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INTRODUCTION

The  synthesis  and  characterization  of nanoparticles have  attracted 

considerable attention in recent years. It is well known that nano-sized particles, 

because of their small size and high surface area display many unique properties 

such  as  electrical  [1],  optical  [2],  and  magnetic  [3,  4],  somewhat  different  if 

compared  to  those  of  the  bulk  system.  Nanoparticles,  thanks  to  their  special 

physical  and  chemical  properties,  now exhibit  interesting  applications  also,  in 

biology, catalysis, sensors, mechanics and electronics fields [5–7].

If  nano-scaled  particles  are  dispersed  in  a  host  matrix,  a  new 

nanocomposite material will be formed that posses some unique properties both of 

the nanoparticles and the matrix.

The research  activity  of  this  PhD  thesis  was  addressed  to  the  sol-gel 

synthesis of inorganic nanocomposites based on highly dispersed and nanosized 

active  phases  that  exhibit  catalytic,  electro-optic,  ferroelectric,  and  non-linear 

optical properties. Particular attention was addressed to the thin films preparation, 

fundamental for the realization of electronic devices.

Compared with the conventional ceramic routes, such as coprecipitation, 

grafting, impregnation, the sol-gel exhibits many advantages, among them the low 

process temperature, the high control of purity, composition, microstructure and 

textural properties of the final material [8–10]. Particularly, for mixed-oxides this 

synthesis procedure allows to obtain materials characterized by a high dispersion 
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of the active phase in the matrix on both molecular and nanometer scale [11–16]. 

Moreover, the versatility of the sol-gel route makes possible to obtain the final 

material as powders, bulk and coating films.

For films fabrication, in comparison with the conventional deposition techniques, 

such as chemical vapor deposition, sputtering and pulsed laser deposition, the sol-

gel offers a better control of the chemical composition, excellent homogeneity, 

low process temperature,  uniformity over large area allowing to produce high-

quality films up to micron thickness [8, 17].

In the first part of this work was explored the possibility to synthesize new 

nanocomposites  catalysts  in the  Nb2O5∙SiO2 binary  system.  Successively,  the 

synthesis  conditions  to  obtain  nanocomposites  in  the  Li2O∙Nb2O5∙SiO2 ternary 

system were explored.  The aim was to prepare  transparent thin films formed by 

lithium niobate nanocrystals uniformly dispersed in amorphous silica matrix.

A report of the most recent literature data about these materials is later on 

reported. This effort aims to provide a clear picture of the state of the art to clarify 

the  actual  interest  and  the  novelty  of  the  present  work.  Special  emphasis  is 

attributed  to  the  influence  of  the  process  parameters  on  the  control  of  the 

dispersion degree of the active phase in the silica matrix.

Nb2O5∙SiO2

As concerns the catalysts, the nano-sized has a spectacular aspect on their 

properties: the different rate of variation of area and volume means a better use of 

the surface areas, and thus by decreasing particle size the catalytic activity may be 

promoted to a very high level, still unreachable. The greatest advantage foreseen 
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from using nano-sized  catalysts  will  be the possibility  to  use  a  better  tailored 

structure, leading to a specificity and a much increased selectivity. A promising 

potential area of development, concerns the possibility to obtain catalysts formed 

by  nanoparticles dispersed  in  a  host  porous  matrix,  achieving  materials  that 

combine the chemical functionalities of the nanoparticles with the high surface 

area  of  the  matrix  [18].  Particularly,  the  possibility  to  obtain  nanocomposites 

catalysts in situ, growing the active phase together the support matrix, instead of 

the traditional impregnation, has received much attention recently [9, 10]. In fact, 

in  this  case  a  greater  stability  at  high  temperature  and  a  tailored  porosity  is 

achieved.

The niobium-silicon mixed-oxide composites have attracted great interest 

recently for their potential applications as heterogeneous catalysts [11–23, 19–21], 

confirming the active role played by these materials in several reactions, such as 

dehydration  of  alcohols,  oxidative  dehydrogenation,  esterification,  alkylation, 

epoxidation of olefins etc. [22, 23]. Among them, the epoxidation of olefins is an 

extremely important class of catalytic reaction in the chemical industry because of 

the epoxides versatility in preparing many chemical intermediates of importance 

to the fine and speciality chemicals. This type of reactions is generally carried out 

by using organic peracids and hydroperoxides as oxidants [24, 25]. Many efforts 

have  been  made  to  substitute  these  reagents  with  a  ‘‘green  oxidant’’  such  as 

hydrogen peroxide H2O2 that can oxidize organic compounds with the generation 

of water as the only co-product  [26–28]. The TS-1 (titanium silicalite) was the 

first  heterogeneous  and  stable  catalyst  which  demonstrated  the  possibility  to 

epoxidize olefins with hydrogen peroxide [29]. From then, many semicrystalline 
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and  amorphous  mixed  oxides  based  on  silica  and  containing  transition  metal 

oxides  such  as  Zr,  W,  Ti,  Ta,  Mo,  Nb  were  proposed  as  catalysts  for  these 

reactions [21, 27, 30].

Mesoporous niobiosilicates were found effective catalysts for cycloexene 

[31,  32] and  cyclooctene  [33–35] epoxidation  and  their  catalytic  activity  was 

found to be strongly influenced by niobium dispersion in the SiO2 matrix [31, 32], 

and by synthesis conditions [33–35] as well. The acid properties of the materials 

[31,  32] and  the  niobium coordination  [33–35] were  hypothesized  to  play  an 

important role in this reaction.

Nb2O5∙SiO2 catalysts can be synthesized by different procedures, besides 

the traditional impregnation [36], such as hydrothermal synthesis, eventually in 

the presence of cationic surfactants or expanders [31-35] or sol-gel [19, 21, 37, 

38]. 

The choice of suitable molecular precursors plays a key role in the sol-gel 

synthesis of multi-components systems, such as Nb2O5∙SiO2. Actually, in order to 

obtain homogeneous sols, molecular precursors with comparable hydrolysis rates 

should be used [39, 40]. In this way cross-linking between clusters of different 

components  with  similar  size  will  take  place  allowing  gelation  instead  of 

precipitation and/or co-precipitation. In the former case gels formed by permanent 

covalent bonds (chemical gels) [41] are obtained, while in the latter, particulate 

gels, i.e.  gels where temporary o reversible bonds connect the clusters, can be 

obtained (physical gels) [42]. 

In the SiO2∙Nb2O5 system, silicon alkoxides [11, 13, 15, 19–21, 43], among 

them tetraethoxysilane, Si(OC2H5)4 (TEOS), or alkil-alkoxysilane [12], were used 
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as silicon precursors, while niobium (V) ethoxide, Nb(OC2H5)5, [11, 12, 19, 21] or 

niobium chloride, NbCl5, [13, 15, 19, 20, 43] were used as niobium precursors. 

Compared with Nb(OC2H5)5, NbCl5 is a low cost reagent and exhibits a higher 

reactivity  that  is  usually controlled  by dissolving it  in ethanol,  where it  forms 

partially NbCl5–x(OC2H5)x or completely substituted species. These species show 

higher reactivity towards water than silicon alkoxides that, consequently, have to 

be prehydrolyzed to some extent before the mixing to form the sol [11–13, 15, 19, 

20].  In  addition,  niobium  ions,  Nb5+,  in  aqueous  environment  undergo  rapid 

hydrolysis  giving  rise  to  a  precipitate  of  hydrated  niobium  pentoxide, 

Nb2O5∙nH2O. To prevent this phenomenon it is possible to use chelating agents, 

such as ethylenediaminetetracetic,  citric and malic acids [44], 2,4-pentanedione 

[45], acetylacetone [21] or organic epoxides [43].

The complex chemical behaviour of niobium ions makes possible to obtain 

materials  with different  structural  characteristics  using slight  differences in the 

synthesis  procedure.  Francisco  and  Gushikem [13]  prepared  three  SiO2·Nb2O5 

composites containing different Nb2O5 amounts (2.5, 5.0 and 7.5 mol%) using a 

synthesis procedure characterized by a high H2O/TEOS molar ratio (about 70:1) 

and a high processing temperature in order to facilitate both TEOS prehydrolysis 

and gelation process. In these gel derived samples evidences of Si–O–Nb bonds 

were found by Fourier Transform Infrared spectroscopy (FTIR) [13] and X-ray 

Photoelectron Spectroscopy (XPS) [14] indicating a strong interaction of niobium 

with  the  siloxane  matrix.  The  authors  [13,  14]  proposed  a  structural  model 

consisting of amorphous domains of Nb2O5 uniformly dispersed into the siloxane 

matrix.  Increasing  the  temperature  these  domains  cluster  to  facilitate  the 
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formation of nanocrystals of different Nb2O5 polymorphs depending on the metal 

oxide amount in the sol-gel matrices [13, 14]. On the other hand, Drake et al. [11] 

synthesized three SiO2∙Nb2O5 composites with Nb2O5 loadings equal to 3.0, 7.5 

and 30 mol% using a different procedure, at room temperature, characterized by a 

lower H2O/TEOS molar ratio (about the stoichiometric one for a full hydrolysis). 

These  authors  showed  by  multinuclear  solid  state  NMR experiments  that  the 

structure of the gels at low Nb2O5 contents do not contain Nb–O–Nb bonds [11]. 

These bonds were found only in the gel with 30 mol% of Nb2O5 showing that the 

structure of this sample is phase separated on the atomic scale containing domains 

of Nb2O5 and SiO2 [11]. On the contrary, in the gels at lower Nb2O5 amounts all 

the niobium is uniformly distributed throughout the siloxane network [11].

In  the  present  work,  Nb2O5∙SiO2 gels  were  synthesized  at  room 

temperature by a new sol-gel route. A wide compositional range was explored, 

with  Nb2O5 content  ranging  from 2.5  to  20  mol%.  With  the  aim to  obtain  a 

tailored catalyst, it was evaluated the influence of the synthesis procedure on the 

structural characteristics of the gel derived samples and on their evolution with the 

temperature. Special attention was addressed to how niobium is dispersed in the 

siloxane matrix. Firstly, the chemical analysis of each sample was performed by 

spettofotometry and a wide thermal and structural characterization was made by 

Thermogravimetry/Differential Thermal Analysis (TG/DTA), X-Ray Diffraction 

(XRD),  Raman  and  FTIR  spectroscopy.  Successively,  textural  and  acidic 

properties of the gels were characterized by N2 adsorption, ammonia Temperature 

Programmed Desorption (NH3 TPD) and FTIR of probe molecules.  Finally, the 
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materials  were  tested  as  catalysts  for  the  epoxidation  of  cyclooctene  with 

hydrogen peroxide.

Li2O∙Nb2O5∙SiO2

In the last years, plenty of efforts have been spent for the fabrication and 

modeling of new memory devices based on polymers [46–48], organic materials 

[49–52],  oxides  [53]  or  nanocomposites  [7,  54–58],  where  either  ferroelectric 

behavior  or  conductance  switching  have  been  exploited.  Among  them, 

nanocomposites  materials  appear  very  attractive  for  data  storage  or  memory 

applications  due  to  their  advantages  in  size  allowing  to  provide  high-density 

memory elements. Up to now, either Au [54], CdSe [55, 56] and ZnO [57, 58] 

nanoparticles embedded in an organic layer or organic composites formed both by 

an  organic  semiconductor  adsorbed on  carbon  nanotubes  [7]  and  by  a  charge 

donor  and  acceptor  system  embedded  into  a  polymer  matrix  [59]  have  been 

obtained. Recently,  multifunctional materials showing both bistability and other 

functionalities have been reported [60].

In this context,  a little work exists on inorganic nanocomposite bistable 

materials  such as lithium niobate,  LiNbO3,  that  displays  both ferroelectric  and 

non-linear optical properties. As a matter of fact, LiNbO3 is a ferroelectric and 

non-linear optical material  widely used in integrated and waveguides optics, as 

well as in piezoelectric applications.

According to the Li2O∙Nb2O5 phase diagram [61], LiNbO3 has a wide solid 

solution region extending from the Nb-rich side (Li/[Nb + Li] about 0.47) to the 

stoichiometric point (Li/[Nb + Li] = 0.50). The congruent composition of LiNbO3 
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exists  between  48.35  and  48.65  mol% Li2O.  Therefore,  when  this  material  is 

obtained  from  high  temperature  processes,  such  as  single-crystal  Czochralski 

growth, non-stoichiometric crystals with Li2O deficiency are generally obtained 

[62,  63].  It  is  well  known that  the  electro-optic  and non-linear  effects  of  the 

stoichiometric LiNbO3 (SLN) are superior to those of a non-stoichiometric [64]. 

In  view  of  possible  applications,  SLN  in  form  of  thin  films  is  fundamental. 

However,  SLN  thin  film  formation  is  a  difficult  task.  In  this respect,  low 

temperature wet chemical techniques, and among them the sol-gel [44, 65–68, 69–

71], are by far the most valuable, because of the incongruent melting of SLN. 

As for the above binary system, the stabilization of Nb5+ ion in aqueous 

environment is fundamental in this case too.

Hirano  et  co-workers  [65,  66]  starting  from an  alcoholic  solution  of  lithium-

niobium ethoxide, LiNb(OC2H5)6, have utilized the high reactivity of Nb5+ ion in 

an aqueous environment to obtain a solution of mixed lithium-niobium hydroxide, 

LiNb(OH)6, from which thin crystalline films of SLN are obtained by dip-coating. 

The need of handling the precursors under a dry inert atmosphere and the precise 

control of the hydrolysis step are the main disadvantages of this procedure (that is 

called ‘‘double alkoxides’’). An innovation in this sol-gel route, the addition of 

hydrogen peroxide solution to the alcoholic solution of LiNb(OC2H5)6, has been 

introduced by Cheng et al. [67] obtaining a slight improvement of the precursors 

handling and a lower temperature processing as well.

The easy achievement of nanocrystalline LiNbO3 is another advantage of 

the wet chemical techniques [69–71]. Nanocrystalline LiNbO3 particles of about 

20 nm dispersed in a silica matrix (20% by weight), with a grains structure very 
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similar to that of the bulk material but with enhanced transport properties, have 

been obtained by the ‘‘double alkoxides’’ route [70]. It was shown that SiO2 play 

a key role to prevent the growth of nanocrystals hindering their coarsening also at 

high  temperature  [70,  71].  By the same route LiNbO3·SiO2 sol-gel films,  with 

LiNbO3/SiO2 molar ratio equal to 1, have been synthesized by Bescher et al. [72]. 

Films annealed 2 h at 473 K appeared transparent and exhibited a ferroelectric-

like behavior even if were amorphous to XRD. This behavior was related to the 

presence  in  the  silica  matrix  of  nanoclusters  with  size  of  3–5  nm  (named 

‘‘ferrons’’)  as  revealed  by  high-resolution  transmission  electron  microscopy 

(HRTEM)  pictures,  that  the  authors  considered  nanocrystallites-like  [72]. 

Recently, LiNbO3·SiO2 glass-ceramics with a LiNbO3 content changing from 4 to 

6 mol% have been synthesized by Graça et al. [73–75] in flakes shape using a sol-

gel route that can be considered a slight modification of that proposed by Cheng et 

al. [67]. It was found that in the samples subjected to electric gradient of 1000 kV/

m the crystallization of  LiNbO3 started to occur at  923 K while in absence of 

electrical  field  it  occurred at  973 K [73]. Moreover,  in the 873–1073 K range 

besides LiNbO3 also crystobalite, Li2Si2O5 and Li3NbO4 were found to crystallize 

[75].

In this work, gels in the Li2O∙Nb2O5∙SiO2 ternary system were prepared, by 

a  suitable  modification  of  the  sol-gel  route  tuned  to  synthesize  gels  in  the 

Nb2O5∙SiO2 binary system. In the current case, it was investigate the possibility to 

using inorganic niobium and lithium low-cost precursors, and only one alkoxide.

A wide compositional range was explored, ranging from 5 to 15 mol% of 

Li2O and Nb2O5. To find the suitable process parameters for the LiNbO3·SiO2 thin 
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film  preparation,  at  the  first  stage,  bulk  gels  were  synthesized  then,  as 

intermediate step to approach the film preparation, a synthesis procedure was set 

to  obtain  transparent  flakes  with  thickness  lower  than  0.5  mm.  Finally,  the 

suitable sol-gel route was set to obtain transparent thin films by dip coating.

The films were annealed at different temperature and widely characterized 

by Atomic Force Microscopy (AFM), Glancing Incidence XRD (GIXRD) and dc 

current-voltage (I-V) measurements.
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CHAPTER 1

The Sol-Gel Technology

   

Fig. 1.1  Sol-gel process.

The sol-gel process is a versatile wet chemical process to make ceramic 

and glass materials. This synthesis technique involves the transition of a system 

from a colloidal liquid, named sol, into a solid gel phase [8, 76, 77]. The sol-gel 

technology  allows  to  prepare  ceramic  or  glass  materials  in  a  wide  variety  of 
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forms: ultra-fine or spherical shaped powders, thin film coatings, ceramic fibres, 

microporous inorganic membranes, monolithics, or extremely porous aerogels. An 

overview of the sol-gel process is illustrated in Figure 1.1.

This  technique  offers  many  advantages  among  them  the  low  process 

temperature,  the ability  to  control  the composition on molecular  scale  and the 

porosity  to  obtain  high  surface  area  materials,  the  homogeneity  of  the  final 

product  up  to  atomic  scale.  Moreover,  it  is  possible  to  synthesize  complex 

composition materials,  to form higher  purity products through the use of high 

purity reagents, and to provide coatings over complex geometries [8, 76, 77]. The 

sol-gel process allows to obtain high quality films up to micron thickness, difficult 

to  obtain using the physical  deposition techniques. Moreover,  it  is  possible  to 

synthesize complex composition materials and to provide coatings over complex 

geometries [8, 76, 77].

The  starting  materials  used  in  the  preparation  of  the  sol  are  usually 

inorganic  metal  salts  or  metal  organic  compounds,  that  by  hydrolysis  and 

polycondensation reactions form the sol [8, 76, 77]. Further processing of the sol 

enables  one  to  make  ceramic  materials  in  different  forms.  Thin  films  can  be 

produced by spin-coating or dip-coating. When the sol is cast into a mould, a wet 

gel  will  form.  By  drying  and  heat-treatment,  the  gel  is  converted  into  dense 

ceramic  or  glass  materials.  If  the  liquid  in  a  wet  gel  is  removed  under  a 

supercritical  condition,  a  highly  porous  and  extremely  low  density  aerogel 

material is obtained. As the viscosity of a sol is adjusted into a suitable viscosity 

range, ceramic fibres can be drawn from the sol. Ultra-fine and uniform ceramic 

powders are formed by precipitation, spray pyrolysis, or emulsion techniques.
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1  Sol-gel chemistry

1.1  The role of the precursors

Commonly, the most preferred starting reagents are alkoxides with general 

formula :

Mx(OR)y

where   M = element with valence y

 R = alkoxide group 

These alkoxides must exhibit useful properties to control the chemical synthesis 

of oxides:

1. easy to purify, a lot of alkoxides can be distilled in order to obtain highly 

pure products;

2. wide variety, it is possible to choice R among a large number of alkylic 

groups in order to obtain the required reactivity;

3. possible control, of the alkoxides hydrolysis and the polycondensation of 

hydrolysed species;

4. mixed  alkoxides,  as  a  further  control  means  of  the  stoichiometry  and 

homogeneity of the final products.

1.2 Gelation: hydrolysis and polycondensation

 

The transition from sol to gel involves two key steps, such as hydrolysis 

and polycondensation reactions. The hydrolysis takes place also by small amounts 
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of water. Because water and alkoxides are immiscible, a mutual solvent such as 

alcohol, is normally used as a homogenizing agent.

In the hydrolysis  reaction,  the alkoxide  groups (OR) are  replaced  stepwise by 

hydroxyl groups (OH):

The hydrolysis rate depends on many factors. Indeed, the reaction can favourably 

be promoted by an increase in the charge density on the metal,  the number of 

metal ions bridged by a hydroxo- or oxo-ligand, and the size of the alkyl groups 

[78,  79].  Conversely,  inhibition  occurs  as  the  number  of  hydroxo-ligand 

coordinating  M increases  or  when  the  pH,  temperature,  or  water  and  solvent 

amount tend to favour the reverse reaction (esterification).

As concerns the metal oxides, due to high oxygen electronegativity compared to 

the metal,  the M-O-M bonds are generally highly polarized and the hydrolysis 

rates are high. On the contrary, the hydrolysis rates of non-metal alkoxides (M = 

Si, P, Ge..) are slower.

This aspect is very important for multi-component systems (mixed oxides) where 

the different hydrolysis rates of the precursors give to different gelation times, by 

means of homo-condensation instead of  hetero-condensation, with formation of 

M-O-M  and  M’-O-M’  instead  of  M-O-M’  linkages.  In  this  case  a  non-

homogeneous gel is formed.

Many solutions can be adopted to solve the above problem:
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1. modification of the hydrolysis  rate of the more reactive precursor using 

reaction inhibitors (for example chelants);

2. use of double alkoxides, with precise stoichiometry;

3. modification of the hydrolysis rate of the slower precursor by a catalyzed 

pre-hydrolysis (acid or basic).

Simultaneously to the hydrolysis, the polycondensation reactions occur:

     

The polycondensation reactions involve hydroxyl  groups and result in M-O-M’ 

linkages  which,  in  turn,  yield  a  three  dimensional  network,  the  gel,  upon  a 

polymeric  weight and cross-linking degree increase.  The gel state is  then best 

described as a viscoelastic material composed of interpenetrating solid and liquid 

phases [80]. Its structure is strongly dependent on the water content in the system 

and on the catalysis  nature.  In  acidic  solution  or for  low water  concentration, 

weakly crosslinked linear chains are produced (see Figure 1.2a), resulting in a soft 

gel which can be readily redispersed in solution.  On the other hand, in based-

catalyzed solutions, branched clusters are preferentially formed (see Figure 1.2b) 

and their tendency to coalesce is responsible of the solution gelation [4, 5].
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(a)                                                                    (b)

Fig. 1.2  Gel structure: a crosslinked linear chains; b branched clusters.

1.3 Transformations of the gel

The  wet  gel,  obtained  by  the  alkoxide  hydrolysis  and  polycondesation 

reactions, itself is not an end product. In fact, it is necessary a drying stage and a 

suitable thermal treatment in order to obtain the material, glass or ceramic, with 

the required characteristics.

In the drying process, the wet gel is heated at about 373 K for a time that 

allows  the  desorption  of  water  and  residual  alcohol  physically  linked  to  the 

polymeric network.

Many difficulties arise during the drying stage, mainly caused by the removal of 

large amounts of solvent trapped in the polymeric network. The transformation of 

the wet gel in dried gel leads to a volume decrease, and it is often associated with 

the formation of cracks. To minimize these effects, gels are dried by slow heating 

rate and for coatings, the thickness usually must not exceed 10 μm.

Usually, the dried gel is annealed in the temperature range 573−773 K to remove 

the residual organic groups. During these heat-treatments, condensation reactions 
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among residual  alkoxides  groups, both on surface and inside the gel,  can take 

place.

Successively, suitable heat-treatments allow to obtain the desired final material.

2  Dip-coating technique

One of most interesting aspects of the sol-gel technique is related to the 

possibility to employ the homogeneous solution obtained before the gelation in 

order to prepare thin films by means of the deposition techniques of spin and 

dip-coating. In this research project the dip coating technique was used.

The dip-coating technique can be described as a film deposition process where 

the substrate to coated is immersed in a liquid and then withdrawn with a well-

defined  speed  under  controlled  temperature  and atmospheric  conditions.  The 

coating thickness is mainly defined by the withdrawal speed, the solid content 

and the viscosity of the liquid. If the withdrawal speed is chosen such that the 

sheer rates keep the system in the Newtonian regime, the coating thickness can 

be calculated by the Landau-Levich equation [81]:

h = 0.94(ηU )2/3/ γLV 1/6/ (ρg)1/2

where

 h = coating thickness

 η = viscosity

 U = substrate speed
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 γLV = liquid-vapour surface tension

 ρ = density

g = gravity

As shown by James and Strawbridge [82] for an acid catalyzed silicate sol, the 

thickness obtained experimentally fit very well the calculated one. Choosing an 

appropriate viscosity the coating thickness can be varied with high precision from 

20 nm up to 50 µm while maintaining high optical quality. The schematics of a 

dip coating process are shown in Figure 1.3.

(a)                                    (b)                                     (c)

Fig. 1.3   Stages of the dip coating process:  a dipping of the substrate into the coating 

solution;  b wet layer formation by withdrawing the substrate;  c gelation of the layer by 

solvent evaporation.

If reactive systems are chosen for coatings,  as it  is the case in sol-gel type of 

coatings using alkoxides or pre-hydrolyzed systems, the control of the atmosphere 

is indispensable. The atmosphere controls the evaporation of the solvent and the 

34



subsequent destabilization of the sols by solvent evaporation, leads to a gelation 

process and the formation of a transparent film due to the small particle size in the 

sols (nm range) [83]. This is schematically shown in Figure 1.4.

Fig.  1.4  Gelation process during dip-coating process,  obtained by evaporation of the 

solvent and subsequent destabilization of the sol.

Generally,  sol  particles  are  stabilized  by surface  charges,  and  the stabilization 

condition follows the Stern’s potential consideration [84]. According to Stern’s 

theory the gelation process can be explained by the approaching of the charged 

particle to distances below the repulsion potential. Then the repulsion is changed 

to an attraction leading to a very fast gelation. This takes place at the gelation 

point as indicated in Figure 1.4. The resulting gel then has to be densified by 

thermal  treatment,  and  the  densification  temperature  is  depending  on  the 

composition. But due to small size of the gel particles, the system shows a large 

excess energy and in most cases a remarkably reduced densification temperature 

compared to bulk-systems is observed.
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Dip-coating  processes  are  used  for  plate  glass  by  Schott,  based  on 

developments of Schröder [85] and Dislich [86] for solar energy control systems 

(Calorex)  and  anti-reflective  coatings  (Amiran)  on  windows.  The  dip  coating 

technique is also applied for optical coatings, e.g. on bulbs, for optical filters or 

dielectric mirrors by various companies, fabricating multilayer systems formed by 

30 or 40 coatings with very high precision.
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CHAPTER 2

The Nb2O5∙SiO2 Binary System:

Experimental

1  Synthesis

Niobium-silicon  mixed-oxide  nanocomposites,  whose  nominal 

composition can be expressed by the formula (Nb2O5)x∙(SiO2)100–x with  x = 2.5 

(2.5Nb), 5 (5Nb), 10 (10Nb) and 20 (20Nb), were prepared by sol-gel according to 

the procedure showed in the flow-chart (see Figure 2.1). Niobium chloride, NbCl5 

(99%,  Gelest),  and  tetraethoxysilane,  Si(OC2H5)4 (TEOS)  (99%,  Gelest),  were 

used  as  starting  materials.  A  solution  of  NbCl5 in  anhydrous  ethanol  (EtOH) 

having a molar ratio NbCl5 : EtOH = 1 : 6 was prepared in a dry box at room 

temperature. This solution was fluxed with dry-air for 20 min to allow the HCl 

removal  and the  formation  of  partially  substituted  Nb(OEt)5–x(Cl)x species.  An 

alcoholic solution of TEOS with molar ratio TEOS : EtOH = 1 : 4 was stirred for 

5  min  and  then  mixed  with  the  first  one.  The  resulting  clear  solution  was 

hydrolyzed,  under  stirring,  at  room  temperature  using  a  HCl  hydro-alcoholic 

solution so to obtain the final molar ratio TEOS : H2O : HCl = 1 : 4 : 0.01. From 

this final solution transparent wet gels were obtained for all compositions at room 
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temperature.  The  gelation  occurs  no  later  than  two  days  for  each  studied 

composition.

Fig. 2.1  Flow-chart of the gels synthesis procedure showing the molar ratios employed.

The gelled systems were kept for 2 days at room temperature before drying, to 

allow the completion  of polycondensation reactions.  Then,  the gels  were fully 

dried in air at 383 K in an electric oven for 3 days. After these treatments, yellow 

transparent and amorphous hardened dry gels were obtained for all compositions. 

Wet and dried gels of the sample 20Nb are displayed in Figure 2.2.

           The catalysts were obtained by finely grounding the hardened dry gels and 

then calcining at 673 K for 3 h. For comparative purpose, SiO2 gels were prepared
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under the same conditions (see Figure 2.3) while Nb2O5 was commercial powder 

(Gelest, 99.9%).

(a)                                                             (b)

Fig. 2.2  Sample (Nb2O5)20·(SiO2)80 (20Nb): a wet gel; b dried gels.

Fig.  2.3  Dried SiO2 gel.
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2  Chemical analysis

The  actual  niobium  and  silicon  contents  in  the  final  product  were 

determined by spectrophotometry.

To execute the chemical analysis the hardened dry gels were finely ground in an 

agate mortar and heated at a heating rate of 5 K min–1 up to 873 K and kept at this 

temperature for 1 h, in an electric oven. The resulting heat-treated powders were 

dissolved in a fluoridric acid solution (HF, 37%, Fluka), according to standard 

procedures [87-90].

The niobium was determined by the hydrogen peroxide method [87]. The 

niobium oxidation in a sulphuric acid solution (H2SO4, 95-97% J.T. Baker)  with 

hydrogen  peroxide  (H2O2,  30%  Fluka) gives  to  the  formation  of  the  yellow 

perniobic acid with a maximum absorbance at λ=342 nm.

Since both H2SO4 and H2O2 can influence the maximum absorbance value, many 

experimental  tests  were  carried  out  to  find  the  conditions  that  maximize  the 

absorbance  signal  [87-89].  It  was  found that  the  maximum  absorbance  signal 

occurs for the solutions of H2SO4 70% weight and H2O2 0.02% volume.

Standard solutions, at fixed niobium contents (from 5 to 100 ppm), were prepared 

starting  from  a  niobium  atomic  absorption  standard  solution  (Nb  1000μg/ml, 

Aldrich). A calibration line absorbance versus niobium concentration was built 

evaluating  the  absorbance  at  λ=342  nm  of  the  above  standard  solutions (see 

Figure 2.4) that allows to determine the actual niobium contents.

The error in the niobium determination was 3%.
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Fig. 2.4  Calibration line absorbance versus niobium concentration.

The silicon was determined as amount of soluble silica.

The silicic ion reacts with the ammonium molybdate giving to the formation of a 

yellow complex,  the intensity is  proportional  to the silica  concentration in the 

analyzed sample [90].

For the silica determination, an aqueous hydrochloric acid solution (HCl : H2O = 

1  :  1,  volume  ratio),  ammonium  molybdate  and  oxalic  acid  were  used.  The 

ammonium molybdate at pH ~ 1.2 reacts both with the silica and with phosphate 

ions, if there are. The possible interferences due to the presence of phosphate ions 

are removed by adding the oxalic acid that decomposes the molybdophosphoric 

acid but not the molybdosilicic one.

Standard solutions, at fixed silicon contents (from 3 to 20 ppm), were prepared 

starting from a silicon atomic absorption standard solution (Si 1.000 g/L, Fluka). 

A calibration line absorbance versus silica concentration was built evaluating the 
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absorbance at  λ=410 nm of the above standard solutions (see Figure 2.5) that 

allows to determine the actual silica contents.

The error in the silicon determination was 4%.

Fig. 2.5  Calibration line absorbance versus soluble silica concentration.

3  Thermal analysis

The nature and temperatures of the various reactions occurring during the 

heating were evaluated by DTA. Simultaneously, it was registered the TG curve 

to evaluate the weight loss of the gel by heating.

The DTA was carried out by using a high temperature DTA unit (Netzsch, DSC 

404 model) with Al2O3 as reference material.  The DTA curves, recorded in air 

from room temperature up to 1273 K at a heating rate of 10 K min–1, were carried 

out on about 30 mg of dried gel specimens. The TG analysis was performed on a 

thermobalance (Netzsch, TG 209 model) in 100 mL min–1 N2 flow with 10 K min–

1 heating rate.
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4  Structural analysis

4.1  X-Ray Diffraction

The  amorphous  nature  of  the  dried  gels  as  well  as  the  nature  of  the 

crystallizing phases were ascertained by XRD. The spectra of dried gels, finely 

ground and heated at a heating rate of 5 K min–1  up to 673 K and kept at this 

temperature for 3 h and 873, 1073, 1273 and 1473 and kept at these temperatures 

for 1 h, were registered. The spectra were collected by a Philips diffractometer 

model PW1710 (Cu Kα, λ=1.5418 Å) with a scan rate of 1° min–1.

4.2  Raman spectroscopy

The Raman spectra of dried gels, finely ground and heated at a heating rate 

of 5 K min–1 up to 673 K and kept at this temperature for 3 h and 873, 1073, 1273 

and 1473 K and kept at these temperatures for 1 h, were registered. A confocal 

Raman microscope (Jasco, NRS-3100) was used to obtain Raman spectra for the 

powdered samples. The 488 nm line of an aircooled Ar+ laser (Melles Griot, 35 

LAP 431–220), 125 mW, was injected into an integrated Olympus microscope 

and focused to a spot size of approximately 2 µm by a 100× or 20× objective. A 

holographic  notch  filter  was  used  to  reject  the  excitation  laser  line.  Raman 

scattering was collected by a peltier-cooled 1024× 128 pixel CCD photon detector 

(Andor DU401BVI). For most systems, it takes 100 s to collect a complete data 

set.

4.3  Fourier Transform Infrared spectroscopy
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FTIR  spectroscopy  was  used  to  have  a  detailed  analysis  of  material 

structure and to point out the possible modifications that it can to undergo with the 

heating. The dried gels were heated at a heating rate of 5 K min–1 up to 673 K and 

kept at this temperature for 3 h and 873, 1073, 1273 and 1473 K and kept at these 

temperatures for 1 h. The FTIR spectra of dried and heat-treated gel samples were 

carried out at room temperature by a Nicolet system, Nexus model, equipped with 

a  DTGS KBr  (deuterated  triglycine  sulfate  with  potassium bromide  windows) 

detector. The absorption spectra were recorded in the 4000–400 cm–1 range with a 

spectral  resolution  of  2  cm–1 on samples  diluted  in  KBr.  In  fact,  mixture  2% 

weight of each sample in KBr was prepared and, 200 mg of this mixture were 

successively pressed in form of tablets with diameter of 13 mm. The spectrum of 

each  sample  represents  an  average  of  64  scans,  which  was  corrected  for  the 

spectrum of the KBr blank. To allow the comparison of the absorbance values, all 

FTIR spectra  were normalized with respect  to the maximum absorbance value 

recorded for each spectrum.

5  Textural analysis

5.1  N2 adsorption

The surface areas were determined by N2 adsorption-desorption isotherms 

at -77 K using a Carlo Erba-Fisher apparatus model 1990, displayed in Figure 2.6. 

The sample was previously treated in the sample cell at 443 K under vacuum up 

to  complete  degassing.  Then,  constant  amounts  of  N2 (8  cm3 at  STP)  were 

automatically  introduced  up  to  saturation.  The  N2  desorption  was  carried  out 

stepwise  by constant  volume  drawings (4 cm3 at  287 K and  at each equilibrium
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Fig. 2.6  Carlo Erba-Fisher apparatus model for surface area determination.

pressure). From the measured pressure values, the amounts of N2 retained by the 

sample at each adsorption or desorption step were calculated.

The N2 adsorption-desorption isotherms were elaborated by the BET method for 

the calculation of the surface areas [91]. The α-plot method was also employed for 

the calculation of the surface areas and micropore  volumes [91]. Pore volumes 

were determined from the amounts  of adsorbed N2 at  P/P° = 0.98 (desorption 

curve), assuming the presence of liquid N2 (density = 0.807 g cm-3) in the pores 

under these conditions. The pore size distribution was determined by application 

of the BJH method [91].

5.2  Ammonia  Temperature  Programmed  Desorption  and  Fourier  Transform 

Infrared spectroscopy with probe molecules

NH3 TPD  and  FTIR  spectra  with  probe  molecules  were  used  to 

characterize the surface acidity.

NH3 TPD measurements were carried out in a flow apparatus equipped
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with pure NH3 and He lines regulated by electronic devices and a TCD detector 

(see Figure 2.7).

O: horizontal cell; V: vertical cell; S: saturator; T: trap; F1, F2: blood pressure monitors.

Fig. 2.7   TPD flow apparatus model.

The sample, previously heated at 673 K in He flow for 1 h, was saturated with 

NH3 by flowing a 1% NH3/He mixture at room temperature. After the sample was 

purged in a He flow to eliminate loosely bonded NH3, it was heated at a constant 

rate of 10 K min-1 up to 873 K in He flow (30 cm3 min-1). The NH3 concentration 

evolved from the sample during heating was continuously measured by the TCD. 

A  PC  was  employed  for  acquiring  and  elaborating  the  TCD  signal.  Water 
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eventually  released  by  the  sample  was  removed  by  a  KOH  trap  to  avoid 

interference with the NH3 measurement.

The FTIR spectra  were recorded with a  Nicolet  Magna 750 instrument 

with a resolution of 4 cm-1 using pressed disks of pure powders (about 20 mg × 1 

cm2), activated by outgassing under high vacuum (10-4 Torr) at 773 K for 1 h in 

the IR cell. A conventional gas manipulation/outgassing ramp connected to the IR 

cell was used. The adsorption procedure involves a short contact (2 min) of the 

activated sample disk with acetonitrile vapours at room temperature and following 

outgassing in steps of 10 min at room temperature and increasing temperatures. 

Acetonitrile was purchased from Aldrich.

6  Catalytic tests

The epoxidation catalytic tests were carried out in a batch reactor: 600 mg 

of the catalyst, 30 cm3 of methanol as solvent and 40 mmol of cyclooctene were 

loaded and the mixture was heated up to 343 K under vigorous stirring. At that 

temperature, 40 mmol of hydrogen peroxide (35 wt.% aqueous solution, Fluka) 

were added in one pot. Samples were withdrawn at different reaction times and 

cooled at room temperature by quenching them in cold water. Then, the organic 

phase of the reaction mixtures was rapidly analysed by gas chromatography (HP 

5890) using a capillary column (Chrompack CP Wax; 100% polyethyleneglycol; 

30 m × 0.25 mm i.d.; film thickness: 0.25 μm) and a FID detector. Residual H2O2 

was determined by iodometric titration.
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CHAPTER 3

The Li2O∙Nb2O5∙SiO2 Ternary System:

Experimental

1  Synthesis

Lithium-niobium-silicon  mixed-oxides  nanocomposites,  whose  nominal 

molar composition can be expressed by the formula (Li2O)x∙(Nb2O5)x∙(SiO2)100-2x 

with x = 5 (5LN), 10 (10LN), 15 (15LN), 30 (30LN) were obtained by a suitable 

modification of the sol-gel route previously described to synthesize gels in the 

Nb2O5∙SiO2 binary system. 

Lithium  nitrate,  LiNO3 (99%,  Gelest),  niobium  chloride,  NbCl5 (99%, 

Gelest)  and tetraethoxysilane,  Si(OC2H5)4 (TEOS) (99%, Gelest),  were used as 

starting materials.  As the ultimate aim was to obtain LiNbO3 nanocrystals in the 

silica  matrix,  the  Li/Nb  ratio  was  kept  equal  to  one  in  all  gel  compositions 

according to the stoichiometric Li/Nb ratio in LiNbO3.

The materials were synthesized in form of bulk, flakes and thin films: their molar 

compositions are summarized in Table 3.1.
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Table 3.1  Gels composition mol%.

Sample Li2O Nb2O5 SiO2

Bulk B-5LN 5 5 90
Bulk B-10LN 10 10 80
Flakes F-10LN 10 10 80
Flakes F-15LN 15 15 70
Thin Film TF-10LN 10 10 80

1.1  Bulk and flakes

Bulk  gels  with  composition  5Li2O∙5Nb2O5∙90SiO2 (B-5LN)  and 

10Li2O∙10Nb2O5∙80SiO2 (B-10LN)  were  prepared  according  to  the  procedure 

showed in the flow-chart (see Figure 3.1).

Fig.  3.1   Flow-chart  of  the  bulk  gels  synthesis  procedure  showing  the  molar  ratios 

employed.

NbCl
5
 : EtOH

1 : 9
stirring in dry box
and fluxed by dry

air for 20 min at r.t.

Transparent wet gel

Dried bulk gel

383 K

LiNO
3
 : EtOH

1 : 9
stirring in air

for 5 min at r.t

TEOS : EtOH : H
2
O : HCl

            1 :     2    :    4   : 0.01
stirring in air for 90 min at r.t.
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A solution of  NbCl5 in anhydrous ethanol, EtOH, having a molar ratio NbCl5  : 

EtOH = 1 : 9, was prepared in a dry box at room temperature. This solution was 

fluxed by dry-air for 20 min to allow the HCl removal. Simultaneously, a solution 

of LiNO3 in  EtOH (LiNO3  :  EtOH = 1 :  9)  was  prepared  and after  complete 

dissolution of LiNO3, was mixed to the first one. The resulting solution was mixed 

with a solution of TEOS, EtOH, H2O and HCl (TEOS: EtOH : H2O : HCl = 1 : 2 : 

4 : 0.01) previously stirred for 1 h at room temperature using hydrochloric acid as 

catalyst. From this final solution transparent and homogeneous gels were obtained 

after a few hours. The gels were kept for 2 days at room temperature and than 

dried  in  air  at  383  K  in  an  electric  oven  for  3  days,  yielding  yellow  and 

transparent bulk samples for each composition. These samples were finely ground 

before the subsequent heat-treatments in air.

As intermediate step, to approach the films preparation a synthesis procedure was 

set  to obtain transparent flakes with thickness less then 0.5 mm. At this  stage 

flakes  with  composition  10Li2O∙10Nb2O5∙80SiO2 (F-10LN)  and 

15Li2O∙15Nb2O5∙70SiO2 (F-15LN)  were  prepared  according  to  the  procedure 

showed in the flow-chart (see Figure 3.2). The synthesis route was the same as for 

the bulk gel except for the EtOH amount, that was doubled in each step, to slow 

down the gelation process. The final solutions were stirred at room temperature 

for 2 days and then poured into a Petri dish. After 2 days, transparent flakes were 

obtained that were left at room temperature for 2 days more and then dried at 383 

K for 1 day in an electric oven. 
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Fig. 3.2  Flow-chart of the flakes synthesis procedure showing the molar ratios employed.

1.2  Thin Films

Thin  films  with  composition  10Li20∙10Nb2O5∙80SiO2 (TF-10LN)  were 

prepared according to the procedure showed in the flow-chart (see Figure 3.3).

The preparation procedure of films started from more diluted precursor solutions 

compared with the flakes one.

A solution of NbCl5 in anhydrous ethanol having a molar ratio NbCl5 : EtOH = 1 : 

20 was prepared in a dry box at room temperature. This solution was fluxed by 

dry-air for 20 min to allow the HCl removal. Simultaneously, a solution of LiNO3 

in anhydrous ethanol (EtOH) having a molar ratio LiNO3  : EtOH = 1 : 20 was 

prepared and after complete dissolution of LiNO3, was mixed to the first one. The 

resulting homogeneous solution was mixed with a solution of anhydrous EtOH, 

NbCl
5
 : EtOH

1 : 18
stirring in dry box
and fluxed by dry

air for 20  min at r.t.

Transparent flakes

Dried flakes

383 K

LiNO
3
 : EtOH

         1 : 18
stirring in air

for 5 min at r.t.

TEOS : EtOH : H
2
O : HCl

        1 :     4    :    4    : 0.01
stirring in air for 90 min at r.t.

deposition in a Petri dish
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TEOS  and H2O  previously stirred for 1 h at room temperature using hydrochloric 

acid as catalyst and whose molar ratio was TEOS : EtOH : H2O : HCl = 1 : 4 : 4 : 

0.01.

 

Fig. 3.3  Flow-chart of the films synthesis procedure showing the molar ratios employed.

Stock final solution

dilution with EtOH 

     homogeneous and transparent solution

LiNO
3
 : EtOH

  1 : 20
stirring in air

for 5 min at r. t.

NbCl
5
 : EtOH

1 : 20
stirring in dry box and 
fluxed by dry air for 

20 min at r. t.TEOS : EtOH : H
2
O : HCl

        1 :    4     :    4   : 0.01
stirring in air for 90 min at r. t.

Dipping

transparent and crack-free films

dried films

383 K (drying step)

Transparent and crack-free 10LN nanocomposite films

 heat-treatments:

673 K 3h (stabilization step)
873 K 2h
973 K 2h
1073 K 2h
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The resulting clear solution was further diluted by adding EtOH to have a 50% 

increase of the volume, and stirred for 1 day at room temperature. Such amount of 

ethanol  is  required  to  form  the  stock  solution  for  films  preparation  whose 

viscosity was roughly monitored by viscosimetric test blade.

From  this  final  solution  thin  films  were  obtained  by  dip-coating  at  room 

temperature using the dip-coater KSV model illustrated in Figure 3.4.

Fig. 3.4  Dip-coater for films deposition.

The deposition was carried out on two types of substrates: 

- 10 x 10 mm2 Si-SiO2 

- 10 x 10 mm2 Al2O3 R-plane (CrysTec GmbH)

To find  the  optimal  deposition  parameters,  different  withdrawal  speeds  of  the 

substrates and deposition times were tested. As regard the films deposited on Si-

SiO2 substrates the withdrawal speed was fixed at 25 cm min-1 and the deposition 

time at 20 s. Instead, for the films deposited on Al2O3 substrates the withdrawal 
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speed was fixed at 85 cm min-1 and the deposition time at 60 s. Transparent and 

crack-free films  were obtained  that  were transferred  into  an electric  oven and 

heated in air, first at 383 K for 1 h (drying step), and then at 673 K for 3 h to 

allow  the  evacuation  of  solvent  and  residual  organic  molecules  (stabilization 

step). The stabilized films deposited on Si-SiO2 substrates were annealed in air for 

2 h at 1073 K.  Instead, the stabilized films deposited on  Al2O3 substrates  were 

annealed in air for 2 hours at 873, 973 and 1073 K. Transparent, homogeneous 

and crack-free films were obtained both on the Si-SiO2 and Al2O3 substrates after 

these heat-treatments.

2  Bulk and flakes characterization

2.1  Thermal analysis

The weight loss of the bulk samples as well as the nature and temperatures 

of the various reactions occurring during the heating were evaluated by a Netzsch 

simultaneous thermoanalyser STA 409 PC with Al2O3 as reference material and 

equipped with Al2O3 sample holders. The TG/DTA curves, recorded in air from 

room temperature up to 1273 K at heating rate of 10 K min-1, were carried out on 

50 mg of the dried bulk gels.

Regard to the flakes the thermal analysis was carried out by DTA using a 

high temperature DTA unit (Netzsch, DSC 404 model) with Al2O3 as reference 

material. The DTA curves, recorded in air from room temperature up to 1273 K at 

a heating rate of 10 K min-1, were carried out on about 30 mg of dried flake gels.

2.2  X-Ray Diffraction
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The amorphous nature of the dried gels as well as the nature of the crystallizing 

phases formed at higher temperature, were ascertained by XRD. Samples, finely 

ground  and  heated  at  different  temperature  in  the  range  823–1073  K  were 

measured. The spectra were collected by a Philips diffractometer model PW1710 

(Cu Kα, λ=1.5418 Å), at a scan rate of 1° min–1.

3  Thin films characterization

3.1  Thickness and roughness

The thickness and roughness of the heat-treated films were measured by a 

TENCOR profilometer;  the obtained results represent an average value of three 

measurements. The roughness of the films deposited on Al2O3 substrates was also 

measured by AFM (JEOL JSPM 4210).

3.2  Atomic Force Microscopy

The  morphological  features  of  the  heat-treated  films  were  studied  by 

AFM. AFM images were acquired in non contact mode by means of the JEOL 

JSPM 4210 system and elaborated by means of the WSxM software [92].

3.3  X-Ray Diffraction

The  amorphous  nature  of  the  thin  films  as  well  as  the  nature  of  the 

crystallizing phases were ascertained by XRD. Measurements were performed on 

the heat-treated thin films deposited on Si-SiO2 substrates by a Rigaku D-Max B 

diffractometer using the Bragg-Brentano configuration (Cu Kα, λ=1.5418 Å), at a 

scan rate of 1° min–1.
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To obtain higher sensitivity to the film structure, for thin films deposited on Al2O3 

substrates  measurements  were  also  performed by  a  Bruker  D8  Advance 

diffractometer  (Cu  Kα)  using  the  glancing  incidence  configuration.  GIXRD 

measurements were collected at an incidence angle of 1.0°.

3.4  dc current-voltage measurements 

The electrical properties of thin films were studied by a standard two probe 

technique. On each sample, six couples of electrical contacts have been obtained 

by sputtering  in  plane  silver  contacts  on the surface  of  the heat-treated  films, 

obtaining  conducting channels  with length  L=100 μm and width w=5 mm,  as 

illustrated in Figure 3.5.

Fig. 3.5  Electrical silver contacts.

The advantage of planar arrangement of electrodes is to avoid the effects of the 

diffusion of the material of the electrodes into the sample. Indeed, in the case of 

cross  contacts  such  a  diffusion  can  create  a  percolative  path  of  the  current 

between  the  top  and  bottom  contacts  with  different  electrical  properties  with 

respect to the intrinsic behaviour of the composite under study.
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The homogeneity  of electrical  properties  has been verified by testing different 

pairs of electrodes.

The  dc  I-V  characteristics  were  measured  by  a  picoAmmeter  (Keithley  487) 

illustrated in Figure 3.6, with the bottom electrode connected to the ground, and 

recorded by scanning the applied voltage in a loop (from 0 to +Vmax, from +Vmax to 

–Vmax, and from –Vmax to 0, in sequence).

                        

Fig. 3.6  Probe station.

An applied voltage of 500 Volts correspond to an electrical field of 5 x 104 Vcm-1 

which  is  similar  to  electrical  field  already  reported  in  sandwiched  structures. 

Consistently, instead of the measured current I, the current density J is plotted.

It should be noted that for each stage of the heat-treatments both the AFM 

and the GIXRD characterization  have been  performed on the films previously 

subjected to the electrical measurements.
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CHAPTER 4

The Nb2O5∙SiO2 Binary System:

Results and Discussion

New  nanocomposite  catalysts  based  on  niobium-silicon  mixed-oxides 

were obtained at room temperature by a new sol-gel route. A wide compositional 

range was explored in order to prepare a tailored catalyst  with a high niobium 

dispersion  in  the  silica  matrix.  To  relate  the  catalytic  performances  with  the 

structural  properties  of  the  gel  derived  samples  their  evolution  with  the 

temperature was  evaluated.  Successively,  the  textural  and  the  surface  acidic 

properties were  determined  and  the  catalytic  activity  in  the  cyclooctene 

epoxidation with H2O2 was tested, as well.

1  Synthesis

The synthesis  procedure  adopted  in  this  work  was  addressed  to  obtain 

chemical  gels  with a high dispersion of niobium into the siloxane network.  In 

view of this, some innovations were introduced in the procedure with respect to 

the ones reported in literature [11–15, 19], the foremost of which are the lack of 

the TEOS prehydrolysis and the sequence of the precursors mixing. Usually, the 

TEOS prehydrolysis is required to compensate its lower reactivity toward water 
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with respect to the one of the metallic alkoxide [93]. In this case NbCl5 was used 

as niobium precursor. This solid is formed by Nb2Cl10 dimeric molecules in which 

the niobium is surrounded by a distorted octahedron of chlorine atoms, two of 

which are bridging [94]. Its moisture-sensitivity was controlled by dissolving it in 

absolute ethanol according to following equation:

Nb2Cl10(solid)+2xC2H5OH(solvent) = 2NbCl5-x(OC2H5)x(solution)+ 2xHCl(gas)           (1)

The degree of conversion of the above reaction  can be controlled by the HCl 

stripping  with  dry  air  bubbling.  Consequently,  partially,  NbCl5–x(OC2H5)x,  or 

completely, Nb(OC2H5)5, substituted species are formed. A stripping time of 20 

min was used both to avoid the complete substitution and to preserve to some 

extent unreacted molecules of Nb2Cl10 in solution.  These molecules play a key 

role  in  the  stabilization  of  the  niobium  ions  in  aqueous  solution  toward  the 

precipitation  of  Nb2O5∙nH2O.  Actually,  NbOCl5
2– and  NbCl6

– complexes  were 

found in  aqueous saturated  HCl solution  of  niobium pentachloride  [95],  while 

Nb(OH)2Cl4ˉ and Nb(OH)2Cl3 were detected in more diluted solutions (11–13.4 M 

HCl and ~3 M HCl, respectively) [96]. Therefore, when this solution was firstly 

combined with TEOS alcoholic and then with HCl hydroalcoholic solutions, the 

precipitation of Nb2O5∙nH2O did not occur as consequence of the formation of 

niobium complexes as well as of a suitable water content. Into the final solution 

there are several species that can be hydrolyzed: oxo-hydroxo-chloro complexes, 

NbCl5–x(OC2H5)x, Nb(OC2H5)5, and TEOS. Among them, TEOS should result the 

less reactive species, as the silicon exhibits the lower positive partial charge [93]. 
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Consequently,  the hydrolysis of niobium chloro-ethoxide species starts forming 

niobium hydroxo and oxo soluble oligomers. Then, the TEOS hydrolysis begins 

to occur at a valuable rate producing both self- and cross-condensation hindering 

the further self-condensation of niobium oxo-oligomers. This is enabled by the 

double role played both by the alkoxide-niobium species [12] and by the water. In 

fact, the former species act both as cross-linking reagents and as catalyst for the 

condensation reactions of siloxane oligomers, while the water molecules act both 

as  reagent  and  as  product  in  the  hydrolysis  and  condensation  equilibria, 

respectively.  Therefore, in this case, the lack of TEOS prehydrolysis makes the 

formation  of  homogeneous  sols  easier  as  the  presence  of  siloxane  oligomers 

originated during the prehydrolysis could hinder the redistribution of hydrolyzed 

species favouring self-condensation reactions. The above hypothesis regarding the 

gelation  mechanism  is  supported  by  a  recent  17O  NMR  study  [97]  on  the 

hydrolysis  and  condensation  kinetics  occurring  in  hydroalcoholic  solutions  of 

diethoxydimethylsilane  and  niobium  ethoxide.  It  was  found  that  resonances 

related both to niobium oxo-oligomers  and to niobium-silicon cross-condensed 

species begin to appear from the start of the hydrolysis. Increasing the hydrolysis 

time, the relative intensity of these resonances changes increasing the ones related 

to the Nb–O–Nb bonds to the detriment of Nb–O–Si species. Simultaneously, the 

intensity of the resonance related to siloxane rings diminishes in favour of the 

resonance related to siloxane chain, indicating that increasing the hydrolysis time 

a redistribution of the above species in the sol occurs, favouring the formation 

both of niobium oxo-oligomers and of the siloxane chains [97]. It is noteworthy 

that  these  authors  [12,  97]  have  obtained  gelation  by means  of  slow solvents 
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evaporation  under  intermittent  vacuuming  at  308  K  while  Francisco  and 

Gushikem [13] at 333 K as well. On the other, Somma et al. [21] have prepared 

niobium-based aerogels in different type of matrices (SiO2, Al2O3, ZrO2) under 

acidic  and  basic  conditions.  Although  the  synthesis  procedure  used  by  these 

authors exhibits some similarities with the one adopted in this work (the lack of 

the TEOS prehydrolysis and the same sequence of the precursors mixing) in the 

Si-containing samples prepared under acidic conditions no gelation was observed 

[21]. On the contrary,  in this  work yellow and transparent  chemical  gels  have 

been obtained at room temperature for each studied composition (as previously 

displayed in  Figure 2.2b).

2  Chemical analysis

The chemical  analysis  for  the determination  of  the  actual  niobium and 

silicon contents was performed on the samples annealed at 873 K for 1 h.

A characteristic  absorbance  spectrum collected  in  the  range  250–500 nm was 

reported  in  Figure  4.1:  the  niobium maximum absorbance  signal  is  located  at 

λ=342 nm.

Fig. 4.1  Niobium absorbance spectrum.
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The results of the chemical analysis were reported in Table 4.1.

      Table 4.1  Chemical analysis of niobium and silicon.

Nominal composition 
(mol %)

Actual composition
(mol %)

Sample Nb2O5 SiO2 Nb2O5 SiO2

2.5Nb 2.5 97.5 2.45 ± 0,1 97.5 ± 0,5
5Nb 5 95 5.08 ± 0,15 94.9 ± 0,4
10Nb 10 90 8.70 ± 0,3 91.3 ± 0,3
20Nb 20 80 20.40 ± 0,5 79.5 ± 0,5

For each sample the actual composition was very close to the nominal one. 

Thus, the adopted synthesis procedure has allowed to obtain gel materials without 

niobium loss.

3  Thermal analysis

The DTA curves of the dried gels recorded in air at 10 K min–1 are shown 

in Figure 4.2. To facilitate the interpretation of the DTA peaks the corresponding 

TGA curves, recorded in N2 at the same heating rate, are also reported in the same 

Figure.  Although  the  different  atmospheres  should  induce  small  shifts  in  the 

temperature at which the same thermal event occurs, the comparison on the whole 

temperature range explored keeps its validity. The same total weight loss (about 

13 wt %) is given by the TGA curves for all dried gels even if it  occurs in a 

different way depending on the niobium content. For the 2.5Nb, 5Nb and 10Nb the 

majority of weight loss takes place in two different steps from room temperature 

to  about 470 K and from 500 K to about  640 K. In  these ranges poorly separated 
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Fig. 4.2  DTA (solid line)-TG (dotted line) curves of the dried gels recorded at 10 K min-

1.

thermal effects are seen in the DTA curves: an endothermic peak followed by two 

exothermic ones. For each sample, the first exothermic peak is stronger than the 

second one and occurs at different temperatures, 585 K (2.5Nb), 570 K (5Nb), and 

595 K (10Nb), while the second exothermic peak is broad and takes place in the 

same temperature range, at about 770 K (see Figure 4.2). The endothermic peaks 

can  be  related  to  the  evaporation,  from  open  pores,  of  water  and  alcohol 

physically trapped in the gels, while the exothermic ones are likely caused by the 

burning of the pyrolysis products of residual organic groups in the gels [16]. This 

phenomenon involves molecules that are more or less trapped in the pores of the 

siloxane matrix and, consequently, it can occur at different stages. In contrast to 

the other gels, the majority of the weight loss for the 20Nb sample seems to occur 
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in a single step from room temperature to about 600 K and, in the corresponding 

DTA curve, a single broad endothermic peak at 383 K is seen. Therefore, for this 

sample the evaporation of the solvents is followed by evacuation of the pyrolysis 

products. At temperatures higher than 873 K, no additional peaks are observed in 

any DTA curves and, concurrently, no weight loss is given by the TGA curves 

except for the samples at low niobium content for which a very slight drift of the 

weight loss is seen, indicating that the elimination of organic residues as well as 

of any volatile species is almost completed at 873 K.

4  Structural characterization

The structural evolution of dried gels upon heat-treatments was studied by powder 

XRD as well as Raman and FTIR spectroscopy within a range of temperatures 

being used, starting from the dried gel and including gels heated to 873, 1273, and 

1473  K.  These  temperatures  were  chosen  on  the  basis  of  the  above  thermal 

analysis data. The lower temperature stands for the minimum value at which it is 

possible to obtain stable gel-derived samples  for all studied compositions.  The 

higher temperature values were selected to force the crystallization of the samples. 

Each  sample  was  prepared  by  slow  heating  at  2  K  min–1 to  the  required 

temperature and then held at this temperature for 1 h followed by quenching. The 

heat-treated samples hereafter will be referred to as their already specified labels 

followed by the temperature  of the heat-treatment  stage (SiO2-383,  2.5Nb-383, 

etc).

4.1  X-Ray Diffraction
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The XRD patterns of the dried gels and of the heat-treated samples are 

shown in Figure 4.3.

 

Fig. 4.3  XRD patterns of the heat-treated gel samples. T and H stand for T- Nb2O5 and 

H-Nb2O5 phases, respectively.

It should be emphasized that regardless of the niobium content all samples keep 

their amorphous nature up to 873 K. In fact, the XRD patterns of these samples 

exhibit  a diffuse maximum at  about  2θ = 24° typical  of the  amorphous silica 

(Figure 4.3) [98, 99]. On the contrary, in the subsequent heating step (1273 K) 

crystallization phenomena are seen, the extent of which depends on the niobium 

amount  (Figure  4.3).  For  the  2.5Nb-1273 and  5Nb-1273 coherent  scattering 

regions arising from the amorphous background start to appear giving a single 

broad maximum centred at 2θ = 22.4° that corresponds to the highest peak of the 
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T-Nb2O5 phase  (JCPDS  card  27–1312).  The  shape  of  these  diffraction  peaks 

points  out  the  precipitation  in  the  amorphous  matrix  of  extremely  small 

crystallites [100]. The crystallites size was roughly estimated using the Scherrer 

formula.  For  a  crystal  with  dimension  “Dhkℓ”  perpendicular  to  the  diffractive 

planes, the Scherrer equation is satisfied for the angular width of the diffraction 

peak:

where

(2) = Full Width at Half Maximum (FWHM) in radiant

 = wavelength of the X-ray (Cu K =1.542Å)

 = angular position of the diffraction peak.

 For both samples the mean size resulted less than 5 nm. At this stage, in the 

10Nb-1273 XRD pattern a few broad and low intensity peaks are seen, which are 

assigned to the T-Nb2O5 phase while peaks of both T- and H-Nb2O5 (JCPDS card 

32–711) phases are observed for the  20Nb-1273.  At the highest  heat-treatment 

temperature (1473 K) the dependence of the crystallization ability on the niobium 

pentoxide content results enhanced. Only well shaped peaks of the H-Nb2O5 phase 

are seen in the  20Nb-1473 XRD pattern whereas broad and low intensity peaks 

are shown in the  2.5Nb-1473 XRD pattern that are related to the  sole T-Nb2O5 

phase. On the contrary, both T- and H-Nb2O5 phases are detected for the 10Nb-

1473 and 5Nb-1473. In the former H-Nb2O5 is the main phase, in the latter just the 

opposite occurs (Figure 4.3).
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The  above  results  strongly  support  the  hypothesis  that  the  niobium 

pentoxide is dispersed in the siloxane framework on the atomic scale. Actually, it 

is known that the amorphous niobium pentoxide exhibits a complex crystallization 

behaviour upon heating both in the pure state [101] and deposited on a support 

[13, 102]. In the latter case the crystallization behaviour is strongly affected by the 

support physico-chemical properties [13, 102]. Particularly, it was shown that the 

reduced crystallization ability of the niobium pentoxide is due to the nature of the 

interaction with the support  as well as to its strength [13, 102]. Francisco and 

Gushkem [13] obtained similar XRD results for gel-derived samples synthesized 

by a different procedure even if remarkable differences are noted. Thus, the heat-

treatment for 1 h at 1473 K produces only the growth of T-Nb2O5 nanocrystals in 

the 2.5Nb-1473, contrary to what shown by Francisco and Gushkem [13] for the 

corresponding heat-treated  sample  for  which  both T-  and H-Nb2O5 phases  are 

seen. Moreover, T-Nb2O5 is the main crystallising phase in the 5Nb-1473 while H-

Nb2O5 was found by Francisco and Gushkem [13]. The  2.5Nb-1273 and  5Nb-

1273 exhibit a lower crystallinity with respect to that previously shown for the 

corresponding heat-treated samples [13]. Therefore it is possible to infer that the 

sol-gel procedure tuned in this work allows to obtain a higher dispersion of the 

niobium pentoxide into the siloxane framework with respect to the one previously 

reported [13]. This is also supported by the crystallization behavior of the samples 

at higher niobium content. Actually,  the growth of the H-Nb2O5 phase starts to 

occur only after the heat-treatment at 1473 K for the 10Nb, while in the 20Nb it 

occurs at  lower temperature.  The monoclinic  H-phase has a complex structure 

originating from the existence of superstructures comprising 3 × 5 and 3 × 4 ReO3 
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type blocks [101], whereas the orthorhombic T-phase is formed by corner- and 

edge-sharing distorted octahedra and pentagonal bipyramids [101]. Consequently, 

the formation of a nucleation site of the monoclinic polymorph requires in the 

local gel network a higher concentration of ordered NbO6 octahedra than what 

required by the orthorhombic one. In this case, such a condition is satisfied either 

at  a  higher  temperature  or  at  higher  niobium  concentration,  indicating  that 

niobium atoms must diffuse further to reach the required local order: this could be 

due to a more homogeneous dispersion of the niobium pentoxide in the pores of 

the siloxane network. This view is supported by Raman spectra later on discussed.

4.2  Raman spectroscopy

Raman spectra in the 200–1200 cm–1 energy region of the studied samples 

at different heat-treatment stages are shown in Figure 4.4. For the stages at 383 

and 873 K the spectrum of pure SiO2 is reported as well.  Spectra are reported 

starting from the richest  in Nb (curve a) and finishing with the poorest  in Nb 

samples (curve d) or with pure silica (curve e).

For the stage at 383 K, the spectrum of SiO2 (curve e) shows bands at 420, 490, 

610, 807, 970 and 1095 cm–1. All these bands except the latter are characteristic of 

the  siloxane  network  [103–109]. The  broad  band  at  420 cm–1 is  attributed  to 

symmetric motion of the bridged oxygen atoms in the plane bisecting the Si–O–Si 

bonds, with little associated silicon displacement [104–109]. This band occurs at 

lower  wavenumbers  with  respect  to  what  expected  for  a  densified  silica 

framework  (430 cm–1),  indicating  that  the  xerogel  network  is  formed  by SiO4 

groups with larger inter-tetrahedral angles [109].
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Fig  4.4   Raman  spectra  of  the  studied  gels  heated  at  different  temperature.  (a): 

(Nb2O5)20·(SiO2)80 (20Nb);  (b):  (Nb2O5)10·(SiO2)90 (10Nb);  (c):  (Nb2O5)5·(SiO2)95 (5Nb); 

(d): (Nb2O5)2.5·(SiO2)97.5  (2.5Nb); (e): SiO2.

The bands at 490 and 610 cm–1 are called the D1 and D2 defect bands and 

assigned to symmetric stretching modes of Si–O–Si bridges in regular fourfold 

and planar threefold rings of SiO4 tetrahedra respectively [103–105]. The former 

is the highest of the spectrum, as it usually occurs for the SiO2 dried gel samples 

stabilized at low temperature [12, 105–107]. The band at 807 cm–1 is related to 

symmetric vibration of two silicon atoms about their bridged oxygen [104, 108]. 

The band at 970 cm–1, assigned to Si–OH stretching vibrations, [106, 107, 109], 

denotes the presence of silanol groups in the porous network of SiO2 dried gel. 

Finally, the sharp band at 1095 cm–1 (Figure 4.4) is related to organic residuals 

that are still present at this stage of the heat-treatment [107]. In the Nb-containing 
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dried  gels  spectra,  together  with the  silica  network  bands,  new bands start  to 

appear  and  develop,  which  are  associated  to  Nb–O vibrational  modes.  These 

bands tend to mask the siloxane network’s ones, because the polarizability of the 

Nb–O bond is higher than that of the Si–O bond [110] and, consequently,  the 

Raman bands associated to the Nb–O vibrations are expected to be more than one 

order of magnitude higher [111]. Nevertheless, the Raman bands associated with 

the Si–O vibrations remain visible in all spectra because the quantity of Si is at 

least  four times  that  of  Nb.  In  the  2.5Nb-383 spectrum (curve d)  a  new band 

appears at 770 cm–1, the band at 807 cm–1 is shifted to 815 cm–1  and the band at 

970 cm–1 grows and becomes asymmetric towards the lower wavenumbers, with a 

feature at about 930 cm–1. In the 5Nb-383 spectrum (curve c), the band at 770 cm–1 

continues to grow becoming stronger than the one at 815 cm–1 and the band at 970 

cm–1 broadens  and  shifts  towards  lower  wavenumbers  (about  950  cm–1).  The 

change of the shape of this band is due to the overlapped stretching modes of 

Nb=O terminal double bonds of NbO4 tetrahedra and NbO6  distorted octahedral 

[112, 113] with the Si–OH ones. Moreover, a new band appears at 1075 cm–1 

(curve c),  due to transverse optical  Si–O stretching of SiO4 tetrahedra with all 

bridging oxygens  [104, 107–108]. In the 10Nb-383 spectrum (curve b) two  new 

bands appear, a very strong one centred at 680 cm–1 and a weaker one at 870 cm–1. 

The  former  band  is  attributed  to  the  stretching  vibration  of  Nb–O  bonds  in 

interconnected NbO6 octahedra [111–113]. In the  20Nb-383 (curve a) spectrum, 

the band at 680 cm–1 grows further, while the 770 cm–1 band disappears. For gel-

derived SiO2∙Nb2O5 samples with compositions  close to the 2.5Nb and 5Nb (3 and 

7.5 mol% of Nb2O5) no evidences of Nb–O–Nb bonds were found by Drake et al. 
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[11] using  17O solid state NMR. These authors have suggested that niobium is 

dispersed within the siloxane network on the atomic scale being mainly present as 

NbO4 tetrahedra. Considering also that tetrahedrally coordinated niobium oxide 

reference  compounds  possess  their  major  Raman  bands  in  the  790–830  cm–1 

region [112], the feature  at 770 cm–1 can be related to the Nb–O(–Si) stretching 

vibrations of NbO4 tetrahedra highly dispersed in the siloxane framework. On the 

other  hand,  the  feature  at   915  cm–1 can  be  related  to  vibrations  of  the 

corresponding Nb=O bonds [112, 113].

The bands at 815 cm–1 and 870 cm–1 can be related to the Nb–O stretching 

modes of distorted NbO6 octahedra sharing a corner with a SiO4 tetrahedra [73, 

111, 112]. Particularly, they can be related to the Nb–O(–Nb) and Nb–O(–Si), 

respectively.

In  summary,  the  above results  show that  the  structure  of  dried  gels  is 

strongly influenced by the niobium loading. Actually,  the niobium is dispersed 

within the siloxane network mainly as NbO4 tetrahedra (band at 770 cm–1) in  the 

2.5Nb-383 and 5Nb-383. The presence of NbO6 octahedra cannot be ruled out for 

these samples considering that in the 800–870 cm–1 range the vibration modes of 

Si–O–Si  bonds  are  overlapped  with  the  Nb–O(–Si)  ones  of  distorted  NbO6 

octahedra [73, 111, 112]. As the Nb content increases, NbO6 octahedra start to 

appear (bands at 815, 870 and 950 cm–1) and cluster (band at 680 cm–1), while the 

tetrahedra disappear.

It is worth noting that the Raman spectrum of 20Nb-383 (curve a) differs 

from that reported by Julia´n et al. [12] for the same nominal composition that 

was mainly characterized by Raman bands due to siloxane network as well as to 
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residual organics. These differences can be related both to the lower temperature 

used to stabilize the dried gels (308 K) and to the different synthesis procedure 

[12]. The structural differences of the dried gels with the niobium loading result 

enhanced in the subsequent stage of heat-treatment.

For the stage at 873 K, in the Raman spectrum of SiO2 (curve e) a drastic 

lowering of the relative intensity of the band at 970 cm–1 with respect to the SiO2-

383 is noted. This result, together with the opposite trend seen for the D2 peak, 

shows that the structural evolution with the temperature of the siloxane network 

takes  places  according  to  the  characteristic  densification  mechanism  of  silica 

xerogels:  polycondensation  of  silanol  groups  with  predominant  formation  of 

three-membered SiO4 rings [103, 105, 109]. This process involves, for the 2.5Nb-

873 (curve d) and 5Nb-873 (curve c), a rearrangement of the distribution of NbO4 

tetrahedra  in  the  siloxane  framework  favouring  a  change  in  the  niobium co-

ordination  with  the  initial  formation  of  isolated  and/or  highly  distorted  NbO6 

octahedra. In the 5Nb-873 the extent of this conversion appears more heightened 

as the features in the 600–700 cm–1 range attest. On the contrary, for  10Nb-873 

(curve b) and 20Nb-873 (curve a) the NbO6 clustering results enhanced with the 

formation of niobia phase separated nanodomains in the silica matrix. In fact both 

spectra are still characterized by the large and high intensity Raman band in the 

500–800 cm–1 range that at this stage exhibits only one evident shoulder at 810 

cm–1 with low intensity feature in the 910–990 cm–1 range. Finally, a well-shaped 

peak at  1090 cm–1 is  seen.  This peak lies outside the region where the Nb–O 

vibrations of NbO6 octahedra are Raman active, independently from the extent of 

the octahedra distortion [73, 111, 114]. On the other hand, in this region for the 
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full  polymerized  SiO4 tetrahedra  weak  Raman  bands  at  1060  and  1200  cm–1 

should be seen [104, 108]. Therefore, the band at 1090 cm–1 can be related to the 

stretch of Si–O bonds of SiO4 tetrahedra coordinated with Nb5+ ions [108, 115].

The Raman spectra of the samples heated for 1 h at 1273 K show that the 

niobia crystallization starts to occur  to some extent at this stage according to the 

niobium loading, coherently with the above XRD data. The spectra of 2.5Nb-1273 

(curve d)  and  5Nb-1273 (curve c)  appear  still  similar  at  this  stage showing a 

strong Raman band at about 730 cm–1 besides the D1 peak. The position of the 

former band as well as its shape attest that an early nanocrystallization of the T-

Nb2O5 phase  takes  place  in  the  siloxane  matrix  of  these  samples  [13].  The 

crystallization  extent  of  the  T-Nb2O5 phase  appears  more  advanced  in  the 

spectrum of  10Nb-1273 (curve b) where a Raman band at 230 cm–1, besides the 

strong band at 730 cm–1, is seen. Moreover a weak Raman feature at 995 cm–1 is 

detected in  this spectrum that can be related to the symmetric stretching modes of 

the Nb=O terminal bonds of NbO6 octahedra belonging to the H-Nb2O5 structure 

[112,  114]. The   lack  of  diffraction  peaks  ascribable  to  this  phase  in  the 

corresponding XRD pattern (Figure 4.3) shows that for this sample the regions of 

coherent scattering of this phase are not still formed at this stage, while on the 

short range scale  a local order starts to appear. All the Raman peaks seen in the 

spectrum of 20Nb-1273 (curve a) are related to the H-Nb2O5 phase [13, 112, 114].

The  further  stage  of  heat-treatment  (1  h  at  1473  K)   forces  the 

crystallization of the H-Nb2O5 phase in all  samples except  for the  2.5Nb-1473 

(curve d) for which the crystallization of the sole T-Nb2O5 phase is still observed. 

In fact, the Raman spectra of the 10Nb-1473 (curve b) and 20Nb-1473 (curve a) 
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correspond to that of a H-Nb2O5 phase, confirming that the crystallization of this 

phase is the most important phenomenon at this stage for these samples. On the 

contrary, in the Raman spectrum of 5Nb-1473 (curve c) the band of the T-Nb2O5 

phase (about 730 cm–1) is still clearly visible with the strongest ones of the H-

Nb2O5 phase (623, 671 and 990 cm–1) that appear slightly shifted with respect to 

the  expected  values,  indicating   that  the  transition  from T-Nb2O5 to  H-Nb2O5 

phase starts to occur.

4.3  Fourier Transform Infrared spectroscopy

FTIR spectra of dried gels and heat-treated samples are shown in Figure 

4.5 where for  the  stages  at  383 and 873 K the  spectra  of  pure SiO2 are  also 

reported. As expected  [110, 111], the analysis of these data will give detailed 

information  about  the  siloxane  backbone  structure  and  the  hydroxyl  groups 

distribution, as well.

The spectrum of SiO2 dried gel (curve e) shows the main envelope in the 1000–

1300 cm–1 region,  where  some of  the vibration  modes  of  partially  hydrolyzed 

TEOS molecules (1168 and 1082 cm–1) [116] overlap with the ones typical of a 

siloxane network (1080 and 1250 cm–1) [117, 118]. Absorption bands at about 450 

cm–1 (δSi–O–Si) [116], 795 cm–1  (νs Si–O–Si) [116], and 1640 cm–1  (deformation modes 

of O–H bonds and of molecularly adsorbed water, δO–H) [16, 119] are also seen. 

Moreover, this spectrum shows a broad absorption band in the 2800–3800 cm–1 

range  with a maximum at  about 3450 cm–1 and  two shoulders at about 3240 and 
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Fig. 4.5  FTIR spectra of the studied gels heated at different temperature. (a): (Nb2O5)20· 

(SiO2)80 (20Nb);  (b):  (Nb2O5)10·(SiO2)90 (10Nb);  (c):  (Nb2O5)5·(SiO2)95 (5Nb);  (d): 

(Nb2O5)2.5·(SiO2)97.5 (2.5Nb); (e): SiO2.

3650 cm–1. This broad band arises from O–H stretches (νO–H) involved in hydrogen 

bonding,  while  the  shoulders  at  3650  and  3200  cm–1 are  related  to  free  and 

strongly H-bonded OH groups, respectively [16, 116, 119]. In fact, the hydrogen 

bonding causes low-frequency shifts, whose magnitude is related to the  strength 

of hydrogen bonds in which the OH groups are involved [16, 119, 120]. Finally, 

the feature at 2990 cm–1 can be assigned to the stretching mode of C–H bond in an 

aldehydic group [16]. In the  SiO2-383 FTIR spectrum two additional absorption 

bands at 950 and 570 cm–1 are seen as well (curve e). These bands are related to 

stretching  and  bending  modes  of  the  same  bond,  Si–OH,  νSi–OH  and  δSi–OH 

respectively. It is worthy to note that the assignment of the band at 950 cm–1 is a 
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controversial  point  because  it  was  related  to  Si–OH  and/or  Si–Oˉ  stretching 

vibrations [12, 13, 16, 43, 102, 116, 120–122]. The formation of Si–Oˉ  groups 

appears to us reasonable only in materials containing modifier and/or intermediate 

glass  network  oxides;  in  gel-derived  materials  containing  only  glass  forming 

oxides this contribution  must be considered not possible.

The  FTIR  spectra  of  the  niobium  containing  dried  gels  exhibit  some 

differences with respect to the  SiO2-383 one depending on the niobium amount. 

The highest absorption band gradually shifts toward lower frequencies going from 

1082 cm–1 (SiO2-383)  to  1066 cm–1 (20Nb-383)  suggesting that  the  νas Si–O–Si  is 

progressively influenced by the  presence of niobium [43]. For the OH related 

bands,  νO–H,  δO–H  and  νSi–OH,  similar  trends are seen, even if the extent of these 

shifts are small going from 2.5Nb-383 (curve d) to  5Nb-383 (curve c), while they 

become larger going from  10Nb-383 (curve b) to  20Nb-383 (curve a), reaching 

the  values of about 150 cm–1, 16 cm–1 and 13 cm–1, respectively (Figure 4.5). The 

last shift, relative to the band at 950 cm–1, shows that the Si–Oˉ(–Nb) bonds give a 

predominant contribution to this band in the  20Nb-383 confirming the existence 

of the silica-niobia interface. On the other hand, differently from what occurs for 

the other dried gels, in the 20Nb-383 FTIR spectrum the νO–H band does not show 

any shoulder, suggesting the presence of one kind of OH group, probably a silanol 

involved in very strong H bonding. This can be due either to the proximity of 

silanols in a similar environment or to the existence of a stronger interaction, such 

as it should occur between silanols and Nb=O groups. In both cases the existence 

of niobia- and silica-rich nanodomains is required. This description of the 20Nb-

383 microstructure is also strengthened by the absorption band at 586 cm–1 that is 
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related to the bridging Nb–O–Nb stretches [113, 123]. In fact, the presence of this 

band, that at this stage is the only one exclusively related to Nb–O vibrations, can 

be considered as indicative of the existence of niobia nanodomains. Such a band is 

still well evident in the 10Nb-383 spectrum but it does not appear in the spectra of 

the other dried gels, that in this wavenumbers region exhibit bands at 575 cm–1 

(5Nb-383) and 570 cm–1 (2.5Nb-383) due to δSi–OH  and/or δSi–Oˉ  . In summary, in 

accordance  with  Raman  analysis,  the  above  data  confirm  that  niobium  is 

uniformly distributed into the siloxane framework of the 2.5Nb-383 and 5Nb-383 

while it appears insulated in nanodomains for the 10Nb-383 and 20Nb-383.

The most important changes produced by the heat-treatment to the  SiO2-

873 FTIR spectrum concern the almost complete disappearance of the bands at 

950 cm–1 (νSi–OH) and 570 cm–1 (δSi–OH), besides the relative intensities of absorption 

bands at about 3450 and 3670 cm–1 appears strongly altered with respect to the 

SiO2-383 spectrum.  In  accordance  with  Raman  analysis,  these  results  can  be 

considered as a consequence of the polycondensation of silanol groups occurring 

at  this  stage  of  the  heat-treatment.  As  the  dehydroxylation  takes  place 

preferentially between silanols that interact most strongly with neighbours by H-

bond [103], the fraction of free OH results enhanced in the residual OH groups.

For the Nb-containing samples the gel network densification seems to be 

the most important phenomenon occurring at this stage (873 K) as well. Actually, 

in these FTIR spectra the highest band (νas Si–O–Si) occurs at the same wavenumber 

(1084  cm–1).  Therefore  for  each  sample  it  results  shifted  toward  higher 

wavenumbers  with  respect  to  the  corresponding  dried  gel  indicating  that  the 

siloxane frameworks  of heat-treated samples  are more highly  crosslinked [43]. 
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This phenomenon is a consequence of the de-hydroxylation that resulted more 

extended in the samples containing OH groups involved in stronger H-bonds. In 

fact, the relative intensity of the νO–H band appear strongly reduced in the 20Nb-

873 spectrum (curve a) as well as its position is shifted towards higher energy 

(about 3500 cm–1) with respect to the corresponding dried gel.

In  accordance  with  Raman  analysis,  the  dehydroxylation  involves  the 

formation of three-membered SiO4 rings whose vibrations are IR active in the 

550–750 cm–1 range [13, 124]. In this range a broad and asymmetric band is seen 

in the 20Nb-873 and 10Nb-873 FTIR spectra (curves a and b), even if in the latter 

with a lower relative intensity, indicating that the νNb–O–Nb  modes are overlapped 

with the SiO4 rings ones. On the contrary, in the 5Nb-873 and 2.5Nb-873 spectra 

(curves  c  and  d)  no  additional  features  are  detected  in  the  above  range  and, 

simultaneously, the contribution of the Si–Oˉ(–Nb) bonds to the band at about 950 

cm–1 appears still  low because it occurs at 945 cm–1 (curve c) and at 954 cm–1 

(curve  d),  respectively.  Therefore,  in  these  samples  the  siloxane  network 

densification does not change substantially the niobium dispersion that results still 

high at this stage.

The FTIR spectra of gel-derived samples heated at 1273 K point out the 

definitive transformation of the siloxane network into a silica-like one because in 

each spectrum the highest absorption band (νas Si–O–Si) as well as its shoulder in the 

high wavenumber side (LOνas Si–O–Si) occur at 1100 and 1250 cm–1, respectively. 

Moreover, no absorption bands are seen in the 2000–4000 cm–1 range, indicating 

that the de-hydroxylation is at this point completed. As it was shown by the XRD 

analysis, at this stage the crystallization of different Nb2O5 polymorphs begin to 
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occur. Consequently, in the wavenumber range where the Nb–O vibration modes 

are  active  new  bands  appear,  according  to  the  niobium  content  and, 

simultaneously, the contribution of the Si–Oˉ(–Nb) bonds to the band at about 950 

cm–1 becomes prevailing also in the  2.5Nb-1273 and  5Nb-1273 spectra where it 

appears as shoulder at 930 cm–1 (curves c and d). For the T-Nb2O5 phase three 

different stretching modes should be expected: the collinear Nb–O– Nb (800–850 

cm–1),  the  Nb3O (400–500  cm–1)  and  the  bridging  Nb–O–Nb  (580–750  cm–1) 

[113].  Since  the  former  two  are  overlapped  with  the  νs Si–O–Si and  δSi–O–Si, 

respectively, only the latter can be well observed. Consequently, bands at 680 cm–

1 (2.5Nb-1273), 673 cm–1(5Nb- 1273) and 668 cm–1 (10Nb-1273 and 20Nb-1273) 

are seen in Figure  4.5. This trend can be related to the different crystallization 

extent occurring in the samples. An additional feature at 720 cm–1 with the change 

of the band shape at about 800 cm–1, related to the early crystallization of the H-

Nb2O5 phase, is seen only in the 20Nb-1273 spectrum. The analysis of the FTIR 

spectra of gel-derived samples heated for 1 h at 1473 K confirms that the T-Nb2O5 

phase  is  the  only  one  crystallising  in  the  2.5Nb-1473.  On  the  contrary,  the 

crystallization extent of the H-Nb2O5 phase seems to become the most important 

phenomenon  increasing  the  niobium  content.  In  fact,  in  the  5Nb-1473 FTIR 

spectrum the sole feature related to the T-Nb2O5 phase appears as a low intensity 

shoulder at about 650 cm–1, while a new band at 720 cm–1 with a shoulder at about 

865 cm–1 starts to appear, both of which can be related to the H-Nb2O5 phase. In 

the 10Nb-1473 and 20Nb-1473 FTIR spectra the above shoulder becomes a band 

occurring  at  860  and  853  cm–1,  respectively.  At  the  same  time,  the  relative 

intensity of the band at about 720 cm–1 strongly increases giving rise well resolved
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bands at 713 cm–1 (curve b) and 700 cm–1 (curve a).

5  Textural and surface acid characterization of catalysts

XRD patterns show that all dried gels keep their amorphous nature up to 

873 K, while at higher temperature crystallization of T- and H-Nb2O5 polymorphs 

occurs depending on the niobium content, in agreement with previous results. On 

the  basis  of  these  and previous  TG/DTA data the  catalysts  were  obtained  by 

treating the dried gels at 673 K for 3 h, since this treatment allows to obtain the 

complete  elimination  of  organic  residues  and  stable  gel-derived  samples 

regardless of the niobium content.

5.1  N2 adsorption

The  N2 adsorption-desorption  isotherms  of  the  catalysts  and  of  the 

reference SiO2 sample are reported in  Figure. 4.6. For the sample Nb2O5, due to 

very low amounts of N2 adsorbed, a complete isotherm is not determined,  and 

BET surface area is estimated from few adsorption values. The silica sample gives 

a  type  I  isotherm,  that  characterizes  microporous  adsorbents,  according  to  the 

IUPAC classification [125].  The  isotherm of  2.5Nb,  similarly  as  that  of  SiO2, 

shows a high amount of N2 adsorbed at low pressure and a plateau for P/P° > 0.4, 

corresponding to a volume of adsorbed N2 higher than that of silica. The other 

samples show markedly lower amounts of adsorbed N2 with different shapes of 

isotherms, without any plateau of N2 volume.
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Fig. 4.6   N2 adsorption-desorption isotherms of SiO2 and of the investigated catalysts. 

Full symbols: adsorption; empty symbols: desorption.

In order to obtain deeper information on the texture of the catalysts, the data are 

elaborated,  besides  by  BET,  also  by  the  α-plot  method  that  is  advisable  for 

microporous  materials  [126].  The results  are reported in  Table 4.2.  The α-plot 

method is  not  applied for  20Nb and pure Nb2O5 due to the low values  of N2 

adsorbed.  The  α-plots  reported  in  Figure  4.7 are  typical  of  micro-mesoporous 

materials [16]. The plots give positive intercepts from which micropore volumes 

are  calculated  (Table  4.2).  Surface  areas  due  to  contribution  of  meso  and 

macropores are calculated from initial slopes of  α-plots. As expected, the  α-plot 

area is always lower than the BET one, since the former excludes the contribution 

of micropores, while the latter includes contributions of all pores. It can be noted 

that the surface area has a maximum for 2.5Nb while it reduces to less than half 
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for 5Nb and 10Nb and drops to a very low value for 20Nb: a similar variation is 

shown  by  total  pore  volume.  On  the  other  hand  the  micropore  volume  is 

maximum for pure silica and decreases with increasing Nb content.

       Table 4.2  Surface area and pore volume of Nb2O5∙SiO2 catalysts.

Surface area

m2g-1

Pore volume

cm3g-1

   Micropore volume

   cm3g-1

BET          α-plota

SiO2 313 183 0.170 0.090
2.5Nb 369 238 0.190 0.056
5Nb 159 137 0.107 0.023
10Nb 164 155 0.091 0.007
20Nb 46 - 0.030 -
Nb2O5 6 - - -

    a It excludes contribution of micropores.

Fig. 4.7  α-plot of SiO2 and of investigated catalysts.
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A maximum of surface area for Nb2O5∙SiO2 systems at very low Nb content is also 

reported by other  authors [19]. Such behaviour is explained by a very high Nb 

dispersion at low Nb/Si ratio, leading to formation of Nb–O–Si linkages [19,127]. 

Nb oxide species dispersed into SiO2 probably cause elimination of SiOH groups 

and thus hinder the condensation between silica particles: this could give rise to a 

more open structure that could explain the higher values of surface area and pore 

volume  of  the  sample  2.5Nb compared  with  pure  silica.  On  the  other  hand, 

increasing  Nb content,  surface  area  and  total  and  micropore  volume  decrease 

probably due to formation of less dispersed species, that is niobia nanodomanis or 

nanoparticles of Nb oxide, as observed for similar systems [127].

The pore size distribution of the catalysts, obtained by the BJH method, is 

reported in Figure 4.8.

Fig. 4.8  Pore size distribution of the investigated catalysts.
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The distribution curve of  5Nb is very close to that of  10Nb and is not reported, 

while for 20Nb the low amount of N2 adsorption does not allow to obtain reliable 

data. It is observed that the samples show a unimodal distribution of pore size 

with maximum at about 2.0–2.5 nm, indicating pore volumes decreasing with Nb 

content, in agreement with data of Table 4.2.

5.2   Ammonia  Temperature  Programmed  Desorption  and  Fourier  Transform 

Infrared spectroscopy with probe molecules

The results of NH3 TPD measurements on the catalysts and the reference 

SiO2 and Nb2O5 samples are shown in Figure 4.9. The amounts of adsorbed NH3 

calculated by integration of the TPD peaks are reported in Table 4.3. 
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Fig. 4.9  NH3 TPD spectra of SiO2, Nb2O5 and of the investigated catalysts.
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Table 4.3  Temperature peaks, adsorbed NH3 amounts and acid site concentration from 

TPD measurements.

Temperature 
peaks 

NH3 adsorbed Acid site 
concentration

K mmol g-1 molNH3 molNb
-1 sites∙nm-2

SiO2 403 - 0.17 - 0.33
2.5Nb 420 603 1.19 1.55 1.94
5Nb 429 628 1.20 0.85 4.54
10Nb 422 613 1.05 0.42 3.85
20Nb 429 628 0.31 0.078 4.05
Nb2O5 523 - 0.011 0.0014 ~1

The profile of pure SiO2 shows a symmetric peak at low temperature, that can be 

attributed to silanol groups acting as weak acid sites, as already observed for pure 

SiO2 [16, 37, 38]. The Nb2O5 sample gives a broad signal with maximum at about 

523 K, indicating medium strength acid sites, in agreement with literature data 

[128, 129]. The very low intensity of the TPD signal is related to the very low 

surface area of this material.  The spectra of the catalysts appear different from 

both SiO2 and Nb2O5, since two signals can be clearly distinguished in all spectra 

at  423–433 K and at  603–628 K,  respectively.  The  former  signal  reaches  the 

highest intensity  for  2.5Nb and  decreases  with  Nb content,  while  the  latter is 

maximum for 5Nb and 10Nb. These results suggest that at least two types of acid 

sites  are  present  in  the  catalysts,  and  these  are probably  different  from those 

existing in pure Si or Nb oxides. Moreover the relative concentrations of these 

sites depend on the composition of the materials. It is expected that the acid sites 

located on NbOx species bonded to silica may be different from those existing on 

the surface of pure Nb2O5 crystals and that their properties depend on the nature of
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Nb species formed.

By the previous structural characterization of the samples, it was shown that in the 

amorphous materials different NbOx species are present: NbO4 tetrahedra, NbO6 

octahedra  with  a  different  distortion  degree  and  niobia  clusters.  The  relative 

amounts  of  these  species  depends  on the  Nb content:  NbO4 or  NbO6 isolated 

species  prevail  at  low Nb content  (2.5Nb and  5Nb)  while  clustering  of  NbO6 

octahedra with the disappearance of NbO4 tetrahedra occur at higher Nb content 

(10Nb and 20Nb).

The  presence  of  different  NbOx surface  species  interacting  with  the 

siloxane  matrix  can  give  rise  to  different  acid  sites  [14,  23,  127,  130,  131]. 

Brønsted acid sites with moderate acid strength consist of OH groups bonded to 

silicon or to niobium polyhedra [14, 23, 130]. Lewis acid sites are related to both 

Nb=O, mainly as mono-oxo moiety, and Nb–O–Nb bonds within the molecular 

structure of NbOx surface species [130].

On the basis of the above discussion the two different signals shown in 

Figure 4.9 can be related to Brønsted and Lewis acid sites, respectively. Actually, 

(Si)Nb–OH groups can act as Brønsted sites according to the following equation:

(Si)Nb–O–H + NH3 → (Si)Nb–Oˉ + NH4+                                                           (2)

On the other hand, Nb=O, Nb–O–Nb and/or Nb–O–Si groups can act as 

Lewis acid sites:

Nb=O + NH3 → (NH3
+)–Nb–Oˉ ↔ NH2–Nb–OH                                                (3)
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Nb–O–Nb(Si) + NH3 → Nb–Oˉ + (Si)Nb–(NH3
+) ↔ Nb–OH + (Si)Nb–NH2     (4)

Eqs. (3) and (4) show that a Lewis acid site, after reaction with NH3, can 

give rise to a new Brønsted acid site. The trend of the relative intensities of TPD 

peaks  with  the  niobium  content  seen  in  Figure  4.9 agrees  with  the  above 

hypothesis on the nature of Brønsted and Lewis acid sites. In fact, the decrease of 

the relative amount of weak acidity with Nb content can be related to the change 

of  the  polymerization  degree  of  niobium  polyhedra  in  the  siloxane  matrix. 

Increasing Nb content leads to the progressive polymerization of NbOx species, 

with  consequent  condensation  of  Nb–OH  groups  producing  self-condensation 

(Nb–O–Nb bridges) and/or cross-condensation (Nb–O–Si bridges). This causes a 

decrease  of  the  amount  of  weak (Brønsted)  acid  sites.  On the  other  hand,  as 

regards strong (Lewis) acid sites, it can be noted that the samples 5Nb and 10Nb 

show  the  highest  concentrations,  while  2.5Nb and  20Nb exhibit  lower 

concentrations.  This trend is  explained considering that two contrasting effects 

take place increasing Nb content: the decrease of Nb=O groups, mainly connected 

with decrease of NbO4 tetrahedra, and the increase of Nb–O–Nb and Nb–O–Si 

bridges. The data reported in  Table 4.3 show that all catalysts with exception of 

20Nb adsorb similar  amounts of NH3 per gram, with the consequence that the 

NH3/Nb ratio decreases strongly with Nb content. This confirms that the effective 

availability  of  acid  sites  is  mainly  affected  by  Nb  dispersion  that  strongly 

decreases with Nb content. Moreover the effect of the surface areas of catalysts, 

that decreases with Nb content, should be also taken into account

Likewise to previous works  [132, 133],  acetonitrile has  been used as the
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basic probe molecule for further characterization of the acid sites.  In fact,  this 

molecule is more sensitive to detect Lewis acid sites over the surface of silica-

based materials in comparison with ammonia, as its sensitive bands do not fall 

near the cut-off spectral region. Moreover, acetonitrile has been used also as a 

probe for basic and nucleophilic sites, because it tends to form the [CH2–CN]ˉ 

anion upon attack of surface basic sites or to undergo hydrolysis due to attack of 

the nucleophilic sites on the electrophilic nitrile carbon atom [134–136].

The FTIR spectra of the catalysts, after activation, contact with acetonitrile 

and successive outgassing at different temperatures, are reported in Figures 4.10–

4.12.
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Fig. 4.10   FTIR spectra of pure  2.5Nb pressed disk after outgassing at 773 K (a) and 

following contact with acetonitrile vapours 5 Torr (b) and successive outgassing at room 

temperature (c), 373 K (d), 473 K (e) and 573 K (f) for 10 min. The gas-phase spectra 

have been subtracted.
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Fig.  4.11   FTIR spectra of  pure  5Nb pressed disk after  outgassing at  773 K (a)  and 

following contact with acetonitrile vapours 5 Torr (b) and successive outgassing at room 

temperature (c), 373 K (d), 473 K (e) and 573 K (f) for 10 min. The gas-phase spectra 

have been subtracted.
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Fig. 4.12   FTIR spectra of pure  10Nb pressed disk after outgassing at 773 K (a) and 

following contact with acetonitrile vapours 5 Torr (b) and successive outgassing at room 

temperature (c), 373 K (d), 473 K (e) and 573 K (f) for 10 min. The gas-phase spectra 

have been subtracted.
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The spectra are registered in the wavenumbers range where the stretching modes 

of the C≡N bonds are active.  In this  region, liquid acetonitrile  shows a strong 

doublet at 2293(w), 2254(s) cm-1, the intensity of the latter band being definitely 

stronger. This doublet is due to the Fermi resonance between the C≡N triple bond 

stretching and the δ(CH3) + ν(C–C) combination [137–140].When an interaction 

between –CN groups of acetonitrile and electron-withdrawing centres occurs, a 

typical shift up of the doublet components in comparison with the value of the 

liquid molecule is observed, at the same time, a change of their relative intensity 

in favour of the higher frequency band is seen [139, 140]. Three bands are found 

in all investigated catalysts. These triplets result from the superimposition of two 

doublets.  The  doublet  related  to  the  more  weakly  adsorbed  species,  is 

characterized  by a  band which  represents  the  triplet  component  located  at  the 

lowest  frequency  2263  cm-1,  and  the  other  one  contributing  to  the  triplet 

intermediate band at 2294 cm-1. In fact, by degassing the sample already at 373 K, 

the triplet substantially evolves into a doublet, due to the disappearing of the two 

contributions of the more weakly adsorbed species. Consequently, in these cases 

the lower frequency is almost the same as that of the band of liquid acetonitrile or 

the band of acetonitrile adsorbed on silica [141].

Armaroli et al. [142] reported data of acetonitrile adsorption over niobic 

acid, niobium phosphate and phosphoric acid-treated niobic acid. By comparison, 

the present FTIR data indicate that hydrogen bonding of acetonitrile with surface 

hydroxyl  groups is significantly stronger than that with silica, phosphoric acid-

treated niobic acid and niobic acid.

In all samples, by outgassing at 373 K or  even at higher temperatures, the
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spectra evolve into a doublet arising from a resisting species. The components of 

the doublet,  having now similar intensity,  are observed at 2317 and 2294 cm-1 

(Figures 4.10–4.12). These features are typical of acetonitrile molecules adsorbed 

on Lewis acid sites with medium, medium-strong strength [143]. In all samples 

there  are  sites  of  similar  strength  as  indicated  by  the  position  of  the  bands, 

although the comparison of their relative intensity suggests that in 2.5Nb there is a 

slightly higher amount of weaker acid sites than stronger ones, also in agreement 

with ammonia TPD results. In any case, the Lewis strength of these sites is still 

not very high in comparison to very acidic surfaces such as those of alumina [144] 

or vanadium pentoxide [132] and vanadyl pyrophosphate [145] and is comparable 

to medium acid niobium phosphates  [30].  The absence of bands in  the region 

2200–2100  cm-1,  distinctive  of  the  C≡N  stretching  of  coordinated  [CH2–CN]- 

anion (near 2050 cm-1 for ‘‘free’’ [CH2–CN]- ions in solution), indicates that there 

are no basic sites on the surface of the studied catalysts which are able to abstract 

a  proton from the  methyl  group of  acetonitrile.  The  absence  of  bands  due  to 

amide, carboxylate and similar species in the region 1800–1000 cm-1 indicates that 

the hydrolysis of the C≡N bonds does not occur.

Due to the very low surface area of 20Nb, its spectra, exhibiting very weak 

bands of adsorbed acetonitrile, are not reported.

In order to gain a deeper insight into the interaction of acetonitrile with 

surface  OH  groups,  the  strength  of  the  resulting  hydrogen  bonds  has  been 

investigated.  The  FTIR spectra  of  the  samples  after  outgassing  at  773 K and 

following contact with acetonitrile vapours, recorded in the wavenumbers range 

94



where the stretching modes of the O–H bond are active, are reported in Figure 

4.13.

A
bs

or
ba

nc
e

Wavenumbers (cm-1)

1500  2000  2500  3000  3500  

a

b

c

A
bs

or
ba

nc
e

Wavenumbers (cm-1)

1500  2000  2500  3000  3500  

a

b

c

Fig.  4.13   FTIR  spectra  of  pure  2.5Nb (a),  5Nb (b),  10Nb (c)  pressed  disks  after 

outgassing at 773 K and following contact with acetonitrile vapours (5 Torr). The gas-

phase spectra have been subtracted.

In the region near 3700 cm-1 the absorption due to the O–H stretching of free 

surface  OH  groups  disappears  upon  adsorption  of  acetonitrile.  At  lower 

frequency,  the  stretching  absorptions  of  hydroxy  groups  interacting  with 

acetonitrile by H-bonding are observed as a broad band, the frequency of which 

depends on the strength of Brønsted acid sites. In fact, the extent of the shift of the 

absorption band is typically used to measure the strength of H-bond [143]. The 

broad  band  centred  near  3250 cm-1,  in  the  case  of  2.5Nb,  corresponds  to  the 

frequency observed after adsorption of acetonitrile over niobic acid [142], while 

in  pure  silica  the  maximum is  detected  near  3415 cm-1 [141],  thus providing 

evidence  for  the  stronger  Brønsted  acidity  with  respect  to  Si–OH groups.  By 

increasing Nb amount the spectra are not very different, however it seems that the 
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relative amount of weaker Brønsted acid sites, with an acidity similar to those 

observed over pure silica, increases.

6  Catalytic tests

6.1  Catalytic activity and reaction mechanism

The results of catalytic activity tests on 2.5Nb, 5Nb and 10Nb samples are 

reported  in  Figure  4.14 as  conversion  of  cyclooctene  to  epoxycyclooctane  at 

increasing times.
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Fig.  4.14   Conversion versus time plots of epoxidation of cyclooctene with hydrogen 

peroxide catalyzed by differently loaded Nb2O5∙SiO2 catalysts.

According to Somma et al. [21, 37, 38] methanol was used as solvent because it is 

completely  miscible  with  hydrogen  peroxide  thereby  ensuring  a  good 

homogeneity  to  the  reagent  mixture.  Cyclooctene  epoxidation  was  chosen  as 

reaction  test  because  this  reaction  does  not  give  byproducts  due  to  the  high 

stability of the corresponding epoxide. In fact, cyclooctene epoxide was the only 
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product  detected  in  the  liquid  (organic)  phase.  A  summary  of  the  reagent 

conversions and the selectivity of hydrogen peroxide to epoxide – calculated as 

moles of epoxide formed/moles of hydrogen peroxide reacted – at the end of the 

runs is given in Table 4.4.

Table  4.4   Oxidation  of  cyclooctene  with  hydrogen  peroxide  catalyzed  by  different 

niobium containing catalystsa

Catalyst
Conversion (%) H2O2 selectivity (b)

(%)
Cyclooctene H2O2 

2.5Nb 39 82 48

5Nb 28 77 36

10Nb 12 30 40
  a Experimental conditions: catalyst, 600 mg; cyclooctene, 40 mmol; H2O2, 40 mmol; MeOH, 30 

ml; T = 343 K; reaction time = 300 min. Under nitrogen atmosphere.
  b H2O2 selectivity is calculated as a ((mol cyclooctene reacted)/(mol H2O2 reacted)) × 100.

The leaching of the active species into the liquid phase under operating 

conditions has been verified removing the catalyst from the reaction mixture by 

filtration  after  150  min  from  the  start  of  the  reaction,  when  the  cyclooctene 

conversion is lower then 20% (2.5Nb), 15% (5Nb) and 5% (10Nb) (Figure 4.14), 

and  than  recording  the  residual  conversion  for  additional  150  min.  For  each 

catalyst (2.5Nb, 5Nb and 10Nb) almost no detectable subsequent conversion in the 

filtrate after removing the catalyst was observed, giving a very strong evidence 

that  these  materials  act  as  real  heterogeneous  catalysts.  Moreover,  this  result 

shows  that  the  adopted  synthesis  procedure  allows  to  obtain  materials 

characterised  by a  very high dispersion degree of niobium also at  high  niobium
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content and presenting NbOx species strongly held in the matrix.

Data in Table 4.4 show that the catalytic activity is strongly affected by Nb 

content:  the  2.5Nb catalyst  exhibits  the highest cyclooctene conversion at each 

stage of the reaction and the highest selectivity of H2O2 to epoxide at the end of 

the  runs.  The  catalyst  5Nb shows  a  similar  behaviour,  while  10Nb exhibits  a 

markedly lower activity since the cyclooctene conversion reaches only 10% after 

5 h reaction time with H2O2 selectivity of 40%. With the sample 20Nb, no epoxide 

formation is observed. These results can be compared with those obtained under 

similar conditions on Nb2O5∙SiO2 aerogel catalysts by Somma et al. [21, 37, 38]. It 

can be noted that the values of cyclooctene conversion as a function of reaction 

time  for  the  catalysts  2.5Nb and  5Nb are  similar  to  the  corresponding values 

obtained with the Nb2O5∙SiO2 aerogel ones;  the values of H2O2 conversion are 

lower, but this can be due to the higher H2O2/cyclooctene feed ratio used in the 

present  work.  Therefore,  the  present  data  are  comparable  to  those  previously 

reported, although the catalysts have lower surface areas.

It  is  appropriate  to  relate  catalytic  activity  data  with  physical  and  chemical 

properties of the catalysts. From Table 4.2, it can be noted that the most active 

catalyst,  2.5Nb,  has the highest  surface area and pore volume,  and the sample 

20Nb, with negligible activity, also shows the lowest values of these properties: 

however, such correlation is not always valid, since, for example, samples  5Nb 

and 10Nb, that show similar values of surface area and pore volume, have largely 

different activity. This behaviour points to a variation of the nature of the catalyst 

surface with Nb content and can be explained by the presence of different Nb 

species depending on the catalyst composition. It is generally believed that acid 
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sites  of  moderate strength  are  involved  in  the  mechanism  of  epoxidation  of 

alkenes  with  H2O2 [21,  23,  27,  146–148],  while  strong  acidity  activates  the 

decomposition of H2O2 [148]. The likely mechanism involves the reaction of an 

olefin molecule with a Nb–O–O–H group. This group is formed by reaction of 

H2O2 with the acid sites of the catalysts according to the Scheme 4.1. The reaction 

involves Brønsted (Scheme 4.1a) or Lewis type sites (Scheme 4.1b and 4.1c). The 

epoxide formation occurs through electrophilic transfer of oxygen favoured by the 

high polarizing effect of Nb5+, according to the Scheme 4.2.
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The equlibria shown in the  Scheme 4.1 are shifted more or less to right, 

determining the nature and concentration of the reactive intermediate, and so the 

velocity of epoxidation. It should be noted that in every pathway shown in the 

Scheme  4.1,  the  formation  of  a  Nb–O–O–H  group  involves  the  increase  of 

niobium  coordination.  Consequently,  fourfold  niobium  gives  rise  to 

hydroperoxide groups more easily then the sixfold one.

The decrease of catalytic activity with Nb content agrees with the decrease 

of the concentration of acid sites of moderate strength: however, the activity trend 

cannot be explained considering only the concentration of acid sites, because this 

is almost the same for the 5Nb and 10Nb catalysts. Therefore, other factors must 

be taken into account,  among them the Nb coordination.  The previous Raman 

investigation has showed that the coordination of Nb depends on its content, that 

is NbO4 tetrahedra are present (together with NbO6 species) in  2.5Nb and  5Nb 

samples, but disappear in 10Nb and 20Nb, where only NbO6 groups are present. 

Since the epoxidation reaction involves coordination on a NbOx species (Scheme 

4.1),  it  is  clear  that  the  reaction  is favoured  on  2.5Nb and  5Nb,  where  the 

coordination  of Nb is  lower. This  could explain  the large decrease  of activity 
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observed with the catalyst 10Nb in comparison with 5Nb. The presence of strong 

acid sites able to activate H2O2 decomposition can explain the low H2O2 selectivity 

values for all catalysts (Table 4.4): the higher selectivity of 2.5Nb can be related 

to a lower concentration of strong acid sites, as can be observed in Figure 4.9.

6.2  Catalyst stability

To test the stability of the catalysts,  repeated runs with a  2.5Nb sample 

were  performed.  The  catalyst  after  each  run  was  separated  by  filtration  and 

directly reused for a new run. The obtained results are reported in Table 4.5.

Table 4.5  Effect of recycling in the epoxidation of cyclooctene

with hydrogen peroxide catalyzed by Nb2O5∙SiO2 catalystsa.

Catalyst Cycle Conversion(%)

2.5Nb

1st 39.5
2nd 36.3

3rd 37.5

4th 34.9
a Experimental conditions: catalyst, 600 mg; cyclooctene, 40 mmol;

H2O2, 40 mmol; MeOH, 30 ml; T = 343 K; reaction time = 300 min.

Under nitrogen atmosphere.

Only a slight loss of catalyst activity can be observed, indicating that the catalyst 

is quite stable also after four stages.
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CHAPTER 5

The Li2O∙Nb2O5∙SiO2 Ternary System:

Results and Discussion

Nanocomposite  transparent  thin  films  formed  by  LiNbO3 nanocrystals 

uniformly dispersed in amorphous silica matrix have been obtained by a new sol-

gel route. In the Li2O∙Nb2O5∙SiO2 ternary system a wide composition range was 

deeply explored to find the suitable process parameters for the film preparation. 

Particularly, at the first stage bulk gels were synthesized then, as intermediate step 

to  approach  the  film  preparation,  a  synthesis  procedure  was  set  to  obtain 

transparent flakes with thickness lower than 0.5 mm. Finally, the suitable sol-gel 

route was set to obtain transparent thin films. 

1  Bulk and flakes

Bulk gels  were obtained by a suitable  modification of the sol-gel route 

previously described to synthesize gels in the Nb2O5∙SiO2 binary system. 

LiNO3 was used as lithium precursor because it is an easily-handled and 

cheap precursor in spite of organic lithium precursors that are expensive, reactive 

and need to operate in controlled conditions. The Li/Nb ratio was kept equal to 

one in all gel compositions according to the stoichiometric Li/Nb ratio in LiNbO3.
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Firstly,  5Li2O∙5Nb2O5∙90SiO2 (B-5LN)  and  10Li2O∙10Nb2O5∙80SiO2 (B-

10LN) bulk gels were prepared.

Figure  5.1  displays  the  TG/DTA  curves  recorded  on  bulk  dried  gel 

samples.

Fig. 5.1   DTA (solid line)-TG (dotted line) curves of bulk gels  recorded in air at 10 K 

min-1.

The overall weight losses obtained by the TG curves were: 23 wt % (B-5LN) and 

31 wt % (B-10LN).  In  each  case,  the  majority  of  the  weight  loss  takes  place 

between room temperature and about 523 K. In this range, on the DTA curves of 

both the samples, a broad endothermic peak is seen with a maximum at about 393 
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K, that can be related to the evaporation from open pores of water and alcohol 

molecules  physically trapped in  the gels.  No other  evident  transformations  are 

seen  at  higher  temperatures  on  the  DTA  curves  and  the  weight  loss  can  be 

considered complete at about 773 K. On this basis, 4 h heat-treatment at 673 K 

was performed to stabilize gels in their amorphous state.

To force the crystallization, isothermal heat-treatments were performed at 

923, 973, 1023 and 1073 K on the stabilized samples. Each sample was slowly 

heated (5 K min-1) up to selected temperature and held 4 hours. The corresponding 

XRD spectra are shown in Figure 5.2. Hereafter the heat-treated samples will be 

indicated by their labels followed by the temperature of the heat-treatment (B-

5LN-923, etc). 

The coherent scattering regions start to appear from the amorphous background at

2 =  22.4°,  in  the  B-5LN-923  spectrum.  This  value  corresponds  to  the  most 

intense peak of the T-Nb2O5 phase (JCPDS card 27-1312). The width of this peak 

suggests that the precipitation in the amorphous matrix of crystals on nanometric 

scale takes place. On the contrary, peaks related to LiNbO3 (JCPDS card n. 85-

2456), start to appear in the spectrum of the B-10LN-923 besides to that of the T-

Nb2O5 phase. In the subsequent heating stage (973 K) no significant differences 

are seen in the XRD profiles of both samples. At higher temperatures, for the B-

5LN the crystallization of a few new phases, among them LiNbO3, begins even if 

the T-Nb2O5 is the predominant phase at each stage of heat treatments. But for the 

B-10LN sample, the intensity of LiNbO3 peaks increases with the heat-treatment 

temperature; for this composition lithium niobate is the predominant phase at each 

temperature, even  if  small amounts of T-Nb2O5  and  LiNb3O8  (JCPDS card  26-
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Fig 5.2  XRD patterns of the bulk gels heat 4 h at different temperatures. * LiNbO3, + T-

Nb2O5, × LiNb3O8, ° crystobalite.

1176) are present. The XRD data indicate that LiNbO3  amount increases with Li 

and Nb content. Therefore, because this work is aimed to obtain transparent films 

containing LiNbO3 nanocrystals  as the main phase,  the  5LN composition  was 

rejected since it gave a low amount of LiNbO3  and a new gel, with a composition 

15Li20∙15Nb2O5∙70SiO2 (15LN), has been synthesized.  At this intermediate step 

toward  the  films  preparation,  gels  were  obtained  as  transparent  flakes  with 
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composition  F-10LN and  F-15LN.  In fact,  the flakes were obtained by a slow 

evaporation of water and/or solvent molecules from the sol producing gelation. 

This mechanism is quite similar to that of film formation in which evaporation 

and gelation simultaneously occur.

The TG/DTA curves of the dried flakes did not show substantial differences with 

the ones of the bulk gels. Therefore, the same stabilization heat-treatment (4 h at 

673 K) was used.

To check the LiNbO3 crystallization,  even the flakes were heated for 4 

hours at different temperatures (823, 873 and 923 K).  These values, lower than 

those of the bulk samples, have been used in order to see the very beginning of the 

crystallization, since in B-10LN sample it already starts at 923 K. The knowledge 

of the lowest temperature value at which LiNbO3 crystals grow is important to 

control crystals size.

The  XRD  spectra  of  the  F-10LN and  F-15LN samples  heated  4  h  at 

different  temperatures  are  reported  in  Figure  5.3.  The  F-10LN-823 is  still 

amorphous, while the  F-10LN-873 XRD spectrum shows a crystallization early 

stage with few low intensity peaks, corresponding to the most  intense ones of 

LiNbO3.  In  the  subsequent  heating  stage,  the  crystallization  of  LiNbO3 is 

enhanced  even  if  the  peaks  broadening  as  well  as  the  transparency  of  the 

crystallized  sample  point  out  to  nanocrystallization;  the  average  crystal  size, 

roughly estimated by the Scherrer formula (already reported in section 4.1), was 

about  8  nm.  It  is  worth  to  note  that,  contrary  to  the  B-10LN where  several 

crystalline phases  were  formed, in the F-10LN LiNbO3 was the only crystallizing

phase.
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Fig. 5.3  XRD patterns of the flakes gels heat 4 h at different temperatures. *

LiNbO3, × LiNb3O8, # sample holder.

In the case of the F-15LN, the XRD spectra reported in Figure 5.3 indicate 

that  the  crystallization  of  LiNbO3 is  enhanced  and  only  a  small  amount  of 

LiNb3O8  is formed both at 823 K and at 873 K. The LiNbO3 average crystal size, 

increasing with the temperature, is about 24 nm at 873 K.

Gel-derived  flakes, with  a composition (6Li2O·6Nb2O5·88SiO2) similar to
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that of the 10LN, have been recently synthesized by Graça et al. [75] starting from 

the same precursors used in this work. It was found that, flakes heated in the same 

temperature  range,  give  rise  to  crystobalite,  Li2Si2O5 and  Li3NbO4 besides 

LiNbO3. This attests the quality of our novel sol-gel route.

The results on the flakes indicate that with 10LN composition the LiNbO3 

crystallization is slower but it is the only crystallizing phase, while at  15LN it is 

enhanced but coupled with a certain amount of LiNb3O8. Therefore, 10LN appears 

to  be  the  composition  more  suitable  to  prepare  thin  film  of  LiNbO3·SiO2 

nanocomposite with nanocrystals well dispersed in the silica matrix.

2  Thin films

Taking  in  account  the  above  results,  the  10Li2O∙10Nb2O5∙80SiO2 

composition was selected for the thin films preparation (TF-10LN) by dip-coating 

on  Si-SiO2 and  Al2O3 substrates.  The  sol  was  diluted  by  EtOH to  reduce  its 

viscosity and to increase the gelation time, to obtain enough thin and reproducible 

films. The dried films, stabilized by  3 h heating at 673 K,  were fully amorphous, 

transparent and crack-free.

To induce the crystallization of LiNbO3 in the thin films, isothermal heat-

treatments were performed on the stabilized films at 873 , 973 and 1073 K. Each 

sample reached the selected temperature by a heating rate of 10 K∙min-1 and then 

was held at this temperature for 2 h. Transparent, homogeneous and crack-free 

films were obtained after these heat-treatments. The heat-treated samples hereafter 

will be referred to as their already specified labels followed by the temperature of 

the heat-treatment stage (TF-10LN-873, etc).
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For each sample, the thickness resulted in the range 350-400 nm, and the 

RMS roughness  resulted in the range 0.5-3 nm, both measured with a TENCOR 

profilometer.

The control of the thickness is extremely important due to its strong influence on 

the grain size and the electric  properties  of LiNbO3.  In fact,  by literature  data 

[149], it is known that the grain size of LiNbO3 increases with increasing thickness 

of the film layer, indicating that the amount of material deposited on the surface 

of substrate influences the microstructure. Moreover, it was observed that for thin 

films  interfacial  dead  layer  could  appear  at  the  interface  between  films  and 

substrate.  This  layer  degrades  the  performance  of  the  device  as  regard  the 

electrical  properties.  The  detrimental  effects  of  the  dead  layer,  originate  from 

oxygen interdiffusion, chemical reaction or structural defects at the interface with 

the substrate, could be suppressed by increasing the film thickness above 200 nm 

[149]. Thus, in this work films were obtained with thickness in the range 350-400 

nm.  Also  the  control  of  the  surface  roughness  is  fundamental  since  electric 

properties  depend  not  only  on  a  well-defined  microstructure  but  also  on  the 

interactions between the electrode and the film interface. The roughness values 

obtained in this work are low enough to allow good interaction at the interface 

between the electrode and the film , thus good contact resistances.

2.1 Thin films on Si-SiO2 substrates

2.1.1 X-Ray Diffraction

The  TF-10LN films  deposited  on  Si-SiO2 substrates  after  post  growth 

thermal treatment are amorphous up to 973 K as verified by XRD measurements 
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(not  reported  here),  collected  by  Bragg-Brentano  configuration. LiNbO3 

nanocrystals were obtained only by heating 2 h at temperature of 1073 K.  The 

corresponding XRD spectrum is shown in Figure 5.4, where the peaks located at 

2θ = 23.7°, 32.7° and 34.8° correspond to the polycrystalline LiNbO3  phase. The 

characteristic peaks for Si-SiO2 substrate were observed at 2θ = 26,7° and 33°. It 

can be observed that only LiNbO3   nanocrystals are formed into the amorphous 

silica matrix and with an average size of 27 nm.
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Fig. 5.4  XRD pattern of the heat-treated TF-10LN film deposited on Si-SiO2 substrate. * 

LiNbO3, + substrate.

2.2 Thin films on Al2O3 substrates

2.2.1  Atomic Force Microscopy

The morphological features of the heat-treated films were studied using a 

AFM in non contact mode.  Films annealed at 673 K show uniformity from the 

macro- to the nano-scale as displayed in Figure 5.5a, where a typical AFM image 
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is reported. The film microporosity can be seen at higher magnification (inset of 

Figure 5.5a).

AFM  investigation  reveals  a  clear  modification  of  the  film  surface 

morphology at higher temperatures. The AFM images of the film annealed at 873 

K are displayed in Figure 5.5b. The surface is characterized by a network of flat 

structures  which  are  about  5  nm  in  height.  These  structures  appear  also  on 

samples annealed at higher temperature slightly changing in shape and dimension 

but preserving the typical height 5 nm. At a higher magnification (see inset of 

Figure 5.5b) the surface is characterized by nano-particles whose mean size is 

about 20–30 nm. 

The accurate evaluation of the nanoparticles size on rough surfaces is not 

an  easy  task  [150].  In  fact,  since  AFM  images  are  the  result  of  interactions 

between a sharp tip with a quasi-spherical apex and the surface of a sample, they 

are highly influenced by the tip geometry especially when the surface features are 

comparable  in  size  with  the  probe  (dilation).  In  fact,  if  the  nanoparticles  lie 

isolated on a flat surface, size determination may be easily achieved by evaluating 

its height. However, when the nanoparticles lie on rough surfaces or are placed 

one close to each other the actual particle height cannot be evaluated,  thus the 

lateral information is needed for size determination. It has been shown that lateral 

dimension may be up to 40%-overvalued by the AFM image if a conventional 10 

nm  curvature  radius tip  is employed  [151].  In  this case  the  true  size  may be 

determined by a curvature-reconstruction method provided the nanoparticle shape 

can be approximated by a sphere.
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Fig. 5.5  AFM images of a LiNbO3·SiO2 films: a A film annealed at 673 K. In the inset is 

enlarged the marked area. Scanned area and z-scale are respectively 3.5 × 3.5 μm2 and 10 

nm for the main image while they are 700 × 700 nm2 and 4.0 nm for the inset. b A film 

annealed at 873 K. In the inset is enlarged the marked area. Scanned area and z-scale are 

respectively 10 × 10 μm2 and 20 nm for the main image while they are 500 ×500 nm2 and 

4.0 nm for the inset.  c Films annealed at 873 K (left side), 973 K (middle) and 1073 K 

(right side).  Scanned area and is 1 × 1  μm2 in the top sequence, 500 × 500 nm in the 

bottom one. Z-scale is 4 nm.

(a)                                             (b) 
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140nm
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100nm
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Although precise size determination are not straightforward, because of the 

tip  dimension,  the  sequence  of  AFM  images  in  Figure  5.5c clearly  show  an 

increasing trend in the particle size with the increasing of annealing temperature, 

in  particular  films  treated  at  973 and 1073 K exhibit  an average  particle  size 

which is approximately 50% higher than on films treated at 873 K.

2.2.2  X-Ray Diffraction

The crystallization process was routinely studied by XRD using a Rigaku 

D-Max B diffractometer, with the Bragg-Brentano configuration.

The crystal  structure of the LiNbO3 in the ferroelectric  phase is rhombohedral 

(R3c space group) with lattice parameters a=5.148Å and c=13.863 Å.

The XRD spectra of the heat-treated films are shown in Figure 5.6.
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Fig. 5.6  XRD spectra of the heat-treated TF-10LN sample deposited on Al2O3 substrate. 

The straight line is a guide for eyes.
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The TF-10LN-673 is amorphous (the spectrum not is reported here), while the TF-

10LN-873 XRD spectrum shows an early crystallization stage with a weak peak, 

the  intensity  increases  in  the  TF-10LN-973 and  TF-10LN-1073  samples. This 

crystallization peak correspond to the (012) reflection of LiNbO3 phase (the most 

intense reflection), occurring at 2θ=23.7°. In Figure 5.6 can also be observed that 

the (012) reflection of the films emerges from the tail of the (012) reflection of the 

Al2O3 substrate located at 2θ=25.57°. Thought the very strong diffraction signal of 

the substrate prevents the careful fit of the (012) peak profile of the film, it was 

roughly  estimated  the  average  grains  size  with  the  Scherrer  equation. The 

corresponding  grains  size  values  are  reported  in  Table  5.1  together  with  the 

structural parameters obtained by the XRD measurements.

          Table 5.1  The structural parameters extracted from XRD spectra. 

Sample Annealing 
temperature (K)

Grains size 
(nm)

d012 (Å)

TF-10LN-873 873 7±3 3.73±0.01
TF-10LN-973 973 16.0±3 3.73±0.01
TF-10LN-1073 1073 18.0±2 3.750±0.005

The  data  show  that  the  selected  heat-treatments  favor  the  nanometric  grains 

formation  and  that  the  grains  size  enhance  with  the  annealing  temperature, 

ranging  from about  7  to  18 nm.  Correspondingly,  the  shift  of  the  (012)  peak 

positions toward lower angles in the XRD spectra, evidences an increasing of the 

lattice  spacing  towards  the  bulk  value  (d012=3.749Å).  The  extracted  lattice 

spacings are reported in Table 5.1.
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This effect is in agreement with the strain relaxation in the nanocrystals, which 

occurs  when  the  grains  dimension  enhances  thanks  to  the  higher  annealing 

temperature. Films obtained at 600 K from the stabilization process without any 

post-annealing treatment, have not evidenced the formation of the nanocrystals, 

confirming  the  fundamental  role  of  the  annealing  temperature  chosen  in  the 

formation of the nanocrystals.

To obtain higher sensitivity to the films structure, XRD were also performed by a 

Bruker  D8  Advance  diffractometer  (Cu  Kα)  using  the  glancing  incidence 

configuration (GIXRD). The increased intensity of the diffraction beam from the 

film layer  on the thick substrate possibly allowed to better detect  also the less 

intense  Bragg  reflections.  All  data  obtained  by  GIXRD  confirm  the  results 

obtained by the more conventional Bragg-Brentano XRD and gave more insight 

into the structural properties of the films.

Films annealed at 673 K are amorphous by GIXRD spectra (not reported 

here),  as  already  ascertained  by  the  above  XRD  analysis  in  Bragg-Brentano 

configuration. 

Figure 5.7 reports GIXRD measurements collected at incidence angle of 

1.0° on samples annealed at 873, 973 and 1073 K. The asterisks indicate the Ag 

reflections due to electrical contacts. All the other peaks have been indexed with 

the JCPDS card n. 85-2456 of the LiNbO3 phase.

All the allowed reflections are observed in the spectra of the better crystallized 

film heated at 1073 K, thus indicating that no preferential orientation is obtained 

in  the  LiNbO3 grains.  In  the  films  heated  at  lower  temperature  the  peaks  are 

weaker and wider.
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Fig. 5.7  GIXRD spectra of LiNbO3·SiO2 films annealed at 873 K (a), 973 K (b) and 1073 

K (c)  at  an incidence angle  of  1.0°.  The asterisks  indicate  the  Ag reflections  due to 

electrical contacts.

The  average  grains  size  estimated  by  the  Scherrer  equation  results 

comparable  with the values  previously obtained,  such as about  10 nm for the 

LiNbO3 nanocrystals  grown  at  873  K  and  about  20  nm  for  the  LiNbO3 

nanocrystals grown at 973 and 1073 K. It should be noted that in the 873–1073 K 

range LiNbO3 is the only crystallizing phase in the films on the nano-scale. On the 

contrary,  Bescher  et  al.  [72]  have obtained  LiNbO3∙SiO2 thin  films  by sol-gel 

where the LiNbO3 crystallization by XRD does not develop clearly until 973 K. 

The  prepared  thin  films  have  a  composition  more  rich  in  LiNbO3 

(LiNbO3/SiO2=1, molar ratio) than the present work, and were synthesized using 

the double alkoxide of lithium and niobium as molecular precursor of the LiNbO3 

phase. It was known that the double alkoxide, thanks to the Li–O–Nb chemical 

bonds already present  in the precursor,  would facilitate  the growth of LiNbO3 

crystals when the amorphous gel is heated. In the present case, it is interesting to 
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underline that the use of cheap and inorganic precursors instead of the double 

alkoxides,  give  to  the  formation  of  LiNbO3 nanocrystals  at  lower  temperature 

respect to one reported by Bescher et al.[72].

2.2.3  dc current-voltage measurements

The electrical properties of thin films were investigated by current-voltage 

(I-V) measurements,  employing  a standard two probe technique,  with a planar 

configuration.  Measurements  performed  with  different  couples  of  electrical 

contacts, then on different part of the films, gave similar results, which indicates 

the homogeneity  of the films from the electrical  point of view.  Measurements 

were also  reproducible  and stable  in  time,  also  when repeated  after  about  six 

months.

In Figure 5.8 is reported the J – E (current density versus electric field) curve of 

the films  heated at 673 K.
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Fig. 5.8  J - E measurements of films annealed at 673 K  during a voltage sweep from 0 to 

+500 V and +500 to 0 V. Arrows indicate the direction of the voltage sweep.
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These  films  are  insulating  whatever  the  applied  voltage  showing  a  resistivity 

higher  than  1012   cm,  limited  by  the  resolution  of  the  experimental  set  up 

employed.

On the contrary, a different electrical behavior has been observed on films 

annealed at higher temperature. The J – E curves are reported in Figure 5.9. 

Fig. 5.9   J - E measurements of LiNbO3·SiO2 films annealed at 873 K (circles), 973 K 

(squares) and 1073 K (triangles) during a voltage sweep from 0 to +500 V and +500 to 0 

V. Arrows indicate the direction of the voltage sweep.

From the electrical point of view, the presence of nanocrystals makes the films 

conducting, with an hysteretic behavior if subjected to a voltage sweep from 0 to 

+500 V and +500 to 0 V (Figure 5.9).  Films annealed at 973 and 1073 K  (LN 
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nanocrystals  ~ 20  nm) present  a  similar  and  more  pronounced behavior  with 

respect to the film annealed at 873 K  (LN nanocrystals  ~ 10 nm), displaying a 

clear electrical bistability.

Linear type scale of the J  E measurement on a film annealed at 1073 K makes 

the bistability behavior more clear (Figure 5.10).

Fig. 5.10  J - E measurements of LiNbO3·SiO2 films annealed at 1073 K during a voltage 

sweep from 0 to +500 V and from +500 to 500 V and from 500 to 0 V. Arrows indicate 

the direction of the voltage sweep. In the inset the same data in semi-log plot are reported.

It can be observed that the ON state voltages (SET1) are in the range 400–

500 V, and the bistability curves resulted roughly symmetrical with respect to the 

application of positive and negative voltages.  The mean resistivity of the device 

in the so called ON state is about 104  cm while, in the OFF state, an exponential 

voltage dependence is observed with a maximum resistivity value about 1010  
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cm. The current ratio between the ON and OFF states is at least 103 for both heat- 

treatment  stages,  and  in  any  case  higher  than  a  reading  process  in  a  digital

memory cell [58]. 

The bistability in these devices is reversible in nature and can be reversibly 

switched for many cycles.  Since a planar configuration is used for the electrical 

measurements the role of the interface on the nature of the bistability can be ruled 

out. The time stability was also checked by probing the device at low- and high-

conducting states for several hours.

The origin of the switching can be related to the increase of the average 

grains  size  of  LiNbO3 nanocrystals  according  to  the  AFM  images  and  the 

diffraction  spectra  (Figures  5.5   5.7).  Therefore,  in  the  samples  annealed  at 

higher temperatures, the charge confinement in the nanoparticles can explain the 

electrical bistability. Under a suitable positive voltage, the LiNbO3 nanoparticles 

with  larger  surface  charge  density  form  percolative  networks.  Such  networks 

finally produce channels across the device resulting in a high conducting state. 

This interpretation is well supported by a recent paper of Pal and coworkers [56]. 

Actually,  these  authors  have  found  that  an  electrostatic  assembly  of  CdSe 

quantum  dots  exhibits  a  size-dependent  electrical  bistability  by  means  of  a 

mechanism of charge confinement in the nanoparticles.

In  addition,  the  abrupt  enhancement  of  the  bistability  range  for 

LiNbO3·SiO2 films  annealed  at  973  and  1073  K,  indicates  that  the  main 

contribution  to  the  electrical  bistability  is  that  of  the  LiNbO3 nanoparticles. 

Because the LiNbO3 single crystal presents, at room temperature, a high dielectric 

constant  [152],  the  charge  accumulation  on the  grains  surface  is  thus  favored 
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above a critical grain size of nanometers tens. Indeed, it has been reported that in 

sol-gel glass-ceramics with LiNbO3 crystallites, the number of dipoles associated 

with  LiNbO3 ferroelectric  particles  are  hard  to  depolarize  [153].  The  overall 

picture of the electrical bistability suggests that these nanostructured films can be 

used for non-volatile memory.
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CONCLUSIONS

This PhD thesis has highlighted that the  sol-gel is a very useful tool to 

prepare  functional  nanocomposites  based  on  Nb2O5∙SiO2 and  Li2O∙Nb2O5∙SiO2 

systems.  Innovative synthesis  procedures were set,  based on the control of the 

chemistry  of  Nb5+ ion  in  aqueous  environment,  that  have  allowed  to  obtain 

homogeneous chemical gels in both systems. 

For  the  first  time,  a  sol-gel  route  performed  almost  entirely  in  air  at  room 

temperature starting from one metal alkoxide (Si(OC2H5)4) has allowed to obtain 

transparent LiNbO3·SiO2 nanocomposite films. 

Gel-derived  materials,  achieved by proper  heat-treatments,  have shown a very 

high dispersion of the active phase (Nb2O5 and LiNbO3) in the matrix up to the 

molecular scale. 

In the binary system, the Nb2O5 dispersion was strongly affected by its content: it 

was on the atomic scale up to 5 mol % whereas for higher concentration phase 

separated  niobia-silica  nanodomains  were  found.  These  structural  differences 

mirror on the textural and surface acidic properties. Actually, materials with low 

Nb2O5 loading exhibited high surface area values,  both Brønsted and Lewis acid 

sites of different  strength,  unlike  those existing in  pure oxides. Their  catalytic 

activity  were tested in  the epoxidation  of cyclooctene  with hydrogen peroxide 

showing that both the  acidic sites of moderate strength and the coordination of 

NbOx species  play  key  roles  in  the  reaction  mechanism.  Thus,  these 
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nanocomposites appear very interesting and promising heterogeneous catalysts, 

showing,  for  cyclooctene  epoxidation,  a  comparable  activity  to  that  of  similar 

literature systems but with the advantages of being prepared under much milder, 

inexpensive conditions and exhibiting a higher stability against leaching.

In the  ternary system, high quality  transparent thin films (about 400 nm 

thick)  on Al2O3 substrates  were obtained by dipping for  the  20LiNbO380SiO2 

composition.  Film annealed at different temperatures in the 873–1073 K range 

exhibited LiNbO3 nanocrystals with the average size ranging from about 10 to 20 

nm.

The presence of nanocrystals makes the films conducting. Actually,  dc current-

voltage  measurements  performed  on  planar  devices  based  on  the  above  films 

revealed  a  hysteretic  behaviour  and a  clear  electrical  bistability,  more  evident 

when  the  size  of  nanocrystals  reached  the  value  of  20  nm.  In  addition,  the 

ON/OFF current ratio  in these devices was higher then a reading process in a 

digital  memory  cell  and  the  bistability  was  reversible  in  nature  and  can  be 

reversibly switched for many cycles. 

Finally,  understanding  the  transport  mechanism  granular  systems  with 

bystable properties is a hot topic at the forefront of the fundamental research. The 

present thesis clearly demonstrates that our approach can be extended to the study 

of nanocomposites in other systems, both for fundamental study and applications 

in microelectronic.  Therefore,  to additionally understand the role of the matrix 

and the grain size in such kind of samples, further measurements are desirable.

In conclusion, the new synthesis procedures by sol-gel we have optimized 

can be considered a very promising and versatile technique to obtain reproducible 
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nanocomposite thin films with very interesting bistability properties opening new 

perspectives in the field of memory systems.
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