear in 2x  as well as the stress 33σ .  
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CONCLUSIONS AND PERSPECTIVES 

 

 
In this work the problem of the mechanical characterization of porous-elastic 
material is dealt with. Two different class of porous materials are separately 
treated, namely the porous materials that show randomly arranged and oriented 
microstructure. 
In the first case, thanks to the presence of symmetry planes, the porous material 
shows an isotropic mechanical behaviour and the non-homogeneity may be 
described by the sole scalar parameter γ  which represents the RVE volume 
fraction. By means of numerical analyses based on Finite Element Method, 
constitutive relations are built up. The results are indeed interpolated by  
algebraic functions which match the analytical solutions furnished for low 
volume fraction (Flugge’s solutions) and high volume fraction (dilute 
distribution of voids) by literature. It is worth to note that, although some 
scientific papers present laws for estimating the overall elastic moduli of 
isotropic porous materials, they are however not valid in general. In fact, the 
literature proposals – e.g. the Rho modulus/density relationships for bone tissue 
– are found out by means of interpolations made over experimental tests related 
to specific anatomic sites and therefore only valid for those tissues and the 
corresponding void distribution within the specimens. On the contrary, the laws 
here proposed have general validity, being determined independently from the 
specific material or microstructural morphology. 
Materials that exhibit an oriented microstructure may be considered 
inhomogeneous and anisotropic. They are commonly studied by means of 
micromechanical approaches based on fabric tensors which, in spite of the 
mechanical consistency, are difficult to employ because their involving requires 
the point-wise evaluation of the fabric tensor eigenvalues and eigenvectors.  
In the present work the case of porous materials with oriented microstructure 
with low and high volume fraction are analysed separately, being in the first case 
the anisotropic behaviour governed by the matrix structure, while in the second 
case by the voids orientation.  
For poro-elastic materials with low volume fraction a constitutive relationship is 
given starting from Flugge’s solution, generalized to the orthotropic case. This 
strategy conducts to an identification of the fabric eigenvalues which suggests to 
identify the fabric tensor with the inertia tensor, opportunely normalized. In the 
complementary case – high volume fraction – the constitutive relations are found 
starting from the elastic solution of an ellipsoidal void embedded into an infinite 
linear elastic solid. In order to bear out the hypotheses of identifying the fabric 
tensor with the inertia tensor, some examples are derived and illustrated to 
highlight analogies and differences between the mean intercept length tensor and 
the inertia tensor for bi-dimensional RVEs. Such examples seem to confirm the 
advisability to use the inertia tensor like microstructural parameter. This choice 
has the advantage that the inertia tensor is a parameters easy to evaluate by 
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means of specific software, if a vectorial image of a considered RVE is 
available.  
The obtained results may be applied in a wide range of mechanical problems 
involving anisotropic heterogeneous materials, for example the characterization 
of granular media (soils and rocks), cellular conglomerates, ceramic materials, 
synthetic biomaterials or biological tissue (cancellous bone, soft tissue), with the 
aim of studying damage or remodelling phenomena in alive tissue, and solve 
optimization problems for engineered materials – as explicit shown in Chapter 
V. 
In conclusion, it is also worth to highlight that the constitutive models here 
presented are deferred to porous elastic materials where the presence of fluid is 
neglected. However, the effects of possible interstitial fluid in the solid matrix 
can be considered by invoking the classical linear and non-linear theories 
governing the coupling of the two phases. 
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