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Abstract

Let X be a class of groups. A group which does not belong to X but all
of whose proper quotients belong to X is called Just-Non-X group. A group
which does not belong to X but all of whose proper subgroups belong to X is
called Minimal-Non-X group. Just-Non-X groups and Minimal-Non-X groups
are correlated by structural results for different choices of the class X. Many
authors investigated these groups and there is a long standing line of research
in such a topic. Here some recent results have been shown in the context of the
generalized FC-groups and in the context of the topological groups.

Mathematics Subject Classification: 20F24; 22C05; 20E22.

Key Words and Phrases: JNX groups; MNX groups; centerfree groups; per-
fect groups.



Contents

1. The Problem in Literature.................................................4

2. Main Results.......................................................................6

3. JNPC Groups...................................................................7

4. JNMC Groups..................................................................14

5. MNPC Groups.................................................................19

6. Compact JNL Groups......................................................25

7. Locally Compact JNC Groups.........................................35

8. Some Open Questions.......................................................38

Acknowledgement..............................................................40

List of Symbols..................................................................41

Index.................................................................................43

Bibliography......................................................................49



4

1. The Problem in Literature

If X is a class of groups, a group G which belongs to X is said to be an X-
group. A group G is said to be a Just-Non-X group, or briefly a JNX group , if it
is not an X-group but all of its proper quotients are X-groups. Of course, every
simple group which is not an X-group is a JNX group, so the simple groups
constitute an easy source of examples for Just-Non-X groups. The structure of
Just-Non-X groups has already been studied for several choices of the class X, so
there is a well developed theory about the topic (see [44]). Moreover the study
of JNX groups has been investigated both in finite groups and infinite groups
so that many techniques have general application (see [5, Section 2.3] and [44]).

H. Schunk was interested in studying JNX groups with respect to some
problems of Local Theory of Finite Groups as [5, Theorem 2.3.7] and [20, Chap-
ter 3] testify. JNX groups were called groups of boundary X in the original
works of H. Schunk and results of factorization as [5, Theorem 2.3.15, Proposi-
tions 2.3.16, 2.3.17, Theorems 2.3.20, 2.3.24, 2.4.12, Statements 6.5.10–6.5.19,
Theorem 6.5.21, Corollary 6.5.22] were obtained. Further classical references
can be found in [20, Chapters 6, 11].

Most of the times, the literature on JNX groups shows that their description
overlaps either the results of H. Schunk, which we just mentioned, or a well-
known splitting’s theorem of I. Schur and H. Zassenhaus (see [20, 18.1, 18.2] or
[68, 9.1.2]). In the context of locally finite groups, we may find generalizations
of the results of H. Schunk [20, Chapters 6, 11], as described in [19, Chapter
6]. A variation of the results [20, Chapters 6, 11] has been recently given in
the context of compact groups by [71]. Here, a compact group which is not
a Lie group but all of its proper Hausdorff quotients are Lie groups has been
investigated. This is the further proof that many techniques and methods have
general application in topics concerning JNX groups.

On the other hand, the knowledge of JNX groups is often accompanied by
the following notion, which is dual in a certain sense.

A group G is called X-critical group, or Minimal -Non-X group, or briefly
MNX group, if G is not an X-group but all of its proper subgroups are X-
groups. There is a long standing line of research on MNX groups, as we can
see in [68, Theorem 9.1.9, Exercise 9.1.11, Theorem 10.3.3] and [20, pp.59, 330,
402, 408, 480, 515, 525, 781]. Such a literature shows that the terminology and
the notations are not uniform and some results can be found independently by
means of different approaches (see [5, Theorem 6.4.4] and [67, Theorem 3.44]).
For instance, we note that the terminology Minimal-Non-X group is adopted by
[50] and [67], while the terminology X-critical group is adopted by [4] and [20].

The reason why Just-Non-X groups and Minimal-Non-X groups are corre-
lated is due to an unexpected symmetry in their structure as it is clear by
comparing [44, Theorems 11.1, 11.2, 12.26, 12.30, 14.1, 14.2, 14.8, 14.10, 14.18,
14.19, 15.4, 15.5, 15.11, 16.21, 16.24, 16.28, 16.30, 16.31, 16.32, 16.33, 17.5,
17.7, 17.8, 17.9, Corollaries 12.27, 12.28, 12.29] with [68, Theorem 9.1.9, Exer-
cise 9.1.11, Theorem 10.3.3].
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For instance, if A is the class of the abelian groups, Just-Non-A groups have
been completely described by M. F. Newman in [44, Theorems 11.1, 11.2]. He
proved that a Just-Non-A group is characterized to be a homomorphic image
of a direct product of an extra-special group by a quasicyclic group. Minimal-
Non-A groups have been completely described by O. Yu. Schmidt in [5, p.268,
l.4] (or in [68, Theorem 9.1.9]). It is interesting to point out the great symmetry
which pervades the result of M. F. Newman and that of O. Yu. Schmidt. The
Fitting subgroup Fit(G) of a group G (see [68, p.133]) plays in the structure of a
Just-Non-A group the same role which is played by G/Frat(G) in the structure
of a Minimal-Non-A group, where Frat(G) denotes the Frattini subgroup of G
(see [68, p.135]). We continue to find these analogies for many choices of X and
not only for X = A.

The importance of Just-Non-X groups and Minimal-Non-X groups becomes
more relevant when we look at situations as in [5, l.2-18] or [50, Theorem 7.4.1].
Let P be the class of polycyclic groups. For instance, [50, Theorem 7.4.1] states
that a finitely generated group G, which is not a polycyclic group, has a suitable
homomorphic image which is a Just-Non-P group. This property holds for many
choices of the class X and not only for X = P. This shows that the knowledge
of Just-Non-P groups deals with the knowledge of all finitely generated groups.

Actually, many problems remain unsolved for JNX groups also for easy
choices of X as [47, Problem 9.74] and [44, Open Questions] show.

There are some cautionary observations which are necessary to note, in order
to have an approach as in [44] to topological groups. The existence of a topology
in a group does not allow us to speak in an usual way either of formations or of
varieties of groups (see [5, 20, 35, 34, 38, 59, 58, 55, 56, 54, 53]). Literature on
varieties of topological groups is relatively recent, as shown in [59, 58, 55, 56,
54, 53]. Unfortunately, most of the classical results of [44, Chapter 2] do not
hold in the context of topological groups, because the Fitting subgroup cannot
play the same role of the abstract case.

For these motivations, we have to move in the category of Hausdorff topo-
logical groups with corresponding morphisms (see [32, p.294]). In order to
speak about quotients in a meaningful way in this category, we should refer to
quotients modulo closed normal subgroups (see [32, Definition 1.9]). Many situ-
ations in this category show that we may not have any closed normal subgroup
at all. Then it would seem reasonable to pick a category consisting of Hausdorff
topological groups which have enough compact quotient groups to separate the
points. In particular, the category of locally compact groups satisfies such re-
quirements. They are well-known in literature and described for instance in
[7, 26, 28, 33, 32, 60, 81, 80].

Our notation follows [5, 20, 32, 33, 38, 66, 67, 68, 88]. Except for these
references, which are used almost everywhere in the present work, [1–8, 10–24,
27, 29–31, 38–52, 61–65, 67–70, 72–75, 77–79, 82–85] deal with the abstract case
and are correlated to Sections 3, 4, 5. The remaining references deal with the
topological case and are correlated to Sections 6, 7, 8.
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2. Main Results

This Section is devoted to describe the main results which have been proved
in the present PhD Thesis. Most of them can be found in [71, 74, 75]. Our
approach seems to be innovative in the context of topological groups, as com-
municated in the referee reports of [71]. For this motivation, some results are
still in progress and have not been illustrated here because we want to have uni-
formity in the exposition of the topic. Now we pass to list briefly the subjects
of the following Sections.

Section 3 deals with JNPC groups, which are JNX groups where X is
the class of the PC-groups, introduced in [22]. We find a good description
of a JNPC group with a unique minimal normal subgroup, solving partially
some open questions in [44]. However, it seems to be still unknown the general
structure of a JNPC group.

Section 4 extends some of the results of previous Section 3 to JNMC groups,
which are a class of groups wider than the class of the JNPC groups.

Section 5 deals with MNPC groups, which can be considered as a dual
class of groups with respect to that of JNPC groups. These groups have been
recently considered in [77]. MNMC groups are also mentioned in Section 5,
since their structure in periodic case is well known by [29, 63].

Section 6 and Section 7 point out the role of JNX groups in the context
of topological groups. Compact JNL groups have been discussed in Section 6.
Locally compact JNC groups have been discussed in Section 7. The definitions
are a little bit technical and can be found respectively in Section 6 and Section
7. Roughly speaking, we will see in these two sections that the correspond-
ing notions of MNL group and MNC group are delicate to formulate. Some
examples will allow us to check when our definitions are meaningful.

Finally, Section 8 summarizes, both in the abstract case and in the topo-
logical case, some open questions which are still unsolved to the best of our
knowledge. These questions are formulated here for the first time.

Our aim is to communicate most of the advances in JNX groups and MNX
groups of the last years. This will be done looking at the methods and at the
strategies, which have been adopted in literature. We hope that the colleagues
who will read the present PhD thesis, or those who will investigate the topic in
future, could have a valid instrument for going on. Indeed, only looking at the
scientific production of the last ten years, it is interesting to note that JNX
groups and MNX groups are constantly studied in Russian, Western European,
Eastern European, Chinese, Arabic and Indian literature.

Furthermore, looking more deeply, one can see that a same result can be
found with different approaches and methods. For this, the uniformity of treat-
ment seems to be of equal interest of the main results.
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3. JNPC Groups

We recall that a group G is called FC-group if G/CG(〈x〉G) is a finite group
for each element x of G. FC-groups are well known (see [67, 82]). Many
generalizations of FC-groups have been obtained, looking at [6, 22, 23, 29, 41,
42, 52, 51, 64, 65, 73, 72].

A group G is called PC-group, or group with polycyclic-by-finite conjugacy
classes, if G/CG(〈x〉G) is a polycyclic-by-finite group for each element x of G.
An element x of a group G is called a PC-element of G if G/CG(〈x〉G) is a
polycyclic-by-finite group. Of course, a group G is a PC-group if and only if
each element of G is a PC-element of G. As noted in [52, Proposition B.2
a)], the set of all PC-elements of G forms a characteristic subgroup PC(G) of
G which is called the PC-center of G. Clearly, a PC-group extends the well
known notion of FC-group. Note that the first generalization of the notion of
FC-group seems to be due to Ya. D. Polovicky in [64, 65], where CC-groups
have been introduced. Recall that a group G is called CC-group, or group
with Chernikov conjugacy classes, if G/CG(〈x〉G) is a Chernikov group for each
element x of G. See [67, Chapter 4] for details.

As noted in Section 1, we may consider a Just-Non-PC group, or briefly a
JNPC group, as a Just-Non-X group, where X is the class of the PC-groups.

The following two lemmas recall properties of PC-groups which are described
respectively in [22, Theorem 2.2] and [22, Lemma 2.4], so the proofs have been
omitted.

Lemma 3.1. Let G be a group. G is a PC-group if and only if 〈X〉G is a
polycyclic-by-finite subgroup of G, where X is a finite subset of G.

Lemma 3.1 can be also expressed by saying that a PC-group is a locally (normal
and polycyclic-by-finite) group. See [67] for this terminology. It follows easily
from Lemma 3.1 that in a group G, 〈x〉PC(G) is a polycyclic-by-finite group for
each nontrivial PC-element x of G.

Lemma 3.2. Quotients, subgroups and direct products of PC-groups are PC-
groups.

[22, Corollary 2.3, Lemma 2.4] give a weak closure by sections of PC-groups.
However we know that finite extensions of FC-groups are FC-groups, but fi-
nite extensions of PC-groups can not be PC-groups. The following example is
emblematic.

Example 3.3. Let G be the locally dihedral 2-group

G = D2∞ = 〈x〉n C2∞ = 〈x〉n P,

where x is an involution which acts on the quasicyclic 2-group P via ax = a−1,
for each element a ∈ P . G is a finite extension of P by 〈x〉 and G = 〈x〉G.
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Clearly 〈x〉G is not a polycyclic-by-finite group so that G is not a PC-group
thanks to Lemma 3.1. �

This fact is not expected because many closure properties of PC-groups come
from closure properties of the class of all polycyclic-by-finite groups. Therefore
Example 3.3 proves that a group which contains a normal PC-subgroup of finite
index can not be a PC-group. On the other hand, a group G which contains a
finite normal subgroup F whose quotient group G/F is a PC-group is certainly
a PC-group. This is explained by the following statement.

Lemma 3.4. If G is a JNPC group, then G has no nontrivial polycyclic-
by-finite normal subgroups.

Proof. We claim that an extension of a polycyclic-by-finite group by a PC-
group is likewise a PC-group. Assume that G = HK is the product of a
polycyclic-by-finite normal subgroup H of G by a PC-group K. It is enough to
prove that G is a PC-group.

Let x be an element of G. Since G/H is a PC-group, 〈xH〉G/H is a
polycyclic-by-finite group. Then 〈x〉KH/H is a polycyclic-by-finite group and
so 〈x〉K is a polycyclic-by-finite group. Now 〈x〉G ≤ H〈x〉K , hence 〈x〉G is a
polycyclic-by-finite group, which gives that G is a PC-group.

From the above argument, we have that a JNPC group cannot contain non-
trivial polycyclic-by-finite normal subgroups. The result follows. �

Another interesting fact is that a JNPC group is subdirectly indecomposable.

Lemma 3.5. If G is a JNPC group, then every intersection of two non-
trivial normal subgroups of G is nontrivial.

Proof. Let H and K be two nontrivial normal subgroups of G. Suppose
that H ∩ K is trivial. G is isomorphic to a subgroup of the direct product of
G/H and G/K. But G/H and G/K are PC-groups, so Lemma 3.2 implies that
G is a PC-group and this gives a contradiction. �

Theorem 3.6. If G is a JNPC group, then Z(G) is trivial.

Proof. If x is a nontrivial element of Z(G), then 〈x〉 is a cyclic normal subgroup
of G, against Lemma 3.4. This implies that Z(G) is trivial. �

Unfortunately, the structure of PC-groups does not allow us to express a con-
dition similar to [69, Proposition 2.2]. Recall that a Just-Non-FC group, or
briefly a JNFC group, is a Just-Non-X group, where X is the class of the FC-
groups. Of course, a JNFC group is a JNPC group. Note that a JNFC group
G can not satisfy max-n as testified in [44], so it is clear that a JNPC group
can not satisfy max-n. In order to adapt [69, Proposition 2.2] and [44, Lemma
15.1], we recall the following notions. The Hirsch-Plotkin radical HP (G) of
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a group G is defined to be the unique largest maximal normal locally nilpotent
subgroup of G (see [67, §2, p.57-64] for details). Recall that a Just-Non-PF
group is a group which is not polycyclic-by-finite but all whose proper quotients
are polycyclic-by-finite. This class of groups is actually the same of that of
Just-Non-P groups as we may see, comparing the classification in [69] and that
in [44, Chapter 15].

Proposition 3.7. Let G be a locally soluble JNPC group. If the Hirsch-
Plotkin radical of each proper quotient group of G satisfies max-ab, then G is a
Just-Non-PF group.

Proof. [22, Theorem 3.2] implies that a locally soluble PC-group is hyper-
abelian, so that G has each proper quotient group which is hyperabelian. Now
[67, Theorem 3.31] implies that each proper quotient group of G is polycyclic-
by-finite. The result follows. �

Proposition 3.8. Assume that G is a JNPC group, H is a nontrivial normal
subgroup of G, H satisfies max-n, HP (G/H) = R/H. If G/H is locally soluble
and R/H satisfies max-ab, then G is a Just-Non-PF group.

Proof. [22, Theorem 3.2] implies that a locally soluble PC-group is hyper-
abelian, so that G/H has each proper quotient group which is hyperabelian.
Now [22, Theorem 3.31] implies that G/H is polycyclic-by-finite. Since H sat-
isfies max-n and G/H is a polycyclic-by-finite group, we may conclude that
G satisfies max-n. It follows easily from Lemma 3.1 that a PC-group which
satisfies max-n is a polycyclic-by-finite group. Thus each proper quotient group
of G is a polycyclic-by-finite group and the result follows. �

Obviously each finitely generated JNPC group is a Just-Non-PF group. How-
ever an improvement of Propositions 3.7 and 3.8 can be furnished by means of
[22, Lemmas 5.10 and 5.11] as follows.

Proposition 3.9. Let G be a locally soluble JNPC group and H be a nor-
mal subgroup of G. If each infinite subset of G/H contains a pair of elements
which generate a polycyclic-by-finite subgroup, then G is a Just-Non-PF group.

Proof. Since G/H is locally soluble PC-group, it is hyperabelian from [22,
Theorem 3.2]. Therefore we apply [22, Lemma 5.10] so that G/H is a polycyclic-
by-finite group. Now the result follows. �

Remark 3.10. From [69] we know that a JNPC group which satisfies the
conditions of Proposition 3.7 or Proposition 3.8 or Proposition 3.9 is completely
classified.

Using wreath products we are able to construct many JNPC groups: this point
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of view was suggested at the first time by D. J. Robinson in [69] for Just-Non-
PF groups. This approach allows us to classify JNFC groups, Just-Non-PF
groups and many other types of Just-Non-X groups, where X is a prescribed
class of groups (see [44] for details).

A classical example of a JNPC group is given by the group G = C∞ n Qp,
where C∞ is infinite cyclic and Qp is the additive group of rational numbers with
denominator a power of p for a fixed prime p. G is a a Just-Non-PF group with
a unique minimal normal subgroup and it is in particular a JNPC group with a
unique minimal normal subgroup. Details can be found in [69]. Of course, each
periodic JNPC group is a JNFC group, since the property to be an FC-group
and the property to be a PC-group coincide in the periodic case. Note that
the same example G = C∞ n Qp shows that there exists a nonperiodic JNPC
group which is a JNFC group.

Remark 3.11. Let G be a JNPC group with max-n. If N is a normal nilpo-
tent subgroup of G, then N is abelian.

Proof. G will have each proper quotient which is a polycyclic-by-finite group
and it is not a polycyclic-by-finite group. It is a Just-Non-PF group and so the
result follows from [69, (2.3)]. �

Lemma 3.12. Let G be a group with minimal normal subgroup A = Fit(G).
Then A is either torsion-free abelian or p-elementary abelian for some prime p.

Proof. Obviously, A is an abelian group. Denote with T = T (G) the tor-
sion subgroup of A. If T is trivial, then A is torsion-free and the result follows.
Assume that T is nontrivial. Of course, T is characteristic in A and so normal
in G. By the minimality of A, T must be equal to A. Then A is periodic.
The Prüfer decomposition of A implies that A is the direct product of p-groups.
Consider the socle A[p] of A. This is nontrivial, since A is periodic. Again the
minimality of A implies A = A[p] and so A has finite exponent. Then A is
p-elementary abelian and the result follows. �

Corollary 3.13. Let G be a group. If A is either a maximal periodic or a
maximal torsion-free abelian subgroup of G, then CG(A) is a maximal abelian
subgroup of G.

Proof. Of course, A ≤ CG(A). Conversely, A ≥ CG(A), because A is maximal
abelian. Then the result follows with A = CG(A). �

Corollary 3.14. Let G be a soluble group with minimal normal subgroup
A = Fit(G). Then A = CG(A).

Proof. This is a well known fact which happens for the chief factors of a
soluble group. A is in this situation. See [67]. �
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The following result of D. J. Robinson will be useful (see [44, Theorem 4.5]).

Theorem 3.15. Let G be a group with an abelian subgroup A satisfying the
minimal condition on its G-invariant subgroups and let K be a normal subgroup
of G satisfying the following conditions:

(i) K ≥ A and K/A is locally nilpotent;

(ii) the FC-hypercenter of G/CK(A) includes K/CK(A);

(iii) A ∩ Z(K) is trivial.

Then G contains a free abelian subgroup X such that the index |G : XA| is finite
and X ∩A = 1 (nearly splitting of G on A). Moreover the complements of A in
G fall into finitely many conjugacy classes.

The following notion can be useful in order to formulate our main results of
classification of JNPC groups with a unique minimal normal subgroup.

Definition 3.16. In the situation of Lemma 3.12, we will say that a JNPC
group G with Fit(G) = A has charA=0 if A is torsion-free. We will say that
G has charA=p, for some prime p, if A is p-elementary abelian.

The following two results classify a JNPC group with a unique minimal normal
subgroup. We may note that the Fitting subgroup plays a fundamental role in
such a classification.

Theorem 3.17. Let G be a soluble JNPC group. If A = Fit(G) is min-
imal normal in G of charA = 0 and G/A is locally nilpotent, then

(i) A is torsion-free abelian;

(ii) A = CG(A) is the unique minimal normal subgroup of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩A
is trivial (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. (i). Follows by Lemma 3.12.
(ii). By Corollary 3.14, A = CG(A). Since A is a minimal normal subgroup of
G, A is obviously the unique minimal normal subgroup of G. The result follows.
(iii). By the previous steps (i) and (ii), A is an abelian subgroup of G which
satisfies the minimal condition on its G-invariant subgroups. G/A is a locally
nilpotent PC-group such that G/CG(A) = G/A. Now Theorem 3.6 implies that
Z(G) ∩A is trivial. We may apply Theorem 3.15 so that (iii) is proved. �

Theorem 3.18. Let G be a soluble JNPC group. If A = Fit(G) is min-
imal normal in G of charA = p for some prime p and G/A is locally nilpotent,
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(i) A is p-elementary abelian;

(ii) A = CG(A) is the unique minimal normal subgroup of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩A
is trivial (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. A similar argument as in Theorem 3.17 can be applied.�

We want to inform the reader that further improvements of Theorems 3.17
and 3.18 have been given in [74] and [75].
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4. JNMC Groups

A minimax group is a group which has a series of finite length whose factors
satisfy either the maximal condition or the minimal condition on subgroups.
The maximal condition on subgroups is often denoted with max and the min-
imal condition on subgroups is often denoted with min. Thus minimax is a
finiteness property which generalizes both max and min. It is easy to verify
that the class of minimax groups is closed with respect to homomorphic images,
subgroups and extensions. A group G is said to be soluble minimax if it has a
characteristic series of finite length whose factors are abelian minimax groups.
Abelian minimax groups are well-known: an abelian group is minimax if and
only if it is an extension of a group with max by a group with min [67, Lemma
10.31] and consequently soluble minimax groups are well-known [67, Sections
10.3 and 10.4].

A group G is said to be an MC-group, or group with (soluble minimax)-by-
finite conjugacy classes, if G/CG(〈x〉G) is a finite extension of a soluble minimax
group, for each element x of G. MC-groups have been introduced in [40] and
studied in [41]. Following [67], a finite extension of a soluble minimax group is
called a (soluble minimax)-by-finite group. The class of the (soluble minimax)-
by-finite groups is denoted by S2F (see [19, 67]).

In a group G, an element x of G is said to be an MC-element of G if
G/CG(〈x〉G) is a finite extension of a soluble minimax group. Obviously, a
group G is an MC-group if and only if its elements are all MC-elements and
it is clear that each FC-group is an MC-group. The set of all MC-elements
of a group G forms a characteristic subgroup MC(G) of G as noted in [52,
Propostion B.2, a)]. MC(G) is called the MC-center of G and contains the
center Z(G) of G.

In this Section, we are interested in studying Just-Non-X groups, where X
is the class of the MC-groups. These groups are called Just-Non-MC groups,
or briefly JNMC groups. Of course, JNPC groups, JNFC groups and the
groups studied in [44, Section 16] are JNMC groups.

We have already noted in Section 3 that there are correlations between
JNPC groups and the groups which have been studied in [69]. The same
happens when we study JNMC groups: it will be useful to consider the groups
which have been introduced in [27].

We will proceed as in Section 3, listing some general properties of MC-
groups and then stating our main results. The next two lemmas can be found
in [41] so that their proofs have been omitted.

Lemma 4.1. Let G be a group. If X is a finite subset of MC-elements of
G, then 〈X〉G is a (soluble minimax)-by-finite subgroup of G.

If G is an MC-group, then Lemma 4.1 can be expressed by saying that G
is a locally (normal and (soluble minimax)-by-finite) group.
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Lemma 4.2. The class of MC-groups is closed with respect to forming ho-
momorphic images, subgroups and direct products of its members.

Note that a Just-Non-S2F group is a Just-Non-X group, where X = S2F.

Proposition 4.3. Let G be a JNMC group. If each proper quotient of G
is finitely generated, then G is a Just-Non-PF group.

Proof. A finitely generated (soluble minimax)-by-finite group is a polycyclic-
by-finite group. See [50, Chapter 5]. Then G will be a group which is not
polycyclic-by-finite but all whose proper quotients are polycyclic-by-finite. The
result follows from this fact. �

As we have seen in the previous section, it is an interesting fact that a JNMC
group is subdirectly indecomposable.

Lemma 4.4. If G is a JNMC group, then every intersection of two non-
trivial normal subgroups of G is nontrivial.

Proof. Let H and K be two nontrivial normal subgroups of G. Suppose
that H ∩ K is trivial. G is isomorphic to a subgroup of the direct product of
G/H and G/K. But G/H and G/K are MC-groups, so Lemma 4.2 implies
that G is an MC-group and this contradicts the fact that G is a JNMC group.
�

Lemma 4.5. If G is a JNMC group, then G has no nontrivial (soluble
minimax)-by-finite normal subgroups.

Proof. We claim that an extension of a (soluble minimax)-by-finite group
by a MC-group is likewise a MC-group. Assume that G = HK is the product
of a (soluble minimax)-by-finite normal subgroup H of G by a MC-group K.
It is enough to prove that G is a MC-group.

Let x be an element of G. Since G/H is a MC-group, 〈xH〉G/H is a (solu-
ble minimax)-by-finite group. Then 〈x〉KH/H is a (soluble minimax)-by-finite
group and so 〈x〉K is a (soluble minimax)-by-finite group. Now 〈x〉G ≤ H〈x〉K ,
hence 〈x〉G is a (soluble minimax)-by-finite group, which gives that G is a MC-
group.

From the above argument, we have that a JNMC group cannot contain
nontrivial (soluble minimax)-by-finite normal subgroups. The result follows. �

Theorem 4.6. If G is a JNMC group, then Z(G) is trivial.

Proof. If Z(G) is nontrivial, then an element x of Z(G) implies that 〈x〉 goes
against Lemma 4.5. The result follows. �
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Remark 4.7. Let G be a JNMC group such that each quotient of G is an
FC-group. If N is a normal nilpotent subgroup of G, then N is abelian.

Remark 4.7 points out a well-known fact for JNFC groups. Of course, a group
in the situation of Remark 4.7 cannot be an FC-group. Then it must be a
JNFC group. The role of the nilpotent subgroups which is described is one of
the main results in [21]. This is the main point which allows to prove that the
Fitting subgroup of a JNFC group is abelian. As the expert reader may note,
we were not able to prove in an elementary way that the Fitting subgroup of a
JNPC group is abelian. Unfortunately, the same is true for a JNMC group.
But, it is elementary the proof of the following fact, which we repeat in order
to note that it is of general interest.

Lemma 4.8. Let G be a group with minimal normal subgroup A = Fit(G).
Then A is either torsion-free abelian or p-elementary abelian for some prime p.

Proof. Obviously, A is an abelian group. Denote with T = T (G) the tor-
sion subgroup of A. If T is trivial, then A is torsion-free and the result follows.
Assume that T is nontrivial. Of course, T is characteristic in A and so normal
in G. By the minimality of A, T must be equal to A. Then A is periodic.
The Prüfer decomposition of A implies that A is the direct product of p-groups.
Consider the socle A[p] of A. This is nontrivial, since A is periodic. Again the
minimality of A implies A = A[p] and so A has finite exponent. Then A is
p-elementary abelian and the result follows. �

Lemma 4.9. Let G be a group. If A is either a maximal periodic or a maximal
torsion-free abelian subgroup of G, then CG(A) is a maximal abelian subgroup
of G.

Proof. Of course, A ≤ CG(A). Conversely, A ≥ CG(A), because A is maximal
abelian. Then the result follows with A = CG(A). �

Corollary 4.10. Let G be a soluble group with minimal normal subgroup
A = Fit(G). Then A = CG(A).

Proof. This is a well known fact which happens for the chief factors of a
soluble group. A is in this situation. See [67]. �

We need of the following definition in order to formulate the main results of
the present section.
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Definition 4.11. In the situation of Lemma 4.8, we will say that a JNMC
group G with Fit(G) = A has charA=0 if A is torsion-free. We will say that
G has charA=p, for some prime p, if A is p-elementary abelian.

The following two results classify a JNMC group with a unique minimal nor-
mal subgroup.

Theorem 4.12. Let G be a soluble JNMC group. If A = Fit(G) is minimal
normal in G of charA = 0 and G/A is locally nilpotent, then

(i) A is torsion-free abelian;

(ii) A = CG(A) is the unique minimal normal subgroup of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩A
is trivial (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. (i). Follows by Proposition 4.8.
(ii). By Corollary 4.10, A = CG(A) . Since A is a minimal normal subgroup of
G, A is obviously the unique minimal normal subgroup of G. The result follows.
(iii). By the previous steps (i) and (ii), A is an abelian subgroup of G which
satisfies the minimal condition on its G-invariant subgroups. G/A is a locally
nilpotent MC-group such that G/CG(A) = G/A. Now Theorem 4.6 implies
that Z(G)∩A is trivial. We may apply Theorem 3.15 so that (iii) is proved. �

Theorem 4.13. Let G be a soluble JNMC group and p be a prime. If
A = Fit(G) is minimal normal in G of charA = p and G/A is locally nilpotent,
then

(i) A is p-elementary abelian;

(ii) A = CG(A) is the unique minimal normal subgroup of G;

(iii) G contains a free abelian subgroup X such that |G : XA| is finite and X∩A
is trivial (nearly splitting of G on A). If G splits over A, the complements
of A fall into finitely many conjugacy classes.

Proof. We may apply an argument as in Theorem 4.12. �
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Note that a periodic MC-group is a CC-group in the sense of [64]. There-
fore the following result is obvious.

Corollary 4.14. If G is a periodic JNMC group, then it is a group described
in [44, Section 16].
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5. MNPC Groups

The present Section deals with a dual problem which has been investigated
in Section 3 and Section 4. Many results have been obtained on Minimal-Non-
X groups, for various classes of groups X. Here we are interested in studying
Minimal-Non-X groups, where X is either the class of the PC-groups (respec-
tively, the class of the MC-groups). Such groups will be called MNPC groups
(respectively, MNMC groups). Both MNPC groups and MNMC groups
are generalizations of the notion of Minimal-Non-FC group (or briefly MNFC
group), where the class of the FC-groups is involved. Another useful notion,
generalizing that of MNFC group, is the notion of Minimal-Non-CC group (or
briefly MNCC group), where the class of the CC-groups is involved.

In [7] and [8] (see also [82, Section 8]) MNFC groups have been classified
when they have a nontrivial finite or abelian factor group. MNFC groups are
finite cyclic extensions of divisible p-groups of finite rank. J. Otál and J. Peña
proved in [63] that there are no MNCC groups which have a nontrivial finite or
abelian factor group. We study MNPC groups having a nontrivial finite factor
group and we prove that they are finite cyclic extensions of divisible groups of
finite rank. Contrary to the FC-case, these groups are not necessary periodic.
Note that the imposition of the condition of having a nontrivial finite factor
group is to avoid Tarski groups, that is infinite nonabelian groups whose proper
subgroups are finite.

Finitely generated MNPC groups will be analyzed separately. Since among
them there are Tarski groups as the example of A. Yu. Ol’̌shanskǐi shows [62],
we cannot obtain a good description of them. However in Theorem 5.1 we give
some conditions that these groups have to satisfy.

We can find the definitions of PC-center and PC-hypercenter in [6, 48, 52,
51, 72, 75]. These definitions extend some well-known situations of the FC-case
(see [67, Section 4.3]).

Theorem 5.1. Let G be a finitely generated MNPC group. Then:

(i) G has no nontrivial locally graded factor groups. In particular, G is a
perfect group and has no proper subgroups of finite index.

(ii) The center, the hypercenter, the PC-center and the PC-hypercenter of G
coincide.

(iii) G/Frat(G) is an infinite simple group and for all x in G \ Frat(G) we
have that G = 〈x〉G.

Note that the simplicity of G/Frat(G) has been proved for Minimal-Non-X
groups, when X is the class of nilpotent groups [61], finite-by-nilpotent groups
[84], locally finite-by-nilpotent groups [18] and torsion-by-nilpotent groups [83].

We will characterize MNPC groups with a nontrivial finite factor group in
Theorem 5.2. The following notion will be useful for stating the next result.



19

A group is said to have finite (Prüfer) rank n if every finitely generated
subgroup can be generated by n elements and n is the least such integer.

Theorem 5.2. Let G be a group and suppose that G∗, the finite residual of
G, is a proper subgroup of G. Then G is an MNPC group if, and only if, the
following conditions hold:

(i) there exists x ∈ G such that G = 〈G∗, x〉. Moreover, G∗ is nontrivial and
there is a prime p and a positive integer n such that xpn ∈ G∗;

(ii) G∗ is either a q-group for a suitable prime q, or a torsion-free group.
Furthermore, G∗ is a divisible abelian group of finite rank;

(iii) G′ = G∗;

(iv) if N is a proper G-admissible subgroup of G∗, then N is a finitely generated
group;

(v) if H is a proper normal subgroup of G, then HG∗ is a proper abelian
subgroup of G. In particular, H is an abelian group.

Clearly, every periodic MNPC group is an MNFC group. But in view of
the results of V. V. Belyaev and N. Sesekin [82, Theorem 8.11], one can deduce
from Theorem 5.2 that the converse holds for groups having a nontrivial finite
factor group. So that we have the following consequence.

Corollary 5.3. Let G be a group having a nontrivial finite factor group.
Then G is a periodic MNPC group if and only if G is an MNFC group.

Since abelian q-groups of finite rank (q prime) are the direct product of finitely
many quasicyclic groups or finite cyclic groups, they satisfy the minimal con-
dition on subgroups. So that one can deduce the following result still from
Theorem 5.2.

Corollary 5.4. Let G be a group having a nontrivial finite factor group. If
G is a periodic MNPC group, then G is a Chernikov group.

Let K be a copy of the group C2∞ and consider the locally dihedral 2-group G
which is the semidirect product of K by a cyclic group 〈x〉 of order 2 such that
x inverts each element of K. We have 〈x〉G = 〈x〉 [K, x] = 〈x〉K = G so that
G is not a PC-group as it is not a polycyclic-by-finite group. We deduce that
G′ is not a polycyclic-by-finite group, so that G′ = K . By construction, each
proper subgroup of G is either abelian or finite. Then each proper subgroup
of G is a PC-group. G is an MNPC group having the nontrivial finite factor
G/K of order 2. A first property in the finitely generated case is the following.

Lemma 5.5. Let G be a finitely generated MNPC group. Then G has no
proper subgroups of finite index.
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Proof. Suppose that H is a proper subgroup of G of finite index. Then H
is a finitely generated PC-group. So by Lemma 3.1 H, and therefore G, is a
polycyclic-by-finite group. Hence G is a PC-group, which is a contradiction. �

Since finitely generated locally graded groups, in particular polycyclic-by-finite
groups, have proper subgroups of finite index, we can deduce the following result.

Corollary 5.6. Let G be an MNPC group. Then G is a locally graded group
if and only if G is not a finitely generated group.

The next result is a first step in order to prove Theorem 5.1.

Lemma 5.7. Let G be a finitely generated minimal MNPC group. Then G
has no nontrivial locally graded factor groups. In particular, G is a perfect group.

Proof. Let N be a normal subgroup of G such that G/N is a nontrivial locally
graded group. Since G/N is finitely generated, it has a proper normal subgroup
H/N such that (G/N)/(H/N) is finite. Thus H is a proper subgroup of G of
finite index, which is a contradiction by Lemma 5.5. �

Since a finitely generated PC-group is a polycyclic-by-finite group, we can de-
duce the following result.

Corollary 5.8. A finitely generated MNPC group has no nontrivial factor
groups which are PC-groups.

Proof of Theorem 5.1. (i). Follows from Corollary 5.6 and Lemma 5.7.
(ii). Since G is a perfect group, the center of G/Z(G) is trivial. So that Z(G)

is the hypercenter of G. Now let x be a PC-element of G, then G/CG(〈x〉G) is
a polycyclic-by-finite group. We deduce from Lemma 5.7 that G = CG(〈x〉G).
Thus x ∈ Z(G), hence Z(G) is the PC-center of G. Clearly, Corollary 5.8 gives
that G = G/PC(G) is an MNPC group. Thus as before, if x is a PC-element
of G then x belongs to the center of G. Now G = G/Z(G), so Z(G) is trivial.
Thus the set of PC-elements of G is trivial and therefore the PC-center of G is
the PC-hypercenter of G.

(iii). Since G is a finitely generated group, Frat(G) is a proper subgroup, so
G/Frat(G) is an infinite group. Suppose that G/Frat(G) is not a simple group
and let N be a normal subgroup of G such that Frat(G) � N � G. Therefore
there is a maximal subgroup M of G such that N 
 M . It follows that G = MN
and therefore G/N ' M/M ∩ N . Since M is a proper subgroup of G, it is a
PC-group. We deduce that G/N is a PC-group, which is a contradiction by
Corollary 5.8. Therefore G/Frat(G) is a simple group. Let x be an element of
G \ Frat(G). Since G/Frat(G) is a simple group, 〈x〉GFrat(G) = G and this
gives that G = 〈x〉G. �
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In order to prove Theorem 5.2, we adapt the proof of Belyaev and Sesekin
[82, Theorem 8.11] to the case of PC-groups.

Lemma 5.9. Let G = HK be the product of a normal polycyclic-by-finite
subgroup H by a PC-subgroup K. Then G is a PC-group.

Proof. See the proof of Lemma 3.4. �

Lemma 5.10. Let H be a subgroup of a PC-group G. If H has no proper
subgroups of finite index, then it is contained in Z(G).

Proof. Since G is a PC-group, G/Z(G) is a residually polycyclic-by-finite
group and therefore it is a residually finite group. So HZ(G)/Z(G) is a residu-
ally finite group which has no proper subgroups of finite index, hence it is trivial
and therefore H ≤ Z(G). �

Lemma 5.11. Let H be a normal subgroup of finite index in a MNPC group
G. Then G/H is a cyclic group of p-power order, where p is a prime.

Proof. First, note that in view of Theorem 5.1, G is not a finitely generated
group. So that every finitely generated subgroup of G is a proper subgroup
and therefore it is a polycyclic-by-finite group by Lemma 3.1. Since G is not
a PC-group, there exists a nontrivial element x of G such that 〈x〉G is not a
polycyclic-by-finite group. Assume that 〈H,x〉 is a proper subgroup of G. Then
〈H,x〉 is a PC-group so that 〈x〉H is a polycyclic-by-finite group. Since G/H is
a finite group, G = HF , where F is a finitely generated subgroup of G. So that

〈x〉G = 〈x〉HF =
(
〈x〉H

)F = KF

where K = 〈x〉H . But both K and F are finitely generated groups, so 〈K, F 〉 is
also a finitely generated group and therefore it is a polycyclic-by-finite group. It
follows that KF is a polycyclic-by-finite group and this gives the contradiction
that 〈x〉G is a polycyclic-by-finite group. Thus G = 〈H,x〉 and G/H is a cyclic
group, as claimed.

It remains to prove that G/H has p-power order, where p is a prime. Let
|G : H| = mn for suitable integers m,n > 1 such that (m,n) = 1. Then 〈H,xm〉
and 〈H,xn〉 are proper subgroups of G so that they are PC-groups. So both
〈xm〉H and 〈xn〉H are polycyclic-by-finite groups. But for every positive integer
i we have that

〈xi〉G = 〈xi〉〈x,H〉 = 〈xi〉〈x〉H =
(
〈xi〉〈x〉

)H = 〈xi〉H

so that both 〈xm〉G and 〈xn〉G are polycyclic-by-finite groups and therefore
〈xm〉G〈xn〉G is a polycyclic-by-finite group, too. But (m,n) = 1 so that

〈x〉G = 〈xm〉G〈xn〉G
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and therefore 〈x〉G is a polycyclic-by-finite group, which is a contradiction. Then
G/H has p-power order, where p is a suitable prime, as claimed. �

Proof of Theorem 5.2. (i). Let H1 and H2 be two normal subgroups of
finite index in G. Then |G : H1 ∩H2| is also a finite number which is divisible
by both |G : H1| and |G : H2|. We deduce that the prime p of Lemma 5.11 is
the same for all normal subgroups of finite index in G. On the other hand, if
|G : H1| = pn and |G : H2| = pm, where n ≤ m, then H2 ≤ H1 because the
finite cyclic group G/(H1 ∩H2) has a unique subgroup of each index. Thus the
set of normal subgroups of G of finite index is a chain and therefore it is finite.
It follows that G/G∗ is a finite group and Lemma 5.11 gives that there is x in
G and a prime p and a positive integer n such that G = 〈G∗, x〉 and xpn ∈ G∗.
Clearly G∗ is a nontrivial group.

(ii). By Lemma 5.10, G∗ is an abelian group and G∗ is divisible because it
has no proper subgroups of finite index.

From (i), we have that G = 〈G∗, x〉. We claim that 〈H,x〉 is a proper
subgroup of G, whenever H is a G-admissible proper subgroup of G∗. If G =
〈H,x〉, then G/H, and therefore G∗/H, is a nontrivial cyclic group. So G∗/H ,
and therefore G∗, has a proper subgroup of finite index, which is a contradiction.
Now, let T be the torsion subgroup of G∗. It is well known [25, Section 19]
that the torsion subgroup of a divisible abelian subgroup is divisible, so that
G∗ = T × S, where S is a torsion-free G-admissible divisible subgroup of G∗.
If both T and S are proper subgroups of G∗, then both 〈T, x〉 and 〈S, x〉 are
proper subgroups of G by the previous argument. We deduce by Lemma 5.10,
that x centralizes both T and S, so that G is an abelian group, which is a
contradiction. It follows that either G∗ = T or G∗ = S, that is, either G∗ is a
periodic group or a torsion-free group.

We know from [25, Section 19] that T (respectively, S) is the direct product
of quasicyclic groups (respectively, copies of the additive group Q of the rational
numbers). Since G is not abelian, G∗ � Z(G). So there exists a subgroup K of
G∗ such that K is isomorphic to a quasicyclic group Cq∞ for some prime q or K
is isomorphic to Q and K � Z(G). By Lemma 3.2 we deduce that G = 〈K, x〉.
Now N = KG, then

N = K〈x〉 = KKx . . .Kxpn−1
.

This implies that N is either an abelian q-group or a torsion-free abelian group.
Since K, Kx, . . . ,Kxpn−1

have rank 1, N has finite rank, because it is a product
of finitely many subgroups of finite rank [67, Lemma 1.44].

On a hand G/N is a cyclic group; on another hand G cannot have subgroups
of arbitrary finite index. This implies that G/N is a finite group, from which
we deduce that N = G∗. Therefore, the result follows.

(iii). Suppose that G′ is a proper subgroup of G∗. Then as before H = 〈G′, x〉
is proper in G so that 〈x〉H is a polycyclic-by-finite group. But H ′ = [G′, 〈x〉]
since G′ is an abelian group, so H ′ is a polycyclic-by-finite group. By Lemma
3.1, we deduce that G/H ′ is an MNPC group, and since a factor group of
a divisible abelian group is also divisible, there is no loss of generality if we
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suppose that H ′ = 1. It follows that G′ is a central subgroup of G, from which
we deduce that

[G∗, x] = [(G∗)pn

, x] = [G∗, x]p
n

= [G∗, xpn

] = 1.

This gives that G is an abelian group, which is a contradiction. Therefore
G′ = G∗, as claimed.

(iv) Let N be a proper G-admissible subgroup of G∗. Then, as before, 〈N,x〉
is a proper subgroup of G, so that 〈x〉N , and therefore [N, 〈x〉], is a polycyclic-
by-finite group. Hence it suffices to prove that N/[N, 〈x〉] is a finitely generated
group. Since a section of a group of finite rank is of finite rank [67, Lemma
1.44] , there is no loss of generality if we assume that [N, 〈x〉] = 1, so that N is
a central subgroup of G. Now let r be an integer and

G∗ = G′ = [G∗, 〈x〉] = 〈[a, xr] : a ∈ G∗〉.

Since N is central we deduce that each element of N is of the form [a, x], where
a ∈ G∗. We have [a, x]p

n

= [a, xpn

] = 1, so that N is of finite exponent.
Therefore N is an abelian p-group of finite rank and of finite exponent, hence
N is a finite group, as required.

(v) Let H be a proper normal subgroup of G∗. Assume that G = HG∗.
Then H/H ∩G∗ is finite. Note that since H is a proper subgroup of G, H ∩G∗

is a proper subgroup of G∗. We deduce by (iv) that H ∩ G∗ is a polycyclic
group and this gives that H is a polycyclic-by-finite group. It follows that G is
an extension of a polycyclic-by-finite group by an abelian group. Therefore G
is a PC-group by Lemma 3.1, which is a contradiction, so that HG∗ is a proper
subgroup of G. Since G/G∗ is a cyclic group of order pn, there is a positive
integer i ≤ n such that HG∗ = 〈G∗, xpi〉. By Lemma 3.2, we deduce that HG∗,
and therefore H, is an abelian group.

Conversely, suppose that G is a group which satisfies conditions (i)-(v). If G
is a PC-group, then Lemma 3.2 gives that G is an abelian group and therefore
the condition (iii) gives that G∗ is a trivial group which contradicts (i). Let
H be a proper subgroup of G. If HG∗ is a proper subgroup of G, then by the
condition (v) we have that HG∗, and therefore H, is an abelian group. So that
H is a PC-group. Now assume that G = HG∗. Since G/G∗ is a group of order
pn, Hpn

is a subgroup of G∗. Clearly Hpn

is a proper G-admissible subgroup of
G∗. We deduce by (iv) that Hpn

is a polycyclic group. Now G is of finite rank
because G∗ is of finite rank and G/G∗ is a cyclic group. It follows that H/Hpn

is a metabelian group of finite rank and of finite exponent, hence it is a finite
group. So H is a polycyclic-by-finite group and therefore it is a PC-group. We
conclude that G is an MNPC group, as claimed. �
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6. Compact JNL Groups

The present Section deals with topological groups and with the property ro
be a Lie group. A compact group G is called a compact Lie group if it has a
faithful finite dimensional representation (see [32, Definition 2.41]). If N is a
normal closed subgroup of a compact group G, it is possible to consider the
homogeneous space G modulo N which is a compact group with the quotient
topology induced by N . We will refer always to this sense of quotients in the
present Section.

If G is a topological group, let N (G) denote the set of all normal subgroups
of G such that N ∈ N (G) if and only if G/N is a Lie group. Then G ∈ N (G);
further {1} ∈ N (G) if and only if G is a Lie group. If N ∈ N (G) and M
is a closed normal subgroup of G such that N ≤ M , then M ∈ N (G). If
G is a compact group, then N (G) converges to 1 and the natural morphism
G → limN∈N (G) G/N is an isomorphism of compact groups (see [32, p.17-23]).
The connected component of the identity will be denoted G0 (see [32, p.23]). A
group G is said to be a compact Just-Non-Lie group, or briefly a compact JNL
group, if G is a compact non-Lie group such that all closed normal subgroups
N 6= {1} are contained in N (G).

Following the previous definition of compact JNL group, we may investigate
without ambiguity those compact groups which are non-Lie groups, but are rich
of Lie-quotients. Under this point of view, our aims are close to the aims of [44],
then we follow the classical approach of studying groups which have a prescribed
property but whose proper quotient groups do not have it.

Recall that a topological group G has no small subgroups, respectively, no
small normal subgroups if there is a neighborhood U of the identity such that
for every subgroup, respectively, normal subgroup H of G if H is contained in
U then H is trivial.

A compact Lie group G is characterized to satisfying one of the equivalent
conditions of the following lemma. This has been recalled for convenience of the
reader (see [32, 33]).

Lemma 6.1. Let G be a compact group and K denote the field of real numbers
or the field of complex numbers. The following statements are equivalent:

(a) G has a faithful finite dimensional representation.

(b) G has a faithful finite dimensional orthogonal (or unitary) representation.

(c) G is isomorphic as topological group to a (compact) group of orthogonal
(or unitary) matrices.

(d) G is isomorphic as topological group to a closed subgroup of the multiplica-
tive group of some Banach algebra A over K.

(e) There is a Banach algebra A over K and an injective morphism from G
into the multiplicative group A−1 of A.
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(f) G has no small subgroups.

(g) G has no small normal subgroups.

Proof. See [32, Corollary 2.40].�

A first characterization of compact abelian JNL groups can be obtained thanks
to [32, Proposition 2.42]. In the next statement we will introduce the character

Ĝ of a group G (see [32]).

Proposition 6.2. Let G be a compact abelian group. G is a compact JNL
group if and only if Ĝ is not a finitely generated abelian group but each Ĝ/N is
finitely generated abelian, where N 6= {1} is a closed subgroup of G.

Proof. A compact abelian Lie group is characterized by [32, Proposition 6.42]
only as that group which is a character group of a finitely generated abelian
group. This means that a compact abelian group G is a compact Lie group if
and only if Ĝ is an abelian group which is finitely generated. By negation, G
is not a compact Lie group if and only if Ĝ is not a finitely generated abelian
group. Since all closed subgroups N 6= {1} are contained in N (G), Ĝ/N has to
be finitely generated abelian by [32, Proposition 2.42]. Now the result follows. �

Example 6.3. Let p be a prime number. The group Zp of p-adic integers
(see [32, Example 1.28]) is a torsion-free abelian compact JNL group, as its
character group Ẑp = Z(p∞) is the Prüfer group. Zp is not a Lie group but
the proper quotients of Zp are discrete cyclic of p-power order and these are Lie
groups. We note that Zp has a nonsingleton closed normal abelian subgroup
A = pZp of index p and Zp does not split over A. This implies that a compact
JNL group can not split over a normal closed nonsingleton subgroup whose in-
dex is finite.

From now the symbol Zp will denote always the group of Example 6.3. In
the category of compact groups, we may extend a Lie group by another Lie
group and we will obtain again a Lie group. This follows easily from Lemma
6.1.

Lemma 6.4. Let G be a compact JNL group.

(i) G does not have a closed normal nonsingleton Lie subgroup.

(ii) G does not have a finite normal nonsingleton subgroup.

(iii) If G is abelian, then G is torsion-free.

Proof. (i). If N is a closed normal nonsingleton Lie subgroup, then
N ∈ N (G) and so G/N is a Lie group. But then G, as an extension of a
Lie group by a Lie group is a Lie group, contrary to the definition of compact
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JNL group. Finally, (i) implies (ii) and (ii) implies (iii). �

Proposition 6.5. Let G be a compact JNL group. If M is a nonsingleton
closed normal subgroup of G, then G contains a subgroup which is properly
smaller than M .

Proof. The set N (G) of all normal subgroups such that G/N is a Lie group
is a nontrivial filterbasis intersecting in {1} while not containing {1}. If M is
a nonsingleton closed normal subgroup, and G is a compact JNL group, then
M ∈ N (G). Now there is an N ∈ N (G) such that M 6⊆ N . Then M∩N ∈ N (G)
is properly smaller than M . �

Proposition 6.5 implies that a compact JNL group with nonsingleton center
contains always a subgroup which is properly smaller than the center. The
following notion will be used in the next statement.

Let G be a compact group and N be a closed normal subgroup of G. We
will say that N has no closed normal subgroups which are core-free in G if
for each closed normal subgroup M of N , then the subgroup MG 6= {1}, where
MG =

⋂
g∈G Mg is the core of M in G. This terminology is standard for ab-

stract groups and can be found for instance in [68].

Proposition 6.6. Let G be a compact JNL group.

(i) If Z(G) 6= {1}, then Z(G) is a compact JNL group. Furthermore G is a
finite central extension of Zp.

(ii) Assume that N 6= {1} is a closed normal subgroup of G. If N has no
closed normal subgroups which are core-free in G, then N is a compact
JNL group.

Proof. (i). By (i) of Lemma 6.4, Z(G) is not a Lie group. Let N 6= {1}
be a closed subgroup of Z(G). Then N is a closed normal subgroup of G and
thus G/N is a Lie group. In particular, Z(G)/N ≤ G/N is a Lie group. We
have proved that Z(G) is an abelian JNL group. Since G is profinite, G/Z(G)
must be finite. In particular, G/N and Z(G)/N are finite. Therefore Z(G) is
isomorphic to Zp so that G is a finite central extension of Zp.
(ii). Let M 6= {1} be a closed normal subgroup of N . Then MG 6= {1} and
G/MG is a Lie group. Thus the closed subgroup N/MG is a Lie group, too. But
then N/M ' (N/MG)/(M/MG) is a Lie group as well. �

Proposition 6.7. Let G be a compact JNL group.

(i) If G is abelian, then G ' Zp for some prime number p.

(ii) If G is nilpotent, then G is abelian.

Proof. (i). By duality A = Ĝ is an abelian group which is not finitely
generated, bu in which every proper subgroup is finitely generated. We write A
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additively. By (iii) of Lemma 6.4, G is torsion-free and so A is divisible (see [32,
Corollary 8.5]). Thus A ' Q(I) ⊕

⊕
p∈P Z(p∞)(Ip), where I and Ip are suitable

sets and P denotes the set of all prime numbers (see [32, Theorem A1.42]).
Suppose that I 6= ∅. Let a 6= 0, a ∈ Q(I). Then 1

2∞Z · a is a proper subgroup of
A that is not finitely generated. This is a contradiction. Thus A is a divisible
torsion group.
Write Ap = Z(p∞)(Ip) for its p-primary components. Since A is nonzero, at
least one Ap is nonzero. Let A(p) denote the sum

⊕
q 6=p Aq of all q-primary

components Aq for q prime number which is distinct by p. Suppose A(p) 6= {0}.
Then Ap 6= A and thus Ap is finitely generated contradicting the fact that a
Prüfer group is not finitely generated. Thus A = Z(p∞)(Ip). Let j ∈ Ip, then
A ' Z(p∞)⊕ Z(p∞)(Ip\{j}). If the second summand were nonzero, then Z(p∞)
would have to be finitely generated, which is not. Thus Ip = {j} and A is a
Prüfer group. This causes its dual G to be a group Zp of p-adic integers so that
the result follows.

(ii). If we can prove that G is abelian, whenever G is nilpotent of class
at most 2, then we are done, because the second center Z2(G) has class of
nilpotence at most 2 and would have class 2 if G is nonabelian.
Thus we may assume that G is nilpotent of class at most 2 without loss of
generality. Then [G, G] ≤ Z(G), and

[g1Z(G), g2Z(G)] = {[g1, g2]},

where g1, g2 ∈ G, so that the bihomomorphic function

b : G×G → Z(G)

factors through a bihomomorphic function

B : G/Z(G)×G/Z(G) → Z(G).

Now Z(G) is normal in G and since G 6= {1} we have Z(G) 6= {1} as G is nilpo-
tent. Since G is a compact JNL group, G/Z(G) is a Lie group. Therefore Z(G)
is open in G and G/Z(G) is finite. Now [G, G] = B(G/Z(G) × G/Z(G)) is a
union of compact Lie subgroups

⋃
g∈G B(G/Z(G), gZ(G)). On the other hand,

Z(G) ' Zp by (i) of Proposition 6.6 and (i) above. In particular, Z(G) does
not contain any nonsingleton Lie subgroups. Hence B(G/Z(G), gZ(G)) = {1}
for each g ∈ G and thus [G, G] = 1.�

Example 6.8. The compact topological ring Zp of p-adic integers contains the
multiplicative group E of p− 1 roots of unity. So we can form G = Zp oE with
E acting on Zp by multiplication. Then G is a profinite centerfree metabelian
group for each p > 2 (see [66] and [88]). Every nonsingleton normal subgroup of
G contains one of the form pkZp×{1} and thus is contained in N (G). Therefore
G is a compact JNL group. We note that this example illustrates that solubility
of compact JNL groups does not imply commutativity.
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Proposition 6.7 proves that a compact abelian JNL group is totally discon-
nected. However, this conclusion holds more generally, as the following result
shows.

Theorem 6.9. A compact JNL group G is totally disconnected.

Proof. Assume that G is a compact JNL group and G0 6= {1}. We shall derive
a contradiction.

(a). Since G is a compact JNL group, G/G0 is a Lie group and thus, as a
totally disconnected group, is finite.

(b). We will denote with S the commutator subgroup [G0, G0] of G0 and with
A the identity component Z(G0)0 of Z(G0). Both of these subgroups are char-
acteristic subgroups of G0. Set ∆ = S ∩A. We claim that ∆ = {1}.

Suppose that ∆ 6= {1}. Then G/∆ is a Lie group. In particular, S/∆ is a
Lie group, whence S/Z(S) is a Lie group, since ∆ ≤ Z(S). The factor group
S/Z(S) is of the form

∏
j∈J Sj for a family of centerfree compact connected

simple Lie groups (see [32, Theorem 9.24]), and thus J is finite. Then [32,
Theorem 9.19] allows us to conclude that ∆ is finite. From (ii) of Lemma 6.4
we have a contradiction. Therefore ∆ = {1} and thus we have a direct product
decomposition

G = S ×A

(see [32, Theorem 9.24]).

(c). Suppose that S 6= 1. Then G/S, and therefore G0/S, is a Lie group.
Hence A ' G0/S is a Lie group. Then (i) of Lemma 6.4 implies that A = {1}
and therefore G0 = S =

∏
j∈J Sj . Also, G0 is centerfree. By Lee’s Theorem

[32, Theorem 9.41] there is a finite group F such that G = F n S. Since the
factors Sj are simple, the action of F induces a permutation group on J . But F
is finite, then there is a finite subset I of J which is invariant under this action.
Then

∏
j∈I Sj is a nonsingleton normal subgroup of G and is a Lie group as a

finite product of Lie groups. Now (i) of Lemma 6.4 implies that S = {1}, and
thus we know that G0 = A is abelian.

(d). The factor group Γ = G/A acts as a finite group of automorphisms on
A, and every Γ-invariant nonsingleton subgroup B of A is normal in G. Then
G/B is a Lie group and thus A/B is a finite dimensional torus (see [32, 33]
for details). By Pontryagin duality (see [32, Theorem 1.37]), Γ acts as a finite
automorphism group on the character group Â and

(∗) every proper Γ-invariant subgroup P of Â is finitely generated free.

We write Â additively. Let R = Z[Γ] be the integral group ring: this makes
naturally Â into an R-module. We claim that rank Â < ∞, where rank Â
denotes the rank of the torsion-free abelian group A (see [32, Appendix 1]).
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If |Γ| = n is a positive integer, then rank R = n, and the R-submodule 〈P 〉R
generated by an arbitrary subgroup P of Â satisfies the condition

rank 〈P 〉R ≤ n· rank P .

As a consequence, if we suppose that Â has infinite rank, then we can con-
struct a proper R-submodule of Â of infinite rank in the following way. We take
infinitely many distinct elements â1, â2, . . . in Â and consider

〈â1〉 × 〈â2〉 × . . . .

This is against (∗).
Thus rank Â < ∞ and we conclude that Â is finitely generated free. Then Â
is a finite dimensional torus. But, G would be a Lie group and this cannot be.
This final contradiction proves the result. �

Since a totally disconnected compact Lie group is finite (see [32, Exercise 2.8,
(ii)]), Theorem 6.9 shows that a compact JNL group is not finite but has each
proper quotient which is finite. Conversely if G is a totally disconnected com-
pact group, which is not finite but all whose proper quotients are finite, then G
is obviously a compact JNL group.

Corollary 6.10. Assume that G is a compact JNL group. If M is a nons-
ingleton closed normal nilpotent subgroup of G, then M is isomorphic to Zp for
a suitable prime p.

Proof. Theorem 6.9 implies that G is totally disconnected, then G/M is a
finite group. We have also that M/N is finite, where N 6= {1} is a closed
normal subgroup of M . If M is a Lie subgroup of G, then G is a Lie group,
against the definition of compact JNL group. Then M cannot be a Lie group
such that all its closed normal subgroups N 6= {1} are contained in N (M). It
follows that M is a compact JNL group. The remainder of the proof follows
from Proposition 6.7. �

In the situation of Corollary 6.10 one can conclude that the smallest closed
subgroup F containing all nilpotent normal subgroups of G is abelian. More-
over if F is nonsingleton, then it is isomorphic to some Zp, where p is a suitable
prime. This circumstance is analogous to [44, Theorems 10.5, 10.9, 10.10], where
the Fitting subgroup is involved.

Corollary 6.11. Assume that G is a compact JNL group and A is a non-
singelton closed abelian normal subgroup of G. If p(A) is a prime which does
not divide |G/A|, then G splits over A, that is, G is the semidirect product of
Zp and a finite group which is isomorphic to G/A.

Proof. By Theorem 6.9 and Corollary 6.10 there exists a prime p = p(A)
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such that A is a nonsigleton open abelian normal subgroup of G which is iso-
morphic to Zp. Since Theorem 6.9 implies that G is totally disconnected, we
may apply directly [36, Satz III] and the result follows. �

In the situation of Corollary 6.11, [36, Satz III] shows that all the comple-
ments of A are conjugated via inner automorphisms of G. This circumstance is
not new, because it can be found in most of the classical results on Just-Non-X
groups, where X is a given class of groups. We are referring to situations as in
[44, Theorems 11.1, 11.2, 12.26, 12.30, 14.1, 14.2, 14.8, 14.10, 14.18, 14.19, 15.4,
15.5, 15.11, 16.21, 16.24, 16.28, 16.30, 16.31, 16.32, 16.33, 17.5, 17.7, 17.8, 17.9]
and [44, Corollaries 12.27, 12.28, 12.29]. Note that also Theorems 3.17-3.18 of
Section 3 and Theorems 4.12-4.13 of Section 4 deal with the same circumstance.

Clearly, a profinite group is a compact JNL group if and only if every non-
singleton closed normal subgroup is open. However the consideration of the
Nottingham Group can be useful to visualize profinite groups which are neither
compact nor Lie groups but all whose proper quotients are Lie groups.

Example 6.12. Let p be a prime number. Following [88, p.66–67], Fp[t] de-
notes the formal power series algebra over the field with p elements Fp in an
indeterminate t. Write A for the group of (continuous) automorphisms of Fp[t]
and for each integer n ≥ 1 let Jn be the kernel of the homomorphism from A to
the automorphism group of Fp[t]/(tn+1), where (tn+1) is the ideal generated by
tn+1. From [88, p.66–67], it is known that J1 coincides with the inverse limit of
J1/Jn for n ≥ 1 and each J1/Jn is a finite group of order pn. Thus J1 is a pro-p
group. Moreover J1 is centerfree, profinite, pronilpotent, is not a Lie group, has
each nonsingleton closed normal subgroup which is not a Lie group. Here J1

has each proper quotient which is a Lie group, but J1 is not a compact group
since it is not a strictly projective limit of compact Lie groups [32, Corollary
2.43]. �

From [88, Propositions 2.2.2, 2.3.2, 2.4.3], the problem to classify all profinite
(respectively prosoluble, respectively pronilpotent) groups, which are not Lie
groups but all whose proper quotients are Lie groups, can be reduced to the
corresponding problem for pro-p-groups (p is a prime). However, we appear to
know nothing about a complete classification for such groups.

Coming back to compact JNL groups, a rich example of soluble compact
JNL group which allows us to visualize the situation in the nonabelian case is
the following.

Example 6.13 (Hofmann-Russo Group). We take a prime number p 6= 2
and let A = Z2

p be the free Zp-module of rank 2. Every closed (additive) sub-
group of A is obviously a free Zp-module of rank at most 2. A Zp-submodule
of rank 2 is an open subgroup of A, and, equivalently, has finite index in A. A
Zp-submodule of rank 1 of A is of the form Zp · (a, b) for each a, b ∈ Zp.

Let R ⊆ Zp \ pZ denote the multiplicative group of (p− 1)-th roots of unity.



31

Let Γ denote a group of automorphisms of A with the matrix representations(
a 0
0 b

)
,

(
0 a
b 0

)
where a, b ∈ R

We note that Γ is a group of monomial matrices and it is isomorphic to a
semidirect product of the diagonal subgroup of R2 by the cyclic group of order
2. In particular, |Γ| = 2(p− 1)2.

Now let
G = Γ n A

denote the semidirect product with respect to the natural action of Γ on A. We
will see that

(∗∗) G is a compact JNL group.

Let N be a nonsingleton closed normal subgroup of G. We must show that
N has finite index in G. Since it suffices to show that the normal subgroup
N ∩ (A×{1}) has finite index in G, we may assume that N = B×{1}, where B
is a Γ-invariant Zp-submodule of A. We must show that rank B=2, for then B
is open in A; therefore A/B is finite. If rank B=0, then N = {1} and this is not
relevant for the definition of compact JNL group. Assume that rank B=1. We
will get to a contradiction. Now B = Zp · (a, b) for suitable elements a, b,∈ Zp,
not both of which are zero. Since B is Γ-invariant, for each γ ∈ Γ there is a
nonzero λ = λγ ∈ Zp such that γ(a, b) = λ · (a, b). If b = 0, then a 6= 0 and we
let

τ =
(

0 1
1 0

)
,

whence (λτa, 0) = λτ (a, 0) = τ(a, 0) = (0, a), which is impossible. Likewise a =
0 is impossible, and so a 6= 0 6= b. Then (λτa, λτ b) = λτ (a, b) = τ(a, b) = (b, a),
and so λτ = b/a = a/b. We conclude that (a + b)(a − b) = a2 − b2 = 0, then
either a = b or a = −b. We set

α =
(

r 0
0 1

)
for some 1 6= r ∈ R. The existence of such r is due to the fact that p 6= 2. Then,
in the first case, λαa, λαa) = λα(a, b) = α(a, b) = (ra, b). We first conclude
λα = 1, then a = ra and so r = u, a contradiction. In the second case, we
obtain λαa = ra, then −λαa = λαb = b = −a. So again we get λα = 1 and
r = 1. This final contradiction proves (∗∗).

From Proposition 6.7, a compact abelian JNL group is isomorphic to Zp,
but in our case A 6' Zp. Then the construction of our group G shows that

(i) G is a soluble compact JNL group with a nonsingleton abelian normal
closed subgroup A × {1} such that A has finite index in G and is not a
compact JNL group;
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(ii) G is a compact JNL group which is profinite and soluble of derived length
3. Moreover G′′ is abelian and G′′ 6' Zp.

(iii) G is centerfree.

(iv) By taking the direct product of finitely many finite cyclic groups and G, we
may construct a centerfree soluble compact JNL group of arbitrary derived
length. �

The group Zp has many nonclosed proper nonsingleton subgroups. We might
wish to replace E by the full group of units Zp \ pZp of Zp in Example 6.8. The
result is a more complicated metabelian profinite group, but also one that is not
a compact JNL group. Still, observations like the following can be made.

Proposition 6.14. Let G be a compact JNL group. There is a descending
sequence

G = G1 ≥ G2 ≥ G3 ≥ . . . ≥ {1}

of closed normal subgroups of G converging to 1 such that Gn/Gn+1 is a fi-
nite product of simple groups or groups of prime order, for each positive integer
n ≥ 1. In particular, G is a second countable and thus metric profinite group.

Proof. The totally disconnected compact JNL group G cannot be finite, since
it is not a Lie group. Then it has a descending family of compact normal
subgroups

G = G1 ≥ G2 ≥ G3 ≥ . . .

converging to 1, such that each factor group Gn/Gn+1 is a finite product of
simple groups or groups of prime order, for each positive integer n ≥ 1 (see [32,
Theorem 9.91]). If Gn+1, then Gn 6= {1}, and thus Gn ∈ N (G). Hence G/Gn

is a Lie group and thus is finite since G is totally disconnected. �

Proposition 6.15. Let G be a compact JNL group and A be a nonsingle-
ton closed central subgroup of G. Then G splits over A.

Proof. Let p be a prime. From Proposition 6.6, G is a finite central extension
of Z(G) ' Zp. From (i) of Proposition 6.7, A ' Zp. We deduce that G is a
finite central extension of A. But, A is torsion-free normal and |G/A| is finite.
Then G splits on A as claimed.�

A simple consideration can be done in order to have a deep knowledge of com-
pact JNL groups without nonsingleton torsion-free normal subgroups. As it is
shown in [32, Theorem 9.23], centerfree compact groups can be easily described
in terms of Mayer-Vietoris sequences.

Proposition 6.16. Let G be a compact JNL group without nonsingleton torsion-
free normal subgroups. Then G is centerfree.
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Proof. Assume that Z(G) 6= {1} and let z ∈ Z(G) with z 6= 1. The subgroup
〈z〉 cannot be neither finite from (ii) of Lemma 6.4 nor torsion-free from the
hypothesis. Then z = 1 and we obtain a contradiction. The result is proved.�
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7. Locally Compact JNC Groups

A Just-Non-Compact group, or briefly a JNC group, is a Hausdorff topo-
logical group which is not a compact group but all of whose proper Hausdorff
quotients are compact groups. All simple groups (that is, groups without proper
nonsingleton closed normal subgroups) are JNC groups by default. So one
should concentrate on the nonsimple groups in the class. If G is discrete, then
G is a JNC group if and only if G is an infinite group all of whose proper quo-
tients are finite groups: this is another topic of interest to the algebraic theory
of groups, and we assume from here on out that a JNC group is a nondiscrete
nonsimple Hausdorff topological group.

Let N (G) denote the set of proper nonsingleton normal subgroups of a topo-
logical group G. Since an extension of a compact group by a compact group is
a compact group, the following is clear.

Remark 7.1. If G is a JNC group, then all members N ∈ N (G) are noncom-
pact groups.

This allows us to look for the normal subgroups of a topological group. A
topological group is called almost connected if G/G0 is a compact group, where
G0 has been already introduced at page 26. So we have as follows.

Lemma 7.2. A JNC group G is either totally disconnected or almost con-
nected with noncompact identity component.

Proof. If G0 = {1}, then G is totally disconnected. If G0 = G, then G is
connected and thus almost connected. If G0 ∈ N (G), then G0 is noncompact
by Remark 7.1 and so G/G0 is a compact group. �

We know that all locally compact almost connected groups are pro-Lie groups
by Yamabe’s Theorem [86, 87].

Theorem 7.3. Let G be a JNC pro-Lie group. Then G is a Lie group and is
a semidirect product G0 oF of the connected Lie group G0 by the finite group F .

Proof. Assume that G is not a Lie group. ThenN (G) contains a filterbasis F of
normal subgroups such that G/N is a compact Lie group and G = limN∈F G/N .
Now each G/N is a compact group, since G is a JNC group. Hence G is
a compact group as projective limit of compact groups. This contradicts our
assumptions on G so that G is a Lie group.

By Lemma 7.2, G is either totally disconnected or almost connected. Since
a totally disconnected Lie group is discrete, this case is not allowed by the def-
inition of a JNC group. Hence G is an almost connected group which means
that G has only finitely many connected components. By Dong Hoon Lee’s
Supplement Theorem [32, Theorem 6.74], there is a finite group F such that
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G = G0F and G0 ∩ F is normal in G. Since G0 ∩ F is a finite group, Remark
7.1 implies that G0 ∩ F = {1} so that the result follows. �

Recall that every Lie group has a unique largest compact normal subgroup
C(G) (see [32]). Then we may deduce as follows.

Lemma 7.4. Let G be a JNC Lie group. Then the nilradical N(G), that
is the largest connected normal nilpotent subgroup, is either a singleton or a
vector group.

Proof. Assume that N(G) 6= {1}. A connected nilpotent Lie group is sim-
ply connected if and only if it has no compact subgroups. A compact sub-
group of a nilpotent Lie group is central. By definitions, N(G) is contained in
C(G). Since C(G) = {1}, it follows that N(G) is simply connected. Note that
N(G)/N(G)′ is never a compact group. Therefore, if N(G) is nonsingleton,
then N(G)′ ∈ N (G), that is N(G)′ = {1}, and so N(G) is an abelian group.
Follows that N(G) is isomorphic to Rn for some integer n ≥ 1. �

Recall that G0 is reductive if N(G) is singleton (see [32, p.38]).

Proposition 7.5. Let G be a JNC Lie group such that N(G) 6= {1}. Then
there exists some integer n ≥ 1 such that G ' Rn oK with a compact Lie group
K operating irreducible and effectively on Rn.

Proof. From Lemma 7.4, we know that there exists some integer n ≥ 1
such that N(G) ' Rn. By the definition of JNC group, G/N(G) is a com-
pact group. Then the Vector Group Splitting Theorem [32, Theorem 11.15]
implies that G ' Rn o K for a maximal compact subgroup K of G. Since
the representations of a compact group on a finite dimensional vector space are
completely reducible, a K-invariant nonsingleton proper vector subgroup V of
N(G) would be in N (G). But, G/V would contain the noncompact subgroup
N(G)/V . So K acts irreducibly on N(G). The set of elements of K leaving all
of N(G) elementwise fixed is D = K ∩Z(N(G), G), where Z(N(G), G) denotes
the centralizer of N(G) in G. The normalizer of D in G contains K and N(G).
Thus D is normal in G and fails to meet N(G), whence G/D fails to be com-
pact. Hence D = {1}, that is, K acts effectively on N(G). The result follows. �

The assertion that K acts effectively and the compactness of K means that
K may be identified with a closed subgroup of the orthogonal group O(n) of
Rn with respect to a suitable positive definite inner product on Rn. Conversely,
every closed subgroup K of O(n), acting irreducibly on Rn give arise to a JNC
group Rn o K.

Note that the case that K is singleton is not excluded; the singleton group
acts irreducibly and effectively on R, and so G = R is included in the class of
JNC groups, classified in Proposition 7.5.
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Proposition 7.6. Let G be a JNC Lie group such that N(G) = {1}. Then
there exists some integer k ≥ 1 such that G ' Sk o F for a centerfree simple
connected noncompact Lie group S and a finite group F permuting the k factors
transitively and effectively, that is, no element of F commutes with all elements
of G0.

Proof. The identity component Z(G0)0 of the center of G0 is contained in
N(G), and so is trivial. Hence Z(G0) is discrete and G0 is semisimple. Since
C(G0) is trivial, G0 has no compact factors. Since the center Z(G0) is charac-
teristic, it is normal in G. Since G0/Z(G0) is not a compact group as G0 has no
compact factors, we conclude that Z(G0) = {1}. This means that G0 is a cen-
terfree group. Therefore, G0 ' S1 × S2 . . .× Sk for simple adjoint noncompact
connected Lie groups Sj , where j ∈ {1, 2, . . . , k}. Thus

G ' (S1 × S2 . . .× Sk) o F

for a finite group F by Theorem 7.3. The finite group F permutes the set of
factors {S1, S2 . . . , Sk}. If there is more than one orbit, then a partial product
N = Sj1 ×Sj2 . . .×Sjp extended over a proper orbit give a nonsingleton proper
normal subgroup such that G0/N is not a compact group. This is not possible.
If F permutes the factors transitively, then they are all isomorphic. The result
follows. �

We know that the automorphism group of Sk in Proposition 7.6; there are
many ways how F can act as a group of automorphisms of Sk. But, however it
acts, it must not leave a proper nonsingleton normal subgroup of Sk invariant.

Conversely, if S is a centerfree simple connected noncompact Lie group and
F is a finite subgroup of the Lie group of automorphism of Sk for some k ≥ 1
permuting the factors transitively, then Sk oF is a locally compact JNC group.

In essence, the results of the present Section say that we know explicitly the
what the locally compact JNC groups are, if they are not totally disconnected.
In the direction of totally disconnected groups, we know only that locally com-
pact JNC groups are not prodiscrete. The examples we constructed above
can be mimicked to some extent by using the irreducible and faithful repre-
sentations of certain compact groups over finite dimensional vector spaces over
nonarchimedean locally compact fields. However, this seems to be a wide field.
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8. Some Open Questions

The present Section deals with some open questions in the context topo-
logical groups when we want to investigate JNX groups and MNX groups.
There is literature in the abstract case as we mentioned in Section 1 of the
present paper. It seems reasonable that a line of research as in [20, Chapters 6,
11] could be open in the context of topological groups, considering varieties of
topological groups in the sense of [35, 34, 59, 58, 55, 56, 54, 53, 60, 80]. To the
best of our knowledge, a systematic study in such a direction of research has
been still not given. Looking at similar situations for abstract groups, we may
formulate some open questions. For doing this, we need of the following notions.

Definitions 8.1. Let Ω be a class of topological groups and V(Ω) be a va-
riety of Hausdorff groups generated by Ω. Let G be a topological group in V(Ω),
N 6= {1} be a normal closed subgroup of G, M 6= G be a normal closed subgroup
of G. Define

MV(Ω)(G) = {N / G : G/N ∈ V(Ω)}

and
M̂V(Ω)(G) = {M / G : M ∈ V(Ω)}.

(i) A locally compact Just-Non-V(Ω) group G, or briefly a locally compact
JNV group, is a locally compact group G which is not in V(Ω) such that
all its closed normal subgroups N 6= {1} are in MV(Ω)(G).

(ii) A locally compact Minimal-Non-V(Ω) group G, or briefly a locally compact
MNV group, is a locally compact group G which is not in V(Ω) such that
all its closed normal subgroups M 6= G are in M̂V(Ω)(G).

Assume that G is a locally compact group. If G is a simple group not be-
longing to V(Ω), that is, if G is a group not belonging to V(Ω) and without
proper nonsingleton closed normal subgroups, then G is both a locally compact
JNV groups and a locally compact MNV group by default. Therefore, an easy
source of examples of groups satisfying Definition 8.1 is given.

Problem 8.2.

(i) What is the structure of a locally compact JNV group?

(ii) What is the structure of a locally compact MNV group?

It seems reasonable that a description as in Section 7 could be obtained
for locally compact JNV groups. The results of Section 6 show that this is
possible for compact groups when the variety of Lie groups is considered. To
the best of our knowledge, a systematic study in such a direction of research is
still open. Of course, the nilradical N(G) of a topological group G should be
substituted by an appropriate subgroup which should testify the verbal structure
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of G; the marginal structure of G; the properties of the variety with respect
to forming suitable products, quotients and subgroups; the topological closure
properties of the variety. The terminology which we have just mentioned follows
[35, 34, 59, 58, 55, 56, 54, 53, 60, 80].

On the other hand, the literature in abstract groups seems to suggest that
also a satisfactory description for locally compact MNV groups can be obtained.
To the best of our knowledge, a systematic study in such a direction of research
is still open.

Finally, the role of the Frattini subgroup and that of the Fitting subgroup
suggest to formulate the following open questions, both in abstract case and in
topological case.

Problem 8.3.

(i) Let X be a class of groups. Is it possible to introduce a categorical approach
to JNX groups and MNX groups?

(ii) Is it possible to do the same of the previous step (i) in the category of
Hausdorff topological groups?
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