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| ntr oduction

The key goal of thisthesiswork lies in the development of models and
tools in support of value-added information extraction from Synthetic
Aperture Radar amplitude-only images.

In the last decades earth observation instruments provided a great
amount of images relevant to any part of the world. These data could
be potentially helpful for a wide range of human activities, ranging
from agriculture to rural and urban planning and disaster monitoring
and assessment. However, practical use of these data is often limited
by the lack of efficient, possibly unsupervised, tools for the retrieving
of effective information.

In this thesis the first steps toward a modeling of the whole
imaging process is provided. In particular, we discuss in detail the
fundamentals of the Synthetic Aperture Radar in its standard and well
known working configuration, highlighting the need for an adequate
modeling able to guarantee effective high resolution data description
(Chapter 1). In fact, the statistics of this kind of images are often very
different from those used in the modeling of low resolution data. First
results coming from the analysis of the first TerraSAR-X high
resolution data are presented here and represent the first original
contribution of thisthesis.

In Chapter 1 not only the working geometries and SAR
performances are presented but also a conceptual scheme for the
simulation of the primary signal collected by the sensor called raw
data. Simulators, in fact, are important tools supporting the design and
project of new sensors and are able to conveniently lead the criterions
for setting the mission parameters as they take into accounts the
applications they are planned for. Furthermore, they can be used to
conveniently address the inverse problem starting from the complete
solution of the direct one.

In fact, the development of effective information extraction
techniques from SAR data and the synthesis of automatic tools for
image analysis mandatory pass through the development of adequate
direct models relating the image to the parameters of the surface.
Thus, the direct models can become the starting point toward the
availability of inversion techniques and physically-based classification
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techniques. The models used in this thesis work are detailed in
Chapter 2. In particular, the geometric and electromagnetic models for
natural surfaces are presented, both for natural terrain and for the
ocean sea surface.

After having introduced the different techniques to collect and
model SAR data, we move to discuss the possibility of retrieving
information analyzing those data.

In particular, in Chapter 3 we present a fractal framework for the
simulation of SAR images relevant to simulated disaster scenarios.
Such an instrument can be used to increase the understanding of the
physical mechanisms underlying radar image formation in case of
disasters. In, fact, the main problem of the scientist working on the
development of remote sensing techniques for disaster monitoring is
the lack or the limitedness of an accurate ground truth. The proposed
simulator makes possible to perform parametric studies on canonical
disasters scenarios with a perfectly known ground truth. Furthermore,
it can be used to obtain images relevant to both pre- and post-crisis
situations, providing the possibility to develop atest bed of simulated
images to be used for the testing of change detection techniques.
Relevant case studies are presented with regard to different kinds of
natural disasters. Finally, a novel change detection technique based on
the estimation of significant parameters and supported by fractal
concepts is described. Results on the simulation of images relevant to
ocean scenes covered with oil slicks of arbitrary shape are also
presented.

In Chapter 4 we cope with the problem of radar imaging of fractal
surfaces. In particular, we develop a rigorous analytical formulation
for the problem in case a small slope regime can be assumed for the
profile. The proposed model allows for the computation of the
structure function and of the power density spectrum of the image in
closed form. The proposed model is validated through an appropriate
numerical framework base on the sound physical models presented in
Chapter 2. The first steps toward the extension to the two-dimensional
case are also provided. Note that the development of this kind of
direct modeling is of key importance for every image analysis
technique based on the evaluation of global statistics on SAR images.



Chapter 1

SAR: Direct Modeling and Information
Mining

In the last decades earth observation instruments pobadgreat
amount of images relevant to any part of the world. &iga could
be potentially helpful for a wide range of human aassit ranging
from agriculture to rural and urban planning and disasteritoring
and assessment. While information extraction from aptiata can be
often performed via empiric techniques, due to the simjlafithese
images with those perceived from the human eyes, marewlata
need to be treated differently and their interpretatsoabsolutely not
trivial.

Hereafter we focus on Synthetic Aperture Radar (SiAdiRges of
the earth surface, which present all the advantagesiabwave
imaging, in particular the all-weather, all-time capiéibd and a huge
increase in resolution with respect to the Real AperRadar (RAR).
However, their interpretation is not straightforwairdpart because of
the speckle the multiplicative noise affecting these images,cwhs
responsible for their well-knowsalt and peppebehavior; moreover,
the relation occurring between the physical paramefétse observed
scene and the characteristics of the image is afteivied or, at least,
is very different with respect to the case of optioaging. This is the
reason why the analysis of radar images can't be caoredia
empirical techniques, but needs to be based on sound ghysidels:
an accurate modeling of the imaging process representsaiheroad
toward an effective retrieving of value-added informaticonfrthe
data.

In this scenario simulation tools can be of greatvahce in the
understanding of SAR signal formation and in the deve&gnof
inverse methods for the estimation of significant geoghaysi
parameters from the image.
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In this chapter the fundamentals of SAR sensor anceaftdndard
processing of raw data are described. However, spetgitian is
paid to the rationale of information extraction based direct
modeling and on the simulation of SAR raw signal. Findahg first
results obtained from the analysis of high resolufi@raSAR-X
images are reported. They clearly highlight the dependehdbae
models also on sensor parameters such as geometriaticasol

1.1 SAR fundamentals

The SAR system can work in accord to different operatiomodes of
acquisition: in this section we focus on the stripmapfigaration, in
which the antenna points along a fixed direction with resfethe
platform flight path and its footprint defines an illurated strip on
the observed surface as the sensor moves [1].

The SAR raw signal can be evaluated as the superpositithe
elementary returns from the illuminated surface wemhi& its
reflectivity functiony(x,r):

h(x,r')zﬂdxdry(xr) o X= % t=rr) (1.1)

and the unit impulse response of the SAR sysiénin the case of a
stripmap acquisition mode and of a transmitted chirped poise be
expressed as:

g(X-x r-r r)=exr{—j47nAR}D
exp[—j%%(r’—r —AR)Z}W(X; Xjrec{(r,_crr/_zm)}

where, referring to Fig. 1:

* Pis the generic scattering point on the observed sugdiadets
coordinates,r,&) are given in a cylindrical reference system
for which the azimuth direction coincides with thesar flight
pathz(x,r) is the local incidence angle, which depends on the
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local geometry of the surfaceR is the antenna-to-target
distance andIR=R-r;

* cC is the speed of lightt and A are respectively the carrier
frequency and the corresponding wavelengthjs the chirp
bandwidth andr its duration time;

* W(:) is the antenna illumination functiod=AR/L is the real
antenna azimuth footprint (we assume thag) is negligible
when the absolute value of its argument is larger tanand
that it is an even function), whekg is the azimuth dimension
of the real antenna am} is the distance from the line of flight
to the centre of the scene.

{caCiior
1 diret
¥ pimut
4 /

Flight path s T8
ig jda-_'_’_ 5 x P

Plx.r.9)
Figurel Geometry of the problem.
Starting from Eq. (1.2) we can evaluate thensfer Function

(TF) of the SAR system. In particular, the Fourieasform (FT) of
(1.2) can be expressed as [1]:

H (&)= [[y(x )G (&7:r) exd - jéx] exih-jir |dxdr (1.3)

whereG(*) is the TF of the SAR system in the stripmap acdaisit
mode, given by the following FT:



10 Chpter 1 SAR: Direct Modeling and Information Minit

G(<.7:1) :Ijg(x— X, r=rir)exd—jé & - x ) exp-in ( <r Jdx dr
(1.4)

Let us note that, when thedependence in Eq. (1.4) can be
neglected, Eq. (1.1) becomes a two-dimensional @atien, leading
to the following simplified expression for Eq. (1.3

H(&m) = [[vxr)expEiéx)exptinr G €7 dxdr=T €5 & £y
(1.5)

In general the TF in (1.4) can be expressed aswsl|

G(émir)= exp[ J' Z—b} ex{j 4a(<l(j-(/;//ll/qulﬂ)):lred[ o Z}W{ Zin

(1.6)
where
_am
a_ﬁ 2.7)
b :M (1.8)
Acr

1.1.1 SAR raw data processing

The obtained raw signal needs to be elaboratedder o provide the
final SAR image [1]. The main goal of the SAR presar is to
adequately combine all the received backscattemuatributions,
which in the raw signal are spread out over allgkinsion X,c7/2],
to achieve the best resolution.

The standard SAR processing, in the hypothesis thatr-
dependence in Eq. (1.4) can be neglected, comsiatsle-convolution
applied toh(x’,r') to compensate for the convolution facgix’,r’,ro)
and obtain an estimation of the reflectivity functi This operation
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can be efficiently implemented in the Fourier damthirough a simple
multiplication:

[(&n)=T(En)GEN)G &) (1.9)

where * stands for the conjugation operator. Comireq. (1.9) with
Eg. (1.6) in case of a space-invariant processie@hiain:

}A/(Xl’rl):J-J-y(x’r)eXF{‘jAanrj sin{% X ~X % SinEA_nr (Calf }dxdr

(1.10)

wheredx and4r are the geometrical resolution of the final image
azimuth — slant range, respectively, and are equal

Ax== (1.11)

Ar=—— 1.12
o (1.12)

Accordingly, the SAR image can be seen as a cotigalu
between the reflectivity function and two sinc ftioos, one in the
azimuth and one in the range direction, whose rudias present a -
3dB width equal to the geometric resolutions ofskasor as defined
in Eq. (1.11) and Eq. (1.12), respectively. Let nite that this
elaboration is easily performed in the Fourier doméan fact, the
availability of efficient FFT codes determines eosgy decrease in the
computational complexity with respect to the regdiconvolution in
the spatial domain.

This kind of space-invariant processing is caledrow focusing
and as a result only the centre of the scene ilegbr focused. To
achieve optimum focusingwde focusinyjin the general space-variant
case the FT of the reflectivity function requiresbie computed on a
deformed grid. Efficient processing codes in theirgy domain have
been developed to assure wide focusing of the Bataproviding the
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details of these algorithms is beyond the scopthisfthesis work for
detailed information see Ref. [1]). For our purgosige key result is
the one presented in Eq. (1.10) which clearly shboxw the SAR
image is essentially equal to a sinc-convolved ivarsof the
reflectivity.

Now that the fundamentals of SAR remote sensingaasessed,
in the next section we will investigate why and hdwect models can
support information mining from this kind of micrewe images.

1.2 Information extraction from SAR data

Remote sensing sensors provide a great amountafelavant to any
part of the world. In particular, SAR sensors abée &0 image the
surface of the earth in practically any weather alhgmination
condition. Furthermore, in the last years, higleha$on sensor made
possible the analysis of radar images with subimegsolutions.

However, practical use of SAR data is still vempited by the
lack of efficient, possibly unsupervised, tools fibe retrieving of
effective information to be used in a great variefyapplications.
Several approaches devoted to define instrumemtstaols for data
interpretation were presented in literature, shgwimt least in
principle, the potentiality of satellite and aeti@thnique as a support
in agriculture, urban planning, monitoring and duafly prevention,
of natural (flooding, volcanic risk, landslidescgtand human-made
disasters (oil spills, fires, etc.). Most of theggroaches are based on
empirical analyses of remotely sensing data, esdlgrdriven by user
needs. These analyses are generally supervisedtcabe effective, it
is often required that the supervisor holds a r&atzle level of
competence with reference both to the sensors,tanthe image
formation mechanisms.

Furthermore, being the SAR data strongly dependasntthe
physical parameters of the observed surface, tligeviag of
significant parameters such as water content of il
electromagnetic parameters, etc. would be possiateleast in
principle. In fact, the effectiveness of the retmg is strongly
dependent on the availability of adequate modealdie phenomena
under investigation.
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Among remote sensing sensors, the imaging ones tage
advantage of generating synoptic views of the areker observation;
in this case, the rationale for the feature ides@ifon techniques is
usually based on the concepts of image textureysisalTextures on
remotely sensed images are related to morphologicdlgeological
features, land use and social organization of theekved scene. All
the image processing techniques used to segmentlassify radar
data are based on statistical models, which reqpaegticular
assumptions on the imaged surface (a review oft grad of these
models can be found in Ref. [2]). In this senseube of a particular
stochastic model should be driven by an a prioovkedge of some
properties of the surface. Moreover, also the sepscameters can
affect the choice of the above-mentioned modelsaragxample, in
the following we investigate the dependence of dsitistics on
sensor resolution. In fact, we find out that thechastic model used in
the analysis of low resolution data cannot be syngpported to high
resolution scenarios.

These remarks point out to the core of the prolfiered in this
thesis work. In fact, the development of effectiigormation
extraction techniques from SAR data and the syighafsautomatic
tools for image analysis pass through the developroé adequate
direct models relating parameters of the imagédsée of the surface.
Thus, the direct models can become the startingt goward the
development of inversion techniques and physidadlged
classification algorithms.

Let us try to understand better what kind of mo@e¢srequired to
obtain this goal.

1.2.1 Model-based infor mation extraction

The first model we need is a geometrical model tfer observed
surface. In this thesis we are interested in naBudaces: the better
way to model this class of surfaces is to consitiem just as one
realization of a stochastic process. In fact, ratsurfaces are the
result of the combination of different geophysicalechanisms
(erosions, tectonic movements, etc.) mixing inraoan way. This is
the reason why we are interested more in glob&ssts of their radar
images then in punctual, deterministic aspectsv@wsely, in case an
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urban area is of interest we would like to retriesegne deterministic
information (on building heights, streets widths;.e this requires a
different kind of model for the surface, a deteristin, punctual one.

The parameters used for the geometrical descripfioime surface
are those we would like to retrieve from the imageus, for inversion
purposes a sound modeling of surface geometry keypimportance.
Unfortunately, the relation occurring between theface and its
image is strongly non-linear and this makes theaekbn procedure
not straightforward.

Once we have described the surface we need to nibdel
interaction between the surface and the electrosiagnfield
impinging on it. Several scattering models are latde in the
literature; some are heuristics while others aralyaical and
physically-based. For our purposes, we are intedeist the analytical
ones that are able to keep trace of the parameised for the
geometrical description of the surface. Hence, wednscattering
analytical models, which are able to accept astitipose particular
parameters. In fact, obviously, each surface dalisan appropriate
electromagnetic modeling: the use of a model neti§pally tailored
to the surface can lead to huge errors in the atialu of the
backscattered signal.

Combining the geometrical and the electromagnetidets leads
to the evaluation of the mean square value of dueived signal.
However, radar images are affected dpecklenoise resulting from
the coherent character of the imaging system. tticodar, it is due to
the fact that the resolution cell is great withpesst to the wavelength
of the impinging field, thus containing a set ofeirfiering scatterers.
Speckle provides SAR images with their characiersstlt and pepper
appearance. To adequately treat this phenomenomesd also a
statistical model for these random signal fluctadi As for the
scattering model, also the speckle seems to bendepe on the
characteristics of the surface.

Once we have these three models we can begin telogev
adequate model-based inversion techniques to vettiee parameters
of interest of the surface. These models are &lsacore of the SAR
raw signal simulator presented in Ref. [3]. Sugiloaverful instrument
can be used both to validate the models and toigeoa set of
simulated SAR images to be used as a test betidadeévelopment of



1.3 SAR raw signal simulation 15

information extraction techniques (see Chapterl8)the following
section the rationale of the simulation procedsrerovided.

1.3 SAR raw signal simulation

Within the framework of SAR studies, it is converti¢o simulate the
received signal before any processing (with theeption of the
heterodyne down-converter). This is the signal aked raw in the
first section.

As already said, simulation of canonical scenanas/ simplify
experimentation of processing algorithms, as weltavelopment of
pattern recognition and feature extraction techesqsimulation may
play a significant role in studies concernisgecklenoise and may
contribute toward optimizing SAR system parameters.

A simulation code must meet a number of stringemstraints.
The scenario to be simulated should be rather geaerd possibly
time varying, either deterministically or stocheatly. As we have
seen in the previous section, it should rely upawmnd direct models
both from the geometrical and for the electromaigrgbint of view.
Since we are interested in simulating extended exceme need a
macroscopic description of the altitude profilesehles comparable to
the system resolution, since the microscopic prafl characterized
statistically according to the geometrical modeltled surface. Last,
but not least, the numerical code should be efiicidast and
(computer) memory saving. These features are ysuadiompetition,
and the ultimate solution generally comes to be eagineering
compromise.

The rationale of the simulation is shown in Figltds possible to
note that the upper part, the one named SAR Adguisimplements
the simulation of the SAR raw signal and it is cosgd by the
following blocks: the scattering block, which recps as inputs the
geometrical and electromagnetic description of theface; the
geometrical distortions block, which takes into cagd for the
azimuth — slant-range geometry of the acquisitigsiesn and, finally,
there is the block devoted to the convolution vilie SAR transfer
function. In the lower part of Fig. 2, the SAR pessing chain is
presented, where the SAR focused image is indicaseal product of
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Level 1a and a product of Level 2 is the final &rgf information
extraction techniques.

SAR Acquisition

SAR Processing

Paramete

Figure2 Rationale of SAR acquisition and data processing.

An example of efficient SAR raw signal simulator the stripmap
acquisition mode is given in Ref. [3]. This simolahas been the key
instrument for the development of the models, t@old techniques
presented in Chapter 3.

1.4 The new challenge of high resolution

As we already mentioned, the new generation of hegolution SAR

sensors is providing a huge amount of data withematd sub-meter
resolutions. However, it is no longer possible tmpe with this

increase in resolution with the use of old modédslpred to low

resolution data and sensors. The best exampleoided by the

modeling of speckle noise. Hereatfter, the firstpstéowards new
models tailored to high resolution imaging are fbyieeported. The
goal of this section is to highlight the need femnphysically-based
models; hence an accurate description of the spdaskbeyond the
scope of this work. Anyway, extended referencesreperted at the
end of the chapter on this subject.
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For low resolution sensors speckle noise was géyestadied in
the framework of the so called fully developed $teecTo make this
assumption several hypothesis have to hold allowteguse of the
central limit theorem to obtain a Rayleigh-disttda amplitude image
over homogeneous zones. One of these hypothesikily related to
the resolution of the sensor: in particular, thenehsion of the
resolution cell should be very great with respecthe wavelength of
the incident field. This was the case for low raoh sensors, as ERS
or Envisat missions, but it can be no longer trmeHhigh resolution
ones.

Note that the great majority of semi-automaticssification
techniques applied on SAR images are based onyhethesis of a
Rayleigh distribution for the amplitude image: ifadj this hypothesis
the elaboration results can be very inaccurate [2¢nce, the
importance of the knowledge of adequate specklsensiatistics is
evident. In the following the first results of teatistical analysis of
actual TerraSAR-X images are presented to supberidiea that with
the coming of high resolution SAR sensors microwaraote sensing
Is entering a completely different scenario, cglifor its own models
and tools.

1.4.1 Analysisof actual TerraSAR-X data

In this section a comparison between the statistidew resolution
and high resolution data is provided. This comparis carried out
through the estimation of the Normalized MomentdMNof the

intensityl of homogeneous patches of the considered imadgesNM

are defined as follows:

m = E0) (1.13)

O

The NM in the case of fully developed speckle [4¢sent a
known behavior: in fact, if the amplitude of theaige can be modeled
as Rayleigh-distributed, its intensity will followa negative
exponential distribution. The NM of this distribomi are equal to!,
wheren is the order of the considered moment. This b&nasan be
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used to determine whether or not the statisticghef data are in
accordance with the fully developed speckle moSl

Another distribution frequently invoked to modektbpeckle in
some specific situations is the K-distribution [B]- It has been
successfully used to describe sea clutter: in facthe sea surface the
fully developed speckle hypothesis of not-correlageatterers within
a resolution cell is certainly not satisfied, givtae periodic character
of this kind of surface. The effect of the failuoé this particular
hypothesis is a decrease in the number of effestatterers inside a
resolution cell: this effect is someway similar ttee one obtained
through a decrease in the resolution cell dimemssiéor this reason
here we use the K-distribution to fit the behawdrthe NM of high
resolution data. In fact, the NM relevant to a Istdbuted noise on an
homogeneous area are known and are given by tHewing
expression [6]:

=T (! (1.14)
MNa)a
a=N@L+v), (1.15)

where N is the number of scatterers within the resolutiei and
v>-1is a parameter of the K-distribution. The parameteran be
easily estimated from the data evaluating theiosd@rder moment.

The area chosen for this experiment is locatecedosAgrigento,
ltaly: in fact, one low resolution ERS image (2028 nf pixel
spacing) and one high resolution spotlight Terra®4e (1.1 x 1.6
pixel spacing) are available for this zone. A stulseboth images
approximately relevant to the same portion of sagfand fulfilling
the necessary criterion of homogeneity was selecdiously, the
ERS image presents a lower number of pixels widpeet to the
TerraSAR one: this means that the accuracy in shienation of the
NM will be higher for the TerraSAR image with respéo the ERS
one. The considered subset of the amplitude imageshown in Fig.
3, while the estimated NM are shown in Fig. 4 (jcattNM axis is in
logarithmic scale) along with the theoretical futlgveloped speckle
NM curve.
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Looking to the plots in Fig. 4, it can be notedtthiae low
resolution image NM curve is very close to the tledoal one,
demonstrating the effectiveness of the fully depetb speckle in
modeling this situation. Conversely, the high radoh presents a
huge gap from the low resolution scenario and, eguently, from the
fully developed speckle hypothesis.

%

LT = 5
ation

3 F ],
ets for the evalu

Figure3 Considered image subs of normalize

moments: ERS image on the left and TerraSAR-X on tie.ri

Figure4 Normalized moments computed on the image subsets shown in
Fig.4: the full line is relevant to the TerraSAR imatiee dashed
one to the ERS image and the dotted line is theoredtibaturve
for fully developed speckle.
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Hence, the need for new models rises and in Fighe5NM
evaluated on a TerraSAR-X image homogeneous sureeshown
and compared with the theoretical behavior of tiv iN case of fully
developed and K-distributed speckle.

Figure5 Normalized moments computed on TerraSAR data (full line),
compared with the moments of a K-distributed speckle (diashe
line) and of a fully developed speckle (dotted line).

It is evident the gap between the NM of the aci@ge and the
theoretical behavior of fully developed specklenwersely, the fit
between the actual data and the K-distributed misdedry good.

Note that the two models of speckle presented &exeas far as
we know, the only physically-based ones: in fadytlare obtained
analyzing different situations sandom walkson the complex plane
in which the backscattered field can be represejtkd6]-[8]. This
mean that further developments on this topic cdedd to techniques
exploiting the noise to recover some propertieshefsurface, rather
than only trying to discard this noise.

The examples presented in this section demongioatedifferent
sensor resolutions can give rise to completelyediit phenomena.
This is another reason for the development of @teumodels in
support of information extraction: in these modsdssor resolution
should appear as a key parameter.



References 12

Refer ences

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

G.Franceschetti and R.Lanari; Synthetic AperturedaRa
ProcessingCRC PRESS, New York, 1999.

R. Touzi, “A review of speckle filtering in the c@xt of
estimation theory”]JEEE Trans. Geosc. Remote Sensva).
40, no. 11, pp. 2392-2404, Nov. 2002.

G.Franceschetti, M.Migliaccio, D.Riccio, G.Schirinz
"SARAS: a SAR Raw Signal SimulatofEEE Trans. Geosc.
Remote Sensingol. 30, no. 1, pp. 110-123, Jan. 1992.

J. W. Goodman, “Some fundamental properties ofldp&cl.
Opt. Soc. Amvol. 66, no. 11, pp. 1145-1150, Nov. 1976.

G. Franceschetti M. Migliaccio, D. Riccio, "An
electromagnetic fractal-based model for the studythe
fading”, Radio Sci. vol. 31, no. 6, pp. 1749-1759,
Nov./Dec.1996.

E. Jakeman, P. N. Pusey, “A model for non-Raylesga
echo”, IEEE Trans. Antennas Propagawol. 24, no. 6, pp.
806-814, Nov. 1976.

E. Jakeman, P. N. Pusey, “Significance of K distidns in
scattering experimentsPhys. Rev. Leftvol. 40, no. 9, pp.
546-550, Feb. 1978.

C. J. Olivier, “A model for non-Rayleigh scatteristatistics”,
Opt. Acta vol. 31, no. 6, pp. 701-722, 1984.







Chapter 2

Direct Models for Natural Surfaces

In Chapter 1 the fundamentals of SAR remote sensing pressented.
An extensive discussion on the need for sound physibakgd
models has been done, pointing out what kind of modeésjisired. A
discussion on the role of resolution in the defimtaf the appropriate
models has been reported also through the analysis wdldugh
resolution data.

In this chapter we examine in detail the models used irthiss
work: in particular, the case of natural terrain andhef sea surface
are presented. For each of them both the geometric thed
electromagnetic models are described.

2.1 Fractal models

In this section appropriate models for the descriptiomatdral terrain
surfaces are presented. Fractal models are widely coeditiee most
appropriate to quantitatively describe natural surface$adt, fractal
geometry is able to simply account for the non-statiby of natural
surfaces, as well as for their self-affinity [1]-[3].

A fundamental concept of fractal geometry is Hhasdorff—
Besicovitch(HB) dimension or fractal dimension The definition of
HB dimension is based on the concept of Hausdorff measureA
set is said to be fractal if its fractal dimensiongigater than its
topological one. For instance, a surface is fradtalts fractal
dimensionD is greater than 2. The fractal dimension is relateth¢o
surface roughness: an almost smooth surface has a @ws(ightly
greater than 2) fractal dimension, whereas an extreroalyh surface
has a fractal dimension that approaches 3, since it tendil a
volume.
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All fractal sets exhibit some form of scale invarianéée recall
that a set iself-similarif it is invariant (possibly in statistical sense)
with respect to a transformation in which all the chioaites are scaled
down by the same factor; it gelf-affineif it is invariant (possibly in
statistical sense) with respect to a transformationhich coordinates
are scaled down by factors not all equal. As alreadyedf self-
affinity of fractal sets is the key property that makieem particularly
useful in describing natural surfaces.

These fundamental properties of natural surfaces ardlyhar
reproduced by classical surface models based on Euclideartggom
In particular, the second order statistical charas@on of the
surface can be very inaccurate, if use is made of cisshncepts as
thecorrelation length in fact, the lack of a characteristic scale is a ke
feature of natural profiles, well-known, for example,earth science
researchers.

For scattering evaluation purposes a second order chazatiten
of the surface is necessary [4]. In the fractal cdss kind of
description is very simple and straightforward, while ia ttassical
case a heuristic choice of the shape of the cowaldtinction has to
be performed. The success of fractal geometry in desgribatural
scenes is also due to the existence of scattering moatsdsl on such
a description for the surface. It has been demonstrag¢dhe use of
fractal scattering models strongly improves the peréome in the
evaluation of the scattered field.

The combined use of fractal geometrical and electrom&gne
models can be used to evaluate the signal received onbgattie
SAR system. In the following the fundamentals of thewelels are
provided.

2.1.1 Fractal description of natural surfaces

Many different types of fractal functions have beerdusn the
literature to describe and synthesize natural surfacgS]1However,

in the contest of this thesis, the geometrical desenpif the surface
has to be adequate to address the problem of electroncagnet
scattering. Thus, the ways to describe natural surfece®e to be
essentially two.
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The first method is to describe the surface as a atmliz of a
fractional Brownian motior{fBm) stochastic process. In this case, it is
possible to obtain a very simple expression for thamsguare value
of the field, depending on the fractal parameters haf surface.
Conversely it is not possible to compute the (compliex) {4].

Another way to describe fractal surfaces is using theestrass-
Mandelbrot (WM) function.The main advantage of using the WM
function is that it is possible to obtain an anabftiexpression of the
(complex) scattered field. However, the obtained esgon is very
involved, and it is not possible to analytically evaludite (expected)
scattered power density [4].

In this work we are interested in the mean square vdiubeo
backscattered, which, apart from multiplicative fastas equal to the
Radar Cross Section (RCS). Hence, we use an fBm pesaorof the
surface: however, in practical cases fBm surfaces aterb
synthesized through appropriate techniques based on the tise of
WM function. Thus, in the following both WM and fBm sack
models are considered; conversely, the scattering prokEem
addressed only starting from an fBm description for thghteorofile.

2.1.1.1 Fractional Brownian motion process

The fBm is defined in terms of the probability densitpdtion of its
height increments: a stochastic proc#gg) is an fBm surface if, for
everyx, Yy, X, Y, it satisfies the following relation:

. 1 { Z2
p V- A% D<= — - 2.1
{z(x y)- 2% )<} T I ex ZSzrmj q (2.1)
wherer is the distance between the pointy)and &,y), and the two

parameters that control the fBm behavior are:

e H : the Hurst coefficient(0<H<1), related to the fractal
dimensionD by means of the relatioD=3-H;

» s : the standard deviation, measured inlff], of surface
increments at unitary distance, a real paramelatecto an
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fBm characteristic length, the topothe$y by means of the
relations= T,

For a given surface the structure function (whole¢ I8 named
the variogram),V(z), is defined as the mean square increment of
elevation points placed at distance

v(r)={(z(x )= 4 % 9)) 22)

The structure function of an fBm surface can beluatad in
terms of the parameteksands as:

V(r)=<s7r*". (2.3)
EqQ. (2.3) can be written in logarithmic form as:
logV (7) = 2logs+ 2H logr , (2.4)

which defines in a log — log plane a linear behawih slope M, and
ordinate intercept 2log

Due to the non-stationarity of the process, theluaten of the
spectrum is not s trivial issue [6]. Using mathapatinstruments as
Generalized Fourier Transforms and spatial — seadalysis (for
example using wavelet theory), it has been dematestr[4], [6] that
the spectrungk) of an isotropic fBm process exhibits a power law
behaviour:

S(K= Sk (2.5)

wherein the spectral and spatial domain paramererselated by the
following relationships:

a=2+2H=8-D, (2.6)
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S = 2% y(d+H) 2.7)

r(1-H)

I'(-) being the Gamma functiofrom the inequalities (4<1 we get
2<0<4, which defines the range of allowed values fo Spectral
slopea. Note that also the spectral equation (2.5) pewid linear
relation in a log§) — logk) plane, with parameters related to those of
the log-log representation introduced for the vguaom.

It is important to note that a surface satisfying .1) for every
r is self-affine on all scales, so that it has detan any arbitrarily
small scale and is not differentiable at any pdaithough it is
continuous). Therefore, it cannot be used in ed@ehignetic scattering
problems because the continuity conditions of tatigkfields cannot
be enforced. Furthermore, such surface is notost@ty and suffers
from the infinite variance problem (the integraltbé power spectrum
diverges in the low-frequency range, infrared debgbe, if a > 2,
see EQ. (2.5)). Such a surface is also calleshaghematicalfBm
surface. However, natural surfaces exhibit a ftdzthavior only on a
wide but limited range of scales. In addition, thage of scales of
interest for a scattering problem is limited on e by the finite
linear sizd of the illuminated surface, and on the other byféoe that
surface variations on scales much smaller than agéh A do not
affect the scattered field. Accordingly, we consigdysical fBm
surfaces, i.e., surfaces that satisfy Eq. (2.1y @ 7min < 7< Tmax
with 7max ONn the order of and 7y, on the order ofA/10. If Tyin <<
Tmax this implies that such surfaces satisfy Eq. (2rdy in a wide but
limited range of spatial frequenci&gin < k < Kmax, With Kmin = 1/Tmax
and kmax = 1/tmin. That is why these surfaces are also referredsto a
band-limited fBm. It can be demonstrated that band-limited fBm
surfaces are stationary (at least in wide sensd)ragular. Starting
from the definition of such physical fractals isspile to find closed
form expressions relating the fractal parametersame equivalent
classical parameter as variance, slope and cuevpdir

An example of fBm surface profile is shown in Flg(taken from
Ref. [7]): self-affinity is clearly illustrated bthe sequence of zooms
shown in the plots.
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Figurel Example of fBm profileH = 0.75;S = 0.01 n¥ =21 | = 5000 m.
(b) and (c) are exploded views of the framed boxes iar{d)(b),
respectively.
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2.1.1.2Welerstrass-M andelbrot function

Among several possible representations of the Whttian, one in
particular is convenient for modeling the interawtiof natural
surfaces and electromagnetic waves [2], [8]. We mawysider the
non-normalized WM functior(x, y) as the superposition of an infinite
number of sinusoidal tones, each one charactebyetde value of the
indexp:

zZ(X y) = Bi C;V‘Hpsin[ kP (>cosV + ysiW )HDp] (2.8)

p=-00

whereinB [m] is the overall amplitude scaling factdw, [m™] is the
wavenumber of the fundamental component (correspgrid p = 0),
v (greater than 1) is the seed of the geometricagrnession that
accounts for spectral separation of consecutivepooents of the
surface and G H < 1 is the Hurst exponent,, ¥, and ®, are
deterministic or random coefficients that accoumispectively, for
amplitude, direction and phase behavior of each.ton

A discussion on the meaning and on the conseqineite of
these coefficients is now in order. If the coeéiuis C, are
deterministic, they must be all equal and consi@pts C, so that the
tone amplitudes,BCv'™, ensure the correct power-law spectral
behavior of the fractal function. For random caaéintsCp, the usual
choice for their pdf is Gaussian with zero mean anitlary variance.
If the coefficients¥, are deterministic, all equal and const&ig,= W,
the surface exhibits the fractal behavior onlyha tlirection selected
by W (and is constant along the direction orthogonalit}olf the
coefficientsW, are uniformly distributed in 7 74, the WM function
IS isotropic in statistical sense; any other chdeegls to an anisotropic
surface. If the coefficientsp, are deterministic, they are usually
selected to ensure that the WM function exhibite gelf-affine
behavior.

If the coefficients ®, are random, they are usually chosen
uniformly distributed in [7 74, and thezero-setof the WM function
(i.e., the set of points of intersection with théare z = 0) is
nondeterministic.
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In case of a random WM function, the random coieffits, C,,
W, andd,, are usually assumed to be mutually independent.

Equation (2.8) exhibits a non-integer fractal disienD as soon
as v is irrational and the Hurst exponent is relatedthie fractal
dimensiorD as

D=3-H. (2.9)

In case of random coefficients, the WM functiond®othe self-
affine behavior only for a scaling factor V'. Whenevew tends tol
the WM function approaches the self-affine behawiothe statistical
sense.

A physical WM function can be obtained by just timg the
summation extent toP tones, thus obtaining band-limited WM
surfaces:

2(x y) = sz_l Gy sin[ kP (xcos¥, + ysiW, ¥y @ ] (2.10)

As in the case of fBm, use of band-limited WM suoe® is physically
justified by the fact that any scattering measumme limited to a
finite set of scales. Le¥( Y) be the antenna footprint over the surface.
The lowest spatial frequency of the surfakg?s; is linked to the

footprint diametery X2 +Y?, while the upper onky"*/277is related
to the electromagnetic wavelengthpossibly through an appropriate

safety factory in the range [0,1], usually set equal to 0.1. Adaaly,
we can set

27T
R 2.11
Ky = o7 =2 (2.12)

XA

Relations (2.11) and (2.12) can be used to deterthim number
of tonesP needed to effectively describe the physical WNhedrest:
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) In(\/X2+Y2/)(/1)

P= +1 (2.13)

Iny

where the|'E'] operator is the ceiling defined so as to takeugeer

integer of its argument.
Also in this case it is possible to obtain a relatbetween the
parameters of the WM function and classical surfsarameters [4].

2.1.1.3 Connection between WM and fBm surfaces

As a matter of fact, it is not trivial to obtainatzations of fBm
sample functions characterized Byand & parameters; conversely,
the WM function is easily computed via simple surtiora of
sinusoidal tones. For this reason it is useful $talgish a relation
between the fBm and the WM parameters in such athatyan fBm
surface can be synthesized via an opportune WMitmcAs for the
Hurst parameter, it is simple to verify that itegual to theH value in
(2.8): hence, we need only a relation for the amnpé factorsS, and
B.

Looking at Eqg. (2.8), it can be noted that, undene hypotheses,
the WM could be intended as a sampled representatican fBm.
Hence, the required connection can be establisfezbimparing the
corresponding power spectra and checking to whinexhe former
Is a sampled representation of the latter at trecrelie spatial
frequenciek, = kov’.

Dividing the spectral plank,, k, into concentric annular regions
of radii (kv kov ™) respectively, and computing the spectral power
within each annular region pertinent to WM and fBsarface
description, is possible to obtain the followindat®ns involving the
parameters of interest [4]:

B = % k™ (v =v™) (2.14)
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which for v approaching 1 (i.e., when the spectrum of the WM
becomes almost continuous) can be written as:

2_1 H _
B _I—Tsolg (v-1). (2.15)

Summarizing, we can say that the WM function anel #Bm
process both posses the same Hurst parameter and, fs least in
the limit v - 1, the same fractal dimension. This is consisterf wi
the fact that the equivalent power spectral dedaye WM function
and the power spectral decay of the correspondsmy process are
the same. Finally, iB is selected according to Eq. (2.14), then the
power content of the WM function and the equival®mh process are
equal on appropriate spectral intervals; in thetlmh v - 1 this last
result is valid on any spectral interval.

In Fig. 2 (taken from Ref. [7]) we plot WM profilefer fixed
values ofH, ko, and for different values of and B. It is visually
evident from comparison of Figs. 1 and 2 that ¥ small enough (a
value equal to the Neper numlemay be sufficient), then Eq. (2.8)
can be used to generate an fBm sample profile.

2.1.2 Scattering from fractional Brownian surfaces

An extensive discussion on scattering models i®beyhe scope of
this thesis work. In this section we will only pide the final results
of the evaluation of closed form analytical solasdor the scattering
problem in case the observed surface is describad é88m process.

Two models are of interest in the following, they&ibal Optics
(PO) solution and the Small Perturbation Method MEPIn the
following their rationale is exposed.

2.1.2.1 Physical Optics solution

In order to evaluate the scattered power densityneexl to evaluate
the mean square value of the scattered field, whitter some
manipulation and a coordinate transformation, canmoitten as an
integral involving the structure function of thensiered surface [4].
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Figure2 Examples of WM profilesH = 0.75,] = 5000 m; (a)y = e/2 andB

=4.70 m; (by=eandB=8.85m; (cy=3eandB=14.8 m. In all
three cases Eq. (2.8), modified to account for one-diroealki

profiles, leads to an equivalent fBm process With 0.75 andy, =
0.01 n¥ ~ 1,
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The use of the expression in Eq. (2.3) allows tl&@uation of two
different closed form solutions for the scatteripgoblem. The
corresponding expressions for the Radar Crossde@RCS) are the
following [9], [2]:

2 _qyr(nFL
59 :\Rp(ﬂ)\ KT cog @), (Y r( H jm (KTsingd)’

pp H - | 2 2n+2
w () (\/EkT cosz9) H

(2.16)

for H>1/2 and

, o (=1 J2KT cosd)
ot IR O Kcos @y CU I (1), [YATeos)
= nir-nH) (2T sing)

(2.17)
for 0<H <1/2. In Eq. (2.16) and (2.17¥ is the local incidence

angle of the mean plane and Ry(¥) is the Fresnel reflection
coefficient and the RCS is computed as

2
>

. _477R§<‘Eé5)

g
Pq A‘ E(i)‘z
p

(2.18)

where E{’ and E{ are the incident and the scattered field computed

in the same direction p( and q standing for the considered
polarizations) Ry is the distance with the receiver afvds the area of
the illuminated surface.

A discussion on the validity limits of this model isw in order.
To obtain the expressions in Eq. (2.16) and (2.17) two hypahese
have been done: the validity of the Kirchhoff Approdk®) and a
small slope approximation. As for the KA, it holdshetmean radius
of curvature of the surface is much greater than the leagth of the
incident field. Conversely, the small slope approximatiold$ if the
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rms slope is much smaller than unity. As we mentionedhe
previous sections, it is possible to evaluate curvaturgrasdslope of
fBm surfaces introducing the concept of band-limitedtéisc in this
way, it is possible to assess the validity limitstioké PO model in
terms of the fractal parameters of the surface. Obbljipuhe
expression of these validity limits will be stronglgpendent on the
particular type of physical fractal used in the descnptaf the
surface.

Finally, let us note that the series in Eq. (2.16) and JZai be
truncated to a finite number of terms, for computer weai@n
purposes. In fact, in practical cases the convergeneeofaie two
series (or at least of one of the two series ama)tis high and only
few terms will be needed for the computation of the RGS

2.1.2.2 Small Perturbation M ethod

As we have seen, using the KA is possible to obtaifosed form
expression for the mean square value of the backssdttieeld.
Unfortunately, the computation of a series is requiredktain the
desired RCS. A much simpler result can be obtained byogimpglthe
SPM. This method is based on the Rayleigh hypothesis and o
surface field series expansion, and can be used if suhfeicgnt
variations are small compared to the wavelength [9], [4]
The RCS in this case can be written as follows:

0%, =8k cos 9 |B, [ s /( Ksi)” (2.19)

wheref,q is a function accounting for the field polarizatiagh,is the
local incident angle ankithe electromagnetic wavenumber.

Note that Eqg. (2.19) diverges at normal incidence. Such a
condition does not allow the implementation of thedeldn practical
cases. Therefore, in order to overcome this probleis, pbssible to
use a transition function for low incidence angles, basedhen
previously presented Physical Optics solution to the Kirchhoff
Approach.

Like in the PO case, validity limits can be evaluatedducing
equivalent classical parameters for the fBm physisidase [4].
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2.2 Theocean surface

In this section we focus on a different kind of naturaffece: sea
surface. Oceans are nonlinear dynamic systems, whosgcphg
governed by very complex laws. Description of ocean sarf@aves
is the most relevant branch of oceanography for ee@gnetic sea
sensing.

Surface waves are found in the ocean with wavelengtiging
from the hundred of meters to the millimeter scalee Dcean wave
range is usually divided into long (several hundred raekength),
intermediate (tens of meters length), and short flese one meter)
waves. In the literature, the ocean waves are alssified according
to the physical phenomenon that dominates their foomatong and
intermediate waves are usually referred to as gravigvew,
conversely, the range of short waves includes thetestogravity
waves, and gravity-capillary (one centimeter to de@nst and
capillary (less than 1 cm) waves.

Hereafter, we will focus on a particular sea staths:so called
fully developed sea. In fact, models for other sea itiomd (for
example, inshore sea) are unavailable or, at le&st wmvolved.
Conversely, the presented sea surface model allows/éheagon of
the RCS as a function of key physical parameters, sughr speed
and potential presence of pollutants on the surface.

The basic backscattering mechanism in this case, at fea
intermediate incidence angles and appropriate environinenta
conditions, is the Bragg one. However, it must be exspled that
when the resolution cell is small with respect to tbeean
backscattering wavelength, i.e., it no longer feat@esllection of
scatterers and/or we deal with low grazing angles, nilerowave
backscattering is not of the Bragg type and differerdet®have to be
suggested and investigated.

One of the most important causes of pollution in theaaas the
intensive oil emission onto the water. Natural oilpigsent in the
ocean due to natural phenomena, but many statistic stsidsed
that human activities change the percentage of oil ienywabmetimes
with dramatic effects. Oil spills caused by accidemtalintentional
emissions interact with the local marine ecosystanas by modifying
the delicate air—sea balance, exhibit great influencdaoge- and
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short-scale phenomena. Remote sensing has proved to leegfybo

tool to study ocean dynamics and detect oil spills. @ptic
radiometric, and radar systems have been employethdodetection

of oil slicks in the sea. In particular, SAR systdmse been shown to
be very useful.

Obviously, the purpose of this work is not to give a general
assessment of the above theories, but just to préseintrationale,
trying to provide a simulation-oriented approach. Thus, ia th
following the physics of the problem will be discussedhout
stressing the unnecessary mathematical detail.

2.2.1 Fully developed sea surface spectrum

The first definition of a fully developed sea surfagedrum is
probably due to Pierson and Moskovitz. They assumed ttrad Wwind
blew steadily for a long time over a large area, thges would come
into equilibrium with the wind. This is the concept of fally
developed sea [10]-[13].

Loosely speaking, when the wind blows over the ocean syrfac
capillary waves rise first. Then, the capillary wateansfer energy to
waves with longer wavelength. This phenomenon continusd
equilibrium is reached (fully developed sea). Such equilibri
depends on the wind strength. When the wind stops blowinghtime
waves decrease quickly, while the long waves propagatefartheir
source (and, in this case, are usually referred to adl).swe
Accordingly, long waves are generated by strong far wirats
variance of short waves, which are generated by loicals; It can be
concluded that their directions of propagation are usdélgrent and
that they interact in a very complex way. Besidéshas been
demonstrated that intermediate and long waves modulage th
amplitude of the short waves. Let us briefly describe different
parts of the sea spectrum.

The long wave can be seen as a realization of a naiocess
describing a swell profile at a fixed time: central wavebar,
amplitude, and bandwidth of its spectrum are the paraseitr
interest in this case. They depend on the far wind iitersd
direction and on the fetch area. This part of the spects basically
described by a wave-packet.
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With regard to short waves, we consider the Piersonkdaiz
spectrum. In particular, is interesting to note that shert gravity
range of this spectrum exhibits a power law behavior afrégsiently
modeled as fractal. This part of the spectrum is disoone used in
the computation of the scattering, where Bragg mechasmslects
resonant waves in this range of wavenumber. In this wase® speed
is a fundamental parameter involved in the definitibthe spectrum
[14].

As we noted above, the different spectral componetesact one
with each other: thus, to complete the descriptiothefsurface and
account for its time-varying nature we need a dispersitatiorn for
the long wave spectrum [14].

However, an exhaustive discussion on problems involvatien
whole ocean spectrum definition, use, and meaning isnoetfee aim
of this paper and can be found in the specialized literatiore
example in Ref. [10]-[13].

2.2.2 Bragg scattering

As already noted, the key mechanism involved in therant®mn
between the electromagnetic field and the sea su(&deast a fully
developed one) is Bragg scattering. It is based on thenai®on that
main contributions to the backscattered field are providedhey
ripple spectral components whose wavelength is of three sader of
magnitude of the incident electromagnetic wavelengthceSithe
height of sea waves is much smaller than their veaagth (unless
breaking waves are considered), then the height of rippéetral
components involved in the scattering mechanism must beh m
smaller than the electromagnetic wavelength, too [14].

This allows finding a direct dependence of the RCS froen th

resonant components of the sea SpeCtWI(TK, K) with:

; (2.20)
k. :—”(sin&‘i +9, cos9i)
A

y
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where dx and &, are the slopes of the sea macroscopic surface in the
two directions and? is the local incidence angle.

Equations (2.20) clearly show that, according to the Bragg
phenomenon, the SAR sensor acts as a frequency seleetoe, the
ocean waves that contribute to the scattering are tbole resonant
with the wavenumbers such that Eq. (2.20) holds.

2.2.3 Effectsof oil pollutants on sea surface

Hereafter, we briefly discuss the ocean spectrum depeedon the
presence of oil [15]-[19].

The presence of oil on the water surface reduces sudas®n
and friction between wind and liquid surface: the higher ¢l
percentage, the stronger the reduction effect. This nteahthe wind
can transfer a smaller energy to capillary waves islak-covered
areas than in free-water areas. In addition, viscowssipdition
increases. All this causes a decrement of the capikd@ectrum
intensity, which, as presented above, plays a domir@etin the
scattering mechanism. Then, according to what we saidhen
previous sub-section, a weaker electromagnetic retwm fareas
affected by oil presence is expected, which causes darkes in
SAR images.

To quantify the abovementioned phenomenon a moded barsehe
Marangoni theory and on a nonlinear energy transfer yhean be
used. This model arises from a theoretical physical-cla@mic
approach and provides a reasonable physical interpretatatypical
behavior of the wave damping in a range of wavenumbaeyrext
interest for SAR applications. According to Marangosurfaces
covered by a slick can carry two kinds of waves: the gravdpillary
and the Marangoni waves. Marangoni waves are related facsur
tension gradients, caused by the oil film visco-elagtaction to the
sea surface deformations. At variance of gravity-capillwaves,
Marangoni waves are longitudinal. When Marangoni and gravity-
capillary waves share the same wavenumber for andgreguency, a
maximum in the damping occurs.

Thus, it is possible to obtain an analytical expres&orhe damping
coefficient which depends on the visco-elastic of theswered oil.
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However, the dampening caused by Marangoni waves is notiesiffic
to completely explain sea surface spectrum variatioriee presence
of oil. As a matter of fact, according to Marangoni tlyearl slicks
influence ocean waves with wavelength only lower than, whereas
experience suggests that the whole spectrum is affectetiebyil
presence.

In fact, when an external input acts on the ocean aadgds its
shape, the system reacts by spreading uniformly the ereapgh its
whole spectrum via wave—wave nonlinear interactionsicelewhen
an oil slick causes a strong spectrum damping around theniytara
resonant wavelength, longer and shorter waves trapaferof their
energy to the waves in the resonant spectral regiorthgiaonlinear
wave interaction phenomenon. This is the reason whyowgh the
damping effect directly acts only on the short wavesgdo waves
also are influenced by the presence of oil. Such a waae-w
interaction mechanism is strongly influenced by the wimehce, the
higher the wind intensity, the higher the energy sprepdifect.

All the phenomena described above can be used to obtlaiseal c
form expression for the RCS also in presence of oilstMmportant,
we found a way to directly relate, though via strongln-tinear
relations, the backscattered signal to physical, otemiand
environmental properties, which are all potentially retidsahrough
inversion of these direct models. Another key resulth& we can
account for the presence of any kind of oil on the seface only by
knowing its physical-chemical properties.

All the models described in this last section have beentakédy
used to develop the SAR ocean simulator presented in Reff. [
which is able to simulate also the presence of oil seene portion of
the image.
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Chapter 3

SAR Simulation Tools

Several approaches devoted to define instruments and toadatior
interpretation were presented in literature. Most of tlaeenbased on
empirical analyses of remote sensing data, essentigllgn by user
needs. For an efficient information extraction, @&akgued in Chapter
1, we need physical models: some of them were revieweitiein
previous chapter.

In this chapter we present novel results concerning the
development of model-based automatic techniques for thgs@naf
SAR amplitude images.

In the first section, a fractal framework for thengiation of SAR
images relevant to simulated disaster scenariogrisduced. Such an
instrument can be used to increase the comprehensitie physical
mechanisms underlying radar image formation in case a$t@iss. In,
fact, the main problem of the scientist working on the bgweent of
remote sensing techniques for disaster monitoring is thedadhe
limitedness of an accurate ground truth. The proposed laionu
allows performing parametric studies on canonical disas@enarios
with a perfectly known ground truth. Furthermore, it ¢cenused to
obtain images relevant to both pre- and post-crisis tgng
providing the possibility to develop a test bed of sinedatnages to
be used for the testing of change detection techniquesva®lcase
studies are presented with regard to different kinds of ratura
disasters. Finally, a novel change detection techniqued basehe
estimation of significant parameters and supported byafraohcepts
is described.

In the second section, new tools for the simulatiosh @nalysis of
ocean scenes covered with oil slicks are presented.pid@uced
images have been used for the testing of novel fraothradiometric
techniques for the identification of oil slicks and thaiscrimination
from look-alike (for example, wind faults).
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3.1 A fractal smulation and analysischain

Human beings live in an environment in continuous evolutidh &
large number of physical phenomena which are potentiaiigetaus
for their life. Remote sensing sensors provide a greauat of data
to be used in disaster prevention, risk evaluation, daresgmation
and aid organization. However, practical use of theda @ often
limited by the lack of efficient, possibly unsupervised,lddor the
retrieving of effective information to be employed in ttwsis and
post-crisis phases.

Several approaches devoted to define instruments and teols fo
data interpretation were presented in literature, shgpwam least in
principle, the potentiality of satellte and aerial eique for the
monitoring and eventually prevention, of natural (floadifi]-[2],
volcanic risk [3], landslides [4], etc.) and human-madestisa (oil
spills, fires, etc.). Most of these approaches asedhaon empirical
analyses of remotely sensing data, essentially driveansby needs.
These analyses are generally supervised; and, to betiedfeit is
often required that the supervisor holds a remarkablel lefe
competence with reference both to the remote sensin@rseand
data), and to the effects of different disasters eretivironment.

Among remote sensing sensors, the imaging ones take the
advantage of generating synoptic views of the area urbeneation;
in this case, the rationale for the feature identiibcatechniques is
generally based on the concepts of image texture asalyesktures on
remotely sensed images are related to morphologicajaabbgical
features, land use and social organization of the obdesgene. An
expert user can identify significant classes of humgnasures, as
ordered patterns which are well described within the Euwmhide
geometry, and distinguish them from natural features, cnversely
hold self-similar characteristics thus being governeddyyBuclidean
laws. When a disaster occurs, the scenario of tlsereed scene
dramatically changes, and remote sensing instrumentsdsbheulat
least in principle, able to detect the changes in theescé\s a matter
of fact, man-made structures can be damaged thus (part@sing
their Euclidean properties; alternatively, some natigaiures can be
modified thus changing the characteristics of thein-Boclidean
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statistics. An example for the first happening is providedages of
urban areas stricken by earthquakes, where some chaxiicete
appear and Euclidean pattern are mixed with self-similags.on
Examples for the second happening are provided by images of a
flooding in rural areas or a volcano eruption; these ahtlisasters
modify (according to different rules) the surface profiiem scales
smaller than the sensor coverage but comparable to @hsors
resolution, up to scales comparable to the electromagnmatielength.

Then, a fundamental aid in managing post-crisis analgsise
given by unsupervised, or semi-unsupervised tools for intetjoreta
of geometrical features in remotely sensed imagestet@lop these
tools it is crucial to introduce appropriate models to undedsand
guantitatively describe the physical phenomena that govke
modification of the scenario textures, thus providing ad&émental
background to plan any powerful instruments to retrieve the
information of interest.

As we have seen in the previous chapter, the fractal gepm
has the required characteristics to manage the probkerhand.
Therefore, fractal based instruments are appropriatdicaes for the
retrieval of the significant physical parameters fronmotely sensed
images. In this section, we present a novel fractahé@work, based
on direct and inverse models, to facilitate the disastaitoring from
SAR images. In particular, we propose the combined usanof
appropriate SAR raw signal simulator with fractal dzhsnodels and
tools.

As for the direct chain, fractal geometrical modets employed
to correctly represent the imaged surfaces and fraciaitesing
models are employed to evaluate the reflectivity fumctaf the
natural scene under observation [7]-[8], in agreememthiat we saw
in the previous chapter. The evaluation of the scattesqggires the
knowledge of the fractal parameters of the area. Sochaitpies have
been reported in the open literature for the retriefathe fractal
parameters from a given two-dimensional data set, rmbshem
relying on the fractional Brownian model.

The reflectivity function is employed to simulate t88R raw
signal and the relative SAR image, as described in Chapter

As for the inverse chain, in the open literature mosthaf
change detection algorithms are based on ratioing afetehting on
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the magnitude of the signal return between pre- and pis&-c
scenario [9]-[10]. Fractal tools could be employed fdarigeing SAR
properties of the SAR images and to develop change detection
algorithms based on differencing and ratioing between pEm
with a physical meaning. Anyway, these techniques have roaérly
proposed with reference to fractal surfaces, thus theje qu
conveniently apply to Digital Elevation Model (DEM); roersely,
their use in case of images of the fractal surfacesoisetimes
guestionable. However, these methods present a major prdbie
remote sensing applications: the estimation is effectonly in
presence of data equally sampled in both directions. Ifotlesving a
solution for the problem is proposed.

Such an approach calls for appropriate discussion on the
fractality of SAR images and on the possibility to retrieve tlaethl
parameters of the surface by analysing its radar imagthe next
chapter a novel analytical closed-form solution will jresented,
clarifying the nature of this inverse problem.

In the following a comparison between the SAR raw align
simulator and actual images allows the validation ofwhele direct
chain. In addition, the direct chain is used to creat®nical disasters
in order to develop ad hoc solutions for two simulate@ casdies: a
flooding and a volcano eruption.

3.1.1 Fractal framewor k assessment

The framework makes use of some tools which are here
described in terms of input and output data, as well as pfoged
models and algorithms.

Monitoring of each type of possible disaster callsajopropriate
remote sensor coverage, temporal and spatial resolutedass and
sensitivity.

Sensor coverage and sensitivity are somehow dual concepts
Sensor coverage allows focusing on the entire areaviedah the
disaster so that large scale phenomena can be mahit8ensor
sensitivity is here refereed to the employed electrowibg
wavelength and can be related to the scene spatiak gbalemainly
affect the remotely sensed data, thus providing informatio the
small scale phenomena. Temporal resolution fixes thee tfor
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obtaining post-crisis data and the average temporal lagebstpre-
and post-crisis data. Spatial resolution allows monitotitggdisaster
at a significant scale with respect to the observatlufe. This scale is
set at an intermediate level between the sensorrageeand the
electromagnetic wavelength.

With respect to above mentioned parameters, spaceboche
airborne SAR data provide a unique tool to monitor sevgpedst of
disasters. SAR coverage allows imaging Earth at a mebiscale
which is typical of most of possible disasters. SARsitivity depends
on the backscattering properties at microwaves, thus Ibelated to
the geometrical properties of the scene under survegnéimetric and
metric scales. Acquired SAR data exhibit a spatial reisoluhat can
be employed to monitor the geometrical properties desaanging
from 1 meter to 1 kilometer. Finally, the new generat of
spaceborne sensors is conceived to reduce the tempooaltioes
from days to hours, just as required for an efficwonitoring, (and
support controlling) of major natural and human-made disssthen,
SAR images, with respect to optical ones, exhibit amplesized
dependence on the observed geometrical features on spatlias s
ranging from several kilometres to some centimetres.

This short and general discussion provides the major
motivation to propose a fractal framework for the stafigisasters by
means of SAR images. Fractal geometry provides the apat®pri
“environment” to deal with geometric features that extenduch a
wide range of scales. The fractal framework we prom#teen based
on the following tools.

1. A fractal inverse geometrical tool (IGT) to retrietiee
fractal parameters from the surface profile of thensce
under analysis.

Input of this tool is an (original) DEM of the scene under
analysis. This DEM can be acquired by aero-
photogrammetric campaigns or interferometric SAR data;
it should be relevant to the entire area under aisafysd
should be sampled with spacing as closer as possible to the
SAR resolution. In general a coarse version of tiEsEls

can be provided by the data from the Shuttle Radar
Topography Mission (SRTM). The outputs of this tool are
the maps containing the fractal parameters evaluated in
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each point of the original DEM of the scene. The toel w
propose is based on the fBm model for the DEM.

A fractal interpolation tool (FIT) to obtain the suréac
profile sampled according to the resolutions of the
considered SAR sensor and stochastically described at the
scales comparable to the employed wavelength [11], [12].
Input for this tool are the original DEM and the maps of
the fractal parameters evaluated by the tool described at
step 1. Output is a realisation of the macroscopic DEM at
the SAR resolution scale and parameters of the
microscopic DEM at SAR wavelength scales to be used in
the SAR raw data simulator. At the microscopic soally

the fractal parameters are required by the scattering
models, and the fBm model is employed to fix thesddtac
parameters equals to those estimated at the originigl sca
thus performing a stochastic interpolation of the scene
profile up to scale typical of the electromagnetic
wavelength.

A SAR simulator (SARAS) that makes use of fractalatire
scattering formula to generate raw signals and images
relevant to the scene under analysis.

Main inputs of this tool are the DEM of the scene sathple
at the SAR resolution scale and the fractal parameiers
the SAR wavelength scale. This tool evaluates for each
portion of the scene the backscattering via a direct
scattering formula and projects this result onto the
azimuth-slant range coordinate system. This tool emsploy
an fBm model for the surface; the tool can alternative
employ Physical Optics (PO) or Small Perturbation
Method (SPM) fractal based solutions for scattering,
whose fundamentals were reported in the previous chapter.

A disaster brings significant changes in the geometricglepties

of the affected scene. As an example, the roughnesglodded area
is usually lower than before the event, while an Inifeal area affected
by an earthquake will lose the ordered organization typichuilt-up
quarters. As presented in Chapter 2, fractal geometryatdor the
irregularity of the surfaces, therefore its use is VWidriggested for
change monitoring.
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In this work we extended the variogram method (which eg&m
the fractal parameters via a linear regression onaipe-1log plot of
the variogram) to deal with not equally spaced data. Mtk if the
data are equally spaced, the number of points with the salative
distances is greater with respect to the case of qoallg spaced
samples. In order to reduce this effect we used the Q@tsarity
index.

This new tool can perform estimation of pseudo-fractal
parameters (for the moment, we don’'t know whether tlegeof a
fractal is fractal or not) on the final image: we doknow precisely
(analytically) how these parameters are related te ffactal
parameters of the surface, but, anyway, we expect thém telated.

The SARAS simulator, introduced in Chapter 1, is herdifieol
to allow simulation with fractal and electromagneparameters
varying all over the scene. In fact, in the study afidated disasters
we will need to change these parameters on the zonbyhihe
disaster.

3.1.2 Casestudies

In the following significant case studies are presentedssess the
performances of the proposed framework.

3.1.2.1 Comparison with actual data

The region of interest is the area of Maratea (39°5BR42’E),
South of Italy, a coastal area surrounded by steep mosntadigital
elevation model (DEM) of a 2020 Knf area, with 20 x 20 frpixel
spacing was available for the considered area, as svath &RS-1 C-
band SAR image, acquired in descending orbit on the 30 of Januar
1996, with a view angle of 24.88°.

As first, we used our DEM as input for the SARAS simuiain
order to compare the simulated with the ERS-1 image .DHEM was
interpolated via the FIT procedure on a 3.99 x 19.98paced grid, in
accordance with the ERS acquisition geometry. A petorew of the
interpolated DEM is shown in Fig. 1, with an observatogle of
24.88°, so that it reproduces the scenario seen by an ebserthe
ERS-1 satellite.



50 Chapter 3 SAR Simulation Tools

In Fig. 2 the DEM grey scale representation is provideateN
that the highest mountain (corresponding to the brgghdeea) has a
top altitude of 1506.45m. Columns of the image represent equi-
azimuth pixels.

In order to use the presented DEM as input for the SARAS, t
description of the scales at the order of the incidenelgagth (5 cm
for ERS-2 sensor), is needed. The fractal parameters radtural
surface are independent of the scale at which we measeng th
therefore, we retrieved the microscopic fractal patarsefrom the
DEM, via the IGT. We present the fractal dimensDnmand thes
parameter estimated by the reference DEM in Fig. 3 and 4,
respectively. Note that thes map allows an identification of
topographical characteristics, like rivers, or mountains.

Once the long and short scale characterization is gedyiit is
possible to perform the SARAS simulation of the imageegated by
the ERS-1 sensor.

The image obtained from the simulated raw signal viadsi@ah
processing, is presented in Figure 5a and compared withcthel a
image provided by the ERS-1 SAR. The images are averagea ®ith
x 10 multi-look, so that the presented image resolutioazimuth —
slant range is 39.86 x 15.81%nwhich corresponds to an azimuth —
ground range square pixel (39.86 x 37.59.M visual comparison
shows the capacity of the simulator of reproducing thainm
characteristics of the SAR image, suggesting the udedARAS as
support for SAR actual image interpretation.

The presented results suggest the use of the SARAS for
simulating canonical scenarios to be used as test-békdefovalidation
of change detection techniques. Therefore, we simulatedctisis-
scenarios, one relative to a flooding of the argacaaht to the highest
mountain of the region of interest, another relatieea volcano
eruption. In both the cases, the previous simulaticcorsidered as
the pre-crisis scenario, and it is use as refereocdrdctal change
detection approaches, as detailed in the following.
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F_igure 1 3D view of the interpolated DEM, as seen from ERS sttell

_—

Figure2 Grey scale representation of the DEM in Fig.1.

| =

Figure4 Map of the standard deviation for unitary incremesitsf the
considered DEM.
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Figure5 Simulated ERS amplitude image of Maratea (near range the
left).

Figure6 Actual ERS amitude image of Maratea (near range is on
the left).
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3.1.2.2 Flooding

In the following, we present the potentiality of our femork applied
to the monitoring of flooding. We modified the originaEM by
creating a river’'s spate in the valley pinpointed by tleclbloval of
Fig. 7. The mean difference between the pre- and pis&-OEM in
that area is about 30m. A close up of the flooded regidordeand
after the disaster is presented in Fig. 8 and 9, respBctiv

In order to appropriately simulate the presence of watehe
flooded region, we modified the microscopic roughnesd #re
dielectric parameters as well. As far as the miapgc fractal
parameters are concerned, in the areas affected ifipolkéng we set
H to a typical value for the water surfadd=0.75), and we sef to
one half of the value in the pre-crisis scenario. Astifie dielectric
characterization, the area affected by the floodirgssaimed to have a
dielectric constant of 26 and a conductivity of 1 S/m, which are
typical values for extremely wet terrain; the surrongdiarea is
assumed to have a dielectric constant&fdd a conductivity of 19
S/m, typical of terrains with low water content [13]

The SARAS simulated image corresponding to the postcrisi
scenario is presented in Fig. 10. A visual comparison Wwith 6
shows that the user can visually recognize the area hiitebjooding.
Anyway, for actual cases a quantitative technique to idetiidyarea
involved in the phenomenon is required and its implememtas
discussed in the following.

Therefore, the use of classical and fractal technicuesdrder. A
guantitative comparison is possible if a ground truth vailable.
Therefore, in order to define a reference map, weodégpol the
SARAS facilities of simulating the SAR image in absend speckle.
Such an approach allows the definition of the “ground truththe
SAR image by differencing pre- and post-crisis intensitgges in
absence of speckle, and the creation of the referensle ohdrig. 11,
where flooded regions are identified by white pixels.

Then, we tested the classical change detection techbagass on
the differencing between SAR intensity pre- and pasiscimages,
obtaining a binary mask presented in Fig. 12. A visual comparison
between Fig. 11 and 12 shows that the flooded area isdeelified
by the technique (we estimated that the hit rate is 97.29b}this is
paid with an excessive false alarm rate (11.2%), due tdathethat
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the multiplicative random noise due to the speckleoimespondence
of layover areas can significantly change from aizatbn to another.
Note that, due to the peculiar distribution of the naissified pixels, it
Is not trivial to improve the technique performance viasitzal post-
processing algorithms.

Then, we implemented a change detection technique, bagéd o
fractal framework presented in the previous sections. fiicpéar, we
used retrieved the pseudo-fractal parameters of pre- anecnmist
scenarios. In Fig. 13 we show a classification mapinddaby the
difference between the fractal dimensions of pre- podt-crisis
scenes. Again, it is possible to identify the floodedaamith a good
hit rate (83%), but, again, the false alarm rate iseexty high
(15.4%).

Anyway, by observing Fig. 12 and 13, we note that the
distribution of misclassified pixels is completelyfdient, due to the
different causes that generate it. In fact, the imaggnsity difference
is very sensitive to the signal magnitude changes, tiverehost of
the misclassified pixels are grouped in the layover af@ass
consistent with the fact that SAR signal correlatidecreases in
layover areas). Conversely, the fractal dimensiomase sensitive to
gradients of the signal, therefore most of the nassgathered in
correspondence of the grazing angle areas, where theredifes
between the side lobe of the layover areas creap sgradients.
Above considerations suggest to combine the obtainedsesutder
to get a significant improvement on the detection perémcas.

A simple multiplication of the obtained masks allowdetiag
most of the misclassified pixels, causing a strong restuct the false
alarm rate. Such a combined technique leads to a hit re&é. %,
with a false alarm rate reduced to 0.5%. A further lowngiexity
processing can consist in a smoothing devoted to throwsolated
misclassified pixels, obtaining an improvement of the rhie to
90.2%, paid with a false alarm rate raised to 0.6%, quorelng to
the classification mask presented in Fig. 14. Figure 14 sigyyjest
the residual false alarm error can be further reducedimple post-
processing algorithms.

Note that, by changing the thresholds used for the Gizdgn
maps, the results can slightly change. Anyway, theice of the
thresholds is beyond the scope of this paper, it canddne in
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accordance with the specific application and it doeschange the
essence of above presented results.

In addition, note that the information was not used because, in
this peculiar case, it does not bring a significant sifi@stion
improvement. This is mainly due to the fact that, duthéoparticular
topography, thes data and the image intensity information are
strongly correlated.

Figure?7 3D representation of the Maratea region after the flooding
Flooded area is marked in the black oval.

Figure8 Close-up of the region of interest before the flooding.



56 Chapter 3 SAR Simulation Tools

—

Figure9 Close-up of the region of interest after the flooding.

Figure 10 SAR simulation of the image relative to the post-crégsignario as
seen by the ERS-1 C band SAR sensor.
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Figure 1l Reference classification map (“ground truth”).

Figure 12 Classification map obtained by magnitude differencing.
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Figure 14

Classification
differencing.

Classification

-t

map obtained by pseudo-fractal dimension

map obtained with the combined technique.
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3.1.2.3Volcano eruption

In the following, we present a simulated volcano erupsoanario.
We show the performance of our fractal approach for the
identification of areas covered by the lava flows.

The first case is relevant to the Kilimanjaro volog2°S 36°E).
We provided as input for the simulator the digital eleratmodel
(DEM) of the zone, on a 90x90°rgrid. The DEM was interpolated
via the fractal approach, in order to be in accordante tive ERS-1
acquisition geometry. In Fig. 15 we present a 3D reprasentof the
DEM.

The simulation was performed according to the procedure
presented in the previous Section. The simulated imaghogn in
Fig. 16 (near range is on the left). Such an image repgeesen
reference for the situation, in absence of lava flows

In order to assess the ability of the proposed technigee,
simulated a lava eruption, by setting the simulation rpatars of a
given region to the typical values for the most camnfava flows
(AA and pahoehoe). However, to appropriately account tfer
presence of lava, we gave the region parameters thesvadfined in
Table 1.

Two kinds of lava are defined: a smoother one, recalimey
properties of the pahoehoe lava flows and a rougherecaljing the
properties of the AA lava flows. In Fig. 17 and 18 the tsimulated
SAR images are presented (near range is on the left).

Figure 15 3D representation of the Kilimanjaro volcano area.
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Figure 16 Simulated ERS-1 image of the Kilimanjaro area.
Tablel Lava parameters.
Lava parameters AA Pahoehoe
Dielectric Constant 8 20
Conductivity [S/m] 0.01 1
Hurst coefficient 0.6 0.85
s[m®) 0.1 0.2

On the obtained SAR images we applied the variogramadeth
obtaining the maps of the pseudo-fractal parameters oftvioe
scenarios for change detection purposes. In this casepoalof the
two independent parameters of the image, i.e.stparameter, was
used to identify the region covered by the lava. Thauis to the fact
that in our simulation we considered that the high scalélgrs not
changed by the lava flow.
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Figure 17 Simulated ERS-1 images of the Kilimanjaro area covered wit
pahoehoe lava.

Figure 18 Simulated ERS-1 images of the Kilimanjaro area covered aat
lava.
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Anyway, the presence of the lava in the scene significa
changes the surface characteristics of the areetedféy the eruption
at microscopic scale, and it is possible to explatgansitivity of the
SAR return to the surface microscopic roughness. We aiedilthe
volcano eruption by changing the microscopic parametershef
surface and this resulted, essentially, in a changatefsity of the
image in the zone of interest.

In order to quantify the performance of the technique,exeate
map can be generated, by simulating the SAR data in absénce
speckle in the pre- and post-eruption cases. Their elifter defines
the “ground truth” for the case study. In Fig. 19 and 20 tloeirgt
truth and the map obtained with the proposed approachaven.

Figure 19 Ground truth map for the Kilimanjaro area.
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Figure 20 Clssifiatin mp btin sig the fractal tehnique.

If we compare the case of the flooding with thathef volcano
eruptions, it is evident that in the former case thelifiwation of the
DEM at macroscopic scales determined a variation inpgeudo-
fractal dimension of the image, resulting in inforimat
complementary with respect to that supplied by shparameter.
Essentially the pseudo-fractal dimension of the imabews a
dependence on the fractal dimension of the imaged surfaesured
at the scales of SAR resolution rather than at wagétescales.
Anyway, this question will be fully clarified in the rechapter.

In the next section another kind of natural disastexddressed:
the problem of oil slicks in the sea, often related hi sllegal
emissions. New instruments have been developed to suBpdit
simulation of these scenarios. The goal in this ¢aige identify the
oil slicks and to discriminate them from look-alikes. Epdas of
possible post-processing techniques devoted to this goal ded tes
our simulated images are also presented and commented.
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3.2 Simulation of ocean scenes covered by oil
dlicks

It is widely known that oil slicks on the ocean surfaaa be observed
in SAR images as dark spots. Nevertheless, the useRa is still
limited because dark areas in SAR images can be due to Isevera
phenomena, as lack of wind, natural oil, plankton, anersd14],
[15]. So far, this ambiguity limited the developmentaotomatic oil
detection procedure.

The work presented here is widely based on the SAR igvals
simulator of ocean scenes covered by oil slicks ptedein Ref. [5].
Such a simulator relies on efficient models for tlsean description
and for the electromagnetic field-ocean wave int@aciThe ocean
surface is described by means of a two scale model, ingluding
(periods of about 100 meters), and short (periods of cdn nam)
waves. In addition, intermediate scale waves arewted for as an
effect on the signal. A model based on the Marandwurty accounts
for the oil slick effect as well. The main limit dfis simulator is that
it was not possible to define a shape for the slicks.

In order to enlarge the range of applications of our sitoul we
extended the simulator potentiality, providing the chamue
generating slicks with arbitrary shapes. In particula, focused our
attention on the simulation of oil slicks with ftatshapes, because it
is widely accepted that the fractal geometry is the tnsostable
instrument to generate natural profiles. In particular,used the WM
fractal function, presented in Chapter 2, to synthesifzactal surface.

Once the oil slick was generated, we employed the radutai
results as input for the SAR raw signal simulatorpémticular, we
simulated SAR images relative to fractal slicks as waglklicks with
integer dimension, in order to emulate the charatiesi®f a ship
emission.

One of the techniques often used to discriminate betweenahat
and man-due slicks is the regularity of the contour. Thesefwe
analyzed the obtained images, with the double goal ofyusgifthe
law of conservation of the fractal dimension, as wa#i the
radiometric behavior of the oil covered area with resge clean
water.
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3.2.1 Generation of ail slicks with arbitrary shapes

The estimation of the contour fractal dimension canuked in
discriminating between natural and man-due slicks. Thexefocan
be interesting for oil detection purposes, to generatiessivith fractal
shapes. In order to do it, the most appropriate functidgha fBm. In
the following a realization of an fBm process is synttezs by means
of the Weiersrass-Mandelbrot function, as detaile@hapter 2.

A cut of the WM function at fixedz levels provides a fractal
curve which defines the region covered by the oil. A&xample, in
Fig. 21 we depict a slick obtained by a cut of a WM functiatin
fractal dimensiorbwv =2.35. The image was synthesized on a 3.99 x
19.9 nf spaced grid, in accordance with the ERS-1 acquisition
geometry. The image pixel of Fig. 21 has a 19.9m x 19.9rm(sabkix
range) dimension, in order to show the ground aspecteoflibk.
Therefore, such an image can be used as an input fantakson of
ERS-1 raw signals and images.

Figure21 A fractal slick obtained as a cut of a WM function wittactal
dimensionDyyy =2.35.

In order to estimate the fractal dimension of thekstiontour, we
applied a box counting technique, and we obtained a frdich@insion
Dc =1.38. It means that difference between the Hurst cosftiH of
the contour (related to the fractal dimensianby the relatiorD. =2-
H) and that of the corresponding WM process is less4BanSimilar
results were found for different slicks.

In several cases, it is of interest to discriminagéMeen natural
and man-due slicks, by evaluating the regularity of thetozon
Therefore, we generated slicks whose shapes recatipieal slicks
spilled by the boats, by using the classical geometsyaiexample,
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in Fig. 22 we present the shape of a slick, obtained asretbrof a
spiral function.

Figure 22 A slick obtained as a branch of a spiral.

As we stated in Chapter 2, the oil influence on the sgface is
accounted for via the Marangoni theory, as a damping obtean
spectrum. The intensity of the damping depends on therojlerties
and it is presents a resonant behavior. Therefordéestesensor for oil
detection depends also by the oil resonant frequencyn/A&xample,
the Oleyl Alchool, which is here considered as casgdystpresents a
resonance around spatial frequency that corresponds to téedC-b

The C-band ERS-1 SAR image relevant to the oil shidlose
shape was shown in Fig. 21 is obtained from the simulatedsignal
via standard processing and presented in Fig. 23. The image is
averaged with a 1 x 4 multi-look, so that its resolufioazimuth —
slant range is 19.9 x 7.9°mwhich corresponds to an azimuth —
ground range approximately square pixel (19.9 x 1$)9 m

Figure23 Simulated ERS-1 SAR image relative to the slick syn#eesin Fig.
21. The near range is on the left.

In order to show the image dependence on the carrgudrey
we simulated the SAR image signal relative to the previscene,
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acquired by the SIR-C sensor, which works at L band. ¢n # the
corresponding SAR image is shown. The image is averagbad 1 x

4 multi-look, so that its resolution in azimuth — slaamge is 18.3 x
13.3 nf, which corresponds to an azimuth — ground range
approximately square pixel (17.7 x 18.3)mAs expected, the image
damping is strongly reduced, because the working frequencyais in
area where the spectral damping is lower.

Figure24 Simulated SIR-C SAR image relative to the slick syriteekin Fig.
21. The near range is on the left.

In Fig 25 we present also the SAR simulation relevarda slick
with the classical contour presented in Fig. 22. Thek giroperties
were chosen with the goal of reproducing the geometrical
characteristics of a slick spilled by a boat.

erapge is

imulated R image reproducm a boat emission.
on the left.

Figre

The introduced ability of the simulator can also be @ipd to
account for a typical ambiguity problem, related wité kock of wind.
In fact, it is now possible to generate arbitrary shapgibns where
the wind intensity is supposed to be reduced with resmedhe
background. As an example, in Fig. 26 we show a simulatést ER
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image with the contemporary presence of an olil sliak arack of
wind.

Figure26 Simulated SAR image relative to a boat emission (enleft ), and a
lack of wind (on the right). The near range is onldfte

3.2.2 Image analysis

The presented simulator can be intensively exploited nergée a set
of images that can be used to improve the comprehenkiba onage
characteristics and for training of detection techniqueadtition, the
ability of simulating lack of wind and oil slicks gives thpportunity
of facing the problem of the ambiguity solution as well.

In the following, we present some examples on how sited|
images can be a support for developing SAR techniques. loyarti
we focus our attention on the estimation of the sliehtour fractal
dimension, which can be a classification criteriangd on radiometric
analysis.

3.2.2.1 Fractal technique

Let us consider the SAR images relative to the slickeigeed in the
previous section and the possible estimation of theafaanension
of their contour. The evaluation of the fractal dirsien is possible if
the pixels belonging to the slick are identified. Thisragen can be
performed by defining a threshold image intensity value c@irse
such an approach is limited by the speckle noise that makes
ambiguous the pixel classification.

Anyway, the combined use of morphological operators alkbws
extraction of the slick contour. As an example, ig. 27 we show the
contour extracted by the SAR image presented in Fig. 24.
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aﬁ:}

Figure 27 Contour extracted by the SAR image of Fig. 24.

The contour fractal dimension was then evaluated viaoa
counting algorithm, obtaining a valle =1.3. As expected, the fractal
dimension is similar to the slick mask, slightly rediicby the
morphological operations required to limit the specldésa effect.
Similar results were obtained for fractal slicks witifferent fractal
dimension.

The evaluation of the fractal dimension was also pewal on the
image presented in Fig. 25. Note that the extension oElitle is
much more limited, therefore, the extraction of tlemtour and the
evaluation of the fractal dimension can suffer fdiat®lity problems.
The obtained fractal dimension valldg =0.9 confirms that the slick
contour does not hold fractal property. It appears ctbat the
evaluation of the slick contour fractal dimension camakiechnique
for ambiguity removal.

3.2.2.2 Radiometric techniques

The slick classification is often addressed via the coewbuse of the
contour fractal dimension retrieving and techniques basedhen t
analysis of the SAR image radiometric properties. phesented
simulator provides a huge amount of data for the devejopind
training of radiometric techniques as well. In the follogy we recall
an innovative technique for the discrimination betweerslaks and
lack of wind, argued by theoretical considerations, andiegrwith
the use of simulated data [5].

As stated in Chapter 2, the intensity of the electromagmeturn
scattered by a portion of the sea surface is proportiontie ocean
spectrum at frequencies sampled by the Bragg relation. dilhe
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presence damps the ocean spectrum and it changes the drigee
statistics, at variance of a lack of wind, which cawsegid damping
of the ocean spectrum.

Therefore, the estimation of the normalized intensityments
(introduced in Chapter 1) on several simulated SAR imagesd
verify that the higher order moments in areas covdrgdil are
modified with respect to the clean water and to avd@ee a lack of
wind is present. The main limit of this technique wasteelgo the
fact that in actual cases the slick dimension ofters admé provide a
sufficient population for evaluating reliable statistidnyway, the
extension of the simulator presented in this paper alldies
generation of a huge set of SAR images, devoted to catargly face
the study of the limits of the technique, in terms of 8lek
geometrical characteristics.
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Chapter 4

Microwave | maging

In several geophysical applications the retrieval of &zamnt
parameters of an observed surface from radar data would key
importance. However, this is often limited by the ladkreliable
mathematical models able to quantitatively support theevatg of
value-added information on the scene under survey.

In this chapter we provide an answer to the questiondraisthe
previous chapter on whether the microwave image refd¢uaanfractal
surface is fractal or not. In particular, the chanasties of images
relevant to a fractal profile are here investigated.

In our study we follow a twofold approach: on one side, we
develop a rigorous analytical formulation for the probssuming a
particular class of small slope profiles; on the othide, we present
an experimental setup able to deal with the general éeséor the
analytical approach, we show that the signal backsedtttfom a
fractal profile modeled as an fBm stochastic procestristly related
to the associated fractional Gaussian noise (fGn)gsowhen a small
slope regime for the observed profile can be assumetiis case we
are able to compute in closed form the structure funcéind the
power density spectrum of the signal. Our results aaired
introducing an fBm smoothed process, which is justifiedHaylbw-
pass filtering introduced by the sensor impulse responséidan

The experimental framework is based on sound direct isode
allowing the synthesis of the profile, the evaluation the
backscattered signal via fractal scattering models lamégtimation of
the power density spectra of interest. Note that thteasonly fully
fractal approach found in the open literature on this subjext
presenting a coherent choice of the considered geomatrit
electromagnetic models. Anyway, the proposed approacbheased
also to analyze the case of heuristic scattering rep@s will be
clarified in the following.
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4.1 Imaging of one-dimensional fractal profiles

Due to the outstanding development of the remote rsgmsstruments
and processing techniques occurred in the last decades, anhmget a
of data relevant to any part of the globe is now beingabla. A new
generation of sensors is providing a great amount of datactiuld
increase the possibility to extract very valuable infdioma As a
matter of fact, the possibility to obtain value addedrimation from
satellite data can be of great relevance for agriailftif, rural and
urban planning [2], disaster monitoring and assessmenifil, so
forth. In particular, as far as geophysical applicati@me under
concern, retrieving from remote sensing data significanarpeters
relevant to an observed surface is of open issue ofigayrtance.

In this section we provide a description of the imaging gssc
that can be used as a support to feature extraction rfadar data.
Among different remote sensors, we focus on the imagieg,ovhich
generate synoptic views of the area under survey thusdmmgvi
punctual as well as distributed (textural) informationtbe remote
sensed area. Texture on remotely sensed images iedrelat
morphological and geological features, land use and alsoci
organization of the observed scene. By employing supervised
techniques, an expert user can distinguish human sigeatwhéch
are well described within the classical geometry, frowatural
features, that conversely are better described by metrisactal
geometry.

Indeed, fractal geometry proved to be the most appropriate
mathematical instrument to describe the self-simyiand irregularity
of natural scenes, by means of few independent paranjéld&.
Among fractal models, the fractional Brownian model nijB
stochastic model is maybe the better choice for tkergion of this
family of surfaces. However, fBm mathematical surfapeesent a
major disadvantage: they are strictly not differdsigda Hence, as we
have seen in Chapter 2, we have to introduce physical satdl to
effectively define the derivative of this class of suefclin this
section, we focus our attention on the (Euclidean) dimensional
problem assuming an fBm geometrical model for the obserefde:
this simplified environment allows the presentation of innovative
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approach, emphasizing the somehow unexpected results utvitho
hampering the mathematical issues. As a matter oftfatextension

to the (Euclidean) two-dimensional case is not straoghard:
isotropy issues on fractal surfaces are to be takeraictount and the
mathematical approach becomes quite involved; the fepsdoward
the extension to the two-dimensional case are predantthe next
section.

The study of the physical phenomena occurring in tineote
sensing of fractal surfaces is, obviously, of key importaiocethe
retrieving of value added information from the imagesaAmratter of
fact, we are interested not only in the estimationsmificant
parameters of the imaged surface, but also in achieving tar bet
understanding of this kind of images avoiding the applinatd
improper image processing techniques. In fact, the radar svege
proposed under the form of a great variety of products, aviferent
degrees and types of elaboration: actually, this can genhe
information content of the original image of naturarses. Hence, the
interest is focused not only on the efficient retrievirighee fractal
parameters, but also to the development of new, infawmat
preserving image processing techniques.

In the open literature the works addressing these suljeets
sparse and not always accurate enough to provide reliabldts.
Most of the available works refer to the pioneer pspeue to
Pentland [7]-[8], who studied the optical imaging of fBmfaces,
assuming a Lambertian scattering behavior. However, tbeeclof
the electromagnetic scattering model used to compute ighe f
backscattered from a random rough surface should be tdéfini
dependent on the geometric model used in describing the esurfac
itself. As we argued in Chapter 2, has been demonstraeththuse
of adequate scattering models strongly improves the amcimathe
evaluation of the signal backscattered from fractalased. Hence in
this work use is made of appropriate fractal geometric and
electromagnetic models: to the best of our knowledgs,ishthe only
work presenting a completely fractal framework for thigoject. In
particular, we present here a twofold approach providing hersale,
an analytical closed form solution to the imaging peabln the case a
small slope regime for the observed profile can benasduand, on
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the other side, a sound model-based, experimental sesipdy the
general case.

In the following sub-section we compare our work withs&rg
ones and provide the fundamentals of the problem.

4.1.1 Pentland model

In Refs. [7] and [8], Pentland copes with the problem efithaging
of fBm surfaces. His approach is based on a linear approgimaf
the image intensity as a function of the partial \¢#ives of the
surface: the underlying hypothesis is that the slopeseobhserved
surface can be assumed to be small. However, it ishp@$s split his
work into two parts: 1) the assumption of a particutaadiation
behavior (i.e., the Lambertian one) for the considewsthse; 2) the
evaluation of the power density spectrum of the image,the
hypothesis of validity of the aforementioned linear appnakion.

With regard to the former point, we note that the comstle
scattering behavior is not always adequate to descrilee
electromagnetic scattering from the considered surflacenstance,
theoretical and experimental results show that atrawave
frequencies the scattering from natural surfaces isnitkdy not
Lambertian-like [9]-[10]. As argued in the previous chaptexs,
arbitrary choice of the scattering radiation diagraegardless of the
considered surface model, is a common misbehavior: nmosteo
works available in literature and dealing with this subjes# some
heuristic function to describe the scattering froniBm surface [11]-
[12]. As a matter of fact, each surface model callsaforappropriate
scattering method and it has been shown in Chapter 2 ithae
assume an fBm model for the observed surface, we tmvese
appropriate fractal-based scattering methods for thd&uation of the
scattering. The evaluation of a quantitative condigstablishing the
possibility to assume the small slope regime of theilprof term of
its fractal parameters with respect to this fractattecing models is a
key future development of this thesis work: we note, by thg, what
this issue is also related to the accurate definitiovaddlity limits for
the scattering models themselves, which is itself @atelipoint as we
have seen in Chapter 2.

th
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With regard Pentland’s evaluation of the power dengigcgum
of the image, some important remarks are in order. Kpeession
given by Pentland for the image intensity can be writte follows:

ix,y)Oa+apx Y+ 34 xy (4.1)

wherep(x,y) andq(x,y) are the partial derivatives of the surface and
ap,1,2 are the coefficients of the Mac Laurin series exjpansfi(x,y)
for small values op(x,y) andq(x,y). The main problem of (4.1) is that
p(x,y) and g(x,y) do not exist anywhere for fractal surfaces. To
circumvent this problem, in his analysis Pentland folymabrks with
the partial derivatives of the surface, stating, in a,rbed, due to the
non-differentiability of the mathematical fBm, he ealers a
sufficiently smoothed approximation of the sensed sarthat allows
the existence of the partial derivatives. Howeverthm following of
his work he keeps working using the formal definition of dénea
l.e. without introducing a smoothed process. In remotesisgn
applications, but, more in general, in all engineeringttens, the
formal use of the smoothed process is not only desirbbke
necessary. As a matter of fact, the features of theesrelevant to
spatial scales much smaller than the wavelength one dmntribute
to the scattering phenomenon: in this sense, thetrefeagnetic
incident field acts as a low-pass filter on the surfdagrthermore,
scales smaller and larger than the resolution oneibotd in different
ways to the formation of the image: however, this ialussue
deserve the maximum attention and is, accordinglyy ttl#irified in
the following.

4.1.2 The small slope analytical model

In this sub-section we provide the details of the develapelytical
model. First of all the fGn process is introduced angehecesults on
its spectrum and structure function are presented. Hbarting from
these results, the proposed imaging model is described.

4.1.2.1Fractional Gaussian noise (fGn)
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In Chapter 2, we presented the fBm two-dimensional psodeshis

section we are interested to one-dimensional profdéier adapting
the variables to meet with the one-dimensional cidmeexpressions
of the structure function and of the power density spectare the
same with respect to the two-dimensional case:

V(r) =<7 (4.2)
S(k= S Kk’ (4.3)

Obviously some of the involved parameters change theiesas
follows:

D=2-H (4.4)
a=1+2H =5-2D (4.5)
§=°¢ 7T 1 (4.6)

cosgrH )l (- H )

We discussed how properly employing Pentland ambroa
requires an expression for the derivative of théase. The fractional
Gaussian noise (fGn) is defined as the derivatioegss of the fBm:
for the particular case dil = 0.5, we obtain the derivative of the
Brownian motion, i.e. a white Gaussian noise [13Je mathematical
fBm is strictly non-differentiable, implying thatisiderivative process
has to be handled with care. The most elementatliyadeo deal with
the fBm lack of derivative is to smooth the origipaocess with an
adequate kernel, discarding the high frequencyceffeesponsible for
the non-differentiability of the fBm. Hence, stagifrom the standard
fBm process(x), we build the random functiag(x):

()= [ A NP(x R d (4.7)
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where ¢ is the test function. In particular, by assungngCy; (5)

with QO R an open set, the expression (4.7) can be seen as a

distribution [14], and the k-th derivatives @ can be rigorously
computed as:

2903 = (-1F | 2X08% (e B d (4.8)

However, for our purposes, an infinitely differexiitie kernel is
not necessary; hence, for the sake of simplicigy,selects > 0 and set
the test function as follows:

1 .
5(x) = = ifx[0,&] (4.9)
0 otherwis

Substituting (4.9) in (4.8) and computing the fostivative of the
process, we obtain:

z'(x;g)z—T AX06'(x N dk=—£‘l]g € Yo( x Xx-3( xe- )% d
) h (4.10)

o being theDirac deltadistribution. Therefore we can easily compute
the derivative as:

z(xe)=er[Axre)- £ ¥ (4.11)

In this way the derivative of the smoothed proaess be seen as
a finite difference, presenting some interestingpprties. Note that in
this case we can easily evaluate the autocorreldtiaction as the
correlation between two increments of the origifaim process,
obtaining a stationary non isotropic Gaussian peedthy = 0 ando
=s’7L Its autocorrelation function can be computedodlews:



80 Chapter 4 Microwave Imaging

R,(1;6) =(Z(x%€) A xrr;£)>=<( gxe)- W (zwr+e)- (z+><r))>
=(Zx+e)A xtT+E)~ t ¥ &) € xT)— @X(z2KT+E)+ (D X z+X))
(4.12)

The four terms in the brackets can be evaluatedgusihe
expression of the original surface autocorrelataitaining:

Il_ ]rq (4.13)
£

If £>> 1, expanding to the second order the first andabketerm in

T

R.(7;€) :% szé“ZHZ[(gJ'l) -2l=

&

2H
+

the square brackets of (4.13), we obtain:
2H-2
R.(r) OS H2H-1)[7| (4.14)

For a stationary isotropic stochastic process thetsire function
can be derived from the autocorrelation functiobtaming for the
case of interest the following expression:

2H
7
-I=- (4.15)
£

2H
T

V,.(1;€) = szgz“lz—(@ﬂ) +2—

&

and in the limit> =1
E

V(7€) = 252[52**—2— H(2H—1)|r|2H_2J (4.16)

Being z'(x;€) a stationary process, we can evaluate its spactru
by employing the Wiener-Kintchine theorem. In partar, we can
express the power spectrumziix; ) as
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2H
@ - ]\ }e‘k’ dr

(4.17)

T

1 H-2 [ r -
S,(ké) =5 de j[[gﬂ) - 21—

2H
+

&

—00

It is very informative to evaluate this spectrumciosed-form.
However, this spectrum does not follow within thase of functions

whose Fourier Transform is known ih*(Q). To evaluate this

spectrum we propose to resort to generalized FRotma@sforms; in
particular, we compute the transform of the sedench of (4.17) as

2H

0

j r

“l€

e dr =-£7" 2r (1+ 2H)singrH )|k1L2H (4.18)

Using basic Fourier transform properties (that @s® valid for
the generalized transforms), we can write the @wsd third term of
(4.17) as follows:

0 r 2H
[l=+1 e*rdr=¢™
£

—00

]2|Ti£|2H e—ikr a = £—2H éikz ]3 |T|2H é‘kr d

(4.19)

By exploiting the result in (4.18), we can evalutte integrals in
(4.19) thus obtaining:

j

—00

2H
514 e dr =-g72" " 2 (1+ 2H)singr H )lkl%H (4.20)
g

Substituting the results in (4.20) and (4.18) ifg. (4.17) and
using the Eulero formula, we get the final resudt, the power density
spectrum of the derivative process of the smoosefhce profile:

S, (k&) =237 (1+ 2 H)singz HY & cos(e )“(1% (4.21)
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In the limit of ke << 277, Eq. (4.21) takes the relevant form:

S, (K = $r+2 Hsingr H)W% (4.22)

From equations (4.21) and (4.22) we can draw sonp®itant
conclusions. First of all, looking to the speceaponent in Eq. (4.22)
it's evident that the fGn can be seen as a fraetdl H (0[-1,0],

which is in agreement with previous observationslendy Voss [15];
anyway, as a matter of fact, this definition, aitgb tempting, is not
an accurate one, becauseHfl][0,1] an associated stochastic process

whose fractal dimension B = 2 —H exists with zero probability. In
fact, we can draw the conclusion that fGn is aimtaty Gaussian
self-affine process, but it is not a fractal one,the sense that we
cannot define a Hausdorff-Besicovitch fractionainension for this
class of processes. Furthermore, looking at EQ1j4.we can note
that the fGn shows a spectral power law behavity asymptotically,
for sufficiently low frequencies. In fact, as so@s the spatial
frequency approaches the valug, the oscillating behavior begins to
dominate, being the first null fd=277¢.

However, though not fractal, the fGn process somelmherits
the fractal parameters of the original fBm procestarting from the
results presented above, we can develop a novejinghanodel and
provide some hints on the retrieving of these patars.

4.1.2.2 The imaging model

Here we present a model for the imaging processgaloith its
application to fractal profiles. According to Pamitl model, the
Imaging procedure can be seen as a block whosé imploe surface
profile, and whose output is the radar intensityage which is
proportional, to the first order, to the derivativethe surface profile.
Hence, in the following a closed form analyticalusion for the small
slope regime is obtained and investigated in detail

First of all we note that an analytical study oflanimaging of
fractal surfaces always requires the introductidnao smoothed
process. In fact, in any engineering matter we htvedeal with
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physical fractals, as dictated by each particupgaiieation. In remote
sensing radar applications two different paramegstablish the scales
of interest for the definition of the physical ftak i.e. of the
considered smoothed process. The first is the wagéh A of the
electromagnetic field used to sense the scene: @emitter of fact,
objects with dimension lower than a fraction okthiavelength don’t
contribute significantly to the generation of thackscattered signal.
In this sense, we have to introduce a first smagtlun the surface,
where thee of interest has to be set equal to this fractibn1o
However, a second parameter has to be taken iouat; i.e. the
sensor resolutiodx: in fact, the observed scene is filtered according
to the sensor impulse response and scales smallethihaasolution
one do not significantly contribute to the formation tbe final
intensity image. This allows us to conveniently empttrg fBm
smoothed process presented in the previous section. loubartif Ax
>> ), as the case for radar remote sensing, we can negédirdt
filtering step of our chain and work directly on thddeling process:

2x09=[ ANFx 9 b (4.29

where theegin (4.7) has been set equal to the sensor resolutibn cel
dimension4x.

Hence, if we assume that the slopes of the obsegrxafile are
adequately small we can expand the SPM expression of the
backscattering coefficient (the expression given iafiér 2, adapted
to the one-dimensional case) into a Mac Laurin semels combining
(4.1) and (4.23) we can obtain:

i(x;Ax) Oa, +a (XA Y (4.24)

wherein, thanks to the results presented in the prewobssection,
we can state thai(x;4x) is the fGn process associated to the imaged
fBm profile. Equation (4.24) states that the image inhetfits
stochastic behavior of the fGn process, i.e. it is Gauasdistributed
with 1 = ap and o = a;sdAx” ™, as can be easily argued combining
previously obtained results with Eq. (4.24). It is inténgsto note that
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the expression in (4.24) allows also the introduction tfve-scale
fractal model, based on two different sets of frap@iameters at
microscopic and macroscopic scale. As a matter of faate p(x;4x)

iIs dependent on the fractal parameters at resolutioke, sthe
constantsa, and a; depend on the fractal parameters of the surface at
scales lower than the resolution one, as previouslicipated. A
block scheme of the presented imaging process is provided. ifh.F

SMOOTIING (v ) o i )

— t! U{\’

T =

a, ay

Figurel Block diagram of the small slope imaging process.

v

However, a combined use of the expression in (4.24) weh th
results regarding the fGn process provides the followettaviors for
the structure functior, and the power density spectrus of the
image intensity:

V(1A% = &V,(1:03 (4.25)

S(kAR= & S( kA X (4.26)

The plots relative to (4.25) and (4.26) are shown in Fign® a
Fig. 3 respectively, where the behavior is compared thigh of the
profile of reference.
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Figure2 Log-Log variogram of the surface (full line) and of dsrivative
(dashed line)H = 0.95;s= 0.01 n¥**™; 4x =5m, a, = 10.

0.30 05 070 100 150 200 3.00

Figure3 Log-Log plot of the spectra of the surface (full linedaof its
derivative (dashed lineH = 0.95;s= 0.01 n*™; Ax=5m, a, =
10.

The result shown in (4.26) is analogous to the one ddutany
Pentland only in the asymptotic limit in which is given by Eqg.
(4.22). In fact, the formal use of the surface derivatiadlews
Pentland working withs = O rigorously, i.e. always in a regime of
validity of the abovementioned asymptotic expressions.

A common misinterpretation of Pentland results is tha fractal
dimension of the image is equal to the fractal dinemsif the imaged
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surface. Looking at (4.25) and (4.26), we can state treistimcorrect
and that, at most (asymptotically), the spectral behawiurld suggest
a fractal dimension of the imad® = Dt — 1, whereD+ is the fractal
dimension relevant to the observed scene. As alrgshtioned, this
would be in agreement with the observation made by Vossoi Hje

fractal dimension of the derivative process of an fBaggesting that
the Hurst parameter, upon differentiation, is decrealsgdone.

Nevertheless, as we already argued above, the pogdilfitiefining a

fractal dimension for such a process is questionable @ndaw state
that the image of a fractal surface is not a fractal.

An important peculiarity of microwave images, and, more
general, of every coherent imaging system, is the $pediect, due
to the constructive and destructive interferences déstwindividual
plane waves in each resolution cell, which also cladmnsa specific
characterization in the fractal case [10]. Anyway, &t tmoment we
focus on the ideal case of an infinite number of loakshis limit the
effects of the speckle are completely discarded. Hewaemoving
this very tight assumption is an important step towardomplete
modeling of the microwave imaging process of fractalijgsf

Some considerations on the retrieval of the frgoéahmeters of
the observed profile from the image are now in orderfabt, this
Image is not a fractal but a relation between thetéigparameters of
the profile and the obtained image does exist. As shov@hapter 2
and 3, the fractal parameters estimation techniquesnidBm are
based on linear regressions on log — log plots of thegram or of
the power density spectrum. This simple technique canndiréetly
used on the image. In particular, it is evident that iluse the general
expressions obtained from (4.25) and (4.26) a linear regressihe
log — log plane is no longer possible. Anyway, in mosesagse can
be made of the asymptotic expressions obtained from (41%) a
(4.22): in this case for the structure function things kedpmaoking
perfectly, but, conversely, for the power density spmeta power-law
behavior can be assumed in the band of interest andrab&l
parameters can be recovered via the standard log — logr line
regression procedure.

However, the interesting thing is that the possibility use the
asymptotic expression of the spectrum comes out to be depende
sensor resolution. In particular, for new generatiogh hiesolution
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sensors also the hypothesis we made at the beginnirgsafetction,

l.e. Ax >> A, could be not verified: this means problems can begin to
rise when we increase sensor resolution. By the wayjate that high
resolution sensors, reducing the range of spatial frequentidse
surface contributing to speckle formation, can determicbaage in
noise statistics on intensity images, as we have se&hapter 1.
Anyway, an exhaustive study of these phenomena is widgiynbe
the scope of this work.

4.1.2.3Thenumerical framework

In the present section a numerical framework, baseckeftactive
direct geometric and electromagnetic models, is useahadyze the
imaging process of a one-dimensional fractal profilaisTanalysis
allows the study of the imaging of a generic profile haiit the need
of assuming any particular hypothesis on its slope. Nate tthis
elaboration chain is widely based on the models and toedepted in
the previous chapter.

The first step is the generation of the fractal fBrofip. This is
achieved using the Weierstrass-Mandelbrot (WM) function :[16]
indeed, under some hypothesis, the WM effectively approxinsates
fBm profile, as we have seen in Chapter 2. FurthermoeeWhl is a
predictable random function and this greatly simpliftes ¢ontrol of
the behavior of the profile, acting on its random paramsetThe
inputs for this first block are the fractal parameterar{dH) of the
profile.

When the profile is synthesized, we evaluate the batiesed
signal via the SPM fractal scattering model. As previousintioned,
the geometrical model used in this section is based oasgwemption
that the observed profile shows the same fractal peamat all the
scales of interest: in particular, at scales greater lawer of the
resolution one. Note that, if this was not the caélse,parametersi
andsused in (4.25) and (4.26) would refer to the fractal parensieif
the profiles at scales greater than the resolution Goaversely, for
the evaluation of the backscattered signal via the SRddel the
fractal parameters to be used are those relevantetentbroscopic
scale, as argued in the previous chapter. The inputs fobltduk are
given in term of sensor resolution, sensor height,-sgerture angle



88 Chapter 4 Microwave Imaging

and, finally, look angle: through these parameters tfievace is able
to evaluate the extension of the scene and the nurhbamples.

The final step is the estimation of the power dengibca of the
original profile and of the computed backscattered signabtopare
them with the analytical results presented in the prevgmions.
Note that the evaluation of these power law spectroisa trivial
issue, because they are subject to extreme leakage ginddriance
problems. Among the techniques used to effectively retribese
spectra, we chose the Capon filtering, which is widespa®d to be
the optimum one (see Ref. [17] for details). Nevedss| the high and
low frequency regions of the estimated spectra cannotvélested
with adequate accuracy. The main results obtained are prdserthe
following sub-section.

4.1.2.4The obtained results

The parameters used in all the simulations presented ifoftbe/ing
are reported in Table I. Note that in all the simulatenVV
polarization has been assumed, and for the used valugbeof
parameters no significant variation in the results lesn observed
changing the polarization. The first elaborationekevant to a case in
which the small slope hypothesis can be widely assumée i@lid.
In fact, looking at the obtained results shown in Figthé, good fit
between the estimated spectra and the theoreticai®agglent. Note
that in all the figures, unless the contrary is nqiliekly stated, the
various plots are in a log — log scale and are superirdgosgmplify
the comparison of the spectral slopes.

In Fig. 5, 6 and 7 simulations in which the small slope hygsish
is no longer rigorously satisfied are instead presentddctna certain
mismatch between the experimental and theoreticaltsebegins to
appear. This result is obtained increasing the roughnebke ahaged
profile, thus increasing its mean slope. However, itjsartant to note
that in the fractal case speaking simply of roughnes®isenough:
also the scale of interest should be specified. Thikeseason why
the validity limits of the small slope hypothesis the SPM scattering
model need to be deeply investigated in a dedicated work.
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Tablel List of the parameters used in the simulations and saamnof results.
Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9
Frequency [GHZz] 1 1 1 1 1 1
Resolution [m] 5 5 5 5 20 1
Sensor height [km] 10 10 10 10 40 2
Semi-aperture angle [°] 10 10 10 10 10 10
Look angle [°] 10 10 10 10 10 10
H 0.95 0.55 0.95 0.55 0.95 0.95
s[m*™ 0.01 0.01 1 1 0.01 0.01
Expected spectral slopg -0.900 | -0.100| -0.90Q -0.100 -0.900 -0.900
Retrieved spectral slopg -0.922 | -0.246| -0.775 -0.239 -0.925 -0.934
Squared distance | 0.0092| 0.0992 0.0082 - - -

Theoretical vs. actual spectra

Log{Abs{Spectrum])

—2.6 —z.5 =24 —LZ =22 =21 =20 w18
Log{Frequency)

Figure4 Theoretical spectra of the surface (long dashed) anldeofiage
(full line) versus the estimated ones (dotted and dashdoip
respectively).
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Obviously, the main interest for applications is in eting the
spectral slope of the surface working on its microwavage, hence
to provide quantitative indicators of the agreement betvtkeoretical
and experimental results the slopes of the obtaineztrgpe estimated
via a simple linear regression algorithm and reported ibleTa
Furthermore, in Table | the square distance betweeaxperimental
points and the fitted curve is provided: this can be seera as
guantitative measure of the degree of linearity of thdereed spectra.
As can easily be noted, as the slope estimate bemigsttworse the
distance begins to increase: this means that the spectgimshio
lose its log — log linear behavior. The interesting thinghet this
seems to be related more to a variation inHbest parametethan to
a variation ins. This is another reason claiming for a deeper
investigation of the validity limits of the small slopgpothesis for the
SPM scattering model.

Theoretical vs. actual spectra
.0 [T T EERRRE=EE T RARR=E=Rm EERRERaRS T

Log{Abs{Spectrum])
|
=y
I
7
|

—2.6 —z.5 =24 —LZ =22 =21 =20 w18
Log{Frequency)

Figure5 Theoretical spectra of the surface (long dashed) anldeofiage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).

In Fig. 8 and 9 we focus on the role of resolution. lket,fao
significant difference can be noted in the goodness of the curves
as the resolution varies, apart from a very littlersening of the
goodness of fit in the 20 meters resolution case. Themaasbat the
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variation in resolution is too small to determine aufalin the small
slope hypothesis assumption. However, taking into aca@sotution
much coarser than the one proposed here (20 m) issahtiment, of
scarce practical interest. Finally, in Fig. 10 we presecdmbination
of Fig. 4, 8 and 9 which clearly shows how a variation enssr
resolution allows an investigation of the profile spdcarad spatial
properties over an increased range of scales, and hdwobéained
plot is consistent to the others. However, we analy#so the case of
a variation in resolution for the worst case scen@tlie 0.55 ands =
1 nP-49, obtaining results quite similar to the one of the &tars
resolution case.

Theoretical vs. actual spectra

Log{aba(Spastrum))

—2.6 —z.5 =24 —LZ =22 =21 =20 w18
Log{Frequency)

Figure6 Theoretical spectra of the surface (long dashed) anldeofimage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).
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Theoretical vs. actual spectra
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Figure?7 Theoretical spectra of the surface (long dashed) anldeofimage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).

Theoretical vs. actual spectra
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Figure8 Theoretical spectra of the surface (long dashed) anldeofimage

(full line) vs. estimated ones (dotted and dash dot dot,
respectively).
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Figure9

Figure 10
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Theoretical vs. actual spectra

—A[TTTTTTTTT [TTTTTTTITT TTTTTTTTTT TTTTTITTTT TTTTTTTTTT [TTTTTTTTT [TTTTITITTT
—z0— —
- _
=30 —
—3.57||H|||\|||\||||\||\\|||\||||\||\||||\l|||\||\|\||\||||\||\||||\||||\
1.8 -1.8 =17 —1E& -1.5 —1.4 -1.3 =12
Log{Freguency)
Theoretical spectra of the surface (long dashed) anldeofimage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).
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Theoretical spectra of the surface (long dashed) anldeofimage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively). This figure is obtained combining Eig8 and 9.
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The key result we can draw from this numerical studyhat
microwave images of fractals profiles are not fradiath if the small
slope regime can be assumed (as we have seen in theugregction)
or not. In fact, in the latter case the spectral bemawaf the
backscattered signal is no longer a power law one.gdery a relation
between the fractal parameters of the profile andtekeure of the
obtained image exists and shall be used in the definitiapmpriate
inversion techniques.

From our analysis of this process we drew two main logians
relevant to the images of fractal profiles, in casamall slope regime
can be assumed:

» they are stationary Gaussian self-affine processg$)di
fractal processes, in the sense that we cannot define a
Hausdorff-Besicovitch fractional dimension for this class
of signals;

» asymptotically, for sufficiently low frequencies, their
spectrum has a power law behavior.

Finally, the proposed approach leads to the conclusianttiea
radar image of a fractal profile cannot be assumed foabtal in any
case. However, a relation between the fractal pasmedf the
original profile and the obtained image exists and in sk a
possible expression of this relation has been provided.

4.2 The two-dimensional problem: preliminary
results

In this section the first results obtained for theo4simensional
imaging problem are presented. We show how a closed form
expression for the spectrum of the two-dimensional incdgefractal
surface can be obtained. This first results are ndiy ftwo-
dimensional ones, in fact the spectrum is computed tmrlyone-
dimensional cuts in range and azimuth directions. Furibez, the
case of the range cut is not discussed here in detaitpdbe fact that

it leads to an expression perfectly equal to that obdtiain the one-
dimensional case.
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First of all we need to investigate potential differenicethe role
of the two partial derivatives of the surface in theteshof the
imaging process. Let us try to develop the SPM scattéuimgtion in
McLaurin series to the first order. We have to find tiedation
between the local incidence angle and the partial desbf the
surface. It is easy to verify that the required refais:

_ Ppsing, + cosh,

cosd
\/pz +o°+1

(4.27)

whered is the local incidence anglé; is the look angle of the sensor
and p and g are the partial derivatives of the surface in range a
azimuth direction, respectively. Accordingly,

. sing,— pcod, §+a?
sind =+1- co§z9=‘/( jpiquj d (4.28)

Substituting (4.27) and (4.28) into the expression of the RCS
computed with the SPM and discarding the polarizationofabiq
(which is practically constant for our purposes) wewbt

(cos, + pserd), } \'( (se,— @mod, I+ &)
p2+q2+1 p2+ q2+1

Hnm=%(
(4.29)

Expanding EqQ. (4.29) in a McLaurin series to thstforder for
small values op andq we obtain an important result. In fact, it comes
out that at the first order the image is relatetkdrly only to the
partial derivative in the range directipnThis is due to the particular
acquisition geometry of the SAR sensor, which tje@resents a
preference range direction. This allows us to foaumy on the
expression of the range derivative of the surface.

To obtain analytical solutions for the two-dimemsib problem
we have to deal with the following regularized vensof the surface:
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Z,(x =[] A% NPCx x v 9 dxd (4.30)

with

1 :
¢(X, y) — 5 if (X1 y)D [O,E]X[O,ﬂ] (431)

0 otherwi

with >0, 7>0.
The partial derivative in the range direction candomputed as
follows:

%:‘H 2(X, Y)O( %= X)-3( ¥ e- RN](en)™ dk dy=
r (4.32)
=(en)* [ [2x+e y)= L x Y] dY

y=n

with simple mathematical manipulations we obtaie tiellowing
expression for the auto-correlation function of #zémuth cuts of the
partial derivative process:

R (7,:&.1)= 525‘2“r5+52r —‘ry‘zH} (4.33)

wherer, is a distance in the range direction only.

For the same reasons exposed in the previous seet® can
compute the spectra as the FT of the auto-comelatnote that
generalized FTs have to be introduced), obtaining:

2

r(-H)

le)

W, (k:e) = $e2 + 2\@’6*“] I (1+ 2H )singrH )

(4.34)
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Accordingly, the power density spectrum of an azhraut of the
image will be, using the previously introduced fatism:

2(5*HJ\/;AXKE+HJ\K,\_G+HJ ‘L (15/2

F(-H)

W (kA% = § éA % +2‘ky‘_(%+er(1+ 2H)singrH )

(4.35)

Conversely, as we mentioned before, as for theerangs their
behavior is equal to the case of one-dimensioraller

A numerical framework for the study of the two-dms@nal case
has been developed, by simple extension from tleedanensional
case. The results are analogous to those obtaioedh& one-
dimensional case and a good agreement is foundebatihe actual
and the theoretical power density spectrum of lpatigge and azimuth
cuts, as shown in Fig. 11 and 12, respectively.

Thearetical vs real spectra RANGE
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Figure 11 Theoretical spectra of the surface (long dashed) anldeofiage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).
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Theoretical vs real spectra AZIMUTH
T T T
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Figure 12 Theoretical spectra of the surface (long dashed) anldeofimage
(full line) vs. estimated ones (dotted and dash dot dot,
respectively).

Further developments of the proposed approach dhbel
focused on the fully two-dimensional problem andyenin general, to
the introduction in the model of geometrical distors and speckle
noise.
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Summary and conclusions

In this thesis the extraction of value-added information from SAR
images has been discussed. In particular, the need for adequate models
accounting for the transmission of information from the observed
surface to its radar image has been highlighted.

The original contributions presented in this work range from the
development of SAR simulation tools to the analysis of actual high
resolution data, passing through the whole modeling of the imaging
process of fractal profiles.

Particularly, in Chapter 1 a preliminary analysis of the new high
resolution TerraSAR-X data is presented, showing the need for new
models for the characterization of high resolution SAR images.

As for the simulation tools, a whole simulation and analysis chain
has been developed and tested. The main feature of the presented
chain is the possibility to provide an effective test bed for the
development of automatic analysis techniques. A novel change
detection technique based on fractal concepts is also presented and
tested. Finally, new simulation facilities for the case of ocean scenes
covered with oil slicks have been developed, allowing the use of
fractal geometry for the synthesis and subsequent discrimination of
natural and man-made slicks on the sea surface.

Finally, the main original contribution of this thesis work is
detailed in Chapter 4, where the characteristics of images relevant to a
fractal profile are investigated.

In our study we follow a twofold approach: on one side, we
develop a rigorous analytical formulation for the problem assuming a
particular class of small slope profiles; on the other side, we present
an experimental setup able to deal with the more general case. As for
the analytical approach, we show that the signal backscattered from a
fractal profile modeled as an fBm stochastic process is strictly related
to the associated fractional Gaussian noise (fGn) process when a small
slope regime for the observed profile holds: in this case we are able to
compute in closed form the structure function and the spectrum of the
signal. Our results are obtained introducing an fBm smoothed process,
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which is justified by the low-pass filtering introduced by the sensor
impulse response function.

The experimental framework is based on sound direct models
allowing the synthesis of the profile, the evaluation of the
backscattered signal via fractal scattering models and the estimation of
the power density spectra of interest. Note that this is the only fully
fractal approach found in the open literature on this subject, i.e. with a
coherent choice of the geometric and electromagnetic models.

This twofold approach leads to the conclusion that the radar
image of a fractal profile cannot be assumed to be fractal in any case.
However, a relation between the fractal parameters of the original
profile and the obtained image exists. Thus, further developments of
the models provided in this thesis work are of key importance for the
progress of future information extraction techniques.



