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Chapter 1. 

INTRODUCTION. 

Cortical-subcortical dopamine-glutamate interplay in the pathophysiology of 

schizophrenia.  

The dopaminergic hypothesis of schizophrenia states that subcortical hyperdopaminergy may 

result in the occurrence of psychotic symptoms, such as delusions and hallucinations (Kapur, 

2004). Subcortical hyperdopaminergy may stem from the overactivation of the meso-striatal 

pathways. The meso-striatal tract originates from the ventro-tegmental area of the 

mesencephalon, where a great number of dopaminergic neuron bodies are located, and 

projects to the striatum, mainly the lateral aspects of the caudate-putamen (Van den Heuvel 

and Pasterkamp, 2008).  

Several lines of evidence seem to corroborate this hypothesis (Meisenzahl et al., 2007): 1) 

the psychotomimetic action of dopamine-agonists compounds, as amphetamine; 2) 

therapeutic efficacy of antipsychotics, which is tightly correlated to the degree of affinity and 

blockade of the dopamine D2 receptors (enriched in the striatum); 3) the striatal 

supersensitvity to amphetamine in schizophrenic individuals compared to healthy volunteers 

(Breier et al., 1997).  

Recently, the so-called “cortical hypodopaminergy hypothesis” has also been proposed 

(Kapur, 2004). According to this view, a decreased function of the dopaminergic neurons 

belonging to the meso-cortico-limbic tract may explain the cognitive dysfunctions that are 

observed in schizophrenia. The meso-cortico-limbic tract originates from the ventro-

tegmental area and projects to subcortical limbic regions (e.g.: the nucleus accumbens) and 

to the cortex, mainly the dorso-medial prefrontal cortex (Van den Heuvel and Pasterkamp, 

2008). 
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Recent evidence let hypothesize a role for glutamate also in the pathophysiology of 

schizophrenic disease. Olney and 

Farber (Olney et al., 1999) proposed a 

model known as the NMDA receptor 

hypofunction (NRH) hypothesis. NRH 

may result in a decreased activation of 

GABAergic interneurons by collateral 

fibers of glutamatergic pyramidal 

neurons. GABAergic interneurons 

prevent from overactivation of glutamatergic fibers which project to other cortical regions 

and to the striatum and the mesencephalon. Decreased activation of GABAergic interneurons 

result in a lack of inhibition of glutamatergic pyramidal neurons which increase their firing 

onto post-synaptic neurons. Overactivation of glutamatergic pyramidal neurons determines a 

condition of paradoxical hyperglutamatergy (and presumably neurotoxicity) upon neurons 

connecting with glutamatergic pyramidal fibers: other cortical pyramidal neurons and 

subcortical dopaminergic fibers, among others. Hyperglutamatergy upon dopaminergic 

neurons may in turn overactivate these neurons and increase dopamine release in the striatum 

(Fig. 1). 

It thus appears that the pathophysiology of schizophrenia may be more complex than that 

postulated by the 

hyperdopaminergy 

hypothesis. Schizophrenia 

may be provoked by a deep 

imbalance of the 

interconnections between 

Fig. 2 
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dopaminergic and glutamatergic systems at cortical (i.e.: prefrontal cortex) and subcortical 

(i.e.: the caudate-putamen, the nucleus accumbens, the ventro-tegmental area) levels (Fig. 2).    

 

The medium-sized spiny neurons and the post-synaptic density (PSD). 

Striatal regions are classically considered to be relevant for both the pathophysiology and the 

therapy of schizophrenia (Laruelle et al., 2003). In the striatum, the interplay between the 

dopaminergic and the glutamatergic systems takes place at the level of GABAergic 

interneurons, called the medium-sized spiny neurons  (MSNs, Fig. 3). 

 

 

Synaptic inputs from the two systems appear to regulate the direction, intensity, and type of 

output signal starting from MSNs (Kotter, 1994).  

MSNs take part to a complex neuronal loop that projects to the cortex via glutamatergic 

thalamic neurons. It seems that the role of GABAergic interneurons may be to provide a 

filter to the flow of ascending inputs to the cortex. According to the “thalamic filter” 

hypothesis, postulated by Carlsson et al. (Carlsson, 1995), dopamine-glutamate cortical-

subcortical imbalance may impair this subcortical filter, thus causing an overload of inputs to 

the cortex, which may result in psychotic symptoms.  

Fig. 3 
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The post-synaptic density (PSD) is an electrondense thickening located at the post-synaptic 

sites of glutamatergic synapes (Okabe, 2007; Sheng and Hoogenraad, 2007). In the striatum, 

the PSD is particularly enriched in the dendritic spines of MSNs. The PSD is a protein 

machinery that integrates synaptic signals from presynaptic neurons. Therefore, the PSD is a 

site of molecular interplay between dopaminergic and glutamatergic systems (de Bartolomeis 

et al., 2005). Within the PSD, a protein scaffold bridges receptors with: other surface 

receptors; cytoskeletric factors; or effectors of the second messengers pathway (Fig. 4).  

 

 

 

As growing evidence is focusing on the dysfunction of synaptic plasticity processes at the 

glutamatergic synapses in the schizophrenia pathogenesis (Konradi and Heckers, 2003), the 

PSD may represent a key site in the pathophysiology of the disease and PSD factors may be 

considered as potential candidate genes for schizophrenia (Hashimoto et al., 2007b; Toro and 

Deakin, 2005).  

Among all PSD factors, Homer proteins have been demonstrated to have a role in the 

regulation of post-synaptic architecture and in the tuning of post-synaptic glutamatergic 

Fig. 4 
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signaling (Sala et al., 2001; Sala et al., 2003; Sala et al., 2005). The inducible isoform 

Homer1a has been associated to schizophrenia and the gene coding for this isoform has been 

demonstrated to strongly increase when antipsychotics are administered.  

 

The immediate-early gene Homer1a. 

Homer1 is a gene coding for constitutively expressed isoforms (Homer1b/c) and for an 

activity-inducible isoform (Homer1a), which derives from an alternative splicing of the 

original gene (Fig. 5).  

  

 

Homer is a scaffolding protein. Constitutive isoforms (Homer1b/c/d) are bimodal proteins 

which include a domain of interaction with PSD substrates and a domain by which they self-

holigomerize (de Bartolomeis and Iasevoli, 2003). Homer1b/c, by virtue of their molecular 

conformation, form a protein mesh with other PSD factors, which is principally devoted to 

approximate metabotropic glutamatergic receptors to their intracellular effectors and to 

preserve synaptic architecture (de Bartolomeis and Iasevoli, 2003; Shiraishi-Yamaguchi and 

Furuichi, 2007). The truncated isoform Homer1a (which lacks the CC domain allowing self-

Fig. 5 
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holigomerization) competes with constitutive isoforms for binding to PSD substrates and 

disassemblies constitutive Homers-mediated clusters  (Fig. 6).  

  

 

As a result, the glutamatergic IEG Homer1a has been described to rapidly and transiently 

regulate intracellular Ca++ levels and glutamatergic signaling by type I metabotropic 

receptors (de Bartolomeis and Iasevoli, 2003; Shiraishi-Yamaguchi and Furuichi, 2007), 

when expressed. The Homer family of proteins has been shown to play a role in animal 

behavior, as locomotor activity (Diagana et al., 2002), and in behavioral plasticity related to 

memory processes (Klugmann et al., 2005). Overexpression of the inducible isoform 

Homer1a (the product of the IEG Homer1a) in the striatum of transgenic mice produces the 

impairment of motor performance and coordination and stereotyped response to 

administration of the psychostimulant amphetamine (Tappe and Kuner, 2006). A role for 

Homer proteins in behavioral disease, including drug addiction and mental retardation 

(Govek et al., 2004; Giuffrida et al., 2005; Szumlinski et al., 2006), has also been claimed. 

Behavioral abnormalities recalling those observed in animal models of schizophrenia have 

been recently described in Homer1 knockout mice (Szumlinski et al., 2005). Intriguingly, 

Fig. 6 
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alterations in glutamatergic signaling have been hypothesized in the physiopathology of 

schizophrenia (Olney et al., 1999). Hence, Homer1 may be a candidate gene for 

schizophrenia, given its function at glutamatergic post-synapses. According with this view, a 

borderline association with schizophrenia has been shown in a genetic analysis conduced on 

affected subjects (Norton et al., 2003). In our experiments, we have seen that the IEG 

Homer1a is significantly expressed in response to antipsychotics, in a region- and 

compound-specific manner.  

 

Homer1a expression by discrete compounds and procedures: glutamatergic and 

dopaminergic mechanisms. 

Homer1a expression appears to be triggered by several distinct experimental procedures that 

can be grouped in three major classes: paradigms that boost synaptic activity; 

psychostimulants and dopaminergic compounds; and drugs employed in the therapy of 

psychiatric diseases.  

The interest in these drugs and procedures arises from the growing evidence that Homers are 

key factors in synaptic plasticity processes, as the fine-tuning of glutamatergic signaling and 

its postsynaptic integration with other neurotransmitters signaling cascades, above all the 

dopaminergic. Moreover, interest is further enhanced from the view that Homers may be 

implicated in the pathophysiology of behavioral and neurological disorders.  

Homer1a is an activity-induced gene, which is rapidly upregulated in neurons in response to 

synaptic activity. As the main excitatory system in the brain is the glutamatergic, several 

direct and indirect reports, either in vivo or in vitro, suggest a direct regulation of Homer1a 

expression by glutamate, via the NMDA or the AMPA receptors. Glutamate agonists as 

kainate or NMDA elicit Homer1a expression (Kato et al., 1997; Ango et al., 2000; Sato et 

al., 2001). As well, conditions as seizure, kindling, long-term potentiation, or evidence-based 
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learning are all characterized by glutamate mediated synaptic activity and are all described to 

induce Homer1a expression (Brakeman et al., 1997; French et al., 2001; Matsuo et al., 2000; 

Morioka et al., 2001; Potschka et al., 2002; Vazdarjanova et al., 2002). It has been observed 

that Homer1a may directly reduce neuronal excitability. The induction of Homer1a may thus 

relieve neurons from excessive glutamate-induced depolarization and may have a protective 

role. The likelihood of this assumption appears to be confirmed by the strong induction of 

Homer1a in conditions of glutamate neurotoxicity as inflammations or stroke (Miyabe et al., 

2006). Moreover, rats constitutively overexpressing Homer1a showed a reduced 

susceptibility to seizure (Potschka et al., 2002).  

Homer1a overexpression may be involved in neuronal protection, by hyperpolarization and 

downscaling of neuronal excitation, after sleep deprivation-induced glutamate 

overstimulation.  

Phencyclidine (PCP) is a non-competitive antagonist of NMDA receptors, which is also 

known as a drug of abuse. PCP has been demonstrated to induce Homer1a expression within 

the prelimbic region of the prefrontal cortex and the primary auditory cortex at 2 hours from 

administration and to reduce it in the granular retrosplenial cortex at 24 hours posttreatment 

(Cochran et al., 2002).  

Overall, the data above confirm that glutamate may be a main modulator of Homer1a 

expression and suggest a strong involvement of Homer1a in behavioral-related processes. 

Glutamate-mediated modulation seems to occur mainly in the cortex and the hippocampus 

and appears to be negligible in the basal ganglia and the mesencephalon.  

A strong increase of Homer1a expression has been described by direct or indirect activation 

of dopamine transmission. In opposition to environmental or electrical stimuli, which trigger 

gene expression mainly in the cortex and the hippocampus, dopaminergic compounds elicit 
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Homer1a expression in the striatum, which is highly enriched of dopaminergic terminals and 

receptors.  

L-DOPA is a precursor in the metabolic pathway leading to dopamine formation and thus 

could be assumed as a direct agonist at both D1-like and D2-like receptors. Chronic L-DOPA 

has been described to induce Homer1a expression in the denervated striatum of dyskinetic 

rats (Sgambato-Faure et al., 2005).  

A better discrimination of the dopaminergic mechanisms involved in Homer1a expression is 

provided by experiments exploring the induction by a subset of dopamine receptors. In a 

recent work, a significant increase of Homer1a mRNA levels in the striatum and the nucleus 

accumbens by the D1 receptor direct agonist SKF38393 (20 mg/kg) has been observed 

(Yamada et al., 2007). The same compound was unable to trigger gene expression in the 

medial prefrontal cortex, the hippocampus, and the substantia nigra. Yamada and 

collaborators (Yamada et al., 2007) also demonstrated that the D2 receptor direct agonist 

quinpirole had no significant effect on Homer1a expression. Thus, D1 receptors may dose-

dependently mediate the induction of Homer1a in the basal ganglia, while their role in 

cortical induction is questioned.  

Studies employing indirect dopamine agonists appear to confirm the observations by direct 

agonists and antagonists at dopamine receptors.  

Methylphenidate is a psychostimulant drug that behaves as an indirect dopamine agonist and 

produces striatal dopamine overflow, similar to that measured for cocaine (Swanson and 

Volkow, 2002). Acute administration of methylphenidate to adult rats increased Homer1a 

expression in cortical and striatal regions in a dose-dependent and regionally selective 

manner. These changes in gene expression were highly correlated in corticostriatal sectors 

and were prominent in regions involved in motor behavior (Yano and Steiner, 2005). 

Chronic methylphenidate in adolescent rats elicited a persistent increase of Homer1a 
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expression in adulthood (Adriani et al., 2006), presumably as a result of neuroplastic 

rearrangements occurring in the brain areas targeted by methylphenidate. 

In a recent work, Homer1a induction in cortical and striatal areas has been evaluated after 

chronic exposure to vehicle or methylphenidate followed by an acute challenge with the 

same drug. While no significant changes were seen in the cortex as a consequence of acute 

methylphenidate in vehicle chronically treated rats, significant gene expression by acute 

exposure to methylphenidate was observed in several aspects of the caudate-putamen. These 

changes occurred mostly in sensorimotor and central parts of the striatum, and were more 

limited in the ventral sectors and negligible in the nucleus accumbens (Cotterly et al., 2007). 

Chronic treatment by methylphenidate significantly induced Homer1a expression in both the 

cortex and the striatum (Cotterly et al., 2007).  

Acute administration of a neurotoxic dose of methamphetamine (40 mg/kg) significantly 

increased Homer1a mRNA levels in the striatum and the nucleus accumbens (Hashimoto et 

al., 2007a). The same treatment did not affect Homer1b and Homer1c striatal expression in 

any brain regions. Unfortunately, gene expression was measured in the striatum and the 

nucleus accumbens as a whole and no characterization was made of subregions in which 

changes in gene expression were more prominent.  

An apparent exception to the framework depicted is represented from the psychostimulant 

drug lysergic acid diethylamide (LSD). LSD is a direct/indirect agonist at 5-HT1A and 5-

HT2A receptors, which has been shown to induce acutely Ania3 (a splice variant of Homer1a, 

which also behaves as an activity-induced gene) and Homer1a expression in the prefrontal 

cortex. This effect appears to be counteracted by antagonism at 5-HT2A but not at 5-HT1A 

receptors (Nichols et al., 2003). However, it is very difficult drawing an ultimate picture of 

LSD mechanism of action, since it holds partial agonism at 5-HT1A receptors. Thus, in vivo 

action of this drug may change greatly according with dosages and cortical serotoninergic 
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tone, passing from agonism to functional antagonism. It has been described that partial 

agonists at 5-HT1A receptors may facilitate dopamine outflow in the cortex and transmission 

via the D1 receptor (Diaz-Mataix et al., 2005). Thus, LSD may trigger Ania3 expression 

through dopamine release and D1 receptor activation. 

 

Aims of the research. 

Here, we present a group of studies whose aim was to investigate the impact on Homer1a 

expression and Homer-mediated signalling by psychotropic compounds which elicit a 

perturbation of dopamine transmission.  

The first goal of these studies was to clarify the modulation of Homer1a expression by 

psychotropic compounds, in terms of specificity for antipsychotics and of sensitivity to the 

degree of dopamine perturbation elicited. For these reasons, we studied the pattern of 

Homer1a expression by several different antipsychotics and other compounds which 

impacted differentially dopamine transmission.  

In our opinion, Homer1a may represent a preclinical tool to characterize and differentiate 

compounds putatively provided of antipsychotic potential. The studies described herein were 

intended to confirm and strengthen this view.  

However, Homer1a may be implied in antipsychotic mechanism of action. For this reason, 

we also evaluated the functional implications at the protein level of antipsychotic modulation 

upon the gene.  

As a second goal, we also wanted to investigate whether other PSD factors may respond to 

acute and chronic dopamine perturbation by psychotropic compounds. 

Moreover, the studies described may shed a light on the reciprocal interplay between 

dopamine and glutamate at both cortical and subcortical levels. 
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Chapter 2. 

Experimental procedures. 

Animals. 

Male Sprague-Dawley rats of approx. 250g (Charles River Laboratories, Lecco, Italy) were 

housed and let to adapt to human handling in a temperature and humidity controlled colony 

room with 12/12h light/dark cycle (lights on from 6:00 a.m. to 6:00 p.m.) with ad libitum 

access to lab chow and water. All procedures were conducted in accordance with the NIH 

Guide for Care and Use of Laboratory Animals (NIH Publication N0.85-23, revised, 1996) 

and were approved by local Animal Care and Use Committee. Care was taken to minimize 

animal number and sufferance.  

 

Drug treatment. 

Ketamine paradigm.  
 
On the day of the experiment rats (n=5) were randomly assigned to one of the following 

treatment groups: A) 12 mg/kg ketamine (Ket12); B) 50 mg/kg ketamine (Ket50); C) saline 

(0.9% NaCl) (Sal). All drugs were injected intraperitoneally at a volume of 1 ml/kg. The 

animals were sacrificed by decapitation 90 minutes after the treatment.  

 

Aripiprazole paradigm. 

Aripiprazole powder (Bristol-Myers Squibb, Italy), haloperidol injectable solution 

(Lusofarmaco, Italy), clozapine powder (Sigma-Aldrich, Italy), GBR12909 powder (Sigma-

Aldrich, Italy) were used in this study. Aripiprazole, Clozapine and GBR12909 were 

dissolved in physiological saline solution (NaCl 0.9%) with the adjunction of a few drops of 

acetic acid. Physiological saline solution, added with a few drops of acetic acid, was used as 
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a control. All solutions were suited to physiological pH value and injected intraperitoneally 

(i.p.) at a volume of 1 ml/kg. 

Acute experiment protocol. On the day of the experiment, rats (n=7 animals for each 

experimental group) were randomly assigned to one of the following treatment groups: A) 

control saline solution (VEH); B) aripiprazole 12 mg/kg (ARI12); C) aripiprazole 30 mg/kg 

(ARI30); D) haloperidol 0.8 mg/kg (HAL); E) GBR 12909 30 mg/kg (GBR); F) clozapine 15 

mg/kg (CLO). The animals were sacrificed by decapitation 90 minutes after the treatment. 

Chronic experiment protocol. Rats (n=7 animals for each experimental group) were 

randomly assigned to one of the following group: A) control saline solution (VEH); B) 

aripiprazole 12 mg/kg (ARI); C) clozapine 15 mg/kg (CLO); D) haloperidol 0.8 mg/kg 

(HAL) and treated daily for 21 days. The animals were sacrificed by decapitation 90 minutes 

after the last injection. 

 

Dopamine Receptors Antagonists Paradigm. 

SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-

benzazepine hydrochloride) (Tocris Cookson, Bristol, UK), L-741,626  (3-(4-(4-

chlorophenyl-4-hydroxypiperidino)methyl)indole) (Tocris Cookson, Bristol, UK), U-99194  

(5,6-dimethoxy-2-(dipropylamino)indan hydrochloride) (Tocris Cookson, Bristol, UK), L-

745,870 (3-((4-(4-chlorophenyl)piperazin-1-yl)methyl)-1H-pyrrolo(2,3-b)pyridine) (Tocris 

Cookson, Bristol, UK), S(+)-terguride (Sigma-Aldrich, Milano, Italy) were all purchased as 

a powder. Haloperidol was provided as the injectable solution (Lusofarmaco, Milano, Italy) 

and then diluted at the experimental dosages. All drugs were dissolved in a vehicle (VEH) of 

physiological saline solution (0.9% NaCl), which was used as a control. All solutions were 

suited to physiological pH value and injected intraperitoneally (i.p.) at a volume of 1 ml/kg. 
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Rats (n=5 for each experimental group) were randomly assigned to one of the following 

treatment groups: 1) vehicle (VEH); 2) SCH-23390 (D1 receptor selective antagonist) 0.5 

mg/kg; 3) L-741,626 (D2 receptor  selective antagonist) 2 mg/kg; 4) U-99194 (D3 receptor 

selective antagonist) 5 mg/kg; 5) L-745,870 (D4 receptor selective antagonist) 3 mg/kg; 6) 

terguride (D2/D3 receptor partial agonist) 0.5 mg/kg (TER); 7) haloperidol 0.8 mg/kg (HAL).  

 

Atypical antipsychotics (risperidone, olanzapine, and sulpiride) paradigm. 

Risperidone powder (Sigma-Aldrich, Milano Italy), olanzapine powder (Sequoia Research 

Products Ltd, London, UK), (-)-sulpiride powder (Sigma-Aldrich, Milano, Italy), haloperidol 

injectable solution (Lusofarmaco, Milano, Italy) were used in this study. All drugs were 

dissolved in a vehicle (VEH) of physiological saline solution (0.9% NaCl), with a few drops 

of 0.1M HCl, which was used as a control. All solutions were suited to physiological pH 

value and injected intraperitoneally (i.p.) at a volume of 1 ml/kg. 

Rats (n=5 for each experimental group) were randomly assigned to one of the following 

treatment groups: 1) vehicle (VEH); 2) haloperidol 0.8 mg/kg (HAL); 3) risperidone 3 mg/kg 

(RISP); 4) olanzapine 2.5 mg/kg (OLA); 5) (-)-sulpiride 50 mg/kg (SULP).  

 

Ziprasidone Paradigm.  
 
Ziprasidone was provided by Pfizer as an HCl salt and was dissolved by few drops of DMSO 

and 0.9% NaCl (vehicle). Haloperidol (Serenase® 2mg/ml. Lusofarmaco; Milan, Italy), 

prepared from commercially available ampoules, and Clozapine powder (Sigma-RBI 

chemicals, Milan, Italy) were both diluted in vehicle. Vehicle was used as the control group. 

All injections were performed intraperitoneally (i.p.) using an injection volume of 1ml/kg.  

Animals (n=14) were randomly assigned to one of the following treatment groups: A) VEH; 

B) haloperidol 0.8mg/kg; C) ziprasidone 4mg/kg. Treatments were administered once per 
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day for 21 days.  As Homer1a is acutely induced by antipsychotics in an IEG-like fashion, 

we asked whether this property was still conserved after a chronic treatment and/or whether 

chronic treatment may sustain Homer1a expression besides its acute expression. Therefore, 

after the last injection animals were split in two subgroups (n=7 each): those sacrificed 

acutely (90 minutes from the last injection: VEH90, HAL90, ZIP90, according to the 

treatment received) and those sacrificed after a 24-hour withdrawal (VEH24, HAL24, 

ZIP24). Then, we confronted expression of the genes at these two time-points.  

 

Haloperidol-SSRI coadministration paradigm. 

On the day of the experiment were randomly assigned to one of the six following groups: 1) 

Saline solution 0.9% NaCl (SAL); 2) Escitalopram 12mg/kg (ESC) (Lundbeck Italia S.p.A., 

Milan, Italy); 3) Citalopram 14mg/kg (CIT) (Lundbeck Italia S.p.A., Milan, Italy); 4) 

Haloperidol 0.8 mg/kg (HAL) (Lusofarmaco, Milan, Italy); 5) HAL + ESC; 6) HAL + CIT. 

All drugs were dissolved in a vehicle of physiological saline solution (0.9% NaCl, VEH), 

which was used as a control. All solutions were suited to physiological pH value and injected 

intraperitoneally (i.p.) at a volume of 1 ml/kg. 

 

Sertindole paradigm. 

Haloperidol (2mg/ml, Lusofarmaco, Italy) was used as commercially available ampoules and 

diluted in saline solution. Sertindole was gently gifted from Lundbeck H/S and dissolved in a 

vehicle (VEH) composed by saline solutions plus few drops of acetic acid. The vehicle was 

injected in the control group. All injections were performed subcoutaneously in a volume of 

1ml/kg. 

Rats were randomly assigned to one of the following treatment groups (n=7): 1) 0.9% NaCl 

plus acetic acid (VEH); 2) Haloperidol 0.8 mg/kg (HAL); 3) Sertindole 2 mg/kg (SERT).  



 17 

Drug doses. 

The doses of antipsychotics used were all chosen as to fit within the dose range that produces 

effects in animal behavioral models that are predictive of antipsychotic efficacy in humans, 

such as the conditioned avoidance suppression test (Seeger et al., 1995). A similar range was 

used in a recent paper assessing IEGs expression in rat brain (Jennings et al., 2006). 

Haloperidol dose is consistent with a dose range (0.25–1 mg/kg) used to elicit gene 

expression in several protocols (Merchant and Dorsa, 1993; Robertson and Fibiger, 1992; 

Rushlow et al., 2005).  

Aripiprazole shows a dose-dependent dopamine D2 receptors occupancy of 15-90% into a 

dose range between 0.3 and 30 mg/kg. Specifically, aripiprazole 12 mg/kg induces a 

dopamine D2 receptors occupancy near 80% and is twice the ED50 to inhibit the stereotyped 

behavior evoked by apomorphine administration (Semba et al., 1995). Aripiprazole 30 mg/kg 

does not induce catalepsy, even if it gives rise to a D2 receptors occupancy of >85% (Natesan 

et al., 2006; Semba et al., 1995). 

The dosages of the selective dopamine receptors antagonists were chosen based on previous 

published observations, both in vitro and in vivo. The doses are at the lower limit of the 

dose-range used in behavioral studies, in order to preserve receptor selectivity (Bristow et al., 

1997; Bristow et al., 1998; Chaperon et al., 2003; Costanza and Terry, 1998; Matsubara et 

al., 2006; Millan et al., 2000; Millan et al., 2004). As a further validation, neurochemical 

findings assessing dose-related IEGs expression by the compounds have been taken into 

account (Carr et al., 2002; LaHoste et al., 2000; Wirtshafter, 2007).  

Risperidone, olanzapine, and sulpiride doses were chosen based on previous animal studies 

in which molecular and behavioural effects predictive of antipsychotic activity were elicited 

(Didriksen et al., 2006; Fujimura et al., 2000; Kapur et al., 2003; Marchese et al., 2004; 

Sams-Dodd, 1998; Wan et al., 1995). 
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The doses of ziprasidone were chosen as to fit within the dose range that produces effects in 

animal behavioral models that are predictive of antipsychotic efficacy in humans, such as the 

conditioned avoidance suppression test (Seeger et al., 1995). Ziprasidone was administered 

at two divergent doses to assess whether Homer1a expression might depend in a dose-

dependant fashion on increasing D2R blockade. The higher dose of ziprasidone (10 mg/kg) is 

also compatible with the dosage that produces minimal catalepsy, 12.1 mg/kg (9.7-15.1, 95% 

C.I.) (Seeger et al., 1995).  

Citalopram and escitalopram doses were chosen based on previous animal studies in which 

molecular and behavioural effects predictive of either antidepressive or antipsychotic activity 

were elicited (Izumi et al., 2006; Kuipers et al., 2006; Tomasetti et al., 2007; Calcagno et al., 

2007; Bondi et al., 2008). Citalopram and escitalopram were chosen because of their most 

selective effect on 5-HT reuptake blockade among all the currently available SSRIs, with 

escitalopram being approximately twice more potent than citalopram (Owens et al., 2001; 

Sanchez et al., 2003). Moreover, they significantly increase extracellular 5-HT, but not 

dopamine and noradrenaline levels in rat prefrontal cortex (Invernizzi et al., 1997; Bymaster 

et al., 2002; Bundgaard et al., 2006). 

Sertindole was given in a dose-range known to be behaviorally active and to elicit gene 

expression (Andersen and Pouzet, 2001; de Bartolomeis et al., 2002; Depoortere et al., 1997; 

Gao et al., 1998; Sams-Dodd, 1997). 

 

In situ hybridization histochemistry.  

The procedure for in situ hybridization histochemistry was taken from standard published 

protocols (Ambesi-Impiombato et al., 2003). 
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Tissue preparation and sectioning 

The brains were rapidly removed, quickly frozen on powdered dry ice and stored at -70ºC 

prior to sectioning. 

Serial coronal sections of 12µm were cut on a cryostat at-18°C, through the forebrain using 

the rat brain atlas of Paxinos and Watson (Paxinos and Watson, 1997) as an anatomical 

reference. Care was taken to select identical anatomical levels of treated and control sections 

using thionin-stained reference slides. Sections were thaw-mounted onto gelatin-coated 

slides, and stored at -70°C for subsequent analysis. 

 

Radiolabeling and purification of oligonucleotide probes 

The Homer1a probe in the ketamine paradigm was specifically designed to label the 

Homer1a isoform of the Homer1 gene and it was a 48-bases oligodeoxyribonucleotide 

complementary to bases 1073-1120 of the rat Homer1a mRNA (GenBank Accesion No 

U92079). The αCaMKII probe was a 45-bases oligodeoxyribonucleotide complementary to 

bases 937-981 of the rat αCaMKII mRNA (GenBank Accession No NM_012920). The 

βCaMKII probe was a 48-bases oligodeoxyribonucleotide complementary to bases 1143-

1191 of the rat βCaMKII mRNA (GenBank Accesion No NM_021739). 

In all other paradigms, the Homer1a probe was a specifically designed 48-base 

oligodeoxyribonucleotide complementary to bases 2527-2574 of the rat Homer1 mRNA 

(GenBank # U92079) (MWG Biotech; Firenze, Italy).  

The ania3 probe was a 48-base oligodeoxyribonucleotide complementary to bases 1847-

1894 of the rat ania3 mRNA (GenBank # AF030088) (MWG Biotech; Firenze, Italy). The 

Homer1b/c probe was a 48-base oligodeoxyribonucleotide complementary to bases 1306-

1353 of the rat Homer1 mRNA (GenBank # AF093268) (MWG Biotech; Firenze, Italy). The 

Homer2 probe was a 48-base oligodeoxyribonucleotide complementary to bases 710-757 of 



 20 

the rat Homer2 mRNA (GenBank # AB007689) (MWG Biotech; Firenze, Italy). The D2R 

(dopamine D2 receptor) probe was a 48-base oligodeoxyribonucleotide complementary to 

bases 374-421 of the rat Drd2 mRNA (GenBank # NM012547) (MWG Biotech; Firenze, 

Italy). The mGluR5 probe was a 45-base oligodeoxyribonucleotide complementary to bases 

637-682 of the rat mGluR5 mRNA (GenBank Accession #D10891). The Homer1b was a 48-

base oligodeoxyribonucleotide complementary to bases 1306-1354 of the rat Homer1b 

mRNA (GenBank Accession #AF093267). The shank probe was a 48-base 

oligodeoxyribonucleotide complementary to bases 2757-2804 of the rat shank1 mRNA 

(GenBank # NM_0317751) (MWG Biotech; Firenze, Italy). The PSD-95 probe was a 45-

base oligodeoxyribonucleotide complementary to bases 225–269 of the rat PSD-95 mRNA 

(GenBank # M96853) (MWG Biotech; Firenze, Italy). The Homer1b was a 48-base 

oligodeoxyribonucleotide complementary to bases 1306-1354 of the rat Homer1b mRNA 

(GenBank Accession AF093267) (MWG Biotech; Firenze, Italy). The P11 probe was a 48-

bases oligodeoxyribonucleotide complementary to bases 313-361 of the rat P11 mRNA 

(GenBank Accession # NM_134395). All the oligodeoxyribonucleotides were purchased 

from MWG Biotech (Firenze, Italy). These sequences were checked with blastn algorithm 

against GenBank, to avoid cross-hybridization. For each probe a 50µl labeling reaction mix 

was prepared on ice using DEPC-treated water, 1X tailing buffer, 1.5mM CoCl2, 7.5pmol/µl 

of oligo, 125 Units of TdT and 100mCi 35S-dATP. The mix was incubated 20 min at 37°C. 

The unincorporated nucleotides were separated from radiolabeled DNA using ProbeQuant 

G-50 Micro Columns (Amersham Biosciences; Milano, Italy). The autoradiographic signal 

distribution of Homer matched that of previous ISH studies (Berke et al., 1998; Brakeman et 

al., 1997; de Bartolomeis et al., 2002; Polese et al., 2002). Also, the specificity of each probe 

was tested by a control experiment using the corresponding sense probe. 
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In situ hybridization 

All solutions were prepared with sterile double distilled water. The sections were fixed in 4% 

formaldehyde in 0.12 M sodium-phosphate buffered saline (PBS, pH 7.4), quickly rinsed 

three times with 1xPBS, and placed in 0.25% acetic anhydride in 0.1 M 

triethanolamine/0.9% NaCl, pH 8.0, for 10 minutes. Next, the sections were dehydrated in 

70%, 80%, 90% and 100% ethanol, delipidated in chloroform for 5 minutes, rinsed again in 

100% and 95% ethanol and air-dried. 

Sections were hybridized with 0.4-0.6x106 cpm of radiolabeled oligonucleotide in buffer 

containing 50% formamide, 600mM NaCl, 80mM Tris-HCl (pH 7.5), 4mM EDTA, 0.1% 

pyrophosphate, 0.2mg/ml heparin sulfate, and 10% dextran sulfate. Slides were covered with 

coverslips and incubated at 37ºC in a humid chamber for 20 hours. After hybridization the 

coverslips were removed in 1X SSC and the sections were washed 4x15 minutes in 

2xSSC/50% formamide at 40ºC, followed by two 30 min washes with 1xSSC at room 

temperature. The slides were rapidly rinsed in distilled water and then in 70% ethanol. 

 

Autoradiography 

The sections were dried and exposed to Kodak-Biomax MR Autoradiographic film (Sigma-

Aldrich, Milano, Italy). A slide containing a scale of 16 known amounts of 14C standards 

was co-exposed with the samples. The optimal time of exposure was chosen to maximize 

signal-to-noise ratio but to prevent optical density from approaching the limits of saturation. 

The film development protocol included a 1.5 min dip in the developer solution and 3 min in 

the fixer. 
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Image analysis 

The quantitation of the autoradiographic signal 

was performed using a computerized image 

analysis system including: a transparency film 

scanner ScanMaker 9800XL (Microtek Europe 

B. V., Rotterdam, The Netherlands), an Apple 

PowerPC G4, and ImageJ software (v. 1.36, 

Rasband, W.S., http://rsb.info.nih.gov/ij/). 

Sections on film were captured individually. All 

hybridized sections were exposed on the same 

sheet of X-ray film. Analyses were carried out 

on digitized autoradiograms measuring mean optical density within outlined Regions of 

Interest (ROIs) in forebrain sections in correspondence of the cortex, caudate-putamen, and 

nucleus accumbens regions (Figure 7). ROIs in the cortex were selected based on recent 

acquisitions describing functional and anatomical correlation between cortical and striatal 

subregions (Cotterly et al., 2007; Willuhn et al., 2003; Yano and Steiner, 2005). ROIs in the 

striatum have been chosen according to classical subdivision of this region (Steiner and 

Gerfen, 1993). Sections were quantitated blind to the treatment conditions. In order to test 

for inter-observer reliability an independent quantitation was performed by a second 

investigator. Only quantitatively comparable results, in terms of consistency of statistically 

significant effects obtained by the two investigators, were considered reliable. Quantitative 

comparisons among different experimental groups were performed using images from 

hybridized sections exposed on the same sheet of X-ray film.  

 

Fig. 7 
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Data processing 

Measurements of mean optical density (OD) within ROIs were converted by a calibration 

curve based on the standard scale co-exposed to the sections. Standard values from 4 through 

12 have been previously cross-calibrated to 35S brain paste standards, in order to assign a 

dpm/mg tissue wet weight value to each OD measurement through a calibration curve. For 

this purpose a “best fit” 3rd degree polynomial was used. Experimental groups consisted of 3 

to 5 animals. Data for each region was obtained by averaging measurements from 2-4 

adjacent sections of single animals. The data were analyzed for treatment effects by a one-

way analysis of variance (ANOVA).  

Student-Newmann-Keuls was used as the post hoc test in the locus of any significant 

ANOVA. In the ketamine paradigm, Dunnett’s post hoc test was used. Tukey’s post hoc test 

was used in aripirazole and sertindole paradigms. Data in the ziprasidone paradigm were 

analyzed for treatment, time, and treatment-x-time effects by a two-way ANOVA.  

 

 

Topographical distribution. 

Topographical distribution of Homer1a expression has been evaluated by analyzing mean 

OD values for their frequency distribution (Distribution tool of ImageJ) among ROIs as 

induced by antipsychotics and vehicle. Frequency distribution tool provides a rate of the 

regional distribution of signal labeling according to measurement values in each ROI. Sum 

of measurements in a single ROI is compared to the total sum of measurement values in the 

striatum or the cortex, thus providing a relative weight of subregional signal labeling. 

Regional distribution of signal labeling for each treatment has been graphically expressed by 

means of a chart where calibrated (relative dpm) measurements are shown in relation to each 

ROI. As a further evaluation, averaged measurements from each treatment have been 
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analyzed for subregion effect by means of a one-way ANOVA. Student-Newmann-Keuls 

was used as the post hoc test in the locus of any significant ANOVA.  

 

 

Western Blot. 

After treatments, brains were lysed in a buffer containing 10 mmol/L KCl, 1.5 mmol/L 

MgCl2, 20 mmol/L HEPES, 1 mmol/L EGTA, 1 mmol/L EDTA, 1 mmol/L dithiothreitol 

(DTT), 0.1 mmol/L phenylmethylsulfonyl fluoride (PMSF), and a mixture of protease 

inhibitors (Roche, Mannheim, Germany). Then, the lysates were centrifuged at 13000 rpm 

for 20 min to obtain the supernatants and the pellets. Protein concentration of supernatants 

and pellets was determined by Bradford method. Next, proteins were visualized on the filter 

by reversible staining with Ponceau-solution and de-stained in a Tris-buffered saline solution 

with 0.1% Tween 5%. Membranes were first blocked in milk buffer [Tris-buffered saline 

solution with 0.1% Tween 5% plus fat dry milk] and then incubated overnight at 4°C with 

1:500 monoclonal anti-Homer1a antibody and 1:1000 polyclonal anti goat antibody (Santa 

Cruz Biotecnology, Santa Cruz, CA, USA). The resulting complexes were detected using 

chemiluminescent western blotting detection reagents (ECL, Amersham). Filter was exposed 

to Autoradiographic film and then visualized by a transparency film scanner (Microtek 

Europe B. V., Rotterdam, The Netherlands). ImageJ software was used to measure the 

optical density of the bands. Normalization of results was ensured by running parallel 

western blots with the appropriate actin antibody. The data were analyzed for treatment 

effects by a One Way Analysis of Variance (ANOVA). Tukey-Kramer post-hoc test was 

used to determine the locus of effects in any significant ANOVA. 
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Chapter 3. 

Ketamine-related expression of glutamatergic postsynaptic density genes: possible 

implications in psychosis. 

 

Rationale. 

The non-competitive antagonist of glutamatergic N-methyl-D-aspartate (NMDA) receptor 

ketamine is known to induce psychotomimetic effects in healthy volunteers and to re-

exacerbate psychotic symptoms in chronic schizophrenic patients (Krystal et al., 1994). Due 

to the non-competitive blockade of the channel site of NMDA receptor, ketamine is 

predicted to induce a state of NMDA receptor hypofunction (NRH) (Olney et al., 1999). 

NRH is considered one of the putative molecular mechanisms involved in psychosis and has 

been extensively used in humans and animals for mimicking some aspects of schizophrenia 

pathophysiology (Lipska and Weinberger, 2000). Beyond impairing NMDA-mediated 

glutamate transmission, non-competitive NMDA receptor antagonists are demonstrated to 

affect dopamine transmission, in terms of both dopamine synthesis and release and in 

dopamine transporter (DAT) availability (Schiffer et al., 2003; Tsukada et al., 2000). 

According to preclinical and clinical data, an imbalance of dopamine-glutamate transmission 

in striatum or prefrontal cortex appears crucial in schizophrenia (de Bartolomeis et al., 2005).  

The NMDA receptor is the core of the postsynaptic density (PSD), a multiproteic mesh 

providing physical interconnection between surface receptors and intracellular effectors 

(Boeckers, 2006). Moreover, PSD is a site of integration of glutamate and dopamine 

signalling by mechanisms of trans-activation (Hakansson et al., 2006) or convergence 

(Valjent et al., 2005) of intracellular pathways.  

Two major components of PSD involved in dopamine-glutamate interplay are Homer and 

CaMKII. CaMKII is a dodecameric enzyme activated by Ca++ entry through the NMDA 
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receptor. CaMKII is composed by alpha subunits, the catalytic component, and beta subunits, 

mediating interaction with cytoskeleton. NMDA receptor stimulation leads to the 

disconnection from actin filaments and translocation in the PSD, where the enzyme exerts its 

kinase activity (Shen and Meyer, 1999). CaMKII has been involved in both glutamate 

signalling via the NMDA receptor and dopamine transduction (Pan et al., 2006).  

Homer1 and CaMKII may be functionally linked to modulate dopamine-glutamate interplay 

in PSD. CaMKII phosphorylates Homer1 in striatal synaptosomes (Yoshimura et al., 2002) 

and NMDA receptors in response to the stimulation of D1 or D2 receptors in striatal slices 

(Oh et al., 1999). Since Homer1a and alphaCaMKII represent reliable markers of 

glutamatergic function and are related to dopaminergic activity in the striatum, we employed 

in situ hybridization histochemistry to perform a quantitative analysis of topographic 

anatomical pattern of Homer1a, alpha and betaCaMKII gene expression in the ketamine-

related model of glutamatergic and dopaminergic imbalance. We have chosen a low (12 

mg/kg) and a high (50 mg/kg) subanaestethic dose of ketamine to observe gene expression in 

a condition of low and high dopamine-glutamate perturbation in the regions of interest 

(Moghaddam et al., 1997). 

 

 

Results. 

Animals treated with 12 mg/kg ketamine showed hyperlocomotion and stereotypy, which 

appeared rapidly after injection and subsided few minutes later. For the 50 mg/kg dose, we 

observed a moderate level of sedation, flat body posture, ataxia, head weaving. Rats were, 

however, full responsive to sound stimulation and were not anaesthetized. These effects 

lasted more than those observed with the 12 mg/kg dose. 
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Low levels of Homer1a and αCaMKII gene expression were detected in the forebrain of 

control animals in both cortical and subcortical regions (Fig 8). 

  

 

Figure 8. Upper row: a) Reference forebrain section highlighting Regions of Interest, Autoradiograms of 

Homer1a mRNA expression in: saline (b), ketamine 12mg/kg (c), ketamine 50mg/kg (d) treated-rats. Lower 

row: g) Reference midbrain section highlighting Regions of Interest, modified from Paxinos and Watson 

(1997): substania nigra pars compacta (1), ventro-tegmental area (2). Autoradiograms of αCaMKII (e), 

βCaMKII (f), and DAT (h) mRNA expression from saline-treated control rats. 

 

 

Homer1a autoradiographic signal was widely distributed in the brain, mainly in the frontal 

and the parietal cortex, the caudate-putamen and the nucleus accumbens (Fig. 9). We found a 

significant difference in the ventral striatum, whereas no significant changes in mRNA 

expression were detected in the dorsal striatum (dorsomedial, DM, and dorsolateral, DL: 

ANOVA, p> 0.05). In both the ventrolateral (VL) and the ventromedial (VM) putamen 

Homer1a was increased by Ket50 over the Sal group (VL: ANOVA, p= 0.0379, F2,9= 5.93; 
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VM: ANOVA, p= 0.0273, F2,9= 10.98). Moreover, Dunnett’s post hoc test showed a 

significant induction by Ket12 over the control group in VM. In the shell (ANOVA, p= 

0.0015, F2,9= 18.93) and the core (ANOVA, p= 0.0008, F2,9= 22.47) of the nucleus 

accumbens Ket50 significantly induced Homer1a expression compared to both Sal and 

Ket12, whereas Ket12 was significant against Sal (Fig. 9). 

 

Figure 9. Homer1a mRNA expression. Homer1a mRNA levels measured after acute treatment in striatal 

subregions quantitated by densitometry of in situ hybridization histochemistry autoradiograms. VL= 

ventrolateral putamen. VM= ventromedial putamen. CAb= core of the accumbens. SAb= shell of the 

accumbens. Post-hoc: * p<0.05 vs saline. Data are expressed as relative dpm ± S.E.M.  

Fig. 9 
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The highest density of the αCaMKII autoradiographic signal was detected in frontal and 

parietal cortex, caudate-putamen and nucleus accumbens. In either DL, DM, and VM 

subregions of caudate-putamen and in the shell of nucleus accumbens (SAcb) a statistically 

significant increase of αCaMKII gene expression was observed in Ket12 group as compared 

with Sal and Ket50 groups (DL: ANOVA, p= 0.0067, F2,9= 7.81; DM: ANOVA, p= 0.0060, 

F2,9= 8.05; VM: ANOVA, p= 0.0063, F2,9= 7.93; SAcb: ANOVA, p= 0.0333; F2,9= 4.57) 

(Fig. 10). No significant changes were detected in both VL and core of accumbens 

(ANOVA, p>0.05).  βCaMKII mRNA expression was detected throughout rat forebrain. 

Nonetheless, no significant differences among groups were detected in any of the region 

assessed (ANOVA, p>0.05). 

  

Figure 10. AlphaCaMKII mRNA expression. AlphaCaMKII mRNA levels measured after acute treatment in 

striatal subregions quantitated by densitometry of in situ hybridization histochemistry autoradiograms. DL= 

dorsolateral putamen. DM= dorsomedial putamen. Post-hoc: * p<0.05 vs saline. Data are expressed as relative 

dpm ± S.E.M.  

Fig. 10 
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Chapter 4. 

Homer splicing variants modulation in cortico-subcortical regions by dopamine D2 

antagonists, partial agonists, and indirect agonist: implication for glutamate in 

antipsychotics action. 

 

Rationale. 

Several lines of evidence support the hypothesis that the dysregulation of dopamine systems 

in schizophrenia may be associated with a persistent dysfunction of glutamate system (Olney 

et al., 1999; Goff et al., 2001). Moreover, genes that have been reported to be altered in 

schizophrenia play essential roles in glutamatergic neurotransmission (Harrison and 

Weinberger, 2005). In addition, recent studies reported that the inhibition of dopamine D2 

receptors by typical and atypical antipsychotics may influence glutamate neurotransmission 

(Leveque et al., 2000). 

Thus, the analysis of the expression patterns of genes linked both to dopamine and glutamate 

neurotransmission may provide an interesting tool to understand the mechanism of action of 

antipsychotic drugs.  

The present study aimed to give a more complete picture of Homer genes expression by 

investigating, in both acute and chronic paradigms, its modulation by compounds differently 

impacting the dopaminergic function: the typical antipsychotic haloperidol, the atypical 

antipsychotic clozapine, the dopamine transporter (DAT) inhibitor GBR12909, and the novel 

dopamine partial agonist aripiprazole. 

Dopamine partial agonists, such as aripiprazole, represent a novel therapeutic approach to 

schizophrenia. As other partial agonists, aripiprazole binds to D2 dopamine receptors with 

high affinity and low intrinsic activity (Kikuchi et al., 1995) and exerts antagonistic or 

agonistic effects at D2 receptors depending on their level of basal activation (Burris et al., 
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2002). Aripiprazole, indeed, has been demonstrated to display D2 receptors antagonist 

activity in conditions of dopaminergic hyperactivity, e.g. blocking apomorphine-induced 

stereotypies (Semba et al., 1995), and D2 receptors agonist effects in conditions of dopamine 

hypoactivity, e.g. reducing increased dopamine synthesis in reserpinized rats (Kikuchi et al., 

1995). However, the molecular mechanisms involved in the dopamine partial-agonist activity 

of aripiprazole are not completely known at present. Recent theorizations suggest that the 

peculiar functional characteristics of aripiprazole at dopamine D2 receptors could be 

ascribed, rather than a classical partial agonist activity, to a mechanism of “functional 

selectivity” (Lawler et al., 1999). Specifically, the agonistic or antagonistic properties of 

aripiprazole at D2 receptors would depend upon the cellular location and the signalling 

pathways (i.e. G-proteins and downstream effectors) of the targeted D2 receptors (Shapiro et 

al., 2003; Urban et al., 2007). These features may explain why aripiprazole could act as an 

antagonist in subcortical regions of schizophrenic patients, where a hyperdopaminergy is 

postulated (Breier et al., 1997), and as an agonist in the cortex, where it could 

counterbalance the putative hypodopaminergy (Laruelle et al., 2003; Guillin et al., 2007).  

In this paradigm, we also evaluated whether a differential induction of Homer1a and ania-3 

splice variants may be elicited by the different compounds administered.  

Moreover, the chronic treatment protocol, resembling the timing to obtain pharmacological 

effects with antipsychotics in clinical practice, set out to assess the impact on Homer 

expression of prolonged drug administration. Indeed, the chronic paradigm may help to 

discriminate tolerance effects potentially displayed by IEGs after repeated drug 

administration (Persico et al., 1993). 
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Results. 

Acute administration experiment  

Homer 1a and ania-3  

Caudate-putamen 

ANOVA revealed a statistically significant induction of both Homer1a and ania-3 following 

aripiprazole at the lower dose of 12 mg/kg in all the subregions of the caudate-putamen: 

dorsomedial (DM), dorsolateral (DL), ventrolateral (VL), and ventromedial (VM). The post 

hoc test displayed a significant signal increase in DM and VM by ARI12 compared to VEH 

and in DL and VL by ARI12 compared to VEH and CLO (Figure 12b, e). Differently, there 

was no statistically significant induction of Homer1a and ania-3 in rats treated with 

aripiprazole at the higher dose (30 mg/kg) in any subregion (Figure 12b, e). 

 

 

 

Figure 11. Autoradiographic film images of Homer1a (panel a) and ania-3 (panel b) mRNA detected by means 

of in situ hybridization histochemistry (ISHH) in coronal brain sections after acute treatment with vehicle 

(VEH), aripiprazole 12 mg/kg (ARI12), aripiprazole 30 mg/kg (ARI30), haloperidol (HAL), GBR 12909 

(GBR) or clozapine (CLO). 

Fig. 11 
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As reported in previous works (de Bartolomeis et al., 2002; Polese et al., 2002; Ambesi-

Impiombato et al., 2007), haloperidol significantly induced Homer1a expression in all the 

subregions of caudate-putamen, where the post hoc test showed significant signal changes in 

DM and VM by HAL compared to VEH and CLO; in DL and VL by HAL compared to 

VEH, CLO and ARI30 (Figure 12b). Within the caudate-putamen, the pattern of ania-3 

expression induced by haloperidol resembled that of Homer1a in all the subregions (Figure 

12e). 

GBR12909 treated group displayed a statistically significant induction of Homer1a gene 

expression in all the subregions of caudate-putamen (Figure 12b) where the post hoc test 

indicated a significant signal increase in DM and VL by GBR compared to VEH, CLO and 

ARI30; in DL and VM by GBR compared to VEH and CLO. The pattern of ania-3 

expression in the caudate-putamen following GBR administration was similar to that of 

Homer1a (Figure 12e).  

Clozapine administration induced no significant expression in the caudate-putamen of both 

splice variants of Homer1 gene (Figure 12b, e).  

 

Nucleus accumbens 

Aripiprazole 30 mg/kg significantly increased Homer1a, but not ania-3, expression in the 

shell of nucleus accumbens compared to VEH (Figure 12c, f). Also, clozapine acute 

administration significantly increased Homer1a expression, but not ania-3, in the shell 

compared to VEH, as described in previous works (Polese et al., 2002) (Figure 12c, f). 

Homer1a and ania-3 were significantly induced by haloperidol in both core and shell 

subregions (Figure 12c, f). At the post hoc test the HAL treated group showed a significant 

Homer1a signal increase compared to VEH and CLO in the core and compared to VEH in  

 



 34 

the shell. Ania-3 was significantly induced by HAL compared to VEH and CLO in both core 

and shell. 

GBR12909 significantly induced Homer1a in core and shell compared to control (Figure 

12c). As opposed to Homer1a, no significant induction of ania-3 was detected in the nucleus 

accumbens by GBR12909 (Figure 12f).  

 

Cortex 

There was a significant induction of Homer1a in both the outer (FCo) and the inner layers 

(FCi) of the frontal cortex by GBR compared to VEH and HAL and in the cingulate cortex 

(Cg) by GBR compared to VEH (Figure 12a). Ania-3 was significantly increased in the FCo 

by GBR compared to VEH, CLO and HAL and in the FCi by GBR compared to all the other 

treatments (Figure 12d). 

Aripiprazole 30 mg/kg significantly induced Homer1a in the cortex (Figure 12a) and the post 

hoc test showed a significant signal increase in FCo by ARI30 compared to VEH and HAL, 

in FCi by ARI30 compared to VEH, and in Cg by ARI30 compared to VEH, HAL, ARI12 

and CLO. 

No significant induction of Homer1a was detected in the parietal cortex (PC), whereas ania-

3 was strongly upregulated by GBR in both the outer (PCo) and the inner layers (PCi) of the 

parietal cortex compared to all the other treatments (Figure 12a, d). 

There was no statistically significant expression in the cortex for both splicing variants of 

Homer1 gene following clozapine and haloperidol administration (Figure 12a, d).  
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Figure 12. Homer1a and ania-3 mRNA levels after acute treatment. Panels a, b and c: Homer1a mRNA levels 

in cortex, caudate-putamen and nucleus accumbens. Panels d, e and f: ania-3 mRNA levels in cortex, caudate-

putamen and nucleus accumbens. Data are reported in relative dpm as mean ± S.E.M. Tukey’s post hoc test: * vs. 

VEH (ANOVA, p<0.05). 

 

Fig. 12 
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ACUTE TREATMENT 
        

Probes ARI 12 ARI 30 HAL GBR CLO P-Value  F(df)-Value 
            (ANOVA) (ANOVA) 
         

Homer1a        
         

Cortex        
FC outer 138.5±7.05 168.4±14.1* 105.4±3.41 153.9±16.82* 135.3±14.76 0.0029 5.543(5,18) 
FC inner 138.2±15.42 156.1±6.79* 103.01±8.18 162.49±22.53* 118.05±7.89 0.01 4.077(5,18) 

Cingulate ctx 131.2±8.03 186.9±15.73* 114.6±12.02 148.6±11.74* 136.9±8.51 0.0005 7.74(5,18) 
PC outer 115±6.11 145.8±12.5 100.8±11.77 136.5±15.1 123.6±8.41 0.0336 3.118(5,18) 
PC inner 116.5±9.97 141±12.26 106.3±6.35 145.3±14.46 111±12.36 0.0316 3.171(5,18) 

         
Caudate-putamen        

DM 159.4±10.5* 132.7±2.74 115.3±17.05* 195.7±8.82* 126±8.63 0.0001 12.742(5,17) 
DL 160±11.88* 137.9±10.03 190.3±11.92* 159.6±14.34* 114.8±8.68 0.0002 9.598(5,17) 
VL 163.3±14.07* 130±10.02 189.5±10.57* 208.1±22.01* 112.5±9.85 0.0001 11.358(5,17) 
VM 150.1±7.95* 123.8±5.66 156.9±12.01* 160.6±11.39* 116.5±8.71 0.0006 7.687(5,17) 

         
Nucleus accumbens        

Core 127.4±4.12 130.6±4.91 158.3±10.82* 145±8.93* 121.4±9.10 0.0019 6.212(5,17) 
Shell 134.8±3.24 159.5±12.48* 148±16.24* 155.7±5.12* 139.8±7.93* 0.0041 5.306(5,17) 

         
Ania-3        

         
Cortex        

FC outer 112.9±5.75 114.7±4.11 102.2±5.33 139.7±9.6* 99.3±5.88 0.0103 4.012(5,21) 
FC inner 116.5±0.90 115.5±7.47 103.1±2.88 140.1±2.10* 96±4.55 0.0001 9.153(5,21) 

Cingulate ctx 127.9±15.6 129±7.94 115.6±3.24 130.3±13.6 107.2±5.51 0.1218 1.991(5,21) 
PC outer 103.7±10.33 101.7±4.80 106±5.67 155±12.36* 96.8±8.87 0.0006 6.932(5,21) 
PC inner 113.4±9.62 109±3.95 114.3±4.78 166.9±10.27* 101.4±4.67 0.0001 13.564(5,21) 

         
Caudate-putamen        

DM 139.3±21.3* 119.7±4 150.7±3.92* 188.7±10.14* 105.5±3.55 0.0001 12.160(5,21) 
DL 169.9±21.68* 140.5±11.94 219.8±11.57* 174.6±15.26* 117.4±5.18 0.0001 11.941(5,21) 
VL 145.3±20.46* 129.1±8.95 205.9±7.98* 228.7±12.67* 101.1±3.77 0.0001 26.147(5,21) 
VM 137.3±16.28* 120.1±5.95 161.6±8.39* 162.8±10.39* 104±3.27 0.0001 10.378(5,21) 

         
Nucleus accumbens        

Core 121.8±2.42 134.6±19.33 165.1±11.84* 132.6±17.23 117.2±7.25 0.0122 3.866(5,21) 
Shell 121.3±5.73 135.7±20.36 159.3±8.71* 138.6±17.4 106.3±6.74 0.0228 3.326(5,21) 

 
Table 1. mRNA levels of Homer 1a and ania-3 after acute treatments, expressed as percent of VEH relative dpm mean 

value ± SEM and presented for each brain region analyzed with the relative ANOVA values. FC = frontal cortex; PC = 

parietal cortex; DM = dorsomedial; DL = dorsolateral; VL = ventrolateral; VM = ventromedial. * = statistical significance 

vs. VEH at the Tukey’s post hoc test  
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Fig. 13 

Chronic administration experiment  

Homer 1a and ania-3  

Caudate-putamen 

ANOVA revealed a significant induction of Homer1a expression by aripiprazole in the 

lateral subregions of the caudate-putamen (Figure 14b), where the post hoc test showed a 

significant signal increase in DL and VL by ARI12 compared to VEH and CLO.  

 

 

 

Figure 13. Autoradiographic film images of Homer1a and ania-3. Autoradiographic film images of 

Homer1a (panel a) and ania-3 (panel b) mRNA detected by means of in situ hybridization histochemistry 

(ISHH) in coronal brain sections after chronic treatment with saline (VEH), aripiprazole (ARI), clozapine 

(CLO) or haloperidol (HAL). 

 

 

Homer1a was significantly upregulated in the caudate-putamen following haloperidol 

chronic treatment (Figure 14b). The post hoc test displayed a significant signal increase in all 

caudate-putamen subregions by HAL compared to all the other treatments.  
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No significant changes in Homer1a signal were detected in the caudate-putamen following 

chronic clozapine administration. 

As described for the acute paradigm, ania-3 followed, in the chronic protocol, the same 

pattern of signal induction as Homer1a in the caudate-putamen (Figure 14e). 

 

Nucleus accumbens 

There was a statistically significant upregulation of Homer1a in the nucleus accumbens core 

by HAL compared to VEH and CLO and of ania-3 by HAL compared to all the other 

treatments (Figure 14c, f). No significant changes were observed in both Homer1a and ania-

3 expression in the nucleus accumbens following all the other treatments.  

 

Cortex 

Homer1a and ania-3 expression was differently modulated in the subregions of the cortex. 

Homer1a was significantly downregulated in FCi and Cg by aripiprazole 12 mg/kg and 

clozapine compared to control, and in PCi by CLO compared to VEH (Figure 14a). 

Differently, ania-3 gene expression did not show any significant change in the same regions, 

although it followed a similar trend as Homer1a (Figure 14d).  

Haloperidol did not give rise to any significant signal change of both Homer1a and ania-3 in 

the cortex (Figure 14a, d).  
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Figure 14. Homer1a and ania-3 mRNA levels after chronic treatment. Panels a, b and c: Homer1a mRNA levels in 

cortex, caudate-putamen and nucleus accumbens. Panels d, e, and f: ania-3 mRNA levels in cortex, caudate-putamen 

and nucleus accumbens. Data are reported in relative dpm as mean ± S.E.M. Tukey’s post hoc test: * vs. VEH 

(ANOVA, p<0.05). 
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Homer 1b/c 

The Homer1b/c gene expression showed no statistically significant variations in the caudate-

putamen and in the nucleus accumbens, as well as in the cortex, following the treatments 

administered (data not shown). 

 

Dopamine D2 receptors 

There was a trend toward the upregulation of the dopamine D2 receptor gene expression in 

all the striatal regions following chronic haloperidol and aripiprazole treatments, even if 

there were no statistically significant differences among experimental groups (data not 

shown). These results are consistent with previous reports (Hurley et al., 1996). 
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CHRONIC TREATMENT 
      

Probes ARI HAL CLO P-Value F(df)-Value 
        ANOVA ANOVA 
       

Homer1a      
       

Cortex      
FC outer 84.50±5.12 90.77±5.38 81.41±4.66 0.1076 2.409(3,15) 
FC inner 80.1±3.23* 92.42±7.84 76.4±3.95* 0.0183 4.568(3,15) 

Cingulate ctx 79.5±3.10* 91.1±4.29 84.31±5* 0.0119 5.171(3,15) 
PC outer 89.64±4.71 93.64±4.43 87.82±2.68 0.1842 1.835(3,15) 
PC inner 86.98±5.28 89.9±2.84 79.98±5.48* 0.0366 3.668(3,15) 

       
Caudate-putamen      

DM 97.9±4.32 122.1±8.88* 93.6±6.17 0.0189 4.526(3,15) 
DL 121.1±5.89* 144.8±8* 98.7±4.8 0.0001 13.710(3,15) 
VL 124.9±3.5* 146.8±8.99* 98.2±4.16 0.0001 15.305(3,15) 
VM 94.3±3.03 120.4±8.28* 88.3±4.69 0.0059 6.212(3,15) 

       
Nucleus accumbens      

Core 106.8±5.37 128.1±8* 101.1±5.3 0.0316 3.852(3,15) 
Shell 104.7±9.65 108.8±4.92 93.7±4.98 0.6536 0.553(3,15) 

       
Ania-3      

       
Cortex      

FC outer 90.9±3.21 96.8±3.40 97.8±3.59 0.4238 0.987(3,16) 
FC inner 84.4±3.54 95.9±5.41 94±3.97 0.0968 2.487(3,16) 

Cingulate ctx 93.2±2.64 103.9±3.38 97.6±1.63 0.0989 2.502(3,16) 
PC outer 93.3±5.44 96.7±3.18 91.5±2.97 0.5305 0.764(3,16) 
PC inner 90.6±3.27 99±4.87 95.49±2.94 0.3814 1.091(3,16) 

       
Caudate-putamen      

DM 98.1±1.58 109.8±2.42* 92.9±1.78 0.0001 13.746(3,15) 
DL 110.1±1.94* 124.4±1.52* 93.8±2.12 0.0001 38.038(3,15) 
VL 111.7±4.18* 125.7±3.54* 93.31±2.56 0.0001 22.555(3,15) 
VM 101.7±0.18 111.8±1.84* 99.4±2.24 0.0003 11.946(3,15) 

       
Nucleus accumbens      

Core 97.8±3.20 110.5±3.42* 97±2.73 0.0128 5.063(3,15) 
Shell 96.8±4.41 107.55±4.47 97.8±4.63 0.2773 1.415(3,15) 

Table 2. mRNA levels of Homer1a and ania-3 after chronic treatments, expressed as percent of VEH relative 

dpm mean value ± SEM and presented for each brain region analyzed with the relative ANOVA values. FC = 

frontal cortex; PC = parietal cortex; DM = dorsomedial; DL = dorsolateral; VL = ventrolateral; VM = 

ventromedial. * = statistical significance vs. VEH at the Tukey’s post hoc test.
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Topography of Homer1a expression.  

Acute experiment. According to other observations (see following chapters), vehicle showed 

a homogeneous signal distribution (Fig. 15). No significant differences among subregions 

were detected at the ANOVA (p > 0.05). Clozapine also exhibited a homogeneous signal 

distribution with no significant differences at the ANOVA, although a slight prominence of 

signal expression could be noted in the shell of the accumbens (Fig. 15). This pattern may 

correlate with the putative limbic-selectivity of clozapine and agrees with previous studies 

describing a preferential IEGs expression in the shell of the accumbens by this compound 

(REF). Homer1a distribution by aripiprazole was obviously different at the two doses used. 

The lower dose (12 mg/kg) gave raise to a signal distribution which highly resembled those 

by haloperidol, while the 30 mg/kg dose showed a trend toward the attenuation of signal 

peaks and a stronger expression in the shell of the accumbens (Fig. 15). Homer1a induction 

by 12mg/kg aripiprazole was significant (p<0.0001) in the lateral and medial putamen 

compared with the nucleus accumbens. However, no significant differences were detected 

between lateral and medial subregions. Homer1a induction by 30mg/kg aripiprazole showed 

a weak trend to significance (p=0.0417), with expression in the dorsolateral putamen and the 

shell of the accumbens being significantly higher than that in the dorsomedial putamen and 

the core of the accumbens.  

Haloperidol exhibited its characteristic “three-steps” pattern of signal distribution, with 

significant higher levels of Homer1a expression in the lateral subregions and with lower 

levels in the accumbens. Intermediate values of expression were observed in the medial 

subregions (Fig. 15).  

Taken together, these observations let hypothesize that the profile of Homer1a signal 

distribution may be strictly related to dopaminergic perturbation exerted by a compound. In  
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particular, the higher dopamine perturbation seems to be associated with higher levels of 

gene expression in the lateral subregions and lower levels in the accumbens. Thus, profiling 

of Homer1a expression may be a tool to characterize the actual impact on dopamine 

transmission by a compound.  

GBR12909 showed a peculiar pattern of signal distribution, with significant higher values of 

expression in the dorso-medial and the ventro-lateral striatum among all other subregions 

(Fig. 15). 

Chronic experiment. Signal distribution resembled those observed in the acute experiment. 

Vehicle distribution was homogeneous although a slight induction could be observed in 

medial regions. Clozapine distribution, as well, was homogeneous. Aripiprazole and 

haloperidol exhibited the same distribution pattern described in the acute experiment (Fig. 

15).  
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Fig. 15 
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Figure 15. Topographical distribution of Homer1a. Homer1a expression has been evaluated related to signal 

distribution among ROIs within each treatment in both the acute (upper panel) and the chronic (lower panel) paradigm 

Data are reported as averaged relative d.p.m. (Rel DPM). For clarity matter, S.E.M. bars have not been traced.  
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Chapter 5. 

Dopamine receptor subtype dynamic contribution to the induction of Homer: insights 

into antipsychotics molecular mechanism of action. 

 

Rationale. 

Both glutamate and dopamine have been observed to induce Homer1a expression. Glutamate 

agonists as kainate or NMDA elicit Homer1a expression (Ango et al., 2000; Kato et al., 

1997; Sato et al., 2001). The antagonist of NMDA receptors, ketamine, induces Homer1a 

(Iasevoli et al., 2007), most likely as a result of secondary hyperglutamatergy on ionotropic 

receptors. On the other hand, Homer1a is induced by indirect dopamine agonists, such as 

cocaine (Brakeman et al., 1997; Swanson et al., 2001; Zhang et al., 2007), amphetamines 

(Yano et al., 2006), and cocaine-like psychostimulants (Ambesi-Impiombato et al., 2007). 

Homer1a induction has also been described by SKF38393, a selective and direct dopamine 

D1 receptors agonist (Yamada et al., 2007).  

However, little is known about changes in gene expression as a consequence of antagonism 

at dopamine receptors. We demonstrated that Homer1a is consistently induced by 

antipsychotic drugs. The prototype typical antipsychotic haloperidol induced the gene in all 

subregions of the caudate-putamen (de Bartolomeis et al., 2002), while two atypical 

antipsychotics, clozapine and quetiapine, produced little or no expression of the gene 

(Ambesi-Impiombato et al., 2007). Moreover, the dopamine D2 receptor partial agonist, 

aripiprazole, induced the gene significantly more when given at a lower (12 mg/kg) than a 

higher (30 mg/kg) dosages (Tomasetti et al., 2007). Since all effective antipsychotics share 

the property to block dopamine D2 receptors, we hypothesized that antagonism at dopamine 

D2 receptors may be responsible for Homer1a induction by antipsychotics. However, most 

antipsychotics interact with several dopaminergic receptors (Arnt and Skarsfeldt, 1998),  
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raising the issue of whether Homer1a induction may be triggered by non-D2 dopaminergic 

receptors.  

In this study, we aimed to confirm that Homer1a may be induced by dopamine receptors 

blockade and to characterize which subtype of dopamine receptors may trigger the 

expression of the gene. Hence, we tested Homer1a induction by selective antagonists at 

dopamine receptors (D1, D2, D3, D4 subtypes) and compared with that by haloperidol and the 

putative antipsychotic terguride, which behaves as a partial agonist at dopamine D2 

receptors. The constitutive isoform, Homer1b, and the metabotropic glutamatergic receptor, 

mGluR5, interact with Homer1a and are involved in Homer-mediated signaling 

(Kammermeier and Worley, 2007; Mao et al., 2005; Ronesi and Huber, 2008) and in 

synaptic plasticity processes (Sala et al., 2005; Vanderklish and Edelman, 2002). In the 

present study we evaluated also the expression of these genes by haloperidol, terguride, and 

dopamine receptors selective antagonists.  

 

Results. 

Caudate-putamen 

The post hoc test showed a significant Homer1a induction by HAL in all subregions 

compared both to controls and selective antagonists of dopamine receptors (Fig. 16, Table 3). 

L-741,626 showed a pattern of Homer1a induction closely similar to that of haloperidol, 

increasing Homer1a signal in all caudate-putamen subregions as compared to controls and to 

all other dopamine receptors antagonists (Fig. 16). A significant increase of Homer1a 

expression as compared to VEH was observed by the D2/D3 receptors partial agonist TER in 

the lateral caudate-putamen and by SCH-23390 in the VL caudate-putamen (Fig. 16).  

 

 



 47 

Nucleus Accumbens 

The post hoc test indicated that HAL significantly induced Homer1a expression compared to 

all the other treatments in both CAcb and SAcb (Fig. 16, Table 3). Homer1a was 

significantly induced by SCH-23390 and L-741,626 in both accumbal subregions compared 

to VEH (Fig. 16).  

 

Cortex 

A significant Homer1a induction by SCH-23390 was observed in all cortical subregions, 

with the exception of the ACC (Fig. 16, Table 3). A significant induction was also elicited by 

L-741,626 and U-99194 in the MAC and the MC (Fig. 16). On the contrary, terguride and 

haloperidol decreased Homer1a expression compared to basal levels in the MC. It is worth 

noting that SCH-23390 and L-741,626 induced Homer1a expression significantly more than 

haloperidol and terguride in the ACC, the MAC, and the MC (Fig. 16).  

 

Hippocampus 

In the CA1, SCH-23390 induced Homer1a expression significantly higher than L-745,870. 

In the CA3, VEH group induced significantly the gene compared to L-745,870 (Fig. 19, 

Table 4). No difference is found in both the CA2 and DG subregions among groups. 
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Figure 16. Homer 1a mRNA expression by dopamine receptors antagonists. Upper panel: autoradiographic film 

image of Homer 1a detected by means of ISHH in rat coronal brain sections after treatment with control (VEH), SCH-

23390 (SCH), L-741,626 (L741), U-99194 (U99), L-745,870 (L745), terguride (TER), and haloperidol (HAL). 

Treatments are outlined in the upper right corner of each section. Intermediate panel: Homer1a levels in caudate-putamen 

and nucleus accumbens. Values are expressed in relative dpm as mean ± SEM. Student-Neumann-Keuls post hoc test: ** 

= vs. all treatments; * = vs. controls. Lower panel: Homer 1a levels in the cortex. Student-Neumann-Keuls post hoc test: 

* = vs. controls; #= vs. TER and HAL.  

Fig. 16 
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 SCH-23390 L-741,626 U-99194 L-745,870 Terguride Haloperidol ANOVA 

Striatum        

DM  121.15±3.7    165.33±3.1 p < 0.0001, F6,22=31.613 

DL  130.61±2.07   121.71±1.36 224.44±1.65 p < 0.0001, F6,22=111.731 

VM  111.07±0.97    156.29±0.86 p < 0.0001, F6,22=48.936 

VL 109.12±1.21 115.83±2.13   112.37±1.61 221.51±4.06 p < 0.0001, F6,22=234.308 

CAcb 120.32±1.61 110.96±0.97    143.61±1.65 p < 0.0001, F6,22=28.618 

SAcb 116.02±0.95 111.16±1.35    131.52±1.37 p < 0.0001, F6,22=17.056 

        

Hippocampus        

CA1       p = 0.0394, F6,20=2.777 

CA2       p > 0.05, F6,20=2.939 

CA3    80.05±1.89   p = 0.0161, F6,20=3.477 

DG       p > 0.05, F6,20=2.310 

        

Cortex        

ACC       p = 0.0297, F6,22=3.187 

MAC 131.14±0.59  144.11±5.02 137.21±3.56    p < 0.0001, F6,22=15.947 

MC 125.55±0.31 124.88±0.57 120.38±0.65  84.19±0.78 81.86±0.79 p < 0.0001, F6,22=13.145 

SS 130.38±3.83      p < 0.0275, F6,23=3.194 

IC 141.25±1.33      p < 0.0265, F6,23=3.227 

 

Table 3. Summary table of results from experimental Homer1a profiles. The table summarizes significant 

changes vs. controls of Homer1a expression in striatum, hippocampus, and cortex after acute treatment by 

selective antagonists of dopamine receptors, terguride and haloperidol. Data are expressed as a percentage of 

vehicle relative d.p.m. mean value ±S.E.M. and listed by brain region analyzed, along with the relative 

ANOVA p and F(df) values. Increases in gene expression are shaded in dark grey and decreases in light grey.  
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Homer1b 

Caudate-putamen 

At the post hoc test both L-741,626 and HAL significantly decreased Homer1b expression as 

compared to VEH in the VL caudate-putamen (Fig. 17, Table 4). L-745,870 and terguride 

significantly decreased Homer1b expression with respect to VEH in the VM and the VL 

caudate-putamen (Fig. 17). No significant differences among groups were observed in the 

dorsal subregions.  

 

Nucleus Accumbens 

In the CAcb, Homer1b was significantly induced by SCH-23390 as compared to all other 

treatments (Fig. 17, Table 4). In the SAcb, Homer1b expression was significantly decreased 

by L-741,626, L-745,870, terguride and HAL compared to SCH-23390 and VEH (Fig. 17). 

 

Cortex 

HAL and TER decreased Homer1b expression compared to the VEH in almost all 

subregions, with the exception of the ACC where only a borderline trend toward significance 

was observed (Fig. 17, Table 4).  In the MC, the SS, and the IC, L-741,626 decreased 

Homer1b expression compared to the VEH (Fig. 17). Gene expression was reduced in 

comparison to basal amounts by L-745,870 in the MC and the SS and by SCH-23390 in the 

MC only (Fig. 17).  

 

Hippocampus 

No significant differences among groups in Homer1b expression were found at the ANOVA 

test in any hippocampal subregion (data not shown).
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Fig. 17 

 

 

 

 

Figure 17. Homer1b mRNA expression by dopamine receptors antagonists. Upper panel: 

autoradiographic film image of Homer 1b detected by means of ISHH in rat coronal brain sections after 

treatment with control (VEH), SCH-23390 (SCH), L-741,626 (L741), U-99194 (U99), L-745,870 (L745), 

terguride (TER), and haloperidol (HAL). Treatments are outlined in the upper right corner of each section. 

Intermediate panel: Homer1b levels in caudate-putamen and nucleus accumbens. Values are expressed in 

relative dpm as mean ± SEM. Student-Neumann-Keuls post hoc test: ** = vs. all treatments; * = vs. controls; # 

= vs. L,741,626, L-745,870, TER, and HAL. Lower panel: Homer 1b mRNA levels in the cortex. Student-

Neumann-Keuls post hoc test: * = vs. controls. 
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mGluR5 

Caudate-putamen 

Expression of mGluR5 was increased by SCH-23390 and L745,870 compared to VEH in the 

DM putamen (Fig. 18, Table 4). In the same subregion, TER decreased significantly gene 

expression compared to VEH (Fig. 18). SCH-23390 gave raise to mGluR5 expression levels 

significantly higher than that elicited by HAL, TER, and L-741,626 in all subregions (Fig. 

18), with the only exception of the DL putamen where only a trend toward significance vs. 

L-741,626 was recognized. L-745,870 induced gene levels significantly more than HAL and 

TER in all subregions and L-741,626 in the DM and the DL putamen (Fig. 18). In the DL 

putamen, U-99194 induced significantly mGluR5 expression compared to HAL and TER 

(Fig. 18).  

 

Nucleus Accumbens 

In the core of the accumbens SCH-23390 induced significantly mGluR5 expression 

compared to VEH (Fig. 18, Table 4). In both core and shell of the nucleus accumbens, SCH-

23390 induced significantly mGluR5 expression compared to L-741626, HAL, and TER 

(Fig. 4). In the CAcb, also L-745,870 induced significantly gene expression compared to L-

741626, HAL, and TER (Fig. 18).  

 

Cortex 

Levels of mGluR5 expression in the cortex were negligible in all treatment groups and were 

not quantitable.  
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Hippocampus 

SCH-23390 significantly induced mGluR5 expression compared to VEH and all other 

treatments (with the exception of U-99194 in the CA1 subregion) in the CA1, the CA3, and 

the DG (Fig. 19, Table 4). In the CA2 region, a significant mGluR5 induction by SCH-23390 

compared to L-741,626 and HAL was observed.  

 

 

 

Figure 18. mGluR5 mRNA expression by dopamine receptors antagonists. Upper panel: autoradiographic 

film image of mGluR5 mRNA detected by means of ISHH in rat coronal brain sections after treatment with 

control (VEH), SCH-23390 (SCH), L-741,626 (L741), U-99194 (U99), L-745,870 (L745), terguride (TER), 

and haloperidol (HAL). Treatments are outlined in the upper right corner of each section. Lower panel: mGluR5 

mRNA levels in the caudate-putamen and nucleus accumbens. Values are expressed in relative dpm as mean ± 

SEM. Student-Neumann-Keuls post hoc test: * = vs. controls; # = vs. L-741,626, HAL, and TER; § = vs. HAL 

and TER.  

 

Fig. 18 
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Figure 19. Hipppocampal expression of Homer1a and mGluR5 by dopamine receptors antagonists. Upper 

panel: Homer1a mRNA levels in the hippocampus. Values are expressed in relative dpm as mean ± SEM. 

Student-Neumann-Keuls post hoc test: # = vs. L-745,870; * = vs. controls. Lower panel: mGluR5 mRNA levels 

in the hippocampus. Student-Neumann-Keuls post hoc test: ** = vs. all treatments;  * = vs. controls; + = vs. L-

741,626, L-745,870, HAL and TER; § = vs. L-741,626 and HAL.  

Fig. 19 
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 SCH-23390 L-741,626 U-99194 L-745,870 Terguride Haloperidol ANOVA 
Homer1b        
Striatum        

DM       p > 0.05, 
F6,20=2.074 

DL       p > 0.05, 
F6,20=2.962 

VM    87.37±0.91 78.85±0.61  p = 0.0004, 
F6,20=7.078 

VL  87.84±0.32  86.75±0.99 81.48±0.51 86.46±0.48 p = 0.0022, 
F6,20=5.223 

CAcb 110.07±1.21    84.41±0.68  p = 0.0002, 
F6.18=8.604 

SAcb  81.22±1.02  81.03±1.06 81.74±0.62 82.32±0.49 p = 0.0025, 
 F6.18= 5.367 

        
Cortex        

ACC       p = 0.052, 
F6,25=2.598 

MAC     84.95±0.66 75.81±1.09 p = 0.0142, 
F6,25=3.635 

MC 88.46±0.61 80.89±0.42  87.39±0.38 77.69±0.43 71.93±0.51 p = 0.0003, 
F6,25=7.429 

SS  82.53±0.27  86.11±0.45 79.36±0.51 70.37±0.21 p = 0.0006, 
F6,25=6.691 

IC  83.81±0.36   76.09±1.13 76.48±0.68 p = 0.0014, 
F6,25=5.841 

        
mGluR5        
Striatum        

DM 127.83±2.24   124.09±1.07 77.46±0.92  p = 0.0001, 
F6,17=9.291 

DL       p = 0.0001, 
F6,17=9.735 

VM       p < 0.0001, 
F6,17=9.976 

VL       p = 0.0003, 
F6,17=8.192 

CAcb 134.86±12.02      p = 0.0003, 
F6,16=8.727 

SAcb       p = 0.0021, 
F6,16=5.909 

        
Hippocampus        

CA1 146.29±0.81      p = 0.0051, 
F6,19=4.544 

CA2       p = 0.0016, 
F6,19=5.680 

CA3 168.51±0.91      p = 0.001, 
F6,19=10.573 

DG 144.55±0.71      p = 0.0001, 
F6,19=8.670 

Table 4. Summary table of results from experimental Homer1b and mGluR5 profiles. The table summarizes 

significant changes vs. controls of Homer1b (upper section) and mGluR5 (lower section) expression in striatum, 

hippocampus, and cortex after acute treatment by selective antagonists of dopamine receptors, terguride and haloperidol. 

Data are expressed as a percentage of vehicle relative d.p.m. mean value ±S.E.M. and listed by brain region analyzed, 

along with the relative ANOVA p and F(df) values. Increases in gene expression are shaded in dark grey and decreases 

in light grey.  
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Topography of gene expression.  

Profiling of Homer1a expression in striatum by selective antagonists at dopamine receptors, 

terguride, and haloperidol allows a clear-cut distinction among compounds. Gene expression 

by vehicle and the D4 receptor antagonist L-745,870 was homogeneous, although a non-

significant peak in VM putamen could be observed for vehicle. D1 and D3 receptors 

antagonists, SCH-23390 and U-99190, exhibited a similar distribution of Homer1a 

expression, with prominent expression in the medial subregions of the caudate-putamen (Fig. 

20). However, Homer1a expression in the accumbens was significantly induced by SCH-

23390 but not by U-99190. Taken together, these data may suggest that a partial involvement 

of D1 and D3 receptors in the medial putamen and of D1 receptors only in the accumbens 

may take place in the modulation of Homer1a expression. Thus, compounds provided of D1 

or D3 blocking potential may induce the gene in the medial putamen and in the accumbens. 

These findings may shed a light on the subregional profile of gene expression by compounds 

as clozapine (which is also a D1 receptor antagonist) or amisulpride (which is a D2/D3 

receptor antagonist). Nonetheless, it must be noted that D1 and D3 receptor antagonists 

profile of gene distribution partially resembled those by vehicle. It may well be that SCH-

23390 and U-99190 induced the gene over basal levels without a particular distribution. 

More studies are needed to clarify this point.  

Haloperidol showed its classical “three-steps” pattern of Homer1a distribution, which was 

strongly approximated by terguride (a partial agonist at D2 receptors) but, surprisingly, not 

by the selective D2 receptor antagonist L-741,626. This latter compound showed the typical 

prominent expression in the DL putamen, which appears to be common to all compounds 

provided of substantial D2 receptors blocking liability. However, L-741,626 induced  

Homer1a more in the medial than in the VL putamen. This discrepancy with haloperidol 

(and terguride) may suggest that selective blockade of D2 receptors may be not sufficient to 
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produce a haloperidol-like distribution of Homer1a expression. It could be hypothesized that 

other receptors (presumably not dopaminergic) may influence Homer1a distribution by 

haloperidol. However, terguride does not share with haloperidol interaction with not-D2 

receptors and it exhibited a Homer1a profile of distribution which highly resembled those by 

haloperidol. Moreover, other antipsychotics, which shared with haloperidol almost 

exclusively their antagonism at D2 receptors, also exhibited a profile of Homer1a distribution 

that was similar to haloperidol. One suggestive explanation of the discrepancy between 

haloperidol and L-741,626 may be that Homer1a distribution is influenced by compound 

affinity to D2 receptors. According to this hypothesis, compounds provided of significant 

affinity at D2 receptors, besides their selectivity for this receptor, may produce a profile of 

Homer1a distribution resembling the “three-steps” pattern exhibited by haloperidol. Thus, 

Homer1a expression profiling may be a measure of a compound affinity, rather than 

selectivity, at striatal D2 receptors.   

Distribution slope in the cortex by vehicle, dopamine receptors antagonists, terguride, and 

haloperidol followed a highly similar shape. The similarity of the distribution pattern may 

perhaps imply that the neuronal type expressing Homer1a are not homogeneously distributed 

in the cortex. According to this view, cells expressing Homer1a would be more concentrated 

in the medial agranular cortex and in the motor cortex, while they would be scarcely 

represented in the somatosensory and infralimbic cortices. Intriguingly, the subregions 

preferentially expressing Homer1a are involved in motor-related tasks, which could lend 

some support to recent findings of a role for Homer in motor behavior.  

Quantitatively, Homer1a expression appears to be heightened in these subregions by 

antagonism at D1, D2, and D3 receptors. However, both terguride and haloperidol seem to  
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Fig. 20 

reduce Homer1a expression in the same regions. Thus, high affinity to D2 receptors may 

reduce, rather than increase, gene expression in the cortex. Otherwise, some not-

dopaminergic receptors may concur to modulate cortical Homer1a expression by terguride 

and haloperidol.     
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Figure 20. Topographical distribution of Homer1a. Homer1a expression has been evaluated related to signal 

distribution among ROIs within each treatment in both the striatum (upper panel) and the cortex (lower panel). Data 

are reported as averaged relative d.p.m. (Rel DPM). For clarity matter, S.E.M. bars have not been traced.  
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Chapter 6. 

Post-synaptic density genes differential expression by antipsychotics with different 

dopamine D2 receptor affinity: dissecting post-receptorial mechanisms of antipsychotic 

action.  

 

Rationale. 

Antipsychotic drugs are the mainstay treatment for schizophrenia. According to clinical and 

preclinical evidence dopamine D2 receptors (D2Rs) antagonism is a crucial mechanism for 

antipsychotics therapeutic effects (Laruelle et al., 2005). Indeed, typical antipsychotics show 

high rates of D2Rs affinity and induce extrapyramidal side-effects (EPSEs) (Seeman and 

Tallerico, 1998), whereas atypical antipsychotics exhibit lower rates of D2Rs affinity and 

interact with multiple receptors, with a lack or low liability for EPSEs (Richtand et al., 

2007). However, little is known about post-receptorial mechanisms of antipsychotic action. 

Moreover, a clear molecular distinction among typical and atypical antipsychotics is still 

lacking.  

Recently, preliminary evidence has been provided that antipsychotics may modulate the 

levels of post-synaptic density (PSD) factors (Fumagalli et al., 2008; O'Connor et al., 2007). 

PSD has been regarded as a putative site of dopamine-glutamate interaction, which can be 

involved in synaptic plasticity remodeling triggered by antipsychotics (Konradi and Heckers, 

2003). It has been observed that antagonism at D2Rs by typical or atypical antipsychotics 

might influence glutamate system (Leveque et al., 2000) and increasing evidence supports 

the hypothesis that the dysregulation of dopamine neurotransmission in schizophrenia may 

be associated with a persistent dysfunction of glutamate system (Olney et al., 1999). 

Alterations of PSD factors have been widely described in schizophrenia (Kristiansen et al., 

2006; Toro and Deakin, 2005). Thus, the study of antipsychotics-induced changes in PSD 
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factors may increase the knowledge of post-receptorial mechanisms of action of these drugs 

and may shed a light on the pathophysiology of the disease.   

Homers are a family of PSD proteins that are involved in intracellular glutamatergic 

signaling and in synaptic architecture (de Bartolomeis and Iasevoli, 2003). Constitutively 

expressed Homer isoforms (namely Homer1b/c) form a scaffold between metabotropic 

glutamatergic receptors and either intracellular effectors or other glutamatergic receptors 

(Shiraishi-Yamaguchi and Furuichi, 2007). The inducible isoform Homer1a disrupts these 

connections, modifying glutamatergic signaling (de Bartolomeis and Iasevoli, 2003; 

Shiraishi-Yamaguchi and Furuichi, 2007).  

Recently, we have demonstrated that Homer1a, the gene coding for the Homer1a isoform, is 

induced by typical and atypical antipsychotics (de Bartolomeis et al., 2002; Polese et al., 

2002). Thus, Homer may represent a putative site of intracellular action of antipsychotics. 

Moreover, our studies suggest that Homer1a may be differentially modulated by 

antipsychotics with different dopaminergic profile (Ambesi-Impiombato et al., 2007). To test 

these hypotheses we investigated Homer1a expression by antipsychotic drugs with different 

D2Rs affinity profiles: haloperidol, risperidone, olanzapine and sulpiride.  

 

Results. 

Caudate-putamen 

ANOVA revealed statistically significant differences among groups in all subregions of the 

caudate-putamen (Table 5). The post hoc test showed that HAL significantly induced 

Homer1a compared to VEH, according to our previous observations (de Bartolomeis et al., 

2002; Polese et al., 2002). Moreover, HAL-treated group showed significant Homer1a signal 

increase also compared to all the other antipsychotics. RISP and OLA significantly induced  
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Homer1a compared to VEH in the lateral caudate-putamen (Fig. 21) and SULP significantly 

elicited the induction of Homer1a as compared to VEH in the VL caudate-putamen (Fig. 21).  

 

Nucleus Accumbens 

In the core of the nucleus accumbens (CAcb) the densitometric analysis of autoradiographic 

images showed a statistically significant signal increase of Homer1a by HAL, OLA, and 

SULP as compared to VEH (Table 5). No changes among groups were detected in the shell 

(SAcb) subregion (Fig. 21). 

 

 

 

 RISP OLA SULP HAL 

ANOVA (df)  

DM    159.85±0.83 p = 0.0018, F4,12=9.66 

DL 145.89±1.21 135.45±0.54  177.96±1.09 p = 0.0025, F4,12=7.76 

VM    151.66±1.24 p = 0.0093, F4,12=5.78 

VL 144.04±2.21 136.59±1.12 128.51±0.81 185.31±0.77 p = 0.0014, F4,12=8.98 

CAcb  113.18±0.86 111.33±0.41 115.97±0.44 p = 0.0008, F4,12=11.01 

SAcb     p > 0.05, F4,14=0.74 

 
Table 5. Summary table of results from experimental Homer1a profiles.  

The table summarizes significant changes vs. controls of Homer1a expression in striatum after acute treatment 

by risperidone (RISP), olanzapine (OLA), sulpiride (SULP), and haloperidol (HAL). Data are expressed as a 

percentage of vehicle relative d.p.m. mean value ±S.E.M. and listed by brain region analyzed, along with the 

relative ANOVA p and F(df) values.  
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Figure 21. Homer1a signal distribution in striatal areas by antipsychotics.  

Homer1a expression has been evaluated related to signal distribution among ROIs within each treatment. Data 

are reported as averaged relative d.p.m. (cal(rel dpm) in the figure). For clarity matter, S.E.M. bars have not 

been traced. Student-Neumann-Keuls post hoc test: *p<0.05 vs. core and shell of the accumbens. 

Fig. 21 
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Fig. 22 

Topography of Homer1a expression.  

Homer1a profile of expression by vehicle was not homogeneous, showing a peak in the VM 

putamen and another slight peak in the DM putamen (Fig. 22). Although this pattern was 

already observed in other studies, it has never gained significance. Gene distribution in the 

vehicle group may be biased by high standard error, perhaps due to low signal-to-noise ratio.  

Haloperidol-induced distribution of Homer1a expression resembled the classical “three-

steps” pattern, although with an attenuated gradient between lateral and medial caudate-

putamen subregions and an enhanced gradient between caudate-putamen and nucleus 

accumbens (Fig. 22). The same distribution pattern was also induced by risperidone and 

olanzapine, which have substantial action at D2 receptors. On the contrary, sulpiride showed 

a prominent expression in the VM putamen, an intermediate expression in DM and lateral 

putamen, and the lowest expression in the nucleus accumbens (Fig. 22). This pattern by 

sulpiride may be influenced by its action at D3 receptors.    
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Figure 22. Topographical distribution of Homer1a. Homer1a expression has been evaluated related to signal 

distribution among ROIs within each treatment in the striatum. Data are reported as averaged relative d.p.m. 

(Rel DPM). For clarity matter, S.E.M. bars have not been traced. 
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Chapter 7. 

Topographical and temporal distribution of Homer1a expression in corticostriatal 

regions is influenced by antipsychotics dopaminergic profile: new clues for the 

preclinical distinction among typical and atypical antipsychotics.  

 

Rationale. 

We have demonstrated that Homer1a is strongly induced by haloperidol, while being 

scarcely or not induced by several atypical compounds: clozapine, quetiapine, and 

olanzapine at a low dose (Ambesi-Impiombato et al., 2007; de Bartolomeis et al., 2002; 

Polese et al., 2002). The results led us to hypothesize that measuring the increase of 

Homer1a in rat striatum may be helpful to discriminate typical from atypical antipsychotics. 

These data suggest that the extent of Homer1a expression may be, at least partially, 

influenced by antipsychotics affinity to D2Rs and it might be predictive of motor side effects. 

To address these issues we compared the expression of Homer1a by haloperidol, clozapine, 

and ziprasidone. The choice of ziprasidone was based on its low liability to EPS despite its 

relatively high affinity for D2Rs (Nemeroff et al., 2005). Thus, ziprasidone appears a 

compelling candidate to discern whether Homer1a expression may be affected by D2Rs 

blockade and whether it may be a marker of antipsychotics EPS liability.  

In the present study, we also provided a subregional analysis of Homer1a signal distribution 

to evaluate whether regional distribution of Homer1a expression is influenced by 

antipsychotic treatment and whether distinct patterns of gene distribution in striatal and 

cortical areas could be detected for each antipsychotic. Indeed, antipsychotics efficacy has 

been related to c-fos induction in the nucleus accumbens, whereas c-fos induction in the 

dorsolateral striatum has been considered predictive of EPS (Robertson et al., 1994).  
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To investigate the dynamics of Homer1a response to antipsychotics, in a way that more 

closely resembles the clinical administration of these compounds, we explored Homer1a 

expression after a chronic (21 days) treatment by haloperidol and ziprasidone. We evaluated 

whether IEG-like properties of Homer1a are preserved after a chronic antipsychotic 

treatment by assessing gene expression either acutely (90 minutes) or after a 24 hours 

withdrawal from the last chronic administration. 

 

Results.  

Topographical distribution of Homer1a expression in the acute administration 

paradigm 

Striatum. The most prominent expression was observed in the DL putamen, while variable 

degrees of signal labelling were detected in other striatal subregions. VEH group did not 

show any peculiar pattern of signal distribution, although prominent gene expression in DL 

putamen was still observed (Fig. 23). On the contrary, the general trend of distribution by 

antipsychotics was along a dorsal-to-ventral and lateral-to-medial gradient (Fig. 23). As this 

pattern was induced by all antipsychotics employed in this work, it may represent a common 

mark of acute Homer1a expression by antipsychotic compounds. Nonetheless, some 

difference in the relative distribution among groups has to be outlined. HAL, ZIP4, and 

ZIP10 exhibited a “three-levels” pattern of distribution (Fig. 23) with higher frequencies in 

the DL and VL putamen, intermediate frequencies in the medial putamen, and lower 

frequencies in the accumbens. CLO showed an attenuated gradient, with higher frequencies 

in the accumbens compared to other antipsychotics. At the ANOVA test, no significant 

differences among striatal subregions were detected for VEH and CLO groups (VEH: 

F(5;18)=2.37, p=0.08; CLO: F(5;16)=0.29; p=0.91). In the HAL, ZIP4, and ZIP10 groups,  
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significant gene expression was detected in the DL putamen compared with VM putamen 

and accumbens (HAL: F(5;23)=17.01, p<0.0001; ZIP10: F(5;22)=7.16, p=0.0004; ZIP4: 

F(5;22)=15.36, p<0.0001). Moreover, significant expression was observed in the VL putamen 

compared with VM putamen and accumbens in the HAL group; with the accumbens in the 

ZIP4 group; and with the SAcb only in the ZIP10 group.  

Cortex. Differences in regional distribution of signal labelling were less pronounced in the 

cortex than in the striatum. Distribution of Homer1a expression by antipsychotics was not as 

similar as seen in the striatum. Further, gene distribution among subregions in the control 

group was not homogeneous and revealed a preferential basal expression in the motor-related 

subregions MAC and MC (Fig. 23). This pattern of distribution was almost overlapped from 

distribution by HAL (Fig. 23), which suffered of lower levels of standard error compared to 

controls (data not shown). CLO and ZIP10 showed higher levels of gene expression than 

controls. CLO-induced gene expression distributed preferentially in the MAC, while 

differences among other subregions were attenuated in comparison to VEH (Fig. 23). Signal 

distribution by ZIP10 peaked in the MC, reached intermediate levels in the ACC and the IC, 

and exhibited the lowest levels in the MC and the SS (Fig. 23). Signal induction by ZIP4 was 

lower than controls and resembled those by ZIP10, with the exception of the IC. Statistical 

analysis showed that significant differences among subregions were detectable in the HAL 

group only (HAL: F(4;10)=8.86, p=0.0025; ZIP10: F(4;15)=1.38, p=0.28; ZIP4: F(4;10)=2.65, 

p=0.09; CLO: F(4;10)=1.67, p=0.23; VEH: F(4;10)=2.31, p=0.14). Post hoc test revealed that 

gene expression by HAL was significantly higher in the MAC and MC compared to all other 

subregions (Fig. 23).  

 

 

 Fig. 23 
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Figure 23. Topographical analysis of Homer1a expression in the striatum and the cortex. Homer1a 

expression has been evaluated related to signal distribution among ROIs within each treatment in both the 

striatum and the cortex and graphically compared between the acute and the chronic paradigm. ZIP90 and 

ZIP24 in the chronic paradigm correspond to ZIP4 in the acute one. Data are reported as averaged relative 

d.p.m. (cal(rel dpm) in the figure). For clarity matter, S.E.M. bars have not been traced. Student-Newman-

Keuls post hoc test: **P<0.05 vs. all ROIs. *P<0.05 vs. discrete ROIs (ZIP4, striatum: vs. CAcb and SAcb; 

ZIP10, striatum: vs. SAcb; HAL90 and ZIP90, striatum: vs. VM, CAcb, and SAcb; ZIP90, cortex: vs. ACC, 

MC, SS cortex). ♦P<0.05 vs. DM, DL, SAcb. 
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Chronic administration paradigm 

Striatum 

Two-way ANOVA revealed that significant differences among experimental groups were 

attributable in all subregions to either treatment or time effect, and to the interaction between 

these factors (Table 6). Post-hoc analysis showed that HAL90 induced significantly the gene 

in all subregions compared to both ZIP90 and VEH90. Gene induction by ZIP90 was 

significantly higher compared to VEH90 in the lateral putamen and the core of the 

accumbens, whereas in the medial putamen and the shell of accumbens a trend toward 

significance was observed (Fig. 24).  

In all subregions, HAL90-induced expression was significantly higher compared to HAL24. 

ZIP90 induced significantly gene expression compared to ZIP24 in all subregions, while no 

significant difference was observed between VEH90 and VEH24 (Fig. 24). Thus, basal 

Homer1a expression was similar at both time-points. No significant differences were 

observed among groups sacrificed after the 24-hour withdrawal (Fig. 24).  

 

Cortex 

Significant differences among experimental groups were mostly attributable to treatment 

effect in all cortical subregions. Time effect was significant in all subregions with the 

exception of SS. No treatment-x-time effect was observed in any cortical subregion (Table 

6). Post-hoc analysis showed that HAL90 induced significantly Homer1a expression 

compared to either VEH90 in all subregions and ZIP90 in all subregions excluding the ACC. 

ZIP90 did not induce significantly the gene compared to VEH90 in any cortical subregion 

(Fig. 24).  
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HAL90 induced significantly Homer1a compared to HAL24 in all subregions with the 

exception of the SS. Expression by ZIP90 was significantly higher than that by ZIP24 in the 

MAC and IC, while expression by VEH90 was significantly higher than VEH24 expression 

in the MAC, MC, and IC (Fig. 24). As no treatment-x-time interaction has been observed at 

the 2-way ANOVA test, differences between 90min and 24h groups may presumably reflect 

the decay of gene expression with time. Thus, AP treatments are not able to sustain Homer1a 

expression in the cortex in the time window chosen by us, with the exception of the SS 

where antipsychotics appear to trigger an enduring gene expression. However, delayed 

expression of the gene was still observable. In fact, HAL24 induced significantly Homer1a 

expression compared to VEH24 and ZIP24 in all subregions, with the exclusion of the ACC 

(Fig. 24).   

 

 

 

 

 

 

 

 

Table 6. mRNA levels of Homer1a, Homer1b, PSD95, and Shank after chronic treatment. Data are 

expressed as percentage of VEH relative d.p.m. mean value ±S.E.M. and listed by brain region analyzed, along 

with the relative two-way ANOVA values for each of the significant changes (p < 0.05). Only significant 

changes vs. controls were cited. Groups belonging at the 90min time point are compared to VEH90 and groups 

belonging to the 24h time point are compared to VEH24. *= significant differences from VEH90 or VEH24 at 

the Student-Newmann-Keuls post hoc test. §= significant differences from the corresponding group at the 24h 

time point. 
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Probes/ 
Regions HAL90 ZIP90 HAL24 ZIP24 

P-value; F(df)-value 
(2-way ANOVA) 

Treatment 

P-value; F(df)-value 
(2-way ANOVA)  
Time 

P-value; F(df)-value  
(2-way ANOVA) 
Treatment-x-Time 

Homer1a        
Striatum        

DM 214.8±30.81*§ 121.8±8.29§ 100.4±2.92 105.6±9.62 0.0018; 11.25(2;12) <0.0001; 32.46(1;12) 0.0024; 10.44(2;12) 
DL 276.5±30.59*§ 193.3±29.34*§ 106.1±7.23 107.5±4.62 0.0005; 15.27(2;12) <0.0001;  57.64(1;12) 0.0007;  14.35 (2;12) 
VM 200.1±30.25*§ 134.3±6.05§ 114.5±6,61 113.1±8.74 0.0021; 10.78(2;12) <0.0001; 35.60(1;12) 0.0150; 6.08(2;12) 
VL 176.2±6.21*§ 150.1±12.79*§ 115.3±7.17 105.5±7.49 <0.0001; 43.05(2;12) <0.0001; 180.19(1;12) <0.0001; 27.97(2;12) 

CAcb 179.2±9.01*§ 126.2±2.31*§ 105.4±4.42 102.6±9.34 <0.0001; 22.40(2;12) <0.0001; 59.15(1;12) 0.0002; 18.56(2;12) 
SAcb 180.6±23.74*§ 127.7±5.68§ 111.2±1.69 114.4±10.44 0.0090; 7.16(2;12) 0.0001; 33.65(1;12) 0.0234; 5.22(2;12) 

Cortex        
ACC 162.3±36.28*§ 112.2±6.28 126.4±4.77* 102.6±8.66 0.0268; 4.97(2;12) <0.0001; 36.95(1;12) n.s. 
MAC 157.8±21.19*§ 114.7±6.97§ 189.7±24.44* 118.1±6.41 0.0002; 18.06(2;12) <0.0001; 38.22(1;12) n.s. 
MC 138.1±12.49*§ 87.8±6.49 174.8±14.44* 114.3±3.31 0.0002; 18.61(2;12) 0.0011; 18.19(1;12) n.s. 
SS 129.3±9.71* 91.9±5.78 150.9±9.98* 109.5±8.27 0.0006; 14.44(2;12) n.s. n.s. 
IC 155.8±7.52*§ 123.6±8.88§ 180.3±19.04* 122.1±14.78 0.0001; 21.37(2;12) <0.0001; 36.04(1;12) n.s. 

        
Homer1b        
Striatum        

DM 102.3±2.86 106.5±5.22§ 103.4±2.01 100.7±2.22 n.s. 0.0005; 18.30(1;18) n.s. 
DL 105.4±2.77§ 110.6±2.27*§ 111.5±1.09 109.6±1.97 0.0002; 14.58(2;18) <0.0001; 112.08(1;18) n.s. 
VM 99.4±2.01§ 102.4±3.41§ 104.2±2.24 101.4±2.06 n.s. <0.0001; 35.33(1;18) n.s. 
VL 99.9±3.51§ 99.3±2.55§ 108.1±1.17 89.1±2.93 n.s. <0.0001; 28.43(1;18) n.s. 

CAcb 103.3±3.17 108.9±5.36§ 111.4±1.09 102.8±2.81 n.s. 0.0066; 9.43(1;18) n.s. 
SAcb 103.6±2.57 99.4±5.41 114.4±2.17 110.4±1.32 n.s. 0.0039; 10.94(1;18) n.s. 

Cortex        
ACC 99.4±3.33§ 104.4±5.01§ 101.7±0.71 99.9±4.43 n.s. <0.0001; 33.24(1;18) n.s. 
MAC 96.1±3.72 105.5±8.19§ 104.5±2.81 96.7±2.78 n.s. 0.0003; 19.46(1;18) n.s. 
MC 96.2±1.79 110.2±14.04§ 108.1±3.49 100.5±3.58 n.s. 0.0026; 12.19(1;18) n.s. 
SS 97.1±1.85 106.5±9.45§ 103.6±1.99 103.5±2.49 n.s. 0.0028; 11.95(1;18) n.s. 
IC 104.9±3.03§ 108.1±4.31§ 111.8±1.98 113.4±0.97 n.s. 0.0012; 14.75(1;18) n.s. 

        
PSD95        
Striatum        

DM 144.8±11.06*§ 125.4±6.27* 109.5±3.86 112.9±1.92 0.0040; 9.06(2;12) n.s. n.s. 
DL 145.8±12.7*§ 123.2±9.36* 108.2±2.39 106.9±1.64 0.0209; 5.43(2;12) 0.0286; 6.18(1;12) n.s. 
VM 139.6±7.94*§ 123.3±4.11* 110.1±2.76 114.9±1.72* 0.0016; 11.60(2;12) 0.0280; 6.25(1;12) 0.0320; 4.65(2;12) 
VL 142.5±11.6*§ 120.3±6.29* 104.1±2.42 111.2±4.48 0.0220; 5.33(2;12) 0.0116; 8.85(1;12) 0.0413; 4.21(2;12) 

CAcb 138.5±8.61*§ 120.3±5.37* 106.2±3.96 111.5±5.49 0.0064; 7.92(2;12) 0.0050; 11.78(1;12) 0.0361; 4.43(2;12) 
SAcb 135.9±8.21*§ 123.6±4.07* 102.6±3.02 109.6±4.25 0.0085; 7.28(2;12) 0.0180; 7.49(1;12) 0.0327; 4.61(2;12) 

Cortex        
ACC 109.3±3.26 114.1±8.92* 116.2±3.13* 122.1±0.17* 0.0045; 8.75(2;12) n.s. n.s. 
MAC 117.9±2.82* 110.1±3.61 118.9±5.57* 123.3±0.22* 0.0003; 17.55(2;12) n.s. n.s. 
MC 120.8±6.77* 107.7±8.03 115.8±2.13* 122.8±5.27* 0.0101; 6.90(2;12) n.s. n.s. 
SS 136.7±14.91* 110.9±10.62 113.1±5.31 122.4±11.38 0.0322; 4.64(2;12) n.s. n.s. 
IC 124.7±11.91 113.4±9.59 109.9±6.88 113.6±2.74 n.s. n.s. n.s. 

        
Shank        
Striatum        

DM 105.9±2.94 84.7±4.91 114.1±2.95 113.7±3.39 n.s. n.s. n.s. 
DL 109-6±2.08 82.3±4.35 111.9±3.39 116.2±5.14 n.s. n.s. n.s. 
VM 103.8±1.88 88.1±3.81 107.3±2.03 111.2±3.53 n.s. n.s. n.s. 
VL 105.3±2.67 83.7±6.01 110.1±3.57 114.2±5.05 n.s. n.s. n.s. 

CAcb 107.9±3.36 90.4±2.91 104.6±2.67 113.6±7.41 n.s. n.s. n.s. 
SAcb 101.9±5.01 95.9±3.12 102.1±2.69 104.9±5.33 n.s. n.s. n.s. 

Cortex        
ACC 104.3±1.11§ 102.5±1,51 97.9±0.66 99.1±2.75 n.s. 0.0014; 17.07(1;12) n.s. 
MAC 102.5±0.23 94.3±1.91 99.5±1.89 99.1±2.95 0.0081; 7.39(2;12) 0.0197; 7.23(1;12) n.s. 
MC 100.2±0.51 93.8±0.37 101.3±1.83 102.1±2.52 0.0496; 3.90(2;12) 0.0276; 6.28(1;12) n.s. 
SS 98.8±2.01 96.8±1.32 98.5±3.34 99.7±1.43 n.s. 0.0099; 9.36(1;12) n.s. 
IC 98.2±0.17§ 95.1±0,97 98.1±1.19 101.3±2.24 n.s. 0.0216; 6.97(1;12) n.s. 
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Figure 24. Homer1a expression in chronic treatment. Upper panel: autoradiographic film images of 

Homer1a mRNA detected by means of ISHH in coronal brain sections after chronic treatment with haloperidol, 

ziprasidone, or vehicle at both 90min time point (“90” suffix near each treatment) and 24h time point (“24” 

suffix near each treatment). Lower panel: Homer1a mRNA levels in striatum (left) and cortex (right). Data are 

reported in relative d.p.m. as mean ±S.E.M. Comparison at the post hoc test was performed within groups from 

the same time point and within corresponding treatments at the two time points. No comparison was made 

within not corresponding groups at the two time points. Student-Newmann-Keuls post hoc test: *= p <0.05 vs. 

VEH90. **= p <0.05 vs. all treatments belonging to the same time point. §= p <0.05 vs. the corresponding 

groups belonging to the other time point.  

 

Fig. 24 
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Topographical distribution of Homer1a expression 

Striatum. Topography of gene expression by both HAL90 and ZIP90 resembled that 

observed by these compounds in the acute paradigm, although with some subtle discrepancy. 

A prevalent distribution of signal labeling in the DL putamen was recognized for both 

groups, with intermediate values for the medial subregions and the lowest values for the 

accumbens (Fig. 23). A remarkable exception to this pattern was represented from HAL90, 

which showed signal labeling rates in the VL putamen lower than the medial putamen 

subregions. It is not clear whether this result depends on individual variability or it underlies 

neuroplastic changes resulting in the desensitization of Homer1a expression in this 

subregion. Signal labeling in the VEH90 group was homogeneous, partially differentiating 

from the distribution observed in the acute paradigm, where a prevalent, although not 

significant, labeling in the DL putamen was detected. Signal labeling in the 24h groups was 

homogeneous and did not show a characteristic pattern. Nonetheless, HAL24 group 

exhibited a slightly prominent gene expression in the ventral subregions (Fig. 23), a feature 

that represents a divergence with what observed in both the acute paradigm and the HAL90 

group of the chronic paradigm.  

At the ANOVA test, no statistical differences among subregions were detected for VEH90 

(F(5;12)=0.13, p=0.98), VEH24 (F(5;18)=2.21, p=0.31), and ZIP24 (F(5;12)=0.28, p=0.91). 

HAL90 showed a trend toward significance (F(5;12)=2.56, p=0.08), while significant 

differences were recognized for ZIP90 (F(5;18)=3.89, p=0.0143) and HAL24 groups 

(F(5;18)=3.91, p=0.0141). Gene expression in both HAL90 and ZIP90 was significantly higher 

in the DL putamen compared to that in VM putamen and accumbens. In the HAL24 group a 

significant expression in ventral putamen and the core of accumbens compared to the other 

subregions has been recognized (Fig. 23).   
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Cortex. In VEH90, HAL90, and ZIP90, a prevalent gene expression in the MAC was 

observed. Both HAL90 and ZIP90 showed high-to-intermediate signal labeling rates in the 

IC, MC, and ACC, and the lowest induction in the SS cortex (Fig. 23). This pattern partially 

corresponds to what observed by the same compounds in the acute paradigm. As compared 

to the acute paradigm, it appears that Homer1a expression may be reduced in the MC and 

enhanced in the IC, relatively to the other subregions.  

At the ANOVA test, no significant differences among subregions were recognized in VEH90 

(F(4;10)=2.92, p=0.07) and HAL90 (F(4;15)=1.61, p=0.22). Significant changes were detected 

in ZIP90 group (F(4;15)=8.73, p=0.0008). At the post hoc test, gene expression in the MAC 

was significant compared with all other subregions, with the exclusion of the IC.  

Signal labeling in VEH24 and ZIP24 groups was homogeneous, with slight peaks in the SS 

cortex and the MAC, respectively. HAL24 followed a pattern that was comparable to that of 

HAL90, with a marked reduction of expression in the ACC (Fig. 23). ANOVA showed that 

no significant differences among subregions were detectable for VEH24 (F(4;15)=2.13, 

p=0.12) and ZIP24 (F(4;10)=1.49, p=0.27), while a trend toward significance was observed for 

HAL24 (F(4;10)=3.41, p=0.0523).   

 

Homer1b 

Striatum 

The two-way ANOVA revealed that significant differences among experimental groups 

could be almost entirely attributed to time effect, with the exception of the DL putamen 

where also treatment effect was observed. The interaction between treatment and time was 

not significant in any subregion (Table 6). 

At the post hoc test, no statistical differences among VEH90, HAL90, and ZIP90 were 

detected in any subregion, with the exception of the DL putamen where ZIP90 induced 
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significantly the gene compared with VEH90 (Fig. 25). No statistical differences were also 

detected between VEH24, HAL24, and ZIP24 groups. VEH90, HAL90 and ZIP90 were 

significant compared to VEH24, HAL24 and ZIP24 respectively in DL, VM, and VL 

putamen. In the DM putamen and core of the accumbens, only ZIP90 induced significantly 

the gene compared to ZIP24, while in the shell of the accumbens only VEH90 induced 

significantly compared to VEH24 (Fig. 25).  

 

Cortex 

Significant differences among experimental groups at the two-way ANOVA were 

exclusively attributable to time effect. No treatment effect or interaction effect was observed, 

although a borderline significance for interaction was seen in the MAC (Table 6).  

No significant differences were observed between VEH90, HAL90, and ZIP90 and between 

VEH24, HAL24, and ZIP24 in any subregion assessed. In all subregions, VEH90 and ZIP90 

induced significantly the gene compared to VEH24 and ZIP24, respectively. On the other 

hand, Homer1b expression was significantly induced by HAL90 compared to HAL24 in the 

ACC and the IC only (Fig. 25).  

 

PSD95 

Striatum 

Treatment, time, and interaction effects were significant in all subregions, with the exception 

of the DM putamen for time effect and the DM and DL putamen for interaction effect (Table 

6).  

Gene expression was significantly enhanced by HAL90 compared to both VEH90 and ZIP90 

and by ZIP90 compared to VEH90 in all subregions, with the exception of the shell of 
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accumbens where no significant difference was recognized between HAL90 and ZIP90 (Fig. 

25).  

ZIP24 induced significantly PSD95 expression compared to VEH24 in the VM putamen. No 

other significant differences were detected among VEH24, HAL24, and ZIP24 groups. In all 

subregions, gene expression by HAL90 was also significantly higher than by HAL24, 

whereas neither ZIP90 nor VEH90 were significant compared to ZIP24 and VEH24, 

respectively, in any striatal subregion (Fig. 25).   

 

Cortex 

PSD95 expression in the cortex was affected by treatment in almost all subregions, with the 

exclusion of the IC where only a trend toward significance was observed. Gene expression 

was not affected by time. No treatment-x-time interaction was detected in any cortical 

subregion (Table 6).  In the ACC, ZIP90 induced significantly the gene compared to VEH90 

(Fig. 25). In the MAC, MC, and SS cortex HAL90, but not ZIP90, yielded significant PSD95 

induction compared to VEH90 (Fig. 25). In all subregions, no significant differences were 

observed between HAL90 and ZIP90.  

In the ACC, MAC, and MC, both HAL24 and ZIP24 were significant compared to VEH24 

(Fig. 25). No significant differences were recognized in the SS cortex and the IC. No 

differences were observed between VEH90, HAL90, ZIP90 and VEH24, HAL24, ZIP24 

groups, respectively (Fig. 25).  



 76 

Fig. 25  
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Figure 25. Homer1b and PSD95 expression in chronic treatment. Panel a,c: autoradiographic film images 

of Homer1b (a) and PSD95 (c) mRNA detected by means of ISHH in coronal brain sections after chronic 

treatment at both time points. Panel b, d: Homer1b (b) and PSD95 (d) mRNA levels in striatum (left) and 

cortex (right). Data are reported in relative d.p.m. as mean ±S.E.M. Comparison at the post hoc test was 

performed within groups from the same time point and within corresponding treatments at the two time points. 

No comparison was made within not corresponding groups at the two time points. Student-Newmann-Keuls 

post hoc test: *= p <0.05 vs. VEH (90 or 24). **= p <0.05 vs. all treatments belonging to the same time point. 

§= p <0.05 vs. the corresponding groups belonging at the other time point.  

 

Shank 

Striatum 

Shank expression in the striatum was affected neither by treatment nor by time. Interaction of 

the two factors was not significant (Table 6).  

No significant differences were detected between experimental groups at both time points 

and between groups belonging to the 90min time point compared to the corresponding 

groups belonging to the 24h time point. Nonetheless, ZIP90 induced gene expression 

constantly less than HAL90 and VEH90, showing a trend toward significance in several 

subregions (data not shown). On the contrary, both HAL24 and ZIP24 showed a not 

significant trend to induce Shank expression more than VEH24 in many subregions (data not 

shown).  

 

Cortex 

Significant differences in cortical gene expression among experimental groups may be 

obviously attributed to time effect, while only a minimal treatment effect has been detected. 

No significant interaction of the two factors was seen (Table 6).  
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At the post hoc test, HAL90 showed signal increase compared with ZIP90 but not with 

VEH90 in the MAC only (Table 6). No other significant differences were observed between 

VEH90, HAL90, and ZIP90 groups, although ZIP90 showed a trend toward reduction of 

gene expression compared with VEH90. No significant differences were seen between 

VEH24, HAL24, and ZIP24 groups.  

HAL90 induced significantly gene expression compared to HAL24 in the ACC and IC 

(Table 6). A trend toward significance was observed in the other subregions. VEH90 was 

significant compared with VEH24 in the IC only (Table 2), although it constantly yielded a 

not-significantly enhanced gene expression as related to VEH24 in the other subregions.  No 

significant differences were recognized between ZIP90 and ZIP24.  
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Chapter 8. 

Antipsychotic and antidepressant co-treatment: effect on transcripts of postsynaptic 

density genes possibly implicated in behavioural disorders. 

 

Rationale. 

Several studies demonstrated that the combination of antipsychotics and selective serotonin 

reuptake inhibitors (SSRIs) might be effective for treating both psychotic-like symptoms in 

depression and depressive symptoms of schizophrenia (for review, see Rummel et al., 2005). 

Despite the relatively frequent use of antipsychotics and antidepressants co-administration, 

there are few pre-clinical studies about the impact of this combination on brain molecular 

signalling. This prompted us to explore inducible genes that have been suggested to be 

implicated in the pathophysiology of schizophrenia and depression as well as in the putative 

therapeutic action of antipsychotics and antidepressants beyond receptor interaction (de 

Bartolomeis et al., 2002; Polese et al., 2002; de Bartolomeis & Iasevoli, 2003).  

SSRIs inhibit the reuptake of 5-hydroxytriptamine (5-HT) by blocking the serotonin 

transporter (SERT), leading to increased extracellular levels of 5-HT (Bundgaard et al., 

2006; Millan et al., 1999). Antipsychotics exert their effects through a prevalent dopamine 

D2 receptor (D2R) antagonism (Laruelle et al., 2005) and, when acutely administered, induce 

a significant increase in dopamine release (Moghaddam & Bunney, 1990; Laruelle et al., 

2005). Recent studies showed that the combined administration of SSRIs and antipsychotics 

might result in biochemical and molecular changes different from their individual effects 

(Chertkow et al., 2006, 2007).  

A growing body of evidence suggests that neuroplastic changes may be implicated in the 

therapeutic effects of either class of drugs and perhaps of their combination (Konradi and 

Heckers, 2001; Ohashi et al., 2002). Indeed, it has been observed that the expression of 
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neurotrophic factors is enhanced by the concomitant treatment with fluoxetine and 

olanzapine (Maragnoli et al., 2004), while the subchronic administration of these two 

compounds suppresses the induction of two immediate-early genes (i.e., CREB and Fos) 

associated with long-lasting changes in synaptic efficacy (Horowitz et al., 2003). 

Thus, we hypothesized that the combination of these two classes of drugs may result in 

changes in the expression of genes involved in synaptic plasticity. To test this hypothesis, we 

evaluated the effects of two SSRIs, citalopram and escitalopram, alone or in combination 

with haloperidol, on the expression profile of Homer1a, ania-3 and p11. Our previous 

studies (de Bartolomeis et al., 2002; Polese et al., 2002; Ambesi-Impiombato et al., 2007; 

Tomasetti et al., 2007), in fact, pointed out a tight correlation between the pattern of 

Homer1a and ania-3 expression and the impact onto the dopaminergic function exerted by 

typical and atypical antipsychotics. P11 expression, indeed, has been reported to be related to 

serotonergic neurotransmission and to be affected by antidepressant therapy (Svenningsson 

et al., 2006). 

 

Results. 

Homer1a. 

ANOVA test revealed significant differences in Homer1a expression among treatments in 

the outer layer of the parietal cortex (PCo: p = 0.002; F(5;17) = 6.10) but not in the inner one 

(PCi: p > 0.05, F(5;17) = 0.90), in the frontal cortex (outer layer, FCo: p > 0.05; F(5;17) = 1.95; 

inner layer, FCi: p > 0.05; F(5;17) = 0.92), and in the cingulate cortex (Cg: p > 0.05; F(5;17) = 

0.41).The post hoc test showed that Homer1a expression was significantly reduced in PCo 

by all treatment groups compared to VEH (Fig. 26 panel A; Fig. 27C). 

Significant differences in Homer1a expression were detected among treatment groups in all 

striatal subregions with the exception of the nucleus accumbens shell (dorsomedial caudate-
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putamen, DM: p = 0.012; F(5;15) = 4.39; dorsolateral, DL: p = 0.0001; F(5;15) = 12.76; 

ventromedial, VM: p = 0.005; F(5;15) = 5.29; ventrolateral, VL: p = 0.0001; F(5;15) = 20.31; 

core of the nucleus accumbens, CAcb: p = 0.002; F(5;15) = 6.33; shell of the nucleus 

accumbens, SAcb: p > 0.05; F(5;15) = 2.24) (Fig. 27A). The post hoc test showed that HAL 

significantly increased Homer1a expression: 1) compared to VEH in all regions of the 

caudate-putamen; 2) compared to ESC and CIT in DL and VL; and 3) compared to VEH in 

CAcb. Homer1a signal was significantly increased by HAL+ESC: 1) in DL and VL 

compared to VEH, ESC and CIT; and 2) in CAcb compared to VEH. Finally, HAL+CIT 

significantly induced Homer1a: 1) in all regions of the caudate-putamen compared to VEH; 

2) in DL compared to ESC, CIT, HAL+ESC; 3) in VL compared to all the other treatments, 

4) in VM compared to ESC; and 5) in AcCo compared to VEH (Fig. 27 A-B). 

 

Ania-3. 

Ania-3 showed a pattern of expression similar to Homer1a (Fig. 26 panel B; Fig. 27D-E-F). 

The ANOVA test revealed significant differences among treatments in all striatal subregions 

with the exception of the nucleus accumbens shell (DM: p = 0.001; F(5;24) = 6.25; DL: p = 

0.0001; F(5;24) = 13.99; VM: p = 0.003; F(5;24) = 4.885; VL: p = 0.0001; F(5;24) = 16.32; CAcb: 

p = 0.033; F(5;24) = 2.91; SAcb: p > 0.05; F(5;24) = 1.31). Only a few differences from 

Homer1a were detected at the post hoc test: 1) in DM and in VM, HAL-treated group 

significantly induced ania-3 expression compared to all the other treatments; 2) in DL, a 

significant ania-3 signal increase was induced by HAL compared to VEH, ESC, CIT and 

HAL+ESC; 3) in DL and VL, HAL+CIT significantly induced ania-3 compared to VEH, 

CIT and ESC; 4) in CAcb, ania-3 was significantly induced by HAL compared to VEH (Fig. 

27 D-E).  
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Fig. 26 

In the cortex, significant differences in ania-3 expression were observed at the ANOVA in 

the FCi (p = 0.006; F(5;24) = 4.39) and in the PCi (p = 0.024; F(5;24) = 3.20) but not in the other 

subregions assessed (FCo: p > 0.05; F(5;24) = 1.55; PCo: p > 0.05; F(5;24) = 1.55; Cg: p > 0.05; 

F(5;24) = 1.46). At the post hoc test, in the FCi ania3 expression was significantly reduced by 

HAL + ESC compared to VEH and CIT. In PCi, a significant reduction of ania-3 expression 

by HAL + ESC compared to CIT was observed (Fig. 26 panel B; Fig. 27F).  
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Fig. 27 
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P11. 

P11 expression was negligible in the striatum while it was detected in each subregion of the 

cortex (Fig. 28 A-B). Nonetheless, no significant differences among treatments were 

observed at the ANOVA test in any cortical subregion (FCo: p > 0.05; F(5;23) = 0.55; FCi: p > 

0.05; F(5;23) = 2.23; PCo: p > 0.05; F(5;23) = 0.86; PCi: p > 0.05; F(5;23) = 1.93; Cg: p > 0.05; 

F(5;23) = 0.92).  

 

Fig. 28 
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Chapter 9. 

Early genes expression by compounds with high and low dopamine D2 receptors 

affinity: insights into the preclinical classification of antipsychotics.   

 

Rationale.  

Sertindole is a limbic selective antipsychotic drug with a very low propensity to give 

extrapyramidal side effects (EPSE) that has been successfully employed against 

schizophrenia (Zimbroff et al., 1997). The compound shows affinity for the D2 family of 

dopamine receptors, serotonin 5HT2A and 5HT2C, and α1 noradrenergic receptors (Arnt, 

1992). Sertindole has demonstrated to be effective in animal models predictive of 

antipsychotic liability, antagonizing cocaine- and methamphetamine-induced place 

preference (Suzuki and Misawa, 1995), reversing impaired prepulse inhibition (PPI) 

(Andersen and Pouzet, 2001; Depoortere et al., 1997), and reducing the level of PCP-induced 

stereotyped behavior (Sams-Dodd, 1997). Assessments carried out by radioligand 

displacement in rat brain have shown that sertindole is characterized by low or minimum 

occupancy of D2 receptors in vivo (Takahashi et al., 1998). Accordingly, sertindole seems 

not to induce oral chewing movements in rats (Gao et al., 1998) and catalepsy, even at very 

high doses (i.e., 40 mg/kg ip) (Ninan and Kulkarni, 1999). These preclinical observations 

correlate with the negligible motor side effects seen in humans.  

Sertindole has been shown: i) to act preferentially upon mesolimbic over nigrostriatal 

dopaminergic neurons (Marcus et al., 2000); ii) to dissociate rapidly from D2 receptors; iii) 

and to have a cholinergic profile, all features that can explain the low incidence of EPSE in 

patients. In similarity with clozapine and quetiapine, sertindole appears to not trigger EPSE 

at any dose used, whereas other atypical antipsychotics (namely, risperidone, olanzapine, and 
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ziprasidone) may induce motor impairment in a dose-dependent fashion, although far less 

than that observed with typical antipsychotics.  

In our previous studies we have demonstrated that a clear-cut separation exists in the 

expression of the glutamatergic postsynaptic density (PSD) gene Homer1a by different class 

of antipsychotics. The prototypical neuroleptic haloperidol significantly induces the gene in 

all subregions of the caudate-putamen and nucleus accumbens (de Bartolomeis et al., 2002). 

Moreover, the expression of the gene is significantly higher than that triggered by any other 

atypical antipsychotic (Ambesi-Impiombato et al., 2007; Polese et al., 2002; Tomasetti et al., 

2007). Indeed, Homer1a expression may be modulated by D2 antagonism, as compounds 

with higher affinity for D2 receptors (i.e.: haloperidol) induced the gene more than 

compounds with lower D2 affinity (Iasevoli et al., 2007).  

The aim of the study was to evaluate Homer1a expression by the atypical compound 

sertindole, which is almost completely devoid of EPSE propensity and is known to give low 

D2 affinity, according to the hypothesis that sertindole may belong to the same class of 

quetiapine and clozapine in respect to Homer1a expression. Further, the study may expand 

our knowledge on the molecular discrimination among antipsychotic compounds. Further, 

we evaluated the impact of sertindole administration on the expression of genes relevant for 

PSD plasticity, namely the Homer1a splicing variant Ania-3 and the early gene Arc, as to 

provide a more detailed picture of sertindole-induced perturbation in PSD.    



 87 

Results. 

Homer1a. 

Sertindole did not induced Homer1a expression in any subregion of caudate-putamen and 

nucleus accumbens (Fig. 29a). Mean levels of mRNA expression by sertindole were lower 

than that elicited by vehicle. However, statistical significance was not reached, with the 

exception of a trend toward significance in the core of the accumbens. Consistently with our 

previous reports (de Bartolomeis et al., 2002), haloperidol induced Homer1a expression 

compared to vehicle in all striatal subregions (dorsomedial, DM, p=0.0006, F2,11=18.7841; 

dorsolateral, DL, p<0.0001, F2,11=74.7199; ventromedial, VM, p=0.0064, F2,11=9.3192; 

ventrolateral, VL, p<0.0001, F2,11=40.8582; core of accumbens, CAcb, p=0.0016, 

F2,11=14.2238; shell of accumbens, SAcb, p=0.0098, F2,10=8.7056). Moreover, haloperidol 

induced Homer1a expression significantly more than sertindole in all subregions (Fig. 29a).  

 

Ania-3. 

Ania-3 pattern of expression by haloperidol and sertindole highly resembled that of 

Homer1a, according with our previous preliminary observations (Ambesi-Impiombato et al., 

2007). However, sertindole-induced mean levels of Ania-3 expression were not lower than 

that by vehicle, as observed for Homer1a, being rather equivalent or slightly higher, though 

not reaching statistical significance (Fig. 29b). Hence, Ania-3 was not induced by sertindole 

in any striatal subregions, while it was strongly induced by haloperidol in comparison to both 

vehicle and sertindole in all caudate putamen subregions (DM, p=0.0001, F2,10=32.7942; DL, 

p=0.0146, F2,10=7.5026; VM, p=0.0024, F2,10=14.0333; VL, p=0.0029, F2,10=13.2941). In the 

core of the accumbens no statistical significance was found at the ANOVA (p=0.1113, 

F2,10=2.9245), whereas in the shell haloperidol induced significantly the gene compared to 

vehicle but not to sertindole (p=0.0276, F2,10=5.8136) (Fig. 29b).  
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Arc. 

Arc pattern of expression in the present paradigm was highly similar to that described for 

Homer1a and Ania-3. Arc was induced by haloperidol in comparison to both vehicle and 

sertindole in all striatal subregions, with the exception of the shell of the accumbens where 

haloperidol-induced expression was significant compared to sertindole- but not to vehicle-

induced expression (DM, p=0.0002, F2,10=28.6929; DL, p=0.0048, F2,10=11,2354; VM, 

p<0.0001, F2,10=41.1899; VL, p=0.0036, F2,10=12.2833; CAcb, p=0.0016, F2,10=15.9017; 

SAcb, p=0.0269, F2,9=6.3290) (Fig. 29c). Arc was not induced by sertindole in any striatal 

subregions. Mean expression levels by sertindole were lower than that by vehicle, though not 

reaching statistical significance.  

 

Topography of gene expression.  

Homer1a signal distribution by vehicle and sertindole was homogeneous (Fig. 30). 

Haloperidol exhibited the typical distribution in three steps. As a control, distribution of two 

other early genes was assessed: the Homer1a transcript variant, ania-3, and Arc. Overall,  

signal distribution was highly similar to those observed for Homer1a (Fig. 30). 

 

Western Blot. 

Analysis was carried out on two independent sets of samples. In both sets, no significant 

differences among groups were detected (ANOVA: p=0.986; F2,8=0.014; and ANOVA: 

p=0.822; F2,8=0.202) (Fig. 29d).  
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Figure 29. a) Upper panel: Homer1a mRNA levels in the caudate-putamen and nucleus accumbens. In all graphics, 

values are expressed in relative dpm as mean ± SEM. Post hoc test levels of significance: ** treatment vs VEH and SERT; 

* treatment vs VEH; # treatment vs SERT. Lower panel: autoradiographic film image of Homer1a mRNA after treatment 

with vehicle (VEH), sertindole (SERT), and haloperidol (HAL). b) Upper panel: Ania-3 mRNA levels in the caudate-

putamen and nucleus accumbens. Lower panel: autoradiographic film image of Ania-3 mRNA after treatment with 

vehicle, sertindole, and haloperidol. c) Upper panel: Arc mRNA levels in the caudate-putamen and nucleus accumbens. 

Lower panel: autoradiographic film image of Arc mRNA after treatment with vehicle, sertindole, and haloperidol. d) 

Homer1a protein levels in the whole striatum as assessed by western blot.  

 

 

 

 

d) 
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Fig. 30 
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Figure 30. Topographical distribution of gene expression. Homer1a (upper panel), ania-3 (intermediate 

panel), and Arc (lower panel) expression has been evaluated related to signal distribution among ROIs within 

each treatment in the striatum. Data are reported as averaged relative d.p.m. (Rel DPM). For clarity matter, 

S.E.M. bars have not been traced.  
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Chapter 10. 

DISCUSSION.  

Quantitative patterns of Homer1a expression by antipsychotic compounds.  

Antipsychotic drugs share the property to block the dopamine D2 receptor and increase 

acutely dopamine transmission in the striatum (Westerink et al., 2001). However, 

antipsychotics may be obviously distinct in typical and atypical ones according to their 

receptor profile. Typical antipsychotics exhibit high D2 blocking potential, while atypical 

antipsychotics may have lower propensity to D2 receptor antagonism and a broader profile of 

receptor interaction (Arnt and Skarsfeldt, 1998).  

The quantitative pattern of Homer1a expression is sharply divergent according to the class of 

antipsychotic.  

In several experiments conduced in our laboratory, we have seen that the prototype typical 

antipsychotic haloperidol triggered the expression of the gene in the whole striatum. Such 

induction was significantly higher than the expression observed in striata from control rats 

(Ambesi-Impiombato et al., 2007; de Bartolomeis and Iasevoli, 2003; Polese et al., 2002; 

Tomasetti et al., 2007). Moreover, induction by haloperidol was significantly higher than the 

induction obtained by any other antipsychotic compound. Thus, haloperidol shows the best 

propensity to induce the subcortical expression of Homer1a among compounds tested.  

Atypical antipsychotics show different rates of Homer1a expression.  

Risperidone and olanzapine when given at behaviorally active doses induced the expression 

of Homer1a significantly less than haloperidol and in the lateral caudate-putamen only. 

Olanzapine induced the gene also in the core of the nucleus accumbens, while risperidone 

did not. However, olanzapine when given at low doses (0.5 mg/kg) did not induced Homer1a 

expression (de Bartolomeis et al., 2002). Clozapine has been repeatedly shown to exhibit a 

trend toward the expression of Homer1a in the nucleus accumbens, but it did not trigger gene 
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expression in the caudate-putamen in any of the experimental paradigms in which it was 

tested (Polese et al., 2002; Tomasetti et al., 2007).  Quetiapine did not induce gene 

expression at either a low (15 mg/kg) and an intermediate dose (30 mg/kg) in any striatal 

regions (Ambesi-Impiombato et al., 2007).  

Ziprasidone appears to be an intriguing exception to this trend. In fact, the compound 

induced Homer1a expression in all striatal regions at a dose (4 mg/kg) known to exert 

antipsychotic action in animal models of psychosis. Homer1a induction was significantly 

less than induction by haloperidol in the lateral caudate-putamen, partially overlapping what 

observed with risperidone and olanzapine. However, the rate of Homer1a expression was 

virtually comparable to that by haloperidol when ziprasidone was given at a higher dose (10 

mg/kg).  

Another atypical antipsychotic showing a peculiar pattern of Homer1a expression was the D2 

receptor partial agonist aripiprazole. This compound exhibited an inverted biphasic action on 

Homer1a, as opposed to the other antipsychotics. In fact, aripiprazole triggered Homer1a 

expression at the lower (12 mg/kg) but not at higher dose (30 mg/kg) (Tomasetti et al., 

2007).  

Results from all antipsychotics tested so far have been pooled together by normalizing values 

of gene expression by haloperidol (which was assumed as the positive control in all the 

experiments) in each paradigm and then relating values of Homer1a expression by vehicle 

and other antipsychotics to normalized values of haloperidol-induced expression. The 

general picture that emerges from this pooling is that antipsychotics may be obviously 

differentiated in discrete subgroups as related to the quantitative pattern of Homer1a 

transcription: high, intermediate, low, and negligible, respectively.  

The first group is represented from haloperidol, the compound that elicits the highest gene 

expression in all subregions. A second group comprises risperidone, ziprasidone, and 
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olanzapine, which elicit intermediate levels of Homer1a expression. However, in this group 

some exceptions need to be described. Homer1a induction by ziprasidone in the lateral 

caudate-putamen is significantly higher than that by risperidone and olanzapine, although not 

reaching levels by haloperidol. Moreover, in the dorsolateral striatum risperidone-induced 

Homer1a transcription is consistently, although not significantly, higher than that by 

olanzapine. Indeed, in the medial parts of the striatum the three antipsychotics induce 

comparable levels of Homer1a transcription. A third group is constituted by sulpiride and 

aripiprazole. These two antipsychotics induce low levels of Homer1a expression, although 

still differentiable from vehicle-induced levels. Homer1a induction by sulpiride and, less, by 

aripiprazole is near the amount by risperidone group in the medial striatum, while it 

separates obviously in the lateral striatum.  

The last group is formed by quetiapine, sertindole, and clozapine, which exhibit low or 

negligible induction of the gene almost indistinguishable from that by vehicle.  

The picture is more complex in the nucleus accumbens, where the highest levels of 

expression are reached by aripiprazole and the lowest by ziprasidone. Risperidone also 

induces poorly the gene in these subregions, while clozapine gives raise to intermediate 

amounts of Homer1a transcription. Olanzapine and sulpiride induces the gene at 

intermediate levels in the core and at low levels in the shell of the accumbens. Quetiapine 

triggers gene expression at intermediate levels in the shell of the accumbens.   

The differences described above may be related to the impact on dopaminergic transmission 

exerted by each antipsychotic, and particularly to the ability of a compound to block D2 

receptors. D2 receptor blockade may elicit Homer1a expression either postsynaptically by 

trans-activation of second messenger pathways (i.e.: the adenyl cyclase-cAMP mediated 

cascade) or presynaptically via the increase of dopamine and glutamate release and their 

subsequent action on D1 and ionotropic receptors respectively (Surmeier et al., 2007). 
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According with this view, it has been described that antipsychotics increase striatal 

dopamine outflow when administered acutely (Wadenberg et al., 2001). However, 

antipsychotics vary greatly in their affinity to D2 receptors and consequently in their ability 

to block these receptors (Kapur and Seeman, 2001). Acute dopamine release by 

antipsychotics appears consistent with their affinity to D2 receptors (Westerink et al., 2001). 

The extent of Homer1a expression seems to overlap precisely the levels of dopamine 

released by antipsychotics and to be related to antipsychotic affinity to D2 receptors, at least 

in the caudate-putamen. Further, it appears that higher D2 receptors affinity could translate in 

higher levels of Homer1a expression in the lateral striatum. Among compounds tested, 

haloperidol exhibits the highest D2 receptor affinity, followed from ziprasidone and 

risperidone, while quetiapine and clozapine holds very low D2 receptor affinity (Kapur and 

Seeman, 2001). This subdivision appears to closely match the subdivision observed above 

for Homer1a expression. Thus, the extent of Homer1a expression may be a marker of drug 

affinity to D2 receptors.  

This assumption appears not to be valid in the nucleus accumbens, where other molecular 

mechanisms beyond mere D2 blockade may concur at Homer1a induction. As described in 

the previous section, we have observed that D1 receptor blockade may trigger Homer1a 

expression in the ventral striatum, including the nucleus accumbens. It could be hypothesized 

that a concomitant D1/D2 receptors blockade mechanism may facilitate Homer1a expression 

in these subregions. Indeed, aripiprazole and clozapine hold moderate antagonism at D1 

receptors and significantly induce the gene in the nucleus accumbens, while risperidone, 

which is virtually devoid of D1 receptor action (Arnt and Skarsfeldt, 1998), did not.  

The evaluation of haloperidol induction of Homer1a expression in cortical regions led to 

contrasting findings. However, the overall trend appears to delineate a low impact on 

Homer1a expression in this region. This result may depend on the lower abundance of D2 
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receptors in the cortex, as compared to the striatum. More studies are needed to substantiate 

these speculations. The evaluation of Homer1a expression by antipsychotics in dopamine-

depleted rats may help corroborate the view that Homer1a induction is dependent from 

dopamine transmission. This experiment may be complemented by a study combining the 

evaluation of dopamine release by microdyalisis and Homer1a expression by in situ 

hybridization or PCR to relate the extent of Homer1a expression to striatal dopamine 

outflow. The coadministation of antipsychotics and blockers of dopamine D1 receptors may 

reveal whether dopamine action via postsynaptic D1 receptors is the key mechanism to 

induce Homer1a. Further, a more stringent evidence of the putative relation between 

Homer1a expression and affinity to D2 receptors must be traced by expanding the number of 

compounds tested.  

 

The dose-issue. 

A mighty confounding factor may be compound dosing since Homer1a levels are dose-

dependently enhanced by antipsychotics. A clear-cut separation exists between Homer1a 

induction by the 4 mg/kg and the 10 mg/kg ziprasidone doses. The latter produces levels of 

Homer1a transcription which are virtually indistinguishable from that by haloperidol, while 

Homer1a induction by 4 mg/kg ziprasidone is significantly lower than that by haloperidol 

and 10 mg/kg ziprasidone in the lateral striatum. Homer1a expression by a low olanzapine 

dose (0.5 mg/kg) is not significantly different from vehicle (de Bartolomeis et al., 2002), 

while induction by a behaviorally active dose (2.5 mg/kg) is significantly higher than basal 

levels in the lateral striatum and in the core of the accumbens. Higher levels of Homer1a 

levels by the 30 mg/kg quetiapine dose in comparison with the 15 mg/kg dose were 

observed, although significance was not reached (Ambesi-Impiombato et al., 2007). A 

singular exception to this trend is represented from aripiprazole, which induces significantly 
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higher Homer1a mRNA levels at the lower dose used (12 mg/kg vs. 30 mg/kg) (Tomasetti et 

al., 2007). The apparent discrepancy from the general picture may be explained by the 

peculiar mechanism of action of the compound, which behaves as a partial agonist at D2 

receptors. Hence, in a condition of basal dopaminergic tone, a lower dose of the compound 

may impair dopaminergic transmission via D2 receptors more than a higher dose (Miyamoto 

et al., 2005). 

The considerations about dose-dependency of Homer1a expression may suggest that the rate 

of gene expression may be linked to D2 receptor occupancy by an antipsychotic. It has been 

observed that striatal D2 receptor occupancy increases with antipsychotic dose until reaching 

a plateau, which is different for each compound (Kapur and Seeman, 2001). Moreover, some 

antipsychotics (i.e.: clozapine and quetiapine) exhibit low D2 receptor occupancy even at 

very high doses (Kapur and Seeman, 2001). However, a lengthy correlation between 

Homer1a expression by an antipsychotic and its D2 receptor occupancy is still speculative 

and must be substantiated by further experiments evaluating Homer1a levels at different 

values of D2 receptor occupancy. The lack of Homer1a expression by clozapine and 

quetiapine in the caudate-putamen appears to be consistent with the observed low D2 

receptor occupancy of these compounds. Nevertheless, their action on Homer1a might be 

also investigated at very high doses to confirm their negligible induction of the gene, 

similarly to their negligible D2 receptor occupancy.     

 

Correlation between Homer1a expression by antipsychotics and their extrapyramidal 

side-effects liability.  

Another interesting issue is whether the extent of Homer1a expression may be related to the 

liability to extrapyramidal side effects of an antipsychotic. Typical antipsychotics are 

classically described to hold high D2 receptor affinity and D2 receptor occupancy and to 
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cause extrapyramidal side effects (Seeman and Tallerico, 1999). As haloperidol is a 

prototype typical antipsychotic, it is expected that typical antipsychotic drugs would show 

quantitative patterns similar to haloperidol once tested for Homer1a expression, according 

with the suggestion that Homer1a expression may be linked to D2 receptor affinity and 

occupancy. However, recent evidence shows that some atypical antipsychotics (i.e.: 

risperidone and ziprasidone) may exhibit higher D2 receptor affinity than most of the typical 

antipsychotics (Kapur and Seeman, 2001). Moreover, it has been proposed that low EPS 

liability of a compound may be more likely related to its action at serotoninergic receptors 

than to low D2 receptor affinity (Meltzer, 1995). The considerations above may suggest that 

the amount of Homer1a induction by most typical antipsychotics may be less than that 

obtained by some atypical antipsychotics, irrespective of EPS liability of a compound. To 

date, no studies have explored the levels of Homer1a mRNA as induced by typical 

antipsychotics other than haloperidol: assessing Homer1a expression by typical 

antipsychotics may expand our knowledge in the field.  

Ziprasidone is a suggestive example of an atypical antipsychotic exhibiting high D2 receptor 

affinity and occupancy but low EPS liability, due to its favorable serotoninergic profile. In 

our study, a behaviorally active dose of ziprasidone (4 mg/kg, which has been observed to 

revert amphetamine-induced hyperlocomotion) induced Homer1a in all caudate-putamen 

subregions, although significantly less than haloperidol. The high ziprasidone dose of 10 

mg/kg falls at the lower limit of the dose-range shown to be slightly cataleptic (Seeger et al., 

1995). This dose elicited a strong induction of Homer1a, virtually indistinguishable from 

haloperidol. Thus, quantitative patterns of Homer1a induction may be related to 

antipsychotic dopaminergic profile, and possibly to D2 receptor occupancy, but apparently 

not to motor impairment exerted by an antipsychotic compound.  
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Distinction between Homer1a and c-fos. 

The analysis of quantitative patterns of expression allows tracing a first distinction between 

Homer1a and c-fos. The early gene c-fos is induced by all antipsychotics in the shell of the 

nucleus accumbens and by cataleptic antipsychotics only in the dorsolateral striatum 

(Robertson et al., 1994). These features may reflect the preferential site of action of 

antipsychotics, i.e.: the nigrostriatal over the mesolimbic neuronal pathway. Conversely, 

Homer1a is not induced by all antipsychotics in the shell of the accumbens. Moreover, 

induction in the dorsolateral striatum may not be seen as a thorough sign of the liability to 

motor side effects of an antipsychotic. The discrepancy likely reflects divergent mechanisms 

of induction of the two early genes. It has been observed that c-fos induction is obtained after 

several pharmacological stimuli, including opiodergic, adenosinergic, and cholinergic 

compounds. On the contrary, Homer1a induction appears to be under a definite 

dopaminergic and glutamatergic control. Thus, c-fos may be less specific than Homer1a in 

evaluating the impact on dopaminergic transmission of a putative antipsychotic compound. 

Furthermore, Homer1a is an effector IEG and it has been demonstrated to play a role in 

synaptic plasticity and behavioral tasks (Tappe and Kuner, 2006). Thus, Homer1a may be a 

key factor in the molecular action of antipsychotics, a feature that is not shared by c-fos.  

 

Temporal pattern of Homer1a expression by antipsychotics: triggering neuroplastic 

changes at the PSD. 

Homer1a expression has been evaluated also along prolonged time-course administration of 

antipsychotics in three independent sets of experiments. Sustained antipsychotic 

administration allows drawing experimental paradigms more closely related to real-world 

practice where therapies are often long lasting and life spanning.  
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Neuroplastic changes in the cytoarchitecture of synapses are believed to be the molecular 

correlate of behavioral effects of antipsychotics (Konradi and Heckers, 2003). 

Neuroplasticity may rely on changes in the pattern by which gene transcripts respond to 

chronic vs. acute administration of psychotropic compounds. Indeed, a large body of 

evidence confirms that sustained administration of psychotropic compounds may cause 

stable changes in gene expression, i.e.: sensitization or tolerance phenomena (Robinson and 

Kolb, 2004). Upregulation or downregulation of gene expression may thus represent a 

preliminary step of a complex cascade of molecular events leading to changes in neuronal 

architecture and/or neurophysiology (Nestler, 2004).  

Homer proteins are known to bridge metabotropic glutamate receptors to either intracellular 

second messengers machinery or ionotropic glutamate receptors and may thus regulate 

postsynaptically the strength and the direction of glutamatergic signals. Moreover, our 

studies have demonstrated that Homer1a expression is profoundly affected by dopaminergic 

compounds, suggesting that Homers may represent crossroad factors in the interplay between 

dopaminergic and glutamatergic systems.  

In our experiments, we administered antipsychotics for 21 days and then sacrificed rats at 90 

minutes from the last injection, thus mimicking the condition of an acute challenge with the 

same compounds. We hypothesized that the sustained administration could modify the 

response to the acute antipsychotic challenge. To fully characterize the pattern of temporal 

response, we employed the typical and high D2 receptors blocking antipsychotic haloperidol 

and a series of atypical antipsychotics that differ for their mechanism of action at D2 

receptors: the intermediate D2 receptor antagonist ziprasidone, the low D2 receptor 

antagonists quetiapine and clozapine, and the D2 receptor partial agonist aripiprazole. In one 

paradigm we also explored Homer1a expression after a 24-hour withdrawal from 

antipsychotic administration, as to investigate whether prolonged antipsychotics may sustain 
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or decrease gene expression in a wider time window than that explored in the previous 

experiments.  

As a first striking finding, we observed that sustained antipsychotic administration does not 

modify grossly the pattern of Homer1a acute expression (i.e. 90 minutes after antipsychotic 

injection). In the first chronic study we carried out, Homer1a induction was observed in 

lateral caudate-putamen subregions by haloperidol (0.8 mg/kg) while quetiapine (15 mg/kg) 

did not induce the gene. These results overlapped those obtained after acute administration of 

the same compounds, although in the acute paradigm haloperidol had induced the gene in all 

caudate-putamen subregions. Consistent with these findings are the results from two other 

studies employing haloperidol (0.8 mg/kg), aripiprazole (12 mg/kg), and clozapine (20 

mg/kg) in one case and haloperidol (0.8 mg/kg) and ziprasidone (4 mg/kg) in another.  

In the latter study, Homer1a expression was also assessed after a 24-hour withdrawal from 

the last injection scheduled. Indeed, there is some evidence that Homer1a expression may 

decrease significantly under control values at time-points delayed from administration of 

psychotropic compounds (Cochran et al., 2002). No significant induction by either 

haloperidol or ziprasidone was recognized at the 24-hour time-point. Two-way ANOVA 

showed that differences in antipsychotic induction of Homer1a expression at the two time-

points were due to treatment effect, time effect, and to the interaction between these two 

variables. Indeed, haloperidol induction at the 90 minutes time-point was significantly higher 

than that observed at the 24-hour time-point, and the same attained for ziprasidone induction. 

Interestingly, no differences were observed in baseline Homer1a expression at the two time-

points. These results suggest that Homer1a induction by antipsychotics does not undergo 

sensitization or tolerance phenomena: acute Homer1a expression preserves its features also 

after sustained antipsychotics treatments. Hence, profiling of Homer1a expression represents 

a specific and sensible marker of acute antipsychotic administration even after a prolonged 
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treatment. This feature could render the gene a precious tool to study the pathways of 

neuronal activation and perhaps in vivo blockade of D2 recptors by antipsychotics in 

preclinical models aimed to mimic the time-course of therapy in clinical practice. 

At a molecular level, the lack of modifications in Homer1a pattern of expression after a 

prolonged antipsychotic treatment may depend on its specific role in inhibiting neuronal 

hyperpolarization and damage.    

 

Topography of Homer1a expression by antipsychotics. 

Besides the quantitative evaluation of Homer1a expression by antipsychotics, a less studied 

field is whether the topographic (i.e.: subregional) distribution of gene expression signal may 

separate treated vs. untreated groups and whether signal distribution may relate to molecular 

mechanisms of action of antipsychotics.     

In an acute administration paradigm Homer1a expression by haloperidol and ziprasidone 

distributed in the striatum along a dorsolateral-to-ventromedial gradient, following a “three-

steps” model of distribution. The amount of gene expression was higher in the dorsolateral 

striatum and decreased progressively in ventral and medial striatal subregions, being the 

lowest in the shell of the nucleus accumbens. Differences in gene expression among 

subregions were significant at the ANOVA in several cases. On the other hand, gene 

expression in control striata was homogeneous (no significant differences at the ANOVA) 

and did not show any peculiar pattern of subregional distribution, although a prominent 

signal labeling was still recognizable in the dorsolateral putamen. Clozapine also showed no 

significant differences in the rate of mRNA expression among striatal subregions. However, 

Homer1a expression was prominent in the dorsolateral putamen, according with all other 

compounds, and it was relatively higher in the nucleus accumbens than other antipsychotics. 
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To strengthen these data, we replicated the topographical analysis on measurements from 

other paradigms, including those availed in some previously published papers.  

Topography of Homer1a distribution by haloperidol was consistent in all paradigms, 

although some not-significant discrepancies could be detected in the distribution curve 

profile. These discrepancies are likely attributable to biological variability.  

Homer1a distribution by 12 mg/kg aripiprazole resembled, although not overlapped, those of 

haloperidol, while 30 mg/kg aripiprazole showed a relative abundance of Homer1a 

expression in the shell of the accumbens. Homer1a induction by 12 mg/kg aripiprazole was 

significant (p<0.0001) in the lateral and medial putamen compared with the nucleus 

accumbens. However, no significant differences were detected among lateral and medial 

subregions. Homer1a induction by 30 mg/kg aripiprazole showed a weak trend to 

significance (p=0.0417), with expression in the dorsolateral putamen and the shell of the 

accumbens being significantly higher than that in the dorsomedial putamen and the core of 

the accumbens. Clozapine and vehicle distributions in this paradigm were homogeneous 

(p>0.05), consistent with what observed in the ziprasidone-paradigm.  

Risperidone and olanzapine also induced Homer1a with a distribution profile that resembled 

that of haloperidol. As in the case of 12 mg/kg aripiprazole, both risperidone and olanzapine 

gave significant higher Homer1a expression in the lateral and medial putamen compared 

with the nucleus accumbens (p<0.0001), without significant differences between the lateral 

and medial subregions. Sulpiride-induced distribution profile of Homer1a signal evidenced a 

prominent expression in the ventral caudate-putamen, with significant higher Homer1a 

induction in the ventral and dorsolateral caudate putamen compared with nucleus accumbens 

(p=0.0353).  

It could be concluded from these data that Homer1a appear to distribute not homogeneously 

in the striatum after antipsychotic administration as compared to basal gene distribution and 
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to display distinctive distribution profiles, according with the dopaminergic profile and the 

dose of the compound tested.   

As a further verification, the pattern of topographic distribution of the dopamine reuptake 

inhibitor GBR12909 was evaluated to test whether the topographic analysis may discern 

antipsychotics from non-antipsychotic compounds. 

Homer1a distribution by GBR12909 was strikingly divergent from the distribution by any 

antipsychotic. In fact, GBR12909 induced a prominent expression in the ventrolateral and 

the dorsomedial caudate putamen, which was significantly higher (p<0.0001) than in all 

other striatal subregions. We have already demonstrated that the preferential ventral 

distribution of Homer1a expression may be a distinctive feature of psychotomimetic drugs, 

in particular those provided of dopamine agonism liability (Ambesi-Impiombato et al., 

2007). Thus, this additional evidence appears to confirm that a separation may be drawn on 

the basis of topographic distribution of Homer1a expression among antipsychotic and non-

antipsychotic compounds.   

These findings allow many suggestions. It has been recently theorized that, in opposition to 

the early-proposed dorsal-ventral subdivision of caudate-putamen organization, a more 

functional and reliable subdivision of the region along a dorsolateral-to-ventromedial 

gradient would need to be drawn (Voorn et al., 2004). This gradient may account for 

anatomical and histochemical observations and it may best fit with the course of neuronal 

projections from the cortex. Interestingly, this newly proposed organization of caudate-

putamen subdivision appears to closely match the graded density of medium-sized spiny 

neurons, the GABAergic postsynaptic interneurons that constitute approximately 95% of all 

striatal cells and express the postsynaptic density machinery, including Homers, in their 

dendritic arborizations (Tappe and Kuner, 2006). Moreover, there is some evidence that also 

distribution of dopamine D2 receptors may follow a similar dorsolateral-to-ventromedial 
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gradient in the striatum (Alcantara et al., 2003; Fisher et al., 1994; Hall et al., 1994; Meador-

Woodruff et al., 1996; Russell et al., 1992; Szele et al., 1991).  

Thus, the pattern of striatal distribution of Homer1a may be consistent with the distribution 

of medium-sized spiny neurons and perhaps of dopamine D2 receptors. Indeed, significantly 

higher gene expression in the lateral striatal subregions compared to other striatal aspects is 

seen by antipsychotics that robustly affect dopamine D2 receptors. This observation could be 

explained by a lower concentration of either GABAergic interneurons or dopamine D2 

receptors in ventromedial striatum and nucleus accumbens compared to the dorsolateral 

striatum. Although attractive, these hypotheses are preliminary and need to be substantiated 

by more studies. A double in situ immunohistochemistry study may allow localizing 

Homer1a and D2 receptor mRNAs, confirming (or rejecting) the hypothesis of their 

matching distribution. However, since D2 receptor involved in Homer1a modulation may be 

presynaptic, such experiment may also yield confounding results. A further study by double 

immunostaining for Homer1a and enkephalin (which is a marker for GABAergic neurons 

carrying D2 recptors) may help to precisely correlate the distribution of Homer1a to the 

concentration of GABAergic interneurons in discrete subregions of the striatum. These 

experiments may allow shed some lights on the issues discussed above. 

If confirmed by adjunctive experiments, the pattern of distribution of Homer1a may help 

discern antipsychotics provided of in vivo action at the dopamine D2 receptor, as haloperidol 

and ziprasidone, from that, as clozapine, which are virtually devoid of this action in vivo. 

Thus, the profiling of Homer1a expression may be predictive of the antidopaminergic 

property of a compound. However, behavioral studies coupled with the examination of 

topographic distribution of the gene would be needed to corroborate this view.  

Another issue which may come out from the assessment of topographic distribution of 

Homer1a expression is that antipsychotics prominent induction in specific subregions may 
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relate to their clinical and side-effects profile and may correspond to the activation of 

discrete neuronal networks, For example, the relative abundance of Homer1a expression in 

the nucleus accumbens by clozapine compared to the other antipsychotics evaluated may 

depend on the well-known preferential action of clozapine upon the mesolimbic over the 

nigrostriatal neuronal pathway and it may give a further molecular explanation of clozapine’s 

lack of motor side effects. The potent and significant induction of Homer1a by haloperidol in 

the lateral striatum over other striatal subregions and the low relative expression in the 

ventral limbic areas of the striatum it represents a further and refined confirmation of the 

prevalent action of this compound on non-limbic tasks and on nigrostriatal projections. 

However, ziprasidone show a striatal distribution similar to that of haloperidol but at the 

doses tested is not cataleptic and is generally considered to hold low liability to motor side 

effects in humans. Homer1a distribution in the striatum may be obviously affected by the 

interaction with dopamine D2 receptor. However, since tight interaction with dopamine D2 

receptor is a key condition to give motor disturbances, this is not sufficient. In the case of 

ziprasidone and of other atypical antipsychotics, intermediate action at the dopamine D2 

receptor is counteracted by their strong serotoninergic action. As demonstrated in the 

paradigm of SSRIs+haloperidol co-administration, Homer1a expression seems to be not 

affected by serotoninergic agonism/antagonism in the striatum, while it could be in the 

cortex. This may explain why ziprasidone, even exhibiting a striatal distribution profile of 

Homer1a expression similar to that of haloperidol, may not be accounted for a cataleptic 

compound.  

Cortical distribution has been examined by delineating five regions of interest according with 

expert opinions in the field. All groups tested, including controls, showed a not-

homogeneous distribution of Homer1a signal that resulted prominent in the motor-related 
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regions of the Medial Agranular Cortex and of the Motor Cortex. This feature may reflect a 

relative abundance in these regions of the cells expressing the gene.  

While these statements appear true for acute antipsychotics, are they still suitable in chronic 

treatment paradigms? Chronic regimens do rise to complex pictures. When Homer1a 

profiling is observed in rats sacrificed acutely after the last injection, the general trend of 

distribution mimic, although not overlap, those observed after acute antipsychotics. Gene 

expression is prominent in the dorsolateral caudate-putamen and is lower in the nucleus 

accumbens. Distribution in control striata is homogenous, while both ziprasidone and 

haloperidol exhibit significant expression in the dorsolateral putamen compared to other 

ventral subregions. However, some subtle changes are particularly evident for haloperidol, 

which may imply the occurrence of neuroplastic changes.  

The similarity of striatal distribution profile in acutely sacrificed chronic treated rats is 

however not paralleled by cortical distribution profile. In fact, the general trend of 

distribution resembled partially those observed in the acute paradigm, with prominent gene 

expression in the Medial Agranular Cortex, the Motor Cortex, the Anterior Cingulate cortex, 

and the Infralimbic Cortex. Significant differences among subregion expression were seen 

for ziprasidone but not for haloperidol.  

It could be hypothesized that, although the overall feature of signal distribution may seem 

preserved after a prolonged antipsychotic treatment, the profiling of gene distribution may be 

not a valuable tool to discriminate antipsychotics after their sustained administration. A 

presumable explanation may be that some neuroplastic changes may have been occurred 

during sustained antipsychotic treatment. This view seems to be confirmed by the 

distribution profiling in rats sacrificed 24 hours after the last chronic injection. In fact, signal 

distribution is homogeneous in all groups in either the striatum or the cortex, with the 
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intriguing exception of haloperidol that shows significant induction in the ventral regions of 

striatum compared to the other striatal subregions.  

 

Changes in the expression of Homer1a-related genes. 

In the different experimental paradigms, several other genes, mainly constitutive, have been 

tested to investigate whether significant changes in their levels of expression may be 

observed by the psychotropic compounds administered. Genes tested were chosen among 

PSD factors which can functionally relate to Homer1a and can be modulated by perturbation 

of dopamine-glutamate interplay. As a general consideration, it could be stated that changes 

in non-inducible genes were low from a quantitative point of view and substantially less 

evident than that described for Homer1a.  

Constitutive genes expression was assessed in either acute or chronic paradigms.  

Acute administration of haloperidol or selective antagonists at dopamine receptors was 

observed to overall reduce the levels of both Homer1b and mGluR5 expression in striatal and 

cortical areas. Reduction of gene expression was particularly evident for compounds 

provided of antagonism at D2 receptors, namely L-741,626, terguride, and haloperidol. 

Further, a negative modulation by L-745,870 was also observed.  On the contrary, a positive 

modulation by SCH-23390 was recognized in some subregions. These data may suggest an 

opposite control upon Homer1b and mGluR5 expression by D1 and D2 receptors. Moreover, 

it appears that D2 receptors may modulate the expression of Homer1a at one side and 

Homer1b and mGluR5 at the other side in opposite directions. This contrary modulation may 

reflect the opposite physiological role of these factors: as Homer1a appears to break 

mGluRs-mediated transduction, Homer1b facilitates transduction by approximating mGluRs 

to intracellular effectors.  
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CaMKII expression was acutely increased in several striatal areas by a low ketamine dose. 

As CaMKII function is positively modulated by NMDA receptor activation (REF), the 

increase in gene expression by a non-competitive NMDA receptor blocker may reflect a 

feedback mechanism to preserve neuronal homeostasis or be sustained by hyperglutamatergy 

on non-NMDA glutamatergic receptors.  

Evaluation of changes in constitutive genes expression reveals more attractive when 

conduced in chronic paradigms. No significant changes in Homer1b expression were 

observed in two independent chronic experiments. However, levels of expression were 

affected by time: basal, ziprasidone-, and haloperidol-induced gene expression was 

significantly higher at 90minutes than at 24hours from the last injection in a chronic (21 

days) paradigm of compound administration.  

Both time and treatment may instead affect the expression of the PSD95 constitutive gene. In 

the striatum, gene expression was acutely increased by both haloperidol and ziprasidone after 

a prolonged treatment. After a 24 hours withdrawal from the last injection, however, only 

ziprasidone increased gene expression in the VM putamen only. In the cortex, both 

haloperidol and ziprasidone increased gene expression at either 90 minutes or 24hours from 

the last injection. These findings seem to confirm the view that antipsychotics may trigger 

neuroplastic changes at the PSD.   

A trend toward the increase was also recognized for the gene coding for the dopamine D2 

receptor after a prolonged treatment with antipsychotics. This finding is in line with reports 

dcescribing an up-regulation of D2 receptors following chronic antipsychotic treatments.  

Ania-3 is a Homer1a transcript variant which is induced in an IEG-like fashion. Our studies 

corroborate the view that ania-3 follows patterns of quantitative and topographic induction 

similar to Homer1a.  
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Arc is another early gene coding for a PSD factor which regulates cytoskeleton organization. 

Patterns of quantitative and topographic expression appear similar to Homer1a, although 

assessments are limited to one experimental paradigm only.  

 

Concluding remarks. 

The studies summarized here were intended to analyze the features of Homer1a expression 

and of some Homer1a-related genes in different conditions of dopamine (and sometime 

glutamate) transmission perturbation. The different paradigms employed allowed to draw a 

comprehensive picture on the issue and opened new interesting questions.  

Homer1a seems to be obviously induced by compounds provided of antagonist action at 

dopamine D2 receptors. This property renders Homer1a a valuable tool to study 

antipsychotics, which main mechanism of action is represented by blockade of D2 receptors. 

Moreover, analysis of Homer1a expression may be also employed to study the action upon 

D2 receptors of novel putative antipsychotics or procedures taken from clinical practice, as 

adjunction to antipsychotics of non-antipsychotic compounds to increase efficacy. 

Another suggestion appears to be that Homer1a may be integral at the mechanism of 

antipsychotics action at the PSD. More studies, assessing protein level and functional 

changes after administration of these compounds, may clarify this intriguing issue.    
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