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Introduction 
 
 
 
The key goal of this thesis work lies in the development of models and 
tools in support of value-added information extraction from Synthetic 
Aperture Radar amplitude-only images. 

In the last decades earth observation instruments provided a great 
amount of images relevant to any part of the world. These data could 
be potentially helpful for a wide range of human activities, ranging 
from agriculture to rural and urban planning and disaster monitoring 
and assessment. However, practical use of these data is often limited 
by the lack of efficient, possibly unsupervised, tools for the retrieving 
of effective information. 

In this thesis the first steps toward a modeling of the whole 
imaging process is provided. In particular, we discuss in detail the 
fundamentals of the Synthetic Aperture Radar in its standard and well 
known working configuration, highlighting the need for an adequate 
modeling able to guarantee effective high resolution data description 
(Chapter 1). In fact, the statistics of this kind of images are often very 
different from those used in the modeling of low resolution data. First 
results coming from the analysis of the first TerraSAR-X high 
resolution data are presented here and represent the first original 
contribution of this thesis. 

In Chapter 1 not only the working geometries and SAR 
performances are presented but also a conceptual scheme for the 
simulation of the primary signal collected by the sensor called raw 
data. Simulators, in fact, are important tools supporting the design and 
project of new sensors and are able to conveniently lead the criterions 
for setting the mission parameters as they take into accounts the 
applications they are planned for. Furthermore, they can be used to 
conveniently address the inverse problem starting from the complete 
solution of the direct one. 

In fact, the development of effective information extraction 
techniques from SAR data and the synthesis of automatic tools for 
image analysis mandatory pass through the development of adequate 
direct models relating the image to the parameters of the surface. 
Thus, the direct models can become the starting point toward the 
availability of inversion techniques and physically-based classification 
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techniques. The models used in this thesis work are detailed in 
Chapter 2. In particular, the geometric and electromagnetic models for 
natural surfaces are presented, both for natural terrain and for the 
ocean sea surface. 

After having introduced the different techniques to collect and 
model SAR data, we move to discuss the possibility of retrieving 
information analyzing those data. 

In particular, in Chapter 3 we present a fractal framework for the 
simulation of SAR images relevant to simulated disaster scenarios. 
Such an instrument can be used to increase the understanding of the 
physical mechanisms underlying radar image formation in case of 
disasters. In, fact, the main problem of the scientist working on the 
development of remote sensing techniques for disaster monitoring is 
the lack or the limitedness of an accurate ground truth. The proposed 
simulator makes possible to perform parametric studies on canonical 
disasters scenarios with a perfectly known ground truth. Furthermore, 
it can be used to obtain images relevant to both pre- and post-crisis 
situations, providing the possibility to develop a test bed of simulated 
images to be used for the testing of change detection techniques. 
Relevant case studies are presented with regard to different kinds of 
natural disasters. Finally, a novel change detection technique based on 
the estimation of significant parameters and supported by fractal 
concepts is described. Results on the simulation of images relevant to 
ocean scenes covered with oil slicks of arbitrary shape are also 
presented. 

In Chapter 4 we cope with the problem of radar imaging of fractal 
surfaces. In particular, we develop a rigorous analytical formulation 
for the problem in case a small slope regime can be assumed for the 
profile. The proposed model allows for the computation of the 
structure function and of the power density spectrum of the image in 
closed form. The proposed model is validated through an appropriate 
numerical framework base on the sound physical models presented in 
Chapter 2. The first steps toward the extension to the two-dimensional 
case are also provided. Note that the development of this kind of 
direct modeling is of key importance for every image analysis 
technique based on the evaluation of global statistics on SAR images.

 



 

Chapter 1 
 

SAR: Direct Modeling and Information 
Mining 
 

In the last decades earth observation instruments provided a great 
amount of images relevant to any part of the world. These data could 
be potentially helpful for a wide range of human activities, ranging 
from agriculture to rural and urban planning and disaster monitoring 
and assessment. While information extraction from optical data can be 
often performed via empiric techniques, due to the similarity of these 
images with those perceived from the human eyes, microwave data 
need to be treated differently and their interpretation is absolutely not 
trivial. 
 Hereafter we focus on Synthetic Aperture Radar (SAR) images of 
the earth surface, which present all the advantages of microwave 
imaging, in particular the all-weather, all-time capabilities and a huge 
increase in resolution with respect to the Real Aperture Radar (RAR). 
However, their interpretation is not straightforward: in part because of 
the speckle, the multiplicative noise affecting these images, which is 
responsible for their well-known salt and pepper behavior; moreover, 
the relation occurring between the physical parameters of the observed 
scene and the characteristics of the image is often involved or, at least, 
is very different with respect to the case of optical imaging. This is the 
reason why the analysis of radar images can’t be carried on via 
empirical techniques, but needs to be based on sound physical models: 
an accurate modeling of the imaging process represents the main road 
toward an effective retrieving of value-added information from the 
data. 
 In this scenario simulation tools can be of great relevance in the 
understanding of SAR signal formation and in the development of 
inverse methods for the estimation of significant geophysical 
parameters from the image. 
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 In this chapter the fundamentals of SAR sensor and of the standard 
processing of raw data are described. However, special attention is 
paid to the rationale of information extraction based on direct 
modeling and on the simulation of SAR raw signal. Finally, the first 
results obtained from the analysis of high resolution TerraSAR-X 
images are reported. They clearly highlight the dependence of the 
models also on sensor parameters such as geometric resolution. 
 

1.1 SAR fundamentals 
 
The SAR system can work in accord to different operational modes of 
acquisition: in this section we focus on the stripmap configuration, in 
which the antenna points along a fixed direction with respect to the 
platform flight path and its footprint defines an illuminated strip on 
the observed surface as the sensor moves [1]. 
 The SAR raw signal can be evaluated as the superposition of the 
elementary returns from the illuminated surface weighted via its 
reflectivity function �(x,r): 
 

( ) ( )( , ) , , ;h x r dxdr x r g x x r r rγ′ ′ ′ ′= − −∫∫  (1.1) 

 
and the unit impulse response of the SAR system g(·), in the case of a 
stripmap acquisition mode and of a transmitted chirped pulse, can be 
expressed as: 
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 (1.2) 

 
where, referring to Fig. 1: 

• P is the generic scattering point on the observed surface and its 
coordinates (x,r,ϑ) are given in a cylindrical reference system 
for which the azimuth direction coincides with the sensor flight 
path;ϑ(x,r) is the local incidence angle, which depends on the 
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local geometry of the surface; R is the antenna-to-target 
distance and ∆R=R-r; 

• c is the speed of light, f and λ are respectively the carrier 
frequency and the corresponding wavelength, ∆f is the chirp 
bandwidth and τ its duration time; 

•  w(·) is the antenna illumination function, X=�R0/Lx is the real 
antenna azimuth footprint (we assume that  w(�) is negligible 
when the absolute value of its argument is larger than 1/2, and 
that it is an even function), where Lx is the azimuth dimension 
of the real antenna and R0 is the distance from the line of flight 
to the centre of the scene. 

 

 
Figure 1 Geometry of the problem. 
  

Starting from Eq. (1.2) we can evaluate the Transfer Function 
(TF) of the SAR system. In particular, the Fourier Transform (FT) of 
(1.2) can be expressed as [1]: 
 

( ) ( ) ( ) [ ] [ ], , , ; exp expH x r G r j x j r dxdrξ η γ ξ η ξ η= − −∫∫  (1.3) 

 
where G(·) is the TF of the SAR system in the stripmap acquisition 
mode, given by the following FT: 
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[ ] [ ]( , ; ) ( ', '; )exp ( ' ) exp ( ' ) ' 'G r g x x r r r j x x j r r dx drξ η ξ η= − − − − − −∫∫
  (1.4) 
 

Let us note that, when the r-dependence in Eq. (1.4) can be 
neglected, Eq. (1.1) becomes a two-dimensional convolution, leading 
to the following simplified expression for Eq. (1.3): 
 

( , ) ( , )exp( )exp( ) ( , ) ( , ) ( , )H x r j x i r G dxdr Gξ η γ ξ η ξ η ξ η ξ η= − − = Γ∫∫  

  (1.5) 
 

In general the TF in (1.4) can be expressed as follows: 
 

( ) ( )
( )( )
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      =       +       
  (1.6) 
 
where 
 

0

2
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R

π
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=   (1.7) 

 
( )4 f f

b
c

π
λ τ
∆

=   (1.8) 

 
1.1.1 SAR raw data processing 
 
The obtained raw signal needs to be elaborated in order to provide the 
final SAR image [1]. The main goal of the SAR processor is to 
adequately combine all the received backscattered contributions, 
which in the raw signal are spread out over all the extension [X,cτ/2], 
to achieve the best resolution. 

The standard SAR processing, in the hypothesis that the r-
dependence in Eq. (1.4) can be neglected, consists in a de-convolution 
applied to h(x’,r’ ) to compensate for the convolution factor g(x’,r’ ,r0) 
and obtain an estimation of the reflectivity function. This operation 
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can be efficiently implemented in the Fourier domain through a simple 
multiplication: 
 

*ˆ ( , ) ( , ) ( , ) ( , )G Gξ η ξ η ξ η ξ ηΓ = Γ ⋅ ⋅  (1.9) 
 
where * stands for the conjugation operator. Combining Eq. (1.9) with 
Eq. (1.6) in case of a space-invariant processing we obtain: 
 

4
ˆ( ', ') ( , )exp sinc ( ' ) sinc ( ' )x r x r j r x x r r dxdr

x r

π π πγ γ
λ

     = − − −     ∆ ∆     
∫∫

  
  (1.10) 
 
where ∆x and ∆r are the geometrical resolution of the final image in 
azimuth – slant range, respectively,  and are equal to: 
 

2

L
x∆ =   (1.11) 

 

2

c
r

f
∆ =

∆
  (1.12) 

 
Accordingly, the SAR image can be seen as a convolution 

between the reflectivity function and two sinc functions, one in the 
azimuth and one in the range direction, whose main lobes present a -
3dB width equal to the geometric resolutions of the sensor as defined 
in Eq. (1.11) and Eq. (1.12), respectively. Let us note that this 
elaboration is easily performed in the Fourier domain: in fact, the 
availability of efficient FFT codes determines a strong decrease in the 
computational complexity with respect to the required convolution in 
the spatial domain. 

This kind of space-invariant processing is called narrow focusing 
and as a result only the centre of the scene is perfectly focused. To 
achieve optimum focusing (wide focusing) in the general space-variant 
case the FT of the reflectivity function requires to be computed on a 
deformed grid. Efficient processing codes in the Fourier domain have 
been developed to assure wide focusing of the data, but providing the 
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details of these algorithms is beyond the scope of this thesis work for 
detailed information see Ref. [1]). For our purposes the key result is 
the one presented in Eq. (1.10) which clearly shows how the SAR 
image is essentially equal to a sinc-convolved version of the 
reflectivity. 

Now that the fundamentals of SAR remote sensing are assessed, 
in the next section we will investigate why and how direct models can 
support information mining from this kind of microwave images. 

 

1.2 Information extraction from SAR data 
 

Remote sensing sensors provide a great amount of data relevant to any 
part of the world. In particular, SAR sensors are able to image the 
surface of the earth in practically any weather and illumination 
condition. Furthermore, in the last years, high-resolution sensor made 
possible the analysis of radar images with sub-metric resolutions. 

However, practical use of SAR data is still very limited by the 
lack of efficient, possibly unsupervised, tools for the retrieving of 
effective information to be used in a great variety of applications. 
Several approaches devoted to define instruments and tools for data 
interpretation were presented in literature, showing, at least in 
principle, the potentiality of satellite and aerial technique as a support 
in agriculture, urban planning, monitoring and eventually prevention, 
of natural (flooding, volcanic risk, landslides, etc.) and human-made 
disasters (oil spills, fires, etc.). Most of these approaches are based on 
empirical analyses of remotely sensing data, essentially driven by user 
needs. These analyses are generally supervised; and, to be effective, it 
is often required that the supervisor holds a remarkable level of 
competence with reference both to the sensors, and to the image 
formation mechanisms. 

Furthermore, being the SAR data strongly dependent on the 
physical parameters of the observed surface, the retrieving of 
significant parameters such as water content of the soil, 
electromagnetic parameters, etc. would be possible, at least in 
principle. In fact, the effectiveness of the retrieving is strongly 
dependent on the availability of adequate models for the phenomena 
under investigation. 
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Among remote sensing sensors, the imaging ones take the 
advantage of generating synoptic views of the area under observation; 
in this case, the rationale for the feature identification techniques is 
usually based on the concepts of image texture analysis. Textures on 
remotely sensed images are related to morphological and geological 
features, land use and social organization of the observed scene. All 
the image processing techniques used to segment and classify radar 
data are based on statistical models, which require particular 
assumptions on the imaged surface (a review of great part of these 
models can be found in Ref. [2]). In this sense the use of a particular 
stochastic model should be driven by an a priori knowledge of some 
properties of the surface. Moreover, also the sensor parameters can 
affect the choice of the above-mentioned models: as an example, in 
the following we investigate the dependence of data statistics on 
sensor resolution. In fact, we find out that the stochastic model used in 
the analysis of low resolution data cannot be simply exported to high 
resolution scenarios. 

These remarks point out to the core of the problem faced in this 
thesis work. In fact, the development of effective information 
extraction techniques from SAR data and the synthesis of automatic 
tools for image analysis pass through the development of adequate 
direct models relating parameters of the image to those of the surface. 
Thus, the direct models can become the starting point toward the 
development of inversion techniques and physically-based 
classification algorithms. 

Let us try to understand better what kind of models are required to 
obtain this goal. 

 
1.2.1 Model-based information extraction 

 
The first model we need is a geometrical model for the observed 
surface. In this thesis we are interested in natural surfaces: the better 
way to model this class of surfaces is to consider them just as one 
realization of a stochastic process. In fact, natural surfaces are the 
result of the combination of different geophysical mechanisms 
(erosions, tectonic movements, etc.) mixing in a random way. This is 
the reason why we are interested more in global statistics of their radar 
images then in punctual, deterministic aspects. Conversely, in case an 
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urban area is of interest we would like to retrieve some deterministic 
information (on building heights, streets widths, etc.): this requires a 
different kind of model for the surface, a deterministic, punctual one. 

The parameters used for the geometrical description of the surface 
are those we would like to retrieve from the image. Thus, for inversion 
purposes a sound modeling of surface geometry is of key importance. 
Unfortunately, the relation occurring between the surface and its 
image is strongly non-linear and this makes the extraction procedure 
not straightforward. 

Once we have described the surface we need to model the 
interaction between the surface and the electromagnetic field 
impinging on it. Several scattering models are available in the 
literature; some are heuristics while others are analytical and 
physically-based. For our purposes, we are interested in the analytical 
ones that are able to keep trace of the parameters used for the 
geometrical description of the surface. Hence, we need scattering 
analytical models, which are able to accept as input those particular 
parameters. In fact, obviously, each surface calls for an appropriate 
electromagnetic modeling: the use of a model not specifically tailored 
to the surface can lead to huge errors in the evaluation of the 
backscattered signal. 

Combining the geometrical and the electromagnetic models leads 
to the evaluation of the mean square value of the received signal. 
However, radar images are affected by speckle noise resulting from 
the coherent character of the imaging system. In particular, it is due to 
the fact that the resolution cell is great with respect to the wavelength 
of the impinging field, thus containing a set of interfering scatterers. 
Speckle provides SAR images with their characteristic salt and pepper 
appearance. To adequately treat this phenomenon we need also a 
statistical model for these random signal fluctuations. As for the 
scattering model, also the speckle seems to be dependent on the 
characteristics of the surface. 

Once we have these three models we can begin to develop 
adequate model-based inversion techniques to retrieve the parameters 
of interest of the surface. These models are also the core of the SAR 
raw signal simulator presented in Ref. [3]. Such a powerful instrument 
can be used both to validate the models and to provide a set of 
simulated SAR images to be used as a test bed for the development of 
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information extraction techniques (see Chapter 3). In the following 
section the rationale of the simulation procedure is provided. 

1.3 SAR raw signal simulation 
 
Within the framework of SAR studies, it is convenient to simulate the 
received signal before any processing (with the exception of the 
heterodyne down-converter). This is the signal we called raw in the 
first section. 

As already said, simulation of canonical scenarios may simplify 
experimentation of processing algorithms, as well as development of 
pattern recognition and feature extraction techniques. Simulation may 
play a significant role in studies concerning speckle noise and may 
contribute toward optimizing SAR system parameters. 

A simulation code must meet a number of stringent constraints. 
The scenario to be simulated should be rather general and possibly 
time varying, either deterministically or stochastically. As we have 
seen in the previous section, it should rely upon sound direct models 
both from the geometrical and for the electromagnetic point of view. 
Since we are interested in simulating extended scenes we need a 
macroscopic description of the altitude profile at scales comparable to 
the system resolution, since the microscopic profile is characterized 
statistically according to the geometrical model of the surface. Last, 
but not least, the numerical code should be efficient, fast and 
(computer) memory saving. These features are usually in competition, 
and the ultimate solution generally comes to be an engineering 
compromise. 

The rationale of the simulation is shown in Fig. 2. It is possible to 
note that the upper part, the one named SAR Acquisition, implements 
the simulation of the SAR raw signal and it is composed by the 
following blocks: the scattering block, which requires as inputs the 
geometrical and electromagnetic description of the surface; the 
geometrical distortions block, which takes into account for the 
azimuth – slant-range geometry of the acquisition system and, finally, 
there is the block devoted to the convolution with the SAR transfer 
function. In the lower part of Fig. 2, the SAR processing chain is 
presented, where the SAR focused image is indicated as a product of 
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Level 1a and a product of Level 2 is the final target of information 
extraction techniques. 

 

 
Figure 2 Rationale of SAR acquisition and data processing. 

 
An example of efficient SAR raw signal simulator for the stripmap 

acquisition mode is given in Ref. [3]. This simulator has been the key 
instrument for the development of the models, tools and techniques 
presented in Chapter 3. 

 

1.4 The new challenge of high resolution 
 
As we already mentioned, the new generation of high resolution SAR 
sensors is providing a huge amount of data with meter and sub-meter 
resolutions. However, it is no longer possible to cope with this 
increase in resolution with the use of old models, tailored to low 
resolution data and sensors. The best example is provided by the 
modeling of speckle noise. Hereafter, the first steps towards new 
models tailored to high resolution imaging are briefly reported. The 
goal of this section is to highlight the need for new physically-based 
models; hence an accurate description of the speckle is beyond the 
scope of this work. Anyway, extended references are reported at the 
end of the chapter on this subject. 
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For low resolution sensors speckle noise was generally studied in 
the framework of the so called fully developed speckle. To make this 
assumption several hypothesis have to hold allowing the use of the 
central limit theorem to obtain a Rayleigh-distributed amplitude image 
over homogeneous zones. One of these hypotheses is strictly related to 
the resolution of the sensor: in particular, the dimension of the 
resolution cell should be very great with respect to the wavelength of 
the incident field. This was the case for low resolution sensors, as ERS 
or Envisat missions, but it can be no longer true for high resolution 
ones. 
 Note that the great majority of semi-automatic classification 
techniques applied on SAR images are based on the hypothesis of a 
Rayleigh distribution for the amplitude image: falling this hypothesis 
the elaboration results can be very inaccurate [2]. Hence, the 
importance of the knowledge of adequate speckle noise statistics is 
evident. In the following the first results of the statistical analysis of 
actual TerraSAR-X images are presented to support the idea that with 
the coming of high resolution SAR sensors microwave remote sensing 
is entering a completely different scenario, calling for its own models 
and tools. 
 
1.4.1 Analysis of actual TerraSAR-X data 
 
In this section a comparison between the statistics of low resolution 
and high resolution data is provided. This comparison is carried out 
through the estimation of the Normalized Moments (NM) of the 
intensity I of homogeneous patches of the considered images. The NM 
are defined as follows: 
 

[ ]
E( )

E( )

n

nnN
I

I
M = .  (1.13) 

 
The NM in the case of fully developed speckle [4] present a 

known behavior: in fact, if the amplitude of the image can be modeled 
as Rayleigh-distributed, its intensity will follow a negative 
exponential distribution. The NM of this distribution are equal to n!, 
where n is the order of the considered moment. This behavior can be 
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used to determine whether or not the statistics of the data are in 
accordance with the fully developed speckle model [5]. 

Another distribution frequently invoked to model the speckle in 
some specific situations is the K-distribution [6]-[8]. It has been 
successfully used to describe sea clutter: in fact, for the sea surface the 
fully developed speckle hypothesis of not-correlated scatterers within 
a resolution cell is certainly not satisfied, given the periodic character 
of this kind of surface. The effect of the failure of this particular 
hypothesis is a decrease in the number of effective scatterers inside a 
resolution cell: this effect is someway similar to the one obtained 
through a decrease in the resolution cell dimensions. For this reason 
here we use the K-distribution to fit the behavior of the NM of high 
resolution data. In fact, the NM relevant to a K-distributed noise on an 
homogeneous area are known and are given by the following 
expression [6]: 

 
( ) !

( )n n

n n
NM

α
α α

Γ +=
Γ

  (1.14) 

 
(1 )Nα ν= + ,  (1.15) 

 
where N is the number of scatterers within the resolution cell and 
ν > −1 is a parameter of the K-distribution. The parameter α can be 
easily estimated from the data evaluating their second order moment. 

The area chosen for this experiment is located close to Agrigento, 
Italy: in fact, one low resolution ERS image (20 x 20 m2 pixel 
spacing) and one high resolution spotlight TerraSAR one (1.1 x 1.6 m2 
pixel spacing) are available for this zone. A subset of both images 
approximately relevant to the same portion of surface and fulfilling 
the necessary criterion of homogeneity was selected. Obviously, the 
ERS image presents a lower number of pixels with respect to the 
TerraSAR one: this means that the accuracy in the estimation of the 
NM will be higher for the TerraSAR image with respect to the ERS 
one. The considered subset of the amplitude images are shown in Fig. 
3, while the estimated NM are shown in Fig. 4 (vertical NM axis is in 
logarithmic scale) along with the theoretical fully developed speckle 
NM curve. 
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Looking to the plots in Fig. 4, it can be noted that the low 
resolution image NM curve is very close to the theoretical one, 
demonstrating the effectiveness of the fully developed speckle in 
modeling this situation. Conversely, the high resolution presents a 
huge gap from the low resolution scenario and, consequently, from the 
fully developed speckle hypothesis. 

 

 
Figure 3 Considered image subsets for the evaluation of normalized 

moments: ERS image on the left and TerraSAR-X on the right. 
 

 
Figure 4 Normalized moments computed on the image subsets shown in 

Fig.4: the full line is relevant to the TerraSAR image, the dashed 
one to the ERS image and the dotted line is theoretical NM curve 
for fully developed speckle. 
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Hence, the need for new models rises and in Fig. 5 the NM 

evaluated on a TerraSAR-X image homogeneous subset are shown 
and compared with the theoretical behavior of the NM in case of fully 
developed and K-distributed speckle. 

 

 
Figure 5 Normalized moments computed on TerraSAR data (full line), 

compared with the moments of a K-distributed speckle (dashed 
line) and of a fully developed speckle (dotted line). 

 
It is evident the gap between the NM of the actual image and the 

theoretical behavior of fully developed speckle; conversely, the fit 
between the actual data and the K-distributed model is very good. 

Note that the two models of speckle presented here are, as far as 
we know, the only physically-based ones: in fact they are obtained 
analyzing different situations of random walks on the complex plane 
in which the backscattered field can be represented [4], [6]-[8]. This 
mean that further developments on this topic could lead to techniques 
exploiting the noise to recover some properties of the surface, rather 
than only trying to discard this noise. 

The examples presented in this section demonstrate how different 
sensor resolutions can give rise to completely different phenomena. 
This is another reason for the development of accurate models in 
support of information extraction: in these models sensor resolution 
should appear as a key parameter. 
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Chapter 2 
 

Direct Models for Natural Surfaces 
 

In Chapter 1 the fundamentals of SAR remote sensing were presented. 
An extensive discussion on the need for sound physically-based 
models has been done, pointing out what kind of models is required. A 
discussion on the role of resolution in the definition of the appropriate 
models has been reported also through the analysis of actual high 
resolution data. 

In this chapter we examine in detail the models used in this thesis 
work: in particular, the case of natural terrain and of the sea surface 
are presented. For each of them both the geometric and the 
electromagnetic models are described. 
 

2.1 Fractal models 
 
In this section appropriate models for the description of natural terrain 
surfaces are presented. Fractal models are widely considered the most 
appropriate to quantitatively describe natural surfaces. In fact, fractal 
geometry is able to simply account for the non-stationarity of natural 
surfaces, as well as for their self-affinity [1]-[3]. 

A fundamental concept of fractal geometry is theHausdorff–
Besicovitch (HB) dimension, or fractal dimension. The definition of 
HB dimension is based on the concept of the Hausdorff measure. A 
set is said to be fractal if its fractal dimension is greater than its 
topological one. For instance, a surface is fractal if its fractal 
dimension D is greater than 2. The fractal dimension is related to the 
surface roughness: an almost smooth surface has a low (i.e., slightly 
greater than 2) fractal dimension, whereas an extremely rough surface 
has a fractal dimension that approaches 3, since it tends to fill a 
volume. 
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All fractal sets exhibit some form of scale invariance. We recall 
that a set is self-similar if it is invariant (possibly in statistical sense) 
with respect to a transformation in which all the coordinates are scaled 
down by the same factor; it is self-affine if it is invariant (possibly in 
statistical sense) with respect to a transformation in which coordinates 
are scaled down by factors not all equal. As already stated, self-
affinity of fractal sets is the key property that makes them particularly 
useful in describing natural surfaces. 

These fundamental properties of natural surfaces are hardly 
reproduced by classical surface models based on Euclidean geometry. 
In particular, the second order statistical characterization of the 
surface can be very inaccurate, if use is made of classical concepts as 
the correlation length: in fact, the lack of a characteristic scale is a key 
feature of natural profiles, well-known, for example, to earth science 
researchers. 

For scattering evaluation purposes a second order characterization 
of the surface is necessary [4]. In the fractal case this kind of 
description is very simple and straightforward, while in the classical 
case a heuristic choice of the shape of the correlation function has to 
be performed. The success of fractal geometry in describing natural 
scenes is also due to the existence of scattering models based on such 
a description for the surface. It has been demonstrated that the use of 
fractal scattering models strongly improves the performance in the 
evaluation of the scattered field. 

The combined use of fractal geometrical and electromagnetic 
models can be used to evaluate the signal received onboard by the 
SAR system. In the following the fundamentals of these models are 
provided. 
 
2.1.1 Fractal description of natural surfaces 
 
Many different types of fractal functions have been used in the 
literature to describe and synthesize natural surfaces [1]-[5]. However, 
in the contest of this thesis, the geometrical description of the surface 
has to be adequate to address the problem of electromagnetic 
scattering. Thus, the ways to describe natural surfaces come to be 
essentially two. 
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The first method is to describe the surface as a realization of a 
fractional Brownian motion (fBm) stochastic process. In this case, it is 
possible to obtain a very simple expression for the mean square value 
of the field, depending on the fractal parameters of the surface. 
Conversely it is not possible to compute the (complex) field [4]. 
Another way to describe fractal surfaces is using the Weierstrass-
Mandelbrot (WM) function. The main advantage of using the WM 
function is that it is possible to obtain an analytical expression of the 
(complex) scattered field. However, the obtained expression is very 
involved, and it is not possible to analytically evaluate the (expected) 
scattered power density [4]. 

In this work we are interested in the mean square value of the 
backscattered, which, apart from multiplicative factors, is equal to the 
Radar Cross Section (RCS). Hence, we use an fBm description of the 
surface: however, in practical cases fBm surfaces are better 
synthesized through appropriate techniques based on the use of the 
WM function. Thus, in the following both WM and fBm surface 
models are considered; conversely, the scattering problem is 
addressed only starting from an fBm description for the height profile. 

 
2.1.1.1 Fractional Brownian motion process 

The fBm is defined in terms of the probability density function of its 
height increments: a stochastic process z(x,y) is an fBm surface if, for 
every x, y, x', y', it satisfies the following relation: 
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∫  (2.1) 

 
where τ is the distance between the points (x,y) and (x',y'), and the two 
parameters that control the fBm behavior are: 
 

• H : the Hurst coefficient (0<H<1), related to the fractal 
dimension D by means of the relation  D=3-H; 

 
• s : the standard deviation, measured in [m(1−Η)], of surface 

increments at unitary distance, a real parameter related to an 
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fBm characteristic length, the topothesy T, by means of the 
relation (1 )Hs T −= .   

 
For a given surface the structure function (whose plot is named 

the variogram), V(�), is defined as the mean square increment of 
elevation points placed at distance � : 
 

( ) ( ) ( )( )2
, ,V z x y z x yτ ′ ′= −   (2.2) 

 
The structure function of an fBm surface can be evaluated in 

terms of the parameters H and s as: 
 

( ) 2 2HV sτ τ= .  (2.3) 

 
Eq. (2.3) can be written in logarithmic form as: 

   

( )log 2 log 2 logV s Hτ τ= + ,  (2.4) 

 
which defines in a log – log plane a linear behavior with slope 2H, and 
ordinate intercept 2log s. 
Due to the non-stationarity of the process, the evaluation of the 
spectrum is not s trivial issue [6]. Using mathematical instruments as 
Generalized Fourier Transforms and spatial – scale analysis (for 
example using wavelet theory), it has been demonstrated [4], [6] that 
the spectrum S(k) of an isotropic fBm process exhibits a power law 
behaviour: 
 

( ) oS k S kα−=   (2.5) 

 
wherein the spectral and spatial domain parameters are related by the 
following relationships: 
 

2 2 8 2H Dα = + = − ,  (2.6) 
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Γ(.) being the Gamma function. From the inequalities 0<H<1 we get 
2<α<4, which defines the range of allowed values for the spectral 
slope α. Note that also the spectral equation (2.5) provides a linear 
relation in a log(S) – log(k) plane, with parameters related to those of 
the log-log representation introduced for the variogram. 

It is important to note that a surface satisfying Eq. (2.1) for every 
τ is self-affine on all scales, so that it has details on any arbitrarily 
small scale and is not differentiable at any point (although it is 
continuous). Therefore, it cannot be used in electromagnetic scattering 
problems because the continuity conditions of tangential fields cannot 
be enforced. Furthermore, such surface is not stationary and suffers 
from the infinite variance problem (the integral of the power spectrum 
diverges in the low-frequency range, infrared catastrophe, if α > 2, 
see Eq. (2.5)). Such a surface is also called a mathematical fBm 
surface. However, natural surfaces exhibit a fractal behavior only on a 
wide but limited range of scales. In addition, the range of scales of 
interest for a scattering problem is limited on one side by the finite 
linear size l of the illuminated surface, and on the other by the fact that 
surface variations on scales much smaller than wavelength λ do not 
affect the scattered field. Accordingly, we consider physical fBm 
surfaces, i.e., surfaces that satisfy Eq. (2.1) only for τmin < τ < τmax, 
with τmax on the order of l and τmin on the order of λ/10. If τmin << 
τmax, this implies that such surfaces satisfy Eq. (2.5) only in a wide but 
limited range of spatial frequencies kmin < k < kmax, with kmin = 1/τmax 
and kmax = 1/τmin. That is why these surfaces are also referred to as 
band-limited fBm. It can be demonstrated that band-limited fBm 
surfaces are stationary (at least in wide sense) and regular. Starting 
from the definition of such physical fractals is possible to find closed 
form expressions relating the fractal parameters to some equivalent 
classical parameter as variance, slope and curvature [4]. 

An example of fBm surface profile is shown in Fig. 1 (taken from 
Ref. [7]): self-affinity is clearly illustrated by the sequence of zooms 
shown in the plots. 
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Figure 1 Example of fBm profile: H = 0.75; S0 = 0.01 m[2 – 2H], l = 5000 m. 

(b) and (c) are exploded views of the framed boxes in (a) and (b), 
respectively. 
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2.1.1.2 Weierstrass-Mandelbrot function 

Among several possible representations of the WM function, one in 
particular is convenient for modeling the interaction of natural 
surfaces and electromagnetic waves [2], [8]. We may consider the 
non-normalized WM function z(x, y) as the superposition of an infinite 
number of sinusoidal tones, each one characterized by the value of the 
index p: 
 

0( , ) sin ( cos sin )Hp p
p

p
p p pz x y B C k x yν ν

∞
−

=−∞

 = Ψ + Ψ + Φ ∑  (2.8) 

 
wherein B [m] is the overall amplitude scaling factor, k0 [m

 -1] is the 
wavenumber of the fundamental component (corresponding to p = 0), 
v (greater than 1) is the seed of the geometrical progression that 
accounts for spectral separation of consecutive components of the 
surface and 0 < H < 1 is the Hurst exponent; Cp, Ψp and Φp are 
deterministic or random coefficients that account, respectively, for 
amplitude, direction and phase behavior of each tone. 
 A discussion on the meaning and on the consequent choice of 
these coefficients is now in order. If the coefficients Cp are 
deterministic, they must be all equal and constant, Cp = C, so that the 
tone amplitudes, BCv -Hp, ensure the correct power-law spectral 
behavior of the fractal function. For random coefficients Cp, the usual 
choice for their pdf is Gaussian with zero mean and unitary variance. 
If the coefficients Ψp are deterministic, all equal and constant, Ψp = Ψ, 
the surface exhibits the fractal behavior only in the direction selected 
by Ψ (and is constant along the direction orthogonal to it). If the 
coefficients Ψp are uniformly distributed in [-π, π], the WM function 
is isotropic in statistical sense; any other choice leads to an anisotropic 
surface. If the coefficients Φp are deterministic, they are usually 
selected to ensure that the WM function exhibits the self-affine 
behavior. 

If the coefficients Φp are random, they are usually chosen 
uniformly distributed in [-π, π], and the zero-set of the WM function 
(i.e., the set of points of intersection with the plane z = 0) is 
nondeterministic. 
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In case of a random WM function, the random coefficients, Cp, 
Ψp and Φp, are usually assumed to be mutually independent. 

Equation (2.8) exhibits a non-integer fractal dimension D as soon 
as v is irrational and the Hurst exponent is related to the fractal 
dimension D as 

 
3D H= − .  (2.9) 

 
In case of random coefficients, the WM function holds the self-

affine behavior only for a scaling factor r = vn. Whenever v tends to 1 
the WM function approaches the self-affine behavior in the statistical 
sense. 

A physical WM function can be obtained by just limiting the 
summation extent to P tones, thus obtaining band-limited WM 
surfaces: 
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As in the case of fBm, use of band-limited WM surfaces is physically 
justified by the fact that any scattering measurement is limited to a 
finite set of scales. Let (X, Y) be the antenna footprint over the surface. 
The lowest spatial frequency of the surface, k0/2π, is linked to the 

footprint diameter 2 2X Y+ , while the upper one k0v
p-1/2π is related 

to the electromagnetic wavelength λ, possibly through an appropriate 
safety factor χ in the range [0,1], usually set equal to 0.1. Accordingly, 
we can set 
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Relations (2.11) and (2.12) can be used to determine the number 

of tones P needed to effectively describe the physical WM of interest: 
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where the ⋅    operator is the ceiling defined so as to take the upper 

integer of its argument. 
Also in this case it is possible to obtain a relation between the 

parameters of the WM function and classical surface parameters [4]. 
 

2.1.1.3 Connection between WM and fBm surfaces 

As a matter of fact, it is not trivial to obtain realizations of fBm 
sample functions characterized by H and S0 parameters; conversely, 
the WM function is easily computed via simple summation of 
sinusoidal tones. For this reason it is useful to establish a relation 
between the fBm and the WM parameters in such a way that an fBm 
surface can be synthesized via an opportune WM function. As for the 
Hurst parameter, it is simple to verify that it is equal to the H value in 
(2.8): hence, we need only a relation for the amplitude factors S0 and 
B. 

Looking at Eq. (2.8), it can be noted that, under some hypotheses, 
the WM could be intended as a sampled representation of an fBm. 
Hence, the required connection can be established by comparing the 
corresponding power spectra and checking to what extent the former 
is a sampled representation of the latter at the discrete spatial 
frequencies kp = k0v

p. 
Dividing the spectral plane kx, ky into concentric annular regions 

of radii (kpv
1/2, kpv

 -1/2) respectively, and computing the spectral power 
within each annular region pertinent to WM and fBm surface 
description, is possible to obtain the following relations involving the 
parameters of interest [4]: 
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which for ν  approaching 1 (i.e., when the spectrum of the WM 
becomes almost continuous) can be written as: 

 

( )2
0

2
0

1
1HB S k ν

π
= − .  (2.15) 

 
Summarizing, we can say that the WM function and the fBm 

process both posses the same Hurst parameter and hence, at least in 
the limit 1ν → , the same fractal dimension. This is consistent with 
the fact that the equivalent power spectral decay of the WM function 
and the power spectral decay of the corresponding fBm process are 
the same. Finally, if B is selected according to Eq. (2.14), then the 
power content of the WM function and the equivalent fBm process are 
equal on appropriate spectral intervals; in the limit of 1ν →  this last 
result is valid on any spectral interval. 

In Fig. 2 (taken from Ref. [7]) we plot WM profiles for fixed 
values of H, k0, and for different values of v and B. It is visually 
evident from comparison of Figs. 1 and 2 that if v is small enough (a 
value equal to the Neper number e may be sufficient), then Eq. (2.8) 
can be used to generate an fBm sample profile. 
 
2.1.2 Scattering from fractional Brownian surfaces 
 
An extensive discussion on scattering models is beyond the scope of 
this thesis work. In this section we will only provide the final results 
of the evaluation of closed form analytical solutions for the scattering 
problem in case the observed surface is described as an fBm process. 

Two models are of interest in the following, the Physical Optics 
(PO) solution and the Small Perturbation Method (SPM). In the 
following their rationale is exposed. 

 
2.1.2.1 Physical Optics solution 

In order to evaluate the scattered power density we need to evaluate 
the mean square value of the scattered field, which after some 
manipulation and a coordinate transformation, can be written as an 
integral involving the structure function of the considered surface [4]. 
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Figure 2 Examples of WM profiles: H = 0.75, l = 5000 m; (a) v = e/2 and B 

= 4.70 m; (b) v =e and B = 8.85 m; (c) v = 3e and B = 14.8 m. In all 
three cases Eq. (2.8), modified to account for one-dimensional 
profiles, leads to an equivalent fBm process with H = 0.75 and S0 = 
0.01 m[2 – 2H]. 
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The use of the expression in Eq. (2.3) allows the evaluation of two 
different closed form solutions for the scattering problem. The 
corresponding expressions for the Radar Cross Section (RCS) are the 
following [9], [2]: 
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for 1/ 2H ≥  and 
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for 0 1/ 2H< ≤ . In Eq. (2.16) and (2.17) ϑ is the local incidence angle of the mean plane and Rp(ϑ) is the Fresnel reflection 
coefficient and the RCS is computed as 
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where ( )i

pE  and ( )s
qE  are the incident and the scattered field computed 

in the same direction (p and q standing for the considered 
polarizations), R0 is the distance with the receiver and A is the area of 
the illuminated surface. 

A discussion on the validity limits of this model is now in order. 
To obtain the expressions in Eq. (2.16) and (2.17) two hypotheses 
have been done: the validity of the Kirchhoff Approach (KA) and a 
small slope approximation. As for the KA, it holds if the mean radius 
of curvature of the surface is much greater than the wavelength of the 
incident field. Conversely, the small slope approximation holds if the 
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rms slope is much smaller than unity. As we mentioned in the 
previous sections, it is possible to evaluate curvature and rms slope of 
fBm surfaces introducing the concept of band-limited fractals: in this 
way, it is possible to assess the validity limits of the PO model in 
terms of the fractal parameters of the surface. Obviously, the 
expression of these validity limits will be strongly dependent on the 
particular type of physical fractal used in the description of the 
surface. 

Finally, let us note that the series in Eq. (2.16) and (2.17) can be 
truncated to a finite number of terms, for computer evaluation 
purposes. In fact, in practical cases the convergence rate of the two 
series (or at least of one of the two series at a time) is high and only 
few terms will be needed for the computation of the RCS [4]. 
 
2.1.2.2 Small Perturbation Method 

As we have seen, using the KA is possible to obtain a closed form 
expression for the mean square value of the backscattered field. 
Unfortunately, the computation of a series is required to obtain the 
desired RCS. A much simpler result can be obtained by employing the 
SPM. This method is based on the Rayleigh hypothesis and on a 
surface field series expansion, and can be used if surface height 
variations are small compared to the wavelength [9], [4]. 

The RCS in this case can be written as follows: 
 

( )20 4 4
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where βpq is a function accounting for the field polarization, ϑ  is the 
local incident angle and k the electromagnetic wavenumber. 

Note that Eq. (2.19) diverges at normal incidence. Such a 
condition does not allow the implementation of the model in practical 
cases. Therefore, in order to overcome this problem, it is possible to 
use a transition function for low incidence angles, based on the 
previously presented Physical Optics solution to the Kirchhoff 
Approach. 

Like in the PO case, validity limits can be evaluated introducing 
equivalent classical parameters for the fBm physical surface [4]. 
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2.2 The ocean surface 
 

In this section we focus on a different kind of natural surface: sea 
surface. Oceans are nonlinear dynamic systems, whose physics is 
governed by very complex laws. Description of ocean surface waves 
is the most relevant branch of oceanography for electromagnetic sea 
sensing. 

Surface waves are found in the ocean with wavelengths ranging 
from the hundred of meters to the millimeter scale. The ocean wave 
range is usually divided into long (several hundred meters length), 
intermediate (tens of meters length), and short (less than one meter) 
waves. In the literature, the ocean waves are also classified according 
to the physical phenomenon that dominates their formation: long and 
intermediate waves are usually referred to as gravity waves; 
conversely, the range of short waves includes the shortest gravity 
waves, and gravity-capillary (one centimeter to decimeters) and 
capillary (less than 1 cm) waves. 

Hereafter, we will focus on a particular sea status: the so called 
fully developed sea. In fact, models for other sea conditions (for 
example, inshore sea) are unavailable or, at least, very involved. 
Conversely, the presented sea surface model allows the evaluation of 
the RCS as a function of key physical parameters, such as wind speed 
and potential presence of pollutants on the surface. 

The basic backscattering mechanism in this case, at least for 
intermediate incidence angles and appropriate environmental 
conditions, is the Bragg one. However, it must be emphasized that 
when the resolution cell is small with respect to the ocean 
backscattering wavelength, i.e., it no longer features a collection of 
scatterers and/or we deal with low grazing angles, the microwave 
backscattering is not of the Bragg type and different models have to be 
suggested and investigated. 

One of the most important causes of pollution in the ocean is the 
intensive oil emission onto the water. Natural oil is present in the 
ocean due to natural phenomena, but many statistic studies showed 
that human activities change the percentage of oil in water, sometimes 
with dramatic effects. Oil spills caused by accidental or intentional 
emissions interact with the local marine ecosystems and, by modifying 
the delicate air–sea balance, exhibit great influence on large- and 
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short-scale phenomena. Remote sensing has proved to be a powerful 
tool to study ocean dynamics and detect oil spills. Optical, 
radiometric, and radar systems have been employed for the detection 
of oil slicks in the sea. In particular, SAR systems have been shown to 
be very useful. 

Obviously, the purpose of this work is not to give a general 
assessment of the above theories, but just to present their rationale, 
trying to provide a simulation-oriented approach. Thus, in the 
following the physics of the problem will be discussed without 
stressing the unnecessary mathematical detail. 

 
2.2.1 Fully developed sea surface spectrum 

 
The first definition of a fully developed sea surface spectrum is 
probably due to Pierson and Moskovitz. They assumed that if the wind 
blew steadily for a long time over a large area, the waves would come 
into equilibrium with the wind. This is the concept of a fully 
developed sea [10]-[13]. 

Loosely speaking, when the wind blows over the ocean surface, 
capillary waves rise first. Then, the capillary waves transfer energy to 
waves with longer wavelength. This phenomenon continues until 
equilibrium is reached (fully developed sea). Such equilibrium 
depends on the wind strength. When the wind stops blowing, the short 
waves decrease quickly, while the long waves propagate far from their 
source (and, in this case, are usually referred to as swell). 
Accordingly, long waves are generated by strong far winds, at 
variance of short waves, which are generated by local winds. It can be 
concluded that their directions of propagation are usually different and 
that they interact in a very complex way. Besides, it has been 
demonstrated that intermediate and long waves modulate the 
amplitude of the short waves. Let us briefly describe the different 
parts of the sea spectrum. 

The long wave can be seen as a realization of a random process 
describing a swell profile at a fixed time: central wavenumber, 
amplitude, and bandwidth of its spectrum are the parameters of 
interest in this case. They depend on the far wind intensity and 
direction and on the fetch area. This part of the spectrum is basically 
described by a wave-packet. 
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With regard to short waves, we consider the Pierson–Moskovitz 
spectrum. In particular, is interesting to note that the short gravity 
range of this spectrum exhibits a power law behavior and is frequently 
modeled as fractal. This part of the spectrum is also the one used in 
the computation of the scattering, where Bragg mechanism selects 
resonant waves in this range of wavenumber. In this case wind speed 
is a fundamental parameter involved in the definition of the spectrum 
[14]. 

As we noted above, the different spectral components interact one 
with each other: thus, to complete the description of the surface and 
account for its time-varying nature we need a dispersion relation for 
the long wave spectrum [14]. 

However, an exhaustive discussion on problems involved in the 
whole ocean spectrum definition, use, and meaning is beyond the aim 
of this paper and can be found in the specialized literature, for 
example in Ref. [10]-[13]. 
 
2.2.2 Bragg scattering 
 
As already noted, the key mechanism involved in the interaction 
between the electromagnetic field and the sea surface (at least a fully 
developed one) is Bragg scattering. It is based on the observation that 
main contributions to the backscattered field are provided by the 
ripple spectral components whose wavelength is of the same order of 
magnitude of the incident electromagnetic wavelength. Since the 
height of sea waves is much smaller than their wavelength (unless 
breaking waves are considered), then the height of ripple spectral 
components involved in the scattering mechanism must be much 
smaller than the electromagnetic wavelength, too [14]. 

This allows finding a direct dependence of the RCS from the 

resonant components of the sea spectrum ( ),x yW k k  with: 

 

( )

4
cos

4
sin cos

x x i

i iy y

k

k

π δ ϑ
λ
π ϑ δ ϑ
λ

 =

 = +


  (2.20) 



2.2 The ocean surface                                                                          39 

 
where δx and δy are the slopes of the sea macroscopic surface in the 
two directions and iϑ  is the local incidence angle. 

Equations (2.20) clearly show that, according to the Bragg 
phenomenon, the SAR sensor acts as a frequency selector; hence, the 
ocean waves that contribute to the scattering are only those resonant 
with the wavenumbers such that Eq. (2.20) holds. 
 
2.2.3 Effects of oil pollutants on sea surface 
 
Hereafter, we briefly discuss the ocean spectrum dependence on the 
presence of oil [15]-[19]. 

The presence of oil on the water surface reduces surface tension 
and friction between wind and liquid surface: the higher the oil 
percentage, the stronger the reduction effect. This means that the wind 
can transfer a smaller energy to capillary waves in oil-slick-covered 
areas than in free-water areas. In addition, viscous dissipation 
increases. All this causes a decrement of the capillary spectrum 
intensity, which, as presented above, plays a dominant role in the 
scattering mechanism. Then, according to what we said in the 
previous sub-section, a weaker electromagnetic return from areas 
affected by oil presence is expected, which causes darker areas in 
SAR images. 
To quantify the abovementioned phenomenon a model based on the 
Marangoni theory and on a nonlinear energy transfer theory can be 
used. This model arises from a theoretical physical–chemical 
approach and provides a reasonable physical interpretation to a typical 
behavior of the wave damping in a range of wavenumber of great 
interest for SAR applications. According to Marangoni, surfaces 
covered by a slick can carry two kinds of waves: the gravity-capillary 
and the Marangoni waves. Marangoni waves are related to surface 
tension gradients, caused by the oil film visco-elastic reaction to the 
sea surface deformations. At variance of gravity-capillary waves, 
Marangoni waves are longitudinal. When Marangoni and gravity-
capillary waves share the same wavenumber for a given frequency, a 
maximum in the damping occurs. 
Thus, it is possible to obtain an analytical expression for the damping 
coefficient which depends on the visco-elastic of the considered oil. 
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However, the dampening caused by Marangoni waves is not sufficient 
to completely explain sea surface spectrum variations in the presence 
of oil. As a matter of fact, according to Marangoni theory, oil slicks 
influence ocean waves with wavelength only lower than 1 m, whereas 
experience suggests that the whole spectrum is affected by the oil 
presence. 

In fact, when an external input acts on the ocean and changes its 
shape, the system reacts by spreading uniformly the energy through its 
whole spectrum via wave–wave nonlinear interactions. Hence, when 
an oil slick causes a strong spectrum damping around the Marangoni 
resonant wavelength, longer and shorter waves transfer part of their 
energy to the waves in the resonant spectral region, via the nonlinear 
wave interaction phenomenon. This is the reason why, although the 
damping effect directly acts only on the short waves, longer waves 
also are influenced by the presence of oil. Such a wave–wave 
interaction mechanism is strongly influenced by the wind; hence, the 
higher the wind intensity, the higher the energy spreading effect. 

All the phenomena described above can be used to obtain a closed 
form expression for the RCS also in presence of oil. Most important, 
we found a way to directly relate, though via strongly non-linear 
relations, the backscattered signal to physical, chemical and 
environmental properties, which are all potentially retrievable through 
inversion of these direct models. Another key result is that we can 
account for the presence of any kind of oil on the sea surface only by 
knowing its physical-chemical properties. 

All the models described in this last section have been effectively 
used to develop the SAR ocean simulator presented in Ref. [15], 
which is able to simulate also the presence of oil over some portion of 
the image. 
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Chapter 3 
 

SAR Simulation Tools 
 

Several approaches devoted to define instruments and tools for data 
interpretation were presented in literature. Most of them are based on 
empirical analyses of remote sensing data, essentially driven by user 
needs. For an efficient information extraction, as we argued in Chapter 
1, we need physical models: some of them were reviewed in the 
previous chapter. 

In this chapter we present novel results concerning the 
development of model-based automatic techniques for the analysis of 
SAR amplitude images. 

In the first section, a fractal framework for the simulation of SAR 
images relevant to simulated disaster scenarios is introduced. Such an 
instrument can be used to increase the comprehension of the physical 
mechanisms underlying radar image formation in case of disasters. In, 
fact, the main problem of the scientist working on the development of 
remote sensing techniques for disaster monitoring is the lack or the 
limitedness of an accurate ground truth. The proposed simulator 
allows performing parametric studies on canonical disasters scenarios 
with a perfectly known ground truth. Furthermore, it can be used to 
obtain images relevant to both pre- and post-crisis situations, 
providing the possibility to develop a test bed of simulated images to 
be used for the testing of change detection techniques. Relevant case 
studies are presented with regard to different kinds of natural 
disasters. Finally, a novel change detection technique based on the 
estimation of significant parameters and supported by fractal concepts 
is described. 

In the second section, new tools for the simulation and analysis of 
ocean scenes covered with oil slicks are presented. The produced 
images have been used for the testing of novel fractal and radiometric 
techniques for the identification of oil slicks and their discrimination 
from look-alike (for example, wind faults). 
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3.1 A fractal simulation and analysis chain 
 
Human beings live in an environment in continuous evolution with a 
large number of physical phenomena which are potentially dangerous 
for their life. Remote sensing sensors provide a great amount of data 
to be used in disaster prevention, risk evaluation, damage estimation 
and aid organization. However, practical use of these data is often 
limited by the lack of efficient, possibly unsupervised, tools for the 
retrieving of effective information to be employed in the crisis and 
post-crisis phases. 

Several approaches devoted to define instruments and tools for 
data interpretation were presented in literature, showing, at least in 
principle, the potentiality of satellite and aerial technique for the 
monitoring and eventually prevention, of natural (flooding [1]-[2], 
volcanic risk [3], landslides [4], etc.) and human-made disasters (oil 
spills, fires, etc.). Most of these approaches are based on empirical 
analyses of remotely sensing data, essentially driven by user needs. 
These analyses are generally supervised; and, to be effective, it is 
often required that the supervisor holds a remarkable level of 
competence with reference both to the remote sensing sensors (and 
data), and to the effects of different disasters on the environment. 

Among remote sensing sensors, the imaging ones take the 
advantage of generating synoptic views of the area under observation; 
in this case, the rationale for the feature identification techniques is 
generally based on the concepts of image texture analysis. Textures on 
remotely sensed images are related to morphological and geological 
features, land use and social organization of the observed scene. An 
expert user can identify significant classes of human signatures, as 
ordered patterns which are well described within the Euclidean 
geometry, and distinguish them from natural features, that conversely 
hold self-similar characteristics thus being governed by non-Euclidean 
laws. When a disaster occurs, the scenario of the observed scene 
dramatically changes, and remote sensing instruments should be, at 
least in principle, able to detect the changes in the scenes. As a matter 
of fact, man-made structures can be damaged thus (partially) losing 
their Euclidean properties; alternatively, some natural features can be 
modified thus changing the characteristics of their non-Euclidean 
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statistics. An example for the first happening is provided by images of 
urban areas stricken by earthquakes, where some chaotic textures 
appear and Euclidean pattern are mixed with self-similar ones. 
Examples for the second happening are provided by images of a 
flooding in rural areas or a volcano eruption; these natural disasters 
modify (according to different rules) the surface profile from scales 
smaller than the sensor coverage but comparable to the sensor 
resolution, up to scales comparable to the electromagnetic wavelength. 

Then, a fundamental aid in managing post-crisis analysis can be 
given by unsupervised, or semi-unsupervised tools for interpretation 
of geometrical features in remotely sensed images: to develop these 
tools it is crucial to introduce appropriate models to understand and 
quantitatively describe the physical phenomena that govern the 
modification of the scenario textures, thus providing a fundamental 
background to plan any powerful instruments to retrieve the 
information of interest. 

As we have seen in the previous chapter, the fractal geometry 
has the required characteristics to manage the problem at hand. 
Therefore, fractal based instruments are appropriate candidates for the 
retrieval of the significant physical parameters from remotely sensed 
images. In this section, we present a novel fractal framework, based 
on direct and inverse models, to facilitate the disaster monitoring from 
SAR images. In particular, we propose the combined use of an 
appropriate SAR raw signal simulator with fractal based models and 
tools.  

As for the direct chain, fractal geometrical models are employed 
to correctly represent the imaged surfaces and fractal scattering 
models are employed to evaluate the reflectivity function of the 
natural scene under observation [7]-[8], in agreement to what we saw 
in the previous chapter. The evaluation of the scattering requires the 
knowledge of the fractal parameters of the area. Some techniques have 
been reported in the open literature for the retrieval of the fractal 
parameters from a given two-dimensional data set, most of them 
relying on the fractional Brownian model. 

The reflectivity function is employed to simulate the SAR raw 
signal and the relative SAR image, as described in Chapter 1. 

As for the inverse chain, in the open literature most of the 
change detection algorithms are based on ratioing and differencing on 
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the magnitude of the signal return between pre- and post-crisis 
scenario [9]-[10]. Fractal tools could be employed for retrieving SAR 
properties of the SAR images and to develop change detection 
algorithms based on differencing and ratioing between parameters 
with a physical meaning. Anyway, these techniques have been mainly 
proposed with reference to fractal surfaces, thus they quite 
conveniently apply to Digital Elevation Model (DEM); conversely, 
their use in case of images of the fractal surface is sometimes 
questionable. However, these methods present a major problem for 
remote sensing applications: the estimation is effective only in 
presence of data equally sampled in both directions. In the following a 
solution for the problem is proposed. 

Such an approach calls for appropriate discussion on the 
fractality of SAR images and on the possibility to retrieve the fractal 
parameters of the surface by analysing its radar image. In the next 
chapter a novel analytical closed-form solution will be presented, 
clarifying the nature of this inverse problem. 

In the following a comparison between the SAR raw signal 
simulator and actual images allows the validation of the whole direct 
chain. In addition, the direct chain is used to create canonical disasters 
in order to develop ad hoc solutions for two simulated case studies: a 
flooding and a volcano eruption. 
 
3.1.1 Fractal framework assessment 
 

The framework makes use of some tools which are here 
described in terms of input and output data, as well as of employed 
models and algorithms. 

Monitoring of each type of possible disaster calls for appropriate 
remote sensor coverage, temporal and spatial resolution scales, and 
sensitivity.  

Sensor coverage and sensitivity are somehow dual concepts. 
Sensor coverage allows focusing on the entire area involved in the 
disaster so that large scale phenomena can be monitored. Sensor 
sensitivity is here refereed to the employed electromagnetic 
wavelength and can be related to the scene spatial scales that mainly 
affect the remotely sensed data, thus providing information on the 
small scale phenomena. Temporal resolution fixes the time for 
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obtaining post-crisis data and the average temporal lag between pre- 
and post-crisis data. Spatial resolution allows monitoring the disaster 
at a significant scale with respect to the observed feature. This scale is 
set at an intermediate level between the sensor coverage and the 
electromagnetic wavelength. 

With respect to above mentioned parameters, spaceborne and 
airborne SAR data provide a unique tool to monitor several types of 
disasters. SAR coverage allows imaging Earth at a regional scale 
which is typical of most of possible disasters. SAR sensitivity depends 
on the backscattering properties at microwaves, thus being related to 
the geometrical properties of the scene under survey at centimetric and 
metric scales. Acquired SAR data exhibit a spatial resolution that can 
be employed to monitor the geometrical properties at scales ranging 
from 1 meter to 1 kilometer. Finally, the new generation of 
spaceborne sensors is conceived to reduce the temporal resolution 
from days to hours, just as required for an efficient monitoring, (and 
support controlling) of major natural and human-made disasters. Then, 
SAR images, with respect to optical ones, exhibit an emphasized 
dependence on the observed geometrical features on spatial scales 
ranging from several kilometres to some centimetres. 

This short and general discussion provides the major 
motivation to propose a fractal framework for the study of disasters by 
means of SAR images. Fractal geometry provides the appropriate 
“environment” to deal with geometric features that extend in such a 
wide range of scales. The fractal framework we propose is then based 
on the following tools.  

1. A fractal inverse geometrical tool (IGT) to retrieve the 
fractal parameters from the surface profile of the scene 
under analysis. 
Input of this tool is an (original) DEM of the scene under 
analysis. This DEM can be acquired by aero-
photogrammetric campaigns or interferometric SAR data; 
it should be relevant to the entire area under analysis and 
should be sampled with spacing as closer as possible to the 
SAR resolution. In general a coarse version of these DEMs 
can be provided by the data from the Shuttle Radar 
Topography Mission (SRTM). The outputs of this tool are 
the maps containing the fractal parameters evaluated in 
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each point of the original DEM of the scene. The tool we 
propose is based on the fBm model for the DEM. 

2. A fractal interpolation tool (FIT) to obtain the surface 
profile sampled according to the resolutions of the 
considered SAR sensor and stochastically described at the 
scales comparable to the employed wavelength [11], [12]. 
Input for this tool are the original DEM and the maps of 
the fractal parameters evaluated by the tool described at 
step 1. Output is a realisation of the macroscopic DEM at 
the SAR resolution scale and parameters of the 
microscopic DEM at SAR wavelength scales to be used in 
the SAR raw data simulator. At the microscopic scale only 
the fractal parameters are required by the scattering 
models, and the fBm model is employed to fix these fractal 
parameters equals to those estimated at the original scale 
thus performing a stochastic interpolation of the scene 
profile up to scale typical of the electromagnetic 
wavelength. 

3. A SAR simulator (SARAS) that makes use of fractal direct 
scattering formula to generate raw signals and images 
relevant to the scene under analysis. 
Main inputs of this tool are the DEM of the scene sampled 
at the SAR resolution scale and the fractal parameters at 
the SAR wavelength scale. This tool evaluates for each 
portion of the scene the backscattering via a direct 
scattering formula and projects this result onto the 
azimuth-slant range coordinate system. This tool employs 
an fBm model for the surface; the tool can alternatively 
employ Physical Optics (PO) or Small Perturbation 
Method (SPM) fractal based solutions for scattering, 
whose fundamentals were reported in the previous chapter. 

A disaster brings significant changes in the geometrical properties 
of the affected scene. As an example, the roughness of a flooded area 
is usually lower than before the event, while an inhabited area affected 
by an earthquake will lose the ordered organization typical of built-up 
quarters. As presented in Chapter 2, fractal geometry accounts for the 
irregularity of the surfaces, therefore its use is widely suggested for 
change monitoring.  
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In this work we extended the variogram method (which estimates 
the fractal parameters via a linear regression on the log – log plot of 
the variogram) to deal with not equally spaced data. Note that, if the 
data are equally spaced, the number of points with the same relative 
distances is greater with respect to the case of non-equally spaced 
samples. In order to reduce this effect we used the Otsu linearity 
index. 

This new tool can perform estimation of pseudo-fractal 
parameters (for the moment, we don’t know whether the image of a 
fractal is fractal or not) on the final image: we don’t know precisely 
(analytically) how these parameters are related to the fractal 
parameters of the surface, but, anyway, we expect them to be related. 

The SARAS simulator, introduced in Chapter 1, is here modified 
to allow simulation with fractal and electromagnetic parameters 
varying all over the scene. In fact, in the study of simulated disasters 
we will need to change these parameters on the zone hit by the 
disaster. 
 
3.1.2 Case studies 
 
In the following significant case studies are presented, to assess the 
performances of the proposed framework. 
 
3.1.2.1 Comparison with actual data 

The region of interest is the area of Maratea (39°59’N 15°42’E), 
South of Italy, a coastal area surrounded by steep mountains. A digital 
elevation model (DEM) of a 20 X 20 Km2 area, with 20 x 20 m2 pixel 
spacing  was available for the considered area, as well as an ERS-1 C-
band SAR image, acquired in descending orbit on the 30 of January 
1996, with a view angle of 24.88°. 

As first, we used our DEM as input for the SARAS simulator, in 
order to compare the simulated with the ERS-1 image. The DEM was 
interpolated via the FIT procedure on a 3.99 x 19.93 m2 spaced grid, in 
accordance with the ERS acquisition geometry. A pictorial view of the 
interpolated DEM is shown in Fig. 1, with an observation angle of 
24.88°, so that it reproduces the scenario seen by an observer on the 
ERS-1 satellite. 
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In Fig. 2 the DEM grey scale representation is provided. Note 
that the highest mountain (corresponding to the brightest area) has a 
top altitude of 1506.45m. Columns of the image represent equi-
azimuth pixels.  

In order to use the presented DEM as input for the SARAS, the 
description of the scales at the order of the incident wavelength (5 cm 
for ERS-2 sensor), is needed. The fractal parameters of a natural 
surface are independent of the scale at which we measure them; 
therefore, we retrieved the microscopic fractal parameters from the 
DEM, via the IGT. We present the fractal dimension D and the s 
parameter estimated by the reference DEM in Fig. 3 and 4, 
respectively. Note that the s map allows an identification of 
topographical characteristics, like rivers, or mountains. 

Once the long and short scale characterization is provided, it is 
possible to perform the SARAS simulation of the image generated by 
the ERS-1 sensor.  

The image obtained from the simulated raw signal via standard 
processing, is presented in Figure 5a and compared with the actual 
image provided by the ERS-1 SAR. The images are averaged with a 2 
x 10 multi-look, so that the presented image resolution in azimuth – 
slant range is 39.86 x 15.81 m2, which corresponds to an azimuth – 
ground range square pixel (39.86 x 37.58 m2). A visual comparison 
shows the capacity of the simulator of reproducing the main 
characteristics of the SAR image, suggesting the use of the SARAS as 
support for SAR actual image interpretation. 

The presented results suggest the use of the SARAS for 
simulating canonical scenarios to be used as test-bed for the validation 
of change detection techniques. Therefore, we simulated two crisis-
scenarios, one relative to a flooding of the area adjacent to the highest 
mountain of the region of interest, another relative to a volcano 
eruption. In both the cases, the previous simulation is considered as 
the pre-crisis scenario, and it is use as reference for fractal change 
detection approaches, as detailed in the following. 
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Figure 1 3D view of the interpolated DEM, as seen from ERS satellite. 
 

 
Figure 2 Grey scale representation of the DEM in Fig.1. 
 

 
Figure 3 Map of the fractal dimension D of the considered DEM. 
 

 
Figure 4 Map of the standard deviation for unitary increments s of the 

considered DEM. 
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Figure 5 Simulated ERS amplitude image of Maratea (near range is on the 

left). 
 

 
Figure 6 Actual ERS amplitude image of Maratea (near range is on 

the left). 
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3.1.2.2 Flooding 

In the following, we present the potentiality of our framework applied 
to the monitoring of flooding. We modified the original DEM by 
creating a river’s spate in the valley pinpointed by the black oval of 
Fig. 7. The mean difference between the pre- and post-crisis DEM in 
that area is about 30m. A close up of the flooded region before and 
after the disaster is presented in Fig. 8 and 9, respectively. 

In order to appropriately simulate the presence of water in the 
flooded region, we modified the microscopic roughness and the 
dielectric parameters as well. As far as the microscopic fractal 
parameters are concerned, in the areas affected by the flooding we set 
H to a typical value for the water surface (H=0.75), and we set s to 
one half of the value in the pre-crisis scenario. As for the dielectric 
characterization, the area affected by the flooding is assumed to have a 
dielectric constant of 20ε0, and a conductivity of 1 S/m, which are 
typical values for extremely wet terrain; the surrounding area is 
assumed to have a dielectric constant of 4ε0 and a conductivity of 10-3 
S/m, typical of terrains with low water content [13]. 

The SARAS simulated image corresponding to the post-crisis 
scenario is presented in Fig. 10. A visual comparison with Fig. 6 
shows that the user can visually recognize the area hit by the flooding. 
Anyway, for actual cases a quantitative technique to identify the area 
involved in the phenomenon is required and its implementation is 
discussed in the following. 

Therefore, the use of classical and fractal techniques is in order. A 
quantitative comparison is possible if a ground truth is available. 
Therefore, in order to define a reference map, we exploited the 
SARAS facilities of simulating the SAR image in absence of speckle. 
Such an approach allows the definition of the “ground truth” in the 
SAR image by differencing pre- and post-crisis intensity images in 
absence of speckle, and the creation of the reference mask of Fig. 11, 
where flooded regions are identified by white pixels. 

Then, we tested the classical change detection technique based on 
the differencing between SAR intensity pre- and post-crisis images, 
obtaining a binary mask presented in Fig. 12. A visual comparison 
between Fig. 11 and 12 shows that the flooded area is well identified 
by the technique (we estimated that the hit rate is 97.2%), but this is 
paid with an excessive false alarm rate (11.2%), due to the fact that 
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the multiplicative random noise due to the speckle in correspondence 
of layover areas can significantly change from a realization to another. 
Note that, due to the peculiar distribution of the misclassified pixels, it 
is not trivial to improve the technique performance via classical post-
processing algorithms. 

Then, we implemented a change detection technique, based on the 
fractal framework presented in the previous sections. In particular, we 
used retrieved the pseudo-fractal parameters of pre- and post-crisis 
scenarios. In Fig. 13 we show a classification map obtained by the 
difference between the fractal dimensions of pre- and post-crisis 
scenes. Again, it is possible to identify the flooded area with a good 
hit rate (83%), but, again, the false alarm rate is extremely high 
(15.4%). 

Anyway, by observing Fig. 12 and 13, we note that the 
distribution of misclassified pixels is completely different, due to the 
different causes that generate it. In fact, the image intensity difference 
is very sensitive to the signal magnitude changes, therefore most of 
the misclassified pixels are grouped in the layover areas (it is 
consistent with the fact that SAR signal correlation decreases in 
layover areas). Conversely, the fractal dimension is more sensitive to 
gradients of the signal, therefore most of the noise is gathered in 
correspondence of the grazing angle areas, where the differences 
between the side lobe of the layover areas create steep gradients. 
Above considerations suggest to combine the obtained results in order 
to get a significant improvement on the detection performances. 

A simple multiplication of the obtained masks allows deleting 
most of the misclassified pixels, causing a strong reduction of the false 
alarm rate. Such a combined technique leads to a hit rate of 81.1%, 
with a false alarm rate reduced to 0.5%. A further low complexity 
processing can consist in a smoothing devoted to throw out isolated 
misclassified pixels, obtaining an improvement of the hit rate to 
90.2%, paid with a false alarm rate raised to 0.6%, corresponding to 
the classification mask presented in Fig. 14. Figure 14 suggests that 
the residual false alarm error can be further reduced via simple post-
processing algorithms. 

Note that, by changing the thresholds used for the classification 
maps, the results can slightly change. Anyway, the choice of the 
thresholds is beyond the scope of this paper, it can be done in 
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accordance with the specific application and it does not change the 
essence of above presented results. 

In addition, note that the s information was not used because, in 
this peculiar case, it does not bring a significant classification 
improvement. This is mainly due to the fact that, due to the particular 
topography, the s data and the image intensity information are 
strongly correlated. 
 

 
Figure 7 3D representation of the Maratea region after the flooding. 

Flooded area is marked in the black oval. 
 

 
Figure 8 Close-up of the region of interest before the flooding. 
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Figure 9 Close-up of the region of interest after the flooding. 
 

 
Figure 10 SAR simulation of the image relative to the post-crisis scenario as 

seen by the ERS-1 C band SAR sensor. 
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Figure 11 Reference classification map (“ground truth”). 
 

 
Figure 12 Classification map obtained by magnitude differencing. 
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Figure 13 Classification map obtained by pseudo-fractal dimension 

differencing. 
 

 
Figure 14 Classification map obtained with the combined technique. 



3.1 A fractal simulation and analysis chain                                         59 

3.1.2.3 Volcano eruption 

In the following, we present a simulated volcano eruption scenario. 
We show the performance of our fractal approach for the 
identification of areas covered by the lava flows. 

The first case is relevant to the Kilimanjaro volcano (2°S 36°E). 
We provided as input for the simulator the digital elevation model 
(DEM) of the zone, on a 90x90 m2 grid. The DEM was interpolated 
via the fractal approach, in order to be in accordance with the ERS-1 
acquisition geometry. In Fig. 15 we present a 3D representation of the 
DEM. 

The simulation was performed according to the procedure 
presented in the previous Section. The simulated image is shown in 
Fig. 16 (near range is on the left). Such an image represents a 
reference for the situation, in absence of lava flows. 

In order to assess the ability of the proposed technique, we 
simulated a lava eruption, by setting the simulation parameters of a 
given region to the typical values for the most common lava flows 
(AA and pahoehoe). However, to appropriately account for the 
presence of lava, we gave the region parameters the values defined in 
Table 1. 

Two kinds of lava are defined: a smoother one, recalling the 
properties of the pahoehoe lava flows and a rougher one, recalling the 
properties of the AA lava flows. In Fig. 17 and 18 the two simulated 
SAR images are presented (near range is on the left). 

 

 
Figure 15 3D representation of the Kilimanjaro volcano area. 
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Figure 16 Simulated ERS-1 image of the Kilimanjaro area. 
 

Table 1  Lava parameters. 
Lava  parameters AA Pahoehoe 

Dielectric Constant 8 20 

Conductivity [S/m] 0.01 1 

Hurst coefficient 0.6 0.85 

s [m(1-H)]  0.1 0.2 

 
On the obtained SAR images we applied the variogram method, 

obtaining the maps of the pseudo-fractal parameters of the two 
scenarios for change detection purposes. In this case, only one of the 
two independent parameters of the image, i.e. the s parameter, was 
used to identify the region covered by the lava. This is due to the fact 
that in our simulation we considered that the high scale profile is not 
changed by the lava flow. 
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Figure 17 Simulated ERS-1 images of the Kilimanjaro area covered with 

pahoehoe lava. 
 

 
Figure 18 Simulated ERS-1 images of the Kilimanjaro area covered with aa 

lava. 
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Anyway, the presence of the lava in the scene significantly 
changes the surface characteristics of the area affected by the eruption 
at microscopic scale, and it is possible to exploit the sensitivity of the 
SAR return to the surface microscopic roughness. We simulated the 
volcano eruption by changing the microscopic parameters of the 
surface and this resulted, essentially, in a change of intensity of the 
image in the zone of interest. 

In order to quantify the performance of the technique, a reference 
map can be generated, by simulating the SAR data in absence of 
speckle in the pre- and post-eruption cases. Their difference defines 
the “ground truth” for the case study. In Fig. 19 and 20 the ground 
truth and the map obtained with the proposed approach are shown. 
 

 
Figure 19 Ground truth map for the Kilimanjaro area. 
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Figure 20 Classification map obtained using the fractal technique. 
 

If we compare the case of the flooding with that of the volcano 
eruptions, it is evident that in the former case the modification of the 
DEM at macroscopic scales determined a variation in the pseudo-
fractal dimension of the image, resulting in information 
complementary with respect to that supplied by the s parameter. 
Essentially the pseudo-fractal dimension of the image shows a 
dependence on the fractal dimension of the imaged surface measured 
at the scales of SAR resolution rather than at wavelength scales. 
Anyway, this question will be fully clarified in the next chapter. 

In the next section another kind of natural disaster is addressed: 
the problem of oil slicks in the sea, often related to ship illegal 
emissions. New instruments have been developed to support SAR 
simulation of these scenarios. The goal in this case is to identify the 
oil slicks and to discriminate them from look-alikes. Examples of 
possible post-processing techniques devoted to this goal and tested on 
our simulated images are also presented and commented.
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3.2 Simulation of ocean scenes covered by oil 
slicks 

 
It is widely known that oil slicks on the ocean surface can be observed 
in SAR images as dark spots. Nevertheless, the use of SAR data is still 
limited because dark areas in SAR images can be due to several 
phenomena, as lack of wind, natural oil, plankton, and so on [14], 
[15]. So far, this ambiguity limited the development of automatic oil 
detection procedure. 

The work presented here is widely based on the SAR raw signal 
simulator of ocean scenes covered by oil slicks presented in Ref. [5]. 
Such a simulator relies on efficient models for the ocean description 
and for the electromagnetic field-ocean wave interaction. The ocean 
surface is described by means of a two scale model, including long 
(periods of about 100 meters), and short (periods of cm and mm) 
waves. In addition, intermediate scale waves are accounted for as an 
effect on the signal. A model based on the Marangoni theory accounts 
for the oil slick effect as well. The main limit of this simulator is that 
it was not possible to define a shape for the slicks. 

In order to enlarge the range of applications of our simulator, we 
extended the simulator potentiality, providing the chance of 
generating slicks with arbitrary shapes. In particular, we focused our 
attention on the simulation of oil slicks with fractal shapes, because it 
is widely accepted that the fractal geometry is the most suitable 
instrument to generate natural profiles. In particular, we used the WM 
fractal function, presented in Chapter 2, to synthesize a fractal surface. 

Once the oil slick was generated, we employed the obtained 
results as input for the SAR raw signal simulator. In particular, we 
simulated SAR images relative to fractal slicks as well as slicks with 
integer dimension, in order to emulate the characteristics of a ship 
emission.  

One of the techniques often used to discriminate between natural 
and man-due slicks is the regularity of the contour. Therefore, we 
analyzed the obtained images, with the double goal of verifying the 
law of conservation of the fractal dimension, as well as the 
radiometric behavior of the oil covered area with respect to clean 
water. 
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3.2.1 Generation of oil slicks with arbitrary shapes 

 
The estimation of the contour fractal dimension can be used in 
discriminating between natural and man-due slicks. Therefore, it can 
be interesting for oil detection purposes, to generate slicks with fractal 
shapes. In order to do it, the most appropriate function is the fBm. In 
the following a realization of an fBm process is synthesized by means 
of the Weiersrass-Mandelbrot function, as detailed in Chapter 2. 

A cut of the WM function at fixed z levels provides a fractal 
curve which defines the region covered by the oil. As an example, in 
Fig. 21 we depict a slick obtained by a cut of a WM function with 
fractal dimension DWM =2.35. The image was synthesized on a 3.99 x 
19.9 m2 spaced grid, in accordance with the ERS-1 acquisition 
geometry. The image pixel of Fig. 21 has a 19.9m x 19.9m (azimuth x 
range) dimension, in order to show the ground aspect of the slick. 
Therefore, such an image can be used as an input for the simulation of 
ERS-1 raw signals and images. 

 

 
Figure 21 A fractal slick obtained as a cut of a WM function with fractal 

dimension DWM =2.35. 
 

In order to estimate the fractal dimension of the slick contour, we 
applied a box counting technique, and we obtained a fractal dimension 
Dc =1.38. It means that difference between the Hurst coefficient H of 
the contour (related to the fractal dimension Dc by the relation Dc =2-
H) and that of the corresponding WM process is less than 4%. Similar 
results were found for different slicks. 

In several cases, it is of interest to discriminate between natural 
and man-due slicks, by evaluating the regularity of the contour. 
Therefore, we generated slicks whose shapes recall the typical slicks 
spilled by the boats, by using the classical geometry. As an example, 
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in Fig. 22 we present the shape of a slick, obtained as a brunch of a 
spiral function. 
 

 
Figure 22 A slick obtained as a branch of a spiral. 
 

As we stated in Chapter 2, the oil influence on the sea surface is 
accounted for via the Marangoni theory, as a damping of the ocean 
spectrum. The intensity of the damping depends on the oil properties 
and it is presents a resonant behavior. Therefore, the best sensor for oil 
detection depends also by the oil resonant frequency. As an example, 
the Oleyl Alchool, which is here considered as case study, presents a 
resonance around spatial frequency that corresponds to the C-band. 

The C-band ERS-1 SAR image relevant to the oil slick whose 
shape was shown in Fig. 21 is obtained from the simulated raw signal 
via standard processing and presented in Fig. 23. The image is 
averaged with a 1 x 4 multi-look, so that its resolution in azimuth – 
slant range is 19.9 x 7.9 m2, which corresponds to an azimuth – 
ground range approximately square pixel (19.9 x 19.9 m2). 
 

 
Figure 23 Simulated ERS-1 SAR image relative to the slick synthesized in Fig. 

21. The near range is on the left. 
 

In order to show the image dependence on the carrier frequency 
we simulated the SAR image signal relative to the previous scene, 
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acquired by the SIR-C sensor, which works at L band. In Fig. 24 the 
corresponding SAR image is shown. The image is averaged with a 1 x 
4 multi-look, so that its resolution in azimuth – slant range is 18.3 x 
13.3 m2, which corresponds to an azimuth – ground range 
approximately square pixel (17.7 x 18.3 m2). As expected, the image 
damping is strongly reduced, because the working frequency is in an 
area where the spectral damping is lower. 
 

 
Figure 24 Simulated SIR-C SAR image relative to the slick synthesized in Fig. 

21. The near range is on the left. 
 

In Fig 25 we present also the SAR simulation relevant to a slick 
with the classical contour presented in Fig. 22. The slick properties 
were chosen with the goal of reproducing the geometrical 
characteristics of a slick spilled by a boat. 
 

 
Figure 25 Simulated SAR image reproducing a boat emission. The near range is 

on the left. 
 

The introduced ability of the simulator can also be exploited to 
account for a typical ambiguity problem, related with the lack of wind. 
In fact, it is now possible to generate arbitrary shaped regions where 
the wind intensity is supposed to be reduced with respect to the 
background. As an example, in Fig. 26 we show a simulated ERS-1 
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image with the contemporary presence of an oil slick and a lack of 
wind. 
 

 
Figure 26 Simulated SAR image relative to a boat emission (on the left ), and a 

lack of wind (on the right). The near range is on the left. 
 
3.2.2 Image analysis 
 
The presented simulator can be intensively exploited to generate a set 
of images that can be used to improve the comprehension of the image 
characteristics and for training of detection techniques. In addition, the 
ability of simulating lack of wind and oil slicks gives the opportunity 
of facing the problem of the ambiguity solution as well. 

In the following, we present some examples on how simulated 
images can be a support for developing SAR techniques. In particular 
we focus our attention on the estimation of the slick contour fractal 
dimension, which can be a classification criterion, and on radiometric 
analysis. 
 
3.2.2.1 Fractal technique 

Let us consider the SAR images relative to the slicks generated in the 
previous section and the possible estimation of the fractal dimension 
of their contour. The evaluation of the fractal dimension is possible if 
the pixels belonging to the slick are identified. This operation can be 
performed by defining a threshold image intensity value. Of course 
such an approach is limited by the speckle noise that makes 
ambiguous the pixel classification. 

Anyway, the combined use of morphological operators allows the 
extraction of the slick contour. As an example, in Fig. 27 we show the 
contour extracted by the SAR image presented in Fig. 24. 
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Figure 27 Contour extracted by the SAR image of Fig. 24. 
 

The contour fractal dimension was then evaluated via a box 
counting algorithm, obtaining a value Dc =1.3. As expected, the fractal 
dimension is similar to the slick mask, slightly reduced by the 
morphological operations required to limit the speckle noise effect. 
Similar results were obtained for fractal slicks with different fractal 
dimension. 

The evaluation of the fractal dimension was also performed on the 
image presented in Fig. 25. Note that the extension of the slick is 
much more limited, therefore, the extraction of the contour and the 
evaluation of the fractal dimension can suffer for reliability problems. 
The obtained fractal dimension value Dc =0.9 confirms that the slick 
contour does not hold fractal property. It appears clear that the 
evaluation of the slick contour fractal dimension can be a technique 
for ambiguity removal. 
 
3.2.2.2 Radiometric techniques 

The slick classification is often addressed via the combined use of the 
contour fractal dimension retrieving and techniques based on the 
analysis of the SAR image radiometric properties. The presented 
simulator provides a huge amount of data for the developing and 
training of radiometric techniques as well. In the following, we recall 
an innovative technique for the discrimination between oil slicks and 
lack of wind, argued by theoretical considerations, and verified with 
the use of simulated data [5]. 

As stated in Chapter 2, the intensity of the electromagnetic return 
scattered by a portion of the sea surface is proportional to the ocean 
spectrum at frequencies sampled by the Bragg relation. The oil 
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presence damps the ocean spectrum and it changes the higher order 
statistics, at variance of a lack of wind, which causes a rigid damping 
of the ocean spectrum. 

Therefore, the estimation of the normalized intensity moments 
(introduced in Chapter 1) on several simulated SAR images led to 
verify that the higher order moments in areas covered by oil are 
modified with respect to the clean water and to areas where a lack of 
wind is present. The main limit of this technique was related to the 
fact that in actual cases the slick dimension often does not provide a 
sufficient population for evaluating reliable statistics. Anyway, the 
extension of the simulator presented in this paper allows the 
generation of a huge set of SAR images, devoted to quantitatively face 
the study of the limits of the technique, in terms of the slick 
geometrical characteristics. 
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Chapter 4 
 

Microwave Imaging 
 

In several geophysical applications the retrieval of significant 
parameters of an observed surface from radar data would be of key 
importance. However, this is often limited by the lack of reliable 
mathematical models able to quantitatively support the retrieving of 
value-added information on the scene under survey. 

In this chapter we provide an answer to the question raised in the 
previous chapter on whether the microwave image relevant to a fractal 
surface is fractal or not. In particular, the characteristics of images 
relevant to a fractal profile are here investigated.  

In our study we follow a twofold approach: on one side, we 
develop a rigorous analytical formulation for the problem assuming a 
particular class of small slope profiles; on the other side, we present 
an experimental setup able to deal with the general case. As for the 
analytical approach, we show that the signal backscattered from a 
fractal profile modeled as an fBm stochastic process is strictly related 
to the associated fractional Gaussian noise (fGn) process when a small 
slope regime for the observed profile can be assumed: in this case we 
are able to compute in closed form the structure function and the 
power density spectrum of the signal. Our results are obtained 
introducing an fBm smoothed process, which is justified by the low-
pass filtering introduced by the sensor impulse response function. 

The experimental framework is based on sound direct models 
allowing the synthesis of the profile, the evaluation of the 
backscattered signal via fractal scattering models and the estimation of 
the power density spectra of interest. Note that this is the only fully 
fractal approach found in the open literature on this subject, i.e. 
presenting a coherent choice of the considered geometric and 
electromagnetic models. Anyway, the proposed approach can be used 
also to analyze the case of heuristic scattering models, as will be 
clarified in the following. 
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4.1 Imaging of one-dimensional fractal profiles 
 
Due to the outstanding development of the remote sensing instruments 
and processing techniques occurred in the last decades, a huge amount 
of data relevant to any part of the globe is now being available. A new 
generation of sensors is providing a great amount of data that could 
increase the possibility to extract very valuable information. As a 
matter of fact, the possibility to obtain value added information from 
satellite data can be of great relevance for agriculture [1], rural and 
urban planning [2], disaster monitoring and assessment [3], and so 
forth. In particular, as far as geophysical applications are under 
concern, retrieving from remote sensing data significant parameters 
relevant to an observed surface is of open issue of key importance. 

In this section we provide a description of the imaging process 
that can be used as a support to feature extraction from radar data. 
Among different remote sensors, we focus on the imaging ones, which 
generate synoptic views of the area under survey thus providing 
punctual as well as distributed (textural) information on the remote 
sensed area. Texture on remotely sensed images is related to 
morphological and geological features, land use and social 
organization of the observed scene. By employing supervised 
techniques, an expert user can distinguish human signatures, which 
are well described within the classical geometry, from natural 
features, that conversely are better described by means of fractal 
geometry. 

Indeed, fractal geometry proved to be the most appropriate 
mathematical instrument to describe the self-similarity and irregularity 
of natural scenes, by means of few independent parameters [4]-[6]. 
Among fractal models, the fractional Brownian model (fBm) 
stochastic model is maybe the better choice for the description of this 
family of surfaces. However, fBm mathematical surfaces present a 
major disadvantage: they are strictly not differentiable. Hence, as we 
have seen in Chapter 2, we have to introduce physical fractals and to 
effectively define the derivative of this class of surfaces. In this 
section, we focus our attention on the (Euclidean) one-dimensional 
problem assuming an fBm geometrical model for the observed profile: 
this simplified environment allows the presentation of our innovative 
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approach, emphasizing the somehow unexpected results without 
hampering the mathematical issues. As a matter of fact, the extension 
to the (Euclidean) two-dimensional case is not straightforward: 
isotropy issues on fractal surfaces are to be taken into account and the 
mathematical approach becomes quite involved; the first steps toward 
the extension to the two-dimensional case are presented in the next 
section. 

The study of the physical phenomena occurring in the remote 
sensing of fractal surfaces is, obviously, of key importance for the 
retrieving of value added information from the images. As a matter of 
fact, we are interested not only in the estimation of significant 
parameters of the imaged surface, but also in achieving a better 
understanding of this kind of images avoiding the application of 
improper image processing techniques. In fact, the radar images are 
proposed under the form of a great variety of products, with different 
degrees and types of elaboration: actually, this can damage the 
information content of the original image of natural scenes. Hence, the 
interest is focused not only on the efficient retrieving of the fractal 
parameters, but also to the development of new, information-
preserving image processing techniques. 

In the open literature the works addressing these subjects are 
sparse and not always accurate enough to provide reliable results. 
Most of the available works refer to the pioneer papers due to 
Pentland [7]-[8], who studied the optical imaging of fBm surfaces, 
assuming a Lambertian scattering behavior. However, the choice of 
the electromagnetic scattering model used to compute the field 
backscattered from a random rough surface should be definitely 
dependent on the geometric model used in describing the surface 
itself. As we argued in Chapter 2, has been demonstrated that the use 
of adequate scattering models strongly improves the accuracy in the 
evaluation of the signal backscattered from fractal surfaces. Hence in 
this work use is made of appropriate fractal geometric and 
electromagnetic models: to the best of our knowledge, this is the only 
work presenting a completely fractal framework for this subject. In 
particular, we present here a twofold approach providing, on one side, 
an analytical closed form solution to the imaging problem in the case a 
small slope regime for the observed profile can be assumed, and, on 
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the other side, a sound model-based, experimental setup to study the 
general case. 

In the following sub-section we compare our work with existing 
ones and provide the fundamentals of the problem. 
 
4.1.1 Pentland model 
 
In Refs. [7] and [8], Pentland copes with the problem of the imaging 
of fBm surfaces. His approach is based on a linear approximation of 
the image intensity as a function of the partial derivatives of the 
surface: the underlying hypothesis is that the slopes of the observed 
surface can be assumed to be small. However, it is possible to split his 
work into two parts: 1) the assumption of a particular irradiation 
behavior (i.e., the Lambertian one) for the considered surface; 2) the 
evaluation of the power density spectrum of the image, in the 
hypothesis of validity of the aforementioned linear approximation. 

With regard to the former point, we note that the considered 
scattering behavior is not always adequate to describe the 
electromagnetic scattering from the considered surface: for instance, 
theoretical and experimental results show that at microwave 
frequencies the scattering from natural surfaces is definitely not 
Lambertian-like [9]-[10]. As argued in the previous chapters, an 
arbitrary choice of the scattering radiation diagram, regardless of the 
considered surface model, is a common misbehavior: most of the 
works available in literature and dealing with this subject use some 
heuristic function to describe the scattering from an fBm surface [11]-
[12]. As a matter of fact, each surface model calls for an appropriate 
scattering method and it has been shown in Chapter 2 that, if we 
assume an fBm model for the observed surface, we have to use 
appropriate fractal-based scattering methods for the evaluation of the 
scattering. The evaluation of a quantitative condition establishing the 
possibility to assume the small slope regime of the profile in term of 
its fractal parameters with respect to this fractal scattering models is a 
key future development of this thesis work: we note, by the way, that 
this issue is also related to the accurate definition of validity limits for 
the scattering models themselves, which is itself a delicate point as we 
have seen in Chapter 2. 
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With regard Pentland’s evaluation of the power density spectrum 
of the image, some important remarks are in order. The expression 
given by Pentland for the image intensity can be written as follows: 

 

0 1 2( , ) ( , ) ( , )i x y a a p x y a q x y≅ + +  (4.1) 

 
where p(x,y) and q(x,y) are the partial derivatives of the surface and 
a0,1,2 are the coefficients of the Mac Laurin series expansion of i(x,y) 
for small values of p(x,y) and q(x,y). The main problem of (4.1) is that 
p(x,y) and q(x,y) do not exist anywhere for fractal surfaces. To 
circumvent this problem, in his analysis Pentland formally works with 
the partial derivatives of the surface, stating, in a note, that, due to the 
non-differentiability of the mathematical fBm, he considers a 
sufficiently smoothed approximation of the sensed surface that allows 
the existence of the partial derivatives. However, in the following of 
his work he keeps working using the formal definition of derivative, 
i.e. without introducing a smoothed process. In remote sensing 
applications, but, more in general, in all engineering matters, the 
formal use of the smoothed process is not only desirable but 
necessary. As a matter of fact, the features of the scene relevant to 
spatial scales much smaller than the wavelength one do not contribute 
to the scattering phenomenon: in this sense, the electromagnetic 
incident field acts as a low-pass filter on the surface. Furthermore, 
scales smaller and larger than the resolution one contribute in different 
ways to the formation of the image: however, this crucial issue 
deserve the maximum attention and is, accordingly, fully clarified in 
the following. 
 
4.1.2 The small slope analytical model 
 
In this sub-section we provide the details of the developed analytical 
model. First of all the fGn process is introduced and novel results on 
its spectrum and structure function are presented. Then, starting from 
these results, the proposed imaging model is described. 
 
4.1.2.1 Fractional Gaussian noise (fGn) 
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In Chapter 2, we presented the fBm two-dimensional process. In this 
section we are interested to one-dimensional profiles: after adapting 
the variables to meet with the one-dimensional case, the expressions 
of the structure function and of the power density spectrum are the 
same with respect to the two-dimensional case: 
 

( ) 2 2HV sτ τ=   (4.2) 

 
( ) oS k S kα−=   (4.3) 

 
Obviously some of the involved parameters change their values as 

follows: 
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We discussed how properly employing Pentland approach 

requires an expression for the derivative of the surface. The fractional 
Gaussian noise (fGn) is defined as the derivative process of the fBm: 
for the particular case of H = 0.5, we obtain the derivative of the 
Brownian motion, i.e. a white Gaussian noise [13]. The mathematical 
fBm is strictly non-differentiable, implying that its derivative process 
has to be handled with care. The most elementary method to deal with 
the fBm lack of derivative is to smooth the original process with an 
adequate kernel, discarding the high frequency effects responsible for 
the non-differentiability of the fBm. Hence, starting from the standard 
fBm process z(x), we build the random function zϕ(x): 

 

( ) ( ') ( ') 'z x z x x x dxϕ ϕ
∞

−∞

= −∫   (4.7) 
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where ϕ is the test function. In particular, by assuming ( )0Cϕ ∞∈ Ω , 

with RΩ ⊆  an open set, the expression (4.7) can be seen as a 
distribution [14], and the k-th derivatives of zϕ can be rigorously 
computed as: 
 

( ) ( )( ) ( 1) ( ') ( ') 'k k kz x z x x x dxϕ ϕ
∞

−∞

= − −∫  (4.8) 

 
However, for our purposes, an infinitely differentiable kernel is 

not necessary; hence, for the sake of simplicity, we select ε > 0 and set 
the test function as follows: 

 
1

     if [0, ]
( )

0        otherwise

x
x

ε
ϕ ε

 ∈= 


  (4.9) 

 
Substituting (4.9) in (4.8) and computing the first derivative of the 

process, we obtain: 
 

 [ ]1'( ; ) ( ') '( ') ' ( ') ( ') ( ') 'z x z x x x dx z x x x x x dxε ϕ ε δ δ ε
∞ ∞

−

−∞ −∞

= − − = − − − + −∫ ∫
  (4.10) 
 
δ being the Dirac delta distribution. Therefore we can easily compute 
the derivative as: 
 

[ ]1'( ; ) ( ) ( )z x z x z xε ε ε−= + −   (4.11) 

 
In this way the derivative of the smoothed process can be seen as 

a finite difference, presenting some interesting properties. Note that in 
this case we can easily evaluate the autocorrelation function as the 
correlation between two increments of the original fBm process, 
obtaining a stationary non isotropic Gaussian process with µ = 0 and σ 
= sεΗ − 1. Its autocorrelation function can be computed as follows: 
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( )( )' ( ; ) '( ; ) '( ; ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

zR z x z x z x z x z x z x

z x z x z x z x z x z x z x z x

τ ε ε τ ε ε τ ε τ

ε τ ε ε τ τ ε τ

= + = + − + + − +

= + + + − + + − + + + +
  (4.12) 
 

The four terms in the brackets can be evaluated using the 
expression of the original surface autocorrelation, obtaining: 
 

2 22
2 2 2

'

1
( ; ) 1 2 1

2

H HH
H

zR s
τ τττ ε ε
ε ε ε

−
  
 = + − + − 
   

 (4.13) 

 

If  1
τ
ε
≫ , expanding to the second order the first and the last term in 

the square brackets of (4.13), we obtain: 
 

2 22
'( ) (2 1)

H

zR s H Hτ τ −≅ −   (4.14) 

 
For a stationary isotropic stochastic process the structure function 

can be derived from the autocorrelation function, obtaining for the 
case of interest the following expression: 

 
2 22

2 2 2
'( ; ) 2 1 2 1

H HH
H

zV s
τ τττ ε ε
ε ε ε

−
  
 = − + + − − 
   

 (4.15) 

 

and in the limit 1
τ
ε
≫  

 
2 22 2 2

'( ; ) 2 (2 1)
HH

zV s H Hτ ε ε τ −− = − −
 

 (4.16) 

 
Being z’(x;ε) a stationary process, we can evaluate its spectrum 

by employing the Wiener-Kintchine theorem. In particular, we can 
express the power spectrum of z’(x;ε) as 
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2 22
2 2 2

'

1
( ; ) 1 2 1

2

H HH
H ik

zS k s e dττ ττε ε τ
ε ε ε

∞
− −

−∞

  
 = + − + − 
   
∫  

  (4.17) 
 

It is very informative to evaluate this spectrum in closed-form. 
However, this spectrum does not follow within the class of functions 
whose Fourier Transform is known in 2( )L Ω . To evaluate this 
spectrum we propose to resort to generalized Fourier transforms; in 
particular, we compute the transform of the second term of (4.17) as 

 
2

2
1 2

1
2 (1 2 )sin( )

H

ik H
H

e d H H
k

ττ τ ε π
ε

∞
− −

+
−∞

= − Γ +∫  (4.18) 

 
Using basic Fourier transform properties (that are also valid for 

the generalized transforms), we can write the first and third term of 
(4.17) as follows: 

 

 
2

2 22 21
H

H Hik H ik H ik ike d e d e e dτ τ ε ττ τ ε τ ε τ ε τ τ
ε

∞ ∞ ∞
− − − − ± −

−∞ −∞ −∞

± = ± =∫ ∫ ∫
  (4.19) 
 

By exploiting the result in (4.18), we can evaluate the integrals in 
(4.19) thus obtaining: 
 

2
2

1 2

1
1 2 (1 2 )sin( )

H

ik H ik
H

e d e H H
k

τ ετ τ ε π
ε

∞
− − ±

+
−∞

± = − Γ +∫  (4.20) 

 
Substituting the results in (4.20) and (4.18) into Eq. (4.17) and 

using the Eulero formula, we get the final result, i.e. the power density 
spectrum of the derivative process of the smoothed surface profile: 

 

( )2 2
' 1 2

1
( ; ) 2 (1 2 )sin( ) 1 cos( )z H

S k s H H k
k

ε ε π ε−
+= Γ + −  (4.21) 
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In the limit of 2kε π<< , Eq. (4.21) takes the relevant form: 
 

2
' 2 1

1
( ) (1 2 )sin( )z HS k s H H

k
π −= Γ +  (4.22) 

 
From equations (4.21) and (4.22) we can draw some important 

conclusions. First of all, looking to the spectral exponent in Eq. (4.22) 
it’s evident that the fGn can be seen as a fractal with [ 1,0]H ∈ − , 
which is in agreement with previous observations made by Voss [15]; 
anyway, as a matter of fact, this definition, although tempting, is not 
an accurate one, because if [0,1]H ∉  an associated stochastic process 
whose fractal dimension is D = 2 – H exists with zero probability. In 
fact, we can draw the conclusion that fGn is a stationary Gaussian 
self-affine process, but it is not a fractal one, in the sense that we 
cannot define a Hausdorff-Besicovitch fractional dimension for this 
class of processes. Furthermore, looking at Eq. (4.21), we can note 
that the fGn shows a spectral power law behavior only asymptotically, 
for sufficiently low frequencies. In fact, as soon as the spatial 
frequency approaches the value 1/ε, the oscillating behavior begins to 
dominate, being the first null for k=2π/ε. 

However, though not fractal, the fGn process somehow inherits 
the fractal parameters of the original fBm process: starting from the 
results presented above, we can develop a novel imaging model and 
provide some hints on the retrieving of these parameters. 

 
4.1.2.2 The imaging model 

Here we present a model for the imaging process along with its 
application to fractal profiles. According to Pentland model, the 
imaging procedure can be seen as a block whose input is the surface 
profile, and whose output is the radar intensity image which is 
proportional, to the first order, to the derivative of the surface profile. 
Hence, in the following a closed form analytical solution for the small 
slope regime is obtained and investigated in detail. 

First of all we note that an analytical study of radar imaging of 
fractal surfaces always requires the introduction of a smoothed 
process. In fact, in any engineering matter we have to deal with 
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physical fractals, as dictated by each particular application. In remote 
sensing radar applications two different parameters establish the scales 
of interest for the definition of the physical fractal, i.e. of the 
considered smoothed process. The first is the wavelength λ of the 
electromagnetic field used to sense the scene: as a matter of fact, 
objects with dimension lower than a fraction of this wavelength don’t 
contribute significantly to the generation of the backscattered signal. 
In this sense, we have to introduce a first smoothing on the surface, 
where the ε of interest has to be set equal to this fraction of λ. 
However, a second parameter has to be taken into account, i.e. the 
sensor resolution Δx: in fact, the observed scene is filtered according 
to the sensor impulse response and scales smaller than the resolution 
one do not significantly contribute to the formation of the final 
intensity image. This allows us to conveniently employ the fBm 
smoothed process presented in the previous section. In particular, if ∆x 
>>  λ, as the case for radar remote sensing, we can neglect the first 
filtering step of our chain and work directly on the following process: 

 

( ; ) ( ') ( ') 'z x x z x x x dxϕ
∞

−∞

∆ = −∫  , (4.23) 

 
where the ε in (4.7) has been set equal to the sensor resolution cell 
dimension ∆x. 

Hence, if we assume that the slopes of the observed profile are 
adequately small we can expand the SPM expression of the 
backscattering coefficient (the expression given in Chapter 2, adapted 
to the one-dimensional case) into a Mac Laurin series and, combining 
(4.1) and (4.23) we can obtain: 

 

0 1( ; ) ( ; )i x x a a p x x∆ ≅ + ∆   (4.24) 

 
wherein, thanks to the results presented in the previous sub-section, 
we can state that p(x;∆x) is the fGn process associated to the imaged 
fBm profile. Equation (4.24) states that the image inherits the 
stochastic behavior of the fGn process, i.e. it is Gaussian distributed 
with µ = a0 and σ = a1s∆xΗ − 1, as can be easily argued combining 
previously obtained results with Eq. (4.24). It is interesting to note that 
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the expression in (4.24) allows also the introduction of a two-scale 
fractal model, based on two different sets of fractal parameters at 
microscopic and macroscopic scale. As a matter of fact, while p(x;∆x) 
is dependent on the fractal parameters at resolution scale, the 
constants a0 and a1 depend on the fractal parameters of the surface at 
scales lower than the resolution one, as previously anticipated. A 
block scheme of the presented imaging process is provided in Fig. 1. 
 
 

 
Figure 1 Block diagram of the small slope imaging process. 
 

However, a combined use of the expression in (4.24) with the 
results regarding the fGn process provides the following behaviors for 
the structure function VI and the power density spectrum SI of the 
image intensity: 
 

2
1 '( ; ) ( ; )I zV x a V xτ τ∆ = ∆   (4.25) 

 
2
1 '( ; ) ( ; )I zS k x a S k x∆ = ∆   (4.26) 

 
The plots relative to (4.25) and (4.26) are shown in Fig. 2 and 

Fig. 3 respectively, where the behavior is compared with that of the 
profile of reference. 
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Figure 2 Log-Log variogram of the surface (full line) and of its derivative 

(dashed line): H = 0.95; s = 0.01 m(1-H); ∆x = 5 m, a1 = 10. 
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Figure 3 Log-Log plot of the spectra of the surface (full line) and of its 

derivative (dashed line): H = 0.95; s = 0.01 m(1-H); ∆x = 5 m, a1 = 
10. 

 
The result shown in (4.26) is analogous to the one obtained by 

Pentland only in the asymptotic limit in which SI is given by Eq. 
(4.22). In fact, the formal use of the surface derivatives allows 
Pentland working with ε = 0 rigorously, i.e. always in a regime of 
validity of the abovementioned asymptotic expressions. 

A common misinterpretation of Pentland results is that the fractal 
dimension of the image is equal to the fractal dimension of the imaged 
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surface. Looking at (4.25) and (4.26), we can state that this is incorrect 
and that, at most (asymptotically), the spectral behavior would suggest 
a fractal dimension of the image DI = DT – 1, where DT is the fractal 
dimension relevant to the observed scene. As already mentioned, this 
would be in agreement with the observation made by Voss [15] on the 
fractal dimension of the derivative process of an fBm, suggesting that 
the Hurst parameter, upon differentiation, is decreased by one. 
Nevertheless, as we already argued above, the possibility of defining a 
fractal dimension for such a process is questionable and we can state 
that the image of a fractal surface is not a fractal. 

An important peculiarity of microwave images, and, more in 
general, of every coherent imaging system, is the speckle effect, due 
to the constructive and destructive interferences between individual 
plane waves in each resolution cell, which also claims for a specific 
characterization in the fractal case [10]. Anyway, at the moment we 
focus on the ideal case of an infinite number of looks: in this limit the 
effects of the speckle are completely discarded. However, removing 
this very tight assumption is an important step toward a complete 
modeling of the microwave imaging process of fractal profiles. 

Some considerations on the retrieval of the fractal parameters of 
the observed profile from the image are now in order. In fact, this 
image is not a fractal but a relation between the fractal parameters of 
the profile and the obtained image does exist. As shown in Chapter 2 
and 3, the fractal parameters estimation techniques for an fBm are 
based on linear regressions on log – log plots of the variogram or of 
the power density spectrum. This simple technique cannot be directly 
used on the image. In particular, it is evident that if we use the general 
expressions obtained from (4.25) and (4.26) a linear regression in the 
log – log plane is no longer possible. Anyway, in most cases, use can 
be made of the asymptotic expressions obtained from (4.16) and 
(4.22): in this case for the structure function things keep not working 
perfectly, but, conversely, for the power density spectrum a power-law 
behavior can be assumed in the band of interest and the fractal 
parameters can be recovered via the standard log – log linear 
regression procedure. 
However, the interesting thing is that the possibility to use the 
asymptotic expression of the spectrum comes out to be dependent on 
sensor resolution. In particular, for new generation high resolution 
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sensors also the hypothesis we made at the beginning of this section, 
i.e. ∆x >> λ, could be not verified: this means problems can begin to 
rise when we increase sensor resolution. By the way, we note that high 
resolution sensors, reducing the range of spatial frequencies of the 
surface contributing to speckle formation, can determine a change in 
noise statistics on intensity images, as we have seen in Chapter 1. 
Anyway, an exhaustive study of these phenomena is widely beyond 
the scope of this work. 
 
4.1.2.3 The numerical framework 

In the present section a numerical framework, based on effective 
direct geometric and electromagnetic models, is used to analyze the 
imaging process of a one-dimensional fractal profile. This analysis 
allows the study of the imaging of a generic profile, without the need 
of assuming any particular hypothesis on its slope. Note that this 
elaboration chain is widely based on the models and tools presented in 
the previous chapter. 

The first step is the generation of the fractal fBm profile. This is 
achieved using the Weierstrass-Mandelbrot (WM) function [16]: 
indeed, under some hypothesis, the WM effectively approximates an 
fBm profile, as we have seen in Chapter 2. Furthermore, the WM is a 
predictable random function and this greatly simplifies the control of 
the behavior of the profile, acting on its random parameters. The 
inputs for this first block are the fractal parameters (s and H) of the 
profile. 

When the profile is synthesized, we evaluate the backscattered 
signal via the SPM fractal scattering model. As previously mentioned, 
the geometrical model used in this section is based on the assumption 
that the observed profile shows the same fractal parameters at all the 
scales of interest: in particular, at scales greater and lower of the 
resolution one. Note that, if this was not the case, the parameters H 
and s used in (4.25) and (4.26) would refer to the fractal parameters of 
the profiles at scales greater than the resolution one. Conversely, for 
the evaluation of the backscattered signal via the SPM model the 
fractal parameters to be used are those relevant to the microscopic 
scale, as argued in the previous chapter. The inputs for this block are 
given in term of sensor resolution, sensor height, semi-aperture angle 
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and, finally, look angle: through these parameters the software is able 
to evaluate the extension of the scene and the number of samples. 

The final step is the estimation of the power density spectra of the 
original profile and of the computed backscattered signal to compare 
them with the analytical results presented in the previous sections. 
Note that the evaluation of these power law spectra is not a trivial 
issue, because they are subject to extreme leakage and high variance 
problems. Among the techniques used to effectively retrieve these 
spectra, we chose the Capon filtering, which is widely assumed to be 
the optimum one (see Ref. [17] for details). Nevertheless, the high and 
low frequency regions of the estimated spectra cannot be evaluated 
with adequate accuracy. The main results obtained are presented in the 
following sub-section. 

 
4.1.2.4 The obtained results 

The parameters used in all the simulations presented in the following 
are reported in Table I. Note that in all the simulation a VV 
polarization has been assumed, and for the used values of the 
parameters no significant variation in the results has been observed 
changing the polarization. The first elaboration is relevant to a case in 
which the small slope hypothesis can be widely assumed to be valid. 
In fact, looking at the obtained results shown in Fig. 4, the good fit 
between the estimated spectra and the theoretical ones is evident. Note 
that in all the figures, unless the contrary is not explicitly stated, the 
various plots are in a log – log scale and are superimposed to simplify 
the comparison of the spectral slopes. 

In Fig. 5, 6 and 7 simulations in which the small slope hypothesis 
is no longer rigorously satisfied are instead presented: in fact, a certain 
mismatch between the experimental and theoretical results begins to 
appear. This result is obtained increasing the roughness of the imaged 
profile, thus increasing its mean slope. However, it’s important to note 
that in the fractal case speaking simply of roughness is not enough: 
also the scale of interest should be specified. This is the reason why 
the validity limits of the small slope hypothesis for the SPM scattering 
model need to be deeply investigated in a dedicated work. 
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Table 1    List of the parameters used in the simulations and summary of results. 

 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 

Frequency [GHz] 1 1 1 1 1 1 

Resolution [m] 5 5 5 5 20 1 

Sensor height [km] 10 10 10 10 40 2 

Semi-aperture angle [°] 10 10 10 10 10 10 

Look angle [°] 10 10 10 10 10 10 

H 0.95 0.55 0.95 0.55 0.95 0.95 

s [m1-H] 0.01 0.01 1 1 0.01 0.01 

Expected spectral slope -0.900 -0.100 -0.900 -0.100 -0.900 -0.900 

Retrieved spectral slope -0.922 -0.246 -0.775 -0.239 -0.925 -0.934 

Squared distance 0.0092 0.0992 0.0082 - - - 

 
 

 
Figure 4 Theoretical spectra of the surface (long dashed) and of the image 

(full line) versus the estimated ones (dotted and dash dot dot, 
respectively). 
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Obviously, the main interest for applications is in retrieving the 
spectral slope of the surface working on its microwave image, hence 
to provide quantitative indicators of the agreement between theoretical 
and experimental results the slopes of the obtained spectra is estimated 
via a simple linear regression algorithm and reported in Table I. 
Furthermore, in Table I the square distance between the experimental 
points and the fitted curve is provided: this can be seen as a 
quantitative measure of the degree of linearity of the retrieved spectra. 
As can easily be noted, as the slope estimate begins to get worse the 
distance begins to increase: this means that the spectrum begins to 
lose its log – log linear behavior. The interesting thing is that this 
seems to be related more to a variation in the Hurst parameter than to 
a variation in s. This is another reason claiming for a deeper 
investigation of the validity limits of the small slope hypothesis for the 
SPM scattering model. 
 

 
Figure 5 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 

 
In Fig. 8 and 9 we focus on the role of resolution. In fact, no 

significant difference can be noted in the goodness of fit of the curves 
as the resolution varies, apart from a very little worsening of the 
goodness of fit in the 20 meters resolution case. The reason is that the 
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variation in resolution is too small to determine a failure in the small 
slope hypothesis assumption. However, taking into account resolution 
much coarser than the one proposed here (20 m) is, at this moment, of 
scarce practical interest. Finally, in Fig. 10 we present a combination 
of Fig. 4, 8 and 9 which clearly shows how a variation in sensor 
resolution allows an investigation of the profile spectral and spatial 
properties over an increased range of scales, and how each obtained 
plot is consistent to the others. However, we analyzed also the case of 
a variation in resolution for the worst case scenario (H = 0.55 and s = 
1 m0.45), obtaining results quite similar to the one of the 5 meters 
resolution case. 

 
 

 
Figure 6 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 
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Figure 7 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 

 

 
Figure 8 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 
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Figure 9 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 

 

 
Figure 10 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). This figure is obtained combining Fig. 4, 8 and 9. 
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The key result we can draw from this numerical study is that 
microwave images of fractals profiles are not fractal, both if the small 
slope regime can be assumed (as we have seen in the previous section) 
or not. In fact, in the latter case the spectral behavior of the 
backscattered signal is no longer a power law one. However, a relation 
between the fractal parameters of the profile and the texture of the 
obtained image exists and shall be used in the definition of appropriate 
inversion techniques. 

From our analysis of this process we drew two main conclusions 
relevant to the images of fractal profiles, in case a small slope regime 
can be assumed: 

• they are stationary Gaussian self-affine processes, but not 
fractal processes, in the sense that we cannot define a 
Hausdorff-Besicovitch fractional dimension for this class 
of signals; 

• asymptotically, for sufficiently low frequencies, their 
spectrum has a power law behavior. 

Finally, the proposed approach leads to the conclusion that the 
radar image of a fractal profile cannot be assumed to be fractal in any 
case. However, a relation between the fractal parameters of the 
original profile and the obtained image exists and in this work a 
possible expression of this relation has been provided. 
 
 

4.2 The two-dimensional problem: preliminary 
results 

 
In this section the first results obtained for the two-dimensional 
imaging problem are presented. We show how a closed form 
expression for the spectrum of the two-dimensional image of a fractal 
surface can be obtained. This first results are not fully two-
dimensional ones, in fact the spectrum is computed only for one-
dimensional cuts in range and azimuth directions. Furthermore, the 
case of the range cut is not discussed here in detail, due to the fact that 
it leads to an expression perfectly equal to that obtained in the one-
dimensional case. 
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First of all we need to investigate potential differences in the role 
of the two partial derivatives of the surface in the contest of the 
imaging process. Let us try to develop the SPM scattering function in 
McLaurin series to the first order. We have to find the relation 
between the local incidence angle and the partial derivatives of the 
surface. It is easy to verify that the required relation is: 
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2 2
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p q

θ θϑ +=
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  (4.27) 

 
where ϑ is the local incidence angle, θ0 is the look angle of the sensor 
and p and q are the partial derivatives of the surface in range and 
azimuth direction, respectively. Accordingly, 
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Substituting (4.27) and (4.28) into the expression of the RCS 

computed with the SPM and discarding the polarization factor βpq 
(which is practically constant for our purposes) we obtain: 
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  (4.29) 
 

Expanding Eq. (4.29) in a McLaurin series to the first order for 
small values of p and q we obtain an important result. In fact, it comes 
out that at the first order the image is related linearly only to the 
partial derivative in the range direction p. This is due to the particular 
acquisition geometry of the SAR sensor, which clearly presents a 
preference range direction. This allows us to focus only on the 
expression of the range derivative of the surface. 

To obtain analytical solutions for the two-dimensional problem 
we have to deal with the following regularized version of the surface: 
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( , ) ( ', ') ( ', ') ' 'z x y z x y x x y y dx dyϕ ϕ= − −∫∫  (4.30) 
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with �>0, η>0. 

The partial derivative in the range direction can be computed as 
follows: 
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with simple mathematical manipulations we obtain the following 
expression for the auto-correlation function of the azimuth cuts of the 
partial derivative process: 
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where τy is a distance in the range direction only. 

For the same reasons exposed in the previous section, we can 
compute the spectra as the FT of the auto-correlation (note that 
generalized FTs have to be introduced), obtaining: 
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Accordingly, the power density spectrum of an azimuth cut of the 
image will be, using the previously introduced formalism: 
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Conversely, as we mentioned before, as for the range cuts their 
behavior is equal to the case of one-dimensional profile. 

A numerical framework for the study of the two-dimensional case 
has been developed, by simple extension from the one-dimensional 
case. The results are analogous to those obtained for the one-
dimensional case and a good agreement is found between the actual 
and the theoretical power density spectrum of both range and azimuth 
cuts, as shown in Fig. 11 and 12, respectively. 

 

 
Figure 11 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 
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Figure 12 Theoretical spectra of the surface (long dashed) and of the image 

(full line) vs. estimated ones (dotted and dash dot dot, 
respectively). 

 
Further developments of the proposed approach should be 

focused on the fully two-dimensional problem and, more in general, to 
the introduction in the model of geometrical distortions and speckle 
noise. 
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Summary and conclusions 
 
 
In this thesis the extraction of value-added information from SAR 
images has been discussed. In particular, the need for adequate models 
accounting for the transmission of information from the observed 
surface to its radar image has been highlighted. 

The original contributions presented in this work range from the 
development of SAR simulation tools to the analysis of actual high 
resolution data, passing through the whole modeling of the imaging 
process of fractal profiles. 

Particularly, in Chapter 1 a preliminary analysis of the new high 
resolution TerraSAR-X data is presented, showing the need for new 
models for the characterization of high resolution SAR images. 

As for the simulation tools, a whole simulation and analysis chain 
has been developed and tested. The main feature of the presented 
chain is the possibility to provide an effective test bed for the 
development of automatic analysis techniques. A novel change 
detection technique based on fractal concepts is also presented and 
tested. Finally, new simulation facilities for the case of ocean scenes 
covered with oil slicks have been developed, allowing the use of 
fractal geometry for the synthesis and subsequent discrimination of 
natural and man-made slicks on the sea surface. 

Finally, the main original contribution of this thesis work is 
detailed in Chapter 4, where the characteristics of images relevant to a 
fractal profile are investigated.  

In our study we follow a twofold approach: on one side, we 
develop a rigorous analytical formulation for the problem assuming a 
particular class of small slope profiles; on the other side, we present 
an experimental setup able to deal with the more general case. As for 
the analytical approach, we show that the signal backscattered from a 
fractal profile modeled as an fBm stochastic process is strictly related 
to the associated fractional Gaussian noise (fGn) process when a small 
slope regime for the observed profile holds: in this case we are able to 
compute in closed form the structure function and the spectrum of the 
signal. Our results are obtained introducing an fBm smoothed process, 



                                                                              Summary and conclusions 
 

102

which is justified by the low-pass filtering introduced by the sensor 
impulse response function. 

The experimental framework is based on sound direct models 
allowing the synthesis of the profile, the evaluation of the 
backscattered signal via fractal scattering models and the estimation of 
the power density spectra of interest. Note that this is the only fully 
fractal approach found in the open literature on this subject, i.e. with a 
coherent choice of the geometric and electromagnetic models. 

This twofold approach leads to the conclusion that the radar 
image of a fractal profile cannot be assumed to be fractal in any case. 
However, a relation between the fractal parameters of the original 
profile and the obtained image exists. Thus, further developments of 
the models provided in this thesis work are of key importance for the 
progress of future information extraction techniques. 

 


