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Chapter 1

Introduction

Electromagnetic shielding is the process of limiting the flow of electromagnetic

fields between two locations, in order to prevent coupling of undesired electro-

magnetic energy into devices or systems otherwise susceptible to it.

Interest in this subject dates back more than 50 years, involving critical de-

sign aspects in several disciplines (e.g. Electrical machines, Power distribution,

Electronics, RF, Measurement systems, etc.).

More recently, there has been an increased interest in the subject because

of the growing concern about possible health effects and diseases induced by

electromagnetic fields.

1.1 Electromagnetic shielding overview

In the 1930’s and 1940’s, Levy and Schelkunoff wrote on shielding the magnetic

fields of a circular current loop by a thin plane metal sheet of infinite extent

[1], [2]. Interest in this and related problems grew and spawned special issues

of the IEEE Transaction On Electromagnetic Compatibility on the subject of

electromagnetic shielding in 1968 and 1988. The aim of this work was the

protection of sensitive electronic devices from external electromagnetic fields

and the prevention of the leakage of signals from a device which might cause

interference.

Several aspects have to be considered for the analysis of the shielding process.

1
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The first is shielding topology.

Closed topologies are defined as shield geometries which completely divide

space into ”source” and ”shielded” regions. Examples are infinite planar

shields, cylindrical shields and spherical shields. It is worth noting that for

these closed topologies the entire current circuit must be inside the source re-

gion. Thus, a single line current source rounded by a cylindrical shield would

violate the assumptions because its return current would be at infinity, outside

of the source region.

Open topologies are defined as shield geometries which do not completely sep-

arate the source and shielded regions. In this case, the electromagnetic fields

may leak through seams, holes or around the edges of the shield as well as

penetrate through it [3].

A second aspect of shielding is type of material. Shielding materials have

usually been characterized as magnetic and/or conducting. The former is a

high permeability material and is used to shield by a mechanism called flux

shunting. In this case, the magnetic flux from a source is diverted into the

magnetic material and away from the region to be shielded. The latter is a

high conductivity material and is used to shield by a mechanism known as eddy

current cancellation. In this case, currents are induced in the conductor which

cause electromagnetic fields that partially cancel those of the source. These

two shielding methods are characterized by different boundary conditions [4].

In the flux shunting case, the tangential component of the magnetic field is

nearly zero while in the eddy current cancellation case, the normal compo-

nent of the magnetic field is nearly zero. It is also useful to note that the

effectiveness of closed shields is dependent upon the type of material and the

size of the shield. Specifically, it has been found that the eddy current shield

mechanism works better for larger diameter closed shields of a given thickness

while the flux shunting mechanism works better for smaller diameter closed

shields of a given thickness [5]. For open planar shields, which are object of

this thesis, it has been shown that the relative effectiveness of flux shunting

and eddy current shields depends upon the location of the field point and the

size of the shield [4].

A third aspect of shielding is source type, location, and orientation [6]. The
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effectiveness of finite width shields has been shown to depend upon the height

of the source above the shield [4]. It is also expected that the magnetic fields

of sources near the edges of a shield will be shielded differently from the ones

located further from the edges. Source orientation with respect to edges is

another issue. This can be illustrated as follows. Consider the magnetic field

of a source in the absence of a shield. If a perfect flux shunting shield with a

zero tangential magnetic field boundary condition is placed along a surface for

which the source tangential magnetic field is already zero, then the shield has

no effect on the field. If, however, the source is rotated so that the tangential

magnetic field along the shield is no longer zero, then the shield will disturb

the field and shielding may occur. Thus, source orientation is an important

factor to consider.

1.2 State of the art

As mentioned in the above section, the first problem about the shielding to

be solved was a thin infinite planar shield separating a loop current from the

shielded region [1, 2, 6, 7, 8, 9, 10]. The goal of that work was to calcu-

late the penetration of fields through a homogeneous shield characterized by

otherwise arbitrary scalar electrical constants. A number of improvements to

this original work have been made over the years such as the consideration of

multiple layers [11] and replacement of the homogeneous layer by an infinite

screen [12]. Similar work has been carried out for shields with cylindrical and

spherical geometries [13, 14, 15]. In that work, the sources are cylindrical or

spherical dipoles (or multipoles) respectively and the goal is to calculate the

penetration of fields through imperfect shielding materials.

In the above works, authors have proposed several solutions, design charts,

experimental results; most of them are based on transmission line model

[2, 11, 18] for field penetration trough the shield. In some cases, closed form ex-

pressions has been achieved for closed shields, being their geometry coincident

with entire constant coordinate contours in a separable coordinate system.

Nowadays numerical methods are used to analyze and design electromagnetic

shields [4, 16, 17, 19] including those comparable to the moment method and,
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in particular, the finite element method (FEM).

Although numerical methods allow to achieve solutions for complicated geome-

tries and are relatively simple to be implemented in their up-to-date commer-

cial distributions, such as solutions exhibit a number of limitation in terms of

accuracy, range of applicability and numerical computation. In addition, nu-

merical methods are often time consuming and can obscure the fundamental

physics of the problem and, hence, may not easily lead to a proper understand-

ing of the electromagnetic phenomenon and do not help to identify the best

shield for a given application.

1.3 Summary

This thesis deals with the analysis of the shielding effect of open and planar

metallic (PEC) structures. Such as structures can realize suitable shields in

many different scenarios, form the ELF (Extra Low frequency) to RF and high

frequency radiation. The induced current on the PEC structure is responsible

for the shielding effect, namely such as current sustains an electromagnetic

field which is partially opposed to the source one, causing a field attenuation

in some regions.

In this work, an analytic approach will be followed for both the magnetostatic

problem (representing a good approximation for ELF shielding) and the elec-

tromagnetic one. All the results will be compared with FEM simulations and,

where possible, with other solution known in literature.

• In chapter 2 a magnetostatic analysis of a finite width thin PEC strip

will be introduced. The problem of the evaluation of the induced current

on a thin strip in presence of a stationary line current will be formulated

in terms of a Cauchy’s type integral equation. The magnetic shielding

factor will be evaluated and some sample plots shown.

• In chapter 3 a full-wave electromagnetic analysis of several thin PEC

structure will be introduced, such as strips, coupled and arrays of strips

and thin wedges. This solution could provide an useful tool for the

simulation of several shielding scenarios.
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• In chapter 4 the analysis will be extended to thick PEC strip.

• In chapter 5 an improved procedure to accelerate the electromagnetic

analysis convergence will be discussed, in order to reduce the computa-

tional time and to achieve better accuracy.
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Chapter 2

Magnetostatic analysis of a thin

strip

In this chapter a magnetostatic analysis of a thin PEC strip fed by a stationary

current line is introduced. The problem of the evaluation of the induced current

is formulated in terms of a Cauchy’s type integral equation which, by means

of an adequate polynomial expansion of the kernel, leads to an analytic closed

form solution. The analytic expression for the magnetic field in the whole

plane and the shielding efficiency are calculated. These results are validated

by means of comparison with numerical FEM analysis obtained using Maxwell

2D, a commercial software for EM simulations by Ansoft.

2.1 Problem formulation

Let us consider the structure depicted in Figure 2.1: a stationary current line

source, namely i(t) = I, parallel to the z-axis is located at (a, b), in presence

of a perfectly conducting infinitesimal strip. The strip is thin, indefinite along

the z-axis, has width 2D, and is placed at y = 0. It is well known that the

magnetic field sustained by a stationary current line in the free space is

H0(x, y) =
I

2π

(b − y)x̂ + (x − a)ŷ

(x − a)2 + (y − b)2
. (2.1.1)

7
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Figure 2.1: Geometry of a thin PEC strip fed by a current line

Because of the particular forcing field and strip geometry, an unknown current

density J0(x) = J0(x)ẑ is induced on the strip, acting along the z-axis and

depending only on x; therefore, the field sustained by the induced current is

given by the integral representation

H(x, y) =
1

2π

∫ D

−D

−yx̂ + (x − x0)ŷ

(x − x0)2 + y2
J0(x0) dx0. (2.1.2)

Being the strip perfectly conducting, the normal component of the total mag-

netic field must vanish on it, namely

Hy(x, 0) + H0y(x, 0) = 0, |x| ≤ D. (2.1.3)

Consequently, in order to determine the unknown induced current density, the

following integral equation has to be solved

∫ D

−D

J0(x0)

x − x0

dx0 = −I
x − a

(x − a)2 + b2
, |x| ≤ D. (2.1.4)

A factorization procedure of this Cauchy’s integral equation that reduces it to

an Abel type integral equation and provide a solution method, is accurately

discussed by Estrada and Kanwal [20].

However, in the next section an alternative method of solution, based on a

representation of the unknown in an adequate series of orthogonal polynomial

functions is presented. The reason why this method has been developed will

be clear afterwards, when the obtained magnetostatic solution will be used as
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an effective tool to accelerate the dynamic solution convergence.

2.2 Induced current

Let us expand the unknown J0 of the (2.1.4) according to the series

J0(x0) =
1

π

I
√

D2 − x2
0

∞
∑

n=0

SnTn (x0/D) , (2.2.1)

where Sn are unknown coefficients, and Tn(·) are Tchebychev polynomials of

the first kind and order n. This expansion exhibits several interesting features;

in particular, it is useful to factorize the right ends behaviour, prescribed by

Meixner’s condition [23] and necessary to the uniqueness of the solution. Thus,

the integral equation (2.1.4) becomes

1

π

∞
∑

n=0

Sn

∫ D

−D

1

x − x0

Tn(x0/D)
√

D2 − x2
0

dx0 = − x − a

(x − a)2 + b2
, |x| ≤ D. (2.2.2)

The kernel

K(x, x0) =
1

x − x0

(2.2.3)

can be conveniently expanded as follows [20, 24]

1

x − x0

= − 2

D

+∞
∑

m=1

Tm (x0/D) Um−1 (x/D) , (2.2.4)

where Um(·) are Tchebychev polynomials of the second kind and order m.

The last expansion enables the unknown and the kernel to be represented

according to the same expansion base and, in force of the orthogonality of the

Tchebychev polynomials of first kind,

∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =



















0, m 6= n

π
2
, m = n 6= 0

π, m = n = 0

(2.2.5)
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leads to the integrals representation

−D

π

∫ D

−D

1

x − x0

Tn(x0/D)
√

D2 − x2
0

dx0 =







0, n = 0,

Un−1(x/D), n = 1, 2, 3, . . . .
(2.2.6)

The value of these integrals for n = 0 does not allow the evaluation the first

current expansion coefficient S0, which has to be imposed by means of physical

considerations. Therefore, the integral problem can be rewritten as

1

D

+∞
∑

n=1

SnUn−1 (x/D) = I
x − a

(x − a)2 + b2
. (2.2.7)

In force of the orthogonality of Tchebychev polynomials of the second kind,

∫ 1

−1

√
1 − x2Un(x)Um(x) dx =







0, m 6= n

π
2
, m = n

(2.2.8)

it follows that

Sm =
I

π2D

∫ D

−D

√

D2 − x2
0 Um−1 (x/D)

x − a

(x − a)2 + b2
dx. (2.2.9)

Thus, the integral equation (2.1.4) has been inverted, and the induced current

density (2.2.1) is

π
√

D2 − x2
0J0(x0) = S0+

+
I

π2D

∞
∑

n=1

Tn(x0/D)

∫ D

−D

√

D2 − x2
0Um−1(x/D)

x − a

(x − a)2 + b2
dx.

(2.2.10)

By inverting the order of summation and integration, and using again the

expansion (2.2.4), the induced density current can be written as

J0(x0) =
1

π
√

D2 − x2
0

[

S0 −
I

π

∫ D

−D

√
D2 − x2

x − x0

(x − a)

(x − a)2 + b2
dx

]

(2.2.11)
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This is the integral representation of the induced current density, according

with the one found by Estrada and Kanwal [20], even if obtained in a com-

pletely different way.

It is worth noting that this solution is given with an indeterminate constant,

which is going to be evaluated by imposing that the whole current I uses the

strip as return conductor:

∫ D

−D

J(x0) dx0 = −I ⇒ S0 = −I. (2.2.12)

The solution valid under this assumption is

π
√

D2 − x2
0J0(x0) = −I − I

π

∫ D

−D

√
D2 − x2

x − x0

(x − a)

(x − a)2 + b2
dx (2.2.13)

Performing the integral, a closed form representation of the induced currents

is

J0(x) =
I

π
√

D2 − x2

aC(a, b)(x − a) − b2/C(a, b)

(x − a)2 + b2
, (2.2.14)

where for sake of shortness the function

C(x, y)=
1

|x|
√

2

√

√

(x2−y2−D2)2+4x2y2+ x2−y2−D2 (2.2.15)

has been introduced that will be used in the representation of the magnetic

field too.

In Figure 2.2 the behavior of the induced current is plotted and compared with

the one obtained by Maxwell 2D, a FEM method analysis software by Ansoft.

Most of the applications induce to consider a two line differential supply

instead of a single line one. Thus, by means of superposition, the effect of a two

line supply is presented in Figure 2.3. Let us, now, present some remarkable

cases. If the current line is centered with respect to the strip, namely a = 0,

it follows

C(0, b) =
|b|√

b2 + D2
⇒ J0(x) = − I

π
√

D2 − x2

|b|
√

b2 + D2

x2 + b2
. (2.2.16)
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Figure 2.2: Induced current on a thin strip fed by a stationary current line
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Figure 2.3: Induced current on a thin strip fed by two stationary current line

On the contrary, if the current line lies on the strip plane, namely b = 0 and

a > D, it is

C(a, 0) =
1

|a|
√

2

√

|a2 − D2| + a2 − D2 ⇒ J0(x) =
I

π
√

D2 − x2

aC(a, 0)

x − a
.

(2.2.17)
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If the strip is very large, namely D → ∞,

C(a, b) → 0 ⇒ J0(x) = −I|b|
π

1

(x − a)2 + b2
, (2.2.18)

which is the well known result achievable by means of the images theorem.

2.3 Shielding effect

The field sustained by the induced current can be then evaluated by the integral

(2.1.2). Introducing the following functions

R(x, y) = − a3C−2b2x−2a2C2x+a[C2(x2 + y2) − b2(C2 − 2)]

C{[b2 + (a − x)2]2 + 2(a − b − x)(a + b − x)y2 + y4} , (2.3.1)

U(x, y) =
b2[(a − x)(a(2C2 − 1) + x) + b2 − y2]

C{[b2 + (a − x)2]2 + 2(a − b − x)(a + b − x)y2 + y4} , (2.3.2)

where C = C(a, b).

The magnetic field (2.1.2) can be written as

Hx(x, y) =
I

2π
y

{

R(x, y)[xC(x, y) + (x − a)/C(x, y)] − U(x, y)/C(x, y)
√

(x2 − y2 − D2)2 + 4x2y2
+

−aC(a, b)R(x, y) + U(x, y)/C(a, b)
√

(a2 − b2 − D2)2 + 4a2b2

}

(2.3.3)

Hy(x, y) =
I

2π

{

R(x, y)[xC(x, y) + (x − a)/C(x, y)] − U(x, y)/C(x, y)
√

(x2 − y2 − D2)2 + 4x2y2
+

+
aC(a, b)S(x, y) + [U(x, y)(x − a)+b2T (x, y)]/C(a, b)

√

(a2 − b2 − D2)2 + 4a2b2

}

(2.3.4)

A contour plot of the magnetic field sustained by the induced current is shown

in Figure 2.4.

The expressions (2.3.3), (2.3.4) and (2.1.1) allow the evaluation of the mag-
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netic shielding factor

SEH(x, y) = 20 log10

∣

∣

∣

∣

H(x, y) + H0(x, y)

H0(x, y)

∣

∣

∣

∣

. (2.3.5)

In Figure 2.5 the contour level of the shielding factor for a thin strip fed by a

dual current supply is shown. It is worth noting that in some regions a positive

shielding factor is exhibited, due to the effect of the diverging currents at the

strip edges.
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2.4 Conformal mapping solution

In this section we compare the proposed solution of the magnetostatic problem

with the result obtained by means of a conformal mapping method. In [22, 25,

26], the magnetostatic problem has been analytically solved introducing the

following transformation to the complex domain:

z = D
1 − τ 2

1 + τ 2
, (2.4.1)

being z = x + jy the filed point and τ = u + jv the corresponding point in the

mapped plane. This transformation reduce magnetic field evaluation to the

problem of a current line over an infinite perfectly conductive plane which can

be easily solved by means of the images theorem.

Thus, the magnetic field can be found as

Hx = −ℑm

{

dw

dz

}

, (2.4.2)

Hy = −ℜe

{

dw

dz

}

, (2.4.3)
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where,

dw

dz
=

I

2π

(

1

τ − τ0

− 1

τ − τ ⋆
0

− 1

τ − j
+

1

τ + j

)

dτ

dz
, (2.4.4)

dτ

dz
= −(1 + τ 2)2

4Dτ
, (2.4.5)

τ = ±
√

D − z

D + z
, (2.4.6)

and τ ⋆
0 is the complex conjugate of τ0. In (2.4.6) the minus sign has to be used

when y > 0, the plus sign otherwise.

It is very interesting to highlight that in the (2.4.4), the first two terms of the

sum represent, respectively, the current line source and its image; then two

other sources have been introduced at ±j to represent the current return lines

at the infinity. It is now apparent that a completely different approach has

been introduced in the above sections, assuming that the return conductor for

the current is the strip itself.

In the applications a real return conductor is always present (the current source

must be a proper circuit), therefore in most of the results presented in literature

the superposition of the dual current line, namely I and −I, does hide this

choice.

In Figure 2.6 the proposed solution is compared with the conformal mapping

one and the FEM analysis. It is clear that the solution achieved in this work

does agree with the FEM simulation in any case (both single line supply and

dual one), the conformal mapping one exhibits a completely different behaviour

in case of single current line (in which case the total induced current on the

strip is zero, being the current returned at infinity). In Figure 2.7 comparison

between the proposed method and the conformal mapping solution, for a dual

current line is shown.



2.4 Conformal mapping solution 17

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x/D

|J |D
I

 

 

Proposed solution	
Conformal mapping
Ansoft Maxwell

Figure 2.6: Induced current on a thin strip fed by a single current line -
Comparison with conformal mapping solution

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x/D

|J |D
I

 

 

Proposed
Conformal mapping

b2/D = 0.5

I2 = −I

a2/D = −0.5

b1/D = 1

a1/D = 0.75

I1 = I

Figure 2.7: Induced current on a thin strip fed by a dual current line - Com-
parison with conformal mapping solution



18 Magnetostatic analysis of a thin strip



Chapter 3

Electromagnetic analysis of thin

open structures

In this chapter the electromagnetic analysis of several PEC open shields is

introduced. The induced current on thin shields, array of thin shields, and

thin wedges are calculated by means of a semi-analytic approach. The electric

and magnetic shielding effect of these structure are evaluated.

3.1 Thin Strip

3.1.1 Induced current

The geometry of the problem is depicted in figure 3.1. A dynamic current line

D
-D
 x


y


a


b
 i(
t
)


PEC
 Strip


Figure 3.1: Geometry of a thin PEC strip fed by a current line
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source, namely I = I(ω), parallel to the z-axis is located at (a, b), in presence

of a perfectly conducting infinitesimal strip. The strip is thin, indefinite along

the z-axis, has width 2D, and is placed at y = 0. It is well known that the

electromagnetic field sustained by a dynamic current line in the free space is

E0(x, y) = −ẑζ0
k

4
I(ω)H

(2)
0

[

k
√

(x − a)2 + (y − b)2
]

, (3.1.1)

H0(x, y) = j
k

4
I(ω)H

(2)
1

[

k
√

(x − a)2 + (y − b)2
] (y−b)x̂−(x−a)ŷ

√

(x−a)2+(y−b)2
, (3.1.2)

where ζ0 =
√

µ0/ε0 is the characteristic impedance of the free space, k =

ω
√

ε0µ0 is the wavenumber, I(ω) is impressed source current in the frequency

Fourier domain, and H
(2)
ν (·) is the Hankel function of the second kind and

order ν. As in the stationary case, the unknown current density J(x) = J(x)ẑ

on the strip sustains an electromagnetic field, which can be written as

E(x, y) = −ẑζ0
k

4

∫ D

−D

J(x0)H
(2)
0

[

k
√

(x − x0)2 + y2
]

dx0, (3.1.3)

H(x, y) = j
k

4

∫ D

−D

J(x0)H
(2)
1

[

k
√

(x − x0)2 + y2
] yx̂ − (x − x0)ŷ

√

(x − x0)2 + y2
dx0.

(3.1.4)

The boundary condition imposes that the tangential component of the total

electric field must vanish on the strip, namely

Ez(x, 0) + E0z(x, 0) = 0, |x| ≤ D. (3.1.5)

Therefore, the induced current has to verify the following integral equation

∫ D

−D

J(x0)H
(2)
0 [k|x − x0|] dx0 = −I(ω)H

(2)
0

[

k
√

(x − a)2 + b2
]

, |x| ≤ D.

(3.1.6)
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In order to solve this problem, let us expand the unknown similarly to mag-

netostatic case, according to series (2.2.1)

J(x0) =
1

π

I(ω)
√

D2 − x2
0

∞
∑

n=0

FnTn (x0/D) . (3.1.7)

Since Meixner’s condition [23] for the dynamic analysis is the same of the mag-

netostatic one, the expansion (3.1.7) does correctly factorizes the behaviour at

the edges, and the integral equation (3.1.6) becomes

1

π

∞
∑

n=0

Fn

∫ D

−D

H
(2)
0 [k|x − x0|]

Tn(x0/D)
√

D2 − x2
0

dx0 = −H
(2)
0

[

k
√

(x − a)2 + b2
]

,

|x| ≤ D.

(3.1.8)

It is worth noting that the kernel of this integral equation

K(x, x0) = H
(2)
0 [k|x − x0|] (3.1.9)

cannot be expanded in terms of Tchebychev polynomials, as already done in

stationary case. However, the integral equation (3.1.6) can be reduced to a

system of linear equations by multiplying for

Tm(x/D)√
D2 − x2

, m = 0, 1, 2, . . . , (3.1.10)

and integrating from −D to D with respect to x. Thus, by truncating the

serie to an adequate coefficient N , the linear system is









A00 . . . A0N

...
. . .

...

AN0 . . . ANN









·









F0

...

FN









=









b0

...

bN









, (3.1.11)
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where,

Anm =
1

π

∫ D

−D

Tm(x/D)√
D2 − x2

∫ D

−D

Tn(x0/D)
√

D2 − x2
0

H
(2)
0 [k|x − x0|] dx0 dx, (3.1.12)

bm = −
∫ D

−D

Tm(x/D)√
D2 − x2

H
(2)
0

[

k
√

(x − a)2 + b2
]

dx. (3.1.13)

The matrix element Anm is, in effect, a double integral, but in force of the

integral representation of the Hankel function of the second kind [31]

H
(2)
0 [k|x − x0|] =

1

π

∫ +∞

−∞

cos[w(x − x0)]√
k2 − w2

dw, (3.1.14)

it can be reduced to a single improper integral. By substituting (3.1.9) into

(3.1.12), the expression of the Anm becomes

Anm =
1

π2

∫ D

−D

Tm(x/D)√
D2 − x2

∫ D

−D

Tn(x0/D)
√

D2 − x2
0

∫ +∞

−∞

cos[w(x − x0)]√
k2 − w2

dw dx0 dx.

(3.1.15)

Now, by interchanging the order of integration and by using the relevant inte-

grals [31]

∫ D

−D

Tn(x/D)√
D2 − x2

cos(wx) dx =







0, if n is odd,

(−1)
n

2 πJn(wD), if n is even,
(3.1.16)

∫ D

−D

Tn(x/D)√
D2 − x2

sin(wx) dx =







(−1)
n−1

2 πJn(wD), if n is odd,

0, if n is even,
(3.1.17)

can be, finally, obtained

Anm = (−j)n+m

∫ +∞

−∞

Jn(wD)Jm(wD)√
k2 − w2

dw, (3.1.18)

where Jµ(·) is a Bessel functions of first kind and order µ. It is worth noting

that the linear system equation here obtained is the same given in [21] but it has

been achieved without introducing any spatial fourier transforms following an

even more simple and effective path. All the integrals (3.1.18) and (3.1.13) can
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be numerically evaluated. An adequate transformation on the complex plane

[21] allows to evaluate the Anm integrals over a finite range of integration,

namely

Anm = 2(−j)n+m

∫ π/2

0

Jn(kD sin τ)H(2)
m (kD sin τ) dτ, n ≥ m, (3.1.19)

providing a remarkable computational benefit.

In Figure 3.2 and 3.3 are, respectively, plotted the behaviour of the induced

current and the expansion coefficients for different position of the source line.

It is worth noting that the closer the current source is (b → 0), the slower is the

series convergence. This highlights that this method does suffer the proximity

effect, therefore in Chapter 5 an improved procedure to accelerate the series

convergence will be introduced.
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Figure 3.2: Induced current for different values of b (a = λ/200 and D =
λ/100).

Figure 3.4 shows the induced current on a thin strip fed by a dual current

source displaced at (a1, b) and (a2, b).
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Figure 3.3: Magnitude of the expansion coefficients for different values of b
(a = λ/200 and D = λ/100).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x/D

|J
|/I

*D

 

 

b=λ/300
b=λ/600
Ansoft Maxwell
Ansoft Maxwell

Figure 3.4: Induced current for different values of b (dual current source supply
- |a1,2| = λ/200 and D = λ/100).

3.1.2 Shielding effect

The numerical evaluation of the total electromagnetic field in the whole (x, y)-

plane, by integrating the (3.1.3) and (3.1.4), allows the representation of the
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shielding effect of the thin PEC strip. Let us remember the definition of the

shielding factor [25, 28]

SEH(x, y) = 20 log10

∣

∣

∣

∣

H(x, y) + H0(x, y)

H0(x, y)

∣

∣

∣

∣

, (3.1.20)

for the magnetic field, and

SEE(x, y) = 20 log10

∣

∣

∣

∣

E(x, y) + E0(x, y)

E0(x, y)

∣

∣

∣

∣

, (3.1.21)

for the electric field.

The shielding factor for the magnetic and electric fields, in presence of a two

differential dynamic line source, is, respectively, depicted in Figure 3.5 and 3.6.
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Figure 3.5: Magnetic field shielding factor - D = λ/150

In Figure 3.7 the shielding factor for both the magnetic and the electrical

fields is shown against the frequency. This graphics can be very useful to

determinate the frequency range of application for a shield.
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Figure 3.6: Electric field shielding factor - D = λ/150
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Figure 3.7: Shielding factor at the test point (xc, yc) against the current fre-
quency.

3.2 Coupled thin strips

In this section the electromagnetic analysis of coupled thin PEC strip arrays is

introduced. The problem of the evaluation of the induced current is formulated
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in terms of a system of integral equations and solved by means of the collocation

method. Different shielding structures can be accurately simulated using this

solution method (shields with aperture, shielding grids, wire shielding meshes,

etc.). All the results are validated by means of comparison with FEM analysis

and the shielding factor is plotted for some sample geometries.

3.2.1 Induced current

The problem geometry, two PEC strips fed by a dynamic current line I(ω)

placed ad (a, b), is depicted in Figure 3.8 The strips are centered at ±C and
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Figure 3.8: Two coupled thin strips fed by a current line source

have width 2D. As The electric field sustained by the induced current can be

written as

E1z(x, y) = −ζ0
k

4

∫ l2

l1

J1(x0)H
(2)
0

[

k
√

(x − x0)2 + y2
]

dx0, (3.2.1)

E2z(x, y) = −ζ0
k

4

∫ −l1

−l2

J2(x0)H
(2)
0

[

k
√

(x − x0)2 + y2
]

dx0, (3.2.2)

by imposing the tangential electric field condition on both the strips:

E0z(x, 0) + E1z(x, 0) + E2z(x, 0) = 0, x ∈ (−l2,−l1) ∪ (l1, l2) (3.2.3)
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the evaluation of the induced current is reduced to the following integral prob-

lem

∫ l2

l1

J1(x0)H
(2)
0

[

k|x − x0|
]

dx0 +

∫ −l1

−l2

J2(x0)H
(2)
0

[

k|x − x0|
]

dx0 =

−I(ω)H
(2)
0

[

k
√

(x − a)2 + b2
]

, x ∈ (−l2,−l1) ∪ (l1, l2)

(3.2.4)

assuming, respectively, for the first and the second integral of the right hand

t = x0 − C and t = x0 + C, the problem becomes

∫ D

−D

J1(t)H
(2)
0

[

k|x − t − C|
]

dt +

∫ D

−D

J2(t)H
(2)
0

[

k|x − t + C|
]

dt =

−I(ω)H
(2)
0

[

k
√

(x − a)2 + b2
]

, x ∈ (−l2,−l1) ∪ (l1, l2)

(3.2.5)

Expanding the induced currents according with

Ji(t) =
I

√

1 − (t/D)2

∞
∑

n=0

Fi,nTn(t/D), i = 1, 2 (3.2.6)

it leads to the following system:

∞
∑

n=0

F1,n

∫ D

−D

Tn(t/D)
√

1 − (t/D)2
H

(2)
0

[

k|x − t − C|
]

dt+

∞
∑

n=0

F2,n

∫ D

−D

Tn(t/D)
√

1 − (t/D)2
H

(2)
0

[

k|x − t + C|
]

dt =

−I(ω)H
(2)
0

[

k
√

(x − a)2 + b2
]

, x ∈ (−l2,−l1) ∪ (l1, l2)

(3.2.7)

A simple and effective method of solution for such a kind of equations system is

the ”collocation”. By truncating the two series to N terms and sampling both

members of the equation in N points (on the strip itself), a system of algebraic

equations is obtained, whose solution gives the current expansion coefficients.

Besides, to minimize the representation error, it can be shown [27] that the

best choice for the sampling points is the zeros of Tchebychev polynomials of
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the first kind, namely

TN+1(xk/D) = 0 → xk = D cos

(

2k + 1

N + 1

π

2

)

, k = 0, 1, ...N.

Moreover, this choice makes the coefficients value more stable with respect to

the truncation order of the series.

Thus, provided the collocation points as the zeros of TN+1(x/D), x1,0, ..., x1,N ∈
(l1, l2) and x2,0, ..., x2,N ∈ (−l2,−l1), the problem can be reduced to the solu-

tion of an equivalent system of linear equations:

























a00 . . . a0N b00 . . . b0N

...
. . .

...
...

. . .
...

aN0 . . . aNN bN0 . . . bNN

c00 . . . c0N d00 . . . d0N

...
. . .

...
...

. . .
...

cN0 . . . cNN dN0 . . . dNN

























·

























F1,0

...

F1,N

F2,0

...

F2,N

























=

























p0

...

pN

q0

...

qN

























, (3.2.8)

where

am,n =

∫ D

−D

Wn(t,D)H
(2)
0 (k|x1,m − t − C|) dt, (3.2.9)

bm,n =

∫ D

−D

Wn(t,D)H
(2)
0 (k|x1,m − t + C|) dt, (3.2.10)

cm,n =

∫ D

−D

Wn(t,D)H
(2)
0 (k|x2,m − t − C|) dt, (3.2.11)

dm,n =

∫ D

−D

Wn(t,D)H
(2)
0 (k|x2,m − t + C|) dt, (3.2.12)

pk = −H
(2)
0

(

k
√

(x1,m − a)2 + b2

)

, (3.2.13)

qk = −H
(2)
0

(

k
√

(x2,m − a)2 + b2

)

. (3.2.14)

(3.2.15)
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and

Wn(t,D) =
Tn(t/D)

√

1 − (t/D)2
. (3.2.16)

In order to improve the numerical computation of the matrix elements inte-

grals, because of the diverging behavior at the edges given by 1/
√

1 − (t/D)2,

it is worth introducing a cosine transform t = D cos τ . Thus,

am,n = L

∫ π

0

cos(nτ)H
(2)
0 (k|x1,m − D cos τ − C|) dτ, (3.2.17)

accelerating the integration algorithm convergence and achieving better accu-

racy.

In Figure 3.9 and 3.10 are plotted the induced current on two coupled strip

fed respectively by single and dual line current. The obtained behaviour is

compare with a FEM simulations via Ansoft Maxwell 2D.
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Figure 3.9: Induced current on two coupled thin strips fed by a single current
line

3.2.2 Shielding effect

Very often aperture are needed in the shields, to allow ventilation, wired con-

nections and others kind of interaction with the external environment, there-
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Figure 3.10: Induced current on two coupled thin strips fed by a dual current
line for different source position b

fore such as solution provides a very useful simulation and analysis tool. In

Figure 3.11 and 3.12 the contour lines for the electric and magnetic shielding

factor is plotted.
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It is worth noting how the fields leaks inside the shield as the aperture grows

in terms of wavelength. In the Figure 3.13 the spectrum of both the electric

an magnetic shielding factor is reported for a coupled strips shield (aperture);

it is clear that as soon as the impressed current wavelength approaches the

dimension of the aperture, the fields starts penetrating into the shield.
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3.3 Strip array

The methodology introduced in the above section can be naturally extended

to the case of N planar this strips, allowing the simulation on several different

shields common in the industrial practice (e.g. slotted metallic plates, metallic

grids, mesh-wired shields, etc.). In this section a simulation of sample shield

constituted by 5 thin strip, as in Figure 3.14 is reported. The magnitude of
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Figure 3.14: Five thin strips array fed by a current line source

the calculated expansion coefficient and the induced current on the five strip

is plotted in Figure 3.15. The magnetic and the electric shielding factor have

been evaluated and are shown, respectively, in Figure 3.16 and 3.17. The
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field leaking through the shield apertures is depending on the frequency of

the forcing current, namely the width of the apertures with respect to the

wavelength; this is well represented in Figure 3.18, where the shielding factors

at the test point (xc, yc) are plotted against the frequency.
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Figure 3.15: Expansion coefficients magnitude and induced current on a 5 PEC
strips array.
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3.4 Thin Wedge

In this section the induced current on a thin PEC wedge are evaluated and

some consideration about the shielding property of these structure are shown.

Provided the structure depicted in Figure 3.19 and 3.20, because of the

I
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Figure 3.19: Thin ”concave” metallic wedge fed by a current line
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Figure 3.20: Thin ”convex” metallic wedge fed by a current line

particular current source, the induce current on the wedge surface will have

only the z-component: I = Iẑ ⇒ J(x, y) = J(x, y)ẑ.

Thus, the electric field sustained by the induced current on the wedge walls 1

and 2 can be respectively written as

E1z(x, y) = −ζ0
k

4

∫ D1

0

J1(t)H
(2)
0

[

k
√

(x − t)2 + y2]
]

dt, (3.4.1)
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E2z(x, y) = −ζ0
k

4

∫ D2

0

J2(t)H
(2)
0

[

k
√

(x − t cos α)2 + (y − t sin α)2]
]

dt,

(3.4.2)

provided the following parametric representation on the face 2.

∀t ∈ (0, D2)

{ x = t cos α

y = t sin α.

By imposing the boundary condition on the wedge surface (namely, the total

tangential electric field must vanish on it)















E0z(x, 0) + E1z(x, 0) + E2z(x, 0) = 0, 0 ≤ x ≤ D1

E0z(τ cos α, τ sin α) + E1z(τ cos α, τ sin α) + E2z(τ cos α, τ sin α) = 0,

0 ≤ τ ≤ D2

(3.4.3)

the problem can be written in terms of a system of two integral equations.











































∫ D1

0

J1(t)H
(2)
0

[

k|x − t|
]

dt +

∫ D2

0

J2(t)H
(2)
0

[

k
√

x2 + t2 − 2xt cos α
]

dt

= −I(ω)H
(2)
0

[

k
√

(x − a)2 + b2
]

, x ∈ (0, D1)
∫ D1

0

J1(t)H
(2)
0

[

k
√

τ 2 + t2 − 2τt cos α
]

dt +

∫ D2

0

J2(t)H
(2)
0 (k|τ − t|) dt

= −I(ω)H
(2)
0

[

k
√

τ 2 + a2 + b2 − 2τ(a cos α + b sin α)
]

, τ ∈ (0, D2)

(3.4.4)

It is worth noting that if α = π and D1 = D2 = D the problem is reduced to

the integral equation of one single thin strip (3.1.6).

The unknown on the wedge surface current can be expanded, according to the

solution discussed in the above sections, in a adequate series of Tchebychev

orthogonal polynomials, factorizing the edge behavior to satisfy the Meixner

condition [23] as

J1(t) =
I(ω)

√

1 − (t/D1)
(t/D1)

π

α
−1

∞
∑

n=0

FnTn(2t/D1 − 1), (3.4.5)
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J2(t) =
I(ω)

√

1 − (t/D2)
(t/D2)

π

α
−1

∞
∑

n=0

GnTn(2t/D2 − 1). (3.4.6)

Note that for a ”convex” wedge, α > π as in figure 3.20, the surface current

current is divergent at the vertex; on the contrary, if the wedge is ”concave”,

α < π as in figure 3.19, the current is vanishing at the vertex.

By substituting the expansion (3.4.5) and (3.4.6) in (3.4.4), having introduced

the following function

Wn(t, L) =
Tn(2t/L − 1)
√

1 − (t/L)

(

t

L

) π

α
−1

, (3.4.7)

the problem leads to the following system of integral equations:



















































































∞
∑

n=0

(

Fn

∫ D1

0

Wn(t,D1)H
(2)
0

[

k|x − t|
]

dt

+ Gn

∫ D2

0

Wn(t,D2)H
(2)
0

[

k
√

x2 + t2 − 2xt cos α
]

dt

)

= −H
(2)
0

[

k
√

(x − a)2 + b2
]

, 0 ≤ x ≤ D1
∞

∑

n=0

(

Fn

∫ D1

0

Wn(t,D1)H
(2)
0

[

k
√

τ 2 + t2 − 2τt cos α
]

dt

+ Gn

∫ D2

0

Wn(t,D2)H
(2)
0

[

k|τ − t|
]

dt

)

= −H
(2)
0

[

k
√

τ 2 + a2 + b2 − 2τ(a cos α + b sin α)
]

, 0 ≤ τ ≤ D2

(3.4.8)

Sampling both the equations in (x0, . . . , xN) ∈]0, D1[ e (τ0, . . . , τN) ∈]0, D2[

and truncating both the series to N order term, the problem is reduced to the

solution of a system of linear equations where the unknowns are F0, . . . , FN
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and G0, . . . , GN .

























a00 . . . a0N b00 . . . b0N

...
. . .

...
...

. . .
...

aN0 . . . aNN bN0 . . . bNN

c00 . . . c0N d00 . . . d0N

...
. . .

...
...

. . .
...

cN0 . . . cNN dN0 . . . dNN

























·

























F0

...

FN

G0

...

GN

























=

























p0

...

pN

q0

...

qN

























, (3.4.9)

where

ank =

∫ D1

0

Wn(t,D1)H
(2)
0 (k|x − t|) dt (3.4.10)

bnk =

∫ D2

0

Wn(t,D2)H
(2)
0

(

k
√

x2 + t2 − 2xt cos α
)

dt (3.4.11)

cnk =

∫ D1

0

Wn(t,D1)H
(2)
0

(

k
√

τ 2 + t2 − 2τt cos α
)

dt (3.4.12)

dnk =

∫ D2

0

Wn(t,D2)H
(2)
0 (k|τ − t|) dt

)

(3.4.13)

pk = −H
(2)
0

(

k
√

(x − a)2 + b2
)

(3.4.14)

qk = −H
(2)
0

(

k
√

τ 2 + a2 + b2 − 2τ(a cos α + b sin α
)

(3.4.15)

e k = 0, . . . , N e n = 0, . . . , N .

In Figure 3.21 the induced current on a concave PEC wedges are plotted and

the proposed solution is compared with a FEM simulation. Then, the electric

and magnetic shielding factor are respectively shown in Figure 3.22 and 3.23.

In full analogy with the above sample, Figure 3.24,3.25 and show the current

and shielding behaviour for a convex PEC wedge.
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Figure 3.21: Induced current on a ”concave” wedge
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Chapter 4

Electromagnetic analysis of a

thick strip

In this chapter is shown how the method introduced in the earlier chapters

can be suitably used for the analysis of thick structure (namely, considering

the finite thickness of the metallic plates). In order to have an adequate

representation of the induced current and solving the integral problem, an

expansion in terms of Neumann series has been introduced [29], which is a

generalization of the (3.1.7). The solution is validate, again, by means of a

comparison with FEM simulations and the shielding factors are computed and

plotted.

4.1 Induced current

The geometry of the problem is outlined in Figure 4.1, where a PEC strip of

width 2Dx and height 2Dy, indefinite along the z-axis, is centered in the (x, y)

plane in presence of a line current source parallel to the strip I = I(ω) at

(a, b). The same procedure used for the thin strip analysis can be adapted to

this problem as long as the induce current on the four strip walls are taken

into account. Thus, the electric field sustained by the induced current can be

45
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Figure 4.1: Geometry of a thick PEC strip fed by a current line

written as

Ez(x, y) = −ζ0
k

4

{∫ Dx

−Dx

J1(x0)H
(2)
0

[

k
√

(x − x0)2 + (y − Dy)2

]

dx0+

∫ Dy

−Dy

J2(y0)H
(2)
0

[

k
√

(x − Dx)2 + (y − y0)2
]

dy0+

∫ Dx

−Dx

J3(x0)H
(2)
0

[

k
√

(x − x0)2 + (y + Dy)2

]

dx0+

∫ Dy

−Dy

J4(y0)H
(2)
0

[

k
√

(x + Dx)2 + (y − y0)2
]

dy0

}

(4.1.1)

and the boundary conditions on the four strip walls have to be imposed:























E0z(x,Dy) + Ez(x,Dy) = 0, |x| ≤ Dx (4.1.2)

E0z(Dx, y) + Ez(Dx, y) = 0, |y| ≤ Dy (4.1.3)

E0z(x,−Dy) + Ez(x,−Dy) = 0, |x| ≤ Dx (4.1.4)

E0z(−Dx, y) + Ez(−Dx, y) = 0, |x| ≤ Dx (4.1.5)

These conditions lead to a system of integral equations.

In order to solve this system, a suitable expansion of the unknown induced

current is needed and, because of the different geometry (in particular, the
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different edge angles), the current expansion (3.1.7) used for the thin strip

solution does not provide an adequate representation.

For this class of problems solutions by means of the Neumann series [29]have

been reported by some authors [21]. The general expansion in terms of Neu-

mann series can be written as

J(x) =
I(ω)

Dx

(

1 − x2

D2
x

)s−1/2 ∞
∑

n=0

Fn
2sn!Γ(s)

jnΓ(2s + n)
Cs

n(x/Dx) (4.1.6)

where Cs
n(·) are the Gegenbauer polynomials of index s and order n. The

parameter s has to be chosen to satisfy the behaviour at the edges [23].

It is worth noting that the expansion (3.1.7) is actually the particular case the

(4.1.6) for s = 0 [30].

For a thick strip the Meixner condition at the edges imposes s = 1/6. Thus,

the induced current, respectively on the horizontal and vertical walls, can be

expanded as

Ji(x) =
I(ω)

Dx

1
3

√

1 − (x/Dx)2

∞
∑

n=0

Fi,nC1/6
n (x/Dx), i = 1, 3 (4.1.7)

Ji(y) =
I(ω)

Dy

1
3

√

1 − (y/Dy)2

∞
∑

n=0

Fi,nC1/6
n (y/Dy), i = 2, 4 (4.1.8)
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Then, the integral problem becomes

∞
∑

n=0

{

F1,n

∫ Dx

−Dx

H
(2)
0

[

k
√

(x − x0)2 + (y − Dy)2
]

Dx
3

√

1 − (x0/Dx)2
C1/6

n (x0/Dx) dx0+

F2,n

∫ Dy

−Dy

H
(2)
0

[

k
√

(x − Dx)2 + (y − y0)2
]

Dy
3

√

1 − (y0/Dy)2
C1/6

n (y0/Dy) dy0+

F3,n

∫ Dx

−Dx

H
(2)
0

[

k
√

(x − x0)2 + (y + Dy)2
]

Dx
3

√

1 − (x0/Dx)2
C1/6

n (x0/Dx) dx0+

F4,n

∫ Dy

−Dy

H
(2)
0

[

k
√

(x + Dx)2 + (y − y0)2
]

Dy
3

√

1 − (y0/Dy)2
C1/6

n (y0/Dy) dy0

}

=

= −H
(2)
0

[

k
√

(x − a)2 + (y − b)2
]

, ∀(x, y) on the strip walls

(4.1.9)

By truncating the series to N coefficients and sampling the equation (4.1.9) in

4N points on the strip walls, the problem can be reduced to a linear equations

system also in this case. Again, in order to improve the method convergence,

the sampling point have been chosen as the zeroes of the Tchebychev polyno-

mials of the first kind and order N + 1.

In Figure 4.2 and 4.3 the induced current on the strip walls are plotted and

the proposed analysis is validated by a comparison with a FEM simulation.

Figure 4.4 shows the expansion coefficient magnitude of the induced current

on the four walls.

4.2 Shielding effect

The electric and the magnetic shielding factor is respectively plotted in figure

4.5 and 4.6
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Figure 4.4: Expansion coefficient of the induced current on the four walls of a
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Chapter 5

An improved procedure for the

convergence acceleration

In chapter 3 a semi-analytic method for the evaluation of the induced current

on a thin PEC strip has been introduced, providing an handful solution in

terms of Tchebychev polynomials. In Figure 3.3 has been shown that when

current line approaches the strip, a greater number of expansion coefficient is

needed. That is because the induced current does present a peak in corre-

spondence of the current line, for b → 0 the solution approaches an impulsive

function. Thus, it is clear that the proposed method for the electromagnets

analysis does ”suffer” this proximity effect, becoming slowly convergent and

time consuming.

It is interesting to observe that the behavior of the induced current due to a

line source very close to the strip it is very similar to the magnetostatic behav-

ior. In force of this observation, the idea, of using the analytic magnetostatic

solution to improve the electromagnetic method, has been developed.

The dynamic solution can be written in the variational form

∆J(x) = J(x) − J0(x), |x| < D, (5.0.1)
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where J0(x) is the known magnetostatic solution and the incremental expan-

sion coefficients of the new unknown ∆J(x) are

∆Fn = Fn − Sn, (5.0.2)

where Fn and Sn are respectively the coefficients of the dynamic (3.1.7) and

static expansions (2.2.1).

Thus, the new unknown ∆J(x) can be evaluated by solving the linear

system

A · ∆F = b − A · S, (5.0.3)

where A is the Anm matrix (3.1.18), b and ∆F are respectively the vector of

the bm (3.1.13) and ∆Fn (5.0.2), and S is the vector of Sn (2.2.9).

In Figure 5.1 the induced currents, obtained by the proposed improved method,

are compared with the non accelerated series solution. It is interesting to

note that, if b = λ/1000, more than 20 expansion terms are not enough to

reconstruct the right behavior, as shown in Figure 5.2, whereas, by means of

the proposed incremental method, the currents are accurately reconstructed

with only one term.

The introduced procedure does reduce drastically the computational time,

allowing this method to be used with good results and accuracy in a very wide

range of shielding geometry, frequencies and current sources configurations.
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Conclusions

In this work the analysis of the shielding effect of open and planar metallic

(PEC) structures has been discussed; an analytic approach has been developed,

achieving a closed form solution for the magnetostatic problem (representing a

good approximation for ELF shielding) and an effective semi-analytic solution

for the electromagnetic case. A key role in the entire work has been played

by the representation unknown induced current, most of the presented results

have been possible thanks to the factorizing of the diverging behaviour at

the edges. All the results have been validated by a comparison with FEM

simulations.

• In chapter 2 a magnetostatic analysis of a finite width thin PEC strip has

been presented. The problem of the evaluation of the induced current on

a thin strip in presence of a stationary line current, formulated in terms

of a Cauchy’s type integral equation, has been solved achieving a closed

form expression for both the induced current and the magnetic field in the

whole space. The magnetic shielding factor has been evaluated and some

plots show its behaviour. Moreover, a comparative analysis between the

proposed magnetostatic (ELF) solution and the one known in literature

has been carried out, highlighting an interesting difference due to the

critical choice of the current returning conductor.

• In chapter 3 a full-wave electromagnetic analysis for several thin PEC

structure has been introduced. A semi-analytic solution of the integral

problems, by means of an adequate expansion of the unknown in terms

of orthogonal polynomials, has been achieved. This solution method

provides an useful tool for the simulation of several shielding scenarios.
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• In chapter 4 the analysis has been extended to thick PEC strip. The

finite thickness of the metallic plate has been taken into account by the

evaluation of the induce current on the four walls of a rectangular metallic

structure and expanding these currents according to the Neumann series.

• In chapter 5 an improved method for the electromagnetic solution of

thin structures has been developed. The method introduced in chapter 3

does ”suffer” as the source line current is very close to the metallic shield.

Hence, the magnetostatic solution has been proved to be an useful tool to

improve and to accelerate the series convergence of the electromagnetic

one.

• The appendix A does show how the expression of the electromagnetic

field sustained by a single indefinite current line has been calculated.

The contributes of this work can be summarized as follows

• A new analytic magnetostatic solutions, which opens also a discussion

about the conformal mapping solution validity in some cases.

• An accurate semi-analytic solution for several planar structure, which

overcomes some of the limitation of FEM simulations and literature so-

lutions .

• A new wave to approach the induced current on a PEC wedge and the

consequent field scattering.

• An accelerating procedure based on a magnetostatic solution.

The achieved results can open interesting opportunity for future developments:

• Removing the hypothesis of PEC materials, facing the modelling issue

of either real conductive and magnetic materials.

• Shields design tools and charts developed.

• Experimental validation



Appendix A

Line current source

In this appendix the expression of the electromagnetic field sustained by an

line current I(ω), indefinite along the z-axis, is calculated. The geometry is

depicted in Figure A.

z


x


y


I(
w
)


Figure A.1: Line current source

The impressed current density can be written as

J(xs, ys, zs) = I(ω)δ(xs)δ(ys)ẑ, (A.0.1)
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where (xs, ys, zs) is a source point.The distance between a generic point (x, y, x)

and a source point is

√

x2 + y2 + (z − zs)2 =
√

r2 + (z − zs)2 (A.0.2)

assuming r as the distance on the transverse (x, y) plane.

Reminding the general expression for the vector potential

A(P ) =
µ

4π

∫

S

J(Ps)
e−jk|P−Ps|

|P − Ps|
dPs (A.0.3)

where P and PS are, respectively, the point in which the potential is evaluated

and the source point, S signifies that the integration is extended to the whole

source region and k = ω
√

ε0µ0 is the wave-number.

In this case the vector potential becomes

Az(r) =
µ

4π
I(ω)

∫ ∞

−∞

e−jk
√

r2+(z−zs)2

√

r2 + (z − zs)2
dzs =

µ

4π
I(ω)

∫ ∞

−∞

e−jk
√

r2+u2

√
r2 + u2

du,

(A.0.4)

it is clear that, in force of the symmetry, A is not depending on z.

Thanks to the integral representation of the Hankel function of second kind

H
(2)
0 [31]

∫ ∞

−∞

e−jk
√

r2+u2

√
r2 + u2

du =
π

j
H

(2)
0 (kr), (A.0.5)

the vector potential can be rewritten as

Az(r) =
µ

4j
I(ω)H

(2)
0 (kr). (A.0.6)

The well known relations for the fields E and H in terms of vector potential

E = −jωA +
∇∇ · A
jωε0µ0

(A.0.7)

H = − 1

µ0

∇× A (A.0.8)
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where, in this case

∇∇ · A = 0, (A.0.9)

lead to the following

E0z(r) = −jωAz (A.0.10)

H0ϕ(r) = − 1

µ0

dAz

dr
. (A.0.11)

Thus, by the adequate substitutions,

E0z(r) = −ωµ

4
I(ω)H

(2)
0 (kr), (A.0.12)

H0ϕ(r) =
k

4j
I(ω)H

(2)
1 (kr). (A.0.13)

It is worth noting that in the magnetostatic case, namely ω = 0

E0z(r) = 0, (A.0.14)

H0ϕ(r) =
I

r
δ(ω). (A.0.15)

In force of the above considerations, the electromagnetic field generated by a

line current, indefinite along the z-axis and displaced at x = a and y = b, is

E0(x, y) = −ẑζ0
k

4
I(ω)H

(2)
0

[

k
√

(x − a)2 + (y − b)2
]

, (A.0.16)

H0(x, y) = ϕ̂
k

4j
I(ω)H

(2)
1

[

k
√

(x − a)2 + (y − b)2
]

, (A.0.17)

where ζ0 =
√

µ0/ε0 is the characteristic impedance of the free space.

Thus, in cartesian coordinates, the fields can be written as

E0z(x, y) = −ζ0
k

4
I(ω)H

(2)
0

[

k
√

(x − a)2 + (y − b)2
]

, (A.0.18)

H0x(x, y) =
k

4j

I(ω)(y − b)
√

(x − a)2 + (y − b)2
H

(2)
1

[

k
√

(x − a)2 + (y − b)2
]

, (A.0.19)

H0y(x, y) =
k

4j

I(ω)(a − x)
√

(x − a)2 + (y − b)2
H

(2)
1

[

k
√

(x − a)2 + (y − b)2
]

. (A.0.20)
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