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ABSTRACT 

 

Microbial processes play a fundamental role in the nitrogen (N) cycle. They make 

available inorganic N forms by decomposing and mineralizing organic N in soil. They also 

transform inorganic forms of N with different oxidation states. The available inorganic N, 

ammonium NH4
+ and nitrate NO3

-, produced by mineralization and nitrification processes 

from organic matter, are often in short supply in natural terrestrial ecosystems, limiting plant 

growth and biomass accumulation, as a consequence of quality and quantity of available 

substrate but also of the controlling effect of environmental factors on microbial activity and 

growth. Microbial N transformation thus are responsible for soil N availability and losses 

from the systems as leaching, or N gaseous products during the nitrification and 

denitrification processes, but are controlled by the environmental characteristics of the 

systems itself. 

The purpose of this research is to improve our knowledge on natural Mediterranean 

ecosystems, in relation to the nitrogen cycle, and their potentiality as sources and sinks of 

greenhouse gases (GHGs), in particular of N2O and CH4. These ecosystems can be expected 

to be extremely sensitive to the future predicted global changes. Land use change, fires, 

anthropic disturbance, climate modifications can all impact the structure of Mediterranean 

plant communities, the ecosystem and associated cycles of elements. The magnitude of the 

effect of such disturbance on nitrogen transformation, losses and GHGs fluxes in 

Mediterranean ecosystem is unknown. In order to improve our understanding on N cycle and 

estimates of GHGs fluxes in natural Mediterranean ecosystems, both in terms of natural 

mechanisms associated to this type of environment and in terms of response of the ecosystem 

to modifications and disturbance, four case studies were set up. 

In first case study (chapter 3), a rainfall manipulation experiment in Mediterranean 

woodland of Tolfa, dominated by Arbutus unedo L., was carried out in order to evaluate, on 

the short-term, the impact of variation (both increase and decrease) of rainfall regime of about 

20% on the nitrogen cycle and on GHGs emissions. In fact significant changes of rainfall 

regime are expected in the Mediterranean basin in the future decades, whereas variations in 

frequency and total amount of precipitation result in increased of aridity and drought 

durations. We followed over 1 and ½ year (Apr05-Feb06) soil processes related to the N 

cycle, mineralization, nitrification, denitrification, mineral N, emissions of N2O and fluxes of 
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CH4. The Tolfa site demonstrate to have a quite unusual N cycle for Mediterranean 

woodlands dominated by organic and NH4
+ forms of N, whereas nitrification and net NO3 

production was completely absent. Consequently also denitrification was very low, and N2O 

emissions were below the detection limit if the soil was not fertilized with a NO3
- salt. A 20% 

variation of rainfall did not influence the variation of soil water content to such an extent to 

modify in a significant way the biological activities in soil. Also for all the measured activities 

the high spatial variability associated to the measures was not allowing for clear treatment 

effect, although in general processes resulted faster in the wettest treatment. The site acted as 

a sink for CH4. The treatment effect on CH4 fluxes was visible only when seasonal extreme 

were reached and even in this case the spatial variability obscured any significant difference 

among treatments. 

Second case study (chapter 4) investigates causes for the absence of soil nitrification 

activity in a Mediterranean monospecific woodland of Arbutus unedo L., focusing on the 

possible role of allelochemicals produced by this plant on the observed NO3
-
 production 

inhibition. Raw extracts of leaves and roots of Arbutus unedo and soil underneath its canopy, 

were purified using chromatographic techniques, and the structure of chemicals was defined 

using spectroscopic and spectrometric methods. Leaf extracts (raw and aqueous and organic 

fractions) were tested for their toxicity on nitrification using a "test" soil. Field and laboratory 

incubations showed absence of NO3
- production over the whole study period, despite the 

significant mineralization rates (NH4
+ production). Toxicity tests indicated that 400 µg of 

extract g-1 dry soil were already sufficient to have more than 50% inhibition of NO3
- 

production. Gallocatechin and catechin were among the most abundant chemicals in the 

extracts of leaves and roots. Their soil concentration was significantly higher than the annual 

calculated input via litter, indicating a quite high residence time, and was in the range of toxic 

(> EC50, more than 50% inhibition) concentrations deduced from the dose-response curve of 

the toxicity test. Data seem to support the hypothesis that plant produced chemicals, rather 

than substrate limitation, are a probable cause of nitrification inhibition in this forest. 

A study (chapter 5) was set to estimated the amount of N which enters into the 

ecosystem in Mediterranean grasslands via N2 fixation, considering that for these herbaceous 

species, which dominate the early stages of secondary successions following disturbance, 

there is a complete lack of informations in relation to this topic. Moreveor, the impact of 

grassland areas covered by a different covers of N2 fixers on N processes and pools was 
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investigated. To meet this goals the following objectives were set: a) to quantify the N2 

fixation capacity of the most frequent leguminous species in order to estimate the N input in 

the ecosystem via N2 fixation; b) to quantify the gain and losses of N under N2 fixing and non 

fixing plant covers. The most abundant leguminous plants, derived by previous studies in 

Castel Volturno site, are Medicago minima, which derive around 30-47 %, and Melilotus 

neapolitana, which derive around 24-50 % of the N present in their tissue from the 

atmosphere. These data were obtained using either "N-difference" and "15N natural 

abundance" techniques. They indicate that the leguminous plants compete for with non fixing 

plants to exploit the soil mineral N pool, at a great extent. Estimates of pools of N, 

mineralization, nitrification and denitrification rates carried out in intermixed plots with 

different cover density and biomass of N2 fixers did not show significant differences. 

Probably, in N-limited ecosystems, the input of nitrogen by N2-fixation was not high enough 

to modify N pools, losses and processes, probably because the extra N deriving from N2 

fixation was quickly immobilized by microbes and plants. Very low N2O emissions were in 

fact observed. The site acted as sink of CH4. 

In the last experiment, four Mediterranean woodland ecosystems with different soil 

characteristics and 3 successional stages within the same soil type (grassland, maquis, 

woodland) were compared for their potential to produced NO and N2O emissions in 

controlled and N excess conditions (chapter 6). The experiment was carried out incubating the 

soil in reconstituted cores at the same temperature (25°C) and soil water content (50%WHC) 

in order to get independent from these two controlling factors, which influence on gas 

emissions is already well known. In controlled conditions, a predominance of NO emissions 

respect to N2O were measured in all studied sites, despite the incubation conditions which 

were supposed to be more favourable for N2O production. The highest NO production was 

observed in the sandy soil with sub-alkaline pH and low organic content, all characteristics 

which are expected to favour nitrifiers over denitrifiers.  The highest gas emissions in the 

succession were measured in the intermediate stage (maquis). Comparing the woodlands, it 

appeared clear the combination of many factors influences the potential of NO and N2O 

emissions, and not the sole water content. In all cases the addition of extra N resulted in net 

immobilization after 10 days and in a burst of N gaseous emissions, which only in the case of 

one site, Roccarespampani, resulted higher than NO emissions. In all the other cases NO 

emissions were always dominant also in presence of excess N. The flush of N emissions 
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lasted one day or maximum a week in presence of extra N. Soil with the highest 

mineralization rates were not necessarily those with the highest N gaseous emissions. 

Nitrification seemed strongly influence by soil pH, whereas this was not true for 

mineralization. Overall the results suggest that these Mediterranean soils tend to retain the N 

in the systems as much as possible and that nitrification and NO emissions are the dominant 

processes in the system also at intermediate water content such as the one used in the 

experiment (50% water saturation). 
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1 GENERAL INTRODUCTION 

 

 

 

1.1 SOIL NITROGEN CYCLE 

 

 

Nitrogen (N) is a fundamental macronutrient, a key element for life in terms of 

quantities and functions. It is involved in the energy transfer molecules ATP and ADP, it is an 

essential component of the amino acids, peptides, enzymes, hormones and vitamins, and thus 

in numerous metabolic processes. It is a constituent of the nucleic acids RNA and DNA that 

make up the genetic material in all living organisms. 

Nitrogen high versatility is reflected by the high number of processes which constitute 

the N biogeochemical cycle. Firstly, nitrogen valence varies from -3 to +5 and most of the 

transformations are carried out by few soil organisms, at normal temperatures and pressure. 

Secondly, nitrogen is abundant on earth, but only a very small proportion of it enters into the 

biogeochemical nitrogen cycle at significant rates. Most of the nitrogen is thus found in the 

lithosphere (especially in primary rocks of the mantle, Stevenson, 1972) and only 0.001 per 

cent occurs in the biosphere (Sweeney et al., 1978). Nitrogen accounts for about 78% of the 

atmosphere as elemental dinitrogen (N2) gas. The dinitrogen molecule, N2, is a very stable 

substance and a considerable quantity of energy is needed to break its inter-atomic bonds, so 

it is not directly available for plant uptake and metabolism. This means that biologically 

available nitrogen is often in short supply in natural terrestrial ecosystems, limiting plant 

growth and biomass accumulation (Binkley & Hart, 1989; Paul & Clark, 1989;Vitousek and 

Howarth, 1991). 

Since soil has a solid, a liquid and a gas phase, all forms of nitrogenous compounds may 

be present. The soil pool N is dominated by N found in organic structures. In soils with 

significant contents of K
+
-containing clay minerals, capable of fixing ammonium (NH4

+
-N), 

approximately 90% of the soil N is contained in organic structures (Kelley & Stevenson, 



Chapter1                                                                                                     General Introduction 

9 
 

1996), 8% exists as fixed NH4
+-N, and 1-3% can be found in the inorganic fraction (NO3

--N  

and NH4
+-N). In soils with little capacity to fix NH4

+-N in clay minerals, the proportion of 

organic N is >97% and the inorganic fraction is 1-3%. Only a small fraction of the soil N 

exists as soluble NO3
--N and exchangeable NH4

+-N, the main forms of inorganic soil N, this 

pool is thus very small in size but plays a key role since it is the main form available for 

plants and micro-organisms.  

On a global scale, Söderlund and Svensson (1976) estimated that the organic N fraction 

of soils accounted for 95% of the total soil N pool, which is equivalent to the average value 

presented by Bremner (1967). Soil organic N has been traditionally divided into the following 

five fractions based on a variety of acid hydrolysis procedures: (1) acid insoluble N; (2) 

ammonia N recovered after hydrolysis; (3) amino acid N, (4) amino sugar N and (5) 

hydrolysable unidentified N. Data summarized by Stevenson (1994) for 11 studies where acid 

hydrolysis procedures were applied to different soil types showed that there was as much 

variation in the contents of each form of N within similar soils as between different soil types. 

The proportions of each form of organic N were 7-44% acid insoluble N, 9-37% ammonia N, 

13-50% amino acid N, 1-14% amino sugar N, and 4-40% hydrolysable unidentified N. 

Researchers, using such analytical pyrolysis, found a larger presence of heterocyclic 

compounds with values comprised between 27% and 34% of the total N (Schulten, 1994; 

Schulten et al., 1997; Schulten & Schnitzer, 1998) and proposed that those would represent 

the main part of unidentified organic N pool. 

However, nitrogen is an incredibly versatile element and also forms some of the most 

mobile compounds in the soil-plant-atmosphere system. The concept of an N cycle was first 

formulated by Löhnis (1913) following identification of the forms of N in soil and the role of 

microorganisms in the transformations between organic and inorganic N (Fig. 1.1). 

Microorganisms, particularly bacteria, play a major role in all of the principal nitrogen 

transformations. 
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Figure 1-1. Nitrogen cycle in soil (From Stevenson, 1982). 
 

The amounts of energy that is required by, or lost during, the major reactions of the 

nitrogen cycle are listed in Table 1.1. 

 

Table 1-1. Free energy changes in inorganic nitrogen metabolism reactions (from Rosswall,1981) 

 ∆G’o (kJ mol- 1) 

Nitrate respiration Escherichia coli 

NO3
- + [H2] → NO2

- + H2O 
 
-161 

Denitrification Pseudomonas aeruginosa 
2 NO3

- + 2H+ + 5[H2] → N2(g) + 6H2O 
 
- 1121 

Other possible reactions 
N2O(g) + [H2] →+ N2(g ) + H2O  
NO2

- + ½ [H2] + H+ → NO(g) + H2O  
2NO(g) + [H2] → N2O(g) + H2O  

2NO2
- + 2H+ + 2[H2] → N2O(g)+3H2O  

 
- 340 
- 76 
- 306 

- 459 
Assimilatory nitrate reduction 
NO3

- + 2H+ +H2O → NH4
+ + 2O2  

 
+ 348 

Nitrate fermentation Clostridium perfringens 
NO3

- + 2H+ + [4H2] → NH4
+ + 3H2O  

 

- 591 
Nitrification Nitrosomonas 
NH4

++ ½ O2 → NH2OH + H+  
NH2OH + O2 → NO2

- + H2O + H+  

                    Nitrobacter 

NO2
- + ½ O2 → NO3

-  

 
+ 15 
- 289 

 
- 77 
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In order to known whether reactions are likely to occur, it is necessary to considerate the 

more complex actual energetic. First, the rate of reactions must be considered - if a reaction is 

thermodynamically possible, but occurs very slowly, it is generally of little use to living 

organisms. Biological catalysts, enzymes, are the common way of speeding up reactions: their 

synthesis and maintenance require energy. Additionally, some of the available energy may be 

used to drive the reaction. Second, where reactions are required to occur at low substrate 

concentration (if the substrate is toxic, for example) it may be more advantageous to use 

energy to help to drive that reaction, so that a more rapid reaction rate is achieved. Third, the 

partial reactions may have different energies associated with them, so that an overall reaction 

which is energetically feasible may not occur at finite rates in practice. Fourth, living 

organisms have various potential energy sources available to them and these sources vary 

considerably in the fraction of their energy available to drive reactions. Fifth, energy available 

for oxidation-reduction reactions will vary according to whether the environment is oxidative 

or reducing. Some of these aspects are considered in Sprent (1987). 

As microbially mediated processes, nitrogen transformations tend to occur at quite fast 

rate. Rates are affected by environmental factors that influence microbial activity, such as 

temperature, moisture, and resource availability. Each steps of soil nitrogen cycle is subject to 

constraints related to the physical and biological environment, thus the actual pathway 

followed and its rate-limiting steps vary with geographical location and season. 

 

 

1.1.1 DINITROGEN FIXATION 

 

Inert atmospheric nitrogen naturally enters in the active pool through two processes: 

• spontaneously by lightning, forest fires, even hot lava flows and photochemical 

reactions; probably about 10% of the nitrogen fixed by natural processes is by this route 

(Sprent et al., 1990); 

• biologically by specific 'nitrogen-fixing' microorganisms known collectively as 

diazotrophs, for about 60%,  

Biological dinitrogen fixation (BNF), can be regarded as second in importance only to 

photosynthesis for the maintenance of life on Earth. Under natural conditions it is the main 

pathway mediated by micro-organisms able to convert the most abundant but relatively inert 
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form of N into biologically available substrates, in fact the covalent triple bond of the N2 

molecule (N≡N) is highly stable and can be broken chemically only at elevated temperatures 

and pressures. 

Input of nitrogen to soil from biological fixation vary widely from one ecosystem to 

another, tropical legumes such as alfalfa have been shown, on occasion, to fix at rates as high 

as over 400 kg N ha-1 yr-1 (Tisdale, Nelson & Beaton, 1985), while in soils of upland pastures 

in the UK, free-living and symbiotic N2-fixation may only account for an input of 5-30 kg N 

ha
-1

 yr
-1

 (Batey, 1982). On a global scale, biological fixation by natural terrestrial ecosystems 

in the early-1990s was estimated 107 Tg N yr-1, decreasing by about 15% respect to 1860 

(Galloway et al., 2004). 

The ability to fix N2 is restricted to prokaryotic organisms that are taxonomically diverse 

including heterocystous (Anabaena, Nostoc) and nonheterocystous (Trichodesmium, 

Gloeocapsa [Bergman et al., 1997]) cyanobacteria, actinomycetes (Frankia), and 

heterotrophic (Azotobacter, Bacillus), autotrophic (Thiobacillus), aerobic (Pseudomonas, 

Methylosinus), anaerobic (Clostridium, Desulfovibrio) and phototrophic (Chlorobium, 

Rhodospirullum) bacteria. No eukaryote is known to have this capability. Young (1992) 

provides a detailed listing of N2-fixing species. They are generally grouped on the basis of 

their lifestyle, in fact N2-fixing prokaryotic can (1) live free in nature (Azotobacter, 

Trichodesmium), (2) occur in loose or associative symbiosis with other plants or animals 

(Acetobacter or Herbaspirillum and sugar cane [Boddey and Dobereiner, 1995]), or (3) enter 

into symbiosis with their host and be housed within specialized structures such as Rhizobium 

and the legume nodule (Graham, 1997) and Anaeba and the water fern, Azolla (Wagner, 

1997). Generally, in a symbiotic relationship, one organism contains chlorophyll and uses 

light energy to produce carbohydrates. The other organism receives some of the carbohydrates 

and uses them as an energy source to enzymatically fix atmospheric N2 into the ammonia 

(NH3) form of N and thence into amino acids and other nitrogenous compounds that are 

nutritionally useful to the chlorophyll-containing organism.  

As evident from the equation (Allen et al., 1994): 

 

N2 + 10H+ + nMgATP + 8e-  � 2NH4
+ + H2 + nMgADP + nPi                            (n≥16) 
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N2 fixation is an energy requiring process; biological systems utilize chemically bound 

energy in organic matter (symbiotic and asymbiotic non-photosynthesizing bacteria) or light 

energy (blue-greenalgae and photosynthetic bacteria; Stewart, 1973a,b; Fogg, 1974). 

All organisms which reduce dinitrogen to ammonia do so with the aid of an enzyme 

complex, nitrogenase. The nitrogenase enzyme system is composed of two oxygen labile and 

separable metalloproteins (Allen et al., 1994; Vance, 1997): 

component I is dinitrogenase, the site of N2 reduction, and is a molybdo-ferro-protein 

(MoFe protein); 

component II is dinitrogenase reductase, an iron protein (Fe protein), which provides 

electrons to component I for N2 reduction.  

The Fe protein is a γ2 homodimer (Mr, approximately 60 kDa) encoded by nifH, 

incorporating two binding sites for MgATP. The two identical subunits are bridged by a 

single [4Fe–4S] cluster. During catalysis, the Fe protein is an agent of electron transfer that 

sequentially delivers single electrons to the protein in a process coupled to MgATP hydrolysis 

(Zehr et al., 2003). In addition, the Fe protein has at least two, and possibly three, other 

functions: (i) it is required for the biosynthesis of FeMo cofactor (FeMoco) and 

apodinitrogenase maturation (Rangaraj et al. 1997); and (ii) it has been implicated as being 

possibly important in the regulation of the alternative systems (Burgess and Lowe 1996). 

The MoFe protein is an α2β2 heterotetramer encoded by nifDK with a Mr of 

approximately 240 kDa. Associated with MoFe protein are two novel metalloclusters, called 

P-cluster and FeMoco. The P-cluster is an [8Fe–7S] cluster that can be described in its 

reduced state as the covalent attachment of two regular [4Fe–4S] clusters through a shared 

corner S atom (Kim and Rees 1992; Peter et al. 1997; Mayer et al. 1999). Electron transfer is 

believed to proceed from the Fe protein [4Fe–4S] cluster to the P-cluster and then to FeMoco, 

which provides the substrate reduction site (Dos Santos et al. 2004). The structure of the 

FeMoco can be described as two bridged partial cubanes: a [Mo–3Fe–3S] partial cubane 

bridged to a [4Fe–3S] partial cubane via three sulfur atoms that bind to the Fe atoms of each 

cluster fragment (Drennan and Peters et al., 2004). 

At the protein level, the basic mechanism of nitrogenase is commonly described as 

follows: (i) formation of a complex between the reduced Fe protein with two bound ATP 

molecules and the MoFe protein; (ii) electron transfer between the two proteins coupled to the 

hydrolysis of ATP; (iii) dissociation of the Fe protein accompanied by re-reduction and 
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exchange of ATP for ADP; and (iv) repetition of this cycle until sufficient numbers of 

electrons (and protons) have been accumulated so that available substrates can be reduced 

(Rees and Howard 2000). 

Both two components of nitrogenase, dinitrogenase and deinitrogenate reductase, are 

irreversibly inactivated by oxigen, the latter having a half-life in air of 0.5 to 0.75 sec. 

(Zuberer, 1997). Conseguently, free-living, nitrogen-fixing bacteria only fix nitrogen in 

anaerobic or low oxygen environments (Eady, 1992). Aerobic N2-fixing organisms have 

developed a number of mechanisms to avoid exposure of these proteins to O2. In the legume-

rhizobia symbiosis, these include physical barriers by nodule cortex to oxygen diffusion 

(Witty and Minchen, 1990) and use of leghemoglobin, which binds oxygen and transports it to 

respiratory sites while excluding it from nitrogenase (Gallon and Chaplin, 1987; Witty and 

Minchin, 1994; Iannetta et al., 1995; James et al., 1996). Leghaemoglobin is the red pigment 

which colours the interiors of legume root nodules. Other heterocyst formation, dark phase N2 

fixation and other structural changes in cyanobacteria (Wolk, 1996; Fredickson and Bergman, 

1997), and respiratory protection in Azotobacter and other organisms (Prosperi, 1994). 

To agriculture, the most important type of BNF is symbiotic fixation between the root of 

a leguminous plant (i.e. alfalfa, clovers, peas, beans, etc.) and the soil bacterium Rhizobium 

and it is of considerable ecological significance. The association between legumes and 

rhizobial bacteria starts as an infection of the root tissues which later becomes a mutualistic 

relationship. Nodule development and subsequent N2 fixation is a complex process involving 

a large number of genes.  

Rhizobia occur in the soil as free-living in rhizosphere soil, stimulated by the flow of 

carbon from root plant. Nodulation process in legumes results from molecular signalling, the 

secretion of lipopolysaccharide, between host and rhizobia. The rhizobia are attracted and 

bound to the surface of root hairs by this specialized glycoprotein molecule, lectin, produced 

by the plant. Rhizobia, that are compatible with the legume root, exude acidic polysaccharide, 

named recadhesin which facilitates selective adsorption to the plant leucine. The presence of 

the rhizobia causes the root hair to curl prior to invasion. This invasion is facilitated by 

invagination of the wall of the root hair into tube or infection thread, and is rapid. Having 

entered the host's root cytoplasm, both the bacterial cells and the surrounding host cells 

multiply to enable development of the nodule. Inside the nodule, the rhizobial cells cease their 

motile habit and take on a non-motile "bacteroid" habit. Nitrogen fixation is carried on by 
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these specialized symbiontic cells, the bacteroids enclosed within the plant-derived 

peribacteroid membrane. This membrane control nutrient flow in the form of malate and 

succinate as well as the iron, molybdenum, and sulphur required in large quantities. Fixed N, 

as NH3, move to the plant. 

Infection with Rhizobium also results in the formation numerous nodulins, proteins 

expressed during symbiosis. Early nodulins function in infection, and in nodule development 

and morphogenesis; later nodulins (leghemoglobin and the enzyme uricase) play a role in 

nodule function and N2 fixation (Pawlowski, 1997). Nodulins expressed during 

legume/Rhizobium symbiosis have also been detected in mycorrhizal plants (Wyss et al., 

1990). 

 

 

1.1.2 ECOLOGICAL FACTORS ON BIOLOGICAL FIXATION 

 

Interactions between the microsymbiont and the plant are complicated by edaphic, 

climatic, and management factors. A legume-Rhizobium symbiosis might perform well in a 

loamy soil but not in a sandy soil, in the subhumid region but not in the Sahel, or under tillage 

but not in no-till plots. These factors affect either the microsymbiont, the host-plant, or both.  

Main edaphic factors limiting biological nitrogen fixation are related to soil:  

excessive moisture and waterlogging prevent the development of root hair and sites of 

nodulation, and interfere with a normal diffusion of O2 in the root system of plants. Sesbania 

rostrata and Aeschynomene sp. can actively fix N2 under these conditions because they are 

located on the plant stems, rather than on the roots. 

drought reduces the number of rhizobia in soils, and inhibits nodulation and N2 

fixation. Prolonged drought will promote nodule decay. Deep-rooted legumes exploiting 

moisture in lower soil layers can continue fixing N2 when the soil is drying. Mycorrhizal 

infection has also been found to improve tolerance of plants to drought (e.g., Acacia 

auriculiformis inoculated with the ectomycorrhizal Baletus suillus). Mycorrhiza are symbiotic 

associations between fungi and plant roots. Some mycorrhizal fungi develop exclusively 

outside the roots; these are called ectomycorrhiza (e.g., Baletus suillus). Others, called 

endomycorrhiza, grow inside the roots with their vesicles and arbuscules inside the roots and 
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with their fungal filaments extended outside (e.g., Glamus sp.). These are the vesicular-

arbuscular mycorrhiza, usually referred to as VAM. 

soil acidity and related problems of Ca deficiency and aluminum and manganese 

toxicity adversely affect nodulation, N2 fixation and plant growth (Wood, Cooper & Holding, 

1983). Research work on the identification of symbioses adapted to acid soil should focus on 

the host plant, because effective rhizobia adapted to- soil acidity can be found naturally and 

can be produced through genetic manipulations. 

phosphorus deficiency is commonplace in tropical Africa and reduces nodulation, N2 

fixation and plant growth. Identification of plant species adapted to low-P soils is a good 

strategy to overcome this soil constraint. The role of mycorrhizal fungi in increasing plant P 

uptake with beneficial effects on N2 fixation has been reported. Dual inoculation with 

effective rhizobia and mycorrhizal fungi shows synergistic effects on nodulation and N2 

fixation in low P soils (Trees are usually infected by mycorrhizal fungi in natural ecosystems 

in the tropics. The significance of this symbiosis in nature should be better recognised). The 

use of local rock phosphate has been recommended, particularly in acid soils, as an 

inexpensive source of P. The addition of P-solubilizing microorganisms, particularly of the 

general Psemdamaias, Bacillus, Penicillium, and Aspergillus can solubilize rock phosphate 

and organically bound soil P (which constitutes 95-99% of the total phosphate in soils). 

However, the use of these microorganisms is not widespread. Some reports show nodulation 

response to K under field conditions. However, other investigators consider the K effect to be 

indirect, acting through the physiology of the plant. 

mineral N inhibits the Rhizobium infection process and also inhibits N2 fixation. The 

former problem probably results from impairment of the recognition mechanisms by nitrates, 

while the latter is probably due to diversion of photosynthates toward assimilation of nitrates. 

Some strains of Rhizobium, and particularly stem-nodulating Azarhizobium caulinodans, fix 

N2 actively even when plants are growing in high-N soils (e.g., in the presence of 200 kg 

fertilizer N ha-1). Application of large quantities of fertilizer N inhibits N2 fixation, but low 

doses (<30 kg N ha-1) of fertilizer N can stimulate early growth of legumes and increase their 

overall N2 fixation. The amount of this starter N must be defined in relation to available soil 

N. 

various microelements (Cu, Mo, Co, B) are necessary for N2 fixation. Some of these 

are components of nitrogenase for example Mo. 
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The two important environmental determinants affecting BNF are: 

temperature affect N2 fixation adversely. This is easy to understand because N2 

fixation is an enzymatic process. However, there are differences between symbiotic systems 

in their ability to tolerate high (>35°C) and low (<25°C) temperatures. 

light, the availability of light regulates photosynthesis, upon which biological nitrogen 

fixation depends. This is demonstrated by diurnal variations in nitrogenase activity. A very 

few plants can grow and fix N2 under shade (e.g., Flemingia congesta under plantain canopy). 

In alley farming if hedgerows are not weeded, or if trees are planted with food crops like 

cassava, their nitrogen fixation and growth will be reduced due to shading. Early growth of 

legume trees is slow and they cannot compete successfully for light. 

Among biotic factors, the absence of the required rhizobia species constitute the major 

constraint in the nitrogen fixation process. The other limiting biotic factors could be: 

excessive defoliation of host plant; 

crop competition; 

insects and nematodes. 

 

 

1.1.3 NITROGEN IMMOBILIZATION 

 

The process of immobilization involves the incorporation of inorganic N, ammonium 

and nitrate, into organic N, microbial protein and nucleic acids mediated by microorganisms. 

The incorporation of N into the microbial biomass and organic N occurs through numerous 

enzymatic pathways. In general, the preferred inorganic N source for assimilation by bacteria 

and fungi is NH3/NH4
+ and microbial assimilation of NO3

- is minimal (Tiedje et al., 1981; 

Myrold and Tiedje, 1986). Nevertheless, substantial microbial assimilation of NO3
- has been 

observed in several forest soils (Davidson et al., 1992; Hart et al., 1994; Stark and Hart, 

1997; Berntson and Aber, 2000). In addition, it was shown that NH4
+ (Johnson et al., 2000) 

and NO3
-
 (Davidson et al., 2003) can be immobilized by abiotic processes as well. Typically, 

NH3 enters microbial cells by rapid diffusion across cytoplasmic membranes although there is 

now evidence of NH4
+ active transport in several bacteria (Merrick and Edwards, 1995).  

Biological NH4
+
 immobilization by soil microorganisms is mainly accomplished by two 

enzymatic pathways, either through glutamate dehydrogenase (GDH) or through glutamine 
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synthetase/glutamate synthase (GS/GOGAT). The glutamate and glutamine formed by these 

pathways serve as central N donors for transamination reactions yielding the amino acids and 

nucleotides which are the building blocks for proteins and nucleic acids. Although GDH was 

previously considered the major enzyme system involved in ammonium assimilation, it now 

seems clear that, at the low NH4
+
 concentration typical of most soils, GS/GOGAT is the major 

enzyme involved both in microorganisms and in plants (Miflin and Lea, 1977; Brown and 

Johnson, 1977; Lee and Stewart, 1978). The GS/GOGAT system has a much higher affinity 

for the substrate than glutamate dehydrogenase, then is operative requiring the input of energy 

in the form of ATP (Paul and Clark, 1996) while the GDH pathway is not ATP-dependent 

and immobilizes N at relatively high NH4
+ concentrations (>1mM) (Neidhardt et al., 1990). 

Assimilation of nitrogen as NH4
+
 by microorganisms leads to proton production and soil 

acidification while assimilation as NO3
- results in hydroxyl or bicarbonate ion production. 

Nitrate may be immobilized directly by both bacteria and fungi by assimilatory NO3
- 

reduction (ANR) (Paul and Clark, 1996; Berntson and Aber, 1999; Zogg et al., 2000; Perakis 

et al., 2001). The occurrence of nitrate assimilation in bacteria seems to be more common 

than in fungi, although it is in no way ubiquitous (Hall, 1978). Of the 2500 genera of fungi 

described, only 20 have been reported to assimilate nitrate (Payne, 1973; Downey, 1978). The 

enzymes responsible for reduction are assimilatory nitrate reductase and assimilatory nitrite 

reductase. The pathway of ANR is: 

 

NO3
- → NO2

- →NH2OH → NH4
+ → R-NH2    (Paul and Clark, 1996) 

 

The synthesis of the ANR enzymes (nitrate and nitrite reductases) is regulated by the 

global reactive nitrogen system, inducible by NO3
- (Merrick and Edwards, 1995) but 

repressed by NH4
+ (Gottschalk, 1979; Rice and Tiedje, 1989; Recous et al., 1990), or 

glutamine (McCarty, 1995). 

There is evidence that amino acids may form an important source of nitrogen for plants 

which may therefore compete with soil microorganisms (Chapin et al., 1993; Jones and 

Darrah, 1994; Kaye and Hart, 1997). Microorganisms may also uptake nitrogen in organic 

form. For example, all fungi appear able to utilise some organic nitrogen sources while certain 

plant pathogenic fungi may be unable to utilize inorganic forms (Jennings, 1989). Ericoid, 

some ectomycorrhizal and other fungi produce diffusible enzymes around the roots and 
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assimilate the lower molecular weight breakdown products of protein degradation (Read et 

al., 1989) to meet their nitrogen requirements. 

 

 

1.1.4 NITROGEN MINERALIZATION 

 

The amount of N produced by mineralization is a major control on N availability to 

plants especially in unfertilized systems (Binkley and Hart, 1989; Powlson and Barraclough, 

1993; Mengel, 1996). Nitrogen mineralization is the microbial process of converting organic 

nitrogen to an inorganic form, usually ammonium (NH+
4-N), which gives rise to their cellular 

respiration, coupled with energy (ATP) production and is therefore the opposite process of 

immobilization. Ammonium can then be further transformed into nitrate (NO3
--N). The first 

step, called ammonification, is the oxidation process of organic nitrogen to NH4
+, and is 

carried out by both aerobic and anaerobic microbes, while the second step, named nitrification 

is the process that further oxidizes NH+
4-N to NO3

--N and only aerobic microbes, mainly 

Nitrosomonas and Nitrobacter, are involved in nitrification. In most soils the ammonification 

rate is slower than the nitrification rate. 

 

Organic N   �  ammonification   �  NH4
+  �  nitrification   �  NO3

- 

 

 

1.1.5 AMMONIFICATION 

 

When plants or animals die they contribute organic nitrogen to the soil. As the organic N 

is assimilated into the microbial biomass, N in excess of microbial requirements is released as 

NH4
+ or mineralized. The major biological forms of this organic nitrogen include a broad 

range of proteins, microbial cell wall constituents such as amino-sugars and their polymers, 

and nucleic acids, such as DNA and RNA. Nitrogen is also mineralized from soil organic 

matter (SOM) which contains various N compounds including a large amount of 

heterocycling and phenolic N which is only slowly decomposed. Since proteins and peptides 

are a major source of mineralizable N (Mengel, 1996), a variety of enzymes (Ladd and 

Jackson, 1982) and microbes are involved. Mineralization of organic N is basically a 
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sequence of enzymatic reactions. Proteins are macro-molecules consisting of long chains of 

amino acids. Proteins are broken down by proteinases and peptidases to amino acids. Then 

NH3 is released from the amino acids through dehydrogenases and oxidases (Stevenson, 

1986). 

 

Proteins  �  proteinases  �  Amino Acids  �  oxidases dehydrogenase  �  NH4
+ 

 

The polymers of amino sugars, that are important components of bacterial and fungal 

cell walls, are hydrolyzed by glycosidases. Other compounds follow a similar enzyme 

mediated path from the intact macro-molecule to NH4
+. DNA and RNA are broken down 

rapidly by the action of nucleases to mono-nucleotides. Nucleotidases break down the mono-

nucleotides to nucleosides and PO3
4-. Other enzymes (nucleosidases) break these nucleosides 

down to purine and pyrimidine bases, which are in turn hydrolyzed to ammonium. Due to the 

phosphate ester bond, the energy content of nucleic acids are relatively high, and therefore 

they do not persist in soils (Paul and Clark, 1989), moreover the observation that free nucleic 

acids are degradated rapidly substantiates the ubiquitous presence of the nucleases in the soil 

environment. 

 

Nucleic Acids    �    nucleases      �          Mononucleotides 

Mononucleotides       �        nucleosidases     �       Purines 

Purines    �     hydrolyases   �   NH4
+ 

 

 

1.1.6 CONTROLS ON MINERALIZATION/IMMOBILIZATION 

 

Mineralization is always accompanied by immobilization. The two processes operate 

simultaneously in the soil within relatively small volumes of soil and are mutually dependent. 

Most of the N released during mineralization is quickly assimilated in the microbial biomass 

and immobilized in the microbial tissue, if enough C is available. The immobilized N will be 

newly available at the end of the growing phase of the microbial population, as the turnover of 

the microbial biomass is very fast (few days) and the microbial N represents one of the main 

components of the “available N pool” in the soil (Schnürer et al., 1985). 
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Mineralization and immobilization are widely distributed because they are so 

fundamental — all heterotrophic soil organisms consume organic materials for energy and C 

and immobilize and mineralize N as a by-product. The widely distributed nature of 

mineralization and immobilization means that the environmental regulation of these processes 

is relatively straightforward.  

Rates of activity increase with temperature and are optimal at intermediate water 

contents, similar to respiration in Fig. 1.2, although it is important to recognize that 

significant activity is likely to occur at extremes of both temperature and moisture. In most 

soils the quantity and quality of detrital inputs are the main factors that control the rates and 

patterns of mineralization and immobilization. When moisture and temperature are 

favourable, large inputs of organic matter lead to high rates of microbial activity and the 

potential for high rates of mineralization and immobilization. 

 

 

Figure 1-2. The relationship between water-filled pore space (a measure of soil moisture availability) 
and relative amount of microbial activities. (From Linn and Doran, 1984). 

 

As a result of the simultaneous nature and small scale of these processes, it is also 

important to make a distinction between gross and net mineralization and immobilization. 

Gross N mineralization is the total amount of soluble N produced by microorganisms, and 

gross N immobilization is the total amount of soluble N consumed. Net mineralization is the 

difference between gross mineralization and gross immobilization. When gross mineralization 
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exceeds gross immobilization, inorganic N in the soil is increasing, i.e., there is net 

mineralization. When gross immobilization exceeds gross mineralization, inorganic N in the 

soil is decreasing, i.e., there is net immobilization. 

One of the critical points in the net balance mineralization/immobilization is the C/N 

ratio of the substrate. To be able to measure a net mineralization, it is usually necessary that 

the substrate to be decomposed has a C:N ratio lower than 30 (more than 1.18 % of N), the 

microbes have no trouble obtaining N and as a result mineralization dominates over 

immobilization, and plant-available N increases in soil. On the other hand, when adding a 

material with a high C:N ratio (625:1) to soil, the microbes are keen to obtain the energy and 

C but cannot degrade this material without additional N because it does not have sufficient N 

to allow the microbes to build proteins. So the microbes must immobilize N from their 

environment, resulting in a decrease in plant-available N in the soil. As a general rule of 

thumb, materials with a C:N ratio >30:1 stimulate immobilization, while those with a C:N 

ratio <30:1 stimulate mineralization. However a generalization is very difficult to make, as 

other factors such as the quality of the substrate (lignin and pholiphenolic content) can 

influence the mineralization rates (Sequi, 1989). Highly decomposed substances with a low 

C:N ratio, for example., soil organic matter (humus or compost) in which labile C and N have 

been depleted and the remaining C is in complex forms are inherently resistant to 

decomposition and therefore resistant to mineralization. 

The balance between mineralization and immobilization is also affected by organism 

growth efficiency. Fungi generally have a higher C/N ratio in their tissues than bacteria and 

may therefore immobilize less N per unit of substrate, and mineralize N more readily. 

However this difference can be offset by fungi having a higher efficiency for C assimilation 

(less C lost as CO2) (Wood, 1995).  

 

 

1.1.7 NITRIFICATION 

 

The process of nitrification is a major control point in the N cycle and rates have been 

intensively studied in a variety of ecosystems. 

Nitrification is the soil microbial process responsible for conversion of NH4
+
-N into 

nitrite (NO2
--N) and then into NO3

-; gaseous nitrogen compounds (NO, N2O, N2) can be 
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produced as a by-product of nitrification. Nitrification is an aerobic process performed both 

by autotrophs and heterotrophs microorganisms in soils. Autotrophic nitrification is by far the 

most studied process (Prosser, 1986; Umarov, 1990) and the main process recognized in most 

soils, although heterotrophic nitrification may be of importance in specialized situations (van 

Neil et al., 1993). 

 

 

1.1.8 AUTOTROPHIC NITRIFICATION 

 

The most diffused pathway of nitrification is the chemoautotrophic oxidation of 

ammonium (NH4
+
) to nitrate (NO3

-
). A specific group of microorganisms; gram-negative 

bacteria of the family Nitrobacteraceae are responsible for autotrophic nitrification (Bock et 

al., 1992; Schmidt and Belser, 1994). For these groups of chemoautotrophic bacteria the 

oxidation of NH4
+
 to NO2

-
 and to NO3

-
 is the sole energy source available (Wood, 1986). With 

the exception of some strains of Nitrobacter, nitrifying bacteria utilise CO2 as the major 

carbon source (Bock, 1978; Matin, 1978). Few strains are able to grow mixotrophically, 

assimilating organic compounds, but the rate of growth on these substrates is quite limited 

(Matin, 1978; Krummel and Harms, 1982). Nitrifiers have a very slow growth rate as, for 

each carbon fixed in the chemosynthesis, they have to oxidise about 35 molecules of NH4
+ or 

100 molecules of NO2
- (Baas Becking and Parks, 1927). The NH4

+-N can originate from 

mineralization of soil organic material by other organisms or from fertilizer: 

 

NH4
+ + 2O2 → NO3

- + 2H+ + H2O + energy 

 

No bacteria have been found which can convert NH3 to NO3
- directly (Hooper et al., 

1997). In autotrophic nitrification, the conversion of N takes place in two separate steps 

(Haynes, 1986). 

In the first one step, bacteria called ammonium-oxidizers convert NH4
+
 to NO2

-
 with 

NH2OH as an intermediate. They are given names with the prefix Nitroso-, and belong to the 

genera Nitrosomonas, Nitrosoccocus, Nitrosospira e Nitrosolobus. Species of Nitrosomonas 

are the best known in this group. The oxidation of NH4
+
 to NO2

-
 is obtained through several 

reactions. The first key reaction is the transformation of ammonia (NH4
+) to hydroxylamine 
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(NH2OH), which involves NH4
+ (Suzuki et al., 1974), molecular O2 (Hollocker et al., 1981) 

and reductant (Hooper, 1969; Suzuki et al., 1976) and yields hydroxylamine as a product 

(Lees, 1952, Hofman and Lees, 1953; Nicholas and Jones, 1960): 

 

NH4
+
   + O2   + H

+
   +   2e

-
   →   NH2OH   +   H2O 

NH2OH  +  O2  →  NO2
-  H+  H2O 

NH4
+  +  2e-  2O2  →  NO2

-  2H2O 

 

The reaction is catalysed by an enzyme known as ammonia monooxygenase, which is 

located in the cellular membrane (Suzuki and Kwok, 1981; Tsang and Suzuki, 1982). 

Acetylene (C2H2) acts as an irreversible inhibitor of this enzyme (Hynes and Knowles, 1978). 

It seems that the enzyme, in the attempt to oxidise the C2H2, becomes covalently bound to the 

substrate and remains permanently modified and destroyed (Hyman and Wood, 1985) and 

thereby provides a means for experimentally differentiating autotrophic from heterotrophic 

nitrification in soil. 

The oxidation of NH4
+ to NH2OH is energetically unfavourable (∆G°’ = + 17 kJ/mol) 

(Wood, 1986). For the reaction to proceed, there is the need for a parallel reaction which 

provides electrons. It seems that monooxygenase accepts electrons from the ubiquinone-

cytochrome b region of the transport chain (Fig. 1.3), with NADH acting as a donor (Wood, 

1986). 

In a second step NH2OH is converted to NO2
-
. Andersson and Hooper (1983) have 

found that water contributes one oxygen to the synthesis of NO2
- in a mechanism described as 

follows: 

 

E   +   H2NHO   →   E-NO+   +   3 H+   +   4 e- 

E-NO
+
   +   H2O   →   E   +   NO2

-
   +   2 H

+
 

 

Electrons which are produced in the course of these subsequent oxidations flow through 

a electron transport chain, which is completely reversible except for the terminal oxidase (Fig. 

1.3). As can be seen from Figure 1.3, hydroxylamine oxidoreductase feeds electrons to a 

point close to the ubiquinone, while ammonia monooxygenase abstracts electrons, probably at 
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the same point. It also can be seen that monooxygenase and terminal oxidase are competing 

sinks for the electrons and the balance between them needs to be carefully controlled.  
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Figure 1-3. Electron transport in Nitrosomonas (from Wood, 1986). 
 

Intermediary compounds formed during the oxidation of hydroxylamine to nitrite can 

result in the formation of NO (Fig. 1.4), which can escape to the atmosphere and influence the 

photochemical production of ozone (O3) and the abundance of hydroxyl (OH) radicals in air, 

primary oxidants for a number of tropospheric trace gases including methane. Ammonia 

oxidizers also appear able to produce NO via NO2
- reduction, which results in the production 

of N2O, an important greenhouse gas that can also escape to the atmosphere. Nitrite reduction 

occurs when ammonia oxidizers use NO2
- as an electron acceptor when O2 is limiting—

effectively becoming denitrifying nitrifiers. 
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Figure 1-4. Autotrophic nitrification pathways including pathways for gas loss. Broken lines indicate 
unconfirmed pathways (from Firestone and Davidson, 1989). 

 

In most soils the nitrite produced by ammonia oxidizers does not accumulate but is 

quickly oxidized to nitrate by the nitrite-oxidizing bacteria when they perform nitrite 

oxidation. 

Nitrite oxidation is carried out by a different bacterium, Nitrobacter is regarded as the 

dominant (Watson et al., 1981; Laanbroek and Woldendorp, 1995), with detectable 

intermediates and the extra atom of oxygen which is derived from water (Aleem et al., 1965, 

Kumar et al., 1983): 

 

NO2
-   +   H2O   →   NO3

-   +   2H+   +   2e- 

2H+  +  2e-  +  ½ O2  →   H2O 

NO2
-  +  ½ O2  →  NO3

- 

 

The oxidation is coupled to ATP synthesis (Cobley, 1976a) via a mechanism which 

could involve some direct chemical intermediate (Cobley, 1976a,b) or some other pathway 

involving a proton pump (Ferguson, 1982). 

 

 

1.1.9 HETEROTROPHIC NITRIFICATION 

 

Heterotrophic nitrification may be broadly defined as the oxidation of reduced N 

compounds producing NO2
- and NO3

-. So-called heterotrophic nitrification is not linked to 

cellular growth, as it is for autotrophic nitrification. Heterotrophic organisms use organic 

substances as both a carbon and an energy source. Eylar and Schmidt (1959) isolated 978 

cultures of heterotrophic organisms from twelve actively nitrifying soils and tested them for 
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their ability to form NO2
-
 and NO3

-
 in glucose peptone broth. Though the yields of NO2

- were 

very low, fungus isolates were the most numerous and active NO2
-
 producers and fifteen of 

the fungi formed NO3
-
 in addition to NO2

-
 (Table 1.2). 

 
Table 1-2. Microbial forms capable of producing NO2

- and NO3
- when grown on glucose and peptone 

medium (from Eylar and Schmidt., 1959). 
 

 

Isolates 

 

Total 
number 

 

Isolates forming  
NO2

-
-N in excess of 

  

Isolates forming  
NO3

-
-N in excess of  

  0.2 µg/ml 0.5 µg/ml  5.0 µg/ml 

 

Actinomycetes 

Bacteria 

Fungi 
 

 
222 
341 

415 
 

 
16 
24 

26 

 
    1 
    8 

  14 

  
    0 
    1 

  15 

Total 978 66   23    16 

 

 

 
Most of the work done to investigate heterotrophic nitrification has been done on 

Aspergillus flavus. Eylar and Schmidt. (1959) identified most of the fungi which produced 

nitrate as Aspergillus flavus (16 of the 18 active cultures). However, it has been shown that 

numerous other fungi isolated from coniferous forest soils have the ability to nitrify (Remacle, 

1977a; Remacle, 1977b; Johnsrud, 1978). 

Though fungi have been found to be the most efficient heterotrophic nitrifiers (Odu and 

Adeoye, 1970) a number of heterotrophic bacteria (Tate, 1977; Castignetti and Hollocher, 

1982; Kuenen and Robertson, 1988; Papen et al., 1989) and an actinomycete (Remacle, 

1977b) have been identified as potential nitrifiers in soil. 

Different pathways have been postulated, the substrate for heterotrophic nitrification is 

generally amino N although some organisms have been identified that can oxidize NH4
+ 

through an inorganic pathways involving NH2OH (Aleem, 1975; Prosser, 1989): 

 

NH4
+
   →   NH2OH   →   NOH   →   NO2

-   
→   NO3

-
 

 

The second heterotrophic pathway is organic and appears limited to fungi. Organic 

pathway involve oxidation of an amine or amide in place of hydroxylamine, with subsequent 

oxidation to a nitroso and then to a nitro-compound (Doxtader, 1965): 
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RNH2   →   RNHOH   →   R-NO   →   R-NO2   →   NO3 

 

Heterotrophic nitrification has not been extensively studied, the rate of production of 

NO2
- or NO3

- by heterotrophic nitrification have generally been much lower than autotrophic 

nitrification (Prosser, 1989; Jetten et al., 1997). From the results reported in the literature it 

seems that heterotrophic nitrification does not yield any significant quantity of energy. The 

heterotrophic bacterium Tiosphera pantotropha, has been found able to catalyse the oxidation 

of NH4
+
 to NO2

-
 only if an organic electron donor is present (acetate in the specific case) 

(Kuenen and Robertson, 1987; Robertson et al., 1988). Also, other heterotrophic 

microorganisms have been found to be able to nitrify, but only if a source of energy is 

supplied (Castignetti, 1988). Heterotrophic nitrification may be important in view of the 

possible ecological significance of some of the products identified. Nitrification led by the 

fungus Aspergillus flavus has been proposed as a mechanism which could function as an 

endogenous metabolism for the organism (Van Gool and Schmidt, 1973). Focht and 

Verstraete (1977) suggested that heterotrophic nitrifiers could utilize certain intermediates of 

nitrogen oxidation (hydroxamic acids) as growth factors, possibly linked to iron uptake, or as 

biocidal factors to assist in their competition and survival. 

Heterotrophic nitrification may dominate over autotrophic under certain conditions. A 

low pH is one factor that seems to strongly restrict autotrophic nitrification (Kuenen and 

Robertson, 1988), so heterotrophic nitrification may be of significance in acidic forest soils 

(Killham, 1987,1990; Duggin 1991; Papen and von Berg, 1998). However, recent studies 

have shown that autotrophic nitrification does occur in acidic coniferous forest soils (De Boer 

and Kowalchuk, 2001), although the exact mechanisms by which nitrification occurs at low 

pH are not well understoodand, and that heterotrophic nitrification does not play an important 

role (De Boer et al., 1992; Martikainen et al., 1993; Rudebeck and Persson, 1998). 

Heterotrophic nitrification thus appears important in some soils and microenvironments, 

perhaps particularly where autotrophic nitrifiers are chemically inhibited, but are thought now 

to rarely dominate the soil nitrifier community. 
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1.1.10 CONTROLS ON NITRIFICATION 

 

The single most important factor regulating nitrification in the majority of soils is 

ammonium supply (Fig. 1.5). Where decomposition and thus N mineralization is low or 

where NH4
+
 uptake and thus N-immobilization by heterotrophs or plants is high, nitrification 

rates will be low. Conversely, any ecosystem disturbance that increases soil NH4
+ availability 

will usually accelerate nitrification unless some other factor is limiting. Tillage, fire, clear-

cutting, waste disposal, fertilization, atmospheric N deposition—all have well-documented 

effects on nitrate production in soils, mostly due to their effects on soil NH4
+ pools. 

The fact that nitrification usually accelerates only when the NH4
+ supply exceeds plant 

and heterotroph demand implies that nitrifiers are relatively poor competitors for NH4
+
 in the 

soil solution. In fact this is the case: nitrification rates are typically low in midsuccessional 

communities and aggrading forests because of high plant demand for N, and also following 

the addition of high C:N residues to agricultural soils because of high microbial (heterotroph) 

demand for N. In old-growth forests and mature grasslands, plant N demand has diminished 

and consequently nitrification is usually higher than in midsuccessional communities in which 

plant biomass is still accumulating, but not usually as high as in early successional 

communities, in which N supply often greatly exceeds demand (Robertson and Vitousek, 

1981). 

Oxygen is another important regulator of nitrification in soil. All known nitrifiers are 

obligate aerobes, and nitrification proceeds very slowly if at all in submerged soils. In flooded 

environments such as wetlands and lowland rice, nitrifiers are active only in the oxidized zone 

around plant roots and at the water–sediment interface, usually only a few millimeters thick. 

And although some nitrifiers have the capacity to use nitrite rather than O2 as an electron 

acceptor during respiration, O2 is still required for ammonia oxidation. 

Nitrifiers are little different from other aerobic microbes with respect to their response to 

temperature, moisture, and other environmental variables (see Fig. 1.5). Nitrification occurs 

slowly but readily under snow and in refrigerated soils, and soil transplant experiments (e.g., 

Mahendrappa et al., 1966) have demonstrated an apparent capacity for nitrifiers to adapt to 

different temperature and moisture regimes. For many decades nitrifiers were thought to be 

inhibited in acid soils, probably because in many cases and especially in soils from cultivated 

fields, raising soil pH with calcium or magnesium carbonate stimulates nitrification, and 
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culturable nitrifiers exhibit a pH optimum of 7.5–8 (Prosser, 1989). We now recognize that 

nitrification can be high even in very acid forest soils (pH< 4.5; Robertson, 1989), although 

the physiological basis for this is still not well understood (DeBoer and Kowalchuck, 2001). 

 

 

Figure 1-5. Environmental controls on nitrification (from Robertson, 1989, after Groffman et al., 

1988). The most proximal scale (right side) is at the cellular level. 
 

 

1.1.11 DENITRIFICATION 

 

When oxygen concentration in the environment is not sufficient to supply for the 

demand of microbial respiration, a wide variety of mostly heterotrophic bacteria are able to 

use NO3
- rather than oxygen (O2) as a terminal electron acceptor during respiration. Because 

nitrate is a less efficient electron acceptor than O2, most denitrifiers undertake denitrification 

only when O2 is otherwise unavailable. In most soils this occurs mainly following rainfall as 

soil pores become water-saturated and the diffusion of O2 to microsites is slowed drastically. 

Typically denitrification starts to occur at water-filled pore space concentrations of 60% and 

higher (Fig.). In wetland and lowland rice soils diffusion may be restricted most of the time. 

Oxygen demand can also exceed supply inside soil aggregates and in rapidly decomposing 
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litter. Denitrification is a crucial part of the overall N cycle. It is the only point in the N cycle 

at which fixed N re-enters the atmosphere as N2; it thus serves to close the global N cycle. 

From a management perspective, denitrification is advantageous when it is desirable to 

remove excess NO3
- from soil prior to its movement to ground or surface waters (Lowrance et 

al., 1984). However, in managed ecosystems it is usually desirable to minimize denitrification 

in order to conserve N further for plant uptake; in regions with ample rainfall ecosystem N 

losses due to denitrification can compare or exceed losses by nitrate leaching. 

The process is generally referred as dissimilatory nitrate reduction as, starting from the 

form of NO3
-, N can be reduced, in subsequent steps, until it is finally transformed into 

molecular N (N2), and can be lost from the system as NO, N2O or N2 (Knowles, 1981; Tiedje, 

1988). Globally, denitrification in soil may account for > 60% of total N2 + N2O production 

(Bowden, 1986; Aulakh et al., 1992). 

It is carried out by a broad array of soil bacteria, including organotrophs, chemo- and 

photolithotrophs, N2 fixers, thermophiles, halophiles, and various pathogens. Over 50 genera 

with over 125 denitrifying species have been identified (Zumft, 1992). In soil, most culturable 

denitrifiers are facultative anaerobes from only 3–6 genera, principally Pseudomonas and 

Alcaligenes (Focht and Verstraete, 1977) and to a lesser extent Bacillus, Agribacterium, and 

Flavibacterium (Tiedje, 1994). Denitrification is usually thought of as a bacterial process, but 

Shoun et al. (1992) reported that many fungi are capable of evolving N2O under anaerobic 

conditions. 

Heterotrophic bacteria use NO3
- as their primary electron acceptor for obtaining energy 

from organic compounds when low O2 availability restricts their metabolism according 

following equation: 

 

5(CH2O) + 4NO3
- + 4H+   5CO2 + 7H2O + 2N2 + energy 

 

Some microorganisms can be obtain energy by using NO3
- for oxidation of inorganic 

compounds, S
2-

, Fe
2+

 (autotrophic denitrification). This occurs where NO3
- 
diffuses into zones 

rich in FeS. 

However, heterotrophic denitrification is the most important of the two processes into 

which organisms obtain energy (ATP) by electron transport phosphorylation via the 

cytochrome system (Tiedje, 1982). 
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The general pathway is: 

 

2NO3
-
→ .2NO2

- → 2NO  → N2O  → N2 

 

All steps within this metabolic pathway are catalyzed by complex multisite 

metalloenzymes with characteristic spectroscopic and structural features (Berks, 1995). In the 

overall process (Fig. 1.6) NO3
- is transported through the cellular membrane into the 

cytoplasm (1). It is then reduced in 4 steps by nitrate (2), nitrite (3), nitric oxide (4) and 

nitrous oxide (5) reductases (Payne, 1981; Hochstein & Tomlinson, 1988). The electrons 

necessary for these reductions are obtained from organic matter via an electron transport chain 

(Figure 1.3). O2 and H2O2 can be used as an alternative electron acceptors. At each step the 

process can be inhibited by different substances; acetylene (C2H2) at high concentrations can 

inhibit step (5), while oxygen can inhibit both denitrifying enzyme activity and the synthesis 

of new denitrifying enzymes (Payne, 1973; Smith and Tiedje, 1979). 
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Figure 1-6. The process of denitrification. Reductase redox-active centres are shown encircled. (From 

Lloyd, 1993). 
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Some organisms possess the overall pathway, while others may carry out only a few of 

these steps. Some bacteria produce only N2, while others give a mixture of N2O and N2, and 

some only N2O (Kaplan & Wofsey, 1985; Stouthamer, 1988; L.A. Robertson & Kuenen, 

1991). Depending on conditions, at any step in this process, intermediate products can be 

exchanged with the soil environment, making denitrifiers a significant source of NO2
-
 in soil 

solution and important sources of the atmospheric gases NO and N2O.  

Each denitrification enzyme is inducible, primarily in response to the partial pressure of 

O2 and substrate (C) availability. Because enzyme induction is sequential and substrate 

dependent, there is usually a lag between the production of an intermediate substrate and its 

consumption by the next enzyme. In pure culture, these lags can be on the order of hours (Fig. 

1.7); in the field lags can be substantially longer, and differences in lags among different 

microbial taxa may significantly affect the contribution of denitrifiers to fluxes of NO and 

N2O to the atmosphere. That induced enzymes degrade at different rates, and more slowly 

than they are induced, also leads to a complex response to the environmental conditions that 

induce denitrification; whether a soil has denitrified recently (whether denitrifying enzymes 

are present) may largely determine its response to newly favorable conditions for 

denitrification. Rainfall onto soil that is moist, for example, will likely lead to a faster and 

perhaps stronger denitrification response than will rainfall onto the same soil when it is dry 

(Groffman and Tiedje, 1988; Bergsma et al. 2002). 

 

 

Figure 1-7. The sequence of products formed during denitrification. (From Cooper and Smith,1963) 
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1.1.12  CONTROLS ON DENITRIFICATION 

 

For decades after its discovery as an important microbial process, denitrification was 

assumed to be important only in aquatic and wetland ecosystems. It was not until the advent 

of whole-ecosystem N budgets and the use of 
15

N to trace the fate of fertilizer N in the 1950s 

that denitrification was found to be important in unsaturated soils. These studies suggested the 

importance of denitrification in fertilized agricultural soils, and with the development of the 

acetylene block technique in the 1970s (Yoshinari and Knowles, 1976; Smith et al., 1978), the 

importance of denitrification in even forest and grassland soils was confirmed. Acetylene 

selectively inhibits nitrous oxide reductase (Fig. 1.6), allowing the assessment of N2 

production by following N2O accumulation in a soil core (Tiedje, 1994) or monolith treated 

with acetylene (Ryden and Dawson, 1982; Rolston et al., 1982). Unlike N2, small changes in 

N2O concentration are easily detected in air. 

Most of denitrifying bacteria require anaerobic conditions, but some species continue to 

denitrify at varying levels of dissolved oxygen (Lloyd et al, 1987; Jetten et al, 1997). 

There is much controversy about this point, however, as certain species have been found 

to denitrify in a range of dissolved oxygen concentration that goes from 90% of air saturation 

for Thiosphera pantotropha (Robertson and Kuenen, 1984) to 53% for Alcaligenes sp. (Krul 

and Veeningen, 1977) to complete anaerobic conditions for Paracoccus denitrificans 

(Alefounder et al., 1981). Robertson et al. (1988) have found that Thiosphera pantotropha is 

able simultaneously to respire oxygen, to denitrify and to nitrify, the latter two metabolic 

pathways reaching the maximum activity at 25% air saturation. This behaviour of Tsa. 

pantotropha has been explained as the presence of a “bottleneck” in the flow of electrons of 

the respiratory chain at the level of cytochrome c, which limits the rate at which NADH can 

be reoxidized by this route. This causes a reduction in the cytochrome chain which allows 

electrons to flow to other pathways (Fig. 1.8), thus allowing a faster rate of NADH oxidation 

(Robertson et al., 1988). 
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Figure 1-8. Simplified scheme showing the various possible options for NAD(P)H utilization 
available to Tsa. pantotropha (from Robertson et al., 1988). 

 

Many other organisms have been found to have the same ability to denitrify aerobically, 

often associated with heterotrophic nitrification activity (Robertson and Kuenen, 1990b). 

Denitrification activity has been reported in dried soils and in desert soils (Virginia, 

1982; Smith and Parsons, 1985; Peterjohn, 1991), where it seems to depend on a complex 

interplay between soil moisture, carbon, nitrogen availability, pH, temperature and O2. It is 

still a matter of controversy whether the combinations of environmental factors can create 

microsites convenient for denitrification activity in aerobic soils, or if aerobic denitrification 

does really occur (Lloyd, 1993). 

Today, denitrification is known to be an important N cycle process wherever O2 is 

limiting and C and NO3
- are available. In unsaturated soils, this frequently occurs within soil 

aggregates (Sexton et al., 1985b), in decomposing plant litter (Parkin, 1987), and in 

rhizospheres (Nieder et al., 1989; Prade and Trolldenier, 1990). Soil aggregates vary widely 

in size but in general are composed of small mineral particles and pieces of organic matter �2 

mm diameter that are glued to each another by means of biologically derived polysaccharides. 

Like most particles in soil, aggregates are surrounded by a thin water film that impedes gas 

exchange. Modelling efforts in the 1970s and 1980s suggested that the centres of these 

aggregates ought to be anaerobic owing to a higher respiratory demand in the aggregate centre 

than could be satisfied by O2 diffusion from the bulk soil atmosphere. This was confirmed 

experimentally in 1985 (Sexstone et al., 1985), providing a logical explanation for active 
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denitrification in soils that appeared otherwise to be aerobic, and an explanation for the almost 

universal presence of denitrifiers and denitrification enzymes in soils worldwide. 

In addition to O2, denitrification is also regulated by soil C and NO3
- . C is important 

because most denitrifiers are heterotrophs (Poth and Focht, 1985) and require reduced C as 

the electron donor, although as noted earlier, denitrifiers can also be chemo- and 

photolithotrophs. Nitrate serves as the electron acceptor and must be provided via 

nitrification, rainfall, or fertilizer. However, O2 is the preferred electron acceptor because of 

its high energy yield, and thus must be depleted before denitrification occurs. In most soils the 

majority of denitrifiers are facultative anaerobes (Knowles, 1981; Tiedje, 1988) that will 

simply avoid synthesizing denitrification enzymes until O2 drops below some critical 

threshold. In the field O2 is by far the dominant control on denitrification rates. Denitrification 

can be easily stimulated in an otherwise aerobic soil by removing O2 and can be inhibited in 

saturated soil by drying or otherwise aerating it. 

The relative importance of C and NO3
-
 , the other major controls, will vary by 

ecosystem. Under saturated conditions, such as those found in wetlands and lowland rice 

paddies, NO3
- limits denitrification because the nitrifiers that provide NO3

- are inhibited at 

low O2 concentrations. Consequently, denitrification occurs only in the slightly oxygenated 

rhizosphere and at the sediment–water interface, places where there is sufficient O2 for 

nitrifiers to oxidize NH4
+ to NO3

- , which can then diffuse to denitrifiers in the increasingly 

anaerobic zones away from the root surface or sediment– water interface. It is often difficult 

to find NO3
- in persistently saturated soils, not only because of low nitrification, but also 

because of the tight coupling between nitrifiers and denitrifiers (Patrick, 1982; Reddy and 

Patrick, 1986; Mosier et al., 1990). In wetlands with fluctuating water tables or with 

significant inputs of NO3
- from groundwater, NO3

- may be more available.  

In unsaturated soils, on the other hand, the availability of soil C more often limits 

denitrification. In these soils C supports denitrification both directly by providing donor 

electrons to denitrifiers and indirectly by stimulating O2 consumption by heterotrophs. It can 

be difficult to distinguish between these two effects experimentally; from a management 

perspective, there probably is no need to. It is well recognized that exogenous C stimulates 

denitrification (Bremner and Shaw, 1958a,b; Knowles, 1981), although the C added must be 

in an available form and must not lead to N immobilization sufficient to deplete NO3
-
 

availability (Firestone, 1982). 
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Tiedje (1988) and Groffman et al. (1988) used the terms distal and proximal to describe 

the hierarchical nature of major controls on denitrification. In this scalar characterization (Fig. 

1.9), different soil and ecosystem attributes affect C, NO3
- and O2 availability differentially, 

with these attributes themselves affected by physical and biological phenomena that occur at 

larger spatial scales. Water, for example, affects denitrification principally via its influence on 

O2 availability and on the diffusivity of NO3
- and C; water, in turn, is affected by (among 

other factors) soil porosity and transpiration rates, which are influenced, in turn, by (among 

other factors) the plant community and soil invertebrate activity. Eventually, of course, all 

controls evolve from climate and land use influences. The usefulness of this scheme is in its 

identification of how ecosystem disturbance, whether delivered by management or by nature, 

might affect denitrification fluxes. 

 

 

 

Figure 1-9. Major from the cellular (right) to landscape scales (from Robertson, 1989). 
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1.2 GREENHOUSE GASES NON-CO2 

 

The earth's surface with its atmosphere acts as a greenhouse. Most of the Solar radiation 

of wavelengths between 0.3 and 4 µm (short-wave radiation) is transmitted through the 

atmosphere to the surface of the Earth and absorbed, warming it. Only about one third of it is 

reflected. The energy absorbed is balanced (in the long term) by outgoing thermal radiation (4 

to 100 µm wavelength) in the long-wave band (infrared radiation). Radiatively-absorbing 

particles and molecules, present mainly in the first 10 - 15 km of the atmosphere, are 

transparent to short-wave radiation but opaque to long-wave. They thus permit the sun's 

radiation to penetrate to the earth surface and by partially trapping and remitting the outgoing 

thermal radiation (at approximately 8-14 µm) are responsible of the increase of earth's surface 

and lower atmosphere temperature of about 33°C (around 15ºC rather than –18ºC, 

Schlesinger, 1995). 

This phenomenon is known as the GREENHOUSE EFFECT. Though clouds and water 

vapour are the main contributors to this process, other gases present at low or trace 

concentrations contribute significantly to the greenhouse effect. These so-called trace gases 

include carbon dioxide (CO2), methane (CH4), tropospheric ozone (O3), nitrous oxide (N2O) 

and some chlorofluorocarbons (CFC-11, CFC-12) (IPCC, 1990). While clouds and water 

vapour dynamics follow a natural climatic pattern (atmospheric hydrogeological cycle), 

human activities have significantly increased the atmospheric concentration of these trace 

gases during the last century. The increase in these gas are documented by a 20 year or longer 

record of atmospheric measurements at a range of sampling stations around the world 

(Rasmussen & Khalil, 1986; Prinn et al., 1990; Boden et al., 1992; Steele et al., 1992) and by 

the long term record provided through the analysis of gases trapped in air bubbles in glacial 

ice (Raynaud & Barnola, 1985; Raynaud et al., 1988; Oeschger & Arquit, 1989). The soil 

ecosystem, in particular converted and agricultural soils, is considered as one of the important 

anthropogenic source for Greenhouse gases emissions to the atmosphere. Soil 

microorganisms produce and consume NO, N2O and CH4. The net emission of these gases 

from soils result from the balance of oxidative and reductive microbial metabolism. 
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1.2.1 NITROUS OXIDE 

 

Nitrous oxide (N2O) is a very important trace greenhouse gas, which, although present 

at a minor concentration in the atmosphere than CO2, has high absorbing capacity for infrared 

radiations and long residence time. According to Bouwman (1990a) N2O's thermal absorption 

potential is about 150 times higher than that of CO2 and about 5 times higher than that of 

CH4. It has a global warming potential (i.e. the direct warming effect in relation to CO2 at a 

time horizon of 100 years) of 310 (Houghton et al., 1995). It has a residence time against 

stratospheric photochemical destruction of evaluated between 166 years and 120 years (Prinn 

et ai., 1990, OTA, 1991, IPCC, 1994). 

In addition to contributing to the greenhouse effect, N2O is a natural regulator of the 

production of ozone. Nitrous oxide is photo-oxidized in the stratosphere to NO, which 

consumes ozone in a catalytic reaction (Crutzen, 1970; Cicerone, 1987; Solomon, 1999). It 

has been estimated that doubling the concentration of N2O in the atmosphere would result in a 

10% decrease in the stratospheric ozone layer (Crutzen and Ehhalt, 1977). 

Ice core measurements show that the pre-industrial value of N2O was relatively stable at 

about 285 ppbv for most of the past 2000 years, and started to increase around the year 1700 

(Pearman et al., 1986; Khalil and Rasmussen, 1988b; Etheridge et al., 1988; Zardini et al., 

1989). Its actual atmospheric concentration is about 313 ppbv (Rahn and Wahlen, 1999), 

contributing at present approximately 5% to the observed global warming (Myhre et al., 1998) 

and it is further increasing with at a rate of 0.75% (Robertson, 1993), or 0.25% (IPCC, 1994; 

Houghton et al., 1996; Battle et al., 1996) per year.  

The anthropogenic sources of N2O include the burning of fossil fuels, industrial 

processes and agriculture, but it is agriculture, particularly the use of mineral fertilizers, that is 

considered the most important of these sources (FAO and IFA, 2001). Agricultural activities 

are presently estimated to contribute from 30% to 90% of the total N2O emission (Davidson, 

1991, Iserman, 1994, Mosier, 1994), depending on the agroecosystem and agricultral 

practices considered. 

Overall, terrestrial ecosystems represent the main source of N2O, about 57% of the 

global atmospheric sources of N2O are related to emissions from soils (Mosier and Kroeze, 

1998). 
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The exchange of N2O between soils and the atmosphere depends specifically on the 

simultaneous, opposing microbially mediated processes of nitrification and denitrification 

(Firestone and Davidson, 1989; Bouwman, 1990b; Wrage et al., 2001). The concept of N2O 

formation in, and emission from, soil can be illustrated by the " hole in the pipe" model of 

Davidson (1991) (Fig 1.).  

 

 

Figure 1-10. Diagram of the hole in the pipe conceptual model (Firestone and Davidson, 1989; 

revised Davidson, 1991). 

 

The rate of flow of nitrogen through the pipes is analogous to rates of nitrification and 

denitrification and, more generally, to nitrogen cycling through the ecosystem. The NO and 

N2O trace gases "leak" out of holes in the pipe, and the sizes of the holes, through which they 

leak, is determined primarily by the soil water content. Soil acidity and relative abundance of 

electron donors (soil organic carbon) and acceptors (primarily oxygen, nitrate, and sulphate) 

may also affect the relative proportion of N2, N2O and NO emissions from nitrification and 

denitrification (Nõmmik, 1956; Firestone, 1982; Firestone and Davidson, 1989), but soil 

water content appears to be the most common and the most robust controller of these ratios 

(Davidson, 1993). 

N2O is a by-product of the first step of autotrophic nitrification (§ 1.1.8) and it is an 

obligate intermediate product of denitrification (§ 1.1.11) (Granli & Bøckman, 1994). 

Although some studies have concluded that nitrification can produce a significant portion of 

the total N2O measured (Koops et al., 1997; Ambus, 1998), other researchers have found that 
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most of the N2O attributed to nitrification is actually produced by nitrifier denitrification 

(Castignetti and Hollocher, 1982; Poth and Focht, 1985; Bollmann & Conrad, 1998; Wrage 

et al., 2001). When the supply of O2 is limited by diffusional constraints the nitrifying 

bacteria can use nitrite produced during the oxidation of NH4
+ as an electron acceptor and 

reduce it rather than being further oxidized to NO3
-
. This reduction may proceed to the 

formation of both NO, N2O as occurs during denitrification (Fig. 1.11). Castignetti and 

Hollocher (1982) recognized the production of denitrification enzymes by a heterotrophic 

nitrifier. However, unlike nitrification, this process occurs under low O2 conditions (Wrage et 

al., 2001). Koops et al. (1997) found that in addition to low O2, nitrifier denitrification also 

becomes important under low available NO3
-. Poth and Focht (1985) rejected nitrification as 

a significant source of N2O, and attributed N2O production to nitrifiers performing 

denitrification. 

Nitrous oxide is also produced through the abiotic process of chemodenitrification 

(Broadbent and Clark, 1965; Van Cleemput and Baert, 1984) (Fig. 1.11). 

 

 

Figure 1-11. Biological and abiological processes of production and consumption of NO and N2O 
(Davidson, 1991). 
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Chemodenitrification is the generation of nitrogen gas products through reactions that 

are non-biologically mediated (Knowles, 1981). Chemodenitrification involves the chemical 

decomposition of nitrous acid (HNO2) or reaction of HNO2 with amino acids, ammonia, urea 

and other soil constituents such as metal ions. The process occurs primarily, but not 

necessarily, at low pH values (5 or less). NO, N2O and N2 have been reported as products of 

chemodenitrification and among these NO is the most abundant (van Cleemput et al., 1976). 

Overall, chemodenitrification is not considered to be an important form of denitrification 

(Tiedje, 1988; Robertson and Tiedje, 1987), and N2O production. However, fertilizer or urine 

inputs in grazed areas may lower soil pH and cause significant chemodenitrification in the 

short term. 

The importance of other soil processes in the production of N2O, including any role of 

dissimilatory nitrate reduction to ammonium, heterotrophic nitrification by fungi and 

anaerobic oxidation of NH4
+, remains poorly understood (Wrage et al., 2001; Wolf and 

Brumme, 2002; Dalsgaard et al., 2003). 

 

 

1.2.2 FACTORS AFFECTING N2O EMISSIONS 

 

The most important controls on N2O production from soil are: availability of O2, 

availability of N and C, and climate. Soil moisture and soil temperature are factors that act as 

direct controls on microbial activity, and indirectly on O2 supply and C and N dynamics. 

Microbial activity is also influenced by pH. 

Considering that O2 is the preferred electron acceptor in the process of electron transport 

phosphorylation, the level of O2 in the soil should determine how readily nitrogenous oxides 

are selected and reduced as electron acceptors in the process of denitrification. Studies have 

found that increases in soil O2 result in a decline in total denitrification (Firestone et al., 

1979; Letey et al., 1980; Parkin and Tiedje, 1984; Burton and Beauchamp, 1985; Arah et al., 

1991). On the contrary, limited O2 corresponds to increased N2O production and 

denitrification activity (Broadbent and Stojanovic, 1951; Renault and Stengel, 1994; 

McKenney et al., 2001) until scarcity of O2 affects N2O/N2 ratio favouring N2 versus N2O, the 

latter being used as an electron acceptor in the extremely reduced environment (Terry et al., 

1981; Mosier et al., 1990). 
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Where O2 is not limiting, denitrification is suppressed and any N2O produced is related 

to nitrification (Robertson and Tiedje, 1987; Parton et al., 1988). Reaction products 

N2O/NO3
- ratio increase when O2 concentration decrease. Thus, in both processes, N2O 

formation is favoured at intermediate conditions of aeration (Khdyer & Cho, 1983). 

The availability of O2 at a particular point in the soil is determined by the rate at which 

O2 can diffuse to that point and the rate at which O2 is consumed by microbial activity 

(Tiedje, 1988) and consequently availability of oxidizable compounds (Smith, 1990) and 

diffusion of oxygen depends also on the soil texture and management. The O2 status of a soil 

is difficult to measure in the field, so availability of O2 has usually been assessed by surrogate 

measurements such as water filled pore space (WFPS) (Linn and Doran, 1984; Maag and 

Vinther, 1999), soil moisture content (Skiba et al., 1993; Koops et al., 1997), or air-filled 

porosity (Letey et al., 1980). Presence of water in pore spaces or as films on soil aggregates 

slows diffusion of O2 (Renault and Stengel, 1994). Microbial activity will increase with soil 

water content until diffusion of O2 is restricted and the environment becomes anaerobic (Linn 

and Doran, 1984). 

Thus, soil water content is a control on denitrification and nitrification. Skiba et al. 

(1993) found that low soil water content (18% dry wt.) favoured production of N2O by 

nitrification and that an increase to a water content of 20.4% dry wt. favoured production of 

N2O by denitrification. 

Data from seven studies by Davidson and Verchot (2000) show mean ratios of NO-

N/N2O-N well in excess of 10 at 40% WFPS or dried. The rate of nitrification, the rate of N2O 

production and the ratio of N2O to nitrate produced during nitrification all increase as the soil 

WFPS increases. Davidson (1991) observed that nitrification occurs up to a WFPS of 60% 

(Fig.1.12). At WFPS greater than 60% denitrification becomes dominant (Lemke et al., 1998). 

At high values of WFPS (>80%) O2 diffusion may be restricted to the point where the product 

of denitrification is primarily N2 (Veldkamp et al., 1998). Under these conditions, N2O is itself 

used as an electron acceptor and reduced to N2. Robertson and Tiedje (1987) concluded that 

denitrification can act as a sink as well as a source of N2O because they also observed that 

when the level of O2 was low, N2O was denitrified to N2. 

A WFPS value from 45% to 75%, although some studies indicate a higher value 

(Klemedtsson et al., 1988; Hansen et al., 1993), is generally favourable both for nitrification 

and denitrification and produce maximum emission of N2O. This soil water content associated 
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with maximum N2O emission is normally close to field capacity (FC), which is defined as the 

soil water content after excess moisture has drained freely from the soil. At field capacity, soil 

micropores are water-filled, which permits microbial activity without stress, and soil 

macropores are air-filled, which permits relatively good aeration of the bulk of the soil, 

although anaerobic microsites may exist. Field capacity is the transition value of soil water 

content at which both oxidative and reductive processes are active in the soil. 

 

 

Figure 1-12. Relative contributions of nitrification (shaded) and denitrification (cross hatched) to 
emissions of NO and N2O as a function of soil water filled pore space (Davidson, 1991). While the 
figure indicates the general relationship between fluxes, the position of the maximum can vary with 

soil type and conditions. 

 

A positive correlation between soil temperature and N2O evolution has been observed 

(Kliewer and Gilliam, 1995; Maag and Vinther, 1999). Anderson and Boswell (1964) found 

that nitrification was limited until the soil temperature reached 4 °C, the optimum temperature 

range for this process is usually between 25 and 35°C (Bock et al., 1986; Haynes 1986). 

However it seems that indigenous nitrifiers have temperature optima adapted to their climatic 

regions. 

Soil temperature controls N2O production directly, through its control on activity of 

denitrifiers, and indirectly as its increase stimulates microbial activity, thus increasing O2 

consumption with a consequent formation of anaerobic micro-sites (Maag and Vinther, 1999). 
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Also, temperature by influencing the solubility of O2 in water affect its diffusion to micro-

sites of intense microbial acitivty (Renault and Sierra, 1994). The optimum temperature for 

denitrification seems to range from 30 to 67°C (Nõmmik 1956; Bremner & Shaw, 1958; 

Keeney et al., 1979; Mancino et al., 1988; Malhi et al., 1990). The reported differences reflect 

to some extent bacterial adaption to local conditions (Powlson et al., 1988; Malhi et al., 

1990). 

The relationship between soil temperature and N2O production in the field is not widely 

studied and detailed field measurements are rare. The influence of temperature is often 

assessed by monitoring seasonal changes in emissions and air temperature (Corre et al., 1996; 

Groffman et al., 2000). Indirectly, soil temperature can be related to an increase in N2O 

emissions during spring thaw from saturated soil layers (Nyborg et al., 1997). The saturated 

soil layer develops from the inability of the unfrozen soil water to infiltrate the frozen soil 

layer below (Hayashi et al., 2003). 

Although C is an electron donor and nitrogenous compounds are electron acceptors in 

the process of denitrification, the relationship between available C and N, and N2O emission 

is complicated, as evidenced by the contradictory results which can be found in literature.  

For example, Bowman and Focht (1974) found denitrification rates to be dependent 

upon NO3
- concentration. Denitrification rate generally increases with increasing NO3

- 

concentration (Ryden, 1983; Robertson et al., 1987; Ambus and Lowrance, 1991), but then 

reaches a plateau (Mosier et al., 1983; Fig. 1.13). The N2O/N2 ratio strongly increases with 

increasing NO3
- concentrations (Fig. 1.13) as high [NO3

-] inhibits N2O reduction to N2 

(Blackmer and Bremner, 1978; Firestone et al., 1980; Kroeze et al., 1989). It is not clear if 

this is a true inhibition of N2O reduction or if it is due to the greater suitability of NO3
- as an 

electron acceptor as compared with N2O (Cho and Sakdian, 1978). In this latter case, the 

effect of nitrate is nullified when soils are strongly reduced, as after a flood (Terry and Tate, 

1980; Bowman, 1990). Firestone et al. (1980) proposed that the inhibitory effect of NO3
- on 

N2O production could be actually due to NO2
-, which is much more effective in such an 

inhibition than NO3
-
, and which could be produced by microbial processes when high doses 

of NO3
- are applied to the soil. Such an inhibitory effect of NO2

- on N2O reduction has been 

found also by Van Cleemput et al. (1988). Low concentrations of NO3
- (5 mg N kg soil-1) 

have been found to stimulate formation and activity of nitrous oxide reductase (Blackmer  and 

Bremner, 1979). 
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Figure 1-13. The idealized effect of soil NO3
- on N2 and N2O losses associated with denitrification. 

(From Mosier et al., 1983). 
 

However, Linn and Doran (1984) did not observe any relationship between NO3
- levels 

and N2O emissions, although they did find a relationship between soluble organic C and N2O 

emissions as did Stanford et al. (1975). Tiedje (1988) and Myrold and Tiedje (1985) suggest 

that N supply will have an effect on emissions in a soil that has a low concentration of NO3
-. 

Limmer and Steele (1982) have found denitrification potential to be independent from NO3
-
 

concentration for values greater than 25 mg NO3
-
 -N kg

-1
 in a range of soils. 

Thus NO3 concentration exerts a control on N2O emissions where it is limiting and less or no 

control where NO3
- is not limiting. Corre et al. (1996) found that C and N availability became 

important to N2O emissions only when soil moisture conditions were favourable for 

denitrification (i.e., availability of O2 was restricted), in fact, when other factors are limiting, 

denitrification can be rather insensitive to variation in NO3
-
 concentration (Bremner, 1978; 

Aulakh et al., 1983, Kroeze et al., 1989). 

Availability of N is commonly assessed by measurement of soil mineral N levels 

(Firestone et al., 1979; Drury et al., 1998; Del Grosso et al., 2000). The importance of C has 

been assessed through a measure of bio-available C such as soluble organic carbon (Burford 

and Bremner, 1975; Drury et al., 1998), extractable (glucose equivalent) C (Stanford et al., 
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1975) and total organic C (Burford and Bremner, 1975; Stanford et al., 1975). Measurements 

of available N and C typically access discrete nutrient pools and fail to account for N and C 

cycling. A better understanding of N and C cycling in agricultural and natural systems may 

improve our understanding of N and C available for N2O processes. 

Soil pH has been occasionally cited as an influencing factor on N2O production or 

denitrification (Firestone et al., 1980; Knowles, 1981; Stevens and Laughlin, 1998). It is also 

linked to chemodenitrification, which occurs at a pH below 5 (Tiedje, 1994). Firestone et al. 

(1980) observed that pH did not influence N2O production until NO3
-
 levels were not limiting. 

Stevens and Laughlin (1998) noted that the influence of pH was small compared to WFPS, 

but it did have an effect on the mole fraction of N2O. The mole fraction of N2O decreased 

with an increase in pH. Van Cleemput and Patrick (1974) found that the reduction of NO3
-
 

increased with increasing pH. 

 

 

1.2.3 METHANE 

 

Methane is a radiatively-active gas, contributing approximately 12% to the enhanced 

greenhouse effect and contributing to about 15% of the potential global warming (OTA, 1991; 

Abrol, 1995). Its concentration in the atmosphere reaches 1.7 ppmv, with an increasing rate of 

0.9% per year (Blake and Rowland, 1988; Sombroek and Gommes, 1996). The significant 

increase in atmospheric CH4 concentration in the last two decade has been reported by many 

researchers (Steele et al., 1992; Chapman et al., 1996 and Subadiyasa et al., 1997). 

Although methane residence time in the atmosphere of 12 to 15 years is an order of 

magnitude lower than that of carbon dioxide (120 years), its global warming potential is 32 

times higher than that of CO2 (which is the most significant greenhouse gas) for a 100 years 

time-scale (OTA, 1991). 

The global annual methane emission is estimated at 500 Tg y-l, with an uncertainty of 10 

to 20% (lAEA, 1992). Wetlands, including rice paddies, contribute between 15 and 45% of 

global methane emissions (Prather et al. 1995). Projections for the year 2100 suggest that due 

to an increased population and waste generation, landfills will become a major source of 

atmospheric methane (Kreileman and Bouwman, 1994). The wide range of estimated values is 

mainly ascribed to the fluctuations of CH4 emissions associated with agricultural practices 
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such as water management (Sass et al., 1992; Murase et al., 1993 and Xu et al., 2003), 

fertilizer application (Lauren et al., 1994 and Martinez et al.,2003), seasonal variation (Sass 

et al.,1990; Kimura et al., 1991b and Snell et al., 2003), diurnal variation (Miura et al., 1992), 

temperature (Holzapfel-Pschorn and Seiler, 1986). 

Methane fluxes from or to soils result from the interaction of several biological and 

physical processes in the soil (Cicerone & Oremland 1988; Conrad 1989; Bouwman 1990; 

Hogan 1993; Schimel et al. 1993; Wang et al. 1996). Methane flux is the difference between 

CH4 oxidation and methanogenesis, which may occur simultaneously even in arable terrestrial 

ecosystems (Conrad, 1995), and the three groups of organisms that may be involved are the 

methanotrophic bacteria, ammonia oxidizing and methanogenic bacteria (Schimel and 

Gulledge, 1998). 

Methane production (methanogenesis) in soils is a microbiological process, which is 

predominantly controlled by the absence of oxygen and the amount of easily degradable 

substrate. It can occur when organic matter is degraded anaerobically (Oremland 1988; 

Conrad 1989; Svensson & Sundh 1992). Several bacteria that degrade organic material via a 

complex food web are needed to perform this process. The final step is performed by 

methanogens, methane producing bacteria which are a group of archeobacteria. Methanogenic 

bacteria are strictly anaerobic, they can use a limited number of substrates to produce CH4 by 

two dominant pathways, cleaving acetate to CO2 and CH4, and reducing CO2 with H2 

(Whitman et al., 1992). Acetate and hydrogen are formed by fermentation from hydrolysed 

organic matter (Dolfing 1988). Other substrates such as methylamines may also be used 

(Yarrington & Wynn-Williams, 1985; Whitman et al., 1992) but these are generally minor in 

terrestrial systems. Because methanogenesis is obligatory anaerobic it generally only occurs at 

high rates in systems which are continuously water saturated and are rich in organic matter; 

thus soil sources include natural wetlands and rice paddies. Upland soils are commonly 

recognized as important sinks for atmospheric CH4 (Schimel et al., 1993; Conrad, 1996), 

most of the aerobic soils seem to function as CH4 consumption sites (Seiler and Conrad, 

1987; Steudler et al., 1989), CH4 production can only occur in pulses after rain events that 

saturate the soil for an extended period. 

Methane consumption (CH4 oxidation) is also a microbiological process and is 

considered to be mainly performed by a single class of microorganisms: the methanotrophs 

(Cicerone & Oremland 1988; King 1992). Methane consumption is essential for 



Chapter1                                                                                                     General Introduction 

49 
 

understanding methane emission. Methanotrophs can consume CH4 produced in the soil or 

CH4 entering the soil from the atmosphere (Moiser et al., 1997; Schmidt et al., 2001). 

Although the methods for determining in situ methane oxidation on the field scale are under 

debate (Denier van derGon&Neue 1996; Frenzel&Bosse 1996; King 1996; Lombardi et al. 

1997), it is likely that a large and a varying part (1–90%) of the produced methane could be 

consumed again, either in the oxic top layer or in the oxic rhizosphere (De Bont et al., 1978; 

Holzapfel Pschorn & Seiler 1986; Schütz et al. 1989; Sass et al. 1990; Fechner & Hemond 

1992; Oremland & Culbertson 1992; Happell et al. 1993; Epp & Chanton 1993; Kelley et al. 

1995; King 1996; Denier van der Gon&Neue 1996; Schipper&Reddy 1996; Lombardi et al. 

1997). Major controls are soil oxygen and soil methane concentrations. Methanotrophs are a 

diverse group of aerobic bacteria that oxidize CH4 through methanol, formaldehyde, and 

formic acid to CO2. The oxidation pathway is initiated by the methane monooxygenase 

(MMO) which requires both O2 and reducing equivalents for activity. According to Conrad 

[29], the biggest problem for the energy metabolism is the activation of the relatively inert 

CH4 molecule. The activation is achieved in the initial step by the MMO which converts CH4, 

O2 and reducing equivalents to methanol and H2O, i.e.: 

 

                                         MMO 

CH4 + O2 + 2NAD(P)       →        CH3OH + H2O + 2 NAD(P) 

                                    

Methanotrophs use three methods to consume CH4, each beginning with the conversion 

of CH4 to formaldehyde (Mancinelli, 1995). The dissimilatory method restricts bacteria to 

capturing energy from the oxidization of formaldehyde CO2 and H2O and does not allow the 

retention of any C (Paul and Clark, 1996). The ribulose monophosphate method allows 

methanotrophs to assimilate the formaldehyde, converting it to different C molecules for use 

as biomass (Mancinelli, 1995). Methanotrophs using the serine method assimilate the 

formaldehyde and convert it to carboxylic acids and amino acids used in biomass production 

(Mancinelli, 1995). Methanotrophs require CH4 for growth, being unable to use other 

substrates and can be distinguished in two kinds of methanotrophic activity: high affinity (low 

atmospheric methane concentrations) and low affinity (high methane concentrations). CH4 is 

oxidized in soils primarily by two enzymes: a) CH4 monooxygenase (MMO), found in 

methanotrophic bacteria, as written above; and b) NH3 monooxygenase, found in nitrifying 
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bacteria (Bédard & Knowles, 1989). NH3 monooxygenase is capable of oxidizing CH4 

because CH4 and NH3 are similar in shape and size (Weast, 1976). While nitrifiers can oxidize 

CH4, they are unable to grow on it (Bédard & Knowles, 1989). 

Microbial oxidation of methane plays a significant role in reducing the emission of 

methane to the atmosphere (Oremland and Culbertson, 1992; Lelieveld et al., 1998). The 

oxidation of CH4 by methanotrophic bacteria accounts for approximately 10% of the global 

CH4 sink (Topp and Pattey, 1997). Much interest has focused on the role of aerobic soils as 

sinks for methane and on the ecological and land use practices such as agriculture that affect 

its magnitude. Rates of methane uptake in soils have been determined for a wide range of 

natural environments including agricultural soils (Hütsch et al., 1994; Hütsch, 1998), forest 

soils (King and Adamsen, 1992; Bender and Conrad, 1993; King and Schnell, 1998), tundra 

soils (Whalen and Reeburgh, 1990), and peatlands (Sundh et al., 1995; Dedysh and Panikov, 

1997). 

 

 

1.2.4 FACTORS AFFECTING CH4 FLUXES 

 

CH4 production only occurs at substantial rates in fully saturated soils. As the water 

table drops below the soil surface, CH4 efflux rates drop rapidly (Harriss et al., 1982; Moore 

& Knowles, 1989). This is due to combined effects of reduced CH4 production as the 

anaerobic soil volume shrinks and increased CH4 consumption in the aerobic surface soil. As 

methanogenesis is a strictly anaerobic process, it can only occur at low redox potentials. CH4 

production often begins at redox potentials below +100 mV, but usually become rapid until 

the redox drops below 0mV (Yagi & Minami, 1990; Lindau et al., 1991). Once anaerobiosis is 

established, organic substrate is considered as the major limiting factor for methane 

production; both the addition of direct methanogenic substrates, like hydrogen or acetate, and 

the addition of indirect substrates, like glucose and leaf leachate, enhanced methane 

production in anaerobically incubated soil samples (Williams & Crawford 1984; Bachoon & 

Jones 1992; Valentine et al. 1994; Amaral & Knowles 1994). Alternative electron acceptors 

like NO3
- , Fe3+, Mn4+, SO4

2-, and possibly humic acids (Lovley et al., 1996) suppress methane 

production, because reduction of alternative electron acceptors supplies more energy than 

methanogenesis (Zehnder & Stumm 1988). The primary controls on the rate of 
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methanogenesis are O2 and carbon availability (Schimel et al., 1993). Environmental factors 

also affect methane production and include soil texture (Neue et al., 1994; Sass et al., 1994), 

climate (Schütz et al., 1990; Sass et al., 1991), and agricultural practices such as water regime 

and management (Sass et al., 1992; Lewis, 1996; Yagi et al., 1996), these are distal controls 

on process to the progressively larger scale. 

Methane oxidation is controlled by a number of environmental factors that partly 

explain the variability in observed methane oxidation rates. Factors such as soil water nutrient 

concentration and pH have previously been found to be important in the regulation of 

methane oxidation capacity (Steudler et al., 1989; Mosier et al., 1991; Amaral et al., 1998; 

Gulledge and Schimel, 1998). However, physical determinants such as soil water content and 

temperature may be of even greater importance in many areas and at certain times of the year. 

Changes in land use and climate may affect such physical determinants of methane oxidation 

capacity in ways which both increase and decrease the size of the soil methane sink (Whalen 

and Reeburgh, 1990; Hutsch et al., 1994; King and Schnell, 1994). 

Several physico-chemical factors influence rates of methane oxidation in soil, including 

soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, 

and copper. Most of these factors exert their influence through interactions with methane 

monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to 

methanol, the first step in methane oxidation. 

The ideal temperature range of MMO is between 20 and 40ºC, but diurnal changes in 

temperature do not change CH4 consumption (Topp and Pattey, 1997). 

Ammonia is known to inhibit methane oxidation in soils as a result of competitive 

interaction of NH4
+ with methane for the active sites of the MMO enzymes (Hanson and 

Hanson, 1996). However, it has also been suggested that the inhibition of methane oxidation 

by NH4
+ is not always the direct result of its concentration but rather its nitrification rate 

(Sitaula et al., 1995) or N turnover (Hütsch et al., 1994). The oxidation of NH4
+ by MMO 

also produces toxic N compounds that inhibit the methanotrophic population (Hütsch, 2001) 

and therefore repeated NH4
+
 fertilisation decreases the methanotrophic microbial population 

and the soil consumption of CH4 long after application of NH4
+ ceases (Mancinelli, 1995; 

Mosier et al., 1996). Nitrate (NO3
-) fertiliser has no effect on CH4 consumption or can 

stimulate it (Lessard et al., 1997; Hütsch, 2001). 
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Soil structure is important to CH4 flux because methanotrophs accumulate on the surface 

of coarse-textured soils and within soil aggregates (Conrad, 1996; Mosier et al., 1997). 

Tillage disturbs these structures and may reduce habitat necessary for methanotrophs 

(Willison et al., 1995). Undisturbed soils tend to consume CH4 more often than they produce 

it (Wang and Bettany, 1995). 

 

 

1.3 MEDITERRANEAN-TYPE ECOSYSTEM 

 

Mediterranean-type ecosystem can be generally delineated according to the 

classification adopted, climatic (Köppen, Wilson, 1967), according to vegetation (Emberger, 

1930), or a combination of both (bioclimatic map, UNESCO, 1963) and it surrounds the 

Mediterranean sea between the latitudes 40 and 30°N and it occurs in other four word regions: 

in the central Chile, in the Cape region of South Africa, in southwestern and southern 

Australia and, of course, in southern California and northern Baja California. 

The Mediterranean Sea, a marginal and semi-enclosed sea, is located on the western side 

of a large continental area and is surrounded by Europe to the north, Africa to the south, and 

Asia to the east. Its area, excluding the Black Sea, is about 2.5 million km2; its extent is about 

3700 km in longitude, 1600 km in latitude and surrounded by African, Asian and European 

countries. The average depth is 1500 m. with a maximum depth of 5150 m in the Ionian Sea. 

The Mediterranean Sea is an almost completely closed basin, being connected to the Atlantic 

Ocean through the narrow Gibraltar strait (14.5 km wide, less than 300m deep at the sill). 

These morphologic characteristics are rather unique. In fact, most of the other marginal basins 

have much smaller extent and depth or they are connected through much wider openings to 

the open ocean. Moreover, high mountain ridges surround the Mediterranean Sea on almost 

every side. Furthermore, strong albedo differences exist in south-north directions (Bolle, 

2003). These characteristics have important consequences on air masses and atmospheric 

circulation at the regional scale (e.g. Xoplaki 2002). 

The Mediterranean climate is characterized by mild and rainy winters, and warm to hot 

dry summers, with high solar radiation and high rates of evaporation. Leisz (1982), after 

McCutchan (1977) describes the Mediterranean-type ecosystem as: "it is one influenced by 

Mediterranean climate; that is, it exists in an area with (1) warm-to-hot summers and mild 
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winters; (2) a moderate marine air influence throughout the year; (3) moderate precipitation 

concentrated during winter months, with summers that are very dry; and (4) extended periods 

of sunny weather and few clouds, especially in summer". 

Specific climate is one of four attributes that make the Mediterranean world indeed 

different and largely determine the nature of its soils, together to other three characteristics: its 

mountain, dust from the desert and the long term effects of man (Yaalon, 1997). From the 

point of climatic constraints on the soil, it is not the total annual amount of rainfall which 

counts (from 200 to over 1000 mm, in high mountains up to 2000mm) but its seasonal 

distribution. According to the Köppen definition, the Mediterranean climate is characterized 

by winter rainfall that is more than three times on summer rainfall. This strong seasonal 

winter/summer rainfall contrast results in root zone drying of the soil during the summer, 

often for several months, and represents the basis for defining the xeric soil moisture regime 

(Soil Survey Staff, 1994). The xeric moisture regime is defined by the length of summer 

dryness of the soil and characterized by winter rainfall in excess of evapotraspiration. It is not 

confined to the Mediterranean region, but it is present also in areas with lesser extension in 

America, Africa, Asia and Australia. 

The natural vegetation of Mediterranean regions is a generally broad-leaved 

sclerophyllous forest, with dominant evergreen trees or drought deciduous shrublands. This 

type of vegetation is well adapted to the summer drought and the light to moderate frost in 

winter and it is resistant to the decomposition process. The herbaceous plants communities of 

Mediterranean region in the dry season act a strategy: in the summer, above ground portion of 

the perennial herbaceous plants dies and survive only the below ground portion, from which 

in winter or in spring aerial biomass develops; instead the annual herbaceous plants reproduce 

at the end of winter or in spring, in the summer they die leaving only the seeds (Venturelli and 

Virli, 1995). 

Roughly 1% of the world's terrestrial vegetation is inside the Mediterranean type-

ecosystems and about half of this occurs around the Mediterranean Sea. Naveh & Lieberman 

(1984) stated that in France this vegetation is called maquis or guarrigue, depending on the 

substratum, in Italy macchia, in Spain and Chile mattoral, in Greece xerovoni, in Israel 

choresh, in California chaparral, in South Africa fynbos, in Australia malle, heath and shrub. 

Due to the limited extent and isolation of each area of the Mediterranean ecosystem, there is 

frequently a high degree of endemism in the flora and fauna. 



Chapter1                                                                                                     General Introduction 

54 
 

The elevated diversity of vegetal species in the basin of the Mediterranean sea is related 

to coexistence of areas with different successional stages, mainly the holm oak, the 

Mediterranean shrublands and herbaceous plants communities. Typical tree species in the 

regions around the Mediterranean, include Quercus ilex L. and Quercus rotundifolia L. (holm 

oak), which are widespread in the western Mediterranean; as well as Quercus suber L. (cork 

oak), Quercus coccifera L., Olea oleaster L. (wild olive tree), and Ceratonia silicua L. (carob 

tree). The characteristics shrub species for the region include Pistacia lentiscus L., P. 

terebinthus L., Rhamnus sp., Cistus sp., and Arbutus Unedo. In the higher, rainier zones, the 

typical mediterranean vegetation gives way to deciduous tree species (Quercus pubescens). In 

contrast, steppe species take over the evergreen forest on the dry margins of the region. 

Coniferous trees (Pinus halepensis, P. brutia, Cedrus libanotica) are regionally abundant, and 

significantly dense in some altitudinal stages. 

The sclerophyllous vegetation of California resembles much the Mediterranean 

vegetation (for istance, Quercus agrifolia is very similar to Quercus ilex), and some of its 

genera (Quercus, Cupressus, Arbutus) include a large number of species. 

The Mediterranean regions of Chile, South Africa and Australia have rather different 

floristic composition. For example, Eucalyptus species are dominant in Southwestern 

Australia. 

Besides flora, in the Mediterranean regions the fauna is also very rich and diverse, and 

has great importance from the biological diversity point of view. 

Of the eleven orders of Soil Taxonomy, four (Entisols, Inceptisols, Vertisols and 

Alfisols) probably account for 90% of the soil-covered surface of Mediterranean regions. 

Another three (Mollisols, Aridisols and Ultisols) occur less frequent and can be locally 

significant. 
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1.4  AIM OF THE RESEARCH 

 

The purpose of this research was to improve our knowledge on a) the nitrogen cycle in 

terrestrial Mediterranean ecosystems-type and b) their potentiality in the production and 

consumption of greenhouse gases (GHGs), in particular of nitrous oxide (N2O) and methane 

(CH4). The existing informations about these matters in natural areas of Mediterranean are 

very scarce in literature. Considered the economic importance of the agriculture in the basin 

of the Mediterranean, greater attention in the past has been turned to the improvement of the 

nitrogen levels in agricultural ecosystems finalized to optimize the crop and the production of 

livestock. Much less attention and research has been focused on N cycle and GHGs in natural 

Mediterranean ecosystems. Only recently, Mediterranean sites have been included in 

biogeochemically oriented projects (NITROEUROPE; CARBOEUROPE, etc) where these 

topics are dealth with, mainly in response to the growing interest on GHGs and climate 

change mitigation and impacts. These ecosystems can be expected to be extremely sensitive 

to the future predicted global changes. The Mediterranean area is a densely populated area 

where man modification of primary ecosystems can be dated back to the Roman ages, and 

where the antrophic impacts of the increased productive activities will increase in the next 

decades. On the other hand, climatic predictions for the area suggest a worstening of the 

climatic criticalities. Model simulations (HadCM2 model, Jhons et al., 1997) predict an 

average increase in temperature from 3 to 10°C (5°C for Italy) in the Mediterranean basin in 

the next 20-100 years, with a decrease in the total rainfall and some changes in its temporal 

distribution (HadCM2 model, Jhons et al., 1997). This would lead to a decrease of soil water 

content of about 10% as an annual average (HadCM2 model by Jhons et al. 1997), with more 

drastic reductions in the drier periods. Stronger and longer periods of aridity might induce a 

further increase in the occurrence of fires, also associated to the expanding urbanization. Land 

use change, fires, antropic disturbance, climate modifications can all impact the structure of 

Mediterranean plant communities, the ecosystem and associated cycles of elements. The 

magnitude of the effect of such disturbance of nitrogen transformation, losses and GHGs 

fluxes in Mediterranean ecosystem is unknown. 

The present study aims to improve our understanding of N cycle and GHGs in 

Mediterranean ecosystems, both in terms of natural mechanisms associated to this type of 

environment and in terms of response of ecosystem to modifications and disturbance. This 
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might provide information for a correct management of Mediterranean ecosystems and might 

help us to improve our predictions and estimates of the budget of N2O and CH4 fluxes in the 

area. 

In the present job of doctorate thesis, four case studies were set up to answer to four 

questions that can help to improve the understanding of the Mediterranean ecosystems in 

relation to N cycle and GHGs: 

-Which will be the impact of a variation of rainfall regime on N cycle and related GHG 

fluxes? 

A rainfall manipulation experiment in Mediterranean woodland of Tolfa was carried out 

in order to evaluate, on the short-term, the impact of variation of rainfall regime of about 20% 

on the nitrogen cycle and on GHGs emissions (chapter 3); 

-Do Mediterranean sclerophyllous plants produce allelophatic substances which 

control/affect N transformations and GHG fluxes? 

In the same site of Tolfa, the role of allelopathic compounds produced by Arbutus 

Unedo as possible nitrification activity inhibitors was investigated by means of field 

observations and laboratory toxicity experiments (chapter 4); 

-Given the high numbers of leguminous plants (N2 fixers) which dominate the early 

stages of secondary successions following disturbance, which is the potentiality of N2-fixation 

vs mineral N exploitation by herbaceous plants in Mediterranean grasslands and does the 

presence of N2 fixing species increase N pools, fluxes and losses in Mediterranean 

grasslands? 

A study was set to estimated the amount of N which enters into the ecosystem in Med. 

grasslands via N2 fixation, considering that for these herbaceous species there is a complete 

lack of information in relation to this topic and N processes and pools were investigated in 

grassland areas covered by a different percentage of N2 fixers (chapter 5); 

-Which is the potential for NO and N2O emissions in Mediterranean natural ecosystems 

and which soil factors contribute to determine the NO/N2O ratio associated to a specific 

ecosystem/soil? 

Four Mediterranean woodland ecosystems with different soil characteristics and 3 

successional stages within the same soil type were compared for their potential to produced 

NO and N2O emissions in controlled and N excess conditions (chapter 6).
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2 MATERIALS AND METHODS 

 

 

 

2.1 SOIL PHYSICAL-CHEMICAL PROPERTIES 

 

 

 

2.1.1 SOIL WATER CONTENT 

 

 

Water content of soil is generally expressed as “gravimetric water content θθθθg”, i.e., the 

mass of water per unit mass of oven-dry soil, or as “volumetric water content θθθθv)”, i.e. the 

volume of water per unit volume of soil, typically cm
3
 H2O cm

-3
. For routine purposes the 

chosen method was the former. About 10 g of fresh soil were weighed in small cups and 

placed in  an oven at 105 °C overnight. The next morning samples were cooled in a desiccator 

and reweighed. Typically results are expressed as g g-1 or as a percentage. 

 

 

2.1.2 SOIL BULK DENSITY AND WATER FILLED PORE SPACE (WFPS) 

 

 

Soil bulk density represents the mass of oven-dry soil present in a given volume of 

naturally structured soil. For the measurement, a metal cylinder is placed against the soil and 

gently hammered into the soil. It is then excavated, the soil surfaces smoothed flush with the 

ends of the cylinder, using a knife, and the ends are closed with plastic lids. In the laboratory, 

the cylinder is then sealed in a polythene bag. The cylinder is placed in the oven at 105 °C till 

the weight stabilizes. The volume and the weight of the empty cylinder is required, as well as 

the fresh and the dry weight of the  bulk soil sample.  
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The bulk density is then given by: 

 

Soil bulk density = mass dry soil / bulk volume of soil 

 

The water-filled pore space (WFPS), often expressed as a percentage, is the ratio of 

volumetric soil water content (θv) to total porosity of the soil (ε), i.e. [100 x θv]/ ε, where ε = 

cm3 pore space/cm3 soil. The volumetric water content can be easily derived from the 

gravimetric water content as it is equal to: 

 

θθθθv =  θθθθg x bulk density/ density of water 

 

The total porosity of soil can be deduced from the following relationship: 

 

ε = 1 - [bulk density/particle density] 

 

Some typical values of  particle density and porosity of soil are reported in Table 2.1. 

 

Table 2-1. Reproduced from D. L. Rowell (1993). 

 Particle density 

(g cm
-3

) 

Bulk density 

(g cm
-3

) 

Porosity 

(cm
3
 cm

-3
) 

 

Cultivated mineral soils, plough horizons 

medium-heavy textured, light texture 

Subsoils and parent materials 

Grassland and woodland, A horizons 

Peats 

 

  2.60 

  2.60 

  2.65 

2.4 

1.4 

 

0.8 - 1.4 

1.1 - 1.7 

1.2 - 1.8 

0.8 - 1.2 

0.1 - 0.3 

 

0.69- 0.46 

0.46 - 0.35 

0.47 - 0.32 

0.48 - 0.50 

0.93 - 0.79 

 

Although θv and θg parameters cannot be easily compared among soils with different 

textures, the WFPS can be used, as it takes into account the total porosity of the soil and the 

compaction, and is consequently directly related to gas diffusivity. 
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2.1.3 SOIL PH 

 

 

Soil pH measurements by potentiometric method were determined on suspensions of the 

soil in water ( 1:2,5; soil:H2O ratio). 

10 g of air-dried soil, sieved with a 2 mm mesh sieve, are shaken with 25 ml of 

deionised water for half an hour on a shaking machine. The solution is then stirred, and the 

pH is measured inserting a glass electrode in the solution; pH is recorded after about 30 

seconds. The pH meter is calibrated before the measurement with buffer solution at pH 4.0 

and 7.0. Calibration for routine purposes is generally carried out at ambient temperature. 

 

 

2.1.4 AMMONIUM AND NITRATE CONCENTRATION 

 

 

NH4+ and NO3
- concentration in the soil was determined by extracting soil with a 

solution 0.5 M of K2SO4 (1:5 soil extract v/v) by potentiometric analysis using ion-selective 

electrodes.  

Soil extracts was obtained adding 10 g of fresh soil and 50 millilitres of potassium 

sulphate, then after 1 hour of agitation on a shaker orbital, the extracts (on triplicate) have 

been filtered with Whatman 42 and the content of ammonium and nitrate in solution has been 

determined. The measures have been carried out using specific potentiometric electrodes for 

the reading of the ammonia (ORION, Model 95-12) and for the reading of the nitrate 

(ORION, Model 97-07), connected to a portable pH/ISE-meter (ORION, Model 290A). 

The detection limit for the two electrodes, when a low level measurement procedure is 

used for the calibration curve, is 0.01 ppm of N-NH4
+ and 0.1 ppm of N-NO3

-. The calibration 

is performed with a series of standards, obtained using progressive dilutions (0.01, 0.1, 1, 10, 

100 ppm for N-NH4
+
, and  0.1, 1, 10, 100 ppm for N-NO3

-
). When the concentration of 

mineral N in the samples is expected to be low, the concentration of standards used is below 

10 ppm and the number of low concentration standards is increased (always 4 points). 

K2SO4 is used to extract soil mineral N instead of 1M KCl, as chlorine highly interferes 

with the nitrate electrode. On the contrary the ion sulphate represents the least interfering 
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anion. As a general procedure a Nitrate Interference Suppression Solution (Orion cat. No. 

930710) is added to the sample extract (1:1) for the removal of interferences caused by the 

different anions which might be present in the soil extract. Suppressor is added both to 

samples and standards. The optimal concentration of extracting solution has been determined 

on an experimental base. 

The concentration of the samples is determined by comparison to the standards, at the 

same temperature and after addition of Ionic Strength Adjustor (Orion cat. No. 951211 and 

930711) to all solutions to ensure that samples and standards have a similar ionic strength and 

proper pH.  

 

 

2.1.5  SOIL EXTRACTABLE α-AMINO N 

 

 

The amino acids, peptides and proteins available in soil in a free form are generally only 

a minor organic component of the soil, as in the free form they represent a source of N and C 

for the microorganisms and are immediately degraded. This component can be extracted by 

shaking the soil within an aqueous solution and can be measured with methods based on the 

ninhydrin reaction. 

When an aqueous solution of an α-amino acid is treated with ninhydrin 

(triketohydrindene hydrate), a violet colour is produced. In the first stage of the reaction, the 

amino acid is oxidized to give an α-imino acid. This is further hydrolyzed to an α -keto acid 

and ammonia. The ammonia reacts further to give the violet pigment and the α -keto acid 

decarboxylates to give an aldehyde. The violet solution shows a significant absorption at 570 

nm, and the intensity of absorption is proportional to the α -amino acid present. This specific 

reaction does not occur with proline as it is a secondary amino acid; the product obtained in 

this case is different and absorbs at another wavelength. Alternatively CO2 or NH3 formed in 

the course of the reactions can be measured. 

Spectrophotometric ninhydrin method, developed by Moore and Stein (1948, modified 

1954), essentially includes slowly addition of 1ml of the ninhydrin color reagent to 2 ml of 

standards or samples and test tubes are shaken to mix. Test tubes were then heated for 25 min 

in a vigorously boiling water bath. After cooling at room temperature, 20 ml of ethanol (50% 
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v/v) was added to the tubes, mix and the absorbance was measured in 1 cm a path length 

cuvette at 570nm on a spectrophotometer. The concentration in solution was calculated from a 

calibration curve prepared with the same procedure, using L-leucine as a standard. 

 

 

2.1.6 SOIL TOTAL CARBON AND NITROGEN 

 

 

Soil total carbon and nitrogen content were determined by Elemental Analyzer (USDA, 

2004). According Dumas method, soil organic and inorganic compounds were converted into 

gaseous products by extremely rapid and complete "flash combustion", successively they 

were separated by a gas chromatograph (GC) and measured with thermal conductivity 

detector (TCD). 

Approximately 20 mg of dried, homogenized soil sample were weighed into a tin cup, 

properly closed and inserted into autosamples for measurements by flash combustion-gas 

chromatography on a NCS-soil Thermo FlashEA 1112. Into this instrument, samples were 

transferred to combustion column (Oxidation Column, 950°C), here by elevated temperature, 

they were oxidised. In order to complete oxidation process, gaseous products were transported 

by a He carrier through a specific catalyser (silver cobalt oxide and chromium oxide). 

Combustion products, then, are transported through a reduction furnace (reduction column, 

840°C) to remove excess oxygen and to convert all nitrous oxides into N2, and through a 

drying tube containing anhydrous magnesium perchlorate (Mg(ClO4)2) to remove water 

produced during combustion. The gas-phase products, mainly CO2 and N2, were separated by 

a gas chromatograph (GC) with thermal conductivity detector. 

Soil total carbon and nitrogen content, as percentage of dry soil, were directly obtained 

by a calibration curve obtained using a series of standard samples with known concentrations 

(aspartic acid: C=36.09%; N:10.52%; H=5.20%; O2=48.08%) using a software of 

management of Elemental Analyzer (EAGLE2000). 
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2.1.7 NITROGEN ISOTOPE RATIOS 

 

Isotopic analysis were performed using an Elemental Analyzer coupled online via a 

ConFlo interface with an Isotope Ratio Mass Spectrometer (EA-IRMS; Delta C, Thermo 

Electron).  

Stable isotope composition is reported in the conventional delta (δ) per mil notation 

(‰). This notation is used since the absolute abundance of the heavier isotopes is usually less 

then 1% of the total for a given element.  

 

δ (‰) = R sample - Rstandard  x 1000 

R standard 

 

where R sample and Rstandard are the heavy to light isotope ratios of the sample and 

standard, respectively.  

The isotopic standard for nitrogen is atmospheric air. 15N represent the less abundant 

(0.366%) stable isotope of N, the more abundant being the 
14

N (99.634%). For nitrogen 

Rstandard = [15N]/[14N] = 0.00367. Atmospheric N2 is considered for convention to have a δ15N 

= 0‰. 

Stable isotope ratios of nitrogen (15N/14N) were mostly measured using mass 

spectrometry that is an instrument which separates charged atoms or molecules on the bases 

of their mass in the presence of a strong magnetic field. An IRMS is constituted of 4 main 

components: 1) inlet system; 2) ion source; 3) mass analyzer (with a magnetic and flight-tube 

assembly) and 4) ion detector system. The samples were prepared for analysis by weighing 

dry soil into tin cups. Following flash combustion, the N2 gas released from the sample was 

separated chromatographically. Using helium as a carrier gas, the N2 from each sample was 

transferred to the mass spectrometer via inlet system as a viscous gas flow to avoid 

fractionation during the path. It was ionized on an electrically heated filament in the ion 

source and accelerated with high voltage (ca. 3.5 kV). In the magnetic field (mass analyzer) 

the positively charge ions were deflected, and forced in a curve according to their masses of 

28, 29 and 30. The charged ions were counted in an ion detector and added up to an electrical 

signal, proportional to the isotopic abundance, which was measured with the help of a defined 

standard, so that the electric current is proportional to the isotope ratio. 
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2.1.8 QUANTIFICATION OF SYMBIONTIC N2 FIXATION BY ANNUAL LEGUMES 

 

 

Any field estimate of N2 fixation input requires an assessment of (a) the percentage of 

the legume N derived from the atmosphere (%Ndfa) and (b) the total amount of N in legume 

biomass during the interval of the study. These two components are then compounded to give 

an amount of N fixed and, by subtraction from the total N in the crop, the amount of legume 

N derived from the soil. 

It is often stated that plant growth, or dry matter (DM) yield, is the driving factor behind 

N2 fixation. While this may be true from the perspective that growth creates the demand for 

N, and photosynthesis the raw materials to sustain N2 fixation (Pate and Layzell, 1990), it 

does not hold in low N environments where the growth of legumes is limited by poorly 

effective bacteria or inadequate nodulation. Thus plant DM yield will determine the amount 

of N2 fixed only when the symbiotic machinery is operating effectively.  

The %Ndfa for a legume is not a trait determined by a legume genotype and rhizobia 

alone, but rather is a product of the interaction between the soil N environment and total 

legume growth. It is well known for example that mineral N in the soil will generally depress 

both nodulation and N2 fixation (Streeter, 1988; Waterer and Vessey, 1993) and thereby push 

the legume towards dependence on soil mineral N. The reverse will apply under low mineral 

N availability. 

Different methods are available to determine the %Ndfa which include the N difference 

technique, the acetylene reduction assays, 15N isotope dilution, relative ureide abundance 

technique, 15N natural abundance (NA) technique (Unkovich and Pate, 2000). 

 

 

2.1.8.1. THE N DIFFERENCE TECHNIQUE  
 

 

In this approach the total N accumulated by a non legume 'reference' plant, or the 

legume in non-Nr fixing mode, is used as proxy for uptake of soil N by an adjacent 
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symbiotically active legume. The amount of N in the reference plant is subtracted from the 

total N of the legume under study and the difference ascribed to N2 fixation. 

 

 

2.1.8.2. 
15

N NATURAL ABUNDANCE (NA) TECHNIQUE  

 

 

This technique relies on the slight natural enrichment of 
15

N(δ) that is observed in many 

soils, relative to atmospheric N2 (δ = 0%0) (Shearer et al., 1978; Ledgard et al., 1984). 

Plant sampling is conducted near peak biomass to capture total seasonal N2 fixation, but 

judiciously timed before the commencement of plant senescence which can influence both (δ 

and total N values, and give rise to less accurate estimates of N2 fixation (see Unkovich et al., 

1994). A selection of non-N2-fixing weeds are sampled alongside the legumes to provide 

discrete δ15
N values of soil available N at each sampling point. These values were then used 

for paired estimates of N2 fixation for the legumes (see Unkovich et al., 1994). 

Despite considerable concerns about the heterogeneity of natural 
15

N abundance in 

grazed ecosystems (Kerley and Jarvis, 1996; Eriksen and Hogh-Jensen, 1998), several studies 

have successfully used the NA technique in grazed pastures to estimate N2 fixation (e.g. 

Sanford et aI., 1994, 1995; Bolger et aI., 1995; Peoples et al., 1995c; Riffkin et al., 1999). 

Unkovich et al. (1998) used the NA technique to study the influence of grazing intensity by 

sheep on N2 fixation by subterranean clover (Trifolium subterraneum) in a mixed annual 

pasture. Although the NA technique is by no means applicable to all situations, guidelines 

applying to its judicious use have been well established (Unkovich et al., 1994; Peoples et al., 

1997). One important potential problem with the methodology is the requirement for a 'B' 

value. This is defined as the δ15N value for a legume when completely dependent on N2 

fixation for growth. Under fully symbiotic conditions legume shoot N is typically depleted in 

15
N relative to atmospheric N2 and thus estimations of N2 fixation based on the δ15

N of 

legume above-ground biomass relative to a non-legume reference plant 15N will overestimate 

%Ndfa unless the 'B' value of the legume is taken into account (Shearer and Kohl, 1986). 

Since the B value varies with species, plant age (Unkovich et al., 1994), micro symbiont 

(Unkovich and Pate, 1998), and growing conditions (Ledgard, 1989), a single B value is not 

adequate for all legumes and environments. For some species, like Lupinus, we have found 
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the B value to be conserved across species and growing conditions. By comparison values for 

chickpea are much more variable, introducing some uncertainty where %Ndfa is high. Both 

Unkovich et al. (1994) and Peoples et al. (1997) have indicated the likely magnitude of errors 

associated with the determination and application of B values for estimates of N2 fixation 

using the NA technique. As a general rule where %Ndfa estimates are less than 85% the 

errors associated with an inaccurate B value are likely to be small (Unkovich et al., 1994). 

Despite clear evidence that shoots of symbiotically N-dependent legumes are depleted in 15N 

relative to atmospheric N2, the δ15N values for N2-dependent annual legumes are not 

significantly different from their N source on a whole-plant basis (Unkovich et al., 1994) thus 

it can be concluded that there is little evidence of significant N isotope fractionation 

associated with N2 fixation per se for annual legumes. However, internal cycling of N within 

legumes most often results in shoots being depleted in 
15

N relative to atmospheric N2. Clearly 

further work is required to validate our observations, and to elucidate the mechanisms causing 

some fully symbiotic legumes to vary considerably in their 15N distribution. 

The %Ndfa using δ15N (%0) was estimated according to Ledgard(1989): 

 

%Ndfa = 100 x δ15N  (reference plant) - δ15N  (legume)  

                                             δ15
N  (reference plant) – B 

 

 

Where:                                                                                     or 

 

 

15N represent the less abundant (0.366%) stable isotope of N, the more abundant being 

the 14N (99.634%). The natural abundance of 15N at natural level is expresses as (%0) excess 

(‰ 
15

N). 

Atmospheric N2 is considered for convention to have a δ15N = 0‰. In ecosystems 

compartments δ15N varies between –10 and +15 ‰. 

For the present study the fractionation factor B was = 0‰. Thus no fractionation was 

assumed. The factor B is usually determined growing the leguminous plant in a hydrophonic 

medium without mineral N, where N2 is the sole N source for the plant. Wild leguminous of 

Mediterranean grasslands, and in particular the specie investigated, are quite difficult to 
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germinate in laboratory, requiring scarification, temperature conditioning, and having anyway 

a quite low success of growth. 

 

 

 

2.2 SOIL BIOLOGICAL PROCESSES 

 

 

2.2.1 NET AEROBIC N MINERALIZATION ACTIVITY 

 

 

N mineralization was determined by incubating fresh soil samples (3 replicates) 

aerobically (60% of soil water holding capacity) in the dark at 25°C and extracting inorganic 

nitrogen (NH4
+
 and NO3

-
) at t0 and after 14 and 28 days in order to calculate the 

mineralization rates using a time vs. concentration curve (Kandeler 1995a). 

 

 

2.2.2 POTENTIAL NITRIFICATION ACTIVITY 

 

 

Potential nitrification was measured as described by Kandeler (1995b) on 10 grams of 

fresh soil (on triplicate) amended with ammonium sulphate (100 µg N g-1 dry soil) and 

incubated at 60% of water holding capacity at 25°C for 28 days. 

 

 

2.2.3 DENITRIFICATION ENZYME ACTIVITY (DEA) 

 

 

Denitrification enzyme activity (DEA) was used as a stable measure of denitrification 

activity was modified from Smith and Tiedje (1979). 5g of fresh soil were incubated 

anaerobically in helium atmosphere in 50 ml air tight flasks after addition of 2 ml of solution 

containing nitrate and glucose (C/N, 4/1; Castaldi and Smith 1998a). 10% (v/v) acetylene was 
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added to each vial to inhibit nitrous oxide reductase activity (Yoshinary and Knowles, 1976). 

Samples were then incubated at 30°C for three hours. This incubation time was chosen after 

preliminary tests in order to get a measure of denitrification enzyme activity already present 

in soil, without further enzyme synthesis. This allows to avoid the use of chloramphenicol, a 

protein synthesis inhibitor (Dendoveen et al., 1994), as many problems may occur when 

antibiotics are added to soil because they can act as substrates, can interfere with activity of 

on-target organisms, can alter in a different way the activity of different microorganisms, 

especially the ones involved in the nitrogen cycle (Badalucco et al., 1994; Castaldi and 

Smith, 1998b). After 3 hours, 1 ml gas sample was withdrawn with an air tight syringe and 

injected into the gas chromatograph for N2O analysis. 

 

 

 

2.3 GAS FLUX MEASUREMENTS 

 

 

2.3.1 N2O AND CH4 FLUXES 

 

 

Gas fluxes from soil were measured, by closed static chambers (Hutchinson and Mosier 

1981; Smith et al. 1995) made of high-density polyvinyl chloride (15 cm high x 15 cm in 

diameter). Chambers were placed on collars (5 cm high) one hour after these had been 

inserted at random into the soil. Each chamber was provided with a sampling port fitted with 

a three-way tap. Three gas samples were taken from each chamber (time zero and at about 30 

and 60 minutes) and stored, in 20 ml air-tight evacuated vials. Concentrations of N2O and 

CH4 were determined, within a week, using a gas chromatograph (Series 800 Fisons, Milan, 

Italy). A modified system from Loftfield et al. (1997), was set up to analyse both gases on 1 

ml gas sample. Gas was loaded on a 1 ml loop connected to a 10-ports valve (Valco Europe, 

Switzerland). A precolumn of 1 m (O.D. 1/8", 0.08" I.D.), filled with Porapak 80-100 Q and 

maintained at 60°C, was connected to the 10-port valve in order to operate frontflush and 

backflush. From the pre-column, the gas passed into the main column (T Porapak 80-100 Q, 

O.D. 1/8", 0.08" I.D., 2 m length), also held at 60°C. Then it was directed, via a 4-ports valve 



Chapter 2                                                                                                 Materials and Methods 

68 
 

(Valco Europe, Switzerland) firstly to a flame ionization detector (FID) and, after 86 seconds, 

to an electron capture detector (ECD), held at 280°C. Pure nitrogen was used as carrier gas at 

a flow rate of 40 cm3 min-1. Calibrated standards (Air Liquide Italia; 0.8 ppm, 2.00 ppm, 3.10 

ppm of CH4; 0.350 ppm, 2.6 ppm, 5.2 ppm of N2O) were used for N2O and CH4 concentration 

determination, and were injected on duplicate every 20 samples.  

The flux  f  for the two gases was calculated as:  

 

A

V
dt

dC

f

⋅

=  

 

where V is the volume of the chamber, A its basal area and dC/dt, the rate of 

concentration change. This was calculated from the linear regression of N2O production over 

time. The same calculation was applied for CH4 uptake, as depletion over time followed a 

zero order kinetic model (Striegl et al. 1992; Borken et al. 2000; Castro et al. 1994; Castaldi 

and Fierro 2005). A negative sign is used to indicate CH4 consumption. 

 

 

2.3.2 NO FLUX 

 

 

Nitric oxide (NO) fluxes were measured from the soil columns using a gas flow-through 

system (Dick et al., 2001, Sanchez et al. 2008). The inlet air of the column was previously 

filtered through charcoal and aluminium/KMnO4, to remove O3 and NOx. The flow rate over 

the headspace of the column was about 40 ml min-1. NO was analysed by chemiluminescence 

(42C model, Thermo-Environmental Instrument) and O3 by UV absorption (427 model, 

Thermo-Environmental Instrument). Both instruments require a flow rate of around 1L min
-1

 

each, so additional filtered air free of O3 and NOx was supplied to the analysers. All data: 

flow rates, gas concentrations were recorded every 10 seconds with a datalogger (21X model, 

Campbell Scientific).The fluxes were estimated with the steady state of the NO concentration 

occurring approximately 10 min after the column closing and were interspersed with 

measurement from an empty column, in order to take into account reactions with the chamber 

walls and lids. They were calculated as the product of the flow rate of the column headspace 
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with the difference of the steady state concentrations between the soil columns and an empty 

column and with a dilution factor (ratio between the total and the column flow rate) divided 

by the weight of the dry soil (100g). 

 

 

 

2.4 STATISTICAL ANALYSIS 

 

 

For each parameter, for each sampling date, a mean value as arithmetic mean was 

calculated and bars in the graphs represent one standard error of the mean. To compare the 

effect of treatment on measured parameters, one way analysis or two way analysis of variance 

was applied to the data for each sampling event. When the difference was significant (P<0.05) 

an "all pairwise" comparison was carried out using the “Student-Newman-Keuls test”. 

Multilinear and non-linear regression analysis was performed to evidence the relationship 

bteween depend and independent variables. Statistical analyses and graphics were done using 

SIGMA STAT 3.11 and SIGMA PLOT 9.0 (Jandel Scientific).
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3 SOIL NITROGEN CYCLE AND FLUXES OF GREENHOUSE GASES (N2O AND 

CH4) FROM AN ITALIAN MEDITERRANEAN WOODLAND UNDER 

CHANGING PRECIPITATION REGIME 

 

 

 

3.1 INTRODUCTION 

 

Variations in the distribution, frequency and total amount of precipitation is one of the 

predicted effect of the occurring climate change (IPCC, 2007). In the Mediterranean region 

the observed climatic trend indicates a constant increase of temperature (Peñuelas et al., 

2002, 2005; Peñuelas & Boada, 2003) and a decrease of precipitation, in particular during the 

summer period (dry season) (Esteban-Parra et al., 1998). The reduced amount of 

precipitation together with the rise in potential evapotranspiration, led by increased 

temperature, has resulted in increased aridity (Piñol et al., 1998; Peñuelas et al., 2005). 

Changes in intensity and frequency of precipitation has resulted in increases of drought 

durations in many semi-arid regions (Feddema, 1999; Lelieveld et al.; 2002; Moonen et al., 

2002; Ragab and Prudhomme, 2002; Ventura et al., 2002), in shifts in the “wet-dry cycles” of 

soils, or increases in extreme events. Future predictions for the Mediterranean basin indicate a 

further increase in warming and drought in the coming decades (Sabate et al., 2002; Peñuelas 

et al., 2005). These environmental variations might have significant impacts on 

biogeochemical cycles in natural ecosystems (Ryan et al., 1998). 

Rainfall represents a key ecological factor for terrestrial ecosystems which directly 

controls net primary production (NPP) (Churkina & Running, 1998; Knapp & Smith, 2001), 

decomposition (Swift et al., 1979; Villela and Proctor, 2002) N mineralization (Emmett et al., 

2004), soil respiration (Orchard & Cook, 1983; Savage & Davidson, 2001; Davidson & 

Janssens, 2006). Excess and scarcity of water affect negatively ecosystem processes. Where 

excessive rain leads to soil water saturation and flooding, anoxic conditions can develop 

inhibiting oxidative processes, thus resulting in partial and slow decomposition of soil organic 
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matter (Freeman et al., 2001). On the other hand, reduction of precipitation can lead to soil 

drought, which affect organic matter input to the soil, by reducing NPP, but also reduces soil 

organic matter decomposition and mineralization by limiting diffusion of enzymes and 

substrates, mobility and surviving of soil micro-organisms. However, the modified frequency 

of rain events also leads to repeated cycles of drying-rewetting which are known to cause the 

disruption of soil aggregates, exposing physically protected organic matter (Adu and Oades, 

1978; Lundquist et al., 1999) and to induce peaks of mineralization (Fisher et al., 1987; 

Jackson et al., 1988; Davidson et al., 1993; Appel, 1998) and N and C gaseous emissions 

(Ryan et al., 1998; Austin et al., 2004). The exact mechanism of this phenomenon and the 

relevance of these events on annual budget of N and C losses in seasonally-dry ecosystems is 

still an open debate. However, strong trend of soil organic matter decomposition and C losses, 

recently evidenced in Europe (Bellamy et al. 2005, Ciais et al. 2005), have been explained by 

a combination of increased drought and temperatures (Ciais et al. 2005; Schulze & Freibauer 

2005).  

In a variety of ecosystems, rates of net N mineralization and the total quantity of soil N 

are indicators of soil fertility (Nadelhoffer et al. 1983; Pastor et al. 1984; Vitousek and 

Matson 1985). Given the high sensitivity of decomposition and mineralization processes to 

soil water content, N availability and its dynamics and stocks in ecosystems are expected to 

be significantly affect by climate changes. In particular where reduced water can lead to 

reduced N mineralization, significant impacts both on ecosystem performance and on long-

term C sequestration in terrestrial ecosystems could be expected (Hungate et al., 2003; Luo et 

al., 2004), in particular in Mediterranean regions where nutrients are often a limiting factor 

for NPP (Hanley & Fenner, 2001; Sardans et al., 2004, 2005a).  

The objective of the present work is to evaluate the impact of changes in the 

precipitation regime on the N cycle in a Mediterranean ecosystem by using a manipulation 

experiment to artificially increase and reduce the water input to the system by a 20%. 

Up to now most studies on the effect of climate change on ecosystem processes have 

focused on the effect of elevated atmospheric CO2 (Körner et al., 2005; Luo et al., 2006) and 

increased soil temperature (Giardina & Ryan, 2000; Davidson & Janssens, 2006; Parmesan 

& Yohe, 2003; Badeck et al., 2004; Luo, 2007) and most of the manipulation studies on 

climate have been performed in cold and moist temperate and Arctic ecosystems (Chapin et 

al., 1995; Harte & Shaw, 1995; Parsons et al., 1995; Henry & Molau, 1997; Luekewille & 
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Wright, 1997; Wright, 1998; Buckland et al., 2001; Valpine & Harte, 2001; Rasmussen et al., 

2002). 

Less information exist on the effect of changes in the rain regime on C and N cycles for 

Mediterranean, arid and semi-arid environments (Weltzin & McPherson, 2000; Shaw & 

Harte, 2001, Knapp et al., 2002; Austin A.T., 2004; Aranibar, 2004). The present study aims 

to contribute to fill this gap of knowledge together with other published studies 

(Papatheodorou E.M., 2004), relatively to Mediterranean ecosystems. Short and long term 

effect could be observed in C and N cycle in response to climatic change. In this study we 

present the response of soil N cycle after two years of variation in the precipitation regime. 

This it represent the response on the short term. The study is still in progress so that we will 

be possible to compared these data with long term effects. 

 

 

 

3.2 MATERIALS AND METHODS 

 

 

3.2.1 DESCRIPTION OF THE SITE OF STUDY  

 

 

The experimental site, located on the Tolfa hills in Central Italy (42°11’ N 11°56’ E, 

180 m a.s.l..), is a coppiced woodland dominated by Arbutus unedo L. (65%-90% plant cover) 

of about 6ha. Other species are also present with a lower cover density, often as isolated trees: 

Erica arborea L. (13%), Fraxinus ornus L. (8%), Quercus pubescen, Willd. (5%), Quercus 

cerris L. (4%). Climate is typically Mediterranean, with a mean annual precipitation of 650 

mm and a mean annual temperature of 15°C. The geology of the site is characterized by the 

presence of emerging eruptive deposits that, by the action of hydrothermal processes, gave 

origin to alum mineral beds.  

The soil is classified, according to the USDA system, as an Andisol, a sandy loam soil, 

with a mean bulk density of 0.25 gcm-3 in the top 10 cm, and 0.91 gcm-3 from 10 to 30 cm, 

which is the maximum average depth of the A horizon. Soil pH is 4.3 in the organic layer and 

4.0 in the mineral layer. Soil C and N concentrations are 18.9% and 1.2%, respectively, with a 
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C/N ratio of 15.7 in the organic layer, and 2.6% and 0.4%, respectively, in the mineral with a 

C/N ratio of 6.5. 

 

 

 

3.2.2 EXPERIMENTAL DESIGN AND SAMPLING 

 

 

The present experiment is part of a wider study on large scale plots of about 1 ha each, 

where towers for Eddy covariance measurements have been set. In order to avoid disturbance 

on these main plots smaller areas have been organized where physiological, chemical-

physical and soil analyses could be made. These plots are about 10 x 10 metres wide. The 

manipulation regime includes the following treatments: DRY, WET and CONTROL. On the 

DRY plot, throughfall was intercepted by a number of belowcanopy metal drains that were 

placed right at about 1.5 meters height, connected to pipes to allow the displacement of the 

intercepted water outside the plot. In this way, approximately 20% of the ground area was 

covered by drains in order to reduce by about a 20% natural rainfall input. The irrigation 

treatment (WET) was obtained by an irrigation system (sprinkler irrigators uniformly 

distributed within the plot) able to simulate rain event and to add about 20% of water to 

precipitation regime. Irrigations were carried out during summer period, in order to maintain 

soil moisture above the drought stress threshold (Alberti et al. 2007) (Fig. 3.1). A third main 

experimental plot without treatment (CONTROL) was created to take in account an unaltered 

precipitation regime. Each treatment was replicated 3 times using three blocks located within 

an hectare (Fig. 3.2) and distributed along a transect South-Nord, at about 200 meters distance 

one from the other. 
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Figure 3-1. Meteorology data from Tolfa, plus soil temperature and volumetric water content. 
 

Seasonal soil sampling were carried out at the site from spring 2005 to autumn 2006. In 

each occasion soil cores (0-10 cm depth, 5 cm diameter) were collected from three sampling 

points uniformly chosen within each subplot (100 m2 each), for a total of nine replicates per 

treatment. Immediately after sampling, soil was sieved (2 mm mesh) and stored at 4°C until 

subsequent analysis in laboratory. Gas sampling were carried out by static closed chamber 

method in five seasonal sampling dates in each subplot area using again 3 replicates per each 

subplots for a total of nine replicates per treatment. 
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Figure 3-2 Tolfa experimental design. The big squares represent the Eddy towers locations, the small 
rectangles represent the small replicated plots for destructive measurements utilized in the experiment. 

On the left details of irrigation system and drains. 

 

 

 

 

3.2.3  SOIL AND GAS ANALYSIS 

Soil physical-chemical properties and soil biological processes related nitrogen cycle 

were measured in each sampling event. Methods for analysis and measurements of soil water 

content, pH, organic carbon, total nitrogen and carbon, mineral nitrogen, organic α-NH2, 

mineralization rate, nitrification rate, denitrification enzyme activity and gas fluxes are 

described in detail in the chapter 2. 

 

 

 

3.2.4 STATISTICAL ANALYSIS 

For each parameter, for each sampling date, a mean value as arithmetic mean was 

calculated and bars in the graphs represent one standard error of the mean. To compare the 

effect of manipulation on measured parameters, taking into account the block design (3 
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replicates on 3 blocks) a two way analysis of variance was applied to the data for each 

sampling event. When the difference was significant (P<0.05) an "all pairwise" comparison 

was carried out using the “Student-Newman-Keuls test”. Multilinear and non-linear 

regression analysis was performed to evidence the relationship bteween depend and 

independent variables.  Statistical analyses and graphics were done using SIGMA STAT 3.11 

and Sigma plot (Jandel Scientific).  

 

 

 

3.3 RESULTS 

 

 

3.3.1 SOIL ANALYSIS 

 

 

3.3.2 GRAVIMETRIC SOIL WATER CONTENT 

 

 

The pattern of soil water content exhibits clear seasonal fluctuations (Fig. 3.3) with 

lower values in summer, a maximum during winter and intermediate values during spring and 

autumn. The difference in treatment were more evident in the first year of study and in most 

cases resulted significant only when comparing DRY vs. WET. The control fluctuated among 

the two treatments often assuming intermediate values without having, however a statistical 

difference. In general, the gravimetric water content in DRY treatment was always lower than 

CONTROL and WET treatments, then latter being on average always above the other two 

treatments. Corresponding volumetric water contents can be derived by multiplying the 

gravimetric water content for the Bulk density at the same depth (0.47 g/cm3). Overall we can 

say that the volumetric water content varied between 9 and 23 % in the DRY treatments and 

between 14.1 and 49.3 in the WET treatment. The strongest differences between WET and the 

others was observed in summer 2005 thanks to irrigation. This was less intense (Fig. 3.1) in 

summer 2006 with consequence less difference in soil water content. In winter, instead it was 

possible to observe the higher difference between DRY treatment and the others. 
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Figure 3-3. Pattern of gravimetric soil water content during the study period. Different letter indicate 
significant (P<0.05) differences among treatments, different numbers indicate significant differences 
among seasons. 

 

 

 

3.3.3 NET NITROGEN MINERALIZATION RATE 

 

 

Net nitrogen mineralization rate was measured over 28 days of laboratory incubation, in 

each sampling event and the sole product of organic N mineralization was NH4
+, which 

increased linearly during the time of incubation. No NO3
-
 production was observed. Net 

nitrogen mineralization rate (Fig. 3.4) was significantly influenced by the sampling date, 

showing a strong seasonal trend with higher rates in autumn and winter, intermediate values 

in spring 05 and lower rates in summer and spring 06. No statistical difference was instead 

observed among treatments. In most cases, only as a general trend the mineralization in the 

DRY treatment was the lowest, whereas CONTROL and WET treatment were basically very 

similar. The spatial variability among blocks was higher than the variability between 

treatments so that only strong variations in seasonal driving parameters could overtake this 

spatial variability.  
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Figure 3-4 Net nitrogen mineralization rate (average ± SD). Different letter indicate significant 
differences between sampling date (two way anova, P<0.05). 

 

Soil gravimetric water content was indeed a factor which seem to influence the net 

mineralization trend at Tolfa, as in fact the latter increased exponentially with increasing 

water content (Fig. 3.5). The steepest rise started for values above the 25% of volumetric 

water content, which at Tolfa was reached only in short winter periods (Fig. 3.1).  
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Figure 3-5 Variation of net N mineralization rate in function of soil water content. (y = 
0.16+0.05*(1.04)x R2=0.81). 
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This indicates that only above this threshold a difference of volumetric soil water 

content of about 10%, such as that in the treatments, might have a visible influence of 

mineralization activity. Mineralization was also correlated positively with alpha amino N 

content in the soil (Fig. 3.6).  
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Figure 3-6 Variation of net N mineralization rate in function of alfa amino N content in the soil. 
 

Higher mineralization activity seemed associated to those situation presenting higher 

values of both soil water content and alpha amino N (Fig. 3.7).  
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Figure 3-7 Variation of net N mineralization rate in function of soil water and soil alpha amino N 
content. 
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3.3.4 POTENTIAL NITRIFICATION RATE 

 

In the test of potential nitrification activity no NO3
- was produced, despite the addition 

of 100 µg N g
-1

 dry soil as (NH4)2SO4, which was still found in the soil after 28 days of 

incubation at the same concentration measured at time zero (Fig 3.8) plus the amount 

mineralized from soil organic matter during the 28 days of incubation. 
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Figure 3-8 Soil ammonium (a) and nitrate (b) concentration after addition of 100 µg NH4-N/g dry 

weight in potential nitrification test on CONTROL plot. 

 

Thus, apparently no net nitrification was occurring in this soil. Possible reasons of 

absence of net NO3 production were studied and were described in detail in the chapter 4. No 

field trend can be hence described for nitrification activity. 

 

3.3.5 AMMONIUM AND NITRATE SOIL CONTENT  

 

The Fig 3.9 shows soil ammonium content in the seven sampling events. Again a good 

and significant seasonality was evidenced, with highest values were recorded in winter. 

Concerning the treatments the only differences were evidenced in October 2005 and February 

2006, when the ammonium content in the WET treatment was significantly higher than those 

in DRY and CONTROL treatments, while in other sampling dates there wasn't any significant 

differences in soil ammonium content among treatments. 
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Figure 3-9 Soil Ammonium content in seven sampling events. Asterisks show significant differences 
between treatments for each sampling date. Different letters indicate significant differences between 
sampling dates. 

 

 

No soil NO3
- content was detected in Tolfa site over 1 and ½ years of sampling, so NH4

+ 

was the dominant form of mineral N at all sampling occasions. NO3
- measured values in field 

samples are always below the limit of analytical detection for the electrodes (see chapter 2). 

 

 

3.3.6 ORGANIC α-NH2 

 

Organic α-NH2 represents a soluble fraction of chemical compounds which have the 

amino group in alpha position, such as in aminoacids. Thus this fractions can include 

aminoacids, peptides, proteins, enzymes. This analysis did not start immediately so that only 

3 sampling dates are available. From Figure 3.10a quite high content of this fraction is noted 

in all occasions, with higher values observed in autumn, respect to summer and spring. In 

each sampling event there wasn't significant differences among treatments. 

The N inorganic/organic ratio (Fig. 3.10b) was strongly dependent on the season, with a 

clear dominance of organic forms in the spring/summer particularly evident in the WET 

treatment in summer. In autumn the ratio was around 1, then with an equal distribution of 

available N between the organic and the mineral form.  



Chapter 3                                                           Soil N cycle and GHGs from a Med. woodland                                                                                         

under changing precipitation regime 

82 
 

α
-a

m
in

o
-N

 (
µ

g
 N

 g
-1

 d
ry

 s
o
il)

0

20

40

60

80

100

120

140

Control

Dry

Wet

May06 Jul06 Nov06

m
in

e
ra

l 
N

/α
-a

m
in

o
 N

 (
%

)

0

5

10

15

20

25

30

35

Control

Dry

Wet

a

b
b

Two ways ANOVA among seasons P<0.001
                          among treatments P=0.955

 

Figure 3-10 (a) Soil organic α-NH2 content (average ± SD) and ratio of (b) inorganic N/organic-N as 
α-amino N. 

 

 

3.3.7 DENITRIFICATION ENZYME ACTIVITY 

 

Denitrification enzyme activity (Fig 3.11) measured at Tolfa was always very low, with 

maximal values never exceeding 15 ng N2O-N g-1 h-1.Values were slightly lower in autumn-

winter months and, although the difference was not significant, the DRY treatment showed 

always lower DEA than the WET and control treatments. Part of the lack in statistical 

difference among treatments can be attributed again to the spatial variability, as in fact it can 

be seen from Fig 3.12 that the fluxes in the different blocks vary quite differently with water 

content. The highest fluxes are reached in block 1. In this case and in block 3 there is an 

exponential trend of increasing DEA with increasing water content.  
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Figure 3-11 Denitrification enzyme activity (average ± SD). 
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3.3.8  GAS ANALYSIS 

 

 

 

3.3.9  METHANE FLUXES 

 

 

The sites acted overall as a methane sink (Fig 3.13). The only exception was observed 

on February 2006 when soil water content exceed the saturation value. In this case the CH4 

flux became positive. i.e. the soil became a source of CH4. 
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Figure 3-13 Methane flux rate (mean ± SD, mg CH4 m
-2

 day
-1

) of CONTROL, DRY and WET 
treatments averaged across three plots in 2005-2006 years. 

 

 

The main driving factor for the observed temporal variability is the soil water content  

(Fig. 3.14). The relationship between CH4 uptake and volumetric soil content is exponential 

(R2=0.90), having higher consumption rates at lower soil content, and a soil uptake that get 

towards zero when soil water content rise up (Fig. 3.14). At saturation there is the shift from 

sink to source. No significant differences (P=0.067) in CH4 consumption between treatments 
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(DRY, WET and CONTROL) were observed, at each sampling event, as the water content 

which controls the flux was not enough different, taken into account the spatial variability 

within plots and among plots (Fig. 3.1 and 3.3), as also evidence by the high standard 

deviation associated to the mean value (Fig. 3.13). However, also in this case, a tendency of 

the WET treatment to present lower CH4 uptake and even CH4 production can be evidenced 

as a result of the rain manipulation. 
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Figure 3-14 CH4 flux plotted versus volumetric soil water content for CONTROL, DRY and WET 
treatments. 

 

 

Using the relationship reported in Fig 3.14, the annual CH4 flux was modelled for the 

whole experimental period using the water content data available at the site from Tetra 

probes. These were set into the control plots only from the 9th of June 2006, so to compare all 

the three treatments only data from 2007 can be used. Fig. 3.15 shows the modelled trend of 

CH4 uptake from 2004 to 16th October 2008. 
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Figure 3-15 Modelled CH4 flux at Tolfa soil, obtained using the relationship derived in Fig. 3.14 and 
the water content data. 

 

 

These modelled data were used to calculate annual values of CH4 uptake. In Table 3.1 

these are expressed as mg CH4 m
-2

 year
-1 

or g CO2 equivalents m
-2

 year
-1 

for the WET and 

DRY in 2006 and also CONTROL for 2007. On a yearly base the difference among 

treatments was significant with the WET treatment showing lower uptake than the DRY in 

2006 (-14.2%) and 2007. In the 2007 the lowest values were measured in the control, which 

showed also the lowest values of soil water content.  

 
Table 3-1  Annual values of CH4 uptake expressed as mg CH4 m

-2 year-1 or g CO2 equivalents m-2 
year-1 

 CH4 uptake 

 mg CH4 m
-2 year-1  g CO2 equivalente 

m-2 year-1 
   

 
C D W 

%diff 
D-W C D W  

  

2006  184.4 158.2 14.2   3.8 3.3  
D > W 
P<0.0001 

Paired t-
test 

2007 243.1 230.1 183.8 20.13 5.1 4.8 3.8  C>d>w 
one way 
anova 
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3.3.10 NITROUS OXIDE EMISSIONS 

 

 

In all sampling events, no nitrous oxide flux was measured. N2O fluxes at Tolfa were 

absent or below the detection limit. 

To double check this lack of N2O production soil was sampled and within a day was  

incubated, fresh, in laboratory in glass jars of 1 litre, adding 2 ml of water per gram of soil 

with and without (untreated) nitrate (KNO3, 100 µg N g
-1

 dry soil). We also amended half of 

the samples with 10% (of headspace volume) of acetylene which allows to block nitrification 

and N2O reduction to N2 during denitrification, so that we can be distinguished the source of 

N2O. Gas was measured after 2, 24, 44 and 180 hours by gas chromatographic analysis. 

Results from Table 3.2 show that in absence of NO3 addition no N2O is produced. When NO3 

is added after 24 hours a significant activity of N2O production develops, and it increases in 

presence of acetylene. This means that the source of N2O is denitrification activity. 

 

Table 3-2 N2O production from Tolfa soil incubated with or without KNO3, (100 µg N g-1 dry soil) 
and with or without acetylene (C2H2). 

Incubation N2O production (ng N2O g-1 h-1) 

Time (h) Untreated Untr. + 10% 
C2H2 

Time (h) 
 

+NO3  +NO3 + 10% 
C2H2 

2 -0.26 ± 0.11 -0.27 ± 0.21 2 -0.20 ± 0.23   -0.09 ± 0.08 
24  0.09 ± 0.09  0.05 ± 0.04 24 79.22 ± 8.30   82.10 ± 10.41 
44  0.10 ± 0.11 -0.04 ± 0.03 172 95.71 ± 8.60 106.75 ± 35.54 
180  0.01 ± 0.01  0.01 ± 0.01    

 

 

 

3.4 DISCUSSION 

 

The Tolfa site has demonstrate to have a quite unusual N cycle for Mediterranean 

woodlands (Rovira and Vallejo 1997, Gallardo and Merino 1998, Castaldi and Aragosa 

2002), in particular concerning the total absence of net nitrification and NO3
- production, as 

well as its very high organic N content in the extractable fraction of N.  

This site is characterized by typical net rates of N mineralization for Mediterranean 

woodlands, which lower values during the dry periods and higher values up to 3 µg N g-1 



Chapter 3                                                           Soil N cycle and GHGs from a Med. woodland                                                                                         

under changing precipitation regime 

88 
 

day-1 when conditions of soil water are particularly favourable, mostly during the autumn 

winter months. The increase of activity for soil water content is quite slow between 10% and 

30%, and above 30% it start to increase more rapidly. This condition is hardly met in Tolfa 

where the soil volumetric water content very rarely reaches or overtake the 30% (Fig. 3.1). 

From Fig. 3.3 it can be noticed that the difference of gravimetric soil water content between 

WET and DRY treatments never exceeds 30% and it is even less (15%) between control and 

one of the two treatments. A 30% increase of soil water content  from 20% to 50% of soil 

water content induces and increase of mineralization rate from 0.25 to 0.50  µg N g-1 day-1 

(Fig. 3.4). Looking at Fig. 3.4 this variation of soil mineralization is within the standard 

deviation associated to the mean value of mineralization, in almost all cases. This means that 

the spatial variability associated to this parameter obscure the effect of water manipulation 

resulting in no significant difference among treatments. Thus to see a real change in 

mineralization rates the rain regime should change in such a manner to lead to a variation of 

gravimetric soil water content higher than 30% (about 15% of soil volumetric water content). 

This is true both considering the variability within each single plots or all the 3 plots together.  

Although N mineralization gives as end product the NH4
+, this latter did not follow the 

same temporal trend of mineralization. However, while mineralization represents an activity 

rate, soil mineral N is the net balance between production and uptake from plants and 

microbes, or losses. The highest values of NH4
+ in soil correspond to winter months, when 

plant uptake might be to a minimum, and in this case it can be seen that WET treatments have 

more available soil NH4
+ than DRY and control. Thus pools seems more sensitive than 

processes to manipulation. Data indicate that this NH4
+ is not transformed into NO3

-. The 

measure of potential nitrification carried out with the addition of ammonium sulphate at 

optimal conditions (aerobic incubation to 25°C) has shown an accumulation of ammonium in 

the 28 days of incubation and absence of production of NO3
-. This result in accord with field 

data, which show absence of soil NO3
-
. This soil, hence is able to mineralize but not to nitrify. 

Northup et al. (1995) hypothesised that plant communities adapted to strong acidic and/or 

infertile soils can sustain productivity despite the low nitrogen availability by a mechanism 

associated to the high polyphenols concentration of decomposing litter which apparently 

controls and slows down soil mineralization and even more nitrification, so that N is “short 

circuited and can be directly used by the plant in form or organic N or NH4
+. Not all plant are 

rich in polyphenols. Mediterranean plants are indeed reach in substances and in this is true 
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also in the case of Arbutus, as it will be shown in details in the following chapter. Northup et 

al. (1995) also demonstrated that in these ecosystems DON (dissolved organic N) is found to 

be the dominant form of available N although fractions reveal that rather than amino acids or 

proteins, this component might be represented by protein-tannin or humic substances 

complexes. Indeed, in Tolfa soil a very high concentration of N compounds, sensitive to the 

nynhidrine reaction (NH2-groups exposed as in aminoacids and proteins), were found at 

concentrations from 2 to 10 times higher than those found in other maquis ecosystems 

(Castaldi and Carfora, pers. Comm). In fact, at Tolfa this form of available N was found to 

strongly prevail over mineral N (NH4
+) in spring and summer, and being in the same order of 

magnitude in winter. If this fraction was indeed associated to a higher release of phenols in 

the soil which slows down decomposition of available fractions and complex organic N, then 

indeed we should expect the highest values in spring and summer when plants are most 

active. De Luca et al. (2006) demonstrated that in forests rich in tannins and polyphenols 

(Pinus ponderosa Lows) nitrification is completely inhibited but fire can unblock this 

inhibition by charcoal production. This in fact was hypothesised to act as a absorbent of these 

aromatic substances, thus reducing their concentration in soil and hence their negative effect 

on nitrification. 

Clearly the distinction between litter N made avauilable as DON, NH4
+ or NO3

- is 

crucial because the form in which N is mobilized determines which organisms can utilize it 

and also the potential for its loss leaching or gas losses. Plants very often may prefer NO3
– 

over NH4
+ or amino acid N (Persson et al., 2003) as a result of the great mobility of NO3

– in 

the soil ecosystem compared with the latter forms of N, as the possibility of roots to access 

NO3
– by mass flow rather than root interception or diffusion is less energy costing. However 

the plants present at Tolfa are mostly Arbutus unedo and Erica arborea, both presenting two 

special kinds of mycorrhizae associations, arbutois and ericoid, respectively which play a 

fundamental role in their ability to extract N and P from organic sources, allowing these 

plants to colonize nutrient-poor sites where most of the nutrients are bound up in litter and 

dead organic matter. The fungi that form arbutoid mycorrhizae are both ascomycetes and 

basidiomycetes that form ectomycorrhizae on other species (such as conifers). Also the 

Ericoides fungal partners. H. ericae were demonstrated to have the ability to break down a 

wide variety of organic materials (including peptides, chitins and polyphenols) to mobilize 

nitrogen, phosphorus and other nutrients (Read 1996; Smith and Read 1997; Read et al 2000). 
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The ability of mycorrizae to uptake N in form of organic soluble N (aminoacids, peptides, 

proteins) does not seem affected by the increased availability of inorganic N, having these 

organisms a high affinity transport system for aminoacids. In addition starting from 

recalcitrant forms, N can be made available by plants and fungal exudates or ectoenzymes 

(Wallenda et al. 2000). In several cases mycorrhizae are also able to promote root uptake of N 

in form of NH4
+, which being less mobile than NO3

- can be less easily uptaken by mass flow. 

The use of 15N labelled ammonium has established that arbuscular mycorrhizae can derive N 

from ammonium salts (Johansen et al., 1991). This systems has been demonstrated to become 

more and more predominant with increasing drought, which reduces salt mobility (Tobar et 

al., 1994).  

Thus the following mechanisms might be assumed to occur at Tolfa. N arrives to the soil with 

litter, which contains a high level of phenols (see chapter 4), which first of all slows down the 

decomposition of soluble compounds containing organic N (DON). A part of the organic N is 

mineralized to NH4
+
. This same substances do not allow for nitrification to occur. Thus no 

NO3
- is produced, or it is produced at very low rates. This does not represent a problem for the 

plants they are all in symbiosis with mycorrhizae which can easily exploit both NH4
+ and 

organic N as sources of N. The lack of nitrification and NO3
- as substrate denitrification might 

hence explain the absence of N2O production recorded at the site. In fact, when NO3
- was 

added to the soil (Table 3.2) a significant N2O production occurred after 1 day from treatment, 

while the control soil (no NO3
- addition) did not show any N2O emissions. The acetylene test 

confirmed the heterotrophic nature of this N2O production. Denitrification enzyme activity 

was indeed found in Tolfa soil at each sampling event. Give the absence of NO3
-and N2O 

emissions it is not clear if this DEA can fall in the classical definition of denitrification 

activity. Nitrous oxide has been reported to be produced by a number of NO2
-
 and NO3

-

reducing bacteria common in soil (species of Bacillus, Enterobacter, Klebsiella, Citrobacter, 

Escherchia, Erwina), which do not fit the classical definition of denitrifiers (Tiedje, 1981; 

Smith and Zimmerman, 1981; Anderson and Levine, 1986). Also, many other organisms have 

been found to have the same ability to denitrify aerobically, often associated with 

heterotrophic nitrification activity (for a review see Robertson and Kuenen, 1990b) (see 

chapter 1 § 1.1.12). 
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In any case for all the measured activities the high spatial variability associated to the 

measure was not allowing for clear treatment effect, although in general processes proceeded 

lower in the DRY treatment compared with WET.  

Concerning the other greenhouse gas non CO2, CH4, the site acts as a sink for this gas. 

The treatment effect is visible only when seasonal extreme are reached and even in this case 

the spatial variability index any significant difference among treatments. However, modelling 

the emissions over the whole year allow to have a denser dataset on which to build an annual 

budget. The modelled sink is always stronger in the DRY treatment compared to the WET in 

both considered years. In the second year however, where the control is available, the CH4 

sink is DRY<CONTROL, because the water content is lower in the CONTROL in summer. 

This anomaly might be attribute to the different quantity of biomass, higher in the CONTROL 

compared to the DRY which might induce a higher evapotranspiration during the hottest 

months. 

 

 

 

3.5 CONCLUSIONS 

 

The particular N cycle presented here makes this woodland less vulnerable to N losses, 

in the case of excess rain (WET) or to N limitation (DRY) because: 1) nitrous oxide 

production and NO3
- leaching are the two forms of losses which might be more interested by 

increased soil water content, but in our case both are absent; 2) increasing drought might 

reduce mineralization and N availability to plants; however the mycorrhizal system seems 

particularly efficient in exploiting N sources, especially in dry conditions when mass transport 

becomes less efficient. So a change in water regime in this ecosystems might have little 

influence on N limitation of NPP and N losses. Long term variations of CH4 uptake potential, 

being correlated to the water balance in the system, might depend on the overall ecosystem 

functioning in the two treatments. 
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4 INFLUENCE OF ALLELOCHEMICALS PRODUCED BY 

SCHLEROPHYLLOUS MEDITERRANEAN ON NITROGEN CYCLE 

 

 

 

4.1 INTRODUCTION 

 

 

Nitrification represents one of the main biological processes involved in the nitrogen 

cycle, it contributes to regulate NO3
- availability to plants and microbes and net nitrification 

rates can reflect the potential for N losses, either through NO3
-
 leaching or by gaseous 

emission (N2O and NOx). (Likens et al. 1969; Vitousek and Melillo 1979; Krause 1982; 

Vitousek and Matson 1985). Several environmental factors are known to control nitrification, 

such as substrate availability, soil water content, temperature, soil pH, aeration and texture 

(Granli and Bøckman 1994, Castaldi and Aragosa 2002). Forests on strongly acidic soils 

show little conversion of ammonium to nitrate, and no correlation between net mineralization 

and net nitrification (Aber et al. 1985). Although low soil pH per se was once believed to 

account for this inhibition of nitrification, strains of nitrifying bacteria that can sustain activity 

at very low pH have been isolated from acidic forest soils (Hankinson & Schmidt 1988). Soil 

nitrification rates have been found to be controlled more by the presence or absence of 

particular tree species than by soil pH (Ellis & Pennington 1989). In some cases, nitrification 

has also been reported to be controlled by allelophatic compounds (Killham 1990). These are 

secondary metabolites, waste products that no serve an obvious purpose in primary 

metabolism, and they are synthesized by plants and microorganisms, which can be found in 

different tissues including leaves, stems, flowers, fruits, seeds and roots, and which are 

released into the environment by means of volatilization, leaching, decomposition of residues, 

and root exudations, in large quantities. They can have an important ecological adaptative 

role, as chemical-defence products, on competition with other organisms and can profoundly 
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alter soil properties and nutrient cycling dynamics to advantage producer plant’s phenology 

on soil environment. 

The most common allelophatic compounds include phenolics, alkaloids and terpenoids 

(Putnam 1988, Bertin et al. 2003). Polyphenols (as purified tannins or polyphenol-rich litter 

extract) have been demonstrated to inhibit nitrification in incubation studies (Basaraba 1964; 

Rice and Pancholy 1973; Lodhi, 1977; Lodhi & Killingbeck 1980; Thibault et al., 1982; 

Olson & Reines, 1983; Baldwin et al. 1983, Howard and Howard 1991, Erickson et al. 2000) 

but some evidence is given that also monoterpenes might be involved in the observed 

suppression of nitrification (White 1991, 1994; Langheim 1994; Paavolainen et al. 1998; 

Smolander et al., 2006). Though hydrolysable and condensed tannins and tannin derivates are 

important inhibitors of nitrification, flavonols and other phenolic compounds also inhibit the 

oxidation of NH4
+ to NO3

- through toxicity towards bacteria nitrifiers, Nitrobacter sp. and 

Nitrosomonas sp. (Rice & Pancholy, 1974). 

These results have been much discussed by Bremner & McCarty (1993) who found no 

inhibitory effects using pure phenolic compounds on soil and reported that phenolics and 

terpenoids enhanced the immobilisation of NH4
+ by soil organisms (Schimel et., 1996; 

Castells et al., 2003) rather than the inhibition of nitrifying bacteria. Then, phenolic 

monomers and phenolic acids can form complexes with nutrients, with formation of 

polyphenol-N complexes (Northup et al., 1995; Hattenschwiler and Vitousek, 2000) and 

thereby influence the nutrient availability and nutrients turnover in soil (Kuiters 1991; Apple 

1993). 

Direct consequence of minimizing the formation of nitrate can be to act as a N 

conservation mechanism in N-limited ecosystems (Jordan et al. 1979). This would provide a 

feedback to soil conditions that involves an adaptation to N limitation, enabling the plant to 

maximize N recovery, by minimizing potential N losses by leaching or denitrification, and by 

maintaining litter N in a form that the plant's associated mycorrhizal fungi can utilize, this 

result in the shift of the dominant pathway of nitrogen cycling from mineral to organic forms 

(Northup et al., 1995b; 1998). Previous study of Llinares (1994) reported the allelopatic 

inhibitory effect of Elaeagnus angustifolia leaf litter , after an year of incubation, on density 

and activity of nitrifying microorganisms present in degraded soils and the possible role in 

nitrogen economy in the soil supporting these plants and their possible use for restoring 

process of degraded soil. 
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Such allelopathic substances have been often found to be produced as secondary 

metabolites by Mediterranean sclerophyllous plants. For example, arbutin and tannins have 

been found as characteristic metabolites for the Ericaceae (Akhtardzhiev, 1966), while the 

main constituents of the extract of Laurus nobilis are terpenoid guaianolides and a p-

menthane hydroperoxide, (Nahoko et al. 2002). Cyclic diterpene alcohol and quinonic acid 

have been purified from Quercus ilex, volatile terpenes and fatty acids from Pistacia lentiscus 

and pentacyclic terpenoid saponins from Hedera elix (Rogosic et al. 2006). As, in general, 

Mediterranean shrublands are a mosaic of different species, the input of chemicals and 

secondary metabolites to the soil via litter decomposition, exudates, leaching, deposition of 

VOCs, can be expected to be quite heterogeneous. This should avoid the high concentration 

of plant species-specific chemical compounds in the soil. However, a different situation could 

occur in monospecific Mediterranean woodlands or shrublands, where the continuous input of 

metabolites to the soil, assured by perennial/evergreen nature of the donor plant, might result 

in high concentrations of a specific plant-produced compound, with potentially toxic effects 

on soil microorganisms. Some of these situations in Mediterranean ecosystems could be 

represented by shrublands dominated by Cistus sp. after fire events, woodlands of Quercus 

ilex or Quercus robor in undisturbed conditions, or woodlands dominated by Arbutus unedo 

L.. This latter woodland type can be found in several areas of Central and Southern Italy, 

Greece, Turkey, Spain and even in Ireland. Moreover, Arbutus unedo L. can be found with 

significant cover density (20-40%) in many mixed evergreen woodlands of the Mediterranean 

basin. 

In general, reported data on N cycle in Mediterranean shrublands ecosystems show well 

developed nitrification activity in soil, mainly limited by mineral N availability (Rovira and 

Vallejo 1997, Gallardo and Merino 1998, Castaldi and Aragosa 2002) and summer soil 

aridity (Castaldi and Aragosa 2002). However, investigating N gaseous emissions in a 

woodland characterized by a high cover density of Arbutus unedo L, in central Italy, we 

evidenced a complete absence of N2O emissions and NO3
- production (see chapter 3), both in 

the field and in the laboratory. In order to correctly simulate and quantify the N cycle 

processes, N gaseous emissions and greenhouse budget for this ecosystem type, it seemed 

necessary to further investigate the reasons for the observed results. Thus, in the present work 

we aimed at: a) verifying if the lack of NO3
- 
production was occurring in all seasons and if 

this was due to the inhibition of potential rates of mineralization and/or nitrification; b) to 
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investigate possible reasons for absence of NO3
- production, focusing the attention on 

potential toxic effects of chemicals produced by Arbutus unedo L. on soil nitrification. 

To meet the first objective, concentrations of NH4
+ and NO3

-, and potential rates of 

mineralization and nitrification were measured on soil sampled form the site at each season 

over one year and half. To test the hypothesis of a role of plant produced chemicals on 

nitrification inhibition, the following steps where followed: a) to characterize the chemicals 

present in leaves and roots of Arbutus unedo L.; b) to verify their presence in the soil and 

quantify their concentration; c) to test leaf extracts toxicity on nitrification and produce a 

rough dose-response relationship to be compared with calculated concentrations of 

metabolites input and concentration in the soil of the studied site. 

Although several studies dealing with allelophatic effects on the N cycle have been 

published, most of them refer to coniferous and North deciduous temperate forests and results 

are sometime controversial (Baldwin et al. 1983, Schimel et al., 1996, Castells et al. 2003, 

Gundale and DeLuca 2006). This makes difficult to transpose available results to other 

ecosystems just on the base of observations of specific chemicals produced by the plants. On 

the other hand, a correct evaluation of the role of allelophatic chemicals on soil N processes is 

particularly interesting in the Mediterranean environment, where these substances are 

frequently produced by plants, in order to correctly model and predict N losses from the 

Mediterranean ecosystems. 

 

 

 

4.2 MATERIALS AND METHODS 

 

 

4.2.1 SITE OF STUDY DESCRIPTION 

 

The experimental site is described in detail in § 3.2.1. Soil sampling was carried out at 

the site in areas where A. unedo had a cover density of about 85%-90%. 

 

 



Chapter 4                                                                     Influence of allelochemicals produced by 

schlerophyllous Med on N cycle 

96 
 

4.2.2 LABORATORY TESTS 

 

 

As the field sampling gave evidence of absence of nitrification activity and NO3
- 

production, a preliminary set of experiments was organized to investigate the possible reason 

for such results. Two possible causes could be advocated to explain field results. A low pH 

which might be unfavourable for the nitrifiers population or the presence of potentially toxic 

compounds in different fractions of the Tolfa environment, which might affect the nitrifying 

population. 

In first, a short term assay was done on the Tolfa soil where soil was limed with a 

solution of CaCO3 which raised soil pH from 4.3 to 6.3. Control and limed soil were then 

incubated (on triplicate) at 25°C and at optimal water content conditions (60% water holding 

capacity) for a month and the rate of potential nitrification (§ 2.2.2), after addition of 100 

µgN/g soil as (NH4)2SO4 was determined. 

The second set of experiments was done to investigate potentially toxic effect of water 

extracts of different components of Tolfa ecosystem (soil, litter and fresh leaves extracts) on 

test soil population of nitrifying microorganisms. For this purpose a test soil from a 

Mediterranean oak woodland was chosen where the nitrification activity had been previously 

measured at significant rates during the whole year (Castaldi and Aragosa, 2002). This test 

soil was sampled in a coastal area of a protected natural reserve under Quercus ilex canopy. 

Soil is classified as an Calcaric Arenosol (FAO, 1998) with neutral pH 7.0 and 2% of soil C 

and 0.5% of N, in the top 10 cm. 

In a first screening experiment the test soil was incubated with different extracts taken 

from the Tolfa site: 

1) fresh leaves of Arbutus unedo L.; 

2) partially decomposed litter of Arbutus unedo L.; 

3) Tolfa soil; 

4) fresh leaves of Quercus ilex from the test soil site. 

The latter extract was used as a control to verify that the nitrification activity of the test 

soil was not sensitive to extracts of the dominant plant species (Quercus ilex) present in the 

site. Soil and litter extracts were obtained by shaking 100 grams of soil (top 10 cm, sieved at 2 

mm mesh sieve), 35 grams of fresh leaves, reduced by hand in little pieces, with 500 ml of 
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distilled water for 2 hours. The extract was than filtered with Whatman 42 paper and 30 ml of 

each of three extract were added to 100g of the test soil (on 4 replicates). A control was used 

with sole distilled water (30 ml H2O 100 g-1 dry soil). Soil was then incubated to determine 

the rate of potential nitrification as described in § 2.2.2. 

Then a second test was performed. Fresh mature leaves (100 g), sampled at the 

beginning of July 2005 from tree branches, were broken in little pieces by hand and infused 

for 18 hours (on a rotary shaker) in 1 L of three different types of extractant (fresh leaves: 

extractant ratio 1:10): 

1)an acid solution of H2SO4 0.0005 M with pH 3 in distilled water; 

2) a basic solution of NaOH 0.0001 M with pH 10 in distilled water; 

3) a hydroalcoholic solution of H2O – EtOH (1:1). 

After the extraction, the solutions were filtered on Whatman 42 paper, neutralized and 

then lyophilized by using a HetoDry Winner lyophilzator. The ethanolic extract was first 

evaporated by Rotavapor Sistem to let all the ethanol to distillate and then lyophilized. A 

toxicity test was then organized using the lyophilized extracts. Test soil (10 g each sample on 

4 replicates) was treated with solutions of different crude extracts (acid, basic and ethanolic) 

to have a final concentration of 0, 4, 40, 400, and 4000 µg of extract g-1 dry soil. Soil samples 

were incubated to determine the rate of potential nitrification. 

A third toxicity essay was performed to test the inhibiting effect of the aqueous and the 

organic fractions of the hydroalcoholic extract, which were expected to contain chemicals 

with different Kow and solubility, having hence, different affinity for organic membranes and 

cellular uptake. The crude hydroalcoholic extract (6.4 g in 100 ml of water) was 

chromatographed on Amberlite XAD-4, eluting with water first, and then with methanol. 

Both the solutions were dried, thus obtaining a crude aqueous of 3.35 g and a crude organic of 

1.13 g fraction. To perform the test, the aqueous fraction was dissolved both in distilled water 

(solution A/A) and in methanol: water (1:1) (solution A/M), whereas the organic fraction was 

dissolved only in methanol: water (1:1) (solution M/M). Solution A/A and A/M of the 

aqueous fraction were prepared to take into account possible toxic effects of methanol on 

nitrifiers. The final concentration of extract in soil was again 0, 4, 40, 400, 4000 µg of extract 

g-1 dry soil for the organic fraction, and 0, 40, 400, 4000 µg of extract g-1 dry soil for the 

aqueous fraction of the hydroalcoholic extract. Soil was then incubated (on 3 replicates) to 

measure the rate of NO3
- production. 
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4.2.3 CHARACTERIZATION OF CHEMICAL COMPOUND IN PLANTS, ROOTS AND SOIL 

 

 

The organic and aqueous fractions obtained from the hydroalcoholic extract of fresh 

leaves were analyzed to determine the most abundant natural compounds present. Raw 

extracts were purified using different chromatographic techniques (CC, FCC, HPLC, TLC) 

and their structure was defined by using spectroscopic (UV-Vis, NMR 1D e 2D) and 

spectrometric (ES/MS) methods as described in more details by Fiorentino et al. (2007). 

Chemical analysis were carried out at the department of Science of Life (Second University of 

Naples, Italy). 

The organic fraction was chromatographed on column using Sephadex LH-20 as 

stationary phase and water and methanol solutions as eluents to collect fractions of 20 mL of 

volumes. Fractions from 22 to 29, eluted with H2O, contained pure arbutin (2) (62.7 mg); 

fractions from 183 to 193, eluted with H2O – MeOH (3:1), consisted of ethyl gallate (1) (44,0 

mg). Fractions from 287 to 304, eluted with H2O – MeOH (1:1), was rechromatographed on 

preparative TLC eluting with CHCl3 – MeOH (4:1), to obtain pure p-hydroxybenzoylarbutin 

(3) (2.5 mg) and galloylarbutin (4) (11.4 mg). Fraction 317 to 340, eluted with H2O – MeOH 

(1:1), was purified by TLC eluting with CHCl3 – MeOH (4:1), to obtain gallocatechin (5) 

(35.5 mg) and catechin (6) (54.6 mg). Fractions 406-430, eluted with H2O – MeOH (1:1), was 

purified by TLC eluting with CHCl3 – MeOH – H2O (13:9:3), to obtain kaempferol 3-O-α-L-

ramnopyranoside (7) (11.0 mg), quercetin 3-O-α-L-ramnopyranoside (8) (33.0 mg), myricetin 

3-O-α-L-ramnopyranoside (9) (18.0 mg). Finally, fractions 445 to 458, eluted with H2O – 

MeOH (1:3), was purified by TLC eluting with CHCl3 – MeOH – H2O (13:9:3), to obtain 

kaempferol 3-O-β-D-arabinofuranoside (10) (1.3 mg), quercetin 3-O-β-D-arabinofuranoside 

(11) (3.1 mg), myricetin 3-O-β-D-arabinofuranoside (12) (2.8 mg). 

In order to identify the compounds present in extracts of roots of A. unedo and in 

extracts of Tolfa soil, samples (3 replicates) of 5 g of dry roots of A. unedo and 5 g of Tolfa 

soil were extracted by Soxhlet apparatus (4 h in 250 ml of methanol) (Alonso et al., 1998). 

The crude extracts were dried to obtain a residue (140 mg for the roots and 70.0 mg for the 

soil) which was redissolved in methanol to have a final concentration of 0.5 mg/ml. An 
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aliquot (50 µl) of the solution was analysed by C18 HPLC with detection at 258 nm. The 

metabolites in the mixture were identified by comparing their retention times with those of the 

pure standard isolated and characterized from A. unedo (Fiorentino et al. 2007). The HPLC 

apparatus consisted of a pump (Beckman System Gold 127), a UV-Vis detector (Beckaman 

166) and a Shimadzu Chromatopac C-R6A recorder. Analytical HPLC was performed using 

RP-18 (Gemini 50µm, 250 x 4.6 mm i.d., Phenomenex) column using the following gradient: 

solution A (H2O – AcOH 99:1 v/v) and solution B (MeCN-MeOH, 4:1 v/v); A:B (49:1) in 

isocratic mode for 5 min; gradient A:B from 49:1 to 7:3 in 20 min, then isocratic mode for 10 

min, finally 100% B in 10 min. The flow rate was 0.7 mL min-1 with detection at 258 nm. All 

the root and soil analyses were performed in triplicate and the results are reported as the 

average of the values ± standard deviation. 

 

 

4.2.4 STATISTICAL ANALYSIS 

 

A one way analysis of variance was used to evidence significant differences among 

different season. When the difference was significant (P<0.05) an "all pair wise" comparison 

was carried on using the “Student-Newman-Keuls test”. Non-linear regression analysis was 

performed to find the relationship between the decrease of nitrification activity and the 

increase in extract concentration (Sigma Stat 3.11, Jandel Scientific). 

 

 

4.3 RESULTS 

 

 

4.3.1 N TRANSFORMATION PROCESSES AND MINERAL N IN SOIL AT THE TOLFA SITE 

 

In the Tolfa soil, NH4
+
 was the dominant form of mineral N at all sampling occasions 

(Table 4.1). NO3
- was completely absent, with the sole exception of the 5th of April 2005 

when, however, its concentration was to the limit of analytical detection (0.1 ppm of N-NO3
-). 

Significant N mineralization activity was measured at each sampling occasion and was 

generally lower in spring (Table 4.1). 
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Table 4-1. Values (± 1stdev) of mineral N extracted from fresh soil, mineralization and nitrification 

rates measured in laboratory incubations on soil sampled in  year 2005 and 2006 at the Tolfa site.  
 Soil ammonium Soil nitrate N mineralization rate Nitrification rate 
Date of field 
sampling 

µg NH4
+-N g-1 dry 

soil 
µg NO3

--N g-1 dry 
soil 

µg N g-1 day-1 µg N g-1 day-1 

 
5th April 2005 0.93 ± 0.26 

 
0.05 ± 0.01 

 
0.92 ± 0.79 

 
0.01 ± 0.00 

20th July 2005 1.69 ± 0.07 0.00 ± 0.00 0.33 ± 0.51 0.00 ± 0.00 

19th October 2005 5.02 ± 1.30  0.00 ± 0.00 0.54 ± 0.31 0.00 ± 0.00 
2nd February 2006 17.92 ± 24.18 0.00 ± 0.00 1.44 ± 1.3 0.00 ± 0.00 
12th May 2006 0.79 ± 0.21 0.00 ± 0.00 0.06 ± 0.06 0.00 ± 0.00 
11th July 2006 10.00 ± 6.65 0.00 ± 0.00 0.34 ± 0.23 0.00 ± 0.00 

 

As evidenced in the field samples, also in the laboratory incubations no NO3
- was 

produced over 28 days, and the sole product of organic N mineralization was NH4
+, which 

increased linearly over the 28 days of incubation. Similarly, in the test of potential 

nitrification activity no NO3
- was produced, despite the addition of (NH4)2SO4, which was 

still found in the soil after 24 days of incubation at the same concentration measured at time 

zero (see chapter 3, § 3.3.4, Fig. 3.8). The same result, i.e. complete absence of NO3
- 

production, was obtained when the soil was limed with CaCO3 (Table. 4.2). 

 

Table 4-2. Values (± 1stdev) of nitrification rates measured in laboratory incubations on Tolfa soil 
with or without CaCO3. 

 Nitrification rate 
Sample µg N g-1 day-1 
 

Control soil 

 

0.007 ± 0.006 
  
Limed soil -0.006 ± 0.008 
  

 

 

4.3.2 TOXICITY TESTS 

 

First toxicity test in Fig. 4.1, carrying out on a “test” soil, have showed nitrification rates 

obtained adding aqueous extracts of different components of Tolfa ecosystems. Tolfa soil 

extract doesn’t reduced nitrification rate, while aqueous extract of fresh leaves and partially 

decomposer litter on nitrification rate was resulted in a significant reduction. Nitrification rate 

no resulted decrease on soil with addition of aqueous extract of Quercus ilex. The highest 
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nitrification inhibitory activity on test soil, with 37% of reduction respect to control, was 

associated to fresh leaf extract of Arbutus Unedo. 
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Figure 4-1. Nitrification rate of Castel Volturno soil with addition of H2O, aqueous extract of fresh 
leaves, litter and soil underneath Arbutus Unedo from the Tolfa site and aqueous extract of Quercus 

ilex. (Bars represent one standard deviation. Different letters indicate significant differences among 
treatments (one-way ANOVA, P<0.05). 

 

 

The inhibitory effect of extracts of fresh leaves of Arbutus Unedo on nitrification was 

cleared in Fig 4.2. Here, compounds present in the fresh leaves was extracted using three 

solutions with different pH, then neutralized and lyophilized and ridissolved in water to obtain 

four concentrations. A dose-response curve was constructed for each type of extract, all of 

three extracts was resulted in inhibitory effect on soil nitrification, but the hydroalcoholic 

extract showed inhibitory effect at lower concentration. 
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Figure 4-2. Nitrification rates measured in the test soil amended with fresh leaf of Arbutus unedo 
extracting in acid (red), basic (blue) and hydroalcholic (yellow) solutions. (Bars represent one standard 
deviation. Different letters indicate significant differences among treatments (one-way ANOVA, 

P<0.05). 

 

In Figure 4.2 net nitrification rate of hydroalcholic extract (yellow) are plotted against 

the amount of leaf extract added to the soil. The “zero” leaf extract concentration represents 

the control treatment (treated with slightly acid water), where 163.3 µg NH4
+-N and 23 µg 

NO3
-
-N were extracted per gram of dry soil at T0. After 28 days of incubation 85 µg NH4

+
-N 

g-1 and 67 µg NO3
--N g-1 were recovered in the control. Thus, over 28 days the 

microorganisms nitrified 44 µg NO3
--N and immobilized about 39 µg NH4

+-N. In the soil 

treated with the highest concentration of leaf extract, at T0 no significant difference of mineral 

N was measured compared with the control treatment. After 28 days, 178 µg NH4
+-N g-1 

were still recovered in the soil treated with the highest concentration of leaf extract, indicating 

that less NH4
+
 was immobilized and/or transformed into NO3

-
-N, and only 14 µg NO3

-
-N g

-1
 

were recovered, showing not only no net NO3
- production but also that some NO3

- was 

immobilized or lost as gaseous N, which however, was not monitored. Indeed the high input 

of organic extract might have stimulated some immobilization as well as some gaseous lost 
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via denitrification. However, immobilization might not be the sole explanation for the absence 

of net nitrification, as the observation that plenty of NH4
+ was still present in the soil after 28 

days indicate a slowdown in the process of nitrification and/or immobilization of NH4
+. On 

the other hand, it would be difficult to expect a preferential immobilization of NO3
-, which 

would bring to no net NO3
-
accumulation, when in the soil there is still plenty of NH4

+
. A 

combination of inhibition of nitrification and immobilization/loss might probably explain the 

observed results in the test soil. At lower extract concentrations (Fig. 4.2), a partial reduction 

of NO3
-
 production was also observed, which was already quite effective at 4 µg of extract g

-1
 

dry soil. The slight increase of NO3
- production between 40 and 400 µg of extract g-1 dry soil 

probably depended on the stimulation of mineralization and nitrification due to the addition of 

the organic extract, which represents also a substrate for microbial activity, not balance by a 

sufficiently strong toxic effect or immobilization. 

Testing the methanol and aqueous fractions of the hydroalcoholic extract gave good 

dose-response relationships described by sigmoid curves reported in figure 4.3, however, due 

to the high variability of results, only at the highest concentration of extract the effect resulted 

statistically significant (Fig. 4.3). Almost 60% of inhibition of NO3
- production was attained 

adding the aqueous extract (treatment A/A), indicating that the compounds responsible for 

nitrification inhibition are quite soluble. In fact, only a maximal reduction of activity of 20% 

was associated to the methanol fraction (M/M), which was significantly lower than the 

reduction observed for the treatments A/A and A/M (Fig. 4.3). 
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Figure 4-3. Dose-response graphs representing the percentage of inhibition of NO3
- production in 

function of the concentration of extract of fresh leaves added to the soil (0, 4, 40, 400, 4000 µg g-1 dry 

soil) reported on log scale. (A/A aqueous fraction of the hydroalcoholic extract in distilled water; A/M 
aqueous fraction of the hydroalcoholic extract dissolved in methanol: water (1:1);  M/M methanol 
fraction of the hydroalcoholic extract dissolved in methanol: water (1:1)). Equations represent the best 

fitting curve describing the relationship between the two variables. Different letters indicate a 
significant difference (two-way ANOVA) among concentration extracts within each treatment (A/A, 
A/M, M/M); different numbers indicate a significant difference (two-way ANOVA) comparing the 
same extract concentration among different treatments. 

 

 

4.3.3 CHARACTERIZATION OF THE MAIN SUBSTANCES PRESENT IN LEAVES, ROOTS AND SOIL 

 

The pure metabolites purified from the hydroalcoholic extract by chromatographic 

techniques, have been identified on the basis of their spectroscopic features as ethyl gallate 

(1), arbutin (2) and its p-hydroxybenzoyl (3) and galloyl (4) derivatives, (+)-gallocatechin (5) 

and catechin (6), six flavonoid glycosides 7-12 characterized by the kaempferol, quercitin and 
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myricetin as aglycons, and by a rhamnopyranose or arabinofuranose as glycone units (Fig 4.4) 

(Fiorentino et al. 2007). 
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Figure 4-4. Main compounds purified from hydroalcholic extract. 
 

 

 

The same compounds were found in the methanol and in the aqueous fraction, although 

in different quantities (Fig. 4.5). In particular, gallocatechin was the most abundant compound 

in the aqueous fraction (AHF), corresponding to 74% of the total gallocatechin of the initial 

hydroalcoholic extract (HLE). Root extracts (R/E) (Fig. 4.5) showed the same constituents 

previously described, described, with the exception of the less abundant flavones 10-12, and 

again gallocatechin was one of the most abundant compounds. 
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Figure 4-5. Quantitative analysis of secondary metabolites from A. unedo (µg/100 mg of dry weight ± 
standard deviation) determined by RP-HPLC analyses of the total hydroalcoholic leaf extract (HLE), 
its aqueous (AHF) and methanolic (MHF) fractions and root extract (R/E). Ethyl gallate (1), arbutin 
(2) and its p-hydroxybenzoyl (3) and galloyl (4) derivatives, (+)-gallocatechin (5) and catechin (6), 3-

O-rhamnosylkaempferol (7) 3-O-rhamnosylquercetin (8), 3-O-rhamnosylmyricetin (9). Bars of 
standard deviation represent laboratory replications (3 samples). 

 

 

When soil was also analysed to determine the chemical compounds present, a distinction 

was made between the bulk soil and the rhizosphere soil, i.e. the soil adherent to the roots. 

The latter soil was obtained by shaking the hand cleaned roots of A. unedo on a white paper 

sheet. This soil in contact with roots could be supposed to be richer in root exudates than the 

bulk soil sampled in the top 10 cm among plants. The figure 4.6 shows the chemicals 

identified in the bulk soil (S1) and in the rhizosphere soil (S2). Gallocathechin, galloylarbutin 

and catechin were the most represented metabolites identified in S1. The root soil (S2) 

showed much lower concentrations of the same compounds found in S1. 



Chapter 4                                                                     Influence of allelochemicals produced by 

schlerophyllous Med on N cycle 

107 
 

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

compounds

g
/1

0
0
 m

g
 d

ry
 w

e
ig

h
t

S1 S2
 

Figure 4-6. Quantitative analysis of secondary metabolites from A. unedo (µg/100 g of dry weight ± 
standard deviation) determined by RP-HPLC analyses of the bulk soil (S1) and the rhizosphere soil 

(S2) extracts. Ethyl gallate (1), arbutin (2) and its p-hydroxybenzoyl (3) and galloyl (4) derivatives, 
(+)-gallocatechin (5) and catechin (6), 3-O-rhamnosylkaempferol (7) 3-O-rhamnosylquercetin (8), 3-
O-rhamnosylmyricetin (9). Bars of standard deviation represent laboratory replications (3 samples). 

 

 

 

4.4 DISCUSSION 

 

 

Field data showed that NO3
-
 production in the top 10 centimetres of the Tolfa soil was 

either absent or so low to be below the detection limit of the used technique, which would 

mean in any case a concentration below 0.05 µg of NO3
--N g-1 dry soil, over the whole year. 

Two causes could be advocated for such result, lack of substrate or inhibition of nitrification. 

Lack of substrate might derive from inhibited mineralization, which provides NH4
+ from 

organic matter decomposition, or immobilization due to competition of plants and 

heterotrophic microbes with autotrophic nitrifiers, known  to be weak competitors for NH4
+. 

Data show that the mineralization process occurred at significant rates (Table 4.1) over the 

whole year, producing, as also evidenced in the laboratory over 28 days of incubation, 

significant amounts of NH4
+. In the laboratory, NH4

+ was neither transformed to NO3
- nor 

immobilized, as in fact, even when the Tolfa soil was treated with additional N (150 µg NH4
+-

N g-1 dry soil, potential nitrification test), after 28 days we still found the same amount of 

added N (191.3 ± 17.5 µg NH4
+-N g-1 at T0 and 182.5 ± 54.8 µg NH4

+-N g-1 at T28) whereas 

no NO3
- was detected. In the field no NO3

- was detected even when NH4
+ production was 

exceeding immobilization and uptake (net NH4
+
 accumulation in the soil, Table 1). Other 
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studies in forests and woodlands reported NH4
+ as the dominant form of mineral N in acidic 

soils, especially in the mature phase of the succession (Schimel et al. 1996; Ste Marie and 

Paré 1999; DeLuca et al. 2002), where, however, some NO3
- production was still observed. 

In fact, adapted populations of autotrophic nitrifiers and heterotrophic nitrifiers are still able 

to produce NO3
-
 at low pHs (3-5) (Walker and Wickramasinghe 1979; Robertson 1982 a,b; 

Troelstra et al. 1990; De Boer et al. 1992; Pennington and Ellis 1993), although at lower 

rates than neutrophilus autotrophic nitrifiers (De Boer and Kowalchuk 2001). On the other 

hand, Northup et al (1995) evidenced that in acidic poor soils under Pinus muricata, 

nitrification was reduced because the production of phenol rich litter slowed down the 

mineralization process. This was proposed as a mechanism to facilitate N uptake in organic 

forms by plants via mycorrhiza, “short-circuiting” the nitrogen cycle when mineralization rate 

cannot support plants N requirements. In the case of Tolfa soil, however, the availability of 

NH4
+ in the field (Table 1) and the mineralization activity (NH4

+ production only) measured 

in the laboratory over the whole study period, indicate that the limiting step for nitrification 

was not NH4
+ production. 

The second hypothesis is that inhibition of nitrification, rather than lack of substrate or 

competition, might be a possible cause for the lack of NO3
- production observed in this soil. 

In this respect, the toxicity tests gave some indication that leaf extracts might have indeed 

some toxic potential activity on nitrification, as in fact, at the highest leaf extract 

concentration no net NO3
- production was observed and more NH4

+ was recovered in the soil 

after 28 days compared with the control. It cannot be excluded that some NO3
- might have 

been immobilized or reduced during processes of assimilatory or dissimilatory reduction, as 

in fact, in the soil treated with the highest concentration of leaf extract, some net NO3
- loss or 

immobilization was observed. However, the fact that this immobilization was evident in the 

treated samples and not in the control, plus the observation that added NH4
+ was recovered in 

the treated soil at much higher concentration compared with the control, seems an indication 

that some inhibition of nitrification occurred. In fact, it could be difficult to imagine 

preferential uptake or immobilization of NO3
-
 as the sole explanation for the observed absence 

of NO3
- in the soil after 28 days, when there was still plenty of extractable NH4

+ available, as 

NH4
+ is known to inhibit assimilatory nitrate reduction in many plants and microorganisms 

(Revilla et al. 1986; Martínez-Espinosa et al. 2007). 
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When these observations are combined with field measurements and the laboratory 

incubation data, discussed in the first part of this paragraph, the inhibition mechanism might 

seem a possible explanation for the observed absence of net NO3
- production at Tolfa. 

This soil receives a quite high annual input of litter (400-500 g m-2 year-1), which, being 

A. unedo an evergreen plant, is almost continuous along the year, with a peak in early summer 

and one in late autumn (Cotrufo pers. Comm.). Thus, a significant input of allelophatic 

compounds, produced by the plants, might occur by means of leaf fall. The chemical analysis 

of leaves of A. unedo have shown the presence of many compounds which are known to have 

antioxidant activity and potential allelophatic effect (Fig. 4.3 and 4.4). Several of these 

chemicals are present in quite high concentrations compared with previous findings 

(Fiorentino et al. 2007). In particular, (+)-catechin (6), isolated with 35% enantiomeric 

excess, was previously identified as a phytotoxin and antibacterial agent, against root-

infesting pathogens, (Bais et al. 2002; Bais et al. 2003). The enantiomerically pure (+)-

gallocatechin (5), the most representative metabolite after ethylgallate (Fig. 4.3),  known for 

its antioxidant activity, was previously reported from Mediterranean shrubs as Cistus sp 

(Pomponio et al. 2003) and Salix triandra (Niemi et al. 2005). Extracted and purified from the 

roots of Leucana leucocephala, it gave direct evidence of nitrification inhibition on pure 

cultures of Nitrosomonas europaea at concentration of 50 µg/ml with significant inhibiting 

activity already at 12 µg/ml (Erickson et al. 2000). Although, Nitrospira sp. is the most 

common autotrophic nitrifier in acid soils (De Boer and Kowalchuk, 2001), Nitrosomonas-

like 16S rDNA (Carnol et al. 1998) and Nitrosomonas-like PCR amplification products 

(Hastings et al. 2000) have also been obtained from acid soil and litter, respectively. 

In recent studies De Luca et al. (2006) showed that the addition of charcoal to soil in a 

Pinus ponderosa/Psuedotsuga menziesii forest significantly increased the nitrification 

potential, net nitrification, gross nitrification, and decreased the solution concentrations of 

catechin (±), an allelochemical (phenolics) produced by the invasive species Centaurea 

maculosa (De Luca et al. 2006; Gundale and De Luca 2006), suggesting that the 

immobilization of phenols by charcoal might reduce the inhibiting effect of phenols on the 

nitrifying activity of the microbial community in the forest soil. Similar results were also 

shown by Mckenzie and De Luca (2006) who comparing the effect of charcoal addition on 

soil N processes under graminoid or ericoid litter, demonstrated that charcoal addition 

significantly stimulated nitrification under the ericoid litter by removing over 80% of phenolic 
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compounds produced, which were 20 times higher in ericoid leaf leachates compared with the 

graminoid ones, again supporting the idea that charcoal deposition after fire may modify a 

nitrification interference mechanism by absorbing plant phenolics secondary metabolites. 

Then, if we assume that also at the Tolfa woodland site allelophatic compounds enter 

the soil mainly via litter decomposition (leaves, fine roots) we might roughly estimate the 

input of allelochemical compounds in the Tolfa soil, using the measured value of above-

ground litter fall (400-500 g m-2 year-1) and an estimated value of below ground input (300 g 

m
-2

 year
-1

). Focusing, in particular, on gallocatechin and catechin, which were the most 

abundant chemicals in leaves, roots and in particular in soil extracts, the following 

allelochemical inputs can be calculated based on the values presented in Fig. 4.5, 70 mg m-2 

yr
-1

 of gallocathechin and 60 mg m
-2

 yr
-1

 of catechin from leaves, 27 mg m
-2

 yr
-1

 of 

gallocathechin and 10 mg m-2 yr-1 of catechin from roots, thus a total input of 97 mg m-2 yr-1 

of gallocathechin and 70 mg m-2 yr-1 of cathechin. Using the soil concentration of 

gallocathechin and cathechin reported in Fig. 4.6 and a soil bulk density of 0.47 g cm
-3

, it can 

be estimated that 1645 mg m-2 of gallocathechin and 846 mg m-2 of cathechin were present in 

the top 10 centimetres of soil at the time of sampling (July 2005). These amounts are 

significantly higher than the annual calculated input via litter, indicating a quite high 

residence time for these compounds. A consequence of such result is that a significant amount 

of these allelochemicals would be present in the Tolfa soil during the whole year. Thus, the 

toxic action on nitrifiers might be exerted by these substances also in periods when litter 

inputs are lower. This would be in accord with absence of NO3
- production in the field, as 

well as in the laboratory incubation, observed in all sampling occasion, even when soil was 

limed.  

Results from the toxicity tests (Fig.4.4) indicate that more than 400 µg of extract g-1 dry 

soil were necessary to have a drastic inhibition in the test soil, corresponding to about 12.6 µg 

g of gallocatechin g-1 dry soil and 19.3 µg of catechin g-1 dry soil. If these same 

concentrations could be hypothesized to be so effective also in the Tolfa soil, it would mean 

that a soil concentration of 0.59 g of gallocatechin m
-2

 and 0.91 g catechin m
-2

 would be 

already sufficient to have a 50% reduction of nitrification activity. These concentrations are 

lower or in the same order of magnitude of those found for these two chemicals in the Tolfa 

soil (1.64 g m
-2

 and 0.85 g m
-2

, respectively). Thus, it could be plausible that the observed 

concentration of gallocatechin in the Tolfa soil might be sufficient to block NO3
- production. 
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It cannot be excluded that the compounds characterized in the Arbutus unedo leaf extracts 

might have additive or even synergistic effects on microbial activity when added together 

(whole extract), so that the effective toxic concentration of each compound might be even 

lower than what calculated on the base of their concentrations in the extract. 

 

 

 

4.5 CONCLUSIONS 

 

Field and laboratory data seem to suggest that the lack of NO3
- production observed in 

the Tolfa soil might depend on chemical inhibition of nitrification by phenolic compounds 

produced as secondary metabolites by the Arbutus unedo plants. 

The calculated residence time of these compounds in the soil indicate that the toxic 

activity of these molecules might be exerted on microbes during the whole year, also far from 

peaks of litter input. These results might explain the lack of nitrous oxide emissions 

previously observed in the field (see chapter 3). In fact, inhibition of nitrification would block 

N2O emissions from this source, and the absence or extremely low rates of NO3
- production 

would also limit N2O losses from denitrification activity. Such result is relevant not only for 

widening the knowledge on N cycle in Mediterranean environment, but also for scaling up 

processes linked to greenhouse gas emissions. In fact, if N2O fluxes were modelled for this 

ecosystem just on the base of soil and environmental characteristics, a significant annual 

budget of N2O might be reached, having the soil good total C and N content, mineralization 

activity and water retention potential. This indicate that for some ecosystem types it could be 

necessary to incorporate allelophatic processes in biogeochemical modelling. 
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5 NITROGEN INPUT AND LOSSES ASSOCIATED TO N2-FIXERS 

HERBACEOUS COVER IN DISTURBED OPEAN AREAS OF 

MEDITERRANEAN SHRUBLANDS 

 

 

 

5.1 INTRODUCTION 

 

 

In temperate region, and in particular in Mediterranean ecosystems, herbaceous legumes 

have been found to increase significantly in the early stages of succession (Boring et al. 1988; 

Rundel 1989; Bordeleau & Prévost 1994), in particular following different types of 

disturbance events such as fire (Naven 1967, Bell and Kock 1980, Woodmansee et al. 1981, 

Crews 1999) cut, logging, and blow down (Greller 1988). The persistence of the disturbance 

maintains the percentage of leguminous cover high, often higher than the cover of non fixing 

herbaceous species (Esposito pers. Comm), whereas during the course of succession, the 

numbers of leguminous species and the number of individuals per each specie descrease with 

time (Esposito pers. Comm, Rundel 1989; Arianoutsou and Thanos, 1996).  

Several hypothesis have been suggested to explain leguminous plants disappearance 

during the succession (Vitousek & Howarth 1991): the energetic constraints associated to the 

activity of nitrogen fixers; the limitation of nitrogen fixers or fixation by another nutrients (in 

particular P and Mo, Robson & Bottomley 1991; Smith 1992; Crews 1993); other physical 

and ecological mechanisms such as high acidity, alkalinity or aridity (Alexander 1984; 

Bordeleau & Prévost 1994), preferential grazing (Hulme 1994, 1996), fire (Bahre 1995). 

When sufficient N is available in the soil, the non fixers should be in the condition to invest 

more of their NPP in aboveground than in the in belowground N-acquiring structures 

(Vitousek & Howarth 1991; Vitousek & Field, 1999; Gutschick 1981, 1987).  

Moreover, in condition of light limitation, such as during plant canopy closure models 

suggest that it is energetically advantageous (i.e., requires less of a plant’s photosynthate) to 
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grow roots and take up soil N than to fix N when soil N is available (Gutschick 1981; 

Vitousek & Field, this vol, Vitousek & Howarth 1991). Leguminous plants (Fabaceae) 

maintain high levels of N in leaf tissue in order to maximize photosynthetic rates per unit leaf 

area (Crews, 1999). Thus, their N rich tissue are assumed to enrich the soil with N during the 

early stages of succession, considering that part of the N required by the leguminous plant is 

not recycled from the soil, but is directly fixed from the atmosphere, hence with low nutrient 

cost for the ecosystem. However, how much of the N present in the leguminous tissue really 

goes to enrich the ecosystem is not clear, as part of this nitrogen could be lost as leacheate or 

different gaseous forms. In grasslands and herbaceous communities, an increase of N input 

might result in an increase of N losses as gaseous products, mineral and organic N, during the 

winter periods, when N release via decomposition processes is uncoupled with plant N 

uptake. This might be of particular interest to evaluate the effect of disturbance events on N 

cycle and N losses from macchia ecosystems. In fact, as these environments are mostly N 

limited and subjected to aridity or semi-aridity for part of the year, they are expected to be 

poor sources of greenhouse and trace N gases, as well as, poor sources of nitrates for ground 

waters, in contrast with what often observed in N saturated forests of central and northern 

Europe. However, disturbance might accelerate microbial processes involved in N 

transformation, might impair N uptake versus release, might favor, at least in a first stage of 

recolonization, the presence of N reach plants such as leguminous. 

At present no works are available where N input and losses associated to N2-fixers 

herbaceous cover is investigate in disturbed natural ecosystems of Mediterranean area. 

In the present study the role of leguminous plants in terms of enrichment and losses of N 

in the ecosystems were investigated in a disturbed Mediterranean shrubland ecosystem. In this 

site, opean areas covered by herbaceous plants are maintained by fire and cutting 

management. Depending on the years and on the areas, plant cover is dominated by 

leguminous or by non-fixing erbaceous plants. The leguminous dominance generally persists 

for two or three years, after which nonfixing plants take over. To meet our aim the work was 

organized after the following objectives: a) to quantify the N2 fixation capacity of the most 

frequent leguminous species to estimate the N input in the ecosystem via N2 fixation; b) to 

quantify the gain and losses of N under N2 fixing and non fixing plant covers. 
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5.2  MATERIALS AND METHODS 

 

 

 

5.2.1 SITES OF STUDY DESCRIPTION 

 

 

The field site was part of the “Castel Volturno” Nature Reserve, a flat coastal area 

located about 30 km North of Naples, in Southern Italy (40° 57’N; 1° 33’E). The climate is 

typically Mediterranean, characterised by summer drought, moderate precipitation (mean rain 

760.3 mm/year during the year 2000) and relatively warm temperatures (mean annual 

temperature of 15.8°C during the year 2000). Soil is classified as a Calcaric Arenosol (FAO, 

1998), and presents a pH of 7.8. 

The area is interested by different plant communities which include Quercus mature 

stands, Pine woodlands, high Macchia, low Macchia, herbaceous cover, higrofilic plants. The 

area of study was located in a part of the park where the herbaceous cover constitutes a 

frequent community intermingled with macchia stands (Fig 5.1). This mosaic of plant patches 

is mainly related to the frequently occurring fire histories (Esposito et al., 1998). 
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Figure 5-1. CastelVolturno Reserve, area of study, with a detailed photo of a sampling area. 

 

 

 

 

Two field campaign were organized to carry on the work: 

1) One preliminary field campaign to sample the herbaceous plants needed to 

characterize the 15N and N content to determine the amount of N2 fixed, which occurred in 

spring 2005 

2) A second field campaign from spring 2006 to autumn 2006 to follow the 

variation in pools and activities of N cycle associated to different plant cover % of 

leguminous plants. 
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Herbaceous cover 
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5.2.2 FIELD CAMPAIGN 1: MEASUREMENTS OF PLANT 
15N AND TOTAL N FOR N2-FIXATION 

DETERMINATION 

 

 

N2 fixation rates were determined by using two methods, the “N difference method” and 

the 15N natural abundance (see chapter 2). Both methods require to measure the 15N, or the 

total N in a leguminous specie and in a non fixing herbaceous species (reference plant) which 

can resemble the fixer for shape, phenology, size. The principle is that if the two plants are 

contemporary present in the field in the same moment and are similar they can potentially 

exploit the mineral N present in the soil in the same manner. In the case of N difference 

technique, the assumption is that being more convening energetically to uptake mineral N 

than to fix it, only the extra N per unit of biomass which I find in the fixer, compared with the 

non-fixer, will be N fixed from atmospheric N. 15N natural abundance techniques assumes 

that the mineral N has a characteristic 15N signal which I can find in the plant tissue of plant 

which use it. If the plant fix atmospheric N2 which as 15N=0 the signal will be diluted and 

from this dilution I can calculate the amount of N2 fixes as explained in chapter 2. In both 

cases hence it is required that we analyse a N2 fixer and a non N2 fixer. As there is a high 

number of leguminous species we chose the two more abundant, which hence might be 

considered representative for the community of herbaceous N2 fixers, from data of previous 

studies of abundance/dominance of species in the herbaceous community in the area (Fig. 

5.2). 
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Figure 5-2.  % plant cover of herbaceous leguminous plants determined in open areas along a 

chronosequence (Esposito Assunta, data unpublished). 

 

 

 

For the present study we chose the Melilotus neapolitana Ten.  and Medicago minima L. 

which clearly showed the highest cover. As reference plant on the base of the above 

mentioned required characteristics we chose Phleum subulatum and Petroragia velutina (Fig. 

5.3). 
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Figure 5-3. Images of the leguminous and reference plants chosen for the experiment. 
 

 

In spring 2005, in June, at the peak of plant biomass, 10 plots of 1 m2 were selected in 

areas dominated by leguminous plants and 10 in areas dominated by reference plants, where 5 

entire individuals (above and below ground parts) for each species (for a total of 50) were 

sampled per each species. However, for each plots samples were mixes to determine C and N 

content on 10 average samples. Plants were bought back to laboratory, dried and above, below 

ground biomass and seeds were first weighted and then ball-milled for subsequent analysis of 

total C and N by C,N,S analyser and 
15

N by isotope ratio mass spectrometer (Chapt.2) 

(Fig.5.4). 

 

Medicago minima Melilotus neapolitana 

Leguminosae 

Reference plants 
 

Phleum subulatum     Petrorhagia velutina 
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Figure 5-4. Procedure of samples preparation after field sampling for N2 fixation determination. 

 

 

 

5.2.3 Field campaign 2: VARIATION IN POOLS AND ACTIVITIES OF N CYCLE ASSOCIATED TO 

DIFFERENT PLANT COVER % OF LEGUMINOUS PLANTS 

 

For this campaign, 3 open areas, covered by herbaceous plants, were chosen and within 

each open area 3 plots (2 m2) dominated by leguminous plants and 3 by non leguminous plant 

where chosen for a total of 9 plots per each main cover type (Fig. 5.5). At biomass peak, 2-3 

weeks before plant senescence, closed chambers bases were set into the ground, one in each 

plot and a destructive sample of plants was taken to determine the amount of biomass of each 

species. Plant were dried in the oven at 45°C and the above and below ground biomass weight 

determined. 
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Figure 5-5. Closed static chambers set in 6 plots chosen in the third open area. 

 

 

Soil and gas were sampled on each occasion , monthly from May 2006 to November 

2006 to determine the amount of mineral N, organic soluble α-amino N, the potential N 

mineralization nitrification and denitrification in the different plots, starting from the 

assumption that plots were leguminous plants were more abundant might have had higher 

level of mineral N, and higher potential rates of N processes stimulated by N reach exudates 

when plant were alive and then by N reached tissue in the phase of decomposition. Soil 

samples, one per each plot were taken back to laboratory, sieved (2 mm mesh sieve) and 

mineral N and biological analyses were started the next day on fresh soil. For analyses details 

see chapter 2. Statistical analysis were carried out as descript in chapter 2. 
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5.3 RESULTS 

 

 

 

5.3.1 FIELD CAMPAIGN 2005: N2-FIXATION RATES 

 

 

The average biomass of the different parts of the leguminous and reference plants 

sampled in the field from the 10 plots during the first sampling campaign is reported in Table 

5.1. The seeds have been counted for each individual, being and weighted in group of 10 

given the very low weight of each seed. The total weight of seeds per plant has then been 

calculated. 

 

 

Table 5-1. Average biomass of the different part of the leguminous and reference plants sampled in 
the field from the 10 plots during the first sampling campaign. 
Species  Above ground Below ground  n seeds g dry w.t g dry w.t 

  

Biomass (g dry 

weight) 

Biomass (g dry 

weight)  per plant 10 seeds seeds x plant 

Medicago  1.81 ± 1.6  0.17 ± 0.08  200 0.008 0.165 

Melilotus  1.94 ± 1.31 0.13 ± 0.10  600 0.027 1.602 
Petrorhagia  0.31 ± 0.22 0.04 ± 0.03  200 0.001 0.026 
Phleum  0.24 ± 0.08 0.03 ± 0.02  500 0.001 0.054 

 

 

 

In Figure 5.6 are reported the percentage of total N found in the different part of the 

sampled plants. 

The seeds, as can be expected, are the most N reach tissue in the plant as they will 

provide N to the new individuals at the moment of germination for the following 2-3 weeks 

till the roots will be sufficiently big to be able to uptake sufficient mineral N or to nodulate. 

Both leguminous plants have a higher % of N in both above and below ground biomass 

compared with the reference plants, which instead present very similar values.  
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From the percentage values of N in each tissue and from the weight of each part of the 

plant the amount of N fixed by the leguminous plant has been determined using the following 

equation: 

 

 

 

 

Where Na, Nb and Ns is the total amount of N present in the plant components 

(aboveground, belowground and seeds) (Fig. 5.6), wa, wb, ws is the dry weight of the 

different components (Table 5.1). 

 

 

 

 

Figure 5-6. Percentage and amount of total N in the plant tissues of the leguminous and reference 
plants. 
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Figure 5-7. Total amount of N calculated in three plant tissues of the leguminous and reference plants 
reported as fractions of the total amount of N present in the plant. 

 

The total amount of N normalized by the total weight of the plant comes out exactly the 

same for the two reference plants (0.028 g N/ g dry weight), thus we obtained just one value 

of N2 fixation for the two leguminous plants (Fig. 5.8):  

%Ndfa Medicago minima: 30.8% 

%Ndfa Melilotus neapolitana 23.5% 

 

 

 

Figure 5-8.  % of N2 fixation for the two leguminous plants using "N-difference" technique. 
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For the determination of %Ndfa using the 15N natural abundance the sole above ground 

part is generally utilized (Unkovich et al. 1993, Pate et al. 1994). In Table 5.2 are reported 

the values of δ15Ν (%0) determined on the above ground biomass of the four considered 

species. 

 

 

Tabella 5-2. δ15Ν (%0) values determined on the above ground biomass for Melilotus, Medicago, 

Phleum and Petrorhagia. 
 Melilotus Medicago Phleum Petrorhagia 

δ15Ν (%0) -0.75 ± 0.01 -0.79 ± 0.19 -1.53 ± 1.04 -1.29 ± 0.39 

 

 

 

The values are very close to each other so that the application of the technique is less 

precise. This might depend on the fact that wild leguminous plants often occurs in areas 

where the previous year leguminous plants were already present so that the signal of the 

decomposing organic matter N is closer to atmospheric values than would be in areas never 

interested by leguminous growth. The two fixers in any case have quite similar values and the 

same is true for the non-fixers, suggesting that they might have the a similar way to exploit 

soil mineral N. 

In Fig. 5.9 are reported the values of %Ndfa determined using the second approach and 

using either phleum or petrorhagia as reference plant. The %Ndfa varies from 37 to 50% 

depending on the plant and reference used. Using Petrorhagia as reference values are closer 

to those found with the “N difference”, though higher. In any case, considering the very 

different approach the two techniques are quite in good agreement, in particular for Medicago. 
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Figure 5-9. Value of %Ndfa, nitrogen derived from N2 fixation expressed as percentage, calculated 

using 
15

N natural abundance and the two reference plants separately. 
 

 

 

Overall without giving any preference to any of the two techniques, the leguminous 

plant we studied seem to fix a percentage of N which goes from 24 to 50% in Melilotus 

neapolitana and from 30% to 47 % in Medicago minima. Thus a significant part of the plant 

N derives from mineral N in soil. In Fig 5.10 is reported an image of Medicago minima and a 

detail of the nodules. These are very small, 1-2 mm and mostly concentrated on the first 3-4 

cm of the main root. Much smaller than nodules typically occurring in crop leguminous plants 

or in other plants we found in macchia with much lower cover density, ex. Lathyrus 

clymenum (Fig 5.11). 
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Figure 5-10. Plants of Medicago minima with nodulated roots (detail in red circles) on which analyses 
have been done. 

 

 

 

 

 

 

Medicago minima 
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Figure 5-11. Plants of Lathyrus clymenum with nodulated roots (detail on the right). 

 

 

 

 

 

5.3.2 FIELD CAMPAIGN 2006: N POOLS AND MICROBIAL PROCESSES 

 

 

5.3.2.1. PLANT BIOMASS  
 

 

As indicated in the paragraph 5.2.3, 18 plots were identified, how which 9 plots were 

distributed in areas which appeared dominated by leguminous plants and 9 plots by non N2-
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fixing herbaceous species. In May 2006, at biomass peak, a destructive sample of plants was 

taken, one from each plot to determine the amount of biomass of each species present in the 

plot, in collaboration with the Department of Life Sciences, SUN (Esposito A. and Caporaso 

S.). An area corresponding to a circle of 15 cm diameter was sampled, at a depth 

corresponding to about 30-50 cm depending on the sample, so to collect the whole plant 

biomass including the below ground part. Plant were gently separated from the soil in the 

field, an washed in the lab. They were then one dried (45°C) and the above and below ground 

biomass weight was determined. For the purpose of the present study results are represented 

as total biomass of leguminous or non fixing herbaceous plant or mosses, present in each plot 

sample (Fig. 5.12).  

The first clear result is that each plot resulted a mosaic of species, always including a 

certain amount of each of the tree plant cover types. The dominance resulted different in the 

different plots. One exception were plots 3 and 18 where a complete absence of N2-fixing was 

reported. In some plots, the moss component was bigger than the other two components. 
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Figure 5-12. Dry total biomass (g m-2) for three components collected in each plot: 1) leguminous N2-
fixing; 2) non N2-fixing herbaceous species; and 3) moss- 
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Given the high variability of the plant cover in the different plots, in order to compare 

the effect of leguminous presence, it was decided to assemble different plots together on the 

base on plant cover dominance or leguminous biomass distribution. These are represented in 

Fig. 5.13. In the first case plots were grouped on the base to their percentage of leguminous 

plant cover <20% or 20%<x<40% or >40%; in the second case, plots were grouped on the 

base of biomass distribution of leguminous plants (>3g, 1.5g<x<3g, <1.5g), in the sampled 

rings. 
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Figure 5-13. Redistribution of 18 plots in three main groups. In the left, plots were grouped on the 
base to their percentage of leguminous plant cover <20% or 20%<x<40% or >40%, on the right, plots 
are grouped on the base of biomass distribution of leguminous plants (>3g, 1.5g<x<3g, <1.5g). 

 

Total biomass of herbaceous plants varied from about 200 to 300 g m-2 (Fig. 5.12). 

Leguminous biomass varied from about 300 to 0 g m-2. The % cover of fixing and not fixing 

plant showed opposite trend (Fig 5.13), mosses were instead randomly associated to the two 

cover types.  

 

 

 

5.3.2.2. SOIL PARAMETERS 
 

 

Using the same approach described for the plant biomass, all the soil measured 

parameters, as well as gas fluxes, were grouped in 3 main groups. 
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Overall, soil ammonium content (Fig. 5.14), under herbaceous plant cover, resulted 

higher (up to 6.6 µg NH4
+-N g-1 dry soil) in sampling events of October and September, when 

decomposition of dead plant is proceeding faster, stimulated by late summer, autumn rains. 

No significant differences among the three groups, using both approaches, was evidence by 

two-ways ANOVA.  

 

 

 

 

Figure 5-14. Soil ammonium (NH4
+
) content in different sampling dates (avg ± 1 st dev). Different 

letters indicate significant differences in time, asterisk indicate a significant difference of a single 
group within one single date. 



Chapter 5                                                N input and losses associated to N2-fixers herbaceous 

cover in disturbed open areas of Med shrublands 

131 
 

Soil nitrate content (Fig 5.15) was the mineral N form which predominated in the site 

(10 folds higher than N-NH4
+). The highest amounts (57.7 µg NO3

--N g-1 dry soil ) of nitrate 

were measured in July, intermediate values on previous sampling months and lowest amount 

were measured on October and November. The plots with the highest biomass of leguminous 

plants showed higher values of nitrate, although only in one occasion the result was 

statistically significant (P=0.004) (Fig.5.15b). 

 

 

 

Figure 5-15. Soil nitrate (NO3
-
) content in different sampling dates (avg ± 1 st dev). Different letters 

indicate significant differences in time, asterisk indicate a significant difference of a single group 
within one single date. 
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Also soil organic α-NH2 (Fig.5.16) was not different under the different groups, and had 

a less clear seasonal trend, with highest values at the beginning of may at peak of plant 

biomass and lower values at the end of May. The parameter showed a very high spatial 

variability.  

 

 

 

Figure 5-16. Soil organic α-NH2 content in different sampling dates (avg ± 1 st dev). Different letters 

indicate significant differences in time, asterisk indicate a significant difference of a single group 
within one single date. 
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N mineralization and nitrification rates (Fig. 5.17) showed similar trend, with lower 

rates on June and October, and higher in others sampling events. The high spatial variability 

obscured possible significant differences between groups with different cover of leguminous. 

 

 

 

 

Figure 5-17. N mineralization, and nitrification rates in different sampling dates (avg ± 1 st dev). 
Different letters indicate significant differences in time, asterisk indicate a significant difference of a 
single group within one single date. 
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Denitrification enzyme activity (DEA) (Fig. 5.18) was similar from May to October 

with a single higher value measured in July. No differences among groups were observed, 

although as a general trend the highest the biomass of leguminous the lower was the DEA.  
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Figure 5-18. Denitrification enzyme activity (DEA) for each event of sampling, according two ways 

of representation (avg ± st dev). 
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Overall, the significant increase of DEA was associated to a significant increase of NO3 

(Fig 5.19) according the equation reported in the graph. In the plots with major percentage or 

major amounts of N2-fixing species, at high nitrate content correspond low denitrification 

activity. 
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Figure 5-19. Denitrification enzyme activity versus NO3
-
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5.3.3 GASES FLUXES 

 

5.3.3.1. NITROUS OXIDE 

 
N2O fluxes were extremely low in all sampling events (Table 5.3), never reaching 1g m-

2 day-1, even in the period when significant mineral N and denitrification potential activity 

was measured. The enormous variability did not allow to identify significant difference 

among groups or dates. The highest values were measured when the soil was wetter. 

 

Table 5-3. N2O fluxes measured from field plots during 5 sampling events. (Avg ± 1stdev). 
Groups N2O (mg m-2 day-1) 
 9th May 2006 23th May 2006 29th Sept 2006 20th Oct 2006 13th Nov 2006 

Leg>3g 0.017±0.038 
 

0.169±0.210 
 

0.061±0.086 
 

0.000±0.000 
 

0.055±0.088 
 

1,5g<Leg<3g 0.084±0.134 
 

0.064±0.132 
 

0.000±0.000 
 

0.000±0.000 
 

0.268±0.362 
 

Leg<1,5g 0.026±0.061 
 

0.089±0.224 
 

0.258±0.365 
 

0.080±0.113 

 
0.233±0.342 
 

 

 

5.3.3.2. METHANE  
 

A CH4 sink was observed in all events of sampling. Consumption rates were quite high 

during all the year with a peak in October. No significant differences were observed among 

groups of plots with different cover of N2-fixing species. 

 

Figure 5-20. CH4 flux in different sampling dates (avg ± 1 st dev). Different letters indicate significant 
differences in time, asterisk indicate a significant difference of a single group within one single date. 
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5.4 DISCUSSION 

 

 

Leguminous herbaceous plants were present in the studied Mediterranean grassland  

with a cover density from 0 to >90%. The most abundant leguminous plants were Medicago 

minima and Melilotus neapolitana, which were used as representative of N2-fixing species 

due their frequency and abundance in the studied areas. The percentages of N2-fixation 

obtained using two different methodology was enough in agreement, given the very different 

appoach and assumption used ofr these two techniques. Overall, without giving any 

preference to any of the two techniques, the leguminous plants we studied seemed to fix a 

percentage of N which goes from 24 to 50% in Melilotus neapolitana and from 30% to 47 % 

in Medicago minima. Thus, a significant part of the plant nitrogen derives from mineral N in 

soil. Given a biomass peak of about 300 g m-2, with an average N content of 4%, it can be 

calculated that the amount of N  entering the system via N2-fixation was between 28 and 60 

kg of N-N2 ha-1 (total biomass). This N would reach the system, once that plants dye and 

decompose, and via root exudates.  

Higher ranges of N2 fixation have been reported by Casals et al. (xxx) in a 

Mediterranean grassland community developed after fire, with values of fixation ranging from 

52% to 99% during the first 9 months after fire. Also values in croplands are generally 

reported to be higher. Narrow-leaf lupin for example has been found to derive up to 86% of 

its N content via N2 fixation (Unkovich et al., 1994). The lowest levels of fixation (78%) were 

reported when soil was fertilized with 100 kg N/ha. Ranges of fixation for subterranean clover 

have been found in the order of 85-94% (Bergersen and Turner 1983, Sanford et al. 1995). 

Interestingly it has been observed that in absence of fertilizer N, the %Ndfa of subterranean 

clover was 79% but with addition of 50 to 100 kg fertilizerN/ha the %Ndfa fell to 48 amd 

32%, respectively (Quigley and Peoples. 1995). This variation suggests that plants can 

significantly modify their N2-fixation rates depending on the source of available N. In 

extreme cases in grazed pastures the %Ndfa of subterranean clover was found to be close to 

zero, i.e. complete dependence on mineral N. Medics (Medicago spp.) have been found to 

have a wide range of %Ndfa varying from a low 7% in grazed pastures to 71% (Sanford et al. 

1994). M. trunculata was found to have low symbiotic tolerance of nitrate (Butler and Ladd 

1985), showing greatly reduced nodulation in presence of early season NO3
-.  
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The range of observed %Ndfa for the representative N2-fixing plants at Castel Volturno 

seemed, hence, lower compared with many reported cases of undisturbed, or cultivated areas 

not receiving extra N. This means that from 70 to 50% of the N in the plants derives from soil 

mineral N. Considering the relatively low amount of total N present in this Mediterranean 

soil, it can be concluded that the studied N2 fixing plants are very efficient to uptake mineral 

N, competing with other non fixing species and microbes.  

The amount of N which enters this studied ecosystem via N2 fixation is much lower 

compared with values reported for leguminous crops (Unkovich et al. 1997), however it still 

represents a significant source of N (from 28 to 60 kg of N-N2 ha-1). As a matter of fact, 

although we have tried to sample leguminous plants from areas mostly composed by 

leguminous cover, in natural grassland it is very difficult to obtain homogeneous layer of the 

same species, as instead we can have in croplands. This means that in most cases, as also 

evidenced in the second year of experiments, leguminous plants will be mixes with non –

fixers. When legume and reference plants are grown in close association, a direct transfer of 

fixed N of near zero delta value could occur from leguminous to companion reference-specie 

via mycorrhizas interactions, which would lead to a lowering of the reference plant delta, 

below that of soil mineral N, with consequent under-estimation of the %Ndfa (Unkovich et al. 

1997). In fact, the values of delta in reference plants, we found, were quite close to those of 

N2 fixers. Also, plant growth in successive seasons will lead to have reference plants which 

might grow on soil where N2 fixers have occurred the previous year. Thus references might 

exploit a mineral N pool where the delta signal is lowered by the entrance, via decomposition, 

of leguminous fixed N. This means that in natural environments the use of the 15N natural 

abundance technique is much more difficult and subject to errors and under-estimation than in 

cultivated soils where leguminous can be planted at high density in areas which never hosted 

N2 fixers before. Despite these considerations, the value of %Ndfa found using 15N natural 

abundance was comparable to that found using the “N difference” technique. Thus, this value 

of %Ndfa, might be close to the real estimate. In fact, photos show very little nodulation in 

the roots of the analysed leguminous plants, but also, data from the second experiment did not 

really show significant differences of N pools and processes under different plant cover 

distribution. This suggests that the amount of extra N which arrives in the soil with the tissue 

of leguminous plants, where the % of N is higher than in the reference, is only in part a real 

external N input, the rest is due to exploitation of soil mineral N by the leguminous plants. In 
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fact, at the end of the growing season, when plants dyed (early summer), the amount of extra 

N which arrived to the soil did not seem sufficient to push soil processes, as in fact 

mineralization, nitrification and denitrification rates were not found to be significantly 

different under the three cover types. Slightly more mineral N was observed in some cases in 

the plots reached in leguminous plants. Probably the little excess of leguminous N entering 

the soils was: a) not fully exploited because limited by some other factors, most probably soil 

water content, b) the excess of N could be immobilized by microbes during the same 

decomposition process, being this soil quite N limited. Thus the overall effect of a higher N 

percentage being released from leguminous plant tissue and higher N being immobilized by 

microbes would result in un-significant variation of the net amount of N in soil under 

leguminous compared with areas covered by reference plants.  

Almost of the plots presented a very high percentage of non-fixers, thus the effect of 

extra N in tissue of leguminous plants arriving to the soil was “diluted” by the presence of 

non-fixing plants. Maybe in order to have a much clear evidence of the effect of leguminous 

plant cover, a more homogeneous community would be needed, which is not the case in wild 

environments, with few exceptions. Similar results were found by Scherer-Lorenzen et al 

(2003) who studying a mid-European grassland observed that in the communities containing 

legumes, N losses decreased with increasing diversity, because higher species richness leaded 

to complementary uptake of extra mineralized N by non leguminous herbs. Fillery (2001), in 

a review on the fate of biologically fixed nitrogen in legume based drylands farming systems, 

concluded that losses of mineralized N from leguminous residues  by either leaching of NO3
- 

or denitrification are small in Mediterranean ecosystems, where the soil organic matter pool 

(abiotic and microbial biomass) is the main sink of this extra N. Indeed in the present 

experiment both NO3
- content and N2O emissions did not statistically differ among the 

different plant cover. This might be the result of low N2 fixation, high plant diversity in the 

plots and limited soil water content for most of the period.  

Also CH4 fluxes did not seem to be affected by the different plant cover. Extra N in 

form of NH4
+
 might have exerted some lowering activity on CH4 uptake. However, data show 

that: 1) mineral N was generally low and was immediately oxidised to NO3
-, which was the 

predominant form of mineral N; b) that no difference in N mineralization occurred under 

different plant cover density. So CH4 flux data are in agreement with these results. Overall, as 
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previously reported for this site (Castaldi and Fierro, 2005) CH4 uptake rates were very high 

compared with other Mediterranean sites (see also chapter 3). 

 

 

5.5 CONCLUSIONS 

 

Overall data indicate that the investigated leguminous plant in the Mediterranean grassland of 

Castel Volturno represent a lower input of extra N in the system than expected on the base of 

literature data. This means that most of the N in these plants is recycled within the ecosystem.  

As a consequence of the low N2 fixation rates, high plant diversity and limited soil water 

content N losses, is form of NO3
- or gaseous products, associated to the presence of 

leguminous plants can be assumed to be negligible in this Mediterranean grassland. 
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6 POTENTIAL EMISSIONS OF NO AND N2O FROM MEDITERRANEAN 

ECOSYSTEMS: COMPARISON IN FUNCTION OF SITE CHARACTERISTICS  

 

 

 

6.1 INTRODUCTION 

 

Nitric oxide and nitrous oxide are two gases which are produced by soil microorganisms 

involved in the nitrogen cycle. They can make a significant fraction of total N gaseous loss 

from terrestrial ecosystems. The environmental impact of nitrous oxide is mainly related to its 

greenhouse gas effect, having this gas a radiative warming potential 310 times higher than 

CO2 (120 year projection, mass base, IPCC 2007), whereas NO is involved in tropospheric 

chemical reactions and is considered a source of indirect emissions for N2O (IPCC 1998). 

Both gases are by products of the nitrification process and are intermediate products in the 

denitrification process (Firestone and Davidson, 1989; Williams et al. 1992; Conrad, 1996). 

Reported key controlling factors for NO and N2O emissions in terrestrial ecosystems are 

availability of substrate, gas diffusivity and O2 concentration in soil pores, both strictly related 

to the water filled pore space (WPFS), soil pH, soil temperature (Slemr and Seiler, 1984; 

Skiba et al., 1997; Yamulki et al., 1997; Skiba et al., 1998; Smith et al., 1998; Bollmann and 

Conrad, 1998; Ormeci et al., 1999; Van Dijk and Duyzer, 1999; Skiba and Smith, 2000; 

Ludwig et al., 2001). Nitrification is mainly led by aerobic autotrophic microorganisms, and 

consequently the process rate is mainly controlled by the availability of NH4
+ and by soil 

aerobicity. In natural ecosystems hence nitrification generally correlates with mineralization 

and ammonification rates (Granli e Bǿckman, 1994). Also soil pH, however, seems to affect 

significantly the rate of nitrification. Denitrification is carried out by heterotrophic anaerobic 

microorganisms, and hence is mainly controlled by NO3
- and NO2

- availability, soil C content 

and quality, and soil aerobicity. In upland soils the denitrification process occurs in “hotspot” 

characterized by intense respiration activity associated to available C, which creates anaerobic 

spots within an aerobic soil matrix. The NO/N2O stechiometric ratio can change significantly 
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in function of soil characteristics, given that these gases are emitted from two different 

sources, which are differently controlled by environmental parameters. The best known and 

frequently reported controlling factor is the soil water content. Usually NO emissions are 

reported to peak around 5-20% of water filled pore space, to decline exponentially thereafter 

till an almost complete disappearance at about 60% WFPS. On the other hand, N2O is 

generally reported to be very low at water content below 60%, where only nitrification is the 

dominant source, whereas it increases exponentially above 60% WFPS, peaking at about 90% 

WFPS, having as the main source the denitrification process (Lemke et al., 1998). Thus the 

ratio NO/N2O decreases significantly with increasing WFPS. An equal good amount of 

literature is available for the effect of exogenous substrates (synthetic or organic fertilization) 

on NO and N2O emission rates in agricultural ecosystems (Dick et al., 2001; 2006; Vallejo et 

al., 2005; Sánchez-Martín et al., 2008). Much less information exist on factor controlling 

potential NO and N2O emissions in natural ecosystems, especially regarding NO emissions. 

Most of the significant literature on NO emissions comes from tropical seasonally-dry 

ecosystems (Davidson et al., 1993; Matson and Vitousek, 1996; Hall and Matson, 1999), 

whereas few data exist on NO and N2O emissions from seasonally-dry temperate forest and 

shrublands, in particular in Mediterranean ecosystems. A frequently reported observation, 

from studies in tropical savannas, is the production of flushes of NO and N2O at the off-set of 

the rainy season, although no univocal answer has been given for which factors control the 

length and magnitude for this N gaseous flush (Austin, 2004). Mediterranean woodland are 

also exposed to significant periods of strong aridity, when the top soil, where most of the 

microbial activity takes place, reaches soil water contents as low as the wilting point. Isolated 

rain events often interrupt these dry periods, with a frequency and intensity which is quite 

variable. However, in the recent year, summer and autumnal rains are getting more and more 

characterized by less frequent and more intense events. Hence also Mediterranean ecosystems 

are probably interested by frequent and significant pulses of N gas emissions.  

In the present work we compared the potential emissions of NO and N2O in several 

Mediterranean woodlands with different soil characteristics in order to improve our 

understanding on the influence of ecosystem characteristics on: a) the magnitude of NO and 

N2O fluxes and their ratio; b) the length of the gaseous pulse following soil rewetting.  

The experiment was carried on in controlled conditions of laboratory, by incubating the 

soil in reconstituted cores at the same temperature and soil water content. This allowed to get 
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independent from these two controlling factors, which influence on gas emissions is already 

well known, and to investigate instead the effect on gas emissions of intrinsic characteristics 

of the investigated soils such as availability of substrate, soil pH, texture, soil organic C and 

N, net rates of mineralization and nitrification, denitrification enzyme activity and other 

peculiar environmental factors associated to the Mediterranean sites. In this respect we 

compared four different woodlands characterized by different soil types and vegetation, and 

for one site we also used a typical chronosequence of Mediterranean ecosystem after 

disturbance (open herbaceous community-shrubland-woodland). We also tested the potential 

of these natural ecosystems to respond to extra nitrogen addition in function of their soil 

characteristics, by fertilizing the soil with NH4NO3. 

 

 

6.2 MATERIALS AND METHODS 

 

 

6.2.1 SITES OF STUDY DESCRIPTION 

 

Four Mediterranean woodland sites dominated by of evergreen broadleaf species were 

chosen for the present work Lecceto (L), Tolfa (T), Roccarespanpani (R) and CastelVolturno 

(CV).  

All the sites were located in the Italian peninsula. Lecceto (L) is a 30 years old coppice 

site located at 305 m (a.s.l.) close to Siena (Toscany) (43°3’ N; 11°29’ E), characterized by  

Mediterranean climate with warm summer (June – September) (average annual precipitation 

870mm, average air temperature 12°C). The soil is classified as Xerochrept (Soil Taxonomy, 

1975). The main dominant arboreus species is Quercus Ilex (average plant canopy height 8-9 

m), with few isolated trees of  Quercus Robur, Quercus Cerris, Fraxinus Ornus. 

Roccarespampani (R) is a 20 years old coppice site dominated by Quercus cerris (other 

isolated trees of Ruscus, Crataegus monogina, overall less than 15% cover) located at 120-

190 m a.s.l. in a flat area close to Viterbo (42° 23' N; 11° 51' E). The soil is a Cambisol 

(Volcanic tuff is parent material) with a sandy clay texture. The  total annual precipitation is 

936 mm, the mean annual temperature is 14.4°C. Tolfa (T) site is located not far from the 

Tyrrenian coast in central Italy (42°11’N 11°56’E) in a flat central plateau located at 220m 
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a.s.l.. The area is characterized by a typical Mediterranean climate, a mean annual 

precipitation around 650 mm and a mean annual temperature of 15°C. The site is a coppiced 

woodland of Arbutus unedo, L. (65%-90% cover). Erica arborea, L. (13% cover) is also well 

represented at the site, while other species as Fraxinus ornus, L. (8%), Quercus pubescens, 

Willd. (5%) and Quercus cerris, L. (4%) are present as isolated trees. The geology of the site 

is characterized by the presence of emerging eruptive deposits that, by the action of 

hydrothermal processes, gave origin to alum mineral beds. The soil is classified, according to 

the USDA system, as an Andisol. The CastelVolturno site, part of  a Nature Reserve, is a flat 

coastal area located about 30 km North of Naples, in Southern Italy (40° 57’N; 1° 33’E). The 

climate is typically Mediterranean, with a total annual precipitation of 760.3 mm and mean 

annual temperature of 15.8°C. Soil is classified as a Calcaric Arenosol (FAO, 1998). In this 

site three different successional stages, typical of a Mediterranean secondary succesion, 

following disturbance, were identified: (CVg) grassland community typical of open areas, 

which follows a fire event (about 10 years ago) and is kept open by the Reserve operators by 

means of cutting; (CVs) a shrubland community about 2-3 meters tall, which represents an 

intermediate successional stage, characterized by a continuos plant cover dominated by 

Quercus ilex L., Phillyrea angustifolia L., Pistacia lentiscus L., Cistus spp, Myrtus communis 

L., Rosmarinus officinalis L.,; (CVw) a climax woodland stand of Quercus ilex L..  The main 

soil characteristics for the six study areas are reported in Table 6.1. 

 

Table 6-1-. Main soil characteristics (± 1 stdev) in the investigated sites. 

Site  Soil pH Total C  
g C 100g

-1
 dry 

soil 

Total N 
g N 100 g

-1
 

dry soil 

Water Holding 
Capacity  
g g-1 

  Bulk density 
   g cm

-3
 

CVg  6.75 ± 0.14 2.41 ± 0.57 0.32 ± 0.03 0.375 ± 0.031 1.333 ± 0.132 

CVs 6.84 ± 0.10 3.85 ± 0.48 0.41 ± 0.03 0.458 ± 0.115 1.133 ± 0.143 

CVw 7.25 ± 0.15 6.98 ± 1.36 0.49 ± 0.07 0.435 ± 0.075 1.194 ± 0.015 

T 3.42 ± 0.08 10.75 ± 2.78 0.78 ± 0.36 1.488 ± 0.143 0.429 ± 0.028 

L 6.24 ± 0.06 10.20 ± 2.36 0.49 ± 0.14 0.549 ± 0.164 0.949 ± 0.079 

R 5.82 ± 0.17 3.32 ± 0.72 0.38 ± 0.08 0.443 ± 0.119 1.029 ± 0.115 
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6.2.2 EXPERIMENTAL SET-UP 

 

In the present work we compared NO and N2O emissions and related soil N processes 

from four Mediterranean evergreen woodlands: Lecceto (L), Roccarespampani (R), Tolfa (T) 

and Castel Volturno (CVw); we also compared at one site (CastelVolturno) three successional 

stages: open grassland areas (CVg), shrubland (CVs), mature stand of Quercus ilex woodland 

(CVw). At each site soil was sampled from the top 0-10 cm from 10 different spots located on 

a grid of 1m length. Soil subsamples were well mixed and sieved with a 2 mm mesh sieve. On 

the same day soil was oven-dry at 37 °C using a ventilated oven to speed up the process of 

water loss, which occurred within 48 hours.  

Soil samples of 100 g each were repacked into clear Perspex columns (20 cm height, 5.5 

cm inner diameter) sealed at the base. Soil was left to accumulate by gravity without further 

manual compression, just avoiding the occurrence of empty spaces. For each column the exact 

soil height was recorded in order to calculate the correct headspace volume.  

All the soil samples were incubated at 50% of water saturation, at 20°C, conditions 

which could typically occur during the early autumn period at the offset of rain. In order to 

simulate the effect of rain on gaseous emissions from dry soils, condition which typically 

occurs in the soil top centimetres during the dry Mediterranean summers, we did not pre-

incubate the soil in moist conditions.  

Two series were compared: the five Mediterranean soils (L, R, T, CVw, CVs, CVg) 

amended with sole water, and the same five soils amended with water plus NH4NO3 (100 µg 

N g-1 dry soil). This second set was investigated in order to evaluate the potential of each of 

the studied soils for NO and N2O emissions in conditions where N is not limiting. In fact, in 

our natural soil the main source of N is represented by the ammonium produced by the 

mineralization and the NO3 produced in the subsequent nitrification process. So the rate of 

these two processes controls the rate of gaseous losses. The two series hence represent the 

actual capacity of the soils to emit NO and N2O at the set water and temperature conditions 

(no N addition) and the potential capacity of the soils to emit NO and N2O in presence of 

extra N (+ N addition). For each soil and each treatment we used three experimental replicates 

for the analysis of N gaseous emissions.  
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NO and N2O production was measured 1hour, 3 days, 7 days and 10 days after water 

addition, as described in the following paragraph. Soil cores were left uncapped in between 

gas sampling events and eventual water losses were corrected by weighting the soil cores 

everyday and adding the lost water. 

As we were also interested to measure the amount of mineralized and nitrified nitrogen 

corresponding at the same moment of gas sampling, we prepared a parallel set of soil cores 

which were not used for gas analysis but were exclusively used for the extraction of mineral 

N, determination of soil water content and denitrification enzyme activity. So for each soil 

and for each treatment we prepared a set (on triplicate) to be extracted 1 hour, one set at 3 

days, one set at 7 days and one set at 10 days after water addition. This avoided the 

disturbance of soil cores where gas was going to be measured. 

 

 

6.2.3 SOIL AND GAS ANALYSIS 

 

Soil physical-chemical properties and soil biological processes related nitrogen cycle 

were measured in each sampling event. Soil water content, pH, organic carbon, total nitrogen 

and carbon, mineral nitrogen, organic α-NH2, mineralization rate, nitrification rate, 

denitrification enzyme activity and gases fluxes are described in detail in the chapter 2. 

 

 

6.2.4 STATISTICAL ANALYSIS 

 

A one way analysis of variance was used to evidence significant differences among 

different sites or among different treatments. When the difference was significant (P<0.05) an 

"all pairwise" comparison was carried on using the “Student-Newman-Keuls test”. Best 

subset regression analysis was used to find which linear combination of independent variables 

best contributed to predict the dependent variable. Simple linear regression or multiple linear 

regression were performed to find the relationship between the independent variables and the 

dependent variable. All the statistical analyses were performed using Sigma Stat package 

(Jandel Scientific). 
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6.3 RESULTS 

 

 

 

6.3.1  GASES FLUXES ALONG A MEDITERRANEAN SUCCESSIONAL GRADIENT 

 

In natural conditions, all of three stages of secondary succession, open grassland, 

shrubland and woodland of Quercus ilex showed higher NO emission rates than N2O (Fig. 

6.1). 
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Figure 6-1. NO and N2O flux measurements without addition of NH4NO3 on the left and with addition 
of NH4NO3 on the right. Error bars represent standard deviation for three replicates. 
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No emission peaked at day 3 in the shrubland, an in the first day for the other two 

stages. After 7 days values were everywhere extremely low. N2O emissions were low and 

without a particular trend (Fig 6.1). In presence of extra-N, in all stages NO emissions 

increased, and NO peaks were observed after 3 days. After 10 days the extra flux went back to 

background conditions (without addition of mineral N). N2O fluxes also stimulated by N 

addition, althought to a much lesser extent. As for NO, also for N2O, peaks of emissions were 

observed after 3 days, the highest being again in the shrubland. 

 

 

 

 

6.3.2  GASES FLUXES FROM WOODLAND ECOSYSTEMS 

 

 

Comparing the 4 woodland ecosystems, NO emissions without extra N were again 

higher than N2O emissions (Fig. 6.2) in all sites. The highest NO flux was generally recorded 

immediately after water addition. N2O emissions did not have a clear temporal trend, with the 

exception of Rocca. Adding extra-N, N2O strongly increased in two sites, Lecceto and Rocca, 

where they peaked at day 3. At Rocca N2O emissions were still significantly higher than in 

the other sites after 10 days, whereas at Lecceto the N2O flush did not last more than 3 days. 
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Figure 6-2. NO and N2O flux measurements without addition of NH4NO3 on the left and with addition 

of NH4NO3 on the right. Error bars represent standard deviation for three replicates. 
 

 

At Tolfa and Castel Volturno NO emissions remained higher than N2O emissions, 

despite the higher overall gas production. CV presented the highest flux of NO, which 

occurred after 3 days but fastly decreased back to background levels. Overall the N2O 

emissions were quite low when no extra N was added (maximum value of 0.8 ng N2O-N g-1 h-

1) and were exceptionally high (45 ng N2O-N g-1 h-1) and long lasting at Rocca when N was 

added. In Table 2 are reported NO/N2O ratios for the analysed sites. 
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Table 6-2. NO-N/N2O-N ratios calculated for the six soils from NO-N and N2O-N emissions 
measured after 1 hour, 3, 7, and 10 days after wetting the soil with sole water (-N) or water plus 

NH4NO3 (+N). No value (-) indicates absence of negative N2O emissions.  

 1 hour 3 days 7 days 10 days 

 - N +N - N +N - N +N - N +N 

CVg 6.6 6.0 - 11.4 - 24.4 0.9 0.6 

CVs 7.8 10.0 49.7 11.1 - 23.2 2.6 3.0 

CVw - 9.7 5.4 60.8 - - 0.7 0.7 

T 6.8 13.5 1.0 10.0 - 2.1 - 6.8 

L 2.6 9.1 0.7 0.1 - 0.3 1.2 0.7 

R 9.0 4.6 0.8 0.02 0.3 0.03 0.5 0.08 

 

A clear dominance of the NO gaseous N form is evidenced immediately after water 

addition with fluxes of NO from 3 to 10 times higher than N2O. In the CV site the ratio in 

general goes increasing with time. N addition increase this ratio only at Tolfa, where we know 

the limits for N2O production from chapter 3 and 4. In the other two woodland site the ratio 

instead decreases with N addition compared to –N treatments.  

 

 

 

6.3.3 MINERALIZATION, NITRIFICATION AND DENITRIFICATION ALONG A MEDITERRANEAN 

SUCCESSIONAL GRADIENT  

 

The highest mineralization and nitrification rates were measured in the mature stand of 

Quercus ilex (Fig. 6.3)  When N was added, however, was the site which showed the highest 

immobilization rate. Difference were however never statistically significant. Maquis and 

shrubland instead behaved very similarly. In all cases N addition stimulated N 

immobilization. 
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Figure 6-3. Cumulative mineralization and nitrification measured in three successional stages with 
and without N addition (right and left). Error bars represent standard deviation for three replicates. 

 

 

Denitrification enzyme activity measured at the end of the incubation did not result 

stimulated by N addition. (Fig. 6.4). Values were lowest in the maquis, and resulted 

significantly lower than in the grassland. The woodland presented intermediate value but no 

significant difference with the other two stages. 
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Figure 6-4. Denitrification enzyme activity, measured along a successional gradient, with and without 
N addition (gray and black bars). Error bars represent standard deviation for three replicates. 

 

 

 

6.3.4 MINERALIZATION, NITRIFICATION AND DENITRIFICATION AMONG FOUR DIFFERENT 

MEDITERRANEAN ECOSYSTEMS 

 

 

Fig. 6.5 reported cumulative data of mineralization and nitrification in the four different 

woodland ecosystems. With addition of sole water to dry soil, Tolfa showed on average the 

highest mineralization values and no nitrification, as explained in chapter 3 and 4. Rocca and 

Castel Volturno showed a similar increase of mineralization, mostly linear over time similarly 

to nitrification. Lecceto site showed the lowest mineralization rates and extremely low 

nitrification rates. Addition of NH4NO3 (100µg g-1 dry soil) induced a slight increase of 

mineralization rates in Tolfa and Rocca and immobilization at Lecceto and Castel Volturno, a 

similar trend was observed for nitrification.  
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Figure 6-5. Cumulative mineralization and nitrification measured in four different Mediterranean sites 
with and without N addition (right and left). Error bars represent standard deviation for three 

replicates. 

 

 

Denitrification enzyme activity (Fig. 6.6) was measured after 10 days. Denitrification 

rates were very different in the 4  Mediterranean analyzed sites. Castel Volturno site showed 

the highest values, an intermediate value was measured for Tolfa and Rocca, and thw lowest 

value was reported for Lecceto (La<Rb<Tbc<Ccd, P<0.05, One-Way ANOVA). Also in this 

case N addition did not stimulate denitrification enzyme production over 10 days.  
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Figure 6-6. Denitrification enzyme activity, measured in four different Mediterranean sites, with and 
without N addition (gray and black bars). Error bars represent standard deviation for three replicates. 

 

 

 

6.3.5 CORRELATIONS WITH SOIL CHARACTERISTICS 

 

In order to correlate gas emissions with soil characteristics the former were cumulated 

over the period of incubation. Data are presented in Fig.6.7. The figure nicely show that the 4 

woodlands have an opposite trend for NO and N2O emissions. The site which emit more of a 

gas emit also less of the other. In the chronosequence the result is similar for the two stages. 

This appears clear when extra N is added but without extra N all the site present an overall 

low emission of N2O.  

NO emissions were not correlated to any biological or chemical-physical soil parameter, 

or at least no clear trend was observed.  

The only characteristics which resulted correlated with N2O emissions were soil total N 

and the C/N ratio. In the case the only meaningful correlation was with N2O fluxes in absence 

of extra N, which might have masked the effect of soil N.  
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Figure 6-7. Total NO and N2O flux measurements without addition of NH4NO3 (black) and with 
addition of NH4NO3 (gray). 

 

 

N2O emissions (without N addition) linearly increase with total soil N content if the site 

of Tolfa and Rocca are excluded (Fig. 6.8). In fact we know that Tolfa has basically no N2O 

emissions as consequence of factors other than soil N. A similar trend was observed for C/N 

ratios. 
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Figure 6-8. Total emitted N2O versus soil total N (in the left) and versus C/N (in the right). 
 

 

Mineralization activity seemed to be influence by the CN ratio, increasing for increasing 

ratio up to a certain value of C/N around 14, to decrease for higher values (Fig. 6.9). Having 

however only one point after the limit of 14 we cannot be sure of this trend. The first part of 

the curve suggests that increasing C over N stimulates mineralization, but this is probably due 

to the fact that the soils in question have quite low contents of organic matter (Table 1), so 
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that an increase in ratio reflect an increase of substrate to optimal conditions for microbial 

growth and activity. Over C/N of 14 probably the amount of C starts to become critical in 

terms of biomass growth (immobilization) over activity (net mineralization,  N release). 
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Figure 6-9. Net mineralization rate versus C/N ratio. 
 

 

 

Mineralization did not appear to be affect by soil pH. In fact the most acid site, Tolfa 

showed the highest values of mineralization (Fig 6.5). On the contrary an exponential 

decreasing trend of nitrification with decreasing pH was observed (Fig 6.10). Nitrification 

seemed drastically reduced already at pHs between 6 and 7. The same behaviour was 

observed in presence of absence of extra N. 
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Figure 6-10. Net nitrification rate (left) and net mineralization rate (right)versus soil pH.  

plain line: 
x

ey
⋅⋅= 93.004.0  r2=0.91 symbols bold, -N plots; 

dotted line: 
x

ey
⋅= 76.2

  r2= 0.82 (light symbols + N treated plots. 

 

 

 

6.4 DISCUSSION 

 

A predominance of NO emissions respect to N2O were measured in all studied sites in 

controlled conditions of temperature and soil moisture. Theoretical models (Davidson 1991; 

Potter et al. 1996) assume a maximum NO release at soil moisture contents of 10–60% WFPS 

and a maximum N2O release at higher soil moisture contents, i.e. 70–80% WFPS. Thus at the 

incubation condition of 50% WFPS, we would have expected a dominance of N2O over NO 

fluxes (Davidson 1992; Schuster & Conrad 1992; Davidson et al. 1993; Hutchinson et al. 

1993; Skiba et al. 1993). Thus other factors were limiting N2O production in the soil. This 

was true also when N was added to the soil, in some cases, such as the Castel Volturno 

reserve, where N addition stimulated NO production more than N2O. Addition of sole mineral 

N in fact might not be sufficient to stimulate significant denitrification activity, which is the 

main process responsible for N2O production in terms of yield. Denitrification in aerobic soils 

in fact requires enough organic matter so to stimulate microbial activity which from one end 

provides the substrate via mineralization and subsequent nitrification, in the other end it lower 

the oxygen content in the soil favouring redox conditions for N2O production (Smith 1990). 

On the contrary, being NO a by product of nitrification, led by autotrophic microorganisms, it 
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doesn’t require low oxygen tension but just sufficient activity to provide microbes with NH4
+ 

substrate. Although there was not a clear correlation, as a general trend the sites which 

showed the highest nitrification activity were also those characterized by the highest NO 

emissions. Another factor that could be important is soil texture, in fact it regulate the 

distribution of water in soil aggregates and the formation of oxic and anoxic sites and thus 

oxidative or reductive processes in soils. At soil water condition considered, an intermediate 

value, close to field capacity, soil micro-pores are water-filled, so to ensure microbial activity 

without stress and soil macro-pores are air-filled, so to ensure oxygen available and dissolved 

substrates. A fine-texture soils, has a smaller pores and thus, more anoxic sites are created at 

the same soil moisture conditions than in a coarse-texture soil (Groffman & Tiedje 1991; 

Parton et al. 1996). Then, soil capacity to retain water is very different in the studied sites, in 

fact water losses between sampling events were more pronounced in a sandy soil, as Castel 

Volturno reserve soil. Thus, texture in this soil result in an additional effect to low organic 

matter to favour oxidative process as nitrification, as result by high soil nitrate content and to 

favour NO emissions.  

In Castel Volturno site, potential N emissions doesn't increase along the gradient of 

successional stages, but after 3 days, a peak was observed in intermediate stage of shrubland. 

Greater availability of C in the mature site could result in major nitrogen immobilization, with 

consequent competitive ability versus nitrification and denitrification and then low N 

emissions. Nitrogen mineralization was correlated exponentially with C/N ratio, and this 

factor become critical in soil of mature stand of Quercus ilex of Castel Volturno reserve. 

The site of Lecceto, in opposite of Castel Volturno, has high soil total carbon and fine 

texture, and in presence of extra-N emit high amount of N2O confirming the effect of soil 

characteristics when N is not limiting. In undisturbed condition, at 50% WHC, it emits equal 

and little amount of NO and N2O gases, in fact the comparison among the different sites has 

showed that the sites with high emissions are in linear positive relationship with soil total N 

content (N%). The soil pH doesn’t affect NO and N2O emissions in studied sites, while seems 

to be drastically a very important factor for nitrification rate. 

Tolfa site, despite elevated soil total carbon and nitrogen content and texture, doesn’t 

emit N2O. According to dynamic of nitrogen cycle studied in previous research in this site, 

allelophatic compounds limit nitrification activity and soil nitrate content, affected indirectly 

N2O emissions. The “conservative” nitrogen cycle works energy in less mobile forms of NH4
+ 
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and organic N and block N losses also in presence of extra-N. However, NO emissions were 

detected but they cannot attribute to nitrification process , but could be result by abiotic 

processes. 

The site of Rocca, in opposite to Tolfa, represent a positive exception. It has total 

organic carbon and nitrogen comparable to Castel Volturno site, but stronger and longer N2O 

emissions were observed when N is added to soil. Major investigations are needed to explain 

these results. 

 

 

 

6.5 CONCLUSIONS 

 

As we could expect, Mediterranean sites are very scarse sources of N gaseous 

compounds. Generally, it seem depend by a limiting factors of C and N-poor soil 

characteristics, but in some case it can be attribute to N-conservation strategy (see Tolfa site). 

Texture and soil organic matter became driving factors for NO/N2O ratio in presence of an 

excess of available forms of nitrogen, influencing also a nitrification and denitrification 

processes that are responsible for gases production. Sandy soil and with low C content (Castel 

Volturno) emit more NO than fine-texture soil with high C content (Lecceto). A sandy-loam 

and C-poor soil of Rocca emit highest peaks of N2O, indicating that others factors, but non 

soil pH, must be take in account. 
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