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| ntroduction

e live in the image society! This short sentence does naidotte a

-\/- \/ sociological analysis on the importance of look in modemmes, but

it wants to underline the change in our way to communicateliv¥en an age

in which text is gradually losing ground to image, video andrel. The new
generations slogan could be “Say it with a multimedia cariten

The ‘image society’ causes a growing traffic of multimediatemts which
travel on the data networks and often on wireless networkis dalls for new
tools to provide a faithful and efficient representation rmages and video,
especially at low bit rates. As a consequence, in recensytbare has been
intense research on image compression, new concepts alsdhtne been
generated, and new standards have been output, such asueketvrmsed
JPEG2000 which improves upon JPEG especially at low bisratiowever,
despite its significant improvements, JPEG2000 performametill quite far
from theoretical compression bounds. If we consider thathilhman eye can
receive only 20 bits per second, as psychology studies shjparid it typically
takes only a few seconds to capture a visual scene, the lgittedeo represent
an image should not exceed a few hundreds. By contrast, JBEGZ/hich
represents the state of art, requires at least some ten®bytds to represent
a typical 51 512-pixel image. This suggests that there is still a long t@ay
go before technology reaches Nature.

The classical scheme of image compression is based on tepe grans-
form, quantization and lossless coding. Recently, rebesfforts have focused
on the choice of the transform that best represents a natuasgke. As a matter
of fact, in spite of its great success, wavelet transfornoistime optimal basis
for an image. Indeed, it is very effective in representingsth signals with
pointwise discontinuities (like an image row), but failsr@presenting discon-
tinuities along curves, like the contours between neiginigovisual objects,
which typically characterize images [2].

The problem of contours in image compression is the leadingat of

iX



X Introduction

this thesis work, as well as wavelet inefficiency in desagbthis piece of

information. This is a very important issue in image comgi@s because
contours are the most resource-consuming elements of ayejraapecially at
low bit rates, and their good reproduction is essential togiee a satisfactory
image quality. This very same subject is treated in this Rte3is work under
three different scenarios, that is, three different attisnip overcome wavelet
limits on images contours: object-based coding; new doeat transforms;

and adaptive lifting scheme.

The object-based paradigm is an highly flexible tool to dbscimages.
To begin with, considering an image as composed by objeatsnat by pix-
els, is more intuitive and natural. Object-based codingrsffa large number
of high level functionalities, for example, the user canad®to decode only
objects of interest, or to assign them different coding weses and differ-
ent error-protection levels. Furthermore an object-bagestription can be
used for subsequent classification tasks. In this thesigever, we focus on
the rate distortion performance of object-based schemdseirtompression
of the whole image, and analyze costs and advantages of dicmecling
scheme. The main assumption is that, with an object-basptbagh, the
wavelet works only on the interior of the objects, that ispas$t stationary
signals, and can therefore provide near-optimal perfoomate consider a
specific object-based compression scheme where the maingctmbls are
the shape-adaptive wavelet transform (SA-WT) proposed.hyi &xd W. Li
[3], and a shape-adaptive version of SPIHT (SA-SPIHT) [4]johhextends
the well-known image coder proposed by Said and Pearlhiato [&hjects of
arbitrary shape. Besides assessing the rate-distortidarpence of such an
object-based coder in typical situations of interest, malysis will provide
insight about the individual phenomena that contributeh® averall losses
and gains in this approach. Then, we extend the object-baaeatligm to
the class of multispectral images. In this context the ddjased scheme can
be declined in two cases: class-based and region-basedigraga The anal-
ysis of the rate-distortion performance for both schemeat veference to
remote-sensing images, will prove the potential of obpEted paradigms for
multispectral images.

New directional transforms represent a more direct soiutiowvavelet in-
efficiency on image contours. While in object-based codiegttansform re-
mains the wavelet and the intelligence is put on the scheare,the wits is in
the transform. Recent studies have shown that waveletslityeto adequately
describe image contours is due to its separability whichlénddlowing for a
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simple implementation) cuts it away from two fundamentalparties: direc-
tionality and anisotropy( [6]. The new directional transfisrtry to overcome
these limits by adding these characteristics to that of lgavensform, such
as multiresolution, localization and critical sampling.aivy transforms have
been proposed in the last few years (contourlets [6], dorletts [7], curvelets
[2], bandelets([B], etc.), but results are mostly theoeattizwhile there are only
a few actual coding algorithms based on these new tools. isnthiesis we

propose a SPIHT-like coding algorithm based on the corgbtndnsform. We
choose the contourlet transforfr [6] for several reasorisastmany desirable
characteristics, such as directionality, anisotropyriogdimal theoretical per-
formance and, unlike other directional transforms, it silgamplemented by a
filter bank. Our coding algorithm attempts to exploit theyder properties of
contourlet transform coefficients, which exhibit varioypds of dependency,
across scales, space and direction. Our strategy for SREEE tonstruc-
tion tries to exploit all such links, without introducing igsificant complexity

overload. Experiments on typical images used in the sier@ommunity

show some interesting improvements for images rich in toeal details.

The last part of the thesis is dedicated to adaptive lifticigesnes. The lift-
ing scheme ][9] is an efficient and flexible implementationhef wavelet trans-
form. One of the main advantages of the lifting structur@igrovide a totally
time domain interpretation of the wavelet transform andg fieature makes
simpler to design new wavelets and content-adaptive wisvekedaptive lift-
ing schemes can be use to deal with the problem of contouegeptation,
for example, by constructing directional wavelets, with flitering direction
chosen according to the local orientation of image edgek [1@], [12], or
changing the filters according to the regularity of inpuhsig[13], [14], [15]
in order to utilize different and more fit filters when contewr singularities
are encountered. A major problem of adaptive lifting schemehat they are
strongly non-isometric transforms, which bars from cormguthe distortion
in the transform domain. On the other hand, this is would bdliidesirable
in order to perform efficient resource allocation. In thiedis we address this
problem proposing a method that allows for a reliable egtonaof the distor-
tion in the transform domain. The strategy adopted is basd¢deobservation
that, although adaptive lifting schemes are nonlinear aipes, they can be
considered equivalent to suitable time-varying lineaeffdi which eventually
allows us to generalize the traditional distortion compatamethods.

The thesis is organized as follows:
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Chapter [ presents the basics of transform coding and its relatiorth wi
classical coding schemes. In particular, the key conceptsnderstand
strengths and weaknesses of the wavelet transform aresdestiere.

Chapter @ is dedicated to the measure of rate-distortion costs andsgai
for a wavelet object-based encoder. The analysis of thedistertion curves
obtained in several experiments provides insight aboutt vpleaformance
gains and losses can be expected in various operative moslitThen two
variants of object coding paradigm for multispectral immgee presented and
their performance analyzed.

Chapter introduces the main characteristics of contourlet tramsfo
and the motivation for an hybrid contourlet-wavelet decosition. A new

image coding technique based on this transform and buih tip@well-known

SPIHT algorithm is described and numerical and visual tpa#sults are
reported to confirm the potential of the proposed technique.

Chapter [4 addresses the problem of distortion evaluation in the trans
form domain for adaptive lifting schemes. The analysis isdtmted on two
interesting classes of lifting schemes. Experiments shww the proposed
method allows for a reliable estimation of the distortiontine transform
domain which results in improved coding performance.



Chapter 1

Contour coding problem

he information about discontinuities between differerjeots in an im-

age is very important from a visual point of view but oftersitiard to
compress. In fact, many transform coding algorithms faii@scribing effi-
ciently this information. The main problem is that claskicansforms do not
perform well on image discontinuities. In this chapter we@se the basic
principles of transform coding, and its use in image congoesalgorithms.
We focus our attention on wavelet transform underling tlesoas of its suc-
cess and the motivation of its suboptimality.

1.1 Transform coding

Transform coding is one of the most successful and wided@esnique for
lossy compression. Both in audio compression, with MP3,iamthage com-
pression, where the discrete cosine transform and wawkefsart of the JPEG
standards, transforms are at the heart of the compressipmeen

The conventional framework of transform coding was inticstil by
Huang and Schultheiss [[16]. A discrete-time, continucalsied, vector source
with correlated components is given; instead of vector tjmation, one uses
a linear transform followed by a scalar quantization. Arr@oy coder, even if
it is not present in Huang and Schultheiss paper, is ofted tesénprove the
coding efficiency (Fig_1]1).

Transform coding is an inherently suboptimal source cotianique but
it has much lower complexity than vector quantization. latfacomputing
the transforntZ requires at mostv2 multiplications andV (N — 1) additions
furthermore, icing on the cake, specially structured ti@mss like discrete

1
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Figure 1.1: Transform coding scheme.

Fourier, cosine, and wavelet transforms are often useditaeethe complexity
of this step. The idea behind transform coding is that scading may be
more effective in the transform domain than in the originghal space.

There are other two reasons for transform coding: one imudnd an-
other subjective. The first one is based on the observatainthie transform
tends to mix the information contained in the different skegso that each
transform coefficient contains part of information of aliganal pixels. In this
way it is possible to reconstruct a reliable version of thageeven without all
coefficients. The subjective reason, instead, starts ftodties that state that
some biological systems, as human eyes, work in transfodogtins.

There are a lot of theorems that define the characteristitseobptimal
transform in the ideal framework, but these theorems arecban too restric-
tive hypotheses [17]. Nevertheless, they have been vergriat in the trans-
form coding development.

The first and maybe most famous theorem is the one that affinais t
Karhunen Loeve transform is the optimal transform for g&rs sources. A
Karhunen Loéve transform (KLT) is a particular type of @gonal transform
that depends on the covariance of the source. Let us inteoftumally this
transform. Callx the input vector, whera is assumed to have mean zero,
and letR, denote the covariance matri, = E[xx’], whereT denotes the
transpose. Covariance matrices are symmetric, thus antfadly diagonaliz-
able, so we can writ&, = UAUT, where the diagonal elements fare the
eigenvalues of?,. The KLT matrix will be7 = U”. For gaussian sources
is possible to show that KLT is the optimal orthogonal transf, in the sense
that it minimizes the distortion both at high rates|[17] ahtbas rates[18].

The problem is that the hypothesis of gaussian source ddeft neell
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the images, and without this assumption KLT is not optimabwver it is
worth noting that the KLT has the property, not related onlgaussian case,
of returning uncorrelated transform coefficients. Sincganssian hypothesis
uncorrelation imply the independence it is natural to warnidéis is the prop-
erty that we are looking for. Heuristically, independenédgransform coeffi-
cients seems desirable for a scalar processing like thegadheme showed
in Fig.[1.1. With regard to latter observation we report aeri@sting theorem

[17]:

Theorem 1 consider a high-rate transform coding system employingpegit
constrainedd uniform guantization. A transform with orthogonal rows tha
produces independent transform coefficients is optimagnmguch a transform
exists.

Unfortunately for non gaussian sources there is not alwayerthogo-
nal transform that produces independent transform coefiisi (without the
orthogonality hypothesis the optimality is not assured)rtitermore, even if
such transform exists, it is not necessarily optimal whenrdie is low. This
is a great drawback because low bit-rate coding represeatsetl challenge
for new image compression schemes since at high bit-ragepdiformance
of actual coder are already fulfilling. We will see in Sectibd that a totally
different theory can be used in this scenario, but it is ingdrto underline
that, even in that case, the theoretical results must bed=yesl only as a
guideline for real compression. In fact, when we considandform coding as
applied to empirical data, we typically find that a numberioffde variations
can lead to significant improvements w.r.t. the performastained with a
strict application of these theorems (see for example sgf. 1

Practical transform coders differ from the standard modehany ways,
for example transform coefficients are often not entropyedoiddependently
and this eliminates the incentive to have independent fsemscoefficients.
This is what happens in JPEG standard [19], where, as wedtallin the next
section, the transform coefficients with zero quantizedeshre jointly coded.
Actually, this type of joint coding does not eliminate théeefiveness of the
KLT, on the contrary, can be seen as an additional motivetorits use. In
fact, the property of rendering transformed coefficientallp decorrelated is
equivalent to the property of concentrating optimally thefticient energy, so
there are a large fraction of coefficients with small magietand this benefits
the joint coding. The empirical fact that wavelet transfernave a similar, but

The rate is computed from the entropy.
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stronger (see Set. 1.4), property for natural images (berafor piecewise
smooth functions) is a key to their current popularity.

1.2 From KLT toJPEG

To make the KLT approach to block coding operational, twabfgms need
to be addressed: the computational complexity ), due to the calculation of
eigenvectors of the correlation matrix, and the estimatiocorrelation matrix
from the data. Indeed, to have a good estimation it is nepetsa the data are
stationary but this is not true for images. A possible sgrais to partitioning
the image in blocks in order to have a more stationarity $jdnd this mean
doing the estimation on a smaller quantity of data, thus awestimation. To
overcome KLT problems, fast fixed transforms leading to apipnate diag-
onalization of correlation matrices are used. The most Bo@among these
transforms is the discrete cosine transform (DCT).

The discrete cosine transform of a sequen¢e) of length V is defined

by:
2 k(2n + 1)
y(k) = \fﬁmm go 2(n) cos (ZT) (1.1)
where ;
V1/2 fork=0
5(k):{ 1 forO0<k<N-1" (1.2)

and its inverse is:

N—-1
2(n) = \/% > B o (W} (1.3)

The transform for the two-dimensional signals is derived peoduct basis
from the one-dimensional DCT. While not necessarily béss, is an efficient
way to generate a two-dimensional basis.

Since the DCT is equivalent to the discrete Fourier tramsf@FT) ap-
plied to a symmetric extension of original signal it can bmpated with a fast
Fourier transform (with aboudv log N operations). This is a key issue: the
DCT achieves a good compromise between energy concentratid com-
putational complexity. Therefore, for a given computatiohudget, it can
actually outperform the KLT.

For these reasons DCT transform is used in the most widesgteadard
for image compression: JPEG (Joint Photographic Expents@r[19]. The
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way of using DCT in JPEG is quite different from what theorggests, be-
cause the source (images) is very different from the theatehodel (gaus-
sian sources). The image is first subdivided into blocksz#&ix 8 and these
blocks are processed independently. Note that blockingntlage into inde-
pendent pieces allows to have a more stationary signal in black and to
adapt the compression to each block individually. The blsigk choice rep-
resents a compromise between the need of compacting enaigheneed of
limiting the signal variability.

Now, gquantization and entropy coding is done in a manner ithgtiite
at variance with the classical setup. First, based on pwrakpriteria, the
transform coefficients are quantized with a uniform quamszwhose step-
sizes, typically, small for low frequencies, and large fmgthones, are stored
in a quantization matrix. Technically, one could pick diffet quantization
matrices for different blocks, but usually, only a singlalscfactor is used,
that can be adapted depending on the block statistics. 8irceis no natural
ordering of the two-dimensional DCT plane a prescribed 2Roscanning
is used. This so-called zig-zag scan traverses the DCT drexyuplane diag-
onally from low to high frequencies in order to have a segeenith a lot of
zeros at the end. For this resulting one-dimensional seguermnzero coeffi-
cients are entropy-coded, and stretches of zero coefficaetencoded using
run lengths coding.

1.3 Wavedet transform

In spite of the considerable advantages of compressiomsebhased on DCT,
this technique is not very performing at low bit-rates. Aslerined in the
previous section, in the JPEG standard it is necessary idedifie image in
blocks before to perform the DCT transform, in this way theeation present
on blocks edges is eliminated causing an effect called Kihocartifact”, that
is very visible at low bit-rates. The evolution of JPEG staml] known as
JPEG-2000, is based on the Discrete Wavelet Transform (J2U[)

The literature about wavelet is huge and we refer tolit! ([2,/23,[24]
for a detailed exposition, in this context we only want tohight wavelet
characteristics useful for image compression, namely:

e time frequency localization;
e critical sampling;

e easy implementation;
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A
VLV

Figure 1.2: Example of mother wavelet.

e multiresolution.

To explain the first property we start from continuous watvdlinlike Fourier
analysis, that describes a function in terms of componeigive to a basis
made by sine and cosine, wavelet analysis has, as basigfs)dhe dilations
and translations of a single functign called mother wavelet (Fif._1.2), having
limited energy and zero mean. So the wavelet basis funcaoashort and
oscillating from which the name afavelet(“small waves”).

The mother wavelet(¢) can be dilated (stretched) and translated adjusting
two parameters (scale parameter) arid(translation parameter) that charac-

terize it . b
t .
Yap(t) = ﬁﬂ’ (T) (1.4)

with ¢ € RT andb € R. A valuea > 1 corresponds to a more stretched basis
function while a value ofi < 1 to a more compressed one (Hig.]1.3).

The continuous Wavelet transform (CWT) of a given sign@l) with re-
spect to the mother wavelét,(¢), is given by the following definition:

[e.9]

CWTah) = [ aOuiOd =< bult)alt) > @5)
— 0o

For an assigned couple of parametendb, the coefficient obtained by re-
lation[L.5 represents how well the signdt) and scaled and translated mother
wavelet match. So, if we look at Fif._1.3, we can notice thaemvivavelet
basis functions are longet (> 1) we are taking into account lower frequen-
cies, while when basis functions are shorter< 1) we are taking into ac-
count higher frequencies. Basically, the wavelets caratahe resolution
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a<l1 a>1

Figure 1.3: Example of rescaled mother wavelet.

with frequency, in particular it is possible to obtain a tinesolution arbitrar-

ily good at high frequencies and a frequency resolutiontrailly good at low

frequencies. This property is called time-frequency lizegion and it is par-
ticularly suitable for natural images, that typically ammposed by a mixture
of low frequency components of long duration, calleshd (for example back-
ground), and high frequency components of short duratiatbed¢anomalies

(for example contours).

The continuous wavelet transform is highly redundant andisdapted to
compression. To obtain a non redundant representatiorc(tieal sampling
that is our second desiderable characteristic) is negessdiscretize the pa-
rameters. To this regard, the most common discretizatitimei$ollowing:

{ a=ay mezZ ag>1 (1.6)

b=naby neZ by>1

The most widespread wavelet decomposition is the dyadidqttweeonly con-
sidered in this thesis work) achieved setting= 2 andby = 1. So the wavelet
transform of a signat(¢) using discrete scale and time parameters is:

< 2(t), rn (t) >= / T (02 (2 — )t (1.7)

—00

It is possible to demonstrate that, choosing convenientty, the reconstruc-
tion formula is:

2(t) =Y <(t), Ymn(t) > Yrn(t) (1.8)
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Figure 1.4: Filter bank.

where they,,,,,s form an orthonormal bas

The third reason of wavelet success is that wavelet tramsfor discrete
signals (DWT) can be easily implemented by a filter bank stineccomposed
by two filtershy(n) andhi(n), respectively low pass and high pass, followed
by a downsampling. The procedure is iterated on low-passchréor multi-
scale decomposition as shown in Hig.] 1.4, rendering a restilution repre-
sentation of the input signal.

The 1-D wavelet transform can be extended to a 2-D transfeingisepa-
rable wavelet filters. With separable filters the 2-D transfean be computed
by applying a 1-D transform to all rows of the input, and thepeating on all
columns. An example of three levels, 2-D wavelet decomjoosis shown in
Fig.[1.5

Wavelet actual coders are very different from the ideal sehehowed in
Fig.[1.1. Only to give an idea of this diversity we explainywsynthetically the
characteristics of the most common wavelet coders: EZW E26bedded Ze-
rotree WaveletSPIHT [5] Set Partitioning in Hierarchical Treeand EBCOT
[20] Embedded Block Coding with Optimized Truncatitme coder used in

2In our theoretical discussion we will always consider ogial filters although in the
practise we will often use biorthogonal wavelet. For an ysialof the differences seg [25]
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Figure 1.5: Three levels wavelet decomposition of image Lena.

standard JPEG2000 [27].

EZW and SPIHT are namezkro-treecoders and are based on the same
principles. They are progressive algorithms in which thesmmportant in-
formation, which yields the largest distortion reductidas transmitted first.
This means, supposing the transform orthogonal, that tigedawavelet co-
efficients are sent before. To realize this approach it isiptesto classify the
information in bit plane; so the progressive transmissemdsbefore the most
significant bits of each coefficient. At first step of the aljon a threshold
is fixed and all coefficients are compared with this threshtie coefficients
superior to threshold are labelled significant the otherinsignificant Then
the information relative to these decisions (the signifieamap) is encoded,
and a refinement pass gives further bits to the coefficiemtswiere already
significant at previous step. Finally the threshold is halsed the procedure
repeated.

The strategy adopted by EZW and SPIHT for map significanceding
is based on two observations, the first is that images ardadiathly low pass,
and the second that among wavelet subbands there is a s®if-cimilarity
(see Fig[1b), due to the fact that the coefficients presedifferent subbands
represent the same spatial locations in the image. Soré than insignificant
coefficient in the subband at lower frequency, probablyctiedficients relative
to the same spatial location, that lie in the subbands atehiffequency, are
zero and it is possible to jointly describe all these zerdfmients by a tree
structure (Figl_1J6).
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Figure 1.6: EZW and SPIHT trees of coefficients.

The coding scheme used in JPEG2000 standard is EBCOT (Emdbedd
Block Coding with Optimized Truncation) and it was origilyabroposed by
Taubman([2D]. It is a block coding scheme that generates dedded bit-
stream. The block coding is independently performed on naatlapping
blocks within individual subbans of same dimension (exdeptthe blocks
on the lower or on the right boundaries). EBCOT organizesbitetream in
layers, within each layer each block is coded with a variadulmber of bits.
The partitioning of bits between blocks is obtained usingagrangian opti-
mization that dictates the truncation points. The qualftthe reproduction is
proportional to the number of layers received. The embeddeihg scheme
is similar in philosophy to the EZW and SPIHT algorithms b tata struc-
ture used is different. In fact, EBCOT codes independeritighks that reside
entirely within a subband, which precludes the use of tréestead EBCOT
use a quadtree data structure. As in EZW and SPIHT there isnparson
with a threshold to state the significance of the coefficiant the algorithm
makes multiple passes: significance map encoding and redimenthe bits
generated during these procedures are encoded using etiittoading.

1.4 Wavelet and nonlinear approximation

We already noted that the importance of wavelet in compradsirelated to a
low-rate scenario, in fact DCT and JPEG have good perform&mcmedium
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and high rates. In the first section of this chapter we presesome theorems
that could be seen as a guideline to choose the transforrall iuese theorems
are valid only for high-rate compression. An analysis ofltve-rate behavior
of transform coders has been done by Mallat and Falzon [28gnCohen,
Daubechies, Guleryuz, and Orchard|[29]. In these works,atithors link
the low bit-rate performance of a coder to the nonlinear edpration (NLA)
behavior of its transform.

Before explaining why NLA and low bit-rate compression ankéd, we
need to introduce the concepts of linear and nonlinear appetion.

Given a signalr of a function space, it can be represented by a linear
combination of the elementary signdls, },,c - that form an orthogonal basis
for S:

T = chqbn, wherec,, = (x, ¢,,). (1.9)
n=0
We call linear approximation (LA) the representation ofnsijthat we
obtain keeping the first/ components of its basis expansion:

M-1

Tym = Z CnPn- (1.10)

n=0

This is referred to as linear approximation since it is eglamt to projecting
the input object onto the subspace spanned by theMirbasis elements.

Instead, we talk of nonlinear approximation when we keephibst M
componen@

Bar= Y et (1.12)

nelys

where), is the set ofM indices corresponding to th¥/-best|c,|. This is

referred to as nonlinear approximation since the sum of tibrary elements
expressed by E@. 1111 generally uses more than basis fosgtith the index
included inly,.

The results of both schemes depend on the signal and on tisechagce
but the nonlinear approximation scheme certainly workseb#tan linear one.
To clear the different behavior of these two types of appration we report
an example taken from [30]. We want approximate a one-diineakpiece-
wise smooth signal with N = 1024 samples (showed at top of[Eig). using
only M = 64 coefficients. In figure_1.7 we show the results fothbtypes of

®That, for orthonormal transform, are the largest ones.
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approximation using the Fourier basis. In this case we saetlie nonlin-
ear approximation is not necessarily better than lineareqmation, but both
provide poor results. Figufe 1.8, instead, shows the ®siilthe same exper-

T T T T T T T T T T
hl
esf J \ 1 original
I -— _— —
. . . . . . . . . .
o 100 200 300 200 S00 600 700 EOD om0 1000
T T T T T T T T T T
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0sr 1 o
II /.\ E =27
o —n.—u\_,ll e .
! ) ) ) \ \ ! , ) L
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nl [ ]
| N non-linear approx.
(R 3 | 1 4
| / \ E=24
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. . . . . . . . . .
o 100 200 300 200 S00 600 700 EOD om0 1000

Figure 1.7: Approximation using Fourier basis. On top, the original
signal. In the middle, linear approximation. At the bottamonlinear
approximation.

iment but using a wavelet basis. In this case, with the lirsggaroximation
scheme the resulting signal is very poor, but using nontirggroximation
the signal is almost perfectly recovered.

In the first section, talking about KTL, we said that this sfmm decorre-
lates optimally namely maximizes the energy concentrafidns characteris-
tic can be expressed in another way saying that KLT is theshlaat minimizes
the linear approximation error:

M-1

E[Hl’ - Z < x>¢n > ¢n”2]

n=0

(1.12)

So, in a low bit-rate regime, the key feature is not the enemycentration
or the decorrelation but the capacity of transform to miaenthe error of
nonlinear approximation:

Bllz— Y <x,¢n > ¢ul’] (1.13)

nelns

When a basis satisfies this property, is narsjearse
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Figure 1.8: Approximation using wavelet basis. On top, the original
signal. In the middle, linear approximation. At the bottamonlinear
approximation.

Even if we refer the reader to_[28] and [29] for a deeper anmmlysere
we want just to mention the reason for nonlinear approxiomatnportance in
low bit-rate compression. Many image coder schemes, axiongle EZW,
SPIHT and EBCOT, tend to put to zero small coefficients, &ibjcthe lower
bit-rates the smaller the number of coefficients differeont zero. So at these
rates, there are two different contributions to distortiame due to quantization
and another due to the fact that we are taking only a part af toiefficients.
It is possible to show that the latter contribution is predwant. So if the cod-
ing is made in an appropriate way the rate behavior follovas ¢ nonlinear
approximation.

The success of wavelet basis in nonlinear approximationimagpreted
by mathematicians to be the true reason of the usefulnesawalets in signal
compression, rather than their potential for decorretaf&9)].

At this point we can declare with sufficient confidence thaatwlie want
from a transform in image coding is that it gives a sparseasprtation of the
data. But, while the better basis for linear approximat®nate for all kind of
signals and is the KTL, the best basis for nonlinear apprakion depends on
the particular class of signals considered.

Recently, to find the best basis for images, a lot of reseesalsed a com-
pletely different approach from that of classical inforimnattheory, in fact they
utilized a deterministic approach [31]. In this setting tlmages are not seen
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as realization of a random process (for example gaussiamsfunction of
a particular class. While in the probabilistic approachredlults are average
results, the results in deterministic setting are relatiMie worst case, namely
instead of minimizing

Ellz— ) < ¢ > ¢ul’, (1.14)
nelys
we minimize:
mazzed e — Y < z,dn > ¢l (1.15)
nelns

whereSis the function class.

Particulary, of great interest for compression communig/some results
of harmonic analysis. The harmonic analysis involves ckffié mathematical
problems, even very heterogeneous, but can be summarizbe ientative
of representing some functions as superposition of fundsmhevaves, called
harmonic. Basically, the harmonic analysis try to idenéfglass of mathemat-
ically defined objects (functions, operators, etc.), toallgw tools to character-
ize the class of objects and to find, if possible, an optimailasentation [31].
Part of the results we are going to talk about rise in this edntnotably in
the sphere of computational harmonic analysis (CHA), ambaic analysis
branch that, as well as being interested in finding an optieadesentation,
try to identify a fast algorithm to compute this representat

A very interesting CHA result, that justify the success ofvelat trans-
form in image coding, is that wavelets are an optimal basi8&sov spaces,
where with Besov spaces is intended a class of smooth funsctiath point
discontinuities. Therefore wavelets are optimal for alagfunctions that
well represents image rows and columns.

1.5 Wavelet limitsand new approaches

In the previous section, we motivated wavelet efficiencynitg good NLA be-
havior on smooth signals with point discontinuity. Unfaréttely, contours in
the image are not pointwise but they lie on regular curvessdomonly used
separable wavelet transforms is suboptimal in higher d#oss. To clear
this concept in Figl_1]9 we show an example of the 2-D wavebatsform
of the image Barbara. We can notice that wavelet represemtest not suffi-
ciently sparse, in fact there are a lot of significant wavetetfficients (shown
in white). The significant pixels are around the image corgoor in general,
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the points with sharp contrasts in the intensity. The kewipt note here is
that the locations of these significant coefficients exhiistble geometrical
correlation as they form simple curves; geometrical cati@h that wavelet,
being a separable transform, can not exploit. This sub@btyncan be for-

LRy
v o N

Figure 1.9: 2-D wavelet transform of the image Barbara. Significant
coefficients are shown in white.

malized mathematically if we consider a model for naturah@®s of type
C?/C?, where with the expressiofi?/C? we mean an image composed of
piecewise smooth regions with a smoothness of ty@separated by smooth
boundaries having the same regularity (see [Fig.]11.10). dhiffave consider
this model it is possible to show that optimal asymptotic Nlbhéhavior is of
type M —2 while wavelet NLA behavior is only of typa/—! [2]. The wavelet
inefficiency on contours make necessary find new approachésmfge com-
pression. The arguments treated in this thesis work areglachree different
scenarios that can be considered three different answrs t@quest: object-
based coding (Chaptel 2), new directional transforms (€&h&) and adaptive
lifting scheme (Chaptéd 4).

The first approach that we want to investigate is objectdbaseling. The
scheme that we considered is the following: the image is seggd, this pro-
cess produces a segmentation map that is coded without flasfnation;
then this information is used to lossy compress the intexiarach object; fi-
nally, the overall bit-budget is allocated among the vagiohjects. In this way
we have two advantages: first of all we preserve informatiooutcontours

4A function is of clas<C? if has two derivates continuous and bounded.
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Figure 1.10: A simple model of image.

and this improves the visual quality. Second, lossy congoasalgorithms
(read wavelets) work on stationary signals and so they parfeetter.

Figure 1.11: Example of anisotropy and directionality importance.

An alternative solution for contours problem is the use af,rend more
effective, transforms. We already noted that the cause eélets suboptimal-
ity reside in its inability to see the smoothness along aarsto This is due to
its being a separable transform so it lacks of two fundanhehi@acteristics:
directionality and anisotropy [6]. To visualize the im@orte of these features
in representing images with smooth contours, we consi@es¢bnario showed
in Fig.[1.11 where we have a simple image with a contour. Title Bquares
represent the supports of the wavelet basis functions: ahegquare because
we use the same wavelet on the rows and on the columns. We naideo
to have a large coefficient whenever our basis functionssatt the contour,
so to describe this information we need a lot of coefficier@sit if we had
basis functions with a support rather elongated and daeatj we could rep-
resent the same information with less coefficients, as wesearon the right
of Fig.[1.11. The new transforms look for these new goalgatiionality and
anisotropy, while at same time, keeping the desirable weawtlaracteristics
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such as multiresolution, localization and critical samgli The importance of
these features is also supported by the physiological exU@2], [33] from
which we know that the receptive fields in the visual cortex @raracterized
as being localized, oriented and bandpass.

Lifting structure is an efficient and popular implementatiof wavelet
transforms|[[9]. Using lifting structure, several adaptivavelet transforms
have been proposed. The ways in which adaptivity could biiuge contour
problem are numerous. A very spread strategy concernstiréi directions,
that are modified in order to follow the orientations of edged textures [10],
[11]], [12]. Others types of adaptive lifting scheme, insteaperating on pre-
diction or update steps, change the filters according to ébalarity of the
input signal [13], [14],[15]. So when important featurdeelicontours or sin-
gularities are highlighted, different filters, from thatedsin regular part of
images, are used.






Chapter 2

Object-based coding

bject-based image coding is drawing great attention fomthay op-

portunities it offers to high level applications. At samendi this
scheme could be seen as a mean to cope with wavelet ineffja@nmontours.
However, its value, in terms of rate-distortion performgnis still uncertain,
because the gains provided by an accurate image segmardegibalanced by
the inefficiency of coding objects of arbitrary shape, witkdes that depend
on both the coding scheme and the object geometry. In thistehave mea-
sure rate-distortion costs and gains for a wavelet-bassmpkesadaptive encoder
similar to the shape-adaptive texture coder adopted in MBEThe analysis
of the rate-distortion curves obtained in several expanserovides insight
about what performance gains and losses can be expectedions/apera-
tive conditions and shows the potential of such an approachmfage coding.
Then we introduce two variants of object coding paradigmnioitispectral
images and we analyze their performance showing the wabidliihe approach
for this kind of images.

2.1 Object-based coding

Object-based image coding is an increasingly active argasgfarch, dating
back to early works on second generation coding technid@4sahd gaining
momentum more recently thanks to the driving force of the I@REvideo
coding standard [35]. The major conceptual reason for olfjesed coding

is that images areaturally composed by objects, and the usual pixel-level
description is only due to the lack of a suitable languageffiociently rep-
resent them. Once objects have been identified and descitoeg can be

19
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treated individually for the most diverse needs. For exantipby can be as-
signed different coding resources and different errotqmtion levels based on
their relative importance for the usér [36] 37], can be editevarious way by
high-level applications, or can be used for subsequensi@ileation tasks (e.g.,
biometric applications).

In some instances, object-based coding is obviously theé reasonable
solution. In the context of MPEG-4 video coding, for exammlaen a number
of arbitrarily shaped foreground objects move in front of@d background,
which is a full-frame sprite, conventional coding is clgarefficient. Addi-
tionally, there exist applications (e.d., [38]) in whichtalare available only for
part of the image frame, and one has no choice but to eitheraodrbitrarily-
shaped object or artificial pad the object out to a full-frame

In the context of this thesis work, we are interested in dbdpased from a
coding efficiency point of view, in fact, as noticed in ChptHe object-based
description of an image could be a mean to overcome probldrkassical
coding scheme in describing contours. Indeed, compongitne turn out
to be more homogeneous, and their individual encoding cad te actual
rate-distortion gains. Moreover, an accurate segmentatories with it in-
formation on the image edges, and hence contributes to tliagefficiency
and perceived quality. Of course, there are also costspfiet, since objects
are separate entities, their shape and position must belkEsdy means of
some segmentation map, sent in advance as side informatiaddition, most
coding techniques become less efficient when dealing witlons of arbitrary
size and shape. These observations justify the need ofsamalf potential
cost and advantages of object-based appraoach [39].

In this analysis, we focus on a wavelet-based shape-adagtiding algo-
rithm. The main coding tools are the shape-adaptive waweasform (SA-
WT) proposed by Li and Li[3], and a shape-adaptive versioBRHT (SA-
SPIHT) [4] (similar to that formerly proposed ih [40] and fiuer refined in
[41]]) which extends to objects of arbitrary shape the walbwn image coder
proposed by Said and Pearlman . The choice of the specifiagegdheme is
justified by the fact that Li and Li's SA-WT is by nowde factostandard for
object based-coding, and SPIHT guarantees a very goodrpenhce, and is
widespread and well-known in the compression communityaddition, the
algorithm analyzed here is very similar to the standarditextoder of MPEG-
4 [35]. Of course, this is not the only reasonable choice,a@hdr coding al-
gorithms based on shape-adaptive wavelet have been ptbpoerent years
[42,[43] 44 45], sometimes with very interesting results,aocomparison with
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some of these algorithms, deferred to the [Sek.2.5, is ofinmrgterest here.
Our target is to analyze the quite general mechanisms tflaéice the effi-
ciency of wavelet-based shape-adaptive coding and tosaseslifference in
performance with respect to conventional wavelet-basethgo

In more detail, we can identify three causes for the addili@mosts of
object-based coding: the reduced performances of the WTttendeduced
coding efficiency of SPIHT that arise in the presence of mregwith arbitrary
shape and size, and the cost of side information (segmemtaibp, object
coding parameters). Note that this classification is soraéwlbitrary, since
the first two contributions are intimately connected, nbakdss it will help
us in our analysis. As for the possible gains, they mirror ldsses, since
they arise for the increased sparsity of the WT represemtatvthen dominant
edges are removed, and for the increased coding efficien§P&iT when
homogeneous regions have to be coded.

A theoretical analysis of such phenomena is out of the questnd in
the literature attempts have been made only for very simates like 1-d
piecewise-constant signals [46]. Therefore, we measwseand gains by
means of numerical experiments carried out in controlledditamns. This
allows us to isolate with good reliability the individual moibutions to the
overall performance, point out weaknesses and strengtisadpproach, and
hence give insight about the behavior of the proposed cagtthgme in situa-
tions of practical interest.

In order to assess losses and gains related to the SA-WT waelye-
move the cost of side information, and use an “oracle” codeickwmimics
the progressive bit-plane coding of SPIHT but knows in adeathe location
of significant coefficients within each bit-plane, therebynoving all sorting-
pass coss Within this framework, we use several classes of imagesoénd
segmentation maps, both synthetic and natural, so as ty atuthe relevant
phenomena. Subsequently, for the same set of images and wasld the
actual coding phase: the additional gains and losses cdrelefdre attributed
to SA-SPIHT or to its interactions with the SA-WT.

2.2 Thecoding scheme

We implemented an object-based coding scheme with theafimigpelemen-
tary steps (see Fif. 2.1)

'Note that the very same oracle coder works for all bit-plamented coders that use Li and
Li's SA-WT, like for example[[43] and [47].
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1. image segmentation;
2. lossless coding of the segmentation map (object shapes);
3. shape-adaptive wavelet transform of each object;
4. shape-adaptive SPIHT coding of each object;
5. optimal post-coding rate allocation among objects.
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Figure 2.1: The object-based coding scheme under investigation.

The accurate segmentation of the image is of central impoetdor the
success of object-based coding, and is by itself a very exhgilhg task and a
“hot” topic. However, faithful image segmentation is notiatferest here and
is not investigated. Moreover, to study the effects of défé object geome-
tries on the coding performance, we need to change rathdy filee geomet-
rical/statistical parameters of objects, and therefosentein most of the anal-
ysis, to artificial regular segmentation maps, independétite actual image
content. Only in our final experiments we do consider medualrgggmenta-
tion maps.

The segmentation maps are encoded without loss of infoomatiecause
of their importance, by means of a modified version of the RARjerithm
[48], originally proposed for palette images, which prowesy efficient for
this task. The cost for coding the map, as well as all othex sifbrmation
costs, can become significant and even dominant in somaaestaand hence
must be always taken into account in the overall performance
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As for the SA-WT, we resort to Li and Li's algorithm, as alrgashid,
which is almost universally used in the literature and aldopsed in the
MPEG-4 standard. For a detailed description we refer to tiginal paper
[3], but it is worth recalling here its most relevant feasurerirst of all, the
number of coefficients equals the number of pixels in theimaigobject, so
there is no new redundancy introduced. Second, spatidiaeships among
pixels are retained, so there are no new spurious “freqasghan the trans-
form. Finally, the SA-WT falls back to ordinary WT for recgular objects.
All these reasons, together with its simple implementatind experimentally
good performance, justify the success of this algorithmthgimplementa-
tion, we use five levels of decomposition, Daubechies 9/ithgonal filters,
and the global subsampling option which secures experatigrthe best per-
formance.

After SA-WT, we use the well-known SPIHT algorithm, in theaple-
adaptive extension proposed in [4]. It is worth recallingtth is a bit-plane
coder of the wavelet coefficients. For each bit-plane thezeeasentially two
tasks, locating the significant bits, and specifying thailue (also the coef-
ficient signs must be encoded of course). Other algorithmigtefest here
share the same general approach, and differ only in the vgayfisant bits
are located. Our shape-adaptive version of SPIHT is verjlagirto the basic
algorithm with the differences that only active nodes, thatodes belonging
to the support of the SA-WT transform, are considered, aatlttie tree of
coefficients has a single ancestor in the lowest frequenig.ba

After coding, the rate-distortion (RD) curves of all obgetre analyzed so
as to optimally allocate bits among them for any desired dimgprate, like
in the post-compression rate allocation algorithm of JEEGO. This process
is intrinsically performed in conventional coding, whikea necessary step in
object-based coding, and also an extra degree of freedoitsahld be also
allocated according to criteria different from RD optintina.

2.3 Measurement of losses

2.3.1 Methodology

As clarified in the Chaptér 1, the performance of a transfbesed compres-
sion algorithm depends essentially on the efficiency of téwesform, which is
therefore the first item we must quantify.

It s important to notice that the shape-adaptive WT is remwietric in
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an unpredictable way. This depends on the need to transigmalsegments
composed by a single pixel: in Li and Li's algorithm, this gestes a single
coefficient which is put in the low-pass transform band andprder not to

introduce discontinuities in otherwise flat areas, is rplitd by a constant.
This multiplication (which can occur many times in the SA-\WfTan object)

modifies the transform energy and makes impossible to caparWT and

WT coefficients directly.

For this reason, we propose here an experimental methodtwapmpare
the efficiency of SA-WT and its conventional (or “flat”) vessi. The basic
idea is to apply both the shape-adaptive and the flat tramsf@o the same
image, quantize the resulting coefficients in the same way,cmmpare the
resulting RD curves. In order for the comparison to be magninthe trans-
forms must operate on exactly the same source, and re@hobjects of the
image must undergo the SA-WT and be processed togetherofdietimber
of coefficients produced by the SA-WT is equal to the numbemaige pixels
and hence to the number of WT coefficients. These two setsafficients are
sent to an oracle encoder which implements a bit-plane tadioin scheme
like that of SPIHT and most other engines used in objectsbaselers. All
these algorithms spend some coding bits to locate the signtficoefficients
in each plane (sorting pass, in SPIHT terminology), and soiimers to encode
their sign and to progressively quantize them (refinemessg)aOur oracle
coder knows in advance all significance maps and spenddstetiy for the
sign and the progressive quantization of coefficients. Asrsequence, the
rate-distortion performance of this virtual coder depemaly on how well the
transform captured pixel dependencies, what we call tmmséfficienc@.

As an example, consider the RD curves of FEig] 2.2. Althoughabject
based coder (solid red) performs clearly worse than thedldeic(solid blue),
at least at low rates, their oracle counterparts (dashe@medddashed blue)
perform nearly equally well. This means that, as far as thesforms are
concerned, the shape-adaptive WT is almost as efficienteasdiwventional
WT, and therefore the losses must be ascribed to codingdiegfties or to the
side information. Actually, since the cost of side inforioatis known, we can
also easily compute the losses caused by SA-SPIHT ineftigisnthe second
major item we are interested to measure.

There are two reasons why shape-adaptive SPIHT could befiésient
than flat SPIHT

2 This measure is similar to NLA, but it takes into account dtsm effects of guantization
on the most significant coefficients
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Figure 2.2: RD curves for flat (red) and object-based (blue) coders.
Solid and dashed lines are, respectively, for actual antlecaders.

e the presence of incomplete trees of coefficients;
e the interactions with the SA-WT.

Much of the efficiency of SPIHT, especially at low rates, i®€da the use of
zerotrees, that is, trees of coefficients that are all infsggmt w.r.t. a given
threshold and can be temporarily discarded from furthelyarsa A single in-
formation bit can therefore describe a whole zerotree, cming a large num-
ber of coefficients. With an arbitrarily shaped object, thpport of the trans-
form can be quite irregular, and incomplete zerotrees caeap which lack
some branches and comprise less coefficients than befora.céssequence,
the zerotree coding process becomes less efficient, atdedms lowest rates.
The second item concerns a more subtle phenomenon, theh&icthe
reduced WT efficiency affects indedxbth quantization and sorting. In fact,
when the WT does not give a sufficiently sparse representati@ energy is
more scattered throughout the trees and more bits are sp#ingsn order to
isolate the significant coefficients at each iteration. Kemomputing these
losses as due to SA-SPIHT is somewhat arbitrary, but it is flse that a
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different coder could be less affected by this phenomenon.

2.3.2 Experimental results

To measure losses, we encode some natural images of the U&@ask&[409]
with both the oracle and the actual object-based coderg ggimhetic segmen-
tation maps of various types formed by square tiles, rectandiles, wavy
tiles, irregular tiles. Test images (52812 pixels, 8 bit/pixel) are shown in
Fig.[2.3, while FigL.Z¥ shows some examples of segmentatips. By using
such synthetic maps, which are not related to the actualertage coded, we
introduce and measure only thessesdue to object shape and size, while no
gain can be expected because object boundaries do notdmiwith actual
region boundaries.

(d)

Figure2.3: Testimages from the USC database: (a) Lena, (b) Peppers,
(c) Baboon, (d) House.

In the first experiment we segment the natural images in sdiles of size
going from 512512 (whole image) down to 3232 (256 objects), and encode
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() (d)

Figure 2.4: Some maps used in the experiments: (a) square 128
tiles, (b) rectangular 12832 tiles, (c) wavy tiles with C=1, A=16, (d)
out-of-context map.

them as described before. In Hig.]2.5 we report the ratestiish curves ob-
tained by the object-based coders for each tile size: sivlékIrefer to the
actual coder, and dashed lines to the oracle coder. Notéhhdliat case cor-
responds to the 522512 coder, that is, conventional WT and SPIHT. Curves
refer to the image Lena of Fig. 2.3 (a), as will always be inféliewing unless
otherwise stated, but similar results have been obtainddadliother images.
A firstimportant observation is that the quantization ratalways a small frac-
tion, about one fourth, of the total rate, at least in the eacgnsidered heﬁe
As a consequence, the same relative loss of efficiency is miacé critical for
SPIHT than for the WT. In this experiment, however, lossesadwvays quite
limited. Performances worsen as the tile size decreasethérate increment
is always less than 20% (except a very low rates) and the PS3pRsgless

3At higher rates, the RD slope is the same in all cases becagiseanly coding noise-like
residuals, and hence the analysis looses interest
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than half dB at high rates, and about 1 dB at lower rates. Mio$tese losses
are due, directly or indirectly, to the reduced sparsityhef 8A-WT, since the
zerotrees are always complete, and the fixed cost of sideniafion, 0.013
bit/pixel in the worst case, is quite small. Note, howevbattthis last cost
cannot be neglected if one looks at very low rates.
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Figure 2.5: RD performance with square-tile segmentation. Solid and
dashed lines are, respectively, for actual and oracle so@ack lines
are for flat (conventional) coding of the whole image, caldires are

for object-based coding.

To begin investigating the influence of region shapes, insiéwond ex-
periment we consider rectangular tiles of fixed size (409@lp) but different
aspect ratios, from 6464 to 512<8. The RD curves are reported in Fig.]2.6,
together with those for the flat case, and show that the asgezidoes matter,
but only when very short segments are considered. Indeedydtformance
is very close for 6464, 128<32, and even 25616 tiles, while it becomes
significantly worse for 5128 tiles, because the WT cannot perform well with
segments as short as 8 pixels. For example, the PSNR losghatate is 1.15
dB for the 518 case and less than 0.6 dB for all the other cases. One might
suspect that the sharp decline in performance in thexBl&ase is also related
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with our use of 5 levels of decomposition when 3 or 4 would Hasen more
appropriate for such short segments. In fact, this mismatoduces several
single coefficients, after some levels of WT, which are fertfitered and lead
to an artificial increase in energy. However, all our expenis show that
adapting the number of decomposition levels to the objeetIsas no measur-
able effects on the performance, and that a fixed 5-level SRisNhe optimal

choice, at least for ouF12 x 512 images.
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Figure 2.6: RD performance with rectangular-tile segmentation.

Let us now consider more complex tiles, obtained by remndethe
boundaries of &4 x 64 square as sine-waves with amplitude A pixels, and
frequency C cycles/tile. One such segmentation map, datdior A=16 and
C=1, is shown in Fig_2l4 (c). In Fi§. 2.7 we report the RD csrier some
significant values of A and C, together with the referencevesifor square
64 x 64 tiles and for flat coding. As expected, the performance wwses the
tiles become less regular. At high rates the impairment idrematic, with
a PSNR loss that lies between 1 and 2 dB, while the situatiomuish worse
at low rates, with losses of 4-5 dB or, for a given PSNR, a apdate that
doubles w.r.t. flat coding. Apparently, such losses are Inaine to the side
information and SA-SPIHT inefficiencies, and only in minirpart to the SA-
WT, since the RD curves for the oracle coder are all very ¢lbgewe should
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not forget the WT-SPIHT interactions, and will soon comekaacthis topic.
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Figure 2.7: RD performance with wavy-tile segmentation.

In our fourth experiment, we use segmentation maps obtéameshrelated
(remote-sensing) images of the same size as ours. Theseonaps which is
shown in Fig[Z# (d), present many elementary tiles, witteqdifferent size
and shape, some with regular boundaries and some not[_Bighaws RD
curves for this case, which resemble closely those of[Eiy. @&xd for which
the same comments apply, suggesting that the wavy-tilenesgtgtion can be
a good tool to mimic actual segmentation maps.

To take a closer look at these results, let us consider[TabwBere we
have collected the individual contributions of side infetion, quantization,
and sorting pass to the overall coding cost, at a PSNR of 3@alBesponding
to the low-rate range. We see that the increase of the qasintizcost w.r.t.
the flat case is quite steep, from 15% up to 100%, due to theeedefficiency
of the transform. As for the sorting cost, it also increasad.whe flat case.
The increase is obviously larger in the last six cases, wietile geometry is
more challenging, but also non negligible in the first sixesasvith square and
rectangular tiles. This is quite telling, because withigttaboundaries there
are no incomplete trees to impair performance, and hendessiés must be
charged to the reduced sparsity of transform coefficienteerdfore, one can
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Figure 2.8: RD performance with out-of-context segmentation maps.

even hypothesize that transform inefficiencies are themal& cause of most of
the overall losses, even though the effects are more evidéme sorting pass,
a conjecture that we will further analyze shortly. As a sgtithmeasure of
performance, we reported in the last column the overalliretease w.r.t. flat
coding, including all contributions, which is quite largeall realistic cases,
confirming that object-based coding can be very penalizingvarates.

The picture, however, is quite different at high rates. [EaB.is similar to
Tab.[2.1 except that all costs are computed at a PSNR of 38atigehat the
right end of our range. It is obvious that the cost of siderimfation becomes
less relevant, and even in the more challenging situatiomsadst of quantiza-
tion and sorting presents only a limited increase. In thiedalsimn, we report
a more familiar measure of performance, the PSNR loss flat.toding at 0.8
bit/pixel, which is never more than 2 dB, and quite often urdst 1 dB show-
ing that, at high rates, object-based coding can be usedwtiftaying much
attention to the rate-distortion performance. It is alsattvoemembering that,
in most practical situations where object-based codingésiuthere is only a
small number of objects, and therefore these measuressotéwsbe assumed
as upper bounds.

We conclude this section with one last insightful experitmeriich sheds
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absolute rates percent increase
tiling side.i.| quant.| sorting| quant.| sorting total
whole image .026 .085 — — —
128x128 .003 .030 .091 15.4 7.3 11.7
64x 64 .005 .034 .096 30.9 13.1 21.6
32x32 .013 .037 .104 42.9 22.0 38.7
128x 32 .005 .034 .100 31.2 17.8 25.2
256x 16 .005 .040 110 53.5 29.3 39.6
512x8 .005 .054 31| 106.9 54.0 71.1
C=1,A=8 .032 .038 116 48.4 36.3 67.5
C=1,A=16 .044 .041 125 58.6 46.7 89.1
C=2,A=16 .060 .047 141 80.6 65.8| 1234
Map 1 .083 .038 127 48.3 49.9| 1234
Map 2 .105 .042 135 61.2 59.2| 154.0
Map 3 .042 .034 .105 33.0 24.0 63.0

Table 2.1: Indicators of losses at low rates (PSNR = 30 dB).

some more light on the nature of SPIHT losses. Li and Li's SA;When
applied to all objects of an image, like the simple examplEigf[2.9 (a), pro-
duces transforms that do not fit together, namely, cannoub&éogether in a
single image as the pieces of a mosaic, because some coeffioierlap, as
the circled coefficients shown in Fig. 2.9 (b). This is unaadile if all single
coefficients must be put in the low-pass band after filterldgwever, we can
modify the algorithm and put single coefficients either ie kbw-pass or high-
pass band depending on their coordinates. This way, we reaghifice part of
the SA-WT efficiency, but obtain object transforms that fgdther as shown
in Fig.[2.9 (c). After all the SA-WTs have been carried out, a® encode
the coefficients by using SA-SPIHT on each object, or comgeat SPIHT
on all the coefficients arranged as a single image. The flabajett-based
coders thus operate exactly on the same set of coefficieritsglbpossible im-
pairments can be ascribed to SA-SPIHT coding inefficiendibée RD curves
obtained with flat and SA-SPIHT for various segmentation srexe reported
in Fig.[2.10, and show clearly that the efficiency gap betwsteape-adaptive
and flat SPIHT is always very limited, and at high rates nexeeeds 0.3

“As an aside, our experiments show also that the performafitescnew scheme (fitting
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absolute rates percent increase| A PSNR

tiling side.i.| quant.| sorting| quant.| sorting| @ 0.8 b/p
whole image 176 .488 — — —
128x128 .003 .184 498 4.2 2.0 0.15
64x 64 .005 195 512 10.6 4.9 0.31
32x32 .013 .204 534 15.5 9.4 0.62
128x 32 .005 .194 519 10.2 6.3 0.37
256x 16 .005 .209 .542 18.2 11.0 0.60
512x8 .005 241 .590 36.4 20.9 1.14
C=1,A=8 .032 211 .563 19.3 15.2 0.95
C=1,A=16 .044 221 .589 25.2 20.6 1.35
C=2,A=16 .060 234 .622 32.6 27.3 1.82
Map 1 .083 .209 591 18.5 21.1 1.33
Map 2 105 225 611 27.5 25.2 1.89
Map 3 .042 197 544 11.7 11.3 0.78

Table 2.2: Indicators of losses at high rates (PSNR = 38 dB).

This seems to be a conclusive proof that the losses arisitiggisorting pass,
although dominant w.r.t. those of the quantization passnawstly related to
the reduced sparsity of the SA-WT.

2.4 Measurement of gains

24.1 Methodology

The rate-distortion potential of object-based codingrgily depends on the
ability of the segmenter to single out accurately the coreppobjects. When
this happens, in fact, the segmentation map describes atitathy many ex-
pensive high-frequency components, related to the edge®bée different ob-
jects. In terms of SA-WT, this means dealing with a signatfifimi the object)
that is much smoother that the original signal, since stemges have been re-

SA-WT + flat SPIHT) is very close to that of our object-basegoathm. However, this new
scheme is not object-based anymore.
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Figure 2.9: Object overlapping in the transform domain. The#
original image with two objects (a) is subject to 1 level o\8A& the
supports of the two objects overlap with Li and Li SA-WT (b} not
with the fitting SA-WT (c).

moved, which leads in turn to a much increased efficiencyumseaost of the
encoding resources, especially at low rates, are normaby for describing
edges. Of course, the actual success of this approach depemdany factors,
such as the profile of edges, the statistical propertiesesitpnal within the
objects, and the accuracy of segmentation.

In order to measure the potential performance gains, wedef the de-
pendence on the segmentation algorithm, which is not thecbbf this anal-
ysis, by building some mosaics in which neighboring tiles extracted from
different images. Of course, one must keep in mind that thiglition is very
favorable for object-based coding since objects are detand we know their
shape perfectly. Our mosaics vary not only for the form ofttles, but also
for the source images from which they are drawn, that can be

e synthetic images where the signal is polynomial in the spadriables;
e natural images from the USC database;

e natural textures from the Brodatz database, also avaisiiS];
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Figure 2.10: RD performance with fitting SA-WT. Solid lines are for
flat coding of the mosaic formed by the object transform, dedimes
are for actual object-based coding.

Some examples are shown in Hig. 2.11. By changing the somages we go
from the most favorable case, like that of Fig. 2.11 (a), whadttiles are from
polynomial images, to the most challenging, like that of. Bd1 (d), where
even within the tiles there are strong signal componentieaitedium and
high frequencies due to the original textures. In betweerdtextremes, there
are more realistic cases where the objects are drawn fromnah@tnages pre-
dominantly smooth, like Fig. 2.11 (b), or with significankti&re components,
like Fig.[Z11 (c).

2.4.2 Experimental results

Fig.[2.12 shows the PSNR differences between the objeesbasd the flat
coders when mosaics are composed by wavy tiles oftdize64 and boundary
parameters C=1 and A=16 with the same source images as thos& $n

Fig.[2.11. For the first mosaic, there is a very large gain; bd 8B at medium-
high rates, and up to 20 dB at low rates (out of the scale of gurd). This
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Figure 2.11: Some mosaics used in the experiments, with
square 128128 tiles: (a) Polynomials, (b) House+Peppers, (c)
Lena+Baboon, (d) Textures.

is remarkable but not really surprising, given the smootiraes and the fact
that Daubechies wavelets are perfectly fit for polynomighals.

More interesting are the results obtained with the naturasaits, with
a gain at all bit-rates of about 5 dB in the first case, and ar@aB in the
second case. Considering that these are natural imagespisaks strongly
in favor of the potential of object-based coding, even wiitite caveatdue
to the favorable experimental conditions. Also, remembat the observed
gain is obtained despite the losses due to the use of SA-WT switall wavy
tiles (see again Fi§. 2.7). As expected, results are lessdhle for the fourth
mosaic, where the presence of many high-frequency componéthin the
tiles reduces the gain to the point that it compensates thgestoss but little
more.

Fig.[2.13 shows results obtained with the same source imagfewith
squarel 28 x 128 tiles. The general behavior is very similar to the formerecas
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Figure 2.12: PSNR gain of OB-coding w.r.t. flat coding for wavy-tile
mosaics.

but all gains are now much smaller because of the reduced enoflobjects
and the straight boundaries, and even with the polynomialaicdhere is only
a 2 dB gain at high rates.

2.5 Performancewith real-world images

In order to isolate and analyze in depth the phenomena ofesttethe ex-
periments carried out in the preceding sections dealt wihliand sometimes
limiting cases. Now, we focus on the performance of the whotiing scheme
in real-world situations, thus including the image segragom, with all its in-
accuracies.

In these experiments, we consider the image Peppers of Bdcpbe-
cause its segmentation in a reasonably small number of mgfahbbjects is
somewhat simpler. As a side effect, some objects comprigeojie or a few
smooth and coherent surfaces, which makes Peppers a moraliky case
w.r.t. other, more complex, images. In any case, the chdiogat represents
an object is somewhat arbitrary, and therefore we use desegaentation
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Figure2.13: PSNR gain of OB-coding w.r.t. flat coding for square-tile
mosaics.

maps, with a different number of objects, shown in Eig. P rbnf the most
detailed (25 objects) to the simplest one (just 4 objeciduding the back-
ground).

Our object-based coding scheme provides the RD curves shown
Fig.[2.15 together with the curve for the flat coder. Resulghinseem a bit
disappointing at first, since the flat coder is always the,mstthis is easily
justified. In fact, even neglecting the unavoidable segatemt inaccuracies,
it must be considered that, with ordinary images, the olpecindaries are
rarely clear-cut, due to the combination of the object 3-ongetry and the il-
lumination, and also to the limited resolution of the seagbat causes some
edge smearing. Of course, this erodes the gains of remotrimiggsedges. In
addition, when objects have a semantic meaning, theiriantesrtypically not
uniform (just think of the bright glares within each peppemnd therefore the
WT does not benefit much from the segmentation. On the othed, hahen
the segmentation map becomes very accurate, so as to sutglegons that
are actually uniform, the cost of side information incresasignificantly.

In this light, the object-based RD curves of Hig. 2.15 can desitlered
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Figure 2.14: Segmentation maps for image Peppers with 25 (a), 16
(b), 8 (c), and 4 (d) objects.

reasonably good, with a loss of no more than half dB at mediigh-rates,
and somewhat more at the lower rates, when the cost of sidemation is
proportionally more relevant.

It is also interesting to consider the visual quality of coegsed images,
and to this end, in Fig. 2.16 we show the image Peppers cosgates 0.05
bit/pixel with WT/SPIHT (a) and with our object-based codsmg the simple
segmentation map of Fifg. 2]14 (b). Such a low rate was selacterder to
emphasize the differences of the two approaches, whictyhéhrates tend to
disappear. The firstimage has a better PSNR (26.3 vs. 25, bd&he second
one has a superior perceptual quality, at a first look, becenggor edges have
been better preserved. At a closer inspection, howeveghjeet-based coded
image presents a slightly worse texture quality, due todiei effective rate
available, and especially some annoying artifacts at tagatial boundaries,
which appear unnaturally rugged. This last problem coulddsily overcome
by some directional filtering. Needless to say, if one cotreées most coding
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Figure 2.15: RD performance of flat and object-based coding for im-
age Peppers.

resources on a single object considered of interest, nagleihe background,
the object-based approach shows an overwhelming sugeriori

The object-based coder we have analyzed uses what are [yrdfiainost
well-know and widespread tools in this field, but other obje&sed coders
have been proposed recently, and it is therefore integesticarry out a per-
formance comparison. We therefore repeated the expesnrEig.[2. 15
using various algorithms: WDR[42], TARP [45], OB-SPECK]4&nd BISK
[47], implemented in the Qcc library [50] freely available[al]. All these
algorithms are based on a SA-WT [38] very similar to Li andI$A-WT, and
encode the coefficients by means of embedded bit-plane gadtjorithms.

The best performance is exhibited by BISK, based on the sadaptive
version of SPECK, from which it differs for two main innovaris: the use
of a more flexible binary rather than quaternary splittingotufcks, and the
introduction of a bounding box to help discard nodes outsideobject of
interest. BISK proves also superior to SA-SPIHT, as appkans the curves
of Fig.[2.17, obtained with the map of Fig. 2114 (d). The gapwéver, is
partially due to BISK use of arithmetic coding for the outgtiteam. When
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Figure 2.16: Image Peppers compressed at 0.05 bit/pixel with flat (a)
and object-based (b) coding.

we introduce a similar coding step after SPIHT the diffeeebecomes very
limited, Fig[2.18. This had to be expected, if losses arelnosated, directly

or indirectly, to the SA-WT performances, and this is the sdor the two

coders.

Our analysis showed that the gains can be significant wherinbge
presents sharp edges between relatively homogeneougasdmibalso that this
is rarely the case with real-world images where the presefisenooth con-
tours, and the inaccuracies of segmentation (for a few td)jec its large cost
(for many objects) represent serious hurdles towards patgrerformance
gains. For these reasons we want to explore the capabilifyitoding ap-
proach on multispectral images, where the segmentatiatupes regions with
nearly uniform statistics, the cost of the segmentation maghared among
many bands, and hence the conditions are such that objsettHtzading can
actually provide some rate-distortion gains.
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Figure 2.17: RD performance of BISK and SA-SPIHT for image Peppers.
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Figure 2.18: RD performance of BISK and SA-SPIHT with Arith-
metic coding for image Peppers.
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2.6 Multispectral images

2.6.1 Classand region-based approaches

Multispectral images are characterized by better andigitgial, spectral and
radiometric resolution, and hence by ever-increasing adelsiaf communica-
tion and storage resources. Often, such demands exceegstbenscapacity,
like, for example, in the downlink from satellite to Eartlatbns, where the
channel bandwidth is often much inferior to the intrinsi¢adeate of the im-
ages, some of which must be discarded altogether. In thiatgit, as well
as in many others, high-fidelity compression of the imagpsesents a very
appealing alternative. As a matter of fact, there has belense research ac-
tivity on this topic in the last few year§ [62, 53,154, 55] 5654, focusing
especially on transform coding techniques, due to theidgmoformance and
limited computational complexity. Now we want to extendextibased ap-
proach to this category of images.

As already underlined in the previous sections of this araor object-
based coding we mean a scheme that codes separately therdifemantic
objects present in the image. For multispectral images;aheept of sematic
object, already critic for natural images, becomes moreigmolois. A better
idea is to focus the attention on class-based [58] and regpsed [59],([60]
paradigms.

Although class-based and region-based coding techniduees the same
general approach, they differ under some important resp#w it is, the num-
ber of objects (few classes vs. many regions), their staishomogeneity
and their spatial compactness (sparse classes vs compawnise To gain
insight about this difference consider Hig. 2.19, whichvehan example im-
age in false colors (a), its pixel-wise segmentation (bjtextual segmenta-
tion (c), and a further processing of this latter map (d). $bgmentation of
Fig.[2.19 (b) is just a clustering of the spectral responstove associated with
each pixel. The output is a set of 5 classes with a strongstaii homogene-
ity, corresponding to the colors, each one composed byaa¥isjoint regions
as well as by many isolated points or small clusters of pairscan be hardly
regarded as regions. The segmentation of[Fig.]2.19 (c) ieddsobtained by
means of a bayesian contextual technidqué [61] which pesmigolated points
and provides therefore a smaller number of more compaaimegif one fur-
ther regularizes such a map, by erasing small regions andteing bound-
aries between different regions, one obtains a map likedh&ig.[2.19 (d),
with a limited number of compact regions. For example, is thap there are



44 CHAPTER 2. OBJECT-BASED CODING

just 8 disjoint regions belonging to the same “water basatass (dark blue).

(b)

(d)

Figure 2.19: An example image and its segmentation maps

The number of objects is important if one is interested inpéda trans-
form coding, because some parameters must be transmittezhdb object,
and therefore, there is a rapid growth of the side infornmatiothe region-
based case, which could easily become prohibitive. Thesstal homogene-
ity and the spatial compactness of objects are also impontdrle classes are
singled out mostly on the basis of spectral homogeneitgriait regions are
required to satisfy some additional spatial criteria. Bareple, an isolated
point can hardly be regarded as a region, and must be absorbethe larger
regions with different statistics. Therefore, regionsdtére less “pure” than
classes, and a spectral transform is less effective on tlenihe other hand,

a spatial transform applied to a compact region, rather thansparse class,
might work better.
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2.6.2 Class-based scheme

A class-based coder for multispectral images (referretbtm how on as CBC)
was already proposed by Gelli and Poggi in 1999 [52][In [62]authors start
from the observation that linear transform coding does aké into account
the nonlinear dependences existing among different bands of a multisgect
images, due to the fact that multiple land covers, each wsgtbhwn interband
statistics, are present in a single image; so they try toesddihis problem by
segmenting the image into several classes, correspondingieh as possible
to the different land covers of the scene. As a consequerit@nwach class,
pixels share the same statistics and exhibit d¢inlyar interband dependencies,
which can be efficiently exploited by conventional transiaroding.

MS image
TSVQ
4t
TsSVQ! ——C
Residuals
Segm. map — KLT
Entropy Cod. DCT
Q

Compressed data

Figure 2.20: The original class-based coding scheme.

The coding scheme is summarized in Fig. 2.20: the segmentatcarried
out by means of tree-structured vector quantization (TS#i@) the resulting
map is encoded without loss of information. TSVQ segmemtaiso provides
a rough encoding of the image through the class means, whecbubtracted
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from the data. All residuals of the same class are then pdotgather, and are
subject to a Karhunen-Loeve transform (KLT) along the spéaimension,
DCT in the spatial domain and finally scalar quantizationhaf toefficients
with optimal bit allocation. To take into account the difat spectral statistics
of the classes, a different KLT matrix is used for each classas to better
compact energy in the first few transform bands.

(b)

Figure 2.21: The Landsat TM test image: (a) band 5, (b) 4-class seg-
mentation.

Experiments on several multispectral test images provisdebhnique to
have an excellent rate-distortion performance. As a runakample, we con-
sider a Landsat TM image (6 bands, 512x512 pixels, 8 bit/tangb a region
near Lisbon, a band a which is shown in [Eig. 2.21 (a). [Eig.]Bep@rts the rate-
distortion curves (SNR vs coding rate in bit/sample) olediby CBC when
C = 2,4,8 classes are used in the segmentation and subsequent pRases.
comparison, the curve obtained without segmentation @srajsorted. We see
that the class-based coder significantly outperforms teeeece “flat” coder,
especially when a relatively large number of classes is.Us&¢€ curves start
from an unfavorable rate-distortion point, due to the cdshe segmentation
map, but then the SNR grows rapidly because the classified atat much
more homogeneous and easier to encode. It is worth pointihthat the seg-
mentation map is by itself a valuable piece of informationtfee end user, and
is included automatically in the coded stream.

The weakest point of this technique is in the spatial-donmaircessing,
that is, the DCT of KLT bands, and the subsequent encodingeofransform
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Figure 2.22: RD performance of the original DCT-based coder.

coefficients. In fact, since TSVQ produces segmentationsmagh arbitrary
geometry, classes are typically composed by a large nunfilbeconnected re-
gions with irregular shape, as shown for example in[Eig.]?2 for the case of
4 classes, and hence one cannot encode them by simple bislonal DCT.
After testing the various viable encoding strategies,uditlg shape-adaptive
DCT, it resulted that collecting all pixels of a class in atee@nd encoding
it as a one-dimensional source provided the best perforﬂammhetheless,
this linearization tends to destroy all residual spatigdedelencies in the data,
and hence to impair the overall performance.

Given the encouraging results reported_in [52] and its &tionhs, we want
to improve the spatial-domain processing phase of classebaoding tech-
nique introducing in the scheme more preforming tool as SA-&Mid SA-
SPIHT, already introduced in previous sections.

Since we want to improve the class-oriented transform aptichnique
proposed in[[52] by acting only on the spatial domain proogsghe struc-
ture of the coding scheme is the same as that of[Fig] 2.20 efmethe fact
that some blocks are updated with the introduction of nevareal solu-

SSimilar results have been later found independentl/ ih.[55]
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tions. We keep using TSVQ to carry out segmentation, becatis very
low complexity and good rate-distortion performance. fermap coding, as
done in the section Séc 2.2, we will resort to the algorithiwppsed in[[48]
even though this step has a limited impact anyway on the byendormance.
Class-adaptive KLT will not be changed, as it stands at thie obthe class-
oriented approach. The major innovations take place inibespatial-domain
coding blocks, where DCT (that is, data linearization fetaol by 1d-DCT) is
replaced by SAWT, and scalar quantization by shape-agafiRiHT coding
(SA-SPIHT).

As already pointed out the actual results of object-baséémes using
SA-WT and SA-SPIHT depend on the fragmentation of the mag esentu-
ally on the number of objects used in segmentation. Usingemlasses one
obtains more homogeneous sources for subsequent transtaling, but also
a more fragmented map which could lead to coding inefficesciThis also
suggests us to leave open the option of modifying the segientstrategy,
once experimental results are available, in order to preduare regular maps.

To complete the description of coding scheme, even not sliotre block
diagram, a rate allocation block, similar to that describedhe Se¢.212, is
used.

Experimental results

We carried out experiments on several multispectral imagesobserved al-
ways a similar behavior, but results are reported only fer TM image de-
scribed in the previous section and, later on, for the "Loltitdde” AVIRIS
hyperspectral image (224 bands, 512x512 pixels, 16 biffEgnavailable at
[62].
In Fig.[2.23 we show the rate-distortion curves obtainedh wie wavelet-
based version of CBC fof' = 2,4, 8 classes and, for comparison, the curve
obtained with the the wavelet-based coder without segrtientalt is worth
noting that this “flat” coding scheme, originally proposed[57] can be re-
garded as a refinement of the 3d-SPIHT coder proposed inifeftoved by
using KLT instead of WT in the spectral domain (with betteemyy com-
paction) and by resorting to 2d-SPIHT on all spectral banitls explicit rate
allocation. It appears that the use of segmentation keeapsdimg a perfor-
mance gain w.r.t. the flat coder, although the gap is now muoriged, about
1.5 dB at best instead of the 2-3 dB observed with the origindkr.

We also want to compare the performance of the new wavetsebeoder
with that of the original coder, and hence report in Fig. P24 best rate-
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Figure 2.23: RD performance of the new wavelet-based coder.

distortion curves for both technique§' (= 8) together with those of the two
flat reference schemes. First of all, the wavelet-based did¢rcconsistently
outperforms the DCT-based one, as was to be expected gigemetirknown
superior performance of wavelet-based coding for natumnalges. When we
add the segmentation step, that is, consider the classtedieoders, the com-
parison in not so clear-cut anymore. In particular, at lowraies the DCT-
based coder outperforms the wavelet-based one, with amt@dye@a of up to
2 dB at 0.2 bit/sample. The opposite happens at high bisrdteyond 0.5
bit/sample, where the wavelet-based coder works bettebettelr, with a gain
of 2 dB at 1.2 bit/sample. We can explain this behavior byltecgthat shape-
adaptive SPIHT is rather inefficient at the beginning, beeatideals with a
very fragmented map, and must spend many bits to descrih#isamce trees
for coefficients scattered over the whole imada “steady state”, however, it
becomes more efficient than 1d-DCT, because spatial resdtips among co-
efficients have been retained and can now be exploited. Asseqoence, the
slope of its rate-distortion curve is steeper, which makesiew scheme more

5To improve performance at low rates, we also experimenteld svhoother segmentation
maps, obtained through morphological filtering of the arégimaps, but overall results, not re-
ported here for brevity, were disappointing, so we are notgyto consider this option anymore.
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Figure 2.24: Performance comparison between wavelet-based and
DCT-based CBC.

and more convenient as the available coding resources gmasummary, the

new wavelet-based scheme is certainly preferable whenduglity images

are desired (as happens quite often with remote-sensingeiymavhere “near-

lossless” compression is typically required) while thejioral scheme is better
when resources are very limited.

We complete this analysis by comparing the performanceeoptbposed
class-based coder with those of several significant referesohemes, that is
3d-SPIHT [56] and JPEG-2000 [20], both implemented usirgKhT as a
spectral transform, and finally an hybrid coding scheme iliciwithe class-
based approach is used to perform the spectral KLT, but thetransformed
eigenimages are coded by flat JPEG-2000 with proper rateadilbm. Results
are reported in Fig. 2.25, and show that the proposed wabaked CBC out-
performs all reference schemes, by less than 1 dB in the daHe&i5-2000,
and up to 3 dB for 3d-SPIHT. The hybrid scheme remains weleu@BC and
JPEG-2000, suggesting that, once segmentation is camiedme should try
to exploit the class information in all instances to makeapts initial cost.

Finally, we present compression results for a differentsahe AVIRIS
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Figure 2.25: Performance comparison between wavelet-based CBC
and various reference coders.

hyperspectral image “Low Altitude”. We use only 192 out oé ttotal 224
bands, since some bands are clearly useless and must beldisedtogether.
For this image, it is also convenient to normalize bands to meean and unit
variance before encoding, since the rate allocation proesdould otherwise
give little or no resources to low-power but informative danwith a detri-
mental effect on the image quaﬁ;yln Fig.[2.26 we report results for the CBC
coder, the flat reference scheme, and JPEG2000 multicomparel observe
a behavior quite similar to that observed for the Landsat fiidge. Note that
there are just a few distinct information classes in thisgeand therefore the
wavelet-based CBC provides the best performance with 4e&fasather than
8. JPEG-2000 is quite competitive, if KLT is used to decateebands prior to
encoding, with a performance very close to that of wavedsteld CBC, losing
just 0.6 dB at high rate. On the contrary, JPEG-2000 with Wih&spectral
domain exhibits a performance gap of about 4 dB w.r.t. thera#trchniques.
In conclusion, the class-based coding approach guaraaleesgs a very

"Note that the SNR obtained with this pre-processing is reecég lower than that obtained
without normalization.
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Figure 2.26: RD curves for the AVIRIS image.

good performance, because the KLT is much more effectiveoomigeneous
sources than on the whole image. Its weak point is the sgatiasform and
coding, since land covers, and hence classes, are usuattgred over the
whole image. The use of shape-adaptive wavelet transfodstzepe-adaptive
SPIHT in place of 1d-DCT, partially overcomes this problemd allows one
to improve performance at medium and high bit-rates, thatoisthe high-
quality compression typically required by the end users.

2.6.3 Region-based scheme

One of the major problems for the final user of multispectredges is to locate
them effectively. This is the main reason towards the userefgyaon-based,
rather than pixel-based, description of remote sensingésaso that the user
can retrieve the image of interest based on the shape or titleesig statistics
of some of its regions. In other scenarios, the user might &eeinterested
in downloading only the image segmentation map, or just argions of
interest, with huge bandwidth saving in both cases. So tHermaerest of
region-approach is that it allows a semantics-based at¢odssage content,
nevertheless, we are interested to the effect that therrdzased paradigm has
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# | No | Mean | KLT | Cod. | SITM | SIAVI

1| Yes G G G ~0 | 0.003
2| Yes G G C 0.012| 0.003
3| Yes C C C 0.012| 0.006
4 | Yes G G R 0.012| 0.003
5| Yes C C R 0.012| 0.006
6 | Yes R R R 0.026| 0.031

Table 2.3: Reference and region-based coding schemes, and side in-
formation (bit/sample) for Landsat and AVIRIS images. Gotgll,
C=class-based, R=region-based.

on rate-distortion performance.

The coding scheme is similar to that described in the prevgmction ex-
cept for the different type of segmentation (see §ec.12.6\%)in Sec[2.6]2
we want to use a different KLT for every region but in this @xttthis choice
is more critical. In fact, in class-adaptive KLT, a diffetdransform matrix is
computed (and hence transmitted) for each class; thisaeesethe cost of side
information, but not very much, since only a few classes grally present.
In region-based KLT, instead, a different matrix is trartseda for each con-
nected region; this allows for a better compaction of sigargy [60], but
the cost of side information can become prohibitive. Anrimiediate solution,
which saves some side information, is to send the mean viecteach region,
but then use a single KLT matrix for all regions of the samssla

Experimental results

In order to study the potential of region-based approacheselect three such
schemes and three reference schemes, as summarized [n3an@ apply
them to two quite different test images, a 6-band, 6822 pixel section of a
Landsat TM image (already used in previous section[Fig.] 2a2land a 32-
band, 51% 512 pixel section of an AVIRIS image of Moffett-fiel (Fig_ZIR
We used a map with 3 classes and 59 regions for the TM image aladges
and 28 regions for the AVIRIS image.

The first reference scheme is just a conventional “flat cqadeith spectral
KLT, spatial WT, and band-by-band SPIHT with explicit rateation. The
following two schemes are class-based coders, which diffdie amount of
adaptivity offered and side information required. The fnsé (#2) uses global
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KLT after removing the global mean vector; #3 uses a diffeldal’ matrix
for each class, after removing the class mean vectors. Gadimeme #6 is the
only “pure” region-based coder, as it carries out all transfand coding steps
on a per-region basis. The other region-based coders tessoime compro-
mise to reduce side information: #4 performs a global KLTilev#5 performs
a class-based KLT, removing means class-by-class. Théwastolumns of
the table show the corresponding side information for thedsat TM and the
AVIRIS image, expressed in bit per sample. The side infoilwnatnainly ac-
counts for the KLT matrices and the segmentation map inféama For the
6-band TM images the map cost is prominent, as itis sharetigicelatively
small number of bands. On the contrary, for the 32-band ASIRhage, the
main contribution to the side information is due to the KLTtrizaes. Anyway
it becomes significant only for the last technique, when wedne different
KLT matrix for each region, but even in this case this costleglow — about
0.03 bit per sample.

Figure 2.27: AVIRIS image, false colors

Fig.[2.28 and Fid. 2.29 report the rate-distortion curveslldhese schemes
for the Landsat and, respectively, the AVIRIS test image. d¥eerve that at
low bit-rates, flat and class-based schemes have the béstrpances, thanks
to their low side-information requirements. However #2l\g8ays worse than
#3, meaning that classified KLT is worth its cost with respgecglobal KLT.
This is still true for the region-based techniques, wheres#brse than #5 and
#6 (but for low rates). At medium rates, the flat scheme isaae by the
class-based and region-based techniques; moreover, Weateegion-based
techniques #5 and #6 surpass class based techniques #2pmoddpperfor-
mances of #3, which however can be considered the best tgehoverall.
We can conclude that the more complex description of imagectdcarried
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Figure 2.28: Performance of test techniques on the TM (Lisbon) image.

by class-based and region-based techniques causes a ighploalement of
performances with respect to a completely flat techniquelas e best com-
promise between cost and effectiveness of shape informatems to be the
class-based technique #3, but the region-based techriqaeely #5 and #6)
have quite close performance, except for very low bit-rates

Similar considerations can be made for performances onWRI& im-
age, see Fid. 2.29. The main difference with respect to theiqus case is
that now, region-based techniques performance is eveeardioshe best class-
based technigue #3. We ascribe this behavior to the smailteber of objects,
that reduce side-information, and the higher number of baihét makes more
important the effectiveness of a precise spectral tranmsfor

Our experiments lead to the conclusion that the regionebagproach
does not penalize significantly RD performance with respectassical, non
object-based schemes; on the contrary, their performancsuially better than
that of completely flat approaches, and always quite closbdalass-based
one, which optimize the trade-off among cost and effectigsrof object-based
transforms.
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Figure 2.29: Performance of test techniques on the AVIRIS (Moffett-
field) image.



Chapter 3

Coding with contourlets

he contourlet transform was recently proposed to overctmmdérhited

ability of wavelet to represent image edges and discortigaiiBesides
retaining the desirable characteristics of wavelet tramsf such as multireso-
lution and localization, it has two additional importanafieres: directionality
and anisotropy. In this chapter, after presenting prirlogbaracteristics of
contourlet transform and introducing the motivation forraorid contourlet-
wavelet decomposition, we propose a new image coding teahrihbased on
this transform and built upon the well-known SPIHT algamithNumerical re-
sults and visual quality are reported to confirm the poténfisghis approach,
especially for images with high texture content.

3.1 Contourlets

In the Chaptef]l, we noted how recent researches have iddniifiwavelet
lack of directionality and anisotropy the main cause oftisfficiency in de-
scribing bi-dimensional smooth contours, and how new foanss, instead,
aspire to these features. In the last years a lot of diffemramsforms have
been proposed (contourlets [6], directionléts [7], cuete[2], bandelets [8],
etc.), that overcome wavelet limits in representing imag@#ours. The re-
sults are mostly theoretical, focusing only NLA asymptaotite, but they are
quite promising, and stimulate the quest for actual codiggriahms based on
these new tools. We chose the contourlet transfofm [6] foerse reasons: it
has a number of desirable characteristics (directionaitysotropy, etc.) and
an almost optimal NLA behavior for simple classes of imagesaddition,

unlike other transforms, it is easily implemented by a filbank. Its main

57
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Figure 3.1: Laplacian pyramid.

drawback is a slight redundancy which, however, is notyeafiroblem in the
context of low bit-rate codingd [28].

In the first place, it is worthwhile to recall some basic rudits about
contourlets. Contourlet transform was introduced by Do égtterli in 2005
[6], it comprises two blocks, a Laplacian pyramid and a dice@l filter bank
(DFB).

The Laplacian pyramid (LP) was proposed by Burt and Adel&3j in
1983 as a multiresolution image representation. In the dtegje of the de-
composition, the original image is transformed into a ceaignal by mean of
a lowpass filtering and a downsampling. This coarse versitmein upsampled
and filtered to predict the original image. The predictiosidaal constitutes
the detail signal (see Fif._3.1). This procedure can be tegeateratively in
order to obtain a multiresolution decomposition.

Figure 3.2: Laplacian decomposition of image Lena.
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Figure 3.3: Simple reconstruction scheme for the Laplacian pyramid.
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Figure 3.4. Do-Vetterli reconstruction scheme for the Laplacian pyichm

As we can see in Fi§. 3.2 LP decomposition is a redundantseptation
so it is natural to wonder why in contourlet it has been prefiito critically
sampled filterbanks as discrete wavelet transforms. Thévatioin must be
detected in the successive use of Laplacian pyramid; in facontourlet de-
composition, a directional filtering is performed on the digass versions of
input signal. So it needs a decomposition that permits éursabband decom-
position of its bandpass images. To this target the LP hastivantages over
the critically sampled wavelet scheme: first, it generatedly one bandpass
version, second, it does not suffer from the frequenciesatabling”. This
problem arises in the critical sampling filter banks whergaose of down-
sampling, the highpass channel is folded back into the legtfency band and
its spectrum is reflected [64]. This problem is overcame irdb®nsampling
only the lowpass channel.

A peculiarity of LP used in contourlet transform is the restoaction struc-
ture. In fact, most applications employ the simple synthepierator shown in
Fig.[3.3 to reconstruct the image from the LP, but this singylethesis oper-
ator is not optimal in terms of minimizing the distortion pegation from the
subbands of the LP to the reconstructed image. In contoscletme, Do and
Vetterli use, instead, a structure which implements thé flaene reconstruc-
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Figure 3.5: DFB frequency partitioning with | = 3.

tion (Fig.[3.4)(LP multiresolution pyramid is in practiceframe expansion),
because this is the optimal choice in presence of nbise [65].

The second block of contourlet decomposition is a direetidifter bank
that singles out directional components, with a number wdations that can
vary as a power of two. Bamberger and Smith ([66]) introduagrfect re-
construction directional filter banks (DFB), that can be mmatly decimated,
implemented via a I-level tree-structured decompositfmat teads t®' sub-
bands with wedge-shaped frequency partition. FEig. 3.5 shamvexample of
DFB frequency partitioning with | = 3, the subbands 0-3 cgpand to the
mostly horizontal directions, while subbands 4-7 corresiko the mostly ver-
tical directions.

The version of the DFB used in contourlet is a simplified folation of
Bamberger and Smith filter based only on the quincunx filtekbdQFB) with
fan filters. The structure of a QFB is shown in Eigl3.6 (a),niésne derives
from the type of subsampling (Fig.3.6 (b)). Using a fan fdtéFigl3.6 (c)) the
QFB can be used to split the frequency spectrum of the ingmiasiinto an
horizontal and a vertical channel (FFig.3.6 (d)). The frempyepartition of the
DFB is realized by an appropriate combination of directidrequency split-
ting by the fan QFB’s and the “rotation” operations done ksarapling [64].
In conclusion the entire scheme of contourlet transforninasw in Fig[3.7.

Theoretically, the number of directions in which one caridi#ithe band-
pass subbands at each level of decomposition is a free peaimat, to make
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Figure 3.6: (a) QFB. (b) Quincuncx sampling. (c) ldeal frequency
support of the fan filter. (d) QFB with fan filter.

contourlet basis to be anisotropic, as well as directioaaopondition must be
imposed. In[[2], Candes and Donoho demonstrated that hasision sup-

ports must respect the parabolic scaling rulédth o length?, in order to

provide a good representation of regular contours. Colgbarpansions re-
spect such a rule if the number of directions doubles at evérgr finer scale
[6]. In addition, if it has enough vanishing moments, its Nh&havior for a
C?/C? image model (see. Séc.11.5), is almost optimal and, morésgigcthe

NLA approximation error can be bounded as

lz — 2573 < Clog M)> M2, (3.1)
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Figure 3.7: Contourlet filter bank. First, a multiscale decomposition
by the LP is computed, and then a DFB is applied to each baadpas
channel.

3.2 Hybrid contourlet-wavelet decomposition

In precedent section, we observed that contourlet tramsfas all the char-
acteristics that prevent wavelet from representing wellgsmboundaries and
that, under certain hypotheses, the contourlet has an alptisnal asymp-
totic NLA behavior. Despite this, when dealing with typidalv-resolution
digital images NLA results are not so exciting. We carried snme prelim-
inary experiments on well-known test images (shown in [Ei§),Zomparing
NLA errors for the wavelet and contourlet transforms (blackves vs blue
curves). We used 5 decomposition levels in both casestipaitig the high-
pass contourlet subbands (from coarsest to finest) in 4, 8, &)d 16 com-
ponents respectively, and adopting th& biorthogonal filters for wavelet and
contourlet LP stage, and ti28/45 biorthogonal quincunx filters [67] for the
DFB. Results are reported in Flg. B[9- 3.12 in terms of PSNRnsnber of
coefficients, and show that only for highly textured imagestourlets provide
a significant gain, while wavelets are superior for all srhomtages. Such
results, however, are not really surprising, because thabplc scaling rule
assures only asymptotic results for NLA. In addition, thedelas less and less
accurate as the image resolution reduces through the Laplpgramid, since
contours are less and less similaxd curves.

Indeed, it has been noted [68] that an hybrid contourleteleivdecompo-
sition has often a better NLA behavior on real images thanra pantourlet
with parabolic scaling. This observation is confirmed by experimental re-
sults (red curves in Fi§. 3.9- 3]112), where we implementedhtfbrid scheme
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Figure 3.8: Test images.

with wavelets in the coarsest subbands and a contourleingezsition only

in the one or two finest subbands (in particular, for imagesal.8arbara and
Goldhill, we have utilized one only level of 32-directionsntourlet, while, for
image bench, we have utilized a two contourlet levels withaB8 16 direc-
tions). This solution guarantees several advantagesethadancy is slightly
reduced and, since contourlets are used only in the largetshaontours are
more similar to theC? curve model and there are less artifacts due to the di-

rectional filter length([69]. In the proposed coder we wilays consider this
solution.
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Figure 3.9: NLA with wavelets and contourlets for the image Barbara.
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Figure 3.10: NLA with wavelets and contourlets for the image Lena.
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Figure 3.11: NLA with wavelets and contourlets for the image Goldhill.

24 \

I contourlet
| =€= hybrid 2
- wavelet

N
w

PSNR(dB)
[y N N N
© o = N
.
N
»
g\
3
5N

=
[eg)

17

8 9 10 11 12 13
log2 M

Figure 3.12: NLA with wavelets and contourlets for the image Bench.
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3.3 A sphit-like algorithm for Contourlets

Just a few contourlet-based coders have been proposedlitetaéure so far:
a bit plane coder based on run-length is described_ih [70]lewid1] uses

multistage vector quantization, arid [72] focuses on radion optimiza-

tion based on a graph-cut algorithm. Here we propose a SRkkEToder,

using a hybrid wavelet-contourlet decomposition and bletéree structures
that account for the various kinds of dependency existingragriransform
coefficients|[[73].

Our coding algorithm is based upon some observations orrtipefies of
contourlet transform coefficients. As noted by Duncan and#dh contourlet
coefficients exhibit a significant correlation across défg subbands, just as
it happens for wavelet coefficients, which is why we based aadter on a
SPIHT-like engine. As a matter of fact, the coding algoritlevexactly the
same used in SPIHT]5], which is well known and will not be dissed here.
On the contrary, thespatial orientation treesused in SPIHT do not fit the
structure and, likewise, given our hybrid decompositioe, aannot rely only
on the trees considered [n [74] for a pure contourlet decaitipa. Therefore
the significance trees must be designed anew, and more cogtpletures are
necessary.

Indeed, in[[74] it was also observed that there are variopsstyof de-
pendency among coefficients: across scale, space andiatredtherefore,
we should define tree structures that do not consider onkeledion across
scales, but also among spatial neighbors in the same suhbamd homolo-
gous coefficients in subbands with similar directions. Irendetail, given the
selected hybrid decomposition (contourlets in the two fifegls, wavelet in
the others) we have to define the father-children relatigssior the following
situations

1. wavelet-wavelet;
2. wavelet-contourlet;
3. contourlet-contourlet, with - n directions;

4. contourlet-contourlet, with - 2n directions;
where the last two cases account for the fact that the nunflairaztions in
the last level can be the same or double that of the precediag o

For the first case, our coder resorts to the conventional BRiée. The
second case is the most complex because the relationshvedrethe high-
pass subbands of a wavelet decomposition and the contadlindetional sub-
bands is not trivial, and even the ratio between the numbebpefficients is
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Figure 3.13: Wavelet-contourlet case with 8 directions.

3:16 rather than the typical 1:4. For the sake of simplictych a relation-
ship is described with reference to an 8-direction conawlecomposition:
the cases with more directions,g, 32, more interesting for actual coding,
present obvious differences. In Fig.3.13(a) the involvelsbands (wavelet or
contourlet) are symbolically shown, with arrows charaeteg their dominant
directions. For example, the high-pass wavelet bands aracterized by hori-
zontal, vertical, and diagonal (45 and 135 degrees) arnoWwide the contourlet
bands have more precise directions. [Eig.3.13(b)-(d)eatstshow examples of
the father-children relationships when the father beldodworizontal, vertical
and diagonal wavelet subbands. Note that this tree-steitailkes into account
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all types of dependency mentioned before, first of all, theddionality, since
we link the horizontal [vertical/diagonal] wavelet desailith mostly horizon-
tal [vertical/diagonal] contourlet details. Moreover, wensider correlation
across scales by choosing father and children with the spatéklocation,
and correlation in space, by grouping children in set? obefficients.

\ / i \l
R

(a) Direction of details. (b) Tree.

BS

Figure 3.14: Contourlet-contourlet with 4-4 directions.

The trees for the contourlet-contourlet case are simplefalow the same
principles: we link coefficients with same spatial locatenmd same direction
(fig[3:14). In the last case the tree is only slightly more ptax: we connect
the coefficients of a direction in the coarser scale with ¢hafsthe two most
similar directions in the finer one (Fig.3115).

3.3.1 Experimental Results

In Fig.[3.I7E3.2D we report the rate-distortion curves ivteta on the test im-
ages using the proposed coder and the conventional wé&/letr coder. In
both cases, an arithmetic coder is also used, similar todisdtribed in[[5].
For Barbara and Bench, our coder outperforms the conveitiome at low
rates (up to 0.25 bpp) and is comparable at higher ratesevthiperformance
is always slightly worse for Lena and Goldhill.
At first, such results might seem disappointing, but it is twguointing

out that our rate-distortion curves follow closely the NLArees reported in
Fig.[3:9E3.12. This suggests that the proposed SPIHT-tikiecdoes actually
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Figure 3.15: Contourlet-contourlet case with 4-8 directions.

a good job in compacting information, even in the presenca sifghtly re-
dundant transform, and the main source of inefficiency igrdmesform itself,
probably because the low resolution testimages are quifeofa the idealized
C?/C? model.

This positive judgement is reinforced by results obtainetha differ-
ent coder based on the HWD (hybrid wavelets and directioiital fbanks)
transform [69]. The HWD structure is very similar to contietione with the
difference that LP pyramid is replaced by the separable lwadecomposi-
tion. In this way a critical sampling transform is obtained bt the price of
a major presence of pseudo-Gibbs phenomena artifacts dbe pyoblem of
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Figure 3.16: The HWD-half transform.

frequency scrambling. To address this problem two strasegysuggested in
[69]. First of all, directional filtering is performed onlynadhe one-two finest
level of wavelet transform, second, in one of its versiongdahalf-HWD,
different directions are foreseen on different waveletsutals [[69]: only hor-
izontal directions on vertical wavelet subband, vertidaéctions on wavelet
horizontal subband and a full DFB on oblique wavelet det#lg[3.16). An-
other version of HWD, named full-HWD, exists; in it only thesti strategy is
used and a complete DFB is employed on all wavelet subbands.

In our experiment we used the full-HWD, because, on imagéd&ar it
is more performing, being the problem of pseudo-Gibbsaatsf more marked
on smooth images while Barbara is a very directional imageossible to
notice that the NLA quality of HWD transform is superior tatlof the hy-
brid contourlet used here (see Eig.3.22 referring to bajbaut rate-distortion
results are comparable to ours, suggesting that a bettargcattjorithm than
that of proposed iri [69] is probably at hand.

Finally, it is worth remembering that a major motivation tming the con-
tourlet transform is the higher emphasis given to contondstextural compo-
nents, leading to a visual quality that is often superiohtd bf wavelet/SPIHT
even for the same objective performance. Indeed, this ahmsvconfirmed
for our coder as is clear by the details shown in[Eig.3.21, revteesuperior
visual quality is apparent not only for the highly texturedrBara, but also for
the much smoother Goldhill.
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Figure 3.17: Rate-distortion performance for the image Barbara.
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Figure 3.18: Rate-distortion performance for the image Lena.
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Figure 3.19: Rate-distortion performance for the image Goldhill.
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Figure 3.20: Rate-distortion performance for the image Bench.
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(b) Wavelet at 0.125 bpp

(c) Contourlet at 0.25 bpp (d) Wavelet at 0.25 bpp

Figure 3.21: Details of reconstructed images.
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Figure 3.22: HWD results for barbara.



Chapter 4

Distortion evaluation In
adaptive lifting schemes

he lifting scheme represents an easy way of implementingviwelet

transform and to construct new adapted-content wavelgtfsems. So
it can be considered another approach to the problem of emitoimage cod-
ing. However, the adaptive lifting schemes can result iorgjly non-isometric
transforms. This can be a major limitation, since all mosicessful coding
techniques rely on the distortion estimation in the tramafdomain. In this
chapter, after introducing adapting lifting schemes, waneixe the problem
of evaluating the reconstruction distortion in the waveletnain when a non
isometric adaptive lifting scheme is used, focusing outaigon two inter-
esting classes of adaptive lifting scheme. The problemastttese transforms
are nonlinear, which prevents using common techniquesistortion evalua-
tion. However we show the equivalence of these nonlineagmaels with time-
varying linear filters, and we generalize the distortion paiation technique
to it. Experiments show that the proposed method allowsiablel estima-
tion of the distortion in the transform domain. This resuttsmproved coding
performance.

4.1 Adaptivelifting scheme

Lifting structure was originally introduced by Swelderis5[7to design
wavelets on complex geometrical surfaces (the, so callEhrsl generation
wavelets) but, at same time, it offers an efficient impleratoih of classic
wavelet transforms. In fact, as shownlin [9], every wavedet lse implemented

75
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Figure4.1: Classical lifting scheme. Analysis.

by a sequence of lifting steps. One of the main merits of fitiadi scheme is
to provide a totally time domain interpretation of the watdransform and
this characteristic makes very simple to design new waselet

The blocks that compose the lifting scheme are illustrateléig(4.1. The
first block splits the input signal into an approximation signal, and a detalil
signalz, by the mean of an existing wavelet transform or a simple gage
decomposition (called lazy wavelet). Then, a predictioerapor P is used in
order to predict the current polyphase component from atimembination
of samples of the other component. In practice, the prextiaiperator P is
chosen such that it is an estimatezgfand hence the new signa), = =4 —
P(z,) is smaller thar,. Finally, the third block, the update operator U, acting
on z/; modifiesz,, resulting in an approximation signaj, = z, + U(x/).
Generally, the update operator is chosen in such a way teapproximation
signal z/, satisfies a certain constraint such as preserving the averfathe
input z.

It is interesting to notice that lifting scheme is a tool tmstyuct better
wavelet from existing ones, in fact, with a proper combioatof lifting steps
it is possible to impose new property on the resulting deamsition in order
to have an improved wavelet. For example, the lifted wavel@y have more
vanishing moments than the original one.

As for the synthesis scheme, shown in Fig.l 4.2, it is worthevio un-
derline that, since the original signal is reconstructeulpsy by reversing the
lifting steps, perfect reconstruction is assured by thensic structure of the
scheme and does not require any particular assumptiongapérators P and
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Figure 4.2: Classical lifting scheme. Synthesis.

U. In general, even the operators ‘+' and ‘-’ used in the saheifFig[4.2 can
be replaced by any pair of invertible operators.

This great flexibility of lifting scheme offers the possitjlto replace lin-
ear filters by nonlinear ones and, in particular, to utilizatent-adaptive filters
[15,[13,76] similar to that described in the following. Inglthapter we will
consider two different families of adaptive lifting scheme

e Adaptive update lifting scheme (AULS)

e Adaptive prediction lifting scheme (APLS)

4.1.1 Adaptive update lifting scheme

The first type of lifting scheme considered has been propbgeand Heij-
mans, Piella and Pesquet-Popescu [14], [77], [78] and @semerms of local
features of images in order to build a decision map that deters the lifting
update step, while the prediction step is fixed. The genelame is shown in
Fig.[4.3: the polyphase components of the input sigrale analyzed in order
to determine a decision mafjk). According to it, different update steps can
be performed: for example, when the decision map highlighisortant fea-
tures like contours or singularities, a weaker filter (or ftefing at all) can be
used. This type of choice could be a useful in a large numbapplications in
which it is desirable to have multiresolution representatiin which important
signal features, as discontinuities and singularities,nat oversmoothed.
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Figure 4.3: Lifting scheme with adaptive update first.

One of the most interesting features of this adaptive toansfis that it
does not require the transmission of side information,esthe decision on the
update step can be made with the information available ayththesis stage.
In fact, in [14] authors describe sufficient conditions fhisttransform to be
perfectly reversible without having to send the decisiorpyvahich actually
can be recovered from the transformed subbands.

We introduce the following notationz is the original signalyy;; is the
generic wavelet subband, where T identifies the decomposition level start-
ing from 0, andj € 7 identifies the channel. Usually = {0,1}, with 0
used for the low-pass aridfor the high-pass channel, but more channels can
be used, for example in the case of multi-dimensional taansf. The sub-
bands produced by a single-level decomposition are callg@ndyg, like
in Fig.[4.3. For an AULS, the decomposition is described kg fthilowing
equations:

yoo(k) = gz (2k) + > Bagey (n)z(2k + 1 — 2n) (4.1)
nez

yor (k) = 22k +1) = > _ v(n)yoo(k — n), (4.2)
neZ

wherez (k) is the input signal and(k) is the decision map, which in general
can assumé values in the seb = {0,1,...,D — 1}.

From the previous equations it is easy to find out the syrdhexpuations
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for AULS:
2(2k +1) = yor (k) + > y(n)yoo(k — n) (4.3)
nez
2(2k) = alygyvoo(k) = > Bl (n)2(2k + 1 — 2n), (4.4)
nez
where we used the shorthand symb@l§(k,) = 1/agm and ﬁ&(k) =
Baky/ k)

Multiple decomposition levels and wavelet packets can lainoéd by ap-
plying the same transform of Eq§._(#.1), (4.2) to any subbane consider
only the case of dyadic decompositiong.(only the low-pass channel is fur-
ther decomposed) because it is more popular, but our asatgsi be easily
extended to any decomposition scheme

4.1.2 Adaptive prediction lifting scheme

The second class of lifting scheme that we want to analyzesggried by Clay-
pooleet al. lifting scheme [[13], because it is well known and achievesdgo
performance. Although our reference is a specified prexfidtiting scheme,
and not a family, we will consider, where possible, a genferath of the adap-
tive prediction lifting scheme (APLS) that is described ig.&.4 and has the
following characteristics:

e update step first;
e the adaptivity involves only the prediction step.

The philosophy of Claypoole’s APLS consists in switchingwmeen dif-
ferent linear predictors at the predict stage: higher opdedictors where the
image is locally smooth and lower order predictors near edgeavoid pre-
diction across discontinuities (see Hig.14.5). In orderuargntee perfect re-
construction (in absence of quantization) at the syntrstaige it is important
that the decoder can reproduce all the encoder decisionsbtam this goal,
without sending side information, the update stage is agdgdirst and the de-
cision is based on the approximation signal only. So, eveuiftheoretical
analysis does not depend on the particular type of adaptixithe following,
we will consider an adaptivity like that shown in Fig. 4.6nmely the decision
rely only on one component.
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Figure4.5: Predictor selection at an ideal step edge. Numbers indicate
the order of the predictors used. The closer to the edgeptherlthe
order of the predictor.
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Figure 4.6: Lifting scheme with update first and adaptive prediction.

For an APLS, using the same notation adopted in the previtoss, the
decomposition is described by the following equations:

yoo(k) = 2(2k) + > B(n)z(2k + 1 — 2n) (4.5)
nez
yor(k) = 2(2k +1) = > Yagey (n)yoo(k — ), (4.6)
nez

while the synthesis is described by:

2(2k +1) = yor (k) + > Yagry(n)yoo (k — n) (4.7)
nez
2(2k) = yoo (k) — > _ B(n)z(2k + 1 — 2n). (4.8)
nez

Observing Eqs[(4]11)-(4.2) arld (#.5)-(4.6), we can noteithboth AULS
and APLS, according to the value of the decision map at tinvee use one out
of D linear update/prediction filters. However, since the denisnap depends
at its turn on the input signal, the whole systems are intilgraonlinear. Typ-
ically, the decision map accounts for the local behaviohefdignal, allowing
to discriminate low-activity signal segments from highigriable parts. For
example in AULS described in_[78] the decision map is a thoksfunction
of the local gradient seminorm, while in Claypoole’s wdrl8]the decision
is based on the distance of current sample from the disaoti¢is, which are
detected by a modified version of algorithm[79].
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4.2 Distortion evaluation problem for adaptive lifting

In the adaptive lifting schemes, different filters are usedlifferent parts of
image, so the entire transform can be strongly non-isomefrhis can be a
serious obstacle, since all most successful coding teahgigely on the dis-
tortion estimation in the transform domain. For example, EBCOT [20] al-

gorithm, at the basis of the JPEG2000 standard [80], eXlplicses the wavelet
coefficient distortion as an estimation of the reconstaiateage distortion in
order to compute the resource allocation. Likewise, popedgio-tree based
algorithms like SPIHT([5] and EZW [26] perform an implicitseurce alloca-
tion by encoding first the most significant bits of transfodweefficients: this
is efficient only if the distortion estimated in the transfodomain is a good
approximation of the distortion for the reconstructed imag

From these observations we conclude that, in order to effigieise the
adaptive lifting scheme for image compression, we need iieectly estimate
the distortion directly from the transform coefficientsliistcase as well. Use-
vitch showed how this can be done for generic linear wavdtet fianks[[81].
In particular, it demonstrated that once the equivalentgitse representation
of a generic lifting scheme has been found, the distorfioim the original do-
main is related to the distortioP;; in the wavelet subbang; by the relation:

D= ZwijDijv (49)
ij

where the weightsy;; are computed based on the reconstruction polyphase
matrix of subband;;.

The problem is that the AULS and APLS are nonlinear systenesefore
no polyphase representation of them can exist. Howeveg fionget about the
dependence af(k) onx and just look at Eqs[_(4.4) and (4.8), we can see them
as a linear, time-varying systems. The representationeoAthLS and APLS
as a linear time-varying systems allows us to find out theicglahip between
the distortion in the transform domain and in the originaindm, using Use-
vitch tools. Since the nonlinearity of the systems depemds @ther than on
the whole input signat, we will find that the weights depend in general only
ond. An even simpler result is found for the one-level decompmsicase for
update adaptive lifting schemés [82] and for a simplifiedrfaf prediction
adaptive lifting schemes, as we show in the sequel .
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Figure 4.7: Equivalent filter bank for synthesis ALS, two decomposi-
tion levels.

4.3 Computation of polyphase matrices

Let us now compute the synthesis polyphase matrices regdrm the mono-
dimensional case, then we will show how to extend this aislygsthe bi-
dimensional case.

We callGp andGy, the synthesis matrices (see Figl4.7). The reconstruc-
tion process amounts to obtainisgrom yo, andyo;:

x = Gooyoo + Go1yor, (4.10)

where the bold font refers to the vector form of the recorms$éd signal and of
the wavelet sub-bands. This equation tells us thakhth [resp.,(2k + 1)-th]
row of Gy is the contribution of the low-pass channel to the even [sddjple
x(2k) [x(2k + 1)]. The2k-th [2k + 1] row of Gy, is likewise the contribution
of the high-pass channel to the even [odd] saml&:) [z(2k + 1)].

4.3.1 Adaptive updatelifting scheme

To find the expression dfxgg and Gg; for AULS, let us start to rewrite the
Eq. (4.3) that describes the synthesis equation for the adwpkes of signal
for an AULS:

2(2k +1) = yor (k) + > _ y(n)yoo(k — n)
nez
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Figure 4.8: Structure of the matrixaoy. AULS. Highlighted cell is in
position (2k, k).

From this relation and Ed._(4.1.0) we observe that the odd odwEs,) andG;
can be expressed as:

Goo(2k +1,n) = v(k —n) (4.11)
Go1(2k +1,n) = 6j_p, (4.12)
wheredy, is the Kronecker symbol:
5 = { 1 ifk= 0
0, otherwise.

As far as the even rows are concerned, we develop the expmeskic(2k)
from Eq. [4.4). It is easy to find that:

Z By (B = n)yor (n) + oy yoo (k)

- Z Yoo(n Z ﬁd(k —n —m)y(m).

From the last equation we obtam the expression of the gee@ment on an
even row ofGgy andGoy:

Goo(2k,n) = a&(k)én_k - Em@’i(k)(kz —n—m)y(m) (4.14)

The structure of the reconstruction polyphase matricesinsnsarized in
Fig.[4.8 and'49. We note that the decision mi&y influences only th@k-th
row in both reconstruction matrices. Therefore, the evevsrof the recon-

struction matrices differ from one another only for the esponding value of
d, besides the fact that there is an horizontal shift of théfiooents.

(4.13)
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Figure 4.9: Structure ofGy;. AULS. Highlighted cell is in positior{2k, k).

4.3.2 Adaptive prediction lifting scheme

As in adaptive update case, let us compute the synthesiplmde matrices.
Starting from the Eq[(4.10) and from the equation (Eq.] (}4.7)

) + Z Ya(k)(n)yoo(k — n)

nez

r(2k +1) = yor(k

it easy to find that the odd rows &y, andGg; can be expressed as:

G00(2]€ + 1, n) = ’yd(k)(k — n)
Goy (2]’{7 + 1, ’I’L) = Ok—n,

(4.16)
(4.17)

As for the even rows, we develop the expression @) from Eq. [4.8), and
with a little of copmutation we find that:

x(2k) = yoo(k Zﬁ —n)yo1(n)
—Zyoo Zﬂ —n—m

So we obtain the expression of the generic element on an eveofiG(, and
G()l:

(4.18)
’Yd (mA4n) 1T ( )

Goo(2k,n) =0p— — Bk —n—m
Go1(2k,n) = —B(k —n).

Note that the expressions féky, and Gy, rows are more complicated
compared with the one obtained in the case of AULS. In pddicthe generic
2k-th row of Gy does not depend simply on the valuedodét instantk, as
in AULS, but it depends by different values df(see eq[ 4.19). This aspect
does not prevent us to compute the equivalent polyphasexnatrimpedes

(4.19)
(4.20)

)7d(m+n) (m)
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Figure 4.10: Structure of the matrixzyg. APLS. Highlighted cell is
in position(2k, k).
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Figure 4.11: Structure of the matrixGy;. APLS. Highlighted cell is
in position(2k, k).

the possibility to establish a simple connection betweeptwity and matrix
expression.

Luckily, in the lifting scheme that we are going to considelalypoole), the
expressions dk-th row of Gyp and ofG; are simplified becaus&(n) = 6,
so the Eq[_4.19 and Elq. 4]20 become:

Goo(2k, 1) = Sk—n — Yak)(k —n)
Go1(2k,n) = —6—n.

The structure of the reconstruction polyphase matricethigmsimplified
hypothesis, is summarized in Fig. 4.10 and 4.11.

4.4 Weight computation

4.4.1 Onelevel of decomposition

Once polyphase matrices has been computed, we can find thessxm for
corrective weights simply following Usevitch approach][8tis interesting to
develop the calculus in the hypothesis of one dimensiogaksiand one level
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of decomposition because they provide a simple and intuitlation between
weights in adaptive case and weights in non-adaptive case.
Now let us introduce the matrices:

Ggf) = Go; \d:[h h .. R (4.22)

For exampIeG(()OO) is the low-pass channel reconstruction matrix that we would
have if the decision map was always equal to zero. We can dentpe
weights associated with these matrices: they are the weetpht we should
apply when considering a non-adaptive LS. Fron [81], we have

h 2 h 2
w(()i) - N Z G(()i)(n7m) .

We can develop it as:

2 2 2
w(()?) =N Z Z Ggf)(%,m) + Z ng)(2n +1,m)
2 2
=3 G Om) +Y G (1m)". (4.22)

The last equation takes into account the fact that all evesp[r odd] rows are
equal but for a shift, so the sum of their squared values casbtsned from
any even [resp., odd] row.

In the adaptive case we have:

2
Wo; = N Z GOZ'(’I’L, m)2
n,m

— %Z Z Goi(2n,m) % + Z Goi(2n +1,m)>

We know that the values of the reconstruction matrix on thetof rows2n
and2n + 1 only depend ori(n):

Goi(2n + 1,m) = G (2n + 1,m).
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So we can write:

ZlZGd(" 2n,m) —i—ZG(dn))@n—i—l,m)Q]

N Zu}d(n)7

where we used Ed._(4.P22). If we denote By the number of occurrences of
the valueh in the decision map, we can write:

= 2N (n)

TwOZ (423)

wo; =
h=0

In other words, the weight of each subband depends only oretagve fre-
quency of the various symbols in the decision map. The veldtequencies
are used as multiplicative coefficients in order to find thepdise weight as a
function of the “non-adaptive” ones. Itis interesting te seat even though the
AULS and APLS are inherently nonlinear, we can find such a krapd in-
tuitive relationship between their weights and those agdinlifting schemes.
Unfortunately, the relationship becomes more complex whene than one
decompoaosition level is performed.

4.4.2 Multiplelevelsof decomposition

In this subsection we show how to compute the weights for ais Athen
more than one decomposition level is used. Coherently Wwambtation used
for the wavelet subbands, we defiGg; as the reconstruction matrix for the
decomposition level and for the channel (see Fig[4l]7). For example, the
low-pass subband at level- 1 can be obtained from the subbands at level
via the matricesx;;:

Yi-10 = Z Gijyij (4.24)

jeJ

It is obvious thaiG;; has the same structure @s;, except that we have to use
the appropriate decision map at levetlenoted by/; (). Let us now introduce

dgh) as a vector whosk-th component is:

a®) () = {1 it d; (|%]) =n (4.25)

0 otherwise.
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Finally, let us defineDE.h) = diag(dE.h)). It is easy to see that:

D—1
Gi;= > DMa, (4.26)
h=0

WhereGZ(;.’) is defined similarly toGZ(.g) in Eq. (4.21). In other words, the

synthesis matrix (at any decomposition level) for the AL dsnposed by
selecting thek-th and(2k + 1)-th rows of the non-adaptive matrix determined
by the map valuel; (k).

It is easy to remark that the reconstructed signal can beesgpd using
recursively Eq.[(4.24). We obtain:

X = Z Aijyij,
ij

where(i, j) € {(0,1),(1,1),(2,1),...,(N-1,1),(N—1,0)}. The reconstruction
matrices can be computed as:

i—1
Ai=Gq [[Guw. Vie{l,..,I1—-1} (4.28)
/=0
-1
Aj_10= H Gio. (4.29)
i=0

We observe thal;; is the product of the matrices corresponding to the filters
between the subbang; and the reconstructed signal This is still true when
the decomposition is non-dyadic or more than two channelsised.

In conclusion, in order to get the weight for thg subband, we have to:

1. Compute all the matriceS,;, needed to buildA;;;

2. ComputeA;; using the appropriate equation amohg (#.47), (4.28), and
@29);

3. Obtainw;; as the average of the column normsAof;.

Unfortunately, the simple interpretation of the adaptifteng scheme weights
obtained for the one-level decomposition does not hold amgnwvhen more
levels are used, because of the matrix product in[Eq.](4.2B)0(4.29).
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z(n-1,m-1) z(n-1,m) z(n,m+1)
23(k-M-1) z2(k-M) 23(k-M)
yo3(k-M-1) yo2(k-M) yo3(k-M)
z(n,m-1) z(n,m) z(n,m+1)
z1(k-1) zo(K) z1(K)
yo1(k-1) Y00 (K) yo1(K)
z(n+1,m-1) z(n+1,m) z(n+1,m+1)
x3(k-1) z2(K) z3(K)
yo3(k-1) yo2(K) y03(K)

Figure 4.12: The bi-dimensional signat represented via four chan-
nels;x has2M columns, and = Mn + m.

45 Extension to multi-dimensional case

Both AULS and APLS can be extended to the bi-dimensional gaseder
to obtain adaptive transforms of images. The extensiondcbeldone in the
same manner for both but we prefer to treat separately theyies of lifting
scheme. The reason of our choice resides to the fact thapéugfis 2D lifting
schemes, belonging to these two families, that we want ttyam@ome from
a different type of extension. In fact, for AULS we consideredtly a 2D
non separable version of the scheme, because these typeenfishas been
proposed in the literature; for APLS, instead, being ouenafice Claypoole’s
work, we start from a 2D separable extension of transformoteto a 2D
non separable extension.

For AULS, we consider a number of non-separable bi-dimeasitrans-
forms presented ir_[78]. This case can be treated as the waiommsional
one, with the difference that more than two channels are asedch level.
The input signalr is divided into.J = 4 channels, as shown in Fig. 4]12. The
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AULS analysis equations are the following:

Yoo(k) = agyro(k) + Z B ( —n)
nez
+ Z Ba,d(k) (n)w2(k —n) + Z B,k (n)z3(k —n) (4.30)
nez ne
yor (k) = z1(k) = > v.0(n)yoo(k —n), (4.31)
nez
yo2(k) = za(k Z ¥2,0(n)yoo (k Z Y2,1(n)yo1(k —n), (4.32)
nez nez
yo3(k) = z3(k Z ¥3,0(1)yoo (k Z 73,1(n)yor(k —n)
nez ne
— > w2(n)yoz(k — n), (4.33)
nez

and its structure is shown in Fig. 4]13.

Actually, we will use a simplified form, in fact, the predigberators pro-
posed in[[78] are the following:

Yo1(k) = z1(k) — yoo(k) (4.34)
Yoz(k) = w2(k) — yoo(k) (4.35)
yo3(k) = 23(k) — yoo(k) — yo1 (k) — yoz (k) (4.36)

So, in the following, we refer to this simplified scheme.

If we would construct the 2D version of APLS for similarity tbat of
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xo N Yoo
®)

D Uy P
x1 f i é : Yo1
Py
T2 EN Yo2
~ }
Py
x3 AL Yos
_/

Figure4.13: 2D AULS.

AULS, we obtain the scheme, shown in Eig.4.14, describedh&yguation:

Yoo (k) = zo(k) + Z Bi(n —n)
neZ
+ > Ba(n)wa(k —n)+ > Bs(n)ws(k — n) (4.37)
nez A
yor (k) = 1(k) = > 710,400 (Moo (k — n), (4.38)
nez
yo2(k) = x2(k Z ¥2,0,d(k) (1) Yoo (k Z Yo,1,d(k) (P)yo1 (k — n),
nez nez
(4.39)
yo3(k) = x3(k Z ¥3,0,d(k) (1) Yoo (k Z ¥3,1,d(k) (n)yo1 (k — n)
neZ nez
=) W20 (M)yo2(k — 1), (4.40)
nez

The problem is that this scheme does not fit Claypoole’'sngftscheme,
but a more complex structure is needed.
In Claypoole’s original work, the extension of the transficio 2D case is
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X0 D Yoo
U Py
X1 T Q‘ l Yo1
Pyo
xTo /i\ Yo2
X ]
Py3
z3 AL vos
/

Figure 4.14: Theoretical 2D APLS.

done in a separable manner. Thisis a problem because fontseigmputation
we need to have a polyphase matrix that describes the linkeeet input and
output signals. In non adaptive case, when we consider a Raragle trans-
form, this is possible because we use the same polyphasi featall rows
and for all columns[[81] but, in adaptive case, different ste@lumns mean
different decision maps, and different decision maps mé&reht polyphase
matrices. So we can not express input-output relation bylyppase matrix.
To overcome this problem we have to compute a 2D non sepavald®on of
Claypoole’s lifting scheme.

As mentioned in Sec.4.1.2, Claypoole’s transform switdiete/een differ-
ent linear filters (acting on predict stage) according tddlsal behavior of the
mono-dimensional input signal (a row or a column for the iegg In partic-
ular it uses four different filters. To construct a 2D non sapke Claypoole’s
transform, we have to consider all sixteen 2D non separdt#esfobtained by
the combination of all mono-dimensional filters and thentslwamong them
according to the behavior both of the current row and theecircolumn. Do-
ing this operation, the structure of 2D non separable Gfsasheme obtained is
shown in Fid.4.1b and correspond to the following expressio
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yoo(k) = zo(k) + Z Bi(n —n)
nez
+ > Ba(n)aa(k —n)+ > Bs(n)ws(k — n), (4.41)
nez neZz
yor (k) = 21(k) = > 71.0.400) (n)¥00 (k — 1)
neZ
£ oy ()l — ), (4.42)
neZ
yo2(k) = xo(k Z Y2,0,d(k) () Yoo (k Z Y2,1,d(k) (1) yo1 (k — n)
nez nez
+ > oa(n)as(k —n), (4.43)
neZ
yo3(k) = x3(k Z ¥3,0,d(k) (1) Yoo (k Z ¥3,1,d(k) (1) yo1 (k — n)
nez neZz
- Z Y3,2,d(k) n)yoz(k —n). (4.44)
neZ

In our case this general expression can be simplified becmuséready
noted, we use a very simple updte

Yoo(k) = xo(k) + x1(k) + 22(k) + 23(k)
(4.45)

Ones derived the expression of 2D AULS and APLS, the syrdhexgia-
tions can be easily obtained from the analysis ones. Thengtluivalent
polyphase matrix for reconstructioy;, can be obtained by evaluating the
contribution of the wavelet subbangd; to the channek; for i = 0,1,2,3.
This process is perfectly analogous to the one describeddtid®[4.8. How-
ever, here we do not report the computation of the recortgirumatrices for
the sake of simplicity. The result is that tit&,; matrices are composed of
blocks of J rows, from theJk-th to the(Jk 4 J — 1)-th row that depend on
the k-th value of the decision map. As in the 1-D case, the adaftifiuey
schemeuwy; (one-level decomposition) can be obtained as weightecgeesf
non-adapted weights.

'we omit a constant equal tb
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Figure 4.15: Claypoole inspired 2D APLS.

Once one has obtained the first level decomposition matribesveights
w;; can be computed recursively as in the 1-D case.

4.6 Experimental results

4.6.1 Test Lifting Schemes

In this section we validate the results previously obtaifmdsome simple
AULS and for our 2D APLS inspired by Claypoodt al. lifting scheme.

For AULS we consider four bi-dimensional non-separablepada lifting
schemes, three presented[in/[78] and one presentedlin [83].

The first three are binary AULS, in the sense that one out ofupaate
filters is chosen at each time. In all the three cases, whenl, the update
step does not perform any filtering, thatis = 1 andg; ;(n) = 0 for all j and
n. This happens when discontinuities are detected, so thatife preserved at
low resolution levels without smoothing. The three filteifsed for the update
step in homogeneous regions (besides the way the decisiprisraamputed,
see [[78] for details). The first one, which we will refer to adlis A, when
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d = 0 has the following update operator:

1

yoo(k) = 5 [zo(k) +21(k) + 22(k) — a3(k)].

The second one is denoted by AULS B. Wheénr= 0, it uses the following
update:

Yoo(k) = %xo(k‘)
+£ [wl(k‘) + l’g(k‘) + l’l(k? — 1) + l’g(k? — M)]
5 (k) + sk — 1) s (k — M) 4 sk — M~ 1)),

where the input signal has\/ columns (see Fid. 4.12). Finally, we consider
an AULS that we call AULS C, whose update stepdoe 0 is:

Yoo(k) = %wo(k)

g [ (R) + 2a(k) + 3 (k — 1) + 2ok — M)],

In [78] it is shown that AULS A [resp., AULS B] corresponds talaci-
sion map which is insensitive to first [resp., second] degagnomials. This
means that the first 2 AULS respond to higher degree polyrsrieadapting
the update. The third AULS is sensitive to high values of tiseréte Laplacian
of x.

The fourth AULS considered is proposed in|[83], it is not ynaut it
uses multiple criteria for choosing the update filters gjuiise to multi-valued
decision. In the lifting schemes proposed [in![83], localdigat seminorms
computed along different directions are compered in omeligcriminate be-
tween different geometric structures and to capture thectional nature of
images. We refer to these lifting scheme as combining semin@CS) AULS
[83]. In the example that we consider we have three diffesemiinorms:po,
relative to the horizontal directiom1, relative to vertical direction; ang3,
relative to oblique direction. The filtering is performedmad the direction
with the smallest seminorm, furthermore the latter is compavith a thresh-
old and, if it is found greater, non filtering at all is perfaed) because, with
high probability, there is an edge along all directions. Ekpression of the
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considered lifting scheme is the following:

Yoo(k) =

where;

so(k) +  [z1(k) + 21 (k — 1)),
xo(k‘),
sao(k) +  [za(k) + z2(k — M)],

d =0 < p0 = min(p0,pl, p2) and p0 < T0;
d=1< p0 = min(p0,pl, p2) and p0 > T0;
d=2< pl =min(p0,pl,p2) and pl < T1,
d =3 < pl = min(p0,pl, p2) and pl > T1,
d =4 < p2 = min(p0,pl, p2) and p2 < T2;
d =5 < p2 = min(p0,pl,p2) and p1 > T1.

if d=0;
if d=1;
if d=2;
if d=3;
if d=4,
if d=05.
(4.46)

While for AULS A, B and CS the prediction is performed with H4.34)-
(4.38), for the AULS C, the last equation is simplified to:

Yo3(k) = w3(k) — yoo(k).

Several other binary and combining seminorms AULS are dmestrin
[78], [83] and in related works, the results for these otlufiesnes are similar
to those reported in the following.

With reference to APLS, we consider the 2D non separablensixie of
Claypoole’s work described in the Jecl4.5 Our lifting sceemvery similar
to that described in [13] except for the fact that:

e our adaptivity does not choose between four mono-dimeasifiters
according to the behavior of the current row or column, butveen
sixteen bi-dimensional filters according the behavior ohb@w and
column;

e our way of individuating discontinuity is based upon thesgiirolding of
Sobel operator instead on a modified versiori of [79].
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Number of decomposition levels
1 | 2 | 3
AULS A No weights | 59.77% | 74.69% 81.45%
AULS A Weighted 0.23% | 0.36% 0.56%
AULS B No weights | 61.84% | 77.09% 83.70%
AULS B Weighted 0.31% | 1.53% 2.93%
AULS C No weights | 42.87% | 60.01% 69.26%
AULS C Weighted 0.17% | 0.27% 0.44%
AULS CS No weights| 63.39% | 79.25% 85.98%
AULS CS Weighted | 0.28% | 0.60% 2.52%

APLS No weights 76.41% | 87.18% | 91.31%
APLS Weighted 0.14% 0.15% 0.35%

Table4.1: Relative error of the energy estimation.

4.6.2 Distortion evaluation in transformed domain

A first experiment is conducted in order to validate the wiigtomputed with
the proposed method. As shown in[[81], if the error signal subbandy;;
(i.e. the quantization noise) is white and uncorrelated to therottubband
errors, the distortion in the original domainis related to the distortion in the
wavelet domain by Eq[(4.9). In order to verify this relaship we generate
white Gaussian noise for the coefficients in each transfaioband. Then we
estimate the distortion in the wavelet domain as the enefrtfyecerror signal.
We consider two cases: in the first one we use the weights ag.i@H); in
the second one we usg; = 1 for all subbands. This means that we estimate
the distortion in the wavelet domain without using weightshen the two
distortion estimations are compared to the real distortidriained as energy
of the error signal after the inverse transform. The per cdative errors of the
two estimations are reported in Tab.14.1 for our five adapiftieg schemes.

These results show that, on one hand, these lifting schemeguate far
from orthogonal, so the distortion in the transform domaia poor estimation
of the actual distortion. On the other hand, with the weigltsputed with
the proposed method, the distortion estimation become$ mace reliable.
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| [AULSA [ AULSB | AULS | AULS CS | APLS |

Lena 0.7dB 1.6dB | 1.2dB 1.5dB 0.6dB
House 0.6dB 0.6dB | 0.9dB 0.4dB 0.4dB
Peppers 0.3dB 0.7dB | 1.0dB 1.4dB 0.4dB
Cameraman| 1.0dB 0.6dB | 0.7dB 0.7dB 0.3dB
Barbara 1.5dB 1.3dB | 1.1dB 1.4dB 0.8dB

Table 4.2: PSNR improvements at 0.5 bpp for test adaptive lifting
scheme compared with no weights.

4.6.3 Bit-rateallocation

The ability of reliably estimating the distortion in the tisform domain gives
consistent benefits in a compression scheme. In this seetoshow some
quantitative results about the improvement that a correetaf weights gives
w.r.t. not using any weights at all.

To this end, we use a simple compression scheme, which issusilar
to the original one proposed i _[78]. The input image is tfamsed with
one of the five test adaptive lifting scheme and quantizeth witlead-zone
guantizer. An optimal bit-rate allocation algorithm is rf@4] to choose the
quantization step for each subband such that the spatiaidadistortion ex-
pressed via EqL(4.9) is minimized for the assigned target fichen the inverse
transform is applied on quantized coefficients, and theltragudistortion is
computed. In order to assess the effect of weights, we caitrthe same com-
pression scheme using unitary weights for all subbandsalliziwve compare
the rate/distortion curves for the two schemes.

We performe this experiment on the images Lena, House, Peppam-
eraman, and Barbara. The RD curves for Lena are reported)i@Hi6{4.20
and the PSNR improvements compared with no weights ovenaéfiages at
0.5 are reported in Tab. 4.2 and at 1.0 bpp in Tab. 4.3. We atasng weights
brings a gain, a little more consistent for AULS; however itherovement is
remarkable even for APLS.
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\ | AULSA [ AULSB | AULS | AULSCS| APLS |

Lena 0.9dB 1.5dB | 1.0dB 1.5dB 0.4dB
House 0.6dB 0.8dB | 0.9dB 0.9dB 0.6dB
Peppers 0.4dB 0.7dB | 0.8dB 1.4dB 0.4dB
Cameraman 0.8dB 0.8dB | 0.5dB 0.6dB 0.4dB
Barbara 1.4dB 1.0dB | 1.2dB 1.0dB 1.0dB

Table 4.3: PSNR improvements at 1 bpp for test adaptive lifting
scheme compared with no weights.
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Figure 4.16. Rate-distortion curves for Lena with and without
weights. AULS A.
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Figure 4.17. Rate-distortion curves for Lena with and without
weights. AULS B.
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Figure 4.18. Rate-distortion curves for Lena with and without
weights. AULS C.
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Figure 4.19: Rate-distortion curves for Lena with and without
weights. AULS CS.
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Figure 4.20: Rate-distortion curves for Lena with and without
weights. APLS.



Conclusions

Object contours contribute to a large extent to the perdemeality of an
image but are typically quite hard to compress. As a mattdacts, many
coding algorithms fail to describe efficiently this infortime. In this thesis,
we discussed this issue explaining the relation betweeanptttiblem and the
most effective and widespread transform for image commesshe wavelet.
Referring to recent studies on harmonic analysis, we ex@thihe reasons
for wavelet efficiency but also for its sub-optimality wheaating with bi-
dimensional discontinuities. To overcome wavelet limits @onsidered three
different solutions (object-based coding, new directidgremsforms and adap-
tive lifting scheme) and in each of these scenarios we bitoagh original
contribute.

As regards the object-based image coding paradigm, we zathlyosts
and advantages of an object-based scheme based on Li andhalkiétet shape-
adaptive (SA-WT) and shape adaptive SPIHT. Our aim was &sadbe rate-
distortion performance of such an object-based coder bynsnehnumerical
experiments in typical situations of interest, and single t the extent pos-
sible, the individual phenomena that contribute to the aVérsses and gains.
Since the usual coding gain does not make sense for Li andBIA3NVT we
measured its compaction ability by analyzing the RD perforoe of a virtual
oracle coder which spends bits only for quantization. Thas & very impor-
tant step because SA-WT losses turned out to be quite sigmifiespecially at
low rates. Although the quantization by itself account diolya small fraction
of the total cost, the reduced efficiency of SA-WT has a de&greétlso on
the subsequent coding phase, the sorting pass of SPIHTctndar experi-
ments revealed this to be the main cause of SPIHT losses tialpresence
of incomplete trees plays only a minor role. As for the gaims; analysis
showed that they can be significant when the image preseatp skges be-
tween relatively homogeneous regions but also that tharady the case with
real-world images where the presence of smooth contoudstreminaccura-

105
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cies of segmentation (for a few objects) or its large cost fiany objects)
represent serious hurdles towards potential performaaics.gHence, for nat-
ural image, the advantages do not balance the costs andrparfce gains are
currently achievable only for some specific source, liketrspiéctral images.

For multispectral images we introduced two different objessed
paradigms, region-based and class-based coding, thet diffy for the type
of segmentation used. While classes are singled out mostih® basis of
spectral homogeneity criteria, regions are required tisfgatome additional
spatial constraints. Therefore, regions tend be less “phien classes, and
a spectral transform is less effective on them. On the othaedha spatial
transform applied to a compact region, rather than to a spaess, might
work better. For both approaches we experimented a codingpased of: a
segmentation block; a Karhunen-Loeve transform (KLT) gltre spectral di-
mension; a wavelet transform in the spatial domain; a scplantizer; and a
block of resource allocation. To better compact energy enfitst few trans-
form bands, a different KLT matrix is used for each classéneg Our exper-
iments led to the conclusion that the class-based codingpapp guarantees
always a very good performance, because optimizes the tfhdenong costs
and gains. The performance of the region-based approasteaih are a little
bit worse, but still better than that of completely flat awioes.

The second scenario refers to the new directional transfofmthis con-
text, we presented a new compression technique based oaortteeidet trans-
form. The choice of this transform was based on the fact thatd an almost
optimal NLA (nonlinear approximation error) behavior ahdsieasily imple-
mented by a filter bank. Preliminary results on NLA qualitgl ls to use ac-
tually a hybrid wavelet-contourlet decomposition. Théw EPIHT coder was
adapted to the new transform, with the main design problemgliae defini-
tion of suitable significance trees that took into accouatdbrrelation of co-
efficients across scales, space and directions. Even ifahsform is slightly
redundant the rate-distortion performance is good, eafwedor highly tex-
tured images, and the visual quality of directional detailsetter than that of
the conventional wavelet/SPIHT coder.

The last solution analyzed is the adaptive lifting scheme.sWWbwed how
to estimate the coding distortion in the transform domaimtfa interesting
classes of adaptive lifting schemes. The basic idea is ieahdnlinearity of
these schemes can be seen as a time-variable behavior.s lwakj we can
compute the weights allowing us to estimate the distortiathé transform do-
main via a weighted average of subband distortions. Theadette proposed
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can be used with a large number of adaptive update/predittimg schemes.
Experimental results show that by using these weights thi®rtiion assess-
ment becomes very reliable. As a consequence, coding tresibased on
distortion minimization benefit from a better distortiortiegtion and provide
better performance.
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