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Abstract 

A theoretical analysis of the spatial resolution of the Stereo Particle Image Velocimetry 

(PIV) technique has been performed. This has been done in terms of Modulation Transfer 

Function (MTF) and by applying the technique with and without the correction of the 

misalignment error between calibration and measurement planes. The results show that some 

wavelengths of the flow field can be significantly dephased and modulated. The theoretical 

analysis has been extended to investigate also the effects caused by the laser thickness and the 

linear dimension of the interrogation window W (i.e. the modulation associated to the Stereo 

PIV process). As it will be shown in detail in this work, the modulation associated to the last 

two parameters cannot be corrected, differently from the modulation due to the misalignment. 

A performance assessment has been conducted with both synthetic and real images and shows 

a good agreement with the theoretical analysis. 

The reconstruction of the three-dimensional displacement field is achieved using both 

methods proposed by Soloff et al. (1997) and by Willert (1997). 

Finally, the Stereo PIV technique has been used to analyse the vortex shedding caused 

by both finite and infinite cylinders immersed in a uniform flow field. The Reynolds numbers 

investigated are within the Shear-Layer Transition Regime, indicated by Williamson (1996) 

for the infinite cylinder. This regime is characterized by the formation of von Kàrmàn 

vortices. For the finite cylinder, a counter-rotating pair of tip vortices forms at the free end, 

extends into the wake and interacts in a complex manner with the von Kàrmàn vortex 

shedding.  

To detect the von Kàrmàn vortex shedding a phase averaged method has been chosen. 

This approach uses the Proper Orthogonal Decomposition (POD) technique and it has been 

evidenced that it works properly for the infinite cylinder and for some sections near the base 

of the finite one. 
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Abbreviations  

2C Two components 

2D Bi-dimensional 

3C Three components 

3D Three-dimensional 

AR Cylinder aspect ratio, H/D 

CCD Charge Coupled Device 

CS 3C reconstruction proposed by Soloff et al. (1997) with correction of 

misalignment error 

CW 3C reconstruction proposed by Willert (1997) with correction of misalignment 

error 

DFT Digital Fourier Transform 

FFT Fast Fourier Transform 

IDM Image Deformation Method 

IDWO Iterative Discrete Window Offset 

MTF2C Modulation transfer function associated to the PIV process 

MTFz Modulation transfer function associated to the misalignment  

MTFLT Modulation transfer function associated to the laser thickness for the 3C 

displacement 

MTFLTc Modulation transfer function associated to the laser thickness for the camera c 

NCS 3C reconstruction proposed by Soloff et al. (1997) without correction of 

misalignment error 

NCW 3C reconstruction proposed by Willert (1997) without correction of 

misalignment error 

PID Particle Image Distortion 

PIV Particle Image Velocimetry 

POD Proper Orthogonal Decomposition 

THMA Top Hat Moving Average 
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List of symbols  

a
(n)

(tk) 
n-th temporal POD eigenfunction relative to the instant tk, 

dimensionless 

c Indicates the camera (1, 2), dimensionless 

CPB Base pressure coefficient, dimensionless 

dx 
Infinitesimal displacement vector in object space, dx=[dx, dy, dz], 

mm 

dx, dy, dz 3C infinitesimal displacement in object space, mm 

dXc 
Infinitesimal displacement vector in the image plane relative to 

camera c, dXc=[dXc, dYc], pixels 

dXc, dYc 
2C infinitesimal displacement in the image plane relative to camera 

c, pixels 

D Cylinder diameter, m 

Du Disparity vector, mm 

fK von Kàrmàn vortices frequency, s
-1

 

fSL Shear layer vortices frequency, s
-1

 

E21 
Power spectra of the v component evaluated along the x direction, 

mm
2
 

F
(c)

=[X
(c)

, Y
(c)

] 
Vectorial mapping function relative to camera c, F

(c)
=[X

(c)
, Y

(c)
], 

pixels/mm 

H Cylinder height, m 

I Intensity values map of a image, dimensionless 

Î  Fourier transform of I, dimensionless 

k Turbulent kinetic energy, m
2
/s

2
 

 
















zyx

zyx

λ

π2

λ

π2

λ

π2

kkkk

,,

,,

 

Wavenumber, rad/mm or rad/pixels 

LB Bubble length, m 

Ld Shear layer diffusion length, m 

Lf Vortices formation length, m 

p Turbulent production term, m
2
/s

3
 

P Point in the measurement plane, dimensionless 
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Rcl (Rcr) Resolution measured in the left (right) side of the image recorded by 

the camera c, pixels/mm 

RRmax Maximum ratio between the resolutions measured in the same 

measurement point of the images recorded by the two cameras, 

dimensionless 

RII′ Cross-correlation function, dimensionless 

Re Reynolds number, 
ν

DU
Re  , dimensionless 

S Strain rate tensor, s
-1

 

St Strouhal number, 



U

Df
St K , dimensionless 

tc Phase of the sinusoidal component relative to camera c used in 3C 

reconstruction without correction of the misalignment errors, mm  

TK von Kàrmàn vortices period, s 

u Velocity component in x direction, m/s 

u´ Velocity fluctuation component in x direction, m/s 

u  Mean velocity component in x direction, m/s 

u* 
Velocity component in x direction divided by the free stream velocity 

U∞, dimensionless 

u'u' Term (1,1) of the Reynolds stress tensor, m
2
/s

2
 

u'v' Term (1,2) of the Reynolds stress tensor, m
2
/s

2
 

u'w' Term (1,3) of the Reynolds stress tensor, m
2
/s

2
 

USEP Velocity near to separation point, m/s 

U∞ Free stream velocity, m/s 

u, v, w  3C displacement in object space, mm 

uc, vc 2C displacement relative to camera c, mm  

v Velocity component in y direction, m/s 

v´ Velocity fluctuation component in y direction, m/s 

v* 
Velocity component in y direction divided by the free stream velocity 

U∞, dimensionless 

v'v' Term (2,2) of the Reynolds stress tensor, m
2
/s

2
 

v'w' Term (2,3) of the Reynolds stress tensor, m
2
/s

2
 

w Velocity component in z direction, m/s 

w* Velocity component in z direction divided by the free stream velocity 
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U∞, dimensionless 

W Linear dimension of the interrogation window, pixels 

Wx x component of the vorticity, s
-1

 

Wy y component of the vorticity, s
-1

 

Wz z component of the vorticity, s
-1

 

x, y, z Coordinates in object space, mm 

xc Location of transition point in the shear layer, m 

Xc, Yc Coordinates relative to camera c in the image plane, pixels 

Xij 
Matrix which defines the points where the flow field velocity 

components are known, dimensionless 

X
(c) 

Mapping function of the image coordinates Xc, pixels/mm 

Y
(c)

 Mapping function of the image coordinates Yc, pixels/mm 

 

Greek symbols 

(tk) Vortex shedding phase of the instantaneous (in the instant tk) flow field, rad 

c Angle between the viewing ray and the plane yz measured in the xz plane, rad 

c Angle between the viewing ray and the plane xz measured in the yz plane, rad 

BL Boundary layer thickness, m 

z Local misalignment between calibration and measurement planes, mm 

 Scheimpflug angle, rad 

SL Shear layer momentum thickness, m 

n n-th POD eigenvalue, m
2
/s

2 

SL Shear layer vortices wavelength, m 

SL3
Spanwise wavelength of the longitudinal vortices developed in the shear layer, 

m 

 Phase in measured sinusoidal component caused by misalignment, rad  

(n)
(X) n-th POD mode, m/s 

c Vector obtained by intersecting the optical axis of camera c and the laser sheet, 

mm 

 Kinematical viscosity, m/s
2
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1 Introduction 

The Stereo Particle Image Velocimetry technique has been developed in the last ten 

years. It is a technique that allows capturing the three components planar velocity of an 

instantaneous flow fields. This is obtained by using two bi-dimensional Particle Image 

Velocimetry (PIV) flow fields.  

The PIV technique is older than the Stereo PIV and in the past various works have been 

performed to study the frequency response of the technique. This allowed detecting 

quantitatively spatial structures in unsteady flows, which is not possible with other 

techniques. Nevertheless, the drawback of the PIV is the impossibility to measure the out-of-

plane velocity component. 

The aim of this work is to analyse the frequency response of the Stereo PIV technique, 

since no work is present in the literature on this topic. 

Nowadays, there are different methods to implement the Stereo PIV technique; Prasad 

(2000) subdivided these methods into geometric and calibration-based approaches. At the 

moment, the former is not used because the latter is more accurate. It is possible to categorise 

the calibration-based approach in further approaches: the first is based on the procedure 

introduced by Soloff et al. (1997) and the second is that proposed by Willert (1997). In the 

former approach a mathematical relation, which computes the three-component (3C) 

reconstruction in a single step, is proposed. On the other hand, in the Willert’s approach, the 

reconstruction of the three-dimensional displacement field is done by means of geometrical 

considerations, i.e. local viewing angles of each camera in every point of the measurement 

plane. Actually, it is known in the Stereo PIV community that the two approaches are almost 

equivalent (see Sect. 3.2.3). 

In order to compute the viewing angles used in the Willert’s approach, various methods 

have been proposed in the past: Willert (1997) proposed to evaluate them by measuring the 

distances between the measurement points and the cameras and then by using trigonometric 

relations, whereas Fei and Merzkirch (2004) and Scarano et al. (2005) computed the viewing 

angles by correlating calibration images recorded in two different z (coordinate orthogonal to 

the calibration plane). In this work new formulas are proposed, which permit to compute the 

viewing angles without the necessity to measure any geometrical parameter of the 

experimental set-up (see Sect. 4.1).  
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In all calibration-based approaches an accurate calibration, which allows correcting the 

error in perspective and the possible distortion caused by the lenses, is essential to obtain 

good results in the measurement of the velocity components (see Sect. 3.2.1). Typically, 

calibration is obtained setting a calibration pattern, which contains a grid of marks regularly 

spaced along two orthogonal directions, in one or more positions along the z direction; 

ideally, z = 0 is the position of the light sheet, i.e. the measurement plane. In the calibration 

procedure, a mapping function is computed, which allows transforming the object coordinates 

(x, y, z) into the image coordinates (X1,Y1) and (X2,Y2) of the two cameras; coefficients of the 

mapping function are normally calculated with the least squares method.  

A drawback of the Stereo PIV technique is the impossibility to set the laser sheet 

exactly in the z = 0 position. Many authors have proposed an adjusting procedure based on a 

cross-correlation between the images of the two cameras, recorded in the same instant. Some 

authors have proposed a procedure, which corrects only the position error, like Willert (1997) 

and Coudert and Schon (2001); really this is enough if the misalignment is quite small. Others 

have suggested procedures with correction of both errors: Scarano et al. (2005) and Wieneke 

(2005). Also in the present work an adjusting procedure, quite similar to the Wieneke’s one, 

which corrects both errors, is proposed (see Sect. 3.2.2). 

Results present in the literature have shown that the correction of misalignment errors 

isn’t needed for a uniform displacement field; for this reason non-uniform ones are herein 

simulated. They consist of a single one-dimensional sinusoidal shear displacement, with 

various wavelengths. The Stereo PIV technique applied to the latter displacement type shows 

that a decrease of the wavelength produces a decrease of the measured sine wave amplitude. 

For this purpose, the spatial resolution in terms of Modulation Transfer Function (MTF) is 

investigated by varying the wavelength of the sinusoidal component (see Sect. 4.4). The MTF 

analysis is extended to investigate also the effects caused by the laser thickness (see Sect. 4.2) 

and the linear dimension of the interrogation window W (i.e. the modulation associated to the 

Stereo PIV process, see Sect. 4.3). As it will be shown in detail below, the modulation 

associated to the last two parameters cannot be corrected, differently from the modulation due 

to the misalignment. 

All the above described analyses has been first investigated theoretically and then 

supported by a performance assessment, obtained by using three different procedures. The 

new formulas proposed to compute the viewing angles have been tested by using an 

experimental apparatus, which is made up of an angular stereoscopic system and a PIV-

calibration pattern, whereas the MTF of the Stereo PIV technique has been investigated by 
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using both synthetic images and real ones relative to the measurement of a finite cylinder 

wake. 

After having performed the analysis of the Stereo PIV technique and its MTF, this 

technique has been applied to study both infinite and finite cylinders wake (see Sect. 5). 

Actually, the infinite cylinder vortex dynamic has been widely investigated in the past, while 

the literature on the finite cylinder is significantly less extensive. Bluff body wakes are 

complex and they are characterised by a periodic forcing, which can be undesirable since the 

effects can be distructive. Consequently, it is important for engineers to account for the 

possible effects of vortex shedding when designing a wide range of structures, e.g. chimneys, 

submarine periscopes and bridge piers. 

The Reynolds numbers investigated are within the Shear-Layer Transition Regime, 

indicated by Williamson (1996) for the infinite cylinder. In this regime, the separation of the 

shear layers from the sides of the body causes, by increasing the Reynolds number, the 

reduction of both the Strouhal number (St) and the formation length of the mean recirculation 

region. Furthermore, for an increase of Re, the turbulent transition point moves upstream in 

the separating shear layers and the 2D Reynolds stresses magnitude increases. The latter 

effect is caused by the Kelvin-Helmholtz instability. Furthermore, the Shear-Layer Transition 

Regime is characterized by the formation of von Kàrmàn vortices (see Sect. 2.1).  

Although strictly speaking any type of cylinder wake has 3D flow characteristics, really 

for a 2D cylinder the flow is practically bi-dimensional. Three dimensional features of the 

flow arise when the cylinder aspect ratio is small as well as when the cylinder is finite, i.e. 

with a free end; the latter causes changes in the vortex formation length as well as the vortex 

shedding pattern (see Sect. 2.2). 

In the present work, since the frequency used for the image acquisition is lower than the 

von Kàrmàn vortices one, a phase averaging method has to be used to reconstruct the vortices 

evolution. In the literature various approaches are present for the phase averaging. Ben 

Chiekh et al. (2004) proposed to use the first two principal modes obtained with the Proper 

Orthogonal Decomposition (POD) technique, in order to reconstruct the vortices evolution. 

By applying this approach to detect the vortex shedding, it has been evidenced that it works 

properly for the infinite cylinder and for some sections near the base of the finite one. 
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2 Flow field past a circular cylinder: state of the art 

The flow behind an infinite circular cylinder has been widely investigated in the past. 

Although the infinite cylinder is a very simple geometry, it is greatly used for modelling bluff 

bodies. The flow field behind a bluff body is an important phenomenology for many 

engineering and physical fields, because the alternate shedding of vortices, which develops in 

the near wake, causes pressure forces, which generate structural vibration, acoustic noise and 

resonance phenomena.  

An interesting study in depth of this problem is the analysis of the finite cylinder, since 

the flow around the base and over the tip of the cylinder causes a strong three-dimensionality 

of the flow field. 

In this chapter the most important results present in the literature regarding both infinite 

and finite circular cylinders will be shown. 

2.1 Infinite cylinder 

Williamson (1996) made an interesting overview on the vortex dynamics phenomena in 

the wake of a cylinder, by varying the Reynolds number, defined as: 

ν

DU
Re   

 

2

.1 

where U∞ is the free stream velocity, D is the cylinder diameter and  is the kinematical 

viscosity of the working fluid.  

The wake of a cylinder is very sensitive to the Reynolds number. There is a range of Re 

in which the flow is practically laminar. Over this range, the wake always becomes turbulent 

and the point of turbulence onset moves upstream by increasing the Reynolds number. The 

fully development of turbulence motion, i.e. when all traces of periodicity is lost, happens at 

very high Re.  

The first appearance of a periodic wake happens at Re ≈ 50: it is stable and detected as 

far as 100 diameters downstream. By moving downstream, viscous dissipation causes the 

vortices decay. This phenomenon is detectable till Re ≈ 140-194. By increasing the Reynolds 

number, an irregular burst of the wake velocity appears and the shedding frequency becomes 

difficult to be measured. This situation is connected to the birth of 3D instability. For higher 
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Reynolds numbers until the critical value (≈3·10
5
), a precise shedding frequency returns, but 

contrary from the above mentioned laminar vortex shedding, in this case the wake becomes 

turbulent about 40 diameters downstream, where all periodicity disappear. 

Williamson (1996) concluded that by increasing the Reynolds number the flow passes 

throw three instability sources: 

 Wake transition; 

 Shear layer transition; 

 Boundary layer transition. 

He schematised the whole cylinder wake behaviour in 8 different vortex shedding 

regimes. All these regimes can be found in Fig. 2.1, where the base suction coefficient (-CPB, 

CPB is the base pressure coefficient, i.e. the pressure measured at 180° from the front 

stagnation point) is plotted as a function of the Reynolds number: 

 Laminar Steady Regime (Re < 49) – (Up to A in Fig. 2.1) the wake is symmetric and steady 

and its length grows by increasing the Reynolds number; 

 Laminar Vortex Shedding Regime (Re = 49 to 140-194) – (A-B in Fig. 2.1) in this regime 

it has been shown the onset of the wake instability with the development of a laminar 

shedding vortices and the vortex formation length increases as the Reynolds number 

increases; 

 3D Wake Transition Regime (Re = 190 to 260) – (B-C in Fig. 2.1) at Re = 180-194 the 

birth of the vortex loops can be seen in the wake formation, which distort the primary vortices 

with a spanwise wavelength between 3 and 4 diameters (Mode A). By increasing the Reynolds 

number to about 250, a transition from Mode A (vortex loops) to Mode B (streamwise vortex 

pair) was observed. The latter vortex shedding mode is characterised by a shorter spanwise 

wavelength of about one diameter; 

 Increasing Disorder in the Fine Scale Three Dimensionalities (Re = 260 to 10
3
) – (C-D in 

Fig. 2.1) at Re = 300 the primary wake instability becomes again similar to the laminar 

shedding mode (see Fig. 2.2), with the exception of the presence of fine scale streamwise 

vortex structure, whose three dimensional disorder increases by increasing the Reynolds 

number; 

 Shear Layer Transition Regime (Re = 10
3
 to 2∙10

5
) – (D-E in Fig. 2.1) in this regime the 

instability of the separating shear layer from the cylinder sides develops (see Fig. 2.2) and, by 

increasing the Reynolds number, the transition point in the separating shear layers moves 

upstream and the formation length decreases; 
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Fig. 2.1 Plot of base suction coefficients versus the Reynolds numbers (Williamson 1996). 

 Critical Transition Regime – (E-G in Fig. 2.1) in this regime the base suction decreases 

drastically and the boundary layer separates much further downstream; in point F of Fig. 2.1 a 

separation reattachment bubble on only one side of the cylinder has been discovered; 

 Supercritical Regime – (G-H in Fig. 2.1) in this regime the flow becomes symmetric and 

also some fluctuations are detected; 

 Post-Critical Regime – (H-J in Fig. 2.1) in this regime the turbulent transition point moves 

further upstream and the downstream wake becomes fully turbulent. 

The choice to correlate the various regimes to the base suction coefficient (-CPB) is right 

because this parameter is very sensible to the flow instabilities changes and it has been found 

that it is inversely proportional to the vortex formation length (Lf). In the literature there are 

different definitions of this length: some authors (e.g. Bloor 1964 and Bearman 1965) have 

defined it as that point downstream of the body where the velocity fluctuation level has grown 

to a maximum and thereafter decays downstream. Bearman (1965) showed that by increasing 

the formation length Lf both the Reynolds stress maximum level and the base suction 

coefficient decrease. Other authors (e.g. Roshko 1993) have defined the mean recirculation 

region as the symmetric and closed wake obtained by averaging over a large time the periodic 

wake. Roshko (1993) derived a relation between the bubble length LB and both the base 

suction and the Reynolds stresses. The comparison between these two lengths allows to 

conclude that they are very similar. 
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The regime of interest for the measurements made in the present work is the Shear 

Layer Transition Regime, and in the following only this regime will be analysed.  

 

Fig. 2.2 Visualization of laminar and turbulent vortex street (Williamson 1996). 

2.1.1 Shear layer instability 

As already mentioned, in the Shear Layer Transition Regime the shear layer instability 

develops as Re increases.  

The shear layer instability causes the increase of the base suction coefficient and of the 

2D Reynolds stress level as well as the decrease of the formation length Lf and of the Strouhal 

number, defined as: 




U

Df
St K  

 

2

.2 
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where fK is the frequency of the von Kàrmàn vortices.  

Furthermore, according to Bloor (1964), the point of turbulence onset moves upstream 

by increasing the Reynolds number and reaches the separation point on the cylinder at the 

critical Reynolds number (≈3·10
5
). Schiller and Linke (1933) found that the normalised 

distance between the separation point and the transition point decreases from 1.4 to 0.7, by 

increasing the Reynolds number from 3.5∙10
3
 to 8.5∙10

3
. More recently, Saad et al. (2007) 

found a relationship which links the normalised location of the transition point with the 

Reynolds number: 

664.0c Re5.182
D

x   
 

2

.3 

 

a 

 

b 

 

Fig. 2.3 a-Definition of xc, Ld and Lf; b- xc /D as a function of Re. Saad et al. (2007) 

The location xc is determined from the appearance of the first packet of high frequency 

in the hot wire time traces downstream along the shear layer for x/D = 0-3 and y/D = 0.65 (see 

Fig. 2.3-a for the reference frame). This characteristic of the shear layer instability is 
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considered the cause of the transition. According to both Bloor (1964) and Schiller and Linke 

(1933), Saad et al. (2007) found a decrease of xc /D as Re increases. It’s interesting to note that 

for Re < 5∙10
3
 xc /D is a strong function of Re, whereas a weaker decrease is observed for Re > 

5∙10
3
. This is connected to the stabilisation of the vortex formation process. 

According to Williamson (1996), the Kelvin-Helmholtz instability of the shear layer is 

two-dimensional, whereas three-dimensional structures on the scale of both shear layer (small 

scale) and von Kàrmàn (large scale) vortices develop in this regime. The small-scale vortical 

structures are also known in the literature as Bloor-Gerrard vortices.
1
 

Although the birth of shear layer vortices was already known, Bloor (1964) was the first 

to measure the frequency of the shear layer instability waves. He found by means of hot-wire 

measurements that the ratio between the frequency of the shear layer vortices and the one of 

von Kàrmàn vortices is proportional to Re
1/2

 for Re > 3∙10
3
. Bloor (1964) justified this relation 

with dimensional arguments. According to her, the frequency of transition waves fSL should be 

proportional to the velocity near the separation point USEP divided by the shear layer 

momentum thickness SL. The latter should be proportional to the thickness of the laminar 

boundary layer, so that: 

2/1

SL
U

Dν
θ 












 

 

2

.4 

whereas, since the base pressure coefficient is almost constant for the considered Reynolds 

number, the velocity near the separation point would be: 

  constC1UU
2/1

PBSEP    
 

2

.5 

Then: 

  2/1

2/3

SL

SEP
SL

Dν

U

θ

U
f   

 

2

.6 

Since for all Reynolds numbers under consideration the Strouhal number (referred to 

the von Kàrmàn vortices frequency fK) is almost constant: 

D

U
fK

  
 

2

.7 

                                                 

1
 Bloor-Gerrard vortices are also identified in the literature as the Kelvin-Helmotz instability, shear layer 

instability, secondary vortices as well as transition waves. 
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Then: 
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After Bloor (1964), Wei and Smith (1986), by using a vortex counting technique in 

conjunction with the flow field visualisation, found: 

87.0

K

SL Re0047.0
f

f
  

 

2

.9 

whereas, accordingly with Bloor (1964) Kourta et al. (1987), by means of hot wire 

measurements, found: 

2/1

K

SL Re095.0
f

f
  

 

2

.10 

More recently Thompson and Hourigan (2005) have reinterpreted all these results and 

have concluded that the interpretation of the phenomenon suggested by Bloor (1964) is the 

most appropriated. In the same year, Rajagopalan and Antonia (2005) measured the 

frequencies ratio and compared their measurement with the ones present in the literature (see 

Fig. 2.4). They concluded that the best fit to all the data yields an exponent equal to 0.65, 

whereas the Re
0.5

 distribution also shown in Fig. 2.4 is clearly not adequate. 

 

Fig. 2.4 Variation of fSL/fK with the Reynolds number (Rajagopalan and Antonia 2005). 
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Fig. 2.5 fSL/ fK as a function of Re (Saad et al. 2007) 

Later on, Saad et al. (2007) have measured the ratio fSL/fK for 2∙10
3
<Re<10

4
 (see Fig. 

2.5) and obtained: 

487.0

K

SL Re1096.0
f

f
  

 

2
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for 2∙10
3
<Re<6.5∙10

3
 with a correlation factor of 0.985, while: 

604.0

K

SL Re042.0
f

f
  

 

2

.12 

for the whole range of interrogation, obviously with a lower correlation factor.  

In conclusion, according to Norberg (1994), a single power law may not represent the 

variation of the normalised shear layer frequency. He observed that the Re dependence of 

fSL/fK can be divided in two ranges, with a larger exponent for Re<5∙10
3
 and a smaller one for 

5∙10
3
<Re<10

5
. Based on this and other observations, he suggested that the flow undergoes a 

basic changes at Re=5∙10
3
. 

According to Williamson (1996), the shear layer vortices wavelength (in the streamwise 

direction) is given by: 

2/1

SL

Re

37

D

λ
  

 

2

.13 

which, if it is combined with: 

2
D

L f
  

 

2

.14 

valid for Re ≈ 10
3
, produces: 
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fSL Lλ    

2

.15 

for Re > 360. A similar relation has been found by Wu et al. (1996): 

2/1

SL

Re

34

D

λ
  

 

2
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Obviously, to see the instability wake, it isn’t enough that the wavelength SL should be 

smaller than the vortex formation length Lf , but also that the amplification of the shear layer 

instability should be important. For this reason, Roshko (1993) concluded that the shear layer 

vortices are detectable only for Re > 1.2∙10
3
. In Fig. 2.2 the shear layer vortices amalgamated 

with the von Kàrmàn ones are shown for Re = 4∙10
3
. A similar configuration is also found in 

the flow visualisation of Lin et al. (1995a). In the latter (see Fig. 2.6) it can be seen that near 

the point situated at 180° from the front stagnation point the streamlines pattern is ill-defined, 

especially at Re = 5∙10
3
. This distortion is caused by the Bloor-Gerrard vortices in the 

separating shear layer which are added to the very low intensity of the streamline pattern. For 

Re = 10
4
 more than for Re = 5∙10

3
 the small scale vortices embedded within the large scale 

ones are very well visible. 

 

 
Re = 5∙10

3
 Re = 10

4
 

Fig. 2.6 Instantaneous streamlines (Lin et al. 1995a). 
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a b 

Re = 5∙10
3
 

  
c d 

Re = 10
4
 

Fig. 2.7 Instantaneous states of near-wake structure represented by contours of constant positive (grey) 

and negative (white) vorticity (Lin et al. 1995a). 

In Fig. 2.7 the instantaneous vorticity patterns of the near wake structure are shown for 

Re = 5∙10
3
 and Re = 10

4
. Fig. 2.7-a shows the predominantly occurring pattern for Re = 5∙10

3
. 

There are small scale vortices amalgamated in both well defined von Kàrmàn vortices (in the 

lower side of the cylinder) and a shear layer region. Also Fig. 2.7–b is referred to the same 

Reynolds number, but in this case the near wake pattern is almost symmetric. 

According to Lin et al. (1995a) this means that the periodic phenomenon of vortex 

shedding is occasionally interrupted, by producing a quasi-symmetric pattern. Also at Re = 

10
4
 there is a predominant pattern (Fig. 2.7-c) of the vortex shedding occasionally interrupted 

by an approximately symmetric pattern (Fig. 2.7-d). The substantial difference between the 

patterns relative to the two Reynolds numbers is that, for the higher Re, there are well formed 

small-scale structures nearer to the shear layer separation point. Lin et al. (1995a) 

hypothesized that this abrupt development of the small scale structures at Re = 10
4
 leads to 

increased Reynolds stresses and consequently the shear layer amalgamate earlier in the von 
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Kàrmàn vortices. Accordingly, the vortex formation process is shown closer to the cylinder. 

This consideration is also supported by Chyu et al. (1995), who demonstrated, by enhancing 

small scale vortices with external excitation, that the von Kàrmàn vortices development is 

accelerated by the small scale ones. Later on, Saad et al. (2007) asserted that the two 

parameters, which play an important role in the formation of the vortex shedding, are the 

shear layer diffusion length Ld and the vortices formation length Lf (see Sect. 2.1.2). 

2.1.2 Von Kàrmàn vortices development 

In 1912 von Kàrmàn (see Fig. 2.8) interpreted the cylinder wake oscillations as an 

intrinsic phenomenon and to support this consideration, he studied the stability of a vortices 

street. He found that two rows of opposite-signed vortices are unstable in both symmetric and 

asymmetric configurations, except for a particular asymmetric geometry. Since the 

experimental configuration obtained in the cylinder wake was very similar to the one obtained 

by von Kàrmàn, that analysis had a great success. However, the von Kàrmàn analysis 

demonstrated only the stability of an infinite vortices street and it isn’t well understood how 

this vortices street is related to a bluff body. In other words, that analysis didn’t explain how 

the bluff body can generate the vortices street, but assured that, if such a configuration 

develops, it can be stable and it is visible for a long distance downstream. 

Only several decades after there was a descriptive understanding of the vortex 

development. Gerrard (1966) suggested that a developing vortex drags the opposite sign shear 

layer from the other side of the wake, eventually cutting off the supply of vorticity to the 

growing vortex. Perry et al. (1982) interpreted the vortex formation process in terms of 

instantaneous streamlines (see Fig. 2.9): initially, the cylinder wake is symmetric; when the 

wake begin to shed, a cavity opens and a ―alleyways‖ of fluid moves to fill the cavity. 

According to Fig. 2.9, the vortex A grows following the configurations from (a) to (d) until a 

saddle point S forms in (e). The formation of a saddle point is the result of the detaching of a 

vortex from the cylinder and, when it forms a new vortex (anticlockwise in (e) in the low side 

of the cylinder) is born. 
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Fig. 2.8 Theodore von Kàrmàn (original Hungarian name Szőllőskislaki Kármán Tódor).                

May 11, 1881 – May 6, 1963 

 

Fig. 2.9 Vortex shedding model using topology of instantaneous streamlines (Perry et al. 1982). 

As already said, Chyu et al. (1995) demonstrated, by enhancing small scale vortices 

with external excitation, that the von Kàrmàn vortices development is accelerated by the small 

scale ones, i.e. the vortex formation length Lf decreases. Accordingly with these 

considerations, Saad et al. (2007) asserted that the two parameters, which play an important 

role in the formation of the vortex shedding, are the shear layer diffusion length and the 

vortices formation length (Ld and Lf respectively, see Fig. 2.3-a). Both Ld/D and Lf/D are 

plotted as a function of the Reynolds number in Fig. 2.10.  
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a b 

Fig. 2.10 Normalised shear layer diffusion length (a) and vortices formation length (b) as a function of 

Re (Saad et al. 2007). 

 

Fig. 2.11 Strouhal number as a function of Re (Saad et al. 2007). 

According to Gerrard (1966) and Saad et al. (2007), the increase of Ld/D is due to fact 

that by increasing Re the transition point moves upstream in the shear layer (see Fig. 2.3-b) 

and as a consequence the turbulent length of the shear layer grows. Consistently, more fluid 

can entrain in the shear layer, making it thicker and more diffused. This phenomenon causes a 

longer time to initiate the vortex shedding, since it’s needed to reach a sufficient concentration 

of vorticity. On the other hand, as Re increases, Lf decreases and consequently the interaction 

of the two shear layer is facilitated when they come close together. Then, the shortening of Lf 

tends to decrease the vortex formation periodic time. As a result of these considerations, the 

actions of the two lengths (Ld and Lf) are in antithesis, producing an almost constant Strouhal 

number (see Fig. 2.11) for a wide range of Re number. 
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2.1.3 Vortex formation length 

Bloor (1964) investigated how the length of vortices formation region depends on the 

Reynolds number. She considered that length as the distance between the centre of the 

cylinder and the point downstream of the body where the velocity fluctuation level has grown 

to a maximum and thereafter decays downstream. This means that the end of the formation 

region is where fluid from outside the wake first crosses the axis. Bloor found that the 

vortices formation length Lf increases from 2 to 2.5 diameters by varying the Reynolds 

number from about 300 to 3∙10
3
. Afterwards, there is a steady fall of Lf by increasing Re. 

This decrease of the formation length can be represented in terms of the streamwise 

variation of a characteristic velocity fluctuation, as described by Bloor and Gerrard (1966) 

and Szepessy and Bearman (1992). It is also shown in the qualitative flow visualization of 

Unal and Rockwell (1988) and Lin et al. (1995a).  

Saad et al. (2007) investigated a wider Re range and obtained the results shown in Fig. 

2.10-b, where also Bloor’s data are reported. They found that Lf increases from 1.5D to 2.3D 

by varying the Reynolds number from 2.5∙10
3
 to 3.4∙10

3
. Above this, Lf decreases as the 

Reynolds number increases until 10
4
. For the latter range, a relation which fits well with the 

experimental points is: 

408.0f
Re452.56

D

L
  

 

2

.17 

The decrease of Lf by increasing Re could be caused by the upstream motion of the 

transition point (see Fig. 2.3-b). As explained before, this phenomenon causes the thickening 

of the shear layer (see Fig. 2.10-a) and consequently the formation vortex develops and sheds 

into the wake earlier. 

2.1.4 Mean flow field 

Braza et al. (2006) measured the mean flow field at Re=1.4∙10
5
 by means of 2C and 3C 

Particle Image Velocimetry (PIV) technique. Since it is obtained by averaging the alternating 

vortices, the mean streamlines pattern (see Fig. 2.12) has two-symmetric eddies. It’s a result 

of the symmetric pattern of u and asymmetric one for v (see Fig. 2.13). According to Braza et 

al. (2006) the normalised vortices formation length Lf/D is about 1.28 and 1.23 if measured by 

2C and 3C PIV respectively. Fig. 2.14 shows the iso-contours of the strain rate tensor 

component: 
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and the rotation rate tensor component (vorticity): 
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The strain and rotation rate tensors were computed with a central difference scheme. 

The components of these two tensors reported in Fig. 2.14 have a two-lobes asymmetric 

configuration and the same order of magnitude. 

Fig. 2.15 and Fig. 2.16 show the iso-contours of the Reynolds stress components u'u', 

v'v', w'w' and u'v. The remaining components u'w' and v'w' are very small, confirming the 

two-dimensionality of the mean flow. 

 

Fig. 2.12 Streamlines of mean flow field at Re=1.4∙10
5
 (Braza et al. 2006). 

Both the turbulent kinetic energy k and turbulent production term p are shown in Fig. 

2.17 and computed as below: 
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Fig. 2.13 u and v iso-contours of mean flow field at Re=1.4∙10
5
 (Braza et al. 2006). 

  
a b 

Fig. 2.14 Mean strain rate (a) and mean rotation rate (b) at Re=1.4∙10
5
 (Braza et al. 2006). 

  
u'u' v'v' 

Fig. 2.15 Mean Reynolds stresses at Re=1.4∙10
5
 (Braza et al. 2006). 
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w'w' u'v 

Fig. 2.16 Mean Reynolds stresses at Re=1.4∙10
5
 (Braza et al. 2006). 

  
a b 

Fig. 2.17 Mean turbulent kinetic energy k (a) and production p (b) at Re=1.4∙10
5
 (Braza et al. 2006) 

According to Braza et al. (2006), all the components of the Reynolds stress tensor have 

their maximum value near the vortices formation region and this explains why the turbulent 

kinetic energy has a one-lobe structure with the maximum located at x/D=1.25 on the rear 

axes. 

2.1.5 Phase averaged flow fields 

Braza et al. (2006) also measured the phase averaged flow field. Triggering the PIV 

images acquisition with a pressure signal did the phase averaging. The periodic vortex 

shedding is clearly shown in Fig. 2.18, where the streamlines of the phase averaged flow at 

phase angles 0, /2,  and 3/2 are shown. The vortex centres have been identified with the 
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Q-criterion (Jeong and Hussain 1995) and shown in Fig. 2.19. Accordingly with Cantwell and 

Coles (1983), the trajectories seem to be nearly parallel to the rear axis after x/D=2. The 

longitudinal mean velocity of the vortices has been measured and found to reach the value 

0.7U∞ at x/D=2. 

 

Fig. 2.18 Streamlines of phase averaged flow fields at Re=1.4∙10
5
 (Braza et al. 2006). 

 

Fig. 2.19 Trajectories of the alternating vortices. Circles indicate the centres of the vortices and 

number indicates the phase (1:=0; …; n: 2-2/n). Braza et al. (2006). 
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Fig. 2.20 Vorticity of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 2007a). 

 

Fig. 2.21 Reynolds stress component u′u′ of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 

2007a). 
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Fig. 2.22 Reynolds stress component v′v′ of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 

2007a). 

 

Fig. 2.23 Reynolds stress component u′v′ of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 

2007a). 
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Fig. 2.24 Reynolds stress component w′w′ of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 

2007a). 

 

Fig. 2.25 Turbulent kinetic energy of phase averaged flow fields at Re=1.4∙10
5
 (Perrin et al. 2007a). 

Relatively to the same experimental apparatus and measurements, Perrin et al. (2007a) 

evaluated the dimensionless vorticity at 4 constant phases (see Fig. 2.20). It can be seen that 

the absolute value of vorticity peak at the vortex centre decreases from 3 to 1 when the vortex 

moves downstream from x/D=0.6 to x/D=2. 
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The Reynolds stresses at constant phase are shown in Fig. 2.21, Fig. 2.22 and Fig. 2.23 

for components u′u′, v′v′ and u′v′, respectively. Also in this case, the results are in agreement 

with that shown by Cantwell and Coles (1983):  

 downstream of the formation region, the normal stresses have high values near the vortex 

centres, while the maxima of the shear stress are located around the vortices;  

 in the formation region, significant values of u′u′ and u′v′ are found in the shear layer. 

The component w′w′ is shown in Fig. 2.24, while the quantities w, u′w′ and v′w′ are 

found to be smaller than the measurement uncertainties. The spanwise normal stress w′w′ 

shows the maxima near the vortices and also significant values are collocated between them, 

e.g. at =0 and =. According to Perrin et al. (2007a), this is due to the longitudinal vortices 

which connect the primary ones (see Sect. 2.1.6). 

Finally, the turbulent kinetic energy is shown in Fig. 2.25. According to the topology of 

the normal stresses, the maxima are located near the centre of the vortices. 

In all the normal and shear stress maps as well as in the turbulent kinetic energy one, the 

red (or blue, in Fig. 2.24) lines indicates the iso-lines Q=0.5 of the Q-criteria which identifies 

the vortices (Jeong and Hussain 1995). 

2.1.6 Longitudinal vortices 

Wu et al. (1994) investigated the longitudinal vortices past a circular cylinder at Re=525 and 

deduced that the maximum vorticity and circulation of the longitudinal vortices were 

respectively larger and smaller than those of the spanwise vortices. This phenomenon was 

connected to a mechanism of stretching of the longitudinal vortices.  

In the hydrogen-bubble visualization of Wu et al. (1994) (Fig. 2.26-a) it can be seen the 

mushroom type structures (indicated by the arrow) which develop in the near wake. These 

imply the existence of the counter-rotating longitudinal vortices in the cylinder wake. Fig. 

2.26-b and c show an instantaneous velocity distribution measured in a reference frame 

moving with the eddy convection velocity equal to 60% of U∞. According to Wu et al. (1994), 

the spiralling of the streamline patterns near the vortices centre is indicative of the flow three-

dimensionality. To show the spanwise variation caused by the existence of the longitudinal 

vortices, Wu et al. (1994) measured a typical instantaneous velocity profile through the centre 

of longitudinal vortices, as shown in Fig. 2.27. In the figure, u is the streamwise velocity and z 

is the spanwise axis (parallel to the cylinder axis). 

In the same year, also Lin et al. (1995b) investigated longitudinal vortices, by using the 

Particle Image Velocimetry technique. They provided an interesting 3D representation of 
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them, shown in Fig. 2.28. The lower left end of the rectangular box represents the y-z plane at 

x/D=1. The three-dimensional vorticity pattern shows a sinusoidal undulation due to 

successive formation of the von Kàrmàn vortices.  

 
a 

  
b c 

Fig. 2.26 Flow field in the x-z plane. The cylinder is located on the left. a- Hydrogen-bubble flow 

visualization. b- Velocity vectors seen in a frame of reference moving at 60% of U∞. c- Sectional 

streamlines seen in the moving frame of reference. Re= 525 (Wu et al. 1994). 

Each vorticity volume originating at the left end of the box retains its identity for at 

least 1.5 cycle of the von Kàrmàn vortices formation. This time scale is an order of magnitude 

larger than that of shear layer vortices. In Fig. 2.28 is also noticeable that the vorticity 

volumes exhibit a pattern of alternating sense. The characteristic spanwise wavelength 

vorticity volume with the same sign is of the order of the cylinder diameter. 
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Fig. 2.27 Spanwise variation of u: an instantaneous velocity profile sliced through the centre of the 

longitudinal vortices. Re= 525 (Wu et al. 1994). 

 

Fig. 2.28 Space-time representation of streamwise vorticity over a time interval corresponding to 

period of von Kàrmàn vortices formation – Re=10
4
 (Lin et al. 1995b). 

Wu et al. (1996) measured both the wavelengths of the longitudinal vortices developed 

in the shear layer vortices as well as in the von Kàrmàn ones. They noticed that the ratio 

between the spanwise wavelength of the longitudinal vortices SL3 developed in the shear 

layer and streamwise of the shear layer vortices SL is: 
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Substituting the Eq. 2.16 in Eq. 2.22 gives: 
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The spanwise wavelength of the longitudinal vortices developed in the von Kàrmàn 

ones were measured, in the Reynolds number range 250-1.8∙10
3
, directly from the images. 

The two spanwise wavelengths are reported in Fig. 2.29. It can be seen that for Re>2∙10
3
 the 

two structures have quite different spanwise length scales. This observation suggests that they 

might be effectively decoupled. 

 

Fig. 2.29 A comparison of spanwise wavelength: streamwise vortices in the separating shear layer and 

in the von Kàrmàn vortices (Wu et al. 1996). 

More recently, Scarano et al. (2006) performed tomo-PIV measurements of the cylinder 

wake. The visualisation of the wake instantaneous structure in a volume behind the cylinder 

permitted to obtain the separate contribution of the von Kàrmàn vortices and the 

interconnecting structures between them. A value of spanwise wavelength equal to 1.2D has 

been found, in good agreement with Lin et al. (1995b). Furthermore, Scarano et al. (2006) 

found that the vortices organisation into pairs is similar to the instability Mode B occurring in 

lower Reynolds number (3D Wake Transition Regime mentioned before). 

2.2 Finite cylinder 

For a finite circular cylinder there are different flow pattern changes along the cylinder 

height. In particular, a counter-rotating pair of tip vortices forms at the free end and extends 

into the wake. These vortex structures interact in a complex manner with von Kàrmàn vortices 

shedding. By reducing the aspect ratio AR=H/D in the range 2<AR<6, the regular alternating 

vortex shedding is replaced by symmetrical shed vortices. For smaller AR, the vortex 

shedding disappears, as shown by Fig. 2.30. 
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Fig. 2.30 Sketches of the flow field around a finite cylinder with length longer (left) and shorter than 

the critical length for vortex shedding (Kawamura et al. 1984). 

In particular, for high aspect ratios, the vortex shedding frequency may vary in a cellular 

manner along the cylinder height and each cell has a different frequency (or Strouhal 

number), whereas the vortex shedding is suppressed near the free end and the cylinder base. 

These cellular structures disappear when AR≈6-7 and below, and a singular cell with a 

uniform shedding frequency along the whole cylinder height forms. For smaller aspect ratios, 

the flow around the cylinder tip suppress the von Kàrmàn vortices along the entire cylinder 

height and a symmetric arch vortex shedding at a definite frequency forms (see Fig. 2.31). In 

the last case, the dominant features of the time-averaged flow are: the horseshoe vortex, 

which forms near the cylinder base when the upstream flow separates due to the adverse 

pressure gradient; the vortex system on the free end, inside the separated flow; the arch vortex 

in the rear recirculation region; the trailing vortices downstream of the reattachment. 

 

Fig. 2.31 Sketch of the flow around a finite cylinder with small aspect ratio (Pattenden et al. 2005). 
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Actually, the critical AR, under which the vortex shedding vanishes, varies from 1 to 7, 

depending on the experimental configuration parameters, e.g. the boundary layer thickness. 

As shown before, for infinite cylinder the fundamental parameter that determines the flow 

field regime is the Reynolds number, whereas for the finite one there is the influence of other 

parameters, as the cylinder aspect ratio AR and the ratio BL/L between the boundary layer 

thickness and the cylinder height. 

Some authors have investigated the effect of the aspect ratio on the vortex shedding. 

Okamoto and Yagita (1973) showed that the vortex shedding pattern does not exist for AR≤6. 

as the effects of the free end reach the base. Sakamoto and Arie (1983) investigated the effects 

on the vortex shedding frequency of both aspect ratio and boundary layer thickness. They 

found that the relation between this frequency and the aspect ratio follows a power law. 

Furthermore, they noticed that at AR=2.5, the shedding changes from von Kàrmàn type to 

symmetric arch one. This change was also observed by Okamoto and Sunabashiri (1992) at 

AR=4. A similar investigation was done by Sumner et al. (2004) who compared the results 

relative to finite cylinders with an aspect ratio equal to 3, 5 and 9. They found a different 

vortex shedding pattern at AR=3. By concluding, different critical ARs, under which the 

vortex shedding vanishes, have been found in the literature and probably this is due to 

different experimental configurations adopted by the authors mentioned above (e.g. BL/L). 

Other authors have investigated the mean flow field in the wake of a finite cylinder with 

various aspect ratios, e.g Tanaka and Murata (1999), Fröhlich and Rodi (2004), Adaramola et 

al. (2006), Afgan et al. (2007) and Said et al. (2008). Some authors among these have 

investigated the flow field with a non-negligible boundary layer thickness (see Tab. 2.1, last 

column). 

Since the fundamental difference between the flow field past a finite and infinite 

cylinders is due to the free end, some authors have concentrated their investigations on the 

flow over the free end surface, e.g. Roh and Park (2003) and Pattenden et al. (2005). 

Results obtained by most of the above mentioned authors will be shown more in details 

below. Almost all authors use the reference frame showed in Fig. 2.31. When this isn’t true, it 

will be expressly said. 
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Author(s) Year AR Re∙10
-3 

BL 

Okamoto and Yagita (1973) 1973 1 -> 12.5 13  

Sakamoto and Arie (1983) 1983 1 -> 8 0.27 -> 0.92 X 

Kawamura et al. (1984) 1984 1 -> 8 32 X 

Okamoto and Sunabashiri (1992) 1992 0.5 -> 24 25 -> 47  

Tanaka and Murata (1999) 1999 1.25 -> 10 37  

Park and Lee (2000) 2000 6 -> 13 20  

Roh and Park (2003) 2003 1.25 -> 4.25 5.92 -> 148  

Fröhlich and Rodi (2004) 2004 2.5 43  

Sumner et al. (2004) 2004 3 -> 9 60 X 

Pattenden et al. (2005) 2005 1 200  

Adaramola et al. (2006) 2006 3 -> 9 60 X 

Afgan et al. (2007) 2007 6 -> 10 20  

Hain et al. (2007) 2007 2 -> 2.167 100  

Said et al. (2008) 2008 2.56 8.5 -> 64  

Tab. 2.1 Summary of previous experiments on finite cylinder. 

2.2.1 Free end flow 

In the past, only few authors paid attention to the flow pattern around the free end 

surface. At first, Etzold and Fiedler (1976) showed that a pair of vortices originates from the 

edge of the free end surface. Kawamura et al. (1984) confirmed the presence of these vortices 

and identified them as trailing side tip vortices. They also showed the presence of a pair of 

swirl-like flow spots on the free end surface in addition of the former pair of vortices. 

Roh and Park (2003) investigated the formation development and topological features 

of the combination of swirl-like vortex pair and trailing side tip vortices. By changing the oil 

mixture ratio, they showed the streak lines on the free end surface (Fig. 2.32). Especially in 

Fig. 2.32-b, it can be seen a pair of eye-like spots located in the fore region. The authors 

affirmed that during the experiment they had observed a counter-rotation of the oil particles in 

the two eye-like spots, i.e. a clockwise rotation of the particles in the right eye and counter-

clockwise rotation of the particles in the left one. According to Roh and Park (2003), it can be 

concluded that a saddle point (A in Fig. 2.32-b) should exist between these spiral nodes. 
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Fig. 2.32 Oil streak lines on the free end surface region for different oil mixture ratios. Flow from top 

to bottom, Re=1.48∙10
5
 and AR=1.25 (Roh and Park 2003). 

 

Fig. 2.33 Evolutionary vortical flow over the free end surface (Roh and Park 2003). 

 

 
a b 

Fig. 2.34 Topological flow pattern over the free end surface (a) and flow pattern in the symmetry 

plane (b) (Roh and Park 2003). 
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In Fig. 2.32-c three relevant points can be seen. During the experiment, the particles 

near the point B and B′ were observed to spread out in all directions. Furthermore, the 

particles leaving these points toward A were observed to accumulate at point A. According to 

the authors, this means that the spots B and B′ are attachment nodal points and the spot A is a 

separation saddle point. By choosing 5 position along the streamwise cylinder diameter (as 

shown in Fig. 2.32-a by AA′, BB′ and so on), Roh and Park (2003) performed 5 laser light 

sheet visualisation. As a result of this inquiry, the sketch in Fig. 2.33 has been drawn. This 

shows the evolutionary sequence of the tornado-like vortices and the side tip vortices over the 

free end surface and permitted the authors to sketch an overall topological flow pattern (Fig. 

2.34). This sketch shows the tornado-like vortices evolving from the two spiral nodes and the 

side tip vortices. It can be seen both the counter rotating vortices and the three critical spots in 

the rear zone of the surface. As illustrated in the sketch, both tornado and side tip vortices 

induce a downwash flow towards the two nodes. Roh and Park (2003) also demonstrated that 

the vortical flow pattern shown in Fig. 2.34 doesn’t undergo substantial changes by varying 

the Reynolds number from 5.92∙10
3
 to 1.48∙10

5
 and the aspect ratio from 1.25 to 4.25. 

A similar investigation has been done by Pattenden et al. (2005) for a cylinder with a 

small aspect ratio, and found that the flow pattern is like the one shown in Fig. 2.31. They 

investigated both the free end flow and the horseshoe vortex. 

With regard to the free end flow, the measurements obtained by Pattenden et al. (2005) 

are shown in Fig. 2.35. In agreement with Roh and Park (2003), also Pattenden et al. (2005) 

found the two foci (FT), the saddle point (ST) and the reattachment point (RT). According to 

the authors, in the fore zone the separated flow forms a small vortex near the leading edge and 

the reverse flow moves towards the cylinder sides.  

 

Fig. 2.35 Free end surface flow visualisation. Flow from left to right. Re=2∙10
5
 and AR=1 (Pattenden 

et al. 2005). 
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a b 

Fig. 2.36 Flow in the symmetry plane (y/D=0). a-Velocity vectors of the time-averaged flow. b-

Vorticity contours of a instantaneous flow. Re=2∙10
5
 and AR=1 (Pattenden et al. 2005). 

To allow a better understanding, Pattenden et al. (2005) performed also PIV 

measurements on the region above the free end cylinder. The mean flow field in the 

streamwise symmetry plane (see Fig. 2.36-a) shows the region of circulating flow and the 

reattachment zone. The instantaneous vorticity map (see Fig. 2.36-b) shows the shear layer 

over the top of the cylinder, maintaining almost constant for the first 0.2D and becoming 

turbulent afterward. 

The tip vortices formed by the flow up over the edge of the free end are visible in the 

secondary mean flow field map measured immediately behind the trailing edge of the cylinder 

(see Fig. 2.37). 

 

Fig. 2.37 Time-averaged velocity vectors at x/D=0.5. Re=2∙10
5
 and AR=1 (Pattenden et al. 2005). 

Also Hain et al. (2007) performed measurements on the free end flow, by using 

tomographic PIV. They used a finite cylinder with AR=2.167 and the Reynolds number was 

about 10
5
. Fig. 2.38-a shows the vector plane located at 0.13D over the top of the cylinder. In 

this average field the two foci are visible at x/D=0.4 and y/D=±0.43 as well as the centre of 

the tip vortices, highlighted by the region where the velocity in the x direction is very small 

(x/D=0.8 and y/D=±0.4). The tip vortices are also visible in the normalised u iso-contours 

(Fig. 2.38-b). The separation on the top of the cylinder causes a wake which leads to a region 

with decelerated flow, as it can be seen in both Fig. 2.38-a and b at x/D=1.0 and -0.1 ≤ y/D ≤ 
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0.1. By using the 2-criterion to identify the vortices, Hain et al. (2007) performed the iso-

surfaces shown in Fig. 2.39-a. According to these iso-surfaces, the tip vortices begin at 

x/D≈0.5 and y/D≈±0.5. In addition, weak vortical structures are observed between these tip 

vortices. Finally, Hain et al. (2007) have also reported an instantaneous flow field (see Fig. 

2.39-b), which demonstrates that the flow field is very unsteady. In fact, many small vortices 

are observed and a well defined tip vortex isn’t observed. 

  

a b 

Fig. 2.38 a- Bottom vector plane located at 0.13D over the top of the cylinder. b- Iso-surfaces of the 

normalised u component of the velocity. Measurements for AR=2.167 and Re≈10
5
 (Hain et al. 2007). 

 

 

a b 

Fig. 2.39 a- Iso-surfaces of 2-criterion calculated with the normalised v and w components. b- 

Instantaneous velocity field. Measurements for AR=2.167 and Re≈10
5
 (Hain et al. 2007). 
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2.2.2 Horseshoe vortex 

As already mentioned, the horseshoe vortex forms near the cylinder base when the 

upstream flow separates due to the adverse pressure gradient (see Fig. 2.31). Pattenden et al. 

(2005) investigated this phenomenon. Fig. 2.40-a shows the signature of this vortex on the 

ground. It can be seen the primary separation point (S1) and the line of converging streamlines 

at the upstream edge of the primary vortex (line C). According to the authors, the latter has a 

thickness of about 0.04D, i.e. almost the width of the vortex 1′ sketched in Fig. 2.41. This 

means that the separation point S2 and the attachment point A1 are at downstream and 

upstream edges of this line, respectively. In Fig. 2.40-a it can be seen another line of 

diverging streamlines (D), which extends from the leading edge of the cylinder. According to 

Pattenden et al. (2005), this line is the inner edge of the horseshoe, which moves downstream 

and the inward facing streamlines are due to the small vortex (0) drawn in Fig. 2.41. Fig. 

2.40-c shows the frontal view, where it can be seen the upwash near the free end and the 

downwash near the ground. 

Furthermore, by means of instantaneous flow field measurements in this region, 

Pattenden et al. (2005) also demonstrated that the dominant vortex (1) sketched in Fig. 2.41 

isn’t stationary and that the location of the vortex centre varies from the position x=-0.8D to 

x=-0.6D. 

 

  
a - flow from left to right b - flow from left to right c – flow into page 

Fig. 2.40 Surface flow visualisation images. a-Floor of tunnel. b-Side of cylinder. c-Front of cylinder. 

Re=2∙10
5
 and AR=1 (Pattenden et al. 2005). 
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Fig. 2.41 Topology of horseshoe vortex system (Pattenden et al. 2005). 

2.2.3 Mean flow field 

Tanaka and Murata (1999) investigated 4 cylinders with AR equal to 1.25, 2.5, 5 and 10 

for Re=3.7∙10
4
. For all measurement setups, they plotted the mean flow field in planes yz, xz 

and xy (see Fig. 2.42, Fig. 2.43 and Fig. 2.44, respectively). In all velocity maps, also the 

vorticity is shown with a solid or broken line if it is positive or negative, respectively. 

In the plane yz located at x/D=5 it can be seen a downwash flow, which reaches the 

ground plate only for the cylinder with the smallest aspect ratio. For all cylinders, two vortical 

structures are present at the cylinder sides and for the cylinder with the highest AR there is 

another couple of vortical structures with opposite rotation sense near the ground plate. By 

decreasing the aspect ratio, the centres of the vortical structures move downward, whereas by 

increasing the distance of the yz plane from the cylinder, the vortical structure becomes 

smaller and weaker. 

Also the velocity and vorticity maps relative to the xz plane at y/D=0 show the 

downwash flow, more remarkable for cylinders with small aspect ratios than for cylinder with 

AR=10 (see Fig. 2.43). For the last cylinder, the downwash extends until 5-6D downward and 

after that, the flow field is almost bi-dimensional. It’s interesting to note that the vorticity 

component Wy is positive everywhere. According to Tanaka and Murata (1999), similar 

velocity and vorticity maps can be seen in the planes at y/D=±0.75. 

The velocity and vorticity maps measured in the xy planes located at mid spans for all 

cylinders have been also considered by Tanaka and Murata (1999) and shown in Fig. 2.44. 

They used a rotating yaw-meter system. According to the authors, for the cylinder with 

AR=10 the recirculation region is bigger than that of the infinite cylinder. An interesting 

consideration has been pointed out concerning the cylinders with AR=1.25 and 2.5: in the 

centre of the wake, highlighted by the shadow effect, there are vortical regions where vorticity 

values are opposite in sign to those around them. 
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Fig. 2.42 Velocity vectors and vorticity Wx in three yz planes for AR=1.25, 2.5, 5 and 10 and 

Re=37∙10
3
 (Tanaka and Murata 1999). 

 

Fig. 2.43 Velocity vectors and vorticity Wy in the xz plane at y/D=0 for AR=1.25, 2.5, 5 and 10 and 

Re=37∙10
3
 (Tanaka and Murata 1999). 

This phenomenon has been called inverse wake by Tanaka and Murata (1999) and has 

been found also in the wake of the cylinder with AR=10 at z/D=6 and x/D>20. It is a known 

phenomenon in the bluff body community, as it is caused by the downwash flow. 
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Fig. 2.44 Velocity vectors and vorticity Wz in a xy plane for AR=1.25, 2.5, 5 and 10 and Re=37∙10
3
 

(Tanaka and Murata 1999). 

 
    AR=9 AR=7 AR=5 AR=3 

Fig. 2.45 Mean streamwise non-dimensional vorticity field in the yz plane at x/D=6 for Re=60∙10
3
 

(Sumner et al. 2004). 

The mean vortical field in the yz plane has been investigated with a seven-hole pressure 

probe by Sumner et al. (2004) for Re=6.0∙10
4
 and AR equal to 3, 5, 7 and 9 (see Fig. 2.45). 

However, differently from Tanaka and Murata (1999), Sumner et al. (2004) considered the 

effect of the boundary layer thickness (BL/D=2.6). They found for all cylinders, except for 

the one with AR=3, the couple of counter-rotating vortical structures along each side of the 

cylinder, similar to those shown by Tanaka and Murata (1999) for AR=10 (Fig. 2.42). Since 

in both works the aspect ratio equal to 5 has been investigated and only Sumner et al. (2004) 

found that type of vortical structures, it could be concluded that by increasing BL/D or Re, or 

both of them, the counter-rotating vortical structures form. Since in this regime the flow is 
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qualitatively insensitive to the Reynolds number (Zdravkovich 1997), probably the above 

explained change is due to the boundary layer thickness. 

  
xy plane at z/D=1.5 xz plane at y/D=0 

Fig. 2.46 Average streamlines for Re=43∙10
3
 and AR=2.5 (Fröhlich and Rodi 2004)

2
. 

Fröhlich and Rodi (2004) investigated, by means of the Large Eddy Simulation, a finite 

cylinder wake for Re=4.3∙10
4
 and AR=2.5. In this case, the comparison with results obtained 

by Tanaka and Murata (1999) could be done (as the latter authors investigated a cylinder with 

AR=2.5 and Re=3.7∙10
4
). Unfortunately, as regard the mean flow fields in the planes xy and 

xz, it has been investigated until x/D≈3.5 and the velocity maps (see Fig. 2.46) show the 

vortical structures that haven’t been shown by Tanaka and Murata (1999), because in this 

region they didn’t compute measurements (see Fig. 2.43 and Fig. 2.44). Also the mean flow 

field in the yz plane can’t be compared with the one obtained by Tanaka and Murata (1999), 

because these authors investigated the planes located at x/D=5, 10 and 20, whereas Fröhlich 

and Rodi (2004) made measurements in the planes located at x/D=1, 2 and 3.5 (see Fig. 2.47). 

As already shown (see Fig. 2.42), by moving the yz plane from x/D=5 to 20, the vortical 

structures tend to get squashed on the ground. On the other hand, measurements made by 

Fröhlich and Rodi (2004) show that by moving the yz plane from x/D=1 to 3.5, the centre of 

the vortical structure moves along the cylinder height, first toward the ground and then toward 

the cylinder tip. 

Fröhlich and Rodi (2004) found alternating vortex shedding in the rear region of the 

cylinder from the base until y/D≈1.5; above this height, perturbations with only small scales 

have been found. These considerations allow to conclude that the above mentioned critical 

aspect ratio for the vortex shedding is lower than 2.5 (see Fig. 2.30). 

                                                 

2
 Reference frame different from the traditional one sketched in Fig. 2.31. Switch y with z to obtain the 

traditional reference frame. 
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Fröhlich and Rodi (2004) computed also normal and shear stresses in xy planes located 

at z/D=1 and z/D=2. It can be seen (Fig. 2.48) that the u-fluctuations dominate in the 

separated shear layer, while v- and w-fluctuations are maximal near the symmetry plane. By 

comparing the two xy planes, it can be concluded that near the top, the recirculation is much 

shorter and all fluctuations are smaller because the shedding is absent. 

  
yz plane at x/D=1 yz plane at x/D=2 

 
yz plane at x/D=3.5 

Fig. 2.47 Average flow structures and magnitude of the secondary flow (
22 wv  ) represented by 

grey scale (values from 0 to 0.6). Re=43∙10
3
 and AR=2.5 (Fröhlich and Rodi 2004) 

2
. 

Also Pattenden et al. (2005) made measurements of the mean flow fields in the yz 

planes moving along the x axes (see Fig. 2.49). In this case the cylinder has a very small 

aspect ratio (AR=1) and Re=2∙10
5
. In this measurements, it can be seen the couple of tip 

vortices which form because the shear layers at the sides and over the top interact (see Fig. 

2.49). At the first measurement plane (x/D=0.5), two counter-rotating tip vortices can be seen 

at the free end of the cylinder. The vortices remain at the same position until x/D=1.0, where 

they start to expand and move downward. According to Pattenden et al. (2005), this is caused 

by the downwash behind the cylinder. At x/D=0.5 is also visible the inside edge of the 

horseshoe vortex: it extends to y/D=±1 in this plane and it can be seen at the outside lower 

corners, where the vectors are pointing downwards and outwards. At x/D=1.5 the flow 

coming from the sides of the cylinder combines with the downwash flow. As a result, the flow 
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converges on the centreline and impinges on the ground plane. At this point, the flow is 

forced outwards, increasing vorticity and forming the two trailing vortices shown at x/D=2.5. 

 

 

u'u' 

v'v' 

w'w' 

u'w' 

xy plane at z/D=1 xy plane at z/D=2  

Fig. 2.48 Streamlines and stresses. The grey scale ranges from 0 to 0.2. Re=43∙10
3
 and AR=2.5 

(Fröhlich and Rodi 2004) 
2
. 

Afgan et al. (2007) investigated two different cylinders with AR=6 and 10 and a 

Reynolds number equal to 2.0∙10
4
. In the mean flow fields, measured in the wake at different 

xy planes, they found an almost symmetrical pattern, with a pair of narrow recirculation 

bubbles, similar to the one obtained by Fröhlich and Rodi (2004) (e.g. see Fig. 2.48).  

Finally, Said et al. (2008) investigated a cylinder with AR=2.56 and a Reynolds 

numbers equal to 8.5∙10
3
 and 6.4∙10

4
. Since, as mentioned before, in this regime the flow field 

doesn’t change significatively with the Reynolds number, this investigation is very similar to 

the one made by Fröhlich and Rodi (2004). 



Flow field past a circular cylinder: state of the art 

 50 

  
a b 

Fig. 2.49 Streamwise evolution of the flow in the yz plane, showing mean velocity vectors (a) and 

contours of mean non-dimensional vorticity magnitude (b). Re=2∙10
5
 and AR=1 (Pattenden et al. 

2005). 

2.2.4 Vortex formation length 

Some authors have measured the vortex formation length relative to finite cylinders. 

For example, by means of the hot wire technique Park and Lee (2004) measured this 

length as suggested by Bloor (1964), by varying the xy plane along the cylinder height. They 

investigated the flow field for Re=2.0∙10
4
 and three different cylinder with AR=6, 10 and 13, 

comparing the results to the ones relative to the infinite cylinder.  

In Fig. 2.50-a it can be seen that the vortex formation length increases by decreasing the 

aspect ratio. It’s interesting to note that for the smaller aspect ratios AR=6 and 10 this length 

is almost twice the length relative to the infinite cylinder. Furthermore, by decreasing the 

aspect ratio, the magnitude of the turbulence intensity decreases and the peak becomes blunt. 

Fig. 2.50-b shows the turbulence intensity for the cylinder with AR=10 by varying the 

position z/L where the measurement is taken. As the free end is approached, both turbulence 

intensity and vortex formation region decrease. According to Afgan et al. (2007), this is due 

to the downwash flow, in fact they measured the flow field in the xz centre-plane, obtaining 
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the mean streamlines pattern shown in Fig. 2.51. A dense cluster of lines generated just before 

the free end of the cylinder later highlights the strong arc shaped downstream, which almost 

reaches the ground plane. The location of this arc determines the size of the recirculation 

vortex pair. 

  
a b 

Fig. 2.50 Comparison of the vortex formation region measured at y=0 and: a- at z/L=0.5 by varying 

the aspect ratio; b- for AR=10 by varying the position z/L. Re=2.0∙10
4
 (Park and Lee 2004). 

 

Fig. 2.51 Mean streamlines in the xz centre-plane. AR=6 and Re=2.0∙10
4
 (Afgan et al. 2007). 
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3 Stereo Particle Image Velocimetry technique: working 

principles 

The Stereo Particle Image Velocimetry is an evolution of a more developed technique: 

the Particle Image Velocimetry (PIV). The latter permits to obtain two components of the 

instantaneous displacement field in a cross-section of a flow, whereas with the former also the 

component orthogonal to the measurement plane can be measured. Most of the working 

principles are common to the two techniques and this is the reason why hereafter first the PIV 

technique will be shown and then the extension to the Stereo PIV will be done. 

 

Fig. 3.1 Sketch of the Particle Image Velocimetry technique (by Dantec Dynamics website). 
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3.1 Particle Image Velocimetry technique 

The experimental configuration of a PIV system is made up of tracer particles, a light 

source and a camera. In Fig. 3.1 a sketch of a typical PIV system is shown. The tracer 

particles have to be added to the flow and illuminated in a plane of the flow by means of the 

light source. The camera has to record at least two images of the illuminated tracer particles in 

two very close instants. Once obtained a couple of PIV images, they are divided in small sub-

areas called interrogation window. The local displacement vector for the images of the two 

instants is determined for each interrogation window by means of a statistical method. Then, 

it is assumed that all particles in each interrogation window have moved homogeneously 

between the two illuminations.  

3.1.1 Tracer particles 

The role played by the tracer particles is very important since the PIV technique 

measures the velocity of these particles instead of the flow one. For this reason, fluid 

mechanical properties of the tracer particles are very important and the choice of the particles 

determines the goodness of the measurements.  

The most important features are density and dimension. The former determines the 

influence of gravitational force that can be neglected if the densities of the tracer particle and 

working fluid are very similar. The latter determines the light scattering behaviour of the 

particles. Both the features have also a strong influence on the capability of the particles to 

correctly follow the main flow. Further information about these aspects can be found in Raffel 

et al. (2007) Sect. 2.1. 

In air flows, the seeding particles are typically oil drops in the range 1 µm to 5 µm. For 

water applications, the seeding is typically polystyrene, polyamide or hollow glass spheres in 

the range 5 µm to 100 µm. Any particle that follows the flow satisfactorily and scatters 

enough light to be captured by the camera can be used. 

The number of particles in the flow is of some importance in obtaining a good signal 

peak in the cross-correlation. As a rule of thumb, 10 to 25 particle images should be seen in 

each interrogation area. 

3.1.2 Light source 

Nowadays the most common light source used in PIV applications is the Nd:YAG laser. 

Generally, PIV lasers are designed as double oscillator system, so that it’s possible to obtain 
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two illuminations of the tracer particles at a very short time distance. Since the laser light 

comes out of the laser cavity as a beam, an optical system has to be used in order to realize a 

light sheet (cylindrical lens in Fig. 3.1). Further information about light source as well as light 

sheet optics can be found in Raffel et al. (2007) Sect. 2.3-2.4. 

3.1.3 Image recording 

The most important features of the camera used in PIV measurements are the number of 

sensible elements dimensions and sampling rate. The former determines the spatial resolution 

and the latter the temporal one. Typically the CCD dimension used in PIV applications is 

about of 10
6
pixels and the sampling rate is about of 10Hz. 

The camera acquisition has to be synchronized with the laser light pulses in order to 

obtain two particle images relative to the two particles illuminations. For this purpose, 

generally synchronization software is used. Further information about the imaging as well as 

the characteristic of CCD or CMOS for PIV applications can be found in Raffel et al. (2007) 

Sect. 2.8, 2.9 and 4. 

3.1.4 Classical PIV images evaluation 

In order to compute the displacement field from PIV images an interrogation procedure 

is required. 

This procedure consists in a repartition of the PIV images in many interrogation 

windows and cross-correlation of the corresponding interrogation windows relative to the two 

PIV images (see Fig. 3.1). After the cross-correlation has been done, the mean displacement 

of each interrogation window is known, i.e. the particles displacement in each interrogation 

window is assumed to be homogeneous. 

Strictly speaking, this cross-correlation can be computed directly, i.e. by means of the 

discrete cross-correlation function: 

      
 

 
K

Ki

L

Lj
II yj,xiIj,iIy,xR  

 

3.1 

where I and I′ are the intensity values maps of the two images. Alternatively, the cross-

correlation can be computed by taking into account the correlation theorem. According to this 

theorem, the cross-correlation of two functions is equivalent to anti-Fourier transform of the 

complex conjugate multiplication of their Fourier transform: 
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ÎÎR II
  

 

3.2 

where Î  and Î   are the Fourier transforms of I and I′, respectively. In order to reduce the 

computational effort, the Digital Fourier Transform (DFT) is implemented by means of the 

Fast Fourier Transform (FFT).  

Since in theory the DFT is a sum of infinite data and in practice it is computed over 

finite domain, an artefact is needed: 

 Zero padding 

This method consists in to extend the sample size to four times the original size by filling in 

zeros. Unfortunately, this artefact performs poorly, because the image sample generally 

consists of a nonzero background and then the discontinuity caused by the zero padding 

contaminates the spectra of the data with high frequency noise which in turn deteriorates the 

cross-correlation signal. 

 Periodicity of data. 

Another method can be to assume the periodicity of data, i.e. the image sample is assumed to 

repeats itself in all directions. This condition leads to use an artefact (e.g. windowing) that 

implies systematic errors in the cross-correlation computation: 

o Aliasing: the data periodicity implies that also the correlation data are periodic. The 

aliasing is a phenomenon that happens when the sampling criterion is violated. In 

particular, if the linear length of the image sample is N and the displacement exceeds 

half the sample size dx>N/2, the measured displacement will be equal to dx-N and 

the correlation peak will be folded back into the correlation plane to appear on the 

opposite side (because of the signal periodicity). 

o Bias error: by increasing the displacement, less data are correlated with each other, 

since the periodically continued data makes no contribution to the right correlation 

value. This means that values on the edge of the correlation plane are computed from 

only the overlapping half of the data and consequently the estimated displacement is 

biased to a lower value (see Fig. 3.2). To correct this error, an opportune weighting 

function has to be used. 

Since the standard cross-correlation function yields different maximum correlation 

values for the same degree of matching, a normalization of the function is useful. For this 

purpose, first the mean is subtracted from each interrogation window, then the cross 
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correlation is computed as before shown and finally the cross-correlation is divided by the 

two standard deviations of the original interrogation windows. 

 

Fig. 3.2 Bias error introduced in the calculation of the cross-correlation using FFT (Westerweel 1997). 

Furthermore, since the correlation signal is strongly affected by variations in image 

intensity, caused for example by the particles brightness and the non uniform illumination, in 

such case an image pre-processing is suitable. For this purpose, different methods are present 

in literature, e.g. background subtraction, intensity capping, etc. (see Raffel et al. 2007 Sect. 

5.4.2). 

In the past, various authors worked on an efficient approach to the analysis of PIV 

images and, in the first years, the classical cross-correlation approach was proposed, e.g. the 

works of Utami et al. (1991), Willert and Gharib (1991) and Westerweel (1993). By using the 

classical approach, the loss of pairs (Keane and Adrian 1993) due to in-plane motion causes 

both a decrease of the signal-to-noise ratio and a significant increase of the total error, which 

is more evident for smaller particles. For this reason, in the following years, different 

advanced PIV images evaluations have been proposed. 

3.1.5 Advanced PIV images evaluation 

One of the advanced evaluations, which is a solution of the problem mentioned above, 

is to displace the interrogation windows by a discrete offset. This permits to follow the 

particles between the two frames. This method is known as Iterative Discrete Window Offset 

(IDWO) approach and has been proposed by many authors, e.g. Soria (1996), Westerweel et 

al. (1997), Scarano and Retihmuller (1999) and Hart (2000). The scheme of IDWO is shown 

in Fig. 3.3 and is made up of the following step: 

 The standard DFT interrogation is performed; 

 A validation criterion is used in order to find the outliers, which are consequently 

corrected; 
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 The displacement estimated is used to adjust the interrogation window offset locally to the 

nearest integer; 

 The linear dimension of the interrogation window W is decreased in order to increment the 

resolution and then the interrogation is iterated until the integer offset vectors converge to 

unity. 

Standard DFT 

interrogation

Outliers 

correction

Interrogation 

windows offset

Interrogation 

windows 

decrease

 

Fig. 3.3 Scheme of Iterative Discrete Window Offset technique. 

Wereley and Meinhart (2001) demonstrated that a symmetric offset of the interrogation 

windows with respect of the interrogation point works better than an asymmetric offset. This 

is justified by the fact that the symmetric offset corresponds to a central difference 

interrogation, which is second-order accurate in time. As improvement to this approach, 

Lecordier et al. (2001) proposed a sub-pixel offset of the interrogation window. 

A significant evolution of the IDWO technique was proposed by Huang et al. (1993), 

which took into account the deformation and rotation of the interrogation windows caused by 

the flow field. They proposed the Particle Image Distortion (PID) technique, whose main 

idea was to maximize the correlation coefficient in the presence of large velocity gradient. 

Jambunathan et al. (1995) developed a different algorithm to evaluate the deformation of the 

interrogation windows. They proposed to interpolate on each pixel of the first image the 

displacement field obtained in the previous step and to use it to evaluate the distortion of the 

second image. 

In the last years, the Image Deformation Method (IDM) has been widely used. It 

requires the evaluation of the image intensity, with a sub-pixel interpolation. Unfortunately, 

depending on the choice of interpolating function, significant bias errors may be introduced. 
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Astarita and Cardone (2005) made a comparison of various advanced image interpolating 

functions, whereas Astarita (2006) analysed the effect of the interpolator choice on the 

accuracy and the spatial resolution.  

3.2 Stereo Particle Image Velocimetry technique 

Stereo PIV is based on the same fundamental principle as human eye-sight: stereo 

vision. Our two eyes see slightly different images of the world surrounding us, and comparing 

these images, the brain is able to make a 3-dimensional interpretation. With only one eye you 

will be perfectly able to recognise motion up, down or sideways, but you may have 

difficulties judging distances and motion towards or away from yourself. 

As with PIV measurements, Stereo PIV measures displacements rather than actual 

velocities, and here cameras play the role of ―eyes‖. The most accurate determination of the 

out-of-plane displacement (i.e. velocity) is accomplished when there is 90° between the two 

cameras. In case of restricted optical access, smaller angles can be used at the cost of a 

somewhat reduced accuracy. In Fig. 3.4 a sketch of the Stereo PIV technique has been drawn. 

 

Fig. 3.4 Sketch of the Stereo PIV technique (by Dantec Dynamics website). 

When viewing the light sheet at an angle, the camera must be tilted in order to properly 

focus the camera’s entire field of view. It can be shown that the image (i.e. CCD), lens and 

object planes must cross each other along a common line in space for the images to be 

properly focused in the entire field of view. This is referred to as the Scheimpflug condition, 

and is used in most Stereo PIV systems (see Fig. 3.5). 
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Fig. 3.5 Sketch of the Scheimpflug condition:  is the Scheimpflug angle (by Dantec Dynamics 

website). 

Nowadays, there are different methods to implement the Stereo PIV technique; Prasad 

(2000) subdivided these methods into geometric and calibration-based approaches. The latter 

is the most accurate one and it is possible to categorise it in further approaches: the first is 

based on the procedure introduced by Soloff et al. (1997) and the second is that proposed by 

Willert (1997). In the former approach a mathematical relation, which computes the three-

component (3C) reconstruction in a single step, is proposed. On the other hand, in the 

Willert’s approach, the reconstruction of the three-dimensional displacement field is done by 

means of geometrical considerations, i.e. local viewing angles of each camera in every point 

of the measurement plane.  

In all calibration-based approaches an accurate calibration, which permits to correct the 

error in perspective and the possible distortion caused by the lenses, is essential to obtain 

good results in the measurement of the velocity components. Typically, calibration is obtained 

setting a calibration pattern, which contains a grid of marks regularly spaced along two 

orthogonal directions, in one or more positions along the z direction (orthogonal to the plane); 

ideally, the position z = 0 is the position of the light sheet, i.e. the measurement plane. 

A drawback of the Stereo PIV technique is the impossibility to set the laser sheet 

exactly in the z = 0 position. By neglecting this misalignment, one commits the following 

errors: 

 Position error: 3C displacement reconstruction is made using two-components (2C) vectors 

relative to two different positions. 
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 3C-reconstruction error: in the 3C reconstruction proposed by Soloff et al. (1997), the local 

gradient matrix is computed in a wrong point, and this, in turn, causes a wrong displacement 

vector (see Sect. 3.2.3); in the 3C reconstruction proposed by Willert (1997), the local 

viewing angles are calculated in an erroneous position, so they cause a mistake in the 

evaluation of 3C displacement vectors (see Sect. 3.2.3). 

An adjusting procedure based on a cross-correlation between the images of the two 

cameras, recorded in the same instant, has been proposed by many authors (e.g. Willert 1997, 

Coudert and Schon 2001, Scarano et al. 2005 and Wieneke 2005. 

The common procedure of the methods proposed by Soloff et al. (1997) and Willert 

(1997) consists in the following steps: 

 Calibration is achieved to correct errors in perspective and distortions caused by lenses: a 

mapping function which transforms the object coordinates (x, y, z) into the image coordinates 

(X1, Y1) of camera 1 and (X2, Y2) of camera 2 is computed. 

 The misalignment between calibration and measurement planes is evaluated. 

 The 3C displacement field is computed. 

The scheme is drown in Fig. 3.6. 

Calibration
Images 

recording

3C 

reconstruction 

of flow field

Data analysis

Correction of 

misalignment 

errors

 

Fig. 3.6 Scheme of Stereo PIV procedure. 

3.2.1 Calibration 

As described before, the calibration is obtained by setting a calibration pattern, which 

contains a grid of marks regularly spaced along two orthogonal directions, in one or more 

positions along the z direction (see Fig. 3.7). In the calibration procedure, a mapping function 

is computed, which allows to transform the object coordinates (x, y, z) into the image 

coordinates (X1,Y1) and (X2,Y2) of the two cameras: 
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where c indicates the camera
3
. Coefficients of the mapping function are normally calculated 

with the least squares method. 

Nowadays, different calibration models are used: camera pinhole model and 

interpolating function-based ones.  

The camera pinhole model, proposed by Tsai (1987), is made up of 6 extrinsic and 6 

intrinsic parameters. The former describe the position of the camera pinhole in object space 

by means of a translation vector and a rotation matrix. Intrinsic parameters are specific to the 

camera: pixel aspect ratio; radial distortion factors (first and second order) which describe the 

distortion caused by the lenses; focal length; intersection of the optical axis with the image 

plane. 

 

Fig. 3.7 Set up of the calibration target. 

                                                 

3
 Some authors (e.g. van Oord 1997 and Willert 1997) compute the inverse function: 

)X(Fx c

)c(
  
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For the interpolating function-based approach, a generic interpolating function can be 

chosen. In the literature there are a lot of examples, which can be subdivided in: 

 Bi-dimensional (2D) calibration model: second order polynomial function in Xc and Yc 

(van Oord 1997); first and second order rational-polynomial function in Xc and Yc (Willert 

1997); 

 Three-dimensional (3D) calibration model: polynomial function of third order in x and y 

and second order in z (Soloff et al.1997); bicubic splines (Lawson and Wu 1997). 

Obviously, for the bi-dimensional interpolating functions, only one position of the 

calibration pattern is required, whereas more than one position along the z direction are 

needed for the 3D ones. 

In the past, many studies have been conducted in order to compare the efficiency of 

different mapping functions. Coudert and Westerweel (2000) showed the equivalence in the 

accuracy between the second order polynomial and the second order rational-polynomial 

functions. Willert (2006) compared different calibration types based on the camera pinhole 

model: simplified (in which only the extrinsic parameters are optimised), full (all parameters 

optimised) and direct linear transformation (distortion-free imaging system). It’s interesting to 

note that the last method is equivalent to the first order rational-polynomial function in x, y 

and z. The result of this comparison shows a little influence of the choice of the camera model 

on the determination of the pinhole position for the configuration chosen by the author. 

3.2.2 Correction of misalignment between calibration and measurement planes 

As already mentioned, when real Stereo PIV measurements are made, one of the major 

problems is the unavoidable misalignment that occurs between the calibration plane and the 

laser sheet, i.e. the measurement plane. Generally, an offset along the z direction and a 

rotation around the x and y axis form this misalignment.  

As mentioned before, a correction procedure based on cross-correlation between the 

images of the two cameras, recorded in the same instant, has been proposed by many authors. 

In the following, the procedure adopted in this work will be described. It’s very similar to the 

ones present in literature. The few differences will be explained at the end of the section. 
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Fig. 3.8 Scheme of the procedure used to correct the misalignment error between calibration and 

measurement planes. 

The scheme of the whole correction procedure is shown in Fig. 3.8. By comparing the 

two de-warped images recorded in the same instant by the two cameras, with a classical PIV 

process, the disparity map can be computed; naturally, in absence of misalignment, the 

disparity map shows a null displacement field. But, if a misalignment occurs, a generic point 

P of the measurement plane is viewed (in the de-warping process) in two different positions 

P1 and P2 by the two cameras (see Fig. 3.9). 

Using the disparity vector Du and the local viewing angles c (angle between the 

viewing ray and the plane yz measured in the xz plane), it is possible to compute the local 

misalignment, by means of triangulation: 
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3.4 

So, if the disparity map is known, the local misalignment in each point of the 

measurement plane can be calculated. Since the local viewing angles 1 and 2 are unknown 
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when the local misalignment isn’t known (see Fig. 3.9), it is possible to apply the Eq. 3.4 only 

with an approximated value of the angles (e.g. the angles computed in the point P1, or P2, or 

in the middle of them). For this reason, an iterative algorithm is used to compute the correct 

local misalignment: it stops when the difference between the local z-position computed in two 

successive iterations is smaller than a prefixed precision. 

 

Fig. 3.9 Sketch of a generic misalignment error between calibration and measurement planes. 

Finally, the equation of the measurement plane in the object space is computed by 

means of a regression method. The whole procedure is iterated in order to obtain a better 

accuracy in the determination of the measurement plane equation. Typically, three iterations 

are enough. After the first iteration, the images are de-warped taking into account the 

measurement plane equation computed in the previous step. For this reason, herein a 3D 

calibration is used; obviously, in order to avoid extrapolation in the de-warping process, the 

mapping volume has to contain the measurement plane. Alternatively, it’s also possible to re-

compute the mapping function (Wieneke 2005); in this way, the measurement plane has 

always the equation z = 0.  

With the procedure just described, both types of errors are corrected: this is possible 

because after the computation of the measurement plane equation, the ―right‖ correspondence 

between the image coordinates (X1, Y1) and (X2, Y2) and the object coordinates (x, y, z) is 

known. So, the position error is corrected by de-warping the images in the right positions, 

whereas the 3C reconstruction error is corrected by computing the local viewing angles 

(Willert’s procedure) or the local gradient-matrix (Soloff’s procedure) in the right position. 

Coudert and Schon (2001) proposed a different procedure in which the correction was 

made by modifying the grid on which the 2C-vectors were computed. Also in this case, like in 

the Willert’s work (1997), only the correction of the 2C-vectors’ origin is computed. On the 

contrary, Scarano et al. (2005) corrected both types of errors associated with misalignment: 
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the position error was corrected by de-warping the images in the right position and the 3C 

reconstruction one was corrected by correcting the viewing angles. 

3.2.3 3C reconstruction of flow field 

With the approach proposed by Soloff et al. (1997) first the 2C displacement fields are 

evaluated for the two cameras with a standard PIV algorithm applied to the warped images; 

then, the 3C displacement field is computed with a procedure that includes in one step the 

images de-warping and the 3C reconstruction.  

Since the displacement of a particle in the image plane is: 

)x(F)xdx(FXd
)c()c(

c   

 

3.5 

if by computing a Taylor series expansion and a volume averaging over the interrogation 

window, one obtains: 

xdFXd
)c(
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Since two cameras are used in Stereo PIV technique, the two systems (with the same 

unknown) can be combined. The resulting system is linear with three unknowns and four 

equations: 
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3.7 

Only with an ideal measurement, two of the equations are dependent. In the real 

measurement, a least squares solution can be used to minimize the squared Euclidean norm of 

the residual. The scheme of the whole procedure proposed by Soloff et al. (1997) is drown in 

Fig. 3.10 and is made up of the following steps: 

 Calibration is performed so that the mapping function is computed; 

 Images are recorded; 

 Misalignment between measurement and calibration planes is corrected. This correction is 

made by means of the PIV images and by using the mapping function; 

 PIV interrogation is computed on the warped images; 
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 The 3C reconstruction is computed by using both the mapping function and the correct 

position of the measurement plane. The former is used because the gradient of mapping 

function has to be computed. Furthermore, this gradient has to be computed in the correct 

position and this is the reason why also the coefficients obtained in the misalignment 

correction step are used. 

Calibration
Images 

recording

PIV 

interrogation 

on warped 

images

Data analysis

Correction of 

misalignment 

errors

Reconstruction by means of 

mapping function gradient 

 

Fig. 3.10 Scheme of the 3C reconstruction procedure proposed by Soloff et al. (1997). 

With regard to the 3C reconstruction method proposed by Willert (1997), as showed by 

Coudert and Schon (2001), it can be applied in the following two approaches: mapping and 

warping.  

The scheme of the former approach is shown in Fig. 3.11 and is made up of the 

following steps: 

 Calibration is performed so that the mapping function is computed; 

 Images are recorded; 

 Misalignment between measurement and calibration planes is corrected. This correction is 

made by means of the PIV images and by using the mapping function; 

 Dewarping of images is made by using the mapping function and the coefficients obtained 

in the misalignment correction (so that the dewarping is computed in the correct position); 

 PIV interrogation is performed on dewarped images; 

 The 3C reconstruction is made by means of formulas 3.8, 3.9 and 3.10. 
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Fig. 3.11 Scheme of the 3C reconstruction procedure proposed by Willert (1997) – mapping approach. 

The scheme of the warping approach is shown in Fig. 3.12 and is made up of the 

following steps: 

 Calibration is performed so that the mapping function is computed; 

 Images are recorded; 

 Misalignment between measurement and calibration planes is corrected. This correction is 

made by means of the PIV images and by using the mapping function; 

 PIV interrogation is made on warped images; 

 Dewarping of the 2C displacement field obtained with images recorded by both cameras is 

computed. For this step the mapping function is required to dewarp the displacement field and 

the coefficients obtained in the misalignment correction are needed because the dewarping 

has to be made in the correct position. In this step also an interpolation is required because the 

two 2C displacement field are available on different grids; 

 The 3C reconstruction is made by means of formulas 3.8, 3.9 and 3.10. 

Concluding, the advantage of the warping method is the smaller computational time with 

respect to the mapping one. However, with the warping approach, the 2C vectors field is 

smoothed, as it is obtained interpolating the vector maps on a common regular grid, and the 

spatial resolution is non-uniform and non-isotropic, as the cross-correlation is done on warped 

images. The disadvantage of the mapping method, instead, is the need of image re-sampling, 

and consequently the loss of image quality. 
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Fig. 3.12 Scheme of the 3C reconstruction procedure proposed by Willert (1997) – warping approach. 

In this work, the mapping approach is adopted with a further precaution, in order to 

reduce the loss of image quality and, then, of the 3C displacement field: images de-warping is 

made inside the iterative deformation PIV process, according to Scarano et al. (2005) and 

Wieneke (2005). 

In both 3C reconstruction approaches proposed by Willert (1997), geometric 

reconstruction of the three-dimensional displacement field is obtained by means of the two 

2C-vector fields (related to the two cameras) and of the local viewing angles 1, 2, 1 and 2 

(see Fig. 3.13, c is the angle between the viewing ray and the plane xz measured in the yz 

plane). The three components of the particles displacement (u, v, w) are calculated from the 

two–dimensional displacements u1, v1, u2, v2 by means of the formulas proposed by Willert 

(1997): 
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where the viewing angles, in the original work by Willert, were evaluated by measuring the 

relative distances between the measurement point and the cameras. The formulas (2-4) are 

almost identical with Eq. 7.3-7.7 in Raffel et al. (2007); they differ because the viewing 

angles are defined in a different way. 

 
xy plane 

 
yz plane 

Fig. 3.13 Geometric reconstruction used by Willert (1997). 

More recently, Fei and Merzkirch (2004) suggested a new method for the evaluation of 

1 and 2 angles, whereas the terms with 1 and 2 are neglected. This method requires the 

correlation of two calibration images recorded in two different z positions. A similar method 

has been used by Scarano et al. (2005). In this work new formulas are proposed, which permit 

to compute the viewing angles without the necessity to measure any geometrical parameter of 

the experimental set-up and without further computations in addition to the unavoidable 

calibration of the stereoscopic configuration (see Sect. 4.1). 
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4 Stereo Particle Image Velocimetry technique: new 

developments and performance assessment 

In the first part of this section, new formulas to compute the viewing angles will be 

obtained and the performance assessment will be computed.  

After that, the Modulation Transfer Function (MTF) of the Stereo PIV technique will be 

analysed through investigation of the effects caused by three different parameters: the laser 

thickness, the linear dimension of the interrogation window W (i.e. the modulation associated 

to the Stereo PIV process) and the misalignment between measurement and calibration planes. 

As it will be shown in detail below, the modulation associated to the first two parameters 

cannot be corrected, differently from the modulation due to the misalignment. The main 

results of this section can be found in Giordano and Astarita (2009). 

4.1 New formulas to compute the viewing angles 

4.1.1 Theoretical analysis 

In order to determine the local viewing angle, one can imagine an infinitesimal 

displacement vector dx along the viewing ray of the camera c (see Fig. 4.1). Obviously, the 

correspondent displacement dXc in the image plane is null. Consequently, if one consider the 

Taylor series expansion of the mapping function: 
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(where X
(c)

 is the mapping function for the image coordinate Xc relative to camera c and the 

subscript indicates derivation) the projection of Eq. 4.1 along the viewing ray becomes: 
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Fig. 4.1 Sketch of a generic displacement along the viewing ray of the camera c. 

So, the viewing angles c and c in a generic point P are found to be: 
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4.4 

The main advantage of the formulas proposed in this section is that there is no need to 

measure any additional geometrical parameter of the experimental set-up. Moreover, with 

these formulas it is possible to compute the viewing angles without any further computations 

in addition to the unavoidable calibration of the stereoscopic configuration. 

Generally, the assumption =0 is done. In this case, since the terms Xy
(c)

 and Yx
(c)

 are 

very small, the eqs 4.3 and 4.4 become: 

)(

)(

c

x

c

z

0dy

c
X

X

dz

dx
)αtan(






 

 

4.5 

)(

)(

c

y

c

z

0dx

c
Y

Y

dz

dy
)βtan(






 

 

4.6 

Obviously, the error made using the latter formulas is as big as the approximations are 

wrong. For the computation of c angles, the approximation: 
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is acceptable, since the c angles are generally small. On the contrary, the approximation: 
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isn’t acceptable, because the c angles used are usually very large, typically +/- 45°. 
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4.1.2 Experimental apparatus 

In order to verify the new formulas to compute the viewing angles, the experimental 

setup described below has been used. Experiments are carried out in an angular stereoscopic 

PIV system, consisting of: two CCD cameras (PCO Sensicam) with a resolution of 

1280x1024 pixels, 12 bits to record the images and a 50mm focal length; a combined PIV-

calibration pattern containing both the regular grid of dots to make the calibration and the 

random positioned particles to create the particle image (see Fig. 4.2); a translation stage, 

which allows to shift the pattern in the z direction, with an accuracy of 10m. In order to 

obtain uniform focusing, the Scheimpflug condition is fulfilled (Prasad and Jensen 1995). 

 

Fig. 4.2 Part of the calibration pattern that contains random positioned particle. 

The PIV–calibration pattern is generated by a synthetic PIV pattern generator, as 

described in Astarita and Cardone (2005) and it also contains dots for calibration spaced of 

5mm along both the x and the y directions. The advantage of this type of pattern is the 

possibility to use a single target for the whole simulation process and, thus, to avoid possible 

position errors associated with the change of the pattern. 

4.1.3 Performance assessment 

In order to show the capabilities of the new formulas proposed to compute the viewing 

angles, an uniform displacement field along z equal to 1mm has been simulated with no 

misalignment and the 3C reconstruction proposed by Willert (1997) has been used. The 

stereoscopic set-up characteristics are reported in Tab. 4.1. The PIV images have been 

investigated by using the iterative image deformation method (IDM) described by Astarita 

(2006), where the standard cross correlation and the top hat moving average approach 

(THMA) have been used. The used square interrogation windows have the linear dimension 

W equal to 32pixels; no overlap has been used. 

In Fig. 4.3 the scatter plots of the three components are shown. The measurement points 

dispersions are practically equal for the three components. The mean errors committed in the 
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evaluation of the u, v and w components are equal to 4.23μm, 1.87μm and 1.45μm respectively 

and even smaller than the accuracy of the translation stage. All these results are comparable to 

the ones obtained by Scarano et al. (2005). 

Mean viewing angles +/- 45° 

Mean distance between cameras and measurement plane 700mm 

Focal length 50mm 

Mean resolution along x 7.9pixel/mm 

Mean resolution along y 11.4pixel/mm 

Interrogation windows linear dimension W 32pixel 

Laser thickness (LT) 0mm 

Misalignment: translation  0mm 

Misalignment: rotation (x/y) 0/0° 

Size of calibration volume 2mm 

Tab. 4.1 Stereoscopic set-up used with the simulated displacement. 

 

Fig. 4.3 Scatter plot of u, v and w components obtained with the formulas proposed for computing the 

viewing angles for the Willert’s 3C reconstruction. 

The displacement simulated in this section allows us to investigate also the goodness of 

the formulas 4.3-4.4 (second order) in comparison to the simplified formulas 4.5-4.6 (first 

order). In fact, the u and w component maps show no remarkable differences between results 

obtained with formulas of the first and second order, whereas improvements are obtained in 

the evaluation of the v component. The results obtained with first order formulas (Fig. 4.4-a) 

show a trend along the y direction: the value of v component varies in the interval [-0.020, 

0.020]mm, in spite of the predictor value equal to 0mm. This trend is corrected by using the 

second order formulas (Fig. 4.4-b). 
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a b 

Fig. 4.4 v component (mm) of 3C displacement field obtained with formulas used to compute viewing 

angles of: a-first order; b-second order. 

4.2 Modulation dependence on the laser thickness 

4.2.1 Theoretical analysis 

As far as the laser thickness is concerned, the modulation happens in the image 

recording and then it can’t be corrected. By considering a gradient in a generic direction with 

wavenumber k: 
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the modulation depends on the local vector c obtained by intersecting the optical axis of 

camera c and the laser sheet (see Fig. 4.5). Really, the displacement ―seen‖ by camera c is an 

average of the displacement along the viewing ray.  

 

Fig. 4.5 Sketch of the modulation associated to the laser thickness for a gradient in the x direction. 

Therefore, the modulation transfer function turns out to be: 
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For example, if the gradient is in the x direction (as sketched in Fig. 4.5), the 

modulation is: 
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whereas, if the gradient is in the z direction: 
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If the gradient is in the viewing direction, the camera c can’t appreciate it, MTFLTc 

being null. Obviously in this case, if the viewing angles of the two cameras form a 90° angle, 

the other camera measures the gradient without any modulation. In any case the resulting 

modulation due to laser thickness MTFLT can be evaluated by using the 3C reconstruction 

formulas (3.8-3.10); e.g. for the u component: 
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4.2.2 Synthetic image generator 

A synthetic image generator has been used to validate the theoretical analysis of the 

MTF relative to the laser thickness. For this purpose, a sinusoidal displacement has been 

simulated for different values of the laser thickness. 

The images are generated including the effect of perspective and distortion caused by 

the viewing angle of the cameras, set in an angular stereoscopic configuration. The 

geometrical and optical configurations are simulated by using the camera pinhole model 

proposed by Tsai (1987). Obviously, both calibration and PIV images are generated with the 

same configuration parameters. 

The light sheet has a Gaussian shape. The particle diameter distribution is Gaussian and 

the position distribution of the particles is uniform in the whole volume. On average, the 

particles have a size of 2-3 pixels in the image. Their shape is supposed to be Gaussian and, 

then, the intensity level is computed by integrating the particle light distribution on each 

image pixel; really if two or more particles overlap, the intensity level of each pixel is the sum 
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of the intensity of each particle. The pixels have a maximum level of 4095 and a unit fill 

factor. The dimension of the images is 1280x1024 pixels. 

4.2.3 Performance assessment 

In order to validate Eq. 4.10, a displacement field with the v component sinusoidal 

along x direction with amplitude 0.1mm and wavelength equal to 12mm has been simulated, 

whereas the laser thickness ranges from 0mm to 18mm. Obviously, this range includes 

thickness too large physically speaking; this choice is done only to verify the Eq. 4.10. The 

stereoscopic set-up is described in Tab. 4.1. 

 

Mean viewing angles +/- 45° 

Mean distance between cameras and measurement plane 520mm 

Focal length 50mm 

Mean resolution along x 10.2pixel/mm 

Mean resolution along y 14.6pixel/mm 

Interrogation windows linear dimension W 16pixel 

Amplitude of sinusoidal component 0.10mm 

Wavelength of sinusoidal component 12mm 

Laser thickness range (LT) 0-18mm 

Size of calibration volume 2mm 

Tab. 4.2 Stereoscopic set-up no. 1 used with synthetic images. 

Since the sinusoidal displacement is along the x direction, we want to validate the Eq. 

4.11; furthermore, since the stereoscopic setup is symmetric, the modulation due to the laser 

thickness is practically equal for the two cameras: 
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Then, by using Eq. 3.10, one obtains: 
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Fig. 4.6 shows the theoretical curve (solid line) and the ones obtained with both Soloff 

and Willert approaches (circle and triangle symbols, respectively): these are nearly coincident 

with the theoretical one and substantially coincident with each other.  
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Fig. 4.6 MTFLas a function of LT/ for the stereoscopic set-up used with a wavelength x =12mm. 

 

Fig. 4.7 Total and random errors as a function of LT/ for the stereoscopic set-up used with a wavelength         

 x =12mm. 

Fig. 4.7 shows the total and random errors for both approaches: the total error is the 

quadratic mean of the error committed in the evaluation of the sinusoidal component in each 

point of the measurement plane; whereas, the random error indicates only the error made with 

respect to the modulated sinusoidal component. The difference between them is the error 

associated with the modulation. The good overlapping of the curves relative to the two 

approaches for both total and random errors is a further proof that this kind of modulation is 
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associated to the image recording and, then, it doesn’t’ depend on the 3C reconstruction 

approach. 

4.3 Modulation dependence on the 3C reconstruction 

4.3.1 Theoretical analysis 

In order to study the influence of the PIV interrogation window size W on the MTF of 

the technique, let’s consider a displacement field consisting of a single sinusoidal component 

with several wavelengths and a very small laser thickness, that allows to neglect the above 

mentioned effect. In this analysis, the PIV images have been investigated by using the 

iterative image deformation method (IDM) described by Astarita (2006), where the standard 

cross correlation and the top hat moving average approach (THMA) have been used. On 

account of the method chosen to evaluate the PIV images, the theoretical MTF of the PIV 

technique used herein should be practically equal to the one of the top hat moving window 

filter; the latter, for the typical values of the interrogation window dimensions and of the 

wavelengths  used in PIV measurements, is practically coincident with sinc(W/), where W 

is the linear dimension of the square interrogation window. 

The additional modulation due to the 3C reconstruction procedure is explained in detail 

below. As in most cases (i.e. when the experimental configuration is almost symmetric
4
) the 

3C reconstructions proposed by Soloff et al. (1997) and Willert (1997) are practically 

equivalent, the main differences are in the choice whether one uses the warping or mapping 

approach. Nevertheless, since usually the Soloff and Willert procedures are applied with 

warping and mapping approaches respectively, here these equivalences are supposed. 

Since in the 3C reconstruction proposed by Willert (1997), the PIV interrogation is 

made on the de-warped images, the MTF of the PIV process is uniform on the two 2C 

displacement fields: 

     cc2211 YXYXYX ,,MTF,MTF C2C2   

 

4.16 

By looking at the reconstruction formulas (3.8 - 3.10), it’s easy to understand that there 

is no additional modulation relative to the 3C reconstruction process. For this purpose, let’s 

consider a sinusoidal u component: if in a generic point of the measurement plane we have 

                                                 

4
 For more details about the case in which this equivalence isn’t true, see Sect. 4.4.3. 
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two 2C-vectors with the same modulation MTF2C, the modulation associated with the 3C-

vector will be equal to MTF2C: 

u
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A similar conclusion can be drawn for the v and w components. The only reason of an 

additional modulation could be due to the de-warping process. However, this effect has been 

neglected here and the results shown in the following prove the correctness of this 

assumption. 

On the contrary, in the 3C reconstruction proposed by Soloff et al. (1997), since the PIV 

interrogation is made with the warped images, the MTF of the PIV process (depending on the 

local spatial resolution) isn’t uniform on both the 2C displacement fields and then the 2C 

vectors used in the 3C reconstruction have different modulations. Since, when the spatial 

resolution and the viewing angles of the two cameras are similar, the two 3C reconstructions 

are practically equivalent, it is possible to use the Willert reconstruction with unequal 

dimension of the interrogation windows to explain the MTF of the Soloff approach. For this 

purpose, let’s consider a displacement field with the u component sinusoidal along the y 

direction, with a same side symmetric stereoscopic set-up described in Tab. 4.3 and let’s 

suppose to use again the Willert’s reconstruction, but with unequal dimension of the 

interrogation windows.  

 

Mean viewing angles +/- 45° 

Mean distance between cameras and measurement plane 700mm 

Focal length 25mm 

Mean resolution along x 7.3pixel/mm 

Mean resolution along y 10.5pixel/mm 

Amplitude of sinusoidal component 0.10mm 

Wavelength range of sinusoidal component 7-50mm 

Laser thickness (LT) 0.2mm 

Misalignment: translation  0mm 

Misalignment: rotation (x/y) 0/0° 

Size of calibration volume 2mm 

Tab. 4.3 Stereoscopic set-up no. 2 used with synthetic images. 

In such a configuration, the modulation in a generic point of the measurement plane can 

be evaluated by using the formulas (3.8-3.10) and, since the two 2C vectors used in the 3C 
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reconstruction have different modulations (due to different W), depends on both the local 

viewing angles and the local MTF2C(Xc, Yc). Then, the modulation associated to the 3C 

vectors changes inside the measurement plane giving the possibility to evaluate a maximum, 

minimum and mean MTF over the measurement plane. Locally the MTF can be computed by 

substituting in Eq. 4.17 the local values of the viewing angles and MTF2C(Xc, Yc). By using an 

interrogation window size equal to 16x16 pixels for the first camera and 32x32 pixels for the 

second one, the theoretical minimum, maximum and mean MTF for each wavelength are 

shown in Fig. 4.8 (cross symbols). In the same figure, also the theoretical MTFs relative to the 

standard process with W=16pixels and W=32pixels are reported. 

 

Fig. 4.8 MTF as a function of 24/ (W=24pixels) for the procedure proposed by Willert (1997) applied 

with two different W on each camera.. 

In order to demonstrate that the last analysis can explain the modulation associated to 

the Soloff’s 3C reconstruction, let’s indicate with Rcr and Rcl the resolution of the image 

recorded by the camera c in the right and left sides respectively, if the stereoscopic 

configuration is such that the maximum resolution ratio: 
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is equal to 2 (for the sake of brevity, the considered stereoscopic set up is same side 

symmetric: R1l = R2r and R1r = R2l), the modulation of the reconstruction suggested by Soloff 

et al. (1997) with W=24pixels could be represented by the curve with circles (Fig. 4.8). This 
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situation isn’t so strange since a stereoscopic configuration which presents the ratio of the 

resolution along x between left and right sides of warped image almost equal to 2 is exactly 

the one described in Tab. 4.3. Obviously, the above mentioned ratio is so high only at the 

sides of the images, whereas it is unitary at the centre
5
. In Fig. 4.9 the mean theoretical MTF 

for the Soloff’s procedure applied with W=24pixels is shown (cross symbol). In the same 

figure, also the theoretical MTF relative to the maximum and minimum resolutions are 

reported (diamond and square symbols respectively). Actually this additional modulation 

associated to the Soloff’s 3C reconstruction can be reduced if a correlation with adapted 

windows is used (i.e. different correlation window sizes in the image plane during the 

analysis), so that the resolution preserves almost uniform on the object plane. 

 

Fig. 4.9 MTF as a function of 24/ (W=24pixels) for the procedure proposed by Soloff et al. (1997). 

Theoretically, a different modulation associated to the two 2C-vectors used in the 3C 

reconstruction can cause the birth of false components of the displacement field. For this 

reason, let’s consider the formulas (3.8 - 3.10): if the modulations of the two 2C vectors (u1 

and u2) are different, false w and v components can arise
6
 and obviously also the arisen 

                                                 

5
 This happens because the stereoscopic setup used here is same side symmetric. For a opposite side 

symmetric setup, both the local viewing angles and MTF2C relative to the two cameras are equal in the same 

physical point, but they change inside the image and then, also in this case, the MTF of the 3C vector isn’t 

uniform on the object plane. 

6
 An analogous conclusion can’t be drawn if the two 2C vectors with different modulations are v1 and v2, as 

the formulas (2-4) suggest. 
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components v and w are sinusoidal. This is what happens in the above described analysis in 

which the Willert’s reconstruction has been applied with two different interrogation windows 

for the images recorded by the two cameras. In Fig. 4.10 the ratio between the amplitude of 

the measured w component and the exact u component (w/u) is shown as a function of W/ 

(square symbol): for W/≈0.8 the MTF is almost equal to 0.3 and the ratio w/u is almost equal 

to 0.33; this means that the measured u and w have roughly the same amplitude. The same 

figure shows the maximum w/u (which is obtained where the resolution ratio is maximum, i.e. 

in the left and right sides of the measurement plane) for the Soloff’s approach applied in the 

same stereoscopic set-up (circle symbol). It’s encouraging to note that the two curves are 

quite coincident. A similar analysis can be done for the false v component: in this case the 

ratio v/u is never higher than 6%. 

 

Fig. 4.10 w/u (%) as a function of 24/ (W=24pixels) for the Willert’s approach applied with two 

different W and for the Soloff’s one (maximum value). 

4.3.2 Synthetic images 

In order to validate the theoretical analysis, the synthetic image generator (described in 

Sect. 4.2.2) is used to simulate images with sinusoidal displacements at various wavelengths. 

This choice is in accord with the test case A4 setup by Scarano and Wieneke for the PIV 

technique and the test case D1 setup by Stanislas for the Stereo PIV technique in the third PIV 

challenge (Stanislas et al. 2008).  

4.3.3 Performance assessment 

Fig. 4.11 shows the MTF measured for both procedures investigated (dashed lines) 

applied with the same side standard symmetric configuration described in Tab. 4.4 (without 

misalignment) and the relative theoretical curves. Since the Modulation Transfer Function 

depends on the resolution and this is a little different for the two procedures, there is a little 



Stereo Particle Image Velocimetry technique: new developments and performance assessment 

 83 

difference between the two theoretical MTF (relative to the two approaches), so they both 

have been drawn in the figure (solid lines). The measured MTFs relative to both procedures 

(circles and diamonds for Soloff and Willert procedures, respectively) are very similar; the 

measured MTF of the Soloff’s procedure being slightly below the other one. 

 

Mean viewing angles +/- 45° 

Mean distance between cameras and measurement plane 520mm 

Focal length 50mm 

Mean resolution along x 10.2pixel/mm 

Mean resolution along y 14.6pixel/mm 

Interrogation windows linear dimension W 16pixel 

Amplitude of sinusoidal component 0.10mm 

Wavelength range of sinusoidal component 1.6-12mm 

Laser thickness (LT) 0.2mm 

Size of calibration volume 2mm 

Tab. 4.4 Stereoscopic set-up no. 3 used with synthetic images. 

 
Fig. 4.11 MTF as a function of W/: closed symbols refer to theoretical values while open symbols to 

measured ones. Circles and diamonds are relative to the procedures proposed by Soloff et al. (1997) 

and Willert (1997) respectively. 

 

In Fig. 4.12 the errors committed in both approaches are shown. As mentioned before, 

the total error is the quadratic mean of the error committed in the evaluation of the sinusoidal 

component in each point of the measurement plane; whereas, the random error indicates only 

the error made with respect to the modulated sinusoidal component. The difference between 

them is the error associated with the modulation. The figure shows quite similar total and 
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random errors relative to both procedures, Willert’s procedure error curves being slightly 

above the other ones. 

In conclusion, according to the theoretical analysis, the performance assessment showed 

that the modulation relative to the 3C reconstruction for both approaches could be neglected 

for common configurations. 

 

Fig. 4.12 Errors as a function of W/: closed symbols refer to total errors while open symbols to 

random ones. Circles and diamonds are relative to the procedures proposed by Soloff et al. (1997) and 

Willert (1997) respectively. 

4.4 Modulation dependence on the misalignment 

4.4.1 Theoretical analysis 

In order to extend the theoretical analysis of the MTF relative to the Stereo PIV 

technique with a misalignment between the calibration and measurement planes, let’s 

consider a misalignment consisting of a translation along z equal to 1mm. For a displacement 

field consisting of a sinusoidal component along the y direction, the misalignment above 

described doesn’t bring any appreciable error. This happens because the position error (see 

Sect. 3.2) implies the use of two 2C-vector in the 3C reconstruction translated along x and 

practically coincident, since the sinusoidal component recurs unchanged along the x direction. 

Actually, the two 2C-vectors are translated also along the y direction, but this translation is 

equal to Δz∙tan and then it is very small. On the other hand, the 3C reconstruction error is 

negligible for the misalignment contemplated herein. 
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For the aforesaid reason, it is chosen to simulate a displacement field that consists of a v 

component sinusoidal along the x direction, for which the position error is relevant. A similar 

analysis can be done for a u or w sinusoidal component. The characteristics of the 

stereoscopic set-up are the ones reported in Tab. 4.4.  

For this displacement field the position error implies the combination of two dephased 

sinusoidal components in the 3C reconstruction and so a further modulation. For this purpose, 

let’s consider the reconstruction formulas for the v-component (Eq. 3.9) used in 3C 

reconstruction proposed by Willert (1997); for the displacement field simulated, it becomes 

(w = 0): 
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So, if in a generic point a misalignment z occurs between calibration and measurement 

planes, two dephased sinusoidal component are used in the reconstruction, instead of the 

correct component sin(kxx), where kx=2 /x  is the wavenumber: 
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The two phases t1 and t2 are: 
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where z is the local misalignment and c is the viewing angle of camera c (see Fig. 3.9). 

By manipulating Eq. 4.20, it is possible to find: 
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where: 
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So, instead of the correct component sin(kxx), one measures a modulated and dephased 

sinusoidal component, with a modulation factor MTFz and phase . Since both the 
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modulation factor and the phase depend on t1 and t2 (see Eqs. 4.23 and 4.24) and in turn these 

depend on the local viewing angles and misalignment, the Eqs. 4.22, 4.23 and 4.24 are general 

and can be applied with any stereoscopic setup in order to determine the local modulation. 

If the two viewing angles have almost the same absolute value and opposite signs (i.e. 

same side standard symmetric configuration with little variation of the viewing angles on the 

whole measurement plane), the two phases t1 and t2 have the same absolute value and 

opposite signs (see Eq. 4.21). In this case, the phase  becomes null and the measured 

sinusoidal component is only modulated respect to the exact one. 

In Fig. 4.13 the MTFz as a function of W/ is shown, for the stereoscopic set-up 

described in Tab. 4.4 and with a misalignment consisting of a translation along z equal to 

1mm: it’s interesting to note that MTFz can be even negative for particular values of W/. 

The MTFz function for this configuration (see Tab. 4.4) doesn’t vary in an appreciable 

manner for the small variation of the difference between the absolute values of the viewing 

angles  = |2| -|1|; for this reason only one curve is shown. On the other hand, the phase 

value is very sensible to the latter difference. For this reason, in Fig. 4.14  as a function of 

W/ is shown for different values of . Since the configuration adopted here is symmetric, 

the maximum value of the latter difference is identical (in absolute value) at the right and left 

extremities of the image plane. 

 

Fig. 4.13 MTFz as a function of W/ for the stereoscopic set-up described in Tab. 4.4 with a 

misalignment z=1mm. 
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Fig. 4.14 as a function of W/ for various  = |2| -|1| and the stereoscopic set-up described in 

Tab. 4.4 with a misalignment z=1mm. 

4.4.2 Performance assessment with synthetic images 

The performance assessment is conducted in order to validate the theoretical analysis 

computed in the last section. This has been done by using the synthetic images generated as 

described in Sect. 4.3.2. 

Fig. 4.15 shows the MTF for both approaches applied with and without correction of the 

misalignment errors, in addition to the theoretical curves (green lines without symbol, solid 

and dashed for approaches applied with and without correction, respectively). The 

stereoscopic set-up is the same of the last section (Tab. 4.4) with a misalignment consisting of 

a translation along z equal to 1mm. 

For both approaches applied with and without correction of the misalignment, it can be 

seen a good agreement with the theoretical curves; also in this case, the Soloff’s curves (CS 

and NCS for results obtained with and without correction of misalignment, respectively) are 

less in accordance with the theoretical ones respect to the Willert’s curves (CW and NCW for 

results obtained with and without correction of misalignment, respectively). 

The error curves associated to both configurations (see Fig. 4.16) show, also in this 

case, quite similar total and random errors. The curves relative to the procedures applied 

without correction show normally, as expected, higher errors with respect to the one obtained 

with correction. With regard to the procedures applied with the correction of the 

misalignment, the Willert’s approach has lower random and total errors; the opposite happens 

for the curves relative to the procedures applied without correction. 
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Fig. 4.15 MTF as a function of W/: curves without symbols refer to theoretical values. Circles and 

diamonds are relative to the procedures proposed by Soloff et al. (1997) and Willert (1997) whereas 

closed and open symbols refer to values measured with and without correction of misalignment error, 

respectively. 

 

Fig. 4.16 Errors as a function of W/Circles and diamonds are relative to the procedures proposed by 

Soloff et al. (1997) and Willert (1997) whereas closed and open symbols refer to values measured with 

and without correction of misalignment error, respectively. 

It has to be evidenced that the errors associated to the misalignment of the measuring 

plane is not a consequence of the normal Stereo PIV modulation, but would be even higher if 

an higher resolution method was used in PIV process. 
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In conclusion, as theoretically explained before, in presence of misalignment and 

depending on the stereoscopic set-up used, some wavelengths of the flow field can be 

dephased and modulated, even with a negative modulation modulus. The performance 

assessment conducted in this section is in good agreement with the theoretical analysis. 

4.4.3 Performance assessment with real images 

In order to validate the theoretical analysis also with real images, the Stereo PIV 

technique has been applied to measure the wake of a finite cylinder in the experimental 

configuration described in Sect. 5.1 (see Tab. 4.5). Since the distance between the plane that 

contains the CCDs and the measurement plane is quite big (620mm) and one of the two 

viewing angles is very small (-8°), in order to appreciate the difference between the MTF of 

Stereo PIV applied with and without correction of misalignment, a huge misalignment has 

been simulated. The used calibration volume is from +6mm to -1mm regarding to reference 

plane. It contains the laser sheets as its thickness is 1.5mm (computed with the procedure 

described by Wieneke 2005) and the misalignment is 5mm. A better reference plane may have 

been chosen to have less misalignment, as we have many calibration planes (i.e. total number 

of calibration planes is 8). Also in this case, an iterative image deformation method has been 

used to interrogate the PIV images, with standard cross correlation and the top hat moving 

average approach. 

 

Mean viewing angles - 8°/+52° 

Mean distance between cameras and measurement plane 620mm 

Focal length 50mm 

Mean resolution along x 14.05/6.67pixel/mm 

Mean resolution along y 14.20/9.52pixel/mm 

Interrogation windows linear dimension W 32-48pixel 

Laser thickness (LT) 1.5mm 

Misalignment: translation  5mm 

Misalignment: rotation (x/y) 0.15/-0.35° 

Size of calibration volume [-6, 1]mm 

Tab. 4.5 Stereoscopic set-up used with real images. 

For the Stereo PIV parameters above described, the MTFz and   functions are shown 

in Fig. 4.17 and Fig. 4.18, of course, they refer to the Willert’s approach, since for the 
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Soloff’s one the modulation associated to the misalignment can’t be split from the modulation 

due to the technique.  

In this case, differently from what shown in Fig. 4.13, the MTFz varies significantly by 

varying the parameter  = |2| -|1|. This happens because for the configuration adopted 

here, the variation in the measurement plane of  is larger than the one relative to the 

stereoscopic set-up described in Tab. 4.4. The variation is such as to cause a different sign for 

the MTFz relative to different points of the measurement plane for some particular 

wavelengths (e.g. W/≈0.3). This is the reason why in Fig. 4.17 the mean MTFz and the 

MTFz relative to minimum and maximum  are reported (square, triangle and circle 

symbols, respectively). Fig. 4.18 shows the   curves by varying the  (minimum and 

maximum values, triangle and circle symbols, respectively) and the mean curve (square 

symbol). In both figures, the vertical dashed line indicates the normalised spatial wavelength 

in which the mean MTFz is minimum. 

The Stereo PIV images have been evaluated with both procedures proposed by Soloff et 

al. (1997) and Willert (1997). In this case, the comparison between the two approaches isn’t 

very simple, because the two cameras are set in a strong asymmetric configuration, i.e. the 

viewing angles and the distance between the camera and the measurement plane are very 

different for the two cameras. However, in order to allow a comparison, two different W have 

been chosen for the two approach: W=32pixels for the Soloff’s approach and W=48pixels for 

the Willert’s one. 

In Fig. 4.19 the mean flow fields measured with Willert’s procedure behind the cylinder 

with and without correction of the misalignment errors are shown, where the average is made 

with 500 samples. On the mean flow field, the only errors caused by the uncorrected 

misalignment that can be detected are the position and the 3C reconstruction ones, while no 

information about the MTF of the technique can be drawn. The position error committed 

without correction of misalignment is highlighted by the two vertical dashed lines: the shift 

along x of the vortices centre is bigger than 3mm, whereas variation of the vortex formation 

length is almost equal to 1mm. 

In order to analyse the spatial response of the technique applied to this real experiment, 

the method proposed by Foucaut et al. (2004) has been used. The power spectra E21 of v 

evaluated along the central horizontal line of the contour map are plotted, as a function of the 

normalised spatial wavelength, in Fig. 4.20. Both the curves relative to the two approaches 

applied with and without correction of misalignment are shown, as well as the vertical dashed 

line which indicate the W/ relative to the minimum mean MTFz. Obviously, the E21 curves 
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relative to the uncorrected measurement are always under the other ones and the difference 

between the two curves increases in correspondence of the vertical line, in confirmation of the 

theoretical MTFz reported in Fig. 4.17. 

 

Fig. 4.17 MTFz as a function of W/ for two  = |2| -|1| and z=5mm. The curves with square 

symbols are relative to mean values. The green dashed line is plotted in correspondence of the MTFz 

minimum. 

 

Fig. 4.18  as a function of W/ for two  = |2| -|1| and z=5mm. The curves with square 

symbols are relative to mean values. The green dashed line is plotted in correspondence of the MTFz 

minima. 
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a 

 

b 

 

Fig. 4.19 Mean flow field obtained with the Willert’s procedure measured behind a finite cylinder (a) 

without correction and (b) with correction of misalignment error. 

The curves relative to both approaches applied with correction of the misalignment are 

almost coincident. This has been obtained by choosing two different interrogation window 

linear dimensions for the two approaches. In order to understand why the curves relative to 

the two approaches applied without correction of the misalignment are quite different, a brief 

analysis of the two approaches is requested. 
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Fig. 4.20 Power spectra of the wake of a finite cylinder for the Stereo PIV procedure applied with and 

without correction of misalignment error for both Willert and Soloff approach. The green dashed line 

is plotted in correspondence of the theoretical MTFz minimum. 

The analysis made in Sects. 4.3 and 4.4 is correct if the stereoscopic configuration is 

symmetric, i.e. the spatial resolutions and then the viewing angles of the two cameras are 

quite similar. In the case analysed in this section, the stereoscopic setup is strongly 

asymmetric. The analysis computed for the Willert’s approach is correct also here, since with 

this approach the PIV analysis is done on the de-warped images and then the resolution is 

made fictitiously equal for the two cameras. On the contrary, for the Soloff’s approach, the 

situation changes. For example, if we consider a displacement field with only the v-

component (the other components being null), Eq. 3.7 becomes: 
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If we consider the simplified case with  = 0, also U1 and U2 are null: 
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If the Gauss method is used to minimize the Euclidean norm of the residual, the last 

system becomes: 
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that is: 
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So, if the two terms Yy
(1)

 and Yy
(2)

 are similar, i.e. the resolution of the two cameras are 

similar that happens in a standard symmetric configuration, the last equation becomes: 
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which is the Willert’s equation 3.10. 

But, if the configuration is strongly asymmetric, the two resolutions are very different 

and then the two terms Yy
(1)

 and Yy
(2)

 are also different. For example if Yy
(1)

 > Yy
(2)

 the last 

equation becomes: 
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where v isn’t the mathematical mean between v1 and v2, but it is the mean in the least square 

method sense (i.e. v is more similar to v1 than to v2). 
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5 Flow field past a circular cylinder: experimental results 

In this work the experimental measurements of the flow field in the wake of both 

infinite and finite cylinders have been carried out. Both the mean and the phase-averaged flow 

fields will be shown in this chapter. The flow fields have been measured with the PIV 

technique for the infinite cylinder and with both PIV and Stereo PIV techniques for the finite 

one. 

5.1 Experimental apparatus 

All the experimental measurements have been conducted by using the equipments 

available in the Gas Dynamic Laboratory of the Aerospace Engineering Department (DIAS) 

of the University of Naples ―Federico II‖. A sketch of the experimental apparatus is shown in 

Fig. 5.1. 

 

Fig. 5.1 Sketch of the experimental apparatus. 

The used experimental set-up is composed of an aspirated subsonic open circuit wind 

tunnel, which has a low turbulence intensity level (0.1%) and a rectangular test section of 

300400mm
2
. Three cylinders have been used for the measurements: two finite cylinders and 

an infinite one. The first has a diameter of 26mm and a length of 208mm giving an aspect ratio 
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AR=L/D=8 and a blockage coefficient equal to 0.045; the second has an aspect ratio AR=2 

(D=26mm) and the blockage coefficient is equal to 0.011; the last has a diameter of 20mm and 

spans the width of the test section, giving an aspect ratio L/D=20 and a blockage coefficient 

D/H=0.067. The free-stream velocity is measured by using a differential pressure transducer 

and the Reynolds number is based on the cylinder diameter D and the free stream velocity U∞. 

For the infinite cylinder, different Reynolds numbers (varying from 4∙10
3
 to 20∙10

3
) have 

been investigated, whereas only Re=16∙10
3
 has been examined for the finite ones. For these 

Reynolds numbers, it has been estimated that the boundary layer thickness varies from 3 to 

6mm. 

In order to produce the PIV images, seeding has been injected into the flow; it is used in 

the form of oil droplets produced by a oil smoke generator. This is an aerosol generator 

composed of 8 Laskin nozzles (see Fig. 5.2). The oil droplets obtained with the vaporization 

are 1µm in diameter. A bypass circuit is used to adjust the particles density in the flow.  

 

Fig. 5.2 Sketch of the aerosol generator. 
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The light sheet, which is generated by a double cavity Nd-YAG laser, has a thickness of 

about 1mm, a pulse duration of 6ns, a wavelength of 532nm and a maximum energy per pulse 

of about 200mJ.  

To display, acquire and record digital images for the PIV measurements, the following 

items are used: a video camera Kodak Megaplus model ES 1.0 with a CCD sensor 

(1008×1018pixels, 256 grey levels) and a PC with a Matrox Genesis frame grabber.  

For the Stereo PIV measurements, two PCO-sensicam cameras with CCD sensors 

(1024×1280 pixels, 4096 grey levels) have been used. These have been mounted on a 

common mounting with a viewing angle smaller than 90°. Consequently, in order to obtain an 

uniform focusing of the images, the Scheimpflug condition is fulfilled (Prasad and Jensen 

1995). 

The PC is also equipped with a counter board, which permits to synchronize the system 

with the pulsed laser (Fig. 5.3). Once the lasers Q-Switch are known, the counter board has 

been scheduled so that the right pulses are sent to lasers and camera(s). All parameters of 

interest can been chosen individually: the interval between the pulses and the acquisition rate. 

 

Fig. 5.3 Sketch of the synchronization system. 
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5.2 Experimental results: analysed physical quantities 

For all the experimental measurements performed, different variables of interest have 

been analysed. All these variables have been reduced so that they are non-dimensional.  

As said before, for the infinite cylinder only the PIV technique has been used: in this 

case the measurement plane is the one orthogonal to the cylinder axis (xy-plane) and set in the 

cylinder height middle (z = 200mm). Viceversa, for the finite cylinders both the techniques 

have been used to measure the flow field in different xy-planes along the cylinder height. In 

particular, with the Stereo PIV technique, also various xz-planes have been chosen, so that the 

downwash flow could be clearly detected. 

 

Fig. 5.4 Sketch of reference frame. 

Some of the measured variables, of course, are the mean velocity components, i.e. u and 

v for the PIV measurements and also the w component for the Stereo PIV ones. These velocity 

components have been divided by the free stream velocity U∞, so that they are dimensionless 

and they are indicated as u* v* and w*: 

 Uuu*  

 

5.1 

 Uvv*  

 

5.2 

 Uww*  

 

5.3 

Furthermore, both the vorticity and the Reynolds stress tensor components have been 

analysed. The first (W) has been computed on a central cross stencil with 4 points and 

multiplied by (D/U∞), so that it is dimensionless. Of course, only the component orthogonal to 

the measurement plane has been measured: 
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With regard to the Reynolds stress tensor: 
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all components are the product between the fluid density and the average of the product of the 

velocity fluctuations. Hereafter it will be indicated with: 

22

Uuuu 
  

 

5.7 

the dimensionless component 
2

u  and in a similar way the other components. 

Finally, the mean kinetic turbulent energy k and the turbulent production p have been 

computed. The former being: 

 vvuuk 
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for the PIV measurements, whereas the complete formula has been used for the Stereo PIV 

ones: 
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Incomplete formulas to compute the turbulent production (dimensionless) have been 

used: 
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and: 
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respectively for both PIV and Stereo PIV measurements. 

All these variables have been measured for the mean flow field as well as for the phase 

averaged one. The latter has been obtained by using the Proper Orthogonal Decomposition 

(POD), as it will be explained in the next section. 

5.3 Phase averaging method 

In the present work, since the image acquisition frequency is almost 10Hz (7Hz for the 

Stereo PIV measurements and 10Hz for the PIV ones) and the von Kàrmàn vortices have a 

frequency almost 10 times bigger (it depends on the Reynolds number), a phase averaging 

method has to be used to reconstruct the vortices evolution. In the literature various 

approaches are present for the phase averaging. Lin et al. (1995) used the hot wire signal to 

trigger the sampling of the vortex shedding phases, whereas Braza et al. (2006) used a 

pressure signal. Ben Chiekh et al. (2004) proposed to use the first two principal modes 

obtained with the POD technique, in order to reconstruct the vortices evolution, whereas 

Perrin et al. (2007) compared the phase averaged flow fields obtained with a trigger originated 

from pressure signal with the POD-based approach. Perrin et al. (2007) found that an 

enhancement in the averaged velocity fields is obtained with the POD approach, since the 

phase angles is determined directly from the velocity fields to be averaged. Konstantinidis et 

al. (2005) proposed an other approach to compute an a posteriori phase averaging. It consists 

in to cross-correlate all the flow fields and to check the ones that correlate well with each 

other. By this way, various flow field ensembles can be computed, all of them representative 

of a particular phase of the vortex shedding. 

After having investigated both the approaches based on POD and cross-correlation, the 

former has been chosen. The reason of this choice is in the less computational effort and 

better phase location of the POD approach. 

In the following, first the working principles of the POD technique will be shown and 

then the phase averaging method will be explained. 

5.3.1 Proper Orthogonal Decomposition: working principles 

The POD was introduced by Lumley (1967). It consists in finding a set of realisations of 

the flow field, which maximises the mean square energy. This maximisation leads to a 

Fredholm integral eigenvalue problem: 
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where: X indicates the space variable (x, y, z); Nc is the number of velocity components used; 

   XuXu ji
  is the tensor obtained by time-averaging the two-points spatial correlation tensor 

of the velocity fluctuations u´;    Xn  are the spatial POD eigenfunctions and (n)
 are the 

corresponding eigenvalues. By projecting the instantaneous velocity fields on the POD 

eigenfunctions, one obtains the POD temporal coefficients a
(n)

(t).  

The described approach to the POD technique is the classical one introduced by Lumely 

(1967). In this case, the dimension of the spatial correlation tensor is 2nx ∙ 2ny for the 2D case 

(i.e. two velocity components in 2D domain) and 3nx ∙ 3ny∙ 3nz if the domain is three-

dimensional with three velocity components. For this reason, such POD approach is useful if 

one disposes few spatial components for a lot of temporal instants, like in the case of Hot 

Wire measurements. 

Viceversa, with PIV measurements, many spatial velocity components in few temporal 

instants are available (see Fig. 5.5). In this case the snapshot approach proposed by Sirovich 

(1987) is preferable. In such approach, the velocity correlation tensor is defined by: 
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a b 

Fig. 5.5 Schematic view of the classical (a) and snapshot (b) POD (Cordier and Bergmann 2008). 
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By using this correlation tensor, the Fredholm integral eigenvalue problem allows to 

obtain temporal POD eigenfunctions a
(n)

(t). In this case, by projecting the instantaneous 

velocity fields on the POD eigenfunction a
(n)

(t), the POD coefficients   Xn  are computed. 

For both POD approaches, each instantaneous velocity component u can be expressed 

with the following equation: 
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where M is the number of POD modes. 

In order to apply the above mentioned POD concept to the PIV (or Stereo PIV) 

measurements obtained in this work, let us consider a time sequence of Nt 2D velocity field
7
: 

  ,,,,,,,,,,,V tyxkij N21kn21jn21itX    
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where in each position (Xij, tk) there are two (or three) velocity components (u, v). If we 

indicate with: 
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the three dimensional matrix (nx, 2∙ny, Nt), which contains both u´ and v´ velocity fluctuations 

components, the velocity correlation matrix (5.13) becomes: 
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ij tVtV
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1
R

~
,

~
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where [.,.] indicates the inner product: 
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7
 For the sake of brevity, here only the 2D case (i.e. PIV measurements) will be illustrated. The extension 

to the 3D case is immediate. 
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By using the correlation matrix (5.17) (which is a symmetric Nt∙Nt matrix), the 

eigenvalue problem provides a discrete series of POD coefficients: 

     nnn AλRA   

 

5.19 

where: 
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is the nth POD eigenfunction. Then, the nth POD mode is obtained by the following equation: 
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With this procedure, the normalised POD modes are orthogonal: 

       mnij
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while the POD coefficients are uncorrelated in time: 
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the sign ¯ indicating the temporal average. 

5.3.2 Proper Orthogonal Decomposition: phase identification 

According to many other authors (e.g. Ben Chiekh et al. 2004, van Oudheusden et al. 

2005, Perrin et al. 2007b), the first two POD modes (e.g. see Fig. 5.11) are correlated to the 

convection of the vortices. As suggested by Ben Chiekh et al. (2004), it is possible to compute 

the vortex shedding phase of each instantaneous flow field with the POD coefficients 

associated to these first two modes.  

Actually, this procedure is applicable only if two principal modes are found with the 

POD technique, i.e. if the first two modes contain a large part of the flow field energy. By 

following this approach, only the first two modes are used and each instantaneous flow field 

can be computed by: 

                 
ijkijkkijkij XtaXtatXutXu 2211,,   
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where the two POD coefficients can be expressed by: 
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 ktα  being the vortex shedding phase. 

The higher order modes neglected contain the higher order harmonics of the coherent 

motion as well as the random turbulent motion. According to eq. 5.25, the first two POD 

coefficients form an ellipse in the plane      k

2

k

1 tata  : 
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as shown in Fig. 5.12. 

Consequently, the vortex shedding phase can be computed as: 
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where 1 and 2 are the two eigenvalues obtained by the POD relative to the first two 

temporal POD eigenfunctions (or coefficient) a
(1)

(tk) and a
(2)

(tk). 

5.4 Flow field past an infinite circular cylinder 

As already said, with regard to the infinite cylinder, the measurement plane is 

orthogonal to the cylinder axis (xy-plane) and it is set in the middle of the cylinder height (z = 

200mm). Five Reynolds numbers have been investigated (4∙10
3
, 8∙10

3
, 12∙10

3
, 16∙10

3
 and 

20∙10
3
), all being within the Shear Layer Transition Regime indicated by Williamson (1997). 

5.4.1 Mean flow field 

The mean flow field has been analysed according to Reynolds averaging 

decomposition. For the sake of brevity, only the measurements at Re=4∙10
3
 and Re=20∙10

3
 

will be shown here.  

The comparison between these two Reynolds numbers is interesting because, according 

to Saad et al. (2007), for Re<5∙10
3
 the transition point location in the shear layer is strongly 

dependent on the Reynolds number, whereas a weaker decrease is observed for Re>5∙10
3
. 

This is connected to the vortex formation process stabilisation. Furthermore, the strong 
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change undergone by the flow at Re=5∙10
3
 is proved also by the variation of the shear layer 

frequency law at this Reynolds number (Norberg 1994). As a consequence of this abrupt 

change, by increasing the Reynolds number from 4∙10
3
 to 20∙10

3
, a strong decrease of the 

vortex formation length occurs. This is observable in Fig. 5.6, where both the dimensionless u 

and v velocity components and the streamlines of the mean flow field are shown. As expected, 

a two-eddies pattern is obtained, due to the averaging of the passage of the alternating 

vortices, resulting in a symmetric pattern for u* and in an asymmetric one for v*.  

Fig. 5.7 shows the dimensionless mean Reynolds stress tensor components relative to 

Re=4∙10
3
 and Re=20∙10

3
. Only the components u′ u′, v′ v′ and u′ v′ are shown since those are 

the only ones measurable with the PIV technique. It’s interesting to note that by changing the 

Reynolds number, only the vortex formation length changes, the qualitative shape of the 

contour maps keeping unchanged. According to Braza et al. (2006), both u′ u′ and u′ v′ 

contour maps has a two lobes structure and the v′ v′ contour map has a one-lobe structure. A 

quantitative comparison between these results and the Braza ones isn’t possible, since the 

Reynolds numbers investigated are quite different (Re=140∙10
3
 in Braza’s work).  

The vorticity Wz, the kinetic turbulent energy k and the turbulent production p are 

shown in Fig. 5.8, all of them dimensionless. The vorticity contour map shows clearly the 

shear layer region. According to Braza et al. (2006), the kinetic turbulent energy has his 

maximum located near the vortex formation region. With regard to the turbulent production, a 

different map shape has been obtained with respect to the Braza one. Nevertheless, the 

turbulent production is computed by using the formula (5.11) and then is strongly affected 

even by a small error in u and v components as well as in Reynolds stress tensor components 

u′ u′, v′ v′ and u′ v′. This is the reason why the turbulent production maps are not well defined 

as the other ones, for both this and Braza’s works. 

Since several researches (e.g. Bloor 1964, Park and Lee 2000 and Saad et al. 2007) have 

measured the vortex formation length as the point that has the maximum value of the 

turbulence intensity measured along the symmetry section, also herein the kinetic turbulent 

energy has been computed on the symmetry section as a function of x/D (see Fig. 5.9), in 

order to investigate the vortex formation length by varying the Reynolds number. According 

to the considerations previously done, a substantial difference can be seen between the curve 

relative to Re=4∙10
3
 and the ones relative to the others Reynolds numbers. This is a further 

proof that at Re=5∙10
3
 the flow undergoes a strong change.  

 



Flow field past a circular cylinder: experimental results 

 106 

Re = 4∙10
3
 Re = 20∙10

3
 

  

Mean dimensionless velocity component u* 

  

Mean dimensionless velocity component v* 

  

Streamlines of mean flow field 

Fig. 5.6 Mean flow field relative to the infinite cylinder. 
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Re = 4∙10
3
 Re = 20∙10

3
 

  

Mean dimensionless Reynolds stress tensor component u′ u′ 

  

Mean dimensionless Reynolds stress tensor component v′ v′ 

  

Mean dimensionless Reynolds stress tensor component u′ v′ 

Fig. 5.7 Mean dimensionless Reynolds stress tensor component relative to the infinite cylinder. 
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Re = 4∙10
3
 Re = 20∙10

3
 

  

Mean dimensionless vorticity Wz 

  

Mean dimensionless kinetic turbulent energy k 

  

Mean dimensionless turbulent production p 

Fig. 5.8 Mean kinetic turbulent energy, production and vorticity relative to the infinite cylinder. 
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Fig. 5.9 Turbulence intensity distribution on y/D = 0 section for all Reynolds numbers investigated. 

5.4.2 Phase averaged flow field 

As explained in Sect. 5.3.2, the phase identification procedure based on the POD 

technique is applicable only if two principal modes are found, i.e. if the first two modes 

contain a large part of the flow field energy. For this purpose, in Fig. 5.10 the energy 

associated to first 10 modes for all Reynolds numbers investigated are shown. As it can be 

seen, for all Reynolds numbers, the first two modes contain a large part of overall flow field 

energy. Also in this case, only the results relative to Re=4∙10
3
 and Re=20∙10

3
 have been 

reported, since they have been considered representative of all the others investigated.  

In Fig. 5.11 the first two modes are reported. Those relative to Re=20∙10
3
 are very 

similar to the ones present in the literature (Perrin et al. 2007). Instead, one of the first two 

modes relative to Re=4∙10
3
 is different, but this could be explained by the already mentioned 

change in flow field, which occurs at Re=5∙10
3
.  

According to eq. 5.25, the first two POD coefficients form an ellipse in the plane 

     k

2

k

1 tata  . This has been shown in Fig. 5.12. Actually, the radial distribution of the 

     k

2

k

1 tata   coefficients have been found to be Gaussian and in Fig. 5.12 only the point 

included in –/+ have been shown (since only these points have been used in the vortex 

shedding phase identification (eq. 5.27)).  
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Fig. 5.10 Energy percentage associated to first 10 POD eigenvalues. 

In Fig. 5.13 the streamlines of the phase averaged flow fields are shown for the two 

Reynolds numbers: only four equidistant phases are reported. Also in this case, results relative 

to Re=20∙10
3
 are very similar to the ones present in the literature (Braza et al. 2006 and Perrin 

et al. 2007). Instead those relative to Re=4∙10
3
 are different, but no results have been found in 

the literature for this Reynolds number, i.e. under the Reynolds number at which significant 

change in flow filed occurs (Re=5∙10
3
). In particular, differently from results found for 

Re=20∙10
3
, phase averaged flow fields relative to Re=4∙10

3
 show the coexistence of two 

vortices in the same instant. Moreover, also in phase averaged flow fields, it is possible to 

note the different vortex formation lengths for the Reynolds number shown. 

The phase averaged dimensionless vortical maps shown in Fig. 5.14 for Re=20∙10
3
 

prove a good agreement with results present in the literature (Braza et al. 2006 and Perrin et 

al. 2007). The quantitative comparison cannot be done because in these works the Reynolds 

number investigated is 1.40∙10
5
. It’s interesting to note that the absolute value of the vorticity 

peak at the centre of a vortex decreases from 4.7 to 1.8 when the vortex moves downstream 

from x/D=0.45 to x/D=3. A similar conclusion can be drawn for Re=4∙10
3
. 
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Mode 1 Mode 2 

  

Re = 4∙10
3
 

  

Re = 20∙10
3
 

Fig. 5.11 First and second modes obtained for Re = 4∙10
3
 and Re = 20∙10

3
. 

 

Fig. 5.12 First two POD coefficients.  



Flow field past a circular cylinder: experimental results 

 112 

 

  

  

Re = 4∙10
3
 

  

  

Re = 20∙10
3
 

Fig. 5.13 Streamlines of phase averaged flow fields relative to Re = 4∙10
3
 and Re = 20∙10

3
. 
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Re = 4∙10
3
 

  

  

Re = 20∙10
3
 

Fig. 5.14 Dimensionless vorticity Wz for the phase averaged flow fields relative to Re = 4∙10
3
 and Re = 

20∙10
3
. 
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5.5 Flow field past a finite circular cylinder: PIV measurements 

PIV measurements have been done also for a finite cylinder. The cylinder aspect ratio 

AR=L/D is equal to 8. Differently from the infinite cylinder, for which the measurement plane 

was located in the middle of the cylinder height, in this case 9 measurement planes have been 

investigated to analyse the flow field along the cylinder height, as shown in Tab. 5.1. The 

Reynolds number investigated is Re=16∙10
3
. 

 

Plane n. z (mm) z/L z/D 

1 30 0.14 1.15 

2 60 0.29 2.31 

3 90 0.43 3.46 

4 120 0.58 4.62 

5 140 0.67 5.38 

6 160 0.77 6.15 

7 180 0.87 6.92 

8 200 0.96 7.69 

9 210 1.01 8.08 

Tab. 5.1 Measurement xy-planes investigated for the finite cylinder with AR=8. 

5.5.1 Mean flow field 

The mean flow field has been analysed according to Reynolds averaging 

decomposition. In Fig. 5.15 the mean flow field streamlines for all measurement planes are 

shown. The map symmetry proves the goodness of the average process. It’s interesting to note 

that by moving from the cylinder base (z/L=0.14) to the tip (z/L=1.01) the vortex formation 

length decreases. This is reasonable since three dimensional features of the flow arise when 

the cylinder is finite, i.e. with a free end; the latter causes changes in the vortex formation 

length as well as the vortex shedding pattern. Consequently, the bigger length of finite 

cylinder vortex formation length is probably dependent on the downwash flow field, which 

lengthens this length near the cylinder base. For almost all measurement plane investigated, 

the vortex formation length of the finite cylinder is bigger than the one relative to the infinite 

cylinder (2D) for the same Reynolds number (Re=16∙10
3
). 

The dimensionless vorticity Wz maps (Fig. 5.16) show clearly the shear layer region. 

Also in this case, the comparison between the finite cylinder measurements and infinite one 
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has been done. The same order of magnitude for the two cylinders proves that shear layer 

vorticity magnitude doesn’t depend on the cylinder geometry. 

The dimensionless Reynolds stress tensor components u′ u′, v′ v′ and u′ v′ are shown in 

Fig. 5.17, Fig. 5.18 and Fig. 5.19 respectively. All these components have the same shape of 

the one relative to the infinite cylinder (also shown in the figures). The main difference 

between finite and infinite cylinder maps is in the order of magnitude. In fact, in all maps the 

order of magnitude of the Reynolds stress tensor components relative to the infinite cylinder 

is twice the ones of the finite cylinder or even more. With regard to the v′ v′ map in the 

measurement plane nearest the cylinder base (z/L=0.14), there is noise along the centreline 

due to the laser reflections. The same phenomenon can be seen in the turbulent kinetic energy 

maps (see Fig. 5.20). In this case, the order of magnitude of the infinite cylinder map is even 

more than twice the one of the finite cylinder. Finally, the turbulent production maps are 

shown in Fig. 5.21. These have more noise than the others seen until now, because the 

computation of this variable (see Eq. 5.10) implies the use of the product between a Reynolds 

stress tensor component and the derivation of a velocity component (e.g. 
x

uuu


 ), then if 

noise is present in the Reynolds stress component maps as well as in the velocity component 

ones, here this noise is amplified. 

Finally, in order to investigate the vortex formation length by varying the measurement 

plane along the cylinder height, also herein the kinetic turbulent energy has been computed on 

the symmetry section as a function of x/D (see Fig. 5.22). The comparison with the infinite 

cylinder has been done. The infinite cylinder turbulence intensity is normally higher than the 

one relative to the finite one, whereas the vortex formation length is smaller. The latter 

decreases by approaching the free end of the finite cylinder and assumes about the same value 

of the 2D cylinder for z/L = 0.87. Probably this is due to the downwash flow along the free 

end of the finite cylinder. Fig. 5.22 is qualitatively similar to Fig. 2.50b by Park and Lee 

(2000). Nevertheless, a quantitative comparison cannot be done since in the cited work the 

Reynolds number is 20∙10
3
 and the aspect ratio AR = L/D is 10. 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

  
z/L = 1.01 2D 

Fig. 5.15 Streamlines of the mean flow field in xz-planes relative to finite cylinder with AR=8. 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

  
z/L = 1.01 2D 

Fig. 5.16 Dimensionless vorticity Wz of the mean flow field in xz-planes relative to finite cylinder with 

AR=8. 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

 
2D 

Fig. 5.17 Dimensionless Reynolds stress tensor component u′ u′ of the mean flow field in xz-planes 

relative to finite cylinder with AR=8 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

 
2D 

Fig. 5.18 Dimensionless Reynolds stress tensor component v′ v′ of the mean flow field in xz-planes 

relative to finite cylinder with AR=8. 



Flow field past a circular cylinder: experimental results 

 120 

  
z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

 
2D 

Fig. 5.19 Dimensionless Reynolds stress tensor component u′ v′ of the mean flow field in xz-planes 

relative to finite cylinder with AR=8. 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

 
2D 

Fig. 5.20 Dimensionless kinetic turbulent energy k of the mean flow field in xz-planes relative to finite 

cylinder with AR=8. 
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z/L = 0.14 z/L = 0.29 

  
z/L = 0.43 z/L = 0.58 

  
z/L = 0.67 z/L = 0.77 

  
z/L = 0.87 z/L = 0.96 

 
2D 

Fig. 5.21 Dimensionless turbulent production p of the mean flow field in xz-planes relative to finite 

cylinder with AR=8. 
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Fig. 5.22 Turbulence intensity distribution on y/D = 0 section. 

5.5.2 Phase averaged flow field 

Also in this case, the procedure based on the Proper Orthogonal Decomposition has 

been applied to identify the von Kàrmàn vortex shedding.  

As explained in Sect. 2, the vortex shedding disappears for an aspect ratio lower than a 

critical value, which depends on the experimental condition like boundary layer thickness or 

turbulence intensity. Furthermore, for the aspect ratio used in this work, Kawamura et al. 

(1984) showed that the von Kàrmàn vortices are present only in a small region in proximity of 

the cylinder base.  

Consequently, one expects that by applying the POD technique to find the vortex 

shedding in all measurement planes along the cylinder height, the two principal modes are 

detectable only for few measurement planes near the cylinder base.  

Fig. 5.23 shows the percentage energy respect to the overall one, associated to the first 

10 eigenvalues, for both finite and infinite cylinders. The curve relative to the 2D cylinder 

shows the first 2 eigenvalues having more than 30% of the overall energy, whereas all the 

others have values lower than 3%. As before explained, this is the ideal condition to apply the 

POD technique to compute phase averaging, since the first two eigenvalues contain almost 

65% of the flow field energy. For the finite cylinder, while near the base plane (z/L = 0.14) 

the first two eigenvalues contain almost 65% of the overall energy; by approaching the free 

end of the cylinder, the situation gets worse. For example for z/L = 0.29 almost 57% and for 
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z/L=0.43 this value decreases to only 48%. It is interesting to note that, contrary to the 2D 

cylinder, for the three sections of the finite cylinder nearer to the wall, the third eigenvalue 

owns a relatively high value of percentage energy, whereas the residual ones contain 

significantly smaller values. Curves relative to other measurement sections suggest the 

inapplicability of the POD approach. 

As a conclusion of these observations and accordingly with Kawamura et al. (1984), it 

can be affirmed that the region which shows the von Kàrmàn vortex shedding for a finite 

cylinder with AR=8 extends from about z/L≈0.14 until z/L≈0.43. Unfortunately, it was not 

possible to make any measurements nearer the cylinder base, because of too much reflections 

of the laser on the plane on which the cylinder was mounted. 

 

Fig. 5.23 Energy percentage associated to first 10 POD eigenvalues. 

Fig. 5.24 shows the first two POD modes relative to the 2D cylinder and the finite one 

for z/L=0.14, z/L=0.29 and z/L=0.43. The first are very similar to the ones present in the 

literature (e.g. Perrin et al. 2007), while the ones relative to the finite cylinder, even if 

different from the 2D modes, are very similar to each other. 

In Fig. 5.25 and Fig. 5.26 the streamlines of the phase averaged flow fields are shown. 

For each section only 4 phases of the von Kàrmàn vortex shedding period are illustrated. 
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z/L = 0.14 - mode 1 z/L = 0.14 - mode 2 

  
z/L = 0.29 - mode 1 z/L = 0.29 - mode 2 

  
z/L = 0.43 - mode 1 z/L = 0.43 - mode 2 

  

2D - mode 1 2D - mode 2 

Fig. 5.24 First 2 POD modes.  
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Finite cylinder - z/L = 0.14 

  

  

  
Finite cylinder - z/L = 0.29 

Fig. 5.25 Streamlines of phase averaged flow field relative to the finite cylinder for the measurement 

planes set in z/L = 0.14 and z/L = 0.29 positions. 
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Finite cylinder - z/L = 0.43 

  

  

  
Infinite cylinder – 2D 

Fig. 5.26 Streamlines of phase averaged flow field relative to both finite cylinder at z/L = 0.43 and 

infinite one with Re = 16∙10
3
. 
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Finite cylinder - z/L = 0.14 

  

  

  
Finite cylinder - z/L = 0.29 

Fig. 5.27 Dimensionless vorticity Wz for the phase averaged flow field relative to the finite cylinder for 

the measurement planes set in z/L = 0.14 and z/L = 0.29 positions. 
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Finite cylinder - z/L = 0.43 

  

  

  
Infinite cylinder – 2D 

Fig. 5.28 Dimensionless vorticity Wz for the phase averaged flow field relative to both finite cylinder 

at z/L = 0.43 and infinite one with Re = 16∙10
3
. 

For all the finite cylinder planes, the first phase averaged flow field shows a single 

upper vortex and a pair of lower vortices. The first lower vortex is forming just downstream 

of the cylinder and the second one is in the final part of the measurement zone. The former 
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vortex grows first in the downstream direction and then starts to move toward the centreline 

and becomes more symmetrical. For the 2D cylinder, besides the already shown different 

vortex formation length, the vortices disappear quicker and their evolution is significantly 

accelerated. 

The phase averaged dimensionless vorticity maps are shown in Fig. 5.27 and Fig. 5.28. 

Also in this case, it’s interesting to note that the absolute value of the vorticity peak at the 

centre of a vortex decreases when the vortex moves downstream.  

5.6 Flow field past a finite circular cylinder: Stereo PIV 

measurements 

In the previous section, an accurate analysis of the flow field in the wake of a finite 

cylinder with AR=8 has been done. In particular, both mean flow fields and Kàrmàn vortex 

shedding have been investigated.  

In order to investigate also the downwash flow, which characterizes the finite cylinder 

flow field as well, measurements in xz-planes have been performed.  

Actually the flow fields in such planes are strongly dependent on the cylinder aspect 

ratio. This is the reason why cylinder with AR=2 (Sect. 5.6.2) is investigated besides the one 

with AR=8 (Sect. 5.6.1). 

5.6.1 Flow field in x-z plane relative to the cylinder with AR=8 

In Tab. 5.2 all the measurement planes investigated are described. They are arranged 

along the positive y-axis: the last one is set at y/D=0.577, i.e. just over the cylinder. No 

measurement plane has been set at negative y-coordinate because the mean flow field is 

symmetric with respect to the x-axis.  

Actually, each flow field map has been obtained by merging two flow field maps at the 

same y/D and shifted along z (see Fig. 5.29). This allowed obtaining a higher spatial 

resolution. For each common area point, the variable (e.g. velocity component u) has been 

computed with a weighted average of the two available values. 

The mean flow field streamlines maps are shown in Fig. 5.30 and Fig. 5.31. 

 

 

No. plane y (mm) y/D 
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1 0 0 

2 2 0.077 

3 5 0.192 

4 7 0.269 

5 9 0.346 

6 11 0.423 

7 13 0.500 

8 15 0.577 

Tab. 5.2 Measurement xz-planes investigated for the finite cylinder with AR=8. 

 

Fig. 5.29 Sketch of the measurement planes setting. 

According to Afgan et al. (2007), a dense cluster of lines generated just before the free 

end of the cylinder later highlights the strong arc shaped downstream, which almost reaches 

the ground plane. The location of this arc determines the size of the recirculation vortex pair 

seen in the last section (see Fig. 5.15). By moving the measurement plane from the symmetry 

plane (y/D=0) to the xz-plane over the cylinder (y/D=0.577), this arc flattens itself until it 

perfectly adheres to the cylinder. The mean flow field streamlines measured in the plane set at 

y/D=0 are similar to the ones shown by Afgan et al. (2007) (see Fig. 2.51). Their 

measurements were for AR=6 and Re=2.0∙10
4
. 
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y/D = 0 y/D = 0.077 

  
y/D = 0.192 y/D = 0.269 

Fig. 5.30 Streamlines of the mean flow field in xz-planes relative to finite cylinder with AR=8. 
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y/D = 0.346 y/D = 0.423 

  
y/D = 0.500 y/D = 0.577 

Fig. 5.31 Streamlines of the mean flow field in xz-planes relative to finite cylinder with AR=8. 
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5.6.2 Flow field in x-z plane relative to the cylinder with AR=2 

In Tab. 5.3 all the measurement planes investigated are described. Also in this case, they 

are arranged along the positive y-axis: the last one is set at y/D=0.846. Also in this case, no 

measurement plane has been set at negative y-coordinate because the mean flow field is 

symmetric with respect to the x-axis.  

 

Plane n. y (mm) y/D 

1 0 0 

2 2 0.077 

3 4 0.154 

4 6 0.231 

5 8 0.308 

6 10 0.385 

7 12 0.462 

8 14 0.538 

9 16 0.615 

10 18 0.692 

11 20 0.769 

12 22 0.846 

Tab. 5.3 Measurement xz-planes investigated for the finite cylinder with AR=2. 

The mean flow field streamlines maps are shown in Fig. 5.32 and Fig. 5.33. It’s 

interesting to note that by decreasing the cylinder aspect ratio, the flow filed pattern changes 

drastically. Differently from the results obtained for AR=8, in this case a big recirculation 

region can be seen in the cylinder wake. Of course, this vortex decreases its dimension by 

approaching the planes set over the cylinder. The flow field pattern at y/D=0 is quite similar 

to the one shown by Fröhlich and Rodi (2004) and reported here in Fig. 2.46. Their 

measurements were for Re=43∙10
3
 and AR=2.5.  
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y/D = 0 y/D = 0.077 

  
y/D = 0.154 y/D = 0.231 

  
y/D = 0.308 y/D = 0.385 

Fig. 5.32 Streamlines of the mean flow field in xz-planes relative to finite cylinder with AR=2. 
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y/D = 0.462 y/D = 0.538 

  
y/D = 0.615 y/D = 0.692 

  
y/D = 0.769 y/D = 0.846 

Fig. 5.33 Streamlines of the mean flow field in xz-planes relative to finite cylinder with AR=2. 
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6 Conclusions 

The Stereo PIV technique applied with both procedures proposed by Soloff et al. (1997) 

and Willert (1997) has been investigated by simulating non-uniform displacement fields. 

These consisted of a sinusoidal component with various wavelengths. This choice permitted 

to analyse the spatial resolution of the technique. Since the measured sine amplitude decreases 

with the reduction of the wavelength, the results have been showed in terms of Modulation 

Transfer Function (MTF) as a function of the normalised spatial wavelength. The theoretical 

analysis of the MTF associated to the Stereo PIV technique led to neglecting, for common 

configurations, the modulation relative to the 3C reconstruction for both approaches. The 

performance assessment, which has been conducted with synthetic images, showed a good 

agreement with the theoretical MTF. 

The theoretical analysis has been extended in order to take into account a possible 

misalignment error between the calibration and measurement planes. The result of this 

analysis led to concluding that, depending on the stereoscopic set-up used, some wavelengths 

of the flow field can be dephased and modulated, even with a negative modulation modulus. 

The performance assessment has been conducted with synthetic images and, also in this case, 

showed a good agreement with the theoretical MTF.  

Finally, in order to verify these analyses also in a real experiment, the images relative to 

a cylinder wake have been used. Since the cylinder was mounted in the first part of the tunnel 

test section, it wasn’t possible to set the cameras in a symmetrical configuration. For this 

reason, the theoretical MTF curves relative to such a configuration have been computed and 

the experimental ones agreed with them.  

With regard to the procedure proposed by Willert (1997), new formulas to compute the 

viewing angles have been proposed. These permit to compute the viewing angles without the 

necessity to measure any geometrical parameter of the experimental set-up and without 

further computations in addition to the unavoidable calibration of the stereoscopic 

configuration. The proposed method led to measurement accuracy comparable to that present 

in the literature. 

Both PIV and Stereo PIV measurements have been done for both finite and infinite 

cylinders and compared. For the 2D cylinder the measurement section was in the middle of 

the cylinder length whereas, in order to study the flow evolution between the base and end 

plane of the finite cylinder, various sections along the cylinder length have been investigated. 
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The Reynolds numbers investigated are within the Shear-Layer Transition Regime suggested 

by Williamson (1996), which is characterized by vortex shedding.  

The mean flow fields and Reynolds stress component maps have been obtained by 

averaging 5,000 images and showed the similarity between all the analysed sections. A 

substantial difference between the 2D and finite cylinders has been found in the vortex 

formation length. The analysis showed that the vortex formation length for the 2D cylinder is 

smaller than the ones of all the investigated sections of the finite cylinder. 

The sampling frequency smaller than the von Kàrmàn one made an a posteriori phase 

averaging method needed. For this reason, the Proper Orthogonal Decomposition technique 

has been used to find the principal modes of the flow field and, by combining them to 

reconstruct the vortices evolution. With this method, the von Kàrmàn vortex shedding has 

been identified for the infinite cylinder as well as for the finite one, only for a small region 

near its base, accordingly with Kawamura et al. (1984). This region extends from z/L≈0.14 

until z/L≈0.43, relatively to a finite cylinder with AR=8. 

Finally, in order to investigate also the downwash flow, which characterizes the finite 

cylinder flow field as well, measurements in xz-planes have been performed. It has been 

evidenced that the flow fields in such planes are strongly dependent on the cylinder aspect 

ratio.  
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