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Abstract

In the ΛCDM cosmology, merging is one of the most important physical
processes that drives the formation and evolution of galaxies. In the present
work, we use N-body techniques to investigate some of currently open issues
related to the formation and evolution of galaxies along the Hubble sequence
(see Chapter 1). In particular, we address (i) the role of dissipation-less
merging on the scaling relations and internal color gradients of early-type
galaxies, by modeling these systems with two-component Sérsic models; (ii)
the formation and survival of cold disks in the merging of late-type gas-rich
systems, and (iii) the different merging history of galaxy types through cos-
mological simulations.
We present new spherical, isotropic, non rotating, two-component (dark +
stellar matter) models of early-type galaxies (see Chapter 2). In order to
realistically describe the observed light profile of early-type systems and the
shape of the mass profile of galaxy dark matter haloes predicted by recent nu-
merical simulation results, both components of these models are described by
a deprojected Sérsic law. We perform a detailed analysis of structural prop-
erties and distribution function of these models, proving that they represent
physically admissible and stable systems. The free parameters of the models
are derived from observational properties of early-type galaxies. We perform
discrete realizations of the two-component Sérsic models, analyzing in detail
how to derive an optimal softening length for the gravitational potential of
these discrete systems. The models are then used to simulate dry mergers of
early-type galaxy systems, by means of the N-body simulation code Gadget-2
(Springel 2005, see Chapter 3). The mergers are performed with progenitors
spanning a wide range of galaxy luminosities and with a variety of initial
orbital parameters. We find that dissipation-less merging preserves the Fun-
damental Plane relation of early-type galaxies, in agreement with previous
works. However, in contrast to previous findings, we find that dissipation-
less merging also moves galaxies along other observed correlations, such as
the Kormendy, the Faber-Jackson, and the luminosity–size relations. Hence,
we conclude that all the above correlations are preserved after dissipation-
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less encounters of early-type galaxies. For the first time, we are also able
to perform a detailed analysis of how dissipationless merging affects internal
stellar population gradients of ETGs. We find that the metallicity profiles,
initially assigned to the merging progenitors, can be significantly flattened
after the encounters. The amount of flattening is larger for low mass-ratio
mergers (down to a minor-merger ratio of 1:4), and also becomes larger as
the mass of the progenitors decreases. Remarkably, this allows the existence
of shallow stellar population gradients in ETGs to be explained as a result
of galaxy-galaxy merging.
The second issue we have addressed is the possibility of rebuilding late-type
systems starting from merging of disk galaxies. Recent pioneering works
have shown that, in merger simulations with a significant stellar feedback,
even a major merger can produce a disk-dominated remnant. These works
show that a combination of strong stellar feedback (in very peculiar condi-
tions) and a large gas content are essential ingredients to the survival of disks
after a merging process. However, merger remnants result to have a large
bulge component, which can likely describe only early spiral galaxy types. In
contrast, our simulations show that disk formation through merging of gas
rich systems might be an important ingredient of galaxy formation theories
in more general conditions. Using realistic galaxy models (M33-like) whose
main novelty is that of having a hot gaseous halo component (in addition
to cold gas in the disk), we performed a set of hydrodynamical merger sim-
ulations. We show that mergers between these progenitors, whose baryonic
component mainly consists of gas, produce late-type galaxies rather than
elliptical/S0 systems. We interpret this result by the fact that gas cooling
from the halo has a crucial role in producing the disk-dominated remnants.
In fact, we find that gas particles in the halo have a temperature very close
to the peak of the gas cooling function. Hence, the hot gas cools very rapidly
after merging, acquiring angular momentum from the orbit, and settles on
the final disk.
Finally, we have studied the formation and evolution of different galaxy types,
with the main focus of studying the properties of S0 galaxies, in N-body cos-
mological simulations. From a large cosmological simulation, we have selected
a cluster of galaxies with size and velocity dispersion similar to the Virgo clus-
ter, developing an original scheme to identify elliptical, S0, and spiral galaxy
candidates. With this scheme, we have derived the morphology-radius re-
lation and the velocity distribution of galaxies in the simulated cluster at
redshift z = 0, and compared them to observational results. The first results
presented in this work show a relatively good match of the simulated and
observed morphology-radius relation, but unfortunately, we also find that
our simulations suffers of the low resolution problem. The number of sub-
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structures that we included in the analysis is lower than that expected from
the total abundance of Virgo cluster members. As a future work, we plan
to re-do the analysis on different simulated clusters with improved mass and
spatial resolution.
Conclusions for each part of the present work are reported at the end of each
chapter of the thesis.





Chapter 1

Introduction

In the Λ–cold dark matter (ΛCDM) cosmological model, galaxy merging is
an essential and inescapable process for the formation and evolution of galax-
ies. In this Chapter, we highlight some of the most currently debated issues
arising from the comparison of model predictions to the observational pic-
ture. We start by presenting an overview of the ΛCDM cosmology (Sec. 1.1),
and its prescriptions for the formation of both disk and spheroidal galax-
ies (Secs. 1.1.1 and 1.1.2, respectively). In particular, we discuss to what
extent the model is able to reproduce the observed properties of galaxies.
In Sec. 1.2, we summarize the basic physics of gravitational encounters and
galaxy-galaxy merging. Since in the present work we address the complex
topics of galaxy interactions by making extensive usage of numerical simu-
lation codes, in Sec. 1.3 we shortly describe the state of the art of modern
computational N-body and hydrodynamical techniques. Sec. 1.4 describes
the simulation codes adopted in this work.

1.1 The hierarchical scenario of structure’s for-
mation

In a hierarchical theory of structure formation, systems like galaxies,
groups and clusters of galaxies form through the continuous aggregation of
non-linear objects into larger and larger units. An analytic theory for the
growing of structures in a hierarchical universe was first presented by Press
and Schechter (1974). Structures were assumed to grow up from random
gaussian density perturbations, with non-linear clumps being identified as
over-densities in the linear primordial density field. Press and Schechter
(1974) argued that, if an over-density exceeds a given density threshold, δc,
when smoothed with a top-hat filter of radius R, then the mass inside R

1



2 CHAPTER 1. INTRODUCTION

would be incorporated into a non-linear object of mass M = (4/3)πρR3 at
later time, where ρ is the mean density of the universe at the time of col-
lapse. For gaussian initial conditions, the probability that a given volume of
the universe becomes a non-linear clump can be directly determined from the
power spectrum of linear density fluctuations. Press and Schechter (1974)
were able to derive the multiplicity function (also known as unconditional
mass function) of non-linear objects as a function of redshift, i.e. the num-
ber of objects per unit volume in a given mass range of M to M + dM at
a given redshift z. A development of the Press-Schechter (PS) theory was
done by Bower (1991), who derived an analytic expression for the conditional
probability that material in an object of mass M1 at redshift z1 would end
up in an object of mass M0 at redshift z0 (with z1 > z0). In the PS theory,
dark matter haloes form from the peaks of the underlying dark matter dis-
tribution, with the formation of a given halo being independent of that of
other more distant haloes. In other words, the PS theory assumes that dark
matter haloes are biased tracers of the underlying dark matter distribution.
Starting from this assumption, Sheth and Tormen (1999) presented a simple
model to provide a relation between the abundance of dark matter haloes and
their spatial distribution on large scales. Their model shows that knowledge
of the unconditional mass function provides by itself an accurate estimate of
the large-scale bias factor.
The PS formalism has now become a powerful tool for investigating the
evolution of galaxies, groups and clusters in models of large-scale structure
formation, allowing a direct comparison of theory and observations to be
made for several fundamental problems of modern cosmology. We report
here just a few examples. Using the PS theory, Narayan and White (1988)
calculated the abundance of gravitational lenses as a function of redshift in
a biased cold dark matter (CDM) universe, while Cole and Kaiser (1988)
computed the Sunyaev-Zel’dovich fluctuations in the CDM cosmology. In
White et al. (1993), the PS formula was used to infer the amplitude of the
initial density fluctuations from the observed abundance of rich clusters of
galaxies. Mo et al. (1996) showed how to constrain both the cosmic density
parameter, Ω0, and the amplitude of cosmic mass fluctuations, σ8

1, from the
correlation function determined by the cluster abundance and the spectrum
of linear density fluctuations. By using an extension of the PS formalism,
Mo and White (1996) developed an analytic model for the gravitational clus-
tering of dark matter haloes, to understand how their spatial distribution is
biased relative to that of the halo mass. Mathiesen and Evrard (1998) have
examined the likelihoods of different cosmological models and cluster evolu-

1σ8 is the root mean square of mass fluctuations on a scale of 8h−1Mpc.
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tionary histories by comparing semi–analytical predictions of X-ray cluster
number counts with the observational data from ROSAT satellite. Cluster
abundance is modeled as a function of redshift by using the PS formula. Susa
et al. (1994) applied the PS formalism to obtain the probability distribution
function for the mass and angular momentum of over-density regions on the
protogalactic scale, to investigate the formation of massive black holes at red-
shift z � 10. All these studies show that the PS formalism provides a good
framework to describe the large-scale distribution of dark matter haloes, by
considering merely gravitational processes.

However, since uncondensed gas is present in both clusters of galaxies and
individual galaxies, gas dissipation must have likely played an important
role in structure formation. The observed sizes and luminosity functions
of galaxies can be only explained by introducing gas-dynamical dissipative
processes in a purely gravitational clustering scheme. Semi–analytical models
of galaxy formation include a simplified physical treatment of gas cooling, star
formation, supernova feedback and galaxy merging within the framework of a
CDM-like initial power spectrum and the growth and collapse of fluctuations
through gravitational instability. A statistical approach is used to follow
individual objects and to investigate the scatter in their observed quantities.
In this way, semi–analytical models allow one to explore the large parameter
space of the unknowns associated to star formation rate, feedback efficiencies,
initial mass function, metallicity yield and dust extinction. The first fully
semi–analytical model of galaxy formation in a hierarchical universe was
developed by White and Rees (1978), who derived the abundance of collapsed
dark matter haloes at different redshifts. Galaxies were assumed to form by
the cooling and fragmentation of residual gas within the potential well of dark
matter haloes. All the gas able to cool in less than one halo dynamical time
was turned into stars, with star formation efficiency being regulated by the
energy injection from supernova explosion. After one dynamical time, the
haloes were assumed to merge into the next level of the hierarchy while the
galaxies were assumed to survive intact. All stellar populations were assigned
the same mass-to-light ratio. With these quite simple assumptions, White
& Rees were able to derive a galaxy luminosity function consistent with
the observed one. This model was further developed by White and Frenk
(1991) in the case of cold dark matter (CDM) cosmologies. White & Frenk
incorporated the extended PS theory derived by Bower (1991), that allows
a more appropriate statistical treatment of halo merging. The treatment
of gas cooling and star formation was also improved by including a more
realistic density structure of dark matter haloes and the cooling flows within
them in the equation of the hydrostatic equilibrium of the gas. Feedback and
chemical enrichment were included in a consistent way to model the effect of
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supernova explosions on the halo gas, and the stellar population models of
Bruzual A. (1983) were used to derive luminosities and colors of galaxies.
A semi–analytical model, very similar to that of White & Rees, was presented
by Cole (1991), who emphasized the critical role played by feedback processes
to predict a galaxy luminosity function consistent with the observations.
An approach to galaxy formation in a CDM universe, similar in spirit but
different in many details to that of White & Frenk, was also discussed by
Lacey and Silk (1991) and Lacey and Cole (1993). Instead of adopting the
Press-Schechter formalism, the authors used the statistical properties of the
peaks of the initial linear density field to construct a model of halo’s formation
and merging. They also assumed stars to form primarily as a consequence of
the response of neighboring systems to tidal forces, rather than from purely
internal galaxy processes.
Semi–analytic methods are now able to reproduce quite well the distribution
of galaxy properties and their correlations. For instance, models produce
luminosity functions for galaxies that are similar to the observed luminosity
function. In addition, galaxy properties such as luminosity, circular velocity,
metallicity and colors are shown to be in good agreement with the observed
ones (White and Frenk 1991). However, there are several problems still
affecting all models of galaxy formation. For instance, models predict a faint-
end slope of the cluster luminosity function considerably steeper than that
found in most observational studies (e.g., Loveday et al. 1992). This steep
slope can be overcome by invoking some mechanism to inhibit the formation
of dwarf galaxies, though an unlikely strong suppression seems to be required
to solve the problem. A second fundamental problem is to produce galaxies
that resemble bright ellipticals. It is intrinsic to the hierarchical clustering
scenario that massive, hence more luminous, objects form at later epochs.
Thus, a simple expectation would be that more massive systems have younger
stellar populations and bluer colors. On the contrary, massive ellipticals are
observed to have red colors and old stellar populations (de Vaucouleurs 1961;
Faber 1977; Burstein et al. 1984; Efstathiou and Gorgas 1985; Thomsen and
Baum 1989; Peletier et al. 1990), implying that some physical process must
be able to invert the expected color-luminosity trend (see Sec. 1.1.2 for a
more extended discussion).

While semianalytical models try to include the complex physics of the gas
component in the PS theory by using relatively simple empirical recipes, in
the last fifteen years more and more efforts have also been made to improve
our knowledge on the formation and evolution of the dark matter haloes
themselves and the baryonic matter within.
The properties of dark matter haloes have been extensively studied by us-
ing N-body simulations of gravitational clustering. Among many impor-
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tant results, numerical simulations have shown that the average density pro-
file of CDM haloes is tipically described by a universal profile. Dubinski
and Carlberg (1991) described density profiles by a double power–law Hern-
quist (1990) model. This empirical model had an inner logarithmic slope of
−1 and an outer logarithmic slope of −4. It was introduced as an analyti-
cal approximation to the deprojected form of de Vaucouleurs (1948) profile.
Navarro et al. (1997) modified this empirical law, presenting the so-called
Navarro-Frenk-White model (NFW), with an outer logarithmic slope of −3
rather than −4. Moore et al. (1999) argued that an inner logarithmic slope
of −1.4 or −1.5 might also be more appropriate. For a given mass, the halo
density profiles derived from N-body simulations show a scatter around all
these models. This scatter depends on the halo mass accretion history, in the
sense that haloes assembled earlier are more concentrated (Avila-Reese et al.
1998; Wechsler et al. 2002). Another important result of N-body simulations
on the properties of dark matter halos is that the angular momentum distri-
bution of most of CDM haloes seems to be well parameterized by a universal
function. There are two competing mechanisms for the origin of the halo
angular momentum, which are (i) linear tidal torques and (ii) orbital angu-
lar momentum transfer from merging satellites (Peebles 1969; Maller et al.
2002). The global spin parameter, λ, is approximately independent of the
cosmology, of the mass and environment where galaxies reside (e.g., Catelan
and Theuns 1996).
Numerical simulations have also been used to address directly the issue of
galaxy formation, by modeling the evolution of cooling gas gravitationally
coupled to the dark matter component(e.g., Carlberg et al. 1990; Cen and
Ostriker 1992; Katz et al. 1992; Evrard et al. 1994; Jenkins et al. 1997).
Observations show that dynamical processes involving baryons play an im-
portant role in the evolution of astrophysical systems at all length scales.
In N-body simulations, stars are usually well-described as a collection of
self-gravitating bodies, while the interstellar medium is described by a fluid,
largely consisting of gas, that is continually depleted and replenished by the
birth and death of stars. A detailed modeling of the physics of baryons within
the collapsing and merging dark matter haloes is highly complex. In some
cases, instead of the radiative cooling expected in the White & Frenk model,
we know that turbulent dissipation dominates in a multi-phase regime, whose
description in N-body codes is an extremely hard task. The process is made
even more complex when dealing with gravitational fragmentation and con-
sequent transformation of gas into stars (Hernquist and Katz 1989; Evrard
et al. 1994; Springel and Hernquist 2002; Wadsley et al. 2004). Stars inject
energy and momentum to the gas component producing a feedback process.
The feedback regulates the star formation itself. The self-regulation may be
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either at the level of the disk inter-stellar medium (hereafter ISM), where,
according to the nature of the feedback, a variety of regimes appear, rang-
ing from stationary to bursting star formation (Firmani and Tutukov 1994),
or at the level of the whole intra-halo medium, giving rise to a huge hot
gas halo around the galaxy (Benson et al. 2000). Star formation also un-
dergoes a bursting regime (Firmani and Tutukov 1994), where feedback is
very efficient, during the major merger of dark matter haloes. This phase
can strongly change the galaxy morphological type. For example, collisions
between galaxies that reside in the same dark matter halo can produce dy-
namically hot spheroids (Toomre 1974; Schweizer 1996; Barnes 1988; Hern-
quist 1990; Hernquist and Spergel 1992) in the case of colliding gas rich disk
systems. Models including dissipation show that gas can lose angular mo-
mentum, the subsequent inflow of gas into the centers of the merger remnants
produces a slowly rotating spheroidal stellar component, leaving objects that
have essentially no disk component.
In the following sections, we explore in more detail the current picture for
the formation of galaxies with different morphological types, underlying some
open issues of N-body simulations.

1.1.1 Disks in the ΛCDM cosmology

The conventional theory for the origin of disk galaxies in a ΛCDM cos-
mology involves the dissipational collapse of gas inside relaxed dark matter
haloes formed through hierarchical clustering (White and Rees 1978; Blu-
menthal et al. 1984). It is common to assume that the gas in a halo is
shock-heated during collapse to the virial temperature. The gas then cools
radiatively and falls in a free-fall time, tff , to the center. Since the semi-
nal work by White and Frenk (1991), the infall rate of gas available for the
galaxy formation is assumed to be driven either by tff , if tff > tcool, where
tcool is the cooling time, or by the cooling time itself if tff < tcool. The for-
mer case applies to haloes of masses smaller than approximately 5×1011M�,
while the latter case applies to more massive haloes. The gas, originally
distributed in mass and angular momentum as the dark matter halo, cools
and collapses until it reaches centrifugal balance in a disk. Therefore, as-
suming angular momentum conservation, the radial mass distribution of the
disk can be calculated by equating its specific angular momentum to the
angular momentum of its final circular orbit in centrifugal equilibrium (Fall
and Efstathiou 1980). The surface density profile of the disks formed within
ΛCDM haloes is nearly exponential, which is a direct consequence of the
angular momentum distribution acquired by the haloes by tidal torques and
mergers. However, one has also to note that the profiles are expected to be
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slightly more concentrated in the center with respect to the exponential law
(Firmani and Avila-Reese 2000; Bullock et al. 2001). The cusp in the central
disk could produce either a photometrical bulge (van den Bosch 2001) or a
real kinematical bulge because of disk gravitational instability enhanced by
the higher central surface density 2 (Avila-Reese and Firmani 2000). In a few
cases (high angular momentum, low-concentrated haloes), purely exponen-
tial disks can be formed.
The main success of this disk formation model is that the rotation curve of
disks within collapsed ΛCDM haloes are in general consistent with observa-
tions (Mo et al. 1998; Firmani and Avila-Reese 2000; Zavala et al. 2003) and
also reproduce the infrared Tully-Fischer relation and its scatter (Firmani and
Avila-Reese 2003). However, there are important unsolved issues. For ex-
ample, the internal angular momentum (hereafter AM) distribution inferred
from observations seems to be in disagreement with the ΛCDM halo AM dis-
tribution (van den Bosch et al. 2001) and the shape of the halo profile inferred
from the observed rotation curves seems not to match that of the ΛCMD
haloes (Persic et al. 1996) (tipically a Navarro-Frank-White profile, Navarro
et al. 1997). Other studies only partially confirm these claims (Verheijen
1997; Zavala et al. 2003; Catinella et al. 2006). In N-body+hydrodynamical
simulations of disk galaxy formation a further difficulty exists, usually known
as the ’angular momentum catastrophe’. Simulated disks become too con-
centrated in the center, apparently due to AM transfer from baryons to dark
matter during the gas collapse.
Toomre (1977) was among the first ones to recognize that mergers can drive
the evolution of galaxy types by transforming disks into objects that resem-
ble ellipticals. This idea was examined numerically by Barnes (1988, 1992);
Hernquist and Spergel (1992) and Hernquist (1993a) in the limit where dis-
sipational effects arising from gas dynamics are negligible, and it was shown
that mergers involving equal-mass galaxies (i.e. major mergers) produce
remnants with properties similar to those of ellipticals. Simulations includ-
ing gas dynamics and simple prescriptions for star formation and feedback
have further demonstrated that major mergers can drive gas to the center
of the remnant (Barnes and Hernquist 1996), triggering starbursts with in-
tensities similar to those observed in ultraluminous infrared galaxies (Mihos
and Hernquist 1996).
While major mergers are the most dramatic example of galaxy collisions,
minor mergers between galaxies of different masses are probably at least
an order of magnitude more frequent (Ostriker and Tremaine 1975; Toomre
1981). Simulations have shown that dissipationless minor mergers between

2This mechanism is known as bulge secular formation
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spiral galaxies and smaller companions can cause significant perturbations
to disks through dynamical heating (Quinn et al. 1993; Velazquez and White
1999). Even with large mass ratios (10 : 1), if disks contain a small gas
fraction (∼ 10%) the damage can be severe because disks of spirals are dy-
namically cold (Hernquist and Mihos 1995). When it is included in the
models stellar populations and star formation histories (e.g., Bender et al.
1989; Trager et al. 2000; McDermid et al. 2006), the kinematic and structural
analysis of merger remnants (Schweizer and Seitzer 2007) demonstrate that
most of these disks must somehow survive the merger or form very quickly
thereafter from cold gas already in the disks before the merging and the hot
gas in the galaxy halo. Therefore, although a large portion of a stellar disk
has to be destroyed in a major merger, some fraction of the disk must survive,
and the value of this fraction is a critical component for predicting many of
the photometric and kinematic properties of disks as well as bulge dominated
and elliptical galaxies. Moreover, minor mergers, at least those with mass
ratio larger than 10 : 1 (below this value, the difference between merger and
accretion becomes more and more blurred), are not generally believed to
entirely destroy disks. In the ΛCDM cosmology, and as expected from the
observed fractions of galaxy satellites, it is unlikely than any disk has sur-
vived ∼ 5−10 Gyr without experiencing a merger with mass ratio larger than
10 : 1. So the question is: which kind of mergers destroy the disks and why?
Simulations (Quinn et al. 1993; Hernquist and Mihos 1995; Velazquez and
White 1999; Naab and Burkert 2003; Younger and Bryan 2007) and analytic
arguments (Ostriker and Tremaine 1975; Toth and Ostriker 1992) suggest
that gas-poor minor mergers can convert a considerable fraction of a stellar
disk into bulge and cause significant perturbation (puffing up via dynamical
heating) to the disk. Given the success of the ΛCDM model on large scales,
and the increasing observational evidence in favour of the fact that disks do
undergo (and therefore must somehow survive) a large number of mergers, it
is likely that the answer lies in our (still relatively poor) understanding of disk
galaxy formation. This has led to focus on the problem of forming realistic
disks in a cosmological context, with a long debate on the missing elements
necessary to produce disks in simulations. Various groups have argued that
self-consistent treatment of gas physics and star formation along with im-
plementation of different kinds of feedback is necessary, along with greatly
improved numerical resolution (Weil et al. 1998; Sommer-Larsen et al. 2003;
Governato et al. 2007; Scannapieco et al. 2008), that would enable disks to
survive their destruction through violent mergers, without completely loos-
ing angular momentum and transforming into systems that are too compact
and have too much bulge mass (when compared to that of observed disks)
at redshift z = 0. It is well known (e.g., Barnes and Hernquist 1996) that
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(also without any feedback mechanism) some fraction of gas can survive even
in a major merger of two disks and form a new disk in the remnant. How-
ever, early studies of this mechanism were restricted to cases with low gas
content (less than 10% in the progenitor disks), most of which was rapidly
consumed in star formation, yielding small remnant disks within strongly
bulge dominated remnants. In two seminal works, Springel and Hernquist
(2005) and Robertson et al. (2006) showed that, in merger simulations with
significant stellar feedback that allows the stable evolution of extremely gas
rich disks (gas fraction of about one), even a major merger can produce a
disk-dominated remnant. This has also been confirmed in the framework of
cosmological simulations (Governato et al. 2007). Together with other recent
investigations (Hopkins et al. 2008b), these works have led to the growing
consensus that a combination of strong stellar feedback and large gas content
is essential to the survival of disk galaxies.

1.1.2 Spheroids in ΛCDM cosmology

In the ΛCDM scenario, spheroids are expected to basically form as the
result of major mergers of disks. Simulations show that these events lead
to the destruction of disks when dissipative effects are neglected (Toth and
Ostriker 1992; Quinn et al. 1993; Walker et al. 1996; Velazquez and White
1999). Models of galaxy collisions, including the effect of dissipation (Hern-
quist and Katz 1989; Barnes and Hernquist 1996), show that during merging
events gas looses angular momentum because of gravitational torques. Con-
sidering an isothermal and relatively cold ISM, with a small fraction of gas
in the model galaxies (∼ 10% of the total amount of baryons), Mihos and
Hernquist (1996) showed that after merging the inflow of gas into the center
of the merger remnant and the subsequent increase of gas density produce a
roughly spherical stellar distribution, through a luminous star-burst.
However, both observations and theory point towards a more complex sce-
nario. From the observational viewpoint, the regular appearance, the domi-
nant old stellar populations, the enhancement of α-elements and the dynam-
ically hot structure of ellipticals seem also to be consistent with a monolithic
collapse picture, whereby spheroids formed by an early (z > 2) single violent
event, with a strong burst of star formation, followed by passive evolution
of their stellar populations (Larson 1974a,b; Carlberg 1984). In order to
distinguish between the monolithic and hierarchical scenario, it is crucial to
determine the formation epoch of spheroids. There are at least two ways of
defining such epoch, (1) as the time when most of the stars formed and (2)
as the epoch when the stellar component acquired its dynamical properties
through violent or secular processes. For the monolithic collapse mechanism



10 CHAPTER 1. INTRODUCTION

both epochs coincide (Larson 1974b). In the hierarchical scenario, if major
mergers occur at high redshifts, when disks are mostly gaseous, then the for-
mation process of the spheroid is close to that of the monolithic collapse. On
the other hand, if major mergers occur at later epochs, when galaxies have
already transformed a large fraction of their gas into stars, then spheroids
assemble by the "classical" dissipationless collision (Avila-Reese 2006).
Besides that, stellar disks may develop spheroids in their centers (bulges) by
secular evolution mechanisms, both intrinsic or enhanced by minor mergers
and interactions. This channel of spheroid formation should work for late-
type galaxies and it is supported by a wealth of observational results (Kor-
mendy and Kennicutt 2004). The picture is even more complex, as galaxy
morphology may be continuously changing, depending on the mass accretion
history (smooth accretion and violent mergers) and the environment where
galaxies reside. A spheroidal galaxy, that formed earlier in the past, should
continually accrete gas, with a new younger disk growing around the galaxy
itself. Hence, a naive expectation of the ΛCDM scenario would be that mas-
sive elliptical galaxies should assemble at later times. It is also expected that
disks in galaxies with small bulge-to-disk ratios should be on average redder
than those of galaxies with large bulge-to-disk ratios, with this expectation
being not confirmed from observations (Avila-Reese 2006).
Though still matter of debate, a more complex picture of spheroidal for-
mation emerged in the past few years, that seems to fit well reconcile ob-
servations with the ΛCDM model (e.g., Silk and Rees 1998; Firmani and
Avila-Reese 2003; De Lucia et al. 2006). The basic idea is that massive ellip-
ticals formed earlier (z ∼ 3) and in a short timescale by the merging of gas-
rich disks in rare high-peak, clustered regions of the Universe. The complex
physics of the merging implies (i) an ultraluminous burst of star-formation
obscured by dust (cool ULIRG phase) and the establishment of a spheroidal
structure, (ii) gas collapse to the center, which favors the growth of preex-
isting massive black holes through an Eddington or even super-Eddington
regime (warm ULIRG phase), (iii) switching on of the AGN activity associ-
ated to the supermassive black hole above a critical mass, reverting the gas
inflow to a gas outflow (QSO phase), (iv) switching off of the AGN activity
leaving a giant stellar spheroid with a supermassive black hole in the center
and a hot gas corona around (passive evolution phase). In other terms, the
energy injected from AGN in the form of radio jets provides the feedback
necessary to prevent any further cooling flow into the spheroid. This picture
solves the problem of disk formation around elliptical galaxies in the field,
as well as the overly extended bright end in the galaxy luminosity function
predicted by semianalytical models(Firmani and Avila-Reese 2003; De Lucia
et al. 2006). Massive elliptical galaxies are already in place at high redshifts,
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while less massive galaxies (collapsing from more common density peaks) as-
sembled later. This model is known as the downsizing or anti-hierarchical
galaxy formation picture. Despite of its name, this picture fits well within
the hierarchical ΛCDM framework.
Recent observations have shown that an important channel for the formation
of massive elliptical is that of mergers between galaxies which are already on
the red sequence (van Dokkum et al. 1999; Bell et al. 2006; van Dokkum 2005;
Tran et al. 2005). These so-called dry mergers are now thought to be the
dominant mode of growth of massive (> severalM∗) galaxies at 0 < z < 1,
building up the high-mass end of the mass function but not changing the over-
all mass density of ellipticals (see Chapter 2, Sec. 2.1 for a more extended
discussion).

1.2 Gravitational encounters

Since this thesis work is aimed at analyzing merging precesses of late-
and early-type galaxies, we provide here a short summary of the basic mech-
anisms governing the physics of mergers. Gravitational interactions among
galaxies are by far more common in the Universe than one may think. Far
from being isolated systems, galaxies form and evolve by interacting with
both their environment and neighboring systems. Gravitational interactions
can produce distortions in the disk component of galaxies, giving rise to spi-
ral arms, tidal tails and producing bursts of star formation. The morphology
of the galaxy can thus be heavily perturbed, even if the tides are not locally
catastrophic. For instance, our Galaxy is interacting with the Magellanic
Clouds and it is thought that this interaction was at its peak of intensity
about one billion years ago.
During an encounter, the kinetic energy associated with the relative motion
of galaxies diminishes, because the internal energies increase. If the initial
relative speed of the interacting systems is larger than the escape velocity, vf ,
the galaxies reach the point of closest approach with sufficient orbital energy
to escape to infinity, otherwise they merge. If the initial speed is much larger
than vf the encounter alters both the orbits and the internal structure of the
galaxies only slightly.
Apart from some specific systems (see (Sridhar and Nityananda 1990)), ana-
lytic description of encounters among galaxies are possible only in two cases,
where perturbation theory can be applied. One of such cases arises in fast en-
counters (impulse approximation), another one is that of encounters among
galaxies of very different masses (dynamical friction approximation). On the
contrary, when two galaxies of similar mass collide, at a speed comparable
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with the internal velocities of the two systems (slow encounters), the only
effective way of analyzing in detail the interaction is that of simulating the
encounter numerically, using a suitable N-body code. Numerical simulations
show that these encounters often lead to the merging of the two systems. In
the next two sections, we shortly describe the physical mechanisms involved
in the merging process, considering the cases where progenitors are either
spheroidal or disk systems.

1.2.1 Spherical Systems

The simplest N-body model of galaxy merging is the encounter of a pair
of spherical systems. In head-on collisions, merging results from the gravi-
tational compression arising when the two galaxies nearly coincide and that
causes a slightly greater axial force to be felt between them (Toomre 1974;
White 1979; Miller and Smith 1980) . By stirring up the material in each
galaxy at the expense of their orbital energy, this mechanism determines the
rapid merger of even the most centrally concentrated systems in only a few
passages. In off-axis collisions, the collective response is dominated by those
particles whose orbits lie along the same direction as the passage of two galax-
ies (White 1978, 1979; Roos and Norman 1979). Such particles are promoted
onto less-bound orbits, receiving both energy and angular momentum from
the relative motion of the two galaxies, and producing broad tail-like struc-
tures. The merging is found to depend strongly on the rotational properties
of the galaxies involved. It is more rapid if their spin vectors are aligned with
that of their orbit, and it is very slow if this alignment is reversed (White
1979).
Fluctuating gravitational fields during the merging process tend to transfer
binding energy between different components of the system, but such fluctu-
ations damp down before a complete redistribution takes place. Therefore,
the centers and outskirts of merger remnants tend to remain dominated by
particles from the respective centers and outskirts of the interacting galaxies.
After a merger, the remnant relaxes progressively outward on a time-scale
comparable to the local crossing time. The amount of material which escapes
during the merger depends on the structure of the interacting galaxies as well
as the parameters of their encounter. In general, the escaping stuff comes
from the outskirts of the original galaxies. The material which does not
quite escape eventually phase-mixes to form an extended envelope around
the body of the remnant, characterized by an r4 density profile (Jaffe 1987;
White 1987).
Mergers of spherical galaxies produce remnants with fairly simple shapes
and kinematics (White 1983). Head-on encounters result in prolate rem-
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nants with anisotropic velocity dispersions, whereas if the encounter is not
quite head-on, the result is a slowly-tumbling triaxial object.

1.2.2 Disk Systems

Mergers between disk galaxies embedded in a dark matter halo were
presented by Gerhard (1981); Farouki and Shapiro (1982); Negroponte and
White (1983); Barnes (1988, 1992). Moreover, Gerhard (1983); Gerhard and
Fall (1983) and Barnes (1989) discussed models in which several disk/halo
galaxies merge sequentially.
The dynamics of encounters between such galaxies is largely governed by in-
teractions of their extended dark matter haloes. Hence, even passages where
the visible components completely miss each other can lead to rapid orbital
decay. The orbital angular momentum of the two haloes is transferred to
internal degrees of freedom, imparting spin and creating broad tidal tails.
The embedded disks and/or bulges are not much braked by the tidal forces,
instead these components loose orbital angular momentum mostly by inter-
acting with their own surrounding haloes, once the latters have been decel-
erated (Barnes 1992).
As in mergers of spherical systems, the incomplete violent relaxation of
disk/halo models only blurs the original ordering in binding energy; the
tightly-bound components which contained most of the luminosity in the
original galaxies will be found near the center of the merger remnant. Lu-
minous material dominates the central regions of merger remnants because
the dense luminous parts of the infalling galaxies remain largely undisturbed
until they finally encounter each other and merge within a now-common en-
velope of halo material (Barnes 1988).
The shapes and kinematics of the remnants of disk galaxy mergers are much
more complex than those produced by mergers of spherical systems (see
Sec. 1.1.1).

1.3 N-body simulations

Much of our present understanding of galactic dynamics has emerged from
numerical models of galaxies and their interactions, which is the main subject
of this thesis work. In the next sections, we thus focus on the computational
modelling of gravity and we decribe the most commonly adopted N-body
techniques.
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1.3.1 Gravity

The dynamics of a system with N gravitationally interacting particles is
completely described from the Newton’s law plus, eventually, the presence of
an external potential field, φext. The force 	Fi, acting on particle i with mass
mi and position 	ri, is:

	Fi = −
∑
j �=i

G
mimj(	ri − 	rj)

|	ri − 	rj|3 − 	∇ · φext(	ri), (1.1)

where G is the gravitational constant. In order to find the position of each
particle, one has to solve a set of non-linear second order ordinary differential
equations relating the acceleration, ∂2	ri/∂t2 = 	Fi/mi, with the position of
all the particles in the system. Once a set of initial conditions is specified
(for example the initial positions 	ri and velocities 	vi for all particles) it exists
a unique solution. It is well known that the solution is analytical only for the
two body problem, while larger N requires numerical integration. However,
special care must be taken to ensure accuracy in the calculation. In fact, the
gravitational force is singular when the distance of two particles approaches 0,
which can lead to estimate arbitrarily large relative velocities. The singularity
may be avoided by introducing a smoothing length in Eq. 1.1 (Aarseth 1963),
that modifies the gravitational interaction at small scales:

	Fi = −
∑
j �=i

Gmimj(	ri − 	rj)

(|	ri − 	rj|2 + ε2)3/2
, (1.2)

where ε > 0 is the softening, or smoothing length, that is a typical dis-
tance below which the gravitational interaction is suppressed. To minimize
errors in the force computation and the global impact of the softening for
distances larger than ε itself, finite size kernels are also adopted, with the
advantage that the smoothed force has continous derivatives (Dehnen 2001).
This strategy effectively suppresses binary formation and strong gravitational
interactions, at the price of slightly altering the dynamics of the system.
N-body simulations demand some computational expense for computing the
force acting on each particle of the system. If we consider a set of N particles,
we have that the Nth particle is acted upon by the remaining (N − 1) parti-
cles. Following this direct computation scheme, the amount of computational
time required for force estimation is of the order N2 − N , i.e. O(N2). Early
N-body works used up to 100 particles (Aarseth 1963) and they adopted a
direct summation of all the forces exerted on each particle from all the re-
maining bodies. This direct O(N2) approach is impractical for large numbers
of bodies. Hence, this technique allows only a rather limited number of par-
ticles (� 104) to be described. Different strategies can be adopted in order
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to achieve a compromise between numerical resources and number of parti-
cles. Three main prescriptions exist for evaluating the gravitational force:
the particle-mesh (PM), the particle-particle-particle mesh (P3M) and the
tree-code schemes. The PM method has been longly used in electrostatics
and plasma physics. The gravitational potential of the system is built over
a grid starting from the density field and by solving the associated Poisson
equation. Particles do not interact directly with each other but only through
a mean field. The method solves the Poisson equation on the mesh, calcu-
lating the force field from the mesh-defined potential and interpolating the
force on the grid to find the force exerted on each particle. The Poisson equa-
tion is typically solved using a Fast Fourier Transform algorithm. The main
advantage of the PM methods is the improved computation speed, which is
of the order O(N + NglogNg) where Ng is the number of points on the grid.
The main drawback is that the PM approach does not build up an adaptive
grid, and thus it is not suitable for applications with highly inhomogeneous
density distributions and/or very violent dynamical processes.
The P3M method solves this major problem, by coupling a mean field de-
scription on large scales with a direct, softened, treatment of the gravitational
interactions on distances of the order of or below a few grid spacing. The
main drawback of the P3M method is that in presence of strong clustering
a large number of particles will interact directly, slowing down significantly
the computation to O(N2). This problem can be resolved by using adaptive
meshes, so that the spatial resolution is refined in regions of high density.
Adaptive P3M codes have a computational cost which scales as O(Nlog(N)).
The tree code method (Barnes and Hut 1986) provides a fast, general integra-
tor for collisionless systems, when close encounters can be neglected and the
force contribution from very distant particles does not have to be computed
with high accuracy. Small scale, strong interactions are typically softened,
while the potentials due to distant groups of particles are approximated by
multipole expansions about the group centers of mass. The resulting com-
putation time scales as O(Nlog(N)) but the approximations introduce small
force errors. Typical implementations of the tree code expand the poten-
tials to quadrupole order and construct a tree hierarchy of particles using a
recursive binary splitting algorithm (see Sec. 1.4.1 for details).

1.3.2 Hydrodynamics and SPH

Baryonic matter (stars and gas) in astrophysical systems experiences si-
multaneously high-energy processes and gravity. Smoothed particle hydro-
dynamics (SPH) was just invented to simulate this kind of phenomena in
astrophysics (Lucy 1977; Gingold and Monaghan 1977). Generally speaking,
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SPH is used to model hydrodynamic flows, including possible effects of grav-
ity, by incorporating other astrophysical processes which may be important,
such as radiative transfer and magnetic fields.
The SPH method works by dividing the fluid into a set of discrete elements,
referred to as particles. These particles have a spatial distance (known as
the smoothing length, typically represented in equations by the symbol h),
over which their properties are smoothed by a kernel function. This means
that any physical quantity of any particle can be obtained by summing the
relevant properties of all the particles which lie within the range of the kernel.
The contributions of each particle to a property are weighted according to
their distance from the particle of interest, and their density. Mathemati-
cally, this is governed by the kernel function W . Kernel functions commonly
used include the Gaussian function and the cubic spline. The latter function
is exactly zero for particles further away than two smoothing lengths (unlike
the Gaussian, where there is a small contribution at any finite distance away).
This has the advantage of saving computational effort by not including the
relatively minor contributions from distant particles. Unlike the particle in
cell method, SPH does not need a grid to calculate spatial derivatives. The
equation for any quantity f at any point r is given by the equation

f(r) =
∑

j

mj
fj

ρj

W (|r − rj|, h) , (1.3)

where mj is the mass of particle j, fj is the value of the quantity f for particle
j, ρj is the density associated with particle j, r denotes position and W is
the kernel function mentioned above. For example, the density of particle i
can be expressed as:

ρi = ρ(ri) =
∑

j

mj
ρj

ρj

W (|ri − rj|, h) =
∑

j

mjW (ri − rj, h) , (1.4)

where the summation over j includes all particles in the simulation. Similarly,
the spatial derivative of a quantity can be obtained by using integration
by parts to shift the ∇ operator from the physical quantity to the kernel
function,

∇f(r) =
∑

j

mj
fj

ρj

∇W (|r − rj|, h) . (1.5)

By assigning each particle its own smoothing length and allowing it to vary
with time, the resolution of a simulation automatically adapts itself depend-
ing on local conditions of the fluid. For example, in a very dense region
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where many particles are close together the smoothing length can be made
relatively short, yielding high spatial resolution. Conversely, in low-density
regions individual particles are far apart and the resolution is low, optimizing
the computation for those regions.
Often in astrophysics, one wishes to model self-gravity in addition to pure
hydrodynamics. The particle-based nature of SPH makes it an ideal tool
to be combined with a particle-based gravity solver, such as, for instance,
PM, P3M, and Tree-Code. Hybrid codes, combining SPH and particle-based
gravity solver are also known as TreeSPH codes.

1.4 The N-body codes used in the present work

In this thesis work, collisionless and hydrodynamical N-body simulations
are performed, by using two simulation codes, GADGET-2 and GASOLINE.
Both these code are TreeSPH. In this section, we start by providing some de-
tails about Tree-codes (already mentioned in Sec. 1.3.1) and then we discuss
the key characteristics of GADGET-2 and GASOLINE.

1.4.1 The tree-code

In a tree-code force computation is based on a hierarchical subdivision of
space in cubic cells (Barnes and Hut 1986). The tree is obtained by starting
from a root cell (a cube containing all the N particles), and subdividing it in
n cubic sub-cells with half the size of the parent cell. Empty cells are excluded
from the tree. Cells with more than one particle are recursively divided in n
sub-cells. Cells with only one particle are the leaves of the tree. The gravita-
tional field at a given point is computed considering the exact contribution of
the closest leaves by direct summation, and the approximated contribution
of sufficiently distant cells by using multipole expansion. As a result of this
tree technique, the cost of force computation scales as O(NlogN), resulting
remarkably less time consuming than O(N2) algorithms based on direct sum-
mation.
The force between individual particles is smoothed by introducing the stan-
dard Plummer softening, i.e., the softened potential produced at a distance
r by a particle of mass m:

Φ(r) = −Gm

ε
gpl

(r

ε

)
, (1.6)
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where m is the particle mass, r is the mutual distance between the two
particles, and the smoothing parameter ε is the softening length, and

gpl(x) =
1

(1 + x2)1/2
(1.7)

is the Plummer softening kernel.
The concept of sufficiently distant cells, introduced to choose between an
approximated and exact force computation, is quantified by adopting an
opening criterion that depends on a single dimensionless parameter, θ, the
so-called opening angle. Let us consider the interaction between a cell of size
l and a particle at a distance D from the center of mass of the cell. If:

l

D
< θ (1.8)

the force exerted by the cell on the particle is calculated with the multipole
expansion. Otherwise, the cell is opened and is split in its n sub-cells, which
are recursively analyzed with the opening criterion.

1.4.2 GADGET

GADGET-2 Springel (2005) is a simulation code capable of following
a collisionless fluid computing gravitational interactions with a hierarchical
multipole expansion, and an ideal gas by means of smoothed particle hydro-
dynamics (SPH) on massively parallel computers. GADGET-2 is a TreeSPH
code (Barnes and Hut 1986) where only short-range forces are computed
with the tree method while long-range forces are determined with Fourier
techniques. In the present work (see Chapter 3), we use GADGET-2 only
for dissipationless simulations of interacting galaxy systems with no gas. We
mention here only the characteristics of the code which are relevant for the
our applications.
The Newtonian gravity is corrected with a cubic spline softening (see 1.6)
where the smoothing kernel gspl3(x) is given by:

gspl3(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2 16

3
+ 48

5
x4 − 32

5
x5 + 14

5
, (0 ≤ x ≤ 1

2
);

x−1 1
15

- 32
3
x2 + 16x3 - 48

5
x4 + 32

15
x5 + 16

5
, 1

2
≤ x ≤ 1);

x−1, x ≥ 1.

(1.9)

By definition the spline softened potentials are exactly Newtonian for r ≥ h3.
One has also to note that, owing to their different definitions, the spline soft-
ening length, h3, and the Plummer softening length, ε, are not directly com-
parable. A Plummer softening length equivalent to a given spline softening
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h3 can be defined, for example, by imposing that the minimum of the poten-
tial is the same in the two cases. For the cubic spline kernel, this happens
for ε = h3/2.8.
In regards to the multipole order expansion, GADGET-2 uses monopole mo-
ments, since they have several advantages with respect to schemes that carry
the expansions to higher orders. First of all, gravitational trees with mono-
pole moments can be constructed in an extremely memory efficient way.
(Springel 2005).
For what concerns the cell-opening criterion, GADGET-2 usually adopts a
relative opening criterion tuned for the use of monopole moments. In partic-
ular, a node of mass M and extension l at distance r is considered if:

GM

r2
(
l

r
)2 ≤ α|a|, (1.10)

where |a| is the size of the total acceleration obtained in the last time-step,
and α is a tolerance parameter. This criterion tries to limit the absolute
force error introduced in each particle node interaction by comparing a rough
estimate of the truncation error with the size of the total expected force. As a
result, the typical relative force error is kept roughly constant, and if needed,
the opening criterion adjusts to the dynamical state of the simulation to
achieve this goal. The opening angle varies with the distance of the node.
The net result is an opening criterion that typically delivers higher force
accuracy at a given computational cost compared to a purely geometrical
criterion.

1.4.3 GASOLINE

For the hydrodynamical simulations presented in this thesis we used the
code GASOLINE, (Wadsley et al. 2004). GASOLINE, a parallel N-body and
gasdynamics code, is built on PKDGRAV framework (Stadel 2001) and it is
fundamentally a tree code. Stadel (2001) designed PKDGRAV from the start
as a parallel code and departing significantly from the original N-body tree
code designs of Barnes and Hut (1986) by using 4th (hexadecapole) rather
than 2nd (quadrupole) order multipole moments to represent the mass dis-
tribution in cells at each level of the tree. This results in less computational
expensive for the same level of accuracy: better pipelining, smaller interac-
tion lists for each particle and reduced communication demands in parallel.
The current implementation in Gasoline uses reduced moments that require
only n + 1 terms to be stored for the nth moment.
The local gravity tree is built by recursively bisecting the longest axis of each
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cell which keeps the cells axis ratios close to one. At each level the dimen-
sions of the cells are squeezed to just contain the particles. This overcomes
the empty cell problem of un-squeezed spatial bisection trees.
Gasoline calculates the gravitational accelerations using the treewalking pro-
cedure of the Barnes and Hut (1986) algorithm, except that it collects in-
teractions for entire buckets rather than single particles. This amortizes the
cost of tree traversal for a bucket over all its particles. In the tree building
phase, Gasoline assigns to each cell of the tree an opening radius about its
center of mass. This is defined as,

ropen =
2Bmax√

3θ
(1.11)

where Bmax is the maximum distance from a particle in the cell to the cen-
ter of mass of the cell. The opening angle, θ, is a user specified accuracy
parameter which is similar to the traditional θ parameter of the Barnes-Hut
code; notice that decreasing θ in equation 1.11, increases ropen.
As mentioned in section 1.3.2 the basis of the SPH method is the represen-
tation and evolution of smoothly varying fluid quantities whose value is only
known at disordered discrete points in space occupied by particles. Particles
are the fundamental resolution elements comparable to cells in a mesh. The
smoothing operation provides a basis from which to obtain derivatives. Thus,
estimates of density related physical quantities and gradients are generated.
The summation aspect led to SPH being described as a Monte Carlo type
method (with O(1/

√
N) errors) however it was shown by Monaghan (1985)

that the method is more closely related to interpolation theory with errors
O((lnN)d/N), where d is the number of dimensions.
Gasoline uses the kernel-average first suggested by Hernquist and Katz (1989),

Wij =
1

2
(|−→r i −−→r j|/hi) +

1

2
(|−→r i −−→r j|/hj). (1.12)

Gasoline employs a fairly standard implementation of the hydrodynamics
equations of motion for SPH (Monaghan 1992). Density is calculated from a
sum over particle masses mj,

ρi =
n∑

j=1

mjWij. (1.13)

The momentum equation is expressed,

d−→v i

dt
= −

n∑
j=1

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+
∏
ij

)
∇iWij, (1.14)
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where Pj is pressure, −→v i velocity and the artificial viscosity term
∏

ij.
The pressure averaged energy equation conserves energy exactly in the limit
of infinitesimal time steps but may produce negative energies due to the
Pj term if significant local variations in pressure occur. Gasoline employs
the following equation (advocated by Evrard 1988, Benz 1989) which also
conserves energy exactly in each pairwise exchange but is dependent only on
the local particle pressure,

dui

dt
=

Pi

ρ2
i

n∑
j=1

mj
−→v ij · ∇iWij, (1.15)

where ui is the internal energy of particle i, which is equal to 1/(γ − 1)Pi/ρi

for an ideal gas. In this formulation entropy is closely conserved making it
similar to alternative entropy integration approaches such as that proposed
by Springel and Hernquist (2002).
In astrophysical systems the cooling timescale is usually short compared to
dynamical timescales which often results in temperatures that are close to
an equilibrium set by competing heating and cooling processes. In Gasoline
a range of cases including adiabatic (no cooling), isothermal (instant cool-
ing), and implicit energy integration are implemented. Hydrogen and Helium
cooling processes have been incorporated. Ionization fractions are calculated
assuming equilibrium for efficiency. Gasoline optionally adds heating due to
feedback from star formation, an uniform UV background or using user de-
fined functions. The star formation algorithm is similar to the one proposed
in (Katz et al. 1992) and extended in (Katz et al. 1996). They apply criteria
to determine which gas particles are eligible to form stars. They then deter-
mine which gas particles actually form stars probabilistically such that on
average they reproduce a star formation rate formula similar to a Schmidt
law (Schmidt 1959). Those gas particles that actually form stars spawn a
new star particle of a predetermined mass, reducing their own mass. The new
star particle is created with the same velocity, position, and metallicity as its
parent gas particle. Star particles can add energy, mass and metals back to
gas particles through feedback processes including type II and Ia supernova
and stellar winds (Katz et al. 1992, 1996). The energy is added gradually
with an exponential decay rate of 20 Myr. It is added at the location of the
parent gas particle and is smoothed using the SPH smoothing kernel. Since
this thermal energy is typically added to very dense gas, it is quickly radiated
away and has little effect on the evolution of the galaxy. Stinson et al. (2006)
describe a stronger and perhaps more realistic method for including type II
supernovae (SNII) feedback. In order to account for the non-thermal energy
budget of the ISM, in this model the timescale during which cooling is shut
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off is self-consistently calculated based on a sub-grid model of the blast-wave
produced by a supernova explosion. By temporarily preventing the cooling of
the hot phase created by supernovae feedback this type of methods naturally
produces a two-phase medium with hot bubbles triggered by supernovae ex-
plosions (T > 105 K) surrounded by a colder, filamentary phase (T ∼ 104 K).
The radius of the blast-wave as a function of time can be directly computed
from the local physical parameters of the ISM. In the numerical implemen-
tation such radius defines the size of the volume of gas particles that are
unable to cool during the adiabatic phase. The adiabatic phase lasts of order
30 Myr, after which radiative losses would become efficient and the gas is
again allowed to cool radiatively. The blast-wave feedback model has only
one free parameter, the efficiency of supernovae feedback, namely what frac-
tion of the energy generated by the supernovae explosions is damped to the
gas. In addition (Stinson et al. 2006) also include feedback from type Ia
supernovae and stellar winds from planetary nebulae and allow the metals
produced in stars to be distributed. The feedback contribution of stellar
winds is also significant. Stars with masses below 8×M� return substantial
fractions of their mass to the ISM as they evolve and leave behind white
dwarf remnants. They base their wind feedback on the work of Kennicutt
et al. (1994) who find that the total stellar return fraction is 0.25 to 0.50 of
the initial mass depending on the IMF. Because the return rate is so high,
this form of feedback can greatly prolong star formation in galaxies without
gas inflow. For simplicity, they consider only stars between 1 and 8 M� and
assume that lower mass stars remain unvolved. To determine the fraction of
mass returned for a given stellar mass they use the initial-final mass relation
of Weidemann (1987) and then fit his results to a continuous function.



Chapter 2

Two-component Sérsic models of
early-type galaxies

We present two-component models of early-type galaxies, consisting of
stellar and dark-matter components that follow the de-projected Sérsic law.
The models describe spherical, non-rotating, isotropic systems, and their
physical parameters (scaling radii and total masses) are uniquely defined by
the total B-band luminosity. We describe in detail how the models are con-
structed, and show that the distribution function is non-negative defined,
implying that the models are stable against radial and non-radial pertur-
bation. Discrete model realizations, performed with the software Gadget-2,
show that all the model properties remain stable over at least 5 Gyrs. For
each model, we are able to define an optimal smoothing length, defined as
the softening parameter that minimizes the rms of differences between the
true and discrete gravitational potentials. The software code, that is used to
realize the models, will be made publicly available. The models are primar-
ily intended as a tool to analyze the effects of dissipationless merging on the
internal properties and scaling laws of early-type galaxies (see Chapter 3).

2.1 Introduction

Recent observations have provided evidence in favour of a picture whereby
ETGs continuously assemble through mergers between galaxies which are
already on the red sequence (van Dokkum et al. 1999; Bell et al. 2006; van
Dokkum 2005; Tran et al. 2005). These so-called dry mergers are now thought
to be the dominant mode of growth of massive (> M∗) galaxies at 0 < z < 1,
building up the high-mass end of the mass function but not changing the
overall mass density of ellipticals. According to the hierarchical scenario,

23
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star formation and mass assembly are not necessarily concomitant processes
in early-type galaxy (ETG) formation: stars may well have formed at very
high redshift in relatively small units, but only at lower redshift (e.g., z � 1)
they may have merged together to build the massive ETGs that we see in
the z ∼ 0 Universe. According to this scenario Khochfar and Burkert (2003)
analyzed the progenitors of present-day ETGs selected from their bulge-disk
stellar mass fraction. They found that a large fraction of ETGs are likely
formed by the merging between bulge-dominated systems and that the frac-
tion of spheroidal mergers increases with luminosity, suggesting that massive
ETGs mainly formed by nearly dissipationless mergers.
Only recently, with the advent of wide-field surveys it has been feasible to
reduce the strong variance which affects ETG studies, and place more tight
constraints on the evolution of ETGs. Some observational results favour lit-
tle evolution of these systems. For instance, the VIMOS VLT Deep Survey
show that the luminosity function of ETGs is consistent with passive evolu-
tion up to z ∼ 1.1 and the number of bright ETGs decreases by ∼ 40% from
z ∼ 0.3 to z ∼ 1.1 (Zucca et al. 2006). K-band selected surveys revealed a
substantial population of old massive, passively evolving, ETGs at 1 < z < 2
and showed that their total luminosity and stellar mass function evolve only
weakly to z ∼ 0.8 − 1 (Cimatti et al. 2002; Bundy et al. 2006).
On the other hand, the COMBO-17 (Bell et al. 2004) and DEEP2 (Faber
et al. 2005) surveys indicate a stronger evolution of the ETG population char-
acterized by a faster decrease of the number density with redshift. The red
sequence of ETGs becomes progressively bluer in the rest frame U −V color,
going from z = 0 to z = 1, consistent with pure passive evolution of stellar
populations formed at high redshift (Bell et al. 2004). However, Bell et al.
(2004) and Faber et al. (2005) also found that the stellar mass in red sequence
ETGs was nearly doubled since z ∼ 1 to z ∼ 0 and argued in favour of a
major role of ETG-ETG merging (dry merging) in the build up of the ETG
population. In agreement with these results, by using SDSS spectroscopic
data, Masjedi et al. (2008) found significant evolution in the luminosity func-
tion of red galaxies since redshift z ∼ 1. Recently Whitaker and van Dokkum
(2008), analyzing HST images of ongoing mergers and merger remnants at
z ∼ 0.1, also found that red mergers in the nearby universe mostly involve
early-type galaxies containing very little cold gas and substantial amounts
of hot gas. It appears that this gas is not able to condense and form stars,
even during mergers. De Lucia et al. (2006), using semi-analytical models,
investigated the predicted number of progenitors as a function of galaxy stel-
lar mass. They found that more massive galaxies are made up of several
stellar pieces, with the number of effective progenitors being less than two
up to stellar masses of � 1011M�, increasing up to ∼ five mergers for the
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most massive galaxies. This indicates that, at adds with massive systems,
the formation of low mass systems typically involves only a small number of
major mergers.
Since dissipation-less merger might be the most important physical mecha-
nism to form ETGs, it is of fundamental importance to model dissipation-less
merging between spheroidal systems and to analyze the properties of merger
remnants, in order to see if these predicted properties match the observa-
tional scenario. ETGs are known to follow well-defined empirical correlations
(scaling-laws) that relate their global observational properties, such as the to-
tal luminosity, L, the effective radius, Re, and the central velocity dispersion,
σ. Some of them, are the Faber-Jackson (Faber and Jackson 1976, hereafter
FJ), the Kormendy (Kormendy 1977, hereafter KR), and the fundamental
plane (Djorgovski and Davis 1987, hereafter FP) relations. These scaling
relations provide valuable information about the formation and evolution of
ETGs and set tight constraints to galaxy formation models (Cimatti et al.
2006). The impact of dry merging on the scaling law of ETGs has been in-
vestigated in several works. In particular Capelato et al. (1995) and Dantas
et al. (2003) investigated the origin of the FP correlation, showing that it
can arise naturally from dissipationless galaxy-galaxy mergers. Evstigneeva
et al. (2004) run several simulations to examine dissipationless mergers of
low-mass systems and to analyze whether merger remnants still lie on the
Kormendy relation. They observe that final products of the merging between
small objects are not along the KR and they conclude that ETGs cannot
be formed by merging dwarfs, unless a considerable amount of dissipation is
involved. On the other hand, simulating the merging of objects on the KR,
they obtain that end products lye on the KR provided that the observational
scatter is taken into account. In a recent work, Nipoti et al. (2003) explored
the effect of dissipationless merging on the scaling laws. They found that
repeated merging of gas-free galaxies is unable to reproduce the observed
scaling laws, since merger products are characterized by an unrealistically
large effective radius and a mass-independent velocity dispersion. Ciotti
et al. (2007) suggested that gas dissipation is necessary to avoid all prob-
lems posed by dry merging. By using analytical arguments and numerical
simulations, they showed that massive ETGs cannot be formed by merging
of low-mass spheroidal galaxies, even in the presence of substantial gas dis-
sipation, while wet merging in the same population of low-mass progenitors
leads to galaxies that are in much better agreement with the observed scaling
laws. According to this, Hopkins et al. (2008a) found that dissipation is both
necessary and sufficient to explain the FP tilt and differences between disk
and elliptical scaling relations.
We note that in all previous works, the stellar component of model galaxies
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is always described by either a de Vaucouleurs surface brightness profile (de
Vaucouleurs 1948) or a King model (King 1962), while dark matter haloes
are described by either a Navarro-Frenk-White profile (Navarro et al. 1995)
or an Hernquist profile (Hernquist 1990). However, it is now clear that the
observed properties of ETGs can be only described by using the Sérsic 1968
law (Caon et al. 1993; D’Onofrio et al. 1994; Graham et al. 1996), and recent
results from N-body simulations have shown that the galactic-sized halos are
also well described by a de-projected Sérsic profile (Graham et al. 2006a) as
well. Thus, it is important to analyze if using more suitable models for both
the luminous and dark matter components can bring new insights into our
understanding of how dissipationless merging affects the properties of ETGs.
To this aim, in this work, we built new two-components models, where both
components are described by the Sérsic law.
In the following sections we introduce the Sérsic model (Sec. 2.1.1), and sum-
marize previous results about the dark matter halo density profiles (Sec. 2.1.2).
In Sec. 2.2 we present in details the properties of two-component Sérsic mod-
els and we discuss their stability, while in Sec. 2.3 we show how we choose
their physical scale parameters. In Sec. 2.4 and Sec. 2.5 we present our
method to define an optimal smoothing length and the code used to realize
the models.

2.1.1 The Sérsic model

The R1/4−law:

I(R) ∝ exp

[
−

(
R

Re

)1/4
]

(2.1)

was firstly introduced by de Vaucouleurs (1948) and it has been used to de-
scribe remarkably well (Capaccioli 1989; Capaccioli et al. 1990) the projected
luminosity density (or surface brightness) profile, I(R), of elliptical galaxies
as function of the two-dimensional projected radius R. The R1/4−law de-
pends on two physical scales: a characteristic linear scale, Re, (that contains
half of the total galaxy luminosity) and the central surface brightness of the
galaxy, I0. A natural generalization of this empirical law was proposed by
Sérsic (1968), as the R1/n−law:

I(R) ∝ exp

[
−

(
R

Re

)1/n
]

. (2.2)

In this law, the parameter n, called the Sérsic index, controls the degree of
curvature of the profile, in the sense that for large n, the profile is more
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strongly peaked in the center. When n = 1 we have the exponential law
which is a good description of dwarf elliptical galaxies and spiral galaxy
disks. Most of ETGs are well fitted by Sérsic profiles with indices in the
range 2 < n < 10 (see Blanton et al. 2005). The best-fit value of n correlates
with galaxy luminosity, in the sense that brighter galaxies tend to have larger
n (Caon et al. 1993; Graham et al. 1996; Graham and Guzmán 2003b),
indicating structural non-homology in the class of ETGs, i.e. the fact that
the profile slope of ETGs changes systematically along the galaxy sequence
(see e.g. Davies 1988; Capaccioli 1989; Caon et al. 1993; Young and Currie
1994; D’Onofrio et al. 1994; Prugniel and Simien 1997).

2.1.2 The density profile of dark-matter halos

In the past, virialized halos have been often modeled by using the isother-
mal sphere profile, characterized by two parameters, the central dark matter
density, ρ0DH

, and the core radius, rc:

ρ
DH

(r) =
ρ0DH

1 + (r/rc)2
, (2.3)

where r is the three-dimensional radius of the system. N-body simulations of
galactic halos (Dubinski and Carlberg 1991; Warren et al. 1992; Navarro et al.
1995) indicate that dark matter halos are not well described by isothermal
spheres but they possess a logarithmic slope as in the model proposed by
Hernquist (1990) for the stellar component of elliptical galaxies (Hernquist
law ):

ρ
DH

(r) ∝ 1

r (1 + r/rs)
3

, (2.4)

or as in the model introduced by Navarro et al. (1995) (NFW) to describe
the X-ray profile of clusters of galaxies:

ρ
DH

(r) ∝ 1

r (1 + r/rs)
2

. (2.5)

These profiles are singular in the center (although the potential and the
mass converge for r → 0) and possess a scale radius, rs , where the profile
changes shape. N- body simulations of Cole and Lacey (1996) provided sup-
port for the NFW profile, although small but systematic differences began to
emerge as the numerical resolution of the simulations improved (Fukushige
and Makino 1997; Moore et al. 1999; Ghigna et al. 2000; Fukushige and
Makino 2001, 2003). These authors reported slopes that increase systemat-
ically inwards with respect to that of the NFW model. Moore et al. (1999)
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favoured a profile that diverges near the centre as r−1.5 (instead of r−3 as for
the NFW profile):

ρ
DH

(r) =
ρ

M

(r/r
M

)1.5[1 + (r/r
M

)1.5]
. (2.6)

Recognizing that galaxies appear to have flat inner density profiles (Flores
and Primack 1994; Moore 1994), Burkert (1995) introduced a density model
having an inner slope of zero and an outer profile dropping as r−3. His model
is given by:

ρ
DH

(r) =
ρ0 r3

s

(r + rs)(r
2 + r2

s
)

, (2.7)

where ρ0 is the central density and rs is a scale radius. Application of this
model reveals that, with only two free parameters, it is impossible provide a
good fit to the profiles of dark matter halos (Graham et al. 2006a).
Recently Graham et al. (2006a) explored the suitability of generalized Sérsic
model to describe the mass-density profile, ρ

DH
(r), of dark matter halos of

galactic size. They define the model as such:

ρ
DH

(r) = ρe exp
{−dm[(r/re)

1/m − 1]
}

(2.8)

The term dm is a function of m such that ρe is the density at the half-mass
radius, re, that defines a volume containing half of the total dark-matter
mass. The central density is finite and given by ρ

DH
(r = 0) = ρe exp {dm}.

Graham et al. (2006a) compared the ability of 2−parameter models and
3−parameter models to describe the density profiles of a sample of simulated
dark matter halos. Not surprisingly, they found 3−parameter models to
perform better than 2−parameter models such as the Burkert (1995) and
the NFW models. They also found that both the generalized and the de-
projected Sérsic models provide a better description of the data than the
NFW model. Fitting both the Sérsic and NFW models to the halo profiles,
they calculated the rms of the residuals, Δ. They found a value of Δ ∼
0.015 dex for the de-projected Sérsic model, while using the NFW profile
gave Δ ∼ 0.05 dex. Generalized Sérsic model was used also in Navarro
et al. (2004) to fit simulated dark matter halos. They obtained a best fitting
value of n ∼ (6 ± 1.1). Subsequently, Merritt et al. (2005) showed that
generalized Sérsic model gave better fits for the dwarf- and galaxy-sized halos,
obtaining n ∼ (5.6 ± 0.7). For a sample of galaxy-sized halos, Prada et al.
(2006) obtained similar values from 6 to 7.5. For what concerns the de-
projected Sérsic model, Graham et al. (2006a) obtained an average of the
shape parameter for galaxy-size haloes of n = 3.59 ± 0.65 . Accordingly,
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Merritt et al. (2005) found a value of 3.40± 0.36 for their sample of galactic
halos. Thus, they concluded that Sérsic models perform significantly better
than NFW law.

2.2 Two-component Sérsic models
The models described here consist of spherical, isotropic, non-rotating

systems, having both a stellar and dark-matter components. Both compo-
nents are described by a de-projected Sérsic law. In Sec. 2.2.1, we provide
the basic equations that we use to de-project the Sérsic law, and calcu-
late the corresponding density-potential pair. Sec. 2.2.2 describes how the
global density-potential pair of the two-component models is obtained, while
Sec. 2.2.3 discuss the physical consistency and the stability of these models.

2.2.1 The de-projected Sérsic model

The observed properties of ETGs, are well described by the Sérsic law (Ca-
paccioli et al. 1992; Caon et al. 1993; D’Onofrio et al. 1994):

I(R; n) = I0 exp
[−bn (R/Re)

1/n
]

, (2.9)

where I0 is the central surface brightness of the galaxy, R is the two-dimensional
projected radius, Re is the equivalent scaling radius of the model, n is the
so-called Sérsic index (shape parameter), and bn is a function of n, defined
in such a way that Re is the effective radius of the galaxy, enclosing half of
its total luminosity (Ciotti 1991). The quantity b(n) is given, in first approx-
imation, by the power-law relation b(n) ∼ 2n − 1/3, and, with an accuracy
better than 1%, by the formula b(n) ∼ exp [0.6950 + ln(n) − 0.1789/n] (e.g.
Ciotti and Bertin 1999).
Under the assumption of spherical symmetry, for a constant stellar mass-to-
light ratio, M

L
/L, the three-dimensional mass density profile, ρL, of the stel-

lar component is obtained by solving the Abel integral equation (Binney and
Tremaine 1994), ρ

L
(r) = − 1

π

∫ ∞
r

dI
dR

dR√
R2−r2 , where r is the three-dimensional

distance to the galaxy center. As shown in Appendix A, the Abel equation
provides the following expression for the de-projected density profile

ρL(r; n) = ρ0L
ρ̃(x; n) = ρ0L

b

πn
x

1
n
−1

∫ 1

0

u−1/n exp[−bx1/nu−1/n] du√
1 − u2

, (2.10)

where x = r/Re is the three-dimensional distance to the galaxy center in
units of Re, ρ̃(x; n) is the dimensionless de-projected profile, and ρ0L

= M∗
L

I0
Re

is the scaling factor of the luminosity density of the model in physical units.
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The mass profile is then obtained by solving the following one-dimensional
integral:

M
L
(r; n) = M0L

M̃(x; n) , (2.11)

with

M̃(x; n) =
4

b2n

∫ 1

0

u2

(1 − u2)1/2
γ

(
2n + 1, b

(x

u

)1/n
)

, (2.12)

where M̃(x; n) is the dimensionless mass profile and M0L
= I0 R2

e is the
corresponding scaling factor in physical units.

Using the second Newton theorem, after some algebra (see Appendix A),
one finds the following expression for the gravitational potential:

ϕ(r; n) = ϕ0L
ϕ̃(x; n) (2.13)

with

ϕ̃(x; n) = −M
L
(x)

x
− 4

bn

∫ 1

0

u(1 − u2)−
1
2 γ̃

(
n + 1, b

(x

u

) 1
n

)
du , (2.14)

where ϕ̃(x; n) is the dimensionless gravitational potential, and ϕ0L
=

GM
L

Re

is the corresponding scaling factor in physical units.
In La Barbera et al. (2008) these one-component models are used to investi-
gate the tilt of the Fundamental Plane of the ETGs.

As shown in the following sections, Eqs. 2.10, 2.11, and 2.13 are the
fundamental ingredients to construct the two-component Sérsic models.

2.2.2 The dark matter component

Since the de-projected Sérsic law provides an accurate description of the
density profile of dark matter haloes at galaxy’s mass scales (see Graham
et al. 2006a), we adopt the same kind of density profile for both the lumi-
nous and dark matter components of the models. The dark matter profile is
described by a Sérsic model with shape parameter n = 3, in agreement with
the value found by Graham et al. (2006a).

The density-potential pair and the mass profile of the dark matter com-
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ponent are then obtained from the following equations:

ρ
D
(r) =

μ

x3
D

ρ0L
ρ̃

(
x

x
D

; n = 3

)
(2.15)

M
D
(r) = μ M0L

M̃

(
x

x
D

; n = 3

)
(2.16)

ϕD(r) =
μ

x
D

ϕ0L
ϕ̃

(
x

x
D

; n = 3

)
(2.17)

where the dimensionless density-potential pair , ρ̃, ϕ̃, is provided by Eqs. 2.10
and 2.13, while the dimensionless mass profile, M̃ is given by Eq. 2.11. Here,
we denote as μ =

M
D

M
L

the ratio of the total halo mass, M
D
, to the total stellar

mass M
L
, and as x

D
=

ReD

ReL
the ratio of the effective radii of the dark matter

and luminous components.
The mass density profile of the two component model is ρ(r) = ρ

L
+ρ

D

and is proportional to the dimensional factor ρ0L
. Due to the linearity of the

Laplace equation, the total potential is equal to ϕ = ϕ
L
+ϕ

D
, and is propor-

tional to the dimensional quantity ϕ0L
. The global density-potential pair is

then completely defined, in dimensionless units, from the a-dimensional pa-
rameters x and μ, describing the relative extension of the halo to the stellar
profile and the mass ratio of the two components.

2.2.3 Physical consistency and stability

In order to understand if a given density-potential pair can describe a
physically admissible, stationary, system, we have to prove that the corre-
sponding distribution function (hereafter DF) is non-negative for all pos-
sible values of the phase space coordinates. As shown by Ciotti (1991),
one-component spherical, non-rotating, isotropic Sérsic models are always
physically admissible, while in the anisotropic case, a minimum anisotropy
radius exists for the model to be admissible, with this radius depending on
the Sérsic index n (Ciotti and Lanzoni 1997). In order to understand if two-
component Sérsic models describe admissible physical systems, we study here
the properties of the corresponding DFs.

For a general collisionless system, the DF, f , or phase space density,
is the solution of the collisionless Boltzmann equation, and it depends on
phase space variables and on time. The f is related to the density ρ of
the system by the equation ρ(x, t) =

∫
f(x,v, t) d3v, where the integral is

extended to the whole velocity space. If the system is stationary, f depends
on the phase space coordinates only through the isolating integrals of motion
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(Jeans Theorem), and moreover, if the system is spherical and its velocity
dispersion tensor is isotropic, f depends only on the binding energy per unit
mass. Generally, one introduces the relative binding energy of the system, E,
which is defined as the negative value of the binding energy per unit mass,
and the absolute value of the potential, Ψ(r)1. For a given density-potential
pair, (ρ, Ψ), f(E) can be obtained by the Eddington formula (Eddington
1916):

f(E) =
1√
8π2

[∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

+
1√
E

(
dρ

dΨ

)
Ψ=0

]
. (2.18)

However, the Eddington inversion does not guarantee the distribution func-
tion to be non-negative, and, thus, for a given (ρ, Ψ) pair, one has to verify
a posteriori that the condition f(E) ≥ 0 holds for E ≥ 0. The double R1/n−
models are characterized by three parameters, i.e. the Sérsic index n, and
the dimensionless parameters μ and x

D
. Hence, one has to derive the f for

different combinations of these parameters.
First, one can show that the second term in Eq. 2.18 vanishes. This follows

directly by the fact that, for single Sérsic models, the quantity (dρ/dΨ)Ψ=0 =
limr→∞(dρ/dr)(dr/dΨ) → 0 is always equal to zero for any positive value
of n (Ciotti 1991). The distribution function is then computed from the
integral at the second member of Eq. 2.18. Fig. 2.1 plots the function f(E)
for different sets of n, μ and x

D
values. In order to calculate f(E), we

have used a set of FORTRAN codes using the NAG Fortran Library to
numerically solve the integral in Eq. 2.18. The value of μ is varied in the
range of zero (i.e. no dark matter halo) to a value of 106, describing the cases
where the stellar component is negligible and the system is completely dark
matter dominated. We consider values of x

D
from 0.1 to 102, corresponding

to the two extreme cases where the dark matter component is either more
concentrated or significantly more extended than the luminous one. For all
combinations of x

D
and μ, different values of n are also plotted. We clearly see

that for positive values of the relative binding energy the condition f(E) ≥ 0
is always verified. Thus, we conclude that the two-component Sérsic models
are always physically admissible.

Following Ciotti (1991), in order to verify that the two-component Sérsic
models describe stable physical systems, we analyze the sign of the first
derivative of the distribution function. According to Antonov theorem (see
Binney and Tremaine 1994, pag. 237), if df

dε
≥ 0, the system is stable against

both radial and non-radial perturbations. This condition is equivalent to
1One defines Ψ(r) ≡ −ϕ(r) + ϕ0 and E ≡ −E + ϕ0, where ϕ0 is a suitably defined

constant (see Binney and Tremaine 1994).
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require that the derivative of dρ
dΨ

is positive. We can write:

d2ρ

dΨ2
=

d2ρ

dr2

(
dΨ

dr

)−2

− dρ

dr

(
dΨ

dr

)−3
d2Ψ

dr2
=

=

(
dΨ

dr

)−3 [
d2ρ

dr2

(
dΨ

dr

)
− dρ

dr

(
d2Ψ

dr2

)]
≥ 0 . (2.19)

Since Ψ = −Φ is a decreasing function of r, its first derivative is negative, and
the last member in Eq. 2.19 is positive if and only if the following condition
holds:

g(r; n, μ, x
D
) =

[
d2ρ

dr2

(
dΦ

dr

)
− dρ

dr

d2Φ

dr2

]
≥ 0 . (2.20)

For the two-component Sérsic models, the expression of g(r) can be directly
derived by a numerical computation of the dimensionless function ρ̃(x), its
first and second derivatives, and the corresponding mass profile M̃(x). Details
are given in Appendix A. Fig. 2.2 plots g(r) as a function of r for the same
sets of n, μ, and x

D
values considered in Fig. 2.1. The condition g(r) ≥ 0 is

always verified, implying that the two-component Sérsic models also describe
stable physical systems.

2.3 Physical scales
The double Sérsic model consists of a stellar component following the

Sérsic law and of a dark matter halo with the same mass distribution as
the luminous component, but with a different physical scale. There are five
fundamental physical parameters in the model, which are the mass of the
stellar component, M

L
, its effective radius, ReL

, and Sérsic index, n, the
mass of the dark matter halo, M

D
, and its effective radius, ReD

. Here, we
show how all these quantities can essentially expressed as a function of one
single parameter, the absolute magnitude of the stellar component (hereafter
we refer to this component as ’the galaxy’). We adopt the absolute magnitude
in the B band, MB, since most of the relations we use in the following are
expressed in that band.
The ReL

parameter is obtained by using the Kormendy relation (Kormendy
1977; Capaccioli et al. 1992):

logReL
= α < μ >e +β . (2.21)

In order to set α and β, we use the values obtained for the Coma cluster
(z = 0.023) by Graham and Guzmán (2003b) (see Fig. 2.3). The figure
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Figure 2.1: Distribution function of the two-component Sérsic models. Different panels
correspond to different values of the halo to stellar mass ratio, μ. From left to right and top
to bottom, the values of μ are 0, 0.1, 1, 10, 102, 106. For each plot, as shown in the upper-
left panel, curves with different colors correspond to different values of the Sérsic index,
while different line types denote different values of the ratio of halo to stellar effective
radii, xD

.
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Figure 2.2: The quantity g(r) (see Eq. 2.19) is plotted as a function of the logarithm of
the dimensionless radius, x = r/reL . Colors and line types are the same as in Fig. 2.1.
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Figure 2.3: The Kormendy relation from Graham and Guzmán (2003b). Dots represent
dwarf elliptical galaxies (dEGs) from Binggeli and Jerjen (1998), triangles represent dEGs
from Stiavelli et al. (2001), five-pointed stars represent the Coma dEGs from Graham and
Guzmán (2003b), asterisks represent intermediate-to-bright EGs from Caon et al. (1993)
and D’Onofrio et al. (1994), open circles represent the so-called power-law EGs from Faber
et al. (1997), and filled circles represent the core EGs from these same authors.

clearly shows a different trend for bright and ordinary ETGs in the plane
logRe− < μ >e. By a linear fit of the data in this figure, we obtain α = 0.35
and β = −6.75 for bright galaxies and α = −0.02 and β = 0.45 for ordinary
galaxies. We put the threshold between these two families at MB = −20 as
can be deduced from Fig. 2.3

In order to set the Sérsic parameter n for the stellar component in our
models, we use the MB − n relation by Trujillo et al. (2004), as shown in
Fig. 2.4:

log n = −0.12 · MB − 1.6829 (2.22)

where the slope and the zero-point of this relation are obtained from a linear
fit of the data in that figure.

To determine ReD
, we consider the Kormendy relation for dark matter

halos in Graham et al. (2006b), defined as the correlation between the ef-
fective radius, ReD

, and the average projected surface density inside of ReD
,

〈μ〉eD
. This relation is obtained for a sample of simulated galaxy-sized halos

whose density profiles are extracted fitting Prugniel-Simien models (Prugniel
and Simien 1997). In Fig. 2.5 we show this relation. From a linear fit of the
data in figure, we obtained a zero-point of δ ∼ 10/3 and a slope of γ ∼ 1/3.
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Figure 2.4: Sérsic index n as a function of the absolute magnitude from 911 morpholog-
ically selected ETGs from a combined SDSS/2MASS galaxy catalog from Trujillo et al.
(2004).

We then use the relation between the mean mass surface density within
ReD

and the total mass of the halo:

〈μ〉eD
= −2.5 log(M

D
) + 2.5 log(2π) + 5 log(ReD

) , (2.23)

from which we obtain:

ReD
= 10

2.5
2

log(MD)− 2.5
2

log(2π)− 25
2 . (2.24)

According to Graham et al. (2006a) (their figure 1, panel b) we set ReD
=

1 kpc for all dark matter halos with M
D
≤ 1010M�. Then, we express the

stellar and halo masses as function of the total B-band luminosity:

L
B

L
B�

= 10

[
−0.4(M

B
−M

B� )
]
, (2.25)

where we adopt a B-band absolute magnitude for the Sun of M
B� = 5.51

(Fukugita et al. 1995). We use the result of Cappellari et al. (2006), who
found a correlation between the dynamical mass-to-light ratio in I−band and
the total mass of elliptical and lenticular galaxies in the SAURON project
(Bacon et al. 2001):(

M

L
I

)
dyn

= (1.78 ± 0.16)

(
M

1010M�

)(0.27±0.03)

. (2.26)
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Figure 2.5: The Kormendy relation for the dark halo. The open stars represent N-body,
dark matter halos from Graham et al. (2006b), open plus signs are the galaxy clusters from
Graham and Guzmán (2003a), the dots are the dwarf elliptical galaxies from Binggeli and
Jerjen (1998), the filled stars are the dwarf elliptical galaxies from Graham and Guzmán
(2003b), the asterix are the intermediate to bright elliptical galaxies from Caon et al.
(1993) and D’Onofrio et al. (1994), open and filled circles are the power-law and core
elliptical galaxies from Faber et al. (1997).

We invert this relation to obtain the total mass, M, of the galaxy as function
of the total luminosity in I−band, L

I
:

M = 10
log(L

I
)+log(1.78)−2.7

1−0.27 . (2.27)

We express M as a function of MB, by using the Eq. 2.25 and by using a
(B−I) color term of 2.23 and according to Fukugita et al. (1995) M

I� = 4.08.
We note that from figure 17 of Cappellari et al. (2006) the stellar mass-
luminosity ratio is 16% smaller than dynamical mass-to-light ratio. Hence
we write:

M
L

=

(
M

L
I

)
L

10

{
−0.4(M

I
−M

I� )
}

. (2.28)

and we derive the dark matter mass of the galaxy as the difference:

M
D

= M − M
L

. (2.29)
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To summarize, using Eqs. 2.29, 2.28 and 2.27 we are able to express M
D

and
M

L
as function of MB. Then using Eq. 2.24, we also obtain ReD

from MB.
Finally, from Eqs. 2.21 and 2.22 we obtain also ReL

and n as function of MB.
In Tab. 2.1 we show the values of M

L
, ReL

, M
D
, ReD

and n for different
values of the magnitude M

B
, as obtained with the above procedure. The

values of MB are those adopted to perform simulations of dissipationless
merging between two-component Sérsic models (see Chapter 3).

M
B

M
L

(1010 M�) ReL
(kpc) M

D
(1010 M�) ReD

(kpc)

−21.0 27 6.3 12 19.5
−20.2 11 2.8 4.8 6.2
−19.5 4.3 1.2 1.9 2.0
−18.0 0.7 1.1 0.3 1.0
−17.2 0.3 1.0 0.1 1.0
−16.5 0.1 1.0 0.05 1.0

Table 2.1: The columns report the magnitude in B−band, MB , the stellar mass, M
L
, in

units of 1010 M�, the effective radius of the stellar component, ReL
, the dark matter halo

mass, M
D

in units of 1010 M� and effective radius of the dark matter halo component, ReD
,

(see text for details) for two-component Sérsic models used as progenitors in simulations
of dissipationless merging (see Chapter 3).

2.4 Discrete realizations
We mainly aim to apply the two-component Sérsic models to studying

how dissipation-less merging affects the observed properties of early-type sys-
tems. In order to address this issue, one has to use N-body simulation codes,
producing discrete realizations of a given model. As a common practice, the
discretization procedure requires to choose a given number of particles and
to adopt a given gravitational softening parameter, that ultimately define
the mass and spatial resolutions of the system. Here, we describe how we set
these parameters for the Sérsic models in an objective way. The softening
parameter also depends on the kind of softening function used in the simu-
lation code. We refer here to the case of the smoothing kernel of Plummer
(Binney and Tremaine 1994).

2.4.1 Optimal softening length

Mass and spatial resolutions are the crucial parameters that define the
capability of N-body codes to describe properties of gravitationally bound
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systems. Mass resolution is fixed by the total number of particles, while spa-
tial resolution is related to the problem of computing gravitational forces.
For a given mass density profile, ρ, the gravitational potential, φ, and the
corresponding gravitational force are obtained by solving the Poisson equa-
tion. Since numerical simulations involve discrete realizations of ρ, with a
finite number of particles, it is common practice to calculate the total force
on the i-th particle, Fi = −∇φ, in terms of the contribution due to all the
other particles in the system, Fi =

∑
i�=j GMj(ri − rj)/|ri − rj|3, where rj

and Mj are the position and mass of the j-th particle, respectively. The
gravitational force is usually smoothed on a given scale ε in order to (i) avoid
divergences in force computation and to (ii) minimize two-body collisions
that arise only from the discreteness of N-body realizations, and that in-
troduce an undesired energy dissipation in the system. The ε parameter is
called the softening (smoothing) length, and determines the spatial resolution
of the simulation. In the case of cosmological simulations, spatial resolution
is related to the ratio of the simulation box size to the smoothing length.
Considering the Plummer smoothing kernel, the force exerted on the i-th par-
ticle from the j-th particle of an N-body realization is given by the following
formula:

Fij =
Gm2(xj − xi)

(ε2 + |xj − xi|2)3/2
, (2.30)

where both particles are assumed to have the same mass m, and ε is the
softening length, describing the level of smoothing in Fij. The maximum
force intensity is 2Gm2/(33/2ε2) and occurs at |xj − xi|2 = 1

2
ε2.

In previous studies, the value of ε is often chosen in an ad hoc way, by
using different physical recipes involving the desired resolution and the total
number of simulated particles.
Merritt (1996) showed that the softening length of an N-body system can
be chosen in an optimum way by minimizing the average error in the force
computation over the whole space. He found that the mean value of the
integrated square error in the force computation contains contributions from
two terms. The first one (the bias) is the mean deviation of the computed
force at some point from the true force and the second (the variance) is the
mean square deviation of the force estimation from its mean value. Merritt
(1996) showed that the bias increases with the softening length while the
variance falls off because a greater amount of smoothing produces smaller
average fluctuations in the forces but also tends to smooth over real features
at small scales. Thus, for N-particles realizations of a given model there is an
optimal choice of softening length, derived by minimizing the sum of these
two contributions.
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Following a similar approach, we choose ε by minimizing the average error
in the computation of the gravitational potential.
We proceed as follows. For a given Sérsic index and a given number of
particles, N , we generate several realizations of the deprojected Sérsic model.
For each of them, we calculate the gravitational potential at the position of
particle i:

φi = −Gm

N∑
j=1

1√
ε2 + |xj − xi|2

. (2.31)

At the same position in the space, there is also a true value of the potential,
φtrue(xi):

φtrue(xi) = −G

∫
ρ(x

′
)dx

′√|x′ − xi|2
, (2.32)

where ρ is given by the Eq. 2.10. In Fig. 2.6 we plot for two different discrete
realizations of a Sérsic model with n = 4, the rms of relative differences
between the true and the discrete potentials, Δφ/φ, as function of ε.

The plot demonstrates that there is a minimum in the relative error and
this minimum depends on the adopted number of particles. thus, we calculate
the value of the optimal softening length, εbest, by minimizing the root mean
square of differences between φi and φtrue(xi):

σφi
=

1

N

N∑
i=1

|φi − φtrue(xi)|2 , (2.33)

where the sum runs over all the particles. We adopt as optimal softening
length the mean value of εbest, computed from 100 realizations. Fig. 2.7 plots
the optimal value of ε for different values of n as a function of N . As shown
in the figure, the trend of ε vs. N can be modeled by the following power
laws:

ε =
β

Nα
, (2.34)

where both α and β change as a function of the Sérsic index. The optimal
softening length turns out to decrease as a function of both n and the number
of particles in the simulation. The trend of ε with n, at fixed N , can be
explained by considering how the value of n is related to the mean particle
distance, dN , in the simulation. For a given number of particle, if n decreases,
the model is less concentrated in the center and the value of dN increases.
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Figure 2.6: Relative root mean square error in the potential calculation as a function
of ε values for two different discrete realizations of a one-component Sérsic model with
n = 4. The number of particles is N = 4000 and N = 8000 for the dashed and solid
curves, respectively, as shown in the upper right corner of the figure.
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Therefore in order to minimize the effect of collisions, the optimal smoothing
parameter has to be increased.
For what concerns the trend of ε with N , we can observe that when N
increases, at fixed n, the average particle distance decreases and the optimal
value of ε has to decrease as well.
We have also estimated the relative error δφ/φ, due to the use of the optimal
ε in the potential calculation. As shown in the Fig. 2.8, δφ/φ depends on the
number of particles, N , and on the Sérsic index, n. For a given Sérsic model,
the error decreases when N increases. In particular, as expexted performeing
a linear fit, we found the power-law trend δφ/φ ∼ N1/2.

2.4.2 Systems in isolation

For the discrete realizations of two-component Sérsic models, we adopt a
different softening length for the stellar and dark matter models, according to
the optimal definition presented above. However, these softening parameters
represent an optimal choice only for one-component Sérsic models, and we
are not guaranteed that they represent also an accurate choice for the two-
component models. In order to address this issue, we made several tests by
running some discrete realizations of the two-component models in isolation
and we compare the results with those obtained for one-component models.
As example, we present here the results obtained for two given one- and two-
component models. For the one-component model, we adopt M

L
= 1010M�,

ReL
= 10kpc, n = 4, NL = 50000, where NL is the number of particles.

For the two-component model, the parameters are: M
D

= 1012M�, ReD
=

100kpc, ND = 100000 and M
L

= 1010M�, ReL
= 10kpc, n = 4, NL = 50000

for the dark and stellar components, respectively. Both simulations were run
for 5 Gyrs. On the basis of the criteria discussed in Sec. 2.4.1, we adopt the
following value of the softening length for the dark and stellar component:
εD = 0.75 kpc and εL = 0.2 kpc.
In the upper panel of Fig. 2.9 the quantity |ΔE/E| ≡ |E−E0|/|E0| is plotted
as a function of time. We note a small slow secular drift in the total energy, E.
However, we can see that the total energy of the system is preserved within
2% over 5 Gyrs. The lower panel of the figure shows the evolution of the
virial ratio |2T/W |, where T and W are the total kinetic energy and potential
energy of the system. Deviations from the equilibrium value 2T/W = 1 is
smaller than 2% in modulus and do not show any significant trend over the
whole simulation. The same result were obtained when analyzing the one-
component models.

In Fig. 2.10 we plot, for the one-component model, the dynamical profiles,
(mass, velocity dispersion and anisotropy) at T = 0 Gyr (left panels). In the
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Figure 2.7: Dependence of the optimal softening length ε on the number of particles, N ,
for different galaxy models. The best-fitted power law relations in Eq. 2.34 are indicated
by solid lines, with different colors corresponding to different Sérsic indices as shown in
the lower-left part of the figure.
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Figure 2.8: The relative error in the potential calculation as a function of the number of
particles, N , for three different discrete realizations of a Sérsic model with n = 1 (dashed
line), n = 4 (solid line) and n = 7 (dot-dashed line). The red line is obtained from a linear
fit of the data in the case n = 4.
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Figure 2.9: Total energy and virial ratio as function of the time for a given two-
component model in isolation.
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Figure 2.10: Mass (top), velocity dispersion (middle) and anisotropy (bottom) profiles
for a one-component model at T = 0 Gyr (left panels). In the right panels, we plot the
relative variation of the same quantities at T = 5 Gyr respect to the initial values.

right panels of the figure we plot the relative variation of the same quantities
after 5 Gyr. In Fig. 2.11 and 2.12 we plot the same profiles as in Fig. 2.10
for the stellar and the dark matter components of the two-component model.
Remarkably, all the profiles remain stable for systems in isolation, over at
least 5 Gyrs

2.5 The code

In order to build the discrete realizations of Sérsic two-component mod-
els we have written FORTRAN programs using the NAG Fortran Library
(http://www.nag.co.uk/numeric/FL/fldescription.asp). Since the computa-
tion of the density-potential pair is very time-consuming, we proceeded as
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Figure 2.11: Same as Fig. 2.10 but for the luminous component of the two-component
model.

follows::

1. for different values of the Séric index n, we realize a table including val-
ues of the mass, density, potential and their first and second derivatives
as a function of the radius r, according to Eqs. 2.11, 2.10 and 2.13.

2. For any given model, with assigned n, μ and x
D

parameters, we use the
above tables to calculate by interpolation, the global density-potential
pair and the distribution function.

3. We randomly extract a given number of stellar and dark matter parti-
cles from the given global density profile.

4. For each particle, using the corresponding global potential ϕ (see Eq.
2.13), we randomly assign a velocity v according to the distribution
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Figure 2.12: Same as Fig. 2.10 but for the dark matter component of the two-component
model.

function f(E) (see Eq. 2.18).

2.6 Summary

We have built discrete realizations of non rotating, isotropic and spherical
systems containing a stellar component and a dark matter halo to study how
observable properties of ETGs change during dissipationless merging. In
order to reproduce the observed properties of ETGs the stellar component
is modelled by using the deprojected Sérsic law. In agreement with recent
results from N-body simulations, we use the same model to build the halo
component. We provide the basic equations for de-projecting the Sérsic law,
and to calculate the corresponding density-potential pair. We describe in
detail how the models are constructed, in particular we show that their total
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distribution function is always non-negative. This implies that the models
are stable against radial and non-radial perturbation. In order to verify the
physical consistency of our models we also show that the first derivative of
the total distribution function is non-negative for all possible pairs of (ρ, Ψ),
this implies that f(E) is a physical solution of the collisionless Boltzmann
equation. We set up physical parameters (scaling radii and total masses)
by using the observed relations among them for ETGs at redshift z ∼ 0.
Physical parameters are uniquely defined by the total B-band luminosity.
For each model, we are able to define an optimal smoothing length, defined
as the softening parameter that minimizes the rms of the discrete and true
gravitational potential of each system.



Chapter 3

Dissipation-less merging of
early-type galaxies: scaling
relations and internal color
gradients

We analyze the effect of dissipation-less merging on scaling laws and in-
ternal color gradients of early-type galaxies (hereafter ETGs), by performing
N-body merging simulations of the one- and two-component Sérsic mod-
els described in Chapter 2. The outline of the Chapter is as follows. In
Sec. 3.1 we describe the initial conditions of the merging simulations, and
how the simulations are done with the software GADGET-2. In particular,
we describe how the number of particles is chosen, and how we set the corre-
sponding softening parameter for each simulation. In Sec. 3.2, the properties
of merger remnants are derived. We discuss how the structural parameters
and velocity dispersion of merger remnants are estimated. In Sec. 3.3, we
analyze the surface brightness profile of the merging end-products and we
describe how we fit them with a Sérsic law. In Secs. 3.4, we analyze the
correlations among the properties of merger remnants, i.e. the Fundamental
Plane relation (Sec. 3.4.1), the Kormendy relation (Sec. 3.4.2), the Faber-
Jackson relation (Sec. 3.4.3), and the luminosity-size relation (Sec. 3.4.4).
Finally, Sec. 3.5 deals with the internal structure of merger remnants. We
analyze how stellar population gradients of model galaxies are changed from
the encounters.

51
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CHAPTER 3. DISSIPATION-LESS MERGING OF ETGS: SCALING

RELATIONS AND INTERNAL COLOR GRADIENTS

3.1 The models and the initial conditions of
merging simulations

We performed two sets of merging simulations, with (1) Sérsic models with
a single, stellar component and (2) two-component Sérsic models, including
both a stellar and dark-matter component. As described in Chapter 2, all
the models describe spherical, isotropic, non-rotating galaxy systems. Two-
component models are characterized by five parameters, which are the mass
of the stellar component, M

L
, the mass of the dark matter component, M

L
,

the half-light radius of the stellar component, ReL
, the half mass radius of

the dark-matter component, ReD
, and the Sérsic index, n, of the luminous

component. As shown in Sec. 2.3, observed correlations of properties of
ETGs, we allow us to derive each of these quantities from the total B-band
luminosity. In other terms, each model is completely characterized by the
B-band magnitude, MB, with all the model parameters being assigned as a
function of MB.

For both sets of simulations, we consider six merger progenitors, spanning
the magnitude range from −21 to −16.5 in B-band. The magnitude of each
model and the corresponding model parameters are listed in Tab. 3.1. Each
model is identified by a running number from one to six. Models one and four
have magnitudes of −21 and −18, which are chosen to describe typical bright
and ordinary ETGs, respectively (Capaccioli et al. 1992). The magnitudes
of models two and three are chosen in order to have a luminosity ratio of
1 : 2 and 1 : 4 with respect to model one. In the same way, models five and
six are chosen to have a luminosity ratio of 1 : 2 and 1 : 4 with respect to
model four. In Secs. 3.1.1 and 3.1.2, we describe how we choose the pairs for
merging simulations and how the merging is performed by creating discrete
realizations of the one- and two-component models.

For each merger pair, we assign the initial conditions of the encounter by
initially placing the progenitors on four different orbits. Following Binney
and Tremaine (1994, chapter 7, pag. 454), each orbit is characterized by two
dimensionless parameters:

E ≡ Eorb

1
2
〈v2〉 and L ≡ L

rh〈v2〉1/2
, (3.1)

where rh is the geometric mean of the three-dimensional half-light radii and
〈v2〉 is the geometric mean of the internal mean-square velocities of the two
merging galaxies. Eorb and L are the energy and the angular momentum per
unit mass of the orbit, defined as the orbital energy and angular momentum
of two point masses equivalent to the merger galaxies. According to Binney
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and Tremaine (1994, chapter 7, pag. 454), galaxies can merge on a time scale
smaller than the Hubble time only in a given region of the Eorb − L plane
(see their Fig. 7− 9 ). For a given value of Eorb there is a maximum value of
L above which two systems do not merge. Moreover, as shown by Khochfar
and Burkert (2003), cosmological simulations show that galaxy encounters
on hyperbolic orbits are extremely rare. We thus considered only cases with
E = 0 (parabolic orbits) and E < 0 (elliptic and circular orbits). To cover a
wide range of initial conditions in the allowed region defined by Binney and
Tremaine (1994), we considered mergers with two values of the orbital energy,
E = 0 and E = −3. For each energy, two values of the angular momentum
were considered: L = 0 and L = 2, respectively, resulting in a total of four
different initial orbits for each merger pair. Following previous works (Dantas
et al. 2003), in the case of parabolic orbits, the initial separation of the models
was set to ∼ 4rh, while for elliptic orbits the apocentric position was adopted.
These initial separations are chosen considering that the merging galaxies
should be neither too close (implying that tidal effects would be artificially
disregarded owing to the spherical symmetry of the initial models) nor too
far away (so that one can avoid too time-consuming CPU runs).

Models M
B

M
L

(1010 M�) ReL
(kpc) M

D
(1010 M�) ReD

(kpc) n
(1) (2) (3) (4) (5) (6) (7)
1 −21.0 27 6.3 12 19.5 7.55
2 −20.2 11 2.8 4.8 6.2 6.11
3 −19.5 4.3 1.2 1.9 2.0 4.95
4 −18.0 0.7 1.1 0.3 1.0 3.25
5 −17.2 0.3 1.0 0.1 1.0 2.63
6 −16.5 0.1 1.0 0.05 1.0 2.13

Table 3.1: For each progenitor, the columns report (1) the identification number, (2)
the B−band magnitude, MB , (3) the stellar mass, ML , in units of 1010 M�, where M�
is the solar mass, (4) the effective radius of the stellar component, ReL

, in units of kpc,
(5) the dark matter halo mass, M

D
in units of 1010 M�, (6) the effective radius of the

dark matter halo component, ReD
, in units of kpc, and (7) the Sérsic index n of the stellar

component. All the parameters are assigned as a function of the B.band magnitude as
described in Chapter 2.

3.1.1 One-component models

For merging simulations of one-component models, we consider six model
pairs. This is illustrated in columns 2 and 3 of Tab. 3.2, where we report the
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identification numbers of galaxy models in each merger pair (as in Tab. 3.1).
The brightest galaxy model (model one in Tab. 3.1) is merged with itself
(mass and luminosity ratio of 1 : 1), and with models two and three, allow-
ing us to describe the case of minor mergers with a luminosity ratio of 1 : 2
and 1 : 4, respectively. As shown in Tab. 3.2, these luminosity ratios corre-
spond to mass ratios of MR = 1 : 2 and MR = 1 : 6, respectively. As detailed
above, for each pair, we run four simulations according to different pairs of
orbital parameters E and L. This results in a total of 24 merging simulations.
All the simulations are run by using the parallel version of the software code
GADGET-2. All the N-body simulations were performed on the zBox2 su-
percomputer (http://www-theorie.physik.unizh. ch/dpotter/zbox2/) at the
University of Zurich. Each simulation was performed by using 16 CPU with
a typical run time of 6 (24) hours for one-(two-)component simulation. The
number of particles and the softening parameter of model galaxies in each
merging pair are chosen as follows. For each pair, we set the number of par-
ticles of the low-mass progenitor as equal to N

L2
= 50000 and we obtain the

softening parameter, ε
L
, from the relation between number of particles and

optimal softening length presented in Sec. 2.4.1 (see Eq. 2.34). Given this
softening value, we invert Eq. 2.34 to establish the number of particles of the
most-massive progenitor, N

L1
. This procedure allows us to keep the relative

mean error on the discrete gravitational potential of each merging galaxy
below ∼ 15% (see Fig. 2.8), without overly increasing the computation time
required for running the simulations. Each merging pair is identified by a
different label as shown in column one of Tab. 3.2, with the quantities N

L1
,

N
L2

, and ε
L

being reported in columns two and three of the same table.
We found that all merging pairs, with the exception of the pair ML−6 in the
case E = 0 and L = 0, made merging after a time of 5 Gyrs. Although the
initial conditions of the simulations were chosen according to the Binney and
Tremaine (1994) prescription, for the pair ML − 6 with E = 0 and L = 0,
we found that the two model galaxies do not merge even when running the
simulation over an Hubble time. The fact that for some initial conditions a
given pair does not merge is explained by the fact that the allowed merging
region of Binney and Tremaine (1994) is not uniquely defined by the values of
E = 0 and L = 0, but depends also on the internal dynamical structure of the
merging models (see e.g. Dantas et al. 2003, for a more extended discussion).
Thus, we decided to simply remove the above case from the analysis.

3.1.2 Two-component models

For the two-component models, the characteristics of each merging pair
are tabulated in Tab. 3.3. For each pair, columns two and three report the
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Models G1 G2 N
L1

N
L2

ε
L

(kpc) MR LR

(1) (2) (3) (4) (5) (6) (7) (8)
ML − 1 1 1 50000 50000 0.018 1 : 1 1 : 1
ML − 2 1 2 23436 50000 0.040 1 : 2 1 : 2
ML − 3 1 3 8365 50000 0.069 1 : 6 1 : 4
ML − 4 4 4 50000 50000 0.034 1 : 1 1 : 1
ML − 5 4 5 16696 50000 0.052 1 : 2 1 : 2
ML − 6 4 6 6912 50000 0.070 1 : 6 1 : 4

Table 3.2: Properties of discrete realizations of merging pairs in the case of one-
component Sérsic models. Col. 1: label of the merging pair. Cols. 2 − 3: labels of
the two progenitors in a given merging pair, according to the first column of Tab. 3.1.
Cols. 4− 5: number of particles in the stellar components of the two progenitors (see the
text). Col. 6: softening length, ε

L
, in units of kpc. Col. 7: progenitor mass ratio, MR.

Col. 8: progenitor luminosity ratio, LR.

identification numbers of the two model galaxies, according to Tab. 3.1. As
in the case of one-component models, for each pair we run four simulations
according to the different pairs of initial orbital parameters E and L. Model
one (four) is merged with itself and with models two (five) and three (six).
Moreover, in order to investigate some further cases of merging between
models resembling bright and ordinary early-type galaxies, we added two
further merging pairs, consisting of models two and three and models three
and four, respectively. This results in a total of eight two-component merging
pairs, leading to 32 merging simulations. As for the one-component models,
each pair is identified by a label, which is reported in Tab. 3.3.
The softening length and the number of particles of each merging model
are chosen as follows. For the two progenitors in a given pair, we fix the
number of particles of the corresponding dark matter haloes to N

D1
= 75000

and N
D2

= 75000, and we obtain the softening length of the dark matter
component, ε

D
from Eq. 2.34. The softening length of the stellar components,

ε
L
, is obtained as in the case of one-component models (fixing the number

of particles of the less-massive progenitor to 50000, and then deriving the
corresponding optimal smoothing length and the number of particles of the
companion model galaxy from Eq. 2.34). For each pair, all the relevant
quantities that characterize the discrete realization of the model galaxies are
reported in Tab. 3.3.
As for one component models, all simulations are run for 5 Gyrs, since we
found that simulations producing merged systems always do merge before
this time, leading to virialized end-products. Only for the pair MD − 4 in
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the case E = −3 and L = 0 and for the all the pairs with E = 0 and
L = 0, we found that merging does not take place over an Hubble time.
As discussed before, this can be explained by the dependence of the allowed
merging regime from the internal dynamical structure of the progenitors. In
the following, we do not analyze the cases that do not lead to form merged
systems.

Models G1 G2 N
L1

N
L2

N
D1

N
D2

ε
L

(kpc) ε
D

(kpc) MR LR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
MD − 1 1 1 50000 50000 75000 75000 0.018 0.193 1 : 1 1 : 1
MD − 2 1 2 23436 50000 75000 75000 0.040 0.086 1 : 2 1 : 1
MD − 3 2 3 8365 50000 75000 75000 0.069 0.038 1 : 2 1 : 2
MD − 4 1 3 8365 50000 75000 75000 0.069 0.038 1 : 6 1 : 4
MD − 5 3 4 5521 50000 75000 75000 0.069 0.033 1 : 6 1 : 4
MD − 6 4 4 50000 50000 75000 75000 0.034 0.033 1 : 1 1 : 1
MD − 7 4 5 16696 50000 75000 75000 0.052 0.032 1 : 2 1 : 2
MD − 8 4 6 6912 50000 75000 75000 0.070 0.031 1 : 6 1 : 4

Table 3.3: Properties of the discrete realizations of merging pairs in the case of two-
component Sérsic models. Col. 1: label of the merging pair. Cols. 2 − 3: labels of the
two progenitors in a given merging pair, according to the first column of Tab. 3.1. Cols.
4 − 5: number of particles in the stellar components of the two progenitors. Cols. 6 − 7:
number of particles in the dark matter halo components of the two progenitors. Col. 8:
softening length of the stellar component, ε

L
, in units of kpc. Col. 9: softening length of

the dark matter halo, ε
D

, in units of kpc. Col. 10: progenitor mass ratio, MR. Col. 11:
progenitor luminosity ratio, LR.

3.2 Deriving the observed properties of merg-
ing remnants

We want to determine the structural and kinematic properties of the
end-products of the merging simulations and compare them with observed
properties of ETGs. To this aim, we start from the set of positions and
velocities in each simulation output file produced by GADGET-2, applying
the following procedure.

For both one- and two-component merging remnants (hereafter MRs), we
select only the sub-set of (stellar and dark matter) particles which are still
bound at the end of the simulation. A particle i is considered to be bound if
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the following condition is fulfilled:

Ei =
1

2
|vi|2 + Φ(xi) ≤ 0 , (3.2)

where xi and vi are the position and velocity vectors of the particle i and
Φ(xi) is the gravitational potential of the system at the given position. Here-
after, all the quantities xi and vi are intended as computed with respect to
the center of mass of the N-body system 1.

In order to derive the scaling relations of merger remnants and their
progenitors (see Sec. 3.4), we have to compute for each system the effective
radius, ReL

, the mean effective brightness within this radius, 〈μ〉e, and the
central velocity dispersion σ0. To this aim, for a given N-body system (ei-
ther a progenitor or a MR), we first project the positions and velocities of
all the particles on a given plane. We consider three different projections,
corresponding to the three planes with cartesian coordinates (x, y), (x, z),
and (y, z). In other words, we mimic three cases where the line-of-sight of
the observer would correspond to the three cartesian axes x, y and z. Us-
ing the luminosity of each particle (as derived from the numbers of particles
and total luminosities reported in Tabs. 3.1, 3.2 and 3.3 ), we calculate the
total B-band luminosity of the system, LB. Then, we order all particles of
stellar matter according to their distance to the center, and for each parti-
cle we calculate the luminosity enclosed within its projected radius. In this
way, we obtain the growth curve of the luminosity of the system. We de-
fine the circularized effective (half-light) radius of the system, ReL

, as the
projected radius that contains half of the its total luminosity. The mean
effective surface brightness within ReL

is computed, according to its defini-
tion, as 〈μ〉e = −2.5log(LB)/2 πReL

. We note that the quantities ReL
and

〈μ〉e provide non-parametric estimates of the structural properties of a given
system. In the next section, we also discuss how alternative estimates of the
effective radius and the corresponding mean surface brightness are derived
by fitting a Sérsic law to the surface brightness profile of progenitors and
merger remnants.

For a given adopted line-of-sight direction, γ, we calculate the projected
central velocity dispersion, σ0, with the following formula:

σ0 =

√√√√ 1

NA

NA∑
i=1

(vγi
− vγ)2 , (3.3)

1We use the expression N-body system to denote either a progenitor or a merger rem-
nant.
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where NA is the number of the stellar particles within a given projected
circular aperture of radius A, vγi

is the velocity of the i−th particle projected
along the line-of-sight, and vγ is the mean velocity along the line-of-sight.
To compare the properties of merger remnants with observational findings
from previous works, we consider two apertures, a fixed size aperture of
A = AJ = 0.595/0.7 kpc, which is the one adopted from Jorgensen et al.
(1996) when deriving the fundamental plane relation of ETGs in nearby
clusters (transformed to a cosmology with H0 = 70km s−1 Mpc−1), and an
adaptive aperture of A = AB = R

eL
/8, which is to the aperture used from

Bernardi et al. (2007) when deriving the Faber-Jackson relation of ETGs in
the Sloan Digital Sky Survey (SDSS). We note that Eq. 3.3 is implicitly
neglecting seeing effect on the velocity dispersion estimates.

For each progenitor and merger remnant, we take the average of all the
measured quantities with respect to the three above mentioned projections,
with the corresponding standard deviation providing an estimate of the un-
certainty on each quantity.

3.3 Surface brightness profiles of N-body sys-
tems

3.3.1 Fitting the profiles with a Sérsic law

For a given N-body system, we derive the circularized surface bright-
ness profile by applying a similar procedure to that outlined in the previous
section. We order the particles of the stellar component according to their
projected distance to the center. Then, we bin the projected distances, with
each bin having the same number of particles. We considered 100 particles
for each bin, verifying that the results do not change when varying the num-
ber of particles from 50 to 200. For each bin, we calculate the mean projected
radius of the particles in that bin, R. The corresponding surface brightness
value, μ(R), is obtained by dividing the total luminosity of the particles in
the bin by its area. Hereafter, we refer to μ(R) as to the circularized surface
brightness profile.

For a given N-body system, the circularized profile is fitted by a Sérsic
law (see Sec. 2.2.1 ). The fit is performed by minimizing the χ2 function:

χ2 =
N∑

i=1

[μ(Ri) − μSersic(Ri)]
2

(N − Npar)
, (3.4)

where N is the number of radial bins selected for the fitting (see below), and
Npar(= 3) is the number of free parameters of the Sérsic law, μSersic, which are
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the central surface brightness of the model, μ0best
, its effective radius, Rebest

,
and the Sérsic index, nbest. The mean surface brightness with Rebest

, 〈μ〉ebest
,

is then computed from μ0best
and Rebest

using Eq. 23 in Ciotti and Bertin
(1999). In the following analysis of correlations involving the effective radius
and the mean surface brightness of model galaxies, we test the robustness of
our results by adopting either the non-parametric quantities ReL

and 〈μ〉e,
or the best-fitted Sérsic parameters Rebest

and 〈μ〉ebest
. The Sérsic parameters

are derived by fitting a given range of the surface brightness profile, from a
minimum radius Rmin to an outer radius Rmax. Since the inner part of the
profile is blurred by the softening parameter of the simulations, the value of
Rmin is set equal to three times the softening length ε

L
. For the maximum

radius Rmax, we considered two cases. In the first case, we adopt an adaptive
value of Rmax = 5 ·ReL

. This is the typical outer radius for the determination
of the surface brightness profile of ETGs in very deep observations. Since
from the observational viewpoint the surface brightness profile of ETGs is
more often derived with a constant surface brightness threshold rather than
adopting an adaptive maximum radius, we also fit the profiles by a value of
Rmax corresponding to a surface brightness limit of μB < 27mag arcsec−2.
In the following sections, we show that the results do not change significantly
when fitting the profiles within either one or other radial range.

3.3.2 Analysis of the surface brightness profiles

Fig. 3.1 shows the surface brightness profiles of the progenitors for merg-
ing simulations with one-component models. For each progenitor, we show
the measured and fitted profiles, as well as the fitting residuals in units of
mag arcsec−2. The fit was performed with Rmax = 5 ·ReL

. Fig. 3.2 shows the
fitting results for the same progenitors, when a constant surface brightness
cut is applied. In both cases, as expected by construction, the Sérsic fit well
reproduces the estimated surface brightness profiles. We verified that this
holds for all the one-component progenitors. The best-fitting parameters of
the Sérsic law, Rebest

and n, turned out to be fully consistent, within a few
percent, with the input parameters of the simulations. We also found that
the best-fitting parameters of the Sérsic model do not change significantly
(by less than 1%), when adopting different choices of Rmax.

For the two-component progenitors, we performed the same tests as for
the one-component case. Fig. 3.3 show the surface brightness profiles of the
progenitors. The fit is performed in the radial range 3 · ε

L
< R < 5 · ReL

,
while in Fig. 3.4 we show the fitting results when a constant surface brightness
threshold of 27 mag arcsec−2 is adopted. As expected, structural parameters
are fully consistent with the input parameters of the models, and do not
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Figure 3.1: Surface brightness profile, μ(R), for all one-component progenitors. Red
curves represent the best fitted Sérsic profile in the radial range 3 · εL < R < 5 ·ReL (kpc).
Bottom panels show the residuals between the profile and the best fit. The label of each
progenitor (see Tab. 3.1) is reported in the upper-right corner of each plot together with
the best fitting parameters Rebest

and nbest.
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Figure 3.2: Surface brightness profile, μ(R) for all one-component progenitors. Red
curves represents the best fitted Sérsic profile performed on particles with μB <
27mag arcsec−2. The label of each progenitor (see Tab. 3.1) is reported in the upper-
right corner of each plot together with the best fitting parameters Rebest

and nbest.
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change when applying a different radial range to fit the profiles. As also
expected from the symmetry of the models for both one- and two-component
progenitors, we found that all fitted quantities do not depend on the two-
dimensional projection where the surface brightness profile is derived.

The surface brightness profiles of the MRs of one-component simulations
were analyzed in the same way as the progenitors. Some fitting examples are
presented in Figs. 3.5 and 3.6 (Figs. 3.7 and 3.8) for initial conditions E = −3
and L = 0 (E = 0 and L = 2) for the two fitted radial ranges, respectively.
The figure shows that fitting residuals are always smaller than a few tenths
of magnitude, with no systematic trend as a function of R. This implies that
the remnants are well described by the Sérsic law, with this result holding
for all the merger remnants analyzed here. All best fitted parameters, Rebest

,
〈μ〉ebest

and the Sérsic index nbest, were found not to depend significantly on
the fitting method as shown in the following section.

For the two-component simulations, we basically found the same results as
in the one-component case. Some fitting examples of MR’s surface brightness
profiles are shown in Figs. 3.9 and 3.10. All the profiles turn out to be well
described by the Sérsic law and also in this case we found that best fitted
parameters do not change significantly for different choices of Rmax.

3.4 Results

It is well known that observed properties of ETGs, such as radius, lumi-
nosity, shape parameter, and velocity dispersion, are tightly correlated. In
this section, we derive several correlations for the merger remnants of the
one- and two-component Sérsic models, comparing them with observational
results from previous works.

3.4.1 Fundamental Plane

One the most well known scaling laws of ETGs is the so-called Funda-
mental Plane relation (hereafter FP), which is usually expressed as a relation
among Re, 〈μ〉e and the line-of-sight central velocity dispersion σ0 (Djorgov-
ski and Davis 1987; Dressler et al. 1987). The main characteristics of the FP
are its small intrinsic dispersion, in the range of 0.06 − 0.13dex in Re (Jor-
gensen et al. 1996; Pahre et al. 1998), and its tilt, i.e. the deviation of the
FP slopes from those expected for a virialized family of homologous systems
with constant mass-to-light ratios (Busarello et al. 1997). The origin of the
tilt is still not clear, with possible explanations involving (i) a variation of
the mass-luminosity ratio of ellipticals as a function of mass (Djorgovski



3.4. RESULTS 63

Figure 3.3: Surface brightness profile, μ(R), for all two-component progenitors. Red
lines represents the best fitted Sérsic law in the radial range 3 · εL < R < 5 · ReL (kpc).
Bottom panels show the residuals between the profile and the best. The label of each
progenitor (see Tab. 3.1) is reported in the upper-right corner of each plot together with
the best fitting parameters Rebest

and nbest.
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Figure 3.4: Surface brightness profile, μ(R) for all two-component progenitors. Red
curves represent the best fitted Sérsic profile performed on particles with μB <
27mag arcsec−2. Bottom panels show the residuals between the profile and the best fit.
The label of each progenitor (see Tab. 3.1) is reported in the upper-right corner of each
plot together with the best fitting parameters Rebest

and nbest.
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Figure 3.5: Surface brightness profile, μ(R), for one-component MRs. Simulations are
performed setting the initial orbital parameters as E = −3 and L = 0. Red lines represents
the best fitted Sérsic profile performed on the radial range 3 · ε

L
< R < 5 · ReL

(kpc).
Bottom panels show residuals between the profile and the best fit profile. The label of
each progenitor (see Tab. 3.2) is reported in the upper-right corner of each plot together
with the best fitting parameters Rebest

and nbest.
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Figure 3.6: Same as Fig. 3.5 but for initial orbital parameters as E = −3 and L = 2.
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Figure 3.7: Surface brightness profile, μ(R), for one-component MRs. Simulations are
performed setting the initial orbital parameters as E = −3 and L = 0. Red lines represents
the best fitted Sérsic profile performed on particles with μB < 27mag arcsec−2. Bottom
panels show the residuals between the profile and the best fit. The label of each progenitor
(see Tab. 3.2) is reported in the upper-right corner of each plot together with the best
fitting parameters Rebest

and nbest.
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Figure 3.8: Same as Fig. 3.7 but for initial orbital parameters as E = −3 and L = 2.
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Figure 3.9: Surface brightness profile, μ(R), for two-component MRs. Simulations are
performed setting the initial orbital parameters as E = −3 and L = 0. Red lines represents
the best fitted Sérsic law in the radial range 3 · ε

L
< R < 5 · ReL

(kpc). Bottom panels
show the residuals between the profile and the best fit. The label of each progenitor (see
Tab. 3.3) is reported in the upper-right corner of each plot together with the best fitting
parameters Rebest

and nbest.
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Figure 3.10: Same as Fig. 3.9 but for initial orbital parameters as E = −3 and L = 2.
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and Santiago 1993; Pahre et al. 1995), and/or a breaking of the homology
assumption (e.g. Ciotti et al. (1996); Busarello et al. (1997); Graham and
Colless (1997); Bekki (1998)). Several works have addressed the origin of
the FP relation using N-body simulations. Capelato et al. (1995) showed
that the FP can naturally arise from dissipationless galaxy-galaxy merging.
They considered only one-component galaxy models following the King pro-
file. On the other hand, Dantas et al. (2002) showed that single collapse
events of spherical, one-component systems produce nearly homologous fam-
ilies of objects. Dantas et al. (2003) extended the investigation of Capelato
et al. (1995), analyzing the dissipation-less merging of two-component Hern-
quist models up to two merging generations. They still found that the two-
component merger remnants follow a relation similar, but significant steeper,
than the observed FP. Nipoti et al. (2003) also explored the effect of dissi-
pationless merging on the FP. They produced several merging generations,
starting from progenitors described by equal-mass, spherical, isotropic and
one-component Hernquist models. Merging generations were obtained by re-
peating the merging of the end products obtained from the previous merging
step. They also investigated to some extent the merging of seed galaxies de-
scribed by two-component Hernquist models, with a dark matter halo more
massive and less concentrated than the stellar component. Nipoti et al.
(2003) also showed that merging end-products well reproduce the observed
FP.

In Fig. 3.11, we present the edge-on projection of the FP for all the
progenitors and MRs obtained for both the one- and two-component models.
The effective parameters are estimated from the non-parametric approach
described in Sec. 3.2. In order to consistently compare the simulation results
with the observational findings of Jorgensen et al. (1996), velocity dispersions
of both progenitors and merger remnants were derived here in fixed size
aperture, as detailed in Sec. 3.2. In the figure, progenitors are represented
by using black circles while other colors refer to different values of the initial
orbital parameters, as indicated in the bottom right corner of the figure.
Open symbols indicate one-component models, while filled symbols represent
two-component systems. The solid and dashed blue lines represent the FP
and its 1−σ scatter, as measured from Jorgensen et al. (1996) for ETGs
in clusters of galaxies at z ∼ 0 in the r-band. To convert the luminosities
of our model from B-band to r-band we used the color-magnitude relation
from Mercurio et al. (2006), derived for galaxies in the Shapley super cluster
(z ∼ 0.05). Figs. 3.13 and 3.12 are the same as Fig. 3.11, but show effective
parameters derived from the Sérsic fitting of the surface brightness profiles,
for the case where Rmax = 5ReL

and the case where a fixed surface brightness
cut in the profile is adopted (see Sec. 3.3.1). In agreement with previous
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studies (see above), the figures show that dissipationless merging of one-
and two-component models is able to reproduce the observed FP of elliptical
galaxies. MRs follow a FP relation parallel to that of the progenitors, though
slightly offset towards the bottom-right part of the plot. However, all the
points are well within the observed scatter of the FP. The result is the same
for both one- and two-component models, and does not depend on the initial
merging conditions (values of E and L).

3.4.2 Kormendy relation

One projection of the FP is the correlation between 〈μ〉e and log(Re) also
known as Kormendy relation (hereafter KR Kormendy 1977). The distribu-
tion of ETGs in the 〈μ〉e −Re plane (or equivalently in the plane M − 〈μ〉e),
reveals the existence of two distinct families: the ordinary family of ellipti-
cals, and the bright family, consisting of the most luminous ETGs (Capaccioli
et al. 1992). As suggested by Capaccioli et al. (1992), the 〈μ〉e − log(Re) dia-
gram might be interpreted as an Hertzsprung-Russell diagram for ETGs, with
elliptical galaxies reaching the bright end of the 〈μ〉e − Re relation through
successive mergers of low-mass systems, according to a hierarchical merging
scenario where small galaxies are the building blocks of more massive sys-
tems. Using numerical simulations, Evstigneeva et al. (2004) investigated if
dissipationless merging of low-mass systems is able to produce systems that
lie on the KR of bright galaxies. They modeled dwarf ETGs with a lumi-
nous component embedded in more extended dark matter halo. The lumi-
nous component was modelled using the potential-density pair of Hernquist
(1990), while the dark halo density profile was represented as a truncated
isothermal sphere (Hernquist 1993b). They found that final merging prod-
ucts are not moved along the KR, concluding that ETGs are not formed by
merging dwarfs, unless a considerable amount of dissipation is involved in
the merging. On the other hand, simulating the merging of galaxy pairs that
lye on the KR of bright galaxies, they found the end products to still lie on
the KR, once the observational scatter is taken into account. Using N-body
simulations, Nipoti et al. (2003) also concluded that merging end-products
of bright ETG models do not reproduce the KR, having too large effective
radii.

In Fig. 3.14 we present the MB−〈μ〉e relation for all progenitors and MRs,
considering both the one- and two-component simulations. The effective
parameters are obtained from the non parametric approach described above
(see Sec. 3.2). Symbols are the same as in Fig. 3.11, with solid and dashed
blue lines representing the KR and its observational scatter in the B-band
from Graham and Guzmán (2003b). In Figs. 3.15 and 3.16, we also show the
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Figure 3.11: The edge-on fundamental plane relation for all progenitors and MRs ob-
tained from non-parametric estimates of effective parameters. Open symbols represent
one-component progenitors and MRs, while filled points represent two-component progen-
itors and MRs. In the bottom right corner of the figure we report the meaning of different
colors. The solid and dashed lines represent the observed FP relation and its scatter from
Jorgensen et al. (1996).
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Figure 3.12: Same as Fig. 3.11 with structural parameters derived from a Sérsic fit of
the surface brightness profile (cut at μ(Rmax) = 27mag arcsec−2).
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Figure 3.13: Same as Fig. 3.12 for Rmax = 5ReL
.
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same KR plot as in Fig. 3.14, but using photometric quantities obtained by
the Sérsic fit of the surface brightness profiles considering different choices
of Rmax (see Sec. 3.3.1). Some global trends can be seen in the figures.
Merging products have a brighter absolute magnitude, MB, and a larger
value of the mean surface brightness, 〈μ〉e. This is basically due to the fact
that merging blows up the progenitor, increasing their radius and producing
a fainter mean surface brightness value. The amount of blowing-up depends
on the initial orbital energy of the simulation, being larger for E = −3 where
more orbital energy is pumped into the system. In agreement with what
found by Evstigneeva et al. (2004), after one merging generation, massive
galaxy models (MB < −18) are moved along the observed KR. In contrast to
previous studies (see e.g. Evstigneeva et al. 2004; Nipoti et al. 2003), we find
that one merging generation is not able to move low-mass galaxy models far
away for the observed locus of galaxies in the MB-〈μ〉e plane. Our simulation
do not exclude the possibility of making bright elliptical galaxies by merging
dwarf systems. In fact, as shown by De Lucia et al. (2006), massive ETGs
result from several dissipationless mergers of low mass systems, while low
mass systems (M < 1011 M�) experienced on average only one dissipationless
major merging event. As shown from our simulations, this prevents low
mass systems to escape from the region occupied by ordinary galaxies in the
Re − 〈μ〉e plane. As for the FP, we see that one- and two-component models
show the same behaviour. Moreover, the results do not depend on the choice
of the radial range where the fit of the surface brightness profile is performed,
and does not change for different initial conditions of the simulations.

3.4.3 Faber-Jackson relation

The luminosity and central velocity dispersion of ETGs are strongly cor-
related (see e.g Faber and Jackson 1976). The relation, also known as Faber-
Jackson (hereafter FJ) relation, is approximately linear when considering
magnitude and logarithm of velocity dispersion. Davies and Illingworth
(1983) also suggested that a double power-law fit actually provides a bet-
ter representation of the FJ relation. Recently, using a large sample of ETGs
in the Sloan Digital Sky Survey, Bernardi et al. (2007) found the following
correlation between σ0 and the r-band absolute magnitude, Mr:

log(σ0) = 2.184 − 0.104(Mr + 21) , (3.5)

where σ0 is measured within an aperture with adaptive size of Re/8.
The effect of dissipation-less merging on the FJ relation has been investigated
by N-body simulations from Nipoti et al. (2003) (see Sec. 3.4.1). They found
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Figure 3.14: The non parametric MB−〈μ
B
〉e relation for all progenitors and MRs. Open

symbols represent one-component progenitors and MRs, while filled circles represent two-
component progenitors and MRs. In the bottom right corner of the figure we report the
meaning of different colors. Solid and dashed lines represent the KR and its 1σ scatter
from Graham and Guzmán (2003b).
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Figure 3.15: MB − 〈μB 〉e relation of best-fitted parameter obtained performing the fit
of the surface brightness profile with Rmax = 5 ·ReL

. Colors and symbols are the same as
Fig. 3.14.
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Figure 3.16: The MB − 〈μB 〉e relation for best-fitted parameters as obtained when a
constant surface brightness cut is applied in the fit of the surface brightness profile. Colors
and symbols are the same as Fig. 3.14.
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that merging end-products have σ0 lower than that predicted by the observed
FJ relation and that the discrepancy is even larger for merging simulations
with significant angular momentum.

In Fig. 3.17 we present the σ0 − MB relation of all our progenitors and
MRs, and compare it with that of Bernardi et al. (2007) (see above). Values
of σ0 for the N-body simulations are measured within the same adaptive
aperture as for the observations (see Sec. 3.2). Symbols are the same as in
Fig. 3.11, with solid and dashed blue lines representing the FJ relation and its
observational 1σ scatter from Bernardi et al. (2007). We converted B−band
magnitudes of our models to r-band by using the B − R color-magnitude
relation of ETGs from Mercurio et al. (2006) and a constant color term of
r − R = 0.37 from Fukugita et al. (1995). The plot shows that there is a
mismatch between the slope of the L-σ relation for the progenitors and the
observed slope of the FJ relation. This difference might be explained by the
fact that the mass-to-light ratios we used to normalize the model parameters
(see Sec. 2.3) were appropriate for dynamical models of ETGs that are built to
match galaxy observed properties within one effective radius (see Cappellari
et al. (2006)). A slight different mass-to-light versus mass relation might
easily explain the effect seen in Fig. 3.17, bringing back the progenitors on top
of the observations. The somewhat different trends we also see in the figure
for bright (MB < −18) and ordinary galaxies (MB > −18) is likely explained
by the fact that we considered two simple linear relations to describe the
distribution of galaxies in the Re-〈μ〉e plane (instead of a more continuous
relation see Graham et al. (2006b) ). However, when looking at MRs, it
is quite remarkable that merged two-component models are very consistent
with the observed relation. We note that also in this case initial conditions
of the simulations do not change significantly the results.

3.4.4 The MB − n relation

As mentioned in Sec. 2.1.1, the Sérsic index n of ETGs correlates with
galaxy luminosity, in the sense that brighter galaxies tend to have larger n
(Caon et al. 1993; Graham et al. 1996; Graham and Guzmán 2003b), indi-
cating structural non-homology in the class of ETGs, i.e. the fact that the
profile slope of ETGs changes systematically along the galaxy sequence (see
e.g. Davies 1988; Capaccioli 1989; Caon et al. 1993; Young and Currie 1994;
D’Onofrio et al. 1994; Prugniel and Simien 1997). Since our N-body simula-
tions are based on galaxy models described by the Sérsic galaxy profile, we
can investigate in detail, how dissipation-less merging affects the luminosity-
n relation of ETGs. In Figs. 3.18 and 3.19, we present the luminosity-size
relation, MB − n, for all progenitors and MRs. In the first plot, the best-
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Figure 3.17: logσ0 − MB relation of all progenitors and MRs. Open symbols represent
one-component progenitors and MRs, while filled points represent two-component progen-
itors and MRs. In the bottom right corner of the figure we report the meaning of different
colors. Solid and dashed blue lines represent the FJ and its scatter from Bernardi et al.
(2007).
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fitted Sérsic indices are obtained for a constant surface brightness threshold
of 27 mag arcsec−2 in the fitting procedure, while in latter plot the fit is per-
formed on the radial range 3 · ε

L
< R < 5 ·ReL

(see Sec. 3.4.1). Symbols are
the same as in Fig. 3.11.Solid and dashed blue lines represent the n − MB

relation and its observational 1σ scatter as derived from Trujillo et al. (2004)
in the B-band. We find that the absolute magnitude, MB, always becomes
brighter after merging. However this does not necessarily correspond to an
increase of n. In particular, MRs resulting from a merger between ordinary
model galaxies are moved from the merging roughly parallel to the observed
n − MB relation. We do not find the same behaviour for MRs of bright
model galaxies. However, considering the large scatter of the n − MB re-
lation, also in this case we can consider the properties of MRs essentially
consistent with observations. No difference due to the choice of the fitting
radial range neither to the initial conditions of the simulations is found.

3.5 Internal color gradients of ETGs

ETGs do not have uniform stellar populations, with their stars becom-
ing bluer towards the galaxy outskirts. These internal color gradients were
known to exist since the pioneering work of de Vaucouleurs (1961), and were
interpreted as due to the presence of internal metallicity gradients in ETGs,
with stars at the galaxy center being more metal rich and therefore redder
than those in the galaxy periphery (Faber 1977). The major evidence for
this interpretation came from spectroscopic measurements of absorption line
strengths. The Mg2 and Fe absorption-line strengths of ETGs decrease as a
function of the distance to the galaxy center (Burstein et al. 1984; Efstathiou
and Gorgas 1985; Thomsen and Baum 1989), hence favoring the interpreta-
tion of color gradients as changes in the metallicity content of galaxy stellar
populations. Peletier et al. (1990) measured the U−R and B−R color profiles
of a sample of 39 ETGs at redshift z ∼ 0 and found that a pure metallicity
gradient is able to explain simultaneously the radial change of both colors in-
side galaxies. They found the mean ratio of U −R and B−R color gradients
to be 2.2 ± 0.5, with this value being fully consistent with that of 2.1 that
is expected in the case of a pure metallicity gradient. However, this result
should be taken with some caution, since observational errors on color gradi-
ents are large and colors of stellar populations can be redder either a higher
metallicity or an older age. This so-called age-metallicity degeneracy was
first pointed out by Worthey et al. (1996). The age-metallicity degeneracy
makes also difficult to interpret the origin of the color-magnitude (hereafter
CM) relation of ETGs, for which brighter galaxies have redder colors (Bower
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Figure 3.18: The nbest − MB relation as obtained when a constant surface brightness
cut is applied in the fit of the surface brightness profile. Open symbols represent one-
component progenitors and MRs, while filled points represent two-component progenitors
and MRs. In the bottom right corner of the figure we report the meaning of different
colors. Solid and dashed blue lines represent the n − MB relation and its scatter from
Trujillo et al. (2004).
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Figure 3.19: The nbest − MB relation as obtained by fitting of the surface brightness
profile with Rmax = 5 · ReL . Colors and symbols are the same as Fig. 3.18.
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et al. 1992a,b). As shown by Arimoto and Yoshii (1987) and Kawata (2001),
the CM relation can be explained as a pure metallicity sequence, with the
average metallicity of stellar populations increasing as a function of galaxy
luminosity. This interpretation arises naturally in the framework of the so-
called monolithic collapse model of galaxy formation, where the galactic
wind mechanism would naturally produce a correlation between metal con-
tent of galaxies (and hence the color) and their mass (luminosity), but it can
also be explained within a hierarchical merging picture of galaxy formation
(De Lucia et al. 2006). On the other hand, Worthey et al. (1996) showed
that the CM relation at redshift z ∼ 0 can also be reproduced by a pure
age sequence, where bright elliptical galaxies are older and thus redder than
the fainter ones, and the metallicity of galaxy stellar populations does not
change along the CM sequence. The most effective way of breaking the age-
metallicity degeneracy is that of studying the evolution of the CM relation as
a function of the look-back time (Kodama and Arimoto 1997). In fact, if the
CM relation origins from an age sequence, it should evolve rapidly and should
disappear beyond a certain redshift, as faint galaxies approach their forma-
tion epoch. On the contrary, if the CM relation is primarily driven from
a metallicity change and all ETGs are essentially old, this relation should
evolve passively and should be still in place at high redshifts. Following this
approach, Kodama and Arimoto (1997) compared the CM relation of ETGs
in intermediate redshift clusters (up to z ∼ 0.4) with the predictions of both
age and metallicity models. They found that the CM relation evolves very
little with redshift, accordingly to what expected for a pure metallicity se-
quence. By adopting a similar approach to that of Kodama and Arimoto
(1997), Tamura et al. (2000) analyzed the origin of color gradients in ETGs.
They described the galaxy in terms of an inner and outer stellar populations,
and used a stellar population synthesis code to estimate the difference of
color indices (i.e. the color gradient) of these two stellar populations. They
produced two models of color gradients, the age and the metallicity models.
In the age model, the metallicity of both stellar populations is fixed to the
same value, while the age varies from the galaxy center to outskirts. In the
second model, metallicity is changed, while age is fixed to be old for both the
inner and outer regions. Both models were calibrated to reproduce the color
gradient of elliptical galaxies at z ∼ 0. By evolving back in time both mod-
els, Tamura et al. (2000) compared model predictions with color gradients of
distant elliptical galaxies (up to redshift z ∼ 1) from the Hubble Deep Field
north (Williams et al. 1996). They found that color gradients agree with
those predicted from a pure metallicity gradient model (see Fig. 3.20), while
they deviate significantly from predictions of a pure age gradient model even
at z ∼ 0.3 (see Fig. 3.21). The same conclusion was drawn from Saglia et al.
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(2000) and Tamura and Ohta (2000), by studying ETGs in distant clusters.

Figure 3.20: Observed color profiles of elliptical galaxies compared to the metallicity
gradient model of Tamura et al. (2000). Circles represent the data points. Crosses refer to
data points that excluded when deriving the slope of color profiles (i.e. the color gradient).
The models show the predicted color gradients seen at each object’s redshift. Solid lines
correspond to Δ(B − R)/Δ log(r/re) = −0.09 ± 0.02 mag dex−1 at z = 0 (i.e. 1σ error),
and the dotted lines correspond to Δ(B − R)/Δlog(r/re) = −0.09 ± 0.04 mag dex−1 at
z = 0 (i.e. 2σ error).

In the hierarchical framework of galaxy formation, ETGs can form through
two main channels: (i) galaxy-galaxy merging of disk galaxies, involving gas
dissipation, and (ii) dissipation-less merging of spheroidal systems in a given
dark matter halo (see Sec. 1.1.2). In general, merging processes are expected
to mix the stellar populations inside galaxies, hence washing out stellar popu-
lation gradients. This has been long advocated as an evidence in favour of the
hierarchical merging scenario for the formation of ETGs. In fact, monolithic
collapse models predict stellar population gradients which are significantly
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Figure 3.21: Same as Fig. 3.20 from Tamura et al. (2000), but for age gradient model.
The plots correspond to different redshift intervals as shown in the upper-left corner of
each panel.

steeper than those observed in ETGs (see e.g. Larson 1974a,b; Kawata 2001;
La Barbera et al. 2004), implying that some physical mechanism, such as
merging, is acting in making the gradients shallower than what expected
in a pure collapse picture. Unfortunately, so far, the effect of dissipation-
less merging on the internal stellar population gradients of ETGs has been
poorly investigated. The only work addressing this issue is that of White
(1980), who presented a set of dissipation-less merging N-body simulations,
analyzing how the merging flattens the initial metallicity gradient of the
progenitors. Galaxies were represented by spherical, non-rotating and cen-
trally dense N-body systems with 250 particles. All the merging simulations
involved only pairs of equal-mass galaxies, with initial conditions given by
either bound or parabolic orbits. The authors found that merger remnants
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resemble spheroidal systems, having radially decreasing velocity dispersion
and density profiles, well described by a power-law. White (1980) assigned
a metallicity to particles in the progenitors according to their initial bind-
ing energy. The mean metallicity profile of a model was then derived by
averaging particle’s metallicities within radial bins (see Fig. 3.22). He con-
cluded that dissipation-less merging is not very effective to mix the stellar
population content of galaxies. The metallicity gradient of merger remnants
is on average only 13% shallower than that of the progenitors. This find-
ing questions the idea that merging can flatten stellar population gradients
in galaxies, thus making troublesome the explanation of the shallow radial
gradients observed in ETGs.

One should note that the White (1980) simulations had a very low num-
ber of particles, implying a poor spatial and mass resolution. Moreover, they
consisted only of stellar matter models and no attempt was done to inves-
tigate the effect of unequal mass mergers. Taking advantage of the much
better resolution of the one- and two-component models presented in this
work (see Chapter 2), and the fact that our models represent more realisti-
cally the light and dark matter density profiles of ETGs, we re-analyze in
the following sections the effect of dissipation-less merging on the internal
population gradients of ETGs.

Figure 3.22: Mean metallicity as a function of projected radius for one initial model
(Iso) and four merger remnants (E,F,G,R) formed from it by White (1980). The dashed
lines are linear fit to data. Labels for each N-body system are reported in the lower-left
corner of the figure.
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3.5.1 Results

We investigate here how the internal metallicity gradient of model galaxies
is changed from dissipation-less galaxy-galaxy encounters.

Assigning the metallicity profile

For both the one- and two-component Sérsic progenitors, the metallicity
gradient is assigned by associating a given metallicity to each particle. Since
there is no objective prescription to perform this association, we verified a
posteriori that for systems in isolation the radial metallicity distribution of
the particles is on average preserved. For each particle, we assign metallicity
according to its three dimensional distance, r, to the galaxy center. We
impose the constraint that, when projected in two dimensions, the radial
metallicity distribution has to reproduce the observed metallicity profile of
ETGs. Following La Barbera et al. (2004), this profile can be written as:

log
Z

Z�
= log

(
3

2

)
+ b log

(
R

0.1ReL

)
, (3.6)

where the logarithmic slope of the profile is b ∼ log(0.6) ∼ −0.22. The central
metallicity of the profile is 3/2 of the solar value, Z�. The de-projected
metallicity profile of the system, z(r), is then obtained by solving the Abell
integral equation:

z(r)ρL(r) = − 1

π

∫ r

−∞

Z(x)I(x)√
x2 − r2

dx (3.7)

where I(R) is the projected surface brightness profile of the model, z(r)ρL(r)
(Z(R)I(R)) is the luminosity-weighted deprojected (projected) metallicity
profile of the system. For a given Sérsic law, we insert Eq. 3.6 into Eq. 3.7,
and then we derive the function z(r) by numerical integration of the Abell
equation. For both the one- and two-component progenitors, the function
z(r) allows a metallicity value to be directly assigned to each particle.

In order to prove if the above procedure is self-consistent, we let the
progenitors to evolve in isolation for 5Gyr, looking at the time evolution of
their initial metallicity profiles. As example, Fig. 3.23 shows the evolution
of the projected metallicity profile of the progenitor ML− 1 in time steps of
1Gyr. For each time snapshot, the metallicity profile is derived by taking the
luminosity-weighted average of the particle’s metallicity in radial bins. To
this aim, we first select only particles in the range of 3εL to 5Re. The lower
cut ensures that we avoid the inner region of the profile which is blurred
out by the smoothing of the gravitational potential. The upper radial cut
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T=0 Gyr T=1 Gyr T=2 Gyr

T=3 Gyr T=4 Gyr T=5 Gyr

Figure 3.23: Evolution of the projected metallicity profile of the progenitor ML − 1 in
time steps of 1Gyr.

is applied since the surface brightness profile of ETGs is usually measured
within few effective radii (see the discussion above on the choice of Rmax).
We bin the selected particles according to the radial projected distance to
the center. The bin size is chosen to be 0.01kpc up to 2kpc, and to 0.1kpc
between 2 and 5kpc. We also changed the binning prescription, and we
verified that this does not change our results. Finally, for each bin, we take
the average metallicity of particles in that bin, by weighting each particle
with the corresponding luminosity. All the panels in Fig. 3.23 have the same
scale on both axes. We clearly see that the metallicity profile of the system
in isolation remains constant as a function of time. The same result was
obtained for all the one- and two-component Sérsic models, and for different
two-dimensional projections of the progenitors (accordingly to what expected
from spherical symmetry).
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Metallicity profile of merger remnants

Fig. 3.24 shows the metallicity profiles of merger remnants, for one-
component simulations with different orbital energy (E = 0 and E = −3)
and no angular momentum (L = 0; see Sec. 3.3). The profiles have been com-
puting by the luminosity-weighted binning procedure described in previous
section. Fig. 3.25 shows the same profiles as in Fig. 3.24 but for the one-
component merging simulations with angular momentum L = 2. Hereafter,
we consider only a particular two-dimensional projection of the simulation
end-products, though we verified that all the results do not change when
considering the different projections. In all plots, the metallicity profile of
the progenitors is also shown as a reference (dashed line). We see that metal-
licity profiles of the merging end-products are always shallower that those of
the progenitors. Moreover, one can note that

- the flattening depends on the mass-ratios of the progenitors, with the final
profile being flatter in the case of small mass-ratio mergers;

- for a given mass ratio, the flattening also depends on the mass of the most
massive (hereafter the first rank) progenitor, with low mass progenitors
producing merger remnants with shallower metallicity gradients; this is
clearly seen when comparing upper and lower panels in Fig. 3.24 (and
Fig. 3.25); lower panels (i.e. low mass progenitors) show on average
flatter profiles;

- the orbital conditions also affect the profile of the merging end-products
though we do not see any clear systematic trend of the profile slope
with either E or L.

These results are summarized in Fig. 3.26, where for each one-component
merging pair we plot the relative flattening of the metallicity profile, defined
as bf−b

b
, where b is the slope of the metallicity profile of the progenitors

(b ∼ −0.22, see Eq. 3.6) and bf is the slope of the metallicity profile of the
corresponding merger remnant. The value of bf is derived by a linear least-
square fit of log Z as a function of log R. For the most massive progenitors
(labels from one to three in Fig. 3.26, the flattening of the profile slope
is around 15% of the initial value, with a wide range of values between 5
and 40%. The flattening value of 15% is consistent with that of 13% found
by White (1980). Progenitors with lower mass (labels from four to six in
Fig. 3.26 have on average larger values of bf−b

b
, going from 25% up to 80% in

the case of low mass-ratio mergers (label six in the figure). The above trends
can be explained by the fact that low mass progenitors have on average lower
Sérsic index. A lower n corresponds to a system with a less concentrated
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surface brightness profile, which corresponds to have particles on average
with a lower binding energy. This makes the radial mixing of particles more
effective in the case of low mass progenitors, explaining the above trend of the
flattening of the metallicity profile as a function of both the merging mass-
ratio and the mass of the first rank progenitor. This is shown in Fig. 3.27,
where we plot separately the metallicity profile of both progenitors at the
end of the simulation ML − 3 (case E = −3, L = 0). One can note that
after merging the profile of particles that were initially in the lower mass
progenitor (G2) is flatter than that corresponding to particles of the first
rank progenitor, indicating that radial mixing was is stronger for the low
massive system progenitor. We also verified that when further decreasing
the mass of the second rank progenitor, the effect disappears and the merger
remnant has a metallicity profile identical to the initial one. This simple test
is shown in Fig. 3.28, where we consider the final profile resulting from a
merging simulation similar to ML− 3 for which we decreased the total mass
of the second rank progenitor. The final profile is indistinguishable from the
initial one.

Figs. 3.29 and 3.30 are the same as Figs. 3.24 and 3.25 and show the
profile of merging end-products of two-component models. The figures show
the eight merging pairs as in Tab. 3.3, for simulation with L = 0 and L =
2, respectively. The results are the same as in the case of one-component
models. The merging pairs ML−1, ML−2, and ML−3 (ML−4, ML−5, and
ML−6) correspond here to two-component merging pairs MD−1, MD−2,
and MD−4 (MD−6, MD−7, and MD−8) in Figs. 3.29 and 3.30. Even for
the more realistic two-component models, we find that the flattening of the
metallicity profile is larger for lower mass-ratio mergers and for lower mass
progenitors. This is further shown in Fig. 3.31, (Fig. 3.26), but plotting two-
component (instead of one-component) models. Once again, one sees that
the flattening is stronger when decreasing both the merging mass-ratio and
the mass of the first rank progenitor.

The analysis was also repeated by changing the initial logarithmic slope
of the initial metallicity profiles from b = −0.2 to b = −0.3, with thus last
value being consistent with that measured by Idiart et al. (2003). The results
turned out to be the same as for the case with a shallower value of b.

3.6 Conclusion

We performed numerical simulations of one- and two-component galaxy
models, exploring the effect of dry mergers on the observed scaling relation
and internal color gradients of ETGs. The main results can be summarized
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Figure 3.24: Mean metallicity as a function of projected radius for one-component
progenitors (blue dashed line) and MRs (red and green points). Green and red colors refer
to different values of E as reported in the upper right corner of each panel. The plots refer
to the case L = 0. Only model pairs leading to merged systems are shown (see Sec. 3.1.1).

as follows.

• Remarkably, and in agreement with previous studies, all the merger
remnants (MRs) for both one and two-component simulations and in-
dependently of the density profile and the initial orbital parameters are
found to lie on the FP relation within the observed scatter. MRs follow
a FP relation roughly parallel to that of the progenitors.

• After one merging generation, luminous galaxy models are moved along
the observed KR. We also find that one merging generation is not able
to move low-mass galaxy models far away for the observed locus of
galaxies in the MB-〈μ〉e plane. The result is the same for both one-
and two-component models, and does not depend on the initial merging
conditions (values of E and L). These findings are in agreement with
a scenario whereby faint galaxies underwent on average non more than
one single dissipationless encounter in the past, while bright galaxies
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Figure 3.25: Same as Fig. 3.24 but for L = 2.

form through several dry mergers, as shown by semi-analytical models
of galaxy formation (De Lucia et al. 2006).

• Although we see a mismatch between the FJ relation of MRs and
progenitors (see discussion in Sec. 3.4.3) remarkably we find all the
two-component merged models follow the observed relation. Also in
this case the initial conditions of the simulations do not affect signifi-
cantly the properties of MRs.

• For luminosity-Sérsic index relation, the properties of MRs are fully
consistent with observations, taking into account the large scatter of
the n − MB relation. No difference due to initial orbital parameters is
found.

• Metallicity profiles of our MRs are always shallower that those of the
progenitors. The flattening depends on the mass-ratios of the progeni-
tors and on the mass of the most massive progenitor, in the sense that
final metallicity profiles are flatter in the case of small mass-ratio merg-
ers and for a lower mass of the first rank progenitor. The final profiles
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Figure 3.26: Relative flattening of the metallicity profile in one-component simulations.
Different colors refer to different values of the initial orbital parameter E as reported in
the upper-left corner of the figure. Filled symbols refer to cases with of L = 0, while open
symbols represent cases with L = 2.

of MRs also depend on the initial orbital parameters. In contrast to
previous studies (White 1980), findings reconcile the hierarchical forma-
tion scenario of ETGs with observational results, allowing the shallow
metallicity gradients of ETGs result of dissipationless galaxy merging.
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Figure 3.27: Mean metallicity as a function of projected radius for the model ML − 3.
Red line represents the gradient for particles belonged to the most massive progenitor,
while green points belonged to low-massive progenitor.
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Figure 3.28: Final metallicity profile resulting from a merging simulation identical to
ML − 3 (see Tab. 3.2) except than for a lower total mass of the second rank progenitor
(see text for details).
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Figure 3.29: Same as Fig. 3.24 for two component simulations.
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Figure 3.30: Same as Fig. 3.25 for two-component simulations.
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Figure 3.31: Same as Fig. 3.26 for two-component simulations.



Chapter 4

Disk dominated galaxies from
major mergers: the role of the
gaseous halo

We use hydrodynamical simulations to examine the structure of merger
remnants resulting from major merger between systems that are gas dom-
inated. We show that, in this case, a prominent disk survive. We analyze
an extreme example with progenitor galaxies consisting of a dark matter ha-
los, a gas halos, a pure gas disks and a small stellar bulges. The outline of
this chapter is as follows. In Sec. 4.1 and 4.1.1 we discuss different scenario
proposed in literature to rebuilding disk systems starting from a merger of
late-type galaxies. Models of galaxies used as initial conditions are presented
in Sec. 4.2, while in Sec. 4.3 and Sec. 4.4 we show and discuss the results of
the merging simulation.

4.1 Introduction

As show in Chapter 1, Toomre (1977) was among the first to recognize
that mergers can drive the evolution of galaxy types by changing disk into
objects that resemble ellipticals. This idea was examined numerically by
Barnes (1988, 1992) and Hernquist and Spergel (1992); Hernquist (1993a) in
the limit where dissipative effect arising from gas dynamics are negligible; in
these works they showed that mergers involving equal-mass galaxies do yield
remnants with properties similar to those of observed ellipticals. Models of
galaxy collisions including dissipation (Barnes and Hernquist 1996) showed
that gas can loose angular momentum owing to gravitational torques and
shock during merger events. In cases when the interstellar medium (ISM) is
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isothermal and relatively cold and the gas fraction of the galaxies is small,
the subsequent inflow of gas into the centers of the merger remnants forms a
roughly spherical stellar distribution through a luminous starburst, leaving
objects that have essentially no extended stellar disks.
While major mergers are the most striking examples of galaxy collisions,
minor mergers between galaxies of different masses are probably more fre-
quent. Simulations have shown that dissipationless minor mergers between
spiral galaxies and smaller companions can cause significant perturbations
to disks through dynamical heating (e.g., Velazquez and White 1999). This
conclusion is unaffected by dissipation when the disks contain a small frac-
tion of their mass in gas (Hernquist and Katz 1989).
All these studies were based on theoretical models in which the interstellar
gas was at most a small fraction of the disk mass (fgas ≤ 0.1 in the progenitor
disks) most of which was rapidly consumed in star formation. In pioneer-
ing work, Springel and Hernquist (2005) and Robertson et al. (2006) showed
that, in merger simulations with a significant stellar feedback to allow the
stable evolution of extremely gas rich disk (fgas ∼ 1) even a major merger
can produce a disk-dominated remnant. Together with other recent inves-
tigations (Hopkins et al. 2008b), these works have led to growing consensus
that a combination of strong stellar feedback and large gas content is essen-
tial to the survival of disk galaxies.
However, these previous works only considered the gas inside the disks of the
galaxies and neglected the effect of gas accretion from the halo of the galax-
ies. Very recently, new cosmological simulations (Governato et al. 2008) have
shown that the presence of fresh infalling gas during and after a major merger
can produce an early-type spiral galaxy even though the initial gas fraction
in the disk is moderate (10−20 %). The resulting galaxy exhibits the largest
disk ever formed in a cosmological simulation. Hence the following ques-
tion arises: are perhaps gas-rich mergers a new channel to form late-type
spiral galaxies with an extended disk component, such as low surface bright-
ness (LSB) galaxies? Due to its complexity, a cosmological simulation does
not allow to clearly identify the role of gas accretion in preserving and/or
re-building an extended disk. In addition, the tendency towards producing
galaxies with excessive central mass concentration due to limited resolution
(Mayer et al. 2008) does not render them a good tool to address this question.
In this work we perform new high resolution simulations of disk mergers that
contain for the first time an extended gas component in the halo in addition
to the gas in the disk, thus miming the conditions found in cosmological sim-
ulations of Governato et al. (2008). Rather than using equilibrium models,
we use galaxy realizations produced by more realistic collapse experiments
in CDM halos (Kaufmann et al. 2006, 2007). We demonstrate that disks
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not only survive the merger but can grow to a much larger size as new gas
cools from the halo, thereby producing a galaxy that is much more disk-
dominated than the progenitors. The final galaxy has properties resembling
those of late-type LSB galaxies, with a a tiny bulge component. Thus we
suggest this scenario as solution of the problem of LSB formation in cosmo-
logical simulation. When cosmological simulations will be able to produce
objects resembling our initial conditions, the LSB galaxies will naturally form
by merging of these systems.

4.1.1 Cold and hot accretion

According to the conventional sketch of galaxy formation described in
Chapter 1, gas falling into a dark matter potential well is shock heated to
approximately the halo virial temperature, Tvir = 106 (vc/167 km s−1)2 K,
putting it in quasi-hydrostatic equilibrium with the dark matter. Gas in the
dense, inner regions of this shock-heated halo radiates its thermal energy,
loses its pressure support, settles into a centrifugally supported disk, and
forms stars (White and Rees 1978; Blumenthal et al. 1984). Over the last
decade, the ideas of these seminal papers have been updated and extended
into a powerful semi-analytic frame-work for galaxy formation calculations
(White and Frenk 1991; Kauffmann et al. 1993; Mo et al. 1998; Somerville
and Primack 1999). N-body and hydrodynamic simulations showed that
a substantial fraction of the gas in these simulations does shock heat to
T ∼ Tvir, and some part of this gas does cool and settle into galaxies. There
is, in fact, a long history of results suggesting that cold accretion could be
an important element of galaxy formation. Binney (1977), using analytic
models of protogalaxy collapse, argued that the amount of shock heating
could be small for plausible physical conditions, with only a fraction of the
gas reaching temperatures T ∼ Tvir. Other examples are given by the first
SPH simulations of forming galaxies (Katz and Gunn 1991), where most of
the gas never heated above T ∼ 3 × 104 K. However, several studies based
on SPH simulations of cosmological volumes reveal the situation even more
starkly. For example, Fardal et al. (2001) showed that most of the cooling
radiation in their simulations comes from gas with T < 2 × 104 K and in a
recent work, using SPH simulations, Kereš et al. (2005) demonstrated that
roughly half of the gas accreted by the simulated galaxies is never shock
heated close to the halo virial temperature (T ∼ 106 K) but instead radiates
its acquired gravitational energy from T � 2.5 × 105 K. The importance of
this cold accretion mode, relative to the hot accretion mode envisioned in the
traditional picture of galaxy formation, depends strongly on galaxy mass.
Most galaxies below a baryonic mass Mgal ∼ 1010 M� or dark halo mass
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MD ∼ 1011 M� accrete primarily in cold mode, while more massive galaxies
accrete primarily in hot mode. Since high mass galaxies are built from lower
mass systems, even galaxies at the top end of the luminosity function today
acquired a significant fraction of their mass via cold accretion. Globally, the
increasing mass scale of galaxies means that cold accretion dominates at high
redshift and hot accretion at low redshift. The ratio of cold to hot accretion is
also environment dependent, mostly because higher mass galaxies are more
common in dense environments, and partly because low mass systems in
dense environments have a larger hot accretion fraction than their isolated
counterparts.

4.2 Simulations and initial conditions

We have performed a suite of 4 major mergers simulations (1 : 3) of
late-type systems with a large gas fraction in the halo (fgh >> 0.5) and an
extended gas disk (Rd ∼ 19 kpc). In each merger all progenitors are con-
structed starting from the model called M33B in Kaufmann et al. (2007). In
this paper M33B is built to produce a low-mass spiral galaxy such M33. We
underline that M33B is not a pre-defined equilibrium model, but in Kauf-
mann et al. (2007), the authors followed the gas cooling inside the dark halo
producing a more realistic collapse experiment. We also note that our models
are not peculiar because, for example in COSMOS, about 50% of found disk
galaxies have very small bulge since z = 1 (Sargent et al. 2007).
At equilibrium the model consists of a low-massive dark halo, an hot gas
halo out the virial radius, an extended gas disk and a small stellar bulge.
The dark matter halo follows a NFW profile, while the gas disk attains a
near exponential surface density profile over a large fraction of its extent
(19 kpc), instead within a few hundred pc from the centre, a dense nucleus
produces a central spike in the profile. The temperature of gas particles in
the halo is T ≈ 2 × 105 K, while the mean density of this component is
ρ ≈ 10−4 atm/cm3. The introduction of an hot gas halo in the progenitor
models is the more important innovation respect to the previous paper that
addressed this problem.
In order to simulate major merger events of M33-like systems, we performed
a suite of 3 hydrodynamical simulations. Our merging models are named
M1, M2, M3, respectively. In the M1 model, the progenitors are M33B and
M33B3, this last progenitor has the same properties of M33B, but mass 1/3
of that. The M1 model is run without star formation prescription, for this
reason we adopt a temperature floor Tf = 30000 K that crudely mimic the
effect of heating sources such as supernova explotions and radiation back-
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grounds. In the M2 model we uses the same progenitors as in M1, but
without halo gas particles. In order to investigate the influence of the gas
fraction on the disk survival, in the M3 model we merge M33B and M33B3
with star formation prescription . For this model, before to merge, progeni-
tors are also evolved in isolation for 2 Gyr with star formation prescription.
We use a parabolic orbit and a relative disk orientation of θ = 45 for all
models. Each progenitors contain Ngas = 99983 gas, Nstar = 2376 stellar
and NDM = 250000 dark matter particles. The 85% of gas particles are hot
(T ∼ 2×105 K) and they are in the halo (except for M2 model). In Tab. 4.1
we summarize all parameters of the most massive progenitor for each merg-
ing model, including the gas fraction.
The simulations were run with the parallel SPH+N-Body code GASOLINE,
which is described in the Sec. 1.4.3.

Model M1DM M1∗ M1g fgh rperi rinit θ
(M�) (M�) (M�) (kpc) (kpc) (deg)

M1 2.23 · 1011 7.22 · 107 1.41 · 1010 85% 19 91 0
M2 2.23 · 1011 7.22 · 107 6.97 · 1010 0% 19 91 0
M3 2.23 · 1011 6.41 · 108 2.52 · 109 55% 19 91 0

Table 4.1: Col. 1: merger model label. Col. 2: dark matter halo mass of the most
massive progenitor, M1DM , in units of M�. Col. 3: stellar mass of the most massive
progenitor, M1∗, in units of M�. Col. 4: gas mass of the most massive progenitor, M1g,
in units of M�. Col. 5: fraction of gas particles in the halo, fgh. Col. 6: pericentric
distance between two progenitors, rperi, in units of kpc. Col. 7: initial distance between
the progenitors, rinit, in units of kpc. Col. 8: relative progenitor disk orientation, θ

4.3 Results

We want to investigate if after merger events, the final systems exhibit a
centrifugally supported object. To this aim we determine the structural and
kinematic properties of the end-products starting from the set of positions
and velocities in each simulation output file produced by GASOLINE.
First we analyze the gaseous v/σ ratio profile of all merger remnants. The
velocity- and velocity dispersion profiles applying the TIPSY task/profile
(www-hpcc.astro.washington.edu/tools/tools.html) on our final snapshots.
In the upper panels of Fig. 4.1 we show our results. The gaseous v/σ ra-
tio profile after 5 Gyrs starting the merger, is plotted by using red points for
our final systems, while blue points represent the v/σ ratio profile for gas in
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the disk of the most massive progenitors before to start the simulation. We
note that for the merger remnants of M1 and M3 models the total gaseous
rotational support exceeds v/σ = 1, for a wide range in radius and that in
each of these merger remnants the size of the new gas disk exceeds the size
of the gas disks in the progenitors. For the remnant of the M2 model we
find that, although the v/σ exceeds 1, the profile is very noisy and the val-
ues of the v/σ ratio at fixed r are lather than those inferred for the other
models. The maximum radius corresponding to v/σ > 1 for gas and stellar
in the final disk are reported in Tab. 4.2 (col. 2 and 3). Hereafter we refer
to this parameters as limit radius and we indicate them with Rlg and Rl∗ ,
respectively.
The mass of the gaseous and stellar structures in the remnant can be mea-
sured from the surface mass density profile. This quantity is obtained as
function of the distance from the center of the system (given by the center-
of-mass), by using the TIPSY task/profile. Fig. 4.2 (middle and bottom
panels) shows our results analyzing the gas and stellar surface mass density
profile respectively, as seen when looking onto the orbital plane. In the mid-
dle panels red points represent the gas in the end-products for all merger
remnants as in the upper panels, while blue points are the gas in the disk of
the most massive progenitors. In the bottom panel, green points represent
the stars in the end-products for the final systems as in the upper panels.
Each surface mass density profile in the final object is modeled by a single
or a multi-component systems as a function of radius r which may include a
single exponential disk:

Σ(r) = Σde
−r/Rd (4.1)

or a sum of this with a stellar spheroid given by a de Vaucouleurs (1948)
profile:

Σ(r) = Σb10−3.331[(r/Rb)
1/4−1] . (4.2)

In this second case the first component describes an exponential gas/stellar
disk, while the second represents a very small central gas/stellar bulge formed
by the starburst and by the old disks destroyed during the collision.
In Fig. 4.2 (middle and bottom panels), we overplot the best fitted surface
mass density profile. For gas in M1 model we are able to fit the measured
profile by using the sum of the exponential law plus the de Vaucoulers law.
In the M2 model, both gas and stars are described by using a simple de
Vaucouleurs profile. Finally, in the M3 model gas is described by using a
exponential profile, while stars can be fitted by the sum of the two considered
law. All best fitted parameters are reported in Tab. 4.2. We note that for
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Model Rlg Rl∗ Rdg Rbg Rd∗ Rb∗ ng n∗ B/D μ0B
(kpc) (kpc) (kpc) (kpc) (kpc) (kpc) (mag/arcsec2)

M1 75 − 27.4 18.4 − − 1.4 4 0.007 28.6
M2 − − − 13.2 − 20.8 3.5 4.6 1.4 22.2
M3 55 20 8.4 − 6.8 6.29 2.9 2.7 0.7 27.9

Table 4.2: Col. 1: merger model label; Col. 2 − 3: the limit radius for the gaseous
and stellar disk (see text for definition) in units of kpc; Col. 4 − 7: the scale length from
the fit bulge+disk for gas in the disk, Rdg, and bulge, Rbg, and for stars in the disk, Rd∗,
and bulge Rb∗, respectively; Col. 8 − 9: the Sérsic index for the gas, ng and stellar, n∗,
component as obtained from a fit of the mass profile with a Sérsic law; Col. 10 − 11: the
bulge to disk ratio and the central surface brightness in units of mag arcsec−2 in B band
for all merger remnants.

the stellar components it was always necessary to use the parametrization
bulge + disk and that the inclusion of the feedback mechanism reduces the
mass density of the gas disk because a lot of part of this component is used
to form new stars.
For each models we also use a Sérsic law to fit the mass distribution in the
merger remnants and we report in Tab. 4.2 the Sérsic index parameter.

4.4 Discussion and conclusion

Major mergers of disk galaxies play a prominent role in hierarchical mod-
els of galaxy formation. They are thought to be a primary path for the forma-
tion of large elliptical galaxies and to give rise to powerful starbursts events.
Typically, semi-analytical models of galaxy formation make the simplifying
assumption that the gas present in a major merger is completely consumed in
a powerful burst, such that a spheroidal remnant without a disk component
is formed. However, recently Springel and Hernquist (2005); Robertson et al.
(2006); Hopkins et al. (2008b) show that gas-dominated mergers where the
interacting systems have high gas fraction, allow the formation of rotation-
ally supported disks in remnants if energetic feedback mechanisms limits the
conversion of gas into stars. This stabilizes gas disks and allows mergers to
produce large, smoothly distributed, rapidly rotating stellar disks.
The simulations we analyzed here provide evidence in favour of a new im-
portant ingredient for the formation of disk galaxies in the hierarchical sce-
nario: disk can also form from disk-disk merging. The main novelty is that
galaxy models have a gaseous halo in addition to gas in the disk, as ex-
pected from cosmological simulations (Governato et al. 2008). We perform
a suite of 3 merger simulations to address the feasibility of such a scenario
and we demonstrate that mergers between our progenitors having gas as the
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dominant baryonic component, as typical in low mass galaxies, produce late-
type galaxies rather than elliptical/S0 galaxies as a result of the mergers.
We demonstrate that old stars violently relax into a hot spheroidal compo-
nent, thus contributing to the bulge, as repeatedly demonstrated in the past
(Barnes and Hernquist 1996; Hopkins et al. 2008b). Despite the high gas
mass fraction in the disks the large disk is mostly built by the fresh infalling
gas cooling from the halo that settles in a centrifugally supported disk struc-
ture after the merger. The gas cooling from the halo has a crucial role in
producing a disk-dominated remnant, an effect that was never introduced
previously. This is demonstrated in a test M2, where the gaseous halo was
removed. In this case we find a galaxy with a much larger final bulge-to-disk
ratio.
Gas particles in the halo have a temperature very close to the peak of the
cooling function thus they cool very rapidly (tcool ∼ 1.3 Gyrs). This gas set-
tles in orbits with high angular momentum and is responsible for building
a very extended outer disk in the merger remnant. According to Sec. 4.1.1,
since our progenitors are low-mass systems, gas in the halo should accrete
primarily in cold mode.
Final disk can extend out to 40 kpc and has a scale length ∼ 2 times the
initial one. New stars, forming in such a disk in the runs including SF, also
have a scale length ∼ 2 times that of the initial baryonic disk (in the M1
model the initial baryonic disk is entirely gaseous).
In order to understand if our scenario is able to reproduce LSB galaxies, we
calculated (see the last column of Tab. 4.2) the central surface brightness of
our merger remnants. Our values are similar to those inferred for observed
LSB galaxies from de Blok and McGaugh (1997). These authors in fact put
the threshold at μB = 23.2 mag arcsec−2 to distinguish between normal spiral
and LSB galaxies. Very large scalelengths inferred from our models are very
similar to the values obtained by Zwaan et al. (1995). Since LSB galaxies
obey the same Tully-Fisher relation as normal spiral galaxies (Zwaan et al.
1995), these high values at fixed Vmax, are necessary in order to reach the
required value of L. Moreover, it is encouraging to note that our models can
reproduce the observed high gas fraction for LSB galaxies, in fact de Blok
and McGaugh (1997) derived for these systems in their sample Mg/M∗ > 10.
In the future work we will explore different initial conditions (progenitors
mass, gas fraction and orbit) in order to explore in we are here in a favorable
case, since the temperature of the particles in the halo favours rapidly cooling
and the following disk formation.
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Figure 4.1: Upper panels: the gaseous v/σ ratio profile for merger remnants of M1,
M2 and M3 models. Red points represent the gas after 5Gyrs in merger remnants, while
blue points represent the gas in the disk of the most massive progenitors. Middle panels:
surface mass density profiles for the gas in the remnants of models M1, M2 and M3. Red
points represent the gas in merger remnants after 5Gyrs, while blue points represent the
gas in the disk of the most massive progenitors. We also over-plot the best fitted profile
obtaining fitting the gaseous surface mass density profile of the merger remnants. Bottom
panels: surface mass density profiles for the stellar components in the remnants M1, M2
and M3. We also over-plot the best fitted profile obtaining fitting the stellar surface mass
density profile of the merger remnants.
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Chapter 5

Formation and evolution of S0’s
galaxies

The formation of SO galaxies is still not well understood. In order to
understand the observational features and the physical mechanisms that drive
the formation of these systems in clusters, we selected from an high resolution
cosmological simulation a galaxy cluster with the size of Virgo cluster and
we developed an original scheme to identify elliptical, S0 and spiral galaxies
candidates based on the merging history of substructures in simulated cluster.
The scheme identifies subhaloes inside the simulated cluster at different times
and traces their merging history. We think that this scheme may be used to
put constraints on the S0 formation mechanism.

5.1 Introduction

Understanding the origin of the Hubble sequence remains a fundamental
goal in extragalactic astronomy. The lasting utility of Hubble classification
scheme lies in its ability to distinguish between both the dynamics and stellar
populations of disk and spheroidal galaxies (S0s). However, despite consid-
erable progress in unraveling the time evolution of elliptical (E) and spiral
(S) galaxies, there is still some disagreement concerning the origin of S0s
- a hybrid class with kinematic characteristics of disk galaxies but whose
present-day stellar populations resemble those seen in Es. S0s provide a
useful exemplar of what could be an intermediate stage of a galaxy evolu-
tion. They also give us insight into galaxy formation and its relationship
with environment. Hubble Space Telescope observations of distant galaxy
clusters show that the fraction of S0s, fS0, declines when one looks back
from the current epoch to an epoch ∼ 5 Gyr ago (Dressler et al. 1997; Smith
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et al. 2005). The results presented by Treu et al. (2003) and Smith et al.
(2005) are perhaps the most enlightening: they find a smaller increase in
the bulge-dominated galaxy (E+S0) fraction (fE+S0) with increasing density
at z � 0.4 than is seen at z < 0.1 but also find comparable fE+S0 values
for low density regions (Σ < 10 galaxies Mpc−2) at z � 0.4 and the current
epoch. Smith et al. (2005) propose a simple model to explain these obser-
vations in which high-density regions at z ∼ 1 would largely be comprised
of Es with only a trace of S0s (e.g., 0 ≤ fS0 ≤ 0.1). They consider various
processes to transform S galaxies into S0s in order to increase fS0 with time
to match the observed morphological population fractions at z ∼ 0.5. The
idea that star formation in S galaxies is cut off when they enter a denser
environment therefore seems a plausible one. The mechanism by which this
cessation is achieved is a topic of active debate and many scenarios have been
proposed. These include close encounters or mergers, which increase the lu-
minosity of the bulge component by heating the central parts of the disk
or triggering a central star formation episode (Mihos and Hernquist 1994;
Bekki 1998). Galaxy harassment (Moore et al. 1999) is predicted to have a
similar effect. Other scenarios involve the interaction of a S galaxy with the
intra-cluster gas by ram pressure stripping (Gunn and Gott 1972; Quilis et al.
2000; Vollmer et al. 2001) or over a longer period, by removal of gas from the
galaxy halo (Larson et al. 1980), or by heating of gas within the galaxy by
the intra-cluster medium (ICM) (thermal evaporation) (Cowie and Songaila
1977). These transformation scenarios can be separated in a number of ways,
perhaps contrasting the effects of other galaxies against intra-cluster gas, or
looking at gravitational versus hydrodynamical drivers. However, detailed
studies of local S0s have failed to resolve the question of whether they are
faded remnants of early spirals (Poggianti et al. 2001; Burstein et al. 2005),
or if they instead have similar formation histories to ellipticals, but with
different bulge-to-disk ratios. The most direct approach to resolving this de-
bate would be to track directly the evolution in the S0 and elliptical fractions
with lookback time, thus tracing the formation histories of the two classes
independently. Considerable progress has been made in tracking the evolv-
ing fraction of spheroidals, fE+S0, as a function of environmental density Σ
(Smith et al. 2005; Postman et al. 2005; Capak et al. 2007). One suggestion
is that only ellipticals were present in abundance at z � 1 (fS0 < 0.1), with
subsequent growth in fE+S0 arising primarily via a density-dependent trans-
formation of S galaxies into S0s (Smith et al. 2005). This simple hypothesis
could be tested by separating S0s from ellipticals, so that their fraction, fS0,
could be determined independently of that of ellipticals as a function of both
Σ and z. If spiral transformations occurred, there should be fewer S0s in all
over-dense environments at z � 1.
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Two key relationships that must be understood in the context of the above
processes are the relative population fraction of the different morphological
classes as functions of the local galaxy density and their location within the
local gravitational potential well. The morphology-density relation (MDR)
and the morphology-radius relation (MRR) have been well studied at low z
(Dressler 1980; Postman and Geller 1984; Whitmore et al. 1993; Goto et al.
2003) and quantify many long-standing observations showing a preference for
spheroidal systems to to segregate in the cluster inner regions whereas the
late-type galaxies tend to populate the outskirts of galaxy clusters.
The fS0 measured in all previous observational works, was inferred from
fE+S0 rather than measured directly since it is very hard to distinguish be-
tween S0 and E galaxies from the data used in these studies. In order to un-
derstand the observational features and the physical mechanisms that drive
the formation of S0s in clusters, in this chapter we present original scheme
to identify E, S0 and S galaxies candidates in a simulated cluster based on
the merging history of the subhaloes. The scheme consists in identifying sub-
haloes inside the galaxy cluster at different times and inferring their merging
history. This scheme may predict different behaviour for S0s and Es that can
be used to constrain better future observations of these systems and different
mechanisms scenarios for their formation.

5.2 Formation of S0’s: an overview

When Van den Bergh discussed his morphology classification system, he
pointed out the existence of anemic galaxies that might represent the missing
link between normal spirals and S0s. They are characterized by arms less
pronounced than normal spirals, they are gas-poor, with low star formation
activity, redder colors than normal spirals with similar bulge to disk ratios.
The first interpretation of their existence was that, once the gas reservoir
feeding the star formation is removed from cluster S galaxies, they become
lenticulars (van den Bergh 1976). In a detailed analysis of the star forming
properties of anemic galaxies, Elmegreen et al. (2002) concluded that their
gas surface density is below the threshold for the star formation to take
place and that because of the lack of supply of young stars with low velocity
dispersion, the disk heats up, dumping spiral waves on time scales of a few
revolutions. The anemic sequence would thus represent the intermediate
phase between S galaxies and S0. However kinematic studies of nearby cluster
and field S0 argue for a different nature of S galaxies and S0s. The larger
scatter and a small zero point offset in the Tully-Fisher relation observed
in Virgo and Coma cluster S0 galaxies compared to S indicate that S0s can
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hardly be formed by simple gas removal from healthy S galaxies. In this
picture much works in the past (Gunn and Gott 1972; Dressler 1980), as
well as recent analytic arguments and numerical simulations (Bekki et al.
2002), discusses and suggests two main formation scenario for S0s. The
first scenario, in which the S galaxies maintain their thin disk component,
is a gradual transformation, with efficient stripping of the halo gas and,
therefore, dramatically suppressed star formation. The second scenario is
the rapid transformation of a S galaxy through a merger with another, less
massive, disk galaxy. In contrast to the first case, this latter development
would produce a red S0 with a thicker disk and a bigger bulge because of the
triggered central starbursts and dynamical heating of both disks.

5.3 The morphology-density relation and its evo-
lution with redshift

Morphology segregation is the strongest observational signature of a dif-
ferent nature of cluster galaxies. In his seminal work based on photographic
plates of 55 nearby clusters including ∼ 6000 galaxies Dressler (1980) showed
that the fraction of ETGs (ellipticals and lenticulars) increases with the
galaxy density and/or clustercentric radius (Whitmore et al. 1993)(Whit-
more et al. 1993). This relation appears universal, as it holds over 6 or-
ders of magnitude, from rich clusters to loose groups (Postman and Geller
1984). Whitmore et al. (1993) claim that the morphology-radius relation is
independent of the number density within the central 0.5 Mpc, of the X-ray
luminosity or of the velocity dispersion of the cluster. fE in the outer parts
of clusters is ∼ constant (10 to 16 %) at a distance > 0.5 Mpc. This fraction
increases to 60 − 70% in the cluster center. fS0 rises moderately up to the
central 0.2 Mpc, then it drops sharply. On the other hand the fraction of
S galaxies, fS, decreases continuously from the outskirts (∼ 60 %) to the
cluster center, where it drops to virtually 0 %. Binggeli et al. (1990), Thuan
et al. (1991) and (Sabatini et al. 2005) showed that segregation also affects
dwarf galaxies, i.e. dwarf ellipticals are more frequent in dense environments
while dwarf irregulars are ubiquitous. Vogt et al. (2004) showed that fS

depends inversely on the cluster X-ray temperature. They also found that,
while the fraction of ellipticals is almost constant, there is a strong inverse
correlation between fS and fS0 constituting the remaining 85 %, in other
words the increase of fS in the clusters outskirts compensates for the de-
crease of S0s. This effect holds in clusters of different richness, and extends
beyond the virial radius. Both early- and late-type spirals are found in an
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envelope surrounding the cluster core, at a mean distance of 1.5 h−1 Mpc,
while ellipticals are at ∼ 0.85 h−1 Mpc. In distant clusters fS is larger, fE is
≥ and the lenticular fraction is a factor of ∼ 2 − 3 smaller than in nearby
clusters (Dressler et al. 1997; Fasano et al. 2000; Postman et al. 2005).
Morphology segregation in the Coma cluster was widely studied by An-
dreon (1996) which showed that, while S galaxies are homogeneously dis-
tributed over the cluster, the early-type component concentrates along the
direction marked by the supercluster structure. Furthermore he showed ev-
idence for velocity segregation, with Es and S0s having significantly smaller
dispersion (∼ 700 kms−1) than S (∼ 1300 kms−1). Moreover Kashikawa
et al. (1998), showed a strong luminosity segregation in the magnitude range
−20 ≤ MR ≤ −16. Galaxies with high central light concentration have a
clustering strength significantly dependent on luminosity, while objects with
a low central concentration show almost no luminosity segregation. Gavazzi
et al. (2006) affirm that to interpret this evidence in terms of morphology
is not straightforward since, galaxy light profiles better correlate in shape
with luminosity than with morphological type: both dE and low-luminosity
late-type have exponential light profiles with low concentration indices.
The study of the galaxy morphology distribution in the Virgo cluster is made
complex by projection effects due to the elongated 3−D structure of the clus-
ter. Schindler et al. (1999) compared the distribution of galaxies cataloged
in the Virgo cluster catalog with that of the X-ray emitting gas from the
ROSAT All Sky Survey, and found that the two components have a similar
distributions. They found no luminosity segregation and positive morphol-
ogy segregation: S are more spread than Es and S0s, while nucleated dE1 are
more concentrated toward the cluster center than their non-nucleated coun-
terparts. The SDSS and 2dF surveys made it possible to extend the study of
morphology segregation to regions of low density contrast with respect to the
field. They confirm the increase of the fraction of the red, bulge-dominated
galaxies with galaxy density and cluster-centric distance (Goto et al. 2003;
Hogg et al. 2003; Balogh et al. 2004; De Propris et al. 2004) that was known
in rich nearby clusters.
Only a fully understanding of main physical processes acting in clusters can
help to distinguish between two scenario proposed. For instance in the next
section we present an overview of these processes.

1Dwarf ellipticals that have central brightness enhancements (Binggeli et al. 1984).
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5.3.1 Tidal interactions among galaxies

Tidal interactions among galaxy pairs act on gas, dust and stars, as well as
on dark matter, with an efficiency depending on the gravitational bounding
of the various components. This produces selective morphological transfor-
mations. Since tidal forces act as M/R3, if the typical galaxy radii are not
too small compared to the average separation between galaxies, tidal interac-
tions can be quite efficient at removing matter from galactic halos (Farouki
and Shapiro 1981; Merritt 1983). For what concerns the star formation, both
observations (Keel et al. 1985; Kennicutt et al. 1987) and simulations (Mihos
et al. 1992; Iono et al. 2004) of interacting pairs show a major increase of the
nuclear activity and a milder (if any) in the disk. It is intuitive that tidal
interactions among galaxies are boosted in the dense cores of rich clusters
of galaxies. However, due to the high relative velocities, tidal interactions
among cluster galaxies, although more frequent, have significantly shorter
duration than in the field (tenc ∼ 108 yr), thus the effects of the perturbation
are less severe. The simulations of Byrd and Valtonen (1990) (applied to S
galaxies in clusters) show that tidal interactions produce enough gas inflow
from the disk to the circumnuclear regions, provided that the perturbation
parameter:

Pgg = (Mcomp/Mgal)/(d/rgal)
3 (5.1)

is Pgg ≥ 0.006−0.1 (depending on the halo to disk mass ratio), where Mcomp

is the companion mass, Mgal and rgal are the mass and the visible disk radius
of the S galaxy respectively and d is the separation between the two galaxies.
A typical perturbation parameter Pgg for ∼ 10 kpc radii galaxies in clusters
can be roughly estimated assuming Mcomp � Mgal and an average galaxy sep-
aration ∼ 200 kpc inside a cluster of 2 Mpc radius including ∼ 1000 objects.
The resulting Pgg � 10.4 is significantly smaller than the critical Pgg neces-
sary for producing significant gas infall into the nucleus. This simple estimate
is confirmed by (Fujita 1998), who claims that the typical perturbation in-
duced by a single high-speed encounter among cluster galaxies is too small
to significantly affect the star formation rate. His model incorporates a more
realistic modeling of the star formation process based on clouds collisions,
than the simple nuclear infall treated by Byrd and Valtonen (1990). Further-
more, as discussed by Merritt (1983) and by Byrd and Valtonen (1990), the
frequency of galaxy-galaxy encounters in rich clusters, as measured by the
inverse of the relaxation time trelax � some 1010 yr, comparable to the age of
the Universe, is negligibly small.
Okamoto and Nagashima (2001) and (Diaferio et al. 2001) with their hybrid
N-body simulation and semi-analytical models, tried to reproduce the cluster
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morphology-density or morphology-radius relations observed by Whitmore
et al. (1993). They concluded that, while the distribution of elliptical galax-
ies in clusters can be obtained with major merging, this is not the case for
the lenticular galaxies with intermediate bulge to disk ratios. Bulges can
be formed by the merging of two equal mass galaxies, while the subsequent
gas cooling can form disks (Diaferio et al. 2001) by unequal mass mergers of
disk galaxies, where disk destruction is not complete and some rotation is re-
tained, or minor mergers between S galaxies and their companions (the disk
is heated but not destroyed). The morphology segregation is qualitatively
well reproduced by the semi-analytical simulation of Springel et al. (2001).
Okamoto and Nagashima (2001), however, remarked that this result is very
sensitive to the assumed bulge to disk ratio of lenticular galaxies.
Among tidal interactions, Moore et al. (1999) proposed that the evolution
of cluster galaxies is governed by the combined effect of multiple high speed
galaxy-galaxy close (∼ 50 kpc) encounters called fly-by. They named this
process galaxy harassment and they observed that it depends on the colli-
sional frequency, on the strength of the individual collisions, on the cluster’s
tidal field and on the distribution of the potential within galaxies. Simula-
tions show that, at a fixed mean orbital radius, galaxies on elongated orbits
experience greater harassment than objects on circular orbits. The multiple
encounters heat the stellar component increasing the velocity dispersion and
decreasing the angular momentum, meanwhile they make the gas to sink
toward the galaxy center (Moore et al. 1996). Because of their different po-
tential distribution, massive and dwarf galaxies react differently to galaxy
harassment. N-body (both pure gravitational and hydro-dynamical) simu-
lations of low mass (L∗/5 and L∗/20) S galaxies (represented by rotating
exponential disks) in a Coma-like cluster show that, at any given galaxy ra-
dius, dark matter is more easily stripped than stars because of the different
orbital distribution of the two components. At early stages a large frac-
tion (up to 50%) of the stars are removed; the subsequent increase of binding
energy, caused by the increase of the central density, makes further star strip-
ping less efficient. The obtained stellar profiles are exponentials, when only
stars are included in the initial conditions, and nucleated exponentials when
the gas is added (Moore et al. 1998). The evolution of bright disk galaxies
(∼ L∗) in clusters differs from that of low-mass systems, as it depends pri-
marily on the depth of their potential wells and on the disk scale length. High
surface brightness galaxies, those with central steeply rising rotation curves,
are found relatively stable to galaxy harassment. Beside minor star losses,
the effect of the interaction is a small (0.5 mag arcsec−2) increase of the cen-
tral surface brightness, an increase of the disk scale height (by a factor of
2−4) and of the central velocity dispersion, with the fading of spiral features



118 CHAPTER 5. FORMATION AND EVOLUTION OF S0’S GALAXIES

(Moore et al. 1999). These structural and kinematic properties resemble
those of bright lenticulars. Low surface brightness galaxies, because of their
low mass concentration (flat rotation curves and large disk scale lengths), are
strongly perturbed by the interaction. They are expected to loose most (up
to 50 − 90%) of their stars, to increase their central velocity dispersion and
consequently their central surface brightness by ∼ 2 mag arcsec−2 (Moore
et al. 1999). Their resulting kinematic and structural properties resemble
those of dE/dS0. Simulations of Virgo like clusters by Gnedin (2003) show
that tidal heating is more effective in low-Ω0 clusters. The maximum of
the tidal forces do not always happen close to the cluster center, but dur-
ing the encounters with massive galaxies or with unvirialized remnants of
infalling groups of galaxies. These simulations also show that the collision
rate of galaxies increases by 10 − 50% in the presence of substructures. In
conclusion, galaxy harassment can effectively perturb low-luminosity galax-
ies because of their low-density cores and slowly rising rotation curves, thus
contributing to the formation of cluster dwarf ellipticals (Moore et al. 1998),
to the fueling of low-luminosity AGNs (Lake et al. 1998) and to the destruc-
tion of low surface brightness galaxies in clusters (Moore et al. 1999). The
effects on massive objects should be less pronounced, with a minor increase
of the disk star formation activity and an increase of the velocity dispersion
in the bulge (Moore et al. 1996).

5.3.2 Ram-pressure stripping

Gunn and Gott (1972) first proposed that the inter-stellar medium (ISM)
could be removed from galaxies moving at ∼ 1000 kms−1 through the hot
(107 − 108K) and dense (∼ 103 − 104 atoms cm−3) intergalactic medium by
the ram-pressure mechanism. Ram-pressure can effectively remove the ISM
if it overcomes the gravitational pressure anchoring the gas to the disk:

ρIGMV 2
gal ≥ 2πΣstarΣgas (5.2)

ρIGM is the density of the inter-galactic medium, Vgal the galaxy velocity
inside the cluster, Σstar is the star surface density and Σgas the gas surface
density. Different N-body and SPH simulations exist in the literature trying
to investigate the role of ram-pressure on gas stripping of both cluster early-
and late-type galaxies, and on the possible transformation of S galaxy into
S0s , or of dwarf irregulars into dSph. The various models (SPH, N-body)
differ in the way they account for the cluster gas distribution (density profile),
the galaxy orbits within the cluster (radial, circular, galaxy inclination with
respect to the orbit), the potential distribution within the galaxy (disk vs.
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bulge, with or without dark matter), the star formation (gas consumption and
replenishment by recycled gas), the contribution of viscosity and/or thermal
evaporation. In spite of these differences, assuming typical ICM densities and
velocity dispersions observed in nearby clusters, all variations of the model
concur at establishing that ram-pressure is sufficient to remove part of the
ISM from galaxies on time scales comparable with their cluster crossing time
(a few 109 yr). Radial orbits are more efficient because of the higher velocity,
closer crossing to the cluster core. The efficiency of removal depends on the
inclination of the galaxy disk with respect to the trajectory, with face-on
interactions more efficient than edge-on or inclined encounters (Abadi et al.
1999; Quilis et al. 2000; Vollmer et al. 2001). However S galaxies on radial
orbits should end up stripped because their interaction with the cluster ICM
will sooner or later become face-on since the orientation of the galaxy rotation
axis is conserved (Quilis et al. 2000). Because of their shallower potential
well, gas removal is expected to act more efficiently on dwarf irregular galaxies
than on giant S galaxies (Mori and Burkert 2000).

5.3.3 Strangulation

Galaxy strangulation, a process proposed more than 20 years ago by Lar-
son et al. (1980) to explain the transformation of S galaxies into S0, has
been recently invoked to also explain the mild gradient in the morphology
fraction found outside one virial radius in a cluster at z = 0.4 (Treu et al.
2003). Emphasis is put on the large scale on which such a mechanism might
be effective, contrary to other mechanisms previously described that, except
galaxy harassment, are supposed to work on smaller scales (Treu et al. 2003).
Since in normal galaxies the gas that feeds the star formation (on time scales
as long as the Hubble time) comes from infall of an extended gas reservoir,
the effect of removing the outer galaxy halo would be that of preventing fur-
ther infall of gas into the disk. On time scales of a few Gyr the star formation
would thus exhaust the available gas, quenching further star formation ac-
tivity. The seminal idea of Larson et al. (1980) has been elaborated by Bekki
et al. (2002). Their numerical simulations showed that even if a spiral orbits
a cluster with a pericenter distance of ∼ 3 core radii,∼ 80% of its halo is
stripped within a few Gyr by the hydrodynamical interaction with the ICM
plus the global tidal field of the cluster, preventing gas accretion into the
disk, and consequently suppressing the star formation. In the end the spiral
structure becomes less pronounced, and galaxies progressively becomes ane-
mic, disk-dominated S0. They might coincide with the small percentage of
passive, anemic galaxies found in the SDSS by Goto et al. (2003) at large
clustercentric distances.
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5.4 The morphology-density relation and its evo-
lution with redshift

Morphology segregation is the strongest observational signature of a dif-
ferent nature of cluster galaxies. In his seminal work based on photographic
plates of 55 nearby clusters including ∼ 6000 galaxies Dressler (1980) showed
that the fraction of ETGs (ellipticals and lenticulars) increases with the
galaxy density and/or clustercentric radius (Whitmore et al. 1993)(Whit-
more et al. 1993). This relation appears universal, as it holds over 6 or-
ders of magnitude, from rich clusters to loose groups (Postman and Geller
1984). Whitmore et al. (1993) claim that the morphology-radius relation is
independent of the number density within the central 0.5 Mpc, of the X-ray
luminosity or of the velocity dispersion of the cluster. fE in the outer parts
of clusters is ∼ constant (10 to 16%) at a distance > 0.5 Mpc. This fraction
increases to 60 − 70% in the cluster center. fS0 rises moderately up to the
central 0.2 Mpc, then it drops sharply. On the other hand the fraction of S
galaxies, fS, decreases continuously from the outskirts (∼ 60%) to the cluster
center, where it drops to virtually 0%. Binggeli et al. (1990), Thuan et al.
(1991) and (Sabatini et al. 2005) showed that segregation also affects dwarf
galaxies, i.e. dwarf ellipticals2 are more frequent in dense environments while
dwarf irregulars are ubiquitous. Vogt et al. (2004) showed that fS depends
inversely on the cluster X-ray temperature. They also found that, while the
fraction of ellipticals is almost constant, there is a strong inverse correlation
between fS and fS0 constituting the remaining 85%, in other words the in-
crease of fS in the clusters outskirts compensates for the decrease of S0s.
This effect holds in clusters of different richness, and extends beyond the
virial radius. Both early- and late-type S galaxies are found in an envelope
surrounding the cluster core, at a mean distance of 1.5 h−1 Mpc, while el-
lipticals are at ∼ 0.85 h−1 Mpc. Note that the morphology-density relation
also affects distant (z = 0.5), rich, centrally-concentrated clusters, while it
seems to avoid irregular ones (Dressler et al. 1997). In distant clusters fS is
larger, fE is ≥ and the lenticular fraction is a factor of ∼ 2− 3 smaller than
in nearby clusters (Dressler et al. 1997; Fasano et al. 2000).
Morphology segregation in the Coma cluster was widely studied by An-
dreon (1996) which showed that, while S galaxies are homogeneously dis-
tributed over the cluster, the early-type component concentrates along the
direction marked by the supercluster structure. Furthermore he showed ev-
idence for velocity segregation, with Es and S0s having significantly smaller
dispersion (∼ 700kms−1) than S (∼ 1300kms−1). Moreover Kashikawa

2Low-luminosity elliptical galaxies with smooth surface brightness profiles.
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et al. (1998), showed a strong luminosity segregation in the magnitude range
−20 ≤ MR ≤ −16. Galaxies with high central light concentration have a
clustering strength significantly dependent on luminosity, while objects with
a low central concentration show almost no luminosity segregation. Gavazzi
et al. (2006) affirm that to interpret this evidence in terms of morphology
is not straightforward since, galaxy light profiles better correlate in shape
with luminosity than with morphological type: both dE and low-luminosity
late-type have exponential light profiles with low concentration indices.
The study of the galaxy morphology distribution in the Virgo cluster is made
complex by projection effects due to the elongated 3−D structure of the clus-
ter. Schindler et al. (1999) compared the distribution of galaxies cataloged
in the Virgo cluster catalog with that of the X-ray emitting gas from the
ROSAT All Sky Survey, and found that the two components have a similar
distributions. They found no luminosity segregation and positive morphol-
ogy segregation: S are more spread than Es and S0s, while nucleated dE are
more concentrated toward the cluster center than their non-nucleated coun-
terparts. The SDSS and 2dF surveys made it possible to extend the study of
morphology segregation to regions of low density contrast with respect to the
field. They confirm the increase of the fraction of the red, bulge-dominated
galaxies with galaxy density and cluster-centric distance (Goto et al. 2003;
Hogg et al. 2003; Balogh et al. 2004; De Propris et al. 2004) that was known
in rich nearby clusters.

5.5 Our project

In order to investigate if it is possible to isolate the physical mechanisms
that drive the formation of S0 galaxies in clusters, we selected from an high
resolution cosmological simulation a galaxy cluster with the size of Virgo
cluster and we developed an original scheme to identify elliptical, S0 and
spiral galaxies candidates based on the merging history of substructures in
simulated cluster.

5.5.1 Numerical method and cluster identification

In order to select galaxy cluster we use large cosmological simulation
that followed the evolution of 216 millions of particles in a box of 90 Mpc
(comoving) on side (D’Onghia et al. 2008). Cosmological parameters were
taken from the best-fits for WMAP3 (Spergel 2006). This had present-day
matter density parameters Ωm = 0.238; cosmological constant contribution
ΩΛ = 0.762; baryonic contributions Ωb = 0.042; and Hubble parameters
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h = 0.73 (H0 = 100 h kms−1 Mpc−1). The mass fluctuation spectrum had a
spectral index n = 0.951, and was normalized by the linear rms fluctuation on
8 h−1 Mpc, σ8 = 0.75. The initial conditions were generated with GRAFIC2
(Bertschinger 2001). The unperturbed particles positions were placed on a
grid and initial displacements were assigned according to the Zeldovich ap-
proximation (Shandarin and Zeldovich 1989). The masses of the dark matter
particles were set to mDM = 8.67 × 107h−1M�. All runs started at redshifts
sufficiently high to ensure that the absolute maximum density contrast is
still in the linear regime. D’Onghia et al. (2008) followed particles evolution
using the treecode PKDGRAV (see Chapter 1). Gravitational interactions
between pairs of particles were softened in comoving coordinates with a spline
softening length ε = 1.16 kpc; forces were completely Newtonian at twice this
distance. The particles had individual time steps Δti = 0.2

√
εai where a is

particle’s acceleration. The node-opening angle (see Sec. 1.4.1) is θ = 0.7
after z = 2 and θ = 0.55 earlier to provide higher force accuracy when the
density is nearly uniform.
Non-linear structures in this box with a minimum of 250 particles at z = 0 are
identified using the classic friends-of-friends (FOF) algorithm with a linking
length l equal to 0.2 times the mean comoving interparticle separation. For
each FOF halo, we identify the most bound particle and adopt its position as
the halo centre. Using this centre, we compute the virial radius of each halo,
Rvir defined as the radius of a sphere of overdensity Δ(z = 0) = 93.5 (relative
to the critical density for closure)3. If a particle is a potential member of two
groups, it is assigned to the most massive one. We select for our analysis an
halo with masses M = 1.44 × 1014M�, number particle N = 1648438 and
virial radius Rvir = 1.1M�.

5.5.2 Substructures in hierarchical cosmological simu-
lations

A basic step in the analysis of cosmological simulations is the identifi-
cation of virialized particle groups, which specify the sites where luminous
galaxies form. Perhaps the most popular technique employed for this task
is the friends-of-friends (FOF) algorithm. It places any two particles with a
separation less than some linking length b into the same group. In this way,
particle groups are formed that correspond to regions approximately enclosed
by isodensity contours with threshold value ρ ∝ 1/b3. For an appropriate

3The virial overdensity in a flat universe may be computed using the fitting formula
proposed by Bryan and Norman (1998).
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choice of b, groups are selected that are close to the virial overdensity pre-
dicted by the spherical collapse model. FOF is both simple and efficient, and
its group catalogues agree quite well with the predictions of PressŰSchechter
theory. However, FOF has a tendency to link independent structures across
feeble particle bridges occasionally, and in its standard form with a linking
length of b � 0.2 it is not capable of detecting substructure inside larger viri-
alized objects. Using sufficiently high mass resolution, studies from Tormen
et al. (1997, 1998); Ghigna et al. (1998); Klypin et al. (1999); Moore et al.
(1999) were able to demonstrate that substructure in dense environments like
groups or clusters may survive for a long time. The cores of the dark haloes
of galaxies that fall into a cluster will thus remain intact, and orbit as self-
gravitating objects in the smooth dark matter background of the cluster. In
old simulations, haloes falling into clusters usually evaporated quickly, and
the clusters exhibited little signs of substructure (e.g. Frenk et al. 1996). It
now appears that sufficient numerical force and mass resolution is enough to
resolve this overmerging problem. The identification of substructure within
dark matter haloes is a challenging technical problem, and several algorithms
to find haloes within haloes have been proposed. In hierarchical friends-of-
friends (HFOF) algorithms (Klypin et al. 1999) the linking length of plain
FOF is reduced in a sequence of discrete steps, thus selecting groups of higher
and higher overdensity and eventually capturing true substructure. Clearly,
the need for a well-posed physical definition of substructure arises early on in
such an analysis. Most authors (Springel et al. 2001, e.g.) have required sub-
haloes to be locally overdense and self-bound. Note that this implies that any
locally overdense region within a dense background needs to be treated with
an unbinding procedure. This is because a small halo within a larger system
represents only a relatively small fluctuation in density, and a substantial
amount of mass within the overdense region will just stream through and
not be gravitationally bound to the substructure itself. Group-finding tech-
niques that use some criterion of self-boundness include the bound density
maximum (BDM) algorithm (Klypin et al. 1999), where the bound subset of
particles is evaluated iteratively in spheres around a local density maximum.
In the method of Tormen et al. (1998), previous simulation outputs are used
to track the infall of particle groups into larger systems. Once such a particle
group from the field was accreted by a cluster, they simply determined the
subset of those particles that still remained self-bound. Another approach is
followed in DENMAX (Gelb and Bertschinger 1994) and its offspring SKID
(Stadel 2001), where particles are moved along the local gradient in density
towards a local density maximum. Particles ending up in the same maximum
are then linked together as a group using FOF. SKID has been employed by
(Ghigna et al. 1998) to find substructure in a rich cluster of galaxies, and
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to study the statistical properties of the detected subgroups. Integrating the
gradient of the density field and moving the particles is not without tech-
nical subtleties. For example, a suitable stopping condition is needed. The
algorithm HOP of Eisenstein and Hut (1998) tries to avoid these difficulties
by restricting the group search to the set of original particle positions, just
as FOF does. In HOP, one first obtains an estimate of the local density
for each particle, and then attaches it to its densest neighbour. In this way
a set of disjoint particle groups are formed. However, a number of addi-
tional rules are needed to link and prune some of these groups. For example,
HOP may split up a single virialized clump into several pieces of unphysical
shape, which have to be joined using auxiliary criteria. Springel et al. (2001)
built a new algorithm to detect substructure in dark matter haloes that in-
corporates ideas from SKID, HOP and FOF. For our purpose we use the
subhalo finder AMIGA (Adaptive Mesh Investigations of Galaxy Assembly)
(Gill et al. 2004) and we describe its main properties in the next section.

5.5.3 AMIGA

The halo finder AMIGA, essentially uses the adaptive grids of MLAPM
(Knebe et al. 2001) to locate the satellites of the host halo. AMIGA’s adap-
tive refinement meshes follow the density distribution by construction. Grid
structure surrounds the satellites, as the satellites are simply manifestations
of overdensities within (and exterior) to the underlying host halo. The ad-
vantage of reconstructing and using these grids to locate haloes is that they
naturally follow the density field with the exact accuracy of the N-body
code. No scaling length is required, in contrast with techniques such as
FOF. Therefore AMIGA avoids one of the major complications inherent to
most halo finding-schemes as a natural consequence of its construction. To
locate appropriate haloes within the simulation outputs the code first build
a list of potential centres for the haloes. Assuming that each of these peaks is
the centre of a halo, it steps out in (logarithmically spaced) radial bins until
the density reaches ρsatellite(rvir) = Δvir(z)ρb(z), where ρb is the universal
background density, unless it reaches a point rtrunc where an upturn in the
radial density profile is detected. The outer radius of the satellite is defined
to be either rvir or rtrunc, whichever is smaller, and dubbed rAHF . Using all
particles interior to rAHF the code calculates other canonical properties for
each halo such as its mass, rotation curve and velocity dispersion. To have
the list of haloes by removing gravitationally unbound particles and dupli-
cate haloes first, for each satellite a set of duplicate candidates is constructed
based on the criterion that their centres lie within each others outer radii
rAHF . Secondly, this list is then checked by comparing the internal prop-
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erties of the candidates. A candidate is affirmed to be a duplicate once its
mass, velocity dispersion and centre of mass velocity vector agree to within
80 per cent. The code then keeps the halo with the higher central density
and removes the other one from the satellite catalogue completely. With the
complete set of haloes now in hand, the code proceeds to remove gravitation-
ally unbound particles. This again is done in an iterative process. Starting
with the halo centre, it calculates the kinetic and potential energy for each
individual particle in the respective reference frame and all particles faster
than two times the escape velocity are removed from the halo. Then it recal-
culates the centre, and proceeds through the process again. This pruning is
halted when a given halo holds fewer than eight particles or when no further
particles need to be removed. It finishes by recalculating the internal prop-
erties of the haloes with the radial density profiles of the satellites fitted to
the functional form proposed by Navarro, Frenk & White in the range from
8h−1 kpc to rAHF .

5.5.4 Following the merger tree

For each simulation outputs, we compile a list of dark matter haloes by
using AMIGA. We include only groups with at least 200 (∼ 1.5 · 1010M�)
particles in the halo catalogue. At z = 0 we find 116 subhaloes in our cluster
with this property. For each halo, AMIGA is able to determine the most-
bound particle within the group, where Śmost boundŠ here refers to the
particle with the minimum binding energy.
We follow the merger tree of the dark matter subhaloes from output to out-
put. A subhalo HB at redshift zB is defined to be a progenitor of a subhalo
HA at redshift zA, if at least the 20% of the particles of HB are contained
within HA, and the most bound particle of HB is contained in HA, too. We
iterate the procedure at previous redshift only for the most massive progen-
itor. In this way we are able to follow all subhaloes that AMIGA find at
z = 0.

5.5.5 Defining E/S0 population

In order to determine which kind of galaxy (E, S0 or S) our subhaloes
host at z = 0, we elaborated a new method that is able to determine a
morphological classification without using semi-analytical models or hydro-
dynamical simulations.
First we divided our sample in two class: early- and late- subhaloes. The
first class contains all subhalos that have at some redshift vc ≥ 180 km/s
and the second vc ≤ 180km/s. This threshold is obtained following (Salucci
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et al. 2007), where we found that disc masses MD of spirals are in the range
109 M� ≤ MD ≤ 21011M�. We put this upper bound value in the relation
between the disc mass and the virial mass MD − Mvir by (Shankar et al.
2006):

MD = 2.3 × 1010M�
[Mvir/(3 × 1011M�)]3.1

1 + [Mvir/(3 × 1011M�)]2.2
(5.3)

and we found Mvir ∼ 1 × 1012M� that corresponds to vc ∼ 180 km/s We
imposed that subhaloes in the first class can host E and S0 galaxies, while in
the second we found S galaxies. In order to distinguish E from S0 galaxies
in the early-type class we only looked at mass accretion history (hereafter
MAH) of early-type subhaloes. First we found that all these subhaloes joined
the cluster at z ∼ 0.5, after that we compared the subhaloes mass at this
redshift, M0.5, to the subhaloes mass at z = 0, M0. If we found M0.5 < M0 or
M0.5 > M0 we defined these objects S0 according to the first and the second
formation scenario respectively (see Sec. 5.2), while if M0.5 ∼ M0 we defined
this subhalo an E system. In Fig. 5.1 and 5.2 we show several examples of
MAH of subhaloes (ordered in mass) found in our cluster.

5.6 Preliminary results and open issues
According to the classification presented in the last section, we determined

at z = 0 the MRR and we compared it to the current data and previous
works. In Fig. 5.3 we show the subhaloes fraction as function of the distance
from the center of the cluster normalized to the virial radius of the cluster
Rvir. Red points are our results obtained counting subhaloes in concentric
circular shells given by a linear radial sampling. Blue points are derived
from the Fig. 11 in Springel et al. (2001), where the authors obtained the
galaxy fraction after to apply a semi-analytical model to a cluster simulation.
Finally, green points are observations from Whitmore and Gilmore (1991).
We note that given our classification we can reproduce the trends for the
fraction of S0 and E as a function of the radius in reasonable agreement
with the current observational data. In particular the fraction of candidate S
galaxies in our simulations seems to decrease significantly from the outskirts
toward the cluster center, whereas the fraction of S0 candidate galaxies seem
to be more radius independent within half of the virial radius, although the
large uncertainties. A similar trend is also followed by the radial distribution
of the E galaxies in our sample.

We have also investigate another feature of galaxies: the luminosity func-
tion. By using data of Binggeli et al. (1987) for galaxies in Virgo cluster, we
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Figure 5.1: Mass accretion history for several subhaloes in our sample.
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Figure 5.2: Mass accretion history for several subhaloes in our sample.
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Figure 5.3: Morphological mix of galaxies as a function of clustercentric radius. From
top to bottom, red points in the three panels show the relative fraction of E, S0, and S
galaxies in spherical shells around the cluster center. Blue points are from Springel et al.
(2001). Green points show the observational results of Whitmore and Gilmore (1991).
Note that we here follow these authors in letting the radius decrease to the right, i.e., the
cluster centre is found on the right-hand side of the diagrams.
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reproduced the differential luminosity function for Es and S0s in this sample
and we compared it to the differential velocity distribution function obtained
by using our simulation. We use the velocity distribution because in our
simulation we do not have baryonic component, thus we convert the lumi-
nosity of the data in velocity. In order to determine vmax for real galaxies
in Virgo from the absolute magnitude, we determined the vc

4 by using the
Faber-Jackson relation (Faber and Jackson 1976) from (Bernardi et al. 2007):

log σ0 = 2.159 − 0.130(Mr + 21) , (5.4)

where we converted our MB magnitude in r-band by using the constant color
term B−r = 1.32 according to (Fukugita et al. 1995). After that, we derived
vmax from σ0 adopting the relation between these two quantities derived in
Pizzella et al. (2005):

vmax = (1.32 ± 0.09)σ0 + (46 ± 14) [kms−1] (5.5)

Fig. 5.4 shows the differential velocity distribution inferred from the real
S0s in the Virgo cluster (red line) as compared to the S0 candidate galaxies
(black line) obtained in our simulations. Binggeli et al. (1987), found that
the observed distribution of S0s in Virgo cluster is bimodal with two peaks:
one for the relatively low mass S0s (with maximum circular velocity around
85 km/s) and the other for high mass S0s (with vmax around 150 km/s). It is
encouraging to note that our scheme can reproduce this bimodal distribution.
However the simulation used for this work suffers of low resolution. Hence
the number of substructures that we included in our analysis is lower than
total abundance of the Virgo cluster members. As a future work, in order
to further test the above subhalo finder algorithm and to better compare
our results with observational data, we plan to analyze different simulated
clusters with improved mass and spatial resolution.

4This is an approximation that may lead to a systematic underestimate of the true
vmax at the sub-halo virial radius by some 10% (see Salucci et al. 2007).
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Figure 5.4: Differential velocity distribution inferred from the real S0s in the Virgo
cluster (red line) as compared to the S0 candidate galaxies (black line) obtained in our
simulations (see text for details).
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Summary

In the present work we have used N-body techniques to study the effect
of galaxy-galaxy encounters on the properties of different galaxy types, from
spheroidal to gar-rich disk systems. The analysis has been mainly performed
through newtonian simulations, though some part of the work also involved
cosmological simulations. In particular, we explored (i) the effects of dis-
sipationless merging on the scaling relation and internal color gradients of
early-type galaxies; (ii) the issue of rebuilding late-type systems from mergers
of gas-rich, disk-dominated galaxies; and (iii) we have analyzed the merging
history of different galaxy types (E, S0, Sp) from cosmological simulations of
clusters of galaxies.
The main results of this thesis are reported in the abstract, while the conclu-
sions of (i) part are reported at the end of chapter 2 and 3, while conclusions
of parts (ii) and (iii) are reported at the end of chapters 4 and 5.
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Appendix A

Equilibrium of dark and luminous
matter

We consider the Eddington formula (Eddington 1916):

f(E) =
1√
8π2

[∫ E

0

d2ρT

dΨ2
T

dΨT√
E − ΨT

+
1√
E

(
dρT

dΨT

)
ΨT =0

]
, (A.1)

and we underline that we have no guarantee that the solution to equations A.1
will satisfy the physical requirement that it be nowhere negative. Indeed, it
is possible to show (Binney and Tremaine 1994) that a spherical density
distribution can be that of a system whose distribution function depends
only on E if and only if

d2ρT

dΨ2
T

=
d2ρT

dr2

(
dΨT

dr

)−2

− dρT

dr

(
dΨT

dr

)−3

· (A.2)

d2Ψ

dr2
=

(
dΨT

dr

)−3 [
d2ρT

dr2

(
dΨT

dr

)
−

(
dρT

dr

)
d2Ψ

dr2

]
≥ 0 . (A.3)

Considering that dΨT

dr
is negative, then our condition become:[

d2ρT

dr2

(
dΨT

dr

)
−

(
dρT

dr

)
d2Ψ

dr2

]
≤ 0 , (A.4)

and since Ψ = −Φ + Φ0 we have:[
d2ρT

dr2

(
dΦT

dr

)
−

(
dρT

dr

)
d2Φ

dr2

]
≥ 0 . (A.5)
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Now we insert ΦT = ΦL + ΦDH and ρT = ρL + ρDH and we obtain:[
d2ρT

dr2

(
dΦT

dr

)
−

(
dρT

dr

)
d2Φ

dr2

]
=

[
d2ρDH

dr2

dΦDH

dr
− dρDH

dr

d2ΦDH

dr2

]
+(A.6)[

d2ρL

dr2

dΦL

dr
− dρL

dr

d2ΦL

dr2

]
−

[
dρL

dr

d2ΦDH

dr2
− dρDH

dr

d2ΦL

dr2

]
≥ 0 .(A.7)

For our model the stellar mass density and dark matter density can be write
as:

ρL(r) =
MLb2n

R3
eL2πnΓ(2n)

ρ̃(
r

ReL

) , (A.8)

and

ρDH(r) =
MDHb2m

R3
eDH2πmΓ(2m)

ρ̃(
r

ReDH

) , (A.9)

where ρ̃( r
Re

) = bnα1−n

π
C0

n(α). We have defined x = r
ReL

, xD = ReDH

ReL
and

μ = MDH

ML
. Now we calculate the derivatives to insert in A.6:

dρL

dr
=

ML

R4
eL

b2n

2πnΓ(2n)

dρ̃

dx
|x=r/ReL

, (A.10)

dρDH
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ML
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μ

x4
D
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dx
|x=x/xD
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and

d2ρDH

dr2
=

ML

R5
eL

μ

x5
D

b2m

2πmΓ(2m)

d2ρ̃

dx2
|x=x/xD

. (A.13)

The derivatives of the gravitational potential are:

dΦL

dr
=

GML
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eL
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|x=r/ReL
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and

d2ΦDH

dr2
= G

ML

R3
eL

μ

x3
D

[
2b2m

mΓ(2m)
Φ̃DH(x/xD) − 2M(x/xD)

(x/xD)3

]
, (A.17)

where Φ̃(s) =
∫ ∞

s
L̃n(x)

x2 dx. By replacing these quantities in A.6 we can obtain
the condition to impose on parameters so that fT (ε) is non negative.
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