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INTRODUCTION 

Fibre reinforced polymers (FRP) have been used for many years in the 
aerospace and automotive industries. In the construction industry they can 
be used for cladding or for structural elements in a highly aggressive 
environment. The application of fiber-reinforced polymers (FRP) to existing 
Reinforced Concrete (RC) structural elements as external reinforcement is 
become very frequent in the last years. For this reason a lot of researches are 
been devoted to this topic, together with the development of national and 
international guidelines containing reliable design procedures.  
Strengthening of a structure can be required because of change in its use or 
due to deterioration. In the past, strength would be increased casting 
additional reinforced concrete or dowelling in additional reinforcement. 
More recently, steel plates have been used to enhance the flexural strength 
of members in bending (the so-called “beton plaquet”). These plates are 
bonded to the tensile zone of RC members using bolts and epoxy resins.  
As an alternative to steel plates, FRP plates, generally containing carbon 
fibres, can be used. FRP can be convenient compared to steel for a number 
of reasons. They are lighter than the equivalent steel plates. They can be 
formed on site into complicated shapes. The installation is easier and 
temporary support until the adhesive gains its strength is not required. They 
can also be easily cut to length on site. Fibres are also available in the form 
of fabric. Fabrics are convenient instead of plates where round surfaces, like 
columns, need to be wrapped. Other advantages in using FRPs are the 
higher ultimate strength and lower density of such materials with respect to 
steel. The lower weight makes handling and installation significantly easier 
than steel. Works to the underside of bridges and building floor slabs can 
often be carried out from man-access platforms rather than full scaffolding. 
The main disadvantage of externally strengthening structures with FRP 
materials are the risks of fire and accidental damage, and the extra-cost of 
the materials. A particular concern for bridges over roads is the risk of soffit 
reinforcement being ripped off by over height vehicles. Comprehensive 
knowledge of the long term effectiveness of this kind of intervention is not 
yet available. This may be perceived as a risk by some engineers and 
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owners. The materials are relatively expensive but generally the extra cost 
of the material is balanced by the reduction in labour cost. Very often, the 
failure mechanisms of RC beams retrofitted with FRP sheets are due to 
debonding of the covercrete with the attached laminate or to FRP 
debonding, because of an advanced deterioration of concrete substratum and 
an uncorrected application of FRP sheets on it. Debonding failure can occur 
in four different ways: in the concrete, in the bonding material, at the 
interface between bonding material and FRP sheets, and at the interface 
between concrete and bonding material. This last case is the most common 
and can be easily observed in the practical applications; typically it involves 
the laminate together with a thin layer of concrete or even with the whole 
covercrete which remain attached to the sheet.  
Debonding could start either in the terminal zone of the FRP sheet, where 
the shear stresses are large, or in the proximity of flexural and combined 
shear/flexural cracks and propagates towards the end zones. This last 
typology is denoted as mid-span debonding failure. This implies that, in 
general, the capacity of a structural element reinforced with FRP is more 
influenced by the performance of the interface between concrete and 
external reinforcement rather than by the strength of the latter.  
The subject of this dissertation is the numerical analyses of RC structural 
elements strengthened in the way described above; in particular the 
theoretical and numerical investigation of the interface behaviour between 
concrete and FRP external reinforcement and the role of the cracking of 
concrete in the mid-span debonding resulting in the premature failure, which 
is quite frequent in RC beams if the anchorage length of the FRP sheet is 
fairly proportioned.  
For this purpose, the finite-element method has been chosen as a basic 
framework for the analyses.  
In fact, due to the particularly complex behaviour of RC beams retrofitted 
with FRP sheets, use of refined finite-element analysis has been often made 
in the recent decade.  
Some of them perform a sensitivity analysis with respect to various material 
and geometry parameters using a linearly elastic model, and obtain results 
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which are clearly valid only for serviceability conditions, and only when an 
initial crack pattern in concrete is not present.  
In other finite-element models based on smeared cracked models, the 
overall behaviour of the retrofitted beam is well captured with such 
approaches, but the stress concentrations along the FRP/concrete interface 
induced by the presence of cracks in the concrete are not well predicted. 
Hence, these methods are not well suited to reproduce the mid-span 
debonding failure. Detailed results for a finite-element models based on the 
discrete-crack approach are also available in literature.   
The analysis have been carried out by using the finite element code 
ABAQUS, widely used in both the scientific research and the industrial 
design. However, it has not been developed an enhanced solver because the 
basic idea was to make use of the algorithms currently available in the 
ABAQUS.  
The finite-element analysis of RC structures can be carried out using several 
models according to the purpose of the research and the size of the control 
volume relevant for the specific application. For example the analysis could 
be either used to calculate the deflections on the whole structure under a 
given loading condition or to investigate the local effects in a particular area 
of the structure. In the first case we can adopt a model that describes the 
overall stiffness of the reinforced concrete, either cracked or not, while in 
the second case we may find convenient to understand where the cracking 
will occur, how it will develop and to compute the distribution of stresses 
between concrete and steel and concrete and FRP. In general the overall 
behaviour of a structure can be successfully investigated using structural 
elements such as beams, shells, trusses. Their use will limit the 
computational onus and simplify the definition of the structure. When it 
comes to investigate a reduced volume of a bigger structure, solid elements 
combined if necessary with structural elements are more appropriate. This is 
the case for our analyses as the focus is on what happen within a single 
structural element. 
The main structural material for the systems under investigation is concrete. 
Concrete gives a defined shape to the structural elements and the loads are, 
in fact, applied directly to the concrete. The standard and FRP 
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reinforcement, although essential, are auxiliary components. Correct 
modelling of the nonlinear behaviour of concrete is therefore essential. The 
mechanical behaviour of concrete has been investigated worldwide and 
today there is a general agreement among researchers on its characteristic 
properties. The most sophisticated ones include elasto-plastic constitutive 
laws with complex hardening laws, non-associative flow-rules, post yielding 
softening. 
However these models can not be easily used within a finite-element code 
and simplified models have been developed to take into account only the 
particular aspects relevant to each specific application. 
Several ABAQUS material models have been tested for modelling of plain 
concrete. The model adopted in this study is an advanced elasto-plastic 
isotropic constitutive models with a yielding criterion dependent upon the 
first and second invariants of the stress tensor with kinematic and isotropic 
hardening. Isotropy implies that the yield function depends only on either 
two invariants of the stress tensor. However, other more sophisticated 
materials, contains also the dependence upon the third stress invariant. The 
dependence upon the third invariant of yield functions suitable for concrete 
introduces further complications. As reported in Chapter III, the applications 
presented in this study are based on the Lubliner et al. yield criterion for 
concrete, with the modifications introduced by Lee and Fenves. In 
particular, as the confining stresses increase, the shape of the Lubliner et al. 
yield surface in the deviatoric plane changes from triangular to circular, in 
accordance with the experimental results. The criterion depends upon four 
parameters which can be specialized to obtain other criteria such as Huber-
Mises, Drucker-Prager, Rankine, Mohr-Coulomb, which are available in the 
ABAQUS material library. 
A very important aspect in the modelling of RC beams retrofitted with FRP 
is the representation of the interfacial behaviour between the different 
materials. Correct modelling of the interface FRP/concrete is necessary as 
debonding of the FRP is a typical failure mode for these systems. Moreover 
debonding is affected by cracking of concrete. To allow the cracks to open it 
is necessary to model relative displacements between concrete and 
reinforcement. This is possible by mean of special interface in conjunction 
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with a non-linear constitutive model available for this kind of elements, 
which belong to the class of  cohesive-zone model. 
Starting from a brief description on the fundamentals of Linear Elastic 
Fracture Mechanics (LEFM), the main cohesive-zone approaches and 
existing closed-form models for the modelling of FRP/concrete and steel 
bars/concrete interface behaviours will be reported in Chapters IV and V.  
The behaviour at the interface, as mentioned, is strongly influenced by the 
localization of stresses due to cracking or interruption of the composite at 
the end of the plates. Because cracking is important in the analysis of the 
RC beams retrofitted with FRP, it has to be conveniently included in the 
models. All the models based on a uniform distribution of cracks (smeared) 
within a volume of cracked concrete are not dealt with in this dissertation. It 
is only interesting to underline that in this approach cracking is reduced to a 
constitutive problem. Basically the cracks are modelled by a sudden local 
stiffness loss in a band of a width comparable with the crack width.  
For applications to RC beams retrofitted with FRP, the local effects at the 
interfaces are critical and the modelling must feature discrete cracking. The 
problem has been tackled by inserting preset cracks in the finite element 
mesh. This approach is justified as the crack pattern of the beams 
investigated was known from experiments and as the main focus was rather 
on the interfacial behaviour between FRP and concrete than on the onset 
and propagation of cracking. 
In Chapter VII, the numerical results obtained by performing numerical 
non-linear analyses on the two-dimensional finite-element models 
developed in ABAQUS and based on a discrete-crack approach will be 
compared with the results inherited from a previous experimental campaign 
on RC beams retrofitted with FRP tested up to failure.  
The experimental campaign, which have not yet be published, was 
conducted in the laboratory of the Department of Structural Engineering of 
University of Naples “Federico II” within the research project “New 
cohesive-zone models and solution algorithms for the numerical analysis of 
delamination and decohesion problem” funded by Regione Campania 
(Legge 5/2002). The experimental tests consist in carrying out a four point 
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bending on RC beams, with different geometrical dimensions and type of 
steel reinforcement.  
The current guidelines for the design of this type of strengthening works 
tend to extend the principles for the design of standard RC elements to the 
case of FRP retrofitted ones: in fact, it is widely accepted that the 
conventional RC theory, in the case of full composite action, for the 
ultimate limit state analysis can be easily applied by simply adding the 
composite as additional resisting element in traction. However, when failure 
occurs because the adhesion between composite and FRP is lost, either in 
proximity of vertical/inclined cracks or at the end of the composite laminate, 
the codes of practice propose different analytical models based on the 
extensive research done in the last two decades. The proposed models all 
involve different types of approximation and often different proposed 
methods yield quite different results. For this reason, the results of analytical 
calculations based on the models proposed in the main codes of practice will 
be presented in Chapter VIII and will provide a further element of 
comparison and discussion with the experimental and numerical results.  
The principal aims of this dissertation can be summarized in the follows:  
 showing that, despite some simplified assumptions made, the model is 

able to well capture, both qualitatively and quantitatively, the structural 
response of RC beams retrofitted with FRP laminates, in particular the 
post-peak behaviour of the reinforced beams;  

 highlighting the importance of accounting for the cracks in order to well 
capture the stress concentrations at the concrete/steel and concrete/FRP 
interfaces;  

 showing that the use of a simple bilinear cohesive-zone model for the 
modelling of nonlinear behaviour of the above mentioned interfaces can 
effectively predict the mid-span debonding failure, in the proximity of 
localized cracks 

 show the effectiveness of the proposed methodology of analysis through 
the ability of the model to numerically reproduce the available 
experimental results in order to capture those kind of information, which 
are not easily measurable experimentally, like the interface-stress profile 
or the stress-strain fields within reinforced beams.  
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CHAPTER II 
The USE of FRP for the RETROFITTING of RC 
STRUCTURES 

2.1 INTRODUCTION 

Fibre reinforced polymers (FRP) have been used for many years in many 
high tech fields such as the aerospace, navy and automotive industries. In 
the construction industry they have been used and tested for the first time in 
the ’80 at the Swiss Federal Laboratory for Materials Testing and Research 
(EMPA) as a new strengthening of structural elements in an highly 
aggressive environment. These materials are now becoming popular mostly 
for the strengthening of existing structures.  
The upgrading of existing civil engineering infrastructure has been an issue 
of great importance for over a decade. Deterioration of bridge decks, beams, 
girders and columns, buildings, parking structures and others may be 
attributed to ageing, environmentally induced degradation, poor initial 
design and/or construction, lack of maintenance, and to accidental events 
such as earthquakes. Frequently, the infrastructure’s increasing decay needs 
the upgrading, so that structures meet more stringent design requirements 
(i.e., increased traffic volumes in bridges exceeding the initial design loads). 
The civil engineering infrastructure renewal has received considerable 
attention over the past few years throughout the world. At the same time, 
seismic retrofit has become as important as infrastructure renewal, 
especially in areas of high seismic risk. Strengthening of a structure can be 
required for: 
 the growth of loads as well as dead or live load (change of the use of 

building) or traffic load of a bridge,  
 structural damage due to corrosion of the bars in RC and deterioration of 

concrete,  
 structural damage due to exceptional events as explosions, fire and 

crashes,  
 changes of the structural system,  
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 design or fabric flaw,  
 the need to reduce tensions, deformations or crack spacing,  
 increasing of ultimate strength and of rigidity. 

In the past, the strength was increased casting additional reinforced concrete 
or dowelling in additional reinforcement or using the technique of “Betòn 
plaque” (steel plates bonded to the tensile zone of RC members using bolts 
and epoxy resins  to enhance the flexural strength of members in bending).  
FRP plates, generally containing carbon fibres, can be used as an alternative 
to steel plates. 
Fibre reinforced polymers can be compared to steel for a number of reasons: 
 they are lighter than the equivalent steel plates,  
 they can be formed on site into complicated shapes,  
 the installation is easier and temporary support until the adhesive gains 

its strength is not required,  
 they can also be easily cut to length on site,  
 fibres are also available in the form of fabric, which are convenient 

instead of plates where round surfaces, like columns, need to be 
wrapped. 

The materials are relatively expensive but generally the extra cost of the 
material is balanced by the reduction in labour cost. 
There are a lot of advantages in using FRP: 
 these materials have higher ultimate strength and lower density than 

steel;  
 the lower weight makes handling and installation significantly easier 

than steel,  
 works to the underside of bridges and building floor slabs can often be 

carried out from man-access platforms rather than full scaffolding; 
The quality of the workmanship is essential in this strengthening technique.  
The main disadvantage of externally strengthening structures with FRP 
materials are the risks of fire and accidental damage and the few knowledge 
of the effect of periodical strain.  
The most application fields of FRP as strengthening tool are shown in 
Figure 2.1.1: 
 flexural strengthening of RC beams or plates and masonry wall,  
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 shear strengthening of RC beams and masonry wall,  
 confinement of RC or masonry columns. 

Composite materials for strengthening of civil engineering structures are 
available today mainly in the form of:  
 thin unidirectional strips (with thickness in the order of 1 mm) made by 

pultrusion 
 flexible sheets or fabrics, made of fibres in one or at least two different 

directions, respectively (and sometimes pre-impregnated with resin). 
 

 
Figure 2.1.1: Typical applications of FRP in the strengthening of RC structures 

Figure 2.1.2 shows typical stress-strain diagrams for unidirectional 
composites under short-term monotonic loading compared to steel.  
Composites suffer from certain disadvantages which are not to be neglected 
by engineers: contrary to steel, which behaves in an elasto-plastic manner, 
composites in general are linear elastic to failure (although the latter occurs 
at large strains) without any significant yielding or plastic deformation, 
leading to reduced ductility. 
Additionally, the cost of materials on a weight basis is several times higher 
than steel’s cost (but when cost comparisons are made on a strength basis, 
they become less unfavourable). 
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Moreover, some FRP materials, i.e. carbon and aramid, have incompatible 
thermal expansion coefficients with concrete. Finally, their exposure to high 
temperatures (e.g. in case of fire) may cause premature degradation and 
collapse (some epoxy resins start softening at about 45-70 °C, the 
corresponding temperature is named “glass transition temperature”).  
The FRP materials should not be thought as a blind replacement of steel (or 
other materials) in structural intervention applications. Instead, the 
advantages offered by them should be evaluated against potential 
drawbacks, and final decisions regarding their use should be based on 
consideration of several factors, including not only mechanical performance 
aspects, but also constructability and long-term durability. 
 

 

 
Figure 2.1.2: Uniaxial tension stress-strain diagrams for different unidirectional FRPs and 

steel (CFRP = carbon FRP, AFRP = aramid FRP, GFRP = glass FRP) 

2.2 MATERIALS  

Composites materials are formed of two or more materials (phases) of 
different nature and macroscopically distinguishable. In fibre composites the 
two phases are high performance fibres, and an appropriate resin. 
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The mechanical properties of the composites mainly depend on the type, 
amount and orientation of the fibres. The role of resin is to transfer stresses 
to and from the fibres. It also provides some protection from the 
environment.  
This section provides a general introduction on the fibres and resins used for 
strengthening. Further information can be found in the trade literature. 

2.2.1 Fibres 
Fibres typically used for strengthening applications are glass, carbon, or 
aramid (also known as Kevlar).  
Typical values for the properties of fibres are given in Table 2.2.1. These 
values are for the fibres only and the correspondent values for the composite 
are significantly lower. All the fibres are linear elastic to failure with no 
significant yielding. 
The selection of the type of fibre to be used for a particular application will 
depend on factors like the type of structure, the expected loading, the 
environmental conditions, etc.  

Table 2.2.1. Typical fibre properties. 

Fibre Tensile strength  
[MPa] 

Modulus of elasticity  
[GPa] 

Elongation  
[%] Specific density 

Carbon: high strength 4300-4900 230-240 1.9-2.1 1.80 

Carbon: high module 2740-5490 294-329 0.7-1.9 1.78-1.81 

Carbon: ultra high module 2600-4020 540-640 0.4-0.8 1.91-2.12 

Aramid 3200-3600 124-130 2.4 1.44 

Glass 2400-3500 70-85 3.5-4.7 2.60 

  
 
Carbon fibres are used for high performance composites and are 
characterised by high value of stiffness and strength but they are not very 
sensible to creep and fatigue and exhibit negligible loss of strength in the 
long term.  
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These fibres have a crystalline structure similar to graphite’s one. Graphite’s 
structure is hexagonal, with carbon atoms arranged in planes held together 
by Van Der Waals forces. 
Atoms in each plane are held together by covalent bonds, much stronger 
than Van Der Waals forces, resulting in high strength and stiffness in any 
direction within the plane.  
The modern technology of production of carbon fibres is based on the 
thermal decomposition in absence of oxygen of organic substances, called 
precursors. The most popular precursors are polyacrilonitrile and rayon 
fibres. Fibres are stabilised first, through a thermal treatment inducing a 
preferential orientation of their molecular structure, then they undergo a 
carbonisation process in which all components other than carbon are 
eliminated. The process is completed by a graphitization during which, as 
the word indicate, the fibres are crystallised in a form similar to graphite. 
Fibres with carbon content higher than 99% are sometime called graphite 
fibres. 
Aramid fibres are organic fibres, made of aromatic polyamides in an 
extremely orientated form. Introduced for the first time in 1971 as “Kevlar”, 
these fibres are distinguished for their high tenacity and their resistance to 
manipulation. They have a strength and stiffness between glass and carbon 
fibres. Their compression strength is usually around 1/8 the tensile one. This 
is due to the anisotropy of the structure of the fibre, because of which 
compression loads trigger localised yielding and buckling resulting in the 
formation of kinks. This kind of fibres undergoes degradation under 
sunlight, with a loss of strength of up to 50%. They can also be sensitive to 
moisture. They exhibit creep and are fatigue sensitive.  
The technology of fabrication is based on the extrusion at high temperature 
of the polymer in a solution and subsequent rapid cooling and drying. The 
synthesis of polymer is done before the extruding equipment by using very 
acid solutions. It is finally possible to apply a thermal orientation treatment 
to improve the mechanical characteristics. 
Glass fibres are widely used in the naval industry for the fabrication of 
composites with medium to high performance. They are characterised by 
high strength. Glass is made mainly of silica (SIO2) in thetrahedrical 
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structure (SIO4). Aluminium and other metal oxides are added in different 
proportions to simplify processing or modify some properties. The 
technology of production is based on the spinning of a batch made 
essentially of sand, alumina and limestone. The components are dry mixed 
and melted at 1260 oC. Fibres are originated from the melted glass. Glass 
fibres are less stiff than carbon and aramid fibres and are sensitive to 
abrasion. Due to the latter care must be used when manipulating fibres 
before impregnation. This kind of fibres exhibit non negligible creep and are 
fatigue sensitive. 

2.2.2 Fabrics 
Fabrics are available in two basic forms: 
 Sheet material, either fibres (generally unidirectional, though bi-axial 

and tri-axial arrangements are available)on a removable backing sheet or 
woven rovings,  

 Fibres pre-impregnated with resin (“prepreg” material), which is cured 
once in place, by heat or other means. 

The selection of the appropriate fabric depends on the application.  
The properties of the sheet materials depend on the amount and type of fibre 
used. An additional consideration is the arrangement of fibres; parallel lay 
gives unidirectional properties while a woven fabric has two-dimensional 
properties.  
In woven fabrics, perhaps 70% of the fibres are in the ‘strong’ direction and 
30% in the transverse direction. It should be noted that the kinking of the 
fibres in the woven material significantly reduces the strength.  
The thickness of the material can be as low as 0.1 mm (with the fibres fixed 
to a removable backing sheet) and is available in widths of 500 mm or more. 

2.2.3 Plates 
Unidirectional plates are usually formed by the pultrusion process. Fibres in 
the form of continuous rovings are drawn off in a carefully controlled 
pattern through a resin bath which impregnates the fibres bundle. They are 
then pulled through a die which consolidates the fibres-resin combination 
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and forms the required shape. The die is heated which sets and cure the 
resin, allowing the completed composite to be drawn off by reciprocating 
clamps or a tension device. The process enables a high proportion of fibres 
(generally about 65%) to be incorporated in the cross section. Hence in the 
longitudinal direction, relatively high strength and stiffness are achieved, 
approximately 65% of the relevant figures in Table 2.1.1. Because most, if 
not all, of the fibres are in the longitudinal direction, transverse strength will 
be very low. 
Plates formed by pultrusion are 1-2 mm thick and are supplied in a variety 
of widths, typically between 50 and 100 mm. As pultrusion is a continuous 
process, very long lengths of material are available. Thinner material is 
provided in the form of a coil, with a diameter of about 1 m. It can be easily 
cut to length on site using a common guillotine. Plates can also be produced 
using the prepreg process, which is widely used to produce components for 
the aerospace and automotive industries. Typically plates have a fiber 
volume fraction of 55 %, and can incorporate 10% fibres (usually glass 
aligned at an angle of 45o to the longitudinal axis) to improve the handling 
strength. 
Lengths up to 12 m can be produced, with a thickness being tailored to the 
particular application. Widths up to 1.25 m have been produced and 
thickness up to 30 mm. 

2.2.4 Resins 
The most popular types of resins used for the production of FRP are 
polymeric thermo-hardening resins. These are available in a partially 
polymerised form and are liquid or creamy at ambient temperature. Mixed 
with an appropriate reagent they polymerise until they become a solid glassy 
material. 
Because the reaction can be accelerated heating up the material, these resin 
are also termed thermo-hardening resins.  
The advantages of their use are: 
 low viscosity at the liquid state resulting in easy of fibre impregnation; 
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 very good adhesive properties, the availability of types capable of 
polymerising at ambient temperature; 

  good chemical resistance; 
 absence of a melting temperature. 

The principal disadvantages, are, on the other hand, related to the range of 
serviceability temperatures, with an upper limit given by the glassy 
transition temperature, brittle fracture properties and moisture sensitivity 
during application. 
The most common resins used in the field of civil engineering are epoxy 
resins. In some cases polyester or vinyl resins can be used. If the matrix is 
mixed with the fibres on site (if fabrics are used) specialist contractors 
should be appointed. 
Polymeric materials with thermo-plastic resins are also available. The have 
the advantage the can be heated up and bent on site at any time. These 
materials are more convenient for the production of bars to be embedded in 
concrete like ordinary reinforcement.  
Epoxy resins have good resistance to moisture and to chemicals. Besides, 
they have very good adhesive properties. Their maximum working 
temperature is depends on the type but is typically below 60 oC. However 
epoxy resins with higher working temperatures are available. Usually there 
are no limits on the minimum temperature. 
The main reagent is composed by organic liquids with low molecular weight 
containing epoxy groups, rings composed by two atoms of carbon and one 
atom of oxygen. 
The pre-polymer of the epoxy is a viscous fluid, with a viscosity depending 
on the degree of polymerisation. A polymerising agent is added to the above 
mix to solidify the resin. This can be done at low or high temperatures 
depending on practicalities and on the final properties desired. 
Polyester resins are characterised by a lower viscosity compared to epoxy 
resins. However, chemical resistance and mechanical properties are not as 
good as for epoxy. Polyesters are polymers with high molecular weight with 
double bonds between carbon atoms C=C, capable of reacting chemically. 
At ambient temperature the resin is usually solid. To be used, a solvent must 
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be added. The latter also reduces the viscosity of the resin and facilitates the 
impregnation of the fibres. 
The reaction is exothermal and does not generate secondary products. 
Solidification can happen at low or high temperatures depending on 
practicalities and on the final properties desired. 
The intrinsic limits of thermo-hardening resins, described above (in 
particular the limited tenacity), the low service temperatures and the 
tendency to absorb moisture from the environment, have lead in recent years 
to the development of thermo-plastic resins. 
These resins are characterised by their property of softening when heated up 
to high temperatures. The shape of the components can be, therefore 
modified after heating. 
Even though their use in the civil engineering field is quite limited at the 
moment, their use has been proposed for the production of reinforcement 
bars similar to the ordinary steel ones. They have higher tenacity than epoxy 
and polyester resins and generally can withstand higher temperatures. 
Besides they are more resistant to environmental agents. 
The main limitation for their application is the high viscosity that renders 
difficult the impregnation of the fibres. 
There are also special resins developed for aggressive environment and high 
temperatures. They are mainly vinyl-ester resins with intermediate 
properties between polyester and epoxy resins. 
Finally, inorganic matrices can be used; these can be cementitious, ceramic, 
metallic etc. Their use in civil engineering, though, pertain areas other than 
the retrofitting of structural elements. 

2.3 EXPERIMENTAL BEHAVIOUR of RC BEAMS 
RETROFITTED with FRP 

The role of the composite in retrofitted structures is similar to that of 
ordinary steel reinforcement. The composite enhances both the stiffness and 
the strength of the structural elements.  
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Methods of analysis for ordinary RC can be easily generalised to include 
FRP reinforcement. Accordingly the gain in the structural capacity of the 
strengthened structure is generally significant. However researchers have 
observed that the real capacity is limited by modes of failure not observed in 
ordinary RC structures. These failures are often brittle, involving 
delamination of the FRP, debonding of concrete layers, and shear collapse. 
Failure can occur at loads significantly lower than the theoretical strength of 
the retrofit system. Specific failure criteria are therefore required for the 
analysis of these structures. To set these out a thorough understanding of the 
behaviour of these systems is required. Until now we have referred to 
structural elements in general.  

2.3.1 Failure modes of RC beams externally reinforced with 
FRP 

Failure modes of RC beams retrofitted with FRP fall into six distinct 
categories (Figure 2.3.1). The mode of failure marked as a) in Figure 2.3.1 
is characterised by yielding of tensile steel followed by rupture of the FRP.  
This is a brittle failure due to the brittle nature of the FRP rupture but in this 
case the material is used at its maximum capacity and the failure load can be 
accurately predicted using strain and stress compatibility equations. 
For the mode marked as b) the failure is due to the crushing of concrete in 
compression. In this case the maximum failure load can be accurately 
predicted too. Failure is still brittle. 
The mode marked as c) is a shear failure mode. A shear crack initiating 
usually at the tip of the FRP sheets propagate until the beam fails. Failure 
often occurs when the laminate detaches from the beam ceasing to 
contribute to its strength. Failures of this type are marked as d) and e) in 
Figure 2.3.1. In case d), known as bond split, the entire cover-concrete is 
ripped off. This generally happen by formation of a shear crack that 
propagate along the line of the reinforcement. In case e), known as laminate 
peeling, the laminate detaches because of the formation and propagation of 
a fracture along the interface with the concrete.  
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Figure 2.3.1: Failure Modes in FRP Retrofitted Concrete Beams 

The fracture at the interface is usually a cohesive fracture within the 
concrete adjacent to the epoxy. This is usually because epoxy is stronger 
than concrete. In this case the same material is visible on both the fracture 
surfaces. The fracture can also be an adhesive fracture at the interface 
between epoxy and concrete. In this case the materials visible on the two 
fracture surfaces are different. This happens when the face of the concrete 
has not been properly treated before the application of the epoxy. 
The fracture could also be at the interface epoxy/FRP for similar reasons. 
A mixed type of fracture with irregular surfaces and both the materials 
visible on both the fracture surface is also possible. 
Laminate peeling can initiate at the tip of the laminate (end peeling) where 
the stiffness of the section changes and tensile forces are transferred into the 
laminate. Stresses at this location are essentially shear stresses but due to the 
little but non zero bending stiffness of the laminate, and the eccentric 
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application of the tensile force, normal stresses can arise, activating also 
mode I delamination (Figure 2.3.2). 
 

 
Figure 2.3.2: End peeling failure mode 

Whereas end peel involves the entire depth of covercrete and propagates 
from the ends of the plates inwards, another debonding mode exists that 
fractures, in the main, only part of the depth of covercrete and initiates at the 
toes of flexural cracks in the mid-span region of the beam with propagation 
out to the ends of the plates. This latter mode, termed mid-span debonding, 
is illustrated in Figure 2.3.3 for one initiating flexural crack. As shown in 
Figure 2.3.3 (a), the delaminated concrete, adhesive, and plate remain a 
single unit after debonding, with the remaining covercrete staying an 
integral part of the original beam. There are two phases to mid-span 
debonding process, namely the initiation phase, inclined cracks form in the 
covercrete near the toes of flexural cracks Figure 2.3.3 (b) shows that 
opening of these inclined cracks induces local bending (or dowel actions) of 
the plate, thereby causing the plate to exert a vertical pull on the adjacent 
adhesive and covercrete to one side of the inclined crack. This pull 
eventually fractures a thin layer of cover-concrete along a roughly 
horizontal plane. 
Note that since the FRP plates used in strengthening applications are 
typically very thin, the plates are quite flexible under bending in a vertical 
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plane. Hence, propagation of mortarcrete fracture away from the base of the 
inclined crack due to this local bending action is limited.  
During the second phase, the debonding process is a self propagating 
mechanism of development of vertical stresses near ends of plate. The 
length of the mortarcrete fracture zone along the beam increases first in a 
stable, incremental manner with each subsequent increment of load on the 
beam. Eventually, the mortarcrete fracture process suddenly runs along the 
remaining bonded length of plate, resulting in complete unzipping of the 
plate from the beam. The energy released by unzipping is sometimes 
sufficient to dislodge from the beam the wedges of concrete bounded by the 
inclined crack and flexural cracks. 
 

 

 
Figure 2.3.3: Mid-span debonding: mode of failure and dowel effect in plate 

Besides the failure types commonly observed in ordinary RC beams, 
retrofitted beams can fail because transfer of forces between the composite 
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and the concrete is not possible beyond a certain limit and the two structural 
components separate causing the FRP cease to be effective. 
This mode of failure introduces a great deal of complication into the 
problem because its associated failure load is much more difficult to predict 
than those associated with crushing of concrete or rupture of the retrofit 
material. 
Even though, with reasonable accuracy, the problem of the interface can be 
locally cast into a simple set of equations, considerable difficulties arise in 
the treatment of this aspect due to the influence of cracking of concrete in 
tension that continuously alter the boundary conditions. Because of this, 
failure due to FRP detachment cannot be dealt with by a local stress or 
strain check at a certain cross section of the beam but requires analysis of 
the structural element as a whole. 
As far as mid-span debonding is concerned, currently available guidelines 
try to overcome this difficulty in a simplified manner introducing a limit on 
the maximum working strain of the composite as a failure criterion to be 
added to the usual check of the maximum compressive strain in the concrete 
(0.35%), maximum tensile strain in the steel (1%) and maximum stress in 
the FRP. The maximum tensile strain in the concrete to be used in the check 
at a given section is the one derived imposing the equilibrium at that section 
considering perfect adherence between the different materials and the 
concrete as a no tension material. 
Even if this principle makes the check conservative, it is obviously 
somewhat coarse and provides little understanding of the behaviour of the 
system. 
Also delamination in the terminal zones of FRP is to be addressed. The 
typical approach derived by the practice for ordinary reinforced concrete is 
to make sure that the plates have enough anchorage length to transfer the 
axial forces from the concrete to the FRP. 
This approach suffers from two major shortcomings: 
 differently from ordinary bars, the maximum force that can be 

transferred into the FRP plates does not increase indefinitely with 
increasing anchorage length but reaches a maximum at a specific length 
and than does not increase anymore,  
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 the effects of the local distribution of stresses are much more important 
than in the case of the anchorage of ordinary bars. 

The behaviour at the interface between the different materials in an RC 
beam retrofitted with FRP, being to a certain extent an element of novelty 
with respect to ordinary RC, will be widely analysed in the following 
chapters. 
This will require the abandonment of the concept of the section and in 
general of the beam as opposed to the general solid. 
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CHAPTER III 
CONCRETE MODELLING 

3.1 INTRODUCTION 

Concrete is a heterogeneous, cohesive-frictional material and exhibits 
complex non-linear inelastic behaviour under multi-axial stress states. The 
increased use of concrete as primary structural material in building complex 
structures such as reactor vessels, dams, offshore structures, etc., 
necessitates the development of sophisticated material models for accurate 
prediction of the material response to a variety of loading situations. 
Concrete contains a large number of micro-cracks, especially at the interface 
between aggregates and mortar, even before the application of the external 
load. Many theories proposed in the literature for the prediction of the 
concrete behaviour such as empirical models, linear elastic, nonlinear 
elastic, plasticity based models, models based on endochronic theory of 
inelasticity, fracturing models and continuum damage mechanics models, 
micromechanics models, etc. Some of them will be discussed in this 
sections. 
There exist an incredible amount of models for concrete. Although the 
physical properties of the material are relatively well established, regularly, 
researchers develop new variants of existing models. Available models are 
usually tailored around a specific application.  
There are two basic approaches to nonlinear modelling of concrete: finite 
(or total) material characterization in the form of secant formulation and 
incremental (or differential) models in the form of tangential stress-strain 
relations. Finite constitutive equations of the first category are restricted to 
path-independent, reversible processes causing a uniqueness problem in the 
case of non-proportional loading. The most prominent models of this class 
are hyperelastic formulation and the deformation theory of plasticity. In 
contrast, differential or incremental material descriptions of the second 
category do not exhibit the shortcomings of reversibility and path 
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dependency. The most prominent models of this class are hyperelastic 
models and models based on the flow theory of plasticity. 
There are also models based on elastic degradation in the form of continuum 
damage mechanics.  

3.2 EXPERIMENTAL BEHAVIOUR  

Concrete is a composite material mainly consisting of different sized 
aggregate particles embedded in a cement past matrix and its mechanical 
behaviour is strongly affected by the microstructure properties. In order to 
give physical explanations to the experimental behaviour observed during 
tests, the knowledge of microstructure becomes fundamental. The main 
aspects to consider: 

1. A large number of bond micro cracks exist at the interface between 
coarser aggregates and mortar; 

2. The cement paste has a high porosity, the pores being filled with 
water or air; 

3. At all dimensional levels, above the molecular level, air and or water 
voids exists. 

Many of the microcracks in concrete are caused by segregation, shrinkage 
or thermal expansion in the mortar and therefore exist even before any load 
has been applied. Some of the microcracks can be developed during loading 
because of the difference in stiffness between aggregates and mortar.  
Therefore, the aggregate-mortar interface constitutes the weakest link in the 
composite system. This is the primary reason for the low tensile strength of 
concrete materials. 
For example the propagation of micro cracks during loading contributes to 
the non linear behaviour of concrete at low stress levels and causes volume 
increases near failure and uniaxial compressive state of stress. For high 
hydrostatic pressure the intrusion of voids and paste pores becomes 
increasingly important in affecting the behaviour and strength of concrete.  
Thus, in order to create an appropriate mathematical model it is essential to 
understand the behaviour of plain concrete under uniaxial, biaxial and 
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triaxial states of stress. Typical tests results are illustrated in the next 
paragraph and they all refer to normal weight concrete under short term 
quasi-static loading conditions. 

3.2.1 Uniaxial compressive behaviour 
Results from uniaxial compression tests are generally represented as stress 
strain curves as shown in Figure 3.2.1. The shape of stress strain curves is 
similar for low-, normal-, and high-strength concretes as shown in Figure 
3.2.2.  
The key observations are : 

1. The concrete behaviour is nearly linear elastic up to about 30% of its 
maximum compressive strength f’c. For stresses above 0.3f’c 
concrete begins to soften and the stress-strain curve shows a gradual 
increase in curvature up to about 0.75f’c to 0.9f’c, after which the 
curve bends more sharply until it approaches the peak point at f’c. 
Beyond this point the curve has a descending part until crushing 
failure occurs at some ultimate strain value εu (Figure 3.2.1);  

 

 
Figure. 3.2.1: Typical stress-strain curves for concrete in uniaxial compression 

test. (a) Axial and lateral strains. (b) Volumetric strain (εv = ε1 + ε2 + ε3) 
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2. The volumetric strain εv = ε1 + ε2 + ε3 is almost linear up to about 
0.75f’c to 0.9f’c. At this point the direction of the volumetric strain is 
reversed and the material starts dilating (Figure 3.2.1). The stress 
corresponding to the minimal volumetric strain is defined as critical 
stress [Richart et al. 1929];  

3. Concrete with higher strength behave as linear to a higher stress 
level than low strength concrete, but seems to be more brittle on the 
descending portion of the stress strain curve. All peak point 
correspond approximately to a value of 0.002 (Figure 3.2.2). 

 

Figure 3.2.2: Uniaxial compressive stress-strain 

The first two points are associated with the mechanism of internal 
progressive  micro cracking. When the stress is still in the region of 0.3f’c 
the internal energy is not sufficient to create new micro crack surfaces and 
the cracking existing in the concrete before loading remain nearly 
unchanged. 
The stress level corresponding to 0.3f’c has been defined as onset of 
localized cracking and has been proposed as the limits of elasticity 
[Kotsovos & Newman 1977]. For stress between 30 and 50 % of f’c the 
bond cracks start to extend because of the stress concentration at the crack 
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tips. Mortar cracks remain negligible and the available internal energy is 
approximately balanced by the required crack release energy. At this stage 
the crack propagation is stable in the sense that cracks rapidly reach their 
final lengths, if the applied stress is maintained constant. 
For the next stress range 50-70 % of f’c some cracks at nearby aggregates 
surfaces start to bridge in the form of mortar cracks. Meanwhile other bond 
cracks keep growing. If the load is maintained constant the crack continue to 
propagate with a decreasing rate to their final lengths. 
For higher stress levels the system is unstable and complete disruption can 
occur even if the load is maintained constant. Microcracks through the 
mortar in the direction of the applied stress bridge together the bond 
microcracks at the surface of the nearby aggregates and form macroscopic 
cracks. This stage correspond to the descending portion of the concrete 
stress-strain curve (softening). The stress level of about 0.75f’c  is termed as 
“onset of unstable fracture propagation” or “critical stress” since it 
corresponds to the minimum value of the volumetric strain εv. 
The initial modulus of elasticity E0 is generally correlated to the uniaxial 
compressive strength and can be approximated with the empirical formula:  

 0 5700 ' /CE f N= mm  (3.2.1) 

which gives a reasonable accuracy. The poissons ratio ν also varies with the 
compressive strength f’c, with 0.19 or 0.20 being representative values.  

3.2.2 Uniaxial tensile behaviour 
The stress-strain curves for uniaxial tension tests are similar in shape to 
those observed for uniaxial compression (Figure 3.2.3).  
However the tensile strength f’t is significantly lower than the corresponding 
strength in compression f’c, with a ratio of 0.05-0.1. The concrete behaviour 
is nearly linear elastic up to about 60% of its maximum tension strength f0t. 
The following interval of stable crack propagation is very short and the 
system becomes unstable around 0.75f’t .  
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Figure 3.2.3: Typical tensile stress-strain curves for concrete 

The direction of cracks propagation is transversal to the applied stress 
direction. The descending portion of the stress-strain curve is difficult to 
follow because the crack propagation is very rapid. The value of f’t is 
difficult to measure experimentally and there are several formulae to 
estimate it from the corresponding value of the compression strength. 
The modulus of elasticity and the poissons ratio under uniaxial tension are 
respectively higher and lower than the case of uniaxial compression. 

3.2.3 Biaxial behaviour 
The strength and ductility of the concrete under biaxial states depends on 
the nature of stress state: compressive type or tensile type. The biaxial 
strength envelope (Figure 3.2.4) represented by Kupfer et al. [1969] 
suggests that the biaxial compression strength of the material increases 
compared to the equivalent uniaxial state. Equally from the stress-strain 
curves it is possible to recognize that the tensile ductility of concrete is 
greater under biaxial compression state than uniaxial compression 
(Figure3.2.5).  
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Figure 3.2.4: Biaxial strength envelope of concrete [Kupfer et al. 1969] 

 
Figure 3.2.5: Stress-strain relationships for concrete under biaxial compression [Kupfer et 

al. 1969] 
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The biaxial tension strength is very similar to what measured for uniaxial 
tension state. Under biaxial compression-tension state the compressive 
strength decreases almost linearly as the applied tensile strength is 
increased. 
Some studies suggest that the maximum strength envelope is almost 
independent of load path.  
The growth of major microcracks is associated with an inelastic volume 
increase defined dilatancy. This phenomenon becomes visible when the 
failure point is approached. The failure will occur along surfaces orthogonal 
to the direction of the maximum tensile stress or strain. In particular the 
tensile strains are critical in defining the failure criterion of concrete. 
Typical stress-strain results from triaxial tests on concrete indicate that the 
ultimate axial strength increases considerably with the confining stress. As 
the hydrostatic stress increases, the behaviour of the concrete moves from 
quasi-brittle to plastic softening to plastic hardening. This happens because 
under higher hydrostatic stresses the possibility of bond cracking is reduce 
and the failure rather explained with the crushing of cement paste. During 
hydrostatic compression tests the concrete behaves as nonlinear during the 
loadings stages, while upon unloading the slope of the curve is almost 
constant and approximately equal to the initial tangent of the loading curve 
(Figure 3.2.5). 
Typical stress-strain results from triaxial tests on concrete indicate that the 
ultimate axial strength increases considerably with the confining stress. As 
the hydrostatic stress increases, the behaviour of the concrete moves from 
quasi-brittle to plastic softening to plastic hardening. This happens because 
under higher hydrostatic stresses the possibility of bond cracking is reduce 
and the failure rather explained with the crushing of cement paste. During 
hydrostatic compression tests the concrete behaves as nonlinear during the 
loadings stages, while upon unloading the slope of the curve is almost 
constant and approximately equal to the initial tangent of the loading curve 
Figure 3.2.5.  
The failure surface can be defined as a function of the three principal 
stresses. The elastic limit and failure surfaces of concrete representation in 
the three principal stresses space is shown indicatively in Figure 3.2.5, 
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assuming the material is isotropic. For small hydrostatic pressures the 
deviatoric sections are convex and non circular, becoming more or less 
circular for increasing compressions (along the σ1 = σ2 = σ3 axis). Finally, 
the failure surface appears to be independent of the load path [Kotzovos 
1979]. 

3.3 UNIAXIAL MONOTONIC CONSTITUTIVE 
MODELS  

3.3.1 Yassin model (1994) 
The monotonic curve for concrete in compression of Yassin’s model, 
follows the monotonic stress-strain relation model of Kent & Park [1971] as 
extended by Scott et al. [1982]. Even though more accurate and complete 
monotonic stress-strain models have been published since, the so-called 
“modified Kent-Park model” offers a good balance between simplicity and 
accuracy, and is widely used.  
 

 

 
Figure 3.3.1: Modified Kent & Park model [1982] for concrete in compression 
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In the modified Kent-Park model (Figure 3.3.1), the monotonic concrete 

stress-strain (σc-εc) relationship in compression is described by three 

regions. Adopting the convention that compression is positive, the three 

regions are: 

Region OA:     0cε ε≤  

 

2

0 0

' 2 c c
c cKf ε εσ

ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.3.1) 

Region AB:     0 2c 0ε ε ε< ≤  

 ( )0' 1c c cKf Zσ ε ε⎡ ⎤= − −⎣ ⎦  (3.3.2) 

Region BC:     20cε ε>  

 0.2 'c Kf cσ =  (3.3.3) 

The corresponding tangent moduli Et are given by the following 

expressions: 

0cε ε≤  

 
0 0

2 'c c
t

KfE ε
ε ε

⎛ ⎞
= ⎜

⎝ ⎠
⎟

0

 (3.3.4) 

0 2cε ε ε< ≤  

 'tE ZKf c= −  (3.3.5) 

20cε ε>  
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 'tE ZKf c= −  (3.3.6) 

where:  

 0 0.002Kε =  (3.3.7) 

 
'

yk
s

c

f
K

f
ρ=  (3.3.8) 

 
0.5

3 0.29 ' '0.75 0.002
145 ' 1000

c
s

c h

Z
f h K

f s
ρ

=
+

+ −
−

 (3.3.9) 

In the equations above, ε0 is the concrete strain at maximum compressive 
stress, ε20  is the concrete strain at 20% of maximum compressive stress, K 
is a factor that accounts for the strength increase due to confinement, Z is 
the strain softening slope, f’c is the concrete compressive cylinder strength 
(unconfined peak compressive stress) in MPa, fyh  is the yield strength of 
transverse reinforcement in MPa, ρs  is the ratio of the volume of transverse 
reinforcement to the volume of concrete core measured to the outside of 
stirrups, h′ is the width of concrete core measured to the outside of stirrups, 
and sh  is the center to center spacing of stirrups or hoop sets. 

3.3.2 Chang & Mander model (1994) 
The compression envelope curve of the model developed by Chang & 
Mander [1994] (referred to as C-M model in the sequel) is defined by the 
initial slope Ec , the peak coordinate (ε’c , f’c), a parameter r from Tsai’s 
equation [1988]  defining the shape of the envelope curve, and a parameter 

 to define the spalling strain (Figure 3.3.2).  1crx− >
Both the compression and tension envelope curves can be written in 
nondimensional form by the use of the following equations: 

 ( ) ( )
nxy x

D x
=  (3.3.10) 
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Figure. 3.3.2: Compression and tension envelopes [Chang & Mander 1994] 

( )
( ) 2

1 '
 ( ) x

z x
D x

=
−

⎡ ⎤⎣ ⎦
 (3.3.11) 

where:  

 ( ) '1
1 1

rD x n x
r r

⎛ ⎞= + − +⎜ ⎟
x

− −⎝ ⎠
 (3.3.12) 

if  , and 1r ≠

 ( ) ( )1 1 lnD x n x= + − + x  (3.3.13) 

if  ;   1r =

n and x are defined for the compression envelope as: 
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'
c

c

x ε
ε

− =  (3.3.14) 

 
'

'
c c

c

En
f
ε− =  (3.3.15) 

The non-dimensional spalling strain can be calculated by:  

 
( )
( )

cr
sp cr

cr

y x
x x

n z x
−

− −
= −  (3.3.16) 

In the equations above, εc is the concrete strain, ε’c is the concrete strain at 
peak unconfined (or confined) stress, f’c is the unconfined (or confined) 
concrete strength, Ec is the concrete initial Young’s modulus, x is the 
nondimensional strain on the compression envelope, crx−  is the 
nondimensional critical strain on the compression envelope curve (used to 
define a tangent line up to the spalling strain), xsp is the non-dimensional 
spalling strain, y(x) is the nondimensional stress function, z(x) is the 
nondimensional tangent modulus function (Figure 3.3.2). 
The stress fc and the tangent modulus Et  at any given strain on the 
compression envelope curve are defined by: 

 ( )c cf f x− −=  (3.3.17) 

 ( )t tE E x− −=  (3.3.18) 

where ( )cf x− − and ( )tE x− −  are defined as: 

 ( )'c cf f y x− −=  (3.3.19) 

 ( )t cE E z x− −=  (3.3.20) 
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if crx x− < −  (Tsai’s equation), as:  

 ( ) ( )( )' cr cr crc cf f y x n z x x x− − − − − −⎡ ⎤= − −⎣ ⎦  (3.3.21) 

 ( )crt cE E z x− −=  (3.3.22) 

if cr spx x x− −≤ ≤  (Straight line), and as:  

 0c tf E− −= =  (3.3.23) 

if spx x>  (Spalled).  

Once the concrete is considered to be spalled, the stresses are zero from that 
moment on. Confined concrete can be considered not to spall, in such a case 
a large value of crx− should be defined. The minus superscript in the equations 
above refers to the stress-strain behaviour in compression. 
The material parameters associated with the compression envelope curve of 
the model are the concrete strength f’c , the concrete strain at peak stress ε’c, 
the concrete initial Young’s modulus Ec , the Tsai’s parameter r defining the 
shape of the compression envelope, and the nondimensional critical strain 

crx−  where the envelope curve starts following a straight line. All of these 
parameters can be controlled and manipulated based on specific 
experimental results for a refined calibration of the compression envelope. 
Nevertheless, Chang and Mander have proposed empirical relations for the 
parameters Ec, ε’c, and r defined based on a detailed review of previous 
research. Parameters Ec, ε’c, and r associated with the unconfined 
compression envelope can be empirically related to the unconfined concrete 
strength  f’c (MPa) as: 

Initial Young modulus, 

 8200 'c cE f Mpa=  (3.3.24) 
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Strain at peak stress, 

 
( )

1
4'

28
c

c

f
ε =  (3.3.25) 

Shape parameter, 

 
' 1.9

5.2
cfr = −  (3.3.26) 

The compressive envelope of the C-M model for confined concrete 
complies with the generalized confinement model developed by Mander et 
al. [1988a], which is applicable to RC members with either circular or 
rectangular cross sections and any general type and configuration of 
reinforcement (Figure 3.3.3). For rectangular sections, the effectively 
confined concrete area is given by the expression: 

 
( )2

1

' '1 0.5
6

n
i

c c c
i c

w sA b d
d=

⎛ ⎞⎛ ⎞
⎜ ⎟= − −⎜⎜ ⎟⎝ ⎠⎝ ⎠

∑ ⎟  (3.3.27) 

whereas the concrete core area is given by:  

 cc c c stA b d A= −  (3.3.28) 

The lateral confinement pressure (imposed by the transverse steel) for each 
direction is calculated as: 

 'lx c x yhf k fρ=  (3.3.29) 

 'ly c y yhf k fρ=  (3.3.30) 

in which kc is the confinement effectiveness coefficient defined as:  
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 c
c

cc

Ak
A

= ,  (3.3.31) 

and 

 xx
x

e

A
s d

ρ =
⋅

 (3.3.32) 

where xxA is the total area of transverse reinforcement parallel to the x-axis,   

 yy
y

e

A
s d

ρ =
⋅

 (3.3.33) 

where yyA is the total area of transverse reinforcement parallel to th y-axis.  
The equation proposed in C-M model in order to represent the analytical 
confinement coefficient K takes the form (as an approximation of the 
ultimate strength surface proposed by Mander et al. [1988a]): 

 
' 0.90.1
' 1
cc

c

fK Ax
f Bx

⎛= = +⎜ +⎝ ⎠
⎞
⎟  (3.3.34) 

with  

 1' '
2 '
l

c

2lf fx
f
+

=  (3.3.35) 

 1

2'
l

l

'fr
f

=  (3.3.36) 

with 2 1' 'l lf f≥ ,  

  (3.3.37) 4.9896.8886 (0.6096 17.175 ) rA −= − + r e
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( )3.89395 0.9849 0.6306 0.1r
B

e
A

−
=

− −

4.5  (3.3.38) 

where the analytical confinement coefficient K is the ratio of the confined 
concrete strength f’cc to the unconfined concrete strength f’c . 

 
Figure. 3.3.3: Confinement mechanism for circular and rectangular cross sections [Chang & 

Mander 1994] 

Eq. (3.3.34) can be represented in the form of:  

 1'cK f k fl= +  (3.3.39) 

By taking  fl  as the average of fl1  and  fl2  this can be rewritten as: 
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 1
' 1
'
cc

c

fK
f

= = + k x  (3.3.40) 

where 

 1
0.90.1

1
k A

Bx
⎛= +⎜ +⎝ ⎠

⎞
⎟  (3.3.41) 

The strain at peak stress for confined concrete ( '
ccε ) takes the form: 

 ( )2' ' 1cc c k xε ε= +  (3.3.42) 

with 

 2 5k 1k=  (3.3.43) 

where 'cε  is the strain at peak unconfined stress. 
The confinement parameters described above were validated by Mander et 
al. [1988b] and Chang & Mander [1994] against extensive experimental 
data from tests on RC column specimens under eccentric loading. 
The shape of the tension envelope curve in C-M model is the same as that of 
the compression envelope curve (Figure 3.3.1). The curve is shifted to a new 
origin ε0 (such procedure will not be explained in this dissertation for 
brevity). The non-dimensional parameters for the tension envelope curve are 
given by: 

 0c

t

x ε ε
ε

+ −
=  (3.3.44) 

 c t

t

En
f
ε+ =  (3.3.45) 

The non-dimensional cracking strain is given by: 
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( )
( )

cr
crk cr

cr

y x
x x

n z x

+
+

+ +
= −  (3.3.46) 

where εc  is the concrete strain, εt is the concrete strain at peak tension stress, 
ft  is the concrete tensile strength, Ec is the concrete initial Young’s modulus, 
x+ is the non-dimensional strain on the tension envelope curve, crx+  is the 
critical strain on the tension envelope curve (used to define a tangent line up  
to the cracking strain), and crkx  is the cracking strain (Figure. 3.3.1). 
The stress fc and the tangent modulus Et for any given strain on the tension  
envelopecurve are defined as: 

 ( )c cf f x+ +=  (3.3.47) 

 ( )c tE E x+ +=  (3.3.48) 

where ( )cf x+ +  and ( )tE x+ +   are defined as:  

 ( )'c tf f y x+ +=  (3.3.49) 

( )t cE E z x+ +=  (3.3.50)  

if crx x+ < +  (Tsai’s equation), as:  

 ( ) ( )( )' cr cr crc tf f y x n z x x x+ + + + + +⎡ ⎤= − −⎣ ⎦  (3.3.51) 

( )crt cE E z x+ +=  (3.3.52)  

if cr crkx x x+ +≤ ≤  (Straight line), and as:  

 0c tf E+ += =  (3.3.53) 

If crkx x>  (Cracked).  
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The functions y and z are defined by Equations 3.3.10-3.3.11. When the 
concrete is cracked it is considered no longer to resist any tension stress, as 
a result of crack opening, but on the other hand a gradual crack closure is 
considered to take place. Concrete experiencing tension stiffening can be 
considered not to crack completely, that is, a large value of crx+  can be 
defined. The plus superscript refers to the stress-strain behaviour in tension. 
The parameters associated with the tension envelope curve include the 
concrete tensile strength ft , the strain at peak tensile stress εt , and the 
parameter r defining the shape of the tension envelope curve. The critical 
strain on the tension envelope curve crx+  (where the envelope curve starts 
following a straight line) can be controlled and calibrated based on either 
experimental results or empirical relations (i.e., Collins & Mitchell 1991; 
Belarbi & Hsu 1994) to model the behaviour of concrete in tension and the 
tension-stiffening phenomenon. 

3.3.3 Modelling of Tension Stiffening 
The contribution of cracked concrete to the tensile resistance of RC 
members is known as the effect of tension stiffening. The concrete between 
the cracks, which is still bonded to the reinforcing steel bars, contributes to 
the tensile resistance of the member. The tension-stiffening phenomenon 
plays a significant role in reducing the post-cracking deformations of 
reinforced concrete structures, and has been proven by researchers (i.e., 
Vecchio & Collins 1982; Collins & Mitchell 1991; Belarbi & Hsu 1994; 
Pang & Hsu 1995; Hsu & Zhang 1996; Mansour et al. 2001; Hsu & Zhu 
2002) to considerably influence the post-cracking stiffness, yield capacity, 
and shear behavior of reinforced concrete members. 
In the model developed by Vulcano et al. [1988], for example, tension 
stiffening was modeled using an axial-element-in-series model (Figure 
3.3.4) to describe the response of the uniaxial sub-elements of the model. 
The two elements in series represented the segment along the uniaxial 
elements in which the bond remained active (Element 1) and the segment 
for which the bond stresses were negligible (Element 2). The concrete 
within Element 1 was considered to be un-cracked and modelled with a 
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linear elastic behaviour. The cracked concrete within Element 2 was 
considered to have no contribution (zero stresses) to the axial stiffness of the 
whole model under increasing tensile strains. A dimensionless parameter λ 
was introduced to define the relative length of the two elements 
(representing cracked and uncracked concrete) to account for tension 
stiffening. Under monotonic tensile loading, the tension-stiffening effect 
was incorporated by manipulating the value of the dimensionless parameter 
λ such that the tensile stiffness of the uniaxial model in Figure 3.3.4 would 
be equal to the actual (experimentally observed) tensile stiffness of a tension 
stiffened uniaxial element evaluated on the basis of an empirical law 
suggested by proposed by Rizkalla & Hwang [1984].  

 
Figure 3.3.4: Axial-element-in-series model [Vulcano et al. 1988] 

Such law relates the ratio of the steel strain within cracks to the average 
strain of a reinforced concrete member under monotonic axial tensile 
loading. Under cyclic loading, it was assumed that the value of λ was kept 
constant during unloading from the tensile stress state, equal to the value 
corresponding to the maximum tensile strain previously attained; if this 
maximum strain was exceeded during a tensile reloading, the value of λ was 
updated as for the case of monotonic tensile loading. 

 55 



 
CONCRETE MODELLING                                                               
 

In other studies, such as formulation proposed by Colotti [1993], instead of 
an axial-element-in-series model, a two-parallel-component model (Figure 
3.3.5) is adopted for the uniaxial elements of the present wall model, and 
concrete and steel within each uniaxial element are subjected to the same 
average (smeared) strains. 
The tension-stiffening effects are directly incorporated into the constitutive 
stress-strain relations implemented for concrete and steel. 

 

Figure 3.3.5: Two-parallel-component-model [Colotti 1993] 

As investigated in detail by Belarbi & Hsu [1994], the modelling of the 
tension-stiffening phenomenon must consider two effects simultaneously. 
First, an average (smeared) tensile stress-strain curve must be considered for 
cracked concrete; and second, the stress-strain curve of bare mild steel bars 
must be replaced by an average (smeared) stress-strain curve for steel bars 
stiffened by concrete between cracks. Accordingly, based on extensive tests 
of reinforced concrete panels subjected to normal stresses, Belarbi and Hsu 
developed two constitutive models: one for the average tensile stress-strain 
relation of concrete and one for the average tensile stress-strain relation of 
steel reinforcing bars stiffened by concrete. The tension-stiffening models 
proposed by Belarbi and Hsu have also been used and validated 
experimentally in more recent studies to model the shear behaviour of RC 
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membrane elements (i.e., Pang & Hsu 1995; Hsu & Zhang 1996; Mansour 
et al. 2001; Hsu & Zhu 2002).  
The average stress-strain relation proposed by Belarbi and Hsu for concrete 
in tension takes the form (Figure 3.3.6):  

 c cE cσ ε=  (3.3.54) 

if c crε ε≤ , and 

 
0.4

cr
c cr

c

f εσ
ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.3.55) 

if c crε ε> , 

 
Figure 3.3.6: Average stress-strain relation for concrete in tension [Belarbi & Hsu 1994] 

where 

 3875 ' ( )c cE f M= Pa  (3.3.56) 
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 0.31 ' ( )cr cf f MPa=  (3.3.57) 

0.00008cr =  (3.3.58) ε 

 In the equations above, εc is the average concrete tensile strain, σc  is the 
average concrete tensile stress, Ec  is the initial Young’s modulus of the 
average stress-strain relation, fcr  is concrete the tensile cracking stress, and 
εcr  is the concrete strain at cracking.  
The relation consists of an ascending straight line before cracking and a 
descending curve to the power of 0.4 after cracking (Figure 3.3.6).  
The expressions for  fcr, εcr, Ec , and the power constant 0.4 in Equation 
(3.3.55) are obtained from the average and best fit of experimental results 
from testing 17 RC panels with concrete cylinder compressive strengths 
ranging between 36.9 MPa and 47.7 MPa.  
It seems interesting underlining that, Belarbi and Hsu also identified how 
the average stress-strain relation of reinforcing steel bars surrounded by 
concrete is different than the stress-strain relation of bare steel bars (Figure 
3.3.7). The most important difference was found to be the lowering of the 
yield stress, σy, as yielding of a reinforced concrete element occurs when the 
steel stress at the cracked section reaches the yield strength of the bare bar. 
At the same time, the average steel stress smeared along the length of the 
element reaches a level lower than that of the yield stress of the bare bar. 
Based on experimental data from the RC panels, the reduction of the yield 
stress of bars embedded in concrete were found to be empirically dependent 
on the cross-sectional area ratio of the longitudinal steel in the panel (ρ) and 
the ratio of concrete cracking stress (fcr)  to the steel yield stress (σy). The 
strain-hardening slope (plastic modulus) of the steel bars embedded in 
concrete was also observed to differ from the plastic modulus of bare bars 
with the variation also dependent on the above parameters. Based on 
evaluation and characterization of experimental data from the RC panels, 
they proposed a simple bilinear constitutive model for steel bars embedded 
in concrete, which is not reported here.  
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Figure 3.3.7 :Effect of tension stiffening on reinforcing bars [Belarbi & Hsu 1994] 

3.4 MULTIAXIAL MATHEMATICAL ELASTO-
PLASTIC DAMAGED MODELS  

3.4.1 Etse-William model (1994) 
The model described here, used as a base to discuss the main aspects of 
multi-axial concrete modelling, is an incremental one and is based on the 
flow theory of elasticity. The model has been introduced by Etse & Willam 
[1994], it is an attempt to define an omni-comprehensive representation of 
the material.  
The model features refined failure criterion and plastic loading conditions, a 
non-associated flow rule, and specifically designed hardening and softening 
rules. Softening is based on a fracture energy formulation.  
The proposed failure criterion uses the Hoek & Brown [1980] criterion, 
originally developed for rock materials.  
The criterion is expressed in terms of three scalar invariants 22J , 

( ) ( )
3

2
3 2cos 3 27 2J Jθ = , directly related to the Haigh-Westergaard 

coordinates 3ξ σ= , ρ , θ , which permit a convenient geometric 
representation of the failure surfaces. 
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The meridional sections of the failure surface are, in fact, readily traced, for 
different values of θ  in the (ξ , ρ ) plane, and the sections in the deviatoric 
planes can be also represented in a polar diagram. 
The expression for the failure criterion proposed is:  

 ( ) ( ) ( )2
3, , 1 0
2 ' ' '

c

c c c

r rmF
f f f

ρ θ ρ θ
σ ρ θ σ

⎡ ⎤ ⎡ ⎤
= + + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
=  (3.4.1) 

where r(θ) is the Klisinsky function:  

 ( ) ( )
( ) ( )( ) ( ) ( )

22 2

2 2 2

4(1 )cos ( ) 2 1

2 1 cos 2 1 4 1 cos 5 4

e e
r

e e e e

θ
θ

θ θ

− + −
=

− − − + 2 e+
 (3.4.2) 

with  to preserve convexity of the yield function.  0.5 1e≤ ≤
The parameter e is called eccentricity and represent the ratio between the 
radius of the deviatoric section along tensile and compressive meridians 
ρt/ρc (tensile and compressive meridians correspond to θ=0 and θ=π/3 and 
are represented in Figure 3.4.1).  

 
Figure 3.4.1: Meridian sections of concrete failure surface 
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The Klisinsky function was introduced to smoothen the Hoek and Brown 
failure surface and its effect can be seen in Figure 3.4.2. 
The difference between the proposed criterion and the Hoek and Brown’s 
one is best appreciated by comparing the failure locus in plane stress (Figure 
3.4.3).  

 

 
Figure 3.4.2: Deviatoric sections of Hoek and Brown failure criterion (left) and the 

proposed Extended Leon Criterion (right) [Etse & William 1994] 

 
Figure 3.4.3: Plane stress sections of smoothened and polygonal failure envelopes 
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Also the loading function was derived by modifying the Hoek and Brown 
criterion. The same loading function is used for pre-peak and post-peak 
response. 
The model is isotropic and remain isotropic during the loading history and  
degradation of the elastic properties during plastic flow is neglected. 
The total strain is composed of a plastic and an elastic component 
( c pε ε ε= +
i i i

). The elastic response is linear, and the plastic response is 
governed by the flow rule:  

 p mε λ=
i i

 (3.4.3) 

with Qm
σ

∂
=

∂
, where λ

i
denotes the plastic multiplier and Q is the plastic 

potential. A non associative flow rule is used to avoid overprediction of 
dilatancy. Therefore Q differs from the loading function. The expression of 
the loading function proposed is:  

 ( ) ( ) ( )
22

3, , , , (1 )
' 26 'c cc

r r
F k c k

f ff
ρ θ ρ θρσ ρ θ

⎧ ⎫⎡ ⎤⎪ ⎪= − + +⎨ ⎢ ⎥ ⎬
⎪ ⎣ ⎦ ⎪⎩ ⎭

'
+  

 
( )2

=

1

2 0
' 6c

rk m k c
f

ρ θ
σ

⎡ ⎤
+ + −⎢ ⎥

⎣ ⎦
 (3.4.4) 

where  m is the friction parameter, while softening is represented varying 
the decohesion parameter c from unity to zero. 
In the hardening regime the evolution of the loading surface is varied by the 
parameter k ( 0 ), namely “normalized strength parameter”. The linear 
elastic response is therefore bounded by the initial value of k (for instance k

k≤ ≤
0 

= 0.1). Note that for k=1 the loading function reduces to the failure one. 
The shape of the hardening surfaces for different values of k is depicted in 
Figure 3.4.4. Note that initially the loading surface are closed to allow for 
cap action. The hardening function is smooth everywhere except at its 
intersection with the hydrostatic axis. In Figure 3.4.5 the same surface are 
represented during softening (for c ranging from zero to unit). 
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Figure 3.4.4: Loading surface of Etse-William model in hardening regime: (a) Meridian 

sections; (b) deviatotic sections at σ / fc’ = −0.3. 

 
Figure 3.4.5: Loading surface of Etse-William model in softening regime: (a) Meridian 

sections; (b) deviatoric sections at σ / fc’ = 0. 

A non associated flow rule is used to control inelastic dilatancy. This is 
required because it is seen experimentally that the use of an associative flow 
rule, over predicting the dilatation, over predicts the confinement, as well, 
leading to overestimation of structural element affected by passive 
confinement. 
The plastic potential used is based on a volumetric modification of the yield 
condition. Therefore, the deviatoric component of the plastic strain rate 
follows an associated flow rule. The plastic potential has the following 
form: 
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 ( ) ( ) ( ) ( )
2

3, , , , , 1
' 2 '6 'Q
c cc

r r
Q k c m k

f ff
ρ θ ρ θσσ ρ θ
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c⎥  (3.4.5) 

where  is defined in terms of its gradient:  Qm

 2exp( )Qm
D Ex

σ
∂

G= +
∂

 (3.4.6) 

Where 
'

3
'

t

c

f
x

f

σ− +
= .  

The material parameters D, E and G are to be calibrated from three different 
experiments using dilatancy measurements at different levels of the 
hydrostatic component of the stress.  
For the hardening formulation the model introduces a scalar variable α such 
that:  

 
1

p
px

α ε=
i i

 (3.4.7) 

where pε
i

 is the Euclidean norm of the of the plastic strain rate:  

 p p p mε ε ε λ= =
i i i i

i ,  (3.4.8) 

xp is a function of the confinement through the stress invariant σ and have 
the following polynomial expression: 

 ( )
2

' 'p p
c c

x x A
f f
σ σσ

⎛ ⎞ ⎛ ⎞
= = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
C ,  (3.4.9) 
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therefore, Eq. (3.4.7) defines the rate of strain hardening σ in terms of xp and 
pε
i

, with α=0 at the beginning of the inelastic deformation process. The 
peak strength is reached for α=1. 
The normalized strength parameter k which controls the evolution of the 
yield surface in the pre-peak regime, is finally expressed by the following 
function of the variable α:  

 ( ) ( )0 0(1 ) 2k k k kα α α= = + − − ,  (3.4.10) 

Finally, it is worth considering that the correct modelling of softening is a 
very important aspect of concrete modelling. It is widely recognized, in fact, 
that the most relevant source of nonlinearity in structural problems 
involving concrete is cracking of concrete.  
In the smeared crack concept, in which the cracked medium is represented 
as an equivalent continuum, a good representation of the softening of the 
material in tension is of key importance for the correct prediction of crack 
propagation and spacing. However, softening does not occur only in tension 
and its different characteristics for different confinement regimes determine 
brittle or ductile response of the material in compression. 
Concrete softening is the manifestation of drastic changes of the micro and 
mesostructure of the heterogeneous material, when micodefects propagate 
and coalesce into macrodefects. Softening is then a structural phenomenon 
rather than a material property. 
Because of this, in a smeared crack based formulation for softening 
behaviour there is a difficulty in determining softening relations that are 
independent on test configuration and boundary conditions. 
A possible strategy is the use of a fracture energy base softening description. 
Softening is represented through a reduction of the decohesion parameter c 
and the friction parameter m and is assumed to take place only for values of 
confinement below a determined transition point. The decohesion factor c 
varies from 1 to 0 during the softening process and the shear parameter m is 
a function of the decohesion one as the deviatoric strength at the transition 
point is assumed to be constant during the softening process. 
The intermediate softening surface after failure is defined by:  
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 ( ) ( ) ( )2
3, , , 0
2 ' ' 6

s
s s

c c

r rmF c c
f f

ρ θ ρ θ
σ ρ θ σ

⎡ ⎤ ⎡ ⎤
= + + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= ,  (3.4.11) 

Imposing the constraint that the deviatoric strength at the transition point is 
fixed we get that the parameter ms have the following expression:  

 ( )0s r rm m m m c= − − s ,  (3.4.12) 

where mr is the residual shear parameter and m0 is the initial one. 
The ratio cs is defined as:  

  
'
t

s
t

c
f
σ

= ,  (3.4.13) 

it varies in the field [0, 1].  

3.4.2 Menetrey-William yield criterion  (1995) 
The model described in the previous section include all the main aspects 
characterizing the behaviour of plain concrete. A model of this type can be 
implemented in a computer program to trace, given a straining history, the 
corresponding stress history.  
However a program of this kind does not necessarily have the stability and 
efficiency required for the inclusion within a finite element architecture. 
This is due to two basic reasons.  
First, the computational time is not an issue if the sole purpose of the 
program is to reproduce a stress history for a given strain history, in order to 
validate a constitutive law. 
Second, in a finite element model it is desirable to assemble a tangent 
operator necessary for the use of a Full Newton Raphson solution alghoritm. 
This tangent modulus should be assembled in efficient manner to speed up, 
rather the slowing down, the solution. On the other hand softening, as it is 
well known, leads to negative stiffnesses in local areas whose propagation 
in the analysed domain renders the tangential stiffness of the problem 
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singular and leads to failure of the procedures for solving non linear 
problems. 
To circumvent these issues, as typical in engineering, may be convenient to 
renounce to completeness and make use of a model embodying only the 
aspects deemed to be decisive. The choice of the characteristics of  a model 
depends on implementation issues, computational effort required, numerical 
convergence performance, but also on the purpose of the analysis and the 
range of application of the model.  
The model adopted is an isotropic elastoplastic model with standard 
isotropic hardening. It features an associative flow rule as dilatancy is not 
thought to be a key parameter for the investigation carried out (limited 
passive confinement is involved).  
The Menetrey-William plasticity model [1995] is based on the hypothesis of 
material isotropy, whereby the yield function can be expressed in terms of 
the three invariants, J1, J2 and J3 of the stress state, σ: 

 2 2 3 3
1 2 3

1 1 1 11; 1; 1
2 2 3 3

J tr J trS S J trS Sσ σ= = = = = =i i i ,  

  (3.4.14) 

with S denoting the deviatoric part of σ, 1 the rank-two identity tensor and 
the symbol i  indicating the operation of scalar product. 
For geometrical interpretation it is convenient to introduce the three Haigh-
Westergaard cylindrical coordinates:  

 1 3
1 2 3

2
2

3 31 1; 2 ; cos
33 2

JI J
J

ξ ρ θ −

⎛ ⎞
⎜= = = ⎜⎜ ⎟
⎝ ⎠

⎟
⎟ ,  (3.4.15) 

where ξ represents the mean stress, ρ is the norm of the deviatoric stress, 
and θ denotes the Lode angle. 
The Menetrey-Willam yield function can then be written as follows:  

 ( ) ( ) ( )2, , ,A m B r c C cφ ξ ρ θ ρ ρ θ ξ⎡ ⎤= + + −⎣ ⎦ ,  (3.4.16) 
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where A, B, C, m and e represent material parameters, c accounts for 
isotropic hardening and r indicates the Klisinski function, defined by:  

 
( ) ( )

( ) ( )

22 2

2 2 2

4 1 cos 2 1
( , )

2(1 )cos 2 1 4 1 cos 5 4

e e
r e

e e e e

θ
θ

θ θ

− + −
=

− + − − + −2 e
 

  (3.4.17) 

for [ ]0, 3θ π∈ , and by assuming the following symmetry conditions:  

 

( )

2 , ( ,
3

, ( , )

r n e r

r e r e

π )eθ θ

θ θ

⎛ ⎞+ =⎜ ⎟
⎝ ⎠
− =

 (3.4.18) 

for [ ]0, 3θ π∉ , with n being an arbitrary integer. 
From the definition of the yield function (Eq. (3.4.16)) the following 
remarks on the yield surface can be made:  
 It is convex and smooth everywhere except at a vertex located along the 

hydrostatic axis, that is for any value of θ, ρ= 0 and ξ = c/(mC);  
 its sections with the planes θ = θ0 = constant are parabolic curves;  
 if A=0, its section with the plane ξ=ξ0=constant is a curve whose 

equation in polar coordinates ρ, θ is given by:  

 ( ) ( )
0 1

,
c mC

mB r e
ξρ ρ θ

θ
−

= =  (3.4.19) 

Hence, to within the factor ( 0c mC mBξ− ), the function defined by 
equation (3.4.19) coincides with the inverse of the Klisinski function 
(3.4.17).  
It has been shown in the work published by Menetrey & William [1995] that 
the parameters in Eq. (3.4.16) can be suitably fixed so as to specialize the 
Menetrey-Willam yield criterion to the Hencky-von Mises, Drucker-Prager, 
Rankine and Leon criteria. Mohr-Coulomb criterion can also be well 
approximated.  
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3.4.3 Lee-Fenves model (1998) 
The model is based on an internal variable formulation of plasticity theory 
for the nonlinear analysis of concrete. The model makes use of the fact that 
concrete eventually exhibits strain-softening in tension and compression, 
leading to complete loss of strength. In this regard, concrete resembles such 
materials as cohesive soils, and may be classified with them as frictional 
materials with cohesion, where the eventual loss of strength may be thought 
of as the vanishing of the cohesion.  
For such a model to be capable of representing the behaviour of concrete 
materials, the yield criterion must be of the form in which the concept of 
cohesion is clear, and the hardening rule should be such that it will 
eventually lead to vanishing of the cohesion (total damage). 
The model of Lee & Fenves [1998], makes use of the yield function of 
Lubliner et. al. [1989]. The modifications proposed by Lee and Fenves was 
introduced in order to account for different evolution of strength under 
tension and compression.  
The model has the following characteristics: 
 The shape of the yield surface is assumed to remain constant and is 

defined by a modified Mohr-Coulomb criterion;  
 The evolution of the elastic domain is defined by a hardening rule that 

is calibrated on the basis of experimental data;  
 Plastic strain is defined on the basis of an associated flow rule;  
 Damage is assumed to be isotropic and defined by a single scalar 

damage variable, plε� , that is a measure of the accumulated damage;  
 Damage is assumed to accumulated as a function of plastic strain. 

An additive strain rate decomposition is assumed for this rate-independent 
model:  

  el pl= +ε ε ε
i ii

,  (3.4.20) 

where is the total strain rate, is the elastic part of the strain rate, and ε
i

elε
i

plε
i

is the plastic part of the strain rate. The stress-strain relations are 
governed by a scalar damaged elasticity:  
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 ,  (3.4.21) ( ) 01 :el pld ⎛
= − −⎜

⎝ ⎠
σ D ε ε

ii ⎞
⎟

D
where is the initial (undamaged) elastic stiffness matrix of the material, 

 is the degraded elastic stiffness matrix, and d is the scalar 
stiffness degradation variable, which can take values in the range from zero 
(undamaged material) to one (fully damaged material). Damage associated 
with the failure mechanisms of the concrete (cracking and crushing) 
therefore results in a reduction in the elastic stiffness. Within the context of 
the scalar-damage theory, the stiffness degradation is isotropic and 
characterized by a single degradation variable, d. The effective stress is 
defined as:  

0
elD

( ) 01el eld= −D

 ( )0 :el pl= −σ D ε ε ,  (3.4.22) 

The Cauchy stress tensor is related to the effective stress tensor through the 
scalar degradation relation:  

 ( )1 d= −σ σ ,  (3.4.23) 

For any given cross-section of the material, the factor ( )1 d− represents the 
ratio of the effective load-carrying area (i.e., the overall area minus the 
damaged area) to the overall section area. In the absence of damage, , 
the effective stress tensor 

0d =
σ  is equivalent to the Cauchy stress tensor, σ . 

When damage occurs, however, the effective stress is more representative 
than the Cauchy stress because it is the effective stress area that is resisting 
the external loads. It is, therefore, convenient to formulate the plasticity 
problem in terms of the effective stress. As discussed later, the evolution of 
the degradation variable is governed by a set of hardening variables, , 
and the effective stress, that is, 

plε�
( ), pld d= σ ε� .  

Damaged states in tension and compression are characterized independently 
by two hardening variables, pl

tε� and pl
cε� , which are referred to as equivalent 

plastic strains in tension and compression, respectively. The evolution of the 
hardening variables is given by an expression of the form:  
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 ( ),pl pl pl= ⋅ε h σ ε ε
i i

� � ,  (3.4.24) 

with:  

 
pl

pl t
pl

c

ε
ε

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
ε

�
�

�
,  (3.4.25) 

Micro-cracking and crushing in the concrete are represented by increasing 
values of the hardening variables. These variables control the evolution of 
the yield surface and the degradation of the elastic stiffness. They are also 
intimately related to the dissipated fracture energy required to generate 
micro-cracks.  
In terms of effective stresses, the yield function takes the form:  

 ( ) ( )( ) ( )max max
1 ˆ ˆ, 3

1
pl pl pl

c cF q pα β σ γ σ σ ε 0
α

= − + − − ≤
−

σ ε ε �� � ,  

  (3.4.26) 

where α and γ are dimensionless material constants;  

 ( 1 2 3
1 1: 33

p )σ σ σ= − = − + +σ I ,  (3.4.27) 

is the effective hydrostatic pressure;  

 
3 :
2

q = S S ,  (3.4.28) 

is the Mises equivalent effective stress;  

 p= +S I σ ,  (3.4.29) 

is the deviatoric part of the effective stress tensor σ ; and maxσ̂  is the 
algebraically maximum eigenvalue of σ .  
The Macauley bracket ⋅  is defined by ( )1 2x x x= + .  
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The function  is given as:  ( plβ ε� )

 ( ) ( )
( ) ( ) (1 1

pl
c cpl

pl
t t

σ ε
)β α

σ ε
α= − − +ε

�
�

�
,  (3.4.30) 

where cσ and tσ are the effective tensile and compressive cohesion stresses, 
respectively.  
In biaxial compression, with max

ˆ 0σ = , Eq. (3.4.26) reduces to well-known 
Drucker-Prager yield condition. The coefficient α can determined from the 
initial equibiaxial and uniaxial compressive yield stress, 0bσ and 0cσ , as:  

 (
0

0

0

0

1
, 0 0

2 1

b

c

b

c

σ
σ

α
σ

σ

⎛ ⎞ −⎜ ⎟
⎝ ⎠=
⎛ ⎞ −⎜ ⎟
⎝ ⎠

).5α≤ ≤ ,  (3.4.31) 

The coefficient γ enters the yield function only for stress state of tri-axial 
compression, when max

ˆ 0σ ≠ . It can be determined by comparing the yield 
conditions along the tensile and compressive meridians. By definition, the 
tensile meridian (TM) is the locus of stress states satisfying the condition 

max 1 2 3
ˆ ˆ ˆ ˆσ σ σ σ= > =  and the compressive meridian (CM) is the locus of 

stress states such that max 1 2 3
ˆ ˆ ˆ ˆσ σ σ σ= = > , where 1σ̂ , 2σ̂  and 3σ̂  are the 

eigenvalues of the effective stress tensor.  
With max

ˆ 0σ <  the corresponding yield conditions are:  

 ( ) ( ) (2 1 3 1
3 cq pγ γ α α σ⎛ ⎞+ − + = −⎜ ⎟

⎝ ⎠
)TM  (3.4.32) 

 ( ) ( ) (1 3 1
3 cq pγ γ α α σ⎛ ⎞+ − + = −⎜ ⎟

⎝ ⎠
)1 CM  (3.4.33) 

Let ( ) ( )c TM CMK q q= for any given value of the hydrostatic pressure p with 
max

ˆ 0σ < ; then:  
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3

2 3cK γ
γ
+

=
+

,  (3.4.34) 

The coefficient γ is, therefore, evaluated as:  

 
( )

12
13

−
−

=
c

c

K
Kγ ,  (3.4.35) 

If max
ˆ 0σ > , the yield conditions along the tensile and compressive 

meridians reduce to:  

 ( ) ( ) (2 1 3 1
3 cq pβ β α α σ⎛ ⎞+ − + = −⎜ ⎟

⎝ ⎠
)TM  (3.4.36) 

 ( ) ( ) (1 1 3 1
3 cq pβ β α α σ⎛ ⎞+ − + = −⎜ ⎟

⎝ ⎠
)CM  (3.4.37) 

Let ( ) ( )t TM CMK q q=  for any given value of the hydrostatic pressure p with 
max

ˆ 0σ > ; then  

 
3

2 3tK β
β

+
=

+
,  (3.4.38) 

Typical yield surfaces are shown in Figure 3.4.6 in the deviatoric plane and 
in Figure 3.4.7 for plane-stress conditions.  
For sake of simplicity, the equations which define the damage and stiffness 
degradation are conveniently reported by considering uniaxial loading 
conditions.  
The uniaxial degradation variables (dt and dc) are increasing functions of the 
equivalent plastic strains. They can take values ranging from zero, for the 
undamaged material, to one, for the fully damaged material.  
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Figure 3.4.6: Yield surfaces in the deviatoric plane, corresponding to different values of Kc 

[Lee & Fenves 1998] 

 

Figure 3.4.7: Yield surface in plane stress [Lee & Fenves 1998] 

 74 



 
NUMERICAL ANALYSIS on the DEBONDING of FRP FLEXURAL REINFORCEMENT of RC MEMBERS           
 

If E0 is the initial (undamaged) elastic stiffness of the material, the stress-
strain relations under uniaxial tension and compression loading are, 
respectively:  

 ( ) ( ) ( )01pl pl
t t t t td Eσ ε ε= − −� ε�  (3.4.39) 

 ( ) ( ) ( )01c c c c cd Epl plσ ε ε= − −� ε�  (3.4.40) 

Under uniaxial loading cracks propagate in a direction transverse to the 
stress direction. The nucleation and propagation of cracks, therefore, causes 
a reduction of the available load-carrying area, which in turn leads to an 
increase in the effective stress. The effect is less pronounced under 
compressive loading since cracks run parallel to the loading direction; 
however, after a significant amount of crushing, the effective load-carrying 
area is also significantly reduced. The effective uniaxial cohesion 
stresses, tσ and cσ , are given as:  

 ( ) ( ) (01
pl plt

t t t t
t

E
d )σσ ε = = −

−
� ε ε�  (3.4.41) 

 ( ) ( ) (01
pl plc

c c c c
c

E
d )σσ ε = = −

−
� ε ε�  (3.4.42) 

The effective uniaxial cohesion stresses determine the size of the yield (or 
failure) surface.  
It should be noted here that for tensile loading, damage and plasticity are 
initiated when the equivalent applied stress reaches the uniaxial tensile 
strength 0bσ  as shown in Figure 3.4.8(a). However, under compressive 
loading, damage is initiated at a different stage than plasticity. Once the 
equivalent applied stress reaches 0cσ  (i.e. when nonlinear behaviour starts) 
damage is initiated, whereas plasticity occurs once cuσ  is reached (Figure 
3.4.8(b).  
Therefore, generally 0tu bσ σ=  for tensile loading, but this is not true for 
compressive loading (i.e. 0cu cσ σ≠  ). 
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Figure 3.4.8: Concrete behaviour under uniaxial loading in, (a) tension, (b) compression 

[Lee & Fenves 1998] 

The concrete damaged plasticity model assumes a non-associated potential 
plastic flow rule:  
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( )pl G

λ
∂

=
∂
σ

ε
σ

i i
,  (3.4.43) 

The flow potential G used for this model is the Drucker-Prager hyperbolic 
function:  

 ( ) ψψσ tgpqtgeG t −+= 22
0 ,  (3.4.44) 

which makes use of two stress invariants of the effective stress tensor, like 
yield surface.  
Parameter ψ  is the dilation angle measured in the p–q plane at high 
confining pressure; σt0  is the uni-axial tensile stress at failure; and e is an 
eccentricity parameter, that defines the rate at which the function 
approaches the asymptote (the flow potential tends to a straight line as the 
eccentricity tends to zero). When the value of e increases, the curvature to 
the flow potential becomes greater, implying that the dilation angle 
increases more rapidly as the confining pressure decreases. 
This flow potential, which is continuous and smooth, ensures that the flow 
direction is always uniquely defined.  
The function asymptotically approaches the linear Drucker-Prager flow 
potential at high confining pressure stress and intersects the hydrostatic 
pressure axis at 90°.  
As it is known, the non associative flow rule is necessary to control the 
dilatancy in modelling frictional materials like concrete [Chen & Han 1988], 
but this requires the solution of non-symmetric equations.  
In summary, the elastic-plastic response of the concrete damaged plasticity 
model is described in terms of the effective stress and the hardening 
variables:  
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�

� �  (3.4.45) 

where λ
i

and F obey the Kuhn-Tucker conditions 0; 0; 0F Fλ λ= ≥ ≤
i i

.  
The Cauchy stress is calculated in terms of the stiffness degradation 
variable, ( ), pld σ ε� , and the effective stress through Eq. (3.4.23).   
The constitutive relations for the elastic-plastic response (Eq. (3.4.45)) are 
decoupled from the stiffness degradation response (Eq. (3.4.23)) which 
makes the model attractive for an effective numerical implementation. 
It’s to be noted that, unlike concrete models based on the smeared crack 
approach, the concrete damaged plasticity model does not have the notion of 
cracks developing at the material integration point. However, in order to 
introduce the concept of an effective crack direction with the purpose of 
obtaining a graphical visualization of the cracking patterns in the concrete 
structure, different criteria can be adopted within the framework of scalar-
damage plasticity for the definition of the direction of cracking.  
Lubliner et. al. [1989] assumed that cracking initiates at points where the 
tensile equivalent plastic strain is greater than zero, , and the 
maximum principal plastic strain is positive. The direction of the vector 
normal to the crack plane is assumed to be parallel to the direction of the 
maximum principal plastic strain.  

0pl
tε >�

3.4.4 Oliver et al. model (1991) 
Damage models have become, recently, popular techniques for simulating 
various nonlinear effects in materials. The isotropic damage model of Oliver 
et al. [1991] includes degradation of the material both in tension and in 
compression. 
The onset of damage is established by imposing a damage condition similar 
to a yield function in elastoplasticity. 
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Different tensile and compressive strengths can be specified and the model, 
even though very simple, has been used, also by others, to attempt a 
smeared crack type modelling of concrete. 
Damage accumulation is represented by using a function of the 
complementary energy:  

 ( ) 01 exp 1t
t t

G Aττ
τ τ

0τ⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
,  (3.4.46) 

where τ0 is a damage threshold and has the expression:  

 
( )

( )
0 1

2
0

t

E

σ
τ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

,  (3.4.47) 

and τt (the term containing the complementary energy) is the current 
damage strength and has the expression:  

 ( )
1

1 2
0max , T

t tτ τ γ σ −⎧ ⎫
= Ε⎨ ⎬

⎩ ⎭
,  (3.4.48) 

where E denotes as usual the elastic compliance tensor of the undamaged 
material and  is a scalar function of the stresses. For the case of no damage 
G(τt) = G(τo) = 0. 
The parameter A in (3.4.46) is a material parameter and has the following 
expression in Oliver’s model:  

 

1

0 0.5f
t
d

G E
A

σ

−
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,  (3.4.49) 

With E0 initial modulus of elasticity of concrete and Gf fracture energy in 
mode I of concrete. 
Eventually, the secant stiffness matrix of the material is given as:  
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 ( )sec
01E G= − E ,  (3.4.50) 

From which the current stresses can be easily calculated. 
The model has been used because no difficulty whatsoever has been 
encountered in terms of convergence. It is, admittedly too simplistic, for 
concrete, but was useful to obtain preliminary results against which to 
compare those obtained with more sophisticated models. 

3.5 MODELLING OF CONCRETE CRACKING 

Because of its influence on the mechanism of stress transfer between the 
FRP and the concrete, cracking of concrete has a great influence on the 
behaviour of RC beams retrofitted with FRP. Within the framework of the 
finite element method, there exist several techniques to model crack onset 
and propagation. 
For problems in which the local distribution of stresses is not very 
important, methods considering the cracks like uniformly spread on a 
portion of material affected by cracking have become popular. Stresses and 
strains in such a volume (large enough to contain a few cracks) are 
represented by averaged values, calculated in some cases taking into 
account also the reinforcement and its interaction with the base material. In 
this approach cracking is reduced to a constitutive problem and the 
continuity is not lost at the element or mesh level with obvious advantages 
from the implementation point of view.  
More precisely models of this kind are referred to as models using the 
smeared crack concept. The denomination is due to the fact that cracks are 
somehow smeared into a finite volume rather than localised as discrete 
discontinuity.  
It is opportune, now, to clarify that such an approach is currently used in 
two, quite different, contexts. One case is the modelling of a large portion of 
a structure in which a finite element is representative of a volume actually 
containing series of parallel cracks in one or more directions, for which the 
smearing is quite a natural operation. In this context the control volume 
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includes generally also reinforcement uniformly spread in different 
directions and the constitutive law used is representative of the entire 
assemblage of uncracked concrete, cracks and reinforcement (note that we 
deliberately refer to cracks like to a sort of frictious structural unit). The 
other case is the modelling of the onset and growth of localised cracks into a 
plain concrete volume.  
Although the two applications of the smeared crack concept are quite 
different they are both developed on the same basic framework. The main 
difference being mainly the strategy used, in the latter, for the localization 
of the strains representative of cracking within narrow bands (ideally with 
the width of a single element).  
The first reinforced concrete finite element model which includes the effect 
of cracking was developed by Ngo and Scordelis [1967], who carried out a 
linear elastic analysis of beams with predefined crack patterns. The cracks 
were modelled by separating the nodal points of the finite element mesh and 
thus creating a discrete crack model (Figure 3.5.1). Although, the lack of 
generality in crack orientation has made the discrete crack model unpopular, 
the use of discrete crack models in finite element analysis offers certain 
advantages over other methods. For those problems that involve a few 
dominant cracks, the discrete crack approach offers a more realistic 
description of the cracks, which represent strain discontinuities in the 
structure.  
Such discontinuities are correctly characterized by the discrete crack model. 
The need for a crack model that offers automatic generation of cracks and 
complete generality in crack orientation, without the need of redefining the 
finite element topology, has led the majority of investigators to adopt the 
smeared crack concept also to model discrete cracks. 
Rather than representing a single crack, as shown in Figure 3.5.1 (a), the 
smeared crack model represents many finely spaced cracks perpendicular to 
the principal stress direction, as illustrated in Figure 3.5.1 (b).  
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Figure 3.5.1: Cracking models: (a) discrete; (b) smeared 

The smeared crack model first used by Rashid [1968] represents cracked 
concrete as an elastic orthotropic material with reduced elastic modulus in 
the direction normal to the crack plane. With this continuum approach the 
local displacement discontinuities at cracks are distributed over some 
tributary area within the finite element and the behaviour of cracked 
concrete can be represented by average stress-strain relations. In contrast to 
the discrete crack concept, the smeared crack concept fits the nature of the 
finite element displacement method, since the continuity of the 
displacement field remains intact.  
As far as the reinforced concrete beams retrofitted with FRP are concerned 
local effects are relevant as they largely influence the behaviour of the 
interface.  
In the case of uniform stress distribution and under the spreading action 
exerted by the reinforcement (both ordinary and external FRP 
reinforcement) inelastic strains do not localise in the zones where cracks are 
expected, but tend to spread over the volume, missing to give a good 
representation of local effects. This behaviour of this kind of model is 
known to researchers, who recognise that the problem cannot be effectively 
solved without the introduction a random dishomogeneity of the material . 
Because of this tendency to spread the damage into the volume interested by 
tensile stresses, the smeared cracking models proved to be not suitable for 
the detailed investigation of the behaviour of RC beams retrofitted with FRP 
and in particular for the prediction of the interfacial behaviour at the FRP to 

 82 



 
NUMERICAL ANALYSIS on the DEBONDING of FRP FLEXURAL REINFORCEMENT of RC MEMBERS           
 

concrete joint. The initial approach of resorting to preset cracks proved to be 
therefore more adequate.  
In the finite element analysis carried out in this work, cracking of concrete 
has been dealt with by introducing preset cracks in the finite element mesh. 
This approach was justified because the crack pattern on the beams analysed 
was known from experimental records and because the main focus was not 
on the prediction of the formation and propagation of cracks, but on their 
effect on the performance of the structure once formed and fully developed.  
It is important to note that there exist, nowadays, techniques enabling the 
introduction of discontinuities in the displacement field within a finite 
element and therefore a more realistic modelling of cracking. The 
implementation of these techniques, likewise that of others involving 
automatic generation of a new mesh, when a crack forms, is outside the 
scope of this research work.  
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CHAPTER IV 
FRACTURE MECHANICS  and COHESIVE-ZONE MODELS 

4.1 INTRODUCTION to BASIC CONTINUUM 
MECHANICS 

Considering an initial  position X of a material point and the next position x, 
given by x=X+u, and the elementary displacements dx and dX we can write 
that:  

 d d d∂
= =

∂
xx X F
X

X  (4.1.1) 

We define the Green Lagrange strain tensor as:  

 (1
2

T )= −E F F I  (4.1.2) 

By differing the expression of x according to X we obtain F=I+D where 
D=gradu. So:  

 1 1
2 2

T⎡ ⎤= + +⎣ ⎦E D D DT D  (4.1.3) 

In a crack problem, we often deal with small deformations. Consequently, E 
can be linearised at the first order and we introduce the small strain tensor ε 
defined as: 

 1
2

T⎡ ⎤= +⎣ ⎦ε D D  (4.1.4) 

The mechanical equilibrium in small strains is given by the principle of 
virtual work:  
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  (4.1.5) * * :i e v
V

W W W dV Wδ= − = −∫σ ε *
e

Where W*
e is the virtual work due to the external load, W*

i is the virtual 
work due to the internal forces, and δεv is a virtual strain change. So we 
need to know the change, δε, in order to have a simpler expression of the 
virtual work.  

 ( ) ( )δ δ≈ + −ε ε u u ε u  (4.1.6) 

After calculus, we obtain the expression:  

 (1
2

T )δ δ δ= +ε D D  (4.1.7) 

Where δD is equal to grad(δu). Considering equation (4.1.7), the virtual 
strain δεv becomes:  

 1
2

T
v v vδ δ δ= +ε D D

e

 (4.1.8) 

Finally we have the following expression of the virtual work:  

 *: v
V

W dVδ= −∫σ D P  (4.1.9) 

The equation (4.1.9) will allow the formulation of the out-of-balance force 
vector g used in non-linear procedures, while to form the tangent stiffness 
matrix, we can use the change in (4.1.9):  

 0W W Wδ≈ +  (4.1.10) 

Accordingly, the virtual work need to be differentiated:  

 :  (4.1.11) v
V

Wδ δ δ= ∫ σ D dV
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Knowing the behaviour law σ=C ε we can express the change in σ as:  

 tδ δ≈σ D ε  (4.1.12) 

Inserting this equation in the change of the virtual work, it results:  

  (4.1.13) *:t v
V

W dVδ δ δ δ= ∫ D ε ε eW−

This decomposition allows the use of a finite-element formulation and the 
study small strain problems with linear or non-linear materials. In general, 
dealing with large strains leads to a second term in the formulation, which 
introduces consequently non-linear geometry.  

4.2 BASIC FINITE-ELEMENT  ANALYSIS OF 
CONTINUA 

In this section the approximation of the continuum formulation by means of 
a finite element discretisation will be illustrated considering for simplicity a 
two-dimensional formulation. The structure is then divided into a finite 
number Ne of elements. For each of them, equation (4.1.7) can be separately 
written and then an assembly procedure is used in order to obtain the 
complete system of equations. Focusing the attention to a simple element, 
where the displacement u and v are related to nodal values u and v via shape 
function h as follows:  

 u = hu  (4.2.1) 

hv  (4.2.2) v = 

The deformation ε can be expressed as follows: 

 = 1ε B p  (4.2.3) 

and 
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 δ δ= 1ε B p  (4.2.4) 

Where p contains the vector of element nodal displacement and BB

δ= T

1 is a 
matrix. Substituting (4.2.4) into (4.1.7) it gives:  

 :e
V

W dVδ δ δ= −∫T
v 1 v e vp B σ p q p g  (4.2.5) 

With the notation , where q:
V

dV= ∫i 1q B σ i represent the internal forces, 

from equation (4.2.5), the out-of-balance force vector g is given by:  

 = −i eg q q  (4.2.6) 

As W=0 for each δpv , Eq. (4.2.5) gives g=0, and this problem is referable to 
the problem just explained in the first section. 
It needs also to know the tangent stiffness matrix Kt in order to use non-
linear methods. From Wδ δ δ= T

vp g , it results:  

 Wδ δ δ∂
=

∂
T
e

gp
p

p  (4.2.7) 

The tangent stiffness matrix defined by ∂
=

∂t
gK
p

 can be used in order to 

solve the mechanical problem. 

4.3 LEFM and DAMAGE MECHANICS 

4.3.1 Linear Elastic Fracture Mechanics 
The linear elastic fracture mechanics (LEFM) is based on an elastic analysis 
of the stress field for small strains. It gives excellent results for brittle-elastic 
materials. With the occurrence of plasticity or visco-plasticity, we enter into 
the field of non-linear fracture mechanics, which uses more complicated 
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methods. The analysis of stresses and strains in the vicinity of crack tips 
constitutes a necessary basis for studying crack behaviour. Fracture 
mechanics assumes the existence of an initial crack in the structure.  

4.3.1.1  Global Energy Balance 

For fracture to occur, the energy stored in the structure must be sufficient to 
overcome the surface energy of a material. It can be defined by the Griffith 
energy balance for an incremental increase in the crack area dA under 
equilibrium condition:  

 0sdWdE d
dA dA dA

π
= + =  (4.3.1) 

E is the total energy, π is the potential energy supplied by the internal strain 
energy and external forces, Ws is the work required to create new surfaces. 
Two different approaches can be considered for studying fractures. 

4.3.1.2  The energy approach 

The energy approach is equivalent to the Griffith model. The energy release 
rate G is a measured of the energy available for an increment of crack 
extension:  

 dG
dA
π

= −  (4.3.2) 

Thus, G is also indicated as the crack extension force. 

Crack extension occurs when G reaches a critical value 2e
c f

dWG
dA

ω= = , 

called critical energy release rate or fracture energy.  

4.3.1.3  The stress analysis of cracks 

One can show that the stress field in any linear elastic cracked body for an 
infinite plate is:  
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 ( ) ( ) ( )2

0

m
m

ij ij m ij
m

k f A r g
r

σ θ
∞

=

= + ∑ θ  (4.3.3) 

with a polar coordinate axis with the origin at the crack tip. Near the crack 
tip, σij varies with r1/2 and introducing the stress intensity factor K=k(2π)1/2, 
the stress fields ahead of a crack tip in an isotropic linear elastic material 
can be written as:  

 ( )lim
2

n n
ij ijr

K nf q
r

σ
π→∞

= , (4.3.4) 

where n corresponds to mode I, II, or III. The knowledge of Kn enables to 
find all the components of the stress tensor or the displacement components 
in a cracked structure which is assumed to behave elastically.  
Although stress intensity solutions are given in a variety of forms, Kn can 
always be related to the crack through the correction factor:  

 K Y aσ π= , (4.3.5) 

where σ is a characteristic stress, a is a characteristic crack dimension and Y 
is a dimensionless constant that depends on geometry and mode loading. 

4.3.1.4  Relation between K and G 

The term G quantifies the net change in potential energy that accompanies 
an increment of crack extension, and K characterises the stresses strains and 
displacements near the crack tip. Meaningfully, G is for a global behaviour 
while K is for a local analysis. 
For example, considering a two-dimensional mode I problem, and denoting 
by E and ν the Young modulus and the Poisson ratio, the following formula 
holds:  

 
2
IKG

E
= , (4.3.6) 
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with 'E E= for plane stress and 2'
1

EE
ν

=
−

for plane strain. 

4.3.2 Fracture Based Approaches 
A number of relationships are available that attempt to quantify the critical 
relationship between stress, flaw size, and toughness, but each of these 
approaches is only suitable in limited situations. Analytical values of crack 
variables are only available for very simple geometries. Thus, it becomes 
necessary to resort to finite-element analysis. The setting up of a mesh 
constitutes a difficult problem since it must represent the singular stress 
field in the vicinity of the crack tip. The global approach to crack growth 
uses the crack variables K, G or J.  
A brief outline of some finite element procedures to analyse fracture process 
will be done in the follows. Most of these approaches are formulated in the 
hypotheses of linear and elastic material.  

4.3.2.1  Local analysis: direct method 

In the direct method, the stress intensity factor is determined directly from 
the computed stresses, or the displacement field, in the vicinity of the crack 
tip. This technique requires a high accuracy in calculations due to the 
presence of the singularities. Once the displacement field has been 
determined, a simple way of obtaining the stress intensity factors is by 
using, for example, relations in plane stress:  

 
1

2

0

2lim
8n r

EK
r
π

→ nu
⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤= ⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

, (4.3.7) 

Other methods are based on the calculation of the energy release rate for a 
unit growth of the crack. These indirect methods use nodal information to 
obtain the energy release rate, which can be used to calculate K. 
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4.3.2.2  Virtual crack extension 

This method enables to compute G for a very small crack extension. The 
potential energy is given as follows:  

 1
2

T= −π p Kp p FT , (4.3.8) 

where p are the nodal displacement, K is the stiffness matrix and F are the 
external nodal forces. Then the energy release rate is computed as:  

 [ ] 1
2

T
T Td d d dG

dA dA dA dA
= − = − − − +

π p KKp F p p p F  (4.3.9) 

Using the equilibrium Kp-F=0, we obtain:  

 1
2

T dG
dA

= −
Kp p  (4.3.10) 

Generating a finite-element mesh for a body with crack length a, the 
extension of crack by Δa, assuming that the small crack has only a local 
effect, can be obtained through the following expression for the energy 
release rate: 

 
1

1
2

cN
T

i

dG
dA=

= − ∑ KU U  (4.3.11) 

4.3.2.3  The virtual crack closure method 

The formulation was originally addressed by Rybicki and Kanninen for two-
dimensional problems. The crack closure method is based on the fact that 
the energy needed to extend a crack of length a by an infinitesimal amount 
Δa is equal to the energy needed to close the crack to its original length. In 
the follows this method will be briefly explained. The energy release rate is 
computed with the sole use of nodal forces and displacements. For 
simplicity, a two-dimensional problem with a unit thickness will be 
considered. The energy release rate is expressed as follows:  
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( )( ) ( )

00 0

( ) 1lim lim
2

a

yya a

W a a W a
G v

a a
σ

Δ

Δ → Δ →

+ Δ −
= =

Δ Δ ∫ r dr  (4.3.12) 

where σyy is the distribution of normal stress and v(r) is the crack profile of 
a flaw in y-direction (Figure 4.4.1 (a)). The integral is then derived 
analytically in terms of nodal forces and displacements. For a linear 
element, the energy release rates can be computed as (Figure 4.4.1 (b)): 

 (1
2

i top bot
I y kG F v v

a
= −

Δ
)k  (4.3.13) 

 (2
i top bot

II x k kG F u u
a

= − )1
Δ

 (4.3.14) 

where Fi is the nodal force at node I, vk is the nodal displacement at node k 
and vktop - vkbot is the difference in displacement in y direction between the 
top and the bottom surface of opposite crack tip elements. 

Δa

x

a

y

r

V(a)

V(a+Δa)

x

y

ji
Vktop

Vkbot

k

 
Figure 4.3.1: (a) geometry at crack tip; (b) linear element at crack tip 

4.3.2.4  The J contour integral 

Another way of characterising the singularity of the stress field in the 
vicinity of a crack tip consists in studying certain contour integrals deduced 
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on the basis of the law of conservation energy. Rice presented a path-
independent contour integrals for analysis of cracks. He then showed that 
the value of this integral, which is called J, is equal to the energy release 
rate in a linear or non-linear elastic body that contains a crack. The J-
integral has enjoyed a great success as a fracture characterizing parameter 
for non-linear materials. Also this method will be briefly described. 
Considering an arbitrary counter-clockwise path Γ around the crack tip 
(Figure 4.4.2). The J-integral is given by:  

 i
i

uJ wdy T ds
xΓ

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫ ,  (4.3.15) 

where w is the strain energy density, Ti are components of the traction 
vector, ui are the displacement vector components and ds is a length 
increment along Γ. The strain energy density is defined as:  

 
0

ij

ij ijw
ε

dσ ε= ∫  (4.3.16) 

The traction is a stress vector normal to the contour. 
 

 
Figure 4.3.2: Arbitrary contour around the crack tip 

This integral is independent of the contour of the integration. Having such a 
method, the J-integral method can be used in a finite-element formulation 
by evaluating the stresses and strains that must be evaluated on the contour, 
which is, in general, formed by the sides of the finite elements. An 
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interpolation process must therefore be used to obtain the edge values from 
the known values at the Gauss points. 

4.4 SOLID ELEMENTS 

In this section a brief description of the formulation at the basis of solid 
elements approach will be done. They will be used for the modelling of 
concrete, steel bars and FRP reinforcement in the numerical analyses of the 
RC beams retrofitted with composite sheets because they provide a detailed 
distribution of stresses and strains within the beams, as it will be explained 
in Chapter VII.  

4.4.1 Introduction 
Any combination of elements can be used to make up a model. Sometimes 
multi-point constraints are required for application of the necessary 
kinematic relations to form the model.  
All elements use numerical integration to allow complete generality in 
material behaviour. All of the elements can be formulated in a global 
Cartesian coordinate system except the axisymmetric elements, which are 
formulated in terms of r–z coordinates. In almost all elements, primary 
vector quantities (such u as displacements and rotations Φ) are defined in 
terms of nodal values with scalar interpolation functions. For example, in 
elements with a two-dimensional topology the interpolation can be written 
as:  

 ( ) ( ), ,Nu g h N g h u= N  (4.4.1) 

where the interpolation functions ( ),NN g h  are written in terms of the 
parametric coordinates g and h. In most element types the same parametric 
interpolation is used for the coordinate vector:  

 ( ) ( ), ,Ng h N g h=x Nx  (4.4.2) 
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Such isoparametric elements are able to represent all rigid body modes and 
homogeneous deformation modes exactly. 
All elements are integrated numerically. Hence, the virtual work integral 
will be replaced by a summation:  

  (4.4.3) 
1

: :
n

i i
iV

DdV D dVσ δ σ δ
=

→ ∑∫ i

where n is the number of integration points in the element and Vi is the 
volume associated with integration point i. It can be used either “full” or 
“reduced” integration. For full integration the number of integration points 
is sufficient to integrate the virtual work expression exactly, at least for 
linear material behaviour. For triangular and tetrahedral elements may be 
used a full integration.  
The reduced integration can be used for quadrilateral and hexahedral 
elements; in this procedure the number of integration points is sufficient to 
integrate exactly the contributions of the strain field that are one order less 
than the order of interpolation. The (incomplete) higher-order contributions 
to the strain field, which are present in these elements, are neglected.  
The advantage of the reduced integration elements is that the strains and 
stresses are calculated at the locations that provide optimal accuracy, the so-
called Barlow points [Barlow, 1976]. A second advantage is that the 
reduced number of integration points decreases the computational cost in 
terms of CPU time and storage requirements. The disadvantage is that the 
reduced integration procedure can admit deformation modes that cause no 
straining at the integration points. These zero-energy modes make the 
element rank-deficient and cause a phenomenon called “hourglassing,” 
where the zero energy mode starts propagating through the mesh, leading to 
inaccurate solutions. To prevent these excessive deformations, an additional 
artificial stiffness is added to the element. In this so-called hourglass control 
procedure, a small artificial stiffness is associated with the zero-energy 
deformation modes.  
Most fully integrated solid elements are unsuitable for the analysis of 
(approximately) incompressible material behaviour. The reason for this is 
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that the material behaviour forces the material to deform (approximately) 
without volume changes. Fully integrated solid element meshes, and in 
particular lower-order element meshes, do not allow such deformations 
(other than purely homogeneous deformation). 
The “selectively reduced” integration in these elements is used for the 
volume strain and full integration for the deviatoric strains. As a 
consequence the lower-order elements give an acceptable performance for 
approximately incompressible behaviour.  

4.4.2 Solid Elements Overview 
Solid elements are of two-dimensional and three-dimensional kind. The 
two-dimensional elements allow modelling of plane and axisymmetric 
problems and include extensions to generalized plane strain.  
The solid elements can be isoparametric: quadrilaterals in two dimensions 
and “bricks” in three dimensions. These isoparametric elements are 
generally preferred for most cases because they are offered with first- and 
second-order interpolation: thus they should be used in any critical region 
(such as an area where the strain must be predicted accurately).  
Solid elements are provided with first-order (linear) and second-order 
(quadratic) interpolation. The first-order elements are essentially constant 
strain elements: the isoparametric forms can provide more than constant 
strain response, but the higher-order content of the solutions they give is 
generally not accurate and, thus, of little value. The second-order elements 
are capable of representing all possible linear strain fields. This observation 
logically leads to the use of the “hierarchical” finite element technique: 
refining the model by increasing the interpolation order in the elements in 
critical regions. 
The argument is readily extended to higher-order interpolation (cubic, 
quartic, etc), but the rapid increase in cost per element for higher-order 
forms means that, even though the accuracy per degree of freedom is higher, 
the accuracy per computational cost may not be increasing. Practical 
experience suggests that, except in special cases, little is gained by going 
beyond the second-order elements.  
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4.4.3 Solid Elements Formulation (Hughes & Winget 1962) 
All the solid elements allow for finite strain and rotation in large-
displacement analysis.  
For kinematic linear analysis the strain is defined as:  

 sym ∂⎛= ⎜
⎞
⎟∂⎝ ⎠

uε
X

 (4.4.4) 

Where u is the total displacement and X is the spatial position of the point 
under consideration in the original configuration. This measure of strain is 
useful only if the strains and rotations are small (all components of the strain 
and rotation matrices are negligible compared to unity). 
When the hyperelastic or hyperfoam material definition is used with an 
element, the stretch values are calculated directly from the deformation 
gradient matrix to compute the material behaviour. With any other material 
behaviour it is assumed that any elastic strains are small compared to unity, 
so the appropriate reference configuration for the elasticity is only 
infinitesimally different from the current configuration and the appropriate 
stress measure is, therefore, the Cauchy (“true”) stress. More precisely, the 
appropriate stress measure should be the Kirchhoff stress defined with 
respect to the elastic reference configuration, but the assumption that this 
reference configuration and the current configuration are only 
infinitesimally different makes the Kirchhoff and Cauchy stress measures 
almost the same: the differences are on the order of the elastic strains 
compared to unity.  
The conjugate strain rate to Cauchy stress is the rate of 

deformation, sym ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
vD
x

. 

Where ν is the velocity at a point and x are the current spatial coordinates of 
the point. The strain is, therefore, defined as the integral of the rate of 
deformation. The total strain is constructed by integrating the strain rate 
approximately over the increment by the central difference algorithm; and, 
when the strain components are referred to a fixed coordinate basis, the 
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strain at the start of the increment must also be rotated to account for the 
rigid body rotation that occurs in the increment.  
This is also done approximately, using the Hughes & Winget method 
[1980]. This integration algorithm defines the integration of a tensor 
associated with the material behaviour as:  

 ( )T
t t R R D+Δ = Δ Δ + Δ Δa a ai i , (4.4.5) 

where a is the tensor; Δa is the increment in the tensor associated with the 
material’s constitutive behaviour, and, therefore, dependent on the strain 
increment, ΔD , defined by the central difference formula as:  

 
t t

sym
+Δ

⎛ ⎞∂Δ
Δ = ⎜ ∂⎝ ⎠

uD
x ⎟ , (4.4.6) 

where  

 (1
2t t t t t+Δ +Δ= +x x x ) , (4.4.7) 

and ΔR is the increment in rotation, defined by Hughes and Winget as:  

  
11 1

2 2

−
⎛ ⎞ ⎛Δ = − Δ + Δ⎜ ⎟ ⎜
⎝ ⎠ ⎝

R I W I W ⎞
⎟
⎠

, (4.4.8) 

where ΔW is the central difference integration of the rate of spin:  

 
/ 2t t

asym
+Δ

⎛ ⎞∂Δ
Δ = ⎜ ∂⎝ ⎠

uW
x ⎟  (4.4.9) 

A somewhat different algorithm to calculate ΔR is used for the Green-
Naghdi rate. For example, the stress is integrated by this method as:  

 ( )T
t t t+Δ = Δ Δ + Δ Δσ R σ R σ Di i , (4.4.10) 
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where  is the stress increment caused by the straining of the 
material during this time increment and σ is the Cauchy stress. The 
subscripts t and  t+Δt refer to the beginning and the end of the increment, 
respectively. 

(Δ Δσ D)

) ,dV

The contribution of the internal work terms to the Jacobian of the Newton 
method that is often used is:  

  (4.4.11) ( : :
V

d dδ δ+∫ σ D σ D

where dσ and σ are evaluated at the end of the increment. 
Using the integration definition above, it can be shown that:  

 ( ) ( ) : ,T T
t t t t t td d d d+Δ +Δ +Δ= Δ Δ − Δ + − Δ Δ Δ + Δσ R R σ σ σ σ R R C Di i  

  (4.4.12) 

where C is the Jacobian matrix of the constitutive model:  

 ∂Δ
=

∂Δ
σC
D

 (4.4.13) 

However, rather than computing the tangent matrix for the Newton method 
on this basis, this can be approximated by using:  

  (4.4.14) :T
t t t t t td d d d+Δ +Δ +Δ= + +σ W σ σ W C Di i ,

which yields the Jacobian:  

 : : : 2
T

V

d d δ δδ δ
⎛ ⎞⎛ ∂ ∂

− −⎜ ⎟⎜⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∫

v vD C D σ D D
x x

i dV
⎞
⎟  (4.4.15) 

This Jacobian is the tangent stiffness of the rate form of the problem. 
Experience with practical cases suggests that this approximation provides an 
acceptable rate of convergence in the Newton iterations in most applications 
with real materials. 
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The strain and rotation measures described above are approximations. 
Probably the most limiting aspect of these approximations is the definition 
of the rotation increment ΔR. While this measure does give a representation 
of the rotation of the material at a point in some average sense, it is clear 
that each of the individual material fibres at a point has a different rotation. 
This suggests that the integration methods described above are not suitable 
for such material models at large strains (for practical purposes with typical 
material parameters this means that the solutions will be quite wrong when 
the strains are greater than 20%-30%).  

4.5 INTERFACE ELEMENTS and COHESIVE-ZONE 
MODELS 

4.5.1 Introduction of the interface problem 
Actually, the interfacial interaction concrete/FRP and concrete/steel bars is 
not a phenomenon localised at the physical joint between the two materials 
but involves a small volume around it. The observable slip between the 
materials is due in reality to inelastic deformation of a small portion of 
concrete (and of the adhesive for the FRP case). For the simulation of the 
interaction between the two materials through a finite-element approach, 
involving such a number of sources of nonlinearity as the analysis of RC 
beams retrofitted with FRP, it is convenient to represent the interfacial 
interaction in global terms through the introduction of an interfacial stress 
and a relative slip between the two materials which is a measure of the 
relative movement between two points in the two material associated with 
the location at which the interfacial stress is evaluated.  
In order to study such problems, one can use the direct application of 
fracture energy. When non-linearities can be neglected, methods based on 
linear elastic fracture mechanics (LEFM) are quite effective for two-
dimensional problems. It does however need to assume that the stress field, 
when a crack is perturbed, is self similar. This forces the use of very small 
elements at a crack front and poses essential difficulties where a curved 
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crack front develops due to spatially varying energy release rates. As in all 
fracture mechanics models, it is necessary to assume an initial flaw, which 
introduces an indeterminacy, thus these methods are restricted to problems 
in which the initial position of the crack is known.  
The problems due to the direct application of the fracture mechanics based 
techniques (i.e., virtual crack closure method) for the study of delamination 
of composite, such as the curved fronts and the initial flaws, can be 
overcome by using hypothetical “interface elements” which are embedded 
at potential delamination sites.  
Progressive delamination is then modelled by introducing a softening 
traction/relative displacement relationship as a “material model” for the 
interface elements. Fracture mechanics is indirectly introduced because the 
area under the softening curve is equated (as an input parameter) to the 
critical fracture energy.  
Thus, the interfacial behaviour FRP/concrete and the bond slip behaviour of 
steel bars can be effectively modelled by using interface elements. Using 
this approach we define a surface of separation (a line in two-D problems) 
between different materials and describe their interaction by defining a 
relative displacement at each contact point and the associated dual stress 
component.  
These procedures are based on the assumption of a “cohesive zone” and the 
method is applied in conjunction with interface elements and is modelled on 
the basis of the damage mechanics combined with an indirect introduction 
of fracture mechanics. 
Considering two layers of a composite structure, we can define at the 
interface Γ the forces t nσ=  applied by one part on the other when the 
normal n of the interface is given (Figure 4.5.1 (a)). We assume that the 
interface can be progressively damaged until complete separation of the two 
parts, initially glued together. The interface is initially divided in a 
completely cracked part  and a part 0dΓ 0ndΓ  where the cohesion between 
the two layers is complete. During the loading process, the delaminated part 
can increase and we assume the existence of a new zone corresponding to 
the cohesive zone where the traction are not zero and relative displacements 
can appear (Figure 4.5.1 (b)).  
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cohesion
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Figure 4.5.1. (a) Different parts of an interface; (b) Tractions and relative displacements for 

an interface 

A constitutive law for the interface needs then to connect the traction vector 
t to the relative displacement vector between the two layers.  
Tractions and relative displacements are the key components of the 
“cohesive model” and appear in the equilibrium equation of the body.  
In order to introduce the cohesive-zone model approach let us consider two 
layers denoted as , and an interface between these layers 
denoted as Γ. Applied the principle of virtual work for each layer, it can be 
written: 

( 1,2i iΩ = )

 ( )
i i

i dV dV dS
i

φ ρ φ φ
Ω Ω ∂

= +∫ ∫σ grad f F
Ω
∫  (4.5.1) 
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where F are the boundary tractions, ρf are body forces applied to the layer 
, and iΩ φ  is a virtual displacement field. 

According to the principle of reciprocal actions, at the interface we have the 
following relation:  

 1 2 2 1→ →= − ⇒ =t t t 0  (4.5.2) 

Adding the different equations (4.5.1), the term using boundary tractions 
can be written as follows:  

 
i i

i i i
dS dS dSφ φ

∂Ω ∂Ω −Γ Γ

= +∑ ∑ ∑∫ ∫ ∫F F φF  (4.5.3) 

Making use of Eq. (4.5.2), the second term in the above equation 
(integration over Γ) can be expressed as:  

 ( )1 2 1 2 1 2 1 21 2
i

dS dS dS dSφ φ φ φ φ→ → →
Γ Γ Γ Γ

= + = −∑∫ ∫ ∫ ∫F t t t  (4.5.4) 

Setting ( )*
2 1δ φ φ= −  the principle of the virtual work for the whole 

structure is finally:  

 ( ) *
1 2

i

i dV dS Pφ δ→
Ω Γ

*
e+ =∫ ∫σ grad t  (4.5.5) 

Where  is the power of external loads. *
eP

As may be seen in Eq. (4.5.5), the presence of an interface results in the 
addition of a new term to the virtual power of internal forces. This terms 
links the relative displacement δ to the corresponding traction t. The relative 
displacement δ plays the role of a deformation measure, with the tractions 
furnishing the conjugate stress measure. This expression is fundamental for 
methods based on the existence of a “cohesive-zone” and particularly for the 
interface elements methods.  
It must be noticed that, along the interface, the displacements can be large, 
but the relative displacements are small in the non-fully delaminated part or 
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in the laminated part of the specimen. This hypothesis of small relative 
displacements allows the use of interface laws formulated in the small 
perturbation case and enables to use finite-element formulation, as already 
discussed in section 4.1 and 4.2, for the “interface” term in Eq. (4.5.5). 
Depending on the direction of the load with respect to the direction of the 
crack, three important mechanisms for the relative displacements of the 
crack tips can occur. In other words, t and δ have three components and 
each of them corresponds to one mode: mode I is the opening mode parallel 
to the axis y, mode II is the sliding mode parallel to the axis x and mode III 
is the tearing mode parallel to the axis z. A cracked body can be loaded in 
any one of these modes (uncoupled delamination) or a combination of two 
or three modes (mixed-mode delamination).  

4.5.2 Interface Elements 
To introduce the interface elements let us focus the attention on two 
dimensional problems. In the interface-elements approach to debonding and 
delamination problems it is assumed that the interface has a null thickness 
(Figure 4.5.2), whereby the interface can be viewed as a couple of lines 
which exactly occupy the same position in the initial configuration domain. 
These two lines will be indicated as bottom (b) line and top (t) line so that, 
on each point of the initial configuration of the interface, there exist two 
points, one point on the bottom line and one other on the top line. 
Accordingly, two displacement vectors can be defined, namely a 
displacement ub of the point on the bottom line and a displacement ut of the 
point of the top line.  
In this way, a discontinuity for the displacement field is introduced on the 
interface and the relative displacement vector at each point of the interface, 
referred to as s, and is given by s = ut - ub. The relative displacement is 
obviously null in the initial configuration. 
A local reference system is point wise introduced, with axis x0 tangent and 
axis y0 normal to the interface, and the relative displacement can be 
decomposed into two components along the axes, s0x and s0y. The 
component s0y physically represents the ‘opening’ component of the relative 

 105 



 
FRACTURE MECHANICS and COHESIVE-ZONE MODELS                                                                              
 

displacement (mode-I), and will be later indicated as sI , while the 
component s0x represents the ‘sliding’ component (mode-II), and will be 
later indicated as sII . 
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x=x(ξ)

Thickness=0

α
x'y'

1
4 2

5
3

6

INT6

ξ=0

ξ=−1 ξ=1

x=x(ξ)

Thickness=0

x

y

 
Figure 4.5.2: Initial configuration. 

In a finite-element model, the interface is discretized into a finite number of 
interface elements. Each element is characterised by an even number N of 
nodes, because for each node placed on the bottom line of the element there 
must exist an other node on the top part of it.  
Here 4-noded (INT4) and 6-noded (INT6) interface elements will be 
considered. For the INT4 element the initial configuration must necessarily 
be a straight line, while the initial shape of the INT6 element can also 
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describe a curved line. However, also for the INT6 element it will be 
initially assumed, for the sake of simplicity, that the three couples of nodes 
initially stay on a straight line. For both elements a reference element 
domain is defined, consisting in the interval [−1, 1] of . An isoparametric 
mapping relates the abscissas ξ in the reference element to the position x(ξ) 
of the points in the interface element (see Figures 4.5.3-4.5.4). 

\
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Figure 4.5.3: Deformed configuration. 
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Figure 4.5.4: Decomposition of the relative displacement s(ξ) into its components, or 

’modes’, that is the opening mode sI and the sliding mode sII. 

4.5.2.1 INT4 element 

Let us focus the attention on the INT4 element, as all the results obtained for 
this element will easily be extended to the case of the INT6 element. The 
isoparametric mapping is given by:  

 ( ) ( )
/2

1
1

1 1
2 2

N

i i 2x x x xξ ξξ ξ − +
= Φ = +∑  (4.5.6) 

where x1 is the initial (coincident) position vector of nodes 1 and 3 with 
respect to a preset origin O of the 2D Euclidean space, x2 is the initial 
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position vector of nodes 2 and 4 while Φ1 and Φ2 are the shape functions 
and N/2 = 2 in this case. 
The relative displacement at each point x of the initial configuration can be 
defined as a function of ξ through the isoparametric mapping as follows:  

 ( ) ( )
/2

1

N

is isξ ξ= Φ∑  (4.5.7) 

with si being the nodal relative displacements. More in detail it results:  

 

( )
( )
( )

( ) ( )

( )( ) ( )( )

( ) ( )

1, 2,
1 2

1, 2,

' ' ' '
1 3 1 2 4 2

' ' ' '
3 1 4 2

1 2' ' ' '
3 1 4 2

II IIII

I II

x x x x

y y y y

s ss
s

s ss

u u u u

u u u u

u u u u

ξ
ξ ξ ξ

ξ

ξ ξ

ξ ξ

⎡ ⎤ ⎡ ⎤ ⎡
= = Φ + Φ⎢ ⎥

⎤
=⎢ ⎥ ⎢

⎢ ⎥
⎥

⎣ ⎦ ⎣⎣ ⎦

= Φ − + Φ − =

⎡ ⎤ ⎡ ⎤− −
= Φ + Φ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎦

 (4.5.8) 

where 

 

( )
( )

'
'

'

0
0

i
i

i

ix
i

iy

u
u

u

ξ
ξ

⎡ ⎤Φ
Φ = ⎢ ⎥Φ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

 (4.5.9) 

It is now convenient to introduce the transformation from the global system 
{x, y} to the local system {x0, y0}:  

  (4.5.10) '
iu Ru= i

⎤
⎥

And more in detail:  

  (4.5.11) 
'

'
'

cos sin
sin cos

ix ix
i

iy iy

u u
u

u u
α α
α α

⎡ ⎤ ⎡ ⎤⎡
= =⎢ ⎥ ⎢ ⎥⎢−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
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where α is the angle formed by x0 with x (see Figure 4.5.2). 
The 2×8 matrix B(ξ) which relates the element nodal displacements to the 
relative displacement s(ξ) is then obtained as follows:  

 ( ) ( ) ( ) ( ) ( )1 2 1 2B R R Rξ ξ ξ ξ ξ⎡ ⎤= −Φ −Φ −Φ −Φ⎣ ⎦R  (4.5.12) 

being R:  

 
cos sin
sin cos

R
α α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (4.5.13) 

In a displacement-based finite-element analysis the internal work in the 
interface element is then given by:  

 
( ) ( ) ( )

( ) ( ) ( )

1

int 1

1

1

,

,

W t s history s J d

t B u history B uJ d

ξ

ξ

ξ

ξ

ξ δ ξ ξ ξ

ξ ξ δ ξ ξ

=

=−

=

=−

⎡ ⎤= =⎣ ⎦

⎡ ⎤= ⎣ ⎦

∫

∫

i

i
 (4.5.14) 

where δs(ξ) denotes the virtual relative displacement at the interface and 
t[s,history] is the value of the traction obtained for an assigned relative 
displacement s and an assigned history. Furthermore, J(ξ) represents the 
Jacobian /dx dξ  of the isoparametric mapping. 
By transposing matrix B and omitting the dependence of t on the history of 
the relative displacement, one then obtains:  

 ( ) ( ) ( )
1

int int1

TW B t J d u q
ξ

ξ
uξ ξ ξ ξ δ δ

=

=−
= ∫ i = ⋅

d

 (4.5.15) 

The internal force vector is then given by:  

 ( ) ( ) ( )
1

int 1

Tq B t J
ξ

ξ
ξ ξ ξ

=

=−
= ∫ ξ  (4.5.16) 

By differentiating the function t = t[s, history] with respect to s the tangent 
material stiffness dt/ds is obtained. By the chain rule of differentiation the 
element tangent stiffness is then given by the following expression:  
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 ( ) ( ) ( )
1

1

T
t

dtK B B J
ds

ξ

ξ
dξ ξ ξ

=

=−
= ∫ ξ  (4.5.17) 

The integrals contained in equations (4.5.16) and (4.5.17) must of course be 
numerically evaluated. To this end, Newton-Cotes integration rule is 
typically used instead of the Gauss rule, because spurious traction 
oscillations have been often observed with the latter. Denoting by M the 
number of integration points and by ξi and Wi the abscissa and the weighting 
factor associated with the ith integration point, one obtains:  

 ( ) ( ) ( )int
1

M
T

i i i i
i

q W J B tξ ξ ξ
=

= ∑  (4.5.18) 

 ( ) ( ) ( )
1

T
t i i i

i

dtK W J B B
ds

M

iξ ξ
=

= ∑ ξ  (4.5.19) 

From an operative point of view, the implementation of the INT4 element 
can be summarized as follows: 
 Loop on the element integration points i = 1, . . . ,M;  
 For each integration point compute the value of the shape function:  

 1 2
1 1;

2 2
i iξ ξ− +

Φ = Φ =  (4.5.20) 

 For each integration point evaluate the Jacobian. In this case the 
Jacobian is constantly equal to:  

 ( ) 2 1

2 2
x x LJ Jξ

−
= = =  (4.5.21) 

with L being the length of the element in its initial configuration; 
 Compute matrix B(ξi) by substituting Eq. (4.5.20) into Eq. (4.5.12) 
 Evaluate the relative displacement s(ξi) with the formula:  

 ( ) ( )i is B uξ ξ=  (4.5.22) 
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With .  1 2 3 4
T T T T Tu u u u u⎡ ⎤= ⎣ ⎦

Compute the traction t and the material stiffness as a function of the current 
relative displacement s(ξi) and also of the history of the relative 
displacements. Apart from the last point of the bullet point list of operations 
detailed above, all the other steps are valid whatever interface law is used. 
Interesting contributions, where many different interface models are either 
proposed or revisited, are given in [Needlemann 1990, Tvergaard & 
Hutchinson 1992-1993, Corigliano 1993, Schellekens & de Borst 1993, 
Allix et al. 1995, Allix & Corigliano 1996-1999, Chaboche et al. 1997, 
Bolzon & Corigliano 1997, Corigliano & Ricci 2001, Champaney & 
Valoroso 2001, Chandra et al. 2002], in the sequel only the most used by 
finite-element analysis programs will be illustrated.  

4.5.2.2 INT6 element 

For the INT6 element the shape function are the following quadratic 
functions:  

 ( ) ( ) ( ) ( ) (2
1 2 3

1 11 ; 1 ; 1
2 2

)ξ ξ ξ ξ ξ ξ ξ ξΦ = − Φ = − Φ = +  (4.5.23) 

The matrix B(ξ) is given by:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3B R R R R Rξ ξ ξ ξ ξ ξ ξ⎡ ⎤= −Φ −Φ −Φ Φ Φ Φ⎣ ⎦R  
  (4.5.24) 

with R again given by Eq. (4.5.13). 
The relative displacement s(ξi) is then given by:  

 ( ) ( )i is B uξ ξ=  (4.5.25) 

with    1 2 3 4 5 6
T T T T T T Tu u u u u u u⎡ ⎤= ⎣ ⎦

All the remaining part follows analogously as for the INT4 element.  
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4.5.3 Cohesive-zone model: Crisfield et al. (1997) 
It is considered that there is a process zone or cohesive-zone ahead of the 
delamination tip. Physically, the cohesive-zone represents the coalescence 
of crazes in the resin rich layer located at the delamination tip and reflects 
the way by which the material loses load-carrying capacity.  
In order to be consistent with the original work published by Crisfield et al. 
[1997] in the following, we will refer to tractions across the interface 
elements as “stresses” (σ ) and will refer to the relative displacements 
across the interface as “strains” (ε ). Figure 4.5.5 illustrates the constitutive 
behaviour for pure mode I, pure mode II, and pure mode III loading by 
imputing the tensile strength, tσ , the “cracking strain”, 0ε , and the 
“maximum strain”, maxε . 

ε
ε0 εmax

σ

Gc

σt

 
Figure 4.5.5: Softening  “traction- relative displacement “ relationship 

In the finite-element simulations, the strain can exceed maxε , but the 
equivalent stress is then zero, that is the crack opening is complete. The 
elements where softening take place are in the region 0 maxε ε ε< < . 
The opening strain maxε  is chosen such that the area under the curve is equal 
to the critical fracture energy Gc which is a material property. In practice, 
the adopted 0ε  is very small and max 2 /c tGε σ= .  
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Crisfield showed that when the relative displacements 0ε  and maxε  (Figure 
4.5.5) are coincident (corresponding to a sudden load drop to zero) a 
perfectly brittle fracture is simulated. A model for brittle fracture must be 
able to capture the high stress gradients at the crack tip with sufficiently fine 
mesh densities or singular elements. This observation lead to the use of a 
bilinear softening material behaviour.  
The method has some similarities with the original cohesive-zone procedure 
of Barrenblatt [1962] and Dugdale [1960] but they imposed a constant stress 
distribution in the cohesive zone so that to cause the stress intensity factor to 
be zero at the tip of the cohesive zone. In contrast, in the current method the 
stress drops from tσ  at the tip of the cohesive zone to zero (Figure 4.5.6).  

lp

Cohesive, bridging 
or process zone

σ
stress distibution

σ
stress distibution

σt

Figure 4.5.6: (a) Barrenblatt/Dugdale model; (b) Crisfield model 

In order to define the material model, we must specify the unloading 
response. A simple elastic damage model has been adopted so that, with 
reversing strains, the material is assumed to unload directly towards the 
origin.  
Considering an individual material point and subject it to increasing tensile 
strain increments, it is easy to show that:  

 
max

0
cd G

ε

σ ε =∫  (4.5.26) 
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So that once the stress has been reduced to zero, the critical fracture energy 
has been consumed.  
When combined with the proposed criterion for the interaction between 
mode I and II (mixed-mode delamination), the resulting damage formulation 
leads to a very simple numerical algorithm. 
In these circumstances, analysts often use a linear interaction relationship 
which is given by Wu & Reuter [1965]:  

 1I II
L

Ic IIc

G Gf
G G

= + =  (4.5.27) 

Experimental results indicate that a significant number of results lie between 
the previous linear relationship and a quadratic relationship given by:  

 
2 2

1I II
Q

Ic IIc

G Gf
G G

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=  (4.5.28) 

Finite element computations are “strain-driven” and hence, in place of Eq. 
(4.5.26)  to simulate Eq. (4.5.27), it requires:  

 1I I II II
L

Ic IIc

d d
f

G G

σ ε σ ε
= +∫ ∫ =  (4.5.29) 

With a view to the satisfaction of Eq. (4.5.29) it can be proposed a “damage 
model” whereby in place of the usual “scalar damage” relationship, 

( ) 01 d Eσ ε= − , we write:  

 [ ]
1

I I

II II

σ ε κ ε
σ ε κ

⎧ ⎫ ⎧ ⎫ ⎡ ⎤= = − = −⎨ ⎬ ⎨ ⎬ ⎢ ⎥+⎣ ⎦⎩ ⎭ ⎩ ⎭
0 0σ I D E I F E  (4.5.30) 

In Eq. (4.5.30), E0 is a diagonal matrix containing the initial stiffnesses in 
modes I and II respectively while F is another diagonal matrix with diagonal 
entries given by:  
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 max

max 0 ,
ij

I II

F ε
ε ε

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (4.5.31) 

And  is a scalar to be chosen, depending on the interaction model. 
Choosing for mode II, the terms 

κ

0ε  and maxε  in the same manner as 
previously described for mode I, we obtain the area under the curve as GIIc, 
so that [ ] [ ]max 2 /c tII I

Gε σ=
I
. Setting 0 0I IIε ε= , the scalar κ  in Eq. (4.5.30) 

will be defined as:  

 
1

2 1Tκ ⎡ ⎤= −⎣ ⎦ε Aε  (4.5.32) 

 
2
0

2
0

1 0

10

I

II

ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  (4.5.33) 

In order to generalise the method, Eq. (4.5.32) must be recovered by:  

 
0 0

1
a a

I II

I II

ε εκ
ε ε

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
−  (4.5.34) 

which coincides with Eq. (4.5.32) when 2α = . 
To embed the material model within a conventional non-linear finite 
element computer program, the tangent modular matrix Dt is required, it 
stems from the variation of Eq. (4.5.30). Considering the linear formulation 
of equation  (or Eq. (4.5.34) with 2α = ), this process leads to the 
relationship.  

 
( )0 03

1
1 1

Told
t

old old

D I F E FE Aκδσ δε εε δ
κ κ

⎡ ⎤⎡ ⎤
= = − −⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦⎣ ⎦

ε  

  (4.5.35) 
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4.5.4 Cohesive-zone model: Camanho & Davila (2002) 
In order to model the initiation and non-self-similar growth of delamination, 
they proposed decohesion model with mixed-mode capability.   
The simulation of delamination in composites is usually divided into 
delamination initiation and delamination propagation. Delamination 
initiation analyses are usually based on stresses and use criteria such as the 
quadratic interaction of the interlaminar stresses in conjunction with a 
characteristic distance.  
As usual in the formulation of the cohesive-zone models, the need for an 
appropriate constitutive equation is fundamental for an accurate simulation 
of the interlaminar cracking process. Figure 4.5.7 represents the cohesive 
zone in specimens loaded in pure Mode II (Figure 4.5.7-a)) and in pure 
Mode I (Figure 4.5.7-b)).  
For pure mode I and pure mode II or mode III loading the bi-linear 
softening constitutive behaviour represented in Figure 4.5.7 is used. A high 
initial stiffness (penalty stiffness, K) is used to hold the top and bottom 
faces of the decohesion element together in the linear elastic range (point 1 
in Figure 4.5.7). For pure mode I, II or III loading, after the interfacial 
normal or shear tractions attain their respective interlaminar tensile or shear 
strengths (point 2 in Figure 4.5.7), the stiffnesses are gradually reduced to 
zero. The onset displacements are obtained as: 0

3δ  = N/K, 0
2δ  = S/K and 0

1δ  

= T/K, where N is the interlaminar tensile strength, and S and T are the 
interlaminar shear strengths. 
The area under the traction-relative displacement curves is the respective 
(mode I, II or III) fracture toughness (GIC, GIIC and GIIIC, respectively) and 
defines the final relative displacements, 3

fδ , 2
fδ  and 1

fδ , corresponding to 
complete decohesion:  

  (4.5.36) 
3

3 3
0

f

ICd G
δ

τ δ =∫

  (4.5.37) 
2

2 2
0

IICd Gτ δ =∫
fδ
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  (4.5.38) 
1

1 1
0

IIICd Gτ δ =∫
fδ

The final displacements are then obtained as: 3
fδ  = 2GIC/N, 2

fδ  = 2GIIC/S 
and 1

fδ  = 2GIIIC/T . 
Once a crack is unable to transfer any further load (point 5 in Figure 4.5.7), 
all the penalty stiffnesses revert to zero. However, it is necessary to avoid 
the interpenetration of the crack faces. The contact problem is addressed by 
re-applying the normal penalty stiffness when interpenetration is detected. 
In order to formulate the complete constitutive equation, the unloading 
behaviour must be defined. It is considered that a softening point unloads 
towards the origin, as shown in Figure 4.5.7. Using the following operator:  

 
0 0

0
x

x
x x

⇐ ≤⎧
= ⎨ ⇐ >⎩

 (4.5.39) 

the loading condition can be formulated in terms of a state variable defined 
as the “maximum relative displacement”, δmax, suffered by the point: 
for mode II or III  

 { }max maxmax , , 1, 2i i i iδ δ δ= =  (4.5.40) 

for mode I: 

 { }max max max
3 3 3 3max , , 0withδ δ δ δ= ≥  (4.5.41) 

and using a “loading function”, F, defined as:  
for mode II or III  

 ( )
max

max
max , 1,i i

i i
i i

F
δ δ

δ δ
δ δ

−
− = =

−
2i  (4.5.42) 

for mode I: 
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 ( )
max

3 3max max
3 3 3max

3 3

,F w
δ δ

δ δ δ
δ δ

−
− = ≥

−
0ith  (4.5.43) 

τ1, 2

δ1, 2 δ1, 2
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(1-d)K

1 2 3 4 5P

1 2 3 4 5
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0 f

δ3 δ3
0 f

 
Figure 4.5.7: Pure mode constitutive equation, (a) mode II or mode III;(b) Mode I 
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Using δmax
 in the constitutive equation, the irreversibility of damage is taken 

into account. This is shown in Figure 4.5.7: if the relative displacement 
decreases, the point unloads elastically towards the origin with a reduced, 
secant, stiffness (point 3 in Figure 4.5.7). 
The irreversible, bi-linear, softening constitutive behaviour shown in Figure 
4.5.7 was developed in previous works as Chen et al. [1999], Alfano & 
Crisfield [2001], Davila et al. [2001], and can be defined as:  

 ( )

max 0

0 max

max

1

0

i i i
f

i i i i i

f
i i

K

d K

δ δ δ

iτ δ δ δ δ

δ δ

⎧ ⇐ ≤
⎪

= − ⇐ < <⎨
⎪

⇐ ≥⎩

 (4.5.44) 

 
( )

( ) [max 0
, 1,2,3; 0,1i i i

i f
i i i

d i
δ δ δ

δ δ δ

−
= =

−
]

max 0f

id ∈  (4.5.45) 

In order to avoid interpenetration of the crack faces, the following condition 
is introduced:  

 3 3 3 0Kτ δ δ= ⇐ ≤  (4.5.46) 

The properties required to define the interfacial behaviour are the penalty 
stiffness, K, the corresponding fracture toughness, GIC, GIIC and GIIIC, and 
the corresponding interlaminar normal tensile or shear strengths, N, S or T, 
respectively. 
Under pure mode I, II or III loading, the onset of damage at the interface can 
be determined simply by comparing the traction components with their 
respective allowable values. However, under mixed-mode loading damage 
onset and the corresponding softening behaviour may occur before any of 
the traction components involved reach their respective allowables, which is 
an issue that is usually neglected in the formulation of decohesion elements. 
Cui et al. [1992] have highlighted the importance of the interactions 
between interlaminar stress components when predicting delamination. It 
was shown that poor results are obtained using the maximum stress 
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criterion. Therefore, a mixed-mode criterion accounting for the effect of the 
interaction of the traction components in the onset of delamination was 
proposed by Camanho & Davila [2002]. 
It is assumed that the initiation of the softening process can be predicted 
using the quadratic failure criterion, considering that compressive normal 
tractions do not affect delamination onset and using the operator defined in 
Eq. (4.5.39):  

 
2 2 2

3 2 1 1
N S T
τ τ τ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
=  (4.5.47) 

This criterion has been successfully used to predict the onset of 
delamination in previous investigations. 
The total mixed-mode relative displacement δm is defined as:  

 22 2 2
1 2 3 3m

2
shearδ δ δ δ δ δ= + + = +  (4.5.48) 

where δshear represents the norm of the vector defining the tangential relative 
displacements of the element.  
Using the same penalty stiffness in modes I, II and III, the tractions before 
softening onset are:  

 , 1, 2,i iK i 3τ δ= =  (4.5.49) 

Assuming S=T, the single-mode relative displacements at softening onset 
are:  

  (4.5.50) 3 /o N Kδ =

  (4.5.51) 1 2 /shear S Kδ δ δ= = =o o o

For an opening displacement δ3 greater than zero, the mixed-mode ratio β is 

defined as:  
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3

shearδβ
δ

=  (4.5.52) 

The mixed-mode relative displacement corresponding to the onset of 
softening, 0

mδ , is obtained by substituting Equations (4.5.48)-(4.5.52) into 
Eq. (4.5.48) and solving for δm, which gives:  

 ( ) ( )
2

3 1 32 2

1 3

3

1 0

0

o o

o o o
m

o
shear

βδ δ δ
δ δ βδ

δ δ

⎧ +
⇐ >⎪⎪= +⎨

⎪
⇐ ≤⎪⎩

 (4.5.53) 

Clearly, pure mode loading is a particular case of the proposed formulation 
as δm

0 = 0
3δ  for β=0 (mode I), and 0

mδ  = 0
shearδ  for δ3=0 (or when β→∞, 

shear mode). 
The criteria used to predict delamination propagation under mixed-mode 
loading conditions are usually established in terms of the energy release 
rates and fracture toughness. There are established test methods to obtain 
the Mode I and II interlaminar fracture toughness. The Double Cantilever 
Beam Specimen (DCB) is used for Mode I. The End Notched Flexure 
(ENF) or the End Loaded Split (ELS) specimens are used for Mode II. For 
mixed-mode I and II, the Mixed-Mode Bending (MMB) test specimen is 
normally used. However, further research is required to assess the Mode III 
Interlaminar fracture toughness, GIIIC. Although some test methods have 
been suggested for the measurement of Mode III interlaminar fracture 
toughness, such as the Edge Crack Torsion (ECT), there are important 
issues that need clarification, such as the determination of the transverse 
shear modulus G23, which is a parameter required for the analysis. 
Furthermore, there is no reliable mixed-mode delamination failure criterion 
incorporating Mode III because there is no mixed-mode test method 
available incorporating Mode III loading. Therefore, most of the failure 
criteria proposed for delamination growth were established for mixed-mode 
I and II loading only. For these reasons the concept of energy release rate 
related with shear loading, Gshear = GII + GIII , is used for the mixed-mode.  
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In order to predict delamination propagation under mixed-mode loading, the 
widely used “power law” criterion and the mixed-mode criterion proposed 
by Benzeggagh & Kenane [1996] (referred to as B-K criterion) are used in 
this model.  
The former is established in terms of an interaction between the energy 
release rates:  

 1I II

IC IIC

G G
G G

α α
⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.5.54) 

The latter is expressed as a function of the mode I and mode II fracture 
toughness and a parameter η obtained from MMB tests at different mode 
ratios:  

 ( ) ,II
IC IIC IC C T I II

T

GG G G G with G G G
G

η
⎛ ⎞

+ − = = +⎜ ⎟
⎝ ⎠

, (4.5.55) 

if mode III loading occurs the criterion is:  

 ( ) ,shear
IC IIC IC C T I shear

T

GG G G G with G G G
G

η
⎛ ⎞

+ − = = +⎜ ⎟
⎝ ⎠

 (4.5.56) 

The energy release rates corresponding to total decohesion are obtained 
from:  

 
3

3 3
0

f
m

ICG
δ

dτ δ= ∫  (4.5.57) 

2 f

d
δ

2 2
0

m

IICG τ δ= ∫  (4.5.58)  

1 f

d
δ

1 1
0

m

IIICG τ δ= ∫  (4.5.59)  
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Using Equations (4.5.43), (4.5.46) and (4.5.51) in Equations (4.5.57)-
(4.5.59) and substituting in (4.5.57) or in (5.3.59), the criterion for total 
decohesion can be established in terms of δm and β.  
Solving the equation for δm, the mixed-mode displacements corresponding 
to total decohesion, f

mδ , are obtained for the B-K criterion as:  

 
( )

( ) ( )

2

32

2 2

1 2 3

2 0
1

0

IC IIC ICo
f m

m

f f

G G G
K

η
β δ

δ βδ

δ δ δ

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥+ − ⇐⎜ ⎟⎪ +⎢ ⎥⎝ ⎠= ⎣ ⎦⎨
⎪

+ ⇐ ≤⎪⎩

>
 (4.5.60) 

and for the power law criterion as:  

 

( )

( ) ( )

1
2 2

3

2 2

1 2 3

2 1 1 0

0

of
m IC IICm

f f

K G G

α α αβ β δ
δδ

δ δ δ

⎧
⎡ ⎤+ ⎛ ⎞ ⎛ ⎞⎪
⎢ ⎥+ ⇐ >⎜ ⎟ ⎜ ⎟⎪
⎢ ⎥= ⎝ ⎠ ⎝ ⎠⎨ ⎣ ⎦

⎪
⎪ + ⇐ ≤⎩

 (4.5.61) 

Regardless of the criterion used, pure mode loading is a particular case of 
the proposed formulation, as f

mδ  = 3
fδ  for β=0 (mode I), and f

mδ  = s
shearδ  for 

δ3=0 (or when β→∞, shear mode). 
The constitutive equation for mixed-mode loading is defined by the penalty 
parameter K, the damage evolution function d, and the mixed-mode relative 
displacements corresponding to damage initiation and total decohesion, 0

mδ  
and f

mδ , respectively, as: 

 s sr rDτ δ= , (4.5.62) 

with the constitutive operator given by:  
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( )

( )
( ) [ ]

max

3 max
3

3

3 max
3 3

3
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1

, 0,1

o
sr m m

o f
sr sr s m m

f
s r m m

f o
m m m

f o
m m m

K

D d K Kd

K

d d

δ δ δ

δ
mδ δ δ δ

δ

δ
δ δ δ δ

δ

δ δ δ

δ δ δ

⎧
⎪ ⇐ ≤⎪
⎪ ⎡ ⎤−⎪= − + ⇐ < <⎨ ⎢ ⎥−⎣ ⎦⎪
⎪ −⎪ ⇐ ≥
⎪ −⎩

−
= ∈

−

δ

, (4.5.63) 

where srδ is the Kronecker delta.  
It is worth noticing that Eq. (4.5.63) avoids the interpenetration of the crack 
faces of the decohesion element for softening and fully open conditions. 
In order to define the loading and unloading conditions the state variable 
maximum mixed-mode relative displacement, max

mδ , and the loading 
function, F, are defined as:  

 { }max maxmax ,m m mδ δ δ=  (4.5.64) 

 ( )
max

max
max

m m
m m

m m

F
δ δ

δ δ
δ δ

−
− =

−
 (4.5.65) 

The mixed mode softening law presented above is a single-variable 
response similar to the bilinear single-mode law illustrated in Figure 4.5.7, 
defined by a damage evolution law (Eq. (4.5.63)), by the maximum mixed-
mode relative displacement (Eq. (4.5.64)), and by the loading function (Eq. 
(4.5.65)). Only one state variable, the maximum relative displacement 
variable max

mδ , is used to track the damage at the interface. By recording the 
highest value attained by δm, the unloading response is such as shown in 
Figure 4.5.7. The relative displacements for initiation and ultimate failure 
are functions of the mixed-mode parameter β, the material properties, and 
the penalty stiffness. 
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The mixed-mode softening law can be illustrated in a single three-
dimensional map by representing mode I on the Y-Z plane, and shear mode 
in the X-Z plane, as shown in Figure 4.5.8.  

 
Figure 4.5.8: Mixed-mode softening law [Camanho & Davila 2002] 

The triangles 0-N- 3
fδ  and 0-S- f

shearδ  are the bilinear response in mode I and 
in shear mode, respectively. In this three-dimensional map, any point on the 
0-X-Y plane represents a mixed-mode relative displacement. 

4.5.5 Damage elasto-plastic cohesive-zone model: Alfano & 
Rosati (2003) 

It is assumed that the two elements can be well modelled through a linear, 
elastic law and in the hypothesis of small deformations, with the whole non-
linear debonding process being due to the evolution of damage and 
plasticity within the adhesive material. As usual, the thickness of adhesive is 
assumed to be so small, with respect to the other geometric dimensions, that 
it can be neglected. 
Hence, the structural model will be defined by a domain Ω of an Euclidean 
space, which can be viewed as the union of two closed, connected parts, Ω1 
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and Ω2, whose boundaries share an interface surface 1 2Γ = ∂Ω ∩ ∂Ω . 
Reference will be made here to a general three-dimensional problem, 
although the numerical results presented later relate to two-dimensional 
cases. 
In the initial, undeformed configuration we assume that the two parts, which 
occupy Ω1 and Ω2 are bonded together along a connected part Γ1 of Γ , and 
that the remaining part Γ2 = Γ-Γ1  is completely debonded, although in 
contact. Accordingly, a contact-type relationship without friction will be 
adopted along Γ2, whereas the possible decohesion along Γ1 will be 
modelled as detailed in this section. 
Two opposite points P1 and P2 of the interface, which occupy the same 
position in the undeformed configuration, will move to two different 
positions P’1 and P’2 of the deformed configuration. The vector s = P’2 - P’1 
represents their relative displacement. This, in turn, can be decomposed into 
its three components si with i=1,2,3, parallel to a local, orthonormal 
reference system . Assuming that _ is directed along the normal to the 
tangent plane π _ to Γ _ in P

ie 1e
1= P2 , so that s1  represents the so called mode-I 

‘opening’ displacement, and that  and  lay in π so that s2e 3e 2 and s3 
represent the mode-II ‘sliding’ and mode-III ‘tearing’ components, 
respectively.  
The total relative displacement is additively decomposed into the sum of an  
elastic part se and a plastic part sp:  

 e c= +s s s  (4.5.66) 

A vector d=[d1, d2, d3] of damage parameters and a scalar hardening 
variable ζ   are introduced as internal variables, and the free energy is written 
as follows:  

 ( ) ( ) ( ), , ,e e e hψ ψ ζ ψ ψ ζ= = +s d s d  (4.5.67) 

The elastic-damage part ψe of the free energy is assumed given by:  

 ( ) ( )1,
2e e e eψ ⎡ ⎤= −⎣ ⎦s d I D d C Es si  (4.5.68) 
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where E=diag(Ei) is a penalty stiffness matrix, which is taken high enough 
to model the undamaged behaviour of the interface, I  is the identity 3x3 
matrix and D(d)=diag(di). Furthermore, in order to avoid penetration for 
mode I in compression, the matrix C=diag[H(se1),1,1]  has been introduced, 
with H(se1)_ _ defined by:  

 ( ) ( )1 1 1 11 0 0e e e eH s if s and H s if s= ≥ = 0<  (4.5.69) 

The hardening part ψh of the free energy is assumed given by:  

 ( ) 21
2h hψ ζ = ζ  (4.5.70) 

and accounts for a linear-isotropic type of hardening. 
Differentiation of the free energy defines the variables t, Y and χ̂ , which 
are conjugated to se ,d  and ζ , respectively:  

 

( ) ( ) ( )

( ) 2 2 2
1 1 1 2 2 3 3

1 1 1, ,
2 2 2

ˆ

e p
e

T

e e e eH s E s E s E s

h

ψ

ψ

ψχ ζ
ζ

∂⎧ ⎡ ⎤ ⎡ ⎤= = − = − −⎣ ⎦ ⎣ ⎦⎪ ∂⎪
⎪ ∂⎪ ⎡ ⎤= =⎨ ⎢ ⎥∂ ⎣ ⎦⎪
⎪ ∂

= =⎪ ∂⎪⎩

t I D d C Es I D d C E s s
s

Y
d

 (4.5.71) 

In particular, t is the traction at the interface, each component Yi of Y 
represents the conjugated variable to di. Finally, χ̂   denotes the increase in 
the yield threshold due to the isotropic hardening.  
In the adopted damage model all of the damage variables turn out to 
coincide, that is d1=d2=d3=d, and d can be obtained in closed form as a 
function of se as follows:  

 max

max

1
1

d κ
η κ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (4.5.72) 
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with  

 

1

1 2 3
max

01 02 03

max 1e e es s s
s s s

α α α α

κ κ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

−  (4.5.73) 

where ( ) / 2x x x= + . For a single-mode debonding, the above-elastic 
damage law results in the two bilinear relationships depicted in Figure 4.5.9, 
and in the above relationship s0i is the value of the relative-displacement 
component at which interface damage begins to grow in these cases. 
Furthermore, α is a material parameter and η is given by:  

 1 2

1 2

1 1 1o o

c c

G G G
G G G

η = − = − = − 3

3

o

c

 (4.5.74) 

where Gci is the fracture energy in mode i and  is the specific 
elastic energy stored when the damage parameter d

2 / 2oi i eiG E s=
i begins to increase to 

values greater than zero. Notice that Eq. (4.5.74) is based on the assumption 
that Goi/Gci is constant for all of the modes i. This hypothesis has been made 
in [Alfano & Crisfield 2001] on the grounds that, unlike Gci which is an 
input parameter, Goi can be changed in a certain range by changing the value 
of  soi (see Figure 4.5.10). 
The  direct relationship between the damage parameter d and se can be 
derived from the general ‘damage mechanics’ framework described earlier 
in the previous section. This can be done by introducing the following 
convex function:  

 ( )
2 2

31 2

1 2c c c

YY Yf Y
G G G

2

3

α α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.5.75) 

so as to define the damage domain D:  

 ( ){ }: cY f Y ω= ≤D  (4.5.76) 
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which depends on the non-dimensional threshold value ωc.  
A non-associative evolution law for the internal variables d  and Y is then 
assumed:  

  (4.5.77) [1 1 1 Td d
• •

= ]

0cω =

with the Khun-Tucker conditions:  

  (4.5.78) ( ) ( ), 0,cf Y d f Y dω
• •

⎡ ⎤≤ ≥ −⎣ ⎦

and the additional constraint that 0 1d≤ ≤ . 
The condition d1=d2=d3=d is thus a consequence of Eq. (4.5.77) and of the 
fact that di=0 at the beginning of the process for all of the modes i. The zone 
of the interface where 0  is classically denoted as the “process zone” 
and separates the still undamaged part from the fully damaged part of the 
interface. 

1d< <

The threshold ωc is assumed as a function of d through the following 
relationship:  

 

( )

( )
( )

2

2

2

1 0

1
0

1

1

c

c

c

if d

if d
d

if d

α

α

ω η

η
ω

η

ω ω

⎧ = − =⎪
⎪ ⎡ ⎤−⎪ = ⎢ ⎥⎨

−⎢ ⎥⎪ ⎣ ⎦
⎪ = =⎪
⎩

1< <  (4.5.79) 

in which ( )max f Yω = . Hence, the damage domain D changes during the 
damage process, since the threshold ωc has the initial value ( ) 21 αη− ,  
approaches the value ( ) 21 αη−  when  and can indefinitely increase 
when d=1, together with 

1d →
ω .  

The choice of assuming a fixed threshold value ωc , instead of relationship 
(Eq. (4.5.79)), would decrease the size of the process zone to zero, so that a 
discontinuity in the traction-relative displacement law would exists, with a 
jump from the maximum value of the elastic range to zero. 
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For a clearer understanding of the model, the geometric meaning of G01 and 
Y01 is shown in Figure 4.5.10, which refers to a pure mode-I case.  
Furthermore, this formulation takes into account the plastic evolution law 
through the use of convex yield function φ, which is made dependent on the 
“effective traction” [Champaney & Valoroso 2001; Corigliano 1993] 
defined as:  

 (ˆ
1 pd

= = −
−
tt E s )s  (4.5.80) 

in accordance with the physical argument that plastic yielding occurs in the 
not-yet-damaged part of the interface. 
Thus, the elastic domain S is implicitly defined as follows:  

 ( ){ }ˆ ˆ ˆ, 0t tφ χ= ≤S  (4.5.81) 

where φ is assumed to be convex and positively homogeneous while χ̂  
represents the isotropic expansion of S.  
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Figure 4.5.9: Traction-relative displacement relationship: (a) mode I; (b) modes II and III 

(i=2,3) 
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Figure 4.5.10: The two patterned areas are equal to G01 and Y01(se1), respectively. 
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CHAPTER V 
EXISTING MODELS for FRP/CONCRETE and 
STEEL/CONCRETE INTERFACES 

5.1 INTRODUCTION 

The main element of novelty of RC beams retrofitted with FRP, with respect 
to ordinary reinforced concrete beams, are the failure modes associated with 
debonding of the FRP external reinforcement. 
This new aspect is recognised in the international guidelines for the design 
of this type of strengthening works, which give indications on how to 
prevent mid-span debonding.  
A good model for RC beams retrofitted with FRP must be therefore capable 
of predicting debonding failure modes. Besides, as we have already 
explained, the model we are setting up is intended to be the more realistic 
and comprehensive is possible. This is because the model is not only 
intended for the assessment of the element capacity but also to supply 
information on these systems which are difficult to obtain experimentally. 
A good model for the interfaces is therefore of key importance. This does 
not apply only to the sensitive interface FRP/concrete but also to the more 
robust one, steel rebar/concrete. This is due to the fact that bond slip of steel 
bars largely influence crack opening and spacing, and in turn, the 
performance of the FRP/concrete interface, as will be demonstrated in by 
the numerical results.  
The correct modelling of the interfaces affects significantly also the stiffness 
performance of the system, that is also of interest, as often FRP are used to 
increase the stiffness of a structural element rather than its capacity. 
In this chapter, some mathematical models available in literature on the 
interfacial behaviour of FRP/concrete and steel bar/concrete will be 
described.  
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5.2 EXISTING FRP/CONCRETE INTERFACE MODELS 

5.2.1 Introduction 
Several scientific contributions have been proposed by various researchers 
in the last ten years concerning both with the interface stress evaluation and 
adhesive-concrete bond interface behaviour.  
Chen & Teng [2001] reported an overview of some models for evaluating 
the ultimate strength of FRP plates epoxy-bonded to concrete. They have 
been classified into three categories: empirical models, based directly on the 
regression of experimental data, fracture mechanics, based models design 
proposals that generally make use of some simplified assumptions. In 
particular, the models belonging to the second category consist in 
introducing various expressions for fracture energy, representing 
relationships between interface slip and tangential stress. Neubauer & 
Rostasy [1997] starting from previous researchers assumed a bi-linear 
relationship between slip and interface shear stress, simulating a first range 
of elastic behaviour, followed by a second and larger one accounting for the 
softening behaviour of concrete beneath the epoxy resin. In fact, concrete 
cracking due to high interface shear stress results in softening behaviour of 
the epoxy-concrete interface as a whole. Due to the greater importance of 
the softening range with respect to the elastic one for evaluating the ultimate 
strength of the FRP-to-concrete joint, a linear descending simplified 
relationship may be assumed. Bi-linear relationship has been chosen by Wu 
& Yin [2003] to model the fracturing behaviour of FRP-strengthened 
concrete structures: they studied the mode II crack (shear mode) occurring 
in the adhesive layer and proposed a smeared crack model for simulate the 
micro-cracking phenomena occurring at the adhesive-concrete interface, 
resulting in a progressive loss of strength of the epoxy FRP/concrete joint as 
a whole.  
Several efforts have been carried out by various researchers about either 
evaluating stress concentration in the adhesive interface and estimating its 
strength.  
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Under the experimental standpoint, various testing techniques have been 
proposed for investigating the interface behaviour. Jones et al. [1988] tested 
scaled beams strengthened with steel plates characterized by different 
dimensions and arrangements of plates; Bizindavy [1999] carried out similar 
experiments on beams strengthened by FRP sheets: both observed 
premature beam failures due to interface debonding of the strengthening 
plates.  
Instead of testing strengthened beams as a whole, Chajes et al. [1996] 
performed pull-out tests on FRP-to-concrete epoxy joints in order to 
evaluate the interface behaviour by reproducing the situation of the cut-off 
section in strengthened beams where stress concentrations arise. Faella et al. 
[2002, 2003] presented a series of suitably instrumented experimental pull-
out tests on FRP/concrete joints; on the basis of the experimental results 
their investigation was addressed to carry out an indirect identification 
procedure for calibrating the bilinear ascending softening (τ-s) relationship 
chosen for characterizing the joint behaviour. 
However, largely scattered results have been obtained for bond strength due 
to different testing methods adopted by the various researchers. Horigucki & 
Saeki [1997] just focused on the effect of testing methods by comparing the 
results in terms of (average) bond strength obtained with three types of tests; 
they found that tensile tests provide always the higher bond strength while 
shear pull-out tests give generally the lower values.  
It is easy to understand that such a general trend is mainly due to the stress 
distribution induced by the two above mentioned tests: in particular, tensile 
tests results in uniform tensile stress at the interface while shear tests induce 
a normal and shear stress concentrations close to the pulling out force 
application point, as it will be widely shown in the following. 
Under the theoretical point of view various one-dimensional models have 
been carried out for estimating stress concentrations in the adhesive layer. 
Roberts [1988] proposed one of the first formulation for evaluating normal 
and shear stress in the adhesive layer by means of a simple uncoupled 
approach. In the following years other proposals have been carried out 
among which the ones by Malek et al. [1998] and Täljsten [1997], both 
providing a closed form solution for shear and normal stress concentrations. 
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Moreover, Brosens & Van Gemert [2001] proposed a Mohr-Coulomb-like 
failure criterion for evaluating limit combinations of shear and normal 
stresses in the adhesive-concrete interface. 
It is informative at this stage to give further explanation of the mechanism 
of transfer of forces between the concrete and the composite. As this section 
is intended to be descriptive, only basic equations shall be given to clarify 
the physics of the problem. 
Separation of concrete and FRP is generally referred to, in the literature, as 
peeling or bond splitting depending on whether the entire covercrete is 
involved or not. In the following, when it is intended to make no distinction 
between the two modes the term delamination will be used. 
In two dimensions, two modes of delamination are recognised.  
They are conventionally named as mode I and mode II.  
• Mode I is associated with normal relative displacements between the 

two surfaces connected by the interface and mode II is associated with 
transverse displacements. The two modes are generally coexistent in 
different proportions. In the case of the interface FRP/concrete in 
structural elements in bending mode II is dominant (Figure 5.2.1(a)). 

• Mode II generate shear stresses. These shear stresses are transmitted to 
the covercrete via the adhesive. Axial equilibrium of an element plate 
gives: 

 mp mp
p p p

d d
t t E

dx dx
σ ε

τ = =  (5.2.1) 

where τ is the shear stress; and tp, Ep, σmp, εmp, x, are the thickness, the 
Young’s modulus , mean axial stress, mean axial strain, and distance along 
the plate, respectively (Figure 5.2.1(b)). 
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Figure 5.2.1: Modes of delamination; (a) Mode I, (b) Mode II 

For a linear strain variation through the thickness of the plate, the average 
strain is that at mid thickness. The shear bond stresses which trigger mid-
span debonding action can be generated by any influence inducing axial 
stress gradients in the plate. For initiation of debonding, one such source of 
axial stress gradient is tension stiffening, which refers to the axial variation 
of tensile stress in the concrete teeth between cracks, owing to the bond 
between the tension reinforcement and the cracked concrete. For 
equilibrium, axial stress gradients must also exist in the FRP plate bonded 
onto the cracked concrete, with such stresses diminishing away from the 
crack faces.  
During debonding propagation, a change exists along the beam from 
sections with bonded plate to sections with debonded plates. 
The presence of yielded steel at the debonded sections and elastic steel at 
bonded sections exacerbates the change. This induces high axial stress 
gradients along the plate in the transition region between the debonded and 
the bonded beam sections, which in turn induces further debonding. Hence, 
the mid-span process is self-propagating and can become particularly 
pronounced after yield of the embedded steel. 
It is worth to observe that for simply supported beams, end peeling is likely 
to occur when the following conditions exist: 
• low shear span loading (to generate high plate-to-beam shear bond stresses 
near the supports); 
• curtailment of the plates far from the supports (for the end effects which 
amplifies the shear bond stresses); 
• use of a stiff plate (to attract high bond stresses near plate curtailment) ; 
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Mid-span debonding, by contrast, requires: 
• high shear span loading (to generate large moments near mid-span); 
• plate curtailment very near to supports and thin plates. 
The latter two conditions are required to minimize end peeling tendencies. 
In practice uniformly distributed loads can generally be regarded as high 
shear span loads. 

5.2.2 Elastic approach (Rasheed & Pervaiz 2002) 
A variety of possible approaches have been proposed for the problem of the 
interface between concrete and FRP. Closed form solutions have been found 
for highly idealised linear elastic models [Rasheed & Pervaiz 2002; Yang et 
al. 2004], in which the relative movement between the two materials is due 
to elastic deformation of the bonding agent (epoxy) assumed with a finite 
thickness. At this level of idealization a closed form solution to the interface 
problem can be derived as follows. 
The problem can be greatly simplified if the following assumptions are 
made: 
• Linear elastic behaviour of all components; 
• Unidirectional FRP plates with their fibres aligned with the beam axis; 
• Bond line has no axial and bending stiffnesses; 
• The adhesive is homogeneous and uniform along the bond line; 
• Linear strain distribution is assumed in the beam and strengthening plate 

sections. 
With reference to Figure 5.2.2  the following relation can be written:  

 ( )'
it d vγ φ− = −  (5.2.2) 

where γ is the shear strain in the adhesive layer, ti is the thickness of the 
adhesive, d is the distance of the axis of the FRP plate from the axis of the 
concrete section, v’ is the rotation of the concrete section and φ  is the 
average cross sectional rotation defined by the difference of the axial 
displacement of the concrete section and the plate and the distance between 
their axes d (see Figure 5.2.2). Assuming small deformations:  
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 2 1u u
d

φ −
=  (5.2.3) 

According to the convention used in the figure v’ and φ  are counter 
clockwise 
while γ is a clockwise angle. 

 
Figure 5.2.2: FRP strengthened beam considering interface slip: (a) beam layout; (b) cross 

section kinematics 

The axial strains of beams and plate are given by:  

 ' '
1 2;

B p

Cu u
EA EA

= =
T  (5.2.4) 

where C is the compressive axial force in the concrete, T is the tensile axial 
force in the FRP and all other symbols have their usual meaning with the 
suffix B for beam and p for plate. 

 139 



 
EXSISTING MODELS for FRP/CONCRETE and STEEL/CONCRETE INTERFACES                                                              
 

Since the deflection is assumed to be the same for all points in the section, 
the curvature (v’’) may be directly used to define the bending moments in 
the beam and the FRP plate, respectively (Figure 5.2.3(a)).  

 
Figure 5.2.3: Equilibrium of forces: (a) force/moment distribution in cross section; (b) 

interface shear stress on differential plate element 

 "; "B B p pM EI v M EI v=  (5.2.5) =

The interface shear stress τ is related to the shear strain through the shear 
modulus G.  

 Gτ γ=  (5.2.6) 

The equilibrium of an elemental segment of plate yields:  

 1 dT
b dx

τ =  (5.2.7) 

 140 



 
NUMERICAL ANALYSIS on the DEBONDING of FRP FLEXURAL REINFORCEMENT of RC MEMBERS           
 

Where b denotes the width of the FRP plate. 
Taking the equilibrium of forces and moments at any cross section:  

 C T= −  (5.2.8) 

 x b pM M M Td+ +  (5.2.9) =

 

Differentiating φ  with respect to x and using equation (5.2.8) we get:  

 '
s

T
dEA

φ =  (5.2.10) 

where EAs = 1/EAb + 1/EAp.  
Substituting Eq. (5.2.5) into Eq. (5.2.9) and rearranging:  

 ( ) ''sM x EI v
T

d
−

=  (5.2.11) 

where EIs = EIb + EIp. Differentiating equation (5.2.13) with respect to x 
and substituting into Eq. (5.2.7):  

 ( ) ( )'
'''

s

M x bd x
v

EI
τ−

=  (5.2.12) 

Differentiating Eq. (5.2.2) twice with respect to x, substituting Eq. (5.2.10) 
and rearranging:  

 ''' ''' 0
i s

d Tv
t dEA

γ
⎛ ⎞

+ −⎜
⎝ ⎠

=⎟  (5.2.13) 

Substituting Eq. (5.2.7) and Eq. (5.2.12) into Eq. (5.2.13), The shear 
differential equation is obtained:  

 ( ) ( ) ( )2'' '
i s

dGx x M
t EI

τ α τ− = − x  (5.2.14) 
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where 

 
2

2 1

i s s

bG d
t EA EI

α
⎛ ⎞

= +⎜
⎝ ⎠

⎟  (5.2.15) 

The solution of the above linear differential equation with constant 
coefficients has the well known form:  

 ( ) ( ) ( ) ( )cosh sinh px A x B xτ α α= + + xτ  (5.2.16) 

where τp is a particular solution. 
To calculate the shear stresses as a function of x it is necessary to find a 
particular solution τp(x) and impose the appropriate boundary conditions. 
In the case of a simply supported partially plated beam under uniform 
loading the solution has the following form:  

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) (

2

2

2

sinh tanh 2 cosh
2

cosh
2 cosh 2

1 sinh tanh 2 cosh
8

p p p
p

i s

p
p

i s p

p p p
i s b

x L xdG Lx w x
t EI

xdG w L L
t EI L

Gw EIL L x L x
t dEA EI

α α α
τ

α α

α

α α

α α α
α

⎡ ⎤−⎛ ⎞⎢ ⎥= − +⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

− − +

⎛ ⎞ )p

+

⎡ ⎤+ − − −⎜ ⎟ ⎣ ⎦⎝ ⎠
  (5.2.17) 

Other approaches [Yang et al. 2004] with less stringent kinematical 
assumptions giving also the possibility of considering more than three layers 
of different materials involve the use of Fourier series and are not reported 
for brevity. 
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5.2.3 Empirical models  
Several experimental and theoretical work exists on the bond strength of 
FRP to concrete joints. The models presented below are based on simple 
shear tests.  
Tanaka [1996] presented a simple expression similar to that presented by 
Sato [1996] as function of the bond length L:  

 Lu ln13.6 −=τ           [MPa] (5.2.18) 

where L in mm.   
Hiroyuki & Wu [1997] derived a set of double shear tests on RC members 
strengthened with carbon fibre sheets from which they derived the following 
empirical relationship:  

           [MPa] (5.2.19) 669.088.5 −⋅= Luτ

where L in cm.  
Maeda et al. [1997] developed a model  function of the modulus of elasticity 
Ep and the thickness tp of the bonded plate:  

           [MPa] (5.2.20) ppu tE ⋅⋅= −6102.110τ

with Ep in MPa and tp in mm.  
The ultimate strength Pu is given by multiplying the ultimate shear stress by 
the effective bond area Le bp, where:  

           [mm] (5.2.21) pptE
e eL ln58.013.6 −=

Maeda’s model is obviously valid only for L>Le. 

5.2.4 Fracture-mechanics based models 
Holzenkämpfer [1994] investigated  the bond strength between steel and 
concrete using non-linear fracture mechanics (NLFM). To calculate the 
bond strength he used the modified expression of Niedermeier [1996]:  
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with Ep in MPa, tp in mm, and Pu in N. 
The effective bond length Le and the fracture energy Gf are given by:  

 
ctm

pp
e f

tE
L

4
=           [mm] (5.2.23) 

           [Nmm/mmctmpff fkcG = 2 2] (5.2.24) 

in which, fctm in MPa, is the average tensile strength of the concrete 
determined in a pull-off test according to DIN 1048 [1991], cf is a constant 
determined by linear regression analysis of experimental data; kp is a 
geometrical factor related to the width of the bonded plate bp and the width 
of the concrete beam bc , both expressed in mm:  

 
4001

2
125.1

p

cp
p b

bb
k

+

−
=  (5.2.25) 

Täljsten [1994] developed a similar model, in which the bond strength is 
calculated as:  

 p
T

fpp
u b

GtE
P

α+
=

1
2

,  (5.2.26) 

where Ec and tc are the elastic modulus and thickness of the concrete 
member. The ratio αt is:  

 
cc

pp
T tE

tE
=α  (5.2.27) 
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Yuan & Wu [1999] and Yuan et al. [2001] studied the bond strength 
between FRP and concrete using linear elastic fracture mechanism (LEFM) 
and nonlinear fracture mechanics (NLFM).  
The expression proposed is similar to Eq. (5.2.26) but includes the effects of 
width of the plate and the concrete member through the coefficient yα  
which replaces Tα  of Eq. (5.2.27). They solved the NLFM equation for five 
different shear stress-slip relationships, among which the bi-linear 
relationship (Figure 5.2.4 (e)) is the closest to reality.  
 

 
Figure 5.2.4: Shear-slip models for plate to concrete bonded joints 

The maximum load-carrying capacity is:  

 )sin( 2
12

a
b

P
f

fpf
u λ

δδ
δ

λ
τ

−
=  (5.2.28) 

where a is the solution of  the following equation:  
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 ( )[ ] ( aaL 2
1

2
1 tantanh λ

λ
λ

λ =− ) (5.2.29) 

with τ f is the maximum stress on the shear-slip curve of the bond, δ1 is its 
corresponding slip, δf is the maximum slip and λ1 and λ2 are defined by:  

 (2
1

1

1f
y

p pE t )τ
λ α

δ
= +  (5.2.30) 

 
( ) (2

2
1

1f
y

f p pE t
τ

λ α
δ δ

=
−

)+ ,  (5.2.31) 

where  

 p p p
y

c c c

b E t
b E t

α =  (5.2.32) 

In the solution of Yuan et al. the effective bond length is defined as the 
value corresponding to the 97% of the load-carrying capacity if L is 
assumed infinite:  

 1 2 2 0
0

1 1 2 2 0

tan( )1 ln
2 tan(e

aL a
a )

λ λ λ
λ λ λ λ

+
= +

−
 (5.2.33) 

where  

 11
0

2

1 sin 0.97 f

f

a
δ δ

λ δ
−

⎛ ⎞−
= ⎜

⎜
⎝ ⎠

⎟
⎟

 (5.2.34) 

Neubauer & Rostasy [1997a, b] conducted a series of double shear tests on 
CFRP/concrete bonded joints and concluded that, for both concrete fracture 
and FRP delamination failures, the shear-slip relationship may be 
represented by the bi-linear model (figure 5.1.4-e). The fracture energy Gf 
can be calculated using:  
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 f f ctmG c f=  (5.2.35) 

where cf  had an average value equal to 0.204mm. 
They presented a modified model to Holzenkämpfer:  
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 (5.2.36) 

The effective bond length Le is given by:  

 
2

p p
e

ctm

E t
L

f
=           [mm] (5.2.37) 

Van Gemert [1980], by assuming a triangular shear stress distribution 
(Figure 5.1.4(b)) in the full bond length, and by calculating the ultimate load 
through the concrete tensile strength fctm:  

 0.5u pP b Lfctm=  (5.2.38) 

This assumption is conceptually misleading because it contradicts the well-
established fact that any additional bond length beyond the effective bond 
length cannot increase the bond strength.  

5.2.4 Fracture mechanics-based models with the experimental 
calibration of parameters 

Chen & Teng [2001] proposed a bond strength model by combining fracture 
mechanics analysis with experimental data. They noted that the shear-slip 
behaviour of plate to concrete bonded joints may be well represented by a 
triangular shear-slip model (figure 5.1.4-e) where the typical slip values at 
failure are 1 0.02mmδ = and 0.2f mmδ = . 
The NLFM solution is  
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where  

 
2eL π
λ

=  (5.2.40) 

 (1f
y

f p pE t )τ
λ α

δ
= +  (5.2.41) 

with 1yα < .  
They also noted that a smaller width of the bonded plate to that of the 
concrete member leads to a non-uniform stress distribution across the width 
of the concrete member: when bp is smaller then bc higher shear stress can 
occur  at the interface at failure because of contribution from the concrete 
outside the bond area. 
By regression of experimental data, they related the ultimate bond strength 
to the coefficient βp:  

 
2
1

p c
p

p c

b b
b b

β
−

=
+

 (5.2.42) 

They also noted that an accurate measure of the shear-slip properties δf and 
τf is very difficult but the experimental data lead to approximate τf by the 
tensile strength of concrete, which is related to the compressive strength of 
concrete in the form of 'cf .  
Chen and Teng approximated the effective bond length by the expression:  

 
'

p p
e

c

E t
L

f
=  (5.2.43) 

and proposed a simple expression for the ultimate bond strength:  
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 '0.427u p L cP β β= p ef b L           [N] (5.2.44) 

where 

 
( )

1

sin 2
e

L
e e

if L L

L L if L L
β

π

≥⎧⎪= ⎨ ⎡ ⎤ <⎪ ⎣ ⎦⎩
 (5.2.45) 

Faella et al. [2005] calibrated a bilinear ascending-softening relationship for 
characterizing the joint behaviour on the basis of the experimental results. 
The simplest way for simulating FRP/concrete interface behaviour consists 
in assuming uncoupled models for shear and normal stresses.  
The Equilibrium and compatibility conditions in the z-direction stated as 
follows:  

 ( ) 0z

p

d s
dz t
σ τ

+ =  (5.2.46) 

 ds
dz

ε =  (5.2.47) 

lead to the following differential equation in terms of shear stress τ(s) and  
interface slip s:  

 ( )2

2 0
p p

sd s
dz E t

τ
+ =  (5.2.48) 

where Ep is the plate Young modulus and tp is its thickness.  
Assuming the bi-linear relationship for τ(s) represented in Figure 5.2.4 (e), 
two cases can occur: if els s≤  throughout all the bonded length (elastic 
behaviour) the following exponential solution can be derived (Figure 5.2.5 
a)):  

 
( )

( )
cosh

sinh
el

el
p el

L zP
b L

α
τ α

α
⎡ ⎤−⎣ ⎦=  (5.2.49) 
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⎡ ⎤−⎣ ⎦= =  (5.2.50) 

being 

 el
el

p p

k
E t

α =  (5.2.51) 

 

 
Figure 5.2.5: Interface shear stress: a) at the elastic limit, b) beyond the elastic limit. 

The maximum “elastic” interface slip is attained for a force Pel:  

 (max tanel p el
el

P b )Lτ α
α

=  (5.2.52) 

Whenever P overcomes Pel, slip in the bond length are greater than sel 
between the application point of the pulling out force and the abscissa zel, 
where s = sel (curve b) in Figure 5.2.5). 
In this case, two different expressions can be obtained for the two regions of 
the bonding length:  
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( ) ( )
( )
( )

cosh ,

cosh
,

cosh

m u oc d u e i u ie

e i
m el

el el

z z k k s s z z t if z z

L z
if z z

L z

τ α α

τ α
τ

α

⎧ ⎡ ⎤⎡ ⎤− + − ≤⎣ ⎦⎣ ⎦⎪⎪= ⎨ ⎡ ⎤−⎣ ⎦ >⎪
⎡ ⎤−⎪ ⎣ ⎦⎩

el

 

  (5.2.53) 

being  

 ( )m u e u
u

p p p p

s s k
E t E t

τ
α

−
= =  (5.2.54) 

The values of the force P (greater than Pel) corresponding to the given 
position of the transition point zel can be obtained by integrating shear 
stresses along the bonding length. The maximum value Pmax may be 
searched by varying the position of  zel between 0 and L. 
Bi-linear ascending-softening relationship for describing the interface 
behaviour can by roughly simplified by considering a rigid-softening 
relationship (Figure 5.2.4 b)) and assuming ku' ≈ ku . Under this hypothesis 
the ultimate capacity of the FRP/concrete joint can be evaluated as follows:  

 ( )
max max

sin u
p

u

L
P Lb

L
α

τ
α

=  (5.2.55) 

with  

 
2eff

u

L L π
α

≤ =  (5.2.56) 

The inequality in Eq. (5.2.56) means that s is smaller than su throughout all 
the bonding length L of the FRP/concrete joint. When L reaches Leff , s 
overcomes su in the portion of the joint close to the force P; for this reason, 
no further increase can be obtained for L greater than Leff and the maximum 
ultimate capacity can be expressed as follows:  max, effLP

 151 



 
EXSISTING MODELS for FRP/CONCRETE and STEEL/CONCRETE INTERFACES                                                              
 

 max, maxeff

p p
L

u

E t
P

k
τ= pb  (5.2.57) 

or 

 max, 2
effL f pP G E= p pt b  (5.2.58) 

Guo et al. [2005] used a modified beam test specimen to study the bond 
behaviour and force transfer of FRP composite adhered to concrete taking 
into account the influence of bond length, and concrete strength. Based on 
experimental results on GFRP sheets they proposed three local bond stress-
slip constitutive models, as will be described later on. The specimen was a 
plain concrete beam, simply supported and with  the load  applied at mid-
span. The interfacial slip of section i (si) is the sum of the difference 
between the elongation of FRP and the elongation of the equivalent section 
compounded of concrete and epoxy layer from the free-end of the FRP 
laminate to section i.  
They obtained a bond stress-slip curve which has a tendency to become 
parabolic in form (see Figure 5.2.6): a first steep ascending branch is 
followed by a plastic or softening region, until an ultimate slip is reached. 
After the bond stress reaches about 20% to 30% of the peak value, the 
stiffness of these curves continuously reduces with the increase of bond 
stress and reaches zero at the peak bond stress. After the peak stress, the 
curve descends slowly and become parabola in form. The softening branch 
of the curve predicts the attainment of a linear strain distribution close to 
peeling and the ultimate slip explains the ductility of the joint.  
The local bond stress-slip curve has three key points which include the 
ultimate  bond stress τmax , the slip corresponding to the ultimate bond stress 
δmax, and the ultimate slip δu. The measured ultimate bond stress τmax shows 
a tendency to increase when the concrete compressive strength increases. 
The relationship between the ultimate bond stress and the concrete strength 
was analyzed.  
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Figure 5.2.6: Experimental bond stress-slip curve [Guo et al. 2005] 

The regression analysis of experimental data gave the following expression: 
0.5

max 0.7512 cufτ = . 
 The equation adopted as logarithmical model is the following:  

 

0
max

max max

max max
max2

max max

1 ln 1 ,

,

k
k

k k

k

a b c

α δ δα δ
α δ δ α

τ δ
τ δ

δ

δ δ
δ δ

δ δ

⎧⎡ ⎤⎛ ⎞+
+ − ≤⎪⎢ ⎥⎜ ⎟

⎢ ⎥⎪ ⎝ ⎠⎣ ⎦
⎪⎪= ⎨
⎪ >
⎪ ⎛ ⎞⎪ + + ⎜ ⎟
⎪ ⎝ ⎠⎩

 (5.2.59) 

where  

 0
0

max

k sk
τ

=  (5.2.60) 

is the normalised initial stiffness;  
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 0
1

a c

a c

k h h
G G

=
+

 (5.2.61) 

is the initial stiffness; Ga is the shear modulus and ta is the thickness 
of adhesive layer, Gc is the shear modulus and tc is the thickness of 
concrete; αk  is a coefficient related to the normalised initial stiffness 
k0, a, b, c are experimental coefficients with a=c and b=1-2a. The 
expression of αk as function of k0 by the regression of local bond-slip 
curve was:  

 2
0 00.14 0.83 0.16k k kα = − + +  (5.2.62) 

The following conditions are to be satisfied according to the bond 
stress-slip curve:  

 
( )
( )

( )
( )

max max

max max
0

max max max0

1; ; 1
d d

k
d d

δ δ δ δ

τ τ τ ττ
τ δ δ δ δ

= = =

= =
δ

=  

  
  (5.2.63) 

 The Popovics’s equation was used to fit the local bond stress-slip 
curve. The Popovics’s equation shown as follows:  

 
max max

max
1

n
n

n

τ δ
τ δ δ

δ

=
⎛ ⎞− + ⎜ ⎟
⎝ ⎠

 (5.2.64) 

where τ is the bond stress, in MPa; τmax is the ultimate bond stress 
given by 0.5

max 0.7512 cufτ = ; δ is the local slip in mm; δmax is the slip 
corresponding to the ultimate bond stress; n is the constant 
coefficient. For the available experimental data the average value of 
n was 2.018. 

 The Hyperbola model was obtained by the regression of the 
ascending and descending branches of the measured bond stress-slip 
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curve respectively. The Hyperbola model describes the ascending 
and descending branches separately using the following equations:  

 

max

0.488

max
max

max 0.2578

max

1.114 ,

1.3424 ,e
δ

δ

δ δ δτ δ
τ

δ δ
−

⎧ ⎛ ⎞
⎪ ≤⎜ ⎟⎪ ⎝ ⎠= ⎨
⎪
⎪ >⎩

 (5.2.65) 

where τ is the bond stress, in MPa; τmax is the ultimate bond stress 
given by 0.5

max 0.7512 cufτ = ; δ is the local slip in mm; δmax is the slip 
corresponding to the ultimate bond stress. 

5.2.5 Unified analytical approach: Dai et al. model (2005) 
The pullout test is a conventional test method for calibrating interfacial 
shear bond characteristics of FRP/concrete interface. However, due to the 
small bending stiffness of FRP sheets/strips and the highly non-linear 
interface fracturing mechanism, a well-recognized analytical approach to the 
accurate interpretation of the pullout test results remains to be achieved 
despite extensive studies particularly when the aim is to calibrate a local 
bond stress-slip model, which is necessary for developing bond strength and 
anchorage length models avoiding the use of empirical formulations. 
This model introduces a newly developed non-linear bond stress-slip model 
for analyzing full-range strain distributions in FRP and shear bond stress 
distributions in the interface bond layer during pullout tests.  
It is an established technique to obtain the tension-softening diagram of 
concrete from the load-deflection curve of a notched concrete beam under 
three-point bending through the J-integral method [Li & Ward 1989]. In a 
similar way, the local τ -s constitutive law for the FRP/concrete interface 
can be obtained from the relationship between pullout load and slip at the 
loaded point (P = f(s)) through simple pullout tests [Dai et al. 2005]. 
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Figure 5.2.7: Sketch of pullout bond test setup 

During a pullout test, as shown in Figure 5.2.7, pullout load P in the FRP 
and slip s between the FRP and the concrete at the loaded point (the circled 
location in Figure 5.2.7) can be recorded continuously. If FRP stiffness Ef tf  

(product of elastic modulus and thickness of FRP) and bond width bf are 
known, the relationship between the strain in the FRP and the relative 
interface slip thus can be obtained as follows:  

 ( )f sε =  (5.2.66) 

where ε and s are the FRP strain and interface slip at any a location, 
respectively. 
For FRP externally bonded to concrete, the interfacial bond stress can be 
written as:  

 ( ) ( )f f f f

df sdE t E t f s
dx ds
ετ = =  (5.2.67) 

because  

 ( ) ( ) ( ) ( )df s df s df sd ds f s
dx ds dx ds ds
ε ε= = =  (5.2.68) 
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where τ is the  interfacial bond stress. 
Using this approach, it is not necessary to get the local τ-s relationship by 
attaching many gages with a small interval on external bonded FRP to 
record strain distribution. 
The effects of coarse aggregates near the interface and local bending of 
FRP, which are major causes of scatter in the observed FRP strains, can be 
avoided as well.  
For FRP/concrete interfaces with a bond length longer than 300 mm, 
various pullout bond tests, in which different types of FRP materials, 
different adhesives and different FRP stiffness [Santos et al. 2003; Dai et al. 
2005] a unique form of expression can represent f(s) and fit the 
experimental results quite well:  

 ( ) ( )( )1 expf s A Bsε = = − −  (5.2.69) 

The local τ-s model can be obtained as follows:  

 ( ) ( )2 exp 1 expf fA BE t Bs Bsτ ⎡ ⎤= − − −⎣ ⎦  (5.2.70) 

The physical meaning of A in Eq. (5.2.70) is the maximum strain reached in 
the FRP when using a long enough bond length in a pullout test and it can 
be related to the interfacial fracture energy Gf, which is the area underneath 
the local τ-s curve. The following expression is obtained:  

 
2 f

f f

G
A

E t
=  (5.2.71) 

Therefore, Eq. (5.2.70) can be rewritten substituting Eq. (5.2.71) as follows:  

 ( ) ( )2 exp exp 2fBG Bs Bτ s⎡ ⎤= − − −⎣ ⎦  (5.2.72) 

where Gf is expressed in [N/mm] and B in [mm-1]. 
The theoretical maximum bond force for an FRP/concrete interface with 
sufficiently long bond length is:  
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 max 2f f f fP b E t G=  (5.2.73) 

The maximum bond stress and the corresponding slip value which are 
difficult to calibrate directly from pullout test results, can be determined 
mathematically as follows:  

 max 0.693s B=  (5.2.74) 

0.5 fBG=  (5.2.75)  maxτ

When the bond length is short, slip at the free-end occurs although strain in 
the FRP at that location remains zero. Non-zero slip and zero strain at the 
free-end causes different shapes of strain distributions in reinforcing 
materials internally or externally bonded to concrete.  
An analytical solution to demonstrate different τ-s behaviours of the 
FRP/concrete interface near the free-end in a pullout test, is given as 
follows. It is assumed (Eq. 5.1.66) that a unified  τ-ε-s expression can be 
applicable for the FRP-concrete interface as well to describe the different 
natures of strain distribution in the FRP near and far from the free end: 

 
( ) ( ) ( ) ( )

( ) ( )
0 2 exp exp 2

2 exp 1 exp
f

f

g s G B Bs Bs

G B Bs Bs

τ ε τ ⎡ ⎤= = − − − =⎣ ⎦
⎡ ⎤= − − −⎣ ⎦

i
 (5.2.76) 

As a result, the problem in the current analysis is how to get expressions for 
g(ε ) and τ0(s). From Eq. (5.2.66), which is true for the boundary condition 
of ε= 0, s = 0 and τ= 0 (long bond length case), it follows that:  

 ( ) ( )1 exp exp 1Bs or Bs
A A
ε ε

= − − − = −  (5.2.77) 

As a consequence, the function for FRP strain, g(ε) is assumed as follows:  

 ( ) 1g
A
εε = −  (5.2.78) 
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Substituting Equations (5.2.77) and (5.2.78) into Eq. (5.2.76):  
or  

 ( ) ( )( )0 2 1 expfs G B Bsτ = − −  (5.2.79) 

An important interfacial parameter termed effective bond length is needed 
for anchorage design of FRP/concrete interfaces. In order to define the 
effective bond length in a comprehensive way, it needs to have a good 
understanding of strain distributions in externally bonded FRP or shear 
stress distributions along the interfaces.  
The following differential equation has been popularly used by many 
researchers to perform stress analysis in bonded connections subjected to 
shear by neglecting the bending effects of FRP, interfacial normal stress and 
strain in concrete (i.e., Brosens & Van Gemert [1998], Lorenzis et al. 
[2001], Wu et al. [2002], Yuan et al. [2004]):  

 ( ) ( )2

2 0
f f

d s x x
dx E t

τ
− =  (5.2.80) 

Eq. (5.2.80) can be rewritten as the following equation with substitution of 
the bond stress-slip model (Eq. 5.2.72):  

 ( ) ( ) ( )
2

2

2
exp exp 2f

f f

BGd s x
Bs

dx E t
Bs⎡ ⎤= − − −⎣ ⎦  (5.2.81) 

The solution for Eq. (5.2.81) can be obtained as follows:  

 ( ) ( )2
1 ln exp 1s x B Ax c
B

⎡ ⎤= + +⎣ ⎦  (5.2.82) 

Therefore, the strain distribution in FRP can be written as:  

 ( ) ( )
( )

2

2

exp
exp 1

B Ax cdsx A
dx B Ax c

ε
+

= =
+ −

 (5.2.83) 
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where A= 2Gf / E f t f , and c2 is a constant related to the boundary condition 
at the loaded end.  
When pullout force P is exerted at the loaded end, the boundary condition of 
= P/(bf Ef tf) at x = L can be introduced into Eq. (5.2.83), and the constant c2 
can be determined as follows:  

 max
2

ln P
P Pc

B
−

= AL−  (5.2.84) 

where Pmax is the theoretical maximum pullout force (Eq. (5.2.73)). By 
substituting Eq. (5.2.84) into Eq. (5.2.83), the strain distribution of FRP 
sheets under pullout load P and a long bond length L can be expressed as:  

 ( ) ( )( )( )maxexp
1

Ax
AB L x P P

P

ε =
− −

+

 (5.2.85) 

Subsequently, shear stress distribution in the bond layer can be obtained as 
follows:  

 ( ) ( ) ( )( )
( ) ( )( )

2
max

2

max

exp

exp
f fE t PA B P P AB L x

x
P P P AB L x

τ
− −

=
⎡ ⎤+ − −⎣ ⎦

 (5.2.86) 

Mathematically, Le can be expressed as a distance between two locations x1 
and x2 (Le = x2-x1), which bears the pullout force Pmax (can be taken as a 
constant that is nearly equal to one). At these two locations, strains of FRP 
are calculated as follows:  

 1 2 1 2
1 1; ;

2 2
A A Aα αε ε ε ε− +

= = − α=  (5.2.87) 

The following equation can be obtained from Eq. (5.2.85):  
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( )

max1 ln 1 ln P PAL x
AB x Pε

⎡ ⎤⎛ ⎞ −⎛− = − − ⎞
⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠

⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (5.2.88) 

By substituting Eq. (5.2.88) into Eq. (5.2.87), the effective bond length can 
be obtained as follows:  

 ( )( )2 1 1 2

22 1 1ln ln
1 1

f f
e

f

E t
L x x L x L x

AB B G
α α
α α

+ +⎛ ⎞ ⎛ ⎞= − = − − = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

  
  (5.2.89) 

The value increases less and less efficiently as the Le increases. In other 
words, with gradual increase in bond length, the load transfer capacity that 
can be carried increases less and less efficiently. 
For a reasonable anchorage strength design, use of the constant 0.96 for α in 
Eq. (5.2.89) [Ueda & Dai 2004] is suggested. The effective bond length 
increases with decreases in B and Gf .  
For commonly used adhesives, the authors suggested the use of 0.514 fc 0.236 
and 10.4 as reference values for Gf (N/mm) and B (mm-1), respectively, 
based on a large number of experiments [Dai et al. 2005]. Therefore, Eq. 
(5.2.80) can be simplified as:  

 0.2360.236

2 1.96ln 0.74
0.0410.4 0.514

f f f f
e

cc

E t E t
L

ff
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.2.90) 

When the bond length is shorter than the effective bond length, the bond 
strength of FRP/concrete interfaces significantly changes with the bond 
length. The effective bond length is usually used in the bond strength model 
as a parameter, meaning that the accuracy of the bond strength model is 
dependent on the manner in which the effective bond length is determined, 
which may in fact differ greatly among different models.  
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5.3 STEEL/CONCRETE INTERFACE 

Steel concrete interaction influences the crack behaviour of the beam and 
therefore the performance of the FRP concrete interface and eventually of  
the entire retrofitted structural element. The mechanism by which forces are 
transferred between concrete and reinforcement has been widely 
investigated since reinforced concrete was introduced as a construction 
material and a detailed discussion of this topic is outside the scope of this 
work. However, the bond slip behaviour of steel reinforcement is briefly 
described for completeness and to give the relations used in the finite-
element models. 
The interaction between concrete and steel bars is characterized by four 
different steps Figure 5.3.1.  

 
Figure 5.3.1: Local bond slip behaviour [Tassios 1979] 
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Figure 5.3.2: Modes of bond failure: (a) pull out; (b) splitting-induced pull out 

accompanied by crushing and/or shearing-off in the concrete under the rib action; (c) 
splitting accompanied by slip on the rib faces [Coirus & Andreasen 1992]. 

 
Figure 5.3.3: Bond splitting in reinforced concrete (deformed bars): (a) typical stress peak 

in the elastic phase; (b) bar concrete slip and wedging action of the bar; (c) main 
parameters. 

 Step I (uncracked concrete): in this stage the bond action is due mainly 
to chemical adhesion. The bond stresses are characterized by low value, 
but highly localized stresses may arise close to lug tips (Figures 5.3.1-
5.3.3).  

 Step II (first cracking): in this stage the chemical adhesion breaks down 
and the stress transfer is due to mechanical interlocking of the lugs in 
the surrounding concrete. Large bearing stresses are generated in the 
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concrete at the lugs Figure (5.3.3). Due to these bearing stresses micro 
cracks originate at the tips of the lugs allowing the bar to slip as the 
bond stresses increase.  

 Step III (conical struts action): for higher bond stress values, 
longitudinal cracks start to form originating from initial micro cracks, 
generating conical struts, Figures 5.3.1-5.3.3. The outward component 
of the strut action Figure 5.3.3 is resisted by the hoop stresses in the 
surrounding concrete. The surrounding concrete will exert therefore a 
confinement action on the bar. Thus, the bond strength and the stiffness 
are due mostly to the interlocking among the lugs and the surrounding 
concrete.  

 Step IV (residual friction): at this stage the conical struts have failed 
and only a residual frictional stress transfer is active. The interfacial 
stresses associated with the interaction mechanisms described, are of 
different nature and very variable along the bar. For the purpose of the 
analysis of a reinforced concrete structural element these stresses need 
to be spatially averaged. By carrying out this spatial averaging we 
define a bond stress that can be used to define a bond slip relation that 
simplify considerably the treatment of this problem (Figures 5.3.1-
5.3.3). 

The mechanisms of stress transfer from step I to step III are considered 
primary mechanisms as they can be found within the serviceability load 
limits of the structure. The residual frictional stress transfer of step IV is 
considered a secondary mechanism (whose effect combined with all the 
others is present since the beginning of the loading process anyway) as steel 
bars are considered debonded if this is the only resistance mechanism 
active. 
In Figure 5.3.2 typical failure modes of the concrete surrounding the bars 
are shown.  
In order to establish an appropriate constitutive law for the interface, the  
bond slip relation should depend, in principle, upon the type of bar, the 
concrete strength, the confinement regime and the conditions of the 
materials (rusting of steel, carbonation of concrete). Workmanship of the 
structure is also relevant. 
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However, a constitutive low depending only on the concrete strength and 
confinement regime is given in the CEB-FIP Model Code [1990]. This is 
based on a work by Ciampi at al. [1982].  
In this model the primary zone is non linear and it is modelled by:  

 1sτ ρ Ω=  (5.3.1) 

where  

 1
1

1

τρ
ρ Ω=  (5.3.2) 

is an empirical constant (Ω<1) that describe the shape of the bond stress-slip 
curve. The model includes a plateau at the peak stresses (τ1), followed by a 
linear degradation zone. The bond stress due to the secondary bond 
mechanism is assumed constant. 
The model is characterised by the parameters: s1, s2, s3, τ1, τ2, and Ω; these 
parameters (see Figure 5.3.4) are given in the Model Code as functions of 
the clear rib spacing of the bars, the concrete strength and the confinement 
regime. Their expression is reported in Table 5.3.1  

Table 5.3.1. Bond-slip law parameters. 

 s1          
[cm] 

s2         
[cm] 

s3         
[cm] 

τ1         
[cm] 

τ2         
[cm2] Ω 

Confined 
concrete 1 3 Clear rib 

spacing 2.5(fck)1/2 (fck)1/2 0.4 

Unconfined 
concrete 0.6 0.6 10 2.0(fck)1/2 0.6(fck)1/2 0.4 

  
 

For implementation reasons the above relation has been simplified, in the 
finite-element models, to the one with a linear initial branch followed by 
linear softening described in Figure 5.3.5. 
The parameters characterizing the model adopted have been derived 
imposing the same peak stress as in the CEB-FIP model, a slip displacement 
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at the peak stress (s0) equal to s1 and a fracture energy Gc equal to the 
energy obtained integrating the CEB-FIP relation between zero and the slip 
displacement s3. This is equivalent to neglecting the residual bond stresses.  
 

s1

τ2

s2 s3

τ1

B
on

d 
st

re
ss

Slip  
Figure 5.3.4: Analytical model for local bond stress-slip relationship [Ciampi et al. 1981, 

Eligehausen et al. 1983].  

s
scs0

τ0

-τ0

-sc -s0
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Figure 5.3.5: Bond slip relation used in the finite-element models. 
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CHAPTER VI 
SOLUTION of NON-LINEAR COMPUTATIONAL PROBLEMS 

6.1 ITERATIVE PROCEDURES 

6.1.1 Introduction 
In this section only a brief outline of several solution methods of non-linear 
problems available in literature and provided by the most important finite-
element analysis programs will be made. They was used to solve the non-
linear problems of the applications which will be presented in the next 
section.  
The solution of a non-linear problem can be simply understood by 
considering  the external forces, P, and the internal (nodal) forces, I, acting 
on a body (see figure 6.1.1(a) and 6.1.1(b), respectively).  

 
Figure 6.1.1: Internal and external loads on a body. 

The internal loads acting on a node are caused by the stresses in the 
elements that contain that node.  
For the body to be in static equilibrium, the net force acting at every node 
must be zero. Therefore, the basic statement of static equilibrium is that the 
internal forces, I, and the external forces, P, must balance each other:  
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 0P I− =  (6.1.1) 

In a nonlinear analysis the solution cannot be calculated by solving a single 
system of equations, as would be done in a linear problem. Instead, the 
solution is found by applying the specified loads gradually and 
incrementally working  
toward the final solution. Therefore, the method breaks the simulation into a 
number of load increments and finds the approximate equilibrium 
configuration at the end of each load increment.  
It is important to clearly understand the difference between an analysis step, 
a load increment, and an iteration: 
 The load history for a simulation consists of one or more steps. You can 

define the steps on the base of the different loads, boundary conditions, 
analysis procedure and output requests. During the generic step, the 
loads and boundary conditions do not change; 

 An increment is part of a step. In nonlinear analyses the total load 
applied in a step is broken into smaller increments so that the nonlinear 
solution path can be followed. In solution searching you suggest the size 
of the first increment. At the end of each increment the structure is in 
(approximate) equilibrium and results are available for writing to the 
output database, restart, data, or results files; 

 An iteration is an attempt at finding an equilibrium solution in an 
increment when solving with an implicit method. If the model is not in 
equilibrium at the end of the iteration, you have to try another iteration. 
With every iteration the solution should be closer to equilibrium; 
sometimes it may need many iterations to obtain an equilibrium 
solution. When an equilibrium solution has been obtained, the increment 
is complete.  

These consideration can be related for simplicity to a one-dimensional 
problem: 

 ( )eq f p=  (6.1.2) 
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where qe is the load and p is the displacement. We define the tangent 
stiffness as follows:  

 t
dfK
dp

=  (6.1.3) 

Kt corresponds to the tangent at the point p-qe. If we introduce the out-of-
balance ( ) eg f p q= − , for the considered point p-qe, we obtain for a 
constant load that:  

 t
dgK
dp

=  (6.1.4) 

For a problem with several dimensions, described by the equations 
, we define the tangent stiffness matrix in the same 

manner 
( ) 0i e= − =g q p q

t d d=K g p . 
Different methods can be used in order to solve a non linear problem . 
The majority of those methods requires the computation of the variables g 
and K

=g 0

t . 
We use the term load control, to indicate that the value of a vector of 
applied forces qe is known at each time of the analysis. Analogously, 
“displacement control” means that some displacements are prescribed. 
Having assigned the history of applied forces or prescribed displacements, 
an incremental analysis consists of dividing such history in a finite number 
of increments. We will focus our attention on a “load control” problem, for 
simplicity, but the treatment would be easily extendable to a “displacement 
control”.  
For each increment, the initial values of the displacements  and of the 
applied forces are known, as well as the increment of the forces , 
and the final value of the displacement is unknown.  

0p
0eq 0eΔq

Three different approaches for the solution to the incremental problem will 
be briefly discussed; finally, a brief description of the explicit approach to 
the solution of a non-linear problem will be given.  
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6.1.2 Incremental method 
Considering for simplicity a one-dimensional example, we know, for each 
increment, Δqe, and the initial displacement p0. With an incremental 
method, we find the next displacement p1 as follows:  

 1 0 0p p p= + Δ  (6.1.5) 

with  

 1
0 0tp K q−

eΔ = Δ  (6.1.6) 

and 0tK  is computed from p0.  

This method can lead far away from the real solution particularly if the 
parameter Δqe is chosen too high or if the function f is quite irregular 
(Figure 6.1.2 (a)) 

  
                 (a)   (b) 

Figure 6.1.2: (a) Incremental method; (b) iterative method 

6.1.3 Newton-Raphson method 
Considering again, for simplicity, a one-dimensional problem, for the 
generic increment the applied force will change from the initial value qe,in to 
the value at the end of the increment, q=qe,in+Δq.  
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Denoting as p0 a “trial” value for the displacement at the end of the 
increment. The equilibrium equation is generally not satisfied and then a 
non-zero residual g is computed, ( ) 0eg f p q= − ≠ . Considering the point 
p0 for which ( )0 0g p ≠ , the tangent straight line at this point will be:  

 ( ) ( )( )0 0
dg

0y g p p p p
dp

= + −  (6.1.7) 

And for y=0:  

 ( ) ( ) ( )1
0 0 0 0 0dg dgp p p g p with p

dp dp
−= − ≠  (6.1.8) 

Setting:  

 ( ) ( ) ( )1 1
0 0 0 0t

dg
0p p g p K g p

dp
δ − −= − = −  (6.1.9) 

Such method is defined as iterative because this procedure continues until 
δpi  is sufficiently small (depending on the needed precision). 
The difference between this method and the last one is that δpi are iterative 
changes at the same fixed load level, and the final solution is effectively an 
equilibrium point (Figure 6.1.2 (b)). The error due to this approximation is 
about δpi

2. In fact, expanding g in a Taylor series up to the first order, the 
following equation can be written: 

 ( ) ( ) ( )( ) ( 2
0 0 0

dgg p g p p p p o p p
dp

= + − + − )0  (6.1.10) 

The Newton-Raphson method is called “full” because a new tangent 
stiffness matrix has to be calculated at each iteration. A simplest method is 
to always use the tangent stiffness matrix calculated for the first iteration 
(modified Newton-Raphson method). 
One deals with a problem with more dimensions in the same way. 
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6.1.4 Combined method 
The iterative method gives a very good approximation, but some problems 
can occur if a bad initial parameter is chosen: the CPU time can be very 
large or Kt might be singular or indefinite for some points.  
So one can turn to the use of a combination of the two methods in order to 
have a good initial parameter given by the incremental method, and at the 
end, a result very close to the real solution due to the iterative method. The 
tangential incremental solution can be used as a predictor (Figure 6.1.3).  
 

 
Figure 6.1.3: Combined method 

6.1.5 Arc-length method 
When the studied function f(p) is quite irregular, that is, in mathematical 
terms, not subjective or not injective, the previous methods can fail to give a 
solution as it is not possible to pass limit points (i.e., characterised by Kt=0). 
In Figure 6.1.4 the dashed part is impossible to find with load control, and 
we can not obtain the plain part with displacement control. 
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Figure 6.1.4: Failure of classical non-linear method 

So a new method that gives the solution in such cases needs to be 
introduced. Considering the following problem:  

 ( ) ( ) 0, iλ λ= −g p q p q  (6.1.11) 

Where 0λq  are the external forces and ( )iq p  are the internal forces. The 
external forces are not fixed in this problem and changes linearly with , 
due to the unknown parameter 

0q
λ .  

Considering a one-dimensional problem it has one equation for two 
unknowns. In a N-dimensional problem, it will have N+1 unknowns and N 
equations. So another equation in both cases has to be introduced.  
Again, the problem is divided in a finite number of increments. For each of 
them, the initial values of the displacement vector, pin, and of the local load 
factor λin, are known. One way to introduce a new equation is to want the 
solution at the end of the increment to be, in the plate (or hyperplan) 

, at a distance Δλ from the initial point ( 0,λp q ) ( )0,in inλp q . This constraint 
equation can be expressed as follows:  

 ( ) ( )0 0, ,in in lλ λ− = Δp q p q  (6.1.12) 

Introducing  and inΔ = −p p p inλ λ λΔ = − , Eq. (6.1.12) becomes:  
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 ( )22
0 lλΔ + Δ = Δp q  (6.1.13) 

Where Δl is a fixed incremental length. This equation is not dimensionally 
consistent. Introducing the scaling parameter ψ Eq. (6.1.13) becomes:  

 ( )22
0 lψ λΔ + Δ = Δp q  (6.1.14) 

Now we have enough equations to solve the problem and find the unknowns 
(p, λ). Because this problem is non-linear, the use of an iterative method is 
necessary (i.e., combined Newton-Raphson method). The first thing to do is 
to find the predictor. 
At the beginning of an increment, the values pin and λin are known and 
correspond to the last converged solution. Then, the equilibrium solution, 
which implies g(p, λ)=0, has to be reached. Expanding g in a Taylor series 
up to the first order, it results:  

 ( ) ( )
( ) ( )

0
, ,

, ,
in in in in

in in
λ λ

λ λ λ
λ

0∂ ∂
= + Δ + Δ

∂ ∂p p

g gg p g p q p
p

=

)

 (6.1.15) 

Because ( ,in inλp  is an equilibrium point, ( ),in inλ 0=g p , it can be written:  

 
( ) ( ), ,

0
in in in inλ λ

λ
λ

∂ ∂
Δ + Δ

∂ ∂p p

g gp
p

=  (6.1.16) 

Knowing that 
( )

( ,
,

in in

in in

t )λ
λ

∂
=

∂ p
p

g K
p

 and referring to the equation (6.1.11), it 

can written 
( )

0
,in inλ

λ
∂

= −
∂ p

g q .  

Finally: 

 ( ) 0, 0
in int λ λΔ − Δ =pK p q  (6.1.17) 
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which yields: 

 tλΔ = Δ Δp p  (6.1.18) 

In this way, Δp is a function of Δλ, which is the only unknown. Substituting 
Eq. (6.1.18) in the arc-length equation:  

 ( )
( )

22 2 2
0 22

0

t

t

llλ ψ λ
ψ

Δ
Δ Δ + = Δ ⇒ Δ = ±

Δ +
p q

p q
 (6.1.19) 

This equation has two solutions. One way to choose the best solution is to 
look at the sign of the determinant of ( ),t in inλK p . If this is positive, the 
positive solution has to be chosen, in order to be on the right part of the 
tangent straight line (Figures 6.1.5 (a)-(b)).  
We have thus found p and λ but ( ),λ 0≠g p  (because of the Taylor 
truncation). In order to obtain a better solution one can use the iterative 
method for the same increment.  
Renaming the last p as p0 and the last λ is called λ0, the next solution can be 
obtained by calculating the iterative changes δp and δλ as follows:  

 0 ; 0δ λ λ δλ= + = +p p p  (6.1.20) 

So, due to the definition of Δp and Δλ, it has 0 δΔ = Δ +p p p  and 
0λ λ δΔ = Δ + λ  where  and 0 0 inΔ = +p p p 0 0 inλ λ λΔ = +  which is the 

solution of the predictor.  
Now, g can be linearised about ( )0 0,λp , hence:  

 ( ) ( )
( ) ( )0 0 0 0

0 0
, ,

, ,
λ λ

λ λ δ δλ
λ

0∂ ∂
= + +

∂ ∂p p

g gg p g p p
p

=  (6.1.21) 

For the same reason as above one can rewrite the equation:  

( ) ( ) ( )( ) ( ) ( )( )0 0 0 0 0 0

1 1

0 0 0 0 0 0, ,, 0 ,t tλ λ ,t λλ δ δλ δ λ
− −

+ − = ⇒ = − +p pg p K p q p K g p K q δλp

  
  (6.1.22) 
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By setting  and ( )( )0 0

1

0,t t λδ
−

= pp K q ( )( ) (
0 0

1

0 0, ,t λ )δ λ
−

= pp K g p , it results:  

 tδ δ δλδ= +p p p  (6.1.23) 

where the only unknown is δλ. 
 
 

 
                 (a)               (b) 

Figure 6.1.5: (a) Choice of the right value of the predictor(positive tangent); (b) choice of 
the right value of the predictor (negative tangent) 

Substituting expression (6.1.23) in the arc-length equation:  

( ) ( )( ) ( ) ( )22 2 2
0 0 0 1 22 0t l a a aδ δλδ ψ λ δλ δλ δλΔ + + + Δ + = Δ ⇒ + + =p p p q 3

  (6.1.24) 

where: 

 

( ) ( )
( ) ( )

( ) ( ) (

2 2
1 0

2
2 0 0 0

2 2
3 0 0 0

t

t

a

a

a l

ψ δ

λ ψ δ δ

λψ δ

= +

⎡= Δ + Δ +⎣

= Δ + Δ + − Δ

q p

q p p p

q p p )2

⎤
⎦  (6.1.25) 
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Eq. (6.1.24) is quadratic and has two solutions, real or complex, distinct or 
coincident. Ruling out the case that they are non-real (for which a reduction 
of Δl is required and the analysis must be restarted from the previous 
converged solution), and assuming that they are distinct, a criterion is then 
required for choosing the best solution. One can compare the direction of 
the new vector ( )( )( )0,in inλ λ ψ− −p p q  with the vector obtained by the 
predictor ( )( )( 0 0,in inλ λ ψ− −p p q )0 . So by calculating the scalar product 
between the two vectors, the smallest angle will correspond to the nearest 
vector from the predictor and this might be considered as the best solution. 
This can be written as:  

 ( ) ( )2
0 0 0 4 5

2cos
T T a a

l l
λ λ ψ

2

δλθ
Δ Δ + Δ Δ +

=
Δ Δ

p p q
=  (6.1.26) 

where:  

 ( ) ( )2
4 0 0 0 0 0

T Ta δ λ λ ψ= Δ Δ + + Δ Δp p p q  (6.1.27) 

 ( )2T T
5 0 0 0ta λ ψ= Δ Δ + Δp p q  (6.1.28) 

This method is quite well suited for relatively smooth limit points. But if the 
limit points are not smooth, this method is inefficient (Figure 6.1.5(b)) and a 
new criterion has to be adopted. Choosing the root which provides the 
minimum residual norm g , if a convergence criterion is not satisfied (for 
example .Tol≥g ) the above described procedure has to be iterated, by 
taking the values 0 tδ δλ+ +p p p  and 0λ δλ+  as new trial solutions p0, λ0 
(Figure 6.1.6). 
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Figure 6.1.6: arc-length method 

6.1.6 Linearised arc-length method 
Defining ai as follows:  

 ( )( )22 2
0i ia l ψ λ= Δ − Δ + Δp q i , (6.1.29) 

linearization about ( )1 1,i iλ− −Δ Δp  yields:  

 ( ) ( )2 2 2
1 1 1 02 2 ,T

i i i i i i i i ia a oδ λ δλ ψ δ δλ− − − −= − Δ + Δ +p p q p  (6.1.30) 

where ai-1 is obtained for 1i−Δp  and 1iλ −Δ . Because ai=0, it has the 
following equation:  

 ( )2
1 1 12
Ti i

i i i i
a δ λ δλ ψ−

− − −

−
= Δ + Δp p q0  (6.1.31) 

Taking ai-1=0 in the previous equation, two linearised methods can be 
applicable.  
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The Ramm’s approach which ensures that the iterative change 
 is orthogonal to the change ( )( 0,i iδ δλ ψp q ) ( )( )1 1 0,i iλ ψ− −Δ Δp q

)q
)

 is shown 
in Figure 6.1.7 (a); in the Riks’s formulation, the old incremental change 

 is replaced by the predictor vector, which means that 
 is always orthogonal to the predictor 

( )( 1 1 0,i iλ ψ− −Δ Δp
( )( 0,i iδ δλ ψp q ( )( )0 0 0, λ ψΔ Δp q . 

The iterative solutions are on the straight line orthogonal to the predictor 
(Figure 6.1.7 (b)).  

 

 
                 (a)               (b) 

Figure 6.1.7: (a) Ramm’s method; (b) Riks’s method 

These linearised forms are simpler than the spherical form because we have 
only one solution. But if the studied function is too irregular the linearised 
forms fail to converge, unlike the spherical method. 
Modifying the value of ψ it is possible to obtain the pure spherical method 
when ψ=1, and the cylindrical method when ψ=0.  
In the arc-length method, the increment size is defined by the value of the 
arc-length Δl, which is kept fixed in each increment. For the first increment, 
Δλ0 is given, and Δl becomes:  

 ( )22
0 t ol λ ψΔ = Δ Δ +p q  (6.1.32) 
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For the next increments, the value of  Δl should be select with the aim of 
having nearly the same number of iteration for each increment. Hence the 
following equation can be used:  

 1
1

d
j j

j

Il l
I−

−

Δ = Δ , (6.1.33) 

where  is the length at the previous increment, I1jl −Δ j-1 is the number of 
iteration required to achieve convergence at the previous increment, and Id 
is the desired number of iterations. This procedure allows us to adaptively 
choose small arc-lengths when the structural response is strongly non-linear, 
and large arc-lengths when it is nearly linear 

6.2 EXPLICIT DYNAMIC ANALYSIS  

6.2.1 Introduction 
Very often the convergence of analysis could represent the main problems 
of the solution of non-linear finite-element analyses.   
Sometimes, when for the quasi-static analyses, when the phenomenon 
occurs in a dynamic way, as for the debonding of the composite 
reinforcement applied to concrete substratum, it is advantageous to resort to 
explicit procedures.  
The basic advantages of  an explicit dynamic analysis can be summarized as 
follow:  

• is computationally efficient for the analysis of large models with 
relatively short dynamic response times and for the analysis of 
extremely discontinuous events or processes; 

• uses a consistent, large-deformation theory-models can undergo 
large rotations and large deformation; 

• can use a geometrically linear deformation theory-strains and 
rotations are assumed to be small; 

• can be used to perform quasi-static analyses with complicated 
iteration conditions;  
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The dynamic equilibrium equation can be expressed by the following 
equation:  

 P I Mu− =  (6.2.1) 

Solving a problem explicitly does not require iterations and proceeds 
without the formations of tangent stiffness matrices; in fact, the solution of 
dynamic equilibrium equation needs to explicitly advance the kinematic 
state from the previous increment.  
The explicit central-difference operator satisfies the dynamic equilibrium 
equations at the beginning of the increment, t; the accelerations calculated at 
time t are used to advance the velocity solution to time 2t t+Δ  and the 
displacement solution to time t t+Δ .  
For linear and nonlinear problems alike, explicit methods require a small 
time increment size that depends solely on the highest natural frequency of 
the model and is independent of the type and duration of loading. 
Simulations typically require a large number of increments; however, due to 
the fact that a global set of equations is not solved in each increment, the 
cost per increment of an explicit method is much smaller than that of an 
implicit method.  

6.2.2 Explicit dynamics analysis procedure 
The explicit dynamics analysis procedure is based upon the implementation 
of an explicit integration rule together with the use of diagonal (“lumped”) 
element mass matrices. The equations of motion for the body are integrated 
using the explicit central-difference integration rule:  

 ( ) ( )
( )

1
1 1
2 2 2

i iN N
ii i

t t
u u +

⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Nu
Δ + Δ

= +  (6.2.2) 

 ( ) ( ) ( )1 1 1
2

i i i i
u u t u+ + ⎛ ⎞+⎜ ⎟

⎝ ⎠

= + ΔN N N  (6.2.3) 
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where uN  is a degree of freedom (a displacement or rotation component) 
and the subscript i refers to the increment number in an explicit dynamics 
step. The central-difference integration operator is explicit in the sense that  
the kinematic state is advanced using known values of 1

2

N

i
u⎛ ⎞−⎜ ⎟
⎝ ⎠

and  from 

the previous increment.  

( )
N
iu

The explicit integration rule is quite simple but by itself does not provide the 
computational efficiency associated with the explicit dynamics procedure. 
The key to the computational efficiency of the explicit procedure is the use 
of diagonal element mass matrices because the accelerations at the 
beginning of the increment are computed by:  

 ( ) ( ) ( ) ( )( )1N NJ J
i iu M P I

−
= J

i−  (6.2.4) 

where NJM  is the mass matrix, JP  is the applied load vector, and JI  is the 
internal force vector.  
A lumped mass matrix is used because its inverse is simple to compute and 
because the vector multiplication of the mass inverse by the inertial force 
requires only n operations, where n is the number of degrees of freedom in 
the model.  
The explicit procedure requires no iterations and no tangent stiffness matrix. 
The internal force vector, JI , is assembled from contributions from the 
individual elements such that a global stiffness matrix need not be formed.  
The explicit integration scheme requires nodal mass or inertia to exist at all 
activated degrees of freedom unless constraints are applied using boundary 
conditions. More precisely, a nonzero nodal mass must exist unless all 
activated translational degrees of freedom are constrained and nonzero 
rotary inertia must exist unless all activated rotational degrees of freedom 
are constrained.  
Another difference between implicit and explicit procedure is in the 
definition of the boundary conditions applied during an analysis step. It 
should use through an appropriate amplitude references:  
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 )(0 tuu =  (6.2.5) 

If boundary conditions are specified for the step without amplitude 
references, they are applied instantaneously at the beginning of the step.  

6.2.3 Stable time increment 
The explicit procedure integrates through time by using many small time 
increments. Usually the stable time increment for the operator (with 
damping) is given in terms of the highest frequency of the system as:  

 ( )2 2
max max

max

2 1t ξ ξ
ω

Δ ≤ + −  (6.2.6) 

where maxξ  is the fraction of critical damping in the mode with the highest 
frequency. It is contrary to the usual engineering intuition according to 
which the introduction of damping to the solution reduces the stable time 
increment.  
An approximation to the stability limit is often written as the smallest transit 
time of a dilatational wave across any of the elements in the mesh:  

 min

d

Lt
c

Δ ≈  (6.2.7) 

where is the smallest element dimension in the mesh and cminL d is the 
dilatational wave speed in terms of λ0 and μ0, defined below.  
The stable time increment is defined as the time required to propagate a 
dilatational wave across the smallest element dimension. If the model 
contains only one material type, the initial time increment is directly 
proportional to the size of the smallest element in the mesh, otherwise, if the 
mesh contains uniform size elements but contains multiple material 
descriptions, the element with the highest wave speed will determine the 
initial time increment.  
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In an isotropic, elastic material the effective Lamé's constants, indicating 
as λ̂  and ˆ ˆ2G μ= , can be defined in terms of Young's modulus, E, and 
Poisson's ratio, ν, by:  

 
( )( )0

ˆ
1 1 2

Eνλ λ
ν ν

= =
+ −

 (6.2.8) 

and  

 
( )0ˆ

2 1
Eμ μ
ν

= =
+

 (6.2.9) 

The time increment used in an analysis must be smaller than the stability 
limit of the central-difference operator. Failure to not use a small enough 
time increment will result in an unstable solution. When the solution 
becomes unstable, the time history response of solution variables such as 
displacements will usually oscillate with increasing amplitudes. The total 
energy balance will also change significantly.  
In nonlinear problems (those with large deformations and/or nonlinear 
material response) the highest frequency of the model will continually 
change, which consequently changes the stability limit. Hence, several 
explicit procedures account for change in the stability limit by controlling 
the time increment in each increment.  
In order to reduce the in reduce the chance of a solution going unstable, 
another strategy consists in adjusting the stable time increment computed by 
a constant scaling factor. This factor can be used to scale the initial global 
time estimate.  

6.2.4 Mass scaling in the quasi-static processes 
Although the explicit dynamics procedure is computationally attractive for 
high-speed dynamic events, where the total dynamic response time that 
must be modelled is only a few orders of magnitude longer than the stability 
limit (for example, wave propagation studies or structures subjected to blast 
loads), it is not ideally suited for analyzing slower (quasi-static) processes.  
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The computer time involved in running a quasi-static analysis can be very 
large: the cost of the simulation is directly proportional to the number of 
time increments required. 
The number of increments, n, required is n T t= Δ   if Δt remains constant, 
where T is the time period of the event being simulated. Hence, in a two-
dimensional analysis refining the mesh by a factor of two in each direction 
will increase the run time in the explicit procedure by a factor of eight (four 
times as many elements and half the original time increment size). 
Similarly, in a three-dimensional analysis refining the mesh by a factor of 
two in each direction will increase the run time by a factor of sixteen.  
In a quasi-static analysis it is expedient to reduce the computational cost by 
either speeding up the simulation or by scaling the mass.  
To reduce the number of increments required, n, the simulation compared to 
the time of the actual process can be speeded up, that is, one can artificially 
reduce the time period of the event, T. This will introduce two possible 
errors. If the simulation speed is increased too much, the increased inertia 
forces will change the predicted response (in an extreme case the problem 
will exhibit wave propagation response). The only way to avoid this error is 
to choose a speed-up that is not too large. 
The other error is that some aspects of the problem other than inertia forces 
(i.e., material behaviour) may also be rate dependent. In this case the actual 
time period of the event being modelled cannot be changed. 
Artificially increasing the material density, ρ, by a factor f 2 reduces n to n/f, 
just like decreasing T to T/f.  
This concept, called “mass scaling,” reduces the ratio of the event time to 
the time for wave propagation across an element while leaving the event 
time fixed, which allows rate-dependent behaviour to be included in the 
analysis. Mass scaling has exactly the same effect on inertia forces as 
speeding up the time of simulation. Mass scaling is attractive because it can 
be used in rate-dependent problems, but it must be used with care to ensure 
that the inertia forces do not dominate and change the solution. Obviously, 
the mass scaling can be fixed or variable during the analysis.  
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6.2.5 Bulk viscosity 
A small amount of damping can be introduced in the form of bulk viscosity 
in order to control high frequency oscillations. For the displacement degrees 
of freedom, bulk viscosity introduces damping associated with volumetric 
straining.  
The bulk viscosity pressure is not included in the material point stresses 
because it is intended as a numerical effect only, and it is based upon the 
dilatational mode of each element. The fraction of critical damping in the 
dilatational mode of each element is given by:  

 (1 2 min 0,e
vol

d

Lb b
c

)ξ ε= −  (6.2.10) 

Linear and quadratic bulk viscosity are used to damp the high frequency so 
called “ringing” that leads to unwanted noise in the solution or spurious 
overshoot in the response amplitude.  

6.2.5.1 Linear bulk viscosity 

Linear bulk viscosity is introduced in order to damp the ringing in the 
highest element frequency. This damping is sometimes referred to as 
truncation frequency damping. It generates a bulk viscosity pressure that is 
linear in the volumetric strain rate:  

 1 1bv d e volp b c Lρ ε=  (6.2.11) 

where b1 is a damping coefficient, ρ is the current material density, cd is the 
current dilatational wave speed, Le is an element characteristic length, and  

volε is the volumetric strain rate.  

6.2.5.2 Quadratic bulk viscosity 

The second form of bulk viscosity pressure is found only for some solid 
continuum elements. This form is quadratic in the volumetric strain rate:  
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 ( )2
2 2bv e volp b Lρ ε=  (6.2.12) 

where b2 is a damping coefficient and all other quantities are as defined for 
the linear bulk viscosity. Quadratic bulk viscosity is applied only if the 
volumetric strain rate is compressive.  
The quadratic bulk viscosity pressure will smear a shock front across several 
elements and is introduced to prevent elements from collapsing under 
extremely high velocity gradients.  
Consider a simple one-element problem in which the nodes on one side of 
the element are fixed and the nodes on the other side have an initial velocity 
in the direction of the fixed nodes. If the initial velocity is equal to the 
dilatational wave speed of the material, without the quadratic bulk viscosity, 
the element would collapse to zero volume in one time increment.  
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CHAPTER VII 
COMPARISONS of NUMERICAL OUTCOMES Vs 
EXPERIMENTAL RESULTS 

7.1 INTRODUCTION 

In this section two-dimensional nonlinear finite-element analyses of RC 
beams retrofitted with FRP have been carried out up to failure in order to 
correctly model the interaction between FRP and concrete, which is poorly 
reproduced by conventional RC beam theory.  
Furthermore, the results of an experimental campaign on RC beams, either 
with or without FRP reinforcement, performed in the Department of 
Structural Engineering laboratory, are reported in the follows. The 
experimental activity presented in this work has been made both because it 
represents a typical case of engineering interest and because it provides an 
useful tool for the validation of the results obtained by the proposed 
nonlinear numerical models of the RC beams either with or without FRP 
reinforcement in flexure.  
The numerical analyses proposed in this dissertation are encompassing 
within a general methodology which can be used not only to efficiently 
integrate available experimental data, but also to get a deeper understanding 
of the complex failure modes of the reinforced beams.  
The modelling of materials behaviours and the interfacial behaviour 
between parts will be presented in the sequel in details. The effectiveness of 
the proposed methodology of analysis will be shown by the ability of the 
model to numerically reproduce the experimental results ad-hoc performed 
and to well capture the complex mid-span debonding failure.  

7.2 EXPERIMENTAL DATABASE 

Within a Research Project funded by the Regione Campania (legge 5/2002), 
an experimental activity has been carried out on RC beams externally 
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reinforced with FRP sheets. The results of this activity have not yet be 
published; however, the author of the present dissertation has had the 
privilege of the availability of the test results for the purpose of the 
comparisons with numerical results. The tests concerned simple supported 
beams tested in four-point bending. A set of 16 beams, either with or 
without external FRP reinforcement, was considered. The beams are divided 
into 4 groups of 4 beams, which are characterized by the same geometry and 
steel reinforcement. For each group, two beams were tested without 
reinforcement and are referred to as An; while the other two reinforced 
beams are referred to as Bn. The number n from 1 to 8, indicates the group 
which the beam belongs to. Thus, beams A1, A2, B1 and B2 belong to 
group I, beams A3, A4, B3 and B4 belong to group II, beams A5, A6, B5 
and B6 belong to group III, and beams A7, A8, B7 and B8 belong to group 
IV.  
The beams groups are different in both typology of steel reinforcement and 
cross-section dimensions. In particular, beams belonging to groups I and III 
are characterized by smooth steel reinforcing bars, while those belonging to 
groups II and IV by ribbed steel bars; beams of groups III and IV are 
characterized by littler dimensions with respect to groups I and II.  
The sketch of the tested beams is drawn in Figure 7.2.1, while all the 
geometrical information are reported in Table 7.2.1.  

L1

A's

AsL2 L1

B

H

 
Figure 7.2.1: Sketch of tested beams 
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Table 7.2.1. Geometrical properties of the RC beams. 

BEAM GROUP L1        
[cm] 

L2       
[cm] 

B        
[cm] 

H       
[cm] 

AS        
[cm2] 

A’S       
[cm2] 

FRP 
sheet 

A1-A2 I 100 60 15 30 304.7 157.1 □ 

A3-A4 II 100 60 15 30 304.7 157.1 □ 

A5-A6 III 80 70 15 25 304.7 157.1 □ 

A7-A8 IV 80 70 15 25 304.7 157.1 □ 

B1-B2 I 100 60 15 30 304.7 157.1 ■ 

B3-B4 II 100 60 15 30 304.7 157.1 ■ 

B5-B6 III 80 70 15 25 304.7 157.1 ■ 

B7-B8 IV 80 70 15 25 304.7 157.1 ■ 

  
In Figures 7.2.2 and 7.2.3 all the tested beams are reported in details.  
The reinforced beams were reinforced with a pultruded laminate 50mm 
wide and 1.4mm thick.  
The design of the external FRP reinforcement was conducted with the aim 
of reaching the failure for mid-span debonding; thus, the anchorage length 
and the cross section dimensions of the composite was proportioned in order 
to avoid the rupture for extreme traction in the composite or premature 
failure for the end-peeling delamination.  
The mechanical properties of composite sheet have been furnished by the 
manufacturing industry, while the properties of both smooth and ribbed steel 
bars were obtained by performing monotonic tensile test on steel specimens. 
The material properties for the steel bars and FRP sheets are reported in 
Table 7.2.2.  

Table 7.2.2. Material properties for the steel bars and the FRP laminate. 

 Young modulus      
[GPa] 

Yield/Failure stress 
[MPa] 

Smooth steel bars 205 380 

Ribbed steel bars 205 510 

FRP laminate 400 1900 

*Yield for steel and failure for FRP 
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 Figure 7.2.2: Details of RC beams belonging to groups I and II  
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 Figure 7.2.3: Details of RC beams belonging to groups III and IV 
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The mechanical properties of concrete were obtained by carrying out 
specific experimental monotonic tests in order to evaluate the tensile and 
compressive strengths, and the Young modulus. The results are summarized 
in Table 7.2.3.  

Table 7.2.3. Experimental results on concrete specimens. 

Secant Young Modulus [MPa] Tangential Young Modulus [MPa] 

8063 26000 

Compressive Peak Stress [MPa] Tensile Peak Stress [MPa] 

characteristic average characteristic average 

15.89 19.39 1.43 2.00 

 
The test set-up and the concrete specimens are visible in the following 
figures.  
 

  
(a)            (b) 

 
             (c) 

Figure 7.2.4: Test for the determination of compressive strength. (a) specimen before 
crushing. (b) specimen at crushing. (c) specimen after crushing 
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            (a)                (b) 

Figure 7.2.5: Test for the determination of elastic Young modulus. (a) test set-up. (b) 
concrete specimens 

    
             (a)                (b) 

Figure 7.2.6: Test for the determination of tensile strength. (a) specimen after rupture. (b) 
specimen at rupture 

Tests were performed in a displacement control mode with an actuator 
velocity of 0.3 mm/sec. The displacement was assigned through two 
actuators linked to an hydraulic machine. The mid-span deflection was 
measured by the readings of two transducers applied in the middle under the 
beam. The experimental set-up is shown in Figure 7.2.7.  
The loading history is sketched in Figure7.2.8. The loading steps can be 
summarized as follows.  
For the beams with no FRP reinforcement (An): 
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 loading, up to a cracking force (Fcr); it is the force corresponding to the 
cracking bending moment in the middle of the beam, for which the crack 
configuration along the beam is well defined. This condition 
corresponds with point B in Figure 7.2.8,  

 unloading, up to zero (branch BC),  
 reloading, up to cracking force (branch CD),   
 reloading, up to failure (branch DR).  

For the reinforced beams (Bn): 
 loading, up to the complete visualization of crack configuration along 

the beam (point B),  
 unloading, up to zero (branch BC),  
 application of reinforcement,  
 reloading, up to cracking force (branch CD), 
 reloading, up to failure, which happens always for mid-span 

delamination (branch DR).  

 
Figure 7.2.7: Test set-up 
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Figure 7.2.8: Force vs. mid-span deflection: loading steps 

The basic reason for which the FRP reinforcement was applied after the 
complete development of cracks along the beams is that this situation is 
representative of what happens in the practical applications. In fact, 
generally, the FRP reinforcement is externally applied to an existing beams, 
when the cracks are already formed, and the presence of cracks is the main 
cause of mid-span debonding between FRP and concrete.  
Figures 7.2.9 and 7.2.10 clearly show the crack configuration for one of the 
beams of interest, while Figure 7.2.11 shows the beams before the 
application of the FRP reinforcement, after the cracks opening occurred.  
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Figure 7.2.9: Cracked beam during test 

 
Figure 7.2.10: Detail of cracked beam during test 
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Figure 7.2.11: View of cracked beams before the application of the composite 

reinforcement 

The experimental outcomes, in terms of load-mid-span deflection curves, 
are reported in Figures 7.2.12-7.2.15.  

0

10

20

30

40

50

60

70

80

90

100

110

120

0 5 10 15 20 25 30 35 40
Mid-span deflection: v [mm]

Lo
ad

: F
 [K

N
]

B2
B1

A2

A1

 
 

Figure 7.2.12: Experimental results: load/mid-span deflection curves for beams A1-A2 and 
B1-B2 
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Figure 7.2.13: Experimental results: load/mid-span deflection curves for beams A3-A4 and 
B3-B4 
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Figure 7.2.14: Experimental results: load/mid-span deflection curves for beams A5-A6 and 
B5-B6 
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Figure 7.2.15: Experimental results: load/mid-span deflection curves for beams A7-A8 and 
B7-B8 

It can be noticed that, for the longer beams (A1-A2 and A3-A4) the curves 
are very close, showing an excellent experimental repetitiveness.  
The experimental results of beams A6 and A8 are different from the A5 and 
A7 respectively. They exhibit a softening behaviour just after the steel 
yielding, showing a less ductile behaviour with respect to beams A5 and A7; 
this could be due to some problems during the concrete casting phases and 
concrete crushing close to supports (see Figure 7.2.16). For beam A8, the 
yielding value is littler with respect to beam A7.  
From the visualization of the experimental outcomes of the reinforced 
beams (Bn) it clearly appears they exhibit a lower ductile behaviour with 
respect to analogous beams with no FRP reinforcements.  
Only for beam B4 experimental curve is not reported in the paper because of 
the concrete crushing under the application point of the actuator (see Figure 
7.2.17).   
In conclusion, for all the beams the experimental behaviour, in terms of 
applied load/mid-span deflection, of the shorter beams, belonging to group I 
and II, is very homogeneous, while for the longer ones (group III and IV) 
the repetitiveness is however acceptable.  
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Figure 7.2.16: Concrete crushing at support 

 

 
Figure 7.2.17: Concrete crushing under the actuator  
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7.3 FINITE ELEMENT MODELLING of RC BEAMS 
RETROFITTED with FRP 

For a rational and safe design of any strengthening work an appropriate 
analysis method is required. The choice of such a method is not uniquely 
determined and depends largely on the purpose of the analysis. Usually in 
engineering simple and conservative models are sought. The intrinsic 
complexity of structural problems implies that simple models are possible 
only if strong assumptions are made. This can be done only if there are 
sufficiently wide experimental grounds to prove that they are acceptable. 
Also assuming something arbitrarily implies that the model is stripped off of 
all the features that are deemed not to be relevant in the calculation of the 
quantities of interest. This means that even though the results calculated are 
sufficiently accurate the model is not encompassing all the aspects of the 
physics of the problem and some aspects are missed out or included together 
with others on an empirical basis. Besides different models are usually used 
to calculate different quantities pertaining the same structural element.  
As the objective of this work is not the determination of a specific quantity 
but rather the understanding of how RC structures retrofitted with FRP 
work, In this chapter the modelling of FRP strengthened structures is 
discussed with a view to defining a model as close as possible to reality, 
capable of replacing or integrating laboratory testing for the investigation of 
the structural behaviour. Subsequently, the model developed for the 
analyses will be described.  

7.3.1 Finite Element Modelling of Reinforced Concrete 
Suitable Finite Element models are required for reinforced concrete 
structures. Within the framework of the finite element method reinforced 
concrete can be represented either by superimposition of the material 
models for the constituent parts (i.e., for concrete and for reinforcing steel), 
or by a constitutive law for the composite concrete and embedded steel 
considered as a continuum at the macro-level. 
Models of the first type are more popular and can be employed for virtually 
all kinds of reinforced concrete structures.  
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Depending on the application a number of finite element types can be used 
for concrete. These elements can be continuum elements (solids) or 
structural elements (shells, beams). The above elements are generally of the 
same type used for any other material.  
Other alternative approaches for modelling of reinforced concrete, not 
discussed in this dissertation, consist in multilayered shells and fibber beams 
in which nonlinear behaviour of the main material and in-homogeneities are 
dealt with by subdividing an element into layers or fibres.  

7.3.2 Modelling of reinforcing steel 
The reinforcement is modelled either by separate truss or beam elements 
(discrete representation) or by separate elements of the same type as the 
concrete elements, which are superimposed on the latter (embedded 
representation) or by distribution of reinforcement to thin layers of 
equivalent thickness (distributed representation).  
The embedded approach is characterised by incorporating the one-
dimensional reinforcing bar into two- or three-dimensional elements. The 
stiffness matrix and the internal force vector of embedded reinforcement 
elements only contain the contribution of reinforcement bars. The embedded 
reinforcement elements are then superimposed on the respective concrete 
elements.  
Since the reinforcement elements and the concrete elements must be 
assigned the same degrees of freedom, perfect bond between concrete and 
steel is obtained. The superimposition of concrete and reinforcing steel to 
model reinforced concrete requires constitutive models to account for bond 
and dowel action on the concrete-steel interface; instead the discrete 
representation of reinforcement allows modelling of bond and dowel action 
by means of special elements connecting adjacent nodes of concrete and 
steel elements.  
The distributed modelling of the reinforcement is characterised by smearing 
reinforcing bars over an element that is superimposed onto the main 
concrete element. The correct area of reinforcement along a unit length 
section of the structure is obtained assuming an equivalent thickness for the 
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elements. The constitutive equations for such an element with a 
unidirectional layer of smeared reinforcement are generally referred to the 
local directions of the element which are parallel and normal to the 
reinforcing bars. 
The distributed representation and the embedded representation of the 
reinforcement, however, do not permit the use of bond elements, because 
the displacements of concrete and steel at the interface are presumed to be 
the same. Consequently, the effect of bond slip can only be accounted for 
implicitly by modifying the constitutive relations for concrete or steel. 
If reinforced concrete is modelled by a constitutive law for the composite 
concrete and embedded steel considered as a continuum, the material 
behaviour of reinforced concrete on the macro-level is described such as if 
this composite material was a single material. Since reinforced concrete is 
treated as a single material, neither the reinforcement nor the steel-concrete 
interaction needs to be modelled separately. Models of this type are 
appropriate only if reinforcement is distributed uniformly. 
Discrete representation of the reinforcement is based on modelling the 
reinforcing bars as separate elements. Commonly, truss or cable elements 
are used for this purpose. However, for the investigation of structural 
details, occasionally two-dimensional or even three-dimensional elements 
are used. Truss and cable elements do not have rotational degrees of 
freedom and carry only axial forces. 
The material behaviour of truss and cable elements is described by means of 
the one-dimensional constitutive relations. In order to guarantee 
compatibility of the displacements of the concrete and reinforcement, truss 
and cable elements must coincide with the boundaries of the concrete 
elements. The node points of both types of elements must also coincide. 
Hence, the shape functions for the concrete elements and the truss or cable 
elements must be of the same order. 
The location of the reinforcement elements is obviously determined by the 
layout of the reinforcement. Consequently, the boundaries of the concrete 
elements must follow the reinforcing bars. Thus, the layout of the 
reinforcement has a strong influence on the generation of the finite element 
mesh for a concrete structure. 
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Bond slip and dowel action are either disregarded or considered implicitly 
by modifying the constitutive relations of concrete or steel. However, 
especially for the investigation of the behaviour of structural details, it may 
be necessary to model bond slip and dowel action more accurately through 
the use of concrete-steel continuum interface elements as it has been made 
in this work in the modelling of FRP/concrete and steel/concrete interface 
behaviour. 
The discrete representation is the only way of accounting for bond slips and 
dowel action directly. Disadvantages of this approach are the great effort 
required for the discretization of a structure and the significant increase of 
the number of degrees of freedom. These disadvantages are the consequence 
of having to consider each reinforcing bar in the finite element mesh. 
Therefore, discrete modelling of the reinforcement is generally restricted to 
the analysis of structural details or single structural elements as beams taken 
in isolation from the remainder of the structure. It is important to note that 
opening of localised cracks can be appropriately modelled only by this 
approach.  

7.3.3 2D Finite-Element Models of RC Beams Reinforced 
with FRP Sheets 

In the present work finite-element models have been used to investigate RC 
beams retrofitted with FRP. Several models have been set up with the sole 
purpose of providing preliminary results and for the interpretation of the 
results yielded by more refined models.  
These models have been used to explore the potential of finite element 
analysis in the investigation of RC beams retrofitted with FRP. 
For each beam, both with and without external reinforcement, only one half 
of the geometry has been analysed.  
As the detailed distribution of stresses and strains within the beam is of 
interest, solid elements have been used. The immediate consequence of this 
choice is that plane sections do not have to remain plane. 
In the absence of cracking the assumption that plane sections remain plane 
is in fact somewhat coarse for sections close to FRP plates or steel 
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reinforcement ends. The assumption is much more inadequate in presence of 
cracking. Actually, cracks could not open with the sections remaining plane.  
Solid elements are also convenient because the better representation of 
multi-axial stress states enables the effective use of refined constitutive laws 
for concrete. Besides, these elements can be attached to interface elements 
to model bond slip behaviour in an explicit manner. This proved to be very 
useful both for a good prediction of the overall behaviour of the structural 
elements and for an accurate evaluation of the interface stresses and strains 
which are critical in the delamination failure modes of these systems.  
Quadratic plane stress two-dimensional solid elements are used for concrete, 
for steel reinforcement and for FRP plates.  
In the sequel an alternative finite-element model which makes use of truss 
elements have been used in two-dimensional analyses for steel bars and FRP 
will be presented.  
Cracks have been accounted for using a discrete approach: preset cracks 
have been introduced in the mesh by doubling the set of nodes, so as to 
introduce a possible discontinuity. The contact between the two faces of any 
cracks has not been modelled. Hence, the model has not taken into account 
the possible friction between the cracks tips, even though it basically does 
not influence the good prediction of the phenomenon because the crack tips 
tend to separate after the application of the load. The cracks have been 
introduced in the models following the patterns which are the same as those 
observable during the experimental tests. As mentioned before, the a-priori 
introduction in the models of the crack patterns, which have really been 
found during the experiments, is very important in order to analyse in detail 
the key role played by the presence of cracks in the FRP/concrete debonding 
process.  
Bond slip for both concrete/steel interface and concrete/FRP interface has 
been explicitly introduced by using interface elements. The in-plane 
thickness of the interface elements has been assumed equal to 1 mm. It 
should be borne in mind that the assumed interface model is representative 
of what happens in a finite volume including the bonding material and a 
layer of concrete, whose thickness is generally estimated as 20-30 mm, and 
that the fracture energy and the peak stress of the interface are dependent on 
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the properties of the concrete. Hence, it is difficult to define the concrete 
and the interface in the boundary zone, it is reasonable to believe that a 
refined modelling of the layer of concrete adjacent to the interface can be 
important for the accuracy of the results. This concept is at the basis of the 
approach recently used by Lu et al. [2005] to study the concrete/FRP 
modelling.  
With the hypothesis of small deformations, for each beam the analyses have 
been carried out by applying a prescribed displacement downward to the 
application point of the actuator during the experiment.  
The finite-element models used for the modelling of the tested reinforced 
beams are shown in Figures 7.3.1-7.3.5.  
The two-dimensional finite-element models has been also improved by 
superimposing an additional part on steel bars and steel/concrete cohesive 
zone.  
The constitutive behaviour of such part is the  models.  This operation has 
been introduced in order to take into account the concrete which is adjacent 
to the sides of reinforcing steel bars because it cannot be adequately 
modelled by a two-dimensional model. This operation improves also the 
deformed shape of the cracked part of RC beams: in fact (see Figure 7.5.6), 
the elements sides along the generic crack lie on the straight line.  
Obviously, from the finite-element analysis point of view, the two parts 
(steel bars-cohesive steel/concrete and lateral concrete) work together by 
sharing the external nodes, as the following figure clarifies.  
 

 
Figure 7.3.1: RC beam (B3-B4): finite-element model 
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Figure 7.3.2: RC beam (B3-B4): detail of the finite-element model 

 
Figure 7.3.3: RC beam (B1-B2): finite-element model 

 
Figure 7.3.4: RC beam (B5-B6): finite-element model 
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Figure 7.3.5: RC beam (B7-B8): finite-element model 
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Figure 7.3.6: Additional part in the two-dimensional finite-element models 
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Figure 7.3.7: Sketch of shared nodes of two different parts which are superimposed in the 
finite-element model 

7.4 NUMERICAL RESULTS 

The numerical results obtained for a series of simulations concerning the 
simple supported beams experimentally tested are reported in this section. 
The bond-slip relationships developed by Camanho & Davila [2002] and the 
Lubliner et al. [1989] concrete model available in the finite-element code 
ABAQUS are used for the analyses. They have been illustrated in details in 
the sections III and V, and will be briefly recapitulated in this section.  
Then, the numerical results obtained from the analyses of the two-
dimensional models in the hypothesis of plane stress will be compared with 
experimental findings in order to show that, despite some simplified 
assumptions made, the models are able to well capture all the main aspects 
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of the structural response of RC beams retrofitted with FRP composites, 
both qualitatively and quantitatively, at least in the case of significant 
interest, which is the problem experimentally investigated in this work.  
Finally, a series of considerations will be made in order to understand the 
influence of the assumptions made and the role of the interface law between 
concrete and composite on the overall behaviour of this type of retrofitted 
beams.  

7.4.1 Material Properties 
The material input data of the problem are those evaluated by specific 
experimental tests for steel and concrete, and provided by manufacturing 
industry for the composite reinforcement.  
Although the inertia effects can be neglected in this analysis, the actual rate 
at which the beams are loaded is important because stress-strain curves for 
steel and concrete are affected by the strain rate.  
Even though the experimental loading-rate of 0.3 mm/sec is quite low and 
this induced to neglect the strain-rate effect for the analysis described in this 
paper. Hence, rate independent material models are used in this section.  

7.4.1.1  Modelling of concrete-steel bars and concrete-FRP interfaces 

In order to take into account the bond-slip between concrete and steel bars 
as well as the possible debonding of the FRP from the concrete, a cohesive-
zone model has been used (Camanho & Davila 2002). It is somewhat 
similar to the approach developed previously by Mi et al. (1998) and Alfano 
& Crisfield (2001).  
Only mode II is involved in both types of decohesion process and the 
following bilinear, elastic-damage relationship between the tangential stress 
(τ) and the sliding relative displacement (s) along the interface has been 
adopted (see Figure 7.4.1):  

 ( )1 D K sτ = − ⋅ ⋅  (7.4.1) 
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Figure 7.4.1: Mode-II interface relationship 

where K is the initial (undamaged) interface stiffness and D is a damage 
which is greater than zero if the tangential stress fulfils some conditions as 
Camanho & Davila (2002) indicate.  
Input parameters of the law are the area enclosed by the curve, which is 
taken equal to the dissipated fracture energy (Gc), the peak value of the 
tangential stress (τ0) at which the softening part of the law begins and the 
initial elastic stiffness (K).  
The critical sliding relative-displacement sc and the “first cracking” value sc 
are related to the input parameters as follows: 

 0

0 0

2; c
c

GK ss
τ

τ= =  (7.4.2) 

Further details on the adopted cohesive-zone model can be found in 
Camanho & Davila [2002]. 
In absence of detailed information about the interface properties required in 
the model, the values entering the bar bond-slip relationships and 
concrete/FRP bonding (as shown in Figure 7.4.1) are chosen on the basis of 
the experimental-numerical comparisons in terms of load-mid span 
displacement curve, which will be shown later on.  
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The values so obtained for the interface parameters are reported in Tables 
7.4.1 and 7.4.2: they are referred to unit beam width, consistently with the 
plane-model hypothesis.  

Table 7.4.1. Mechanical properties for the concrete/steel bar interface. 

 τ0      
[MPa] 

s0
        

[mm] 
GC

numerical      
[N] 

Smooth 10.0 1.0 50.0 

Ribbed 12.0 1.0 75.0 

  

Table 7.4.2. Mechanical properties for the concrete/FRP interface. 

BEAM τ0      
[MPa] 

s0
        

[mm] 
GC

numerical      
[N] 

B1-B2 3.8 1.33 

B3-B4 5.0 0.85 

B5-B6 5.0 0.60 

B7-B8 4.0 

0.0001 

0.60 

Average values 4.5 0.0001 0.85 

  
 

From Table 7.4.2 it appears clear that the value chosen for s0 in the case of 
concrete/FRP interface is very small; this is consistent with the view to 
obtaining a high stiffness value which approximately models the almost 
rigid behaviour of the undamaged interface.  

7.4.1.2 Concrete model 

The model used in the finite-element model for concrete makes use of the 
yield function of Lubliner et. al. [1989], with the modifications proposed by 
Lee and Fenves [1995] to account for different evolutions of the strength 
under tension and compression. The yield surface is controlled by the tensile 
and compressive equivalent plastic strain and .  pl

cε~ pl
tε~

In terms of effective stresses, the yield function takes the form:  
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 ( )( ) ( )max max
1 ˆ ˆ3 0

1
pl pl

c cF q pα β ε σ γ σ σ ε
α

= − + − −
−

=  (7.4.3) 

with  

 
0

0

0

0

1
0 0

2 1

b

c

b

c

with

σ
σ

α
σ

σ

⎛ ⎞ −⎜ ⎟
⎝ ⎠=
⎛ ⎞ −⎜ ⎟
⎝ ⎠

.5α≤ ≤  (7.4.4) 

 
( )
( ) ( ) (1 1c c

pl
t t

σ ε
)

pl

β α
σ ε

= − − α+  (7.4.5) 

( )3 1
2 1

c

c

K
K

γ =
−

−
 (7.4.6)  

where maxσ̂  is the maximum principal effective stress; 0b c0σ σ is the ratio 
of initial equi-bi-axial compressive yield stress to initial uni-axial 
compressive yield stress; Kc, in the deviatoric plane, is the ratio between the 
second stress invariant on the tensile meridian (q(TM)) and that on the 
compressive meridian (q(CM)), at initial yield for any given value of the 
pressure invariant (p) such that the maximum principal effective stress is 
negative. It must also satisfy the condition 0.15.0 ≤≤ cK , where ( )pl

cc εσ ~  
and ( )pl

tt εσ ~  are the effective compressive and tensile stress, respectively, 
which are functions of equivalent plastic strains.  
The effective stress is defined as:  

 ( )0 :el plDσ ε ε= −  (7.4.7) 

where is the initial (undamaged) elastic stiffness of the material.  elD0

As Eq. (7.4.3) shows, the yield surface makes use of two stress invariants of 
the effective stress tensor, namely the hydrostatic pressure stress,  

 ( 1 2 3
1

3p )σ σ σ= − + +  (7.4.8) 
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and the Mises equivalent effective stress,  

 ( )3 :2q S= S  (7.4.9) 

where S  is the effective stress deviator, defined as  

 S σ pI= +  (7.4.10) 

The concrete damaged plasticity model assumes a non-associated potential 
plastic flow rule:  

 ( )pl G σ
ε λ

σ
∂

=
∂

 (7.4.11) 

The flow potential G used for this model is the Drucker-Prager hyperbolic 
function:  

 ( )2 2
0tG e tg q ptgσ ψ= + − ψ  (7.4.12) 

which makes use of two stress invariants of the effective stress tensor, like 
yield surface.  
Parameter ψ  is the dilation angle measured in the p–q plane at high 
confining pressure; σt0 is the uni-axial tensile stress at failure; and e is an 
eccentricity parameter, which defines the rate at which the function 
approaches the asymptote (the flow potential tends to a straight line as the 
eccentricity tends to zero). When the value of e increases, the curvature to 
the flow potential becomes greater, implying that the dilation angle 
increases more rapidly as the confining pressure decreases. This flow 
potential, which is continuous and smooth, ensures that the flow direction is 
always uniquely defined. The parameters values used in the analysis are 
summarized in table 7.4.3.   
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Table 7.4.3. Elastic and plastic properties for the concrete model. 

Young modulus      
[GPa] 

Poisson ratio     
[-] 

26000 0.2 

  
fcm      

[MPa] 
Ψ       
[°] 

e         
[-] 

σb0/σc0      
[MPa/MPa] 

K        
[-] 

19.39 35.0 0.01 1.1 0.65 

 

For the uni-axial compressive stress-strain behaviour, the Kent-Park model 

[1971], with the modifications of Yashin [1994], have been used; while the 

use of Belarbi-Hsu model [1994] seems to be efficient for the definition of 

the uni-axial tensile constitutive behaviour. Accordingly, the non-linear 

elastic perfectly-plastic relationship and a linear elastic softening branch 

have been considered in compression and in tension, respectively. The 

stress-strain curves are plotted in Figure 7.4.2.  
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Figure 7.4.2: Compressive tensile monotonic constitutive law for concrete 
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7.4.1.3 Steel and FRP laminate model 

For the reinforcing steel bars a linear elastic-perfectly plastic model has 
been adopted, while the behaviour of the FRP laminates has been assumed 
as linear elastic up to failure.  
The material properties chosen for the numerical analyses was obtained 
from experimental tensile tests for steel, and provided by the manufacturing 
industry. They are reported in Table 7.4.4.  

Table 7.4.4. Material properties for the steel bars and the FRP laminate. 

 
Young 

modulus      
[GPa] 

Yield/Failure* stress   
[MPa] 

Smooth steel bars 205 380 

Ribbed steel bars 205 510 

FRP laminate 400 1900 

* yield for steel and failure for FRP 

  

7.4.2 Results and discussion 
Figures 7.4.3-7.4.6 show the load displacement curves obtained for all the 
beams, with and without FRP reinforcement, by plotting the value of each 
reaction force (F) vs. the mid-span displacement (v).  
It is important to observe that the a-priori introduction of the cracks entails 
some inaccuracies of the results in the early stage of analysis which 
correspond to reloading portion CD of the Figure 7.4.1. Such inaccuracies 
are due to the absence of the modelling of contact behaviour between the 
cracks tips. However, this is accepted because the aim of the analyses is to 
investigate, up to failure, on the key role played by the presence of cracks in 
the FRP delamination, and thus, on the behaviour of the beam after that 
cracking has developed.   
The experimental-numerical comparisons of the RC beams with no FRP 
reinforcement highlight a good agreement of the numerical curves with the 
shapes of the experimental curves after the concrete cracking (portion DR of 
the diagram in Figure 7.4.1); in fact, the finite-element models well capture 
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the sharp elbow of experimental curves which is due to the yielding of the 
steel bars.  
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Figure 7.4.3: Numerical-experimental comparisons: load/mid-span deflection for beams 
A1-A2 and B1-B2 
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Figure 7.4.4: Numerical-experimental comparisons: load/mid-span deflection for beams 
A3-A4 and B3-B4 
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Figure 7.4.5: Numerical-experimental comparisons: load/mid-span deflection for beams 
A5-A6 and B5-B6 

 

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70
Mid-span deflection: v [mm]

Lo
ad

: F
 [K

N
]

numerical (reinforced beam)

80

numerical (beam with no FRP)

BEAM 
A7-A8
B7-B8

 
 

Figure 7.4.6: Numerical-experimental comparisons: load/mid-span deflection for beams 
A7-A8 and B7-B8 
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The figures show also a good agreement between experimental and 
numerical results for all the reinforced beams. The descending part of the 
load-displacement curves is well reproduced by the numerical model, 
showing the effectiveness of the proposed methodology of analysis.  
For the analyses of the beams with no FRP reinforcement (An) the simple 
application of the Newton-Raphson approach has led to excellent results.  
The unstable debonding between concrete and FRP, for the reinforced 
beams, led to convergence problems for the numerical analysis. Thus, the 
numerical analyses have been performed through dynamic explicit 
procedures (as it is already illustrated in Chapter VI) in order to follow the 
structural behaviour in the post-peak part of the equilibrium path: it is 
clearly shown how the explicit approach performs better in presence of 
delamination.  
However, the analyses of the reinforced beams have been repeated through 
the use of arc-length method in order to confirm the output of the explicit 
analyses results before the start of debonding between concrete and FRP.  
Figure 7.4.7 shows the comparison between the explicit analysis and arc-
length method results for the reinforced beam B3-B4. The curve obtained by 
using the arc-length method does not reach the peak part of the curve 
because of convergence problems.  
In order to understand the sensitiveness of the parameters used in the elasto-
plastic damaged model for concrete, in Figures 7.4.8-7.4.9 the load-
displacement curves obtained for beams A3-A4 by plotting the force vs. the 
mid-span deflection are shown. In Figure 7.4.8 three values have been 
assumed for the eccentricity (e), while in Figure 7.4.9 three values have 
been assumed for the parameter referred to as Kc, previously defined.  
The dilation angle (ψ) and the material  parameter α ( ( )0 0b cfα σ σ= ) 
have a very negligible influence on the overall behaviour of the beam, and 
hence, the corresponding comparisons have not been reported in this 
dissertation. The values suggested for concrete by Lubliner et al. [1989] 
have been chosen for ψ and α, they are reported in Table 7.4.3.  
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Figure 7.4.7: Numerical results of arc-length method and explicit analysis for the reinforced 

beam B3-B4 
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Figure 7.4.8: Numerical-experimental comparisons: load/mid-span deflection for beams 

A3-A4, with different values of the eccentricity e 
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Figure 7.4.9: Numerical-experimental comparisons: load/mid-span deflection for beams 

A3-A4, with different values of Kc

In the case of a RC beams with no FRP reinforcement the eccentricity and 
Kc have little influence after steel yield has occurred, and almost no 
influence on the elastic part of the overall behaviour of the beam.  
The same curves as in Figures 7.4.8-7.4.9 have been reported in Figures 
7.4.10-7.4.11 for the reinforced beams B3-B4. In these cases the two 
parameters (e and Kc) have greater influence on the results in terms of 
strength and delamination failure. This underlines that the assumed interface 
model is representative of what happens in a finite volume including the 
bonding material and a layer of concrete, and hence, the fracture energy and 
the peak stress of the interface are dependent on the properties of the 
concrete. This induces to believe that a refined modelling of the layer of 
concrete adjacent to the interface can be important for both the accuracy of 
the results and a good prediction of delamination failure [Simonelli 2005].  
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Figure 7.4.10: Numerical-experimental comparisons: load/mid-span deflection for beams 

B3-B4, with different values of the eccentricity e 
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Figure 7.4.11: Numerical-experimental comparisons: load/mid-span deflection for beams 

B3-B4, with different values of Kc
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However, the best results are achieved with the values reported in Table 
7.4.3.  
In order to understand the importance of some of the assumptions made in 
the finite-element model for the beams A3-A4 and B3-B4, the results of 
some analyses done with the modification of some initial hypotheses will be 
illustrated in the follows. The set of hypotheses are summarized in Table 
7.4.5.  

Table 7.4.5. Set of hypotheses. 

BEAM  CRACKS BAR SLIP FRP SLIP 

Hypoth. 1 □ □ - 

Hypoth. 2 ■ □ - A3-A4 

Hypoth. 3 ■ ■ - 

Hypoth. 1 □ □ □ 

Hypoth. 2 ■ ■ □ 

Hypoth. 3 ■ □ □ 
B3-B4 

Hypoth. 4 ■ ■ ■ 

  
 

In particular, two and three further analyses have been carried out for the 
beams A3-A4 and B3-B4, respectively. Figures 7.5.12 and 7.4.13 show the 
comparisons of the numerical results.  
For the beams A3-A4:  

 with the first assumption (referred to as hypoth. 1), the cracks have 
been eliminated in the finite-element model by constraining with 
perfect bond the couple of nodes on the adjacent crack faces, and the 
bilinear bond-slip relationship for the concrete/steel bars has been 
replaced with a perfect bond assumption,  

 with the second assumption (referred to as hypoth. 2), the initial 
cracks have been retained and a perfect bond assumption has been 
made for bond-slip relationship for the concrete/steel bars interface,   

 with the third assumption (referred to as hypoth. 3), the initial cracks 
and the bilinear bond-slip relationship for the concrete/steel bars 
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interface have been retained: it coincides with the analysis reported 
for comparison in Figure 7.4.4. 

For the beams B3-B4:  
 with the first assumption (referred to as hypoth. 1), the cracks have 

been eliminated and the assumption of perfect bond has been made 
for the concrete/FRP and concrete/steel bars interfaces,  

 with the second assumption (referred to as hypoth. 2), the initial 
cracks and the bilinear bond-slip relationship for the concrete/steel 
bars interface have been retained, while a perfect bond assumption 
has been made for the concrete/FRP interface,  

 with the third assumption (referred to as hypoth. 3), the initial cracks 
have been retained, while the assumption of perfect bond behaviour 
has been made for both concrete/steel bars and concrete/FRP 
interfaces,  

 with the fourth assumption (referred to as hypoth. 4), the initial 
cracks and the bilinear bond-slip relationships for the concrete/steel 
bars and concrete/FRP interfaces have been retained: it coincides 
with the analysis reported for comparison in Figure 7.4.4. 
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Figure 7.4.12: Numerical results for the bema A3-A4 with no FRP reinforcement, obtained 

with different sets of hypotheses 
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Figure 7.4.13: Numerical results for the reinforced beam B3-B4 obtained with different sets 

of hypotheses  

It appears from Figures 7.4.12 and 7.4.13 that the numerical results are able 
to reproduce the increasing stiffness of the finite-element model associated 
with the closure of the cracks and with the perfect bond of the concrete with 
steel bars and FRP reinforcement.  
Furthermore, all the considered hypotheses, that are the presence of initial 
cracks and the correct modelling of concrete/steel bars and concrete/FRP 
interfaces through a cohesive relationship, are important in order to achieve 
a good appreciation of structural behaviour in terms of load-displacement 
curve.  
One of the aims of this work is to focuses in detail on the interfacial stresses 
at the FRP/concrete interface and the effect of localized cracks on these.  
A lot of works have been done on the interface performance [Rasheed & 
Pervaiz 2002; Yang et al. 2004] and analytical solutions, which are only 
applicable prior to cracking, have been provided. The nonlinear model 
developed in this work is capable of capturing the effects of cracking on the 
interface stresses.  
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The set of results presented in Figure 7.4.14 represents a series of diagrams 
showing the stresses at the FRP/concrete interface in the reinforced beam 
B3-B4, for several values of the applied load. The stress values correspond 
to points C1, C2, C3, C4 and C5, on the load-displacement curve plotted in 
Figure 7.4.15. Finally, Figure 7.4.16 shows the evolution of the deflection of 
the numerical model during the analysis.  
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Figure 7.4.14: Evolution of bond stresses at the interface FRP/concrete for the reinforced 
beam B3-B4 carried out by model I: interface stress profiles 
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Figure 7.4.15: Evolution of bond stresses at the interface FRP/concrete for the reinforced 

beam B3-B4 carried out by model I: corresponding load-displacement curve  
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Figure 7.4.16: Evolution of bond stresses at the interface FRP/concrete for the reinforced 

beam belonging to group II: deformed configurations of beam 

The progressive decohesion of the laminate from the concrete face, is 
triggered in the area near to the point of application of the prescribed 
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displacement, and propagates in the vicinity of the terminal zones, as it is 
visible in Figure 7.4.16.  

7.5 INFLUENCE of CONCRETE/FRP INTERFACE LAW 

The finite-element model used for the experimental-numerical comparisons 
is now used for simulating explicit numerical analysis in order to investigate 
on the role of the interface law between the concrete substratum and FRP 
reinforcement on the overall behaviour of reinforced beam.  
The bilinear elastic-damage relationships considered for this goal are 
reported in the following table.  

Table 7.5.1. FRP stress-bond slip relationships for beam B5-B6. 

TEST 
τ0

[N/mm] 

GC

[N] 
SC

[mm] 

LAW 1 2.1 0.52 0.50 

LAW 2 4.5 0.56 0.25 

LAW 3 4.8 0.55 0.23 

LAW 4 4.8 0.72 0.30 

LAW 5 4.5 0.72 0.32 

LAW 6 4.5 0.90 0.40 

LAW 7 4.0 1.00 0.50 

LAW 8 5.0 0.50 0.20 

LAW 9 5.0 0.60 0.24 

LAW 10 3.0 0.60 0.24 

  
 
Such laws, which have been also plotted in Figure 7.5.1, have been 
introduced in the material properties of the cohesive-zone elements adopted 
for the modelling of the concrete/FRP interface. The load-displacement 
curves carried out by performing explicit analysis on the reinforced beam 
B5-B6 will be reported in Figures 7.5.2 and 7.5.3.  
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In particular, Figure 7.5.2 focuses on the influence of the fracture energy of 
the concrete/FRP relationship on the global structural behaviour, and hence, 
on delamination. The numerical curves obtained by selecting the interface 
laws characterized by the same fracture energy (laws from 1 to 5) are 
compared. It can be underlined that:   

 the laws with the same fracture energy do not imply the same load-
deflection curve, in particular the overall ductility of the reinforced 
beam tends to decrease with the decreasing of the peak stress,  

 the increasing of the fracture energy corresponds in the load-
deflection curve to an increasing in the ductility;  

Figure 7.5.3 indeed focuses on the influence of the peak stress (τ0) of the 
concrete/FRP relationship on delamination. It confirms what already 
underlined about fracture energy:  

 the laws with the same peak stress do not imply the same load-
deflection curve, in particular the overall ductility of the reinforced 
beam tends to decrease with the decreasing of the fracture energy,   

 the increasing of the peak stress corresponds to an increasing in the 
overall ductility.  
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Figure 7.5.1: Mode-II interface relationships 
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Figure 7.5.2: Numerical results. Influence of interface law between FRP/concrete on global 

behaviour of reinforced beam 
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Figure 7.5.3: Numerical results. Influence of interface law between FRP/concrete on global 

behaviour of reinforced beam 
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Figure 7.5.4, highlights the perfect agreement of the numerical results 
corresponding to laws 3, 5 and 7. It suggests an interesting result: in fact, the 
laws 3, 5 and 7 are characterized by a decreasing of the peak stress passing 
from law 3 to law 7, on the contrary, the fracture energy progressively 
decreases passing from law 3 to law 7.  
It means that the decreasing of the fracture energy and the consequently 
increasing of the peak stress can lead to the same global behaviour of the 
reinforced beam.  
Further studies could be turned to investigate on the influence of the fracture 
energy and the shape of the bond-slip relationship on the global structural 
behaviour of a RC beam retrofitted with composite.  
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Figure 7.5.4: Numerical results. Influence of interface law between FRP/concrete on global 

behaviour of reinforced beam 

The same analysis have been performed for the reinforced beam B3-B4: the 
numerical results confirm all the findings just found for the reinforced beam 
B5-B6. For brevity, only the curves obtained by adopting the interface laws 
characterized by the same peak stress (τ0) are reported in Figure 7.5.5.  
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Figure 7.5.5: Numerical results. Influence of interface law 

7.6 INFLUENCE of the FINITE-ELEMENT MODEL 

The aim of this section is to validate the numerical results in order to 
understand if few changes in the finite-element model can induce variations 
in the prediction of the global and local behaviour of retrofitted RC beams.  
The numerical results previously described are now compared with the 
results obtained by considering a new model (referred to as model II) only 
for the reinforced beam B3-B4.  
The new finite-element model used is shown if Figures 7.5.1 and 7.5.2.  
The steel bars and the FRP reinforcement have been modelled with 3-noded 
truss elements, while for the concrete 8-noded quadrilateral plane stress 
elements have been used. Furthermore, a new less refined mesh has been 
used for this new model.  
Figures 7.6.3 and 7.6.4 show the load-displacement curves obtained from 
the two finite-element models.  
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Figure 7.6.1: RC beam (B3-B4): finite-element model II 

 

 

 
Figure 7.6.2: RC beam (B3-B4): detail of the finite-element model II 
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Figure 7.6.3: Comparisons of numerical results obtained by adopting two models for the 

beam A3-A4 with no FRP reinforcement  
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Figure 7.6.4: Comparisons of numerical results obtained by adopting two models for the 

reinforced beam B3-B4 
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They underline the good degree of accuracy achieved by the new finite-
element model in the modelling of the nonlinear behaviour of the reinforced 
beam B3-B4.   
As Figures 7.6.3 and 7.6.4 clarify, simplifying the finite-element model, the 
arc-length method represents a good alternative procedure for partially 
solving the analysis convergence problems when debonding occurs. 
Now, analyzing the interfacial stresses at the FRP/concrete interface in the 
reinforced beam B3-B4 and the effect of localised cracks on these, the set of 
results obtained by model II are reported in Figure 7.6.5 for several values 
of applied load.  
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Figure 7.6.5: Evolution of bond stresses at the interface FRP/concrete for the reinforced 
beam B3-B4 carried out by model II: interface stress profiles 

These values are also reported in Figure 7.6.6 near the corresponding points 
of the load-displacement curve.  
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Figure 7.6.6: Evolution of bond stresses at the interface FRP/concrete for the reinforced 

beam B3-B4 carried out by model II: corresponding load-displacement curve  
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The evolution of the debonding process for the reinforced beam B3-B4 can 
appear clearer by reasoning in terms of displacements. In Figure 7.5.7 the 
evolutions of the absolute and the relative displacements of the two adjacent 
layers of the cohesive-zone elements along the beam are reported.  
From the figures it is clear that debonding is triggered in the area near the 
point of application of the prescribed displacement and propagated toward 
the anchorage of the FRP-reinforced zone.  
The numerical results of model II validate all the numerical findings 
illustrated previously obtained by the original finite-element model.  
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Figure 7.6.7: Evolution of bond stresses at the interface FRP/concrete for the reinforced 
beam B3-B4 carried out by model II: interface displacements profiles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 241 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
NUMERICAL ANALYSIS on the DEBONDING of FRP FLEXURAL REINFORCEMENT of RC MEMBERS           
 

 243 

CHAPTER VIII 
CODE PROVISIONS and ANALYTICAL RESULTS 

8.1 INTRODUCTION 

For failure modes in which adhesion between FRP and concrete is 
maintained up to rupture (full composite action), so that failure occurs for 
concrete crushing, shear or FRP brittle rupture, it is widely accepted that the 
conventional RC theory for the ultimate limit state analysis can be easily 
applied by simply adding the composite as additional resisting element in 
traction. However, two cases of failure due to the loss of adhesion between 
composite and FRP (loss of composite action) can be observed during 
experimental tests on RC beams externally reinforced with FRP materials.  
In some cases, it occurs because the composite debonding starts in 
proximity of vertical flexural cracks or of inclined cracks due to shear with 
or without flexure and propagates towards the end of the beam, it is usually 
named mid-span delamination; in other cases, delamination may start at the 
end of the composite laminate (end peeling) due to the insufficiency or even 
the lack of anchorage, with the crack sometimes propagating up to the 
reinforcing bars so that the entire covercrete debonds. For each of these 
cases the codes of practice propose different analytical models based on the 
extensive research done in the last two decades. Furthermore, the proposed 
models all involve different types of approximation and often different 
proposed methods yield quite different results.  For this reason, the results 
of analytical calculations based on the models proposed in the codes of 
practice are presented in this section and will provide a further element of 
comparison and discussion with the numerical results obtained by finite-
element analysis and, hence, by the experimental results.  
The current guidelines for the design of this type of strengthening works 
tend to extend the principles of the design of standard RC elements to the 
case of FRP retrofitted ones. When FRP sheets are applied to the structural 
elements though, the behaviour of the assembly becomes by far more 
complex and aspects that are negligible in the assessment of the overall 
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performance of a standard RC element are to be taken into account. In the 
present section the analytical approaches provided by European [Fib bulletin 
14, 2001] and International code, with referring to documents provided by 
the American Concrete Institute [ACI 440-2R, 2008] and Japan Society of 
Civil Engineers [JSCE Recommendations, 2001] will be discussed. 
Furthermore, the analytical results obtained by using the recommendations 
available in the Italian code [CNR DT-200, 2004] will be also shown and 
discussed.  

8.2 CODE PROVISIONS  

Before the analytical methods will be discussed it is useful to observe that 
the experimental results reported in the literature induce to consider the 
following mechanisms of failure for the RC beams strengthened with FRP:  

 Concrete crushing after the steel yielding 
 Concrete crushing 
 Failure of the anchorage  
 Failure of the FRP/concrete interface due to the growth of flexural 

and shear cracks 
The first two failure modes the checks consist in quantifying the flexural 
capacity of the reinforced section assuming the perfect interaction between 
the concrete section and the FRP reinforcement. In this case, the 
computation of the ultimate strength of the reinforced section is carried out 
considering, for the steel and concrete strains, the values usually adopted for 
the evaluation of the flexural capacity of common RC elements. Only the 
last case will be analysed in the follows.  

8.2.1 ACI 440 (2008) 
A first method for the check for the debonding of FRP reinforcement 
consists in limiting the ultimate deformations of the composite. In 
particular, in order to prevent the intermediate crack-induced debonding 
failure mode, the code [ACI 440 2R 2008] introduces a limitation to the 
effective strain in FRP reinforcement εfd which depends on the specific 
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stiffness of the composite in terms of product between the Young modulus 
(Ef) and the thickness (tf) of the composite reinforcement.  

 
'0.41 0.9c

fd fu
f f

f
nE t

ε ε= ≤  (8.2.1) 

Eq. (8.2.1) takes a modified form of the debonding strain equation proposed 
by Teng et al. [2001-2004] that was only based on committee evaluation of 
a significant database for flexural beam tests exhibiting FRP debonding 
failure. The proposed equation was calibrated using average measured 
values of FRP strains at debonding and the database for flexural tests 
experiencing intermediate crack-induced debonding to determine the best fit 
coefficient of 0.41.  
Eq. (8.2.1) recognizes that laminates with greater stiffness are more prone to 
delamination; in fact, the limited deformations (εfd) decrease with the 
increasing of the axial stiffness Ef tf, as it is clearly shown in Figure 8.2.1(a).  
The limitation of the strains induces implicitly a limitation in terms of 
stresses in the composite layer. In Figure 8.2.1(b) it is shown how the 
stresses are to be limited in order to comply with adherence conditions, in 
particular for high values of the composite thickness.  
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In fact, in order to prevent the mid-span debonding failure, the admissible 
values for the FRP stress are very low with respect to the rupture stresses of 
the reinforcement, which can reach also 2000÷3000 MPa.  
The ultimate bending moment diagrams along the reinforced beam B3-B4 
evaluated both by assuming the full composite action and by using the limit 
recommended in the ACI for the stress in the FRP reinforcement are 
reported in Figure 8.2.2.  
Furthermore, the safe factor (SF) for mid-span debonding failure evaluated 
as the ratio between the ACI failure load and experimental force is also 
reported in Figure 8.2.2. 
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Figure 8.2.2: Bending moment diagrams corresponding to failure and Safe Factor evaluated 

in accordance with the ACI 440 provisions, for the reinforced beam B3-B4 

For the evaluation of the analytical failure load (Fu) the concrete crushing is 
assumed to occur if the compressive strain in the concrete reaches its 
maximum usable strain (εcu=0.003); furthermore, the reliability of FRP 
contribution to flexural strength is addressed by incorporating an additional 
strength reduction factor for FRP ψf in addition to the strength reduction 
factor φ suggested by ACI 318 [2005] for structural concrete, defined by:  



 
NUMERICAL ANALYSIS on the DEBONDING of FRP FLEXURAL REINFORCEMENT of RC MEMBERS           
 

 247 

 
( )

0.90 0.005

0.25
0.65 0.005

0.005

0.65

t

t sy
sy t

sy

t sy

for

for

for

ε

ε ε
φ ε ε

ε

ε ε

≥⎧
⎪

−⎪= + < <⎨ −⎪
⎪ ≤⎩

 (8.2.2) 

8.2.2 CNR DT-200 (2004) 
The simplified procedure adopted by the Italian code of practice provides to 
compute the maximum strain in the composite and to compare this value 
with the following limitation of the strain:  

 ,max
,

2cr c
f

f ff d c

k G
E t

ε
γ γ

=  (8.2.3) 

In the above formula γf,d is the material factor for FRP, taken equal to 1.2 in 
the present analysis (for a certificated reinforcement according to CNR 
provisions); γc is the material factor for concrete, taken equal to 1.5, in line 
with the recent European codes of practice; kcr is an empirical coefficient 
that, in absence of further data, can be taken as high as 3.0; finally Ef and the 
tf are the Young modulus and the thickness of the composite lamina.  
Finally, Gc is the fracture energy of the interface behaviour between FRP 
reinforcement and concrete; in the CNR Bulletin it can be assumed as:  

 0.03c b ck ctmG k f f= ⋅ ⋅  (8.2.4) 

where kb is a geometrical factor which takes into account the ratio between 
the beam and reinforcement widths:  
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The mechanical properties of concrete (fck, fctm) in Eq. (8.2.4) are taken from 
experimental outcomes already reported in the previous section.  
The evaluation of the axial stress can be made on the basis of the 
conventional theory of RC beam.  
The bending moment diagrams along the reinforced beam B3-B4 induced 
by applying the failure loads Fu , evaluated both assuming the full composite 
action and using the bound for the FRP strain recommended in the CNR, 
with two different values for the fracture energy, are reported in Figure 
8.2.3.  
The two values considered for the fracture energy are: 
 the value suggested by the Italian CNR 
 the value come out of the numerical-experimental comparisons 

The safe factors (SF) are also reported in the figure. 
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Figure 8.2.3: Bending-moment diagrams corresponding to failure and Safe Factors 

evaluated in accordance with CNR DT-200, considering two values for fracture energy, for 
the reinforced beam B3-B4, 
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8.2.3 JSCE (2001) 
The Japanese recommendations introduce a different procedure for the 
evaluation of the ultimate force corresponding to debonding. A double 
check along the beam is assumed in order to take into account the last two 
mechanisms summarized before. For each case, only the axial stresses are 
considered in the evaluation of the section capacity, and the check in 
conducted by verifying the compatibility of the axial stresses variation with 
mechanical characteristics of the adhesive layer.  
At the end of the beam, the debonding check is conducted by controlling 
that the stress in the composite, at a predefined distance from the end of the 
reinforcement, is smaller than σf,max given by:  

 
f

ff
f t

EG2
max, =σ  (8.2.6) 

with Gf the fracture energy of the FRP/concrete interface (suggested equal to 
0.5 N/mm). The second right-end member of the Eq. (8.2.6) represents the 
maximum stress which can be applied to an adhesive joint FRP/concrete, 
provided with a fracture energy Gf , when its length de so called “transfer 
length”: this topic is quite known in the theory of fracture energy applied to 
the retrofitting of structures. Further details can be found in a work 
published by Faella et al. [2003].  
The same approach is used for the debonding checks along the beam. The 
procedure requires to compute the axial stress variation Δσf in the composite 
between two adjacent cracks, assuming a distance between cracks equal to 
srm (ranging in the field 150-250 mm, for the JSCE), and to compare such 
value with the capacity of the FRP/concrete interface (Δσf,max):  

 
f

ff
ff t

EG2
max, =Δ≤Δ σσ  (8.2.7) 

The evaluation of the axial stress can be made on the basis of the 
conventional theory of RC beam.  
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The bending moment diagrams along the reinforced beam B3-B4 induced 
by applying the failure loads Fu , evaluated both assuming the full composite 
action and using the procedure provided by the JSCE recommendation, with 
three different values for the fracture energy, are reported in Figure 8.2.4.  
The three values considered in the procedure are: 

 the value suggested in the Japanese 
 the value suggested in the Italian CNR 
 the value come out of the numerical-experimental comparisons 

The safe factors (SF) are also reported in the figure. 
Finally, in Figure 8.2.5 the current approach is shown graphically: the 
stresses in the FRP lamina and the admissible increments are reported along 
the reinforced beam B3-B4, assuming for the adherence law and crack 
spacing the values suggested in the Japanese code. Furthermore, the stress 
variation in tensile stress (Δσif) and the maximum variation carried by the 
FRP lamina (Δσif,max) are indicated for the ith portion between two 
consecutive cracks.  
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Figure 8.2.4: Bending-moment diagrams corresponding to failure and Safe Factors 

evaluated in accordance with Japanese Recommendations, considering three values for 
fracture energy, for the reinforced beam B3-B4 
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In Figure 8.2.5 it is clear that in the present case the analysis reveals that the 
critical zone in which debonding first is triggered is that under the applied 
force. This is confirmed also by the evolution of the stress profiles obtained 
by the numerical analyses discussed in the previous section.  
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Figure 8.2.5: Diagrams of the maximum possible increase in tensile stress (JSCE) and 

tensile stress in the FRP reinforcement along the beam B3-B4 

8.2.4 FIB Bulletin n.14 (2001) 
The only European reference code is the document drawn up by the 
Federation International du Beton in 2001 [Bulletin n.14, 2001]. The 
debonding checks at limit states are dealt with three different approaches 
summarized in the follows.  

8.2.4.1  Approach I 

The approach I consider only the end-peeling debonding check; it basically 
refers to the recommendations provided by the Japanese code of practice for 
the estimation of the anchorage. In order to prevent peeling-off, the 
approach restricts the ultimate tensile strain εf,lim at Ultimate Limit State to a 
certain value, which ranges from 0.0065 to 0.0085.  
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In the following figure the bending moment diagrams along the reinforced 
beam B3-B4 induced by applying the failure loads Fu , evaluated both 
assuming the full composite action and using the lower and the upper 
bounds for the FRP strain recommended in the approach I of the Fib 
Bulletin, on the beam are reported. 
The diagrams obtained by assigning the above limits and that induced by 
assuming the full composite action overlaps because of concrete crushing.  
Furthermore, the safe factor (SF) for mid-span debonding failure with 
respect to experimental action is also reported in the figure. 

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

x [mm]

MRd [KNm]

Fu,exper

F(εf < 0.0065) ≡ F(εf < 0.0085) ≡ F(full composite action)

SF=1.19BEAM B3-B4

 
Figure 8.2.6: Bending-moment diagrams corresponding to failure and Safe Factor evaluated 

in accordance with approach I of Fib Bulletin 14, for the reinforced beam B3-B4 

8.2.4.2  Approach II 

The procedure is very similar to that provided by the JSCE, previously 
discussed, even though in the European code the debonding check between 
two adjacent cracks is more conservative. This method is based on a model 
developed by Niedermeier [2000]. To determine whether a given load does 
not produce mid-span debonding, Niedermeier’s procedure requires to 
compute the maximum admissible increase in the tensile stress for the 
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composite between two adjacent cracks, assuming a bilinear relationship 
between shear stress and interface slip on the FRP/concrete interface. This 
value is then compared with the actual increase obtained for the given load 
level, and iterations are performed on the load level to make the two values 
coincide. The maximum stress variation (Δσf,max) can be synthetically 
expressed as a function of:  

  Δσf,max = f (σfd, τ -s relationship, srm) (8.2.8) 

where, σfd is the minimum stress on the cracks, srm is the distance between 
cracks.  
Basically, the approach consists of three steps (Figure 8.2.7):  
• Determination of the most unfavourable spacing of flexural cracks. 
• Determination of the tensile force within the Externally Bonded 

Reinforcement (EBR) between two subsequent cracks according to the 
conventional RC beam theory.  

• Determination of the maximum possible increase in tensile stress in the 
EBR.  

 
Figure 8.2.7: Basic approach-flow chart [Fib Bulletin 14 2001] 

• Determination of the most unfavourable spacing of flexural cracks 
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The crack spacing between two subsequent cracks is evaluated on the basis 
of the RC tie-beam theory provided by CEB Manual on Cracking and 
Deformations [1985], taking also into account the presence of the FRP sheet 
externally bonded.  
Hence, the crack spacing is equals one to two times the transmission length 
(lt) and may be calculated assuming constant mean bond stresses of both the 
internal and the external reinforcement. The mean bond stress of the internal 
reinforcement (τsm) can be determined according to EC2 [1998] in case of 
high bond action:  

 ,0.952.25 1.85sm ctk ctmf fτ = =  (8.2.9) 

whereas the mean bond stress of the external reinforcement can be estimated 
with:  

 0.44fm ctmfτ =  (8.2.10) 

The transmission length may be calculated with:  

 
( )

1cr
t

m fm f sm s

Ml
z b dτ τ π

=
+∑ ∑

 (8.2.11) 

where Mcr is the bending moment causing cracking:  

 
2

,0.95

6
ctk

cr

k f bh
M

⋅ ⋅
=  (8.2.12) 

In Eq. (8.2.12) the factor k takes into account, among others, the higher 
value of the flexural tensile strength when compared to the axial tensile 
strength or the tensile strength of the concrete surface. In this case k should 
equal 2.0 [Eurocode 2, 1998].  
The mean lever arm zm may be determined taking into account the axial 
stiffness of the different layers of reinforcement through the equation:  
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To simplify the calculation, a constant crack spacing over the whole length 
of the flexural member may be assumed. As the bond stresses which can be 
transferred in an uncracked concrete zone (i.e. anchorage zone or between 
two subsequent cracks) is restricted due to the limitation of fracture energy, 
large crack spacing is unfavourable. Hence the crack spacing may 
correspond to two times the transmission length: 

 
( )

12 2 cr
rm t

m fm f sm s

Ms l
z b dτ τ π

= =
+∑ ∑

 (8.2.14) 

 
• Determination of the tensile stress of the FRP EBR at each crack 
In accordance with Eurocode 2 [1998] procedures, the tensile stress has to 
be calculated taking into account strain compatibility and internal force 
equilibrium.  
 
• Determination of the maximum possible increase in tensile stress in the 

EBR  
To verify that the growth in tensile stresses between two subsequent cracks 
as prescribed in the Eurocode 2 [1998] does not exceed the maximum 
possible increase determined by the bond stresses, the achievable increase 
has to be estimated. This has to be done for the region where flexural cracks 
occur as well as for the anchorage zone, but in this study only the debonding 
along the beam is focused on.  
The analysis of the bond behaviour of the composite reinforcement based on 
a simplified bilinear bond stress-slip relation which leads to equations which 
can be used to calculate the maximum increase in tensile stress Δσf,max in an 
element between two cracks is based on the findings of Niedermeier [2000], 
as it has just anticipated at the beginning of this section.  
The maximum possible increase in tensile stress increment (Δσf,max) 
depends on the tensile stress (σfd) as determined based on strain 
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compatibility and force equilibrium at the section where the lower tensile 
stresses act (Figure 8.2.8).  

 
Figure 8.2.8: Element between two subsequent cracks. Analysis of peeling-off at flexural 

cracks [Fib Bulletin 14 2001] 

In Figure 8.2.9 the maximum possible increase depending on a specific 
crack spacing is shown.  
The code gives the closed form expressions of the red line shown in Figure 
8.2.9.  
The point A shown in the figure corresponds to the verification at the end 
anchorage where σfd = 0. The maximum anchorable tensile stress, if the 
anchorage length is greater than an effective anchorage length indicated as 
lb,max in the Fib Bulletin, can be estimated by:  

 ( ) 1
,max

f ck ctmA
f

c f

E f fc
t

σ
γ

Δ =  (8.2.15) 
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The matching maximum increase in stress corresponding to the point B may 

be estimated using the following equations:  

 ( )
2

21( ) ( ) ( )
,max

1 f ck ctmB B B
f fd fd

c f

c E f f
t

σ σ σ
γ

⎡ ⎤
⎢ ⎥Δ = + −
⎢ ⎥
⎣ ⎦

 (8.2.16) 

 3( )
4 4

fB rm
f ck ctm

rm f

c E sc f f
s t

σ = −  (8.2.17) 

 
Figure 8.2.9: Diagram of the maximum possible increase in tensile stress between two 

subsequent cracks [Niedermeier, 2000] 

The linear decrease between points A and B can then be described by the 
following equation:  

 
( ) ( )
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,max ,max ( )

A B
f fA

f f fdB
f

σ σ
σ σ σ

σ
Δ − Δ

Δ = Δ −  (8.2.18) 
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And the graph between B and C is determined by:  
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1(2) 2
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c f
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⎢ ⎥
⎣ ⎦

 (8.2.19) 

For high tensile stresses, the upper limit of the increase in stresses is 
determined by the tensile strength of the FRP as follows:  

 (3)
,maxf fd fdfσ σΔ = −  (8.2.20) 

The design tensile strength ffd is given by the equation: 

 
fum

fue

f

fk
fd

f
f

ε
ε

γ
=  (8.2.21) 

The value of the FRP material safety factor γf is suggested equal to 1.20 for 
the application of prefab carbon FRP reinforcement under normal quality 
control conditions. It is mainly based on the observed differences in the 
long-term behaviour of FRP (basically depending on the type of fibres), as 
well as on the influence of the application method (as the Italian CNR 
suggests). The ratio εfue /εfum takes into account the difference between the 
effective ultimate FRP strain εfue expected in-situ and the mean strain εfum 
obtained through uniaxial tensile testing, and also the possible variations 
accounted for in the FRP material safety factor γf ; it is normally takes equal 
to 1.  
However, in the Fib Bulletin not all the details of the procedure are given, 
and the original publication is a doctoral thesis not easily available to the 
wide community. In particular, the maximum admissible increase in the 
tensile stress in the FRP between two cracks depends on the smaller of the 
initial values of the FRP stress on either of the adjacent cracked sections, as 
well as on three coefficients (c1, c3, c4) which are not clearly given in 
document.  
In absence of further data, the values suggested for the five factors are 0.23, 
0.185 and 0.285, respectively.  
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Furthermore, the methods is quite sensitive to the input parameters as 
beyond the load value corresponding to yielding in the tensile steel bars, the 
composite is the only element that takes all the additional tensile stresses. 
Anyway, the Fib Bulletin suggests simplified bond tests for calibrating the 
proposed factors by means of a linear regression analysis. The three 
equations reported in the follows are furnished by the code in order to define 
the parameters once the basic bond stress-slip relationship has been carried 
out:  

 ctmck
c

ffc
γ

τ 4
0 = , maximum bond stress (8.2.22) 

 
4

2
1

3 c
ccsc == , slip where debonding occurs (8.2.23) 

 ctmck
c

cc ffcsG
γ

τ
2
1

0 2
1

2
1 == , fracture energy (8.2.24) 

Anyway, they are subject to further study and may change in the future 
when more test data will become available.  
In the follows the approach II of the Fib Bulletin will be applied to the 
reinforced beam B3-B4, considering for the factors c1, c3 and c4 the values 
suggested by the Fib and those deduced by the experimental-numerical 
comparisons. They are reported in Table 8.2.1 with the corresponding 
interface laws.   

Table 8.2.1. Interface law and respective numerical factors suggested by the Fib Bulletin 
and deduced by the experimental-numerical comparisons, for reinforced beam B3-B4. 

 
τ0 

[N/mm] 

SC 
[mm] 

GC 
[N] 

C1 C3 C4 

Coefficients come out by 
the experimental-

numerical comparisons 
5.0 0.34 0.85 0.70 0.34 1.46 

Coefficients suggested by 
Fib Bulletin 0.97 0.185 0.090 0.23 0.185 0.285 
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In Figure 8.2.10 the curves which represent the relationships between the 
maximum stress variation of the FRP between two consecutive cracks 
(Δσf,max) and the minimum tensile stress in the FRP on the considered 
cracks (σfd) is reported for the beam B3-B4, using for the three parameters 
(c1, c3 and c4) the values both suggested by the Fib Bulletin and deduced by 
the experimental-numerical comparisons. In Figure 8.2.11 the bending 
moment diagrams i analytical and experimental failure loads, with the 
corresponding safe factors, are reported.  

BEAM B3-B4
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Figure 8.2.10: Diagrams of the maximum possible increase in tensile stress between two 
subsequent cracks obtained by considering the coefficients suggested by Fib and those 

evaluated experimentally 

In Figures 8.2.12 and 8.2.13 the stresses and the admissible increasing in 
tensile stress in the composite are reported considering the values suggested 
by the Fib and those experimentally evaluated, respectively.  
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Figure 8.2.11: Bending-moment diagrams corresponding to failure and Safe Factor for the 
reinforced beam B3-B4, evaluated in accordance with the approach II of Fib Bulletin 14, 

considering the coefficients suggested by Fib and those evaluated experimentally 
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Figure 8.2.12: Diagrams of the maximum possible increase in tensile stress (Fib Bulletin 

14) and tensile stress in the FRP reinforcement along the beam B3-B4 
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Figure 8.2.13: Diagrams of the maximum possible increase in tensile stress (Fib Bulletin 

14) and tensile stress in the FRP reinforcement along the beam B3-B4 

In either cases the analyses reveals that the critical zone in which debonding 
first is triggered is that under the applied force. This is confirmed also by the 
JSCE procedure and by the evolution of the stress profiles obtained by the 
numerical analyses, discussed in the previous section.  
The role of the crack spacing on the safe factor (SF) is not discussed in 
detail in the code. The closed-form expressions provided by the Fib Bulletin 
can be used to evaluate the trend of the a-dimensionless strength Δσf,max/σfu 
when the cracks spacing varies considering several values of the minimum 
stress on the cracks (σfd) (see Figures 8.2.14 and 8.2.15).  
It can be observed that the strength decreases when the cracks spacing 
increases, and such decreasing is as much strong as the tensile stress in the 
FRP on cracks is large. This leads to the observation that the adherence 
checks are generally as much conservative as the cracks spacing is large.    
In the same figures the maximum stress variation assumed by the Japanese 
recommendations is also reported, considering the same basic bond stress-
slip relationship, and hence the same fracture energy. It is constant when the 
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stress level in the lamina changes, and corresponds to the value considering 
a tensile stress equal to zero. Hence, it underlines that the values of the 
fracture energy provided by the approach II of the Fib Bulletin are 
significantly smaller than those suggested by the JSCE recommendations. 
For this reason, as a possible choice, one could consider the maximum 
cracks spacing which can occur when a RC beam is not externally 
reinforced, in accordance with the indications provided by the CEB Manual 
on Cracking and Deformations [1985]. Such choice is justified by the fact 
that, in the practical applications, the RC element is already cracked when it 
is externally reinforced.  
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Figure 8.2.14: Diagrams of the maximum possible increase in tensile stress between two 

subsequent cracks obtained considering different values for cracks spacing 
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Figure 8.2.15: Diagrams of the a-dimensional tensile strength vs. cracks spacing obtained 

considering different values for minimum tensile stress in the FRP 

8.2.4.3 Approach III 

This approach comprises two steps. The first involves verification of the end 
anchorage, as prescribed by Japanese recommendations. In the second step 
it should be verified that the shear stress τbc at the FRP-concrete interface, 
resulting from the change of tensile force along the FRP, is limited 
[Matthys, 2000]. Considering two cross sections at distance Δx, subjected to 
moments Md and Md+ΔΜd, τbc is equals to: 

 fd
bc

f

N
b x

τ
Δ

=
Δ

 (8.2.25) 

where ΔNfd is the change in FRP axial force between the two sections. For 
the verification of the Ultimate Limit State the shear stress τbc should be 
restricted to the design bond shear strength, which is equal (in most practical 
cases) to the bond shear strength of concrete, fcbd. Adopting the Mohr-
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Coulomb failure criterion in the case of zero normal stress, the bond 
strength equals about 1.8 times the tensile strength, that is: 

 1.8 ctk
cbd

c

ff
γ

=  (8.2.26) 

Eq. (8.2.25) can be simplified considering that Nrd=Md/zm and Nrd=Nfd+Nsd. 
Assuming that εsl/εf ≈ 1, with ΔMd/Δx ≈ Vd (design shear force) and zm = 
(zs+zf)/2 ≈ 0.95d, this gives the following conditions: 
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 (8.2.27) 

where τbc is influenced by the area of longitudinal bars Asl only if the steel of 
longitudinal bars is yielded (εsl <εyd).  
In Figures (8.2.16) and (8.2.17) the bending moment and the shear stresses 
along the beams induced by analytical and experimental failure loads are 
reported, respectively. The corresponding safe factor is also indicated in the 
figures.  
In conclusion, the second and third procedures provided by the Fib Bulletin 
14 coincide as the spacing of flexural cracks tends to zero. In fact, Figure 
8.2.15 shows how the curves in the plane (∆σf,max/σfu, srm) are directed to the 
same point as srm tends to zero. This value can be evaluated from the 
equilibrium condition of an infinitesimal portion of a lamina in the 
horizontal direction; it is equal to the ratio between the maximum stress τmax 
and the thickness of the FRP lamina tf. According to this consideration, the 
procedure suggested by the approach II is equivalent to a local check of the 
tangential stresses (approach III) as srm tends to zero. Even though, from the 
practical point of view, the equivalence is not valid because the value 
assumed by approach II (τmax) is different from fcbd assumed in approach III.  
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Figure 8.2.16: Bending moment diagrams corresponding to failure and Safe Factor for the 

reinforced beam B3-B4, evaluated in accordance with approach III of Fib Bulletin 14 
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Figure 8.2.17: Shear stresses at concrete/FRP interface along the reinforced beam B3-B4   

In Table 8.2.2 all the analytical results obtained from this brief outline of the 
code provisions are summarized for only the reinforced beam B3-B4: the 
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mid-span debonding failure loads (Fu) and the corresponding stresses in the 
composite (σfu) are reported  in the table in order to prove the discrepancies 
in term of safe factor (SF) between the analytical estimation and the 
experimental value of failure load.  
Furthermore, the failure load evaluated under the assumption of full 
composite action and in also reported for the beam B3-B4. As shown in the 
table, in the case of full composite action, the stress in the composite is less 
than σf,max which is given by the manufacturing industry equal to 1900 MPa.  

Table 8.2.2. Mid-span delamination failure loads and safe factors evaluated in accordance 
with Code provisions for reinforced beam B3-B4. 

BEAM Fu  [KN] σfu  [MPa] S.F. 

Full composite action 52.2 1235 1.19 

Fib Approach I           
(εf <0.0065) 52.2 1235 1.19 

Fib Approach I           
(εf <0.0085) 52.2 1235 1.19 

Fib Approach II 
(c1=0.23; c3=0.185; 

c4=0.285) 
23.0 493 2.70 

Fib Approach II 
(c1=0.70; c3=0.34; 

c4=1.46) 
44.9 1075 1.38 

Fib Approach III 21.5 508 2.88 

CNR (Gc
CNR=0.23) 37.6 737 1.65 

CNR (Gc
exper=0.85) 56.0 1423 1.11 

JSCE 43.6 840 1.26 

ACI 440 36.5 713 1.70 
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CONCLUSIVE REMARKS 

The use finite-element models with preset localized cracks in association 
with an appropriate stress-slip model for FRP reinforcement proved to be 
the most effective strategy for the study of typical failure mode of RC 
beams retrofitted with FRP as the mid-span debonding, which is associated 
with the mechanisms of force transfer between concrete and FRP.  
In fact, such beams are structures highly sensitive to cracking of concrete. A 
discrete crack model should be used to predict the local stress 
concentrations in the FRP/concrete interface at crack mouths and 
consequently the correct mechanism of debonding between the two 
materials.  
Two-dimensional nonlinear finite-element models of RC beams retrofitted 
with FRP in flexure have been implemented and analysed in the finite-
element program ABAQUS. The damaged elastic-plastic behaviour for 
concrete has been modelled by means of the Lubliner et al. criterion 
modified by Lee and Fenves, while crack configuration before the 
application of FRP strips has been explicitly introduced in the finite-element 
model. Furthermore, suitably specialized cohesive-zone interface laws have 
been considered for modelling bond-slip between concrete and the 
reinforcing steel bars as well as debonding between concrete and FRP.  
The proposed nonlinear numerical models beams is capable of capturing 
many important aspects of the behaviour of these structural systems, up to 
failure. The agreement with the experimental results reported in this work is 
excellent both for beams with no FRP reinforcement, and for the reinforced 
beams. In particular, the mid-span debonding failure can be well predicted 
by the models. The computational cost and the convergence problems of the 
numerical analysis are to be taken into account when studying complex 
phenomena like the mid-span debonding failure due to stress concentration 
in correspondence of discrete cracks, for which the use of a refined finite-
element model with damaged non-linear constitutive laws represent the best 
choice. The explicit analysis performs better then the iterative procedures 
(i.e., Newton-Raphson and Arc-length method) even for pseudo-static 
analyses, provided to well define the time period of the analysis and the 
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bulk viscosity in order to either avoid an excessive computational cost or 
control the high frequency of oscillation, respectively.  
From the comparisons of numerical and experimental results with analytical 
ones obtained by considering the formulations available in the main codes 
of practice, it is interesting to underlined that, among all methods, 
Niedermeier’s approach (Fib Bulletin 14 approaches II) appears to have the 
soundest theoretical bases, and provides a unified treatment of mid-span 
debonding and end-peeling failure modes, as the procedure can be applied 
along the entire beam span. In particular, it is also able to predict the exact 
location where debonding first is triggered, which is also confirmed by the 
numerical results.  
Other simplified methods proposed in most codes of practice (i.e., ACI 440, 
CNR DT-200, Fib Bulletin 14 approaches I and III) to evaluate mid-span 
debonding failure load are based on the limitation on the stress or on the 
strain in the composite, and therefore give only a crude approximation of the 
failure load for mid-span delamination. Such simple methods do not always 
furnish the most conservative estimation of failure load with respect to more 
sophisticated ones.  
Moreover, this work has underlined some issues which need to be 
investigating in the future. In particular, the important influence of the crack 
pattern in concrete, especially for the prediction of the FRP debonding, 
suggests that a higher degree of accuracy may be obtained by modelling the 
initiation and propagation of cracks.  
Other possible enhancements will include the introduction of friction along 
the crack faces, especially of inclined cracks related to shear, even though it 
should not alter the ultimate behaviour of a reinforced RC beams close to 
failure. Furthermore, the development of full 3D models could lead to 
understand the influence of FRP width.  
The outcomes of an experimental activity conducted previously has been 
presented in this dissertation; they represents an useful tool which is 
available in the future for the scientific community in order to validate the 
analytical and numerical results. The promising results presented in this 
dissertation will stimulate the development of other experimental and 
numerical activities.   
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