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Introduction

W
e live in the image society! This short sentence does not introduce a
sociological analysis on the importance of look in modern times, but

it wants to underline the change in our way to communicate. Welive in an age
in which text is gradually losing ground to image, video and sound. The new
generations slogan could be “Say it with a multimedia content”.

The ‘image society’ causes a growing traffic of multimedia contents which
travel on the data networks and often on wireless networks. This calls for new
tools to provide a faithful and efficient representation of images and video,
especially at low bit rates. As a consequence, in recent years there has been
intense research on image compression, new concepts and tools have been
generated, and new standards have been output, such as the wavelet-based
JPEG2000 which improves upon JPEG especially at low bit rates. However,
despite its significant improvements, JPEG2000 performance is still quite far
from theoretical compression bounds. If we consider that the human eye can
receive only 20 bits per second, as psychology studies show [1], and it typically
takes only a few seconds to capture a visual scene, the bits needed to represent
an image should not exceed a few hundreds. By contrast, JPEG2000, which
represents the state of art, requires at least some tens of kilobytes to represent
a typical 512×512-pixel image. This suggests that there is still a long wayto
go before technology reaches Nature.

The classical scheme of image compression is based on three steps: trans-
form, quantization and lossless coding. Recently, research efforts have focused
on the choice of the transform that best represents a naturalimage. As a matter
of fact, in spite of its great success, wavelet transform is not the optimal basis
for an image. Indeed, it is very effective in representing smooth signals with
pointwise discontinuities (like an image row), but fails inrepresenting discon-
tinuities along curves, like the contours between neighboring visual objects,
which typically characterize images [2].

The problem of contours in image compression is the leading thread of

ix



x Introduction

this thesis work, as well as wavelet inefficiency in describing this piece of
information. This is a very important issue in image compression because
contours are the most resource-consuming elements of an image, especially at
low bit rates, and their good reproduction is essential to perceive a satisfactory
image quality. This very same subject is treated in this PhD thesis work under
three different scenarios, that is, three different attempts to overcome wavelet
limits on images contours: object-based coding; new directional transforms;
and adaptive lifting scheme.

The object-based paradigm is an highly flexible tool to describe images.
To begin with, considering an image as composed by objects, and not by pix-
els, is more intuitive and natural. Object-based coding offers a large number
of high level functionalities, for example, the user can choose to decode only
objects of interest, or to assign them different coding resources and differ-
ent error-protection levels. Furthermore an object-baseddescription can be
used for subsequent classification tasks. In this thesis, however, we focus on
the rate distortion performance of object-based schemes inthe compression
of the whole image, and analyze costs and advantages of a specific coding
scheme. The main assumption is that, with an object-based approach, the
wavelet works only on the interior of the objects, that is, almost stationary
signals, and can therefore provide near-optimal performance. We consider a
specific object-based compression scheme where the main coding tools are
the shape-adaptive wavelet transform (SA-WT) proposed by S. Li and W. Li
[3], and a shape-adaptive version of SPIHT (SA-SPIHT) [4] which extends
the well-known image coder proposed by Said and Pearlman [5]to objects of
arbitrary shape. Besides assessing the rate-distortion performance of such an
object-based coder in typical situations of interest, our analysis will provide
insight about the individual phenomena that contribute to the overall losses
and gains in this approach. Then, we extend the object-basedparadigm to
the class of multispectral images. In this context the object-based scheme can
be declined in two cases: class-based and region-based paradigms. The anal-
ysis of the rate-distortion performance for both schemes, with reference to
remote-sensing images, will prove the potential of object-based paradigms for
multispectral images.

New directional transforms represent a more direct solution to wavelet in-
efficiency on image contours. While in object-based coding the transform re-
mains the wavelet and the intelligence is put on the scheme, here the wits is in
the transform. Recent studies have shown that wavelet’s inability to adequately
describe image contours is due to its separability which (while allowing for a
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simple implementation) cuts it away from two fundamental properties: direc-
tionality and anisotropy [6]. The new directional transforms try to overcome
these limits by adding these characteristics to that of wavelet transform, such
as multiresolution, localization and critical sampling. Many transforms have
been proposed in the last few years (contourlets [6], directionlets [7], curvelets
[2], bandelets [8], etc.), but results are mostly theoretical, while there are only
a few actual coding algorithms based on these new tools. In this thesis we
propose a SPIHT-like coding algorithm based on the contourlet transform. We
choose the contourlet transform [6] for several reasons: ithas many desirable
characteristics, such as directionality, anisotropy, near-optimal theoretical per-
formance and, unlike other directional transforms, it is easily implemented by a
filter bank. Our coding algorithm attempts to exploit the peculiar properties of
contourlet transform coefficients, which exhibit various types of dependency,
across scales, space and direction. Our strategy for SPIHT trees construc-
tion tries to exploit all such links, without introducing a significant complexity
overload. Experiments on typical images used in the scientific community
show some interesting improvements for images rich in directional details.

The last part of the thesis is dedicated to adaptive lifting schemes. The lift-
ing scheme [9] is an efficient and flexible implementation of the wavelet trans-
form. One of the main advantages of the lifting structure is to provide a totally
time domain interpretation of the wavelet transform and this feature makes
simpler to design new wavelets and content-adaptive wavelets. Adaptive lift-
ing schemes can be use to deal with the problem of contour representation,
for example, by constructing directional wavelets, with the filtering direction
chosen according to the local orientation of image edges [10], [11], [12], or
changing the filters according to the regularity of input signal [13], [14], [15]
in order to utilize different and more fit filters when contours or singularities
are encountered. A major problem of adaptive lifting schemes is that they are
strongly non-isometric transforms, which bars from computing the distortion
in the transform domain. On the other hand, this is would be highly desirable
in order to perform efficient resource allocation. In this thesis we address this
problem proposing a method that allows for a reliable estimation of the distor-
tion in the transform domain. The strategy adopted is based on the observation
that, although adaptive lifting schemes are nonlinear operators, they can be
considered equivalent to suitable time-varying linear filters, which eventually
allows us to generalize the traditional distortion computation methods.

The thesis is organized as follows:
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Chapter 1 presents the basics of transform coding and its relations with
classical coding schemes. In particular, the key concepts to understand
strengths and weaknesses of the wavelet transform are discussed here.

Chapter 2 is dedicated to the measure of rate-distortion costs and gains
for a wavelet object-based encoder. The analysis of the rate-distortion curves
obtained in several experiments provides insight about what performance
gains and losses can be expected in various operative conditions. Then two
variants of object coding paradigm for multispectral images are presented and
their performance analyzed.

Chapter 3 introduces the main characteristics of contourlet transform
and the motivation for an hybrid contourlet-wavelet decomposition. A new
image coding technique based on this transform and built upon the well-known
SPIHT algorithm is described and numerical and visual quality results are
reported to confirm the potential of the proposed technique.

Chapter 4 addresses the problem of distortion evaluation in the trans-
form domain for adaptive lifting schemes. The analysis is conducted on two
interesting classes of lifting schemes. Experiments show that the proposed
method allows for a reliable estimation of the distortion inthe transform
domain which results in improved coding performance.



Chapter 1

Contour coding problem

T
he information about discontinuities between different objects in an im-
age is very important from a visual point of view but often it is hard to

compress. In fact, many transform coding algorithms fail indescribing effi-
ciently this information. The main problem is that classical transforms do not
perform well on image discontinuities. In this chapter we expose the basic
principles of transform coding, and its use in image compression algorithms.
We focus our attention on wavelet transform underling the reasons of its suc-
cess and the motivation of its suboptimality.

1.1 Transform coding

Transform coding is one of the most successful and widespread technique for
lossy compression. Both in audio compression, with MP3, andin image com-
pression, where the discrete cosine transform and waveletsare part of the JPEG
standards, transforms are at the heart of the compression engine.

The conventional framework of transform coding was introduced by
Huang and Schultheiss [16]. A discrete-time, continuous-valued, vector source
with correlated components is given; instead of vector quantization, one uses
a linear transform followed by a scalar quantization. An entropy coder, even if
it is not present in Huang and Schultheiss paper, is often used to improve the
coding efficiency (Fig. 1.1).

Transform coding is an inherently suboptimal source codingtechnique but
it has much lower complexity than vector quantization. In fact, computing
the transformT requires at mostN2 multiplications andN(N − 1) additions
furthermore, icing on the cake, specially structured transforms like discrete

1
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Figure 1.1: Transform coding scheme.

Fourier, cosine, and wavelet transforms are often used to reduce the complexity
of this step. The idea behind transform coding is that scalarcoding may be
more effective in the transform domain than in the original signal space.

There are other two reasons for transform coding: one intuitive and an-
other subjective. The first one is based on the observation that the transform
tends to mix the information contained in the different samples so that each
transform coefficient contains part of information of all original pixels. In this
way it is possible to reconstruct a reliable version of the image even without all
coefficients. The subjective reason, instead, starts from studies that state that
some biological systems, as human eyes, work in transformeddomains.

There are a lot of theorems that define the characteristics ofthe optimal
transform in the ideal framework, but these theorems are based on too restric-
tive hypotheses [17]. Nevertheless, they have been very important in the trans-
form coding development.

The first and maybe most famous theorem is the one that affirms that
Karhunen Loève transform is the optimal transform for gaussian sources. A
Karhunen Loève transform (KLT) is a particular type of orthogonal transform
that depends on the covariance of the source. Let us introduce formally this
transform. Callx the input vector, wherex is assumed to have mean zero,
and letRx denote the covariance matrixRx = E[xxT ], whereT denotes the
transpose. Covariance matrices are symmetric, thus orthogonally diagonaliz-
able, so we can writeRx = UΛUT , where the diagonal elements ofΛ are the
eigenvalues ofRx. The KLT matrix will beT = UT . For gaussian sources
is possible to show that KLT is the optimal orthogonal transform, in the sense
that it minimizes the distortion both at high rates [17] and at low rates [18].

The problem is that the hypothesis of gaussian source does not fit well
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the images, and without this assumption KLT is not optimal. However it is
worth noting that the KLT has the property, not related only to gaussian case,
of returning uncorrelated transform coefficients. Since ingaussian hypothesis
uncorrelation imply the independence it is natural to wonder if this is the prop-
erty that we are looking for. Heuristically, independence of transform coeffi-
cients seems desirable for a scalar processing like the coding scheme showed
in Fig. 1.1. With regard to latter observation we report an interesting theorem
[17]:

Theorem 1 consider a high-rate transform coding system employing entropy-
constrained1 uniform quantization. A transform with orthogonal rows that
produces independent transform coefficients is optimal, when such a transform
exists.

Unfortunately for non gaussian sources there is not always an orthogo-
nal transform that produces independent transform coefficients (without the
orthogonality hypothesis the optimality is not assured). Furthermore, even if
such transform exists, it is not necessarily optimal when the rate is low. This
is a great drawback because low bit-rate coding represents the real challenge
for new image compression schemes since at high bit-rates the performance
of actual coder are already fulfilling. We will see in Section1.4 that a totally
different theory can be used in this scenario, but it is important to underline
that, even in that case, the theoretical results must be considered only as a
guideline for real compression. In fact, when we consider transform coding as
applied to empirical data, we typically find that a number of simple variations
can lead to significant improvements w.r.t. the performanceobtained with a
strict application of these theorems (see for example sec. 1.2).

Practical transform coders differ from the standard model in many ways,
for example transform coefficients are often not entropy coded independently
and this eliminates the incentive to have independent transform coefficients.
This is what happens in JPEG standard [19], where, as we shallclear in the next
section, the transform coefficients with zero quantized values are jointly coded.
Actually, this type of joint coding does not eliminate the effectiveness of the
KLT, on the contrary, can be seen as an additional motivationfor its use. In
fact, the property of rendering transformed coefficients totally decorrelated is
equivalent to the property of concentrating optimally the coefficient energy, so
there are a large fraction of coefficients with small magnitude and this benefits
the joint coding. The empirical fact that wavelet transforms have a similar, but

1The rate is computed from the entropy.
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stronger (see Sec. 1.4), property for natural images (or rather, for piecewise
smooth functions) is a key to their current popularity.

1.2 From KLT to JPEG

To make the KLT approach to block coding operational, two problems need
to be addressed: the computational complexity (N2), due to the calculation of
eigenvectors of the correlation matrix, and the estimationof correlation matrix
from the data. Indeed, to have a good estimation it is necessary that the data are
stationary but this is not true for images. A possible strategy is to partitioning
the image in blocks in order to have a more stationarity signal, but this mean
doing the estimation on a smaller quantity of data, thus a worse estimation. To
overcome KLT problems, fast fixed transforms leading to approximate diag-
onalization of correlation matrices are used. The most popular among these
transforms is the discrete cosine transform (DCT).

The discrete cosine transform of a sequencex(n) of lengthN is defined
by:

y(k) =

√

2

N
β(k)

N−1
∑

n=0

x(n) cos

(

k(2n + 1)π

2N

)

(1.1)

where

β(k) =

{
√

1/2 for k = 0
1 for 0 < k ≤ N − 1

, (1.2)

and its inverse is:

x(n) =

√

2

N

N−1
∑

n=0

β(k)y(k) cos

(

k(2n + 1)π

2N

)

(1.3)

The transform for the two-dimensional signals is derived asa product basis
from the one-dimensional DCT. While not necessarily best, this is an efficient
way to generate a two-dimensional basis.

Since the DCT is equivalent to the discrete Fourier transform (DFT) ap-
plied to a symmetric extension of original signal it can be computed with a fast
Fourier transform (with aboutN logN operations). This is a key issue: the
DCT achieves a good compromise between energy concentration and com-
putational complexity. Therefore, for a given computational budget, it can
actually outperform the KLT.

For these reasons DCT transform is used in the most widespread standard
for image compression: JPEG (Joint Photographic Experts Group) [19]. The



1.3. WAVELET TRANSFORM 5

way of using DCT in JPEG is quite different from what theory suggests, be-
cause the source (images) is very different from the theoretical model (gaus-
sian sources). The image is first subdivided into blocks of size8× 8 and these
blocks are processed independently. Note that blocking theimage into inde-
pendent pieces allows to have a more stationary signal in each block and to
adapt the compression to each block individually. The blocksize choice rep-
resents a compromise between the need of compacting energy and the need of
limiting the signal variability.

Now, quantization and entropy coding is done in a manner thatis quite
at variance with the classical setup. First, based on perceptual criteria, the
transform coefficients are quantized with a uniform quantizers whose step-
sizes, typically, small for low frequencies, and large for high ones, are stored
in a quantization matrix. Technically, one could pick different quantization
matrices for different blocks, but usually, only a single scale factor is used,
that can be adapted depending on the block statistics. Sincethere is no natural
ordering of the two-dimensional DCT plane a prescribed 2D to1D scanning
is used. This so-called zig-zag scan traverses the DCT frequency plane diag-
onally from low to high frequencies in order to have a sequence with a lot of
zeros at the end. For this resulting one-dimensional sequence, nonzero coeffi-
cients are entropy-coded, and stretches of zero coefficients are encoded using
run lengths coding.

1.3 Wavelet transform

In spite of the considerable advantages of compression scheme based on DCT,
this technique is not very performing at low bit-rates. As underlined in the
previous section, in the JPEG standard it is necessary to divide the image in
blocks before to perform the DCT transform, in this way the correlation present
on blocks edges is eliminated causing an effect called ”blocking artifact”, that
is very visible at low bit-rates. The evolution of JPEG standard, known as
JPEG-2000, is based on the Discrete Wavelet Transform (DWT)[20].

The literature about wavelet is huge and we refer to it ([21, 22, 23, 24]
for a detailed exposition, in this context we only want to highlight wavelet
characteristics useful for image compression, namely:

• time frequency localization;

• critical sampling;

• easy implementation;
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Figure 1.2: Example of mother wavelet.

• multiresolution.

To explain the first property we start from continuous wavelet. Unlike Fourier
analysis, that describes a function in terms of components relative to a basis
made by sine and cosine, wavelet analysis has, as basis functions, the dilations
and translations of a single functionψ, called mother wavelet (Fig. 1.2), having
limited energy and zero mean. So the wavelet basis functionsare short and
oscillating from which the name ofwavelet(“small waves”).

The mother waveletψ(t) can be dilated (stretched) and translated adjusting
two parametersa (scale parameter) andb (translation parameter) that charac-
terize it:

ψab(t) =
1

√

|a|
ψ

(

t− b

a

)

(1.4)

with a ∈ R
+ andb ∈ R. A valuea > 1 corresponds to a more stretched basis

function while a value ofa < 1 to a more compressed one (Fig. 1.3).
The continuous Wavelet transform (CWT) of a given signalx(t) with re-

spect to the mother waveletψab(t), is given by the following definition:

CWTx(a, b) =

∫ ∞

−∞

x(t)ψ∗
ab(t)dt =< ψab(t), x(t) > (1.5)

For an assigned couple of parametera andb, the coefficient obtained by re-
lation 1.5 represents how well the signalx(t) and scaled and translated mother
wavelet match. So, if we look at Fig. 1.3, we can notice that when wavelet
basis functions are longer (a > 1) we are taking into account lower frequen-
cies, while when basis functions are shorter (a < 1) we are taking into ac-
count higher frequencies. Basically, the wavelets can variate the resolution
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Figure 1.3: Example of rescaled mother wavelet.

with frequency, in particular it is possible to obtain a timeresolution arbitrar-
ily good at high frequencies and a frequency resolution arbitrarily good at low
frequencies. This property is called time-frequency localization and it is par-
ticularly suitable for natural images, that typically are composed by a mixture
of low frequency components of long duration, calledtrend(for example back-
ground), and high frequency components of short duration, called anomalies
(for example contours).

The continuous wavelet transform is highly redundant and isnot adapted to
compression. To obtain a non redundant representation (thecritical sampling
that is our second desiderable characteristic) is necessary to discretize the pa-
rameters. To this regard, the most common discretization isthe following:

{

a = am
0 m ∈ Z a0 > 1

b = nab0 n ∈ Z b0 > 1
. (1.6)

The most widespread wavelet decomposition is the dyadic one(the only con-
sidered in this thesis work) achieved settinga0 = 2 andb0 = 1. So the wavelet
transform of a signalx(t) using discrete scale and time parameters is:

< x(t), ψmn(t) >=

∫ ∞

−∞

x(t)2
−m

2 ψ(2−mt− n)dt (1.7)

It is possible to demonstrate that, choosing convenientlyψ(t), the reconstruc-
tion formula is:

x(t) =
∑

n

∑

m

< x(t), ψmn(t) > ψmn(t) (1.8)
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Figure 1.4: Filter bank.

where theψmns form an orthonormal basis2.
The third reason of wavelet success is that wavelet transform for discrete

signals (DWT) can be easily implemented by a filter bank structure composed
by two filtersh0(n) andh1(n), respectively low pass and high pass, followed
by a downsampling. The procedure is iterated on low-pass branch for multi-
scale decomposition as shown in Fig. 1.4, rendering a multiresolution repre-
sentation of the input signal.

The 1-D wavelet transform can be extended to a 2-D transform using sepa-
rable wavelet filters. With separable filters the 2-D transform can be computed
by applying a 1-D transform to all rows of the input, and then repeating on all
columns. An example of three levels, 2-D wavelet decomposition is shown in
Fig. 1.5

Wavelet actual coders are very different from the ideal scheme showed in
Fig. 1.1. Only to give an idea of this diversity we explain very synthetically the
characteristics of the most common wavelet coders: EZW [26]Embedded Ze-
rotree Wavelet, SPIHT [5]Set Partitioning in Hierarchical Treesand EBCOT
[20] Embedded Block Coding with Optimized Truncation, the coder used in

2In our theoretical discussion we will always consider orthogonal filters although in the
practise we will often use biorthogonal wavelet. For an analysis of the differences see [25]
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Figure 1.5: Three levels wavelet decomposition of image Lena.

standard JPEG2000 [27].
EZW and SPIHT are namedzero-treecoders and are based on the same

principles. They are progressive algorithms in which the most important in-
formation, which yields the largest distortion reduction,is transmitted first.
This means, supposing the transform orthogonal, that the largest wavelet co-
efficients are sent before. To realize this approach it is possible to classify the
information in bit plane; so the progressive transmission send before the most
significant bits of each coefficient. At first step of the algorithm a threshold
is fixed and all coefficients are compared with this threshold: the coefficients
superior to threshold are labelled assignificant, the otherinsignificant. Then
the information relative to these decisions (the significance map) is encoded,
and a refinement pass gives further bits to the coefficients that were already
significant at previous step. Finally the threshold is halved and the procedure
repeated.

The strategy adopted by EZW and SPIHT for map significance encoding
is based on two observations, the first is that images are substatially low pass,
and the second that among wavelet subbands there is a sort ofself-similarity
(see Fig. 1.5), due to the fact that the coefficients present in different subbands
represent the same spatial locations in the image. So, if there is an insignificant
coefficient in the subband at lower frequency, probably, thecoefficients relative
to the same spatial location, that lie in the subbands at higher frequency, are
zero and it is possible to jointly describe all these zero coefficients by a tree
structure (Fig. 1.6).
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Figure 1.6: EZW and SPIHT trees of coefficients.

The coding scheme used in JPEG2000 standard is EBCOT (Embedded
Block Coding with Optimized Truncation) and it was originally proposed by
Taubman [20]. It is a block coding scheme that generates an embedded bit-
stream. The block coding is independently performed on non overlapping
blocks within individual subbans of same dimension (exceptfor the blocks
on the lower or on the right boundaries). EBCOT organizes thebitstream in
layers, within each layer each block is coded with a variablenumber of bits.
The partitioning of bits between blocks is obtained using a Lagrangian opti-
mization that dictates the truncation points. The quality of the reproduction is
proportional to the number of layers received. The embeddedcoding scheme
is similar in philosophy to the EZW and SPIHT algorithms but the data struc-
ture used is different. In fact, EBCOT codes independently blocks that reside
entirely within a subband, which precludes the use of trees.Instead EBCOT
use a quadtree data structure. As in EZW and SPIHT there is a comparison
with a threshold to state the significance of the coefficient,and the algorithm
makes multiple passes: significance map encoding and refinement. The bits
generated during these procedures are encoded using arithmetic coding.

1.4 Wavelet and nonlinear approximation

We already noted that the importance of wavelet in compression is related to a
low-rate scenario, in fact DCT and JPEG have good performance for medium
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and high rates. In the first section of this chapter we presented some theorems
that could be seen as a guideline to choose the transform, butall these theorems
are valid only for high-rate compression. An analysis of thelow-rate behavior
of transform coders has been done by Mallat and Falzon [28] and by Cohen,
Daubechies, Guleryuz, and Orchard [29]. In these works, theauthors link
the low bit-rate performance of a coder to the nonlinear approximation (NLA)
behavior of its transform.

Before explaining why NLA and low bit-rate compression are linked, we
need to introduce the concepts of linear and nonlinear approximation.

Given a signalx of a function spaceS, it can be represented by a linear
combination of the elementary signals{φn}n∈N that form an orthogonal basis
for S:

x =

∞
∑

n=0

cnφn, wherecn = 〈x, φn〉. (1.9)

We call linear approximation (LA) the representation of signal that we
obtain keeping the firstM components of its basis expansion:

x̂M =

M−1
∑

n=0

cnφn. (1.10)

This is referred to as linear approximation since it is equivalent to projecting
the input object onto the subspace spanned by the firstM basis elements.

Instead, we talk of nonlinear approximation when we keep thebestM
components3:

x̂M =
∑

n∈IM

cnφn, (1.11)

whereIM is the set ofM indices corresponding to theM -best|cn|. This is
referred to as nonlinear approximation since the sum of two arbitrary elements
expressed by Eq. 1.11 generally uses more than basis functions with the index
included inIM .

The results of both schemes depend on the signal and on the basis choice
but the nonlinear approximation scheme certainly works better than linear one.
To clear the different behavior of these two types of approximation we report
an example taken from [30]. We want approximate a one-dimensional piece-
wise smooth signal with N = 1024 samples (showed at top of Fig.1.7) using
only M = 64 coefficients. In figure 1.7 we show the results for both types of

3That, for orthonormal transform, are the largest ones.
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approximation using the Fourier basis. In this case we see that the nonlin-
ear approximation is not necessarily better than linear approximation, but both
provide poor results. Figure 1.8, instead, shows the results of the same exper-

Figure 1.7: Approximation using Fourier basis. On top, the original
signal. In the middle, linear approximation. At the bottom,nonlinear
approximation.

iment but using a wavelet basis. In this case, with the linearapproximation
scheme the resulting signal is very poor, but using nonlinear approximation
the signal is almost perfectly recovered.

In the first section, talking about KTL, we said that this transform decorre-
lates optimally namely maximizes the energy concentration. This characteris-
tic can be expressed in another way saying that KLT is the basis that minimizes
the linear approximation error:

E[‖x−

M−1
∑

n=0

< x, φn > φn‖
2]. (1.12)

So, in a low bit-rate regime, the key feature is not the energyconcentration
or the decorrelation but the capacity of transform to minimize the error of
nonlinear approximation:

E[‖x−
∑

n∈IM

< x, φn > φn‖
2]. (1.13)

When a basis satisfies this property, is namedsparse.
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Figure 1.8: Approximation using wavelet basis. On top, the original
signal. In the middle, linear approximation. At the bottom,nonlinear
approximation.

Even if we refer the reader to [28] and [29] for a deeper analysis, here
we want just to mention the reason for nonlinear approximation importance in
low bit-rate compression. Many image coder schemes, as for example EZW,
SPIHT and EBCOT, tend to put to zero small coefficients, typically, the lower
bit-rates the smaller the number of coefficients different from zero. So at these
rates, there are two different contributions to distortion, one due to quantization
and another due to the fact that we are taking only a part of total coefficients.
It is possible to show that the latter contribution is predominant. So if the cod-
ing is made in an appropriate way the rate behavior follows that of nonlinear
approximation.

The success of wavelet basis in nonlinear approximation wasinterpreted
by mathematicians to be the true reason of the usefulness of wavelets in signal
compression, rather than their potential for decorrelation [29].

At this point we can declare with sufficient confidence that what we want
from a transform in image coding is that it gives a sparse representation of the
data. But, while the better basis for linear approximation is note for all kind of
signals and is the KTL, the best basis for nonlinear approximation depends on
the particular class of signals considered.

Recently, to find the best basis for images, a lot of researchers used a com-
pletely different approach from that of classical information theory, in fact they
utilized a deterministic approach [31]. In this setting theimages are not seen



14 CHAPTER 1. CONTOUR CODING PROBLEM

as realization of a random process (for example gaussian) but as function of
a particular class. While in the probabilistic approach allresults are average
results, the results in deterministic setting are relativeto the worst case, namely
instead of minimizing

E[‖x−
∑

n∈IM

< x, φn > φn‖
2], (1.14)

we minimize:
maxx∈S[‖x−

∑

n∈IM

< x, φn > φn‖
2], (1.15)

whereS is the function class.
Particulary, of great interest for compression community are some results

of harmonic analysis. The harmonic analysis involves different mathematical
problems, even very heterogeneous, but can be summarized inthe tentative
of representing some functions as superposition of fundamental waves, called
harmonic. Basically, the harmonic analysis try to identifya class of mathemat-
ically defined objects (functions, operators, etc.), to develop tools to character-
ize the class of objects and to find, if possible, an optimal representation [31].
Part of the results we are going to talk about rise in this context, notably in
the sphere of computational harmonic analysis (CHA), an harmonic analysis
branch that, as well as being interested in finding an optimalrepresentation,
try to identify a fast algorithm to compute this representation.

A very interesting CHA result, that justify the success of wavelet trans-
form in image coding, is that wavelets are an optimal basis for Besov spaces,
where with Besov spaces is intended a class of smooth functions with point
discontinuities. Therefore wavelets are optimal for a class of functions that
well represents image rows and columns.

1.5 Wavelet limits and new approaches

In the previous section, we motivated wavelet efficiency with its good NLA be-
havior on smooth signals with point discontinuity. Unfortunately, contours in
the image are not pointwise but they lie on regular curves. Socommonly used
separable wavelet transforms is suboptimal in higher dimensions. To clear
this concept in Fig. 1.9 we show an example of the 2-D wavelet transform
of the image Barbara. We can notice that wavelet representation is not suffi-
ciently sparse, in fact there are a lot of significant waveletcoefficients (shown
in white). The significant pixels are around the image contours, or in general,
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the points with sharp contrasts in the intensity. The key point to note here is
that the locations of these significant coefficients exhibitvisible geometrical
correlation as they form simple curves; geometrical correlation that wavelet,
being a separable transform, can not exploit. This suboptimality can be for-

Figure 1.9: 2-D wavelet transform of the image Barbara. Significant
coefficients are shown in white.

malized mathematically if we consider a model for natural images of type
C2/C2, where with the expressionC2/C2 we mean an image composed of
piecewise smooth regions with a smoothness of typeC24 separated by smooth
boundaries having the same regularity (see Fig. 1.10). In fact if we consider
this model it is possible to show that optimal asymptotic NLAbehavior is of
typeM−2 while wavelet NLA behavior is only of typeM−1 [2]. The wavelet
inefficiency on contours make necessary find new approaches for image com-
pression. The arguments treated in this thesis work are placed in three different
scenarios that can be considered three different answers tothis request: object-
based coding (Chapter 2), new directional transforms (Chapter 3) and adaptive
lifting scheme (Chapter 4).

The first approach that we want to investigate is object-based coding. The
scheme that we considered is the following: the image is segmented, this pro-
cess produces a segmentation map that is coded without loss of information;
then this information is used to lossy compress the interiorof each object; fi-
nally, the overall bit-budget is allocated among the various objects. In this way
we have two advantages: first of all we preserve information about contours

4A function is of classC2 if has two derivates continuous and bounded.
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Figure 1.10: A simple model of image.

and this improves the visual quality. Second, lossy compression algorithms
(read wavelets) work on stationary signals and so they perform better.

Figure 1.11: Example of anisotropy and directionality importance.

An alternative solution for contours problem is the use of new, and more
effective, transforms. We already noted that the cause of wavelets suboptimal-
ity reside in its inability to see the smoothness along contours. This is due to
its being a separable transform so it lacks of two fundamental characteristics:
directionality and anisotropy [6]. To visualize the importance of these features
in representing images with smooth contours, we consider the scenario showed
in Fig. 1.11 where we have a simple image with a contour. The little squares
represent the supports of the wavelet basis functions: theyare square because
we use the same wavelet on the rows and on the columns. We can consider
to have a large coefficient whenever our basis functions intersect the contour,
so to describe this information we need a lot of coefficients.But if we had
basis functions with a support rather elongated and directional, we could rep-
resent the same information with less coefficients, as we cansee on the right
of Fig. 1.11. The new transforms look for these new goals, directionality and
anisotropy, while at same time, keeping the desirable wavelet characteristics
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such as multiresolution, localization and critical sampling. The importance of
these features is also supported by the physiological studies [32], [33] from
which we know that the receptive fields in the visual cortex are characterized
as being localized, oriented and bandpass.

Lifting structure is an efficient and popular implementation of wavelet
transforms [9]. Using lifting structure, several adaptivewavelet transforms
have been proposed. The ways in which adaptivity could be useful for contour
problem are numerous. A very spread strategy concerns the filtering directions,
that are modified in order to follow the orientations of edgesand textures [10],
[11], [12]. Others types of adaptive lifting scheme, instead, operating on pre-
diction or update steps, change the filters according to the regularity of the
input signal [13], [14], [15]. So when important features like contours or sin-
gularities are highlighted, different filters, from that used in regular part of
images, are used.





Chapter 2

Object-based coding

O
bject-based image coding is drawing great attention for themany op-
portunities it offers to high level applications. At same time this

scheme could be seen as a mean to cope with wavelet inefficiency on contours.
However, its value, in terms of rate-distortion performance, is still uncertain,
because the gains provided by an accurate image segmentation are balanced by
the inefficiency of coding objects of arbitrary shape, with losses that depend
on both the coding scheme and the object geometry. In this chapter we mea-
sure rate-distortion costs and gains for a wavelet-based shape-adaptive encoder
similar to the shape-adaptive texture coder adopted in MPEG-4. The analysis
of the rate-distortion curves obtained in several experiments provides insight
about what performance gains and losses can be expected in various opera-
tive conditions and shows the potential of such an approach for image coding.
Then we introduce two variants of object coding paradigm formultispectral
images and we analyze their performance showing the validity of the approach
for this kind of images.

2.1 Object-based coding

Object-based image coding is an increasingly active area ofresearch, dating
back to early works on second generation coding techniques [34] and gaining
momentum more recently thanks to the driving force of the MPEG-4 video
coding standard [35]. The major conceptual reason for object-based coding
is that images arenaturally composed by objects, and the usual pixel-level
description is only due to the lack of a suitable language to efficiently rep-
resent them. Once objects have been identified and described, they can be

19
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treated individually for the most diverse needs. For example they can be as-
signed different coding resources and different error-protection levels based on
their relative importance for the user [36, 37], can be edited in various way by
high-level applications, or can be used for subsequent classification tasks (e.g.,
biometric applications).

In some instances, object-based coding is obviously the most reasonable
solution. In the context of MPEG-4 video coding, for example, when a number
of arbitrarily shaped foreground objects move in front of a fixed background,
which is a full-frame sprite, conventional coding is clearly inefficient. Addi-
tionally, there exist applications (e.g., [38]) in which data are available only for
part of the image frame, and one has no choice but to either code an arbitrarily-
shaped object or artificial pad the object out to a full-frame.

In the context of this thesis work, we are interested in object-based from a
coding efficiency point of view, in fact, as noticed in Cap. 1,the object-based
description of an image could be a mean to overcome problems of classical
coding scheme in describing contours. Indeed, component regions turn out
to be more homogeneous, and their individual encoding can lead to actual
rate-distortion gains. Moreover, an accurate segmentation carries with it in-
formation on the image edges, and hence contributes to the coding efficiency
and perceived quality. Of course, there are also costs; firstof all, since objects
are separate entities, their shape and position must be described by means of
some segmentation map, sent in advance as side information.In addition, most
coding techniques become less efficient when dealing with regions of arbitrary
size and shape. These observations justify the need of analysis of potential
cost and advantages of object-based approach [39].

In this analysis, we focus on a wavelet-based shape-adaptive coding algo-
rithm. The main coding tools are the shape-adaptive wavelettransform (SA-
WT) proposed by Li and Li [3], and a shape-adaptive version ofSPIHT (SA-
SPIHT) [4] (similar to that formerly proposed in [40] and further refined in
[41]) which extends to objects of arbitrary shape the well-known image coder
proposed by Said and Pearlman . The choice of the specific coding scheme is
justified by the fact that Li and Li’s SA-WT is by now ade factostandard for
object based-coding, and SPIHT guarantees a very good performance, and is
widespread and well-known in the compression community. Inaddition, the
algorithm analyzed here is very similar to the standard texture coder of MPEG-
4 [35]. Of course, this is not the only reasonable choice, andother coding al-
gorithms based on shape-adaptive wavelet have been proposed in recent years
[42, 43, 44, 45], sometimes with very interesting results, but a comparison with
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some of these algorithms, deferred to the Sec.2.5, is of marginal interest here.
Our target is to analyze the quite general mechanisms that influence the effi-
ciency of wavelet-based shape-adaptive coding and to assess the difference in
performance with respect to conventional wavelet-based coding.

In more detail, we can identify three causes for the additional costs of
object-based coding: the reduced performances of the WT andthe reduced
coding efficiency of SPIHT that arise in the presence of regions with arbitrary
shape and size, and the cost of side information (segmentation map, object
coding parameters). Note that this classification is somewhat arbitrary, since
the first two contributions are intimately connected, nonetheless it will help
us in our analysis. As for the possible gains, they mirror thelosses, since
they arise for the increased sparsity of the WT representation, when dominant
edges are removed, and for the increased coding efficiency ofSPIHT when
homogeneous regions have to be coded.

A theoretical analysis of such phenomena is out of the question, and in
the literature attempts have been made only for very simple cases, like 1-d
piecewise-constant signals [46]. Therefore, we measure losses and gains by
means of numerical experiments carried out in controlled conditions. This
allows us to isolate with good reliability the individual contributions to the
overall performance, point out weaknesses and strengths ofthis approach, and
hence give insight about the behavior of the proposed codingscheme in situa-
tions of practical interest.

In order to assess losses and gains related to the SA-WT only,we re-
move the cost of side information, and use an “oracle” coder which mimics
the progressive bit-plane coding of SPIHT but knows in advance the location
of significant coefficients within each bit-plane, thereby removing all sorting-
pass costs1. Within this framework, we use several classes of images andof
segmentation maps, both synthetic and natural, so as to study all the relevant
phenomena. Subsequently, for the same set of images and maps, we add the
actual coding phase: the additional gains and losses can be therefore attributed
to SA-SPIHT or to its interactions with the SA-WT.

2.2 The coding scheme

We implemented an object-based coding scheme with the following elemen-
tary steps (see Fig. 2.1)

1Note that the very same oracle coder works for all bit-plane oriented coders that use Li and
Li’s SA-WT, like for example [43] and [47].
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1. image segmentation;

2. lossless coding of the segmentation map (object shapes);

3. shape-adaptive wavelet transform of each object;

4. shape-adaptive SPIHT coding of each object;

5. optimal post-coding rate allocation among objects.
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Figure 2.1: The object-based coding scheme under investigation.

The accurate segmentation of the image is of central importance for the
success of object-based coding, and is by itself a very challenging task and a
“hot” topic. However, faithful image segmentation is not ofinterest here and
is not investigated. Moreover, to study the effects of different object geome-
tries on the coding performance, we need to change rather freely the geomet-
rical/statistical parameters of objects, and therefore resort, in most of the anal-
ysis, to artificial regular segmentation maps, independentof the actual image
content. Only in our final experiments we do consider meaningful segmenta-
tion maps.

The segmentation maps are encoded without loss of information, because
of their importance, by means of a modified version of the RAPPalgorithm
[48], originally proposed for palette images, which provesvery efficient for
this task. The cost for coding the map, as well as all other side information
costs, can become significant and even dominant in some instances, and hence
must be always taken into account in the overall performance.
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As for the SA-WT, we resort to Li and Li’s algorithm, as already said,
which is almost universally used in the literature and also adopted in the
MPEG-4 standard. For a detailed description we refer to the original paper
[3], but it is worth recalling here its most relevant features. First of all, the
number of coefficients equals the number of pixels in the original object, so
there is no new redundancy introduced. Second, spatial relationships among
pixels are retained, so there are no new spurious “frequencies” in the trans-
form. Finally, the SA-WT falls back to ordinary WT for rectangular objects.
All these reasons, together with its simple implementationand experimentally
good performance, justify the success of this algorithm. Inthe implementa-
tion, we use five levels of decomposition, Daubechies 9/7 biorthogonal filters,
and the global subsampling option which secures experimentally the best per-
formance.

After SA-WT, we use the well-known SPIHT algorithm, in the shape-
adaptive extension proposed in [4]. It is worth recalling that it is a bit-plane
coder of the wavelet coefficients. For each bit-plane there are essentially two
tasks, locating the significant bits, and specifying their value (also the coef-
ficient signs must be encoded of course). Other algorithms ofinterest here
share the same general approach, and differ only in the way significant bits
are located. Our shape-adaptive version of SPIHT is very similar to the basic
algorithm with the differences that only active nodes, thatis nodes belonging
to the support of the SA-WT transform, are considered, and that the tree of
coefficients has a single ancestor in the lowest frequency band.

After coding, the rate-distortion (RD) curves of all objects are analyzed so
as to optimally allocate bits among them for any desired encoding rate, like
in the post-compression rate allocation algorithm of JPEG-2000. This process
is intrinsically performed in conventional coding, while is a necessary step in
object-based coding, and also an extra degree of freedom as bits could be also
allocated according to criteria different from RD optimization.

2.3 Measurement of losses

2.3.1 Methodology

As clarified in the Chapter 1, the performance of a transform-based compres-
sion algorithm depends essentially on the efficiency of the transform, which is
therefore the first item we must quantify.

It’ s important to notice that the shape-adaptive WT is non-isometric in
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an unpredictable way. This depends on the need to transform signal segments
composed by a single pixel: in Li and Li’s algorithm, this generates a single
coefficient which is put in the low-pass transform band and, in order not to
introduce discontinuities in otherwise flat areas, is multiplied by a constant.
This multiplication (which can occur many times in the SA-WTof an object)
modifies the transform energy and makes impossible to compare SA-WT and
WT coefficients directly.

For this reason, we propose here an experimental methodology to compare
the efficiency of SA-WT and its conventional (or “flat”) version. The basic
idea is to apply both the shape-adaptive and the flat transforms to the same
image, quantize the resulting coefficients in the same way, and compare the
resulting RD curves. In order for the comparison to be meaningful, the trans-
forms must operate on exactly the same source, and henceall objects of the
image must undergo the SA-WT and be processed together. The total number
of coefficients produced by the SA-WT is equal to the number ofimage pixels
and hence to the number of WT coefficients. These two sets of coefficients are
sent to an oracle encoder which implements a bit-plane quantization scheme
like that of SPIHT and most other engines used in object-based coders. All
these algorithms spend some coding bits to locate the significant coefficients
in each plane (sorting pass, in SPIHT terminology), and someothers to encode
their sign and to progressively quantize them (refinement pass). Our oracle
coder knows in advance all significance maps and spends its bits only for the
sign and the progressive quantization of coefficients. As a consequence, the
rate-distortion performance of this virtual coder dependsonly on how well the
transform captured pixel dependencies, what we call transform efficiency2.

As an example, consider the RD curves of Fig. 2.2. Although the object
based coder (solid red) performs clearly worse than the flat coder (solid blue),
at least at low rates, their oracle counterparts (dashed redand dashed blue)
perform nearly equally well. This means that, as far as the transforms are
concerned, the shape-adaptive WT is almost as efficient as the conventional
WT, and therefore the losses must be ascribed to coding inefficiencies or to the
side information. Actually, since the cost of side information is known, we can
also easily compute the losses caused by SA-SPIHT inefficiencies, the second
major item we are interested to measure.

There are two reasons why shape-adaptive SPIHT could be lessefficient
than flat SPIHT

2 This measure is similar to NLA, but it takes into account alsothe effects of quantization
on the most significant coefficients
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Figure 2.2: RD curves for flat (red) and object-based (blue) coders.
Solid and dashed lines are, respectively, for actual and oracle coders.

• the presence of incomplete trees of coefficients;

• the interactions with the SA-WT.

Much of the efficiency of SPIHT, especially at low rates, is due to the use of
zerotrees, that is, trees of coefficients that are all insignificant w.r.t. a given
threshold and can be temporarily discarded from further analysis. A single in-
formation bit can therefore describe a whole zerotree, comprising a large num-
ber of coefficients. With an arbitrarily shaped object, the support of the trans-
form can be quite irregular, and incomplete zerotrees can appear, which lack
some branches and comprise less coefficients than before. Asa consequence,
the zerotree coding process becomes less efficient, at leastat the lowest rates.

The second item concerns a more subtle phenomenon, the fact that the
reduced WT efficiency affects indeedboth quantization and sorting. In fact,
when the WT does not give a sufficiently sparse representation, the energy is
more scattered throughout the trees and more bits are spent sorting in order to
isolate the significant coefficients at each iteration. Hence, computing these
losses as due to SA-SPIHT is somewhat arbitrary, but it is also true that a
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different coder could be less affected by this phenomenon.

2.3.2 Experimental results

To measure losses, we encode some natural images of the USC database [49]
with both the oracle and the actual object-based coders using synthetic segmen-
tation maps of various types formed by square tiles, rectangular tiles, wavy
tiles, irregular tiles. Test images (512×512 pixels, 8 bit/pixel) are shown in
Fig. 2.3, while Fig. 2.4 shows some examples of segmentationmaps. By using
such synthetic maps, which are not related to the actual image to be coded, we
introduce and measure only thelossesdue to object shape and size, while no
gain can be expected because object boundaries do not coincide with actual
region boundaries.

(a) (b)

(c) (d)

Figure 2.3: Test images from the USC database: (a) Lena, (b) Peppers,
(c) Baboon, (d) House.

In the first experiment we segment the natural images in square tiles of size
going from 512×512 (whole image) down to 32×32 (256 objects), and encode
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(a) (b)

(c) (d)

Figure 2.4: Some maps used in the experiments: (a) square 128×128
tiles, (b) rectangular 128×32 tiles, (c) wavy tiles with C=1, A=16, (d)
out-of-context map.

them as described before. In Fig. 2.5 we report the rate-distortion curves ob-
tained by the object-based coders for each tile size: solid lines refer to the
actual coder, and dashed lines to the oracle coder. Note thatthe flat case cor-
responds to the 512×512 coder, that is, conventional WT and SPIHT. Curves
refer to the image Lena of Fig. 2.3 (a), as will always be in thefollowing unless
otherwise stated, but similar results have been obtained with all other images.
A first important observation is that the quantization rate is always a small frac-
tion, about one fourth, of the total rate, at least in the range considered here3.
As a consequence, the same relative loss of efficiency is muchmore critical for
SPIHT than for the WT. In this experiment, however, losses are always quite
limited. Performances worsen as the tile size decreases, but the rate increment
is always less than 20% (except a very low rates) and the PSNR gap is less

3At higher rates, the RD slope is the same in all cases because we are only coding noise-like
residuals, and hence the analysis looses interest
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than half dB at high rates, and about 1 dB at lower rates. Most of these losses
are due, directly or indirectly, to the reduced sparsity of the SA-WT, since the
zerotrees are always complete, and the fixed cost of side information, 0.013
bit/pixel in the worst case, is quite small. Note, however, that this last cost
cannot be neglected if one looks at very low rates.
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Figure 2.5: RD performance with square-tile segmentation. Solid and
dashed lines are, respectively, for actual and oracle coders. Black lines
are for flat (conventional) coding of the whole image, colored lines are
for object-based coding.

To begin investigating the influence of region shapes, in thesecond ex-
periment we consider rectangular tiles of fixed size (4096 pixels) but different
aspect ratios, from 64×64 to 512×8. The RD curves are reported in Fig. 2.6,
together with those for the flat case, and show that the aspectratio does matter,
but only when very short segments are considered. Indeed, the performance
is very close for 64×64, 128×32, and even 256×16 tiles, while it becomes
significantly worse for 512×8 tiles, because the WT cannot perform well with
segments as short as 8 pixels. For example, the PSNR loss at high rate is 1.15
dB for the 512×8 case and less than 0.6 dB for all the other cases. One might
suspect that the sharp decline in performance in the 512×8 case is also related
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with our use of 5 levels of decomposition when 3 or 4 would havebeen more
appropriate for such short segments. In fact, this mismatchproduces several
single coefficients, after some levels of WT, which are further filtered and lead
to an artificial increase in energy. However, all our experiments show that
adapting the number of decomposition levels to the object size has no measur-
able effects on the performance, and that a fixed 5-level SA-WT is the optimal
choice, at least for our512 × 512 images.
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Figure 2.6: RD performance with rectangular-tile segmentation.

Let us now consider more complex tiles, obtained by remodeling the
boundaries of a64 × 64 square as sine-waves with amplitude A pixels, and
frequency C cycles/tile. One such segmentation map, obtained for A=16 and
C=1, is shown in Fig. 2.4 (c). In Fig. 2.7 we report the RD curves for some
significant values of A and C, together with the reference curves for square
64× 64 tiles and for flat coding. As expected, the performance worsens as the
tiles become less regular. At high rates the impairment is not dramatic, with
a PSNR loss that lies between 1 and 2 dB, while the situation ismuch worse
at low rates, with losses of 4-5 dB or, for a given PSNR, a coding rate that
doubles w.r.t. flat coding. Apparently, such losses are mainly due to the side
information and SA-SPIHT inefficiencies, and only in minimal part to the SA-
WT, since the RD curves for the oracle coder are all very close, but we should
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not forget the WT-SPIHT interactions, and will soon come back to this topic.
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Figure 2.7: RD performance with wavy-tile segmentation.

In our fourth experiment, we use segmentation maps obtainedfor unrelated
(remote-sensing) images of the same size as ours. These maps, one of which is
shown in Fig. 2.4 (d), present many elementary tiles, with quite different size
and shape, some with regular boundaries and some not. Fig. 2.8 shows RD
curves for this case, which resemble closely those of Fig. 2.7, and for which
the same comments apply, suggesting that the wavy-tiles segmentation can be
a good tool to mimic actual segmentation maps.

To take a closer look at these results, let us consider Tab. 2.1 where we
have collected the individual contributions of side information, quantization,
and sorting pass to the overall coding cost, at a PSNR of 30 dB,corresponding
to the low-rate range. We see that the increase of the quantization cost w.r.t.
the flat case is quite steep, from 15% up to 100%, due to the reduced efficiency
of the transform. As for the sorting cost, it also increases w.r.t. the flat case.
The increase is obviously larger in the last six cases, when the tile geometry is
more challenging, but also non negligible in the first six cases, with square and
rectangular tiles. This is quite telling, because with straight boundaries there
are no incomplete trees to impair performance, and hence alllosses must be
charged to the reduced sparsity of transform coefficients. Therefore, one can
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Figure 2.8: RD performance with out-of-context segmentation maps.

even hypothesize that transform inefficiencies are the ultimate cause of most of
the overall losses, even though the effects are more evidentin the sorting pass,
a conjecture that we will further analyze shortly. As a synthetic measure of
performance, we reported in the last column the overall rateincrease w.r.t. flat
coding, including all contributions, which is quite large in all realistic cases,
confirming that object-based coding can be very penalizing at low rates.

The picture, however, is quite different at high rates. Tab.2.2 is similar to
Tab. 2.1 except that all costs are computed at a PSNR of 38 dB, hence at the
right end of our range. It is obvious that the cost of side information becomes
less relevant, and even in the more challenging situations the cost of quantiza-
tion and sorting presents only a limited increase. In the last column, we report
a more familiar measure of performance, the PSNR loss w.r.t,flat coding at 0.8
bit/pixel, which is never more than 2 dB, and quite often under just 1 dB show-
ing that, at high rates, object-based coding can be used without paying much
attention to the rate-distortion performance. It is also worth remembering that,
in most practical situations where object-based coding is used, there is only a
small number of objects, and therefore these measures of loss can be assumed
as upper bounds.

We conclude this section with one last insightful experiment, which sheds
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absolute rates percent increase
tiling side.i. quant. sorting quant. sorting total

whole image .026 .085 − − −

128×128 .003 .030 .091 15.4 7.3 11.7
64×64 .005 .034 .096 30.9 13.1 21.6
32×32 .013 .037 .104 42.9 22.0 38.7
128×32 .005 .034 .100 31.2 17.8 25.2
256×16 .005 .040 .110 53.5 29.3 39.6
512×8 .005 .054 .131 106.9 54.0 71.1

C=1,A=8 .032 .038 .116 48.4 36.3 67.5
C=1,A=16 .044 .041 .125 58.6 46.7 89.1
C=2,A=16 .060 .047 .141 80.6 65.8 123.4

Map 1 .083 .038 .127 48.3 49.9 123.4
Map 2 .105 .042 .135 61.2 59.2 154.0
Map 3 .042 .034 .105 33.0 24.0 63.0

Table 2.1: Indicators of losses at low rates (PSNR = 30 dB).

some more light on the nature of SPIHT losses. Li and Li’s SA-WT, when
applied to all objects of an image, like the simple example ofFig. 2.9 (a), pro-
duces transforms that do not fit together, namely, cannot be put together in a
single image as the pieces of a mosaic, because some coefficients overlap, as
the circled coefficients shown in Fig. 2.9 (b). This is unavoidable if all single
coefficients must be put in the low-pass band after filtering.However, we can
modify the algorithm and put single coefficients either in the low-pass or high-
pass band depending on their coordinates. This way, we mightsacrifice part of
the SA-WT efficiency, but obtain object transforms that fit together as shown
in Fig. 2.9 (c). After all the SA-WTs have been carried out, wecan encode
the coefficients by using SA-SPIHT on each object, or conventional SPIHT
on all the coefficients arranged as a single image. The flat andobject-based
coders thus operate exactly on the same set of coefficients, and all possible im-
pairments can be ascribed to SA-SPIHT coding inefficiencies. The RD curves
obtained with flat and SA-SPIHT for various segmentation maps are reported
in Fig. 2.10, and show clearly that the efficiency gap betweenshape-adaptive
and flat SPIHT is always very limited, and at high rates never exceeds 0.3 dB4.

4As an aside, our experiments show also that the performance of this new scheme (fitting
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absolute rates percent increase ∆ PSNR
tiling side.i. quant. sorting quant. sorting @ 0.8 b/p

whole image .176 .488 − − −

128×128 .003 .184 .498 4.2 2.0 0.15
64×64 .005 .195 .512 10.6 4.9 0.31
32×32 .013 .204 .534 15.5 9.4 0.62
128×32 .005 .194 .519 10.2 6.3 0.37
256×16 .005 .209 .542 18.2 11.0 0.60
512×8 .005 .241 .590 36.4 20.9 1.14

C=1,A=8 .032 .211 .563 19.3 15.2 0.95
C=1,A=16 .044 .221 .589 25.2 20.6 1.35
C=2,A=16 .060 .234 .622 32.6 27.3 1.82

Map 1 .083 .209 .591 18.5 21.1 1.33
Map 2 .105 .225 .611 27.5 25.2 1.89
Map 3 .042 .197 .544 11.7 11.3 0.78

Table 2.2: Indicators of losses at high rates (PSNR = 38 dB).

This seems to be a conclusive proof that the losses arising inthe sorting pass,
although dominant w.r.t. those of the quantization pass, are mostly related to
the reduced sparsity of the SA-WT.

2.4 Measurement of gains

2.4.1 Methodology

The rate-distortion potential of object-based coding strongly depends on the
ability of the segmenter to single out accurately the component objects. When
this happens, in fact, the segmentation map describes automatically many ex-
pensive high-frequency components, related to the edges between different ob-
jects. In terms of SA-WT, this means dealing with a signal (within the object)
that is much smoother that the original signal, since strongedges have been re-

SA-WT + flat SPIHT) is very close to that of our object-based algorithm. However, this new
scheme is not object-based anymore.
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Figure 2.9: Object overlapping in the transform domain. The 4×4
original image with two objects (a) is subject to 1 level of SAWT: the
supports of the two objects overlap with Li and Li SA-WT (b) but not
with the fitting SA-WT (c).

moved, which leads in turn to a much increased efficiency because most of the
encoding resources, especially at low rates, are normally used for describing
edges. Of course, the actual success of this approach depends on many factors,
such as the profile of edges, the statistical properties of the signal within the
objects, and the accuracy of segmentation.

In order to measure the potential performance gains, we get rid of the de-
pendence on the segmentation algorithm, which is not the object of this anal-
ysis, by building some mosaics in which neighboring tiles are extracted from
different images. Of course, one must keep in mind that this condition is very
favorable for object-based coding since objects are clear-cut and we know their
shape perfectly. Our mosaics vary not only for the form of thetiles, but also
for the source images from which they are drawn, that can be

• synthetic images where the signal is polynomial in the spatial variables;

• natural images from the USC database;

• natural textures from the Brodatz database, also availableat [49];
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Figure 2.10: RD performance with fitting SA-WT. Solid lines are for
flat coding of the mosaic formed by the object transform, dashed lines
are for actual object-based coding.

Some examples are shown in Fig. 2.11. By changing the source images we go
from the most favorable case, like that of Fig. 2.11 (a), where all tiles are from
polynomial images, to the most challenging, like that of Fig. 2.11 (d), where
even within the tiles there are strong signal components at the medium and
high frequencies due to the original textures. In between these extremes, there
are more realistic cases where the objects are drawn from natural images pre-
dominantly smooth, like Fig. 2.11 (b), or with significant texture components,
like Fig. 2.11 (c).

2.4.2 Experimental results

Fig. 2.12 shows the PSNR differences between the object-based and the flat
coders when mosaics are composed by wavy tiles of size64×64 and boundary
parameters C=1 and A=16 with the same source images as those shown in
Fig. 2.11. For the first mosaic, there is a very large gain, of 8-10 dB at medium-
high rates, and up to 20 dB at low rates (out of the scale of our figure). This
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(a) (b)

(c) (d)

Figure 2.11: Some mosaics used in the experiments, with
square 128×128 tiles: (a) Polynomials, (b) House+Peppers, (c)
Lena+Baboon, (d) Textures.

is remarkable but not really surprising, given the smooth sources and the fact
that Daubechies wavelets are perfectly fit for polynomial signals.

More interesting are the results obtained with the natural mosaics, with
a gain at all bit-rates of about 5 dB in the first case, and almost 2 dB in the
second case. Considering that these are natural images, this speaks strongly
in favor of the potential of object-based coding, even with all the caveatdue
to the favorable experimental conditions. Also, remember that the observed
gain is obtained despite the losses due to the use of SA-WT with small wavy
tiles (see again Fig. 2.7). As expected, results are less favorable for the fourth
mosaic, where the presence of many high-frequency components within the
tiles reduces the gain to the point that it compensates the shape loss but little
more.

Fig. 2.13 shows results obtained with the same source imagesbut with
square128×128 tiles. The general behavior is very similar to the former case,
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Figure 2.12: PSNR gain of OB-coding w.r.t. flat coding for wavy-tile
mosaics.

but all gains are now much smaller because of the reduced number of objects
and the straight boundaries, and even with the polynomial mosaic there is only
a 2 dB gain at high rates.

2.5 Performance with real-world images

In order to isolate and analyze in depth the phenomena of interest, the ex-
periments carried out in the preceding sections dealt with ideal and sometimes
limiting cases. Now, we focus on the performance of the wholecoding scheme
in real-world situations, thus including the image segmentation, with all its in-
accuracies.

In these experiments, we consider the image Peppers of Fig. 2.3 (c) be-
cause its segmentation in a reasonably small number of meaningful objects is
somewhat simpler. As a side effect, some objects comprise just one or a few
smooth and coherent surfaces, which makes Peppers a more favorable case
w.r.t. other, more complex, images. In any case, the choice of what represents
an object is somewhat arbitrary, and therefore we use several segmentation
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Figure 2.13: PSNR gain of OB-coding w.r.t. flat coding for square-tile
mosaics.

maps, with a different number of objects, shown in Fig. 2.14 from the most
detailed (25 objects) to the simplest one (just 4 objects, including the back-
ground).

Our object-based coding scheme provides the RD curves shownin
Fig. 2.15 together with the curve for the flat coder. Results might seem a bit
disappointing at first, since the flat coder is always the best, but this is easily
justified. In fact, even neglecting the unavoidable segmentation inaccuracies,
it must be considered that, with ordinary images, the objectboundaries are
rarely clear-cut, due to the combination of the object 3-d geometry and the il-
lumination, and also to the limited resolution of the sensors that causes some
edge smearing. Of course, this erodes the gains of removing strong edges. In
addition, when objects have a semantic meaning, their interior is typically not
uniform (just think of the bright glares within each pepper), and therefore the
WT does not benefit much from the segmentation. On the other hand, when
the segmentation map becomes very accurate, so as to single out regions that
are actually uniform, the cost of side information increases significantly.

In this light, the object-based RD curves of Fig. 2.15 can be considered
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(a) (b)

(c) (d)

Figure 2.14: Segmentation maps for image Peppers with 25 (a), 16
(b), 8 (c), and 4 (d) objects.

reasonably good, with a loss of no more than half dB at medium-high rates,
and somewhat more at the lower rates, when the cost of side information is
proportionally more relevant.

It is also interesting to consider the visual quality of compressed images,
and to this end, in Fig. 2.16 we show the image Peppers compressed at 0.05
bit/pixel with WT/SPIHT (a) and with our object-based coderusing the simple
segmentation map of Fig. 2.14 (b). Such a low rate was selected in order to
emphasize the differences of the two approaches, which at higher rates tend to
disappear. The first image has a better PSNR (26.3 vs. 25.2 dB), but the second
one has a superior perceptual quality, at a first look, because major edges have
been better preserved. At a closer inspection, however, theobject-based coded
image presents a slightly worse texture quality, due to the lower effective rate
available, and especially some annoying artifacts at the diagonal boundaries,
which appear unnaturally rugged. This last problem could beeasily overcome
by some directional filtering. Needless to say, if one concentrates most coding
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Figure 2.15: RD performance of flat and object-based coding for im-
age Peppers.

resources on a single object considered of interest, neglecting the background,
the object-based approach shows an overwhelming superiority.

The object-based coder we have analyzed uses what are probably the most
well-know and widespread tools in this field, but other object-based coders
have been proposed recently, and it is therefore interesting to carry out a per-
formance comparison. We therefore repeated the experiments of Fig. 2.15
using various algorithms: WDR [42], TARP [45], OB-SPECK [43], and BISK
[47], implemented in the Qcc library [50] freely available at [51]. All these
algorithms are based on a SA-WT [38] very similar to Li and Li’s SA-WT, and
encode the coefficients by means of embedded bit-plane coding algorithms.

The best performance is exhibited by BISK, based on the shape-adaptive
version of SPECK, from which it differs for two main innovations: the use
of a more flexible binary rather than quaternary splitting ofblocks, and the
introduction of a bounding box to help discard nodes outsidethe object of
interest. BISK proves also superior to SA-SPIHT, as appearsfrom the curves
of Fig. 2.17, obtained with the map of Fig. 2.14 (d). The gap, however, is
partially due to BISK use of arithmetic coding for the outputstream. When
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(a) (b)

Figure 2.16: Image Peppers compressed at 0.05 bit/pixel with flat (a)
and object-based (b) coding.

we introduce a similar coding step after SPIHT the difference becomes very
limited, Fig. 2.18. This had to be expected, if losses are mostly related, directly
or indirectly, to the SA-WT performances, and this is the same for the two
coders.

Our analysis showed that the gains can be significant when theimage
presents sharp edges between relatively homogeneous regions but also that this
is rarely the case with real-world images where the presenceof smooth con-
tours, and the inaccuracies of segmentation (for a few objects) or its large cost
(for many objects) represent serious hurdles towards potential performance
gains. For these reasons we want to explore the capability ofthis coding ap-
proach on multispectral images, where the segmentation produces regions with
nearly uniform statistics, the cost of the segmentation mapis shared among
many bands, and hence the conditions are such that object-based coding can
actually provide some rate-distortion gains.
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Figure 2.17: RD performance of BISK and SA-SPIHT for image Peppers.
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Figure 2.18: RD performance of BISK and SA-SPIHT with Arith-
metic coding for image Peppers.
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2.6 Multispectral images

2.6.1 Class and region-based approaches

Multispectral images are characterized by better and better spatial, spectral and
radiometric resolution, and hence by ever-increasing demands of communica-
tion and storage resources. Often, such demands exceed the system capacity,
like, for example, in the downlink from satellite to Earth stations, where the
channel bandwidth is often much inferior to the intrinsic data-rate of the im-
ages, some of which must be discarded altogether. In this situation, as well
as in many others, high-fidelity compression of the images represents a very
appealing alternative. As a matter of fact, there has been intense research ac-
tivity on this topic in the last few years [52, 53, 54, 55, 56, 4, 57], focusing
especially on transform coding techniques, due to their good performance and
limited computational complexity. Now we want to extend object-based ap-
proach to this category of images.

As already underlined in the previous sections of this chapter, for object-
based coding we mean a scheme that codes separately the different semantic
objects present in the image. For multispectral images, theconcept of sematic
object, already critic for natural images, becomes more ambiguous. A better
idea is to focus the attention on class-based [58] and region-based [59], [60]
paradigms.

Although class-based and region-based coding techniques share the same
general approach, they differ under some important respects, that is, the num-
ber of objects (few classes vs. many regions), their statistical homogeneity
and their spatial compactness (sparse classes vs compact regions). To gain
insight about this difference consider Fig. 2.19, which shows an example im-
age in false colors (a), its pixel-wise segmentation (b), contextual segmenta-
tion (c), and a further processing of this latter map (d). Thesegmentation of
Fig. 2.19 (b) is just a clustering of the spectral response vectors associated with
each pixel. The output is a set of 5 classes with a strong statistical homogene-
ity, corresponding to the colors, each one composed by several disjoint regions
as well as by many isolated points or small clusters of pointsthat can be hardly
regarded as regions. The segmentation of Fig. 2.19 (c) is instead obtained by
means of a bayesian contextual technique [61] which penalizes isolated points
and provides therefore a smaller number of more compact regions. If one fur-
ther regularizes such a map, by erasing small regions and smoothing bound-
aries between different regions, one obtains a map like thatof Fig. 2.19 (d),
with a limited number of compact regions. For example, in this map there are
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just 8 disjoint regions belonging to the same “water basins”class (dark blue).

(a) (b)

(c) (d)

Figure 2.19: An example image and its segmentation maps

The number of objects is important if one is interested in adaptive trans-
form coding, because some parameters must be transmitted for each object,
and therefore, there is a rapid growth of the side information in the region-
based case, which could easily become prohibitive. The statistical homogene-
ity and the spatial compactness of objects are also important: while classes are
singled out mostly on the basis of spectral homogeneity criteria, regions are
required to satisfy some additional spatial criteria. For example, an isolated
point can hardly be regarded as a region, and must be absorbedin some larger
regions with different statistics. Therefore, regions tend be less “pure” than
classes, and a spectral transform is less effective on them.On the other hand,
a spatial transform applied to a compact region, rather thanto a sparse class,
might work better.
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2.6.2 Class-based scheme

A class-based coder for multispectral images (referred to from now on as CBC)
was already proposed by Gelli and Poggi in 1999 [52]. In [52] the authors start
from the observation that linear transform coding does not take into account
the nonlineardependences existing among different bands of a multispectral
images, due to the fact that multiple land covers, each with its own interband
statistics, are present in a single image; so they try to address this problem by
segmenting the image into several classes, corresponding as much as possible
to the different land covers of the scene. As a consequence, within each class,
pixels share the same statistics and exhibit onlylinear interband dependencies,
which can be efficiently exploited by conventional transform coding.

MS image

?

?

TSVQ

?

- TSVQ−1 - j−
+

?

Segm. map -

?
Entropy Cod.

Residuals

?

KLT

?

DCT

?

Q

?
Compressed data

Figure 2.20: The original class-based coding scheme.

The coding scheme is summarized in Fig. 2.20: the segmentation is carried
out by means of tree-structured vector quantization (TSVQ)and the resulting
map is encoded without loss of information. TSVQ segmentation also provides
a rough encoding of the image through the class means, which are subtracted
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from the data. All residuals of the same class are then pooledtogether, and are
subject to a Karhunen-Loeve transform (KLT) along the spectral dimension,
DCT in the spatial domain and finally scalar quantization of the coefficients
with optimal bit allocation. To take into account the different spectral statistics
of the classes, a different KLT matrix is used for each class,so as to better
compact energy in the first few transform bands.

(a) (b)

Figure 2.21: The Landsat TM test image: (a) band 5, (b) 4-class seg-
mentation.

Experiments on several multispectral test images proved this technique to
have an excellent rate-distortion performance. As a running example, we con-
sider a Landsat TM image (6 bands, 512x512 pixels, 8 bit/sample) of a region
near Lisbon, a band a which is shown in Fig. 2.21 (a). Fig. 2.22reports the rate-
distortion curves (SNR vs coding rate in bit/sample) obtained by CBC when
C = 2, 4, 8 classes are used in the segmentation and subsequent phases.For
comparison, the curve obtained without segmentation is also reported. We see
that the class-based coder significantly outperforms the reference “flat” coder,
especially when a relatively large number of classes is used. CBC curves start
from an unfavorable rate-distortion point, due to the cost of the segmentation
map, but then the SNR grows rapidly because the classified data are much
more homogeneous and easier to encode. It is worth pointing out that the seg-
mentation map is by itself a valuable piece of information for the end user, and
is included automatically in the coded stream.

The weakest point of this technique is in the spatial-domainprocessing,
that is, the DCT of KLT bands, and the subsequent encoding of the transform
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Figure 2.22: RD performance of the original DCT-based coder.

coefficients. In fact, since TSVQ produces segmentation maps with arbitrary
geometry, classes are typically composed by a large number of unconnected re-
gions with irregular shape, as shown for example in Fig. 2.21(b) for the case of
4 classes, and hence one cannot encode them by simple bi-dimensional DCT.
After testing the various viable encoding strategies, including shape-adaptive
DCT, it resulted that collecting all pixels of a class in a vector and encoding
it as a one-dimensional source provided the best performance5. Nonetheless,
this linearization tends to destroy all residual spatial dependencies in the data,
and hence to impair the overall performance.

Given the encouraging results reported in [52] and its limitations, we want
to improve the spatial-domain processing phase of class-based coding tech-
nique introducing in the scheme more preforming tool as SA-WT and SA-
SPIHT, already introduced in previous sections.

Since we want to improve the class-oriented transform coding technique
proposed in [52] by acting only on the spatial domain processing, the struc-
ture of the coding scheme is the same as that of Fig. 2.20 except for the fact
that some blocks are updated with the introduction of new technical solu-

5Similar results have been later found independently in [55].
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tions. We keep using TSVQ to carry out segmentation, becauseof its very
low complexity and good rate-distortion performance. For the map coding, as
done in the section Sec 2.2, we will resort to the algorithm proposed in [48]
even though this step has a limited impact anyway on the overall performance.
Class-adaptive KLT will not be changed, as it stands at the core of the class-
oriented approach. The major innovations take place in the two spatial-domain
coding blocks, where DCT (that is, data linearization followed by 1d-DCT) is
replaced by SAWT, and scalar quantization by shape-adaptive SPIHT coding
(SA-SPIHT).

As already pointed out the actual results of object-based schemes using
SA-WT and SA-SPIHT depend on the fragmentation of the map, and eventu-
ally on the number of objects used in segmentation. Using more classes one
obtains more homogeneous sources for subsequent transformcoding, but also
a more fragmented map which could lead to coding inefficiencies. This also
suggests us to leave open the option of modifying the segmentation strategy,
once experimental results are available, in order to produce more regular maps.

To complete the description of coding scheme, even not shownin the block
diagram, a rate allocation block, similar to that describedin the Sec.2.2, is
used.

Experimental results

We carried out experiments on several multispectral imagesand observed al-
ways a similar behavior, but results are reported only for the TM image de-
scribed in the previous section and, later on, for the ”Low-Altitude” AVIRIS
hyperspectral image (224 bands, 512x512 pixels, 16 bit/sample) available at
[62].

In Fig. 2.23 we show the rate-distortion curves obtained with the wavelet-
based version of CBC forC = 2, 4, 8 classes and, for comparison, the curve
obtained with the the wavelet-based coder without segmentation. It is worth
noting that this “flat” coding scheme, originally proposed in [57] can be re-
garded as a refinement of the 3d-SPIHT coder proposed in [56],improved by
using KLT instead of WT in the spectral domain (with better energy com-
paction) and by resorting to 2d-SPIHT on all spectral bands with explicit rate
allocation. It appears that the use of segmentation keeps providing a perfor-
mance gain w.r.t. the flat coder, although the gap is now more limited, about
1.5 dB at best instead of the 2-3 dB observed with the originalcoder.

We also want to compare the performance of the new wavelet-based coder
with that of the original coder, and hence report in Fig. 2.24the best rate-
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Figure 2.23: RD performance of the new wavelet-based coder.

distortion curves for both techniques (C = 8) together with those of the two
flat reference schemes. First of all, the wavelet-based flat coder consistently
outperforms the DCT-based one, as was to be expected given the well-known
superior performance of wavelet-based coding for natural images. When we
add the segmentation step, that is, consider the class-oriented coders, the com-
parison in not so clear-cut anymore. In particular, at low bit-rates the DCT-
based coder outperforms the wavelet-based one, with an advantage of up to
2 dB at 0.2 bit/sample. The opposite happens at high bit-rates, beyond 0.5
bit/sample, where the wavelet-based coder works better andbetter, with a gain
of 2 dB at 1.2 bit/sample. We can explain this behavior by recalling that shape-
adaptive SPIHT is rather inefficient at the beginning, because it deals with a
very fragmented map, and must spend many bits to describe significance trees
for coefficients scattered over the whole image6. In “steady state”, however, it
becomes more efficient than 1d-DCT, because spatial relationships among co-
efficients have been retained and can now be exploited. As a consequence, the
slope of its rate-distortion curve is steeper, which makes the new scheme more

6To improve performance at low rates, we also experimented with smoother segmentation
maps, obtained through morphological filtering of the original maps, but overall results, not re-
ported here for brevity, were disappointing, so we are not going to consider this option anymore.
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Figure 2.24: Performance comparison between wavelet-based and
DCT-based CBC.

and more convenient as the available coding resources grow.In summary, the
new wavelet-based scheme is certainly preferable when high-quality images
are desired (as happens quite often with remote-sensing imagery, where “near-
lossless” compression is typically required) while the original scheme is better
when resources are very limited.

We complete this analysis by comparing the performance of the proposed
class-based coder with those of several significant reference schemes, that is
3d-SPIHT [56] and JPEG-2000 [20], both implemented using the KLT as a
spectral transform, and finally an hybrid coding scheme in which the class-
based approach is used to perform the spectral KLT, but then the transformed
eigenimages are coded by flat JPEG-2000 with proper rate allocation. Results
are reported in Fig. 2.25, and show that the proposed wavelet-based CBC out-
performs all reference schemes, by less than 1 dB in the case of JPEG-2000,
and up to 3 dB for 3d-SPIHT. The hybrid scheme remains well under CBC and
JPEG-2000, suggesting that, once segmentation is carried out, one should try
to exploit the class information in all instances to make up for its initial cost.

Finally, we present compression results for a different source, the AVIRIS
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Figure 2.25: Performance comparison between wavelet-based CBC
and various reference coders.

hyperspectral image “Low Altitude”. We use only 192 out of the total 224
bands, since some bands are clearly useless and must be discarded altogether.
For this image, it is also convenient to normalize bands to zero mean and unit
variance before encoding, since the rate allocation procedure would otherwise
give little or no resources to low-power but informative bands, with a detri-
mental effect on the image quality7. In Fig. 2.26 we report results for the CBC
coder, the flat reference scheme, and JPEG2000 multicomponent, and observe
a behavior quite similar to that observed for the Landsat TM image. Note that
there are just a few distinct information classes in this image, and therefore the
wavelet-based CBC provides the best performance with 4 classes rather than
8. JPEG-2000 is quite competitive, if KLT is used to decorrelate bands prior to
encoding, with a performance very close to that of wavelet-based CBC, losing
just 0.6 dB at high rate. On the contrary, JPEG-2000 with WT inthe spectral
domain exhibits a performance gap of about 4 dB w.r.t. the other techniques.

In conclusion, the class-based coding approach guaranteesalways a very

7Note that the SNR obtained with this pre-processing is necessarily lower than that obtained
without normalization.
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Figure 2.26: RD curves for the AVIRIS image.

good performance, because the KLT is much more effective on homogeneous
sources than on the whole image. Its weak point is the spatialtransform and
coding, since land covers, and hence classes, are usually scattered over the
whole image. The use of shape-adaptive wavelet transform and shape-adaptive
SPIHT in place of 1d-DCT, partially overcomes this problem,and allows one
to improve performance at medium and high bit-rates, that is, for the high-
quality compression typically required by the end users.

2.6.3 Region-based scheme

One of the major problems for the final user of multispectral images is to locate
them effectively. This is the main reason towards the use of aregion-based,
rather than pixel-based, description of remote sensing images, so that the user
can retrieve the image of interest based on the shape or the synthetic statistics
of some of its regions. In other scenarios, the user might even be interested
in downloading only the image segmentation map, or just a fewregions of
interest, with huge bandwidth saving in both cases. So the major interest of
region-approach is that it allows a semantics-based accessto image content,
nevertheless, we are interested to the effect that the region-based paradigm has
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# No Mean KLT Cod. SI TM SI AVI
1 Yes G G G ≈ 0 0.003
2 Yes G G C 0.012 0.003
3 Yes C C C 0.012 0.006
4 Yes G G R 0.012 0.003
5 Yes C C R 0.012 0.006
6 Yes R R R 0.026 0.031

Table 2.3: Reference and region-based coding schemes, and side in-
formation (bit/sample) for Landsat and AVIRIS images. G=global,
C=class-based, R=region-based.

on rate-distortion performance.
The coding scheme is similar to that described in the previous section ex-

cept for the different type of segmentation (see Sec. 2.6.1). As in Sec. 2.6.2
we want to use a different KLT for every region but in this context this choice
is more critical. In fact, in class-adaptive KLT, a different transform matrix is
computed (and hence transmitted) for each class; this increases the cost of side
information, but not very much, since only a few classes are typically present.
In region-based KLT, instead, a different matrix is transmitted for each con-
nected region; this allows for a better compaction of signalenergy [60], but
the cost of side information can become prohibitive. An intermediate solution,
which saves some side information, is to send the mean vectorfor each region,
but then use a single KLT matrix for all regions of the same class.

Experimental results

In order to study the potential of region-based approaches,we select three such
schemes and three reference schemes, as summarized in Tab. 2.3, and apply
them to two quite different test images, a 6-band, 512×512 pixel section of a
Landsat TM image (already used in previous section Fig. 2.21(a), and a 32-
band, 512×512 pixel section of an AVIRIS image of Moffett-fiel (Fig. 2.27).
We used a map with 3 classes and 59 regions for the TM image and 4classes
and 28 regions for the AVIRIS image.

The first reference scheme is just a conventional “flat coder”, with spectral
KLT, spatial WT, and band-by-band SPIHT with explicit rate allocation. The
following two schemes are class-based coders, which differin the amount of
adaptivity offered and side information required. The firstone (#2) uses global
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KLT after removing the global mean vector; #3 uses a different KLT matrix
for each class, after removing the class mean vectors. Coding scheme #6 is the
only “pure” region-based coder, as it carries out all transform and coding steps
on a per-region basis. The other region-based coders resortto some compro-
mise to reduce side information: #4 performs a global KLT, while #5 performs
a class-based KLT, removing means class-by-class. The lasttwo columns of
the table show the corresponding side information for the Landsat TM and the
AVIRIS image, expressed in bit per sample. The side information mainly ac-
counts for the KLT matrices and the segmentation map information. For the
6-band TM images the map cost is prominent, as it is shared among a relatively
small number of bands. On the contrary, for the 32-band AVIRIS image, the
main contribution to the side information is due to the KLT matrices. Anyway
it becomes significant only for the last technique, when we need a different
KLT matrix for each region, but even in this case this cost is quite low – about
0.03 bit per sample.

Figure 2.27: AVIRIS image, false colors

Fig. 2.28 and Fig. 2.29 report the rate-distortion curves ofall these schemes
for the Landsat and, respectively, the AVIRIS test image. Weobserve that at
low bit-rates, flat and class-based schemes have the best performances, thanks
to their low side-information requirements. However #2 is always worse than
#3, meaning that classified KLT is worth its cost with respectto global KLT.
This is still true for the region-based techniques, where #4is worse than #5 and
#6 (but for low rates). At medium rates, the flat scheme is overcome by the
class-based and region-based techniques; moreover, we seethat region-based
techniques #5 and #6 surpass class based techniques #2 and approach perfor-
mances of #3, which however can be considered the best technique overall.
We can conclude that the more complex description of image objects carried
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Figure 2.28: Performance of test techniques on the TM (Lisbon) image.

by class-based and region-based techniques causes a globalimprovement of
performances with respect to a completely flat technique as #1. The best com-
promise between cost and effectiveness of shape information seems to be the
class-based technique #3, but the region-based techniques(namely #5 and #6)
have quite close performance, except for very low bit-rates.

Similar considerations can be made for performances on the AVIRIS im-
age, see Fig. 2.29. The main difference with respect to the previous case is
that now, region-based techniques performance is even closer to the best class-
based technique #3. We ascribe this behavior to the smaller number of objects,
that reduce side-information, and the higher number of bands, that makes more
important the effectiveness of a precise spectral transform.

Our experiments lead to the conclusion that the region-based approach
does not penalize significantly RD performance with respectto classical, non
object-based schemes; on the contrary, their performance is usually better than
that of completely flat approaches, and always quite close tothe class-based
one, which optimize the trade-off among cost and effectiveness of object-based
transforms.
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Figure 2.29: Performance of test techniques on the AVIRIS (Moffett-
field) image.



Chapter 3

Coding with contourlets

T
he contourlet transform was recently proposed to overcome the limited
ability of wavelet to represent image edges and discontinuities. Besides

retaining the desirable characteristics of wavelet transform, such as multireso-
lution and localization, it has two additional important features: directionality
and anisotropy. In this chapter, after presenting principal characteristics of
contourlet transform and introducing the motivation for anhybrid contourlet-
wavelet decomposition, we propose a new image coding technique based on
this transform and built upon the well-known SPIHT algorithm. Numerical re-
sults and visual quality are reported to confirm the potential of this approach,
especially for images with high texture content.

3.1 Contourlets

In the Chapter 1, we noted how recent researches have identified in wavelet
lack of directionality and anisotropy the main cause of its inefficiency in de-
scribing bi-dimensional smooth contours, and how new transforms, instead,
aspire to these features. In the last years a lot of differenttransforms have
been proposed (contourlets [6], directionlets [7], curvelets [2], bandelets [8],
etc.), that overcome wavelet limits in representing imagescontours. The re-
sults are mostly theoretical, focusing only NLA asymptoticrate, but they are
quite promising, and stimulate the quest for actual coding algorithms based on
these new tools. We chose the contourlet transform [6] for several reasons: it
has a number of desirable characteristics (directionality, anisotropy, etc.) and
an almost optimal NLA behavior for simple classes of images;in addition,
unlike other transforms, it is easily implemented by a filterbank. Its main

57
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Figure 3.1: Laplacian pyramid.

drawback is a slight redundancy which, however, is not really a problem in the
context of low bit-rate coding [28].

In the first place, it is worthwhile to recall some basic rudiments about
contourlets. Contourlet transform was introduced by Do andVetterli in 2005
[6], it comprises two blocks, a Laplacian pyramid and a directional filter bank
(DFB).

The Laplacian pyramid (LP) was proposed by Burt and Adelson [63] in
1983 as a multiresolution image representation. In the firststage of the de-
composition, the original image is transformed into a coarse signal by mean of
a lowpass filtering and a downsampling. This coarse version is then upsampled
and filtered to predict the original image. The prediction residual constitutes
the detail signal (see Fig. 3.1). This procedure can be repeated iteratively in
order to obtain a multiresolution decomposition.

Figure 3.2: Laplacian decomposition of image Lena.
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Figure 3.4: Do-Vetterli reconstruction scheme for the Laplacian pyramid.

As we can see in Fig. 3.2 LP decomposition is a redundant representation
so it is natural to wonder why in contourlet it has been preferred to critically
sampled filterbanks as discrete wavelet transforms. The motivation must be
detected in the successive use of Laplacian pyramid; in fact, in contourlet de-
composition, a directional filtering is performed on the bandpass versions of
input signal. So it needs a decomposition that permits further subband decom-
position of its bandpass images. To this target the LP has twoadvantages over
the critically sampled wavelet scheme: first, it generates only one bandpass
version, second, it does not suffer from the frequencies “scrambling”. This
problem arises in the critical sampling filter banks when, because of down-
sampling, the highpass channel is folded back into the low frequency band and
its spectrum is reflected [64]. This problem is overcame in LPdownsampling
only the lowpass channel.

A peculiarity of LP used in contourlet transform is the reconstruction struc-
ture. In fact, most applications employ the simple synthesis operator shown in
Fig. 3.3 to reconstruct the image from the LP, but this simplesynthesis oper-
ator is not optimal in terms of minimizing the distortion propagation from the
subbands of the LP to the reconstructed image. In contourletscheme, Do and
Vetterli use, instead, a structure which implements the dual frame reconstruc-
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Figure 3.5: DFB frequency partitioning with l = 3.

tion (Fig. 3.4)(LP multiresolution pyramid is in practice aframe expansion),
because this is the optimal choice in presence of noise [65].

The second block of contourlet decomposition is a directional filter bank
that singles out directional components, with a number of directions that can
vary as a power of two. Bamberger and Smith ([66]) introduceda perfect re-
construction directional filter banks (DFB), that can be maximally decimated,
implemented via a l-level tree-structured decomposition that leads to2l sub-
bands with wedge-shaped frequency partition. Fig. 3.5 shows an example of
DFB frequency partitioning with l = 3, the subbands 0-3 correspond to the
mostly horizontal directions, while subbands 4-7 correspond to the mostly ver-
tical directions.

The version of the DFB used in contourlet is a simplified formulation of
Bamberger and Smith filter based only on the quincunx filter banks (QFB) with
fan filters. The structure of a QFB is shown in Fig.3.6 (a), itsname derives
from the type of subsampling (Fig.3.6 (b)). Using a fan filters (Fig.3.6 (c)) the
QFB can be used to split the frequency spectrum of the input signal into an
horizontal and a vertical channel (Fig.3.6 (d)). The frequency partition of the
DFB is realized by an appropriate combination of directional frequency split-
ting by the fan QFB’s and the “rotation” operations done by resampling [64].
In conclusion the entire scheme of contourlet transform is shown in Fig. 3.7.

Theoretically, the number of directions in which one can divide the band-
pass subbands at each level of decomposition is a free parameter, but, to make
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(a) (b)
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Figure 3.6: (a) QFB. (b) Quincuncx sampling. (c) Ideal frequency
support of the fan filter. (d) QFB with fan filter.

contourlet basis to be anisotropic, as well as directional,a condition must be
imposed. In [2], Candès and Donoho demonstrated that basisfunction sup-
ports must respect the parabolic scaling rule,width ∝ length2, in order to
provide a good representation of regular contours. Contourlet expansions re-
spect such a rule if the number of directions doubles at everyother finer scale
[6]. In addition, if it has enough vanishing moments, its NLAbehavior for a
C2/C2 image model (see. Sec. 1.5), is almost optimal and, more precisely, the
NLA approximation error can be bounded as

‖x− x̂
(contourlet)
M ‖2

2 ≤ C(logM)3M−2. (3.1)
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Figure 3.7: Contourlet filter bank. First, a multiscale decomposition
by the LP is computed, and then a DFB is applied to each bandpass
channel.

3.2 Hybrid contourlet-wavelet decomposition

In precedent section, we observed that contourlet transform has all the char-
acteristics that prevent wavelet from representing well image boundaries and
that, under certain hypotheses, the contourlet has an almost optimal asymp-
totic NLA behavior. Despite this, when dealing with typicallow-resolution
digital images NLA results are not so exciting. We carried out some prelim-
inary experiments on well-known test images (shown in Fig. 3.8), comparing
NLA errors for the wavelet and contourlet transforms (blackcurves vs blue
curves). We used 5 decomposition levels in both cases, partitioning the high-
pass contourlet subbands (from coarsest to finest) in 4, 4, 8,8, and 16 com-
ponents respectively, and adopting the9/7 biorthogonal filters for wavelet and
contourlet LP stage, and the23/45 biorthogonal quincunx filters [67] for the
DFB. Results are reported in Fig. 3.9- 3.12 in terms of PSNR vs. number of
coefficients, and show that only for highly textured images contourlets provide
a significant gain, while wavelets are superior for all smooth images. Such
results, however, are not really surprising, because the parabolic scaling rule
assures only asymptotic results for NLA. In addition, the model is less and less
accurate as the image resolution reduces through the Laplacian pyramid, since
contours are less and less similar toC2 curves.

Indeed, it has been noted [68] that an hybrid contourlet-wavelet decompo-
sition has often a better NLA behavior on real images than a pure contourlet
with parabolic scaling. This observation is confirmed by ourexperimental re-
sults (red curves in Fig. 3.9- 3.12), where we implemented the hybrid scheme
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(a) (b)

(c) (d)

Figure 3.8: Test images.

with wavelets in the coarsest subbands and a contourlet decomposition only
in the one or two finest subbands (in particular, for images Lena, Barbara and
Goldhill, we have utilized one only level of 32-directions contourlet, while, for
image bench, we have utilized a two contourlet levels with 32and 16 direc-
tions). This solution guarantees several advantages: the redundancy is slightly
reduced and, since contourlets are used only in the larger bands, contours are
more similar to theC2 curve model and there are less artifacts due to the di-
rectional filter length [69]. In the proposed coder we will always consider this
solution.
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Figure 3.9: NLA with wavelets and contourlets for the image Barbara.
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Figure 3.10: NLA with wavelets and contourlets for the image Lena.
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Figure 3.11: NLA with wavelets and contourlets for the image Goldhill.
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Figure 3.12: NLA with wavelets and contourlets for the image Bench.
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3.3 A sphit-like algorithm for Contourlets

Just a few contourlet-based coders have been proposed in theliterature so far:
a bit plane coder based on run-length is described in [70], while [71] uses
multistage vector quantization, and [72] focuses on rate-distortion optimiza-
tion based on a graph-cut algorithm. Here we propose a SPIHT-like coder,
using a hybrid wavelet-contourlet decomposition and suitable tree structures
that account for the various kinds of dependency existing among transform
coefficients [73].

Our coding algorithm is based upon some observations on the properties of
contourlet transform coefficients. As noted by Duncan and Do[74], contourlet
coefficients exhibit a significant correlation across different subbands, just as
it happens for wavelet coefficients, which is why we based ourcoder on a
SPIHT-like engine. As a matter of fact, the coding algorithmis exactly the
same used in SPIHT [5], which is well known and will not be discussed here.
On the contrary, thespatial orientation treesused in SPIHT do not fit the
structure and, likewise, given our hybrid decomposition, we cannot rely only
on the trees considered in [74] for a pure contourlet decomposition. Therefore
the significance trees must be designed anew, and more complex structures are
necessary.

Indeed, in [74] it was also observed that there are various types of de-
pendency among coefficients: across scale, space and direction. Therefore,
we should define tree structures that do not consider only correlation across
scales, but also among spatial neighbors in the same subbands, and homolo-
gous coefficients in subbands with similar directions. In more detail, given the
selected hybrid decomposition (contourlets in the two finest levels, wavelet in
the others) we have to define the father-children relationships for the following
situations

1. wavelet-wavelet;

2. wavelet-contourlet;

3. contourlet-contourlet, withn - n directions;

4. contourlet-contourlet, withn - 2n directions;
where the last two cases account for the fact that the number of directions in
the last level can be the same or double that of the preceding one.

For the first case, our coder resorts to the conventional SPIHT tree. The
second case is the most complex because the relationship between the high-
pass subbands of a wavelet decomposition and the contourletdirectional sub-
bands is not trivial, and even the ratio between the number ofcoefficients is
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(a) Direction of details. (b) Tree for horizontal details.

(c) Tree for vertical details. (d) Tree for oblique details.

Figure 3.13: Wavelet-contourlet case with 8 directions.

3:16 rather than the typical 1:4. For the sake of simplicity,such a relation-
ship is described with reference to an 8-direction contourlet decomposition:
the cases with more directions,e.g., 32, more interesting for actual coding,
present obvious differences. In Fig.3.13(a) the involved subbands (wavelet or
contourlet) are symbolically shown, with arrows characterizing their dominant
directions. For example, the high-pass wavelet bands are characterized by hori-
zontal, vertical, and diagonal (45 and 135 degrees) arrows,while the contourlet
bands have more precise directions. Fig.3.13(b)-(d), instead, show examples of
the father-children relationships when the father belongsto horizontal, vertical
and diagonal wavelet subbands. Note that this tree-structure takes into account
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all types of dependency mentioned before, first of all, the directionality, since
we link the horizontal [vertical/diagonal] wavelet details with mostly horizon-
tal [vertical/diagonal] contourlet details. Moreover, weconsider correlation
across scales by choosing father and children with the same spatial location,
and correlation in space, by grouping children in sets of2 coefficients.

(a) Direction of details. (b) Tree.

Figure 3.14: Contourlet-contourlet with 4-4 directions.

The trees for the contourlet-contourlet case are simpler and follow the same
principles: we link coefficients with same spatial locationand same direction
(fig.3.14). In the last case the tree is only slightly more complex: we connect
the coefficients of a direction in the coarser scale with those of the two most
similar directions in the finer one (Fig.3.15).

3.3.1 Experimental Results

In Fig. 3.17-3.20 we report the rate-distortion curves obtained on the test im-
ages using the proposed coder and the conventional wavelet/SPIHT coder. In
both cases, an arithmetic coder is also used, similar to thatdescribed in [5].
For Barbara and Bench, our coder outperforms the conventional one at low
rates (up to 0.25 bpp) and is comparable at higher rates, while its performance
is always slightly worse for Lena and Goldhill.

At first, such results might seem disappointing, but it is worth pointing
out that our rate-distortion curves follow closely the NLA curves reported in
Fig. 3.9-3.12. This suggests that the proposed SPIHT-like coder does actually
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Figure 3.15: Contourlet-contourlet case with 4-8 directions.

a good job in compacting information, even in the presence ofa slightly re-
dundant transform, and the main source of inefficiency is thetransform itself,
probably because the low resolution test images are quite far from the idealized
C2/C2 model.

This positive judgement is reinforced by results obtained with a differ-
ent coder based on the HWD (hybrid wavelets and directional filter banks)
transform [69]. The HWD structure is very similar to contourlet one with the
difference that LP pyramid is replaced by the separable wavelet decomposi-
tion. In this way a critical sampling transform is obtained but at the price of
a major presence of pseudo-Gibbs phenomena artifacts due tothe problem of
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Figure 3.16: The HWD-half transform.

frequency scrambling. To address this problem two strategyare suggested in
[69]. First of all, directional filtering is performed only on the one-two finest
level of wavelet transform, second, in one of its versions called half-HWD,
different directions are foreseen on different wavelet subbands [69]: only hor-
izontal directions on vertical wavelet subband, vertical directions on wavelet
horizontal subband and a full DFB on oblique wavelet details(Fig 3.16). An-
other version of HWD, named full-HWD, exists; in it only the first strategy is
used and a complete DFB is employed on all wavelet subbands.

In our experiment we used the full-HWD, because, on image Barbara, it
is more performing, being the problem of pseudo-Gibbs artifacts more marked
on smooth images while Barbara is a very directional image. It possible to
notice that the NLA quality of HWD transform is superior to that of the hy-
brid contourlet used here (see Fig.3.22 referring to barbara), but rate-distortion
results are comparable to ours, suggesting that a better coding algorithm than
that of proposed in [69] is probably at hand.

Finally, it is worth remembering that a major motivation forusing the con-
tourlet transform is the higher emphasis given to contours and textural compo-
nents, leading to a visual quality that is often superior to that of wavelet/SPIHT
even for the same objective performance. Indeed, this behavior is confirmed
for our coder as is clear by the details shown in Fig.3.21, where a superior
visual quality is apparent not only for the highly textured Barbara, but also for
the much smoother Goldhill.
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Figure 3.17: Rate-distortion performance for the image Barbara.
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Figure 3.18: Rate-distortion performance for the image Lena.
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Figure 3.19: Rate-distortion performance for the image Goldhill.
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Figure 3.20: Rate-distortion performance for the image Bench.
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(a) Contourlet at 0.125 bpp (b) Wavelet at 0.125 bpp

(c) Contourlet at 0.25 bpp (d) Wavelet at 0.25 bpp

Figure 3.21: Details of reconstructed images.
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(a) NLA results.
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(b) Coding results.

Figure 3.22: HWD results for barbara.



Chapter 4

Distortion evaluation in
adaptive lifting schemes

T
he lifting scheme represents an easy way of implementing thewavelet
transform and to construct new adapted-content wavelet transforms. So

it can be considered another approach to the problem of contours in image cod-
ing. However, the adaptive lifting schemes can result in strongly non-isometric
transforms. This can be a major limitation, since all most successful coding
techniques rely on the distortion estimation in the transform domain. In this
chapter, after introducing adapting lifting schemes, we examine the problem
of evaluating the reconstruction distortion in the waveletdomain when a non
isometric adaptive lifting scheme is used, focusing our analysis on two inter-
esting classes of adaptive lifting scheme. The problem is that these transforms
are nonlinear, which prevents using common techniques for distortion evalua-
tion. However we show the equivalence of these nonlinear schemes with time-
varying linear filters, and we generalize the distortion computation technique
to it. Experiments show that the proposed method allows a reliable estima-
tion of the distortion in the transform domain. This resultsin improved coding
performance.

4.1 Adaptive lifting scheme

Lifting structure was originally introduced by Sweldens [75] to design
wavelets on complex geometrical surfaces (the, so called, second generation
wavelets) but, at same time, it offers an efficient implementation of classic
wavelet transforms. In fact, as shown in [9], every wavelet can be implemented

75
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Figure 4.1: Classical lifting scheme. Analysis.

by a sequence of lifting steps. One of the main merits of the lifting scheme is
to provide a totally time domain interpretation of the wavelet transform and
this characteristic makes very simple to design new wavelets.

The blocks that compose the lifting scheme are illustrated in Fig.4.1. The
first block splits the input signalx into an approximation signalxa and a detail
signalxd by the mean of an existing wavelet transform or a simple polyphase
decomposition (called lazy wavelet). Then, a prediction operator P is used in
order to predict the current polyphase component from a linear combination
of samples of the other component. In practice, the prediction operator P is
chosen such that it is an estimate ofxd and hence the new signalx′d = xd −
P (xa) is smaller thanxd. Finally, the third block, the update operator U, acting
on x′d modifiesxa, resulting in an approximation signalx′a = xa + U(x′d).
Generally, the update operator is chosen in such a way that the approximation
signalx′a satisfies a certain constraint such as preserving the average of the
inputx.

It is interesting to notice that lifting scheme is a tool to construct better
wavelet from existing ones, in fact, with a proper combination of lifting steps
it is possible to impose new property on the resulting decomposition in order
to have an improved wavelet. For example, the lifted waveletmay have more
vanishing moments than the original one.

As for the synthesis scheme, shown in Fig. 4.2, it is worthwhile to un-
derline that, since the original signal is reconstructed simply by reversing the
lifting steps, perfect reconstruction is assured by the intrinsic structure of the
scheme and does not require any particular assumptions on the operators P and
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U. In general, even the operators ‘+’ and ‘-’ used in the scheme of Fig. 4.2 can
be replaced by any pair of invertible operators.

This great flexibility of lifting scheme offers the possibility to replace lin-
ear filters by nonlinear ones and, in particular, to utilize content-adaptive filters
[15, 13, 76] similar to that described in the following. In this chapter we will
consider two different families of adaptive lifting scheme:

• Adaptive update lifting scheme (AULS)

• Adaptive prediction lifting scheme (APLS)

.

4.1.1 Adaptive update lifting scheme

The first type of lifting scheme considered has been proposedby and Heij-
mans, Piella and Pesquet-Popescu [14], [77], [78] and uses seminorms of local
features of images in order to build a decision map that determines the lifting
update step, while the prediction step is fixed. The general scheme is shown in
Fig. 4.3: the polyphase components of the input signalx are analyzed in order
to determine a decision mapd(k). According to it, different update steps can
be performed: for example, when the decision map highlightsimportant fea-
tures like contours or singularities, a weaker filter (or no filtering at all) can be
used. This type of choice could be a useful in a large number ofapplications in
which it is desirable to have multiresolution representations in which important
signal features, as discontinuities and singularities, are not oversmoothed.
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Figure 4.3: Lifting scheme with adaptive update first.

One of the most interesting features of this adaptive transform is that it
does not require the transmission of side information, since the decision on the
update step can be made with the information available at thesynthesis stage.
In fact, in [14] authors describe sufficient conditions for this transform to be
perfectly reversible without having to send the decision map, which actually
can be recovered from the transformed subbands.

We introduce the following notation:x is the original signal;yij is the
generic wavelet subband, wherei ∈ I identifies the decomposition level start-
ing from 0, andj ∈ J identifies the channel. UsuallyJ = {0, 1}, with 0
used for the low-pass and1 for the high-pass channel, but more channels can
be used, for example in the case of multi-dimensional transforms. The sub-
bands produced by a single-level decomposition are calledy00 andy01, like
in Fig. 4.3. For an AULS, the decomposition is described by the following
equations:

y00(k) = αd(k)x(2k) +
∑

n∈Z

βd(k)(n)x(2k + 1 − 2n) (4.1)

y01(k) = x(2k + 1) −
∑

n∈Z

γ(n)y00(k − n), (4.2)

wherex(k) is the input signal andd(k) is the decision map, which in general
can assumeD values in the setD = {0, 1, . . . ,D − 1}.

From the previous equations it is easy to find out the synthesis equations
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for AULS:

x(2k + 1) = y01(k) +
∑

n∈Z

γ(n)y00(k − n) (4.3)

x(2k) = α′
d(k)y00(k) −

∑

n∈Z

β′d(k)(n)x(2k + 1 − 2n), (4.4)

where we used the shorthand symbolsα′
d(k) = 1/αd(k) and β′

d(k) =

βd(k)/αd(k),
Multiple decomposition levels and wavelet packets can be obtained by ap-

plying the same transform of Eqs. (4.1), (4.2) to any subband. We consider
only the case of dyadic decompositions (i.e. only the low-pass channel is fur-
ther decomposed) because it is more popular, but our analysis can be easily
extended to any decomposition scheme

4.1.2 Adaptive prediction lifting scheme

The second class of lifting scheme that we want to analyze is inspired by Clay-
pooleet al. lifting scheme [13], because it is well known and achieves good
performance. Although our reference is a specified prediction lifting scheme,
and not a family, we will consider, where possible, a generalform of the adap-
tive prediction lifting scheme (APLS) that is described in Fig. 4.4 and has the
following characteristics:

• update step first;

• the adaptivity involves only the prediction step.

The philosophy of Claypoole’s APLS consists in switching between dif-
ferent linear predictors at the predict stage: higher orderpredictors where the
image is locally smooth and lower order predictors near edges to avoid pre-
diction across discontinuities (see Fig. 4.5). In order to guarantee perfect re-
construction (in absence of quantization) at the synthesisstage it is important
that the decoder can reproduce all the encoder decisions. Toobtain this goal,
without sending side information, the update stage is applied first and the de-
cision is based on the approximation signal only. So, even ifour theoretical
analysis does not depend on the particular type of adaptivity, in the following,
we will consider an adaptivity like that shown in Fig. 4.6, namely the decision
rely only on one component.
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Figure 4.4: Lifting scheme with update first and adaptive prediction.

Figure 4.5: Predictor selection at an ideal step edge. Numbers indicate
the order of the predictors used. The closer to the edge, the lower the
order of the predictor.
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Figure 4.6: Lifting scheme with update first and adaptive prediction.

For an APLS, using the same notation adopted in the previous sections, the
decomposition is described by the following equations:

y00(k) = x(2k) +
∑

n∈Z

β(n)x(2k + 1 − 2n) (4.5)

y01(k) = x(2k + 1) −
∑

n∈Z

γd(k)(n)y00(k − n), (4.6)

while the synthesis is described by:

x(2k + 1) = y01(k) +
∑

n∈Z

γd(k)(n)y00(k − n) (4.7)

x(2k) = y00(k) −
∑

n∈Z

β(n)x(2k + 1 − 2n). (4.8)

Observing Eqs. (4.1)-(4.2) and (4.5)-(4.6), we can note that in both AULS
and APLS, according to the value of the decision map at timek, we use one out
ofD linear update/prediction filters. However, since the decision map depends
at its turn on the input signal, the whole systems are inherently nonlinear. Typ-
ically, the decision map accounts for the local behavior of the signal, allowing
to discriminate low-activity signal segments from highly variable parts. For
example in AULS described in [78] the decision map is a threshold function
of the local gradient seminorm, while in Claypoole’s work [13] the decision
is based on the distance of current sample from the discontinuities, which are
detected by a modified version of algorithm [79].
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4.2 Distortion evaluation problem for adaptive lifting

In the adaptive lifting schemes, different filters are used in different parts of
image, so the entire transform can be strongly non-isometric. This can be a
serious obstacle, since all most successful coding techniques rely on the dis-
tortion estimation in the transform domain. For example, the EBCOT [20] al-
gorithm, at the basis of the JPEG2000 standard [80], explicitly uses the wavelet
coefficient distortion as an estimation of the reconstructed image distortion in
order to compute the resource allocation. Likewise, popular zero-tree based
algorithms like SPIHT [5] and EZW [26] perform an implicit resource alloca-
tion by encoding first the most significant bits of transformed coefficients: this
is efficient only if the distortion estimated in the transform domain is a good
approximation of the distortion for the reconstructed image.

From these observations we conclude that, in order to efficiently use the
adaptive lifting scheme for image compression, we need to correctly estimate
the distortion directly from the transform coefficients in this case as well. Use-
vitch showed how this can be done for generic linear wavelet filter banks [81].
In particular, it demonstrated that once the equivalent polyphase representation
of a generic lifting scheme has been found, the distortionD in the original do-
main is related to the distortionDij in the wavelet subbandyij by the relation:

D =
∑

ij

wijDij , (4.9)

where the weightswij are computed based on the reconstruction polyphase
matrix of subbandyij.

The problem is that the AULS and APLS are nonlinear systems, therefore
no polyphase representation of them can exist. However, if we forget about the
dependence ofd(k) onx and just look at Eqs. (4.4) and (4.8), we can see them
as a linear, time-varying systems. The representation of the AULS and APLS
as a linear time-varying systems allows us to find out the relationship between
the distortion in the transform domain and in the original domain, using Use-
vitch tools. Since the nonlinearity of the systems depends on d rather than on
the whole input signalx, we will find that the weights depend in general only
ond. An even simpler result is found for the one-level decomposition case for
update adaptive lifting schemes [82] and for a simplified form of prediction
adaptive lifting schemes, as we show in the sequel .
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Figure 4.7: Equivalent filter bank for synthesis ALS, two decomposi-
tion levels.

4.3 Computation of polyphase matrices

Let us now compute the synthesis polyphase matrices, starting from the mono-
dimensional case, then we will show how to extend this analysis to the bi-
dimensional case.

We callG00 andG01 the synthesis matrices (see Fig. 4.7). The reconstruc-
tion process amounts to obtainingx from y00 andy01:

x = G00y00 + G01y01, (4.10)

where the bold font refers to the vector form of the reconstructed signal and of
the wavelet sub-bands. This equation tells us that the2k-th [resp.,(2k+1)-th]
row ofG00 is the contribution of the low-pass channel to the even [odd]sample
x(2k) [x(2k+ 1)]. The2k-th [2k+ 1] row of G01 is likewise the contribution
of the high-pass channel to the even [odd] samplex(2k) [x(2k + 1)].

4.3.1 Adaptive update lifting scheme

To find the expression ofG00 andG01 for AULS, let us start to rewrite the
Eq. (4.3) that describes the synthesis equation for the odd samples of signal
for an AULS:

x(2k + 1) = y01(k) +
∑

n∈Z

γ(n)y00(k − n)
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Figure 4.8: Structure of the matrixG00. AULS. Highlighted cell is in
position(2k, k).

From this relation and Eq. (4.10) we observe that the odd rowsof G00 andG01

can be expressed as:

G00(2k + 1, n) = γ(k − n) (4.11)

G01(2k + 1, n) = δk−n, (4.12)

whereδk is the Kronecker symbol:

δk =

{

1, if k = 0
0, otherwise.

As far as the even rows are concerned, we develop the expression of x(2k)
from Eq. (4.4). It is easy to find that:

x(2k) = −
∑

n

β′d(k)(k − n)y01(n) + α′
d(k)y00(k)

−
∑

n

y00(n)
∑

m

β′d(k)(k − n−m)γ(m).
(4.13)

From the last equation we obtain the expression of the generic element on an
even row ofG00 andG01:

G00(2k, n) = α′
d(k)δn−k − Σmβ

′
d(k)(k − n−m)γ(m) (4.14)

G01(2k, n) = −β′d(k)(k − n). (4.15)

The structure of the reconstruction polyphase matrices is summarized in
Fig. 4.8 and 4.9. We note that the decision mapd(·) influences only the2k-th
row in both reconstruction matrices. Therefore, the even rows of the recon-
struction matrices differ from one another only for the corresponding value of
d, besides the fact that there is an horizontal shift of the coefficients.
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Figure 4.9: Structure ofG01. AULS. Highlighted cell is in position(2k, k).

4.3.2 Adaptive prediction lifting scheme

As in adaptive update case, let us compute the synthesis polyphase matrices.
Starting from the Eq. (4.10) and from the equation (Eq. (4.7)):

x(2k + 1) = y01(k) +
∑

n∈Z

γd(k)(n)y00(k − n)

it easy to find that the odd rows ofG00 andG01 can be expressed as:

G00(2k + 1, n) = γd(k)(k − n) (4.16)

G01(2k + 1, n) = δk−n, (4.17)

As for the even rows, we develop the expression ofx(2k) from Eq. (4.8), and
with a little of copmutation we find that:

x(2k) = y00(k) −
∑

n

β(k − n)y01(n)

−
∑

n

y00(n)
∑

m

β(k − n−m)γd(m+n)(m).
(4.18)

So we obtain the expression of the generic element on an even row of G00 and
G01:

G00(2k, n) = δn−k − Σmβ(k − n−m)γd(m+n)(m) (4.19)

G01(2k, n) = −β(k − n). (4.20)

Note that the expressions forG00 and G01 rows are more complicated
compared with the one obtained in the case of AULS. In particular, the generic
2k-th row of G00 does not depend simply on the value ofd at instantk, as
in AULS, but it depends by different values ofd (see eq. 4.19). This aspect
does not prevent us to compute the equivalent polyphase matrix but impedes
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. . . γd(k)(1) γd(k)(0) γd(k)(−1) γd(k)(−2) . . .

. . . γd(k+1)(2) γd(k+1)(1) 1 − γd(k+1)(0) γd(k+1)(−1) . . .

. . . γd(k+1)(2) γd(k+1)(1) γd(k+1)(0) γd(k+1)(−1) . . .

. . . . . . . . . . . . . . . . . .

Figure 4.10: Structure of the matrixG00. APLS. Highlighted cell is
in position(2k, k).
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. . . 0 1 0 0 . . .

. . . 0 0 −1 0 . . .

. . . 0 0 1 0 . . .

. . . . . . . . . . . . . . . . . .

Figure 4.11: Structure of the matrixG01. APLS. Highlighted cell is
in position(2k, k).

the possibility to establish a simple connection between adaptivity and matrix
expression.

Luckily, in the lifting scheme that we are going to consider (Claypoole), the
expressions of2k-th row ofG00 and ofG01 are simplified becauseβ(n) = δn,
so the Eq. 4.19 and Eq. 4.20 become:

G00(2k, n) = δk−n − γd(k)(k − n)

G01(2k, n) = −δk−n.

The structure of the reconstruction polyphase matrices, inthis simplified
hypothesis, is summarized in Fig. 4.10 and 4.11.

4.4 Weight computation

4.4.1 One level of decomposition

Once polyphase matrices has been computed, we can find the expression for
corrective weights simply following Usevitch approach [81]. It is interesting to
develop the calculus in the hypothesis of one dimensional signal and one level
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of decomposition because they provide a simple and intuitive relation between
weights in adaptive case and weights in non-adaptive case.

Now let us introduce the matrices:

G
(h)
0i = G0i

∣

∣

d=[h h ... h] (4.21)

For exampleG(0)
00 is the low-pass channel reconstruction matrix that we would

have if the decision map was always equal to zero. We can compute the
weights associated with these matrices: they are the weights that we should
apply when considering a non-adaptive LS. From [81], we have:

w
(h)
0i =

2

N

∑

n,m

G
(h)
0i (n,m)

2
.

We can develop it as:

w
(h)
0i =

2

N

∑

n

[

∑

m

G
(h)
0i (2n,m)

2
+

∑

m

G
(h)
0i (2n + 1,m)

2

]

=
∑

m

G
(h)
0i (0,m)

2
+

∑

m

G
(h)
0i (1,m)

2
. (4.22)

The last equation takes into account the fact that all even [resp., odd] rows are
equal but for a shift, so the sum of their squared values can beobtained from
any even [resp., odd] row.

In the adaptive case we have:

w0i =
2

N

∑

n,m

G0i(n,m) 2

=
2

N

∑

n

[

∑

m

G0i(2n,m) 2 +
∑

m

G0i(2n + 1,m) 2

]

.

We know that the values of the reconstruction matrix on the couple of rows2n
and2n+ 1 only depend ond(n):

G0i(2n,m) = G
(d(n))
0i (2n,m)

G0i(2n + 1,m) = G
(d(n))
0i (2n + 1,m).
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So we can write:

w0i =
2

N

∑

n

[

∑

m

G
(d(n))
0i

(2n,m)
2

+
∑

m

G
(d(n))
0i

(2n+ 1,m)
2

]

=
2

N

∑

n

[

∑

m

G
(d(n))
0i

(0,m)
2
+

∑

m

G
(d(n))
0i

(1,m)
2

]

=
2

N

∑

n

w
d(n)
0i

,

where we used Eq. (4.22). If we denote byNh the number of occurrences of
the valueh in the decision map, we can write:

w0i =
D−1
∑

h=0

2Nh

N
w

(h)
0i . (4.23)

In other words, the weight of each subband depends only on therelative fre-
quency of the various symbols in the decision map. The relative frequencies
are used as multiplicative coefficients in order to find the adaptive weight as a
function of the “non-adaptive” ones. It is interesting to see that even though the
AULS and APLS are inherently nonlinear, we can find such a simple and in-
tuitive relationship between their weights and those of linear lifting schemes.
Unfortunately, the relationship becomes more complex whenmore than one
decomposition level is performed.

4.4.2 Multiple levels of decomposition

In this subsection we show how to compute the weights for an ALS when
more than one decomposition level is used. Coherently with the notation used
for the wavelet subbands, we defineGij as the reconstruction matrix for the
decomposition leveli and for the channelj (see Fig. 4.7). For example, the
low-pass subband at leveli − 1 can be obtained from the subbands at leveli
via the matricesGij :

yi−1,0 =
∑

j∈J

Gijyij (4.24)

It is obvious thatGij has the same structure asG0j , except that we have to use
the appropriate decision map at leveli, denoted bydi(·). Let us now introduce

d
(h)
i as a vector whosek-th component is:

d
(h)
i (k) =

{

1 if di

(

⌊k
2⌋

)

= h

0 otherwise.
(4.25)
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Finally, let us defineD(h)
j = diag(d

(h)
j ). It is easy to see that:

Gij =

D−1
∑

h=0

D
(h)
i G

(h)
ij , (4.26)

whereG
(h)
ij is defined similarly toG(h)

i0 in Eq. (4.21). In other words, the
synthesis matrix (at any decomposition level) for the ALS iscomposed by
selecting the2k-th and(2k+1)-th rows of the non-adaptive matrix determined
by the map valuedi(k).

It is easy to remark that the reconstructed signal can be expressed using
recursively Eq. (4.24). We obtain:

x =
∑

ij

Aijyij,

where(i, j) ∈ {(0, 1), (1, 1), (2, 1), . . . , (N−1, 1), (N−1, 0)}. The reconstruction
matrices can be computed as:

A01 = G01 (4.27)

Ai1 = Gi1

i−1
∏

ℓ=0

Gℓ0, ∀i ∈ {1, ..., I − 1} (4.28)

AI−1,0 =
I−1
∏

i=0

Gi0. (4.29)

We observe thatAij is the product of the matrices corresponding to the filters
between the subbandyij and the reconstructed signalx. This is still true when
the decomposition is non-dyadic or more than two channels are used.

In conclusion, in order to get the weight for theyij subband, we have to:

1. Compute all the matricesGℓk needed to buildAij ;

2. ComputeAij using the appropriate equation among (4.27), (4.28), and
(4.29);

3. Obtainwij as the average of the column norms ofAij .

Unfortunately, the simple interpretation of the adaptive lifting scheme weights
obtained for the one-level decomposition does not hold anymore when more
levels are used, because of the matrix product in Eq. (4.28) or Eq. (4.29).
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x(n-1,m-1)

x3(k-M-1)

x(n-1,m)

x2(k-M)

x(n,m+1)

x3(k-M)

x(n,m-1)

x1(k-1)

x(n,m)

x0(k)

x(n,m+1)

x1(k)

x(n+1,m-1)

x3(k-1)

x(n+1,m)

x2(k)
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x3(k)

y03(k-M-1) y02(k-M) y03(k-M)

y01(k-1) y00(k) y01(k)

y03(k-1) y03(k)y02(k)

Figure 4.12: The bi-dimensional signalx represented via four chan-
nels;x has2M columns, andk = Mn+m.

4.5 Extension to multi-dimensional case

Both AULS and APLS can be extended to the bi-dimensional casein order
to obtain adaptive transforms of images. The extension could be done in the
same manner for both but we prefer to treat separately the twotypes of lifting
scheme. The reason of our choice resides to the fact that the specific 2D lifting
schemes, belonging to these two families, that we want to analyze come from
a different type of extension. In fact, for AULS we consider directly a 2D
non separable version of the scheme, because these type of scheme has been
proposed in the literature; for APLS, instead, being our reference Claypoole’s
work, we start from a 2D separable extension of transform to come to a 2D
non separable extension.

For AULS, we consider a number of non-separable bi-dimensional trans-
forms presented in [78]. This case can be treated as the mono-dimensional
one, with the difference that more than two channels are usedat each level.
The input signalx is divided intoJ = 4 channels, as shown in Fig. 4.12. The
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AULS analysis equations are the following:

y00(k) = αd(k)x0(k) +
∑

n∈Z

β1,d(k)(n)x1(k − n)

+
∑

n∈Z

β2,d(k)(n)x2(k − n) +
∑

n∈Z

β3,d(k)(n)x3(k − n) (4.30)

y01(k) = x1(k) −
∑

n∈Z

γ1,0(n)y00(k − n), (4.31)

y02(k) = x2(k) −
∑

n∈Z

γ2,0(n)y00(k − n) −
∑

n∈Z

γ2,1(n)y01(k − n), (4.32)

y03(k) = x3(k) −
∑

n∈Z

γ3,0(n)y00(k − n) −
∑

n∈Z

γ3,1(n)y01(k − n)

−
∑

n∈Z

γ3,2(n)y02(k − n), (4.33)

and its structure is shown in Fig. 4.13.

Actually, we will use a simplified form, in fact, the predict operators pro-
posed in [78] are the following:

y01(k) = x1(k) − y00(k) (4.34)

y02(k) = x2(k) − y00(k) (4.35)

y03(k) = x3(k) − y00(k) − y01(k) − y02(k) (4.36)

So, in the following, we refer to this simplified scheme.

If we would construct the 2D version of APLS for similarity tothat of
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Figure 4.13: 2D AULS.

AULS, we obtain the scheme, shown in Fig.4.14, described by the equation:

y00(k) = x0(k) +
∑

n∈Z

β1(n)x1(k − n)

+
∑

n∈Z

β2(n)x2(k − n) +
∑

n∈Z

β3(n)x3(k − n) (4.37)

y01(k) = x1(k) −
∑

n∈Z

γ1,0,d(k)(n)y00(k − n), (4.38)

y02(k) = x2(k) −
∑

n∈Z

γ2,0,d(k)(n)y00(k − n) −
∑

n∈Z

γ2,1,d(k)(n)y01(k − n),

(4.39)

y03(k) = x3(k) −
∑

n∈Z

γ3,0,d(k)(n)y00(k − n) −
∑

n∈Z

γ3,1,d(k)(n)y01(k − n)

−
∑

n∈Z

γ3,2,d(k)(n)y02(k − n), (4.40)

The problem is that this scheme does not fit Claypoole’s lifting scheme,
but a more complex structure is needed.

In Claypoole’s original work, the extension of the transform to 2D case is
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Figure 4.14: Theoretical 2D APLS.

done in a separable manner. This is a problem because for weights computation
we need to have a polyphase matrix that describes the link between input and
output signals. In non adaptive case, when we consider a 2D separable trans-
form, this is possible because we use the same polyphase matrix for all rows
and for all columns [81] but, in adaptive case, different rows/columns mean
different decision maps, and different decision maps mean different polyphase
matrices. So we can not express input-output relation by a polyphase matrix.
To overcome this problem we have to compute a 2D non separableversion of
Claypoole’s lifting scheme.

As mentioned in Sec.4.1.2, Claypoole’s transform switchesbetween differ-
ent linear filters (acting on predict stage) according to thelocal behavior of the
mono-dimensional input signal (a row or a column for the images). In partic-
ular it uses four different filters. To construct a 2D non separable Claypoole’s
transform, we have to consider all sixteen 2D non separable filters obtained by
the combination of all mono-dimensional filters and then switch among them
according to the behavior both of the current row and the current column. Do-
ing this operation, the structure of 2D non separable lifting scheme obtained is
shown in Fig.4.15 and correspond to the following expressions:
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y00(k) = x0(k) +
∑

n∈Z

β1(n)x1(k − n)

+
∑

n∈Z

β2(n)x2(k − n) +
∑

n∈Z

β3(n)x3(k − n), (4.41)

y01(k) = x1(k) −
∑

n∈Z

γ1,0,d(k)(n)y00(k − n)

+
∑

n∈Z

σ1(n)x3(k − n), (4.42)

y02(k) = x2(k) −
∑

n∈Z

γ2,0,d(k)(n)y00(k − n) −
∑

n∈Z

γ2,1,d(k)(n)y01(k − n)

+
∑

n∈Z

σ2(n)x3(k − n), (4.43)

y03(k) = x3(k) −
∑

n∈Z

γ3,0,d(k)(n)y00(k − n) −
∑

n∈Z

γ3,1,d(k)(n)y01(k − n)

−
∑

n∈Z

γ3,2,d(k)(n)y02(k − n). (4.44)

In our case this general expression can be simplified because,as already
noted, we use a very simple update1:

y00(k) = x0(k) + x1(k) + x2(k) + x3(k)

(4.45)

Ones derived the expression of 2D AULS and APLS, the synthesis equa-
tions can be easily obtained from the analysis ones. Then, the equivalent
polyphase matrix for reconstruction,G0j , can be obtained by evaluating the
contribution of the wavelet subbandy0j to the channelxi for i = 0, 1, 2, 3.
This process is perfectly analogous to the one described in Section 4.3. How-
ever, here we do not report the computation of the reconstruction matrices for
the sake of simplicity. The result is that theG0j matrices are composed of
blocks ofJ rows, from theJk-th to the(Jk + J − 1)-th row that depend on
the k-th value of the decision map. As in the 1-D case, the adaptivelifting
schemew0j (one-level decomposition) can be obtained as weighted average of
non-adapted weights.

1we omit a constant equal to1
4
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Figure 4.15: Claypoole inspired 2D APLS.

Once one has obtained the first level decomposition matrices, the weights
wij can be computed recursively as in the 1-D case.

4.6 Experimental results

4.6.1 Test Lifting Schemes

In this section we validate the results previously obtainedfor some simple
AULS and for our 2D APLS inspired by Claypooleet al. lifting scheme.

For AULS we consider four bi-dimensional non-separable adaptive lifting
schemes, three presented in [78] and one presented in [83].

The first three are binary AULS, in the sense that one out of twoupdate
filters is chosen at each time. In all the three cases, whend = 1, the update
step does not perform any filtering, that isα1 = 1 andβj,1(n) = 0 for all j and
n. This happens when discontinuities are detected, so that they are preserved at
low resolution levels without smoothing. The three filters differ for the update
step in homogeneous regions (besides the way the decision map is computed,
see [78] for details). The first one, which we will refer to as AULS A, when
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d = 0 has the following update operator:

y00(k) =
1

2
[x0(k) + x1(k) + x2(k) − x3(k)] .

The second one is denoted by AULS B. Whend = 0, it uses the following
update:

y00(k) =
1

2
x0(k)

+
1

4
[x1(k) + x2(k) + x1(k − 1) + x2(k −M)]

−
1

8
[x3(k) + x3(k − 1) + x3(k −M) + x3(k −M − 1)] ,

where the input signal has2M columns (see Fig. 4.12). Finally, we consider
an AULS that we call AULS C, whose update step ford = 0 is:

y00(k) =
1

2
x0(k)

+
1

8
[x1(k) + x2(k) + x1(k − 1) + x2(k −M)] ,

In [78] it is shown that AULS A [resp., AULS B] corresponds to adeci-
sion map which is insensitive to first [resp., second] degreepolynomials. This
means that the first 2 AULS respond to higher degree polynomials by adapting
the update. The third AULS is sensitive to high values of the discrete Laplacian
of x.

The fourth AULS considered is proposed in [83], it is not binary but it
uses multiple criteria for choosing the update filters giving rise to multi-valued
decision. In the lifting schemes proposed in [83], local gradient seminorms
computed along different directions are compered in order to discriminate be-
tween different geometric structures and to capture the directional nature of
images. We refer to these lifting scheme as combining seminorms (CS) AULS
[83]. In the example that we consider we have three differentseminorms:po,
relative to the horizontal direction;p1, relative to vertical direction; andp3,
relative to oblique direction. The filtering is performed along the direction
with the smallest seminorm, furthermore the latter is compared with a thresh-
old and, if it is found greater, non filtering at all is performed, because, with
high probability, there is an edge along all directions. Theexpression of the
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considered lifting scheme is the following:

y00(k) =











































1
2x0(k) + 1

4 [x1(k) + x1(k − 1)] , if d = 0;

x0(k), if d = 1;
1
2x0(k) + 1

4 [x2(k) + x2(k −M)] , if d = 2;

x0(k), if d = 3;
1
2x0(k) + 1

8 [x1(k) + x1(k − 1) + x2(k) + x2(k −M)] , if d = 4;

x0(k), if d = 5.

where:

d = 0 ⇔ p0 = min(p0, p1, p2) and p0 ≤ T0; (4.46)

d = 1 ⇔ p0 = min(p0, p1, p2) and p0 > T0;

d = 2 ⇔ p1 = min(p0, p1, p2) and p1 ≤ T1;

d = 3 ⇔ p1 = min(p0, p1, p2) and p1 > T1;

d = 4 ⇔ p2 = min(p0, p1, p2) and p2 ≤ T2;

d = 5 ⇔ p2 = min(p0, p1, p2) and p1 > T1.

While for AULS A, B and CS the prediction is performed with Eq.(4.34)-
(4.36), for the AULS C, the last equation is simplified to:

y03(k) = x3(k) − y00(k).

Several other binary and combining seminorms AULS are described in
[78], [83] and in related works, the results for these other schemes are similar
to those reported in the following.

With reference to APLS, we consider the 2D non separable extension of
Claypoole’s work described in the Sec.4.5 Our lifting scheme is very similar
to that described in [13] except for the fact that:

• our adaptivity does not choose between four mono-dimensional filters
according to the behavior of the current row or column, but between
sixteen bi-dimensional filters according the behavior of both row and
column;

• our way of individuating discontinuity is based upon the thresholding of
Sobel operator instead on a modified version of [79].

.
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Number of decomposition levels
1 2 3

AULS A No weights 59.77% 74.69% 81.45%
AULS A Weighted 0.23% 0.36% 0.56%

AULS B No weights 61.84% 77.09% 83.70%
AULS B Weighted 0.31% 1.53% 2.93%

AULS C No weights 42.87% 60.01% 69.26%
AULS C Weighted 0.17% 0.27% 0.44%

AULS CS No weights 63.39% 79.25% 85.98%
AULS CS Weighted 0.28% 0.60% 2.52%

APLS No weights 76.41% 87.18% 91.31%
APLS Weighted 0.14% 0.15% 0.35%

Table 4.1: Relative error of the energy estimation.

4.6.2 Distortion evaluation in transformed domain

A first experiment is conducted in order to validate the weights computed with
the proposed method. As shown in [81], if the error signal in asubbandyij

(i.e. the quantization noise) is white and uncorrelated to the other subband
errors, the distortion in the original domainD is related to the distortion in the
wavelet domain by Eq. (4.9). In order to verify this relationship we generate
white Gaussian noise for the coefficients in each transform subband. Then we
estimate the distortion in the wavelet domain as the energy of the error signal.
We consider two cases: in the first one we use the weights as in Eq. (4.9); in
the second one we usewij = 1 for all subbands. This means that we estimate
the distortion in the wavelet domain without using weights.Then the two
distortion estimations are compared to the real distortion, obtained as energy
of the error signal after the inverse transform. The per centrelative errors of the
two estimations are reported in Tab. 4.1 for our five adaptivelifting schemes.

These results show that, on one hand, these lifting scheme are quite far
from orthogonal, so the distortion in the transform domain is a poor estimation
of the actual distortion. On the other hand, with the weightscomputed with
the proposed method, the distortion estimation becomes much more reliable.
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AULS A AULS B AULS AULS CS APLS

Lena 0.7dB 1.6dB 1.2dB 1.5dB 0.6dB
House 0.6dB 0.6dB 0.9dB 0.4dB 0.4dB
Peppers 0.3dB 0.7dB 1.0dB 1.4dB 0.4dB
Cameraman 1.0dB 0.6dB 0.7dB 0.7dB 0.3dB
Barbara 1.5dB 1.3dB 1.1dB 1.4dB 0.8dB

Table 4.2: PSNR improvements at 0.5 bpp for test adaptive lifting
scheme compared with no weights.

4.6.3 Bit-rate allocation

The ability of reliably estimating the distortion in the transform domain gives
consistent benefits in a compression scheme. In this sectionwe show some
quantitative results about the improvement that a correct use of weights gives
w.r.t. not using any weights at all.

To this end, we use a simple compression scheme, which is verysimilar
to the original one proposed in [78]. The input image is transformed with
one of the five test adaptive lifting scheme and quantized with a dead-zone
quantizer. An optimal bit-rate allocation algorithm is ran[84] to choose the
quantization step for each subband such that the spatial domain distortion ex-
pressed via Eq. (4.9) is minimized for the assigned target rate. Then the inverse
transform is applied on quantized coefficients, and the resulting distortion is
computed. In order to assess the effect of weights, we carry out the same com-
pression scheme using unitary weights for all subbands. Finally, we compare
the rate/distortion curves for the two schemes.

We performe this experiment on the images Lena, House, Peppers, Cam-
eraman, and Barbara. The RD curves for Lena are reported in Fig. 4.16- 4.20
and the PSNR improvements compared with no weights over the five images at
0.5 are reported in Tab. 4.2 and at 1.0 bpp in Tab. 4.3. We see that using weights
brings a gain, a little more consistent for AULS; however theimprovement is
remarkable even for APLS.
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AULS A AULS B AULS AULS CS APLS

Lena 0.9dB 1.5dB 1.0dB 1.5dB 0.4dB
House 0.6dB 0.8dB 0.9dB 0.9dB 0.6dB
Peppers 0.4dB 0.7dB 0.8dB 1.4dB 0.4dB
Cameraman 0.8dB 0.8dB 0.5dB 0.6dB 0.4dB
Barbara 1.4dB 1.0dB 1.2dB 1.0dB 1.0dB

Table 4.3: PSNR improvements at 1 bpp for test adaptive lifting
scheme compared with no weights.
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Figure 4.16: Rate-distortion curves for Lena with and without
weights. AULS A.



4.6. EXPERIMENTAL RESULTS 101

0 0.2 0.4 0.6 0.8 1
18

20

22

24

26

28

30

32

34

Rate (bpp)

P
S

N
R

 (
db

)

 

 

Weighted
No weight

Figure 4.17: Rate-distortion curves for Lena with and without
weights. AULS B.
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Figure 4.18: Rate-distortion curves for Lena with and without
weights. AULS C.
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Figure 4.19: Rate-distortion curves for Lena with and without
weights. AULS CS.
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Figure 4.20: Rate-distortion curves for Lena with and without
weights. APLS.



Conclusions

Object contours contribute to a large extent to the perceived quality of an
image but are typically quite hard to compress. As a matter offacts, many
coding algorithms fail to describe efficiently this information. In this thesis,
we discussed this issue explaining the relation between this problem and the
most effective and widespread transform for image compression: the wavelet.
Referring to recent studies on harmonic analysis, we explained the reasons
for wavelet efficiency but also for its sub-optimality when dealing with bi-
dimensional discontinuities. To overcome wavelet limits we considered three
different solutions (object-based coding, new directional transforms and adap-
tive lifting scheme) and in each of these scenarios we brought our original
contribute.

As regards the object-based image coding paradigm, we analyzed costs
and advantages of an object-based scheme based on Li and Li’swavelet shape-
adaptive (SA-WT) and shape adaptive SPIHT. Our aim was to assess the rate-
distortion performance of such an object-based coder by means of numerical
experiments in typical situations of interest, and single out, to the extent pos-
sible, the individual phenomena that contribute to the overall losses and gains.
Since the usual coding gain does not make sense for Li and Li’sSA-WT we
measured its compaction ability by analyzing the RD performance of a virtual
oracle coder which spends bits only for quantization. This was a very impor-
tant step because SA-WT losses turned out to be quite significant, especially at
low rates. Although the quantization by itself account onlyfor a small fraction
of the total cost, the reduced efficiency of SA-WT has a deep effect also on
the subsequent coding phase, the sorting pass of SPIHT. In fact, our experi-
ments revealed this to be the main cause of SPIHT losses, while the presence
of incomplete trees plays only a minor role. As for the gains,our analysis
showed that they can be significant when the image presents sharp edges be-
tween relatively homogeneous regions but also that this is rarely the case with
real-world images where the presence of smooth contours, and the inaccura-
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cies of segmentation (for a few objects) or its large cost (for many objects)
represent serious hurdles towards potential performance gains. Hence, for nat-
ural image, the advantages do not balance the costs and performance gains are
currently achievable only for some specific source, like multispectral images.

For multispectral images we introduced two different object-based
paradigms, region-based and class-based coding, that differ only for the type
of segmentation used. While classes are singled out mostly on the basis of
spectral homogeneity criteria, regions are required to satisfy some additional
spatial constraints. Therefore, regions tend be less “pure” than classes, and
a spectral transform is less effective on them. On the other hand, a spatial
transform applied to a compact region, rather than to a sparse class, might
work better. For both approaches we experimented a coding composed of: a
segmentation block; a Karhunen-Loeve transform (KLT) along the spectral di-
mension; a wavelet transform in the spatial domain; a scalarquantizer; and a
block of resource allocation. To better compact energy in the first few trans-
form bands, a different KLT matrix is used for each class/region. Our exper-
iments led to the conclusion that the class-based coding approach guarantees
always a very good performance, because optimizes the trade-off among costs
and gains. The performance of the region-based approach, instead, are a little
bit worse, but still better than that of completely flat approaches.

The second scenario refers to the new directional transforms. In this con-
text, we presented a new compression technique based on the contourlet trans-
form. The choice of this transform was based on the fact that it has an almost
optimal NLA (nonlinear approximation error) behavior and it is easily imple-
mented by a filter bank. Preliminary results on NLA quality led us to use ac-
tually a hybrid wavelet-contourlet decomposition. Then, the SPIHT coder was
adapted to the new transform, with the main design problem being the defini-
tion of suitable significance trees that took into account the correlation of co-
efficients across scales, space and directions. Even if the transform is slightly
redundant the rate-distortion performance is good, especially for highly tex-
tured images, and the visual quality of directional detailsis better than that of
the conventional wavelet/SPIHT coder.

The last solution analyzed is the adaptive lifting scheme. We showed how
to estimate the coding distortion in the transform domain for two interesting
classes of adaptive lifting schemes. The basic idea is that the nonlinearity of
these schemes can be seen as a time-variable behavior. In this way, we can
compute the weights allowing us to estimate the distortion in the transform do-
main via a weighted average of subband distortions. The method we proposed
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can be used with a large number of adaptive update/prediction lifting schemes.
Experimental results show that by using these weights the distortion assess-
ment becomes very reliable. As a consequence, coding techniques based on
distortion minimization benefit from a better distortion estimation and provide
better performance.
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