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ABSTRACT 

This work is aimed at the dissection of the molecular mechanism(s) linking DNA 
damage and gene silencing. To this end, we have developed a genetic system that 
allows a rapid assessment of homologous-directed repair (HR) of a single DNA 
double strand break (DSB). Briefly, we induced a DBS in the genome of HeLa or 
mouse embryonic stem (ES) cells using the I-SceI restriction endonuclease. 
Homologous recombination repair by gene conversion, initiated at the site of the 
double strand break, converts 2 inactivated tandem repeated green fluorescent 
protein (GFP) genes (DR-GFP) in an intact functional gene. The efficiency of HR, 
under our conditions, is approximately 2%–4% and can be easily quantified by 
analyzing GFP+ cells. 
Half of these recombinants expressed GFP poorly, because GFP gene was silenced. 
Silencing was rapid and associated with HR and DNA methylation of the 
recombinant gene, since HeLa DR-GFP treatment with 5-aza-2’-deoxycytidine, a DNA 
demethylating drug, significantly increased the fraction of GFP expressing cells. 
Methylation did not alter recombination frequency in both cell types. ES cells 
deficient in DNA methyl-transferase 1 yielded as many recombinants as wild-type 
cells, but most of these recombinants expressed GFP robustly.  
Bisulfite analysis of GFP DNA molecules revealed that approximately half of the HR 
repaired molecules were de novo methylated, principally at the 3’-end of the DSB in 
a range of ~300bp. The other half GFP molecules were hypomethylated. Uncleaved 
and non-homologous repaired molecules did not show changes of the methylation 
profile. DNA methyl-transferase 1 bound specifically to HR GFP DNA, as revealed by 
chromatin immunoprecipitation and RNA analysis. HR induced novel methylation 
profiles on top of the old patterns and contributed to the silencing of GFP 
expression.  
Inhibition of transcription by α-amanitin for a very short period (6-24 h during I-SceI 
cleavage) significantly reduced the frequency of recombination. Surprisingly, the 2 
classes of recombinants  were better separated in terms of GFP expression. 
Methylation analysis showed that the methylated molecules were hypermethylated, 
whereas the hypomethylated GFP gene molecules were un-methylated, relative to 
the untreated samples. Taken together, our data support a mechanistic link 
between HR, DNA methylation and transcription.  
We propose that stalled RNA polymerase molecules slow down homologous 
recombination by interfering possibly with DNA polymerase complex or strand 
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invasion. At the same time, the presence of RNA polymerase II transcription 
complex signal to DNMT1 the coding strand and facilitates strand selective DNA 
methylation. Overall, these data highlight a new and unexpected opportunity in 
understanding the mechanisms of silencing of damaged genes. 

INTRODUCTION 
 
DNA DAMAGE  

The long-term survival  of a species is driven by genetic changes, while 

the survival of individuals depends on the accurate transmission of the 

genetic information from a mother to daughter cells.  

The DNA is continuously subjected to threats of different kind coming 

from intracellular and extracellular environment, which may induce an 

alteration of its primary code. Examples are the modifications of the 

bases by the oxidative metabolism, exposure to mutagens and errors 

during DNA replication. 

DNA "damage" is therefore any change that introduces in the double 

helix structure a deviation from the normal such as: 1. changes in single 

bases which alter the sequence ; 2. structural distortions that create 

physical obstacles to the processes of replication and transcription, and 

which can cause deletions, fusions, aneuploidy and translocations. All 

these conditions may result in decrease of fitness and  degenerative 

diseases such as cancer and aging in multicellular organisms, while 

causing death of unicellular organisms. 

Most of DNA spontaneous changes are temporary because the 

damages are immediately corrected by appropriate repair machines. 

These repair systems recognize a wide range of DNA distortions: the 

modified bases are corrected by excision-recombination mechanisms, 

while specific repair systems are activated in case of annealing errors 

(mut system in E.Coli and MMR system in eukariotes). Defects in the 
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functioning of one of these systems may cause genomic instability 

resulting in an increase of the tumorigenic potential of the cell. 

Cells have evolved complex signalling networks to carefully monitor the 

integrity of the genome during DNA replication, and to initiate cell cycle 

arrest, repair, or apoptotic responses if errors are detected, probably to 

eliminate those cells that have potentially catastrophic mutations. Cancer 

cells, on the other hand, undergo an array of genetic changes including 

mutations in the DNA repair pathways that allow them to escape these 

controls and barriers. 

The mechanisms involved in the response to injury include: 

a) damage recognition and activation of the checkpoints, which block 

the cell cycle progression and activate the repair systems;  

b) removal of the damage and restoration of the double helix 

continuity, in order to prevent the transmission of damaged 

chromosomes or which replication is incomplete; 

c) apoptosis induction to remove heavily damaged or seriously 

dysregulated cells (Sancar et al., 2004). 

Specific signal molecules, able to move along the damage sites and 

often involved in more than a repair mechanism, allow the cell to 

continuously monitor changes in the DNA structure to ensure proper cell 

cycle progression from G1 to M phase. Modification of these DNA-

associated proteins is intrinsic to pathway activation or DNA repair. 

Fundamental parts of the DNA damage response are checkpoints, 

signaling cascades that regulate key aspects of the cellular metabolism by 

interacting with the cell cycle machine (Zhou et al.,2000). Chromatin 

modification is directly implicated in the development of these signaling 

cascades. DNA damage recognition and processing require chromatin 

modifications and events aiming at the coordination of checkpoint 

signaling with DNA repair or apoptosis. The ultimate goal is the 

preservation of genomic integrity through the coupling of repair to other 
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essential cellular activities such as DNA replication, gene expression, cell 

cycle progression and life or death decisions. For this reason, recently, 

many efforts in the description and in the understanding of the 

mechanistic processes of DNA damage-associated histone modifications 

have been particularly intensified (Kinner et al., 2008). 

 
 

DOUBLE-STRAND BREAKS AND RECOMBINATION-DIRECTED 

REPAIR 

DNA double-strand break (DBS) is one of the most serious threats to 

cells. DSBs can arise, directly or indirectly, due to exposure to chemical or 

radiological agents or at stalled or collapsed replication forks. A DSB must 

be repaired quickly and with sufficient accuracy to protect against 

detrimental chromosomal rearrangements, mutations or cell death. 

The DSBs generate when two complementary strands of DNA break 

simultaneously in sites that are close enough that base-pairing and 

chromatin structure are insufficient to keep the DNA ends juxtaposed. So 

physically dissociated, these ends threaten to inappropriately recombine 

with other genomic sites and the risk to induce chromosomal 

translocations is high. If not repaired correctly, DSBs can lead to genomic 

instability and increased risk of cancer and degenerative diseases. In 

mammalian cells faulty DSBs repair compromises tissue and organ 

function; however, among multicellular eukaryotes, physiologic DSBs are 

found only in the vertebrate immune system V(D)J. 

Because of threats posed by DSBs, eukaryotic cells have evolved 

complex, highly conserved systems to rapidly and efficiently detect these 

lesions, signal their presence, and bring about their repair.  

There are at least two repair pathways which can repair DSBs: (1) 

homologous recombination (HR)-mediated repair and (2) non-

homologous end-joining (NHEJ)- and/or micro-homology-mediated 
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recombination. These pathways are largely distinct from one another but 

function in complementary way (Essers et al., 2000). 

The essence of HR is an exchange of information between two similar 

sequences. When provoked by a DSB, HR can serve not only for healing 

DNA strand discontinuities, but for restoring any genetic information that 

otherwise may have been lost due to exonucleolytic activity. During 

homologous recombination the damaged chromosome forms a synapse 

(synaptonemal complex) with a molecule of undamaged DNA by which it 

shares a remarkable sequence homology. Thus the genetic information 

lost on one allele can be picked up on the other remained intact. HR via 

DSB repair proceeds via two Holliday junction intermediates, and an 

event can resolve either as a crossover or as a gene conversion with no 

associated crossover. Providing a high homology requirement for 

recombination protects the integrity of the mammalian genome, 

particularly because of the abundance of similar repeated sequences (i.e. 

Alu family sequences) (Waldman 2008). HR repair is a templated repair 

process and is therefore error free.  

In contrast,  in non-homologous recombination, two ends of DNA that 

do not share sequence homology in terminal portions are ligated to each 

other without formation of synapses. NHEJ involves the direct religation 

of broken termini without use of the sister chromatid as a template. NHEJ 

does not use long stretches of homology, but the processing of the DNA 

ends can, at least in some cases, be influenced by terminal 

microhomology, the alignment of few homologous nucleotides, typically 

1–4 nt. It should be noted that NHEJ proceeds even if there is no terminal 

microhomology. NHEJ often results in insertions or deletions of 

nucleotides at the repair site, leading to mutations within the genome. 

Both pathways have been highly conserved during the evolution of the 

eukaryotic world (Cromie et al., 2001). Simple eukaryotes such as yeasts 

S. Cerevisiae e S. Pombe use homologous recombination to repair the 
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DSBs induced by ionizing radiation (Jasin, 1996), while non-homologous 

recombination is little used, except in case of absence of homology to the 

broken chromosome, or when the machinery of homologous 

recombination does not work. (Haber et al., 2000). In contrast, mammals 

use more frequently the non-homologous recombination. 

In eukaryotes, homologous recombination is restricted to late S or G2 

phase, where DSBs are often repaired at long regions (> 100bp) of 

homology using homologous recombination (although single-strand 

annealing can also occur); non-homologous DNA end joining (NHEJ) is 

instead the dominant pathway for the repair of DSBs in multicellular 

eukaryotes throughout the cell cycle. 

NHEJ is distintive for the amount of the nuclease, polymerase, and 

ligase activities that are used. These activities permits NHEJ to function on 

the wide range of substrate configurations that can arise when double-

strand breaks occur, particularly at sites of oxidative damage or ionizing 

radiation, but NHEJ does not return the local DNA to its original sequence. 

Pathologically, the imprecisions of NHEJ contribute to mutations that 

arise over time. Physiologic double-strand break processes use the 

imprecisions of NHEJ in generating antigen receptor diversity (Lieber, 

2008). 

It is not yet clear what determines whether a DSB is repaired by NHEJ 

versus homologous recombination during DNA replication. Recently, it 

was reported that generation of DSBs associated with DNA replication 

stresses such as stalled replication forks closely related to cancer 

incidences and that these DNA replication-related DSBs are repaired 

through the HR pathway (McCabe et al., 2006). This finding suggests the 

importance of HR repair for cancer prevention. 

DSB activates signaling responses, termed cell-cycle checkpoints, which 

monitor DNA damage and transduce signals to coordinate repair and cell 

cycle progression. One of the key players of the cell-cycle checkpoints is 
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the tumor suppressor protein p53. p53 is activated and 

posttranscriptionally modified in response to DNA damage. These 

modifications include phosphorylation by ataxia teleangiectasia mutated 

(ATM), a central signaling kinase in the response to DNA damage. After 

DNA damage, p53 activates genes involved in DNA repair, cell cycle 

control and apoptosis, and takes part in the maintenance of the genome 

integrity (Shyloh., 2003). When DSBs are generated, ATM protein kinase is 

activated and relocates through an interaction with Rad50/Mre11/NBS1 

complex in mammals and Mre11-Rad50-Xrs2 in yeast. Then ATM 

phosphorylates istone H2AX and many other substrate proteins including 

Artemis, DNA-PKcs kinase, MDC1, NBS1, p53 and Chk2. ATM-

phosphorylated proteins activate cell cycle checkpoints, NHEJ repair 

pathway, and HR-related pathways (Kobayashi et al., 2008). Moreover, 

proteins involved in HR pathway are often ubiquitinated and this seems 

to be essential for HR repair (Spence et al., 2000). 

One type of homologous repair is gene conversion,  an event in DNA 

recombination which occurs at high frequency during meiotic division but 

which also occurs in somatic cells. It is a form of non-reciprocal 

recombination that can either maintain genetic identity or promote 

genetic diversity (Santoyo et al., 2005). During gene conversion DNA 

sequence information is transferred from one DNA helix, which remains 

unchanged, to another DNA helix, whose sequence is altered. Every gene 

conversion event takes as its substrate two DNA sequences that are 

homologous but not identical, because of sequence mismatches, and 

yields two identical DNA sequences. This conversion of one allele to the 

other is due to base mismatch repair during recombination: if one of the 

four strands during meiosis pairs up with one of the four strands of a 

different chromosome, as can occur if there is sequence homology, mismatch 

repair can alter the sequence of one of the chromosomes, so that it is 

identical to the other.  

http://en.wikipedia.org/wiki/Meiosis
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Homology_(biology)
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Gene conversion can also result from the DNA repair of DSBs.  Here a 

break in both strands of DNA is repaired from an intact homologous 

region. Resection of the DNA strands near the break site leads to 

stretches of single stranded DNA that can invade the homologous DNA 

strand. The intact DNA can then function as a template to copy the lost 

information on the other strand. During this repair process a double 

Holliday structure is formed. Depending on how this structure is resolved, 

either cross-over or gene conversion products result. Gene conversion 

acts to “homogenize” the DNA sequences composing the gene pool of a 

species. Over time, gene conversion events yield a homogenous set of 

DNA sequences, both for allelic forms of a gene and for multigene families.  

Gene conversions were first observed over 80 years ago, and then 

extensively studied, especially in yeast (Ezawa et al., 2006). In humans, 

gene conversions between multigene family members have been 

described in several protein coding genes. For example, gene conversions 

occur between human genes coding for β-globins, opsins, ubiquitins and 

also for the large palindromic sequences found in the human Y 

chromosome (Rozen et al., 2003; Benovoy et al., 2008). 

 
 

DNA METHYLATION 
 

DNA methylation is a covalent, postreplicative modification of genomic 

DNA. Changes in the methylation pattern are associated with specific 

developmental and differentiation stages (Razin and Shemer, 1995), 

imprinting (Reik and Walter, 1998), X chromosome inactivation (Latham, 

1996) and carcinogenesis (Counts and Goodman,  1995).  

Cancer cells and tissues exhibit genome wide hypomethylation and 

regional hypermethylation. In vertebrates, the preferred substrates for 

methylation are cytosines located within the dinucleotide CpG, whereas 

in plants and fungi also cytosines  located outside of this sequence 

http://en.wikipedia.org/wiki/Holliday_junction
http://en.wikipedia.org/wiki/Gene_pool
http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Gene_family


12 

 

context can be methylated (Colot and Rossignol, 1999). In mammals, 

methylation takes place exclusively on the C5 carbon of the cytosine 

belonging to the CpG (cytosine-guanine) dinucleotide by specific enzymes 

called DNA methyltransferases. CpG methylation of DNA is characterized 

by the formation of a C–C covalent bond between the 5′-C of cytosine and 

the –CH3 group of S-adenosylmethionine. Removal of the methyl-group 

from the methylated cytosine of DNA is one of the ways of DNA 

demethylation.  

The mammalian genome contains a very little amount (2-3%) of 5’-

methylcytosines (Patra et al., 2008). The distribution in the genome of 

CpG dinucleotides is quite asymmetric; often they are grouped in 

genomic regions known as "CpG islands”. In mammalian genomes, CpG 

islands are typically 300-3,000 base pairs in length. The formal definition 

of a CpG island is a region with at least 200 bp, in which the GC percentage 

is greater than 50% and the observed/expected CpG ratio is greater than 

60%. The "p" in CpG notation refers to the phosphodiester bond between the 

cytosine and the guanine. They are in and near approximately 40% of promoters 

of mammalian genes (about 70% in human promoters). In vertebrates CpG 

islands typically occur at or near the transcription start site of genes, 

particularly housekeeping genes. Normally a C (cytosine) base followed 

immediately by a G (guanine) base (a CpG) is rare in vertebrate DNA 

because the cytosines tend to be methylated in such an arrangement. 

Because 5-methylcytosine is chemically very similar to thymidine, CpG sites are 

frequently mutated and become rare in the genome. This methylation 

helps distinguish the newly synthesized DNA strand from the parent 

strand, which aids in the final stages of DNA proofreading after 

duplication. About 80% of the CpG dinucleotides that are not associated 

with CpG islands are heavily methylated; in contrast, in normal cells the 

dinucleotides in CpG islands, especially those associated with gene 

promoters, are usually unmethylated, whether or not the gene is being 

http://en.wikipedia.org/wiki/Base_pair
http://en.wikipedia.org/wiki/Phosphodiester_bond
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/Promoter
http://en.wikipedia.org/wiki/Mammal
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/5-methylcytosine
http://en.wikipedia.org/wiki/Thymidine
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transcribed (Bird, 2002), with the important exceptions of inactivated X-

chromosome and imprinted genes. Aberrant CpG methylation has been 

observed in several tumors (Baylin et al., 2000); in fact, some CpG islands 

are hypermethylated in tumor cells (Yan et al., 2003). 

DNA methylation contributes to the formation of a nuclease resistant 

chromatin, which results in a transcriptional silent state of the genes (Bird 

and Wolff, 1999). The methylation of DNA can also maintain wide non-

coding regions of the genome of higher organisms in a transcriptional 

inert state. So at the variance with a more simple organism such yeast 

and drosophila, in mammals the control of gene expression occurs by 

epigenetic modification too. 

In biology, the term “epigenetics” refers to heritable changes in phenotype 

or gene expression caused by mechanisms other than changes in the 

underlying DNA sequence. Epigenetic changes are preserved when cells 

divide. Most epigenetic changes only occur within the course of one 

individual organism's lifetime, but some epigenetic changes are inherited 

from one generation to the next.  However, there is no change in the 

underlying DNA sequence of the organism, but non-genetic factors cause 

the organism's genes to behave differently. 

The best example of epigenetic changes in eukaryotic biology is the 

process of cellular differentiation. During morphogenesis, totipotent stem cells 

become the different pluripotent cell lines of the embryo which in turn become 

fully differentiated cells, by activating some genes while inhibiting others.  

A gene silenced may be reactivated with an opposite modification, such 

as demethylation (Bhattacharya et al., 1999), while gene silencing 

induced by mutations is irreversible. 

Altered expression of a gene can be caused by aberrant epigenetic 

modifications of the chromatin. There are two major epigenetic gene 

silencing mechanisms that account for a growing number of diseases: 

cytosine DNA methylation and covalent histone modification.  

http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Eukaryotic
http://en.wikipedia.org/wiki/Morphogenesis
http://en.wikipedia.org/wiki/Totipotent
http://en.wikipedia.org/wiki/Stem_cells
http://en.wikipedia.org/wiki/Pluripotent
http://en.wikipedia.org/wiki/Cell_line
http://en.wikipedia.org/wiki/Embryo
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Because the phenotype of a cell or individual depends on how its genes are 

transcribed, heritable transcription states can give rise to epigenetic effects. 

There are several layers of regulation of gene expression and one is through 

the remodeling of chromatin. Chromatin is the complex of DNA and the 

histone proteins with which it associates. Recent data have shown that 

methylation of DNA and deacetylation of histones H3 and H4 leads to 

inactivation/repression, while selective acetylation of histones H1, H3, 

H4, methylation of H3-K4, and DNA demethylation are associated with 

activation of nucleosomes and gene transcription (Patra and Bettuzzi, 

2007). 

Two models have been proposed to explain the silencing effects of 

methylation on transcription. The first model suggests that the 

methylation of cytosine located at the level of promoters interferes with 

the binding of transcriptional factors that require contact with cytosine in 

the major groove of the double helix, while the second model suggests 

that methylated sites are recognised by positive or negative trans-acting 

proteins, which modulate gene expression. Many of these factors work by 

sequestering genes in highly condensed chromatin structures. The 

repeated observation that actively transcribed genes are typically in an 

open configuration suggests that regulation of chromatin structure plays 

a fundamental role in gene expression (Domìnguez-Bendala and McWhir, 

2004).  

The search for proteins with different ability to bind methylated or 

unmethylated DNA led to the discovery of two proteins called MeCP1, a 

protein complex of 450 kDa, and MeCP2, a single polypeptide of 55 kDa 

(Lewis, 1992). In particular, MeCP2 has both a methyl-CpG-binding 

domain (MBD) that a domain of repression of transcription (TRD), which 

enables it to monitor gene expression even at a distance of hundreds of 

bases (Hendrich and Bird, 1998). MeCP2, in turn recruits HDACs and 

histone methyltransferases, resulting in an inactive chromatin structure 

http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Histone
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(Boyes and Bird, 1991). Some methylated DNA binding proteins (MeCP2, 

MBD1, MBD2, MBD3 and MBD4) selectively bind CpG and/or methylated  

CpG sequences, contributing to remodeling of nucleosomes and 

chromatin structure. Under these conditions, chromatin would be closed 

as a consequence of histones deacetylation caused by recruitment of 

histone deacetylases (HDACs). These events precede and inhibit binding 

of transcription factors, including RNA polymerase; under these 

conditions, DNA demethylation could cause a reduction of the repression 

potential of a gene. 

DNA methylation in mammalian cells is regulated by a family of highly 

related DNMTs. The DNA-methyltransferase recognized in humans and 

mice are: 

 cytosine DNA methyltransferase-1(Dnmt1);  

 cytosine DNA methyltransferase-3a (Dnmt3a);  

 cytosine DNA methyltransferase-3b (Dnmt3b).  

(Bestor et al., 1988; Okano et al., 1998). 

Dnmt1 is ubiquitously expressed in proliferating cells and, in vitro, 

prefers hemimethylated DNA over non-methylated DNA as substrate. This 

property of mammalian DNA methyltransferases is in stark contrast with 

the activity of bacterial DNA-methyltransferases, which do not 

discriminate between methylated and unmethylated target sequences. 

Inactivation of Dnmt1 in ES (embryonic stem) cells and mice leads to 

extensive demethylation of all analyzed sequences (Li et al., 1992), but 

doesn’t inhibit the proliferation (Hong et al., 1996). All this suggests the 

role of Dnmt1 as a "maintenance methyltransferase”, responsible for 

copying the parental-strand methylation pattern into the newly 

synthesized strand after each round of replication. 

Dnmt1 is therefore responsible for propagation and maintenance of 

established methylation patterns during embryonal development and cell 

division. Its expression is properly cell cycle-regulated in normal cells 



16 

 

(Leonhardt et al., 1992). Dnmt1 is recruited to replication foci through 

protein interactions involving the Dnmt1-associated protein-binding 

region (Rountree et al., 2000), the proliferating cell nuclear antigen-

binding region (Chuang et al., 1997) and the replication foci targeting 

sequence. Dnmt1 and PCNA accumulate to DNA damage sites induced by 

UVA radiation, where colocalize with -H2AX (Mortusewicz et al., 2005). 

Dnmt1, has a transcriptional repression domain that binds histone 

deacetylase I (HDAC I) (Fuks et al., 2000) and could thus, together with 

chromatin assembly factor 1 (CAF-1) , contribute to the re-establishment 

of chromatin structures after histone modifications (Green et al., 2003). 

Finally, Dnmt1 may also participate in the identification of the template 

strand in several repair pathways as was suggested for MMR repair 

system (Kim et al., 2004). Interestingly, a low level of Dnmt1 

overexpression leads to cell transformation, whereas a high level is toxic 

(Wu et al., 1993).  

Dnmt1 participates in the repression of the transcription of promoters 

containing binding sites for E2F, establishing a close correlation between 

DNA methylation and gene-specific transcriptional repression (Robertson 

et al., 2000). Dnmt1 is not only involved in maintaining the methylation of 

DNA, but also directly into giving in effect a hereditary transcriptional 

silencing on specific genomic regions during replication. The mechanisms 

through which Dnmt1 causes cellular transformation and through which 

inhibition of Dnmt1 reverses cellular transformation are unknown. The 

most obvious mechanism is that aberrant expression of Dnmt1 causes 

methylation and silencing of tumor suppressor genes (McCabe et al., 

2006). Knock down of Dnmt1 by either antisense or siRNA results in 

demethylation and activation of tumor suppressor genes, such as p16 and 

p21 (Robert et al., 2003). These data suggest that increased Dnmt1 levels 

and activity affect the methylation status of genes critical to tumor 

formation ( You et al., 2008). 
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In contrast to the maintenance methyltransferase Dnmt1, the de novo 

methyltransferases Dnmt3a and Dnmt3b are responsible for establishing 

new DNA methylation patterns during development and show a low and 

tissue-specific expression. They are strongly expressed in ES cells, early 

embyos and developing germ cells, but are expressed at low levels in 

differentiated somatic cells. Genetic studies have demonstrated that 

Dnmt3a and Dnmt3b are essential for de novo methylation in ES cells and 

post-implantation embyos, as well as for de novo methylation of 

imprinted genes in the germ cells (Okano et al., 1999). Although Dnmt3a 

and Dnmt3b function primarily as de novo methyltransferases to establish 

methylation patterns, they may also play role in maintaining methylation 

patterns. Similarly to Dnmt1, even Dnmt3b associates with histone 

deacetylase 1 (HDAC1) and RP58, a repressive transcriptional factor that 

binds the DNA found in transcriptional silent heterochromatic sites (Fuks 

et al., 2001). 

However, these classifications are oversimplified as Dnmt1 is also 

known to possess de novo methylation activity (Hermann et al., 2004) and 

is the most abundant methyltransferase in somatic cells (Robertson et al., 

1999). 

 

In summary the mechanisms of gene silencing induced by methylation 

are:  

 Chromatin-independent mechanisms: 

            - interference with transcription factors;  

            - MeCP2 contacts with the transcriptional machinery.  

 Chromatin-dependent mechanisms:  

            - DNMT1 association to histone deacetylase; 

      - MBD recruitment of histone deacetylase;  

          - MBD recruitment of ATP-dependent nucleosome remodelling   

        enzymes.             
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(Ballestar and Esteller, 2002). 

 

Methylation might also suppress homologous recombination: this 

possibility provides an attractive explanation as to how repeat-rich 

genomes can be stable, despite the increased number of opportunities 

for chromosome rearrangements. 

Current models derived from studies in yeast are based on the central 

concept that meiotic recombination is initiated by a enzymatically-

induced DNA double-strand break that has the same probability of 

occurring on one or the other of the two interacting chromatids. If 

methylation serves only to prevent nucleases from cutting methylated 

DNA, the non-methylated chromatid should undergo normal 

recombination initiation, where only one parent is methylated. As a 

result, only a two-fold reduction of crossovers is expected. The 50-fold 

reduction observed suggests instead that methylation acts primarily at 

steps that follow to the initial double-strand break. Methylation should 

also affect somatic recombination, usually initiated by accidental DNA 

double-strand breaks. The possible suppressing effect of methylation on 

somatic recombination appears to be particularly important in mammals. 

Indeed, many cancer cells show chromosomal rearrangements that might 

be caused by homologous recombination between repeats, and cancer 

cells are often hypomethylated (Baylin et al., 1998). 

Understanding the mechanism by which DNA methylation is involved in 

the damage response, how it participates in the remodeling of chromatin 

and induces gene silencing is crucial for the possible development of 

drugs able to make function again the tumor suppressor genes often 

hypermethylated in many tumors. 

A total of two types of DNA methylation can be distinguished. Stable 

methylation is inherited through generations in a male- or female-specific 

fashion and is responsible for both mono- and biallelic imprinting. 
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Metastable methylation is variable and generates different methylation 

patterns among individual cells and cell types. It is modified by 

environment and changes during the lifetime of individual cells.  

Metastable methylation as the consequence of DNA damage repair is 

the subject of this study. 

 
 

 

 
METHYLATION AND TRANSCRIPTION 
 

Although DNA methylation is associated with silencing of several genes, 

such as tumor suppressor genes in cancer, the relationship between DNA 

methylation and gene transcription is complex. 

Numerous studies, mainly in mammals, have revealed a strong 

correlation between the methylated state of DNA and gene silencing. 

Genes with methylated promoters are not expressed. Together these 

studies argue in favor of an inhibitory effect of methylation on 

transcription initiation. Although methylation can directly prevent the 

binding of some transcription factors to promoter sequences, its effect on 

transcription initiation seems to be indirect, depending on proteins that 

have an affinity for methylated CpGs (Nan et al., 1998). 

Experiments with methylated templates microinjected into the nuclei 

of mammalian cells or in Xenopus oocytes indicate that transcriptional 

repression occurs in vivo only after chromatin assembly (Kass et al., 

1993). Further experiments with Xenopus oocytes have shown that 

methylation in the coding region can trigger the time-dependent 

formation of a repressive nucleoprotein structure that spreads to the 

promoter (Kass et al., 1997). 

The discovery that MeCP2 can recruit histone deacetylases, which are 

known to mediate the formation of repressive chromatin states, suggests 
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that, in gene silencing, a primary role of MeCP2 is to contribute to the 

formation of these states. Moreover, treatment with the histone 

deacetylase inhibitor TrichostatinA leads to a restoration of 

transcriptional competence on methylated chromatin templates. This 

indicates that methylation per se does not affect transcription through 

chromatin templates. Although DNA methylation can trigger the 

remodeling of chromatin into repressive states, these states can exist 

independently of methylation. This is obvious in organisms like Drosophila 

or yeasts, which lack methylation but, at the same time, display stable 

epigenetic repressed states. The available data on the formation of 

epigenetic repressive states in vertebrates suggest that chromatin 

changes are sufficient in themselves to ensure a silenced state and that 

methylation is used to reinforce the stability and efficiency of this state. 

Therefore, while methylation can trigger the formation of repressed 

chromatin, it can also be imposed on pre-existing repressed chromatin. 

Transcription of genes by RNA-Polymerase II is a complex process that 

requires a highly coordinated and multistep process utilizing a large 

number of basal and transactivating factors. Furthermore, there exists a 

dynamic association of mRNA processing factors with differently modified 

forms of the polymerase throughout the transcription cycle (Komarnitsky 

et al, 2000). More specifically, the phosphorylation of the C-terminal 

domain in RNA-Polymerase II at serine 5 has been associated with 

transcription initiation. The principles and mechanisms underlying 

transcription are remarkably similar between eukaryotes and prokaryotes 

despite the increased complexity of eukaryotic transcription machinery 

(Hahn, 2004). The typical RNA polymerase II transcription cycle begins 

with the binding of activators upstream of the core promoter (including 

the TATA box and transcription start site). This event leads to the 

recruitment of the adaptor complexes such as SAGA or other mediators, 

which in turn facilitate binding of general transcription factors (GTFs; 
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Thomas and Chiang, 2006). Pol II is positioned at the core promoter by a 

combination of TFIID, TFIIA, and TFIIB to form the preinitiation complex. 

TFIIH then melts 11–15 bp of DNA in order to position the single strand 

template in the Pol II cleft to initiate RNA synthesis. The carboxy-terminal 

domain (CTD) of Pol II is phosphorylated by the TFIIH subunit during the 

first 30 bp of transcription and loses its contacts with GTFs before it 

proceeds onto the elongation stage. Meanwhile, the phosphorylated CTD 

begins to recruit the factors that are important for elongation and mRNA 

processing (Li et al., 2007). 

RNA-Polymerase II interacts with chromatin remodeling enzymes, such 

as BRG1, a member of the SWI/SNF chromatin remodeling complex; with 

HATs and with chromatin-modifying enzymes, such as SET1. MLL1, a 

human equivalent of yeast SET1, is known to associate with highly 

expressed transcripts (Guenther et al., 2005). 

RNA-Polymerase II transmits the change in promoter accessibility 

caused by transcription factor binding, recruitment of HAT and histone 

acetylation down the gene, thus translating early changes in promoter 

activity to more stable changes in chromatin structure (Orphanides and 

Reinberg, 2000). Histone acetylation enables initial recruitment of RNA-

Polymerase II to the methylated promoter. The early progression of RNAP 

II along the gene either facilitates or directly recruits DNA demethylases, 

which demethylate the transcribed region, followed by demethylation of 

the promoter, a prerequisite for strong gene expression. The 

demethylated promoter significantly increases its association with RNAP II 

and the acetylation of histone tails, resulting in high levels of protein 

expression. It is possible, therefore, that cessation of transcription might 

lead to remethylation of the transcribed gene. Transcription and 

epigenetic programming due to demethylation might act coordinately in a 

positive feedback loop to maintain a gene in an active state (D’Alessio et 

al., 2007). 
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To study the effects of methylation in the coding sequence of a gene on 

transcription, we used a potent inhibitor of RNA polymerase II called 

alpha-amanitin, a cyclic nonribosomal peptide of eight amino acids. It is possibly the 

most deadly of all the amatoxins, toxins found in several members of the Amanita 

genus of mushrooms, one being the death cap (Amanita phalloides) as well as the 

destroying angel, a complex of similar species, principally A. virosa and A. 

Bisporiga. α-amanitin can also be used to determine which types of RNA 

polymerase are present, depending on their relative sensitivity to this 

drug. RNA polymerase I is insensitive, RNA pol II is highly sensitive, and 

RNA pol III is slightly sensitive. 

The active principle of the ‘‘death cap’’ mushroom, α-amanitin, blocks 

both transcription initiation and elongation. The cocrystal structure 

suggests that α-amanitin interferes with a protein conformational change 

underlying the transcription mechanism. The α-amanitin binding site is 

beneath a ‘‘bridge helix’’ extending across the cleft between the two 

largest RNA-Polymerase II subunits, Rpb1 and Rpb2, in a ‘‘funnel’’-shaped 

cavity in the pol II structure. Bridge helix residues directly contact the 

DNA base paired with the first base in the RNA strand. Most pol II 

mutations affecting α-amanitin inhibition map to this site. After the 

addition of α-amanitin to a transcribing pol II complex, a phosphodiester 

bond can still be formed, but the rate of translocation of pol II on DNA is, 

however, reduced from several thousand to only a few nucleotides per 

minute. It may be explained by a constraint on bridge helix movement, 

and this movement is required for DNA translocation. Evidences coming 

from biochemical studies of transcription, from structure-activity 

relationship studies and from cocrystal structure determination suggest 

that binding of α-amanitin to pol II permits nucleotide entry to the active 

site and RNA synthesis but prevents the translocation of DNA and RNA 

required to empty the site for the next round of synthesis, thus inhibiting 

the further translocation (Bushnell et al., 2002). 

http://en.wikipedia.org/wiki/Cyclic_compound
http://en.wikipedia.org/wiki/Nonribosomal_peptide
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Amatoxin
http://en.wikipedia.org/wiki/Toxin
http://en.wikipedia.org/wiki/Amanita
http://en.wikipedia.org/wiki/Mushroom
http://en.wikipedia.org/wiki/Amanita_phalloides
http://en.wikipedia.org/wiki/Destroying_angel
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AIM:  
 
MECHANISM OF DNA METHYLATION INDUCED BY 
HOMOLOGOUS REPAIR  
 

The ultimate goal of this study is to identify a mechanistic relationship 

between DNA methylation and homologous repair. To this end we will 

analyze the contribution of transcription to homologous repair and DNA 

methylation. 

We have used a system pioneered by M. Jasin (Jasin et al.,1996, Pierce 

et al., 1999), in which recombination between partial duplications is 

initiated by a specific DSB in one copy. Recombination products can be 

detected by direct analysis of the DNA flanking the DSB or by the 

appearance of the product of the recombined gene. We have found that 

gene conversion profoundly modifies the methylation pattern of the 

repaired DNA and that this methylation silences the recombined gene. 

Dnmt1 is specifically associated with the chromatin of homologous 

repaired green fluorescent protein (GFP). We have shown that DNA 

methylation, induced by HR, marks the repaired DNA segments and 
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protects cells against unregulated gene expression following DNA 

damage. 

Our data  suggest that methylation  induced by damage is strand-

specific, because we invariantly find 2 populations arising from 

recombination, with different and discrete methylation profiles. Since 

RNA-Polymerase II transmits the change in promoter accessibility and 

recruits histone de-acetylases, thus translating early changes in promoter 

activity to more stable changes in chromatin structure (Orphanides and 

Reinberg, 2000), we have specifically analyzed if transcription is essential 

for the establishment of methylation–induced repair. 

We show that active transcription is essential for recombination, but 

also dictates the methylation profiles. 

RESULTS 

 
DNA METHYLATION AND HOMOLOGOUS RECOMBINATION 
 

DNA damage induced by oxidative stress or by constitutive expression 

of oncogenes is linked to gene silencing (El-Osta, 2004). To explore the 

molecular mechanism(s) linking DNA damage and gene silencing and to 

find a possible mechanistic relation, we used a new reporter system, by 

which we can monitor the homologous recombination repair of the 

double-strand breaks. The system is based on the use of a plasmid, called 

DR-GFP, modified so to express the green fluorescent protein (GFP) only 

after an event of recombination by gene conversion. The recombination 

repairs the cutting in a unique chromosomal site due to a site-specific 

DSB induced after the expression of a rare endonuclease, the enzyme I-

SceI. 

We can monitor:  

1. the occurrence of recombination at this site ; 

2. the expression profile of recombined and non-recombined 
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   units; 

3. the structure and the epigenetic modifications of the locus.  

 

Furthermore, this system allows us to monitor how the frequency of 

recombination or the expression of recombinant units change following 

the treatment with drugs that affect DNA methylation or chromatin 

configuration. 

 

 

 

 

 

 

I. Recombination assay 
 

Our recombination assay relies on the two inactivated tandem 

repeated (DR)-GFP plasmid originally developed by M. Jasin at Rockfeller 

University in New York (Pierce et al., 1999), which contains two mutated 

GFP genes oriented as direct repeats and separated by a drug selection 

marker, the puromycin N-acetyltransferase gene (Figure 1). An upstream 

cytomegalovirus (CMV) enhancer fused to the chicken b-actin promoter 

provides a strong and insulated transcriptional unit. The upstream (5’) 

GFP gene (cassette I) carries a recognition site for I-SceI, a rare-cutting 

endonuclease, encoded by a mitochondrial intron of Saccharomyces 

cerevisiae. This enzyme allows the induction of a site-specific DSB in the 

DR-GFP plasmid, as it recognizes a sequence of 18 bp absent in several 

eukaryotic genomes tested (Jasin, 1996). The I-SceI recognition sequence 

was incorporated into a BcgI restriction site, naturally present in the 

functional GFP, by substituting 11 bp of the wild-type gene. These 

substituted base pairs supply two inframe stop codons that terminate 
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translation, thereby inactivating cassette I. The downstream (3’) GFP 

(cassette II) is inactivated by upstream and downstream truncations, 

leaving only ~502 bp of GFP not-functional product. 

Two homologous recombination products are possible with DR–GFP, a 

short tract gene conversion (STGC) product or a deletion product. The 

STGC product results from a noncross-over gene conversion within the 

limited amount of homology (~812 bp), whereby the 3’ GFP sequence 

acts as a donor of wild-type sequence information to the broken I-SceI 

GFP gene. The deletion product could result from a conservative 

recombination event with an associated cross-over, a long tract gene 

conversion, or from the nonconservative single-strand annealing pathway 

in which the sequence between the two GFP repeats is degraded. 

Whereas the STGC event restores an intact GFP gene, a deletional event 

retains only the 5’ portion of the GFP gene that would encode a carboxy-

terminal truncation. Only events that restore an intact GFP gene would be 

scored with the DR–GFP substrate (Pierce et al., 1999). 
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HeLa cells (human epithelial cells from a cervical carcinoma 

transformed by human papillomavirus 18 [HPV18]) were stably transfected with the 

DR-GFP plasmid and selected in the presence of puromycin. Puromycin-

resistant pools of cells carrying DR-GFP at various loci were then 

transiently transfected with a vector expressing I-SceI (Richardson et al., 

1998). The resultant DSB induced homologous recombination. GFP+ cells, 

derived from I-SceI transfected cell cultures, arise from homology-

directed repair of the DSB at the I-SceI site.  

Fluorescence-activated cell sorter (FACS) analysis was used to reveal 

the percentage of cells expressing GFP (Figure 2A.1). The structure of the 

GFP locus was determined by PCR analysis and Southern blot. We used a 

3’ end primer (black) present only in cassette I but not in cassette II. We 

http://www.microbiologybytes.com/virology/Papillomaviruses.html
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distinguished between the recombinant and non-recombinant units by 

using two 5’ primers, the UnRec primer (red), which amplifies only non-

recombinant units, and  the Rec primer (green), which amplifies only 

recombined units (Figure 2A.2). Figure 2 shows GFP+ cells 48h after I-SceI 

transfection. DNA and RNA were extracted and subjected to PCR or RT-

PCR, normalized for transfection efficiency. As expected, the Rec primer 

amplifies a  436-bp fragment 48 hours after I-SceI transfection (Figure 

2A.3). This PCR product indicates a wild-type GFP gene generated by gene 

conversion at the I-SceI site. In contrast to the UnRec PCR product 

(438bp), the Rec product was detected only after exposure of cells to 

ISceI.  
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We then measured the expression of GFP mRNA by reverse 

transcription (RT)-PCR. Recombined GFP mRNA was detected only in cells 

transfected with I-SceI (Figure 2B). To verify the presence of bona fide 

recombined GFP mRNA, we cleaved the double-stranded cDNA prior to 

PCR with BcgI enzyme (Figure 2B, quality check), which specifically cuts 

the recombined cassette, in which the I-SceI site was substituted with the 

BcgI after the DSB repair, ablating amplification with the rec primer. Note 

that the 3’ end primer cannot support the amplification of the rec primer 
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unless I-SceI site is substituted with BcgI sequence. BcgI-sensitive PCR is a 

quality check of PCR recombined products. 
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II. Methylation reduces GFP expression but not recombination 
Frequency 
  

To study the epigenetic modifications of the locus before or after 

homologous-directed repair or DNA double strand break, we used HeLa 

cells stably transfected with the DR-GFP plasmid. DSBs are efficient 

substrates of homologous recombination. The low yield of GFP+ cells after 

DSB generation raised the possibility that some wild-type GFP 

recombinants were silenced, possibly by methylation. Accordingly, we 

asked if inhibiting methylation increased the yield of cells that expressed 

GFP. HeLa mass culture was transfected with I-SceI expression vector and, 

after two days, the pool was split and treated with 5µM 5-aza-2’-

deoxycytidine (5-AzadC) for 48 hours to block or reverse DNA methylation 

(Juttermann et al., 1994). FACS analysis showed a significant increase of 

GFP+ cells after the 5-AzadC treatment (Figure 3A). In the GFP+ 

population, only low expressor cells were induced by 5-AzadC.  

5-AzadC did not enhance the yield of GFP+ cells by stimulating 

homologous recombination. PCR analysis, performed as described in 

Figure 2A.3, showed clearly that treatment with 5-AzadC after I-SceI 

exposure did not increase the number of GFP recombinant genes (Figure 

3A). This experiment was repeated with DNA and RNA derived from 

independent  transfections with identical results and on isolated clones. 

The effects of 5-AzadC on the intensity and on the distribution of GFP 

fluorescence can be appreciated in the dot-plot shown in Figure 3 

(bottom panel).  
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We considered the possibility that inhibition of recombinant GFP 

expression was not induced by homology-directed repair, but resulted 

instead from subsequent transgene silencing, often observed in cultured 

cells (Pikaart et al., 1998). Accordingly, we monitored the expression of a 

wild-type GFP transgene driven by a CMV promoter (wild-type GFP) in 

cells transfected with the I-SceI vector and treated with 5-AzadC, as 

described in Figure 3. Figure 4A shows that in contrast to the expression 

of recombinant GFP, which is bimodal in distribution, wild-type GFP 

expression is unimodal. Furthermore, unlike recombinant GFP, wild-type 

GFP expression was not enhanced by 5-AzadC.  
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To monitor the timing of silencing of recombinant GFP genes and to 

visualize the effect(s) of 5-AzadC, we separated high- (HR-H) and low-

expressing (HR-L) cells, as shown in Figure 4B. The separated cells were 

grown for the times indicated in figures, and parallel cultures were 

treated with 5-AzadC for 24 h. GFP expression was monitored by FACS. 

Figure 4C shows that: (1) only the HR-L fraction was silenced with time; 

(2) silencing was rapid and reached a plateau two weeks after I-SceI 

transfection; (3) 5-AzadC stimulated GFP expression in the HR-L 

population at all time points tested but did not affect expression of the 

HR-H population. Wild-type GFP expression declined only slightly during 

the two-week period tested.  
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III:Effect of the integration site on the expression of the 
recombinant gene. Analysis of individual DR-GFP clones 
 

The data shown above suggest that recombination products induced by 

I-SceI cleavage are silenced by methylation. These results were obtained 

from pools of cells carrying DR-GFP integrated randomly in the genome 

and did not distinguish among individual clones. For example, integration 

of the DR-GFP at a euchromatic site may yield unmethylated, active 

recombinant units, whereas a heterochromatic location may favour 

methylation and silencing. We therefore asked if the integration locus 

influenced the expression of GFP recombination products, and by 

inference, their methylation status.  

We isolated several HeLa DR-GFP clones and controlled the insertions 

by copy number. Figures 5A and 5B shows the PCR analysis and the 

relative quantification by RT-PCR of DNA extracted from clone 2 and from 

clone 3. The estimated copy number was 1-3 for clone 2 and 3-4 for clone 

3.  
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Hela DR-GFP  clones were transfected with I-SceI. Figure 6A shows the 

fluorescent mean intensity as dot plots in red and the fraction of GFP-

expressing cells in three individual clones. Both the frequency (ordinate) 

and the fluorescence intensity (abscissa) segregated in discrete peaks. 

The GFP+ clones were high (clone1), middle (clone 2) and low (clone 3) 

expressors, in terms of GFP fluorescence intensity, normalized to the 

equal number of GFP positive cells. 

We repeatedly transfected the individual clones with I-SceI and 

determined GFP fluorescence intensity after normalization for 

transfection efficiency. The results, shown in Figure 6B, indicate 

differences in GFP expression from experiment to experiment. Repeated 

transfection experiments indicated that the range of variability of GFP 

expression was limited and that each clone was grossly characterized by 

the high or low range of GFP expression profile. This effect was 

independent of I-SceI and was clone specific, probably due to the specific 

integration site. In all cases, I-SceI induced GFP expression and these GFP 

variations are I-SceI-dependent in the range of variability of the 

integration site.  
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We showed above that inhibition of methylation with 5-AzadC 

significantly increased the number of GFP+ cells in a pool of cells carrying 

DR-GFP at different loci (Figures 3A and 4C). We now asked if 5-AzadC 

affected GFP expression in an individual clone. FACS analysis of clone 3 

shows that GFP+ recombinants appear only after I-SceI exposure (Figure 

7A and 7B). Transient treatment with 5µM 5-AzadC prior to DSB 

formation did not increase the number of GFP positive cells (Figure 7B 

and 7C). As was the case with the pooled DR-GFP transfectants, 5-AzadC 

added after I-SceI transfection significantly enhanced the yield of cells 

expressing GFP at high levels (Figure 7D).  

The same experiments were performed with clones 1 and 2 with similar 

results (data not shown). Note that in clones with a single integration site, 

5-AzadC stimulates expression levels to the level of the HR-H average. 

This effect is not evident in the pool of DR-GFP clones (Figure 4C). These 

results  in single clones agree with those obtained from the pool of clones 

and indicate that methylation following homologous repair of DSBs 

suppresses expression of a fraction of recombinant GFP genes. 

Additionally, the bimodal GFP expression distribution characteristic of the 

mass culture was also seen in clones carrying DR-GFP inserted at a single 

chromosomal location. 
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IV.DNA Methyltransferase I inhibits the expression of 
recombinant GFP genes 
 

Stimulation of recombinant GFP gene expression by 5-AzadC suggested 

that a significant fraction of recombinant genes was silenced by 

methylation. We confirmed this conclusion in another system in which 

global methylation was profoundly impaired by inactivation of DNA 

methyltransferase I (Dnmt1). Dnmt1 is responsible for methylation 

maintenance in the mouse genome (Li et al., 1992).  

We transfected a Dnmt1 -/- ES cell line (Hong et al., 1996)  with DR-GFP 

by electroporation to ensure single integration sites. The pool of 

puromycin-resistant clones was then transfected with I-SceI and analyzed 

as described above for HeLa cells. Our results indicate that the frequency 

of HR was the same in wild-type and Dnmt1 -/-  ES cells, as shown by PCR 

and quantitative (q)PCR (Figure 8A). 

FACS analysis indicates that the percentage of Dnmt1 -/- cells that 

expressed GFP at elevated levels was higher than wild-type cells (Figure 

8B and 8C). Also, similarly to HeLa cells, we  found that the low-expressor 

clones were more represented in mutant cells relative to the wild-type, 

accounting for the difference in the rate of GFP expression between the 

wild type and Dnmt1 -/- cells. Finally, treatment with 5-AzadC increased 

the fraction of wild-type ES high expressors but did not amplify the 

expression of GFP in Dnmt1 -/- cells (Figure 8B and 8C). These data 

suggest that Dnmt1-dependent methylation silences GFP expression in 

recombinant clones. 
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V.CpG methylation before and after repair: Analysis of 
individual molecules 
 

The data shown above formally prove that methylation following I-SceI 

expression modifies the expression profile of recombined units. The type 

of analysis done so far heavily relies on the expression of GFP in 

recombinant clones. Re-arranged, cleaved and repaired units, which 

reconstitute I-SceI site, cannot be analyzed by our assay, because these 

units are not functional.  

To get a direct picture of the epigenetic modifications of the I-SceI locus 

before and after the I-SceI cleavage, we isolated single molecules from 

the mass culture of ES cells and analyzed directly the methylation profile 

by bisulfite treatment of genomic DNA before PCR. Bisulfite converts 

cytosines,  but not 5-methylcytosines to thymines. Cytosines detected by 

direct sequence analysis, therefore, represent methylated residues. 

Genomic DNA, extracted from ES cells wild type before and after 

several I-SceI transfections, was treated with bisulfite and amplified with 

three different pairs of primers (Materials and Methods). PCR products 

obtained were cloned and sequenced. Figure 9A shows the DNA (+ 

strand) methylation patterns of all classes found in the mass population 

of ES cells: (1) Before I-SceI cleavage (uncut); (2) recombinant GFP+ 

molecules (HR) isolated by cell sorting for HR-H or HR-L GFP expression; 

(3) molecules containing a rearranged I-SceI site generated by NHEJ. The 

methylation status of the HR molecules corresponded with the GFP 

expression levels of the sorted cells. Relative to the uncut parent, 

molecules from HR-L cells were heavily methylated, mostly in a segment 

of approximately 300bp downstream to the DSB. Many of these modified 

CpGs represent de novo methylation sites. In contrast, molecules from 

HR-H cells were significantly undermethylated, both upstream and 

downstream to the DSB (Figure 9A). The ratio of the two classes was 1:1. 
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Note that HR repair in this system is a short-tract strand-conversion 

event, since cassette II is deleted at both upstream and downstream 

ends. We suggest that the length of the segment showing an altered 

methylation pattern in the recombinants is limited by the extent of 

homology between cassettes I and II (~400 bp downstream to the I-

SceI/BcgI site).  
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The results illustrated in Figure 8B suggested that Dnmt1 was 

responsible for methylation at the DSB. We therefore examined 

molecules derived from Dnmt1 -/-  ES cells before and after exposure to I-

SceI. Note that the Dnmt1 -/- mutation increased the expression level of 

GFP+ recombinants but not the recombination rate (Figure 8A).  

As shown in Figure 9B, only undermethylated recombinant molecules 

were generated in Dnmt1 -/-  ES cells. We found some methylcytosines 

on the 3’-end of the I-SceI site in mutant cells, suggesting that Dnmt1 can 

be substituted in the maintenance of methylation and that repair-coupled 

methylation can be carried out by Dnmt3a and Dnmt3b. This finding 

supports our opinion that methylation of the recombined molecules, 

shown in Figure 9A, was catalyzed by Dnmt1. 
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We then asked if the methylation changes following recombination in 

ES cells could be seen in the human HeLa cell line. Figure 9C and Figure 

9D show the results of our analysis after the bisulfite treatment of 

genomic DNA extracted from the mass culture and from three individual 

clones as seen in ES cells.  

Figure 9C shows that untreated Hela cell DNA was relatively 

undermethylated compared to ES cell DNA. Nevertheless, the fraction of 

hypermethylated HR-L cells as well as the frequency, profile, and length 

of the segment containing de novo methylated CpGs in HeLa cells was 

similar to that observed in mouse ES cells.  

Recombinant molecules derived from individual clones exposed to I-

SceI were likewise hypomethylated and hypermethylated in a 1:1 ratio, 

similar to those isolated from the pool of clones (clones 1, 2, and 3 in 

Figure 9D). These data shown are for the (+) strand, and were confirmed 

for the (-) DNA strand (data not shown).  
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The recombination event that generates the appearance of GFP+ cells is 

a gene conversion phenomenon that affects a small region; it is caused by 

a DSB and copies the BcgI site of the cassette II into the I-SceI site of the 

cassette I. Later, we asked whether the repair process altered the 

methylation pattern of the cassette II and if this methylation was 

transferred, at least in some cases, to the gene recombined.  

Figure 9E shows the methylated CpG dinucleotides of cassette II from 

ES and HeLa cells. In ES cells, this segment is more extensively and heavily 

methylated than the cassette I, and this profile does not change after 

exposure to I-SceI. On the other hand, the cassette II of Hela cells is 

ipomethylated than the cassette I, both in the control cells and in those 

transfected with I-SceI. It should be noted that the cassette II was also 

methylated in GFP+ cells sorted by FACS. These data clearly show that 

changes in methylation profile of the cassette I after the DSB is not 

dictated by the methylation state of cassette II. Conversely, 

recombination with cassette I does not influence methylation pattern of 

cassette II. 
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To get a more defined picture of the distribution of methylated CpGs in 

the area surrounding the I-SceI site in recombinant and parental GFP 

molecules, we divided the GFP segment in two regions centered on the I-

SceI site: (1) a segment spanning -500 to -51 and (2) a segment at -50 to 

+420 relative to I-SceI site, respectively.  
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Figure 10 shows the distribution of methylated CpGs, grouped in three 

classes containing 0%–1%, 1.1%–6.5%, and 6.6%–50% for ES cells, and 

0%–1%, 1.1%–3%, and 3.1%–25 % for HeLa cells, of methylated sites in 

these segments before or after HR. The distribution is Gaussian before I-

SceI exposure in both GFP segments. After DSB and repair, only the 

segment located at +50 to +420, shows a bimodal distribution (p < 0.001) 

of methylated CpGs in Hela and ES cells. This pattern strikingly recalls the 

bimodal distribution in the pattern of GFP expression found following 

DSB-induced repair (Figures 4 and 7). 
 

 



52 

 

 
 

The data shown in Figures 6 and 7 summarize the statistical analysis of 

GFP DNA methylation before and after recombination. However, these 

data do not reveal the impact of recombination on the methylation 

pattern of individual GFP molecules.  

To visualize changes in individual molecules, we performed ClustalW 

analysis on the complete collection of GFP molecules. The difference in 

DNA sequence between recombinant and nonrecombinant molecules 

may obscure changes due to methylation. To eliminate this problem and 

to better assess the impact of recombination on de novo methylation, we 

converted the I-SceI site into a BcgI restriction site in all nonrecombinant 
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sequences and repeated the ClustalW analysis on the total pool of 

sequences. The molecules now are identical in sequence and differ only in 

methylated CpGs.  

ClustalW analysis of these molecules shows the methylation profiles 

and the degree of similarity among different molecules. Sequences 

containing the same methylated CpGs are clustered in branches of the 

dendrogram. Recombination profoundly altered the methylation pattern 

of GFP molecules in both wild type and Dnmt1 -/- ES cells. Before 

recombination the methylation patterns of ES cells and Dnmt1 -/- cells 

are essentially identical. After recombination, two methylated 

populations appear in ES cells, whereas Dnmt1 -/- cells yield only 

undermethylated products. In Hela cells, there are more classes, but the 

segregation is the same as found in ES cells (HR-L and HR-H).  

The simplest interpretation of these data is that methylation is largely 
random in the culture but that there are preferred sites. Thus pre-existing 
patterns (before DSB-recombination) can be identified. After 
recombination, the old pattern is erased in half of the molecules, the 
high-expressors, or significantly modified in the other half, the low-
expressors (see Cuozzo et al., 2007). Dnmt1 is essential for this 
modification. 

 
VI:Dnmt1 Is Associated with Recombinant Chromatin 
 

The data show so far that DSB repair by HR with consequent gene 

conversion is associated with significant methylation pattern changes in 

the area of the DSB. Furthermore, this methylation requires the activity of 

Dnmt1.  

To find the molecular link between recombination and DNA 

methylation, we asked if Dnmt1 was associated with GFP DNA in the 

chromatin of cells exposed to I-SceI. Transfected Hela cells were treated 

with 1µM 5-AzadC and fragmented chromatin was precipitated with 
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specific antibodies to Dnmt1. Under these conditions, incorporated 5-

AzadC ‘‘freezes’’ Dnmt1 on the DNA and amplifies the Dnmt1 signal 

(Juttermann et al., 1994; Schermelleh et al., 2005).  

Figure 11A shows that Dnmt1 is specifically recruited to chromatin 

regions carrying recombined GFP DNA. It should be noted that 

nonrecombinant sequences are present in large excess relative to 

recombined GFP DNA in input chromatin DNA. The specificity of the assay 

is shown by the presence of Dnmt1 on chromatin of DNA segments 

heavily methylated in Hela cells (the MGMT and p16 genes) (Figure 11B), 

by the absence of the Dnmt1 signal with nonspecific antibodies (Figure 

11B) and by the absence of signal with actin primers (Figure 11A, lower 

panel). 
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HOMOLOGOUS RECOMBINATION AND TRANSCRIPTION 
 
I:Transcription of GFP gene is influenced by DNA methylation 
induced by homologous repair 
 

The data shown above  indicate that following homologous–directed 

repair of the GFP cassette 2 types of molecules are generated: 1. 

hypomethylated and 2. hypermethylated in  GFP segment repaired 

containing the I-SceI site. In fact that methylation of a short segment of 

DNA flanking the DSB (Figure 9) is sufficient to silence GFP expression in a 

significant fraction of cells (HR-L) (Figures 4C and 9). Since the CMV 

promoter and chicken β-actin enhancer that drive GFP expression are 

located ~1,000 bp from the BcgI/I-SceI site and are insulated from 

surrounding genomic regions, the link between methylation and silencing 

is not readily evident.  

To explore this question, we asked if methylation inhibited 

transcription initiation and/or elongation. We performed RT-PCR analysis 

of RNA with primers derived from the upstream intron (close to the 

transcription initiation site), from the beginning of the GFP gene, and 

from the I-SceI (control cells) or BcgI (HR-L and HR-H cells) sites (Figure 

12A). Since PCR reactions performed with different primers cannot be 

directly compared, we measured amplification of the PCR signal in a 

particular region of the gene after 5-AzadC treatment. This value indicates 

how methylation affects transcription near the promoter and at 

downstream regions. The results of Figure 12 suggest that RNA derived 

from both upstream and downstream regions of the GFP gene was 

significantly reduced by methylation in the HR-L population. Methylation 

did not affect RNA synthesis in HR-H or in nonrecombinant (ctrl) clones. 

Finally, 5-AzadC stimulation was greater in the region of the BcgI site than 

upstream (Figure 12A and 12B). It should be noted that the difference 
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between 5’ and 3’ end transcript levels may be artificially amplified by the 

fact that only the 5’ end primers are selective for recombinant RNA, as 

seen in Figure 1. Since sorted cells may contain copies of unrecombined 

DR-GFP, these units can generate nonrecombinant transcripts, which are 

not stimulated by 5-AzadC (see ctrl). As a result, the differential levels (- 

or + 5-AzadC) of 5’ end may appear lower than the 3’ end transcripts. 

Despite this limitation, we find a significant and reproducible increase of 

5’ end transcript by 5-AzadC (p < 0.01).  

Our data indicate that CMV promoter activity is inhibited by 

methylation at the DSB and suggest further that elongation may also be 

hindered by methylation of the repaired segment. We propose that this 

inhibition is triggered by changes in the chromatin domain that includes 

the repaired DSB. Nucleosome structure is known to affect both 

transcription initiation and elongation (Li et al., 2007).  
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II.Homologous recombination and methylation induced by 

homologous repair are dependent on transcription 

 

The data shown above  indicate that  following or during the 

homologous repair hypermethylated ad hypomthylated GFP molecules 

accumulate in 1: 1 ratio. We speculate that during recombination only 

one strand will be methylated by DNMT1. This intermediate, with half 

methylated strand, is very difficult to isolate, since it is transient and 

diluted in a vast majority of unrecombined or NHEJ-repaired GFP DNA.  

To address the nature of methylation induced by repair and to find out 

a possibile mechanism explaining the accumulation of methylated and 

unmethylated molecules, we treated for a short time, after I-SceI 

transfection, the cells with low dose of α-amanitin. α-amanitin is a 

selective RNA polymerase II inhibitor, which binds RNA polymerase II and 

arrests transcription by stalling the RNA polymerase complex on the DNA. 

We treated the HeLa cells 24 h after I-SceI transfection for 6-24 and 48 

h with 2,5 μM α-amanitin. Later the cells were washed and cultured for 

additional 5 days, before analysis. Note that under these conditions we 

monitor only permanent effects induced by the short term treatment 

with the drug.  

We first determined the rate of recombination by running PCR 

reactions with specific primers for the recombinant (Rec) and for the 

unrecombinant (UnRec) on total DNA extracted from the pool  of clones 

or isolated clones before or after I-SceI transfection. The specificity of the 

reaction is shown by the selective amplification of recombinant primers 

only after I-SceI transfection (Figure 13A). α-amanitin treatment reduced 

the rate of recombination by 30% compared to the control (Figure 13B). 
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Fluorescence analysis revealed a significant change in the fluorescence 

intensity and in the number of GFP positive cells. Figure 14A 

shows a representative experiment where low and high GFP expressor 

are shown before or after α-amanitin treatment. The intensity of 

fluorescence of the high expressors was increased by α-amanitin 

treatment, whereas the low expressors were reduced in number by the 

same treatment. Statistical analysis presented in the middle and lower 

panels (Figure 14B-C) shows that in all the experiments performed the 

high expressors displayed increased GFP signal. These effects were visible 

in 6 and 24h treated cells. The reduction of GFP positive cells was evident 

in the lower expressor fraction and most likely was dependent on the 

reduction of the recombination frequency. 
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To directly visualize the effects of α-amanitin treatment on the 

methylation status of GFP DNA we carried out bisulfite analysis. The data 

shown in Figure 15 indicate that the GFP DNA molecules from the cells 

subjected to α-amanitin treatment were both hypermethylated and 

hypomethylated relative to untreated controls. These data suggest that 

slowing down recombination enhances DNMT-1 methylation on a fraction 

of GFP molecules. Under these conditions the methylation distribution 

profile of GFP cells in high (hypomethylated) and low (hypermethylated) 

cells becomes markedly accentuated.  
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DISCUSSION 

DOUBLE STRAND BREAK AND DNA METHYLATION 

In this work we demonstrate that there is a causal relation between 

double-strand breaks (DBS), homologous recombination, DNA 

methylation and gene silencing. We used a fluorescence-based 

recombination assay to monitor homology-directed repair following the 

introduction of a site-specific DSB after the expression of the I-SceI 

plasmid. The recombination system was developed by Jasin et al., in 

which direct repeats of defective GFP genes recombine to yield a wild-

type product by gene conversion.  

We found both hypermethylated and hypomethylated recombinant 

DNA products, in about a 1:1 ratio. The hypermethylated recombinants 

expressed low levels of GFP compared to the hypomethylated 

recombinants. Silencing of these GFP genes was due to DNA methylation. 

Treatment with the demethylating agent, 5-AzadC, resulted in a 

significant increase of the number and rate of GFP expression, without 

changes in rate recombination. In 2 independent cell lines, HeLa and ES 

cells, methylation did not appear to grossly influence the frequency of 

recombination, assayed as the fraction of recombinant over non-

recombinant DNA fragments. 5-AzadC treatment after exposure to I-SceI 

induced a large scale DNA demethylation and reactivation of global gene 

expression (Juttermann et al., 1994).  

In this study, the inhibition of DNA methylation selectively stimulated 

the expression of recombinant GFP relative to non-recombinant GFP 

gene. Demethylation prior to DSB generation was ineffective. DNA 

methylation and histone deacetylation act as a layer for epigenetic gene 

silencing and, in this circumstance, DNA methylation appears to be the 

dominant layer. We demonstrate also that the pre-I-SceI status of the 

integration site can be dissociated from the effects following I-SceI 
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cleavage and recombination, since treatment with the demethylating 

drug induced GFP expression only if administered after I-SceI transfection, 

i.e., after DSB.  

We translated this notion in another system, where the major DNA 

methyltransferase activity had been knocked down (ES mouse Dnmt1 -/-). 

These cells, unable to methylate as wild type, were unable to silence 

recombinant GFP as the wild type. Murine ES cells lacking Dnmt1 -/- 

yielded more clones expressing high levels of GFP than wild-type controls. 

Also, treatment with 5-AzadC stimulated GFP expression in the wild type 

ES much better than in Dnmt1 -/-.  

Silencing of GFP homologous recombinants differed from transgene 

silencing observed by Pikaart et al., 1998.  Expression of a transfected 

wild-type GFP was only slightly reduced over a three-week period, 

whereas HR-L clones were silenced during the two weeks following 

exposure to I-SceI (Figure 4C). Likewise, we saw no silencing of uncleaved 

or wild-type GFP genes, since their expression was not stimulated by 5-

AzadC (Figures 4 and 12).  

Single clones did not display the same methylation pattern following I-

SceI exposure. Since the I-SceI vector persisted for about one week, cells 

were subjected to repeated cycles of cleavage and repair. The resultant 

methylation pattern varied from cell to cell, although preferred 

modification sites were found (Figure 9).  

The methylation patterns generated by gene conversion are not seen in 

the parental DNA. The analysis of methylated cytosines revealed that the 

striking difference between all types of GFP DNA molecules (uncleaved, 

cleaved and re-sealed reconstituting I-SceI site, recombinant, re-

arranged) was the exposure to I-SceI. We found that DNA molecules 

derived from cells expressing I-SceI were methylated at specific locations 

around the I-SceI site, in the 200 bases flanking the site. Recombinant 

molecules contained the same methylcytosines found in molecules 
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exposed to I-SceI, indicating that the DSB, rather than recombination, is 

indeed linked to methylation. The methylation pattern in recombinant 

molecules varied considerably from high to no methylation at all, 

depending on the type and extension of recombination. Molecules 

unexposed to I-SceI had an average methylation density of 1%–3% (Figure 

10). About half of the converted molecules were hypermethylated (7%–

50% of methylated sites). The remainder were hypomethylated (0%–1%). 

To illustrate the two aspects of DNA methylation, the data of our study 

on the methylation status of GFP molecules are presented either as 

percent of methylated CpGs in different GFP segments (Figure 10) or as 

profiles of methylation, showing which specific CpGs are methylated and 

the degree of similarity among different molecules (Figure 9). The analysis 

of single molecules is highly informative, allowing us to identify common 

and unique methylation profiles between recombinant and 

nonrecombinant molecules. HR, which occurs stochastically on the 

nonrecombinant GFP molecules, erases or induces methylation at the 

DSB and generates the bimodal methylation patterns shown in Figure 10. 

Hypomethylated and hypermethylated molecules in ~1:1 ratio were 

also found in recombinants derived from single clones, indicating that 

hypomethylated or hypermethylated GFP sequences did not segregate in 

individual clones. Thus, both HR-L and HR-H recombinants are generated 

in both mass cultures or in clones containing a single integration site 

(Figures 4 and 7). Note that the GFP expression levels of wildtype GFP 

transfectants show a Gaussian distribution, totally unlike the bimodal 

distribution observed after recombination. This finding implies that DNA 

repair generates one hypermethylated and one hypomethylated strand 

and replication yields double-stranded molecules that retain the 

methylation pattern of the precursor strand (see Cuozzo et al., 2007). 

GFP+ cells are generated from short-tract gene conversion of the I-SceI 

site on GFP cassette I to the BcgI site on GFP cassette II. Cassette II, which 
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provides the template strand, has only 395 bp of homology downstream 

to the I-SceI site of cassette I. This may explain why the altered 

methylation pattern in the recombinant molecules is limited to a small 

region flanking the DSB. The methylation status of cassette II did not 

dictate the modification of the recombined GFP gene. Cassette II was 

hypermethylated in ES and hypomethylated in Hela cells, whereas the 

methylation patterns of the repaired DNA of cassette I were similar in 

both cell types. Furthermore, HR of cassette I did not change the 

methylation pattern of cassette II (Figure 9). 

 
 

REPAIR AND METHYLATION 
 

DNA cleaved at the DSB in cassette I is filled in with newly synthesized 

DNA templated by cassette II, with gene conversion at the I-SceI site, or 

by a sister chromatid exchange without gene conversion. We propose 

that only one of the newly synthesized strands is methylated by Dnmt1, 

which is recruited to the DSB by proliferating cell nuclear antigen (Chuang 

et al., 1997) and marks the HR molecules (Figure 11). Replication of the 

hemimethylated intermediate yields hypermethylated and 

hypomethylated DNA products in a 1:1 ratio. In the case of gene 

conversion, the length of the hyper- or hypomethylated track does not 

exceed the length of the cassette II template homology. 

We find that Dnmt1 can act as a de novo methyltransferase, i.e., that it 

can recognize unmethylated DNA as a substrate. Although it is commonly 

thought that Dnmt1 cannot promote de novo methylation, in fact the 

preference of Dnmt1 for hemimethylated versus unmethylated DNA is 

only 7 to 21 fold (Pradhan et al.,1999). The possibility that the known de 

novo methyltransferases, Dnmt3a and Dnmt3b act at the DSB seems 

unlikely. First, we find that Dnmt1 -/- ES cells show a greater frequency of 

GFP+ recombinants than wild-type cells. Second, these methyltransferases 
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are not recruited to sites of DNA damage (Mortusewicz et al., 2005). 

Third, all GFP recombinants were unmethylated in Dnmt1 -/- ES cells, 

although the parental molecules were normally methylated (Figure 9B). 

Fourth, Dnmt1 was specifically associated with HR GFP molecules (Figure 

11). The similarity in the methylation profiles of parental DNA molecules 

in Dmnt1 -/- cells to wild-type cells implies that Dnmt3a and Dnmt3b can 

partially substitute for Dnmt1 during normal replication, but cannot 

replace Dnmt1 in methylation induced by HR (Figure 11A and 11B). 

 
 

REPAIR AND GENE SILENCING 
 

Alteration of the methylation pattern following gene conversion was 

restricted to 200–300 bp flanking the DSB. Changes in methylation did not 

extend to the CMV promoter that drives GFP expression or to cassette II.  

The data shown in Figure 12 indicate that methylation at the BcgI site 

downregulates transcription initiation and probably partially blocks 

transcription elongation. We propose that local methylation initiates 

chromatin compaction and, ultimately, silencing of genes near the DSB 

(Padjen et al., 2005). Since the GFP gene is flanked by a puromycin-

resistance gene transcribed on the other strand, which remains active, 

and is driven by a strong and insulated CMV promoter, the mechanism of 

inhibition appears to be selective. The nature and the extent of 

propagation of the silencing signal remains to be explored. 
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TRANSCRIPTION AND GENE SILENCING 
 

To explore the molecular mechanism underlying the effect of 

methylation on transcription, we used a potent inhibitor of RNA 

polymerase II. α-amanitin blocks RNA polymerase II on DNA by preventing 

transcription initiation and elongation. We found that short pulses of α-

amanitin during I-SceI action reduced the amount of GFP+ cells, while 

their fluorescence intensity significantly increased.  α-amanitin influenced 

the rate of recombination by reducing the accumulation of homologous 

repaired GFP. Also, the drug markedly accentuated the methylation 

profiles of the 2 classes of GFP expression found in the recombinant GFP 

population. In the pool of clones or in isolated clones the methylated GFP 

molecules (low expressors) became heavily methylated, whereas 

hypomethylated clones (high expressors) became non-methylated.  

 Since the appearance of these de novo methylation profiles suggest 

that the 2 DNA strand are differently methylated during homologous 

repair, we believe that RNA polymerase II may signal the DNMT1 complex 

the selective location where to methylate.  We propose that the location 

of RNA polymerase targets DNMT1 to the (-) strand. The stalled 

transcription complex facilitates the methylation of the (-) strand and 

decrease the scattered methylation of the (+) strand. This explains the 

fluorescence data and why the -amanitin treatment reduce the 

expression of GFP of the low expressors and increases the expression of 

the high expressors (Figure 14). Methylation analysis in Figure 15 support 

this model. 

 At the same time, stalled transcription forks might also interfere with 

DNA polymerase complex or strand invasion, because, despite the short 
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period of treatment, recombination rate was reduced by α-amanitin. 

Further studies will highlight the mechanisms underlying this 

phenomenon.  

In conclusion, these results argue for a cause-effect relation between 

HR repair and de novo DNA methylation. Moreover, the existing link 

between RNA polymerase II- dependent transcription and homologous 

recombination opens a new and unexpected opportunity for the analysis 

of the mechanism(s) of DNA methylation of damaged genes. Our data 

suggest that hypermethylation of short DNA tracts in tumors or in aging 

may be the consequence of gene conversion. We note that silencing of 

tumor suppressor genes by methylation is characteristic of tumor cells 

(Jones et al., 2002). Indeed, evidence of enhanced DSB formation in 

hyperplastic precancerous cells precedes the genomic instability and loss 

of p53 characteristic of more advanced tumors (Pierce et al., 2001; 

Gorgoulis et al., 2005). Selection of methylated silenced alleles will 

eliminate unmethylated ones from the population (Figure 16). 

Our data also imply that gene imprinting may be linked to homologous 

recombination events. In this perspective it is noteworthy that a 

systematic genome-wide analysis reveals that human imprinted 

chromosomal regions are historical hot spots of recombination (Sandovici 

et al., 2006). 
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MATERIALS AND METHODS 
 
Cell culture 
Hela-DR-GFP stable lines were cultured in RPMI medium supplemented 

with 10% fetal bovine serum (Invitrogen,), 1% penicillin-streptomycin, and 

2 mM glutamine. ES-DR-GFP wild-type and ES stable lines were cultured 

in DMEM medium supplemented with 15% fetal bovine serum 

(Invitrogen), 50 U of penicillin streptomycin/ml, 0.1 mM β-

mercaptoethanol, 0.1 mM nonessential amino acids (Invitrogen), and 500 

U/ml of leukemia inhibitory factor (Invitrogen). Cells were grown on 

gelatine-coated dishes without feeder cells and cultured for amaximum of 

20 generations (Hong et al., 1996). 

The two cell lines were grown at 37 °C in 5% CO2. 

 

Stable and transient transfections. 
DR-GFP plasmid was 14,735 bp containing: CMV IE enhancer (1–385); 

chicken beta actin promoter (386–751); chicken beta-actin first intron 

(752–1,622); rabbit beta-globin second intron (1,623–1,670); rabbit beta-

globin third exon (1,671–1,724); EGFP with a STOP (Pierce et al., 1999) 

codon at I-SceI site (1,740–2,756, I-SceI at 2,135); SV40 

splice/polyadenylation signal (2,757–3,023); polyadenylation signal from 

phosphoglycerate kinase gene (3,025–3,607) for the puromycin resistance 

gene (3,600–4,200); a truncated EGFP gene sequence (5,609–6,138); and 

6,450 bp of mouse genome (Jasin, 1996 and A. Porcellini, unpublished 

data). 

Hela-DR-GFP stable lines were transfected with lipofectamine as 

recommended by the manufacturer (Invitrogen) with 2 µg of circular pDR-

GFP plasmid and selected in the presence of puromycin (2 mg/ml).  

Puromycin-resistant colonies (approximately 200 clones) were seeded at 

3 x 105 cells per 60-mm plate and transfected with 2.5 µg pCbASce 
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plasmid DNA on the following day by lipofectamine transfection 

(Invitrogen). Cells were harvested 2 or 4 d after transfection.  

Wild-type ES and Dnmt1 -/- lines (Li et al., 1992) were transfected by 

electroporation in tissue culture medium with 50 µg circular pDR-GFP 

plasmid and plated in the presence of puromycin at 0.5 mg/ml. 

Puromycin-resistant colonies were transfected by electroporation with 10 

µg pCbASce. At 24 h posttransfection, cells were expanded for a week in 

selective medium, aliquoted, and frozen at 135 °C. Aliquots of transiently 

transfected cells were cultured for 2 weeks and analyzed. Pools of clones 

(ES wild type, Dnmt1 -/-, or Hela) were generated in two or three 

independent transfections and frozen in aliquots. Transient transfections 

with I-SceI were carried at different times of culture after the primary 

transfection (for the isolation of single clones, we used cells cultured for 

more than 1 month). We used the same conditions of growth (~40% 

confluency starting from freshly frozen aliquots). Transfection efficiency 

was measured by assaying β-galactosidase activity of an included pSVbGal 

vector (Promega). Normalization by FACS was performed using antibodies 

to β-gal or pCMV-DsRed-Express (Clontech). pEGFP (Clontech) was used 

as GFP control vector. 

 

Drug treatments. 
Hela-DR-GFP cells were transfected with control vector or pCbASce 

plasmid. The cells were plated at low confluence 24h later and incubated 

with 5-AzadC (5 µM) for 48 h or with α-amanitin (2,5 µM) for 6 or 24h 

(The drugs come both from Sigma). The cells were analyzed 48 h later. 

When the drug was used before transfection, the treatment was 

terminated 48 h before transfection. The analysis of the cells was carried 

out 5d after transfection. Drug treatments were performed under the 

same growth conditions (40% confluency from freshly thawed aliquots). 
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RNA and DNA extraction. 
Total RNA was extracted using Triazol (Gibco/Invitrogen).  

Genomic DNA extraction was performed with following protocol: cellular 

pellet was resuspended in 10 mM TRIS (pH 7.8) and 50 mM NaCl solution. 

After addition of 1% SDS the sample was gently mixed. Proteinase K, at a 

final concentration of 20 µg/ml, was added and the mixture was 

incubated at 55 °C overnight. The following day, hot 1.5 M NaCl (70 °C) 

was added to the mixture, and the DNA was extracted by 

phenol/chloroform. DNA was ethanol precipitated, dried, and 

resuspended in TE  buffer. 

 

qRT-PCR, qPCR, RT-PCR, and PCR.  
cDNA was synthesized in a 20 µl reaction volume containing 2 µg of total 

RNA, four units of Omniscript Reverse Transcriptase (Qiagen), and 1 µl 

random hexamer (20 ng/µl) (Invitrogen). mRNA was reversetranscribed 

for 1 h at 37 °C, and the reaction was heat inactivated for 10 min at 70 °C. 

The products were stored at -20 °C until use.  

PCR was performed in a 50 µl reaction mixture containing 2 µl of 

synthesized cDNA product or 0.5 µg of genomic DNA, 5 µl of 10X PCR 

buffer, 1.5 mM MgCl2, 0.5 mM dNTP, 1.25 unit of Taq polymerase 

(Roche), and 0,2 µM of each primer. 

The primer sequences that were used for the different mRNAs or DNAs 

were:  

unrec 5’-GCTAGGGATAACAGGGTAAT-3’; 

rec 5’-GAGGGCGAGGGCGATGCC – 3’;  

reverse common oligo 5’-TGCACGCTGCCGTCCTCG-3’ (443bp amplified 

fragment);  

b-actin/R 5’-AAAGCCATGCCAATCTCATC-3’;  

b-actin/L 5’-GATCATTGCTCCTCCTGAGC-3’ (250bp amplified fragment); 
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GAPDH forward oligonucleotide 5’-TTCACCACCACCATGGAGAAGGCT-3’; 

GAPDH reverse 5’-ACAGCCTTGGCAGCACCAGT-3’ (346bp amplified 

fragment); 

intron forward (738–757), 5’-CGTTACTCCCACAGGTGAGC-3’;  

intron reverse (966–948), 5’-CGCCCGTAGCGCTCACAGC-3’; 

AUG forward (1,666–1,685), 5’-TACAGCTCCTGGGCAACGTG-3’; 

AUG reverse (1,911–1,892), 5’-TCCTGCTCCTGGGCTTCTCG-3’; 

Prenested F  (2100-2122),5’-gacgtaaacggccacaagttca-3’; 

Prenested R  (2659-2671),5’-ttctcgttggggtctttgctca-3’. 

Amplifications were performed in a Primus thermocycler(MWG/Biotech) 

using the following program: 95 °C /5 min X 1 cycle; 95 °C /45 s, 57 °C /30 

s, and 72 °C /2 min X 28–35 cycles; 72 °C/10 min X 1 cycle. The number of 

cycles were selected and validated by running several control reactions 

and determining the linear range of the reaction. A total of 15 µl of the 

PCR products were applied to a 1.2% agarose gel and visualized by 

ethidium bromide staining. Densitometric analysis was performed using a 

phosphoimager. Each point was determined for at least three 

independent reactions. 

Quantitative (q)RT-PCR and qPCR were performed three times in six 

replicates on a 7500 RT-PCR System (Applied Biosystems) using the SYBR 

Green-detection system with the following program: 95 °C /5 min X 1 

cycle, 95 °C /45 sec and 62 °C /45 min  X 40 cycles. Reference curves were 

generated for 1, 3, 5, 10, and 1,000 ng of DR-GFP plasmid in six replicates 

for copy number assay and from 0.1, 0.5, 1.0, and 5.0 µl of each cDNA for 

GAPDH in the relative assay. 

 

BcgI digestion of DNA or cDNA prior to PCR. 
cDNA prepared from 2 µg of total RNA extracted from Hela-DR-GFP 

transfected with 
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pCbASce or control plasmid was digested with BcgI restriction enzyme as 

recommended by the manufacturer (New England Biolabs). We used 2.5 

µl of cleavage reaction to perform PCR with primers that specifically 

amplify unrecombinant (unrec) and recombinant (rec) GFP sequence. 

 

FACS analysis. 
For the FACS analysis, Hela-DRGFP and ES–DR-GFP cells were transfected 

with pCbASce or control plasmid and after 2 or 4d were treated with 

trypsin and collected. After two washes with PBS, cells were resuspended 

in 500 µl of PBS 1X. A total of 6 X 104 cells were analyzed on a 9600 Cyan 

System (Dako Cytometrix). 

 

Bisulfite DNA preparation, PCR, and sequence analysis.  
Sodium bisulfite analysis was carried out essentially as described by 

Frommer et al., 1992. A total of 8 µg sample of total DNA was digested 

with EcoRI restriction enzyme (New England Biolabs) and denatured in 

0.3M NaOH for 15 min at 37 °C in a volume of 100 µl. We then added 60 

µl of 10 mM hydroquinone and 1.04 ml of 3.6 M NaHS3 (pH 5). Reaction 

mixtures were incubated at 50 °C for 16 h in the dark. DNA was desalted 

and concentrated using Geneclean (Qbiogene/Bio101), denatured with 

0.3M NaOH for 15 min at 37 °C, neutralized with 3M NH4OAc (pH 7), and 

ethanol precipitated. An aliquot of DNA was amplified with the following 

modified primers: primers:  

E01-F, 5’-GTGTGATTGGTGGTTTTAGAGT-3’; 

E02-R, 5’-CCATCCTCAATATTATAACAAAT-3’; 

E2-F, 5’-GGAGTTGTTTATTGGGGTGGTGTTTATTTTGGT-3’; 

E2-NF, 5’-TGGATGGTGATGTAAATGGTTATAAGTTT-3’; 

E2-R, 5’-GTTTGTGTTTTAGGATGTTGTTG-3’; 

E4-R, 5’-ACTTATACAACTCATCCATACCAAAAATAATCC-3’; 

E5-R, 5’-ACTTATACAACTCATCCATACCGAAAATAATCC-3’;  

E6-F, 5’-GGTTGTTATGAATAAAGGTGGTTATAAGA-3’;  
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E7-R, 5’-CTCACTCATTAAACACCCCAAACTTTACAC-3’; 

E8-F, 5’-GAAGATTTTTPyGATTTGTAGTTTAAGTTTTAGG-3’;  

and E9-R, 5’-GAAGATTTTTPyGATTTGTAGTTTAAGTTTTAGG-3’. 

All PCR reactions were carried out in 100 µl reaction mixtures containing 

5 µl bisulfite-treated genomic DNA, 200 µM dNTPs, 10 pmol of each 

primer, 1 mM MgCl2, 50 mM KCl, 10 mM Tris, 5% dimethyl sulfoxide, and 

2 U of Taq polymerase (Stratagene) in a Primus thermocycler 

(MWG/Biotech) under the following conditions: 95 °C/5 min and 70 °C/2 

min X 1 cycle, 97 °C/1 min, 54 °C/2 min, and 72 °C/1 min X 5 cycles; 95 

°C/0.5 min, 52 °C/2 min, and 72 °C/1 min X 25 cycles; and 72 °C/3 minX 1 

cycle. We used 2µl of the first PCR to perform the second PCR (PCR 

nested or seminested) under the same PCR conditions.  

PCR products were cloned into pGEM-T Easy Vector (Promega), and at 

least 20 independent clones for each fragment were sequenced with the 

T7 primer. 

Sequence analysis and alignment were performed using MegAlign 

software (a module of the Lasergene Software Suite for sequence analysis 

by DNASTAR) for MacOSX. Statistical analysis was performed using the 

JMP 6.0.3 statistical analysis software by S.A.S.  
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Chromatin ImmunoPrecipitation. 
We seeded 7 X 105 cells per well of Hela-DR-GFP in a six-well plate one 

day before transfection. Cells were transfected with 2 µg of I-SceI 

plasmids using Lipofectamine 2000 (Invitrogen). Cells were plated in a 

150-mm plate 24 h later and incubated with 1 µM of 5-AzadC (Sigma) for 

24 h, 48 h, or 96 h. The medium and 5-AzadC were changed every 24 h. 

Cells were harvested and GFP positive cells were scored by FACS. 

Remaining cells were stored at -80 °C. 

ChIp-IT Express kit (Active Motif) was used for ChIp experiments. Because 

cells were treated with 5-AzadC, formaldehyde cross-linking and reverse 

cross-linking steps were omitted. 

 

Chromatin isolation and enzymatic shearing. 
A total of ~1 X 107 cells were resuspended in 0.5-ml ice-cold lysis buffer 

supplemented with 2.5 µl protease inhibitor cocktail (ChIp-IT Express kit, 

Active Motif) and 2.5 µl of 100 mM PMSF. After 30 min incubation on ice, 

cells were homogenized with a Dounce homogenizer (ten strokes), and 

nuclei were collected by centrifugation at 2,000 g/5 min. The nuclei were 

resuspended in 0.5 ml of digestion buffer (provided by the kit) and 

incubated at 37 °C for 10 min with 25 µl of enzymatic shearing cocktail 

(200 U/ml, ChIp-IT Express kit, Active Motif). The reaction was stopped by 

adding 10 µl of 0.5 M EDTA. The sheared chromatin was stored at -80 °C. 

An aliquot of sheared chromatin was further treated with proteinase K, 

phenol/chloroform extracted, and precipitated to determine DNA 

concentration and shearing efficiency (input DNA). 

 

Capture of chromatin on magnetic beads.  
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The ChIp reaction was set up according to the manufacturer’s 

instructions. Briefly, the sheared chromatin (corresponding to 18 µg of 

DNA) was mixed with protein G magnetic beads and 2 µl of anti-Dnmt1 

antibody (New England Biolabs) or 0.8 µg of normal rabbit IgG (Santa 

Cruz). The reaction mixture was incubated at 4 °C for 48 h. Beads were 

washed with wash buffer and immunoprecipitated DNA was recovered. 

 

PCR analysis for unrec and rec.  
PCR for rec was performed in a 20 µl reaction mixture containing 5 µl of 

recovered DNA, 0.2 mM dNTP, 1.25 units of HotStar Taq DNA polymerase 

(Qiagen), and 5 µM of each primer. Amplifications were performed using 

following conditions: 95 °C/15 min X 1 cycle; 95 °C/45 sec, 65 °C/30 sec, 

and 72 °C/1 min X 40 cycles; and 72 °C 10 min X 1 cycle. 

PCR for unrec was performed in a 20 µl reaction mixture containing 1 µl 

of recovered DNA. Amplifications were performed using following 

conditions: 95 °C/15 min X 1 cycle; 95 °C/45 sec, 52 °C/30 sec, and 72 °C/1 

min X 30 cycles; and 72 °C 10 min X 1 cycle. 

PCR for Input was performed in a 20 µl reaction mixture containing 100 

ng of input DNA. Amplifications were performed with 30 cycles. 

 

PCR analysis for positive and negative controls. 
To validate the Dnmt1 ChIp reactions, the following primers were used 
for PCR: 
hMGMT, 813 bp, (-726 to +87); MGMT-F, 5’-GAGTCAGGCTCTGGCAGTGT-
3’; 
MGMT-R, 5’-GAGCTCCGCACTCTTCCGG-3’;  
pP16, 778 bp, (-656 to +132); p16-F, 5’-GCAGTCCGACTCTCCAAAAG-3’; 
p16-R, 5’-AGCCAGTCAGCCGAAGGC-3’; 
b-actin, 250 bp; b-actin/R: 5’-AAAGCCATGCCAATCTCATC-3’; 
and b-actin/L: 5’-GATCATTGCTCCTCCTGAGC-3’. 
PCR was performed in a 20 µl reaction mixture containing 5 µl (1 µl for 
actin) of recovered DNA, 0.2 mM dNTP, 1.25 unit of HotStarTaq DNA 
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polymerase (Qiagen), and 5 µM of each primer. Amplifications were 
performed using following conditions: 95 °C/15 min X 1 cycle; 95 °C/45 
sec, 50 °C/30 sec, and 72 °C/1 min X 40 cycles; and 72 °C/10 min X 1 cycle. 
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