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Introduzione

È ben nota l’importanza che riveste tanto nella Meccanica Razionale
quanto nelle Scienze Applicate lo studio delle equazioni di Navier–
Stokes1 [22]

∆u− Ru · ∇u−∇p = f

divu = 0
in Ω (1)

nelle incognite u : Ω → Rn (n = 2, 3) atto di moto e p : Ω → R
pressione idrodinamica. Tale sistema governa il moto stazionario di
un fluido viscoso incomprimibile, di viscosità cinematica ν, in una
regione identificata con un dominio (aperto connesso) del piano o dello
spazio Ω su cui agisce una forza assegnata di densità di volume f ;
il parametro R, noto come numero di Reynolds, è caratteristico del
problema ed è definito dal rapporto

R =
lv

ν
,

con l e v lunghezza e velocità “di riferimento” [22]. La (1)1 traduce in
termini differenziali la prima equazione di Eulero o del bilancio della
quantità di moto, e la (1)2 la condizione di incomprimibilità del mezzo.
Una caratteristica delle equazioni (1) è che la pressione p interviene
solo col suo gradiente e risulta determinata dalla conoscenza di u, co-
erentemente con la classica impostazione lagrangiana della Meccanica
nella quale un vincolo, in questo caso l’incomprimibilità del fluido,
dà luogo ad un’incognita reazione vincolare (pressione idrodinamica)
che appare nell’equazione del bilancio tra le forze e che “scompare”
in quella delle potenze calcolate per velocità compatibili con il vincolo
[4], [34]. Al sistema (1) va associata una condizione sul contorno ∂Ω
che corrisponde alla “fisica” del problema che si vuole analizzare. Una
classica richiesta, ragionevole per “non piccole” viscosità, assume che
le particelle del fluido si incollino ai punti del bordo, ovvero che la
velocità di una di esse aderente alla frontiera in un punto ξ ∈ ∂Ω as-
suma sempre la velocità di ξ. Tale condizione di “aderenza” si traduce
formalmente nella seguente equazione da associare al sistema (1)

u = a su ∂Ω, (2)

1La simbologia che useremo è specificata nel prossimo paragrafo.
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con a campo vettoriale assegnato su ∂Ω, soddisfacente, a norma della
(1)1, la condizione ∫

∂Ω

a · n = 0, (3)

se Ω è limitato. Se, poi, la regione di moto è illimitata, ad esempio
esterna ad un compatto di Rn o tanto estesa che una condizione del
tipo (2) non è più controllabile a grande distanza, allora l’infinito
diviene una frontiera fittizia sulla quale è naturale richiedere che u sia
costante, ovvero che esista un assegnato vettore costante u0 tale che

lim
r→+∞

u(x) = u0. (4)

Se R è sufficientemente piccolo è del tutto ragionevole, almeno in
un primo stadio, trascurare il termine non lineare Ru ·∇u pervenendo
cos̀ı al sistema di Stokes

∆u−∇p = f

divu = 0
in Ω. (5)

Naturalmente, alle equazioni (5) andranno associate le condizioni (2),
(3) nei domini limitati e (2), (4) in quelli non limitati.

Esistenza ed unicità di una soluzione dei suddetti problemi ai li-
miti sono stati oggetto di una serie impressionante di ricerche a par-
tire dalla scoperta delle equazioni avvenuta nel 1822 ad opera di
C.L.M.H. Navier, innanzitutto per il sistema lineare (5). I primi risul-
tati risentono dei mezzi analitici del tempo e sono confinati a regioni
di forma particolare. Ad esempio, nell’esterno della sfera ed in assenza
di forze di volume2, nel 1851 G.G. Stokes determinò la soluzione es-
plicita delle equazioni (5) costante al bordo ed infinitesima all’infinito
(cfr. [14], p. 245). Passando, poi, all’equivalente problema in due
dimensioni, notò che, a differenza del precedente, esso non poteva am-
mettere alcuna soluzione. Questa osservazione, divenuta celebre nel
seguito come Paradosso di Stokes , inaugurò un affascinante problema:

2Nel seguito di questa introduzione, per semplicità di esposizione, assumeremo
f = 0.
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in un dominio esterno del piano Ω caratterizzare i dati al bordo a per
i quali il sistema

∆u−∇p = 0 in Ω,

divu = 0 in Ω,

u = a su ∂Ω,

lim
r→+∞

u(x) = u0

(6)

ammette una soluzione. Tale questione è stata compiutamente af-
frontata e risolta, almeno da un punto di vista teorico, in ambito
variazionale e per domini di classe C2, da C.G. Simader e G.P. Galdi
in un famoso lavoro del 1990 [18]. I risultati di [18] sono stati estesi
al caso di domini di classe C1,α (α > 0) e dati al bordo continui in
[26] ed al caso di domini lipschitziani e dati al bordo negli spazi di
Lebesgue in [39]. La condizione necessaria e sufficiente determinata in
[18] affinché il sistema (6) ammetta una soluzione puó essere espressa
dalla seguente relazione [26] (cfr. paragrafo 2.8)∫

∂Ω

(a− u0) ·ψ = 0, (7)

per tutte le densità ψ dei potenziali idrodinamici di semplice strato
costanti su {Ω. Si osservi che la (7) ha valenza prevalentemete teo-
rica, riuscendo applicabile soltanto quando siano note le densità ψ. A
quanto ci risulta, ciò è possibile solo nel caso in cui ∂Ω sia un’ellisse
[26] (cfr. paragrafo 2.8 ).

Per il primi risultati di una certa completezza bisogna attendere
la pubblicazione del lavoro di F.K.G. Odqvist del 1930 [32]. Utiliz-
zando la teoria delle equazioni integrali di Fredholm e richiedendo che i
dati siano sufficientemente regolari, Odqvist dimostra che il problema
di Stokes interno ammette un’unica soluzione espressa da un poten-
ziale di doppio strato e quello esterno tridimensionale una soluzione
somma di un potenziale di doppio strato e di uno di semplice strato
per ogni assegnazione del dato al bordo3. Passando poi al problema
non lineare interno (1)–(2), un’ applicazione dei precedenti risultati

3Una chiara esposizione dei risultati di Odqvist è riportata nel Capitole 3 della
monografia di O.A. Ladyszenskaia [24].
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e del teorema delle contrazioni di S. Banach consente ad Odqvist di
dimostrare l’esistenza di una soluzione a patto che i dati abbiano una
“norma hölderiana” sufficientemente piccola. Come osservato in [15]
p.2, tali risultati erano del tutto coerenti sia dal punto di vista teorico
che da quello applicativo, tenendo presente il carattere fortemente
non lineare delle equazioni (1)1 e il fatto che l’accordo della teoria di
Navier–Stokes con gli esperimenti aveva luogo solo per piccoli numeri
di Reynolds. Di conseguenza, notevole impressione suscitò tra gli es-
perti della disciplina la lettura del celeberrimo lavoro di J. Leray [25]
del 1933. In esso, infatti, Leray dimostrò l’esistenza di una soluzione
del problema di Navier–Stokes interno per ogni numero di Reynolds
nella sola ipotesi di regolarità dei dati e di flusso nullo su ogni com-
ponente connessa ∂Ωi di ∂Ω:∫

∂Ωi

a · n = 0. (8)

Osserviamo che per la (1)2 la (8) è automaticamente soddisfatta se ∂Ω
è connessa. Per quanto riguarda il problema esterno, Leray costrùı
con un metodo detto dei domini invadenti , sempre nell’ipotesi (8),
una soluzione delle equazioni (1), (2) e (4) ad integrale di Dirichlet
finito ∫

Ω

|∇u|2 < +∞. (9)

In tre dimensioni, Leray dimostrò che la (9) garantisce che u tende “in
un certo modo” al vettore costante assegnato u0. In due dimensioni,
invece la (9) non assicura alcun tipo di convergenza, potendo essere
soddisfatta da funzioni divergenti all’infinito, come, ad esempio, logα r,
α ∈ (0, 1/2).

Limitandoci ai problemi lasciati aperti da Leray in dimensione due,
quelli di maggiore spessore, a nostro avviso, sono i seguenti 4

• (i) l’accertamento che la soluzione in domini esterni costruita da
Leray soddisfi la condizione all’infinito (4) o almeno ammetta
limite all’infinito.

4Per i problemi lasciati aperti da J. Leray in dimensione tre una dettagliata
esposizione è contenuta nella monografia di G.P. Galdi [15]
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• (ii) la rimozione o, almeno, l’indebolimento, dell’ipotesi (8);

Per quanto riguarda il problema (i) un fondamentale contributo
fu portato nel 1974 da D. Gilbarg e H.F. Weinberger [19]. Essi di-
mostrarono che la soluzione di Leray5 converge all’infinito ad un vet-
tore costante κ nel senso della convergenza in media di ordine due:

lim
R→+∞

∫ 2π

0

|u− κ|2(R, θ) = 0.

Successivamente è stato dimostrato in [17] che tale convergenza è uni-
forme. Se κ coincida o meno con u0 è attualmente un problema aperto.
Il solo esempio noto di un problema risolto del tipo (i) si deve a G.P.
Galdi [17]. Se ∂Ω è simmetrico rispetto agli assi coordinati, ovvero se

(ξ1, ξ2) ∈ ∂Ω ⇒ (−ξ1, ξ2), (ξ1,−ξ2) ∈ ∂Ω,

u0 = 0 e
a1(ξ1, ξ2) = −a1(−ξ1, ξ2) = a1(ξ1,−ξ2),

a2(ξ1, ξ2) = a2(−ξ1, ξ2) = −a2(ξ1,−ξ2),

allora il problema di Navier–Stokes esterno bidimensionale ammette
almeno una soluzione. Se questa sia unica in qualche classe funzionale
è un problema completamente aperto.

Un primo contributo al problema (ii) in domini limitati si deve a
W. Borchers e K. Pileckas [3], G.P. Galdi [13] e L.I. Sazonov [40] , i
quali, riprendendo un’idea originaria di R. Finn [9], dimostrarono che
i risultati di Leray continuano a valere nell’ipotesi che i flussi

Φi =

∫
∂Ωi

a · n

siano sufficientemente piccoli. Per quanto riguarda i domini esterni, re-
centemente abbiamo dimostrato [36] l’esistenza di una soluzione vari-
azionale, convergente quindi all’infinito a norma dei risultati di [19], a
patto che

αR

2π

k∑
i=1

|Φi| < 1,

5Con tale locuzione intenderemo la soluzione costruita da Leray con il metodo
dei domini invadenti
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dove

α = sup
‖w‖

D
1,2
σ (R2)

=1

∣∣∣∣∫
R2

(log r) div(w · ∇w)

∣∣∣∣ .
Se, poi, Ω è simmetrico rispetto al suo centroide , ovvero se

(ξ1, ξ2) ∈ ∂Ω ⇒ (−ξ1,−ξ2) ∈ ∂Ω (10)

e
a(ξ1, ξ2) = −a(−ξ1,−ξ2), (11)

allora u converge uniformemente a 0 all’infinito.
Nel 1997 H. Fujita e H. Morimoto [12] portarono il seguente inter-

essante contributo al problema (i) in domini limitati. Supposto che a
ammetta la seguente decomposizione

a = Fh+ γ,

con F ∈ R, h gradiente di una funzione armonica e γ ∈ W 1/2,2(∂Ω)
soddisfacente la condizione ∫

∂Ω

γ · n = 0,

allora, a meno di un insieme numerabile G di valori di F, esiste una
costante positiva c0 dipendente da F, h ed Ω per cui, se

‖γ‖W 1/2,2(∂Ω) < c0,

allora il sistema (1), (2) ammette una soluzione.
Osserviamo che in tutti i risultati su esposti, la formulazione dei

problemi avviene in ambito variazionale e, quindi, i dati al bordo sono
richiesti appartenere almeno ad opportuni spazi di traccia. I risultati
di [12] sono stati estesi in un recente lavoro [37] a dati al bordo negli
spazi di Lebesgue 6.

Lo scopo di questa tesi è quello di presentare, in forma ragionevol-
mente autosufficiente, quanto abbiamo appreso nel ciclo di dottorato

6In questo lavoro abbiamo anche esteso i risultati di Fujita–Morimoto nei do-
mini esterni tridimensionali
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sui problemi esposti ai punti (i), (ii) e il piccolo contributo fornito in
questi anni alla loro comprensione.

Dopo aver esplicitato nel primo capitolo i principali simboli e gli
strumenti matematici che useremo, nel capitolo 2 svilupperemo la
teoria dell’esistenza ed unicità di soluzioni dei problemi interno ed
esterno di Stokes, essenzialmente nell’ipotesi che i dati al bordo ap-
partengano a qualche spazio Lq(∂Ω) (q > 1) e le forze allo spazio di
Hardy H1(Ω). Tale studio, che terminerà con la dimostrazione del
paradosso di Stokes, oltre ad essere propedeutico a quello del prob-
lema (non lineare) di Navier–Stokes, è di un certo interesse anche in
virtù del fatto che le applicazioni più numerose della teoria riguardano
i cosiddetti “moti lenti di un fluido viscoso” retti dal sistema lineare
(5) (cfr., e.g., [23]). Utilizzeremo la classica teoria delle equazioni in-
tegrali di Fredholm, seguendo l’impostazione sviluppata in [26], dove
tuttavia particolare attenzione è riservata alle soluzioni classiche cor-
rispondenti a dati al bordo continui e forze hölderiane.

Nel capitolo II esporremo la teoria esistenziale delle soluzioni del
problema interno di Navier–Stokes nelle stesse ipotesi sui dati richieste
nel problema lineare, con q ≥ 2, dimostrando in conclusione i risultati
del lavoro [37].

Nel terzo ed ultimo capitolo, tratteremo il ben più complesso pro-
blema esterno di Navier–Stokes, estendendo il risultato dimostrato in
[36]. Precisamente, dimostremo che, se

a ∈ L2(Ω)

e
R

2π

m∑
i=1

|Φi| < 1,

allora il sistema (1) ammette una soluzione

(u, p) ∈ C∞(Ω)× C∞(Ω)

che assume il dato al bordo a in un senso opportuno, che coincide
con quello della convergenza non tangenziale e con quello classico,
rispettivamente per a ∈ Lq(∂Ω) (q > 2) e a ∈ C(∂Ω). Inoltre, esistono
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un vettore κ ed uno scalare p0 tali che

lim
r→+∞

u(x) = κ, lim
r→+∞

p(x) = p0

uniformemente e, se valgono le (10), (11), allora κ = 0.
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Introduction

Well known is the great importance in Rational Mechanics as well as
in applied sciences of the study of Navier–Stokes equations7 [22]

∆u− Ru · ∇u−∇p = f

divu = 0
in Ω (1)

in the unknowns u : Ω → Rn (n = 2, 3) kinetic field and p : Ω → Rn

hydrodynamic pressure. This system governs the steady motion of an
incompressible viscous fluid with kinematic viscosity ν, in a region
identified with a domain (open connected set) of the plane or of the
space Ω, under the action of an assigned force whose volume density is
f ; the parameter R, known as the Reynolds number, is characteristic
of the problem and is defined by the ratio

R =
lv

ν

where l are v are a “reference” length and a “reference” velocity re-
spectively [22]. Equations (1)1 express in differential terms the first
Euler equation (the moment balance equation), while equation (1)2 ex-
presses the incompressibility condition for the fluid. A peculiar prop-
erty of equations (1) is that the pressure p appears only through its
gradient, and is determined from the knowledge of u, according to the
classical lagrangian assessment of Mechanics, in which any constraint,
in this case the incompressibility of the fluid, produces an unknown
force of constraint (hydrodynamic pressure), which is present in the
equation of the balance of the forces but “disappears” in the balance
of their powers evaluated for velocities that are compatible with the
constraint [4], [34]. To system (1) a condition on the boundary ∂Ω,
corresponding to the “phisics” of the particular problem considered,
must be added. A classical requirement, which is reasonable for “not
too small” viscosity, is that the boundary particles of the fluid are
glued to the points of the bounding wall, i. e. that the velocity of any
one of them which is in contact with this wall at a point ξ ∈ ∂Ω is

7The notation used here will be specified in the next Section.
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always equal to the speed of ξ. Such “adherence” condition finds its
formal expression in the following equation to be added to system (1):

u = a su ∂Ω, (2)

where a is a prescribed vector field on ∂Ω, satisfying, according to
(1)2, the condition ∫

∂Ω

a · n = 0 (3)

if Ω is bounded. If the region occupied by the fluid in motion is instead
unbounded, for instance external to a compact set of Rn, or so wide
that a condition of type (2) can be not experimentally checked at large
distance, then the infinity becomes an additional, virtual boundary on
which it is reasonable to require that u be constant, that is to say that
an assigned constant vector u0 exist such that

lim
r→+∞

u(x) = u0. (4)

If R is sufficiently small, then it is quite reasonable — at least at a
first stage — to neglect the nonlinear term Ru ·∇u, thus deriving the
Stokes system

∆u−∇p = f

divu = 0
in Ω. (5)

Naturally, to equations (5) we must associate conditions (2), (3) in
bounded domains and conditions (2), (4) in unbounded ones.

The question about the existence and the uniqueness of a solution
to these boundary problems has been the object of many researches
since the discovery of equations (1) in 1822, due to Navier, in par-
ticular for the linear system (5). The first results suffer the limits of
the analytical tools of their time, and are confined to regions of par-
ticular shapes. For instance, in the external region to a ball, and in
the absence of volume forces8, Stokes determined in 1851 the explicit
solution of equations (5) with velocity constant on the boundary and
zero at infinity (see [14], p. 245). Turning then his attention to the

8In the sequel of this introduction, only for the sake of simplicity, we shall
assume f = 0.
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equivalent problem in two dimensions, he observed that, opposite to
the preceding one, it has no solution at all. This observation, which
was thereafter known as the Stokes Paradox , opened a fascinating
problem: in an external domain Ω of the plane, to characterize the
boundary data a for which the system

∆u−∇p = f in Ω,

divu = 0 in Ω,

u = a su ∂Ω,

lim
r→+∞

u(x) = 0

(6)

has a solution. This question has been tackled and, at least from
a theoretical viewpoint, solved by C.G. Simader and G.P. Galdi in
a celebrated paper of 1990 [18], in a variational framework and for
regular domains. The results of [18] have been extended in [26] to
the case of domains of class C1,α (α > 0) and continuous boundary
data and in [39] to the case of Lipschitz domains and boundary data
belonging to a Lebesgue space. The necessary and sufficient found
in [18] in order that system (6) has a solution, can be expressed (for
f = 0) as follows [26] (see also Section 2.8)∫

∂Ω

(a− u0) ·ψ = 0, (7)

for all densities ψ of the hydrodynamical simple layer potentials con-
stant in {Ω. Observe that relation (7) has a mainly theoretical mean-
ing, as it may be applied only when the elements of Sq are known. As
far as we are aware, this is possible only in the case in which ∂Ω is an
ellipse [26] (see also Section 2.8 ).

The first reasonably complete results were published in the paper
by F.K.G. Odqvist of 1930 [32]. Using the theory of integral equa-
tions of Fredholm, and requiring that the data be sufficiently regular,
Odqvist proves that the internal Stokes problem has a unique solution
expressed by a double layer potential and that the external Stokes
problem has a solution which is the sum of a double layer potential
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and a simple layer potential for any prescribed boundary data9. Turn-
ing then to the nonlinear internal problem (1)–(3), an application of
the previous results and of the contraction theorem of S. Banach allows
Odqvist to prove the existence of a solution provided the data have
a sufficiently small “Hölder norm”. As pointed out in [15] p.2, these
results were quite consistent from the theoretical viewpoint as well as
in view of applications, bearing in mind the strongly nonlinear char-
acter of equations (1)1 and the fact that only for small values of the
Reynolds number there is agreement between experimental evidence
and Navier–Stokes theory. As a consequence, a strong impact among
the experts in the field had the celebrated paper by J. Leray [25] of
1933, where the existence of a solution to the internal Navier–Stokes
problem was proved for any Reynolds number in the sole assumption
of regular data and zero flux on any connected component ∂Ωi of ∂Ω:∫

∂Ωi

a · n = 0. (8)

Observe that, for relation (1)2, (8) is obviously satisfied if ∂Ω is
connected. As far as the external problem is concerned, using a
method called of invading domains , still under the hypothesis (8),
Leray showed the existence of a solution to equations (1), (3) with a
finite Dirichlet integral : ∫

Ω

|∇u|2 < +∞. (9)

In three dimensions, Leray proved that (9) assures that u “somehow”
tends to the assigned constant vector u0. In two dimensions, instead,
(9) cannot assure any type of convergence, as it can be satisfied by
functions that diverge at infinity, such as, for instance, logα r, α ∈
(0, 1/2).

Confining ourselves to the problems left open by Leray in two di-
mensions, the ones of major moment, in our opinion, are the follow-
ing10:

9A clear exposition of Odqvist’s results can be found in Chapter 3 of the mono-
graph by O.A. Ladyszenskaia [24].

10A detailed exposition of the problems left open by J. Leray in three dimensions
is contained in the monograph by G.P. Galdi [15]
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• (i) to ascertain that the solution in external domains constructed
by Leray satisfies the condition at infinity (4) or at least has a
limit at infinity;

• (ii) to drop, or at least to weaken, assumption (8).

As regards problem (i) a fundamental contribution was given in
1974 by D. Gilbarg e H.F. Weinberger [19]. They proved that Leray’s
solution11 converges at infinity to a constant vector κ in the L2 sense

lim
R→+∞

∫ 2π

0

|u− κ|2(R, θ) = 0.

Subsequently it was proved in [17] that the above convergence is uni-
form. Whether κ coincides with u0 or not is still an open problem.
The sole known example of a solved problem of type (i) is due to G.P.
Galdi [17]. If ∂Ω is symmetric with respect to the coordinate axes,
that is if

(ξ1, ξ2) ∈ ∂Ω ⇒ (−ξ1, ξ2), (ξ1,−ξ2) ∈ ∂Ω.

f = 0, u0 = 0 and

a1(ξ1, ξ2) = −a1(−ξ1, ξ2) = a1(ξ1,−ξ2),

a2(ξ1, ξ2) = a2(−ξ1, ξ2) = −a2(ξ1,−ξ2),

then the two-dimensional external Navier–Stokes problem has at least
one solution. Whether it is unique in some functional class is a quite
open problem.

The first two contributions to the solution of problem (ii) in bounded
domains are due to W. Borchers e K. Pileckas [3], G.P. Galdi [13] and
L.I. Sazonov [40] who, by developing a previous idea of R. Finn [9],
showed that Leray’s results keep holding under the assumption that
the fluxes

Φi =

∫
∂Ω

a · n

11By this expression we mean the solution constructed by the method of invading
domains.
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be sufficiently small. As regards external domains, we have recently
proved [36] the existence of a solution of the Leray type, therefore
converging at infinity according to the results of [19], [17], provided

αR

2π

k∑
i=1

|Φi| < 1,

where

α = sup
‖w‖

D
1,2
σ (R2)

=1

∣∣∣∣∫
R2

(log r) div(w · ∇w)

∣∣∣∣ .
If in addition Ω is symmetric with respect to its centroid, i. e. if

(ξ1, ξ2) ∈ ∂Ω ⇒ (−ξ1,−ξ2) ∈ ∂Ω (10)

and
a(ξ1, ξ2) = −a(−ξ1,−ξ2), (11)

then u uniformly converges to 0 at infinity.
In 1997 H. Fujita e H. Morimoto [12] gave the following interesting

contribution to the solution of problem (i) in bounded domains. If we
assume that a can be written in the form

a = Fh+ γ

with F ∈ R and h the gradient of an harmonic function and γ ∈
W 1/2,2(∂Ω) satisfying the condition∫

∂Ω

γ · n = 0,

then a countable set G of values of F exists such that if F 6∈ G, then
one can find a positive constant c0 depending on F, h and Ω for which,
if

‖γ‖W 1/2,2(∂Ω) < c0,

then system (1)–(3) has a solution.
Observe that, for all the results here quoted, the problems are

formulated in a variational framework, so that the boundary data are
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required to belong at least to suitable trace spaces. The results of [12]
have been extended in a recent paper [37] to the case of boundary
data belonging to Lebesgue spaces12.

The aim of the present thesis is to present, in a sufficiently self-
contained form, all we have learned during the four years of our Doc-
torate cycle about the problems described at items (i), (ii), as well as
the little contribution we have been able to give to their understand-
ing.

After explaining the most useful symbols and the mathematical
tools we shall use throughout the whole work (second and third sec-
tion of this chapter), in chapter 2 we shall develop the existence and
uniqueness theory for solutions to internal and external Stokes prob-
lems, essentially under the assumption that the boundary data belong
to some space Lq(∂Ω) (q > 1) and the forces belong to the Hardy
space H1(Ω). This study, which will end with the proof of the Stokes
paradox, is somehow “preparatory” to that of the (nonlinear) Navier–
Stokes problem, but has also an intrinsic interest because the most
part of the applications of the theory are concerned with the so-called
“slow motions of a viscous fluid”, obviously described by the linear
system (5) (cr., e.g., [23]). We shall use the theory of integral equa-
tions of Fredholm, following the perspective developed in [26], where
a particular emphasis is however reserved to classical solutions corre-
sponding to continuous boundary data and Hölder continuous forces.

In chapter II we shall present the existence theory for solutions to
the internal Navier–Stokes problem under the same assumptions on
data as in the linear problem, with q ≥ 2, and finally prove the results
of paper [37]. In the third and last chapter, we shall treat the much
more complex external Navier–Stokes problem, and give an extension
of the result proved in [36]. Precisely, we shall show that, if

a ∈ Lq(Ω), q ≥ 2,

and
R

2π

m∑
i=1

|Φi| < 1,

12In this paper the results of i Fujita–Morimoto have been also extended to
three–dimensional exterior domains
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then system(1) has a solution

(u, p) ∈ C∞(Ω)× C∞(Ω),

which “takes” the boundary datum a in a suitable sense, which co-
incides with the one of the nontangential convergence and with the
classical one for a ∈ Lq(∂Ω), q > 1, and a ∈ C(∂Ω) respectively.
Furthermore, there exist a vector κ and a scalar p0 such that

lim
r→+∞

u(x) = κ, lim
r→+∞

p(x) = p0,

uniformly and, if relations (10), (11) hold, then κ = 0.



Chapter 1

Notation and mathematical
tools

1.1 Notation

Throughout this thesis we shall adopt vector notation. R is the set of
the real numbers, N is the set of the natural numbers and N0 = N∪{0}.
Italic light face letters, different from o, x, y, ξ and ζ denote scalars (in
R; o is the origin of the reference frame (o, {e1, e2}), with {e1, e2}
orthonormal basis of R2 and we set e3 = e1 × e2; italic bold–face
lower case letters stand for vectors (in R2) and bold–face upper case
letters stand for second order tensors; the identity map is denoted by
I, which is also used to denote the unit second–order tensor; x, y are
points of R2 and ξ, ζ points on surfaces;

x = x− o, r = r(x) = |x|, x = rer, x 6= o;

a ·A = aiAijej, A · a = ajAijei, trA = Aii, A ·B = AijBij

where ai and Aij, Bij (i, j = 1, 2) are the components of the vector a
and of the second–order tensors A, B in {e1, e2}, and the convention
on repeated indexes is used; a ⊗ b is the second–order tensor with
component aibj; A

T is the transpose of A.

The greek letter Ω is reserved to denote a domain (open connected

17
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set) of R2; Ω stands for its closure, ∂Ω its boundary and {Ω = R2 \Ω;

SR = {x : |x| < R}, TR = S2R \ SR, ΩR = Ω ∩ SR.

Ω is bounded if there is a disk SR such that Ω ⊂ SR; Ω is of class C2

if , for every ξ ∈ ∂Ω, there is a neighborhood of ξ (in ∂Ω) with is the
graph of a function of class C2. The function δ = δ(x) stands for the
distance of x from ∂Ω. We set

Ω(t) = {x ∈ Ω : δ(x) < t}.

• Let Ωi, i = 0, 1, . . . ,m, be m+1 bounded domains (m ∈ N) with
connected boundaries and

Ω′ =
m⋃
i=1

Ωi; Ωi ⊂ Ω0, i 6= 0; Ωi ∩ Ωj = ∅, i 6= j 6= 0.

In the sequel we shall consider the bounded domain

Ω = Ω0 \ Ω′ (1.1.1)

and the exterior domain

Ω = R2 \
m⋃
i=1

Ωi. (1.1.2)

The unit normal vector n to ∂Ω is chosen interior with respect
to Ω′ and exterior with respect to Ω0.

If Ω is exterior, SR0 denotes a disk containing Ω′.

• We shall always assume that the above domains are of class C2.

Let ϕ be a (scalar, vector or second order tensor) field in an exterior
domain Ω and let f be a positive function in (0,+∞). As is customary,

ϕ = o(f) ⇔ lim
r→+∞

|ϕ(x)|
f(r)

= 0
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and
ϕ = O(f) ⇔ |ϕ(x)| ≤ cf(r), ∀x ∈ {SR0 .

Let ϕ(x) be a k-time differentiable function in Ω; ∇ϕ is the vector
with components ∂iϕ = ∂ϕ/∂xi and we set

∇iϕ = ∇ . . .∇︸ ︷︷ ︸
i−times

ϕ, i = 1, . . . , k; ∇1ϕ = ∇ϕ, ∇0ϕ = ϕ.

Let k ∈ N0. Ck(Ω) (C(Ω) = C0(Ω)) is the linear space of functions
ϕ such that ∇iϕ is continuous in Ω for all i = 0, . . . , k; Ck(Ω) is
the subspace of Ck(Ω) of functions ϕ such that ∇iϕ is bounded and
uniformly continuous in Ω; it is a Banach space endowed with the
norm

‖ϕ‖Ck(Ω) = max
i=0,...k

sup
Ω
|∇iϕ|;

Ck,α(Ω), α ∈ (0, 1], is the subspace of Ck(Ω) of functions ϕ such
that ∇iϕ is (locally) Hölder continuous and Ck,α(Ω)(⊂ Ck(Ω)) is the
Banach space endowed with the norm

‖ϕ‖Ck,α(Ω) = max
i=0,...k

sup
x 6=y∈Ω

|∇iϕ(x)−∇iϕ(y)|
|x− y|α

Analogous definitions are given for function defined over ∂Ω .
The symbol R denotes the three dimensional linear space of rigid

motions % on the plane

%(x) = κ+ αe3 × x,

for all constant vectors k and for all scalars α. Moreover, denoting by
A a a subset of R2, RA indicates the restrictions of the fields of R to
A.

We set
C∞(Ω) =

⋂
k∈N0

Ck(Ω)

and we denote by C∞0 (Ω) the subset of C∞ of functions ϕ such that
∇kϕ have a compact supports in Ω for all k ∈ N0.

Let u(x) = ui(x)ei, S(x) = Sij(x)ei⊗ej be a vector and a second–
order tensor field in Ω, with ui, Sij ∈ Ck(Ω); ∇u is the second–order
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tensor field with components (∇u)ij = ∂uj/∂xi, divu = tr∇u and
∆u = div∇u; divS is the vector field with components ∂Sij/∂xj; ac-
cordingly, u ·∇u is the vector with components ui∂uj/∂xi. Analogous
definitions are given for higher derivatives. We shall not distinguish in
notation between scalar, vector or tensor function spaces; for instance,
u ∈ C(Ω) means ui ∈ C(Ω), i = 1, 2 and ‖u‖C(Ω) = supΩ |u|. We set

∇̂u = 1
2
(∇u+∇uT), ∇̃u = 1

2
(∇u−∇uT).

The symbols c, c0,... denote positive constants whose numerical
value are not essential to our purposes and may have different value
in a same line. When the dependence on a parameter λ has to be
specified, we write c(λ).
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1.2 Some mathematical tools

In this section we recall the main properties of the function spaces we
use in this work. We quickly premise some necessary tools of functional
analysis [28].

If B a Banach space with norm ‖ · ‖B, by B∗ we denote its dual
(the linear space of all linear and continuous functional from B to R)
endowed with topologies induced by the norm (strong topology)

‖u∗‖B∗ = sup
‖u‖B=1

〈u∗, u〉,

where 〈u∗, u〉 denotes the value of the functional u∗ at u, by the family
of seminorms {pu∗}u∗∈B∗ (weak topology)

pu∗(u) = 〈u∗, u〉.

If the canonical immersion B → (B∗)∗ is onto, then B is called reflex-
ive. In such a case, if A ⊂ B is bounded in the strong topology, then
A is compact in the weak topology.

Let B′ be another Banach space and let

K : B → B′ (1.2.1)

be a linear operator from B to B′. Recall that operator

K∗ : B′
∗ → B∗ (1.2.2)

defined by the reciprocity relation

〈K∗[u′∗], u〉 = 〈u′∗,K[u]〉, ∀u ∈ B, ∀u′∗ ∈ B′∗,

is called the adjoint of K.
The operator (1.2.1) is completely continuous if it is contiguous

and K(A) is a compact subset of B′ for every bounded subset A of B,
i.e, if for every bounded sequence {uk}k∈N of B from {K[uk]}k∈N we
can extract a subsequence which converges in B′. By a well–known
theorem K is completely continuous if and only if K∗ is completely
continuous.
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Consider the operator

I + µK : B → B (1.2.3)

for µ ∈ R. The following result is known as Fredholm alternative [28].

Lemma 1.2.1 If K is linear and completely continuous, then there is
a countable subset G of R such that the map (1.2.3) is invertible for
all µ 6∈ G. Moreover, if µ ∈ G, then

dim Ker
(
I + µK

)
= dim Ker

(
I + µK∗

)
∈ N0

and the equation

u′ =
(
I + µK

)
[u]

[
resp. u′

∗
=
(
I + µK∗

)
[u∗]
]

has a solution if and only if

〈u∗, u′〉 = 0
[
resp. 〈u′∗, u〉 = 0

]
for all u∗ ∈ Ker

(
I + µK∗

) [
resp. u ∈ Ker

(
I + µK

)]
.

Consider a map
T : B → B.

A fixed point of T is a point ū of B such that

ū = T [ū].

The following results are classical (see, e.g., [8]).

Lemma 1.2.2 If T is a contraction, i.e., there is µ ∈ (0, 1) such that

‖T [u]‖B ≤ µ‖u‖B,

then T has a unique fixed point in B.

We shall use a simple consequence of Lemma 1.2.2.
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Lemma 1.2.3 Let
T [u] = u0 +W [u],

with
‖W [u]‖B ≤ c0‖u‖2

B.

If

‖u0‖B <
1

4c0

,

then T has a unique fixed point in the ball

S =

{
u ∈ B : ‖u‖B <

1

2c0

}
.

Proof - If u ∈ S then

‖T [u]‖B ≤
1

4c0

+ c0‖u‖2
B ≤

1

2c0

so that T maps the Banach space S̄ into itself. Since

‖T [u1 − u2]‖B ≤ c0‖u1 − u2‖2
B ≤

1

2
‖u1 − u2‖B,

T is a contraction on S, where by Lemma 1.2.2 it has a unique fixed
point. �

Lemma 1.2.4 . Let T be a completely continuous map from B into
itself. If the set

{u ∈ B : u = µT [u], µ ∈ [0, 1]}

is bounded, then T has a fixed point.

• Lq(Ω) (Lebesgue’s spaces) and W k,q
0 (Ω) (Sobolev’s spaces), with

k ∈ N and q ∈ (1,+∞) are the completion of C∞0 (Ω) with respect to
the norm

‖u‖Lq(Ω) =

{∫
Ω

|u|q
}1/q

,

‖u‖W 1,q(Ω) =

{
‖u‖qLq(Ω) +

k∑
i=1

‖∇iu‖qLq(Ω)

}1/q

,
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respectively.

We denote by L1
loc(Ω) the linear space of all u ∈ L1(Ω′) for all

measurable subset Ω′ of Ω and by L1
loc(Ω) the linear space of all u ∈

L1(K) for all compact K contained in Ω.

L∞(Ω) is the space of all u ∈ L1
loc(Ω) such that |u(x)| ≤ c for some

positive constant c and almost all x ∈ Ω. L∞(Ω) is a Banach space
with norm

‖u‖L∞(Ω) = inf {c : |u(x)| ≤ c, a.e. on Ω}.

Lq
′
(Ω) is the dual space of Lq(Ω) (q > 1), where

1

q
+

1

q′
= 1, (1.2.4)

while L∞(Ω) is the dual space of L1(Ω). Therefore, for q > 1, Lq(Ω) is
reflexive so that, if {uk}k∈N is a bounded sequence in Lq(Ω), (q > 1),
then there is u ∈ Lq(Ω) such that along a subsequence {uk′}

lim
k′→+∞

∫
Ω

uk′v =

∫
Ω

uv, (1.2.5)

for all v ∈ Lq′(Ω).

• W k,q(Ω) is the completion of the space

{u ∈ Ck(Ω) : ‖u‖Wk,q(Ω) < +∞}

with respect to the norm ‖u‖Wk,q(Ω). Analogous definitions are given
for the Lebesgue and Sobolev spaces on ∂Ω [28].

Let B and B′ be two Banach space. The symbol B ↪→ B′ means
that B ⊂ B′ and I : x ∈ B → x ∈ B′ is continuous. Moreover,

B
c
↪→ B′ means that I is also compact.

We recall the classical embedding theorems [21], [28].



25

Lemma 1.2.5 If k ∈ N and q ∈ [1,+∞), then1

W k,q(Ω) ↪→ Lq
∗
(Ω), q < 2, q∗ = 2q/(2− kq) ∈ [1,+∞);

W 1,2(Ω) ↪→ Lq(Ω), q ∈ [2,+∞).

Moreover, if Ω is bounded, then

W k,q(Ω) ↪→ Ch,µ(Ω), kq > 2, h = [k − 2/q],

µ = k − h− 2/q, for k − 2/q 6∈ N;

W k,q(Ω) ↪→ Ck−1−2/q,µ(Ω), kq > 2, µ ∈ (0, 1)

for k − 2/q ∈ N.

Lemma 1.2.6 Let Ω be a bounded domain. Then

W 1,q(Ω)
c
↪→ Lq̄(Ω), q̄ < 2q/(2− q);

W 1,2(Ω)
c
↪→ Lq(Ω), q ∈ [1,+∞),

C0,µ(Ω)
c
↪→ C(Ω), µ > 0.

The space W 1−1/q,q(∂Ω) (q > 1) is the set of all u ∈ Lq(∂Ω) such
that the seminorm

[u]q1−1/q =

∫
∂Ω

{∫
∂Ω

u(ξ)− u(ζ)|q

|ξ − ζ|q
dsζ

}
dsξ

is finite. Endowed with the norm

‖u‖W 1−1/q,q(∂Ω) =
{
‖u‖pLq(∂Ω) + [u]q1−1/q

}1/q

,

W 1−1/q,q(∂Ω) is a Banach space. Let Lqdiv(Ω) and Lqdiv,0 be the com-

pletion of C∞0 (Ω) and C∞0 (Ω) respectively with respect to the norm

‖u‖Lqdiv(Ω) = ‖u‖Lq(Ω) + ‖ divu‖Lq(Ω).

1As is customary, if h ∈ R, then [h] means the smallest integer such that [h] < h
and {h} = h− [h].
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Lemma 1.2.7 Let Ω be a bounded domain. The classical trace oper-
ators

ϕ ∈ C(Ω)→ tr|∂Ω ϕ ∈ C(∂Ω),

u ∈ C(Ω)→ tr|∂Ω(u · n) ∈ C(∂Ω)

extend uniquely to bounded onto maps

τ [ϕ] : W 1,q(Ω)→ W 1−1/q,q(∂Ω) ↪→ Lq/(2−q)(∂Ω),

τn[ϕ] : Lqdiv(Ω)→ [W 1−1/q′,q′(Ω)]∗

for every q ∈ (1,+∞). Moreover Ker τ = W 1,q
0 (Ω), Ker τn = Lqdiv,0(Ω)2

and the generalized divergence theorem holds∫
Ω

u · ∇ϕ = 〈τn[u · n], τ [ϕ]〉 −
∫

Ω

ϕ divu, (1.2.6)

for all ϕ ∈ W 1,q′(Ω) and u ∈ Lqdiv(Ω).

• Let u ∈ L1
loc(R2) and let

G = {φ ∈ C∞0 (R2) : suppφ ⊂ S1(o), ‖∇φ‖L∞(R2) < 1}.

Set

u?(x) = sup
t>0

sup
φ∈G

∣∣∣∣∫
R2

1

t3
φ

(
x− y
t

)
u(y)day

∣∣∣∣ .
We say that u belongs to the Hardy space H1(R2) if

u? ∈ L1(R2).

H1(R2) is a Banach space with the norm defined by

‖u‖H1(R2) = ‖u?‖L1(R2).

If u ∈ H1(R2), then necessarily∫
R2

u = 0

2If T is an operator between the spaces B and B′, Ker T = {u ∈ B : T [u] = 0}.
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and the set {
u ∈ C∞0 (R2) :

∫
R2

u = 0

}
is dense in H1(R2) [44].

The Hardy space on Ω, H1(Ω), if defined as the set of all f ∈ L1(Ω)
such that function

f̃(x) =

{
f(x), x ∈ Ω,

0, x 6∈ Ω

belongs to H1(R2).

Let u ∈ L1
loc(Ω). We say that u is weakly divergence free if∫

Ω

u · ∇φ = 0, ∀ϕ ∈ C∞0 (Ω).

If V is a linear subspace of L1
loc(Ω), by Vσ we denote of all weakly

divergence free vector field of V . Of course, if u ∈ W 1,q
σ,loc(Ω), then

divu = 0 almost everywhere in Ω.

• D1,q
0 (Ω) and D1,q(Ω) are the completion of C∞0 (Ω) and C∞0 (Ω)

respectively with respect to the semi–norm ‖∇u‖Lq(Ω). A function in

D1,q
0 (Ω) has zero trace on ∂Ω.

Te following result is proved in [5].

Lemma 1.2.8 If u ∈ D1,2
σ (R2), then div(u · ∇u) ∈ H1(R2).

Let B a bounded measurable subset of R2. For u ∈ L1(B), we set

uB =
1

|B|

∫
B

u,

where |B| denotes the measure of B.

A proof of the following results can be find in [13].
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Lemma 1.2.9 Let Ω be a bounded domain. There is a positive con-
stant c(Ω, q) such that∫

Ω

|u− uΩ|q ≤ c

∫
Ω

|∇u|q, (1.2.7)

for all u ∈ D1,q(Ω), and ∫
Ω

|u|q ≤ c

∫
Ω

|∇u|q, (1.2.8)

for all u ∈ D1,q
0 (Ω), q ∈ (1,+∞).

The constant c in (1.2.7) is invariant under dilatation; in particular,
if Ω is the shell TR and q = 2, then∫

TR

|u− uTR |2 ≤ c0R
2

∫
TR

|∇u|2, (1.2.9)

with c0 independent of R.
By (1.2.8) if Ω is bounded, then the spaces D1,q

0 (Ω) and W 1,q
0 (Ω)

are equivalent.

Lemma 1.2.10 Let Ω be a bounded domain. There is a positive con-
stant cσ(Ω, q) such that ∫

Ω

|u|q ≤ cσ

∫
Ω

|∇u|2,

for all u ∈ W 1,2
0 (Ω), q ∈ (1,+∞).

Lemma 1.2.11 Let Ω be a bounded domain. There is a positive con-
stant c(Ω, q) such that ∫

Ω

|u|q

δq
≤ c

∫
Ω

|∇u|q,

for all u ∈ W 1,q
0 (Ω), q ∈ (1,+∞).
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Let (r, θ) be a polar coordinate system in R2. Set

ū(r) =

∫ 2π

0

u(r, θ).

Lemma 1.2.12 If ∂θu(r, θ) ∈ L2(0, 2π), then∫ 2π

0

|u− ū|2(r, θ) ≤
∫ 2π

0

|∂θu|2(r, θ), (1.2.10)

Lemma 1.2.13 Let Ω be a bounded domain. If f ∈ W k−1,q
0 (Ω), with

k ∈ N, q ∈ (1,+∞) and fΩ = 0, then the problem

divu = f in Ω (1.2.11)

admits a solution u ∈ W k,q
0 (Ω) and

‖u‖Wk,q(Ω) ≤ c‖f‖Wk−1,q(Ω),

with c(Ω, q) invariant under dilatations.

Lemma 1.2.14 Let Ω be a bounded or an exterior domain. If u ∈
Lq(Ω) and ∫

Ω

u ·ϕ = 0,

for all ϕ ∈ D1,q′

σ,0 (Ω), then there is a unique Q ∈ Lq(Ω) such that∫
Ω

u · φ =

∫
Ω

Q divφ,

for all for all φ ∈ D1,q′

0 (Ω).

We shall also use the elementary arithmetic–geometric mean in-
equality

± 2ab ≤ α|a|2 +
|b|2

α
, (1.2.12)

for all a, b ∈ R and for all positive α.
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Chapter 2

Steady Stokes flow in
bounded and exterior
domains

2.1 The Navier–Stokes equations

The stationary flows of a viscous fluid F filling a region identified
with a domain Ω of R2 are given by the solutions of the steady–state
Navier–Stokes equations

∆u− u · ∇u−∇p = f in Ω,

divu = 0 in Ω,
(2.1.1)

where

• u : Ω→ R2 is the (unknown) kinetic field,

• p : Ω→ R is the (unknown) pressure field,

• f : Ω→ R2 is the (assigned) body force field,

and for simplicity we set the Reynolds number equal to one.
Very clear expositions of the basic physical facts concerning equa-

tions (2.1.1) can be found in [14], [15], [22].

31
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Unless otherwise explicitly stated, from now on we shall consider

I the bounded and exterior domains defined by (1.1.1), (1.1.2)
respectively with boundary of class C2. /

The boundary value problems associated to system (2.1.1) in a
bounded and in an exterior domain will be called interior and exterior
respectively.

The stress tensor field associated to (u, p) is the second order tensor
field

T (u, p) = 2∇̂u− pI,

while the traction field on ∂Ω is the vector field1

T (u, p)n = 2∇̂u · n− pn.

With this notation (2.1.1) can be written in the dynamical form [22]

u̇ = divT (u, p)− f
divu = 0

in Ω, (2.1.2)

where the so called inertial term

u̇ = u · ∇u

is the molecular derivative of u [22].
In the exterior problem we can identify Ω′ with an “obstacle” B

moving in the fluid. In this case the net force exerted by F on B is
the vector

s =

∫
∂Ω

T (u, p)n (2.1.3)

while the total force exerted by the environment on B is the vector

τ =

∫
∂Ω

T (u, p)n+

∫
Ω

f (2.1.4)

where, of course, we have assumed that the integrals have a meaning.

1Recall that n denotes the unit normal exterior to ∂Ω (with respect to Ω′) for
Ω bounded, and interior to Ω (with respect to Ω′) for Ω exterior.
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I Let f ∈ [D1,q′

0 (Ω)]∗. A weak solution (variational solution for
q = 2)2 of the Navier–Stokes equations is a pair

(u, p) ∈ W 1,q
σ,loc(Ω)× Lqloc(Ω) (2.1.5)

which satisfies the relation∫
Ω

∇u · ∇φ+

∫
Ω

u · ∇u · φ+ 〈f ,φ〉 =

∫
Ω

p divφ (2.1.6)

for all φ ∈ C∞0 (Ω). /

I Let f ∈ C0,µ
loc (Ω), µ ∈ (0, 1]. A classical solution of the Navier–

Stokes equations is a pair

(u, p) ∈ C2(Ω)× C1(Ω) (2.1.7)

which satisfies pointwise equations (2.1.1). /

2In the sequel, we shall not give a particular emphasis to weak solutions of the
Stokes and Navier–Stokes problems. It will appear clear from the context as exis-
tence of a weak solution can be derived by our results under suitable assumptions
on f and a. On the other hand, a complete treatment of the variational theory is
performed in [14], [15] (see also [24], [45]).
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2.2 The Navier–Stokes problem

Let a a field on ∂Ω which denotes the velocity field of the boundary of
∂Ω. The classical adherence boundary condition required in a motion
of F consists in assuming that a particles of F which lies in a point ξ
has the same velocity of ξ, i.e. the velocity field of F at the boundary
coincides with a. Formally, the boundary value problem associated to
the stationary Navier–Stokes equations consists in finding a solution
to the equations

∆u− u · ∇u−∇p = f in Ω,

divu = 0 in Ω,

u = a on ∂Ω.

(2.2.1)

If Ω is unbounded we also require that

lim
r→+∞

u(x) = u0, (2.2.2)

where u0 is an assigned constant vector.

I If f ∈ [D1,q′

0 (Ω)]∗ and a ∈ W 1−1/q,q(∂Ω), a weak solution (vari-
ational solution for q = 2) of the Navier–Stokes problem (2.2.1) is a
pair (2.1.5) such that tru∂Ω = a. If f ∈ C0,µ

loc (Ω) and a ∈ C(∂Ω), a
classical solution of system (2.2.1) is a pair (2.1.7) such that u sat-
isfies pointwise (2.2.1)3. Analogous definitions are given for problem
(2.2.1)–(2.2.2). /

I Let f = 0. Taking the curl operator in (2.2.1)1 we see that the
function

ω = ∂1u2 − ∂2u1 (2.2.3)

satisfies the equation

∆ω − div(ωu) = 0. (2.2.4)

Moreover, taking the div operator in (2.2.1)1 one notes that the pres-
sure field is a solution of the Poisson equation

∆p+ div(u · ∇u) = 0. (2.2.5)
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Multiplying (2.2.1)1 scalarly by u and taking into account that

u ·∆u = 1
2
∆|u|2 − |∇u|2,

|∇u|2 = u · ∇u+ ωe3 × u,

it is simple to see that the head pressure function

Π = p+ 1
2
|u|2 (2.2.6)

is a solution of the equation

∆Π − div(Πu) = ω2. (2.2.7)

/
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2.3 The Stokes equations

By formally setting u·∇u = 0 in (2.1.1) , we have the Stokes equations

∆u−∇p = f in Ω,

divu = 0 in Ω.
(2.3.1)

Of course, the definition of regular and weak solutions of (2.3.1) are
the ones we gave for the Navier–Stokes equations with the nonlinear
term equal to zero.

The pressure field p in systems (2.1.1) and (2.3.1) are defined
within an additive arbitrary constant. As usual, if Ω is bounded,
we normalize p(∈ L1(Ω)), by setting∫

Ω

p = 0. (2.3.2)

The equations

∆u = ∇p,
divu = 0

(2.3.3)

admits the fundamental solutions (see [24] Ch. 3) (U(x−y), q(x−y))
defined by

Uij(x− y) = − 1

4π

[
δij log

1

|x− y|
+

(xi − yi)(xj − yj)
|x− y|2

,

]
qi(x− y) =

1

2π

∂

∂xj
log

1

|x− y|
.

(2.3.4)

Let f ∈ C∞0 (Ω), let (u, p) be a regular solution of equations (2.3.1)
and set

T ′(U(x− y), q(x− y)) = pI +∇yU +∇yU
T.

Following [24] Ch. 3, we can prove the following representation for-
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mula of u in a bounded domain

u(x) =

∫
Ω

U(x− y) · f(y) day −
∫
∂Ω

U(x− ξ) · [T (u, p)n](ξ) dsξ

+

∫
∂Ω

u(ξ) · T ′(U(x− ξ), q(x− ξ)) · n(ξ) dsξ,

p(x) =

∫
Ω

q(x− y) · f(y) day −
∫
∂Ω

q(x− ξ) · [T (u, p)n](ξ) dsξ

− 2

∫
∂Ω

u(ξ) · ∇ξq(x− ξ) · n(ξ) dsξ.

(2.3.5)
Then, starting from (2.3.5) and repeating a classical argument (see,
e.g., [7] p. 120), we see that if Ω is an exterior domain and u = o(r),
then there is a constant vector u0 and a constant scalar p0 such that

u(x) = u0 +

∫
Ω

U(x− y) · f(y) day +

∫
∂Ω

U(x− ξ) · [T (u, p)n](ξ) dsξ,

−
∫
∂Ω

u(ξ) · T ′(U(x− ξ), q(x− ξ)) · n(ξ) dsξ,

p(x) = p0 +

∫
Ω

q(x− y) · f(y) day +

∫
∂Ω

q(x− ξ) · [T (u, p)n](ξ) dsξ

+ 2

∫
∂Ω

u(ξ) · ∇ξq(x− ξ) · n(ξ) dsξ.

(2.3.6)
Hence it easily follows

Lemma 2.3.1 Let (u, p) be a regular solution of system (2.3.1) in an
exterior domain. If f ∈ C∞0 (Ω) and

u = o(r), (2.3.7)

then there are a constant vector u0 and a scalar p0 such that (u, p)
admits the following representation

u(x) = u0 +U(x) · τ + ω(x)

p(x) = p0 + q(x) · τ + α(x)
(2.3.8)
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with τ defined in (2.1.4) and ω, α satisfy

∇kω = O(r1−k−n), ∇kα = O(r−k−n),

for all k ∈ N0.

Note that if

u = o(log r), (2.3.9)

then (2.3.8) implies that

τ = 0. (2.3.10)

From Lemma 2.3.1 we have

Theorem 2.3.1 Let (u, p) be a regular solution of system (2.3.1) in
an exterior domain. If u is constant on ∂Ω and vanishes at infinity,
then then u = 0 in Ω.

Proof - Multiply (2.3.3)1 scalarly by u. Then, making use of the
identities

u · divT (u, p) = div[u · T (u, p)]− 2|∇̂u|2,

integrating over ΩR and taking into account (2.3.10) and that u is
constant on ∂Ω (say c), we get

2

∫
ΩR

|∇̂u|2 = −c ·
∫
∂Ω

T (u, p)n+

∫
∂SR

u · T (u, p)eR

=

∫
∂SR

u · T (u, p)eR.

(2.3.11)

By Lemma 2.3.1 and (2.3.9)

u = O(r−1, p = p0 +O(r−2), ∇u = O(r−2)

so that, since ∫
∂SR

pu · eR =

∫
∂SR

(p− p0)u · eR,
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it holds ∫
∂SR

u · T (u, p)eR = O(R−1).

Then letting R→ +∞ in (2.3.11) we see that ∇u = 0 in Ω. Hence it
follows that u = 0 in Ω, taking into account that Ω is connected and
u vanishes on ∂Ω. �

We shall need also the following well–known uniqueness results
which follows from the the well–known relation

2

∫
Ω

|∇̂u|2 =

∫
∂Ω

u · T (u, p)n

and (2.3.11) respectively in bounded and exterior domains.

Lemma 2.3.2 If (u, p) is a regular solution of system (2.3.3) in a
bounded domain vanishing on ∂Ω, then u = 0 and p is a constant.

Lemma 2.3.3 If (u, p) is a regular solution of system (2.3.3) in a
bounded domain such that T (u, p)n = 0 on ∂Ω, then p = 0 and u is
a rigid motion.

Lemma 2.3.4 If (u, p) is a regular solution of system (2.3.3) in an
exterior domain such that T (u, p)n = 0 on ∂Ω and u · T (u, p) =
o(r−1), then p = 0 and u is constant vector

• Remark 2.3.1

Note that if (u, p) is a variational solution of system (2.3.3) then we
can use the generalized divergence theorem (1.2.6) to see that (2.3.5)
and (2.3.8) and their consequences also hold (with f vanishing outside
a bounded set for Ω exterior) for weak solutions of equations (2.3.1).
Moreover, if (u, p) is a variational solution, we have

2

∫
Ω

|∇̂u|2 = 〈T (u, p)n,u〉

for bounded domains and

2

∫
Ω

|∇̂u|2 = −〈T (u, p)n,u〉+

∫
∂SR

u · T (u, p)eR

for exterior domains. Hence it follows that Theorem 2.3.1 and Lemmas
2.3.2, 2.3.3, 2.3.4 retain their validity for variational solutions. ♦
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2.4 The Stokes volume potential

The pair

V [f ](x) =

∫
Ω

U (x− y) · f(y) day

P [f ](x) =

∫
Ω

q(x− y) · f(y) day

(2.4.1)

is known as Stokes’ volume potential with density f . It is a solution
of equations (2.3.1) in a sense we specify below.

The integral transforms (2.4.1) enjoy several important properties
(see [27], [28], [44]). We recall here the ones we shall use more fre-
quently in the sequel. If Ω is a bounded domain, then

(ı) f ∈ C0,µ(Ω)⇒ (V [f ],P [f ]) ∈ C2,µ(Ω)× C1,µ(Ω);

(ıı) f ∈ Lq(Ω), q ∈ (1,+∞)⇒ (V [f ],P [f ]) ∈ W 2,q(Ω)×W 1,qΩ);

(ııı) f ∈ [W 1,q′(Ω)]∗, q ∈ (1,+∞) ⇒ (V [f ],P [f ]) ∈ W 1,q(Ω) ×
Lq(Ω).

If Ω is a bounded or an exterior domain, then

(ıv) f ∈ H1(Ω)⇒ (V [f ],P [f ]) ∈ [D2,1(R2) ∩D2,1(R2)]×D1,1(R2).

Note that, since for ϕ ∈ C∞0 (R2)

ϕ(x1, x2) =

∫ x1

∞

∫ x2

∞
∂2
ξ1ξ2

ϕ(ξ1, ξ2)

it holds
‖ϕ‖L∞(R2) ≤ ‖ϕ‖D2,1(R2).

Since D2,1(R2) is the closure of C∞0 (R2) with respect to ‖ϕ‖D2,1(R2), de-
noting by C0(R2) the completion of C∞0 (R2) with respect to ‖ϕ‖L∞(R2),
we have that

D2,1(R2) ↪→ C0(R2).

Recall that a function in C0(R2) tends to zero uniformly at infinity
(see, e.g., [35]). Therefore, in the case (ıv) the field V [f ] is continuous
and tends to zero uniformly at infinity.
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As a simple consequence of the above properties, we can say that
(V [f ],P [f ]) satisfies (2.3.1) pointwise in Ω if f is Hölder continuous
in Ω; pointwise almost everywhere if f ∈ H1(Ω) and (2.1.5) (with
u · ∇u = 0) if f ∈ [W 1,q′(Ω)]∗.

I Let Ω be bounded. If f = divF , with F ∈ Lq(Ω), then f ∈
[D1,q′(Ω)]∗ and from (ııı) it follows that V[f ] ∈ W 1,q(Ω) and τ

[
V[f ]

]
∈

Lq/(2−q)(∂Ω). /
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2.5 The Stokes layer potentials

Let ∂Ω be a closed curve of class C2. In the next three sections we
shall only consider the bounded domain defined by the point interior
to ∂Ω, and the exterior domain

Ω
−

= R2 \ Ω+ .

This will allows us to use in a more simple way the methods of layer
potentials to study the boundary value problems associated to the
Stokes equations. Then, in Section 2.12 we shall observe as the results
we derive can be extended to the general cases (1.1.1) and (1.1.2).

Let ψ,ϕ ∈ L1(∂Ω). The Stokes simple and double layer potentials
are the pair defined respectively by [24]

v[ψ](x) = −
∫
∂Ω

U(x− ζ) ·ψ(ζ) dsζ ,

P [ψ](x) = −
∫
∂Ω

q(x− ζ) ·ψ(ζ) dsζ

(2.5.1)

and

w[ϕ](x) =

∫
∂Ω

ϕ(ζ) · T ′(U , q)(x− ζ) · n(ζ) dsζ ,

$[ϕ](x) = −2 div

∫
∂Ω

(q(x− ζ) ·ψ(ζ))n(ζ) dsζ .

(2.5.2)

They are analytical solutions to system (2.3.3) in R2 \ ∂Ω. Moreover,
in virtue of the expression of the fundamental solution (2.3.4)

v[ψ](x) = O(log r), ∇kv[ψ](x), ∇k−1P [ψ](x) = O(r−k), (2.5.3)

for all k ∈ N,

∇kv[ψ](x), ∇kP [ψ](x) = O(r−1−k) ⇔
∫
∂Ω

ψ = 0, (2.5.4)

for all k ∈ N0, and

∇kw[ϕ](x) = O(r−1−k), ∇k$[ϕ](x) = O(r−k−2) (2.5.5)
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for all k ∈ N0.
It is a classical result (see [27] Lemma 33) that the trace of v[ψ]

on ∂Ω is a field defined almost everywhere on ∂Ω by the limit

S[ψ](ξ) = lim
t→0+

v[ψ](ξ ± tn), (2.5.6)

exists, for almost all ξ ∈ ∂Ω. If ψ is continuous, then (2.5.6) holds
everywhere on ∂Ω.

A simple computation shows that [24]

K(x, ζ) = T ′(U , q)(x−ζ)·n(ζ) = − 1

π

(x− ζ)⊗ (x− ζ)[(x− ζ) · n(ζ)]

|x− ζ|4
.

Since n is of class C1, the kernel K(x, ζ) is bounded on ∂Ω. Hence
it follows that the trace of w[ϕ] exists on both sides of ∂Ω and suffers
a weak discontinuity (see [27] Ch. II):

W±[ϕ] = lim
t→0+

w[ϕ](ξ ∓ tn) = (±1
2
I +K)[ϕ](ξ), (2.5.7)

for almost all ξ ∈ ∂Ω, where we set

K[ϕ](ξ) =

∫
∂Ω

ϕ(ζ) · T ′(U , q)(ξ − ζ) · n(ζ) dsζ .

The trace of the traction of the simple layer potential is given by

T ±[ψ] = limt→0+ [T (v[ψ], P [ψ])n](ξ ± tn)

= (±1
2
I − K∗)[ψ](ξ),

(2.5.8)

where K∗ is the adjoint of K defined by

K∗[ψ](ξ) = − 1

π

∫
∂Ω

(ξ − ζ)⊗ [(ξ − ζ) ·ψ(ζ)][(ξ − ζ) · n(ξ)]

|ξ − ζ|4
dsζ .

From (2.5.6) and (2.5.8) it follows the jump relations

W+[ϕ]−W−[ϕ] = ϕ (2.5.9)

and
T +[ψ]− T −[ψ] = ψ. (2.5.10)

In the sequel we recall some classical properties of the Stokes layer
potentials that are a consequence of the following well–known result
(see [27], Ch. II).
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Lemma 2.5.1 The operators K, K∗ map Lq(∂Ω), q > 1, into C0,µ(∂Ω)
and C0,µ(∂Ω) into C1,µ(∂Ω), for every µ ∈ (0, 1).

Then, by lemma 1.2.6 K,K∗ are compact from Lq(∂Ω) into itself
and to the equation (say)

a = (1
2
I +K)[ϕ] (2.5.11)

we can apply the Fredholm alternative (Lemma 1.2.1) to say that

• (i) either the homogeneous equation

(1
2
I +K)[ϕ] = 0

has only the null solution and (2.5.11) is uniquely solvable for every
a ∈ Lq(∂Ω);

• (ii) or

dim Ker
(

1
2
ϕ+K[ϕ]

)
= dim Ker

(
1
2
ψ +K∗[ψ]

)
∈ N

and (2.5.11) is solvable if and only if∫
∂Ω

a ·ψ = 0, (2.5.12)

for all ψ ∈ Ker
(

1
2
ψ +K∗[ψ]

)
. Of course, the same results hold for

the equation a = −1
2
ϕ+K[ϕ].

Moreover, from Lemma 2.5.1 it follows

• (j) if a ∈ Ck,µ(∂Ω) (k = 0, 1, µ ∈ (0, 1)) satisfies (2.5.11), then
ϕ ∈ Ck,µ(∂Ω);

• (jj) if a ∈ W 1−1/q,q(∂Ω), q ∈ (1,+∞), satisfies (2.5.11), then
ϕ ∈ W 1−1/q,q(∂Ω);

• (jjj) if a ∈ W 1,q(∂Ω), q ∈ (1,+∞), satisfies (2.5.11), then ϕ ∈
W 1,q(∂Ω).
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Clearly,
Ker

(
1
2
ϕ+K[ϕ]

)
⊂ C1,µ(∂Ω),

for every µ ∈ (0, 1). Then from the classical Lyapounov–Tauber the-
orem (see [27], Theorem 15.V) it follows

lim
t→0+

[T (w[ϕ], $[ϕ])n](ξ + tn) = lim
t→0+

[T (w[ϕ], $[ϕ])n](ξ − tn)

(2.5.13)
i.e, the traction of the double layer potential with a regular density is
continuous across ∂Ω.
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2.6 The Stokes problem in bounded do-

mains

Let a ∈ Lq(∂Ω) and let f ∈ H1(Ω
+

). The interior Stokes problem is
to find a solution to the equations

∆u−∇p = f in Ω
+
,

divu = 0 in Ω
+
,

u = a on ∂Ω.

(2.6.1)

Following a classical procedure [24], [26], we look for a solution of
(2.6.1) expressed by

u(x) = w[ϕ] + V [f ],

p(x) = $[ϕ] + P [f ]
(2.6.2)

in the unknown field ϕ ∈ Lq(∂Ω), for some ψ ∈ Ker T −. Then by
(2.5.7), we have to solve the functional equation

α = a− V [f ]|∂Ω = (1
2
I +K)[ϕ] =W+[ϕ] (2.6.3)

in Lq(∂Ω). Therefore, in virtue of Lemma 2.5.1 and Fredholm’s alter-
native the only thing we have to do is to determine the linear space
Ker T −. Taking into account that

v[n] = −
∫
∂Ω

U(x− ζ) · n(ζ) dsζ = −
∫

Ω+
divU(x− y) day = 0,

we have that v[n] = 0 and P [n] = c in Ω
+

. On the other hand, since∫
∂Ω

n = 0,

by (2.5.5) Theorem 2.3.1 implies that v[n] = 0 and P [n] = 0 in Ω− so
that from (2.5.10) it follows that n ∈ Ker T −. If ψ(6= cn) ∈ Ker T −,
taking into account that by (2.5.10)∫

∂Ω

ψ =

∫
∂Ω

T +[ψ] = 0,
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Lemma 2.3.4 implies that v[ψ] = 0 in R2, P [ψ] = 0 in Ω− and
P [ψ] = constant in Ω+ so that

Ker T + = sp {n}. (2.6.4)

Hence it follows

Theorem 2.6.1 If f ∈ H1(Ω
+

) and a ∈ Lq(∂Ω) (q > 1) satisfies∫
∂Ω

a · n = 0, (2.6.5)

then system (2.6.1) has a solution given by (2.6.2) with ϕ ∈ Lq(∂Ω);
u is continuous in Ω

+
, satisfies (2.6.1)1,2 almost everywhere in Ω,

lim
t→0+

u(ξ − tn(ξ)) = a(ξ), (2.6.6)

for almost all ξ ∈ ∂Ω and

‖u‖L2q(Ω+ ) ≤ c
{
‖a‖Lq(∂Ω) + ‖f‖H1(Ω+ )

}
. (2.6.7)

If a ∈ C(∂Ω), then u ∈ C(Ω), (3.3.1) holds everywhere on ∂Ω and
there is a positive constant depending only on ∂Ω such that

‖u‖
C(Ω+ )

≤ c
{
‖a‖C(∂Ω) + ‖f‖H1(Ω+ )

}
. (2.6.8)

From (2.6.3), (j)–(jjj) of Section 2.5 and (ı),(ıı), (ııı) of Section 2.4 it
follows that more regular is α, then more regular is the corresponding
solution (u, p). In particular, assuming for simplicity for f = 0, we
can state

Theorem 2.6.2 If a ∈ W 1−1/q,q(∂Ω) (q > 1) satisfies (2.6.5), then
system (2.6.1) has a unique weak solution and

‖u‖W 1,q(Ω+ ) + ‖p‖Lq(∂Ω) ≤ c‖a‖W 1−1/q,q(∂Ω (2.6.9)

Moreover, if a ∈ Ck,µ(∂Ω) (k = 0, 1), then

‖u‖
C0,µ(Ω+ )

≤ c‖a‖C0,µ(∂Ω),

‖u‖
C1,µ(Ω+ )

+ ‖p‖
C0,µ(Ω+ )

≤ c‖a‖C1,µ(∂Ω).
(2.6.10)
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Proof - We have only to prove uniqueness which is trivial for q ≥ 2
(see Remark 2.3.1). Le u ∈ W 1,q

σ,0 (Ω) (q < 2) be a weak solution to

equations (2.3.3) and let (z, Q) ∈ W 1,q′(Ω)× Lq′(Ω) be weak solution
of the system

∆z −∇Q = φ in Ω
+
,

div z = 0 in Ω
+
,

z = 0 in ∂Ω.

(2.6.11)

with φ ∈ C∞0 (Ω). Since

z · divT (u, p) = div[z · T (u, p)]− div[u · T (z, Q)]

+ u · divT (z, Q),
(2.6.12)

integrating on Ω
+

, using the generalized divergence theorem (1.2.6)
and taking into account that u = z = 0 on ∂Ω, we get∫

Ω+
u · φ = 0

for all φ ∈ C∞0 (Ω
+

). Hence it follows u = 0 in Ω
+

. �

Let (u, p) be the solution in Theorem 2.6.1. Let ak ∈ C1(∂Ω) be
a sequence which converges to a strongly in Lq(∂Ω) and such that∫

∂Ω

ak · n = 0.

Let (uk, pk) be the solution of system (2.6.1) with data (ak,f). The
regularity of (uk, pk) and (z, Q) allow us to use (2.6.12) and integrate
on Ω

+
to get∫

Ω+
uk · φ =

∫
∂Ω

ak · T (z, Q)n+

∫
Ω+
f · z.

Hence, obviously,∫
Ω+

(uk − u) · φ+

∫
Ω+
u · φ =

∫
∂Ω

(ak − a) · T (z, Q)n

+

∫
∂Ω

a · T (z, Q)n+

∫
Ω+
f · z.

(2.6.13)
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In virtue of (2.6.7) the sequence {uk}k∈N converges strongly to u ∈
L2q(Ω

+
). Therefore, letting k → +∞ in (2.6.13) implies that u satis-

fies the relation∫
Ω+
u · φ =

∫
∂Ω

a · T (z, Q)n+

∫
Ω+
f · z. (2.6.14)

According to [33], [39] we shall call very weak solution of system (2.6.2)
a field u ∈ Lq(Ω+

) which satisfies (2.6.14) for all φ ∈ C∞0 (Ω
+

), with
(z, Q) solution of system (2.6.11). Then, we can state the following
uniqueness theorem.

Theorem 2.6.3 If f ∈ H1(Ω
+

) and a ∈ Lq(∂Ω) (q > 1) satisfies
(2.6.5), then system (2.6.2) has a a unique very weak solution.
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2.7 The Stokes problem in exterior do-

mains

Let a ∈ Lq(∂Ω), q > 1, and let f ∈ H1(Ω
−

). The exterior Stokes
problem is to find a solution to the equations

∆u−∇p = f in Ω
−
,

divu = 0 in Ω
−
,

u = a on ∂Ω,

lim
r→+∞

u(x) = u0,

(2.7.1)

where u0 is an assigned constant vector.
Let us first determine the kernel of the operator

W−[ϕ] = (−1
2
I +K)[ϕ].

If ϕ ∈ KerW−, then by uniqueness w[ϕ] = 0 and $[ϕ] = 0 in Ω
−

so that T (w[ϕ], $[ϕ])n = 0. Hence, taking into account (2.5.13) and
Lemma 2.3.3, it follows that $[ϕ] = 0 and w[ϕ] is a rigid field in
Ω

+
. Then from the jump conditions (2.5.9) it follows that necessarily

ϕ ∈ R∂Ω. On the other hand, from (2.3.5)1 and (2.5.7) we easily see
that any field of R∂Ω lies in KerW−. Therefore,

dimW− = dim T + = dim R∂Ω = 3. (2.7.2)

If ψ ∈ T +, then by Lemma 2.3.3 v[ψ] is a rigid field in Ω
+

and

Ker T + = {ψ : S[ψ] ∈ R∂Ω+ , P [ψ] = 0 in Ω
+}

Moreover, by the jump conditions (2.5.10)

T −[ψ] = −ψ. (2.7.3)

Let

C = {ψ : S[ψ] = constant vector, P [ψ] = 0 in Ω
+}.
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If ψ(6= 0) ∈ C, then ψ∂Ω 6= 0, or else (v[ψ], P [ψ]) satisfies the
hypotheses of Theorem 2.3.1 so that v[ψ] = 0, P [ψ] = 0 in Ω

−

and, as a consequence ψ = 0. If {ψi}i=1,2,3 ⊂ C \ {0}, then the
system {

∫
∂Ω
ψi}i=1,2,3 of R2 is linearly dependent so that there are

three nonzero scalars αi such that αi
∫
∂Ω
ψi = 0. Therefore, the pair

(v[ψ], P [ψ]), with ψ = αiψi satisfies the hypotheses of Theorem 2.3.1.
Hence αiψi = 0 and, as a consequence,

dim C = 2.

There is a densityψ ∈ Ker T + such that S[ψ] is not a pure translation,
or else we have that dim Ker T + = dim C = 2. By adding to ψ a field
in ψ′ ∈ C such that ∫

∂Ω

(ψ +ψ′) = 0,

we see that S[ψ′′] is (nonconstant) rigid field, with ψ′′∂Ω = 0. There-
fore, we can define the space

dim L = {ψ : S[ψ](ξ) ∈ R∂Ω, P [ψ] = 0, in Ω
+

, ψ∂Ω = 0}

and write
Ker T + = C⊕ L.

• Remark 2.7.1

It is not excluded that S[ψ] = 0 for some nonzero ψ ∈ C. Indeed,
if Ω

+
= SR, we know that [26] (see also section 2.8) the simple layer

potentials

v[ei](x) =
1

4π

[∫
∂SR

log |x− ζ|ei dsζ −
∫
∂SR

(x− ζ)(xi − ζi)
|x− ζ|2

dsζ

]
,

i = 1, 2, are constant in SR and

v[e1](0) =
e1

4π

[∫
∂SR

log |ζ| −
∫
∂SR

|ζ1|2

|ζ|2

]
=
R

2

(
logR− 1

2

)
,

v[e2](0) =
e2

4π

[∫
∂SR

log |ζ| −
∫
∂SR

|ζ2|2

|ζ|2

]
=
R

2

(
logR− 1

2

)
.
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Then for the disk Ω
+

= S√e we have that S[ei] = 0, i = 1, 2 [39]. ♦

Let
M =

{
ψ ∈ C : S[ψ] = 0

}
and set

` = dim M ≤ 2.

• Remark 2.7.2

Let ψ(6= 0) ∈ L. Bearing in mind that

S[ψ] = κ+ αe3 × ξ,
∫
∂Ω

ψ = 0,

with κ and α(6= 0) constants, an integration by parts (2.5.5) and
(2.7.3) yield

2

∫
Ω

|∇̂v[ψ]|2 = −
∫
∂Ω

S[ψ] · T −[ψ] = αe3 ·
∫

Ω

ξ ×ψ.

Hence it follows that ∫
Ω

ξ ×ψ 6= 0.

♦

We are now in a position to prove the following

Theorem 2.7.1 If a ∈ Lq(∂Ω) (q > 1) and f ∈ H1(Ω
−

), then system
(2.7.1)1,2,3 has a solution expressed by

u(x) = w[ϕ] + v[ψ] + V [f ] + `κ,

p(x) = $[ϕ] + P [ψ] + P [f ],
(2.7.4)

with ϕ ∈ Lq(Ω), ψ ∈ Ker T + and κ constant vector defined by∫
∂Ω

(a− `κ) ·ψ′ +
∫

Ω−
f · v[ψ′] = 0, ψ′ ∈M. (2.7.5)

u is continuous in Ω
−

, and (3.3.1) holds almost everywhere on ∂Ω.
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Proof - Consider the functional equation

a− S[ψ]− V [f ]|∂Ω − `κ =
(
− 1

2
I +K

)
[ϕ] =W−[ϕ]. (2.7.6)

In virtue of Fredholm alternative we need to find ψ ∈ Ker T + such
that ∫

∂Ω

[
a− V [f ]|∂Ω − `κ

]
·ψ′ =

∫
∂Ω

S[ψ] ·ψ′ (2.7.7)

for all ψ′ ∈ Ker T +. Of course, to show this it is sufficient to prove
that the homogeneous system∫

∂Ω

S[ψ] ·ψ′ = 0, ∀ψ′ ∈ Ker T +, (2.7.8)

has only the trivial solution. Let ` = 0. Choosing ψ′ ∈ C in (2.7.8),
we have ∫

∂Ω

S[ψ] ·ψ′ =
∫
∂Ω

S[ψ′] ·ψ = c ·
∫
∂Ω

ψ = 0, (2.7.9)

for all constant vectors c. Hence∫
∂Ω

ψ = 0. (2.7.10)

Now, we a choose ψ′ = ψ in (2.7.8) and in virtue of (2.7.3) we get∫
∂Ω

S[ψ] · T −[ψ] = 0. (2.7.11)

By (2.7.10)1 and (2.5.5) we can integrate over Ω to get

2

∫
Ω

|∇̂v[ψ]|2 = −
∫
∂Ω

S[ψ] · T −[ψ] = 0. (2.7.12)

Hence it follows that T −[ψ] = 0 and by (2.7.3) that ψ = 0.
If ` = 2, then (2.7.5) assures that (2.7.7) is satisfied for all ψ′ ∈ C

so that ψ lies necessarily in L. Therefore, choosing ψ′ = ψ in (2.7.8),
we have once again (2.7.12). Hence the desired conclusion follows.
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If ` = 1, then (2.7.5) implies that (2.7.7) is satisfied for all densities
in M and ψ = ψ′′ +ψ0 ∈ (C \M)⊕ L. Since∫

∂Ω

ψ0 = 0,

choosing first ψ = ψ′′, then ψ = ψ0 in (2.7.8) and repeating the above
argument, we have that ψ = 0. The theorem is completely proved. �

In general
u(x) = O(log r).

However, starting from (2.7.13) we can construct a solution of system
(2.7.1)1,2,3 which converges to a constant vector at infinity as follows.
Let ψ̄ ∈ C be such that ∫

∂Ω

(ψ + ψ̄) = 0.

Then, setting
u0 = `κ− S[ψ̄],

we have

Theorem 2.7.2 If a ∈ Lq(∂Ω) (q > 1) and f ∈ H1(Ω
−

), then system
(2.7.1)1,2,3 has a solution expressed by

u(x) = w[ϕ] + v[ψ] + V [f ] + γ,

p(x) = $[ϕ] + P [ψ] + P [f ].
(2.7.13)

with ϕ ∈ Lq(Ω), ψ ∈ Ker T + such that∫
∂Ω

ψ = 0,

and γ constant vector defined by∫
∂Ω

(a− γ) ·ψ′ +
∫

Ω−
f · v[ψ′] = 0, ψ′ ∈ C. (2.7.14)

u is continuous in Ω
−

, and (3.3.1) holds almost everywhere on ∂Ω.

I Of course, the above solutions enjoys (locally) all the regularity
properties stated for bounded domains. /
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2.8 Uniqueness and Stokes’ paradox

From (2.7.5) it follows that if φ ∈ C∞0 (Ω
−

) is chosen such that∫
Ω−
φ = 0,

∫
Ω−
φ · v[ψ′] = 0, ψ′ ∈ C, (2.8.1)

then the system
∆z −∇Q = φ in Ω

−
,

div z = 0 in Ω
−
,

z = 0 on ∂Ω,

lim
r→+∞

z(x) = 0

(2.8.2)

has a regular solution vanishing at infinity.
Let a ∈ Lq(∂Ω) and let ak ∈ C1(∂Ω) be a sequence which con-

verges to a strongly in Lq(∂Ω). Let (uk, pk) be the solution of system
(2.7.1)1,2,3, with data (ak,f), expressed by (2.7.13). The regularity of
(uk, pk) and (z, Q) allow us to use (2.6.12) and integrate on Ω

−
R to get∫

Ω−R

uk · φ = −
∫
∂Ω

ak · T (z, Q)n+

∫
Ω−R

f · z

+

∫
∂SR

[uk · T (z, Q)− z · T (uk, pk)] · n.
(2.8.3)

In virtue of the behavior at infinity of (uk, pk), (z, Q) and their deriva-
tives, letting R→ +∞ in (2.8.3), we have∫

Ω

uk · φ = −
∫
∂Ω

ak · T (z, Q)n+

∫
Ω−
f · z. (2.8.4)

By the expression of uk − u it is not difficult to see that for R suffi-
ciently large, there is a positive constant c(R) such that

‖uk − u‖Lq(Ω−R) ≤ c(R)‖ak − a‖Lq(∂Ω).

Therefore, if suppφ ⊂ ΩR, we can let k → +∞ in (2.8.4) to have∫
Ω−
u · φ = −

∫
∂Ω

a · T (z, Q)n+

∫
Ω−
f · z. (2.8.5)
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The arbitrariness of R allows us to say that u meets (2.8.5) for all
φ ∈ C∞0 (Ω) satisfying (2.8.1), with (z, Q) solution to equations (2.8.2).
Therefore, calling very weak solution of system (2.7.1)1,2,3, a field u ∈
Lqloc(Ω) which satisfies relation (2.8.5), we see that if u is a very weak
solution corresponding to zero data, then∫

Ω−
u · φ = 0

for all φ ∈ C∞0 (Ω
−

) satisfying (2.8.1). Hence it follows that (u, p)
belongs to the linear space

F = {(v[ψ′]− S[ψ′], P [ψ′]), ψ′ ∈ C}.

Theorem 2.8.1 If a ∈ Lq(∂Ω) (q > 1) and f ∈ H1(Ω
−

), then sys-
tem (2.7.1)1,2,3 has a unique very weak solution expressed by (2.7.13)
modulo a pair in F and a constant pressure.

Let us pass to consider problem (2.7.1). If we choose a, f and u0

such that∫
∂Ω

(a− u0) ·ψ′ +
∫

Ω−
f · v[ψ′] = 0, ψ′ ∈ C, (2.8.6)

then the pair (2.7.13), with γ = u0, is a solution of system (2.7.1).
Of course, (u−u0, p) is a solution to the Stokes equations, taking the
value a − u0 on ∂Ω and vanishing at infinity. Repeating the steps
from (2.8.3) to (2.8.5) where now (z, Q) is the solution of equations
(2.6.11) given by (2.7.13), with φ arbitrary field in C∞0 (Ω), it is not
difficult to see that u satisfies the relation∫

Ω−
u · φ = −

∫
∂Ω

(a− u0) · T (z, Q)n+

∫
Ω−
f · z. (2.8.7)

As we did above, we call very weak solution of system (2.6.1) a field

u ∈ Lqloc(Ω
−) which satisfies (2.8.7) for all φ ∈ C∞0 (Ω

−
) and z =

o(r) solution of equations (2.6.11). Let u be a very weak solution
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of problem (2.6.1). Choosing (z, Q) ∈ F and taking into account
that T (z, Q)n = −ψ′, from (2.8.7) it follows that a, f and u0 must
necessarily satisfy (2.8.6). As a consequence, we have the well–known
Stokes paradox of viscous hydrodynamics for very weak solutions [39].

Theorem 2.8.2 If a ∈ Lq(∂Ω) (q > 1) and f ∈ H1(Ω
−

), then system
(2.7.1) has a unique very weak solution modulo a constant pressure if
and only if a, f and u0 satisfy the compatibility condition (2.8.6).

I We aim now at deriving the expression of the fields in Ker T +

when ∂Ω is an ellipse. To this end we follow [26].
We know that for every rigid field % on ∂Ω [24]∫

∂Ω

(ξ − ζ) · n(ζ)
(ξ − ζ)⊗ (ξ − ζ)

|ξ − ζ|4
%(ζ)daζ = −π

4
%(ξ). (2.8.8)

Let ∂Ω be the ellipse of equation

ξ ·A · ξ = 1.

Since

n(ξ) =
Aξ

|Aξ|
,

we have

(ξ − ζ) · n(ξ) =
(ξ − ζ) ·Aξ
|Aξ|

=
1

|Aξ|
(ξ ·Aξ − ζ ·Aξ) =

=
1

|Aξ|
(ζ ·Aζ − ξ ·Aζ) = −|Aζ|

|Aξ|
(ξ − ζ) ·Aζ
|Aζ|

=

= −|Aζ|
|Aξ|

(ξ − ζ) · n(ζ).

Therefore, (2.8.8) implies

−
∫
∂Ω

(ξ− ζ) ·n(ξ)
(ξ − ζ)⊗ (ξ − ζ)

|ξ − ζ|4
%(ζ)

|A · ζ|
daζ = −π

4

%(ξ)

|A · ξ|
. (2.8.9)

Hence, taking into account that

1

|A · ξ|
= ξ · n(ξ),
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it follows that

Ker T + = sp {(ξ · n(ξ))(e1, e2, e3 × ξ)}.
Therefore, coupling this information with Theorem 2.8.2, we have

Theorem 2.8.3 Let ∂Ω be an ellipse. If a ∈ Lq(∂Ω) (q > 1) and
f ∈ H1(Ω

−
), then system (2.6.1) has a unique very weak solution

modulo a constant pressure if and only if∫
∂Ω

(a− u0) · (ξ · n)ei +

∫
Ω

f · v[(ξ · n)ei] = 0, i = 1, 2. (2.8.10)

In particular, if ∂Ω is a disk, then the problem

∆u−∇p = 0 in Ω
−
,

divu = 0 in Ω
−
,

u = a on ∂Ω,

lim
r→+∞

u(x) = u0

has a solution if and only if

u0i =
1

2|Ω+|

∫
∂Ω

a · (ξ · n)ei (2.8.11)

/

I If (u, p) is a solution to equations (2.3.3) which converges at
infinity to a constant vector u0, then from (2.8.11) it follows that

u0 =
1

2π

∫ 2π

0

u(R, θ),

for all SR ⊃ Ω
+

. /

I If a ∈ C(∂Ω), f ∈ H1(Ω
−

) and u0 satisfy (2.8.6), then

|u0| ≤ c
{
‖a‖C(∂Ω) + ‖f‖H1(Ω− )

}
.

On the other hand, we have

‖u− u0‖C(Ω) ≤ c
{
‖a− u0‖C(∂Ω) + ‖f‖H1(Ω− )

}
.

Therefore, putting together the above estimates, we get

‖u‖C(Ω) ≤ c
{
‖a‖C(∂Ω) + ‖f‖H1(Ω− )

}
.

/
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2.9 Self–propelled Stokes flow

Let a, % be an assigned field on ∂Ω and a rigid motion respectively.
A self–propelled motion of Ω+ is a solution of the following equations
[16]

∆u−∇Q = 0 in Ω
−
,

divu = 0 in Ω
−
,

u = a+ % on ∂Ω,

lim
r→+∞

u(x) = 0,∫
∂Ω

T (u, p)n = 0,∫
∂Ω

ξ × T (u, p)n = 0.

(2.9.1)

Let (u, Q) be a solution of equations (2.7.1)1,2,3 and let

ψ ∈ C⊕ L

be such that (see Remark 2.7.2)∫
∂Ω

[T (u, p)n+ψ] = 0,∫
∂Ω

ξ × [T (u, p)n+ψ] = 0.

Then it is readily seen that the pair

u′(x) = u(x) + v[ψ],

p′(x) = p+ P [ψ].
(2.9.2)

is a very weak solution of system (2.9.1) if and only if∫
∂Ω

(a+ %) ·ψ = 0, ∀ψ ∈ C⊕ L. (2.9.3)

Therefore, we can state the following
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Theorem 2.9.1 a ∈ Lq(∂Ω) (q > 1). Then system (2.9.1) has a
unique very weak solution modulo a constant pressure, expressed by
(2.9.2), if and only if a and % satisfy (2.9.3).

• Remark 2.9.1

If ∂Ω is an ellipse and % = κ+ αe3 × x, then (2.9.3) reads

κi = − 1

2|Ω+ |

∫
∂Ω

(ξ · n)a · ei , i = 1, 2,

α = −1

h

∫
∂Ω

(ξ · n)a · (e3 × ξ),

with

h = 4

∫
Ω+
|x|2.

♦
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2.10 The Neumann problem

By the layer potentials approach we can also treat the classical Neu-
mann problem for the Stokes system in bounded and exterior domains.
To this end we follow the argument in [42].

Let us start by considering the system

∆u−∇Q = f in Ω
+
,

divu = 0 in Ω
+
,

T (u, p)n = s on ∂Ω,

(2.10.1)

where s is an assigned field in Lq(∂Ω) and f ∈ L2q/(q+1)(Ω
+

) (q > 1).
Looking for a solution expressed by a single layer potential, we are led
to consider the Fredholm equation in Lq(∂Ω)

T +[ψ] = (1
2
I − K∗)[ψ] = s− T (V [f ],P [f ])n|∂Ω. (2.10.2)

If ϕ ∈ KerW−, thenw[ϕ] is a regular solution to the equations (2.3.3)
vanishing at infinity. Taking into account the behavior at infinity of
a double layer potential, by uniqueness we have that w[ϕ] = 0 and
$[ϕ] = 0 in Ω and by (2.5.13) T (w[ϕ], [$[ϕ])n = 0 on ∂Ω. Therefore,
(2.5.13) and Lemma 2.3.3 assure that w[ϕ] is a rigid displacement in
Ω

+
and by the jump conditions (2.5.9) necessarily ϕ ∈ R∂Ω. On the

other hand, it is simple to see that every ϕ ∈ R∂Ω belongs to KerW+

so that
KerW+ = R∂Ω.

Therefore we have

Theorem 2.10.1 If s ∈ Lq(∂Ω) and f ∈ L2q/(q+1)(Ω
+

) (q > 1) satis-
fies ∫

∂Ω

s =

∫
Ω+
f ,∫

∂Ω

x× s =

∫
Ω+
x× f ,

(2.10.3)

then system (2.10.1) has a unique solution modulo a rigid motion,
expressed by

u(x) = v[ψ] + V [f ],

p(x) = P [ψ] + P [f ],
(2.10.4)
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for some ψ ∈ Lq(∂Ω). If f ∈ Ls(Ω+
) (s > 2), then

lim
t→0+

[T (u, p)n](ξ − tn(ξ)) = s(ξ), (2.10.5)

for almost all ξ ∈ ∂Ω. Moreover, if s ∈ C(∂Ω), then (2.10.5) is
satisfied everywhere on ∂Ω.

Proof - Existence is a simple consequence of Fredholm’s alternative
and (2.10.3); (2.10.5) follows from the properties of the single layer
potential and the continuity of ∇V [f ], P [f ] under the hypothesis f ∈
Ls(Ω

+
) (s > 2). Since u ∈ W 1,2q(Ω

+
), uniqueness is a consequence of

Lemma 2.3.3. �

Let us pass to consider the Neumann problem in Ω
−

:

∆u−∇p = f in Ω
−
,

divu = 0 in Ω
−
,

T (u, p)n = s on ∂Ω,

lim
r→+∞

u(x) = 0.

(2.10.6)

The following theorem holds.

Theorem 2.10.2 Let s ∈ Lq(∂Ω) and let f ∈ L2q/(q+1)(Ω
−

)∩H1(Ω
−

)
(q > 1). If ∫

∂Ω

s = 0, (2.10.7)

then system (2.10.6) has a unique solution expressed by

u(x) = v[ψ] +w[ϕ] + V [f ],

p(x) = P [ψ] +$[ϕ] + P [f ],
(2.10.8)

with ψ ∈ Lq(∂Ω) and ϕ ∈ KerW+. If f ∈ Ls(Ω
−

) (s > 2), then
(2.10.5) holds and if s ∈ C(∂Ω), then (2.10.5) is satisfied everywhere
on ∂Ω.

Proof - We know that Ker T − = sp {n} so that dim KerW+ = 1. If
ϕ ∈ KerW+, then by uniqueness w[ϕ] = 0 and (2.5.9) implies

W−[ϕ] = −ϕ. (2.10.9)
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Therefore by Fredholm alternative, the equation

T −[ψ] = −(1
2
I +K∗)[ψ] = s− T (V [f ],P [f ])n|∂Ω

− T (w[ϕ], $[ϕ])n

has a solution if and only if∫
∂Ω

[s− T (V [f ],P [f ])n|∂Ω − T (w[ϕ], $[ϕ])n] ·ϕ′ = 0

for all ϕ′ ∈ KerW+, or equivalently if and only if the equation∫
∂Ω

[T (w[ϕ], $[ϕ])n] ·ϕ′ = 0, ∀ϕ ∈ KerW+, (2.10.10)

has only the null solution. To show this, choose ϕ′ = ϕ in (2.10.10)
and note that by (2.10.9) an integration over Ω

−
gives

2

∫
Ω−
|∇̂w[ϕ]|2 = −

∫
∂Ω

W+[ϕ] · T (w[ϕ], $[ϕ])n = 0. (2.10.11)

Hence it easily follows that ϕ = 0. Condition (2.10.7) guarantees that
(2.10.6)4 is satisfied. Uniqueness and the second part of the theorem
are proved by the argument we used in the proof of Theorem 2.10.1.

�

• Remark 2.10.1

Note that if ϕ is a (nonzero) density of KerW+, then necessarily∫
∂Ω

ϕ · n 6= 0.

Indeed, if ∫
∂Ω

ϕ · n = 0,

since T (w[ϕ], $[ϕ])n = cn, (2.10.9) implies that∫
∂Ω

W+[ϕ] · T (w[ϕ], $[ϕ])n = 0.

Hence by (2.10.11) it follows ϕ = 0. ♦
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2.11 Solutions of the Stokes problem ex-

pressed by simple layer potentials

Thanks to the results of the foregoing sections, we can make use of
a classical argument in potential theory, to show that the solution
of the Stokes problems we found above can be expressed by simple
layer potentials plus volume potentials. We shall assume for simplicity
f = 0. The extension to the general case presents is achieved with
few changes.

Let (u, p) be the solution of the Stokes problem in Ω+ expressed
by (2.6.2) and corresponding to

a ∈ W 1,q(∂Ω), (2.11.1)

with q > 1, and a satisfying∫
∂Ω

a · n = 0. (2.11.2)

In vitue of Theorem 2.10.1 and Lemma 2.3.3, the solution of the Neu-
mann problem with boundary datum

s = T (u, p)n ∈ Lq(∂Ω) (2.11.3)

is given by
u = v[ψ] + %,

p = P [ψ],
(2.11.4)

for some % ∈ R. Now, by the results of Section 2.7 the field % can be
expressed in Ω+ by

% = v[ψ′] + γκ,

with ψ′ ∈ Ker T + and κ constant vector, and (2.11.4) takes the form

u = v[ψ +ψ′] + γκ,

p = P [ψ +ψ′].

Consider now the solution (2.7.13) under hypotheses (2.11.1), (2.11.2).
The solution of the Neumann problem with boundary datum (2.11.3)
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is expressed by (2.10.8). Then by Lemma 2.3.4

u = v[ψ] +w[ϕ] + κ,

p = P [ψ] +$[ϕ],
(2.11.5)

with ψ ∈ Lq(∂Ω), ϕ ∈ KerW− and κ constant vector. Since

a = S[ψ]−ϕ+ κ,

taking into account that v[ψ] is divergence free in R2, by (2.11.2) we
have ∫

∂Ω

a · n = −
∫
∂Ω

ϕ · n = 0.

Hence by Remark 2.10.1 it follows that ϕ = 0 and (2.11.5) takes the
form

u = v[ψ] + κ,

p = P [ψ].
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2.12 Some remarks on the Stokes prob-

lem in domains with nonconnected

boundaries

We assumed ∂Ω connected only to make the exposition more sim-
ple and alleviate notation. Indeed, with few (sometimes laborious)
changes we can prove the results of the foregoing sections for the
Stokes problem in the bounded domain (1.1.1) and in the exterior
domains (1.1.2).

As far as the Stokes problem in domain (1.1.1) is concerned, re-
taining the definitions and the notation we used, we can prove that

dim Ker T − = 3k + 1

and

Ker T − = {ψ : S[ψ] ∈ R∂Ωi , P [ψ] = 0 in Ωi} ⊕ sp {n}.

With this information at hand, we can show that, under the hy-
potheses on a and f required in Theorem 2.6.1, system (2.6.1) in
the domain (1.1.1) have a solution expressed by (2.7.13), with ψ ∈
Ker T − \ sp {n}.

All the properties stated in Section 2.6 hold unchanged.
Passing to consider problem (2.7.1) in the domain (1.1.2), one

shows that
dim Ker T − = 3k

and
Ker T − = {ψ : S[ψ] ∈ R∂Ωi , P [ψ] = 0 in Ωi}.

Moreover,
dim C = 2.

Once again we can follow the Fredholm alternative to show that the
results in section 2.7 and 2.8 hold unchanged.

Analogous results hold for the Neumann problem in (1.1.1), (1.1.2)
[42].

• Remark 2.12.1

If we consider only solutions of the exterior Stokes problem in the
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spaces D1,q(Ω), then we easily rediscover the results in [18]. The solu-
tions h ∈ Sq (see the introduction) of system (2.3.3) in D1,q(Ω), which
G.P. Galdi and C.G. Simader called exceptional , are here the simple
layer potential v[ψ] with ψ ∈ C. Of course, Sq = {0} for q ∈ (1, 2].

♦

• Remark 2.12.2

Let

σ(x) = −
m∑

1=1

x− xi
|x− xi|2

∫
∂Ωi

a · n

and note that ∫
∂Ωi

(ξ − xi) · n(ξ)

|ξ − xi|2
= −1.

In view of the application of the above results to the existence theorem
for the Navier–Stokes problem, let us denote by (v, ps) the solution to
the Stokes problem with boundary datum

α = a− σ.

Then the pair
(us = v + σ, ps) (2.12.1)

is a very weak solution to system (2.6.1) such that∫
∂Ωi

v · n = 0, i = 1, . . . ,m. (2.12.2)

♦
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Chapter 3

Steady Navier–Stokes flow in
bounded domains

3.1 Existence of a very weak solution

• Throughout this chapter we shall consider the bounded domain
by Ω the domain

Ω0 \ Ω′, Ω′ =
m⋃
i=1

Ωi.

we assume to be of class C2.

Let us recall that the (interior) Navier–Stokes problem is to find a
solution of the system

∆u− u · ∇u−∇p = f in Ω,

divu = 0 in Ω,

u = a on ∂Ω.

(3.1.1)

Let (us, ps) be the very weak solution of the Stokes problem cor-
responding to data (a,f) given by (2.12.1) with

a ∈ L2(∂Ω), f ∈ H1(Ω) (3.1.2)

69
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and ∫
∂Ω

a · n = 0. (3.1.3)

The volume potential

C[u] = V [u · ∇u]

maps boundedly L4
σ(Ω) into W 1,2

σ (Ω). If {uk}k∈N is a bounded se-
quence in L4(Ω), then {C[uk]}k∈N is bounded in W 1,2(Ω). By Lemma
1.2.5 from {C[uk]}k∈N we can extract a subsequence which converges
strongly in L4(Ω) so that C is completely continuous form L4

σ(Ω) into
itself. Let (Y [u],Q[u]) be the solution of the Stokes problem with
boundary datum − tr|∂Ω C[u] ∈ W 1/2,2(∂Ω) and zero body force. Since
by the estimates about solutions of the Stokes problem and the trace
theorem

‖Y [u]‖W 1,2(Ω) ≤ c‖ tr|∂Ω C[u]‖W 1/2,2(∂Ω) ≤ ‖C[u]‖W 1,2(Ω),

we have that also the operator Y is completely continuous from L4
σ(Ω)

into itself. Therefore, the operator

N [u] = (Y + C)[u]

maps L4
σ(Ω) into W 1,2

σ,0 (Ω) and is completely continuous from L4
σ(Ω)

into itself. Now, it is natural to look for a solution of system (3.1.1)
as a fixed point of the equation

u′ = us +N [u]. (3.1.4)

The pressure field associated to (the fixed point) u will be the field

p = ps +Q[u] + P [u · ∇u]. (3.1.5)

• We call the pair (u, p) very weak solution of the Navier Stokes
problem (3.1.1).

To do this we appeal to Lemma 1.2.4. A solution of the functional
equation

u = λ(us +N [u]), (3.1.6)
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for λ ∈ [0, 1], satisfies the equations

∆w − λ(us +w) · ∇(us +w)−∇Q = 0 in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω,

(3.1.7)

where we set w = N [u] ∈ W 1,2
σ,0 (Ω), for some pressure field Q ∈ L2(Ω).

The field w is a variational solution of system (3.1.7), i.e,∫
Ω

∇w · ∇φ = λ

∫
Ω

(us +w) · ∇φ · (us +w) (3.1.8)

for all φ ∈ W 1,2
σ,0 (Ω).

Let

Φi =

∫
∂Ω1

a · n.

Let us show that, if

Φ =
1

4π

m∑
i=1

|Φi|
(

max
∂Ω

log |x− xi| −min
∂Ω

log |x− xi|
)
< 1, (3.1.9)

then all the variational solutions of system (3.1.7) are uniformly bounded
in W 1,2

0 (Ω), i.e., there is a positive constant c independent of (w, Q)
such that ∫

Ω

|∇w|2 ≤ c. (3.1.10)

To show (3.1.10) we follow a classical argument of J. Leray [25]. It
(3.1.10) is not true, then there is a sequence of variational solutions
{wk}k∈N of (3.1.7) and a sequence {λk}k∈N such that

lim
k→+∞

J2
k = lim

k→+∞

∫
Ω

|∇wk|2 = +∞, lim
k→+∞

λk = λ0 ∈ [0, 1].

Then, from (3.1.7) it follows that the field

w′k =
wk

Jk
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satisfies the relation

1

Jk

∫
Ω

∇w′k · ∇φ = λk

∫
Ω

w′k · ∇φ ·w′k +
λk
J2
k

∫
Ω

us · ∇φ · us

+
λk
Jk

∫
Ω

(w′k · ∇φ · us + us · ∇φ ·w′k).

(3.1.11)
Since ∫

Ω

|∇w′k|2 = 1,

by Lemma 1.2.5 from {w′k}k∈N we can extract a subsequence, still
denoted by the same symbol, which converges strongly in L4(Ω) and
weakly in W 1.2(Ω) to a field w′ ∈ W 1,2

σ,0 (Ω):

lim
k→+∞

∫
Ω

|w′k −w′|4 = 0,

lim
k→+∞

∫
Ω

∇w′k · ∇φ =

∫
Ω

∇w′ · ∇φ.
(3.1.12)

By Hölder’s inequality and Lemma 1.2.10∣∣∣∣∫
Ω

∇w′k · ∇φ
∣∣∣∣ ≤ ‖∇w′k‖L2(Ω)‖∇φ‖L2(Ω) ≤ ‖∇φ‖L2(Ω)∣∣∣∣∫

Ω

us · ∇φ · us
∣∣∣∣ ≤ ‖∇φ‖L2(Ω)‖us‖2

L4(Ω),∣∣∣∣∫
Ω

us · ∇φ ·w′k
∣∣∣∣ ≤ ‖∇φ‖L2(Ω)‖w′k‖L4(Ω)‖us‖L4(Ω)

≤ cσ‖∇φ‖L2(Ω)‖us‖L4(Ω)‖∇w′k‖L2(Ω) ≤ cσ‖∇φ‖L2(Ω)‖us‖L4(Ω),∣∣∣∣∫
Ω

w′k · ∇φ · us
∣∣∣∣ ≤ cσ‖∇φ‖L2(Ω)‖us‖L4(Ω).

Moreover, since∫
Ω

(w′k · ∇φ ·w′k −w′ · ∇φ ·w′) =

∫
Ω

(w′k −w′) · ∇φ ·w′k

+

∫
Ω

w′ · ∇φ · (w′k −w′)
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and∣∣∣∣∫
Ω

(w′k −w′) · ∇φ ·w′k
∣∣∣∣ ≤ ‖∇w′k‖L2(Ω)‖w′k −w′‖L4(Ω)‖w′k‖L4(Ω),∣∣∣∣∫

Ω

w′ · ∇φ · (w′k −w′)
∣∣∣∣ ≤ ‖∇w′k‖L2(Ω)‖w′k −w′‖L4(Ω)‖w′‖L4(Ω),

taking into account (3.1.12), we can let k → +∞ in (3.1.11) to have

lim
k→+∞

∫
Ω

w′k · ∇φ ·w′k =

∫
Ω

w′ · ∇φ ·w′ =
∫

Ω

w′ · ∇w′ · φ = 0,

for all φ ∈ W 1,2
σ,0 (Ω). Then by Lemma 1.2.14, there is a field Q′ ∈

Lq(Ω), q < 2, such that∫
Ω

w′ · ∇w′ · φ =

∫
Ω

Q′ divφ, ∀φ ∈ W 1,2
0 (Ω).

so that the pair (w, Q′) is a variational solution of the Euler equations

λ0w
′ · ∇w′ +∇Q′ = 0 in Ω,

divw′ = 0 in Ω,

w′ = 0 on ∂Ω.

(3.1.13)

The following Lemma holds [1].

Lemma 3.1.1 If (w′, Q′) ∈ W 1,2
σ,0 (Ω)× Lq(Ω), q < 2, is a variational

solution of system (3.1.13), then Q′ is a constant Q′i (say) on every
∂Ωi.

Proof - Let w′ ∈ C∞0 (Ω) and let ξ0 be a point of the connected
component ∂Ωi of ∂Ω. Choose a new coordinate system (x1, x2) in
which the points of a neighborhood I of ξ0 in Ω are expressed by

A = {(x1, x2) : |x1| < ε, x2 ∈ (h(x1), h(x1) + α)},

for some positive ε and α, with h(x1) function of class C2 and the x2–
axis pointing along the inner normal to ∂Ω′. By Hardy’s inequality∫

A

|w′|2

|x2 − h(x1)|2
≤ 4

∫
A

|∇w′|2
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we get∫
A

|w′ · ∇w′|
|x2 − h(x1)|

≤
{∫

A

|w′|2

|x2 − h(x1)|2

∫
A

|∇w′|2
}1/2

≤ 2

∫
A

|∇w′|2.
(3.1.14)

Writing (3.1.14) for a sequence {w′k}k∈N ∈ C∞0 (Ω) which converges
to w′ in W 1,2

0 (Ω) and letting k → +∞ we see that (3.1.14) holds for
w′ ∈ W 1,2

σ,0 (Ω). Then, taking into account (3.1.13)1, we have∫
A

|∇Q′| = o(α). (3.1.15)

If φ ∈ C∞0 (Σ), then∫
A

Q′∇x1φ =

∫
|x1|<ε

∫ α

0

Q′(x1, h(x1) + x2)∇x1φ(x1)

=

∫
|x1|<ε

∫ α

0

∇x1

[
Q′(x1, h(x1) + x2)φ(x1)

]
=

∫
|x1|<ε

∫ α

0

φ(x1)
[
∇x1Q

′(x1, h(x1) + x2

+

∫
|x1|<ε

∫ α

0

∇x1h(x1)∂x2Q
′(x1, h(x1) + x2)

]
.

Hence, dividing both sides by α, letting α→ 0 and taking into account
(3.1.15), it follows that∫

|x1|<ε
Q′∇x1φ = 0, ∀φ ∈ C∞0 (V ),

and, as a consequence, that Q′ is constant on ∂Ωi, we denote by Q′i.
Note that, in general Q′i 6= Q′j for i 6= j. �

Choosing now φ = wk in (3.1.11), we have

1 = λ0

∫
Ω

w′k · ∇w′k · us +
1

Jk

∫
Ω

us · ∇w′k · us. (3.1.16)
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Since ∣∣∣∣∫
Ω

us · ∇w′k · us
∣∣∣∣ ≤ ‖us‖2

L4(Ω)‖∇w′k‖L2(Ω) ≤ ‖us‖2
L4(Ω),

and∫
Ω

(w′k · ∇w′k · us −w′ · ∇w′ · us) =

=

∫
Ω

[(w′k −w′) · ∇w′k · us +w′ · ∇(w′k −w′) · us,∣∣∣∣∫
Ω

[(w′k −w′) · ∇w′k · us
∣∣∣∣ ≤ ‖w′k −w′‖L4(Ω)‖us‖L4(Ω),∣∣∣∣∫

Ω

[w′ · ∇(w′k −w′) · us
∣∣∣∣ ≤ ‖∇(w′k −w′)‖L2(Ω)‖w′‖L4(Ω)‖us‖L4(Ω),

we can let k → +∞ in (3.1.16) to get

1 = λ0

∫
Ω

w′ · ∇w′ · us. (3.1.17)

In virtue of (3.1.13)1, Lemma 3.1.1 and (2.12.2) we have

λ0

∫
Ω

w′ · ∇w′ · v = −
∫

Ω

v · ∇Q′ =
m∑
i=1

Q′i

∫
∂Ω

v · n = 0.

Then

1 = λ0

∫
Ω

w′ · ∇w′ · σ = −λ0

m∑
i=1

Φi

2π

∫
Ω

w′ · ∇w′ · (x− xi)
|x− xi|2

= λ0

m∑
i=1

Φi

2π

∫
Ω

(log |x− xi|)∇w′ · ∇w′T.

(3.1.18)
Since an easy computation shows that∫

Ω

∇w′ · ∇w′T =

∫
Ω

(|∇̂w′|2 − |∇̃w′|2)
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and by the first Korn’s inequality [22]

2

∫
Ω

|∇̂w′|2 = 2|∇̃w′|2 =

∫
Ω

|∇w′|2,

(3.1.18) implies
1− Φ ≤ 1− λ0Φ < 0. (3.1.19)

Since (3.1.19) contradicts our assumption (3.1.9), we see that (3.1.10)
holds true. Then we can use Lemma 1.2.4 to get

Theorem 3.1.1 Let Ω be a bounded domain of class C2. Let a ∈
L2(∂Ω) satisfies (3.1.3) and let f ∈ H1(Ω). If (3.1.9) holds, then
system (3.1.1) has a solution (u, p), with u fixed point of equation
(3.1.4).

As far as the regularity properties of (u, p) are concerned, we note
that:

I From (3.1.7), written with λ = 1, it follows that w is a varia-
tional solution of the Stokes equations

∆w − divF −∇Q = 0 in C,

divw = 0 in C,

w = ω on ∂C,

(3.1.20)

where C is any disk such that C ⊂ Ω, ω = tr|∂C w ∈ W 1/2,2(∂SR)

and F = (us + w) ⊗ (us + w). Since us ∈ W 2,1
loc (Ω) and w · ∇w ∈

Lq(Ω), q < 2, we see that divF ∈ Lq(C), q < 2 so that w can be
written as sum of layer potentials over ∂C and the volume potential
V [divF ] ∈ W 2,1(C). Hence by the arbitrariness of C it follows that
u ∈ W 2,1

loc (Ω). Analogously, one can show that p ∈ W 1,1
loc (Ω) so that

(u, p) satisfies equations (3.1.1)1,2 almost everywhere in Ω. From what
we said it is clear that (u, p) enjoys the same regularity properties as
the solution (us, ps) of the Stokes problem. In particular, for f = 0
(say), (u, p) ∈ C∞(Ω) ∩ C∞(Ω) and

• if a ∈ W 1−1/q,q(∂Ω), then

(u, p) ∈ W 1,q(Ω)× Lq(Ω).
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• if a ∈ W 1,q(∂Ω), then

(u, p) ∈ W 1,2q(Ω) ∩ .

• if a ∈ C(∂Ω), then

(u, p) ∈ C2(Ω) ∩ C(Ω).

then (u, p) ∈ C∞(Ω)× C∞(Ω). /

I The boundary condition is assumed in the following way

lim
t→0+

us(ξ − tn) = a(ξ),

for almost all ξ ∈ ∂Ω, and w|∂Ω = 0 in the sense of the trace in the

Sobolev space W 1,2
0 (Ω). If a ∈ Lq(∂Ω), q > 2, then w ∈ W 1,t

0 (Ω) for
some t > 2 so that by Lemma 1.2.5 w ∈ C(Ω) and

lim
t→0+

u(ξ − tn) = a(ξ), (3.1.21)

for almost all ξ ∈ ∂Ω. Moreover, if a ∈ C(∂Ω), then (3.1.21) holds for
all ξ ∈ ∂Ω.

/

• Remark 3.1.1

Existence of a solution of system (3.1.1) under the only hypothesis
(3.1.3) is easily established, provided ‖us‖Lq(Ω) (q > 2) is suitably
small, as follows. Using the above notation, let us observe that the
operator C maps boundedly Lqσ(Ω) into W

1,q/2
σ (Ω)(⊃ Lqσ(Ω)) and by

standard estimates we see that there is a positive constant c0, depend-
ing on Ω, such that

‖N [u]‖Lq(Ω) ≤ c0‖u‖2
Lq(Ω).

Therefore, in virtue of Lemma 1.2.3, the map (3.1.4) is a contraction
in the ball {

u ∈ Lqσ(Ω) : ‖u‖Lq(Ω)

}
<

1

2c0
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provided

‖us‖Lq(Ω) <
1

4c0

, (3.1.22)

where it has a fixed point, which is (with the pressure field (3.1.5)) a
solution of system (3.1.1). Observe that, if

a ∈ Lq/2(∂Ω), f ∈ H1(Ω),

in virtue of the estimate (2.6.7), then there is a constant c` (depending
on Ω) such that

‖u‖Lq(Ω) ≤ c`
{
‖a‖Lq/2(∂Ω) + ‖f‖H1(Ω)

}
,

and (3.1.22) is satisfied for

‖a‖Lq/2(∂Ω) + ‖f‖H1(Ω) <
1

4c0c`
.

♦
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3.2 Uniqueness of a very weak solution

We aim now at discussing the important problem of uniqueness of the
very weak solution of the Navier–Stokes problem whose existence is
guaranteed by Theorem 3.1.1. We want to select a uniqueness class,
determined under restrictions only on the data and where the solutions
enjoys the same properties as the ones specified in Theorem 3.1.1.

Let (u, p), (u + w, p + Q) ∈ L4
σ(Ω) are two solutions of system

(3.1.1) corresponding to a and f , with u fixed point of equation
(3.1.4). Then the pair (w, Q) satisfies the equations

∆w − (u+w) · ∇w −w · ∇u−∇Q = 0 in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω.

(3.2.1)

In virtue of the properties of solutions of the Stokes problem, w ∈
W 1,2
σ,0 (Ω) and Q ∈ L2(Ω). Let δ(x) be the distance of x from ∂Ω and

let

g(x) =


0, δ(x) < δ0,

1, δ(x) > 2δ0,

δ−1
0 (δ(x)− δ0), δ0 ≤ δ(x) ≤ 2δ0,

(3.2.2)

with δ0 small positive number. Then an integration by parts gives∫
Ω

g|∇w|2 =
1

2

∫
Ω

|w|2(u+w) · ∇g +

∫
Ω

pw · ∇g

−
∫

Ω

∇g · ∇w ·w +

∫
Ω

(u ·w)w · ∇g

+

∫
Ω

gw · ∇w · u.

(3.2.3)

Set
Tδ0 = {x ∈ Ω : δ0 < δ(x) < 2δ0}.
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By Hölder’s inequality, the properties of the function g and Lemma
1.2.11, we have∣∣∣∣∫

Ω

|w|2w · ∇g
∣∣∣∣ ≤

{∫
Tδ0

|w|4
∫

Ω

|w|2

δ2

}1/2

≤ c‖w‖2
L4(Tδ0 )‖∇w‖L2(Ω),∣∣∣∣∫

Ω

pw · ∇g
∣∣∣∣ ≤

{∫
Tδ0

p2

∫
Ω

|w|2

δ2

}1/2

≤ c‖p‖L2(Tδ0 )‖∇w‖L2(Ω),∣∣∣∣∫
Ω

∇g · ∇w ·w
∣∣∣∣ ≤

{∫
Tδ0

|∇w|2
∫

Ω

|w|2

δ2

}1/2

≤ c‖∇w‖L2(Tδ0 )‖∇w‖L2(Ω),∣∣∣∣∫
Ω

(u ·w)w · ∇g
∣∣∣∣ ≤

{∫
Tδ0

|u|4
∫
Tδ0

|w|4
}1/4{∫

Ω

|w|2

δ2

}1/2

≤ c‖u‖L4(Tδ0 )‖w‖L4(Tδ0 )‖∇w‖L2(Ω).

Therefore, letting δ0 → 0 in (3.2.3) yields∫
Ω

|∇w|2 =

∫
Ω

w · ∇w · u. (3.2.4)

By Lemma 1.2.10

‖w‖L4(Ω) ≤ cσ‖∇w‖L2(Ω), (3.2.5)

so that ∣∣∣∣∫
Ω

w · ∇w · u
∣∣∣∣ ≤ ‖w‖L4(Ω)‖u‖L4(Ω)‖∇w‖L2(Ω)

≤ cσ‖u‖L4(Ω)‖∇w‖2
L2(Ω)

and (3.2.4) yields

(1− cσ‖u‖L4(Ω))

∫
Ω

|∇w|2 ≤ 0. (3.2.6)

Therefore, if
cσ‖u‖L4(Ω) < 1 (3.2.7)
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then w = 0. Let us look for a condition on a and f assuring that
(3.2.7) is satisfied. To this end consider system (3.1.7). Multiplying
scalarly (3.1.7)1 by gw, where g is the function (3.2.2) and proceeding
as we did to get (3.2.4), we arrive at∫

Ω

|∇w|2 =

∫
Ω

(w + us) · ∇w · us, (3.2.8)

Since ∣∣∣∣∫
Ω

w · ∇w · us
∣∣∣∣ ≤ cσ‖us‖L4(Ω)‖∇w‖2

L2(Ω),∣∣∣∣∫
Ω

us · ∇w · us
∣∣∣∣ ≤ ‖us‖2

L4(Ω)‖∇w‖L2(Ω),

from (3.2.6) it follows

(1− cσ‖us‖L4(Ω))‖∇w‖L2(Ω) ≤ ‖us‖2
L4(Ω). (3.2.9)

Since by Minkowski’s inequality

‖u‖L4(Ω) ≤ ‖us‖L4(Ω) + ‖w‖L4(Ω),

from (3.2.5), (3.2.9) and (3.2.6) it follows

Theorem 3.2.1 If the solution us of the Stokes problem correspond-
ing to a ∈ L2(∂Ω) and f ∈ H1(Ω) satisfy

cσ‖us‖L4(Ω) < 1, (3.2.10)

and

cσ‖us‖L4(Ω) +
c2
σ‖us‖2

L4(Ω)

(1− cσ‖us‖L4(Ω))
< 1, (3.2.11)

where cσ is the constant appearing in (3.2.5), then system (3.1.1) has
a unique very weak solution1.

1Recall the pressure field is normalized by (2.3.2).
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3.3 The Amick theorem for very weak so-

lutions

As we said in the introduction, an outstanding open problem in the
theory of the steady Navier–Stokes equations is to prove (or disprove)
existence of a solution of system (3.1.1) in domains with nonconnected
boundaries under the only (necessary) assumption∫

∂Ω

a · n = 0. (3.3.1)

To the best of our knowledge the only result which makes use only
of (3.3.1) is due to C.J. Amick (1984) [1]. He proved existence of
a variational solution under suitable hypotheses of symmetry on the
domain and the data we are specifying. The purpose of this section is
to extend Amick’s theorem to very weak solutions [38].

Let ∂Ω be symmetric with respect to the x1–axis, i.e.,

(ξ1, ξ2) ∈ ∂Ω =⇒ (ξ1,−ξ2) ∈ ∂Ω

and
{x2 = 0} ∩ ∂Ωi 6= ∅, i = 0, 1, . . . ,m.

Let a ∈ L2(Ω) and f ∈ H1(Ω) be symmetric, i.e.,

a1(ξ1, ξ2) = a1(ξ1,−ξ2),

a2(ξ1, ξ2) = −a2(ξ1,−ξ2)

for almost all ξ ∈ ∂Ω and

f1(x1, x2) = f1(x1,−x2),

f2(x1, x2) = −f2(x1,−x2)

for almost all x ∈ Ω. We say that a solution (u, p) of system (3.1.1)
is symmetric if

u1(x1, x2) = u1(x1,−x2),

u2(x1, x2) = −u2(x1,−x2),

p(x1, x2) = p(x1,−x2).
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The linear subspace of W 1,2(Ω) (say) of symmetric functions are closed
and, as a consequence, Banach spaces. The proof of Theorem 3.1.1
goes unchanged in these spaces until (3.1.17). Of course, if we are
able to show that the constant values of the pressure on ∂Ωi are all
the same, then (3.1.17) leads to a contradiction and so to the desired
existence of a symmetric solution (u, p).

We premise the following lemma.

Lemma 3.3.1 Let (w′, Q′) ∈ W 1,2
σ,0 (Ω) × Lq(Ω) (q < 2) be a solution

of system (3.1.13). Then Q′ ∈ W 2,1(Ω) ∩ C(Ω).

Proof - Recall that Q′ is a solution of the Poisson equation

∆Q′ + λ0 div(w · ∇w) = 0 (3.3.2)

constant on every ∂Ωi. The volume potential

Q′[w] = −λ0

2π

∫
∂Ω

(log |x− y|) div(w · ∇w)(y) day

belongs in W 2,1(R2) so that, in particular, it is a continuous function in
R2. Then Q′ can be expressed as Q[w] plus harmonic layer potentials
with regular densities. Hence it follows that Q′ ∈ W 2,1(Ω) ∩ C(Ω). �

Near the points where ∂Ω intersects the x1–axis, the curves ∂Ωi

and ∂Ωj (say) can be expressed as the graphs of two functions φ and
ψ of class C2, {ϕ(x2), x2) : x2 ∈ (−δ, δ} and {ψ(x2), x2(: x2 ∈ (−δ, δ)}
and {ψ(x2), x2) : x2 ∈ (−δ, δ}. Let

A = {(x1, x2) : x2 ∈ (−δ0, δ0), x1 ∈ (ϕ(x2), ψ(x2)},

The equation

∂1Q+
λ0

2
∂1w

′
1

2
= −λ0w

′
2∂2w

′
1 (3.3.3)

is satisfied almost everywhere in Ω. On the other hand by Gagliardo’s
theorem [28] ∂1Q is summable on every {x2 = c} ∩ Ω. Therefore,
integrating (3.3.3) on A, we have∫ δ0

−δ0
dx2

∫ ψ(x2)

ϕ(x2)

∂1(Q+
λ0

2
w′1

2
)(x1, x2)dx2 = −λ0

∫
A

w′2∂2w
′
1.
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Since Q+ 1
2
u2

1 ∈ W 1,q(Ω), q < 2, by Fubini’s theorem the function

∂1(Q+
λ0

2
w′1

2
)(x1, x2)

is summable for almost all x2 ∈ (−δ, δ). Therefore, we have∫ δ0

−δ0
[Q(ψ(x2), x2)−Q(ϕ(x2), x2)]dx2= 2δ0(Qj −Qi)

= −λ0

∫
A

w′2∂2w
′
1.

(3.3.4)

Since by Lemma 1.2.11

1

δ2
0

∫
A

w2
2 ≤ c

∫
A

w2
2

x2
2

≤ c

∫
A

|∇w|2,

from (3.3.4) it follows

|Qj −Qi| ≤
c

δ0

∣∣∣∣∫
A

w2∂2w1

∣∣∣∣ ≤ c

{∫
A

w2
2

x2
2

∫
A

|∇w|2
}1/2

≤ c

∫
A

|∇w|2.

Then, letting δ0 → 0, we see that Qi = Qj. Hence it follows

Theorem 3.3.1 Let Ω be symmetric with respect to the x1–axis and
let {x2 = 0} ∩ ∂Ωi 6= ∅, i = 0, 1, . . . ,m.. If a ∈ L2(∂Ω), f ∈ H1(Ω)
are symmetric and a satisfy (3.3.1), then system (3.1.1) has a very
weak solution (u, p). Moreover, if us satisfies (3.2.10) and (3.2.11),
then (u, p) is unique.
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3.4 A mixed problem

Let Ω be the domain of R2 with boundary

∂Ω = Γ ∪ Σ (3.4.1)

where Γ is the union of Lipschitz curves and Σ is the union of a finite
number of segments of the x1-axis (see figure 3.4.1).

Σ

Γ

Γ

Ω

Figure 3.4.1: the domain Omega.

In this section we shall consider the mixed boundary value problem

∆u− u · ∇u−∇p = f in Ω,

divu = 0 in Ω,

u = a on Γ,

u2 = 0 on Σ,

∂1u2 + ∂2u1 = 0 on Σ.

(3.4.2)

Note that (3.4.2)4,5 require respectively that the normal component of
the velocity and the tangential component of the stress vanish on ∂Σ
(slip conditions). The field a must satisfy the compatibility condition∫

Γ

a · n = 0, (3.4.3)

where n denotes the outward unit normal to ∂Ω.
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Let M be the mirror transformation (x1, x2) → (x1,−x2) and let
Ω̃ be the bounded domain with boundary

Γ ∪M(Γ) (3.4.4)

(see figure 3.4.2).

Ω̃

Figure 3.4.2: the symmetric domain Ω̃.

Denote by ã = (ã1, ã2) and f̃ = (f̃1, f̃2) the extension of a and f
in Ω̃ defined respectively by

f̃1(x1,−x2) = f1(x1, x2), f̃2(x1,−x2) = −f2(x1, x2)

and
ã1(ξ1,−ξ2) = a1(ξ1, ξ2), ã2(ξ1,−ξ2) = −a2(ξ1, ξ2).

As a simple consequence of Theorem 3.3.1, we have

Theorem 3.4.1 If Ω is of class C2, a ∈ L2(∂Ω) satisfies (3.4.3) and
f ∈ H1(Ω), then system (3.4.2) has a solution.

Proof - Since Ω̃, ã and f̃ satisfy the hypotheses of Theorem 3.3.1,
system (3.1.1) has a a symmetric solution (ũ, p̃). Of course, the re-
striction of (ũ, p̃) to Ω satisfies (3.4.2)1,2,3 and by symmetry (3.4.2)4,5..
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�

• Remark 3.4.1

If a and f are more regular, then more regular is the corresponding
solution. In particular, if a ∈ C(∂Γ) and a2 = 0 at the end points
of the segment of Σ, then u is continuous in Ω. For more complete
regularity results concerning the solution and its uniqueness, we quote
[38]. ♦



88

3.5 A maximum modulus estimate

There is another approach to prove the uniform estimate (3.1.10) as-
suring existence of a solution of system (3.1.1) which comes back again
to the classical paper of J. Leray [25], based on the use of a suitable
cut–off function on the boundary (see [11], [13] Ch. VIII, in the varia-
tional context). A value of this method is to furnish a priori estimate
for the solution, like a maximum modulus theorem, as derived in [43]
for f = 0 and regular a under assumption (8) (in the introduction):

‖u‖C(Ω) ≤ c
∥∥a‖C(∂Ω) + ‖a‖2

C(∂Ω)

}
(3.5.1)

In this section, we show as we can apply this argument in the more
general context of boundary data a ∈ L2(∂Ω) and under hypothesis
(3.1.9) on the flux.

Let (us = v + σ, ps) be the solution of the Stokes system corre-
sponding to f = 0 and a ∈ L2(∂Ω) satisfying (3.1.3) (see Remark
2.12.2). Following [14], denote by γ the stream function of v defined
in Ω by the line integral

γ(x) =

∫ x

x0

(v1dx2 − v2dx1),

with x0 fixed point of Ω. Since∫
∂Ωi

v · n = 0,

γ is singlevalued and it holds

v = curlγ in Ω, (3.5.2)

with γ = γe3. Of course, γ is defined within an additive constant we
can choose in such a way that by (1.2.7), (2.6.7) and Lemma 1.2.5

‖γ‖L∞(Ω) ≤ c‖γ‖W 1,4(Ω) ≤ c‖v‖L4(Ω) ≤ c‖a‖L2(∂Ω). (3.5.3)

Let δ0 be a (small) positive number and let w be a C∞ function in
R, vanishing in (−∞, 0] and equal to 1 in [1,+∞). For 0 < δ0 � 1,
the function

gδ0(x) = w
(
α−1
(

log log
1

δ(x)
− log log

1

δ0

))
(3.5.4)
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vanishes in Ω \ Ω(δ0), is equal to 1 in Ω(δe
−α

0 ) and

∇gδ0(x) = − w′

δ(x) log δ(x)
∇δ(x).

Of course

lim
δ0→0

sup |δ(x)∇gδ0(x)| = 0. (3.5.5)

Since ∂Ω is of class C2, then gδ is of class C2 in R2 and

∇gδ0 = 0 in Tδ0 = Ω(δ0) \ Ω(δe
−α

0 ),

The field

h = curl(gδ0γ) + σ, (3.5.6)

is equal to us in Ω(δ0) is a solution of the equations

∆h−∇Q′ = φ in Ω,

divw = 0 in Ω,
(3.5.7)

for some pressure field Q′, with φ ∈ C2
0(T (δ0)). Moreover, h takes the

value a on the boundary in the sense of (3.1.21) for almost all ξ ∈ ∂Ω.
Let VMO(R2)2 be the space obtained by completing C∞0 (R2) with

respect to the seminorm [6]

sup
{x∈R2,R>0}

1

|SR(x)|

∫
SR(x)

|ϕ− ϕSR(x)|,

with SR(x) = {y |y − x| < R}. It is well–known that

[VMO(R2)]∗ = H1(R2).

Therefore, since

[W 1,2(R2) ↪→ VMO(R2),

it holds

H1(R2) ↪→ [W 1,2(R2)]∗.

2This is the acronym of Vanishing Mean Oscillation.
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In particular, if Ω is a bounded domain and f ∈ H1(Ω), then

|〈f ,w〉| ≤ c‖f‖H1(Ω)‖∇w‖L2(Ω) (3.5.8)

for all w ∈ D1,2
0 (Ω).

Let f ∈ H1(Ω) and let w ∈ W 1,2
σ,0 (Ω) be a variational solution of

the equations

∆w − (h+w) · ∇(h+w)−∇Q− φ = f in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω.

(3.5.9)

Then, the usual integration by parts gives∫
Ω

|∇w|2 =

∫
Ω

w · ∇w · h+

∫
Ω

h · ∇w · h

−
∫

Ω

φ ·w − 〈f ,w〉.
(3.5.10)

By proceeding as we did in the proof Theorem 3.1.1, we see that∣∣∣∣∫
Ω

w · ∇w · σ
∣∣∣∣ ≤ Φ

∫
Ω

|∇w|2∣∣∣∣∫
Ω

h · ∇w · h
∣∣∣∣ ≤ ‖h‖2

L4(Ω)‖∇w‖L2(Ω)∣∣∣∣∫
Ω

φ ·w
∣∣∣∣ ≤ c‖φ‖L2(Ω)‖∇w‖L2(Ω) ≤ c‖h‖L4(Ω)‖∇w‖L2(Ω).

Therefore, (3.5.10) and (3.5.8) implies

(1− Φ)

∫
Ω

|∇w|2 ≤ c
{
‖h‖L4(Ω)‖+ ‖h‖2

L4(Ω) + ‖f‖H1(Ω)

}
‖∇w‖L2(Ω)

+

∣∣∣∣∫
Ω

w · ∇w · curl(gδ0γ)

∣∣∣∣ .
(3.5.11)
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It remains to majorize the last integral in (3.5.11). To do this note
that by (3.5.3)∣∣∣∣∫

Ω

w · ∇w · curl(gδ0γ)

∣∣∣∣ ≤ c

∫
Ω(2δ0)

|w||∇w||v|

+ c

∫
T (δ0)

|∇gδ0||w||∇w| = J1 + J2.

Now, by Hölder’s inequality (3.5.3) and Lemmas 1.2.10, 1.2.11

J1 ≤ ‖v‖L4(Ω(2δ0))‖w‖L4(Ω)‖∇w‖L2(Ω) ≤ c‖v‖L4(Ω(2δ0))‖∇w‖2
L2(Ω)

and

J2 ≤ c sup |δ(x)∇gδ0(x)|
∫
T (δ0)

δ−1
0 |w||∇w|

≤ c sup |δ(x)∇gδ0(x)|
{∫

Ω

|w|2

δ2
0

∫
Ω

|∇w|2
}1/2

≤ c sup |δ(x)∇gδ0(x)|
∫

Ω

|∇w|2

Taking into account (3.5.5) and

lim
δ0→0
‖v‖L4(Ω(2δ0)) = 0,

we can choose δ0 such that

‖v‖L4(Ω(2δ0)) + sup |δ(x)∇gδ0(x)| < 1− Φ.

Therefore, (3.5.11) yields

‖∇w‖L2(Ω) ≤ c(Ω, δ0)
{
‖h‖L4(Ω) + ‖h‖2

L4(Ω) + ‖f‖H1(Ω)

}
. (3.5.12)

From (3.5.12) it follows

Theorem 3.5.1 Let Ω be a bounded domain of class C2, let f ∈
H1(Ω) and let a ∈ L2(∂Ω) satisfy∫

∂Ω

a · n = 0.
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If (3.1.9) holds, then system (3.1.1) has a very weak solution expressed
by w+h, with h given by (3.5.6) and w ∈ W 1,2

σ,0 (Ω) variational solution
of equations (3.5.9). Moreover,

‖u‖L4(Ω) ≤ c
{
‖a‖L2(∂Ω) + ‖a‖2

L2(∂Ω) + ‖f‖H1(Ω)

}
(3.5.13)

and if a ∈ C(∂Ω), then

‖u‖C(Ω) ≤ c
{
‖a‖C(∂Ω) + ‖a‖2

C(∂Ω) + ‖f‖H1(Ω)

}
, (3.5.14)

with c independent of a.

Proof - Existence and estimate (3.5.13) follows from (3.5.12). If
a ∈ C(∂Ω), then h ∈ C(Ω) and (3.5.21) follow from the results about
Stokes equations. �

Now, we aim at proving Theorem 3.3.1 by the above method. To
this end we follows an argument of H. Morimoto [29]. Assume that Ω
and a satisfy the symmetric assumptions in Theorem 3.3.1. Let h be
a symmetric divergence free extension of a in Ω, expressed (say) by
(3.5.6), and set

Ω+ = {x ∈ Ω : x2 ≥ 0}.

Since Ω+ is simple connected, we can write

h = curlϕ in Ω+,

where ϕ ∈ C∞(Ω+)∩W 1,4(Ω+) enjoys the same properties as the field
γ in (3.5.2). Of course,

z = curl(gδ0ϕ) (3.5.15)

with gδ0 defined by (3.5.6), is a divergence free extension of

h̃ = tr|∂Ω+ h,

and
h̃ = a on ∂Ω ∩ ∂Ω+,

h2 = 0, on {x2 = 0} ∩ Ω.
(3.5.16)
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Let
Ω+

1 (δ0) = {x ∈ Ω+ : dist (x, ∂Ω ∩ ∂Ω+) < δ0},

Ω+
0 (δ0) = {x ∈ Ω+ : dist (x, {x2 = 0} ∩ Ω) < δ0}.

Let w ∈ W 1,2
σ,0 (Ω) be symmetric and consider the integral∫

Ω+(δ0)

w · ∇w · z =

∫
Ω+

1 (δ0)

w · ∇w · z+

∫
Ω+

0 (δ0)

w · ∇w · z = J1 +J2.

Since w is zero on ∂Ω, we can follows the argument we used in the
proof of (3.5.12) to see that

|J1| ≤ c1(δ0)

∫
Ω+

1

|∇w|2,

with c1(δ0) →
δ0→0

0. From the well–known vector identity

w · ∇w = ∇|w|2 + ω ×w

and the boundary properties of z, it is not difficult to see that “near
to” {x2 = 0}

∇δ(x) = e2,

J2 =

∫
Ω+

0 (δ0)

ω ×w · z =

∫
Ω+

0 (δ0)

ω
[
w2∂2(gδ0ϕ1) + w1∂1(gδ0ϕ2)

]
=

∫
Ω+

0 (δ0)

gδ0ω
[
w2∂2ϕ1 + w1∂1ϕ2

]
+

∫
Ω+

0 (δ0)

ϕ1ωw2∂2gδ0 = J ′1 + J ′2.

It is evident that

|J ′1| ≤ c′1(δ0)

∫
Ω+

|∇w|2,

with c′1(δ0) →
δ0→0

. Moreover, by Lemma 1.2.11 and (3.5.5)

|J ′2| ≤ c

∫
Ω+

0 (δ0)

|ωw2|∂2gδ0 ≤ c sup |x2∇gδ0(x2)|
∫

Ω+
0 (δ0)

|ωw2|
x2

≤ c′2(δ0)

∫
Ω+

|∇w|2,
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with c′2(δ0) →
δ0→0

0. Collecting the above results, we see that

∣∣∣∣∣
∫

Ω+
0

w · ∇w · z

∣∣∣∣∣ ≤ c(δ0)

∫
Ω+

0

|∇w|2, (3.5.17)

with c(δ0) →
δ0→0

0.

Now, it is evident that the field

z̃(x1, x2) =

{
(z1(x1, x2), z2(x1, x2)), (x1, x2) ∈ Ω+,

(z1(x1, x2),−z2(x1,−x2)), (x1, x2) ∈ Ω \ Ω+
(3.5.18)

is a symmetric extension field of a in Ω such that∫
Ω

|v · ∇w · z̃| ≤ c(δ)

∫
Ω

|∇w|2. (3.5.19)

for all symmetric field w ∈ W 1,2
σ,0 (Ω), with

lim
δ0→0

c(δ0) = 0.

Starting from (3.5.19) and reasoning as we did in the proof of Theorem
3.5.1, we have

Theorem 3.5.2 If Ω, f and a satisfy the hypotheses of Theorem 3.3.1
then system (3.1.1) has a very weak solution. Moreover,

‖u‖L4(Ω) ≤ c
{
‖a‖L2(∂Ω) + ‖a‖2

L2(∂Ω) + ‖f‖H1(Ω)

}
, (3.5.20)

and if a ∈ C(∂Ω), then

‖u‖C(Ω) ≤ c
{
‖a‖C(∂Ω) + ‖a‖2

C(∂Ω) + ‖f‖H1(Ω)

}
, (3.5.21)

with c independent of a.
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3.6 The Fujita–Morimoto approach

A contribution to problem (ii) stated in the introduction was given by
H. Fujita and H. Morimoto [12] (1997) (see also [31]). They assume

f ∈ [D1,q′

0 (Ω)]∗ and consider a boundary value expressed by

a = Fh+ γ (3.6.1)

where
h = ∇β, (3.6.2)

with F ∈ R, β ∈ W 2,2(Ω) harmonic function and γ ∈ W 1/2,2(∂Ω)
satisfying ∫

∂Ω

γ · n = 0. (3.6.3)

They prove that there is a countable subset G of R such that if F 6∈
G and ‖γ‖W 1/2,2(∂Ω) + ‖f‖

[D1,q′
0 (Ω)]∗

is sufficiently small, then system

(3.1.1) has a weak solution. Moreover, H. Morimoto [30] proved that
if

β = log |x|

and Ω is the annulus

Ω = {x : R < |x| < 2R},

then G = ∅. Accordingly, in such a case under hypothesis (3.6.1) and
modulo a smallness of γ, we have existence of a solution of system
(3.1.1) for every outflow ∫

∂SR

a · n.

The purpose of this section is to show that this result continues to
hold under more weak hypotheses on the data [37].

Let β be a harmonic function in Ω such that

∇β ∈ Lq(Ω), tr∇β|∂Ω ∈ Lq/2(∂Ω) (3.6.4)
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The following theorem holds [37]

Theorem 3.6.1 Let Ω be a bounded domain of class C2, let f ∈
H1(Ω) and let a be given by (3.6.1) with γ ∈ Lq/2(∂Ω), q > 2, and β
harmonic function in Ω satisfying (3.6.4). There is a countable subset
G of R such that if F 6∈ G and ‖γ‖Lq/2(∂Ω) + ‖f‖H1(Ω) is sufficiently
small, then system (3.1.1) has a solution.

Proof - Let us first look for a solution of the problem

∆v − Fv · ∇h− Fh · ∇v −∇Q = 0 in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(3.6.5)

Since, for v ∈ Lqσ(Ω) , |h||v| ∈ Lq/2(Ω), the operator

J [v] = V [v · ∇h+ h · ∇v]

maps Lqσ(Ω) into W
1,q/2
σ (Ω). Since q > 2, by Lemma 1.2.6 J is com-

pletely continuous from Lqσ(Ω) into itself. Let A[v] be the solution of
the Stokes problem in Ω with zero body force and boundary datum
− tr|∂Ω J [v] ∈ W 1−2/q,2/q(∂Ω). By the estimates on weak solutions of
the Stokes system and the trace theorem we have

‖A[u]‖W 1,q/2(Ω) ≤ c‖ tr|∂Ω J [v]‖W 1−2/q,q/2(∂Ω) ≤ c‖J [v]‖W 1,q/2(Ω),

so that also A is completely continuous from Lqσ(Ω) into itself. By
Lemma 1.2.1 the functional equations

L[v] =
(
I − FJ − FA

)
[v] = φ

has a unique solution for all F modulo a countable subset G of R.
Therefore, for every F 6∈ G the operator L is invertible.

Consider now the operator N from Lqσ(Ω) into W
1,q/2
σ,0 (Ω), defined

at the beginning of Section 3.1 and denote by uγ the solution of the
Stokes problem with data (f ,γ). Taking into account that the L is

invertible for F 6∈ G we can apply the operator
−1

L to the equation

L[v] = uγ +N [z] (3.6.6)
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to get

v =
−1

L [uγ] +
−1

L
[
N [z]

]
. (3.6.7)

Since

‖
−1

L
[
N [z]

]
‖Lq(Ω) ≤ c0‖z‖2

Lq(Ω),

if

‖
−1

L [uγ]‖Lq(Ω) <
1

4c0

,

or equivalently if ‖γ‖Lq/2(∂Ω) + ‖f‖H1(Ω) is sufficiently small, then by

Lemma 1.2.3 the map
−1

L
[
N [z]

]
is a contraction in the ball

B =

{
z ∈ Lqσ(Ω) : ‖z‖ < 1

2c0

}
.

Then equation (3.6.7) has a unique fixed point in in B

L[v] = uγ +N [v]. (3.6.8)

Taking the Stokes operator in (3.6.8) we see that v satisfies the equa-
tions

∆v − Fv · ∇h− Fh · ∇v − v · ∇v −∇p = f in Ω,

div v = 0 in Ω,

v = γ on ∂Ω

(3.6.9)

for a suitable pressure field p. Moreover, noting that

∆h− h · ∇h = −∇β · ∇∇β = −1
2
∇|h|2,

the pair (h,−1
2
∇|h|2) is a solution of the Navier Stokes problem with

zero body force and boundary datum h. Hence it follows that the pair

(Fh+ v, p− 1
2
F∇|h|2)

gives the desired solution of our problem. �

I If h ∈ L2q/(2−q)(Ω), then the solution v in (3.6.5) belongs to
W 1,2
σ,0 (Ω). Therefore, multiplying (3.6.5)1 scalarly by gv, where g is
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the function (3.2.2), and reasoning as we did to prove (3.2.4), we
arrive at ∫

Ω

|∇v|2 = F

∫
Ω

v · ∇v · h. (3.6.10)

Taking into account that

‖v‖Lq(Ω) ≤ c′‖∇v‖L2(Ω),

by Hölder’s inequality we have∣∣∣∣∫
Ω

v · ∇v · h
∣∣∣∣ ≤ ‖v‖Lq(Ω)‖h‖L2q/(q−2)(Ω)‖∇v‖L2(Ω)

≤ c′‖h‖L2q/(q−2)(Ω)‖∇v‖2
L2(Ω).

Then, (3.6.10) yields

(
1− |F|c′‖h‖L2q/(q−2)(Ω)

) ∫
Ω

|∇v|2 ≤ 0.

As a consequence, if in Theorem 3.6.1 h ∈ L2q/(2−q)(Ω), then the
elements of G does not belong to the interval (−c0, c0), with

c0 =
1

c′‖h‖L2q/(q−2)(Ω)

.

/



Chapter 4

Steady Navier–Stokes flow in
exterior domains

4.1 D–solutions of the exterior Navier–

Stokes problem

We consider now the Navier–Stokes system

∆u− u · ∇u−∇p = f in Ω,

divu = 0 in Ω,

u = a on ∂Ω,

(4.1.1)

lim
r→+∞

u(x) = u0 (4.1.2)

in the exterior domain

Ω = R2 \ Ω′, Ω′ =
m⋃
i=1

Ωi.

Definition 4.1.1 A (variational ) solution (u, p) ∈ W 1,2
loc ×L2

loc(Ω) of
equations (4.1.1)1,2 such that∫

{SR0

|∇u|2

is called D–solution.

99
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At least for u0 = 0 the existence of a solution of system (4.1.1)–
(4.1.2) is an open problem [17]. If u0 6= 0 by a theorem of D.R. Smith
and R. Finn [10] (see also [15], Ch. X) we know that if f = 0 and an
hölderian norm of ‖a−u0‖ is sufficiently small, then a regular solution
certainly exists. It is not known whether this results continues to holds
for general data or at least for data obeying the Fujita–Morimoto
decomposition (3.6.1).

As we said in the introduction, the conditions

Φi =

∫
∂Ωi

a · n = 0, i = 1, . . . ,m,

guarantee (for f = 0 say) the existence of a D–solution which con-
verges uniformly to constant vector κ. While in the linear case (ex-
terior Stokes problem) we know the relation which must be satisfied
by a and κ to assure existence of a solution (Stokes paradox), in the
problem we are considering we know no relation between κ and u0.

The main purpose of this chapter is to present an improvement
of the results of [36] where is showed that existence of a D–solution
holds provided the “fluxes” |Φi| are sufficiently small. Moreover, for
symmetric domains and data we prove this solution converges to zero
at infinity uniformly.
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4.2 Asymptotic behavior of D–solutions

In this section we deal with the asymptotic properties of a D–solution
by essentially follow the scheme outlined in [20] (see also [15] and [17]).
To this end we shall need the following lemmas we prove for the sake
of completeness.

Let (r, θ) be a polar coordinate system in R2 and let ϕ ∈ L1
loc(Ω).

Set

ϕ̄(r) =
1

2π

∫ 2π

0

ϕ(r, θ).

and
er =

x

r
= (cos θ, sin θ), eθ = (− sin θ, cos θ).

Lemma 4.2.1 Let ϕ ∈ C∞({SR0). If ∇ϕ,∆ϕ ∈ L2({SR0), then
∇2ϕ ∈ L2({SR0).

Proof - Since

g2∂iiϕ∂jjϕ = ∂i(g
2∂iϕ∂ijjϕ)− g2∂iϕ∂ijjϕ− 2g∂iϕ∂jjϕ∂ig

= ∂i(g
2∂iϕ∂ijjϕ)− ∂j(g2∂iϕ∂ijϕ)− 2g∂iϕ∂jjϕ∂ig

+ g2∂ijϕ∂ijϕ+ 2g∂iϕ∂ijϕ∂jg,

where g is a smooth function vanishing in {S2R, equal to one in SR
and such that |∇g| ≤ cR−1, R� R0, an integration on {SR0 yields∫

{SR0

|g∇2ϕ|2 =

∫
{SR0

|g∆ϕ|2 + 2

∫
{SR0

g(∆ϕ∇ϕ−∇ϕ · ∇2ϕ) · ∇g.

(4.2.1)
By (1.2.12)

2g|∇ϕ · ∇2ϕ · ∇g| ≤ α|g∇2ϕ|2 + α−1|∇ϕ|2|∇g|2,

for all positive α. Then, choosing α < 1, (4.2.1) implies

(1− α)

∫
{SR0

|g∇2ϕ|2 ≤
∫

{SR0

|g∆2ϕ|2 +

∫
TR

(
|∇ϕ|2 + |∆ϕ||∇ϕ|

)
.

(4.2.2)
If ∇ϕ and ∆ϕ ∈ L2({SR0), then |∆ϕ||∇ϕ| ∈ L1({SR0) and we can let
R→ +∞ in (4.2.2) to get ∇2ϕ ∈ L2({SR0). �
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Lemma 4.2.2 If ϕ ∈ D1,2({SR0), then∫
{SR0

ϕ2

r2 log2 r
≤ 4

∫
{SR0

|∇ϕ|2 +
2

logR0

∫ 2π

0

ϕ2(R0, θ) (4.2.3)

and ∫ 2π

0

ϕ2(R, θ) = o(logR). (4.2.4)

Proof - By the density of C1({SR0) in D1,2({SR0) it is sufficient to
show (4.2.3) and (4.2.4) for smooth functions. By the basic calculus∫

{SR0
∩SR

ϕ2

r2 log2 r
=

∫ 2π

0

∫ R

R0

ϕ2

r log2 r
= −

∫ 2π

0

∫ R

R0

d

dr

(
ϕ2

log r

)
+2

∫ 2π

0

∫ R

R0

ϕ∂rϕ

log r
≤ 1

logR0

∫ 2π

0

ϕ2(R0, θ) + 2

∫ 2π

0

∫ R

R0

ϕ∂rϕ

log r
.

(4.2.5)
Since by (1.2.12)

2
ϕ∂rϕ

log r
≤ ϕ2

2r log2 r
+ 2r|∂ru|2

(4.2.5) implies∫
{SR0

∩SR

ϕ2

r2 log2 r
≤ 4

∫
{SR0

∩SR
|∂rϕ|2 +

2

logR0

∫ 2π

0

ϕ2(R0, θ).

Hence, letting R→ +∞, (4.2.3) follows.
By the basic calculus and Schwarz’s inequality∣∣∣∣∫ 2π

0

ϕ2(R, θ)

∣∣∣∣ ≤ ∣∣∣∣∫ 2π

0

ϕ2(R0, θ)

∣∣∣∣+

∣∣∣∣∫ 2π

0

∫ R

R0

∂rϕ

∣∣∣∣2
≤ c+

∫ 2π

0

∫ R

R0

1

r

∫ 2π

0

∫ R

R0

|∂rϕ|2r ≤ c+ (logR)

∫
{SR

|∇ϕ|2.

Hence (4.2.4) follows �
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Lemma 4.2.3 Let ϕ ∈ D1,q(R2), with q > 2. Then

ϕ(x) ≤ c

{∫ 2π

0

|ϕ|(|x|, θ) + ‖∇ϕ‖Lq(S1(x)

}
, (4.2.6)

Proof - We essentially follow [17], Lemma 3.10. Let us start from
the well–known representation formula

ϕ(x) =

∫ 2π

0

ϕ(r′, θ′) +
1

2π

∫
Sρ(x)

(x− y) · ∇ϕ(y)

|x− y|2
day.

with x = (r, θ) and (ρ′, θ′) is a polar coordinate system with origin at
x and ρ ∈ [0, 1]. Since by Hölder’s inequality for q > 2∣∣∣∣∣

∫
Sρ(x)

(x− y) · ∇ϕ(y)

|x− y|2
day

∣∣∣∣∣ ≤ ‖∇ϕ‖Lq(Sρ)

{∫
Sρ(x)

day
|x− y|q′

}1/q′

and a simple computation shows that∫
Sρ(x)

day
|x− y|q′

=

∫ 2π

0

∫ ρ

0

1

tq′−1
< +∞.

Then we have

|ϕ(x)| ≤
∫ 2π

0

|ϕ(r′, θ′)|+ c‖∇ϕ‖Lq(S1(x)). (4.2.7)

Multiplying (4.2.7) by r′ and integrating over r′ ∈ [0, 1], we have

|ϕ(x)| ≤ c{‖ϕ‖L1(S1(x)) + ‖∇ϕ‖Lq(S1(x))}. (4.2.8)

On the other hand, for almost all θ′ ∈ (0, 2π),

ϕ(ρ, θ′) = ϕ(x) +

∫ ρ

0

∂tϕ(t, θ′)dt.

Hence ∫ 2π

0

|ϕ(ρ, θ′)| ≤ 2π|ϕ(x)|+
∫ 2π

0

∫ ρ

0

|∂tϕ(t, θ′)|. (4.2.9)



104

Since ∫ 2π

0

∫ ρ

0

|∂tϕ(t, θ′)| ≤ c

{∫ 2π

0

∫ 1

0

1

tq′−1

}1/q′

‖∇ϕ‖Lq(S1(x)),

(4.2.9) yields∫ 2π

0

|ϕ(ρ, θ′)| ≤ c
{
|ϕ(x)|+ ‖∇ϕ‖Lq(S1(x))

}
.

Hence, multiplying by ρ and integrating over ρ ∈ [0, 1] and θ ∈ [0, 2π],
it follows

‖ϕ‖L1(S1(x)) ≤ c

{∫ 2π

0

|ϕ(|x|, θ)|+ ‖∇ϕ‖Lq(S1(x))

}
. (4.2.10)

Putting together (4.2.8), (4.2.10), we get (4.2.6). �

Lemma 4.2.4 Let w ∈ W 1,2
σ (SR \ Sρ), ρ < R. Then∣∣∣∣∣

∫
SR\Sρ

w · ∇w · er
r

∣∣∣∣∣ ≤
∫
SR

|∇w|2. (4.2.11)

Proof - We follows [20]. Note that, since

∂1w1 = −∂2w2

and

∂θwi = −r sin θ∂1wi + r cos θ∂2wi, i = 1, 2,

it holds

w · ∇w · er = cos θw1∂1w1 + cos θw2∂2w1

+ sin θw1∂1w2 + sin θw2∂2w2

= − sin θw2∂1w1 + cos θw2∂2w1

− cos θw1∂2w2 + sin θw1∂1w2 =
1

r
(w2∂θw1 − w1∂θw2),
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almost everywhere in SR. Then, taking into account that∫ 2π

0

∂θw2 =

∫ 2π

0

∂θw1 = 0,

for almost all θ ∈ (0, 2π), we have∫
SR

w·∇w·er
r

=

∫ R

0

1

r

∫ 2π

0

[
(w2−w̄2)∂θw1−(w1−w̄1)∂θw2

]
. (4.2.12)

Since by Lemma 1.2.10∫ 2π

0

|wi − w̄i|2 ≤
∫ 2π

0

|∂θwi|2.

using (1.2.12 ) and Schwarz’s inequality, we get∣∣∣∣∫ 2π

0

(w1 − w̄1)∂θw2

∣∣∣∣ ≤ {∫ 2π

0

|w1 − w̄1|2
∫ 2π

0

|∂θw2|2
}1/2

≤
{∫ 2π

0

|∂θw1|2
∫ 2π

0

|∂θw2|2
}1/2

≤ 1

2

∫ 2π

0

|∂θw1|2 +
1

2

∫ 2π

0

|∂θw2|2,∣∣∣∣∫ 2π

0

(w2 − w̄2)∂θw1

∣∣∣∣ ≤ 1

2

∫ 2π

0

|∂θw1|2 +
1

2

∫ 2π

0

|∂θw2|2,

for almost all r ∈ (ρ,R). Therefore, (4.2.4) follows from (4.2.12),
bearing in mind that∫ 2π

0

|∂θw| ≤
∫ 2π

0

|∇w|2r2.

�

Recall that we set
ω = ∂1u2 − ∂2u1

and
Φ = p+ 1

2
|u|2.
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Lemma 4.2.5 If f has a compact support and u is a D–solution,
then ∫

{SR0

|∇ω|2 < +∞ (4.2.13)

and
lim

R→+∞
max
θ∈[0,2π]

Π(R, θ)

exists.

Proof - Let w be a nonnegative regular function in R, equal to zero
in (−∞, 0] and to 1 in [1,+∞). Let

g(x) = w(δ−1(log logR− log log r)) (4.2.14)

where R� R0 and δ is a small positive number. It is easy to see that

g(x) =

{
1, x ∈ S

Re−δ ,

0, x 6∈ SR.

Moreover,

∇g = − w′er
δr log r

.

Let h(ω) be the function defined by

h(ω) =

{
ω2, |ω| ≤ ω0,

ω0(2|ω| − ω0), |ω| > ω0,

where ω0 is a positive constant such that

ω0 > max
∂SR0

|ω|.

Assume that suppf ⊂ SR0 , multiply the equation

∆ω − u · ∇ω = 0 in {SR0 (4.2.15)

by gh′ and integrate over {SR0 . Then, using the identities

∇h = h′∇ω
gh′∆ω = div(gh′∇ω)− gh′′|∇ω|2 − h′∇ω · ∇g

= div(g∇h− h∇g)− gh′′|∇ω|2 + h∆g

gh′∇ω · u = g∇h · u = div(ghu)− hu · ∇g,
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we have ∫
{SR0

gh′′|∇ω|2 =

∫
{SR0

h(∆g + u · ∇g)

+ 1
2

∫
∂SR0

(∂nω
2 − ω2u · n).

(4.2.16)

Since
h(ω) ≤ min{ω2, 2ω0|ω|},

taking into account the properties of g, we have∣∣∣∣∣
∫

{SR0

h∆g

∣∣∣∣∣ ≤
∫

{SRδ

ω2∣∣∣∣∣
∫

{SR0

hu · ∇g

∣∣∣∣∣ ≤ cω0

∫
{SRδ

|u||ω|
r log r

≤ cω0

{∫
{SRδ

|u|2

r2 log2 r
+

∫
{SRδ

ω2

}
.

Therefore, from (4.2.16) it follows∫
{SR0

∩SRδ
(ω≤ω0)

|∇ω|2 ≤ cω0

{∫
{SRδ

|u|2

r2 log2 r
+

∫
{SRδ

ω2

}

+ 1
2

∫
∂SR0

|∂nω2 − 1
2
ω2u · n|.

(4.2.17)

Hence, letting R →∞ and taking into account that ω, (r log r)−1u ∈
L2(Ω), ∫

{SR0

(ω≤ω0)

|∇ω|2 ≤ 1
2

∫
∂SR0

|∂nω2 − ω2u · n|. (4.2.18)

Taking into account that c is independent of ω0, we can let ω0 → +∞
to get ∫

{SR0

|∇ω|2 ≤ 1
2

∫
∂SR0

|∂nω2 − 1
2
ω2u · n|

and so (4.2.13).
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From (2.2.7) it follows that Π ∈ C∞({SR0) satisfies the elliptic
inequality

∆Π − u · ∇Π ≥ 0.

Then by the classical maximum principle (see, e.g., [27]) the function

max
θ∈[0,2π]

Π(R, θ)

is monotone for R > R0 and, as a consequence, has a limit for R →
+∞. �

Let us collect now the main summability and asymptotic properties
of a D–solutions.

Lemma 4.2.6 If f has a compact support and (u, p) is a D–solution,
then

∇ku ∈ Lq({SR0),

∇k+1p ∈ Lq({SR0),
(4.2.19)

for every k ∈ N and q ≥ 2. Moreover, p admits the following decom-
position at a large distance

p(x) =
4∑
i=1

pi(x), (4.2.20)

for all |x| > R0, with

p1 ∈ D2,1({SR0) ∩D1,2({SR0),

pi ∈ D1,q({SR0) ∩ L2q/(2−q)({SR0), q ∈ (1, 2), i = 2, 3,

∇kp2(x) = O(r−1−k).

In particular,
p ∈ D1,2({SR0)

and, if ∫
∂Ω

a · n = 0, (4.2.21)

then
p ∈ D2,1({SR0)
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Proof - Since

∆u1 = ∂11u1 + ∂22u1 = −∂21u2 + ∂22u1 = −∂2(∂1u2 − ∂2u1) = −∂2ω

∆u2 = ∂11u2 + ∂22u2 = ∂11u2 − ∂12u1 = ∂1ω,
(4.2.22)

(4.2.13) implies that

∆u ∈ L2({SR0)

so that by Lemma 4.2.1

∇u ∈ W 1,2({SR0) (4.2.23)

and, in particular, by Lemma 1.2.5 ∇u ∈ W 1,q({SR0). Hence by
taking into account Lemmas 4.2.2 – 4.2.3, it follows

u = o(
√

log r). (4.2.24)

Since u ∈ C∞({SR0), from (4.2.15) we see that a derivative ωj = ∂jω
is a solution of the equation

∆ωj − u · ∇ωj − ∂ju · ∇ω = 0. (4.2.25)

Mulyiply (4.2.25) by g2ωj, where g is the function (4.2.14). Then, by
the identities

g2ωj∆ωj = div(g2ωj∇ωj)− g2|∇ωj|2 − 2gωj∇ωj · ∇g,

g2ωju · ∇ωj = 1
2

div(g2ω2
ju)− gω2

ju · ∇g,

g2ωj∂ju · ∇ω = div(g2ωωj∂ju)− g2ω∇ωj · ∂ju− 2gωωj∂ju · ∇g

and the divergence theorem, an integration over {SR0 gives∫
{SR0

|g∇ωj|2 = −2

∫
{SR0

g(2ωj∇ωj + ωωj∂ju) · ∇g

−
∫

{SR0

gω2
ju−

∫
{SR0

g2ω∇ωj · ∂ju+ J,
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where J groups the boundary integrals on ∂SR0 . Hence, in virtue of
(4.2.24) and the inequalities∣∣∣∣∣

∫
{SR0

gωj∇ωj · ∇g

∣∣∣∣∣ ≤ α

∫
{SR0

|g∇ωj|2 + c

∫
{SRδ

ω2
j ,∣∣∣∣∣

∫
{SR0

gω2
ju · ∇g

∣∣∣∣∣ ≤ c

∫
{SR

|u||ωj|2

r log r
≤ c

∫
{SRδ

|ωj|2,∣∣∣∣∣
∫

{SR0

gωωj∂ju · ∇g

∣∣∣∣∣ ≤ c

{∫
{SRδ

|∇u|4
∫

{SRδ

ω2

}1/2

,∣∣∣∣∣
∫

{SR0

g2ω∇ωj · ∂ju

∣∣∣∣∣ ≤ α

∫
{SR0

|g∇ωj|2 + c

∫
{SR0

|∇u|4,

choosing α suitably small, it follows∫
{SR0

|g∇ωj|2 ≤ c (4.2.26)

Therefore, letting R→ +∞ in (4.2.26) implies that ∇ωj ∈ L2({SR0).
Iterating this argument we arrive at (4.2.19)1; (4.2.19)2 is a conse-
quence of (4.2.19)2 and equations (4.1.1)1.

From (4.2.23), (4.2.24) and equations (4.1.1)1 we have∫
{SR0

|∇p|2

log r
< +∞. (4.2.27)

Write
u = w + γ,

where

γ(x) =
er
r

∫
∂Ω

a · n.

Of course ∫
∂SR0

w · n = 0. (4.2.28)

Consider the equation

∆p+ div(u · ∇u) = 0 in {SR0 . (4.2.29)
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Let φ be a function of class C∞ in R2, vanishing on SR̄ and equal to
1 outside S2R̄, R̄ � R0. By (4.2.28) Lemma 1.2.13 assures that the
equation

divh+ div(φw) = 0 in TR̄

has a solution h ∈ C∞0 (TR̄). Multiply (4.2.29) by φ. Then the function
Q = φ2p is a solution of the equation

∆Q = div ν + ϕ in R2, (4.2.30)

with

ν = −(φw + h) · ∇(φw + h)− 2φ2w · ∇γ + φ2γ · ∇γ =
3∑
i=1

νi

and ϕ ∈ C∞0 (TR̄).
Taking into account (4.2.27), by uniqueness Q admits the repre-

sentation by the volume potential

Q(x) =
1

2π

∫
R2

[ 3∑
i=1

div νi(y) + ϕ(y)
]

log |x− y|day

=
4∑
i=1

Qi(x).

(4.2.31)

Since by Lemma (1.2.8) div ν1 ∈ H1(R2), we have that

Q1 ∈ D2,1(R2).

Now, taking into account that ∇γ(x) = O(r−2) and (4.2.24), it holds

lim
R→+∞

∫
∂SR

log |x− y|(w · ∇γ · er)(ζ) dsζ = 0

and

lim
R→+∞

∫
∂SR

log |x− y|(γ · ∇γ · er)(ζ) dsζ = 0

so that

Qi(x) =
1

π

∫
R2

(x− y) · (gνi)(y)

|x− y|2
day, i = 2, 3,
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Hence, noting that gνi ∈ Lq(R2), for all q > 1, by well–known results
about integral transforms ([27], Ch. VI) it follows that

Qi(x) ∈ D1,q(R3) ∩ L2q/(2−q)(R3), q ∈ (1, 2), i = 2, 3.

Therefore, there is a constant Q0 such that

lim
r→+∞

2∑
1=1

Qi(x) = Q0.

uniformly. On the other hand,∫
Ω

ϕ = 0,

otherwise we have a contradiction with (4.2.27). Hence

∇kQ2 = O(r−k−1),

for k ∈ N0 and (4.2.20) is proved, bearing in mind that p = Q at large
distance. The last part of the theorem is evident. �

I The second part of Lemma 4.2.6 seems to be new. The hypoth-
esis that f has a compact support can be relaxed by requiring, for
instance, that u = 0 on ∂Ω or div(φ2f) ∈ H1(R2) for some R̄ > R0.

/

I Lef f have a compact support. Since ∆u ∈ L2({SR0) and ∇p ∈
L2({SR0), then

w · ∇w ∈ L2({SR0).

/

Lemma 4.2.7 If f has a compact support and u is a D–solution,
then ∫

{SR0

r|∇ω|2 < +∞. (4.2.32)
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Proof - From (4.2.16), written with h = ω2 and g replaced by rg,
we get ∫

{SR0

rg|∇ω|2 =

∫
{SR0

ω2(∆g + u · ∇g) + J ′ (4.2.33)

with J ′ boundary integral on ∂SR0 . Hence, taking into account that
by the properties of the function g and (4.2.24)

|∆g + u · ∇g| ≤ c,

(4.2.32) follows by letting R→ +∞ in (4.2.33). �

Lemma 4.2.8 If f has a compact support and (u, p) is a D–solution,
then

lim
r→+∞

∇kp(x) = 0, (4.2.34)

uniformly, for all k ∈ N0,

lim
r→+∞

∇ku(x) = 0, (4.2.35)

uniformly, for all k ∈ N, and

u = o(
√

log r). (4.2.36)

If a satisfies (4.2.21), then

lim
r→+∞

∫ 2π

0

r|∇p|(r, θ) = 0. (4.2.37)

Moreover, if u ∈ L∞({SR0), then there is a constant vector κ such
that

lim
r→+∞

u(x) = κ, (4.2.38)

uniformly.

Proof - Relations (4.2.34), (4.2.35), for k ∈ N, and (4.2.36) are a
simple consequence of the above lemmas, while (4.2.34) for k = 0 is
proved by noting that (4.2.20) implies that p has a constant limit at
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infinity and, since p is defined modulo an additive constant, we can
always choose this constant such that

lim
r→+∞

p(x) = 0. (4.2.39)

To prove (4.2.37), it is sufficient we note that by (4.2.34) for large R
we have∫ 2π

0

|∇p(R, θ)| =
∫ 2π

0

∣∣∣∣∫ +∞

R

∂r∇p(r, θ)
∣∣∣∣ ≤ ∫ 2π

0

∫ +∞

R

|∇2p(r, θ)|

≤ 1

R

∫ 2π

0

∫ +∞

R

|∇2p(r, θ)|r ≤
1

R

∫
{SR

|∇2p|.

In virtue of Lemma 4.2.5, (4.2.39) implies that

lim
R→+∞

{
max
θ∈[0,2π]

|u(R, θ)

}
= ` ∈ [0,+∞]. (4.2.40)

Therefore, if u ∈ L∞({SR0), then ` ∈ [0,+∞) and, if ` = 0, then

lim
r→+∞

u(x) = 0

uniformly. Let us show now that

` = lim
R→+∞

|ū(R)|. (4.2.41)

From the trace theorem1∫ 2π

0

|u− ū|2(R, θ) ≤
∫ 2π

0

|u− uTR |
2

≤ c

R2

∫
TR

|u|2 + c

∫
TR

|∇u|2 ≤ c

∫
TR

|∇u|2.

1We use here the inequality∫
B

|ϕ− ϕB|q ≤
∫

B

|ϕ− α|q

for all α ∈ R which is easily proved by minimizing the integral at the right hand
side in R.
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Hence it follows that

lim
R→+∞

∫ 2π

0

|u− ū|2(R, θ) = 0. (4.2.42)

By (4.2.40) for every sequence {Rk}k∈N, there is a corresponding se-
quence {θk}k∈N such that

lim
k→+∞

|u(Rk, θk)| = `. (4.2.43)

From the integral theorem of the mean there is Rk ∈ (2k, 2k+1) such
that

log 2

∫ 2π

0

|∂θu|2(Rk, θ) =

∫ 2k+1

2k

1

r

∫ 2π

0

|∂θu|2 ≤
∫
S

2k+1\S2k

|∇u|2.

Since u is a D–solution,

lim
k→+∞

∫
S

2k+1\S2k

|∇u|2 = 0.

Therefore,

lim
k→+∞

∫ 2π

0

|∂θu|2(Rk, θ) = 0. (4.2.44)

By the basic calculus

|u(Rk, θk)− u(Rk, θ)|2 ≤
∫ 2π

0

|∂θu|2(Rk, θ).

Then, taking into account (4.2.43) and the inequality∣∣|u(Rk, θ)| − `
∣∣2 ≤ 2|u(Rk, θk)− `|2 + 2|u(Rk, θk)− u(Rk, θ)|2

we have
lim

k→+∞
|u(Rk, θ)| = `, (4.2.45)

uniformly in θ. Since by Lemma 1.2.10∫ 2π

0

|u(Rk, θ)− ū(Rk)|2 ≤
∫ 2π

0

|∂θu|2(Rk, θ),
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we have

|u(Rk, θ)− ū(Rk)|2 ≤ c

∫ 2π

0

|∂θu|2(Rk, θ).

Therefore, taking into account (4.2.45), we get

lim
k→+∞

|ū(Rk)| = `. (4.2.46)

For every R ∈ (2k, 2k+1) by Schwarz’s inequality it holds

|ū(R)− ū(Rk)|2 =
1

4π2

∣∣∣∣∫ R

Rk

∫ 2π

0

∂ru

∣∣∣∣2
≤ 1

2π

{∫ R

Rk

1

r

}{∫
{SRk

|∇u|2
}
≤ c

∫
{SRk

|∇u|2.

Hence, letting k → +∞ and bearing in mind (4.2.46), (4.2.41) follows.
If ` > 0, then there is a positive R0 such that

|ū| > `/2, ∀ r > R0. (4.2.47)

Let ψ(r) be the argument of the vector ū(r), i.e.,

ū1(r) = |ū(r)| cosψ(r),

ū2(r) = |ū(r)| sinψ(r).

By a simple computation we have

ψ′ =
ū1ū

′
2 − ū2ū

′
2

|ū|2
.

Now, from

w · ∇w · eθ = − sin θw1∂1w1 − sin θw2∂2w1 + cos θw1∂1w2

+ cos θw2∂2w2 = − cos θw2∂1w1 − sin θw2∂2w1

+ cos θw1∂1w2 + sin θw1∂2w2 = r(w1∂rw2 − w2∂rw1),

and (4.2.22), we get

∂rω + u1∂ru2 − u2∂ru1 +
1

r
∂θp = 0.
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Hence, taking the average over θ in (4.1.1)1 and dividing by |ū|2, it
follows

2πψ′(r) =
1

|ū|2

∫ 2π

0

[(u2 − ū2)∂ru1](r, θ)

− 1

|ū|2

∫ 2π

0

[∂rω + (u1 − ū1)∂ru2](r, θ),

(4.2.48)

for all r > R0. Integrating over (ρ,R) and taking into account (4.2.47),
(4.2.48) yields

|ψ(R)−ψ(ρ)| ≤ c

{∫ R

ρ

∫ 2π

0

|(u2 − ū2)∂ru1|

+ c

∫ R

ρ

∫ 2π

0

|(u1 − ū1)∂ru2|+
∫ R

ρ

∫ 2π

0

|∂rω|
}
.

(4.2.49)

By Lemma 1.2.10 and Schwarz’s inequality∫ R

ρ

∫ 2π

0

|(u2 − ū2)∂ru1| ≤
{∫ R

ρ

1

r

∫ 2π

0

|u2 − ū2|2
∫ R

ρ

r

∫ 2π

0

|∂ru1|2
}1/2

≤
∫
SR\Sρ

|∇u|2,∫ R

ρ

∫ 2π

0

|(u1 − ū1)∂ru2| ≤
∫
SR\Sρ

|∇u|2.

Also,∫ R

ρ

∫ 2π

0

|∂rω| ≤ c

{∫ R

ρ

1

r2

}1/2 ∫
SR\Sρ

r|∇ω|2 ≤ c

∫
SR\Sρ

r|∇ω|2.

Then, letting ρ → +∞ in (4.2.49) and taking into account Lemma
4.2.7, we see that ψ(r) converges to a constant ψ0 ∈ [0, 2π] and

lim
R→+∞

1

2π

∫ 2π

0

u(R, θ) = κ, (4.2.50)

with
κ = (` cosψ0, ` sinψ0).
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Now, (4.2.42) and (4.2.50) implies that

lim
R→+∞

∫ 2π

0

|u− κ|(R, θ) = 0. (4.2.51)

By Lemma 4.2.3

|u(x)− κ| ≤ c

{∫ 2π

0

|u− κ|(|x|, θ) + ‖∇u‖Lq(S1(x)

}
,

for some q > 2. Therefore, (4.2.51) yields (4.2.38). �

• Remark 4.2.1

In virtue of classical results of C. J. Amick [2], if a and f are zero, then
a D–solution u bounded in {SR0 . Then by Lemma 4.2.8 u converges
uniformly to a constant vector at infinity. ♦
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4.3 Existence of a D–solution

Let a ∈ L2(∂Ω) and let
us = v + σ

be the very weak solution of the Stokes problem corresponding to
f = 0 and a, defined in Remark 2.12.2. Recall that∫

∂Ωi

v · n = 0, i = 1, . . . ,m. (4.3.1)

Let g be a regular function, vanishing outside the disk S2R̄ and equal
to one in SR̄, with R̄� R0. By Lemma 1.2.13 the problem

div ζ + div(gv) = 0 in TR̄

has a solution ζ ∈ W 2,2
0 (TR). The field

h = z + σ, (4.3.2)

with

z =


v, in ΩR̄,

ζ + gv, in TR̄,

0, in {SR̄

. (4.3.3)

is a divergence free extension of a in Ω and z has compact support in
Ω. Note that, in particular,

h ∈ L4
σ(Ω). (4.3.4)

Let

Φ =
1

2π

m∑
i=1

|Φi|,

where

Φi =

∫
∂Ωi

a · n

and xi is a fixed point in Ωi.
The following theorem holds.
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Theorem 4.3.1 Let f ∈ [D1,2
0 (Ω)]∗, let a ∈ L2(∂Ω). If

Φ < 1, (4.3.5)

then system (4.1.1) has a solution

(u, p) ∈ [D1,2({SR0) ∩W 2,1
loc (Ω)]× [D1,2({SR0) ∩W 1,1

loc (Ω)]. (4.3.6)

and if ∫
∂Ω

a · n = 0,

then
p ∈ D2,1({SR0). (4.3.7)

If a ∈ Lq(∂Ω), q > 2, then

lim
t→0+

us(ξ + tn) = a(ξ),

for almost all ξ ∈ ∂Ω, and if a ∈ C(∂Ω), then u ∈ Cloc(Ω). Moreover,
if f has a compact support, then

lim
r→+∞

p(x) = 0, (4.3.8)

uniformly, and there is a constant vector κ such that

lim
r→+∞

u(x) = κ, (4.3.9)

uniformly.

Proof - We look for a solution of system (4.1.1) expressed by

u = h+w,

with h given by (4.3.2) and w ∈ D1,2
σ,0(Ω) variational solution of equa-

tions

∆w − (h+w) · ∇(h+w)−∇Q+ ∆h = f in Ω.

divw = 0 in Ω.

w = 0 on ∂Ω.

(4.3.10)
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for some pressure field Q ∈ L2
loc(Ω).

Let {Rk}k∈N be a positive, increasing and unbounded sequence in
(0,+∞), with R1 > R0. Consider the problem

∆w − (h+w) · ∇(h+w)−∇Q+ ∆h = f in ΩRk ,

divw = 0 in ΩRk ,

w = 0 on ∂ΩRk .

(4.3.11)

By Theorem 3.1.1 assumption (4.3.25) assures that system (4.5.5) has
a variational solution (wk, Qk) ∈ W 1,2

σ,0 (ΩRk) × L2(ΩRk), i.e, the field
wk satisfies the relation∫

Ω

∇wk · ∇φ =

∫
Ω

(h+wk) · ∇φ · (h+wk)

−
∫

Ω

∇h · ∇φ− 〈f ,w〉,
(4.3.12)

for all φ ∈ W 1,2
σ,0 (ΩRk), where we extended wk to the whole of Ω by

setting wk = 0 in {SRk . Let us show that the sequence {wk}k∈N is
uniformly bounded in D1,2(Ω), i.e., there is a positive constant c such
that

J2
k =

∫
Ω

|∇wk|2 ≤ c (4.3.13)

for all k ∈ N. Indeed, if (4.3.13) is not true, following [25], a subse-
quence exists, still denoted by the same symbol, such that

lim
k→+∞

Jk = +∞.

The field

w′k =
wk

Jk

is uniformly bounded in D1,2
σ,0(Ω), because∫

Ω

|∇w′k|2 = 1, (4.3.14)
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and by (4.3.12)

1

Jk

∫
Ω

∇w′k · ∇φ =

∫
Ω

w′k · ∇φ ·w′k +
1

J2
k

∫
Ω

h · ∇φ · h

+
1

Jk

∫
Ω

(h · ∇φ ·w′k +w′k · ∇φ · h

− 1

J2
k

∫
Ω

∇h · ∇φ)− 1

J2
k

〈f ,φ〉.

(4.3.15)

In virtue of (4.3.14) by Lemma 1.2.6 we can extract a sequence from
{w′k}k∈N, we denote by the same symbol, which converges weakly in
D1,2(Ω) and strongly in Lqloc(Ω), q ∈ (1,+∞) to a field w′ ∈ D1,2

σ,0(Ω)
such that ∫

Ω

|∇w′|2 ≤ 1.

Choose φ ∈ C∞σ,0(Ω) in (4.3.15) and let k → +∞. By what we said
above, proceeding as we did in the proof of Theorem 3.1.1, we see that
w′ satisfies the Euler equations

w′ · ∇w′ +∇Q′ = 0 in Ω,

divw = 0 in Ω,

w = 0 on ∂Ω,

(4.3.16)

for some pressure field Q′ ∈ W 1,2(Ω). From Lemma 3.1.1 it follows
that Q′ is a constant Q′i on every ∂Ωi.

Choosing φ = wk in (4.3.15), we have

1 =

∫
Ω

w′k · ∇w′k · σ +

∫
Ω

w′k · ∇w′k · z

+
1

Jk

∫
Ω

[∇w′k · (h⊗ h−∇h)]− 1

Jk
〈f ,w′k〉.

(4.3.17)

Now, ∫
Ω

w′k · ∇w′k · σ =
m∑
i=1

Φi

2π

∫
Ω

w′k · ∇w′k ·
x− xi
|x− xi|2

.
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Extending w′k in Ω′ by setting w′k = 0 in Ω′, by Lemma 4.2.4 we have∣∣∣∣∫
Ω

w′k · ∇w′k ·
x− xi
|x− xi|2

∣∣∣∣ =

∣∣∣∣∫
R2

w′k · ∇w′k ·
x− xi
|x− xi|2

∣∣∣∣ ≤ ∫
Ω

|∇w′k|2 = 1

so that ∣∣∣∣∫
Ω

w′k · ∇w′k · σ
∣∣∣∣ ≤ Φ.

Therefore, (4.3.17) implies

1− Φ ≤
∫

Ω

w′k · ∇w′k · z

+
1

Jk

∫
Ω

[∇w′k · (h⊗ h−∇h)]− 1

Jk
〈f ,w′k〉.

(4.3.18)

Taking into account that z has a compact support and σ = O(r−1),
we get∣∣∣∣∫

Ω

(z + σ) · ∇w′k · z
∣∣∣∣ ≤ ‖∇w′k‖L2(Ω)‖z + σ‖2

L2(TR̄)‖z‖2
L4(Ω)

≤ c‖∇w′k‖2
L4(Ω) ≤ c,∣∣∣∣∫

Ω

σ · ∇w′k · σ
∣∣∣∣ ≤ c

∫
Ω

|∇w′k|
r2

≤ c

{∫
Ω

1

r4

∫
Ω

|∇w′k|2
}1/2

≤ c,∣∣∣∣∫
Ω

∇w′k · ∇h
∣∣∣∣ ≤ ‖∇w′k‖L2(Ω)‖∇h‖L2(Ω) ≤ c,

|〈f ,w〉| ≤ ‖∇w′k‖L2(Ω)‖f‖[D1,2
0 (Ω)]∗ ≤ c

(4.3.19)
Therefore, we can let k → +∞ in (4.3.18) and use (4.3.1), (4.3.16) to
get

(1− Φ) ≤
∫

Ω

w′ · ∇w′ · z = −
∫

Ω

z · ∇Q′

=
m∑
i=1

Q′i

∫
∂Ωi

v · n = 0.

(4.3.20)

Since (4.3.20) contradicts (4.3.25), we see that (4.3.13) holds true.
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Starting from (4.3.13), let us construct a sequence which converges
to a variational solution of system (4.5.5). To this end we follow [41].
By Lemma 1.2.6 we can extract from {wk}k∈N a subsequence which
converges strongly in Lq(ΩR1), q ∈ (1,+∞). Of course, this subse-
quence still satisfies (4.3.13) so that from it we can extract a subse-
quence which converges strongly in Lq(ΩR2), q ∈ (1,+∞). Proceeding
in this way, we construct a sequence of subsequence of {wk}k∈N, we
can write as lines of a matrix, such that the kth line converges strongly
in Lq(ΩRj), j = 1, . . . k. Therefore, taking the diagonal of this matrix,
we have a sequence {w̃k} which converges strongly in Lq(ΩRk) for all
k ∈ N and weakly in D1,2(Ω) to a field w̃ ∈ D1,2

σ,0(Ω). Therefore, for
all φ ∈ C∞σ,0(Ω),

lim
k→+∞

∫
Ω

∇w̃k · ∇φ =

∫
Ω

∇w̃ · ∇φ

and, proceeding as we did in the proof of Theorem 3.1.1, we get

lim
k→+∞

∫
Ω

(h+ w̃k) · (∇φ) · (h+ w̃k) =

∫
Ω

(h+ w̃) · (∇φ) · (h+ w̃).

Hence u = w + h ∈ D1,2({SR0) is a variational solution of system
(4.5.5) and (4.3.6), (4.3.7), (4.3.8) have been proved in Lemma 4.3.1.
The regularity properties follows from the analogous ones we proved
for bounded domains.

By Lemma 4.3.1 to prove (4.3.9) it is sufficient to show that u is
bounded in a neighborhood of the infinity. To this end we follow [19].
If we repeat the proof of Lemma 4.2.5 with a the function ηg where g
is given by (4.2.14) and η is a regular function such that

η(r) =

{
0, r < Rk,

1, r > R0,

we see that ∫
S
Rk
e−δ \SR0

|∇ωk|2 ≤ c, (4.3.21)

uniformly on k. Making use of (4.3.21) and proceeding as we did to
prove (4.2.20), with ηg instead of φ, we have in particular that

‖pk‖L∞(S3R/4\SR0
) ≤ c (4.3.22)
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uniformly on k. By the integral theorem of the mean, there is ρ ∈
(Rk/2, 3Rk/4) such that

log(3/2)

∫ 2ρ

0

|∂θuk|2(ρ, θ) =

∫ 3Rk/4

Rk/2

1

r

∫ 2π

0

|∂θuk|2

≤
∫
S3Rk/4

\SRk/2
|∇uk|2 ≤ c.

(4.3.23)

Integrating the identity

u(ρ, θ)− u(ρ, α) =

∫ θ

α

∂θu(ρ, ϑ)

on α ∈ (0, 2π) and using Schwarz’s inequality and (4.3.23), we have

|u(ρ, θ)− ū(ρ)| ≤ c

∫ 2π

0

|∂θuk|2 ≤ c.

Therefore, since for R > Rk/8,

|ū(R)| = |ū(R)− σ̄(Rk)| = |ū(R)− u(Rk)| =
∣∣∣∣∫ Rk

R

∫ 2π

0

∂ru

∣∣∣∣
≤ 1

2π

{∫ Rk

R

r

∫ 2π

0

|∂ru|2
}1/2{∫ Rk

R

1

r

}1/2

≤
(

log 8

2π

) 1
2

{∫
ΩRk

|∇wk|2
}1/2

≤ c,

it follows that for every k there is ρ ∈ (Rk/2, 3Rk/4) such that

|u(ρ, θ)| ≤ c (4.3.24)

uniformly in k. The head pressure field

Πk = pk + 1
2
|uk|2

satisfies the inequality

∆Πk − uk · ∇Πk = ω2
k ≥ 0,
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then by the classical maximum principle (see, e.g., [27])

max
SRk/2

Πk ≤ max
Sρ\SR0

Πk ≤ max
∂Sρ

Πk + max
∂SR0

Πk ≤ c

uniformly in k. Then, bearing in mind (4.3.22), we see that there is a
positive constant c independent of k such that

|uk(x)| ≤ c

for all x ∈ SRk/2 \ SR0 . Hence the desired result follows at once. �

If Ω is Lipschitz2 and a ∈ W 1/2,2(∂Ω), then we construct the di-
vergence free extension of h starting from the variational solution of
the Stokes problem and, by literally repeating the above argument,
we can prove the following theorem [36].

Theorem 4.3.2 Let Ω be an exterior Lipschitz domain of R2. If a ∈
W 1/2,2(∂Ω), f ∈ [D1,2

0 (Ω)]∗ and

Φ < 1, (4.3.25)

then system (4.1.1) has a variational solution u ∈ D1,2(Ω).

2This means that for all ξ is ∂Ω there is a neighboorhood of ξ (on ∂Ω) which
is a graph of a Lipschitz continuous function.
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4.4 Existence of polar symmetric solu-

tions

Let Ω is symmetric with respect to o, i.e.,

x ∈ Ω⇒ −x ∈ Ω.

By a polar symmetric function we mean a scalar field ϕ in in Ω (or on
∂Ω) such that

ϕ(−x) = −ϕ(x),

almost everywhere. It is clear that if H(⊂ L1
loc(Ω)) is a Banach space,

the set of all polar symmetric functions of H is a closed subspace of H.
Therefore, if a and f are polar symmetric then the reasoning we used
in the proof of Theorem 4.3.1 yields existence of a polar symmetric
solution u; the associated pressure field p is an even function of x:
p(x) = p(−x). Since ∫ 2π

0

u(R, θ) = 0,

for all R > R0, by (1.2.9)∫
TR

|u|2 =

∫
TR

|u− uTR |2 ≤ c

∫
TR

|∇u|2. (4.4.1)

Coupling (4.4.1) with the trace theorem gives∫ 2π

0

|u|2(R, θ) ≤ c

R2

∫
TR

|u|2 +

∫
TR

|∇u|2 ≤ c

∫
TR

|∇u|2.

Therefore, if u is a D–solution, then

lim
r→+∞

∫ 2π

0

|u|2 = 0 (4.4.2)

and we can state

Theorem 4.4.1 Let Ω be polar symmetric and let (u, p) be the solu-
tion of Theorem (4.3.2). If

a(ξ) = −a(−ξ),
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for almost all ξ ∈ ∂Ω and

f(x) = −f(−x),

for almost all x ∈ Ω, then

lim
r→+∞

u(x) = 0

uniformly.

I The above theorem is a slight improvement of a results of G.P.
Galdi [17] and, as far as we are aware, it is the only case where we
know the constant vector u0 to which the D–solution u (in Theorem
4.3.1) converges. Note that if a ∈ W 1/2,2(∂Ω), then we can assume Ω
to be only Lipschitz [36]. /

• Remark 4.4.1

Let Ω be polar symmetric and let ψ ∈ C. Since

S[ψ](−ξ) =

∫
∂Ω

U(−ξ − ζ)ψ(ζ) daζ =

∫
∂Ω

U(−ξ + ζ)ψ(−ζ) daζ

=

∫
∂Ω

U(ξ − ζ)ψ(−ζ) daζ = S[ψ](ξ) =

∫
∂Ω

U(ξ − ζ)ψ(ζ) daζ ,

we have ∫
∂Ω

U(ξ − ζ)[ψ(ζ)−ψ(−ζ)] daζ = 0 (4.4.3)

for all ξ ∈ ∂Ω. If dim M0 = 0, then (4.4.3) yields

ψ(ζ) = ψ(−ζ)

for all ζ ∈ ∂Ω so that ψ is an even function of ζ. If dim M0 6= 0, then
(4.4.3) implies that ψ(ζ) − ψ(−ζ) = ψ̄(ζ) ∈ M0. If ψ were not an
even function, then we should have

ψ̄(−ζ) = ψ(−ζ)−ψ(ζ) = −ψ̄(ζ),
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so that ψ̄(ζ) should be an odd function of ζ. Hence∫
∂Ω

ψ̄ = 0.

Since this is absurd, we conclude that ψ(ζ) is an even function of ζ.
Therefore, the data a and f in Theorem 4.4.1 satisfy∫

∂Ω

a ·ψ =

∫
∂Ω

f ·ψ = 0

so that in our particular case we have the compatibility condition for
the existence of a solution of the Stokes problem in an exterior domain∫

∂Ω

a ·ψ −
∫
∂Ω

f ·ψ = u0 ·
∫
∂Ω

ψ. (4.4.4)

It is then reasonably to ask whether a condition like (4.4.4) is necessary
for the existence of a solution of system (4.1.1), (4.1.2). For “small”

u0 6= 0 (4.4.5)

this is excluded by the results in [10]. Hence it follows that in the
nonlinear case and under assumption (4.4.5) the Stokes paradox (in
general) does not hold. ♦

• Remark 4.4.2

Note that if u0 = e1 and a , f are zero, then the Leray method yields
to a bounded sequence (in D1,2(Ω)) of solutions {uk} of the equations

∆uk − Ruk · ∇uk −∇Qk = 0 in ΩRk ,

divuk = 0 in ΩRk ,

uk = 0 on ∂Ω,

uk = e1 on ∂ΩRk ,

where R is the Reynolds number. Then uk converges uniformly in
every compact of Ω to a classical solution of the system

∆u− Ru · ∇u−∇Q = 0 in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω

(4.4.6)
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and there is a mysterious vector κ such that

lim
r→+∞

u(x) = κ

uniformly.

• Is the vector κ nonzero?

This interesting problem was posed and solved by C.J. Amick [2] for
regular domains (of class C3, say) symmetric with respect to the x1–
axis (see also [17]). For general regular domains or for less regular
symmetric domain (Lipschitz, say) it is open. A simple consequence
of Amick’s results is that the Stokes paradox is typical of the linear
problem. Indeed, at least for symmetric domains

κ = 0 ⇔ R = 0.

♦
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4.5 Existence of symmetric solutions

In this section we aim at extending in some sense a classical result of
C. J. Amick [1]3 to exterior domains.

Let us use the notations and definitions of Section 3.3. Accordingly,
Ωi are m simply connected domains, symmetric with respect to the
x1–axis, ∂Ωi ∩ {x2 = 0} = ∅, for every i, and a is symmetric fields.
Assume, as is always possible, that o ∈ Ω′.

If α ∈ L2(∂Ω) is symmetric and satisfies∫
∂Ω

α · n = 0,

then by H. Morimoto’s argument outlined in Section 3.5, we arrive at
constructing a divergence free symmetric extension of α expressed by

z = curl(gδϕ), (4.5.1)

where gδ is the function defined by (3.5.4) and the estimate∣∣∣∣∫
Ω

w · ∇w · z
∣∣∣∣ ≤ c(δ0)

∫
Ω

|∇w|2, (4.5.2)

holds for all w ∈ D1,2
σ,0(Ω), with

lim
δ0→0

c(δ0) = 0.

Let (4.5.1) be the extension of a− σ0 in Ω, with

σ0(x) = − er
2π|x|

∫
∂Ω

a · n.

Of course, the field
h = z + σ0

is a divergence free symmetric extension of a in Ω.
The following theorem holds.

3 see Section 3.3
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Theorem 4.5.1 Let Ω be an exterior domain of R2 of class C2, sym-
metric with respect to the x1–axis. If f ∈ [D1,2

0 (Ω)]∗ and a ∈ L2(∂Ω)
are symmetric and ∣∣∣∣∫

∂Ω

a · n
∣∣∣∣ < 2π, (4.5.3)

then system (4.1.1) has a D–solution solution (u, p) and there is a
scalar α ∈ [0, 1] such that

κ = αe1. (4.5.4)

Proof - Let {Rk}k∈N be a positive, increasing and unbounded se-
quence in (0,+∞), with R1 > R0. By Theorem (3.3.1) the system

∆w − (h+w) · ∇(h+w)−∇Q+ ∆h = f in ΩRk

divw = 0 in ΩRk ,

w = 0 on ∂ΩRk ,

(4.5.5)

has a solution wk ∈ D1,2
σ,0(Ω). Therefore, we can repeat ad litteram the

proof of Theorem 4.3.1 from (4.5.5) to (4.3.18) to get

1− 1

2π

∣∣∣∣∫
∂Ω

a · n
∣∣∣∣ ≤ ∫

Ω

w′k · ∇w′k · z

+
1

Jk

∫
Ω

[∇w′k · (h⊗ h−∇h)]− 1

Jk
〈f ,w′k〉.

Hence, taking into account (4.5.2) and choosing δ0 such that

1− 1

2π

∣∣∣∣∫
∂Ω

a · n
∣∣∣∣− c(δ0) = c0(δ0) > 0,

it follows

c0(δ0) ≤ 1

Jk

∫
Ω

[∇w′k · (h⊗ h−∇h)]− 1

Jk
〈f ,w′k〉. (4.5.6)

Then, using (4.3.19) we are allowed to let k → +∞ in (4.5.6) to have

c0(δ0) = 0
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and, as a consequence, ∣∣∣∣∫
∂Ω

a · n
∣∣∣∣ ≥ 2π.

Since this contradicts hypothesis (4.5.3), the argument used in the
last part of the proof of Theorem 4.3.1 yields existence of a symmetric
solution. Finally, (4.5.4) follows from the fact that∫ 2π

0

u2(R, θ) = 0

for large R and Lemma 4.1 of [17]. �

• Remark 4.5.1

Let
R2

+ = {x ∈ R2 : x2 > 0}.
In the unbounded domain

Ω = R2
+ ∩ {Ω′

where Ω′ is symmetric with respect to the x1–axis, consider the mixed
problem

∆u− u · ∇u−∇p = 0 in Ω,

divu = 0 in Ω,

u = a on Γ,

u · n = 0 on Σ,

t · T (u, p)n = 0 on Σ,

(4.5.7)

where
Γ = ∂Ω′ ∩ R2

+,

Σ = ∂Ω \ Γ

By reasoning as we did to prove Theorem 3.4.1, it is not difficult
to show that if a ∈ L2(Γ) and∣∣∣∣∫

∂Ω

a · n
∣∣∣∣ < 4π,
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then system (4.5.7) has a solution (u, p) such that∫
Ω\SR0

|∇u|2 < +∞

there is a scalar α ∈ [0, 1] such that

lim
r→+∞

u(x) = αe1

uniformly. ♦

It is not difficult to see that if m = 2k+1, k ∈ N0, ∂Ωi is symmetric
with respect to both the coordinate axes:

(ξ1, ξ2) ∈ ∂Ω ⇒ (−ξ1, ξ2), (ξ1,−ξ2) ∈ ∂Ω,

o ∈ Ωk and

a1(x1, x2) = −a1(−x1, x2) = a1(x1,−x2),

a2(x1, x2) = a2(−x1, x2) = −a2(x1,−x2),

f1(ξ1, ξ2) = −f1(−ξ1, ξ2) = f1(ξ1,−ξ2),

f2(ξ1, ξ2) = f2(−ξ1, ξ2) = −f2(ξ1,−ξ2),

(4.5.8)

then we can repeat the argument in the proof of Theorem 4.5.1 to
have

Theorem 4.5.2 Let Ω be an exterior domain of R2 of class C2,
symmetric with respect to the coordinate axes. If f ∈ [D1,2

0 (Ω)]∗,
a ∈ L2(∂Ω) satisfy (4.5.8) and (4.5.3) holds, then system (4.1.1) has
a D–solution solution (u, p) and

lim
r→+∞

u(x) = 0,

uniformly.

• Remark 4.5.2

Let
Q = {x ∈ R2 : x1 > 0, x2 > 0}.
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and let ∂Ω′ be connected.
Consider system (4.5.7) in the unbounded domain

Ω = Q ∩ {Ω′,

where Ω′ is symmetric with respect to the coordinate axes and

Γ = ∂Ω′ ∩Q,
Σ = ∂Ω \ Γ.

Once again, by reasoning as we did to prove Theorem 3.4.1 (with
minor modification), it is not difficult to show that if a ∈ L2(Γ) and∣∣∣∣∫

∂Ω

a · n
∣∣∣∣ < 8π,

then (4.5.7) has a solution (u, p) such that∫
Ω\SR0

|∇u|2 < +∞

and
lim
t→+∞

u(x) = 0

uniformly. ♦
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et de quelques problèmes que pose l’hydrodynamique, J. Math.
Pures Appl. 12 (1933), 1–82. 3, 12, 33, 36, 42, 43, 46, 57

[26] P., Maremonti, R. Russo, R. and G. Starita : On the
Stokes equations: the boundary value problem. Quad. Mat. 4
(1999), 69–140. 4, 12, 71, 88, 121

[27] C. Miranda : Partial differential equations of elliptic type.
Springer–Verlag, 1970. 3, 7, 11, 15, 46, 51, 57



140

[28] C. Miranda: Istituzioni di analisi funzionale lineare. Unione
Matematica Italiana, Oderisi Gubbio Editrice (1978). 40, 43,
45, 108, 112, 126

[29] H. Morimoto: A remark on the existence of a 2–D steady
Navier–Stokes flow in bounded symmetric domain under general
outflow condition, . J. Math. Fluid Mech. 9 (2007), 411–418. 21,
22, 24, 40, 83

[30] H. Morimoto: General outflow condition for Navier–Stokes
flow, Recent topics on mathematical theory of viscous incom-
pressible fluid,ed. H. Kozono - Y. Shibata, Kinokuniya, Tokyo,
Lecture Notes in Num. Appl. Anal. 16 (1998), 209–224. 92

95

[31] H. Morimoto and S. Ukai: Perturbation of the NavierStokes
flow in an annular domain with the non-vanishing outflow con-
dition, J. Math. Sci., Univ. Tokyo 3 (1996), 7382. 95
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[42] G. Starita and A. Tartaglione: On the Neumann problem
for the Stokes system, Math. Meth. Mod. Appl. Sci., 12 (2002),
813-834 124

[43] V.A. Solonnikov: On an estimate for the maximum mod-
ulus of the solution of a stationary problem for Navier-Stokes
equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov (POMI) 249 (1997), 294–302; english transl.: J. Math.
Sci. (New York) 101 (2000), 3563–3569. 61, 66

[44] E. Stein: Harmonic analysis: real–variables methods, orthog-
onality and oscillatory integrals, Princeton University Press
(1993). 88

[45] R. Temam: Navier–Stokes equations, North–Holland (1977).
27, 40

33


	Introduzione
	Introduction
	Notation and mathematical tools
	Notation
	Some mathematical tools

	Steady Stokes flow in bounded and exterior domains
	The Navier--Stokes equations
	The Navier--Stokes problem
	The Stokes equations
	The Stokes volume potential
	The Stokes layer potentials
	The Stokes problem in bounded domains
	The Stokes problem in exterior domains
	Uniqueness and Stokes' paradox
	Self--propelled Stokes flow
	The Neumann problem
	Solutions of the Stokes problem expressed by simple layer potentials
	Some remarks on the Stokes problem in domains with nonconnected boundaries

	Steady Navier--Stokes flow in bounded domains
	Existence of a very weak solution
	Uniqueness of a very weak solution
	The Amick theorem for very weak solutions
	A mixed problem
	A maximum modulus estimate
	The Fujita--Morimoto approach

	Steady Navier--Stokes flow in exterior domains
	D--solutions of the exterior Navier--Stokes problem
	Asymptotic behavior of D--solutions
	Existence of a D--solution
	Existence of polar symmetric solutions
	Existence of symmetric solutions

	Bibliography

