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Chapter 1

Introduction

1.1 Introduction to Image Segmentation

In the image processing domain, segmentation is the operation that allows one

to partition an image into a set of different regions, each one homogeneous

with respect to some properties like intensity, color, texture, shape, etc. It is a

low level task that proved to be useful in a wide range of high-level processing

and applications in such diverse fields as remote-sensing [1, 2], medical imag-

ing [3, 4], video coding [5, 6], and industrial automation [7, 8], just to name

a few. More recently, image segmentation has been often used as a basic step

in many techniques related to the analysis of image contents, as it happens

in the framework of Content Based Image Retrieval (CBIR) [9] for applica-

tions like multimedia digital libraries or digital image databases. Given the

wide-ranging scope of image segmentation, it is easily understood that such a

problem can be addressed with a wide variety of approaches, typically leading

to application-specific solutions that can also make sense at different levels of

abstraction.

From its very beginning, dating back to the early 70’s, research on image

quantization has been characterized by a very large spectrum of approaches

and solutions, which can be loosely grouped in three main categories [10]:

clustering based methods, where pixels of the image are grouped together ac-

cording to some aggregative or divisive criterion involving only their values

in the intensity/color space (e.g. histogram based methods); region growing
methods, where pixels are gradually aggregated starting form properly selected

seeds by means of a suitable “distance” metric; and edge detection methods,

where image regions are identified starting from their contour, that is, by iden-

1



2 Introduction

tifying points where significant changes in the image properties, e.g. strong

variations in pixel intensities, take place.

In all these early methods the segmentation process was deterministic, re-

lying only on the observed data, without any assumption on the nature of the

source and any use of prior knowledge. This turned soon out to be a strong

limitation in many real-life applications, and from this point on, barring trivial

situations in which such a simplistic approach could suffice, the model based
approach became the dominant paradigm for image segmentation. With this

approach, the whole prior knowledge about the data is used to build a mathe-

matical model of the image, which in turn defines the rules for the aggregation

of image elements.

Currently, two main model-based frameworks dominate the research field.

On one side, we find the variational methods [11], which rely on the definition

of an energy functional depending on the data and their partition: minimiza-

tion of this energy over the possible partitions, typically performed using vari-

ational mathematical methods such as partial differential equations (PDEs),

provides the desired segmentation map. A notable example is represented by

the active contour [12] techniques (a special case of the well-known level set

methods [13]), where the main idea is to evolve contour curves towards their

lowest energy configuration, fitting to the actual boundaries among different

image objects. On the other side we have the bayesian framework and the

Markov Random Field (MRF) models [14, 15], which gained a large popularity

because of their effectiveness and flexibility in defining “local” dependencies

among adjacent pixels, thus encompassing prior knowledge in the segmenta-

tion process with a reasonable complexity. MRFs represent the basis for a

consistent part of this work of thesis, and will be discussed in details in the

following sections. Needless to say, other approaches exist which do not fit in

the former frameworks, like the graph based methods [16] relying on a graph-

theoretic formulation of the concept of “grouping”. Their discussion, however,

goes beyond the scope of this thesis.

In this work, we focus on probabilistic image models where images are

supposed to be generated according to some probability law, and the final seg-

mentation map is obtained by means of a statistical inference between the

model and the image itself. This choice arises a number of complex issues,

and in particular: the formulation of a suitable image model; the definition

of accurate optimization procedures; the development of limited-complexity

algorithms. The latter point, in particular, should not be understated, since a

trade-off exist between the accuracy of image description and the efficiency
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(a) (b)

Figure 1.1: Example of land cover classification from a low-resolution

(20 m) remote sensing image: regions of interest highlighted in the

map (b) are homogeneous in terms of spectral properties, as can be

seen on the source (a).

of the segmentation process, and the actual success of a segmentation tech-

nique might strongly depend on its overall complexity. All these topics will

be dealt with in this thesis with reference to a variety of different applications

and domains. In particular, we will follow an ideal path that goes from the

problem of color based segmentation, based on some form of homogeneity in

the color/spectral properties of the image, to the more complex task of texture
based segmentation, where the aim is to recognize complex structures in the

image which are typically non homogeneous in terms of spectral properties.

1.2 From Color to Texture

As said above, we will first consider the segmentation based only on the spec-

tral features of the image, meaning that the only processed data will be the

spectral responses of image pixels, like the red, green and blue bands for color

images. More in general, a source image can be compounded by an arbitrary

number of spectral bands, as happens in remote sensing where up to a few

hundreds of bands can be made available by capture sensors (multispectral to

hyperspectral images).

As a matter of facts, classification of remotely sensed images is one of the
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(a) (b)

Figure 1.2: Samples of vegetation area (a) and urban area from a high-

resolution (1 m) satellite image.

most common applications strictly related to color based segmentation, which

is particularly useful in the field of Earth observation (resource monitoring,

disaster prevention and risk management, etc.). In Fig. 1.1, an example using

a low-resolution (20 m) SPOT multispectral image of Lannion Bay, France, is

reported: one of the three spectral bands available is depicted in (a), while a

possible classification map is shown in (b), where each color corresponds to

a region of interest with a precise physical meaning (a ground-truth of 8 dif-

ferent land covers is also available with the data). For this kind of data, it is

quite evident that each land cover class is characterized by high spectral homo-

geneity, to the point that, for this particular domain, a segmentation technique

relying only on spectral properties can functionally represent a classification

method by itself.

Still in the very same domain of remote sensing, let us now consider on

a different kind of data, such as the high-resolution (1 m) images shown in

Fig. 1.2, provided by a new generation sensor of the Ikonos satellite. Here,

unless we focus on elementary objects (isolated buildings, roads, trees, etc.),
land covers of actual interest for classification, such as vegetation (a) or urban
areas (b), are by no means homogeneous in terms of spectral properties, and

more complex features must be used to correctly single them out in the context

of a complex image. As a matter of fact, the images of Fig. 1.2 are both charac-
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Fine scale Coarse scale

Figure 1.3: From color to texture: fine-to-coarse hierarchical inspec-

tion of a textured image.

terized by a marked textural nature: in the case of vegetation, the image can be

regarded as a quasi-random composition of dark green and light green patches,

while a more structured pattern of buildings, green spots and roads exist in the

urban area. Therefore, a segmentation technique that can recognize textured

regions as a whole, in spite of their non-homogeneous spectral properties, be-

comes a very important tool in view of a subsequent classification of this kind

of images.

Anyway, it should be clear that textural and spectral information are deeply

intertwined, and telling them apart depends on the point of view or the scale.

To better understand this point, let us take a look at the image in Fig. 1.3:

a “natural” segmentation of the first image on the left will reasonably involve

only color information, since the blue, black and red regions represent the only

significant entities. Zooming out from this area (second image) a pattern of

color patches emerges, that a human observer quickly attributes to a single tex-

tural entity because of the intensive spatial interaction among the elementary

color patches. Only moving to coarser scales the spectral information starts

to become less relevant, since the same colors are present in different textures

which are identified only by means of their spatial and contextual characteris-

tics. The last image, finally, can be regarded again as a unique macro-texture.

Two main considerations arise from this example. First, textures must be

looked for and identified at multiple scales of observations, since the same

area, depending on the scale, can be seen as a single homogeneous region

or a component of a larger and more complex texture. This motivates our

use of a hierarchical approach, to be described in the following. Second, the

accurate detection of spectrally homogeneous areas remains an important step

towards an effective texture segmentation, since the finest-scale interactions

among uniform areas are the basis for texture detection.
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For these reasons, in this work we devote attention both to color-based and

texture-based segmentation, treating these two topics independently so as to

provide a deeper insight in the context of the respective frameworks and to

avoid the use of too specific solutions.

1.2.1 Hierarchical MRF based Image Segmentation

Markov Random Field (MRF) models in computer vision have been first for-

malized by Besag [17], and have become popular with the seminal paper of

S.Geman and D.Geman on image restoration [15]. The field has grown up

rapidly in recent years addressing a variety of low-level1 image tasks, such as

image compression, restoration, segmentation, etc.

The use of MRF for image modeling is related to the fundamental assump-

tion that each single pixel depends statistically on the rest of the image only

through a selected set of neighbors. For image segmentation, considering the

aforementioned bayesian framework, all the a priori knowledge available on

the image can be transferred onto the model, in the general case, by defining

the joint probability p(x, y) = p(y|x)p(x) where y represents the data and x
is the unknown segmentation map. Thanks to the Bayes’ rule, this can be done

by defining separately a conditional data likelihood model p(y|x) and a prior
model p(x), where the latter can be defined, using MRFs, as the sum of rel-

atively simple local contributions in the form of suitable potential functions.

Segmentation is finally performed by selecting the map according to some

useful statistical criterion: for example, a very popular choice is the Maximum
A Posteriori (MAP) criterion, aimed at maximizing the posterior probability

p(x|y) over x.

The definition of a suitable MRF model through its potentials is all but a

simple task, and typically results from a trade-off between description accu-

racy and mathematical/numerical tractability. In particular, if the potentials,

as well as the likelihood model, are defined in a parametric form, the result-

ing optimization procedure will have an iterative nature, alternating between

parameter estimation and the minimization of a cost function (e.g. the MAP

estimation). In this case, the more sophisticated is the model (with many free

parameters), the heavier is the computational load of the resulting segmenta-

tion algorithm, including parameter estimation. As a matter of fact, computa-

tional complexity is the major weakness of MRF based techniques, so much

so that a substantial part of the research in this field has been devoted to the

1Low-level is a traditional terminology for preliminary tasks to image understanding.
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study of modeling strategies which provide reliable segmentations with limited

computational effort.

In this thesis we focus on a particular class of hierarchical MRF models,

the tree-structured Markov random fields (TS-MRF) [18], relying on the ob-

servation that images often present a hierarchical structure, namely, an image

can be viewed as a collection of regions at multiple scales of observation, hi-

erarchically related to each other by means of a tree structure. The image is

therefore regarded as a tree of regions, where each node represents a portion

of the image (with the root corresponding to the whole image) and the chil-

dren nodes are associated with the different areas of a partition of the given

region. TS-MRF models aim at describing such a structured image by means

of a corresponding tree of MRFs, each one adapted to a particular region of

the image, and each one corresponding to a node in a tree of models, with all

model parameters defined locally to that node.

Such models are defined recursively and, as such, allow for a recursive op-

timization which reduces the K-ary segmentation task to a sequence of much

simpler local segmentations. Each temporary region will be then associated

with a node of the tree, while its segmentation corresponds to a node split.

The global image segmentation map is therefore obtained as a result of the

component segmentations and corresponds to the regions attached to terminal

nodes.

Innovation

Segmentation based on the TS-MRF model has proven very successful in the

supervised case [1], when the number of classes of interest and their synthetic

parameters are known a priori. In the unsupervised case [18] results are also

good, especially if compared with those of unstructured techniques, but some

critical issues remain to be addressed. In fact, lacking any prior information,

one is forced to estimate, by recursive optimization at each node, the very

same tree structure underlying the data. If the optimization is inaccurate at

some nodes, the whole tree structure might deviate from the most suitable

one, with various undesirable effects, like the fusion of different classes or the

oversplitting of others.

In this work we propose an improved version of the TS-MRF unsuper-

vised segmentation algorithm that addresses the major problems briefly out-

lined above. The main improvements come from the use of a Mean-Shift based

clustering. As a matter of fact, the Mean-Shift procedure [19] was already used

in a preliminary stage of research to dynamically detect the number of modes
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at each step of the tree growing procedure, and hence the number of children

for each node of the tree, implicitly allowing the use of generic tree structure

by removing the binary constraint. Here, however, its use is carried further, and

besides finding the dominant modes for each class, it replaces the Generalized
Lloyd Algorithm (GLA) [20] as the initial clustering technique, providing a

much more reliable starting point for the subsequent MRF-based segmenta-

tion, and a much easier and stable detection of the correct tree-structure for

the data. This is obtained through some significant modification of the Mean-

Shift clustering itself, which now makes use of a variable-bandwidth strategy

based on the k-Nearest Neighbors (k-NN) technique, and is implemented with

a speed-up strategy that cuts significantly the computational complexity, oth-

erwise intolerable for such applications.

1.2.2 Hierarchical Models for Texture Segmentation

When dealing with images with a significant textural content, spatial interac-

tions among image elements usually cover long ranges, asking for complex

high order modeling. Such a task is especially demanding in the unsupervised

case since no prior information is given and the process is completely blind.

It is widely recognized that a visual texture, which humans can easily per-

ceive, is very difficult to spot automatically. The main problem lies in tex-

ture definition itself which is still quite debated [21, 22] without any general

agreement. As a matter of fact, the definition of what constitutes a texture

depends too often on the intended application, or on different perceptual mo-

tivations, leading frequently to a number of constraints that fit very well some

specific class of images but are meaningless for other more general applica-

tions. Therefore, in this work we escape the hardship of giving yet another

definition, focusing instead on two quite objective and agreed-upon catego-

rizations for “elementary” textures, that is, structured vs. non-structured, and

micro- vs. macro-textures. The former classification arises from the nature

(deterministic or stochastic, respectively) of a possible model for texture gen-

eration. The latter refers to the spatial correlation scale of the texture, which

spans a continuous range whose extremes are micro- and macro-textures. In

any case, natural textures are rarely so homogeneous to be ascribed precisely

to one category or another, and it often happens that a single texture can be

regarded in turn as the composition of several subtextures, in which cases we

will generally speak of “complex” textures.

In current literature, texture segmentation is mostly regarded as the com-

position of two different (although tightly related) problems, the choice of a
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suitable representation of textures, in order to establish what is to be identified,

and the definition of a framework and strategy for the actual segmentation.

Texture representation, as noted before, can be addressed using many dif-

ferent approaches, the most well-known being the use of statistical, geometri-

cal, or transform-domain features and the use of suitable image models. Co-

occurrence matrices [23, 24], introduced in the pioneering work of Haralick

[24], are a classical example of statistical features. Such matrices account for

co-occurring colors in pairs of image sites parameterized by their distance and

orientation, and they provide a good discrimination power, with acceptable

complexity, if some prior knowledge is available about the directionality, spa-

tial interaction scale and color content of the textures involved. A more com-

plex feature extraction approach can take into account geometrical features,

like the fractal dimension used in [25, 26]. On the up side, fractal dimension

is relatively insensitive to image scaling and shows a strong correlation with

human judgment of surface roughness. Unfortunately, they provide limited

texture discriminatory information, and hence are not very effective for texture

analysis. At present, most of the literature about texture representation focuses

on transform-domain features [27, 28], with Gabor [23, 29, 30] and wavelet

[31, 32] filters being by far the most popular. Indeed, Gabor filters exhibit

excellent space/frequency resolution [30] as well as good orientation and fre-

quency selectivity. Their main drawback is the excessive computational load

due to the large number of filter parameters to select, from spatial scale, to car-

rier frequency and orientation. Wavelet-based methods present a much smaller

complexity which, together with their many appealing properties, like the in-

herent multi-resolution and the high flexibility, have merited them a great deal

of attention [27, 31, 32]. However the adaptivity of the filtering w.r.t. the appli-

cation domain is still an open issue and this somehow limits the applicability

of wavelet methods in unsupervised contexts. A different, and equally popu-

lar, approach to texture representation is based on the use of a suitable texture

model [33, 34, 35, 36, 37]. Markov Random Fields (MRF) models, given their

success on non-textured images [1, 38] are natural candidates, but due to their

locality they usually fail in capturing long range interactions, occurring very

intensively in images with structured, near-regular and/or macroscopic textures

[33, 36]. For this reason, multi-resolution Hierarchical MRFs [39, 36] or two-

dimensional causal autoregressive models [35, 37] have been proposed, which

allow to model long-range dependencies at the price of a generally higher com-

putational or modeling complexity.

Turning to the actual segmentation methods, it is reasonable to refer to
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the classical image segmentation literature, and classify the many proposals

as edge-based or region-based techniques. For the first category, some in-

teresting variational techniques have been proposed recently [40, 41, 42, 43],

where boundaries among textures are retrieved using curve evolution methods

driven by a suitable energy minimization criterion. Major drawbacks of these

methods are the sensitivity to initial conditions and, in particular for textures,

the difficulty to correctly locate boundaries of structured and macro-textured

areas. In the region-based framework, besides the well known optimization

procedures associated to MRF-based modeling like in [39, 36], usually heavy

in terms of computational complexity, some region growing techniques have

been recently proposed [44], based on the split-and-merge paradigm, where

the image is first decomposed by means of spectral and spatial clustering and

then the resulting elementary regions are used as seeds for a region growing

process. Finally, graph-cuts methods have been applied over a suitably chosen

textural feature space [16, 45], where no specific modification is proposed in

terms of optimization procedure to deal with textures, especially in the struc-

tured and macro-textured case.

Innovation

The solution presented here, relying on a model-based texture representation,

starts from two main observations. First, a pixel-level texture description, no

matter which model is used, is very limited when the object image contains

macro textural features, i.e. large textons [46]. The use of multiple scales

[47, 28] is certainly a first step to mitigate this problem, but an additional gain

can be achieved if one moves to a region-level description, where textons can

be handled as atomic components. Second, in unsupervised segmentation the

cluster validation is very often an ill-posed problem and the only reasonable

solution is a hierarchical segmentation [47, 29, 48] (sequence of nested seg-

mentations) where the number of texture segments is not explicitly singled

out.

As a consequence, the proposed Texture Fragmentation and Reconstruc-
tion (TFR) algorithm follows the split-and-merge paradigm: the first (split)

step provides the “elementary” regions of the image, that is, the basic compo-

nents of all the different textures present in the scene, while the subsequent

(merge) step reconstructs the textural content in a hierarchical, multi-scale

fashion. As already recalled, segmentation and modeling are deeply dependent

on one another, and in fact the proposed TFR algorithm is based in turn on a

hierarchical region-level description of the image, where inter-region interac-
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tions are modeled by means of a set of Markov chains, referring to different

spatial orientations. Based on such spatial interactions, elementary regions are

also recursively coupled, giving rise to a hierarchy of nested image models,

which accounts for the desired multi-scale property and leads naturally to a

hierarchical texture segmentation algorithm.





Chapter 2

Tree Structured Markov
Random Fields for
Segmentation

In this chapter we provide the necessary background about MRFs in general,
describing the most important theoretical results, as well as one of the most
successful practical models, namely the Potts model in its generalized formu-
lation. Then, the MRF-based approach to segmentation is considered, and the
most relevant related problems are analyzed in detail. In the second part of
the chapter, theoretical and practical achievements concerning the Tree Struc-

tured Markov Random Field (TS-MRF) class of models are discussed, and the
related properties are analyzed in depth, such as the flexibility of the definition,
the recursive nature of the model and the corresponding recursive optimiza-
tion procedures, the robustness of the TS-MRF methods. Then the focus goes
on unsupervised algorithms derived from TS-MRFs, with the analysis of their
critical points.

2.1 Markov Random Field based Image Modeling

In the following sections, we concentrate the attention on the use of MRFs for

image segmentation, and provide some details on this application, from the

general statistical framework to the specific modeling strategy.

13
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2.1.1 Using MRFs for Segmentation

The Bayesian Approach

In the statistical framework, the segmentation problem is approached by choos-

ing an ad hoc probabilistic model, to fit the data and the unknown segmentation

map. In the basic formulation1, image data are represented by a continuous

vectorial 2-D field y = {ys : s ∈ S}, with y ∈ RB , where s is a site of

the lattice S and B is the number of image channels. The data are then as-

sumed to be the realization of a random field Y , namely the observation field,

whose probability distribution is p(y)2 Likewise, the unknown segmentation

map x = {xs : s ∈ S} ∈ Ω = ΛS , where Λ = {0, 1, 2, . . . , K − 1} is the

label set and K is the number of classes, is the realization of a discrete 2-d

random field X , the label field, with distribution p(x).
Once the probabilistic model is defined, solving the segmentation prob-

lem relies on finding a proper estimate of the map x, say x̂. In the bayesian
decision theory (see [49] for further details), an estimator is typically derived

from the definition of a cost function R(x, x′), that quantifies the errors made

by estimating the “real” solution x with x′, and the minimization of the corre-

sponding Bayes’ risk, defined as the mean of the cost function over x, leading

to

x̂ = arg min
x′∈Ω

∫
x∈Ω

R(x, x′)p(x|y)dx

where, thanks to the Bayes’ formula we can explicit the a posteriori distribu-

tion p(x|y) as:

p(x|y) =
p(x, y)
p(y)

=
p(x)p(y|x)

p(y)
.

A very popular estimator, in particular in the image processing domain,

is the so called Maximum a Posteriori (MAP) estimator, that makes use of a

very simple cost function having value 0 if no errors occurr and 1 otherwise,

irrespective of the total number of errors:

R(x, x′) = 1−Δx′(x),
1In this context data are considered as raw, without any processing or transformation, and

the segmentation is similarly represented as 2-D map although other points of view could be

assumed (e.g., contour set).
2Where unambiguous, we will indicate the probability law associated with X simply as

p(x), to be meant as either a density or a distribution function depending on the case.
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where Δ is the Dirac function in x′. The corresponding estimator hence takes

the following form [50]:

x̂MAP = arg min
x

p(x|y) = arg min
x

p(x)p(y|x), (2.1)

in which the term p(y) is neglected, since the observation occurrs with proba-

bility equal to 1. Such estimator gives, for a given observation y, the modes of

the posterior distribution, that is, the most likely segmentation maps x given y.

MRF-based Image Modeling

In the described context, image modeling completely relies on the specification

of the two terms in RHS of Eq. 2.1: the first one, p(x), is called prior model,
and is useful to encompass any prior knowledge into the segmentation process,

while the second one, namely the likelihood term p(y|x), is responsible to take

into account data similarity with respect to the segmentation map.

For the latter, a classical choice is to consider it to be spatially indepen-

dent, meaning that each site is independent from each other and with a local

conditional density whose parameters are class-dependent:

p(y|x) =
∏
s∈S

p(ys|xs). (2.2)

Such densities are often modeled using Gaussians, that is:

p(ys|xs = k) =
1

(2π)B/2|Σk|1/2
exp[−1

2
(ys − μk)T Σ−1

k (ys − μk)], (2.3)

where μk and Σk are the mean vector and the covariance matrix of class k
respectively.

When no assumption is made on the prior model, that is, when p(x) is

modeled with a uniform distribution, the estimator of Eq. 2.1 becomes the

well known Maximum Likelihood estimator, for which, under the mentioned

hypotesis, optimization can be pursued separately for each xs, considerably

reducing the computational burden.

However, in presence of noisy data, ML segmentation often proves unsat-

isfactory, having neglected any helpful contextual information, like the spatial

correlation. To obtain acceptable results, one cannot rely solely on the ob-

served data, but must take advantage of all available prior information about

the image or class of images under analysis.
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The Markov random field (MRF) modelling [14, 15, 51, 52] is a relatively

simple, yet effective, tool to encompass prior knowledge in the segmentation

process. When image segmentation is formulated as a Bayesian estimation

problem, all prior information available on the image to be segmented must

be contained, as already said, in the probability distribution of its segmenta-

tion map p(x). By modelling the segmentation map as a MRF, i.e., assuming

that each given pixel Xs depends statistically on the rest of the image only

through a selected group of neighbors Xη(s), one simplifies the difficult prob-

lem of assigning a prior: one needs only to specify the local characteristics

of the image p(xs|xη(s)). What is more important, local dependencies can be

conveniently expressed through the definition of suitable potential functions in

a Gibbs distribution, as we will see in the following of this chapter.

2.1.2 Basic Elements and Definitions

Generally speaking, the Markov Random Field represents a probabilistic

model for a set of variables that interact on a lattice structure. The probability

distribution for a single variable at a particular site depends on the configura-

tion of a predefined neighborhood surrounding that site, and given such con-

figuration it is independent of the rest of the process. This effectively defines

the Markov property of the process: the process is Markov not in the causal or

even the bilateral sense, but with respect to this particular neighborhood struc-

ture. Let us proceed now to give the needed definitions and basic elements of

the MRF theory. To do so, let us consider a generic lattice S ≡ {s1, . . . , sN}
of finite dimension N .

Definition 2.1.1 (Neighborhood System) A neighborhood system η on S is
defined as a collection of subsets ηs of S,

η ≡ {ηs : s ∈ S, η∫ ⊂ η}

where for each ηs, neighborhood of site s, holds

• s does not belong to ηs;

• r ∈ ηs =⇒ s ∈ ηr,∀s ∈ S.

In other words a neighborhood system is the collection of all the local

neighborhoods.

The most commonly used neighborhood systems are referred to as η1 and

η2, where η1 = {η1
s} is such that for each site, except those on the border, η1

s
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Sk set of sites with label k

Figure 2.1: Neighborhood system ηm = {ηm
s }.

is the set of the 4 closest sites, while η2 takes the 8 closest sites, and so on, as

depicted in Fig. 2.1. ηm is said neighborhood of order m.

Definition 2.1.2 (Clique) A subset c ⊆ S is a clique with respect to η if one
of the following conditions is satisfied:

• c is a single site;

• every pair (r, s) of distinct sites in c are neighbors, that is:

r 
= s =⇒ r ∈ ηs

C = C(S, η) denotes the set of cliques with respect to S and η.

In Figures 2.2 and 2.3 all possible cliques corresponding to systems η1 and

η2 are shown.

Definition 2.1.3 (Random Field) A random field (RF) defined on a lattice S
is a set of random variables X = {Xs}, ∀s ∈ S.

Notice that, said Ω = ΛN the space of the realizations x of a random field

X , then
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Figure 2.2: Cliques (right) for the neighborhood system η1 (left).

Figure 2.3: Cliques (right) for the neighborhood system η2 (left).
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{X = x} ⇐⇒ {X1 = x1, . . . , XN = xN} ∀x ∈ Ω

where Λ is the space of a single variable xs, also referred as labelling space.

Definition 2.1.4 (Markov Random Field) A random field X defined on a lat-
tice S is a MRF with respect to a neighborhood system η if [53, 54]

1. p(x) > 0 ∀x ∈ Ω;

2. p(xs|xr, r ∈ S, r 
= s) = p(xs|xr, r ∈ ηs),

for every s ∈ S and x ∈ Ω.

The functions on the right-hand side of 2. are called the local characteris-
tics of the MRF and it turns out that the (joint) probability distribution p(x) of

any process satisfying (1) is uniquely determined by these conditional proba-

bilities [17]. It can be shown that probability distribution of a MRF can always

be written as a Gibbs distribution [17, 55], defined below.

Definition 2.1.5 (Gibbs Distribution/Gibbs Random Field) A Gibbs distri-

bution relative to a pair {S, η} is a probability measure π on Ω with the fol-
lowing representation [15]:

π(x)
�
= p(X = x) =

1
Z

exp[−U(x)
T

] (2.4)

where Z and T are constants and U , called the energy function, has the form

U(x)
�
=
∑
c∈C

Vc(x).

Recall that C denotes the set of cliques for η. Each Vc is a function on Ω
with the property that Vc(x) depends only on those coordinates xs of x for
which s ∈ c. The family {Vc, c ∈ C} is set of potentials of the field. Z is the
normalizing constant:

Z
�
=
∑
x∈Ω

exp[−U(x)
T

]

and is called partition function. Finally, T is called temperature for historical
reasons.
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The Vc functions represent contributions to the total energy from external

fields (singleton cliques), pair interaction (doubletons cliques), and so forth.

The equivalence between Markov and Gibbs Random Field is provided by the

following main theorem [17, 55]:

Theorem 2.1.1 (Hammersley and Clifford. MRF/GRF equivalence) Let η
be a neighborhood system. Then X is a MRF with respect to η if and only
if π(x) = Pr(X = x) is a Gibbs distribution with respect to η.

This equivalence provides a simple, practical way of specifying MRFs,

namely by specifying the potentials Vc, which is clearly an easy task if com-

pared with the direct specification of local characteristics.

2.1.3 The Generalized Potts Model

The Generalized Potts Model [56] represents a specific MRF modeling strat-

egy that takes advantage of the simplifications coming from the Hammersly-

Clifford theorem introduced in the last section. Potentials are here specified by

means of a simple parametric form, as it will be clear in the following.

The core of such modeling strategy has to be searched in the well known

Ising model [57], a very classical tool in literature that originates from the sta-

tistical mechanic theory of phase transitions. His main use in the domain of

origin concerned the modeling of the behaviour of particles in ferromagnetic

materials: the rationale behind it was to describe the macroscopic characteris-

tics of a lattice material through the specification of its microscopic or inter-

molecular interactions.

Similarly, its transposition in the image analysis domain relies on the same

concept, that is, to provide a global description of the image through the super-

position of local characteristics, in terms of spatial interactions among neigh-

boring sites. The model was first introduced for the case of binary MRFs, that

is, assuming only two different values, according to the original application in

physics where the local phenomena observed were the “spins” of the molecula

over the lattice, each one having only two possible directions.

The extension of this model to the case of generic K-valued MRFs is called

Potts model [52], and is completely determined by specifying the potential

functions introduced in the definition 2.1.5, that in this particular case apply

exclusively to the η1 and η2 neighborhood systems, and are defined as follows:

Vc(xc) = Vc(xp, xq) =
{

β if xp 
= xq, p, q ∈ c
0 otherwise

. (2.5)
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Single-site cliques are not used because there is no reason to favor a la-

bel over the other, and larger cliques are neglected to speed-up processing.

Once given the potential functions, the global distribution p(x) is completely

defined, and the local characteristics p(xs|xη(s)) can be expressed [15] as:

p(xs = k|xη(s)) ∝ exp[βNk] ∝ exp[−βNk̄],

where Nk (Nk̄) is the number of neighbors of s with label k (different from k).

With this model, the vector of parameters θ associated with the prior model

p(x) reduces to a single parameter β > 0, interpreted as an “edge-penalty”. In

fact, when β = 0 all realizations are equally likely, whereas larger values of β
tend to penalize non-homogeneous cliques making smoother realizations more

and more likely. Of course, β is not known a priori, and must be estimated

together with the map x.

It should be clear, by now, that the effect of such modeling strategy is to

impose a certain regularization onto the segmentation map, with the main aim

of reducing the effect of noise on the final segmentation. Such regularization

is controlled by the unique β parameter, thus having the same effect over the

whole image.

However, in many cases it could be preferable to vary the effect of reg-

ularization over the image, above all in presence of complex and structured

data. For this reason, a further generalization of the described model has been

finally proposed [56], namely the Generalized Potts Model, that removes the

constraint of equivalence among the non-homogeneous cliques of the image

and hence substitutes the β parameter with a set of 1
2K(K − 1) parameters

βhk, one for each different label coupling within a clique of the map (h, k ∈ Λ
and h 
= k, with βhk = βkh). Formally:

Vc(xc) = Vc(xp, xq) =
{

βhk > 0 if xp = h 
= k = xq, p, q ∈ c
0 otherwise

,

(2.6)

and hence local characteristics can be expressed as:

p(xs = k|xηs) =
1
Z

exp[−
∑
h�=k

βhkNh]. (2.7)

with Z being a normalizing constant.
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2.1.4 Optimization Methods

Assuming that the prior and likelihood models are fully specified, as already

stated above, the problem of segmentation relies on the maximization of the

product p(x)p(y|x) over x. The value of x corresponding to the maximum

posterior probability, say x̂, is the desired segmentation map. This optimiza-

tion process lies on the fundamental statement that the posterior distribution

can be itself written in a Gibbs-MRF form, as shown in the following.

Let us recall that, for the hypothesis of spatial indipendence, the likeli-

hood model can be written as a product of conditional local distributions (see

Eq. 2.2), here explicited in a logarithmic form:

ln p(ys|xs = k) = −B

2
ln(2π)− 1

2
ln |Σk| −

1
2
(ys − μk)T Σ−1

k (ys − μk).

Let us define now the following singleton-clique potential functions which

associate, pixel-by-pixel, the label field with the external observation field3:

V ′′s (xs = k)
�
=

1
2

ln |Σk|+
1
2
(ys − μk)T Σ−1

k (ys − μk).

Accordingly, Eq. 2.3 can be more compactly written as

p(y|x) =
1

Z ′′
exp[−

∑
s∈S

V ′′s (xs)] =
1

Z ′′
exp[−U ′′(x)], (2.8)

where Z ′′ = (2π)−NB/2. Finally, thanks to the Bayes formula (see Eq. 2.4

and 2.8), the posterior distribution can be written as4

p(x|y) = p(x)p(y|x) =
1
Z

exp[−U(x)] =
1
Z

exp[−
∑
c∈C

Vc(xc)], (2.9)

where, if we write the prior p(x) as

p(x) =
1
Z ′

exp[−sumc∈CV
′
c (xc)],

then Z = Z ′Z ′′p(y) and

3We neglect ys as an explicit argument of V ′′s since it is known and does not represent a

variable to be estimated in the segmentation process.
4Notice that S ⊆ C, since every site s ∈ S is a clique for each arbitrary neighborhood

system.
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Vc(xc) =
{

V ′c (xc) + V ′′c (xc) if c is a singleton clique

V ′c (xc) otherwise
, (2.10)

which has still a Gibbs-MRF form with the same neighborhood system as the

prior field of Eq. 2.4 and modified singleton-clique potentials. Usually, single-

site potentials are neglected since they do not carry any contextual information,

while the data-dependent potentials V ′′s are strictly associated with the obser-

vations.

The Iterated Conditional Modes (ICM) Algorithm

In the form of an energy minimization problem (maximizing the posterior dis-

tribution defined in Eq. 2.9 corresponds to minimizing the energy U(x)), op-

timization can be finally carried out by means of one of the many techniques

known in literature that deal with this kind of problem.

A possibly optimal solution is represented by the Simulated Annealing
(SA) technique [15], based on the analogy between the annealing of solids and

the solving of combinatorial optimization problems. The Gibbs distribution is

here put in a parametric form using a “temperature” value T :

p(x) =
1

Z(T )
exp[

−U(x)
T

],

and an optimization process is run that iteratively comutes current minimum

for U(x) for certain fixed values of T , according to a suitable cooling schedule,

that is, starting from a sufficiently high initial temperature value that decreases

at each step until the system is frozen (no relevant decrease of the energy hap-

pen).

The algorithm is initialized with a random guess of the unknown x.

Clearly, as the temperature decreases, the above distribution concentrates on

the states with lower energy and when the temperature approaches zero, only

the minimum energy states have a non-zero probability. Optimality of the

process, that is, retrieving the global minimum of U(x), is guaranteed if a

sufficiently slow cooling schedule is applied.

In the case of image segmentation, using SA to maximize the posterior

probability is often unfeasible in practice due to the excessive computational

complexity, even if sub-optimal variants of SA are considered that make use

of faster cooling schedules. If we have a reasonably good initial configuration

x0 then a rapid convergence can be obtained by the ICM method proposed by
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Besag in [14] (it will be extensively employed, in the algorithms presented in

this work). The quality of the final result strongly depends on the initializa-

tion since ICM realizes only a descent in the nearest energy-valley and energy

functionals are generally non-convex. Of course, the obtained minimum is

only local but convergence towards this minimum is usually obtained in a few

number of iterations.

Algorithm 2.1.1 (ICM)

1. Start at a “good” initial configuration x0 and set k = 0.

2. For each configuration which differs at most in one element from the
current configuration xk (they are denoted byNxk ), compute the energy
U(η) (η ∈ Nxk ).

3. From the configurations in Nxk , select the one which has a minimal
energy:

xk+1 = arg min
η∈N

xk

U(η) (2.11)

4. Go to Step 2. with k = k+1 until convergence is obtained (for example,
the energy change is less than a certain threshold).

Notice that in the ICM algorithm there is no temperature parameter and

thus there is no annealing.

Estimation of Parameters

As it should be clear from the description of the framework made in the previ-

ous section, the segmentation problem is here characterized by a certain num-

ber of important parameters such as the number K of labels/classes in the

image, the class-related parameters μk and Σk of the likelihood term p(y|x)
(see Eq. 2.3, and the parameters βhk of the Gibbs prior p(x). In the simplest

case where all these parameter values are known in advance, i.e., in a fully

supervised mode, all we have to do is run the ICM procedure described in the

last section to find the segmentation map. Quite often, however, some or all of

this parameters are not known, resorting to respectively a semi-supervised or

unsupervised segmentation, and must be estimated from the data together with

the segmentation x̂ itself.

The single most critical parameter is by far the number of classes K, since

it influences heavily all other aspects of segmentation. The problem of deter-

mining the number of classes in a data set, or cluster validation problem, has
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received a great deal of attention in the literature [49], with mixed and incon-

clusive results. As a matter of fact, in a real-world image, the number of differ-

ent segments that can be identified varies wildly according to the user’s point

of view. In a remote-sensing image, for example, a single segment labeled

as “urban area” in one application, could be further partitioned into smaller

segments in another application. In the absence of prior information on the ap-

plication, both solutions are equally reasonable, and both should be preserved

to let a human interpreter have a final say.

Although some efficient strategies have been proposed to address the clus-

ter validation problem, this is still one of the main reasons for the increase in

complexity going from supervised to unsupervised segmentation.

Another reason is the need to estimate, together with the segmentation, the

parameters of the involved distributions, collectively represented by a random

vector Θ:

(x̂, θ̂) = arg max
x,θ

p(x, y|θ). (2.12)

Since exact joint optimization is computationally intractable, a two-step

procedure is often used. First, the model parameters are estimated from the

observed data, following for example an ML approach, then the MAP seg-

mentation is carried out in a second step using the estimated parameter values.

A number of techniques can be used to perform the ML parameter estimation,

such as the EM algorithm and its numerous variants, or the similar but more

general ICE [58]. Except for some simple cases, however, these algorithms do

not have an analytical closed form, and are quite computationally expensive.

For this reason, we here consider a suboptimal, but much simpler, alternat-

ing marginal optimization (x̂ and θ̂ are alternately optimized given each other)

which can be viewed as an approximation of the two step EM-approach [51],

and has been observed to provide comparable results in various practical situ-

ations [59].

2.2 The Tree Structured MRF Model

As it should be emerged also from the modeling approach presented in the pre-

vious section, several issues have to be accurately studied when using MRFs

for image segmentation, the most important being:

1. how to define a MRF (through its potentials) that is able to take into
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account prior information while remaining mathematically and numeri-

cally manageable;

2. how to set/estimate the numerical parameters of such a MRF;

3. how to solve the MAP estimation problem with reasonable computa-

tional complexity.

The first problem is certainly the most intriguing, as it amounts to defining

an abstract structure of the image that fits well the observed data. The Potts

Model (see Eq. 2.5) is of course an easy and effective solution, but in general

one could be tempted to define more sophisticated models in order to capture

the complex nature of image dependencies. However, model definition can-

not overlook the estimation problems (2) and (3). In fact, by increasing the

model complexity, for example resorting to the Generalized Potts Model of

Sec. 2.1.3, one ends up with a large number of parameters that are more diffi-

cult to be reliably estimated; and even neglecting this problem, the subsequent

optimization task could be so computationally demanding as to forbid the use

of reliable procedures, leading to disappointing results. Indeed, computational

complexity remains a major weakness of the MAP/MRF approach, and in de-

veloping a real-world MRF-based segmentation algorithm all efforts should be

made to keep it under control, without sacrificing fidelity of description.

In the following, we will give motivations and discuss in some detail a

new family of MRF models, namely the Tree Structured Markov Random Field
(TS-MRF) models, that stem from the idea of reducing overall complexity by

introducing structural constraints over a MRF-based image modeling, while

trying at the same time to preserve the quality of description guaranteed by the

adaptivity to “local” characteristics provided by the Generalized Potts Model.

The Tree Structured Markov Random Field modeling has been first in-

troduced in [60], where the authors applied it to the context of unsupervised

segmentation and proposed a solution to the cluster validation problem, and

was originarily inspired by the work of Fwu and Djuric [61] that proposed

a tree structured variant of the ICM algorithm. In further works [18, 1] a

deeper insight in the theoretical aspects of the model is provided, along with

the presentation of several different application to supervised and unsupervised

classification, mainly in the remote sensing domain.
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(a) (b)

(c)

β1

β2

water

vegetation bare soil

Figure 2.4: TS-MRF motivations : (a) a simply structured remote sens-

ing image (false color representation), (b) a possible coherent segmen-

tation map, (c) scene desctiption through a hierarchical tree structure.

2.2.1 Structuring a MRF: the Generalized Potts Model case

To better understand the fundamental hypothesis on which the TS-MRF mod-

els lie, let us immediately consider the real data example of Fig. 2.4: here, a

generic low resolution (around 10 m) remotely sensed scene is presented in

(a), evidently characterized at a fine observation degree by three different land

cover classes, each one with quite homogeneous spectral properties, namely

the water, vegetation and bare soil classes. A possible 3-class segmentation

map is depicted in (b). For this image, the hierarchical structurability of data

according to the relationships among classes is quite evident if we observe the

segmentation map, where it is clearly reasonable to consider a first class cou-

pling, at a “coarser” scale, between the coverage corresponding to the water

and the land, and then, within the latter, a “finer” coupling between the two

different types of land cover.

More technically speaking, it can be observed that the vegetation and bare
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soil classes share the same spatial interaction with the water class, since there’s

no significant statistical difference between a green-blue edge and a brown-
blue one on the map. Considering now the Generalized Potts model frame-

work, where the potentials are expressed as in Eq. 2.6, we easily realize that

in this case there is no use taking into account two different estimations for

the two parameters associated to the aforementioned couplings. A single esti-

mation could suffice to provide a reliable parametric specification of the MRF

model.

This interesting property can be efficiently expressed by means of a hidden

hierarchical tree structure, like the one of Fig. 2.4(c) for the example under

analysis: the two relevant parameters can here be associated to each inner

node t, one (β1 in figure) at the root level that controls the split between water

and land, and another one (β2) at the deeper level controlling the separation

between vegtation and soil. This implicitly defines also a strict hierarchical

relationship among the different regions of the image identified by class labels.

A Tree-Structured Markov Random Field represents a modeling tool that

allows for an efficient representation of the image that takes into account of

this kind of structural properties: its complete definition is given, in the general

case, through a “representative” tree-structure of the image, and a correspond-

ing set of classical (flat) MRFs, each one associated to a specific inner node of

the tree, hence local to some region of the image and of reduced dimensional-

ity w.r.t. the total number of its classes. Back to the Generalized Potts model

framework, reduction in the number of MRF parameters to estimate by im-

posing the described structural constraint is significant: for a generic K-class

segmentation, supposing the use of a simple Potts MRF (with a single param-

eter to estimate) for each inner node of the tree, in the worst case of a binary

tree structure5 we have to estimate K−1 parameters instead of the 1
2K(K−1)

originarily required by the Generalized Potts model.

More in general, even considering non-isotropic models and/or more so-

phisticated cliques, one gets the same parameter reduction ratio (K/2) between

a complete unconstrained model and the “tree-structured” dual one. Moreover,

looking at the estimation problem, it is worth considering that if the data can be

well represented by this kind of structure, the information available to estimate

its few parameters will increase, eventually resulting also in better estimates.

5Such case is here considered to be the worst exclusively w.r.t. the number of paramenters to

estimate, since binary trees contain the maximum number of inner nodes once fixed the number

of leaves.
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2.2.2 Theoretical Binary TS-MRF

In its original formulation, the TS-MRF model was introduced with the addi-

tional constraint of taking into account only binary tree structures. This choice

was originally justified by the fact that such structure presents the highest num-

ber possible of inner nodes, hence providing the richest parametrization given

the structural constraint, under the hypotesis of using simple Potts MRFs (i.e.,
each one defined using a single edge-penalty parameter) for each inner node.

For this reasons, the basic theory behind TS-MRF, discussed in the following,

has been developed according to this binary constraint, but can be easily ex-

tended to the case of generic tree structures, as it will be outlined briefly in the

next chapter.

Let us first define a theoretical tree-structured MRF model, and later the

actual implementation of the model. To this end, let us consider a binary tree

T , identified by its nodes and their mutual relationships. Except for the root,

each node t has one parent u(t), and each internal node has two children l(t)
and r(t), with u[l(t)] = u[r(t)] = t. We also define T̃ = {t ∈ T : l(t) =
r(t) = ∅}, the set of terminal nodes or leaves, and T = T − T̃ , the set of

internal nodes.

Integer numbers are used to index the nodes of the tree, as well as all

items associated with them, so that root = 1, l(t) = 2t, r(t) = 2t + 1 and

u(t) = �t/2� (see Fig.2.5). Note that each terminal node corresponds to a

class, while each internal node corresponds to both a merging class and an

edge-penalty parameter. In order to define the model it is helpful to use the

binary representation of the indexing integers. Let ν(t) be the function that

converts a non negative integer t ∈ N to its corresponding variable-length

binary code c ∈ B, where all leading zeros are discarded (see the balanced tree

of Fig.2.5), and let �t be the corresponding length.

Let us also define the function Ψ(a, b) : B × B → B which returns the

longest common prefix of a and b. It’s easy to check that Ψ(a, b) gives the

nearest common ancestor node of a and b.

We now define a tree-structured MRF through its local characteristics, still

expressed by Eq. 2.7, but with the additional 1
2K(K − 3) + 1 constraints:

βkh = βpq = βt (2.13)

for (k, h) and (p, q) such that

Ψ(ν(k), ν(h)) = Ψ(ν(p), ν(q)) = ν(t),
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1=12

2=102 3=112

4=1002
5=1012

6=1102 7=1112

8=10002 9
10

11
12

13
14

15=11112

Figure 2.5: Tree indexing.

with k 
= h, p 
= q, (k, h) 
= (p, q).
Reorganizing the terms in Eq. 2.7 we can explicit the local characteristics

with respect to the non-redundant parameter set {βt}t∈T as follows:

p(xs = k|xη(s)) =
1
Z

exp[−
�k−1∑
n=1

βν−1(k1,...,kn)Nν−1(k1,...,kn,kn+1)],

with ν(k) = (k1, . . . , k�k
). Here, when h corresponds to an internal node,

xs = h means that s belongs to one of the descendant classes of h, and Nh

is the number of neighbours of s which belong to one of such classes. For

example, with reference to the tree of Fig. 2.4(c), we have

p(xs = 10|xη(s)) =
1
Z

exp[−β1N3 − β2N4 − β5N11]

=
1
Z

exp[−β1(N12 + N13 + N14 + N15) +

− β2(N8 + N9)− β5N11].

The clique potentials are expressed by

Vc(xc) = Vc(xp, xq) =
{

βν−1(Ψ(ν(k),ν(h))) if xp = k 
= xq = h, p, q ∈ c

0 otherwise
.
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Now we define the function Nt(x) which gives the number of cliques in the

map x with edge-penalty βt. With this position, the joint probability of the

TS-MRF becomes simply:

p(x) =
1
Z

exp[−
∑
t∈T

βtNt(x)]. (2.14)

The complexity of this model could still seem prohibitive for a practical

implementation because of the dimensionality of the parameter space, depen-

dent on the number of classes, that makes very hard the optimization. How-

ever, thanks to the structural constraints of the model, a recursive optimization

procedure can be used which, although sub-optimal, involves only one edge-

penalty at a time.

2.2.3 Recursive Optimization

Let us consider for each node t of a tree T ,

• a set of sites St ⊆ S, corresponding to a segment of the image (in

particular Sroot = S);

• a binary random field Xt = {Xt
s : s ∈ St}, with realization xt where

xt
s ∈ {l(t), r(t)}.

Now we impose the additional constraint that the set of sites associated

with any given node is obtained from the binary segmentation of the parent set

of sites. More formally, for each internal node of the tree t ∈ T ,{
S l(t) = {s ∈ St : xt

s = l(t)}

Sr(t) = {s ∈ St : xt
s = r(t)}

(2.15)

Therefore, the tree-structured MRF X is completely given by the set of binary

fields {Xt}t∈T and vice-versa, that is:

X =
⋃
t∈T

Xt.

Let us define, now, ω(t) = {h ∈ T − {t} : ν(h) is a prefix of ν(t)}, the

set of the ancestor nodes of t, and Xω(t) = {Xt}t∈ω(t), the set of the ancestor

fields of t (of course, ω(1) = Xω(1) = ∅). Observe that, except for X1, each

field Xt depends on the ancestor fields {Xω(t)}, in particular, the very same
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domain of Xt is fixed once the ancestor fields are specified. On the other hand,

given a realization x ≡ {xk}k∈T , the number Nt = Nt(x) of cliques with

edge-penalty βt depends only on xt and, for the above considerations, on xω(t),

while it is independent of other component binary fields. As a consequence,

the joint probability of the overall field (Eq. 2.14) becomes:

p(x) =
1
Z

exp[−
∑
t∈T

βtNt(xt, xω(t))]

=
∏
t∈T

1
Zt

exp[−βtNt(xt, xω(t))]. (2.16)

It is also easy to prove that, for each node in the tree, given Xt and Xω(t),

the set of fields which lie on the left sub-tree stemming from t is independent

from the set of fields which lie on the right sub-tree. As an example, for the

structure in Fig.2.5 we can write:

p(x5, x4, x2|x7, x6, x3, x1) =
p(x)

p(x7, x6, x3, x1)

=
1
Z exp[−∑7

t=1 βtNt]∑
x5,x4,x2

1
Z exp[−∑7

t=1 βtNt]

=
1
Z exp[−β2N2 − β4N4 − β5N5]∑

x5,x4,x2
1
Z exp[−β2N2 − β4N4 − β5N5]

=
1

Z(x1)
exp[−β2N2 − β4N4 − β5N5] (2.17)

= p(x5, x4, x2|x1), (2.18)

which proves the independence. In a similar way, it can be proved that

p(x4|x5, x2, x1) = p(x4|x2, x1) and so on. More in general, thanks to the

above property, by a recursive use of the Bayes theorem we have:

p(x) =
∏
t∈T

p(xt|xω(t)). (2.19)

Note also that, given the ancestor field X1, the field built on the sub-tree with

root in t = 2, (X2, X4, X5), is still a TS-MRF (see Eq. 2.17); this property

holds for each internal node t as well. As a consequence, given Xω(t), the
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terminal binary fields Xt (associated with terminal splits) are Potts MRFs,

that is

p(xt|xω(t)) =
1

Z(xω(t))
exp[−βtNt].

This property does not hold for non-terminal binary fields, because, in this

case, the partition function Z is itself a function of xt. For example we have:

p(x2|xω(2)) =
∑
x5,x4

p(x5, x4, x2|x1)

=
1

Z(x1)
exp[−β2N2]

∑
x5,x4

exp[−β4N4 − β5N5]

=
1

Z(x1)Z(x1, x2)
exp[−β2N2].

In other words, not all the terms of Eq. 2.19 are Potts distributions, as one

could believe for the similarity between Eq. 2.16 and Eq. 2.19. Nonetheless,

in order to find a MAP estimate of a segmentation with TS-MRF prior prob-

ability, one can recursively maximize the terms in Eq. 2.16, together with the

likelihood parts, starting from the root and descending the tree until all leaves

are reached. Each term depends only on a binary field Xt once its ancestor

fields xω(t) are given and, also, it does have a Potts form.

As a consequence, each one can be maximized, just like with an ordinary

Potts MRF, by using simulated annealing, ICM, etc. Note, again, that in the

step corresponding to node t, only the parameter βt must be estimated, and

thatNt is a sufficient statistic for βt. Therefore, when the prior parameters are

unknown, estimation-maximization procedures can be used again following a

recursive schedule.

Finally, we underline that each binary field Xt, except for the root field,

makes sense only once the realization xω(t) of its ancestor fields are given,

since it is defined on an irregular (that is, non-rectangular) lattice whose shape

is a result of xω(t).

2.3 Unsupervised Segmentation using TS-MRFs

In the model-based framework, the unsupervised segmentation task if often

split in two part [62]. The former is the cluster validation problem, where
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the goal is to detect the number K of classes/regions present into the image

and, for each of such classes, to provide some features that summarize the

region properties. The latter can be seen as a semi-supervised segmentation,

where some model parameters may come out from the former step. Besides

such point of view, other approaches may follow a joint solution to address an

unsupervised segmentation problem [49].

In particular, most of the MRF model-based algorithms refer to a disjoint

approach, since K is needed before an optimization procedure could proceed,

or else they update progressively the number of classes while the optimiza-

tion procedure goes on. TS-MRF models represent an exception since their

recursive nature, that fits with a recursive step-by-step optimization, naturally

allows an incremental update of K that suggests a joint solution for clustering

data and segmentation. In fact, the problem of estimating K is strictly related

with the problem of finding the structure that supports the model, and they may

be addressed in a simple way by controlling the growth of the tree, thanks to a

test local to each node that indicates whether or not it must be split.

Now, let us focus on the description of such a TS-MRF unsupervised seg-

mentation algorithm, proposed in its basic form in [60] and later refined in

[18].

2.3.1 The Split Gain and the Recursive Tree Growth

The unsupervised TS-MRF based algorithm has a recursive nature, it starts

with a single-node tree which grows leaf by leaf until a stopping condition is

met. Therefore, we first describe the algorithm initialization, focusing on the

root (node 1), and then the generic step with reference to a given tree.

At the beginning we consider the following two hypotheses (see Fig. 2.6

for indexing): {
H0 : T = {1}, X = ∅
H1 : T ′ = {1, 2, 3}, X = x̃1

. (2.20)

The first hypothesis corresponds to the case in which the whole image,

associated with the root node (S1 = S, y1 = y), is represented as a single re-

gion. Therefore, the observed data are described by a single distribution p(y1),
whose model is known but for some parameters ν1 that must be estimated

from the data themselves. Of course, in this case the TS-MRF is empty, and

all sites have the same label attached. This is the only possible configuration

and in this sense we define p(x|T = {1}) = 1, and also write the data distri-
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Figure 2.6: A simple binary tree (a), and the tree resulting from split-

ting node 5 (b).

bution as p(y1|ν1) to make explicit that y1 is described through the single set

of parameters ν1 attached with node 1.

The second hypothesis corresponds to the case in which the image is repre-

sented by two regions. To single out such regions, a binary MRF X1 is defined

on S1, with a given neighborhood system η1, and with potentials V 1
c (·) that are

completely specified except for some parameters θ1. The MAP (or any other

criterion) estimate of the MRF x1, with probability p(x1), divides the image

into two new regions, S2 = {s ∈ S1 : x1
s = 2} and S3 = {s ∈ S1 : x1

s = 3},
with their associated data y2 and y3. Also, since we assumed conditionally in-

dependent data, their description factors out as p(y1|x1) = p(y2|ν2)p(y3|ν3).
At this point, we compare the two statistical descriptions of the image,

based on a single-class model (tree T ) or a two-class model (tree T ′), by check-

ing the condition

G1 =
p(y, x|T ′)
p(y, x|T )

=
p(x|T ′)p(y|x, T ′)
p(x|T )p(y|x, T )

> 1, (2.21)

which, specialized for T = {1}, becomes:

G1 =
p(x1)

1
× p(y1|x1)

p(y1|ν1)
> 1. (2.22)

If the test succeeds, namely the split gain G1 is greater than 1, the two-

region description better fits the data and the procedure goes on, otherwise it

stops and the single-region description is accepted.
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Let us now consider a generic tree T , that has been temporarily accepted

as our structure, with associated TS-MRF X , and let τ be a leaf of T that we

are testing for a possible split. The two hypotheses under test are then:{
H0 : T, X = {xt}t∈T

H1 : T ′ = split(T, τ), X = {xt}
t∈T

′
, (2.23)

where tree T ′ = split(T, τ) is identical to T except for node τ which generates

two new leaves becoming itself an internal node, that is T
′ = {T , τ} (see

Fig. 2.6). To explicit the test of Eq. 2.21 for the general case, remember that

p(x) =
∏

t∈T p(xt|xω(t)). Moreover p(y|x) =
∏

t∈Λ p(yt|νt). Therefore, we

can write

p(x|T ) =
∏
t∈T

p(xt|xω(t))

p(x|T ′) =
∏
t∈T

′
p(xt|xω(t)) = p(xτ |xω(τ))

∏
t∈T

p(xt|xω(t))

p(y|x, T ) =
∏
t∈Λ

p(yt|νt) = p(yτ |ντ )
∏

t∈Λ−{τ}
p(yt|νt)

p(y|x, T ′) =
∏
t∈Λ′

p(yt|νt) = p(yτ |xτ , xω(t))
∏

t∈Λ−{τ}
p(yt|νt) (2.24)

and the test becomes simply

Gτ =
p(xτ |xω(τ))

1
× p(yτ |xτ , xω(τ))

p(yτ |ντ )
> 1. (2.25)

It should be noted that the test depends exclusively on region Sτ . In fact, given

{x̃t}t∈T the maximization process operates only on xτ , and the MAP problem

reduces to :

x̃τ = arg max
xτ

p(xτ |x̃ω(τ))p(yτ |xτ , x̃ω(τ)) (2.26)

completely local to node τ . If the test succeeds, the growth of the tree and of

the associated segmentation continues in a similar way for each newly created

leaf, as if each one were the root of a new tree. Therefore, the tree growing

process is accurately described by a recursive procedure, which can go on in

parallel for each node.
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The ratio Gτ , named split gain, accounts for the gain in description ef-

ficiency arising from the split of leaf τ . This interpretation becomes more

compelling if we take the logarithm of Gτ and regard it as the difference

log Gτ = I(T ) − I(T ′) between the self-information associated with each

of the competing TS-MRF’s6. If the self-information is a good indicator of the

description complexity, then a positive log split gain indicates that the new de-

scription of the observed data is “simpler” than the preceding one, and hence

preferable (according to Occam’s razor). In more detail, a split has always a

cost, p(x̃t) < 1, due to the need of describing the segmentation x̃t, but also

a value, p(yt|x̃t)/p(yt|νt) > 1, because the data are more accurately rep-

resented, in each new segment, by their local parameters. A positive log Gt

indicates that the overall benefits outweigh the cost. Analogies can be found

in [63] where the Minimum Description Length (MDL) criterion is proposed.

It must be underlined, however, that the evaluation of the split gain involves

an intractable partition function and that only an approximation of it, possibly

inaccurate, will be available in any practical implementation.

2.3.2 The Unsupervised TS-MRF Algorithm

Fig. 2.7 shows a high-level flow chart of the TS-MRF model-based unsuper-

vised segmentation algorithm. To improve readability, the procedure is se-

quential rather than recursive, and only one leaf at a time is split, the one with

the largest split gain (the experiments will follow this convention as well).

• In the initialization step, the tree is defined as consisting of the sole root

(T = {1}); the whole image is associated to it (S1 = S, y1 = y),

and the vector of parameters ν̂1 is estimated; of course, the TS-MRF is

empty (X = ∅).

• In the procedure CheckNode(t), the binary MRF Xt is defined on St,

the MAP realization x̃t is estimated together with its parameters θ̂t, and

the split gain Gt is evaluated. If Gt > 1 this node will be split sooner or

later.

• SplitTree(t) updates the structure of the tree by moving t from Λ to T ,

and generating two new leaves l(t) and r(t); to each one of such new

nodes the proper quantities (S l(t), yl(t), ν̂l(t), etc.) are associated (they

were evaluated during the CheckNode step).

6This discussion is only to gain insight about the meaning of the split gain, and there is no

attempt to be rigorous.
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Figure 2.7: High-level flow chart of the unsupervised TS-MRF algorithm.
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This procedure provides a fast segmentation of the image, based only on

binary decisions, and solves automatically the cluster validation problem.

Finally, an example of how the described algorithm works on real life

images is now presented, showing just a simple experiment on a 128 × 128
remote-sensing GER hyperspectral image composed of 6 bands selected

among the 63 of a whole set. In Fig. 2.8 are shown: a band of the selected

group; a Potts model-based segmentation as reference; the partial segmen-

tations of the TS-MRF algorithm, whose associated structure is depicted in

Fig. 2.9.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: An example of unsupervised segmentation by a TS-MRF:

(a) band 7 of the GER data; (b) Potts model-based segmentation; (c)-(f)

partial segmentations of the TS-MRF algorithm.
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Figure 2.9: Tree structure associated with the experiment of Fig. 2.8



Chapter 3

Mean Shift Clustering applied
to Unsupervised TS-MRF

In this chapter, we first recall the basics of Mean-Shift analysis, and then de-
scribe the new Fast Mean Shift Clustering (FMSC) algorithm, focusing in turn
on the variable-bandwidth strategy, and on the speed-up solutions introduced.
Hereinafter, we show how the new clustering tool can be used to improve the
performance for unsupervised segmentation tasks and present the modified
version of the unsupervised TSMRF algorithm presented in Sec. 2.3. Finally,
experimental evidence of the improved performances of the new algorithm is
carried out.

3.1 Introduction to Mean Shift

The Mean Shift procedure is a mode detection method for density functions

that lies on the most popular non-parametric density estimation technique,

known in the pattern recognition literature as the Parzen Window method [49].

Mean Shift was first introduced in 1975 by Fukunaga and Hostetler [64] as a

technique for the estimation of probability density gradients, but only recently

[65, 66, 19, 67] the advantages of such approach both in density estimation and

clustering has been newly recognized.

As for the non-parametric density estimation techniques, the main idea

on which this approach is based lies on the fact that samples in an arbitrary

feature space can be seen as an empirical probability density function, that is,

local maxima of the probability should be observed in areas that have a dense

concentration of data points. Following this rationale, a kernel-based mode

41
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seeking technique is proposed in [19], where the main contribution has been

given by showing that such technique is robust, i.e. the proposed procedure

is demonstrated to converge to some stationary point of the unknown density

function, and general, it is applicable for the analysis of complex multimodal

feature spaces.

In the next subsections, the fundamentals of such technique are presented

and the algorithmic procedure for mode retrieving is finally delineated.

3.1.1 From Kernel Density Estimation to Mean Shift

Let us first recall the theoretical basis below the reference kernel density esti-

mation technique. The basic approach in the Parzen Window technique lies on

the observation that, given a d-dimensional feature space and a set of n data

points (s1, · · · , sn), the probability density function p(s) can be estimated as

p̂H,K(s) =
1
n

n∑
i=1

KH(s− si), (3.1)

where, in the most general case, KH(s) = |H|−1/2K(H−1/2s), with H being

a d×d symmetric and positive definite bandwidth matrix, whose meaning will

be clarified later, and K(·) being a d-variate kernel function, bounded and with

compact support, satisfying the following set of conditions [68]:

∫
Rd

K(s)ds = 1, lim
‖s‖→∞

‖s‖dK(s) = 0,

(3.2)∫
Rd

sK(s)ds = 0,

∫
Rd

ssT K(s)ds = cKI,

where cK is a constant and I is the identity matrix.

In [19], the author pointed out that a family of kernel functions satisfying

the conditions 3.2 and showing the “sufficient” property of radial simmetry can

be obtained in the following way:

K(s) = ck,dk(‖s‖2), (3.3)

with ck,d normalizing constant, that is to say defining a univariate kernel profile
k(x) for x ≥ 0 and rotating it in the space Rd.

It is further observed in [68] that, in order to limit complexity in the density

estimation procedure, a common practical choice is to set the bandwidth matrix
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H as proportional to the identity matrix, that is H = h2I , so that only one

parameter should be provided in advance. Under this assumption, the formula

of the estimator given in 3.1 becomes

p̂h,K(s) =
1

nhd

n∑
i=1

K

(
s− si

h

)
, (3.4)

and therefore, if we further assume the use of a radially symmetric kernel built

as in 3.3, the following expression is obtained:

p̂h,K(s) =
ck,d

nhd

n∑
i=1

k

(∥∥∥∥s− si

h

∥∥∥∥2
)

. (3.5)

Applying the gradient operator to both sides of (3.5) yields to the form of the

density gradient estimator. Using g(x) = −k′(x), we obtain

∇̂ph,K(s) =
2ck,d

nhd+2

n∑
i=1

(si − s)g

(∥∥∥∥s− si

h

∥∥∥∥2
)

=
2ck,d

nhd+2

[
n∑

i=1

g

(∥∥∥∥s− si

h

∥∥∥∥2
)]⎡⎣∑n

i=1 sig
(∥∥ s−si

h

∥∥2
)

∑n
i=1 g

(∥∥ s−si
h

∥∥2
) − s

⎤⎦ .

(3.6)

Observe that the density estimate p̂(s) evaluated using the function G(s) =
cg,dg(‖s‖2) as a kernel (also called the shadow of kernel K(s)) is given by

p̂h,G(s) =
cg,d

nhd

n∑
i=1

g

(∥∥∥∥s− si

h

∥∥∥∥2
)

, (3.7)

therefore it is possible to rewrite Eq. 3.6 as

∇̂ph,K(s) =
2ck,d

h2cg,d
p̂h,G(s)mh,G(s), (3.8)

with the term

mh,G(s) =

∑n
i=1 sig

(∥∥ s−si
h

∥∥2
)

∑n
i=1 g

(∥∥ s−si
h

∥∥2
) − s, (3.9)

being called the mean shift vector.



44 CHAPTER 3. MEAN SHIFT CLUSTERING FOR TS-MRF

3.1.2 Mean Shift Procedure for Mode Detection

Observing Eq. 3.9, it is possible to give the following intuitive interpretation:

for each kernel center s, the mean shift vector points to the local weighted
mean, whose weights are computed using the kernel G; therefore, starting from

any center s it is possible to find the direction to the area where most of the

data points are (locally) concentrated, that is, the direction of the maximum

increase in the density. The same conclusions are drawn if we observe that

(from Eq. 3.8)

mh,G(s) =
1
2
h2 cg,d

ck,d

∇̂ph,K(s)
p̂h,G(s)

, (3.10)

since the latter equation shows that the mean shift is proportional to the density

gradient estimation computed using kernel K(·), normalized by the density

estimation computed using the shadow of K(·). Such a normalization induces

an interesting property, since the mean shift vector will be smaller for points

close to a local maximum and larger for points in non-dense areas.

Based on these properties, an iterative mode-seeking procedure is intro-

duced, aimed at tracking a path from a starting center kernel “up” to a mode

of the probability density function; once a starting kernel center s is assigned,

the procedure consists of two iterative steps:

1. compute the mean shift vector mh,g(s),

2. update the kernel center s = s + mh,g(s).

Since the normalization underlined in Eq. 3.10 implies an adaptive step

size selection, the described procedure is in fact an adaptive gradient ascent

method.

In [19] a proof of convergence of such procedure is given under some

mild conditions for the kernel profile, assuring that the procedure will lead

to a stationary point in the density function following a monotonically increas-

ing sequence of density values. Notice that such proof does not eliminate the

possibility that some non-maximum stationary point could be reached (e.g.

plateaus).

Starting from this basic iterative procedure, a complete algorithm for mode

detection is provided by simply running it many times, with different inizial-

izations, in order to cover most of the feature space. To avoid that some non-

maxima stationary points are detected, each time the procedure converges to

a new point, this one is properly perturbed using a small norm vector and the
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basic procedure is run again using the biased point as starting kernel center; if

it converges to the same point, then it is for sure a local maxima.

A remarkable property of this algorithm is that it provides a data clustering

as a by-product, since each data point converges only to one mode. This allows

to subdivide the original sample set in different subsets of points associated

with different modes; such subsets are usually called basins of attraction of

the corresponding modes.

In the next section, a fast implementation of the mean shift clustering al-

gorithm is proposed and its different issues are discussed in details.

3.2 The Fast Mean Shift Clustering Algorithm

As already remarked above, the detection of modes through the Mean-Shift

procedure determines an implicit clustering strategy over the feature space,

since all the points of a basin of attraction form a well defined cluster.

However, this would require running the Mean-Shift procedure for each

point of the feature space, so as to identify the basin of attraction of all modes

as clusters. Of course, this is unfeasible in practice, since for sample sets larger

than several hundreds of data points computational time becomes extremely

large for most of the possible applications. Hence, an efficient implementation

is usually required, especially for data-intensive cases.

Another critical implementation issue is the choice of the kernel size, or

bandwidth parameter, which plays a central role for density estimation since it

determines the smoothness of the pdf and, consequently, the number of modes

that the algorithm singles out. Using a too large bandwidth leads to underesti-

mating the number of modes, and the opposite for too small a value.

Let us further clarify this fundamental point observing that the Parzen Win-
dow basic equation (see Eq. 3.4) represents a direct way to build a smoothed
histogram of the image: infact, rather than grouping points of the feature space

together in bins, the kernel density estimator can be thought to place small

”bumps” at each point, whose shape is determined by the kernel function K(·),
and sum all of them together. The effect of this smoothing procedure can be

observed in Fig. 3.1 for the bimodal sample set in (a): in case a too small kernel

size is adopted, the underlying estimate of the density function will suffer from

overfitting, finally leading to the detection of a too large number of modes. In

(c), a reasonable value of the kernel size has been chosen, such that the density

estimate presents the two meaningful modes one expects, while in (d) a too

large value of the kernel size clearly caused underfitting.
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(a) (b)

(c) (d)

Figure 3.1: Role of the bandwidth parameter: a random bimodal sam-

ple set (a) and three different kernel density estimates using a too small

(b), reasonable (c) and too large (d) kernel size.
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In general, the correct choice of h is all but a simple task, in many cases be-

ing really critical, meaning that small “changes” of the value can significantly

alter the outcome of the mode detection procedure. This is the case when

dealing with image segmentation, as observed since our preliminary work pre-

sented in [69], making the proper choice of h a critical issue for the deployment

of a robust clustering technique.

We propose here an implementation of Mean-Shift clustering which ad-

dresses the two problems outlined above. In particular, the new algorithm is

based on:

• a data-dependent adaptive kernel size h that overcomes the instability of

the typical fixed strategy;

• a fast clustering technique that enables its use for real-world applica-

tions.

3.2.1 The Adaptive Kernel Size Strategy

Selection of Kernel Shape

First of all, let us discuss about the shape of the kernel function K(·) to use in

the implementation of the Mean Shift procedure. As far as the conditions for

convergence about the kernel shape are not so strict, it is possible to choose

among a wide range of possibilities. As stated above, a class of particularly in-

teresting kernels, above all for their mathematical tractability, are the radially

symmetric kernels. In literature, mainly two of these kernels have been used:

the Epanechnikov kernel [70], having good properties both in minimizing the

overall error between a density and its estimate [71] and in terms of computa-

tional manageability, and the Normal kernel, that is proved to provide a strict

gradient ascent when applied to the mean shift procedure and gives in general

better results, even if the number of iteration needed for convergence is higher

then in the Epanechnikov case [19].

However, selection of kernel shape is by no means critical. A common

choice widespread in literature is the use of a Normal kernel, generated using

the method of Eq. 3.3 starting from the following kernel profile function

kN (x) = exp
(
−x

2

)
x ≥ 0, (3.11)

that infact leads to the multivariate kernel
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KN (s) = (2π)−d/2 exp
(
−‖s‖

2

2

)
(3.12)

that evidently has a Normal shape.

In practice, there is no need to compute the values of the kernel function

or the profile function, since the quantity actually computed is the mean shift

vector by means of Eq. 3.9. The only function that we need to evaluate is g,

whose expression is

gN (x) = −k′N (x) =
1
2

exp
(
−x

2

)
. (3.13)

k-nn based Adaptive Kernel Size Selection

The original Mean-Shift procedure proposed by Comaniciu [19] uses a fixed

bandwidth parameter h, but this is clearly inappropriate when the density of

points in the feature space varies wildly. In such cases, in fact, no value can be

well suited for both high- and low-density areas.

To face this problem, we adapt the bandwidth parameter locally in the

feature space by taking into account only the first k-Nearest Neighbors in the

computation of the Mean Shift vector. This amounts to truncating the kernel

at some distance from the center but, if k is not too small, this truncation will

take place when the kernel has already a negligible value, independent of the

local density. The bandwidth, instead, will clearly depend on the local density,

being larger in low-density areas and smaller in high density ones.

The difference between the fixed and variable bandwidth approaches can

be better appreciated in Fig. 3.2, where an example is shown about how the

bandwidth parameter h can be selected (a) by means of a fixed choice and (b)

taking into account only a fixed number of nearest neighbours from the kernel

center. In the first case, starting from a sparse area of the feature space, the

reduced number of neighbours “captured” by the kernel can easily compromise

reliability in the computation of the mean shift vector, while in dense areas

the risk of an underfitting of the density function increases. Such effect is not

present with the proposed alternative strategy, as can be observed in Fig. 3.2(b),

where the kernel size adapts itself to the local density of points in the feature

space.

In more detail, given a suitable value of k, at each step of the procedure

the set NN(s) of k points closest to s is singled out, and the kernel size is

calculated as:
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(a) (b)

Figure 3.2: Adaptive bandwidth selection: (a) a fixed kernel size strat-

egy, (b) a variable kernel size strategy obtained using a fixed number

of nearest neighbours.

h(s) =

√√√√1
k

∑
i∈NN(s)

‖s− si‖2, (3.14)

This value is then used in (3.9) for the computation of the mean-shift vector

where the summation is again restricted to the points in NN(s).
It could also be observed that this solution moves the problem from the

estimation of parameter h, to that of parameter k, but it is well-known [71]

that k-NN estimation is quite robust w.r.t. its parameter, and works quite well

also in high dimensional spaces, which are instead quite challenging for the

Mean-Shift. In next subsection, we propose a data dependent procedure for

obtaining a stable estimate of the k parameter.

3.2.2 Fast Mean Shift based Clustering

Our speed-up strategy is based on the obvious consideration that all points that

lie on the trajectory that goes from the starting point to the corresponding mode

belong necessarily to the same basin of attraction. Therefore, they could all be

attributed, without error, to the same cluster.

Although it is extremely difficult that any sample point will coincide ex-
actly with a point of this path, one can reasonably assume that sample points
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(a) (b)

(c) (d)

Figure 3.3: (a) bi-modal sample set, (b) Mean Shift trajectory with

the corresponding “voting” points, (c) final clustering, (d) GLA-based

clustering for comparison.
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that are close to the trajectory belong very likely to the same basin. By cluster-

ing all such points at once we drastically reduce the complexity, but also risk

to cause some errors, especially for data points that are close to the watershed

between two basins of attraction. Hence, in order to preserve the accuracy of

clustering, we do not assign sample points on the fly, but rather implement a

voting mechanism and decide only a posteriori, with a majority rule, when all

sample points have been touched by at least one trajectory.

The modified procedure can be summarized as follows:

Algorithm 3.2.1 (Fast Mean Shift Clustering (FMSC))

1. Initialization: set all sample points as non visited.

2. Mean-Shift: run the procedure starting from a randomly selected non
visited point: at each step along the trajectory, mark as visited all points
si such that ‖s − si‖ < h(s), and for each of them add a vote for the
“final” mode.

3. Mode validation: once convergence is reached, compute the distance
dmin between the new tentative mode and the closest mode already de-
tected:

• if dmin < h/2 reject the new mode, and mark the closest mode as
final;

• otherwise accept the new mode, and mark it as final.

4. Test: if there are still non visited points, go to step 2.

5. Clustering: assign each visited point to the mode (and cluster) with the
most votes.

An example of clustering provided by the described procedure is presented

in Fig. 3.3: the bivariate sample set of part (a), obtained as a mixture of two

normally distributed data sets, is given as input to the clustering algorithm. In

part (b) the effect of a single modified Mean-Shift procedure is represented,

where all the points in red are “giving a vote” to the final mode. Part (c)

shows the final clustering, which appears to follow quite faithfully the under-

lying distribution and is certainly much better than the clustering based on the

Generalized Lloyd Algorithm shown in part (d) where, in addition, the correct

number of clusters had to be provided as a further input.
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3.3 The Unsupervised TS-MRF/MS Algorithm

Turning to the unsupervised TS-MRF based segmentation techique, the gen-

eral segmentation strategy discussed in Sec. 2.3 must be translated into a

real-world functioning algorithm, where a number of implementation choices,

sometimes driven by complexity concerns, might have a critical impact on the

overall performance.

One such choice, made in [18] to simplify the local optimization task, is

to consider only binary tree structures, reducing the segmentation process to

a sequence of nested binary splits controlled by a suitable stopping criterion.

Such a constraint, however, might cause the detection of false contours as can

happen when three or more balanced classes are present in the same region. In

[69] we removed this constraint and resorted to the Mean-Shift procedure to

detect the number of pdf modes in a class, and hence the number of children

at a given node.

Another critical choice is the use of the Generalized Lloyd Algorithm to

carry out the initial segmentation needed to perform the MRF optimization at

each node. In fact, image pixels are often described by a complex and generally

unbalanced probability distribution in the spectral domain, in which case the

GLA can easily provide inaccurate results, as in the example of Fig. 3.3(d).

Here we propose a modification of the original unsupervised TS-MRF al-

gorithm, aimed at increasing both the flexibility of the process, by removing

the aforementioned binary constraint, and the quality of initial segmentation at

each step of the recursive procedure, making use of a finer pixel-wise cluster-

ing technique.

3.3.1 Proposed Modification to the Unsupervised TS-MRF

The fundamental modification to the original algorithm consists in the replace-

ment of the GLA based segmentation originarily proposed for the inizialization

of MRFs locally to each node of the tree (that is, at each step of the recursive

segmentation process) with the more accurate segmentation technique relying

on the variable-bandwidth Mean-Shift based clustering described in the previ-

ous section. With respect to the flowchart depicted in Fig. 2.7, we basically

operate on the block containing the SplitTree function, moving it from the log-

ical scheme of Fig. 3.4(a) to the one in (b).

A first immediate consequence of the proposed solution concerns the elimi-

nation of the binary constraint that characterized the original technique. Infact,

the proposed Mean Shift based procedure is able to automatically determine
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Binary
Minimum Distance
Clustering (GLA)

Binary Potts MRF
Optimization
using ICM

Kt-ary Mean Shift /
Maximum Likelihood
Clustering (MS-ML)

Kt-ary Potts MRF
Optimization
using ICM

(a) (b)

Figure 3.4: Modification to the original Unsupervised TS-MRF al-

gorithm: high-level flowchart of the old (a) and new (b) Split Tree
function (see Fig. 2.7).

the number of cluster in the subset under analysis, meaning that, during the

unsupervised segmentation process, the growth of the tree at each node is no

longer guaranteed to be binary. Therefore, at the end of the process a generic

tree structure can be eventually retrieved.

Extension to Generic Tree Structures

Since the original formulation of the TS-MRF modeling framework relies on

binary tree structures, further discussion on the properties introduced in the

pevious chapter is now made necessary to validate the theoretical robustness

of the proposed method. However, this turns out to be not a difficult task, as

we will briefly outline in the following.

To generalize TS-MRF model properties to generic tree structures, let us

consider the non-binary tree of Fig. 3.5, where from each node t a non-constant

number of children Kt originates. Following the same path of Sec. 2.2.2, ob-



54 CHAPTER 3. MEAN SHIFT CLUSTERING FOR TS-MRF

1=14

5=104 6=114 7=124

16=1004

17

18=1024

19=1034

20=1104

21=1114

64 65 76 77 84 85 86

Figure 3.5: Tree indexing for generic tree structures.

serve that:

• concerning tree indexing, we can simply extend the introduced formal-

ism by assigning to each node a base-K̃ number, in place of a bi-

nary string, where K̃ = maxt Kt, along with the corresponding base-

10 integer. The children of a generic inner node t are indicated as

c1(t), . . . , cKt(t) and, given the father label, their base-K̃ identifier are

obtained from it appending different digits from 0 to Kt. With this new

convention, redefinitions of the indexing functions ν(t) and Ψ(a, b) are

straightforward.

• The number of “structural” constraints of the type in Eq. 2.13 is now in

general ≤ 1
2K(K − 3) + 1.

All the considerations leading to the joint probability of Eq. 2.14 remains ex-

actly the same, as shown in the following “updated” example relative to the

tree of Fig. 3.5:

p(xs = 84|xη(s)) =

=
1
Z

exp[−β1(N5 + N7)− β6N20 − β21(N85 + N86)] =

=
1
Z

exp[−β1(N16 + N64 + N65 + N18 + N76 + N77 + N7) +

− β6N20 − β21(N85 + N86)].
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Similarly, concerning the recursive optimization procedure, now we sim-

ply have to consider that each random field Xt is now Kt-ary, and its real-

ization xt is such that xt
s ∈ {c1(t), . . . , cKt(t)}. The generalization of the

segmentation constraint of Eq. 2.15 is also considered, thus for each internal

node of the tree t ∈ T̄ :⎧⎪⎪⎨⎪⎪⎩
Sc1(t) = {s ∈ St : xt

s = c1(t)}
...

ScKt (t) = {s ∈ St : xt
s = cKt(t)}

Under these conditions, independence among disjoint subtrees still holds, as

we can see from the following example, always referring to the tree of Fig. 3.5:

p(x17, x19, x5|x6, x21, x1) =

=
p(x)

p(x6, x21, x1)

=
1
Z exp[−∑t∈T̄ βtNt]∑

x17,x19,x5
1
Z exp[−∑t∈T̄ βtNt]

=
1
Z exp[−β17N17 − β19N19 − β5N5]∑

x17,x19,x5
1
Z exp[−β17N17 − β19N19 − β5N5]

=
1

Z(x1)
exp[−β17N17 − β19N19 − β5N5]

= p(x17, x19, x5|x1). (3.15)

The Mean Shift/Maximum Likelihood (MS-ML) Classifier

Even though our fast implementation helps limiting the processing burden,

plain Mean-Shift clustering would have an exceedingly high computational

complexity for the very large images we usually deal with, and hence we will

eventually resort to a hybrid Mean-Shift/Maximum Likelihood (MS-ML) clas-

sifier. In more details, for each region St the following unsupervised segmen-

tation procedure is run:

Algorithm 3.3.1 (MS-ML classifier)

1. a sufficiently large random subset of pixels yt
s : s ∈ St, say ỹt, is ex-

tracted (from 1% of the region area |St| to the entire region, depending
on its size);
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2. the Mean-Shift clustering described in Sec. 3.2 is then applied to this
sample set, obtaining its clustering in Kt subsets;

3. each subset is used to characterize a corresponding class, using the
mean vectors μi and covariance matrices Σi, i = 1, . . . , Kt;

4. the initial segmentation map of region St, that is, the initial field xt
0, is

then obtained by means of a Maximum Likelihood (ML) classification
using the previously computed statistics (each class is modeled using a
multivariate Gaussian):

xt
0 = arg max

xt
p(yt|xt)

Concerning the point 2 of this procedure, in Sec. 3.2.1, we did not address

the problem of selecting a suitable value of k for the k-NN based bandwidth

estimation of (3.14). A typical choice is to set k to a fraction, e.g. 10%, of the

sample set cardinality, which, given the robustness of k-NN, provides usually

good results. For some nodes, however, this simple choice turned out to be un-

satisfactory, causing a proliferation of modes in the Mean-Shift clustering and

a certain instability in the segmentation. This is not surprising, after all, given

that the same algorithms are used at all nodes, from the root, corresponding to

the whole image, to terminal leaves corresponding sometimes to much smaller

and much more fragmented regions.

Therefore, we use a simple heuristic procedure that adapts the value of k
to minimize such unlikely behaviors. Our underlying assumption is that, most

of the times, the data structure can be well described through one or more

binary splits, hence the procedure is based on quantifying the “stability” of

the Mean Shift procedure in detecting a number of modes equal to 2: starting

from an initial guess of k, namely k0 = round(α0|ỹt|), with ỹt being the

current sample set under analysis and 0 < α0 < 1 being the desired fraction

of |ỹt|, e.g. 0.1, the basic Mean Shift procedure described in Sec. 3.1.2 is run

multiple times (at most C1 times), each with a different initialization, while

the number of deteted modes is kept under observation. A good value of k is

the one that allow the stable detection of 2 modes (within a certain number C2

of subsequent iterations), and from the initial value k0 it can be modified as

follows:

Algorithm 3.3.2 (Automatic k refinement)

1. Set the detected number of modes D = 0, the current k = k0, and the
total number of iterations it = 0;
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2. Set seq = 0, being the current count of subsequent iterations where the
number of detected modes remains unchanged;

3. repeat the following steps while it < C1 and seq < C2:

• if the current k is outside of the range [α1k0, α2k0], with α1 <
α0 < α2, accept it and exit;

• select a random “unused” starting center from the sample set and
mark it as “used”;

• run the basic Mean Shift procedure: if a new mode is detected,
update the total number of modes D = D + 1 and set seq = 0,
else set seq = seq + 1;

• if D > 2, update the current value of k = round(k + Δk) and
return to step 2;

• if D < 2 and seq > N2
2 , update the current value of k = round(k−

Δk) and return to step 2;

• Set it = it + 1;

4. accept the current value of k and exit.

This procedure also provides a solid criterion to decide whether to split

a node or not, since the stable detection of a single mode qualifies the corre-

sponding region as elementary.

Using a more reliable technique to carry out the initial clustering does cer-

tainly improve the subsequent MRF optimization, but there is a more subtle

and important consequence in the context of hierarchical segmentation. In fact,

the MS-ML clustering provides a quite reliable segmentation in the spectral do-

main, while the MRF model allows to take into account contextual information

to regularize the final map. The points that change label during MRF optimiza-

tion turn out to be “outliers” in the spectral domain for the final class ω, that is,

their statistics will be far apart from those of points originally attributed to ω
by the MS-ML technique. If class ω is segmented again, such outliers can give

origin to one or more separate clusters, leading to critical over-segmentation

errors. We are now in the position to solve this unwanted phenomenon, by

simply erasing such points from the new sample set. Notice that this was

not possible with a GLA initialization, since the initial segmentations were in

general so far from the final segmentation (compare again Fig. 3.3) that such

erasure would amount to eliminate large valid chunks of data.
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DB. B. LB. C. G. O. R. Br. u.a.

D.Blue 49083 2749 0 0 0 0 0 0 94.7%

Blue 2467 44573 0 0 0 0 0 0 94.7%

L.Blue 0 0 20922 0 6 0 0 0 99.9%

Cyan 0 0 8 29944 20361 0 0 0 59.5%

Green 0 0 14866 11383 5472 0 0 0 17.2%

Orange 0 0 6 0 0 13129 1436 6574 62%

Red 0 0 0 0 0 2 14987 6863 68.6%

Brown 0 0 0 0 0 5 0 17308 99.9%

p.a. 95.2% 94.2% 58.4% 72.5% 21.2% 99.9% 91.2% 56.3% 74.5%

Table 3.1: Confusion matrix for the segmentation of Fig. 3.6(c). In

bold, correct assignments. (p.a. is the producer’s accuracy, u.a. the

user’s accuracy, as defined in Sec. 3.4.1).

3.3.2 Preliminary Experimental Results

In order to validate the ideas that have led to the proposed technique and to

provide a first ispection in its potential, several tests of the algorithm have

been performed on synthetic data.

The three-band synthetic image, shown in Fig. 3.6(a), has been obtained

by projecting the ground truth of Fig. 3.6(b) on the data space, adding white

noise, and finally performing a light spatial filtering. The reference algorithm

generates the tree structure shown in Fig. 3.7(a) and the segmentation map of

Fig. 3.6(c), while the new algorithm generates the tree structure of Fig. 3.7(b)

and the segmentation map of Fig. 3.6(d).

For this experiment, we set the main parameters of the automatic procedure

for the selection of k as α0 = 0.1,Δ = 0.05, C1 = 100, C2 = 5.

It is clear that the old technique has a hard time fitting the intrinsic structure

of the data, that has been willingly chosen as non-binary. In some cases, infact,

a ternary split is needed, for example in the root node: it can be noticed infact

that, at a coarser scale of observation, three spectrally coherent macroregions

are present that are also almost “equally spaced” in the spectral domain. Here,

the algorithm must simulate it by means of a sequence of two binary splits.

Sometimes, this has no detrimental effect, like in the root itself, where the

dark-blue, light-blue and orange macroregions are correctly singled out, but in

at least one instance, the split of the light-blue regions, this leads to a grossly
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(a) (b)

(c) (d)

Figure 3.6: Testing the new TS-MRF/MS algorithm on synthetic data:

test image (a), ground truth (b), 8-class segmentation with the classical

unsupervised TS-MRF (c) and the proposed method (d).
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(a) (b)

Figure 3.7: Testing the new TS-MRF/MS algorithm on synthetic data:

tree structures for the experiment of Fig. 3.6 retrieved respectively

using the old unsupervised TS-MRF (a) and the new TSMRS/MS al-

gorithm (b).

DB. B. LB. C. G. O. R. Br. u.a.

D.Blue 50429 4590 0 0 0 0 0 0 94.7%

Blue 1121 42732 0 0 0 0 0 0 94.7%

L.Blue 0 0 35724 9224 2634 0 0 0 99.9%

Cyan 0 0 16 27990 275 0 0 0 59.5%

Green 0 0 55 4113 22930 0 0 0 17.2%

Orange 0 0 7 0 0 13108 736 5993 62%

Red 0 0 0 0 0 16 14266 903 68.6%

Brown 0 0 0 0 0 12 1421 23849 99.9%

p.a. 97.8% 90.3% 99.7% 77.7% 88.7% 99.8% 86.8% 77.5% 88.1%

Table 3.2: Confusion matrix for the segmentation of Fig. 3.6(d). In

bold, correct assignments.
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inaccurate segmentation, as also testified by the confusion matrix1 reported in

Table 3.1. From another point of view, this inaccuracy can be seen as the de-

tection of a false intermediate contour: a further binary split of the cyan region

using the old technique succeeds in revealing the correct missing contour, but

the overall result will be an obvious oversplitting of the macroregion.

On the contrary, the proposed TS-MRF/MS provides the correct (or a cor-

rect) tree structure for the test image, with a first ternary split at the root node

that singles out the correct macroregions, each of which is then split in two or

three regions, following their actual composition. As a consequence, the seg-

mentation map is globally more accurate, with overall accuracy jumping from

74.5% to 88.1%, but for some random sparse errors, as obvious from the anal-

ysis of the corresponding confusion matrix of Table 3.2. Major improvements

have been obtained on the light-blue macroregion, due to the direct ternary

split, and on the orange one. For the latter case, we observed in particular that

the new split initialization method leads to a more accurate contour detection,

thus pointing out again the limits of the old GLA-based algorithm.

For this preliminary experiment, an interesting result concerns also the

total number of classes detected by the two algorithms, that is, the cluster

validation. Using the old version of the algorithm, the segmentation process

does not stop until the maximum (overestimated) number of classes is reached,

while with TS-MRF/MS, it stops automatically when 9 classes are detected,

with only one elementary region oversplit, thus resulting, for the case, in a

drastic reduction of oversegmentation phenomena.

3.4 Application to Remote Sensing

3.4.1 Classification of Multispectral SPOT Data

Spot Image of Lannion Bay (France)

The unsupervised TS-MRF/MS algorithm has been applied to SPOT satellite

images. The scene (Fig. 3.8 - 3.10) is composed of three 1480× 1024 images

with different wavelengths in the visible spectrum and represents the Bay of

Lannion in France in August 1997. The goal of this study was to determine

the land cover of this area. So as to reach this aim, the geographers of the

Costel laboratory (University of Rennes 2) built a list of eight classification

1Details on the confusion matrices and on the general accuracy assessment framework will

be discussed in Sec. 3.4.1.
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categories: sea and water, sand and bare soil, urban areas, forests and heath,

temporary meadows, permanent meadows, vegetables, corn.

Thanks to both tests on the land and photointerpretation, they were also

able to provide samples of these eight categories on the multispectral SPOT

image of the scene. The resulting ground truth (Fig. 3.11), has been here used

to assess the accuracy of the classifications.

Accuracy Assessment Method

By the use of the ground truth, the accuracy of the old and new TS-MRF based

classification methods is assessed based on its confusion matrix. Recall that the

entry of ith row and jth column of this matrix is the number of sample pixels

from jth class that have been classified as belonging to the ith class. Since the

tested methods are unsupervised, associations of retrieved labels with actual

ground truth classes is made by selecting the configuration that gives the best

overall accuracy.

Various indicators are derived from this matrix. First, two error assess-

ments can be computed for each class: the user’s accuracy of class i is defined

as aii/ai+, where ai+ is the ith row marginal (sum of row entries); conversely,

the producer’s accuracy of this class is defined as aii/a+i, where a+i is the ith
column marginal.

Beside these two class-based parameters, three global quality indicators

are also computed. The overall accuracy of the method defined as τ =∑
i aii/N , is the percentage of sample pixels that are well classified. An-

other common indicator is the so-called Kappa parameter, defined as κ =
(N
∑

i aii −
∑

i ai+a+i)/(N2 −∑i ai+a+i), which discounts successes ob-

tained by chance and is therefore more conservative (it can be also negative).

Finally, in order to give the same weight to all classes’ contributions to the ac-

curacy, irrespective of the number of samples in each one, the confusion matrix

can be normalized with the iterative proportional fitting algorithm [72], so that

all column and row marginals sum up to unity. The overall accuracy τnorm

computed on such a modified matrix is called normalized accuracy.

3.4.2 Experimental Results for Unsupervised Classification

For both the original TS-MRF algorithm and the new version proposed here we

use the same settings for the MRF optimization part, and stop the tree growth

manually at 8 classes in order to allow rigorous assessment through the avail-

able ground truth. This choice is justified by the fact that, unfortunately, for this
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Figure 3.8: SPOT multispectral image of Lannion Bay: channel XS1

( c©SPOTImage/CNES).
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Figure 3.9: SPOT multispectral image of Lannion Bay: channel XS2

( c©SPOTImage/CNES).
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Figure 3.10: SPOT multispectral image of Lannion Bay: channel XS3

( c©SPOTImage/CNES).



66 CHAPTER 3. MEAN SHIFT CLUSTERING FOR TS-MRF

Figure 3.11: Ground-truth of the SPOT image of Lannion Bay: legend

in Fig. 3.12. c©COSTEL.
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Sea and water

Sand and bare soils

Urban Areas

Forests and heath

Temporary meadows

Permanent meadows

Vegetables

Corn

Figure 3.12: SPOT image: legend of land-cover classes.

kind of data both the tested algorithms are generally unsuccessful in resolving

the cluster validation; however, it is worth reminding that a general solution

to this problem is really far away to come, thus making this lack irrelevant if

compared with the other qualifying points that characterize the techniques.

Anyway, as an alternative validation method, we could let the segmentation

process evolve until the automatic stop and compare the obtained map with

some “reliable” one, e.g. obtained by means of a supervised process as in

[1], using some more general indicator like the Local or Global Consistency
Errors [73] that can also compare maps with a different number of classes. For

this application, we decide to use the rigorous assessment described earlier in

this section, renouncing to test the cluster validation and resorting to a manual

stopping criterion in order to fully highlight the remaining potentials of the

proposed technique.

Turning back to the experiments, the mode detection procedure uses here

α0 = 0.1, α1 = 0.08, α2 = 0.12,Δ = 0.05, C1 = 100 and C2 = 10.

The improvements due to the use of the MS-ML are quite clear since the

first stages of segmentation. In Fig. 3.13(a) we show a detail of the source

image, along with two maps that, for both the original (b) and new version

(c) of the algorithm, show the “sea” class (in white) as identified by the top-

level clustering, before any MRF regularization. The errors introduced by the

GLA are quite evident in Fig. 3.13(b), as well as the very high accuracy of

the MS-ML classification of Fig. 3.13(c). Such a good initialization will likely

improve, and certainly simplify the subsequent optimization process (making

up for the increased complexity of the MS-ML clustering). Moreover, it will

allow to single out easily the few label-switching points to eliminate in further
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(a) (b) (c)

Figure 3.13: Detail of the XS3 channel ( c©SPOTImage/CNES) (a),

initial sea class split using GLA (b), and MS-ML (c).

W. B.S. U. F. T.M. P.M. V. C. u.a.
Water 847 0 0 0 0 0 0 0 100%

B. Soil 0 3003 937 3 0 19 12 3 75.5%

Urban 45 47 82 1828 41 6 0 8 4%

Forests 2 9 4 1944 14 6 0 23 97.1%

Temp. M. 0 46 252 11 292 152 1 5 38.5%

Perm. M. 0 5 6 358 284 209 3 41 23.1%

Veget. 226 50 10 11 0 0 0 0 0%

Corn 0 0 8 55 337 557 9 1710 63.9%

p.a. 75.6% 95% 6.3% 46.2% 30.2% 22% 0% 95.5% 59.8%

Table 3.3: Confusion Matrix corresponding to the segmentation map

of Fig. 3.14.

W. B.S. U. F. T.M. P.M. V. C. u.a.
Water 1055 0 0 0 0 0 0 0 100%

B. Soil 0 2183 55 0 0 0 0 0 97.5%

Urban 0 494 530 29 0 12 11 1 49.2%

Forests 65 13 0 4023 1 0 0 41 97.1%

T. M. 0 142 634 27 321 121 2 19 25.3%

P. M. 0 29 38 99 322 273 11 38 33.7%

Veget. 0 298 41 0 0 0 1 0 3.4%

Corn 0 1 1 32 324 543 0 1691 65.2%

p.a. 94.2% 69.1% 40.8% 95.6% 33.2% 28.8% 4% 94.5% 74.4%

Table 3.4: Confusion Matrix corresponding to the segmentation map

of Fig. 3.16.
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Figure 3.14: Unsupervised segmentation of the SPOT image obtained

using the original TS-MRF algorithm.
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Figure 3.15: Tree structure retrieved for the map of Fig. 3.14.

W. B.S. U. F. T.M. P.M. V. C. u.a.
Water 847 0 0 0 0 0 0 0 100%

B. Soil 0 3003 937 3 0 19 12 3 75.5%

Urban 0 46 252 11 292 152 1 5 33.2%

Forests 47 56 86 3772 55 12 0 31 92.9%

T. M. 0 5 6 358 284 209 3 41 31.3%

P. M. 0 0 6 19 129 260 3 526 27.6%

Veget. 226 50 10 11 0 0 0 0 0%

Corn 0 0 2 36 208 297 6 1184 68.3%

p.a. 75.6% 95% 19.4% 89.6% 29.3% 27.4% 0% 66.1% 71%

Table 3.5: Confusion Matrix corresponding to the segmentation maps

of Fig. 3.18.
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Figure 3.16: Unsupervised segmentation of the SPOT image obtained

using the proposed TS-MRF/MS algorithm.
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Figure 3.17: Tree structure retrieved for the map of Fig. 3.16.
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Figure 3.18: 8-class segmentation map obtained through the origi-

nal TS-MRF (up to 10 classes) with two subsequent manual merging

(semi-supervised split and merge).
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spectral clustering steps.

The final segmentation maps obtained with the original and improved TS-

MRF algorithms are reported in Fig. 3.14 and Fig. 3.16, respectively. Fig. 3.15

and Fig. 3.17 instead, show the tree structures detected by both algorithms. Al-

ready at a visual analysis, results provided by the proposed version are much

more accurate than those of the original algorithm: no major losses are notice-

able, at least on top level classes, unlike in the map of Fig. 3.14 where a serious

oversplitting of the “forests” class sticks out. Numerical results confirm such

empirical observations: the overall classification rate goes from around 60%

to 74.4% mainly due to the more precise detection of some large classes, such

as the “forests” and “urban areas” classes, as appears from the confusion ma-

trices reported in Tab. 3.3 and 3.4. Improvements are confirmed also by the

other overall accuracy figures, being κ = 68.7%, τnorm = 65% for the map

obtained with new technique, largely outperforming the old one that provides

instead κ = 51.6%, τnorm = 41.6%.

Such an improvement can be likely ascribed to the better segmentation

accuracy obtained in the first steps, also due to the more flexible tree structure.

As can be seen in Fig. 3.17, in fact, the new technique, by resorting directly to

a 3-class top-level split, immediately detects and validates the “forests” class,

preventing it from being oversplit in later stages.

To definitely assess the new results, we also decided to compare the new

map with the one of Fig. 3.18, obtained using the old technique and arrest-

ing the segmentation process when the 10-class map is retrieved, and then

manually canceling the two most evident oversplits. This accounts the use of

a semi-supervised split-and-merge procedure similar to the one discussed in

[74]. Even in this case, the new algorithm outperforms the method described

above, as the latter only provides a 71% overall accuracy (see the confusion

matrix of Tab. 3.5).

3.4.3 Retrieving the Tree Structure for the Supervised Case

Finally, we present an interesting result concerning the TS-MRF based super-
vised segmentation technique described in [1] and referred to therein as TS/U.

The Supervised TS-MRF Algorithm

The aforementioned technique implements a supervised TS-MRF based seg-

mentation that makes use of some necessary prior information: the number K
of classes, statistics on the class-wise spectral distributions of pixels and, of
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course, an appropriate tree structure to fit the data into a TS-MRF model. The

basic difference between the unsupervised and supervised TS-MRF algorithms

stands on the fact that in the latter case no tree structure have to be discovered

during the segmentation process, as we dispose of a given one.

To briefly describe the basics of the supervised procedure, let us start from

the posterior model introduced in Sec. 2.1.4. Considering a TS-MRF model-

ing, let Xt be the Kt-ary field associated with node t and Y t = {Ys : s ∈
S, Xs = t} ⊆ Y be the set of data whose labels belong to some descendant

class of t, which is known given xω(t). As we said before, each Xt can be con-

sidered as a Kt-ary Potts field in order to implement the recursive maximiza-

tion procedure. Indeed, we have to consider a posterior distribution written

as:

p(xt|xω(t), yt) ∝ exp[−βtNt]p(yt|xt, xω(t)) = (3.16)

= exp[−βtNt]
∏

s p(yt
s|xt

s, x
ω(t)
s ).

Here, the likelihood term p(yt|xt, xω(t)) needs to be better defined. In fact,

since the descendant fields of node t are unknown for the time being, we are

only deciding, for each site, if it belongs to some of the left or right descen-

dant classes, without exactly specifying which one. Therefore, we don’t know

which normal distributions to use to carry out the test.

To solve this problem, we propose the following “natural” solution for

the supervised case. Let us consider the set of children {ci(t)}i=1,...,Kt of an

internal node t, and define γ(h) = {t ∈ T̃ : ν(h) is a prefix of ν(t)}, the

set of the descendant leaves of h. Now we can define the likelihood terms of

Eq. 3.16 as:

p(yt
s|xt

s, x
ω(t)
s ) = max

k∈γ(xt
s)

p(ys|xs = k), (3.17)

where xt
s ∈ {ci(t)}i=1,...,Kt and p(ys|xs = k) are the normal densities given

in (2.3). In other words, to decide which children node the current site should

belong to, the best Kt Gaussian distributions corresponding to “true” classes

are considered, being the most likely respectively in γ(c1(t)), . . . , γ(cKt(t)).
By proceeding so, the tree-structure involves only the prior MRF model while

no structural constraints are transferred on the likelihood term p(y|x).
Note that the best fitting Gaussian chosen at this point is only a temporary

choice, taken to well fit the data during this intermediate split, but further splits

can change such decision based on newly available contextual information.
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W. B.S. U. F. T.M. P.M. V. C. u.a.
Water 527 0 0 1 0 0 0 0 99,8%

B. Soil 1343 18 0 0 0 0 1 98,6%

Urban 0 94 416 1 7 17 0 2 77,5%

Forests 13 0 0 1518 0 0 0 27 97,4%

T. M. 0 6 17 1 221 117 5 10 58,6%

P. M. 0 4 0 11 66 63 0 30 36,2%

Veget. 15 44 17 11 19 0 0 0 0%

Corn 0 0 0 48 77 197 0 436 57,5%

p.a. 95% 90% 89% 95,4% 56.7% 16% 0% 86% 83.7%

Table 3.6: Confusion Matrix corresponding to the segmentation map

of Fig. 3.19.

W. B.S. U. F. T.M. P.M. V. C. u.a.
Water 544 0 0 3 0 0 0 0 99.4%

B. Soil 0 1369 10 0 0 0 0 0 99.3%

Urban 0 65 440 8 51 10 0 6 75.8%

Forests 11 1 0 1548 7 1 0 28 97%

T. M. 0 9 18 11 105 102 5 33 37.1%

P. M. 0 12 0 0 101 78 0 66 30.3%

Veget. 0 43 0 0 33 33 0 1 0%

Corn 0 0 0 21 93 170 0 364 56.2%

p.a. 98% 91.3% 94% 97.3% 27% 20% 0% 73% 82.3%

Table 3.7: Confusion Matrix corresponding to the segmentation map

of Fig. 3.21.

Unsupervised TS-MRF/MS based Tree Building

The supervised procedure has been run here replacing the original binary tree-

structure of Fig. 3.19, obtained by visual inspection, with the tree structure of

Fig. 3.17 detected by the unsupervised technique proposed in this paper.

For this particular experiment, the labeled pixels available on the ground

truth of Fig. 3.11 are divided into two disjoint subsets: the learningset is used

to learn the mean spectral response and the inter-band covariance matrix of

each category, so that we could perform supervised classifications according to

the Gaussian assumption discussed in Sec. 2.1.1, while the remaining samples,

the test set, is kept to assess the accuracy of the classifications.

The quite accurate segmentation map obtained is reported in Fig. 3.21,

showing an overall accuracy of 82.3%, that is only 1.5 points less than the

one obtained using the hand-picked tree structure as input of the supervised
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Figure 3.19: Supervised segmentation of the SPOT image obtained

using the TS-MRF based algorithm and the tree structure of Fig. 3.20.
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Figure 3.20: Hand picked tree structure used for the original super-

vised segmentation of Fig. 3.19.
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Figure 3.21: Supervised segmentation of the SPOT image obtained

using the TS-MRF based algorithm and the tree structure of Fig. 3.17,

discovered automatically using the unsupervised TS-MRF/MS algo-

rithm.
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process. Confusion matrices of Tab. 3.7 confirm the comparability of the two

results also in terms of per-class figures, with some losses occurring only for

the temporary meadows class.

This seems to show that the tree-structure detected here does fit well the

source data and could well be used as a preliminary tool in supervised TS-

MRF segmentation, eliminating the need for such a heavy user intervention

like providing a tree description of the source data.



Chapter 4

Hierarchical Multiple Markov
Chain Models for Texture
Segmentation

In this chapter, attention is moved on the problem of texture segmentation.
A new hierarchical model that makes use of a set of Markov chains to de-
scribe spatial interactions among texture elements at multiple scales, namely
the Hierarchical Multiple Markov Chain (H-MMC) model, is introduced and
its properties discussed in detail. The corresponding segmentation algorithm,
called Texture Fragmentation and Reconstruction (TFR), is therefore presented
and its performaces assessed using two different segmentation benchmarks.

4.1 Hierarchical Texture Modeling

4.1.1 Hierarchical Representation of Textures

A complex scenario can be usually segmented in different, equally reasonable

ways, depending on the scale of observation. As an example, consider the

front of a building with an array of windows. At a very fine scale one is likely

to distinguish the glasses, the frames of the windows, and the walls. Then,

at a coarser scale, frames and glasses can be considered as a unique texture

(window), since they are strongly related spatially, while at the coarsest scale

window and walls, which also relate to each other but with longer range spatial

interactions, merge into the building texture. In other words, the cluster valida-

tion problem becomes an ill-posed problem, if the scale is not fixed somehow.

81
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The ill-positioning of the cluster validation problem is very common in many

computer vision applications, and, in the case of the textures, it arises directly

from their intrinsic multi-scale definition. Based on this observation, we pro-

pose here a method which provides a hierarchical segmentation, rather than

a single segmentation with an estimated (somewhat unreliable) number of re-

gions. By doing so, we get a scale-dependent interpretation of the image, rep-

resented by a set of nested segmentations which can be associated with a tree

structure where each of its prunings corresponds to a possible segmentation.

In order to achieve this goal, we resort to a hierarchical and discrete mod-

eling of the textures. To do this, a discretization in the color domain is there-

fore needed. Such a process is just a color partition applied either directly to

the original image or, more generally, to a transformed image, like pixel-wise

feature planes properly extracted from the original one.

4.1.2 The Hierarchical Multiple Markov Chain Model

The starting point for the construction of the proposed image model is an ap-

propriate image partition in which each segment corresponds to an “elementary

texture”, or simply “elementary state”1, that will be a collection of connected

regions which are close both in their color response and in their contextual

model features (defined below) which account for region shape and interac-

tions among neighboring regions. A complete hierarchical description of the

image is then obtained by pairwise associating and merging together the so

defined elementary states, implicitly providing a set of progressively coarser

resolution textures, from the initial partition to the final single full-image state.

In order to detail the model, let us assume that an image partition in ele-

mentary states is available. Consider the eight main spatial directions (north,

northeast, east, etc...) and for each of them focus on the pixel-wise state evo-

lution along it. These processes can be modeled through Multiple Markov
Chains (MMC). Fig. 4.1 clarifies the idea on a simple (urban) texture (a). In

(b) the partition in three states is shown while in (e) is represented a corre-

sponding chain on a fixed direction (north). According to the idea of hierar-

chical interpretation, the next step is the selection of two, out of three, states

to merge. In this simple example it is easily justified, intuitively, the choice

of green spots and buildings, see the 2-state map (c) and the hierarchy tree

(d), which are spatially strongly related (how do we automatically address this

1“Texture” in the sense suggested by the proposed model. In the following, the terms state,

texture or class are to be meant as interchangeable.
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Figure 4.1: H-MMC model: urban area sample (a); 3-state (b) and 2-
state (c) maps; states hierarchy (d); 3-state (e) and 2-state (f) Markov

chains for the north direction.
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issue will be explained later). After merging all chains will be reduced by

one state, as graph (e) reduces to (f) for the northern direction, and the 3-state

MMC reduce to a 2-state MMC as well. In general we would start from a L-

state partition (corresponding to the finest scale texture segmentation) to reach

a single global state (no segmentation at all) after L − 1 merging steps, while

collecting L MMC’s corresponding to different scales.

The so obtained Hierarchical MMC (H-MMC) stack can be formally de-

fined as follows. Let Ω(n) be the state set at a given “scale” n (n is also the

cardinality of Ω(n)), the transition probability matrix for any chain (direction)

j = 1, . . . , 8 (describing both intra- and inter-state transitions) is defined as

P(n)
j = {p(n)

j (ω′|ω) : ω′, ω ∈ Ω(n)} where

p
(n)
j (ω′|ω)

�
= Pr(xs+1 = ω′|xs = ω, chain = j) ∀ω, ω′ ∈ Ω(n), (4.1)

xs represents the state of a generic site s ∈ S, and s + 1 is the site next to s
along direction j. These probabilities are easily estimated as

p
(n)
j (ω′|ω) =

|Sω−→j ω′ |
|Sω|

,

where Sω is the set of pixels labeled ω and Sω−→j ω′ = {s ∈ Sω : s + 1 ∈
Sω′ , chain = j}. The H-MMC model is consequently associated with the

transition probability set

P = {P(n)
j : 1 ≤ j ≤ 8, 1 ≤ n ≤ L}, (4.2)

and P(n) = {P(n)
j : 1 ≤ j ≤ 8} is just the n-th MMC model component.

The transition probabilities indicated on the graphs (e)-(f) of Fig. 4.1 give

an idea of their relationship with the visual appearance of the texture. First,

note that, for each fixed scale n, the intra-state transition probabilities of a

given state account for the shape of its region components. As an example for

the road network we expect rather large values for the north direction w.r.t.

other directions. On the other hand, the remaining inter-state transition prob-

abilities provide a statistical description of the context, that is the spatial in-

teraction between states, accounting for the relative occurrence and mutual

positioning of adjacent regions.

As the states are progressively coupled in a fine-to-coarse texture repre-

sentation a sequence of state sets is generated: Ω(L), Ω(L−1), ...,Ω(1). Observe

that, once the transition probabilities are known at a given scale n of the pro-

cess, they are also automatically obtained for the coarser level n−1 above and,
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eventually, if the hierarchy tree is given one has just to estimate these attributes

at the finest level L. In fact, if we either denote with (ωa, ωb) ∈ Ω(n) × Ω(n)

the couple of states whose merging generated ω ∈ Ω(n−1), i.e. (ωa, ωb) ≡ ω,

or just (ωa, ωb) ≡ (ω, ∅) when ω is not the merging state associated with step

n, then by using the total probability law it can easily be shown that2:

p(ω′|ω) = Pr(ω′a ∪ ω′b|ωa ∪ ωb) =
p(ωa)
p(ω)

[p(ω′a|ωa) + p(ω′b|ωa)] +

+
p(ωb)
p(ω)

[p(ω′a|ωb) + p(ω′b|ωb)], (4.3)

where p(ω) = p(ωa) + p(ωb), and eventually any element of P(n−1)
j can be

obtained by a linear combination of elements of P(n)
j .

Thanks to the above-mentioned property, P(n) does not need to be com-

puted for each n < L, and the H-MMC model is completely specified by the

triple (Ω(L),P(L), T ), where T is the binary hierarchy tree.3

Similarly, the MMC parameters of a given state (distributed on several

unconnected regions) can be related to the parameters of the locally (to the

single connected regions) defined MMCs through a simple weighted average

(see Eq. 4.4). This property which is summarized below is very useful during

the segmentation task, as it allows to characterize the image from the bottom

starting with the featuring of single connected regions, or “fragments”.

Region-wise MMC features

Suppose that a region Sω ∈ Ω(L) associated with state ω is composed of Nω

fragments {Sωk
}k∈1,...,Nω , where ωk is the substate of ω identifying the k-th

fragment: ω =
⋃Nω

k=1 ωk. Therefore the total probability law yields

p
(L)
j (ω′|ω) =

Nω∑
k=1

p
(L)
j (ω′|ωk)p(ωk), (4.4)

which relates the global description of a texture to the region-wise features

p
(L)
j (ω′|ωk) and p(ωk) given by

2We neglected indices j and n for the sake of simplicity.
3Hence, Ω(L) is the set of terminals on T , while for each n < L, Ω(n) is the set of terminals

of a pruning of T .
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p
(L)
j (ω′|ωk) =

|Sωk−→j ω′ |
|Sωk

|
�
= Aωk

(ω′, j) (4.5)

and p(ωk) = |Sωk
|/|S|, respectively. Eventually the L × 8 feature matrix

Aωk
(ω′, j) defined in Eq. 4.5, which characterizes each fragment in terms of

shape and context, can be used to carry a fragment-level clustering in order to

define the initial states Ω(L).

The segmentation problem

Let us now turn to the segmentation problem. Since we are assuming an unsu-

pervised context, we do not a priori know how many and what kind of textures

may be found in the image to be segmented.

The determination of the number of textures of a given image, classically

referred to as the cluster validation problem, is strictly related to that of finding

the internal structure of each single texture. Indeed, according to the H-MMC

modeling, a texture is nothing but a local visual property of a surface where

the locality has to be meant at multiple spatial scales. This definition allows to

describe complex textures but it also says that textures which seems distinct at

fine spatial scale collapse in a single texture, sooner or later, at a coarser scale,

even if their spatial interaction is weak. As a consequence the application of

this model eventually allows us to circumvent the cluster validation problem,

since it aims at recursively retrieving textures which cover larger and larger

areas of the image until the whole image is associated with a single global

texture. The final result is therefore a hierarchical segmentation map, that is a

stack of nested segmentations varying for number of classes: the smaller the

number of classes, the coarser the scale. In general evaluating the accuracy

for such a product is quite difficult, but if one has data with ground-truth at

a single scale, then he only has to seek for the best-fitting segmentation map

contained into the stack for the comparison. The automatic recognition of the

right scale (number of classes) is not object of this work but is something that

in any case can be separately addressed in a subsequent step, possibly aware

of the final application for which the segmentation is needed.

To better fix the above considerations let us discuss the example of Fig. 4.2.

The image (a) is composed by “two” textures represented as states w and z.

According to the H-MMC modeling we must somehow relate progressively the

elementary textures until we have a unique state representing the whole image.

Assume without loss of generality that we start from only four elementary tex-

tures, denoted w, u, v, y, easy to localize in the image. In (b)-(d) are depicted
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Figure 4.2: Image structure ambiguity. A texture mosaic (a) and sev-

eral binary (d) and non-binary (b)-(c) hierarchical trees.

some possible choices for the model hierarchy which represent both intra- and

inter-texture dependencies. A first observation is about the ill-positioning of

the cluster validation problem. We said we have two textures, but actually a

human observer could also guess there are four: it depends on the applica-
tion4 Therefore we can expect that such data will be even more confusing for

a computer. The question is rather how to correctly relate the fine textures in
order for the hierarchical segmentation to contain both the 2- and the 4-class
partition.

To this end the structure (b) seems to be the worst since we jump directly

from a 4-class partition to the 1-class one, by merging all 4 classes in one step.

Structure (c) appears a more reasonable solution that contains both the desired

partitions. However, if we better look at the data we realize that states u and v
are strongly related and may be merged apart from y which only later on will

be joined to form state z, as represented by binary structure (d). Although this

is just a case, indeed there are two good motivations to restrict our attention to

“binary” structures. The former is computational: we restrict our search when

seeking the hierarchy tree. The latter is about the information conveyed by the

hierarchical segmentation: a larger number of internal nodes (the maximum is

achieved with binary structures) means more possible prunings and, therefore,

a larger number of image interpretations/segmentations provided. For these

reasons we only deal with binary hierarchies in the following.

4For example, think about a region-based coding algorithm which would be more efficient

on a 4-class partition.
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Figure 4.3: TFR flow chart.

4.2 Texture Fragmentation and Reconstruction

In the previous section we have introduced the H-MMC texture model and

shown that it can be used for the task of hierarchical segmentation. We

have also shown that such a model is completely defined by the triple

(Ω(L),P(L), T ), and motivated the restriction on T to be a binary tree. Here

we clarify how these three items are determined by the proposed Texture Frag-
mentation and Reconstruction (TFR) segmentation algorithm which follows

the splitting-and-merging paradigm and whose general scheme is shown in

Fig. 4.3.

The proposed solution is quite simple. The first two blocks, CBC (Color
Based Clustering) and SBC (Spatial Based Clustering), perform an over-

partition of the image that provides the initial finest-scale texture states Ω(L)

which are therefore progressively related in the last merging process yielding

the desired hierarchical segmentation with the associated tree structure T .

Any finest resolution texture ω ∈ Ω(L) is a collection of image fragments

homogeneous w.r.t. both their internal “visual appearance” (average color)

and the contextual characteristics (shape and spatial interaction with adjacent

states) conveyed by the MMC feature set (Eq. 4.5). In order to perform such a

classification task, the first CBC block outputs a pixel-by-pixel “color” classi-

fication (see Sec. 4.2.1) in Kc color states, also referred to as partial (MMC)
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states. At this level each group of adjacent pixels having a same label are

assigned to an image “fragment” and all subsequent TFR processing is made

considering fragments (rather than pixels) as atomic elements. All contours

are therefore fixed in the CBC step, and later, in case, they can only disappear

because of region merging. Each color state is therefore further split in Ks

(full-defined) states by the SBC block (see Sec. 4.2.2) which operates a cluster-

ing aimed at putting together fragments with similar MMC features (Eq. 4.5).

Therefore a total of L = Kc ×Ks states are eventually defined.

Once the set of L initial finest texture states, Ω(L), is completed, the last

texture merging process (see Sec. 4.2-C/D) can recursively retrieve textures at

larger and larger scale.

In order to clarify the overall process an experiment is detailed in Fig. 4.4.

In (a) is the image to be segmented, whose Kc-color segmentation map (CBC

output, Kc = 24) is shown in (b) in false colors. Given the complexity of the

image, a partial CBC map (involving only 4 out of 24 color states) is shown

in (c) for an easier interpretation of the subsequent SBC step (since Ks = 12,

the complete SBC map would have L = 288 states!). The 4 color states are

associated with different false colors: yellow, green and violet, spanning over

two textures, and red, spanning over three textures. Focusing on these selected

states it is now easy to recognize the effect of the SBC processing on each

of them (d) and, in particular it should be evident that each of the 48 states

shown in (d) practically never belong to more than one single texture, which is

fundamental for the texture discrimination.

On the other hand, it is also worth to notice that although Ks was set much

larger than the strictly needed (the example shows that a value of 2 or 3, de-

pending on the case, could suffice for the selected color states), the subsequent

merging process (two snapshots of which are shown in (e)-(f)) is able to cor-

rectly rejoin over-split states at coarser levels. The same consideration holds

for the over-split present at the CBC level as well. Nonetheless, it is also clear

that there exists superior limits for Kc and Ks over which the states begin to

be less significative and too much localized, so that the textures may result

irreparably over-split.

Aware of this trade-off we have used heuristic rules to fix a priori both

Kc and Ks (and hence L = KcKs), as to ensure a large (but not exceeding)

number of states, L, in order to avoid under-segmentation which could not be

recovered by the merging process. If we let M be either the number of textures

expected in the image or its maximum value (depending on the information we

have), on the basis of our experimental observations, we found Kc = 2M to
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(a) data (b) CBC (c) partial CBC

(d) partial SBC (e)-(f) hierarchical map (12 and 6 classes)

Figure 4.4: TFR process evolution

be a reasonable choice. This can be intuitively justified by the fact that any

non-trivial texture has at least two modes in the color space. Hence, we are

ensuring that, on average, we have at least two color states per texture. For

Ks, instead, a good compromise is to fix it equal to M . This way, each color

may occur simultaneously in each texture (but in one contextual configuration

only) and the algorithm could keep working properly.

4.2.1 Color based Clustering

The color segmentation task (CBC) is here achieved by means of the origi-

nal version of the TS-MRF model-based unsupervised algorithm presented in

Sec. 2.3, because of several characteristics which are attractive in this context.

It uses a MRF prior modeling which helps to regularize elementary regions,

improving the robustness with respect to the noise. Moreover, a data like-

lihood description based on a multivariate Gaussian modeling helps to take

into account the correlation in the color space. Finally, its tree structured for-

mulation, similar to that of the tree-structured vector quantization algorithm

[20], speeds up the processing, ensures convergence to the desired number of

classes, and reduces large-scale effects thanks to its progressive localization.
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To cope with the specific needs of the TFR algorithm, a cost-free variation

of the splitgain introduced before is here used to define priorities in the re-

cursive splitting procedure, that only takes into account the largest decrease of

overall distortion when fitting data with two local likelihoods instead of one.

The only stopping condition lies on the achievement of the desired (a priori
fixed) number of classes Kc.

4.2.2 Spatial based Clustering

The color segmentation provided by CBC is passed to the spatial-based clus-

tering (SBC module) which further splits each of the color states in order to

generate the state set Ω(L), where each ω ∈ Ω(L) is associated with a clus-

ter of fragments {ωk} which are therefore similar (the color has been already

taken into account) also w.r.t. the contextual information carried by the MMC

features Aωk
(ω′, j), with ω′ ∈ Ω(L), defined in Eq. 4.5.

In principle, a joint estimation of Ω(L) and P(L) should be provided, for

example by means of some iterative procedure which starts from an initial

state set and alternates the computation of P(L) and Ω(L) until convergence.

We have tested this solution, but the results were not satisfying because of two

main reasons: a) the curse of dimensionality (L × 8) into the feature space,

since L is definitively too large (in our setting L = KcKs = 2M2 = 288, if

M = 12); b) the instability of the iterative process.

For the above reasons we decided to consider a simpler solution, where the

color state set Γ(Kc) computed in CBC is used in place of Ω(L) to provide the

needed fragment level characterization. Hence, each color state ω ∈ Γ(Kc) is

independently further split, generating Ks offspring states of Ω(L), as follows.

For each of the Nω fragments labeled ω, say the k-th, the corresponding Aωk
,

k ∈ {1, . . . , Nω}, is computed by Eq. 4.5 on the reduced state set Γ(Kc). Once

the probabilities Aωk
(ω′, j) = p

(Kc)
j (ω′|ωk) are computed, we convert them in

the following features, which we found experimentally more effective:

Fωk
(ω′, j) �=

⎧⎪⎨⎪⎩
log[1− p

(Kc)
j (ω′|ωk)], ω′ = ω

log[
p
(Kc)
j (ω′|ωk)

(1−p
(Kc)
j (ω|ωk))

], ω′ 
= ω
. (4.6)

Behind this solution there are two reasons. Since the original probabili-

ties have quite different dynamics, while being all equally important for the

clustering, the logarithm helps to have more uniform dynamics. Moveover, the
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normalization in the second row of Eq. 4.6 and the log operation help reducing

the dependency on the scale, emphasizing the importance of the context.

Finally, before performing the clustering in such a feature space, a feature

reduction via PCA is performed since the dimensionality of that space (Kc ×
8) is still too large for a reliable clustering. In particular, this task has been

split in two steps. A first PCA, retaining only the first component, is applied

independently for each fixed row ω′ of Fωk
(ω′, j), as to obtain a dimensionality

reduction factor 8. Then, the resulting L-dimensional feature set is further

reduced by means of a PCA which retains a number of meaningful components

such that the 75% of the energy is kept (the same rule is used for each of the

color state to be split).

Based on these (fragment-wise) features, each color state is therefore split

by clustering its fragments by means of a simple k-means algorithm.

4.2.3 Region Merging

The result of the sequence of steps described above (CBC and SBC) is a parti-

tion of the image in regions corresponding to the finest-scale textures, collected

as Ω(L)5. According to the H-MMC model formulated above, these terminal

states have now to be related until all collapse in the macro state associated

with the hierarchy root, i.e. with the whole image (coarsest scale), which cor-

responds to a recursive region merging. The aim of this process is to collect

together finer textures in order to get larger and larger (in scale) textures and

provide a nested hierarchical texture segmentation.

Since the merging process goes always on until all nodes collapse in the

tree root, what we need is a tool that indicates, at each step, which couple of

nodes must be merged, that is to say, which classes are most likely to belong to

the same texture. In doing this, we should encourage the merging of strongly

interacting classes, as they are likely to belong to the same textured area, and

take into account short-range interactions before long-range ones. To fix the

problem, let us come back to the example of Fig. 4.2 and suppose we have cur-

rently four states, u, v, y and w, two of which should be selected for merging.

As already discussed structure (d) would be preferable, and so the merging of

u and v would move in that direction. Moreover, we observe that u (corre-

sponding to the black regions) is the current smallest scale texture (this makes

u a good candidate), and is “spatially” strongly interacting with v.

5Now L is no longer just the number of colors given by CBC but it has increased because of

the splitting of each color-state by SBC.
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Based on these considerations for each terminal class ω we define a syn-

thetic parameter called “Texture Score”:

TSω =
p(ω)

maxω′ �=ω p(ω′|ω)
, (4.7)

and for each step n = L, L − 1, . . . , 2, the state with smallest score and its

“dominant neighbor” are merged, so as to move from Ω(n) to Ω(n−1).

The Texture Score measures the “completeness” of a texture, based on its

spatial scale and the interactions with neighboring classes: incomplete classes

(small TS) will be merged first, so as to obtain complex textures that are more

and more self-consistent (large TS).

To understand why the TS measures completeness, let us rewrite it as the

product of three terms:

TSω = p(ω) · 1
p(ω̄|ω)

· p(ω̄|ω)
maxω′ �=ω p(ω′|ω)

, (4.8)

where p(ω̄|ω) = 1 − p(ω|ω) is the probability of leaving state ω in any

direction. Such terms take into account, respectively, the size of class ω, its

compactness, and the presence of a dominant neighboring class. Classes with

very small TS are typically small (small p(ω)), dispersed over a large number

of even smaller fragments (large p(ω̄|ω)), and with a single dominant neighbor

(maxω′ �=ω p(ω′|ω) � p(ω̄|ω)), that is, texture fragments that should be merged

with some larger neighbors. On the contrary, a large, compact class, with no

dominant neighbor, and hence a large TS, is probably a complete texture that

should be considered for merging only in the last steps of the process. Notice

also that the product of the first two terms is an indicator of the spatial scale

of the class, while the third one measures the interaction between the class and

its dominant neighbor.

Therefore, at each step of the merging process, the class ω̂ with the smallest

score is merged with its dominant neighbor ω∗, singled out as

ω∗ = arg max
ω �=bω

p(ω|ω̂). (4.9)

Transition probability matrices and scores are then computed for the merged

classes and their neighbors (a task of negligible complexity, since it is carried

out at the class-level with no pixel-wise computation) and the process goes on

recursively until a single node is reached.

Once the complete sequence of merging is defined, a nested hierarchical

segmentation is obtained. Therefore, the user can select the segmentation that
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better serves his/her current needs. To this end a simple rule for selecting the

pruning was suggested in [75] which refers directly to the spatial scale of the

classes by defining a suitable threshold for the texture score.

Enhanced texture score

The texture score defined above measures how likely a region corresponds to a

texture w.r.t. the hypothesis that it is just a part of a larger one. When the score

is small we let the region be absorbed from the dominant neighbor, the one

that shares the largest boundary with the given region. Although in the most

cases this criterion provides satisfactory results, there are other ones where it

fails. In fact, the presence of noise may increase the length of the boundary

between two regions and make them “closer” according to the score definition.

This problem often occurs because of the boundary fragmentation phenomena

caused by color quantization during the CBC step.

In order to reinforce the measure and to improve the robustness, we con-

sidered not only the degree of contact between regions but also their spatial

distribution similarity. To do so we have introduced an additional term in the

score, which is the Kullback-Leibler divergence (KLD) between the spatial

location distributions of the regions to be compared. The KLD between two

distributions, p and q, is defined as:

D(p‖q) �= Ep

[
log

p(x)
q(x)

]
=
∫

p(x) log
p(x)
q(x)

dx, (4.10)

where Ep[·] is the statistical average according to the distribution p. Since

D(p‖q) is the average log-likelihood ratio between p and q, it is a measure

of the inefficiency of assuming q in place of p. Hence it is well adapted to

describe how close two objects are w.r.t. their spatial locations. In particular,

named qω(x) the distribution of the spatial location of state ω, where x is the

2-D spatial position, then the modified texture score TSω
KL of state ω is defined

by:

log TSω
KL

�
= min

ω′ �=ω

{
log

p(ω)
p(ω′|ω)

+ D(qω‖qω′)
}

, (4.11)

where we refer to the logarithmic formulation to properly combine the previous

score with the KLD term. Notice that by removing the KLD term the score

reduces to the original one.

The computation of the KLD is in general quite difficult for most of the

distributions, and admits a closed form only in a few cases. One such case is
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that of two Gaussian distributions p and q for which the divergence D(p‖q) is

given by [76]:

D(p‖q) =
1
2
(log

|Σq|
|Σp|

+tr(Σ−1
q Σp)+ (μp−μq)T Σ−1

q (μp−μq)−d) (4.12)

where p ∼ N (μp, Σp), q ∼ N (μq, Σq) and d = 2 is the distribution dimen-

sionality. Due to its simplicity, the above modeling has been considered here.

4.3 Benchmarking TFR

4.3.1 Application to the Prague Segmentation Benchmark

The Prague segmentation benchmark [77], developed by UTIA Institute of the

Czech Academy of Sciences, has a two fold objective: to mutually compare

and rank different texture segmenters and to support the development of new

segmentation and classification methods.

The benchmark server provides a comparative analysis of all the results

uploaded by users according to several accuracy indicators (see [78, 73, 77]

for additional details) which are grouped in the three following categories.

• Region-based criteria: CS, correct (region) detection; OS, over-

segmentation; US, under-segmentation; ME, missed regions; NE,

noise region.

• Pixel-wise criteria: O, omission error; C, commission error; CA, class

accuracy; CO, recall; CC, precision; I , type I error; II , type II er-

ror; EA, mean class accuracy estimate; MS, mapping score; RM , root

mean square proportion estimation error; CI , comparison index.

• Consistency measures: GCE and LCE, global and local consistency

error, respectively.

Accuracy assessment criteria

The region-based criteria [78] compare the machine segmented regionsRi, i =
1, . . . , M with the correct ground truth regions R̄j , j = 1, . . . , N . Two regions

of different maps correspond to each other depending on their overlapping

degree. In particular, when this degree is larger than a fixed threshold k ∈
[0.5, 1] (0.75 by default, but also full sensitivity curves and their integrals are
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available), a correspondence between the regions is assumed. Based on this

region matching principle the following region-based criteria are defined:

• CS, rate of correct (region) detection;

• OS, over-segmentation;

• US, under-segmentation;

• ME, missed regions;

• NE, noise region.

Other criteria are, instead, based on pixel-wise accuracy indicators. Nor-

mally these indexes are applicable to the supervised case, where the correspon-

dence between the classes of the machine segmentation map and those in the

ground-truth is fixed a priori, so that the accuracy indicators can be properly

computed. However, they can be used in the unsupervised case as well, if a

correspondence between the classes of the two maps can be established, even

when the number of classes is not the same. In particular, to achieve this goal

the benchmark system applies the Munkres assignment algorithm [79]. The

following pixel-wise criteria are implemented:

• O, omission error, the overall ratio of wrongly interpreted pixels;

• C, commission error, the overall ratio of wrongly assigned pixels;

• CA, weighted average class accuracy;

• CO, recall, the weighted average correct assignment;

• CC, precision, object accuracy, overall accuracy;

• I , type I error, the weighted probability of wrong assignment of classes

pixels;

• II , type II error, the weighted probability of commission error;

• EA, mean class accuracy estimate;

• MS, mapping score, emphasizes the error of not recognizing the test

data;

• RM , root mean square proportion estimation error, indicates unbalance

between omission and commission errors;
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• CI comparison index, includes both object precision and recall, and

reaches its maximum either for the ideal segmentation or for equal com-

mission and omission errors for every region (class).

A potential problem for a measure of consistency between segmentations

is that there is no unique segmentation of an image. For example, two peo-

ple may segment an image differently because either they perceive the scene

differently, or they segment at different granularities. If two different segmen-

tations arise from different perceptual organizations of the scene, then it is fair

to declare the segmentations inconsistent. If, however, one segmentation is

simply a refinement of the other, then the error should be small, or even zero.

Based on this consideration some consistency measures were defined in [73],

which are:

• GCE, the global consistency error;

• LCE, the local consistency error.

Reference segmentation algorithms

The different algorithms which have been run on the same benchmark data sets

are listed and briefly described below:

GMRF/EM (Gaussian MRF model with EM) [34]. Single decorrelated

monospectral texture factors are assumed to be represented by a set of local

Gaussian Markov random field (GMRF) models, each centered on a pixel and

limited by a sliding window of fixed size. The segmentation algorithm, based

on the underlying Gaussian mixture (GM) model, operates in the decorrelated

GMRF space of parameters. The algorithm starts with an over-segmented ini-

tial estimation which is adaptively modified until the optimal number of ho-

mogeneous texture segments is reached.

AR3D/EM (3-D Auto Regressive model with EM) [80]. This algorithm is

similar to the previous one, but the GMRF model is replaced by a 3-D auto-

regressive model, thus spectral space correlations can be modeled without ap-

proximating the spectral information.

JSEG [44]. The method consists of two independent steps, color quantization

and spatial segmentation. In the first step, colors in the image are quantized

to several representative classes that can be used to differentiate regions in the

image. The image pixels are then replaced by their corresponding color class
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labels, thus forming a class-map of the image. The subsequent spatial segmen-

tation step applies to the class-map, so as to obtain the so-called “J-image”,

where high and low values correspond to likely boundaries and interiors, re-

spectively, of color-texture regions. A region growing method is then used to

provide the final segmentation on the basis of a multi-scale J-images.

SWA (Segmentation by Weighted Aggregation) [28]. The SWA algorithm

uses a bottom-up aggregation framework that combines structural characteris-

tics of texture elements with filter responses. The texture shapes are adaptively

identified and characterized by their size, aspect ratio, orientation, brightness,

etc. Then, various statistics of these properties are used to discriminate the

different textures. In this process the shape measures and the responses of fil-

ters applied to the image crosstalk extensively. Finally, a top-down cleaning

process is applied to avoid mixing the statistics of neighboring segments.

Blobworld [81, 82]. This is the basic segmentation tool used in the content-

based image retrieval system blobworld [82]. Each image is segmented into

regions by fitting a mixture of Gaussians to the data in a joint color-texture-

position feature space by means of an EM algorithm. Each region (“blob”) is

then associated with color and texture descriptors, where the textural features

taken into consideration are contrast, anisotropy and polarity. Finally, the op-

timal number of Gaussian components is automatically selected by means of

the Minimum Description Length (MDL) criterion.

EDISON (Edge Detection and Image SegmentatiON system) [83]. This al-

gorithm is based on the fusion of two basic vision operations, that is, image

segmentation and edge detection; the former is based on global evidence, while

the latter focused on local information. This integration is realized by embed-

ding the discontinuity (edge) information into the region formation process,

and then using it again to control a post-processing region fusion. In particular

EDISON combines the mean shift based segmentation [19] with a generaliza-

tion of the traditional Canny edge detection procedure [84], which employs the

confidence in the presence of an edge [85].

Segmentation results

Two versions of the proposed segmentation method were tested on the data set,

referred to as TFR and TFR+, which are associated with the two definitions of

texture score, see Eq. 4.7 and Eq. 4.11 respectively.

The benchmark data set is composed of twenty different 512× 512 texture
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Benchmark – Colour
TFR+ TFR AR3D/EM GMRF/EM JSEG SWA Blobworld EDISON

↑ CS 51.25 46.13 37.42 31.93 27.47 27.06 21.01 12.68
↓ OS 5.84 2.37 59.53 53.27 38.62 50.21 7.33 86.91
↓ US 7.16 23.99 8.86 11.24 5.04 4.53∗ 9.30 0.00
↓ME 31.64 26.70 12.54∗ 14.97 35.00 25.76 59.55 2.48
↓ NE 31.38 25.23 13.14∗ 16.91 35.50 27.50 61.68 4.68
↓ O 23.60 27.00 35.19 36.49 38.19 33.01 43.96 68.45
↓ C 22.42 26.47 11.85∗ 12.18 13.35 85.19 31.38 0.86
↑ CA 67.45 61.32 59.46 57.91 55.29 54.84 46.23 31.19
↑ CO 76.40 73.00 64.81 63.51 61.81 60.67 56.04 31.55
↑ CC 81.12 68.91 91.79∗ 89.26 87.70 88.17 73.62 98.09
↓ I. 23.60 27.00 35.19 36.49 38.19 39.33 43.96 68.45
↓ II. 4.09 8.56 3.39 3.14 3.66 2.11∗ 6.72 0.24
↑ EA 75.80 68.62 69.60 68.41 66.74 66.94 58.37 41.29
↑ MS 65.19 59.76 58.89 57.42 55.14 53.71 40.36 31.13
↓ RM 6.87 7.57 4.66 4.56∗ 4.62 6.11 7.52 3.09
↑ CI 77.21 69.73 73.15 71.80 70.27 70.32 61.31 50.29
↓ GCE 20.35 15.52 12.13∗ 16.03 18.45 17.27 31.16 3.55
↓ LCE 14.36 12.03 6.69∗ 7.31 11.64 11.49 23.19 3.44

Table 4.1: Prague texture segmentation benchmark results. Up

[Down] arrows indicate that larger [smaller] values are better Bold

numbers indicate the best technique, while ∗ marks a replacing best

when EDISON is ignored.

mosaics, seven of which are shown in Fig. 4.5 - 4.14 together with the asso-

ciated ground-truth and the corresponding segmentations performed by some

reference techniques mentioned above and by the TFR method. The numerical

results (averaged over the whole benchmark data set) are shown in Tab.4.1.

As for the tuning parameters, we simply observed that all mosaic

images never contains more than M = 12 different textures, and consequently

we have Kc = 2 M = 24 and Ks = M = 12, according to the heuristic rule

discussed in Sec. 4.2. Indeed, we have run some tests with different values of

M and obtained only slightly different results.

Observe that our segmenter is hierarchical, and hence it provides a stack

of nested segmentation maps, among which one can pick the one that best

matches the source data. This further selection step is by no means trivial, and

simple rules, like the one proposed in [75] based on the region scale, perform

poorly on such an heterogeneous data set. Here, we skip this problem, that

goes beyond the scope of this work, and manually select the map that better

fits visually the original mosaic. In other words, we keep separate the tasks of

producing a good segmentation, and of selecting it amid the whole stack. Of

course, this puts the proposed technique at an advantage w.r.t. the reference



100 CHAPTER 4. H-MMC MODELS FOR TEXTURES

Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.5: Texture mosaic No.1: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.6: Texture mosaic No.2: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.7: Texture mosaic No.3: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.8: Texture mosaic No.4: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.9: Texture mosaic No.12: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.10: Texture mosaic No.14: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.11: Texture mosaic No.15: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.12: Texture mosaic No.18: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.13: Texture mosaic No.19: data, ground-truth and segmentations.
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Texture mosaic Ground-truth JSEG

Blobworld EDISON AR3D

GMRF TFR TFR+

Figure 4.14: Texture mosaic No.20: data, ground-truth and segmentations.
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techniques. However, the reader should be aware that, for such complex im-

ages, producing even just one good map in the hierarchy is a remarkable result,

and most reference techniques do not offer any easy option how to correct their

wrong segmentation map, as can be seen from visual and numerical results.

The visual inspection of the segmentation maps shown in Fig. 4.5 - 4.14 is

quite eloquent. For these images, in fact, TFR and TFR+ algorithms provide

better results, and succeed in identifying very low frequency (macro) textures.

This is well shown by data sets 14 and 19 (last two columns) for which TFR

and TFR+ work properly, J-SEG has an almost acceptable over-segmentation,

while other techniques excessively fragment the mosaics. In general, the ref-

erence algorithms seem to be able to model mainly micro textural features,

which is likely the reason for this over-segmentation, confirmed numerically

by the benchmark through the over-segmentation index OS (see Tab. 4.1).

To be more precise, a common weakness of the reference techniques is

that they either do not really classify the textures, but mainly detect contours

among different neighboring textures, or they use single resolution texture rep-

resentation. Therefore in most cases when the same texture occurs in different

unconnected regions, each single region is differently labeled. As a typical

example, see Fig. 4.5 - 4.14, consider the 6th mosaic, where the green blocks

on a black background are separated by all reference methods.6 This last ob-

servation should make clear that a large gap exists between the proposed and

the reference methods, which is not due to our manual selection.

Moving on the numerical results shown in Tab. 4.1, it is interesting to no-

tice the extremal behavior of EDISON which does not under-segment at all

(US = 0.0), but almost always over-segments (OS = 86.91). Actually this

is due to the fact that this algorithm was developed for very low order texture

images, and can be viewed in this context almost as a color-based segmenter.

For this reason the reader should not be surprised by its very good performance

w.r.t. certain accuracy indicators, since they are all (directly or inversely) cor-

related with the degree of over-/under-segmentation.

Based on the above considerations, it would be legitimate to exclude EDI-

SON from the analysis; nonetheless, we preferred to report its performance as

well, since it represents in a sense an ideal case (the color-based segmenter).

This allows us to recognize the indicators favored in case of over-segmentation,

and for which EDISON scores serve as bounds for the other algorithms that do

not over-segment.

On the opposite side, the highest under-segmentation index US = 23.99

6This holds also for the other methods not shown in figure for the sake of brevity.
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is achieved by TFR (see also the texture mosaic nr. 14, Fig. 4.10, where only

4 out of 6 regions are recognized) while the modified version, TFR+, seems to

reach the best tradeoff among all the algorithms, by keeping both indices very

small (OS = 5.84, US = 7.16).

In Tab. 4.1 some of the indicators are to be minimized while the remain-

ing are to be maximized (see arrows on the left-hand side). In any case the

best method is emphasized with boldface numbers. Moreover, when EDISON

is ignored the corresponding best points move on to other methods which are

marked by ∗. As can be seen, all indices which are not optimized by EDI-

SON are favorable to TFR+, except for OS which is minimized by TFR.

The remaining parameters, when EDISON is not considered, mainly indicate

AR3D/EM, except a few cases, as the best one. However, this is not very sur-

prising if we look at the corresponding OS rate, which is rather high (59.53),

and in any case, TFR+ provides quite good results even w.r.t. these indicators.

4.3.2 Application to the Berkeley Dataset

Here we briefly discuss the application of the proposed algorithm to the domain

of natural images, using a set of several color images taken from the Berkeley

Segmentation Dataset [73].

For such images, we observed in general the presence of no more than

M = 6 different textures, and consequently, according with the heuristic rule

defined in Sec. 4.2, we set Kc = 12 and Ks = 6.

Experimental results for some test images are reported in Fig. 4.15 - 4.18.

For each image we show the original on the left, the TFR segmentation map in

the middle, and on the right the map obtained by SWA which is itself a hier-

archical segmentation technique. As for the final segmentation result, the best

matching maps are manually picked from the hierarchical stacks provided by

the algorithms. For each segmentation map, the Local and Global Consistency

Errors (LCE and GCE) indicators are evaluated w.r.t. each available ground

truth, averaged and reported below the corresponding image. Moreover, by

further processing the TFR maps with some simple morphological tools, we

obtain smooth region contours which are superimposed on the original image

to enable an easy interpretation.

Segmentation results are quite promising in many cases, with image tex-

tures and textured objects correctly identified in general: notably, the most ac-

curate results have been obtained on images with at least one macro-textured

object, such as the trivial foreground/background of the first two (top-left) im-

ages and the wooden shoes image. Here, large and regularly shaped fragments
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are gathered together to form quite well-defined states, whose interactions

are consequently very well described by the H-MMCs. Besides, also in im-

ages characterized by the presence of areas of different nature (homogeneous,

micro- and macro-textural), like the zebras, woman, and buildings images, re-

sults show all the potential of the method. Here, some problems occur in the

presence of quasi-flat or gradient areas, that are more likely to be over-split,

like the sky in the buildings image, and sometimes partially merged with un-

related textures, as occurs for the piece of background fused with the subject’s

hair in the woman image. A slightly lower accuracy is finally obtained with

images that are mainly micro-textured and with loosely structured areas, above

all because of the presence of over-fragmented elements or continuous regions

whose characterization ends up to be less reliable. Nonetheless, even in these

cases the main textures and objects are well identified in general.

The promising nature of the presented results is confirmed by numerical

comparison with SWA. The TFR algorithm always outperforms the reference

technique, except for a few cases where a better LCE is obtained by SWA,

typically due to the presence of one or more refinement contours for which

this indicator is more tolerant, as stated in [73].
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LCE = 0.033, GCE = 0.036 LCE = 0.047, GCE = 0.047

LCE = 0.013, GCE = 0.013 LCE = 0.2, GCE = 0.218

LCE = 0.094, GCE = 0.113 LCE = 0.091, GCE = 0.164

Figure 4.15: Segmentation of natural images #12003, #86016 and

#140075 taken from the Berkeley Segmentation Dataset: original im-

age (left), best result obtained using the TFR algorithm (middle) and

the SWA algorithm (right). Below each image the mean Local and

Global Consistency Errors (LCE and GCE) are reported (in bold, the

best values for each experiment).
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LCE = 0.131, GCE = 0.164 LCE = 0.158, GCE = 0.205

LCE = 0.059, GCE = 0.138 LCE = 0.171, GCE = 0.256

Figure 4.16: Segmentation of natural images #198054 and #277095:

original image (left), best result obtained using the TFR algorithm

(middle) and the SWA algorithm (right).
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LCE = 0.114, GCE = 0.273 LCE = 0.302, GCE = 0.443

LCE = 0.148, GCE = 0.152 LCE = 0.108, GCE = 0.171

LCE = 0.079, GCE = 0.087 LCE = 0.047, GCE = 0.144

Figure 4.17: Segmentation of natural images #253027, #38092 and

#2092: original image (left), best result obtained using the TFR algo-

rithm (middle) and the SWA algorithm (right).
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LCE = 0.124, GCE = 0.179 LCE = 0.2,GCE = 0.282

LCE = 0.242, GCE = 0.269 LCE = 0.178, GCE = 0.256

Figure 4.18: Segmentation of natural images #100080 and #254054:

original image (left), best result obtained using the TFR algorithm

(middle) and the SWA algorithm (right).



Chapter 5

Hierarchical Segmentation of
Multiresolution Remote Sensing
Images

The Texture Fragmentation and Reconstruction algorithm introduced in the
last chapter has proved to achieve good performances in segmenting images
with a rich textural content. In this chapter, a real-life application of TFR is
presented in the domain of high-resolution remote sensing images, with spe-
cific reference to multi-resolution data provided by the new generation Ikonos
sensors. Issues concerning the modification to the original TFR algorithm to
operate on this kind of data are here discussed, and results obtained in the
unsupervised classification of urban/peripheral scenes are finally presented.

5.1 Advances in Remote Sensing Image Segmentation

Sensors of the last generation, with spatial resolution as high as 0.6 m, are

giving new impulse to standard applications concerning the analysis, interpre-

tation and classification of remote sensing imagery. Land classification and

change detection, for instance, are now typically aimed at providing thematic

maps very rich in detail; the extraction of specific land coverage information,

such as roads and buildings in urban areas [86, 2], or vegetation classification

in rural and non-urban contexts [87, 88, 89], is often required for monitoring

purposes or for the updating of Geographical Information Systems. In ad-

dition, several new applications directly stem from the availability of highly

117
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detailed optical data, like the extraction and counting of tree crowns in planta-

tions for forest inventory purposes [90], or the detection of urban structures in

remotely sensed scenes as in [91].

Many of these image analysis applications require a prior segmentation

process which provide a conceptual object-based or class-based map. For seg-

mentation, as for most remote sensing image analysis problems, the availabil-

ity of high-resolution images has changed both the expectations on the nature

and quality of the results and the approaches and tools used to deal with the

problem. In fact, the high resolution allows for a more precise detection of

boundaries, and hence a finer definition of the regions of interest, possibly at

multiple scales of observation, but, on the other hand, calls for new solutions

to cope with the increased complexity and new peculiarities of these data.

A particularly relevant problem to deal with is the reduced spectral reso-

lution exhibited by this new generation of sensors, a technological limitation

that would bar the use of classical spectral-based segmentation approaches,

e.g., [1, 92, 93], highly successful with low- and mid-resolution data. This

problem can be circumvented by resorting to a single system which provides

both a high-resolution single-band, or “panchromatic” (PAN) image, and a

low-resolution multispectral (MS) image. Notable examples are the Ikonos

satellite, with a 1 m resolution panchromatic image complemented by a 4 m

resolution multispectral image, and the Quickbird satellite, with even higher

resolutions (0.6 m and 2.4 m). It is worth underlining the shift of paradigm

implied by this solution: since no instrument is able to provide data with the

desired resolution both in the spatial and spectral domains, the task is passed

on to subsequent signal processing steps that are asked to improve the data

usability

As far as segmentation is concerned, the goal is to obtain a map with the

high geometric resolution of the panchromatic image, but also with the relia-

bility guaranteed by the richer spectral information of the multispectral data,

so the problem is how to perform an intelligent fusion among the available

multiresolution data.

5.1.1 Exploiting Multiresolution Data for Segmentation

In principle, the problem should be addressed by using jointly all available

data, that is, by resorting to a truly multiresolution segmentation algorithm,

such as those proposed in [94], where observable data are associated with the

various layers of a tree-structured Markov random field, and all tree nodes are

then labeled at once. Besides the obvious modeling hurdles, the optimization
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task in such a setting is exceedingly complex, and in fact it is usually tackled

by means of strictly causal models on quadtrees, such as those proposed in

[95, 96] which typically produce some blocking artifacts.

Indeed, computational complexity is a major discriminant, together with

accuracy, when designing a real-world segmentation algorithm. For this rea-

son, most segmentation/classification techniques for multiresolution data re-

sort to some structural simplifications. A first approach is to use a pansharp-
ening technique, such as those proposed in [97] or [98], followed by some

well-known segmentation method for full-resolution multispectral images, like

JSEG [44], the FNEA algorithm embedded in eCognition [99], or the TS-MRF

algorithm [18]. Examples of this approach can be found in [86] and [2]. Of

course, this additional processing phase may introduce new errors, that will

inevitably affect the final segmentation accuracy; in addition, the computa-

tional complexity may increase significantly since a complete high-resolution

datacube must be dealt with.

Another approach is to use a two-step procedure in which the low-

resolution multispectral image is segmented first, while the panchromatic im-

age is used in a second stage to refine the initial coarse segmentation map. In

[88], for example, the low-resolution thematic map obtained by working on

the multispectral image is later refined by incorporating a detailed edge map

extracted by the panchromatic image. By so doing, however, the spectral in-

formation is given priority w.r.t. the spatial information, since high-resolution

panchromatic data are used only to refine a coarse segmentation obtained on

multispectral data. Such an approach is effective when the spectral information

is actually more relevant than the spatial one, namely, when typical objects in

the image are large enough w.r.t. the data resolution, much less effective when

the original image is very rich in fine details (think of urban areas). In [100],

for example, where contour refinement is carried out with the help of geometri-

cal constraints specific for urban areas, it is pointed out that “When the input to
the geometric refinement is not accurate, the output improves only partially.”
This problem is also recognized in [101] and [102] where, in the context of

multiresolution processing of single-level data, the problem of adaptively se-

lecting the best resolution for feature extraction is addressed.

Because of these observations the solution that we propose here follows

the opposite path. It operates first on the high-resolution panchromatic data,

decomposing the image into a collection of elementary regions, and subse-

quently enriches the region description by adjoining spectral features extracted

by the multispectral data. By so doing, we aim at fully exploiting the high-



120 CHAPTER 5. TFR FOR REMOTE SENSING IMAGES

resolution of data because boundaries are detected with high geometrical pre-

cision, spatial features, such as the shape and orientation of regions, can be

easily extracted, and relationships among regions can be analyzed in order to

identify and use textural properties. Our choice is also justified by complex-

ity concerns, since the segmentation of such large images becomes heavier

if vector-valued data are involved. The initial segmentation is carried out by

means of a recently proposed [18] low-complexity contextual algorithm, based

on the tree-structured Markov random field (TS-MRF) model [60, 18], and a

straightforward technique is then used to associate spectral information with

each segment.

5.1.2 Providing a Multiscale Segmentation

Although the low-level segmentation map obtained at this point can be already

of interest, more refined products are often required for actual use in high-end

applications.

When the application is known in advance, one can easily single out

some features of special relevance for the problem, such as object shapes, re-

peated patterns, or other geometrical properties, that drive the image process-

ing scheme. Notable examples are [103], where a urban-vs-rural classification

technique is proposed based on the joint use of features like length and ori-

entation of straight line edges and spectral-based vegetation indexes, or [104],

where urban areas classification is carried out based on the spectral coherence

of groups of pixels along selected directions, or again [89], where the identi-

fication of forest density (dense, sparse and empty) is pursued by defining a

suitable set of morphological operators that enhance specific textural proper-

ties.

However, segmentation techniques conceived to work for a variety of dif-

ferent tasks, image sources, and scenes, cannot rely on such specific features,

and hence a more general approach must be considered. To this end, some

techniques have been recently proposed which try to model the problem of

segmentation in a hierarchical fashion. By looking at the scene under multiple

scales of observation, different objects and features can emerge at the various

scales, and be related with one another according to some suitable criteria in

a hierarchical structure. Dealing with high-resolution satellite images, for ex-

ample, the main environments, such as urban areas, rural zones, or forests, can

be identified at coarser levels, while more detailed structures, such as buildings

and roads in urban areas or trees in forests, will emerge at finer levels.

Hierarchical segmentation is certainly not a new idea. Back in the sev-



5.2. THE MODIFIED TFR ALGORITHM 121

enties, for example, Horowitz and Pavlidis [105] began to combine recursive

splitting with region merging. In [106], segmentation is performed through

a region merging process carried out by hierarchical stepwise optimization.

Likewise, the algorithm proposed in [107] integrates information from edges

and regions in the framework of a hierarchical image partition. It also worth

mentioning that the concept hierarchical segmentation does not apply only to

regions but also to objects, as shown in a very recent work [108] where the

goal is to detect complex urban structures.

These techniques show very clearly the potential of a multiscale approach

in the segmentation of high resolution remote sensing images. However, they

all aim at retrieving the largest possible homogeneous regions (including those

characterized by homogeneous micro-textures) present in the image. Hence,

they are unable to recognize and extract more complex regions, characterized

by large-scale textures, which appear quite frequently in remote-sensing as

well as in other images.

The use of the Hierarchical Multiple Markov Chain model introduced in

the previous chapter, along with the deriving Texture Fragmentation and Re-
construction framework, appears to be a reasonable and natural solution to

cope with these limitation and provide a rich multiscale description of high

resolution remotely sensed scenes. In the following of this chapter, the appli-

cation of TFR to this domain is therefore discussed, focusing on the necessary

modifications to the basic algorithm to deal with data at multiple resolutions,

and some results are presented that show the potential of the proposed solution,

both in terms of richness of the description and segmentation accuracy.

5.2 The modified TFR Algorithm

The texture-based image model and segmentation algorithm described in

Chapter 4 rely on quite general properties, and hence can be applied to a wide

variety of images. Multiresolution remote-sensing images, with their wealth

of fine details and textures, appear as the perfect candidates for using these

tools. Before doing this, however, we must address the key issue of how to

exploit jointly the various sets of data available, characterized by different res-

olutions and different spectral contents, in order to devise a viable and reliable

segmentation algorithm.

As already discussed in Sec. 5.1.1, we avoid the use of any prior pansharp-

ening step in order not to introduce artifacts that could affect the quality of

the overall segmentation. For the very same reason, the first piece of informa-
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tion taken into account in our processing scheme will be the high-resolution

panchromatic image: its over-segmentation will hopefully preserve all image

contours, providing a preliminary map containing all the elementary fragments

of the scene. Only in a later stage, the spectral information from the low-

resolution multispectral image will be injected onto this map, by means of a

region-level data fusion, providing a full region-based characterization of the

segmented image.

The overall segmentation algorithm can be summarized by the block dia-

gram shown in Fig. 5.1. The first three steps of the procedure basically replace

the CBC block of the original TFR algorithm (see Fig. 4.3): after the initial

gray-level based segmentation of the panchromatic image, the fusion with the

multispectral data takes place, followed by a spectral clustering phase based on

the enriched features by now available. The final spatial clustering and merg-

ing processes, which are not peculiar of multiresolution images, are the same

outlined in Sec. 4.2. As a by-product, a simple “color” segmentation map is

also available, which could be used, for example, as a support for a possible

region-based adaptive pansharpening.

It has to be noticed that the choice of using only the panchromatic (scalar)

data in the first step has the important effect of keeping limited the computa-

tional complexity of the new CBC block, where pixel-wise processing is per-

formed on the source, often quite significant especially in this domain where

very large images can be taken under analysis.

In the following subsections we describe the algorithm in detail, with spe-

cial attention for the first three steps which are peculiar of multiresolution im-

ages.

5.2.1 Segmentation of the Panchromatic Image

As in the original TFR algorithm, segmentation of the panchromatic image is

here performed by means of the unsupervised TS-MRF algorithm introduced

in Sec. 2.3. Motivations remain the same introduced in Sec. 4.2.1 for the gen-

eral TFR framework. Concerning our choice to use only the scalar panchro-

matic image to derive the elementary fragments of the scene, it is motivated

by the fact that resorting to the data with the highest resolution, unaltered by

any pansharpening procedure, helps preserving fine object contours and, as a

consequence, correctly detecting the elementary structures of the image.

It goes by itself that the limited spectral content of the panchromatic

data increases the risk of not distinguishing regions of different nature but

with close gray levels. We reduce this risk by resorting to a moderate over-
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Panchromatic Image Multispectral Image
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Figure 5.1: Block diagram of the proposed segmentation technique,

with current processing level (left), and current source information

(right).
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Figure 5.2: Relationship between the multispectral (MS) and panchro-

matic (PAN) image grids, under the hypothesis of perfect source regis-

tration.

segmentation, and take care of the remaining errors after the PAN-MS fusion,

by detecting them and carrying out a local refinement, as explained in the next

subsection.

The only relevant input parameter of this stage is the number of initial

“gray” classes, say Kg.

5.2.2 Fusion of High Resolution Map with Multispectral Data

Once the elementary fragments are singled out, we enrich their characteriza-

tion by means of information drawn by the low-resolution multispectral image.

This will allow us to obtain a larger and more finely featured set of classes to

be used as initial states for the merging process.

Assuming perfect registration, each pixel of the low-resolution MS image

can be put in correspondence with a rectangular set of “children” pixels in the

PAN image (e.g., a 4 × 4 square, for the Ikonos and Quickbird images), as

shown in Fig. 5.2. We compute the region spectral signature as an average

of the spectral responses of all multispectral pixels that overlap the region of

interest, with weights proportional to the extent of overlap with the region. The

spectral signature μk of region Rk is therefore computed as

μk =
1
|Rk|

∑
s∈Rk

y
(MS)
ρ(s) , (5.1)
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(a) (b) (c)

Figure 5.3: Example of PAN-MS fusion: fragments obtained after the

PAN segmentation step (a), corresponding regions of interest in the MS

image (b), and featured fragments obtained using the spectral signature

of Eq. 5.1.

where ρ(s) is the low-resolution “father” of pixel s, y
(MS)
ρ(s) its spectral response

vector, and |Rk| is the size of region Rk. A graphical example is shown in

Fig. 5.3.

Of course, such a straightforward procedure is somewhat arbitrary and will

produce some errors that a more sophisticated unmixing procedure [109] might

probably avoid. On the other hand, since we characterize regions, rather than

pixels, such problems are relatively unimportant. In fact, the MRF-based seg-

mentation produces many large regions for which only a fraction of the inter-

ested MS pixels overlap the border, leading to quite reliable spectral signatures.

On the contrary, smaller fragments might be inaccurately featured, but they

are readily absorbed by larger regions in the merging process, as explained in

Sec. 4.2.3, carrying a negligible effect on the final high-level segmentation.

A more serious problem, instead, is the unwanted fusion of same gray-level

regions mentioned before. After the PAN-MS fusion, however, such phenom-

ena are easily detected through a threshold test on the region total distortion:1

Dk =
∑
s∈Rk

‖ y
(MS)
ρ(s) − μk ‖2 . (5.2)

For the mixed regions, a further local TS-MRF segmentation is then carried

out. This refinement step increases only marginally the overall complexity,

because the TS-MRF algorithm works locally on each region. After each con-

1The threshold itself is a non-critical parameter as mixed and ordinary regions are form well

separated groups.
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nected fragment has been associated with a single spectral signature, the pro-

cessing scale moves once and for all to the region level, making computational

complexity all but irrelevant from this point on.

5.2.3 Spectral Clustering

Once obtained the spectral signatures of the regions, we refine the initial seg-

mentation by carrying out a clustering in the spectral domain, so as to separate

different semantic classes, with different spectral signatures, pooled together

in the first step because of their close gray levels.

We carry out a different clustering on each gray-level class, using always

the same number of clusters, Ksp, set heuristically in advance as the largest

number of semantic classes expected in any gray-level class. Many of such

classes are actually uniform, and would not need any further split, but here, as

in other steps of the proposed technique, we accept a certain degree of over-

segmentation in order to be sure to detect all significant classes in the image.

Excessive fragmentation will be eventually made up for in the merging phase,

as explained in Sec. 4.2.3.

The clustering algorithm is a weighted version of the K-means, with

weights equal to the fragment sizes. By so doing, we minimize the disturbance

produced by small fragments, poorly characterized in the spectral domain be-

cause of their reduced size, which could lead to inconsistent results.

At the end of this process we obtain the Kc-class color segmentation map,

where Kc = Kg × Ksp, that will be the starting point for the subsequent

spatial-based analysis and hierarchical merging step (the SBC and Merging

blocks of Sec. 4.2). Such a map, though not accounting for textural properties,

represents by itself a valuable byproduct of the process, that could serve, for

example, as a support for a possible region-based adaptive pansharpening.

5.3 Experimental Results

5.3.1 Ikonos Satellite Data

In order to gain better insight on how the proposed technique works and to

provide a first evidence of its performance, we present here the results of a

segmentation experiment carried out on a two-resolution Ikonos image, a 2km

× 2km section of the city of San Diego (USA), containing both dense and

residential urban areas, as well as a significant area covered with vegetation.

The 2004 × 2004 pixel panchromatic image, shown in Fig. 5.4, has a spatial
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Figure 5.4: IKONOS imagery used in the experiments: 1m-resolution

panchromatic image with size 2004× 2004.
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Figure 5.5: IKONOS imagery used in the experiments: 4m-resolution

blue channel of the multispectral image with size 501× 501.
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Figure 5.6: IKONOS imagery used in the experiments: 4m-resolution

green channel of the multispectral image with size 501× 501.
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Figure 5.7: IKONOS imagery used in the experiments: 4m-resolution

red channel of the multispectral image with size 501× 501.
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Figure 5.8: IKONOS imagery used in the experiments: 4m-resolution

near-infrared channel of the multispectral image with size 501× 501.
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Figure 5.9: IKONOS imagery used in the experiments: false color

representation of the multispectral image (size 2004× 2004) using the

red, near infrared and blue composite.
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Figure 5.10: IKONOS imagery used in the experiments: manual

ground-truth with legend.
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resolution of 1 meter, while the 501×501 pixel multispectral image, composed

of four spectral bands (red, green, blue and near infrared), has a resolution of

4 meters and is perfectly registered with the PAN. In Fig. 5.5 - 5.8 we show

each of the four channels of the MS image, while in Fig. 5.9 a false color

representation of the MS image is shown, using the red, near infrared and blue

bands, that enhances the difference between urban areas and vegetation. The

effective radiometric precision is 11 bits per pixel for all components.

Lacking a certified ground truth for performance assessment, we created

an ad hoc one, reported in Fig. 5.10, by visually inspecting the image, also

with the help of the Google Earth maps, and selecting a large number of easily

identifiable regions to which we assigned the semantic labels reported at the

bottom of Fig. 5.10 for ease of description. Note that, consistent with our mul-

tiscale approach, such a 7-class ground truth gives rise automatically, through

merging, to other ground truths with fewer classes. As an example, merging

the first five classes on one side, and the remaining two on the other side, gives

rise to a 2-class urban-areas/vegetation ground truth.

5.3.2 Classification Results

Preliminary Color Segmentation

The only free parameters to set prior of the segmentation procedure are the

number of classes used in the TS-MRF segmentation of the PAN image, and

in the spectral and spatial clustering phases. After a few preliminary trials, we

have selected Kg = 7, Ksp = 3, and Ks = 5 respectively; later on we will

briefly discuss the robustness of the technique w.r.t. such parameters.

After the segmentation of the PAN image, the PAN-MS fusion, and the

subsequent spectral clustering, we obtain a segmentation map composed of

many thousands of fragments, grouped in 21 spectral classes. The map is

reported in Fig. 5.11 using averaged false colors for each class. This is an

intermediate product, to be further processed, nonetheless it deserves some

comments. Hence, in Fig. 5.12(a) we show a 270 × 270 pixel detail of the

panchromatic image of Fig. 5.4), together with the corresponding false-color

multispectral data (b), and with the (labeled) 21-class segmentation map (c). It

is clear that the map catches most if not all image details, retaining a good level

of spatial accuracy as testified by the rounded corners of the gardens or the

shapes of the trees. To allow an easier interpretation of results, in Fig. 5.12(d)

we show again the same map where, however, each class is represented with

its average false color. It is apparent that the color segmentation map provides
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Figure 5.11: 21-class segmentation map obtained after the spectral

clustering. Each color class is represented using its average false color.

a spectral characterization of the image that is completely coherent with the

original multispectral component of Fig. 5.9, although it has, in fact, a much

higher resolution.

Following the basic TFR data flow, each of these 21 classes is further split

into 5 different clusters based on spatial properties. It is worth underlining

once more that we will now make a very specific use of these clusters of seg-

ments, looking for the detection and recovery of complex textures. If we were

interested in reconstructing elementary objects, or solving some other specific

problems, e.g., true classification, the first mandatory step would be to dis-

gregate such clusters and handle each fragment by itself, without unnecessary
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(a) (b)

(c) (d)

Figure 5.12: A detail of the panchromatic image (a), the correspond-

ing area in the multispectral image (b), the 21-class segmentation map

(c), the same map with colors drawn from the MS data (d).



5.3. EXPERIMENTAL RESULTS 137

roads pk lots lg blds sm blds gr. spots trees grass u. a.

roads 269471 113825 21018 14102 2102 1053 89 63.9%

park. lots 156841 109289 47652 28766 1096 73 3 31.8%

large bdg. 27816 43119 292692 67945 1432 30 2 67.6%

small bdg. 83241 12549 3397 7287 3795 1243 0 6.5%

green sp. 18862 19616 8134 37622 40052 17200 872 28.1%

trees 4245 726 232 647 12237 279043 37820 83.3%

grass 1130 175 57 165 6339 18619 76387 74.2%

p. a. 48.0% 36.5% 78.4% 4.7% 59.7% 87.9% 66.3% 56.8%

Table 5.1: Confusion matrix for a 7-class pruning of the segmentation

tree. In bold, correct classifications.

constraints bound to undermine the effort. However we do not consider these

other applications in this work. The sequential binary merging procedure fi-

nally will complete the execution.

Final Multiscale Classification

Once the hierarchical stack is provided, one could browse through the se-

quence of the corresponding segmentation maps in search of structures of in-

terest that emerge gradually as the result of the merging of neighboring regions.

By selecting a suitable 7-leaf pruning of the tree, and matching the re-

sulting classes with those of the ground truth, we obtain the confusion matrix

shown In Table 5.1. The overall accuracy of the technique at this level is fairly

good (τ = 56.8%) considering the total lack of supervision. However, the

errors are not evenly distributed among the classes: in particular, the “small

building” class singled out in the ground truth does not emerge at all, and its

regions are mostly associated with the “large building” class. Likewise, there

is a large cross-classification between the “roads” and “parking lots” classes.

In both cases, the spatial context has not been strong enough to tell apart such

classes, which are very homogeneous spectrally.

The performance improves significantly if we select the 5-leaf pruning

shown in Fig. 5.13 since the “roads” are now merged with the “parking lots”

while the “small buildings” are merged with the “green spots”. This later merg-

ing is quite interesting, since it shows that the merging process privileges the

emergence of meaningful textures (what we now call “residential” class) rather

than the reduction of the classification error. The overall accuracy goes up
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roads lg blds sm blds trees grass u. a.

roads 649426 68670 46066 1126 92 84.8%

large bdg. 70935 292692 69377 30 2 67.6%

small bdg. 134268 11531 88756 18443 872 34.9%

trees 4971 232 12884 279043 37820 83.3%

grass 1305 57 6504 18619 76387 74.2%

p. a. 75.4% 78.4% 39.7% 87.9% 66.3% 73.4%

Table 5.2: Confusion matrix for the 5-class pruning of Fig. 5.13.

Figure 5.13: Results of the hierarchical segmentation process: a 5-

class pruning of the retrieved tree structure.

(τ = 73.4%), and in particular the class accuracies grow to about 80% for

the roads and almost 40% for the residential areas (the full confusion matrix is

reported in Fig. 5.2).

In the corresponding segmentation map, shown in Fig. 5.14, all major ar-

eas of the image are clearly recognizable. Although the wide road network

represents by itself an important structure of the image, and its preservation is

a success of the algorithm, it also prevents the formation of two distinct urban

regions in the downtown and residential areas, which should each include a

part of the network.

Going on with the pruning, we obtain eventually the two-class segmen-

tation associated with the top-level nodes, corresponding to the “urban” and

“vegetation” macro-textures. To allow for an accurate analysis of this seg-

mentation, in Fig. 5.15 and 5.16 we show a separate image for each class,
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Figure 5.14: The 5-class map corresponding to the tree of Fig.5.13.
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Figure 5.15: Top-level segmentation of the test image: urban areas.

The class of interest is in false colors, the other in black.
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Figure 5.16: Top-level segmentation of the test image: vegetation.

The class of interest is in false colors, the other in black.
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obtained by blackening the other class and showing the high-resolution false-

color map for the class of interest. The detection of the two macro-textures is

quite accurate (τ = 97.5%) especially if one considers that some quite com-

plex subtextures of the image, like the residential area in the lower right part,

have been uniformly included in the “urban” class, as clear in Fig. 5.15, despite

the many large patches of vegetation. The key for this association seems to be

the presence of a regular road network in this area, which acts as a collector

of interacting classes, an information that a human interpreter would have cer-

tainly exploited to correctly classify this image, but that is taken into account

automatically, here, by means of a fully unsupervised process.

Robustness Analysis and Comparisons

As we said before, the performance of the proposed technique is not much

sensitive to the exact values of the parameters Kg, Ksp, and Ks. To support

experimentally such statement, the test image was segmented varying the pa-

rameters in the ranges [5 − 9], [2 − 5], and [3 − 7], respectively. As a result,

the accuracy with 5 classes varied from a worst case of 65.8% to a maximum

of 79.0%, mostly for changes in the residential urban area, remaining quite

stable, between 95.5% and 97.8%, for the 2-class case. Note that the maxima

were assumed for different combinations of the parameters, none of which

corresponds to our compromise choice.

As for the computation time, the experiment described above takes, on

the average, 250 seconds on a HP notebook equipped with an Intel Core 2

Duo 1.66 GHz processor. The most time-consuming step, as expected, is the

initial TS-MRF segmentation that accounts for about 70% of the whole CPU

time, while the post-fusion refinement, takes an additional 10%. Region-level

operations have a relatively small cost, less than 20% of the total.

Finally, we compare here the results of the proposed technique with some

alternative solutions. This is not an easy task, because the vast majority of

techniques proposed in the literature rely on spectral and microtextural proper-

ties, and hence they are very good at detecting and possibly classifying objects

[91, 100], also using hierarchical multi-scale approaches [18, 2, 110], but fail

to detect large-scale complex textures as individual entities, which is the major

strength of the proposed technique. As an example, only by means of heavy

user interaction the FNEA algorithm [99] could provide products similar to the

maps of Fig. 5.14 or Fig. 5.15 and 5.16, but with unsatisfactory results. To gain

insight about the different behaviors of spectral-based and texture-based seg-

mentation, let us consider the results obtained by using the TS-MRF, which is a
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(a) (b)

Figure 5.17: The 2-class maps obtained using the proposed algorithm

(a) and the TS-MRF with supervised split and merge strategy (b).

(a) (b) (c)

(d) (e)

Figure 5.18: Pansharpened detail (a), first binary split obtained by

working on pansharpened (b) and on PAN (c) data; enlarged critical

areas (d)-(e).
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tree-structured spectral-based segmenter, directly on the pansharpened image,

obtained using the Gram-Schmidt orthogonalization technique [111]. Pruning

the tree at 5 nodes, and matching classes with the ground-truth, the overall

accuracy is just 64.7%, with very bad user’s and producer’s accuracies on the

“residential” class, 14.5% and 16.9%, respectively. Then, if we prune back

the tree at 2 nodes, the overall accuracy drops down to 54.5% because the first

split, on the basis of spectral information only, tells apart just dark and light

areas. To obtain a product comparable with our 2-class segmentation, instead,

we pooled together optimally (w.r.t. ground truth) some of the classes found at

the 5-node level without following the actual tree structure, that is, mimicking

the behavior of the merging process proposed here. Even so, the overall accu-

racy reaches only 91.7% as opposed to the 97.5% of the proposed technique.

Looking at the synthetic maps of Fig. 5.17, the main reason for such a disap-

pointing result becomes obvious, since the residential urban area is now split

between the “urban” and the “vegetation” classes. Note that pansharpening

and TS-MRF segmentation alone take more than 300 seconds of CPU time.

In the end, to test the effectiveness of our choice to work only on the PAN

image in the first step, we compare our results with those obtained by growing

a large segmentation tree with the pansharpening/TS-MRF approach, and then

carrying out the H-MMC based merging process. Even with the best combi-

nation of parameters, numerical results are significantly worse than those of

the proposed algorithm, with accuracies of 54.0%, 68.9%, and 95.1% for the

best 7-, 5- and 2-class pruning, respectively. By looking at the pansharpened

version of the same detail considered before, Fig. 5.18, the reason for such

impairment is easily understood: some contours are clearly smoothed, leading

to the creation of spurious mixed classes that disturb the merging process, and

also to some clear errors on boundaries, like those highlighted in the 2-class

map of Fig. 5.18(b), which are not present in our segmentation Fig. 5.18(c).



Conclusions

The work of this thesis has concerned the study and development of new hier-

archical models and algorithms for image segmentation. In particular, methods

for unsupervised color-based and texture-based segmentation have been taken

into account, with main application to the domain of remotely sensed images.

The reference models concerning color-based segmentation belong to the

family of Tree Structured Markov Random Fields, defined as a hierarchical

combination of several reference MRFs, each representing the probabilistic

constraints among classes associated with a given node in the region-scale

coarse-to-fine hierarchy of the whole TS-MRF. Classes are first associated with

the leaves of a tree which must fit the hidden data structure, if any, then each

internal node of such a tree is associated with an ad hoc MRF model, “local”

to that node and involving only its offsprings, which may be real classes or

merging of real classes when offsprings are not terminal nodes. The definition

of the model is then recursive and, as such, it allows for top-down recursive

inference algorithms, where each local MRF is solved once the ancestors fields

are solved.

Unsupervised image segmentation based on the TS-MRF model relies

heavily on the detection of a tree structure that correctly describes the data

structure and on the accurate optimization of MRFs at each node. In the basic

segmentation algorithm, a split-by-split growth of the tree is performed, from

the root representing the whole image until all the leaves are reached, which

is controlled by a test parameter, the split gain, defined locally at each node.

In this way the tree structure, and then the number of classes, is automatically

detected, while the inference algorithms operate to single out the segmentation

by splitting regions recursively.

This segmentation algorithm often proves unsatisfactory both in detect-

ing a suitable tree structure and in performing an accurate MRF optimization,

mainly because of some important limitation that are removed in this work. In

particular, we allow for the use of generic rather than binary trees, and improve
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the MRF initialization at each node, resorting in both cases to the Mean-Shift

procedure. In the first case, Mean-Shift allows us to estimate the number of

pdf modes at each node, and hence the number of children nodes, while in the

latter it is used, together with a Maximum-Likelihood classifier, to replace the

much less reliable GLA clustering.

To this end, a fast new Mean-Shift clustering algorithm is proposed, char-

acterized by two main innovative features. First, the selection of the kernel

size, that determines the resolution at which modes are detected, is here made

adaptive via a k-Nearest Neighbors approach, that accounts for wide variations

of density in the data space usually happening in the cases of interest. More-

over, a speed-up strategy which reduces the computational burden with little

harm for the clustering accuracy has been used to devise the clustering proce-

dure, based on the assumption that points traversed by a kernel function during

a single step of the mode detection procedure are likely to belong to the basin

of attraction of the final mode detected.

Experiments that prove the effectiveness of the proposed solutions have

been carried out both on synthetic images and on remotely sensed ones: land

classification experiments in particular gave very promising results, both for

unsupervised segmentation and as a tool for the automatic definition of a suit-

able tree structure in the context of supervised segmentation.

As a second main topic for this work, we treated the problem of texture

modeling and texture-based image segmentation, resorting to a hierarchical

model (H-MMC) for texture representation particularly suited for unsuper-

vised segmentation, and a related algorithm (TFR). In order to apply the model,

the first step of the algorithm is a color-based segmentation, realized by the

unsupervised TS-MRF discussed above, which provides a rough discrete ap-

proximation of the original data to be fitted with the texture model at the region

level. This fitting is performed in two steps, the first (SBC) singles out the indi-

vidual states of the model, the second relates them hierarchically according to

the scale of the corresponding regions and their mutual spatial interaction. The

bottom-up growth of the structure is controlled by a texture score parameter.

The performance of the proposed segmentation algorithm was assessed by

experimenting with the texture mosaics of the Prague benchmark, that scores

segmentation algorithms by means of several accuracy indicators. Moreover,

the algorithm was also tested on the natural images of the Berkeley dataset.

Both numerical evidence and visual inspection show that the TFR outperforms

all reference algorithms, mostly because of its ability to capture spatial correla-

tions at multiple scales. On the contrary, all the methods using pixel-based tex-
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ture modeling present serious limitations in representing macro-textural fea-

tures, which is the case for most of the texture models found in the current

literature. The experimental results also show that the performance of TFR

improves when the texture score includes the Kullback-Leibler divergence be-

tween the spatial distribution of the regions, since under-segmentation phe-

nomena are reduced.

The main advantages of the proposed technique can be summarized as

follows.

• Robust. Due to its region-based formulation and contrary to pixel-based

models, the one proposed here is able to represent spatial interactions at

multiple scales, leading to a nested hierarchical segmentation. There-

fore, it does not require the choice of a specific observation scale, whose

selection is left to the user, and the resulting algorithm is quite robust.

• Fast. Another consequence of modeling the image at a region level is

the strong reduction of computational load, since the image processing

involves regions, instead of pixels. Both TFR versions have about the

same computational complexity (about 20 seconds of CPU time on a

notebook with a 1.66 GHz processor for each 512 × 512 color image

of the Prague benchmark), almost entirely due to the pixel-based pro-

cessing of TS-MRF. Indeed the TS-MRF is not strictly needed and it

could be replaced by much simpler color segmenters in all those appli-

cations where the definition of the color classes can be easily provided.

Think of video sequences, for example, where in most cases the color

states may not change between subsequent frames, and a real-time video

segmentation could be likely realized by means of TFR.

• Blind. The algorithm can be considered unsupervised because it does

not require prior learning of involved textures, in spite of few non critical

tuning parameters.

Although the TFR algorithm has provided encouraging results in several

different applications, a few drawbacks need to be mentioned as well, mainly

due to some of the simplifying assumptions both in the modeling and the opti-

mization part. Discrimination of micro-textural features, for example, is often

incorrect, since the small size of component regions (sometimes approaching

a single pixel) makes their region-wise characterization unreliable. A possible

solution is to identify small micro-textured regions at the CBC level, or even

introduce a new layer with this specific aim.
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As for spatial clustering, the presence of fragments whose characteriza-

tion is loose can lead to the definition of unreliable states, that incorrectly in-

clude many “outliers” whose presence can significantly alter adjacency statis-

tics w.r.t. neighboring states. The automatic detection and processing of such

critical elements is certainly another point of our future research.

Finally, another peculiar problem of TFR is the processing of “continuous”

connected regions, which typically occurs for textures containing background

constant-colors. In this case, when two neighboring textures have a common

color state which presents such continuous elements, due to their large scale

they serve mostly as collectors during the region merging, attracting regions

from the two different textures and eventually making their separation impos-

sible. In order to overcome this last problem we are currently investigating the

possibility of fragmenting continuous regions.

In the last part of the work, an application of the TFR agorithm to the

domain of high-resolution remote sensing images has also been proposed, fo-

cusing on multiresolution Ikonos imagery. Given the high resolution of such

images, and the consequent presence of complex structures and textured areas,

the use of a slightly modified version of the TFR algorithm has been con-

sidered, where the initial color map is obtained by means of a sequence of

operations using data at different resolution: first, the panchromatic image is

segmented by means of the TS-MRF unsupervised algorithm, and then spec-

tral feature are injected at region level from the lower resolution multispectral,

to finally perform a color clustering of the image fragments. The choice to use

only panchromatic data for the initial segmentation step allows us to better pre-

serve fine details and structures and, together with the use of a tree-structured

segmenter, guarantees a reasonable processing time.

Experimental results on a test Ikonos image are encouraging: at a visual

inspection, all major regions of interest are clearly recognized, especially at

the larger scales, and such a good subjective performance is confirmed by the

objective classification accuracy computed w.r.t. an ad hoc ground truth.
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[45] T. Cour, F. Bénézit, and J. Shi. Spectral segmentation with multiscale

graph decomposition. Proc. of IEEE Conference on Computer Vision
and Pattern Recognition CVPR 2005, 2:1124–1131, June 2005.

[46] S. C. Zhu, C. E. Guo, Y. Z. Wang, and Z. J. Xu. What are textons?

International Journal of Computer Vision, 62(1/2):121–143, 2005.

[47] A. Barbu and S. C. Zhu. Multigrid and multi-level swendsen-wang cuts

for hierarchic graph partitions. In In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, volume 2, pages II–731 –

II–738, 2004.

[48] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of multivari-

ate mixed data via lossy data coding and compression. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 29(9):1546 – 1562,

2007.

[49] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,

2000.



154 BIBLIOGRAPHY

[50] H.L. Van Trees. Detection, Estimation and Modulation Theory. John

Wiley and Sons, 1968.

[51] S. Z. Li. Markov random field modeling in image analysis. Springer-

Verlag, 1st edition edition, 1995.

[52] G. Winkler. Image analysis, random fields and dynamic Monte Carlo
methods. Springer-Verlag, 1st edition edition, 1995.

[53] S. Lakshmanan and H. Derin. Simultaneous parameter estimation and

segmentation of Gibbs random field using simulated annealing. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 11(8):799–

813, August 1989.

[54] M.C. Zhang, R.M. Haralick, and J.B. Campbell. Multispectral image

context classification using stochastic relaxation. IEEE Transaction on
Systems, Man and Cybernetics, 20(1):128–140, Gen.-Feb. 1990.

[55] R. Kinderman and J.L. Snell. Markov Random Fields and Their Appli-
cations. RI: Amer. Math. Soc., 1980.

[56] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with effi-

cient approximations. In Proc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 648–655, 23–25 June

1998.

[57] E. Ising. Beitray sur theorie des ferromagnetismus. Zeitschrift Physik,

31:253–258, 1925.

[58] F. Salzenstein and W. Pieczynski. Parameter estimation in hidden fuzzy

Markov random fields and image segmentation. Graphical Models and
Image Processing, 59(4):205–220, 1997.

[59] A. Mohammad-Djafari. Joint estimation of parameters and hyperpa-

rameters in a bayesian approach of solving inverse problems. In IEEE
International Conference on Image Processing, volume 2, pages 473–

476, 1996.

[60] G. Poggi and A. R. P. Ragozini. Image segmentation by tree-structured

markov random fields. IEEE Signal Processing Letters, 6(7):155–157,

July 1999.



BIBLIOGRAPHY 155

[61] J.K. Fwu and P.M. Djuric. Unsupervised vector image segmentation by

a tree structure ICM algorithm. IEEE Transaction on Medical Imaging,

15(6):871–880, December 1996.

[62] J. Zhang, J.W. Modestino, and D.A. Langan. Maximum-likelihood

parameter estimation for unsupervised stochastic model-based image

segmentation. IEEE Transaction on Image Processing, 3(4):404–420,

1994.

[63] Jorma Rissanen. Modeling by shortest data description. Automatica,

14:465–478, 1978.

[64] K. Fukunaga and L. Hostetler. The estimation of the gradient of a den-

sity function, with applications in pattern recognition. IEEE Transac-
tions on Information Theory, 21(1):32–40, January 1975.

[65] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 17(8):790–799,

Aug. 1995.

[66] A. H. Kam and W. J. Fitzgerald. General unsupervised multiscale seg-

mentation of images. In Conference Record of the Thirty-Third Asilo-
mar Conference on Signals, Systems, and Computers, volume 1, pages

63–67, 24–27 Oct. 1999.

[67] Qiming Luo and T. M. Khoshgoftaar. Unsupervised multiscale color

image segmentation based on mdl principle. IEEE Transactions on Im-
age Processing, 15(9):2755–2761, Sept. 2006.

[68] M. P. Wand and M. Jones. Kernel Smoothing. Chapman and Hall, 1995.

[69] R. Gaetano, G. Poggi, and G. Scarpa. Identification of image structure

by the Mean Shift procedure for hierarchical MRF-based image seg-

mentation. In Proc. EUSIPCO 2006, Florence, Italy, Sept. 2006.

[70] V. Epanechnikov. Nonparametric estimates of a multivariate probability

density. Theory of Probability and its Applications, 14:153–158, 1969.

[71] D. W. Scott. Multivariate Density Estimation. Wiley, 1992.

[72] R.G. Congalton. A review of assessing the accuracy of classifications

of remotely sensed data. Remote Sensing of Environment, 37(1):95–96,

1991.



156 BIBLIOGRAPHY

[73] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human

segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics. In Proc. 8th Int’l Conf.
Computer Vision, volume 2, pages 416–423, July 2001.

[74] G. Scarpa, G. Poggi, and J. Zerubia. A binary tree-structured mrf model

for multispectral satellite image segmentation. Theme 3 5062, INRIA

Sophia Antipolis, project ARIANA, December 2003.

[75] G. Scarpa and M. Haindl. Unsupervised texture segmentation by

spectral-spatial-independent clustering. In 18th International Confer-
ence on Pattern Recognition, 2006, volume 2, pages 151–154, August

2006.

[76] W. D. Penny. Kullback leibler divergences for normal, gamma,

dirichelet and wishart densities, technical report. Technical report,

Wellcome Dept. of Imaging Neuroscience, University College Longon,

2001.
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