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Chapter 1 
 

Introduction 
Soil is a living dynamic, non-renewable, resource and its conditions 

influence food production, environmental efficiency and global balance 

(Doran and Parkin, 1994; Dick, 1997; Doran and Zeiss, 2000). The quality 

of soil depends in part on its natural composition, and also on the changes 

caused by human use and management (Pierce and Larson, 1993). Unusual 

management of soil, such as intensive cultivation without crop rotation 

(Reeves, 1997), or accidental/deliberate contamination by municipal and 

industrial wastes (Edwards, 2002), are major causes of land degradation 

and reduced soil productivity.  

Conventional physical and chemical approaches (e.g. land-filling, 

recycling, pyrolysis and incineration) to the remediation of contaminated 

sites are inefficient and costly and can also lead to the formation of toxic 

intermediates (Spain et al., 2000; Dua et al., 2002). Thus, biological 

decontamination (bioremediation) methods are preferable to conventional 

approaches in terms of both costs and environmental impact. 

Bioremediation is the use of living organisms to remove contaminants from 

soil, air and water. The main agents of bioremediation are microorganisms, 

plants and enzymatic proteins (Gianfreda and Nannipieri, 2001), able to 

degrade numerous pollutants without producing toxic intermediates (Pieper 

and Reineke, 2000; Furukawa, 2003). The introduction of microorganisms, 

proven to degrade the target pollutant (Sarkar et al., 2005), and/or of 

additional nutrients to increase the endogenous microbial population and 

enhance its degradative capability (Pankrantz, 2001) into a contaminated 

system, is often pursued to improve the effectiveness of bioremediation 

processes. 
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To assess the results of biological decontamination it is not sufficient to 

measure the remaining pollutant content in soil or its transformation in non-

toxic end-products but it is necessary to monitor whether and how soil 

biological functions are affected by and during the process. There is 

evidence that soil biological parameters (such as soil respiration, biomass, 

enzyme activities, microbial counts) may hold potential as early and 

sensitive indicators of soil ecological stress or restoration (Dick, 1992; 

Dick and Tabatabai, 1992).  
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1.1. Environmental contamination  

The environment is continuously polluted by a large array of hazardous 

chemicals, released from several anthropogenic sources and with different 

structures and different toxicity levels. Three main sources of pollution can 

be identified: industrial activities, munitions waste and agricultural 

practices (Fig. 1.1). The explosive development of chemical industries has 

produced a large variety of chemical compounds that include pesticides, 

fuels, solvents, alkanes, polycyclic aromatic hydrocarbons (PAHs), 

explosives, dyes and more.  

 

 
 
Fig. 1.1. Pollution of the environment by inorganic and organic compounds (from 
Gianfreda and Rao, 2004). 
 

Although these compounds have contributed to modernize our lifestyle, 

several of them may accumulate in one or all of the environmental 

compartments. Chemicals released into the environment undergo various 
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dissipation pathways, and their persistence varies widely. Depending on 

their behaviour in the environment, contaminants are often classified as 

biodegradable, persistent, or recalcitrant. Factors affecting the local 

concentration of a contaminant include the amount of compound released, 

the rate at which the compound is released, its stability in the environment 

under various conditions, the extent of its dilution, its mobility in a 

particular environment, and its rate of biological or non-biological 

degradation (Harayama, 1997; Ellis, 2000; Janssen et al., 2001). Both 

organic and inorganic contaminants in soil and groundwater can be 

degraded or immobilized by naturally occurring processes, and the toxicity, 

mass and/or mobility of the contaminants can be reduced without human 

intervention when suitable conditions prevail.  

The environment has a unique innate capability to resist pollution and 

remediate itself. Indeed, naturally occurring processes are involved in the 

attenuation of pollutants in the environment, including chemical, physical 

and biological processes such as sorption, dilution, dispersion, 

volatilization, hydrolysis, ion exchange, abiotic transformation, and 

biological degradation by intrinsic organisms (Fig. 1.2) (Christensen et al., 

2001). 

Among these natural processes, abiotic oxidation, hydrolysis and 

biodegradation are the only effective attenuation mechanisms, since they 

are capable to destroy the contaminants and transform them into innocuous 

end products.  

In particular, microorganisms that are ubiquitous in the natural 

environments are considered the principal mediators of the natural 

attenuation of many pollutants, such as organic molecules, inorganic 

compounds, and metals (Christensen et al., 2001; Lovley, 2001). Therefore, 

degradation of pollutants by microorganisms has been considered as a 
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major pathway, among natural processes, by which various industrial 

compounds in the environment are attenuated. 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1.2. Natural attenuation phenomena of organic pollutants in soil (from Gianfreda 
and Rao, 2004). 
 

When the migration rate of contaminants exceeds their naturally occurring 

degradation rate, it is necessary to resort to the use of engineered 

remediation processes that require human intervention to enhance or 

accelerate the degradative power of the selected remediating agents. 

Several strategies have been developed to remediate and restore polluted 

environments: physical and chemical methods and biological approaches, 

requiring the involvement of biological agents.  

These techniques may be utilized in situ, i.e. in the contaminated place 

itself, offering numerous advantages over ex situ technologies. The first 

ones can be done on site, eliminating transportation costs, are less 

expensive, can be applied to diluted and widely diffused contaminants, and 

minimize dangerous manipulations of the environment. While in ex situ 

Chemical transformations 

(hydrolysis, oxidation, polymerization) 

Intrinsic biodegradation 

(active endogenous microorganisms) 

Stabilization 
(binding and sequestration  

by clays and humus) 

Volatilization  
Dispersion  

Dilution 
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techniques, the treatments removing the contaminants occur at a separate 

treatment facility (Iwamoto and Nasu, 2001).  

 

 

1.2. Soil contamination 
Soil is one of the three major natural resources, alongside air and water. For 

a long time it was considered to be simply the loose fraction of the earth’s 

crust. It wasn’t until the late 1800s that soil was recognized as a natural 

body, worthy of study in its own right. Soil is a complex mixture of air 

(25%), water (25%), minerals that come from rocks below or nearby 

(45%), and organic matter (5%) which is the remains of plants and animals 

that use the soil and the living organisms that reside in the soil (Fig. 1.3). 

The proportion of each of these components is important in determining the 

type of soil that is present. But other factors such as climate, vegetation, 

time, the surrounding terrain, and even human activities (e.g. farming, 

grazing, gardening, etc.), are also important in influencing how soil is 

formed and the types of soil that occur in a particular landscape.  

 

 

Fig. 1.3. Soil contains four basic components: mineral particles, water, air, and organic 
matter. Organic matter can be further sub-divided into humus, roots, and living 
organisms. 
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Soil provides the structural support and the source of water and nutrients 

for plants used in agriculture; therefore it is of great importance to preserve 

its quality.  

Soil quality depends in part on its natural composition, and also on the 

changes caused by human use and management (Pierce and Larson, 1993). 

Natural events and anthropogenic activities continuously affect the quality 

of soil. The main anthropogenic contamination sources arise from the 

rupture of underground storage tanks, application of pesticides, percolation 

of contaminated surface water to subsurface strata, oil and fuel dumping, 

leaching of wastes from landfills or direct discharge of industrial wastes to 

the soil (Fig. 1.4). 

 

 
 

Fig. 1.4. Soil anthropogenic contamination sources. 
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Soil can reduce the negative effects of the contaminants because of its auto-

depuration capacity. Thanks to soil absorbent power, contaminants can be 

partially detracted from circulating solution, thus reducing the evaporation 

and the lisciviation processes and protecting the other environmental 

compartments. Nevertheless, the excess of contaminants, due to the 

overtaking of the holding capacity or environmental conditions changes 

(for example pH variations), results in loss of soil quality and release of 

contaminants.  

 

 

1.3. Fate of organic contaminants in the soil environment 
After its arrival to the soil, an organic contaminant (OC) may be lost by 

both biological and physical-chemical pathways. Biological 

transformations (biodegradation) are usually carried out by living 

organisms and/or their associated enzymatic complement, whereas 

physical-chemical pathways are the consequences of abiotic processes such 

as leaching or volatilization, accumulation within the soil biota or 

sequestration within the soil mineral and organic matter fractions (Fig. 1.5). 

Microbiological metabolic processes are, however, considered the principal 

mechanism of biological transformation of the toxic organic compounds. 

The biological transformation may occur either through direct metabolic 

process such as mineralization, cometabolism, polymerization, or by 

indirect effects of the microbiological activity, such as changes of the soil 

pH and redox conditions (Bollag and Liu, 1990). Biodegradation has been 

described by Neilson et al. (1987) as the mineralization of a substrate to 

CO2, H2O, SO2
−4, PO2

−4, or NH+4 by microorganisms, providing final, non-

toxic end-products and resulting in the formation of new biomass. 
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Fig. 1.5. Assumed fate and behaviour of a model organic contaminant (phenanthrene) in 
soil (from Semple et al., 2003). 
 

Biotransformation can be described as small modifications in the substrate 

structure, such as the introduction of a hydroxyl group, o-methylation of a 

phenol, or oxidation of a thiol to a sulfoxide, but not as complete 

mineralization.  

The ability of the soil microbial community to degrade organic compounds 

is fundamental to soil health and fertility. One of the principal mechanisms 

that accounts for the removal of OCs from soils is the catabolic activity of 

the microbes (Pritchard and Bourquin, 1984). Soil microflora has a diverse 

capacity for attacking OCs. This catabolic ability is due primarily to the co-

evolution of soil microflora and naturally occurring organic compounds, 

which contain chemical structures analogous to those of OCs (Dagley, 

1975). The rate of microbial decomposition of OCs in soils is a function of 

several factors, either singly or in combination (Macleod et al., 2001): 

1. the availability of the contaminants to the microorganisms that have 

the catabolic ability to degrade them; 

2. the numbers of degrading microorganisms present in the soil; 

Degradation 

Volatilization 

Leaching 

Bioaccumulation Sequestration 
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3. the activity of degrading microorganisms;  

4. the molecular structure of the contaminant, and 

5. the water solubility of the contaminant. 

For sparingly soluble contaminants, biodegradation is generally slower than 

for more soluble contaminants, as the chemicals will partition more readily 

with the solid phases of the soil (Bosma et al., 1997). 

However, the processes that control the evolution of catabolic activity in 

soils are not well understood. The catabolic activity can develop by 

adaptation, by the following processes: 

1. the induction or depression of specific enzymes; 

2. the development of new metabolic capabilities through genetic 

changes, such as plasmid transfer or mutation, and 

3. selective enrichment of organisms able to transform the target 

contaminant(s) (Spain and van Veld, 1983; Pritchard and Bourquin, 

1984). 

Adaptation is thought to be controlled by the concentration of the OC 

interacting with the microflora, as well as the length of time the chemical is 

in contact with the soil (Bosma et al., 1997; Alexander, 2000; Macleod et 

al., 2001). For example, Macleod and Semple (2002) investigated the 

development of pyrene catabolic activity in two soils (pasture and 

woodland) with disparate amounts of organic matter amended with 100 mg 

pyrene kg-1. Pyrene mineralization was observed in the pasture soil after 8 

weeks of incubation, whereas it took 76 weeks in the woodland soil. 

Degradative investigations on the woodland soil showed that pyrene was 

bioavailable but that the microbial community in the woodland soil could 

not mineralize the pyrene. The observers thought the disparity in catabolic 

activity was due to the slower transfer of pyrene from the soil to the 
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microorganisms in the woodland soil caused by its larger organic matter 

content. 

Microorganisms can utilize contaminants in the liquid phase by direct 

contact of cells with the organic contaminant, or with submicrometric 

particles dispersed in the aqueous phase (Nakahara et al., 1977). Microbial 

interaction with OCs involves two processes (Bosma et al., 1997): 

1. a physical or chemical component involving the movement of the 

chemical in the physical environment, in relation to the degrading 

microorganisms, and 

2. a biological component involving the metabolism of the chemical. 

The relative importance of these mechanisms depends on how strongly the 

contaminant is sequestered as well as the rate of degradation. The rate at 

which a sequestered OC becomes available is influenced by the ability of 

microorganisms to reduce the concentration in the aqueous phase and the 

tendency of organisms to adhere to the sorbent (Calvillo and Alexander, 

1996). Increased contact time reduces the magnitude of the rapidly 

desorbing phase and extent of biodegradation (Hatzinger and Alexander, 

1995; Pignatello and Xing, 1996; Cornelissen et al., 1998).  

The term 'bioavailability' refers to the fraction of a chemical in a soil that 

can be taken up or transformed by living organisms. Two important factors 

determine the amount of a chemical that is bioavailable: (i) the rate of 

transfer of the compound from the soil to the living cell (mass transfer) and 

(ii) the rate of uptake and metabolism (the intrinsic activity of the cell). 

Bioavailability has also been defined as the degree to which a compound is 

free to move into or on to an organism, and as such the term is best used in 

the context of a specific organism(s) because it is known that 

bioavailability differs between organisms and even species (Reid et al., 

2000a).   
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It is well established that sequestration of organic contaminants in soil 

reduces the bioavailability of organic chemicals and results in a non-

degraded residue in the soil (Fig. 1.6), even if some evidences confirm that 

the association with dissolved organic matter can increase water solubility 

and mobility of the contaminants (Kögel-Knabner and Totsche, 1998; 

Marschner, 1998). 

 

 

Fig. 1.6. Examples of processes governing the concept of bioavailability and ageing: 
chemical availability, including processes controlled by substance and soil specific 
parameters; biological availability, including processes controlled by species-specific 
parameters; toxicological availability, including processes controlled by organism-
specific parameters. POP = persistent organic pollutant.  
 

Normally, as the time of contact between contaminant and soil increases 

there is a decrease in chemical and biological availability, a process termed 

ageing (Hatzinger and Alexander, 1995). Contaminants that have aged in 

soil are not available for degradation even though freshly added 

compounds are still degradable (Alexander, 1995). Fig. 1.7 shows the 

influence of contact time on the extractability and bioavailability of OCs in 
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soil. Over time, the readily available fraction (easily extractable or 

bioavailable fraction) diminishes in a biphasic manner, i.e. some is 

degraded or lost from the soil and some is transformed into the recalcitrant 

fraction.  

 
Fig. 1.7. The influence of contact time on the extractability and bioavailability of a 
contaminant (from Semple et al., 2003). 
 

There is an increase in the recalcitrant fraction, which can be accessed only 

by specific and sometimes aggressive extractions, followed by a slower 

increase in a fraction deemed to be non-extractable (Macleod and Semple, 

2000).  

Sorption is the major factor involved in the sequestration of hydrocarbons 

in soil (Bosma et al., 1997). Slow sorption results in a fraction of the OC 

becoming resistant to desorption and in increased persistence within the 

soil matrix (Hatzinger and Alexander, 1995). The following hypotheses 

have been suggested as explanations for ageing: 



.CChapter 1                                                                                                                             . 

14 

1. the aged fraction results from the slow diffusion of the organic 

compounds within the solid organic matter fraction of soil, possibly 

the lipid fraction (Alexander, 2000); 

2. the contaminant slowly diffuses through the soil and becomes sorbed 

and entrapped within nano- and micro-pores within the soil 

(Hatzinger and Alexander, 1995). 

Of course, contaminants may become sequestered by a combination of both 

the above mechanisms (Fig. 1.8).  

 

Fig. 1.8. Physical behaviour of a contaminant within the soil (from Semple et al., 2003). 
 

Evidence for the sequestration of contaminants includes (i) laboratory and 

field investigations, which demonstrate a decreasing availability to 

organisms (Chung and Alexander, 1998); (ii) investigations into the 

extractability of aged OCs and the kinetics of sorption and desorption 

(Hatzinger and Alexander, 1995); (iii) temporal changes in the rate and 

extent of contaminant mineralization (Hatzinger and Alexander, 1995; Reid 
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et al., 2000b), and (iv) the assessment of toxicity. This last is very 

important for decisions regarding risk and environmental regulations; 

however, the evidence is based on only a few studies by Salanitro et al. 

(1997) and Saterbak et al. (1999, 2000). Simplistically, ageing may be 

associated with the continuous diffusion of OCs into small pores where the 

organic molecules are retained by sorption. This explains the decreases in 

solvent extractability and bioavailability of OCs. It also means that toxic 

organic chemicals that have been in contact with the soil matrix for a long 

time are unlikely to be available to humans, animals or plants (Alexander, 

1995). However, we do not know yet how long this fraction will remain in 

this state or whether the contaminant(s) will remobilize and so become 

extractable and bioavailable. 

 

 

1.4. Persistent organic pollutants 
Of all the pollutants released into the environment every year by human 

activity, persistent organic pollutants (POPs) are among the most 

dangerous. POPs are used as pesticides, consumed by industry, or 

generated unintentionally as by-products of various industrial/combustion 

processes. They are highly toxic and cause an array of adverse effects, 

notably death, disease, and birth defects among humans and animals. 

Specific effects can include cancer, allergies and hypersensitivity, damage 

to the central and peripheral nervous systems, reproductive disorders, and 

disruption of the immune system. Some POPs are also considered to be 

endocrine disrupters which, by altering the hormonal system, can damage 

the reproductive and immune systems of exposed individuals as well as 

their offspring; they can also have developmental and carcinogenic effects.  
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These highly stable compounds can last for years or decades before 

breaking down. They circulate globally through a process known as the 

'grasshopper effect'. POPs released in one part of the world can, through a 

repeated (and often seasonal) process of evaporation and deposit, be 

transported through the atmosphere to regions far away from the original 

source. In addition, POPs can bioaccumulate in living organisms. They are 

associated with the manufacture and use of certain chemicals, with spills 

and leaks and with the combustion of both fuels and wastes 

(http://web.worldbank.org/).  

Two main classes of POPs are polycyclic aromatic hydrocarbons and 

chlorophenols. 

 

1.4.1. Polycyclic aromatic hydrocarbons 

1.4.1.1. General properties  

Polycyclic aromatic hydrocarbons (PAHs) are non-polar organic 

compounds made up of two or more fused benzene rings, arranged in 

linear, angular or clustered structures (Fig. 1.9).  

PAHs are hydrophobic compounds and their persistence in the environment 

is chiefly due to their low water solubility (Cerniglia, 1992) and high 

octanol-water partition coefficient (Kow). Generally, PAHs solubility and 

volatility decreases and hydrophobicity increases with an increase in 

number of fused benzene rings (Wilson and Jones, 1993). PAHs are 

classified according to the number of rings, the type of ring and the atom 

composition. The low molecular weight (LMW) PAHs contain two or three 

aromatic rings and the high molecular weight (HMW) ones more than 

three. Many PAHs are carcinogenic and they are, therefore, of significant 

concern as environmental contaminants. 
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Numerous studies have indicated that one-, two- and three-ring compounds 

are acutely toxic (Sims and Overcash, 1983), while higher molecular 

weight PAHs are considered to be genotoxic (Phillips, 1983; Lijinsky, 

1991; Mersch-Sundermann et al., 1992; Nylund et al., 1992). PAHs are 

highly lipid soluble and thus readily adsorbed by the gastrointestinal tract 

of mammals (Cerniglia, 1984). They are rapidly distributed in a wide 

variety of tissues with a marked tendency for localization in body fat.  

 

 

Fig. 1.9. Structure of some abundant polycyclic aromatic hydrocarbons (PAHs) in the 
environment. 
 

Metabolism of PAHs occurs via the cytochrome P450-mediated mixed 

function oxidase system with oxidation or hydroxylation as the first step 

(Stegeman et al., 2001). The resultant epoxides or phenols might get 

detoxified in a reaction to produce glucoronides, sulfates or glutathione 

conjugates. Some of the epoxides might metabolize into dihydrodiols, 

which, in turn, could undergo conjugation to form soluble detoxification 
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products or be oxidized to diol-epoxides. Many PAHs contain a 'bay-

region' as well as 'K-region', both of which allow metabolic formation of 

bay- and K-region epoxides, which are highly reactive. K-region is 

represented by carbons 9 and 10 of the phenanthrene ring system and it 

seems to be the reactive spot in the various hydrocarbon carcinogen. A 

common bay-region is the site on benzo(a)pyrene, an indirect carcinogen 

that is metabolically activated by the P450 system. Carcinogenicity has 

been demonstrated by some of these epoxides (Goldman et al., 2001) (Fig. 

1.10).  

 
Fig. 1.10. Fate, toxicity and remediation of polycyclic aromatic hydrocarbons (PAHs) in 
the environment. A wide variety of PAHs are abundant in nature owing to incomplete 
combustion of organic matters. The PAHs from extraterrestrial matter are also oxidized 
and reduced owing to prevalent astrophysical conditions and resulting in the formation 
of various organic molecules, which are the basis of early life on primitive earth. The 
microorganisms (naturally occurring or genetically engineered) can mineralize toxic 
PAHs into CO2 and H2O (from Samanta et al., 2002). 
 
Therefore, many PAHs are considered to be environmental pollutants that 

can have a harmful effect on the flora and fauna of affected habitats, 

resulting in the uptake and accumulation of toxic chemicals in food chains 
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and, in some instances, in serious health problems and/or genetic defects in 

humans. Consequently, the United States Environmental Protection Agency 

(U.S. EPA) and the European Community  have listed 16 PAHs as priority 

environmental pollutants (Wattiau, 2002). 

Naphthalene, the first member of the PAHs group, is a common 

micropollutant in potable water. The toxicity of naphthalene has been well 

documented and cataractogenic activity has been reported in laboratory 

animals (Mastrangela et al., 1997; Goldman et al., 2001).  

Naphthalene binds covalently to molecules in liver, kidney and lung 

tissues, thereby enhancing its toxicity; it is also an inhibitor of 

mitochondrial respiration (Falahatpisheh et al., 2001). Acute naphthalene 

poisoning in humans can lead to haemolytic anaemia and nephrotoxicity. In 

addition, dermal and ophthalmological changes have been observed in 

workers occupationally exposed to naphthalene.  

Phenanthrene is known to be a photosensitizer of human skin, a mild 

allergen and mutagenic to bacterial systems under specific conditions 

(Mastrangela et al., 1997). It is a weak inducer of sister chromatid 

exchanges and a potent inhibitor of gap junctional intercellular 

communication (Weis et al., 1998).  

Interestingly, because phenanthrene is the smallest PAH to have a bay-

region and a K-region, it is often used as a model substrate for studies on 

the metabolism of carcinogenic PAHs (Bücker et al., 1979). Little 

information is available for other PAHs such as acenaphthene, fluoranthene 

and flourene with respect to their toxicity in mammals.  

However, the toxicity of benzo(a)pyrene, benzo(a)anthracene, 

benzo(b)fluoranthene, benzo(k)fluranthene, dibenz(a,h)anthracene and 

indeno(1,2,3-c,d)pyrene has been studied and there is sufficient 
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experimental evidence to show that they are carcinogenic (Mastrangela et 

al., 1997; Šrám et al., 1999; Liu et al., 2001).  

 

1.4.1.2. PAHs in the environment: sources and fate 

The release of PAHs into the environment is widespread since these 

compounds are ubiquitous products of incomplete combustion and 

uncontrolled emissions (Wilson and Jones, 1993). PAHs have been 

detected in a wide variety of environmental samples, including air 

(Greenberg et al., 1985; Sexton et al., 1985; Freeman and Cattell, 1990), 

soil (Jones et al., 1989a,b,c; Wilson and Jones, 1993), sediments 

(Youngblood and Blumer, 1975; Laflamme and Hites, 1978; Shiaris and 

Jambard-Sweet, 1986), water (Cerniglia and Heitkamp, 1989), oils, tars 

(Nishioka et al., 1986) and foodstuffs (Dipple and Bigger, 1991; Lijinsky, 

1991). Industrial activities, such as processing, combustion and disposal of 

fossil fuels, are usually associated with the presence of PAHs at highly 

contaminated sites. PAHs contamination in industrial sites is commonly 

associated with spills and leaks from storage tanks and with the 

conveyance, processing, use and disposal of these fuel/oil products (Wilson 

and Jones, 1993). PAHs are also a major constituent of creosote 

(approximately 85% PAH by weight) and anthracene oil, which are 

commonly used as pesticides for wood treatment (Bos et al., 1984; 

Bumpus, 1989; Walter et al., 1991). As such, PAH contamination is 

frequently associated with wood treatment activities (Sims and Overcash, 

1983; Mueller et al., 1993; Vanneck et al., 1995) and wood-preservative 

production (Wilson and Jones, 1993).  

Possible fates of PAHs in the environment include volatilization, photo-

oxidation, chemical oxidation, bioaccumulation, interaction with the soil 

matrix and biodegradation (Cerniglia, 1992); the importance of these 
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processes depending on the environment, i.e. atmosphere, soil or water. In 

soils, PAHs can undergo abiotic reactions (photo-oxidation and chemical 

oxidation) and some, i.e. naphthalene and alkyl naphthalene, are partly lost 

by volatilization (Park et al., 1990). However, the main transformation is 

the result of microbial degradation (Cerniglia, 1992) and a relevant fate is 

the adsorption to the soil matrix.  

 

1.4.2. Chlorophenols 

1.4.2.1. General properties 

Chlorophenols (CPs) are organic chemicals formed from phenol (1-

hydroxybenzene) by substitution in the phenol ring with one or more atoms 

of chlorine. Nineteen congeners are possible, ranging from 

monochlorophenols to the fully chlorinated pentachlorophenol (PCP) (Fig. 

1.11.).  

 

 
 

Fig. 1.11. Pentachlorophenol molecule. 
 

Chlorophenols, particularly trichlorophenols, tetrachloro-phenols and PCP, 

are also available as sodium or potassium salts. The aqueous solubility of 

chlorophenols is low, but their sodium or potassium salts are up to four 
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orders of magnitude more soluble in water than the parent compounds. The 

changes in solubility may reflect in increases or decreases of bioavailability 

of the compound to the microbial attack. Usually, increased water 

solubility results in greater bioavailability and in turn in higher levels of 

degradation by the microbial agent. The acidity of chlorophenols increases 

as the number of chlorine substitutions increases. The n-octanol/water 

partition coefficients of chlorophenols increase with chlorination, 

indicating a tendency for the higher chlorophenols to bioaccumulate.  

Because of their broad-spectrum antimicrobial properties, chlorophenols 

have been used as preservative agents for wood, paints, vegetable fibres 

and leather and as disinfectants. In addition, they are used as herbicides, 

fungicides and insecticides and as intermediates in the production of 

pharmaceuticals and dyes.  

The toxicity of chlorophenols depends upon the degree of chlorination, the 

position of the chlorine atoms and the purity of the sample. Chlorophenols 

have an irritating effect on eyes and on respiratory tract. Toxic doses of 

chlorophenols cause convulsions, shortness of breath, coma and finally 

death. Chlorophenols can be adsorbed through the lungs, the gastro-

intestinal tract and the skin. A high concentration of CPs in the affected 

organisms can develop long-term negative effects including teratogenicity 

and mutagenicity (Kogevinas et al., 1997; Farah et al., 2004). 

 

1.4.2.2. Chlorophenols in the environment: sources and fate 

The most important source of these compounds is the chlorine bleaching 

process of pulp and paper mills, which discharges large volumes of brown-

coloured effluents (Rubilar et al., 2008) (Table 1.1). The toxicity of this 

effluent has primarily been attributed to wood resins, chlorinated phenols, 

and tannins, while the brown colour results from the presence of lignin or 
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polymerized tannins in the wastewater (Kookana and Rogers, 1995; Diez et 

al., 1999). 

Therefore, the occurrence of organochlorinated compounds in nature is 

generally ascribed to anthropogenic activities (Annachhatre and Gheewala, 

1996). However, 2000 chlorinated and otherwise halogenated chemicals 

are discharged into our biosphere by plants, marine organisms, insects, 

bacteria, fungi, mammals, and enzymatic, thermal, and other natural 

processes. These are constantly occurring in many ecosystems-surface 

waters and groundwater, sediments, atmospheric air, and soils and lead to 

the formation of chlorinated chemicals, including dioxins and 

chlorofluorocarbons that previously were thought to result only from the 

actions of humans (Gribble, 1994).  

 
Table 1.1. Main chlorinated phenolic compounds in pulp-mill effluents after bleaching 
with hypochlorite and chlorine dioxide (from Rubilar et al., 2008). 

Compounds 
Conventional Cl beach process  

(g ton-1 pulp) 

50-60% ClO2 substitution 

(g ton-1 pulp) 

Chlorinated phenols 1.4-4.8 0.4 

2,4-Dichlorophenol 0.3-0.5 0.4 

2,4,6-Trichlorophenol 0.8-1.1 0.6-0.7 

2,3,4,6-Tetrachlorophenol 2.1-2.2 0.4 

Pentachlorophenol 1.0-1.3 1.4 
 

The majority of chlorophenols released into the environment go into water, 

with very little entering the air.  The compounds that seem most likely to 

go into the air are the mono- and dichlorophenols because of their volatility 

(that is, have the greatest tendency to form vapours or gases).  Once in the 

air, sunlight helps destroy these compounds and rain washes them out of 

the air.  CPs stick to soil and to sediments at the bottom of lakes, rivers, or 

streams. 
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In the natural environment, chlorophenols may be transformed by several 

natural attenuation processes such as biodegradation, chemical and 

photochemical degradation, volatilization, dispersion, and stabilization by 

adsorption on soil constituents (Czaplicka, 2004). However, such natural 

processes can occur at various efficiencies and rate and they can be so slow 

that pollutants may persist for years. For instance, their susceptibility to 

biodegradation may change drastically, depending on several factors 

related to the chemical and physical properties of both the chemical and the 

environment in which they are present (Rubilar et al., 2008). 

 

 

1.5. Soil remediation 
The production, distribution, use, misuse, disposal, or accidental spills of 

many chemicals have polluted some environments to levels that threaten 

the health of humans, livestock, wildlife and, indeed, whole ecosystems. 

Most of these chemicals are produced and used in efforts to improve 

human health, standards of living and safety through advancements in 

manufacturing, agriculture and agribusiness, medicine, and to strengthen 

national defence. Ironically, their unplanned intrusions into the 

environment can reverse the same standards of living that they are intended 

to foster. Nowadays there is the need to remedy the contaminated sites, 

especially soils, either as a response to the risk of adverse health or 

environmental effects caused by contamination or to enable the soil to be 

redeveloped for use.  

There is a very wide range of remediation methods available to tackle 

contamination although two broad approaches can be distinguished (Wood, 

1997): 



                                                                                                                         Introduction 

25 

• engineering approaches - these are primarily the traditional methods 

of excavation and disposal to landfill, or the use of appropriate 

containment systems; 

• process based techniques include physical, chemical, biological, 

stabilization/solidification, and thermal processes. 

 

1.5.1. Engineering approaches 

Contaminated sites are frequently remediated by excavation of the 

contaminated material and subsequent disposal of this to a controlled 

landfill. The approach represents a rapid method of dealing with a 

contaminated site but it has been criticized as it represents only a transfer of 

the contaminated material from one location to another rather than a final 

solution. Additionally, it is very difficult and increasingly expensive to find 

new landfill sites for the final disposal of the material. The breakdown 

and/or stabilization of many pollutants cannot be guaranteed under landfill 

conditions; in fact, for some compounds, breakdown or stabilization 

processes are retarded in landfills. Contaminated material disposed to 

landfill must be prevented from causing any further environmental damage. 

The principal approaches that contribute towards prevention are (Armishaw 

et al., 1992; Wood, 1997): 

• containment, 

• attenuation. 

The concept of containment as a method for dealing with contaminated 

ground is based on the use of low-permeability barriers to isolate the 

contaminated material, or any associated leachate or gaseous products, 

from the environment. The barriers can be constructed from natural or 

synthetic materials, or a combination of both, and can be placed over, under 

or around a contaminated area or pollution source. The technique can be 
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used to isolate existing hazards such as a contamination source, to prevent 

the spread of contaminants from a disposal site such as landfill, or to isolate 

specially designed mono-disposal sites for contaminated soil. The effective 

design and installation of a containment system requires extensive 

geological and hydrological investigation, modelling and monitoring. 

Although low permeability is a necessary characteristic of containment 

materials complete impermeability is rarely attained in practice. However, 

any materials used for containment may also act as a substrate for 

attenuation mechanisms. A further degree of containment can be achieved 

if the contaminated material is subjected to stabilization/solidification 

techniques prior to disposal.  

Remediation of many contaminated sites has been achieved by covering the 

surface with clean material incorporating a low-permeability layer. 

Whereas this may reduce infiltration and form a physical barrier to the 

contamination it may not necessarily control adequately the movement of 

contaminants. In order to provide adequate control it may be necessary to 

use such cover systems in conjunction with vertical and horizontal in-

ground barriers or cut-offs to achieve partial or total isolation of the site. A 

cover system consists of a single layer, or succession of layers, of selected, 

suitable non-contaminated material that covers the area of contamination.  

In-ground barriers can be used to isolate, usually by physical means, a 

contaminated mass of ground from the surrounding environmental or other 

targets. Low-permeability material may be introduced around or under the 

contaminated site, or methods incorporating some sort of physical, 

biological or chemical control of contaminant migration can be used. In-

ground barriers can be placed around, above and below a contaminant 

source to achieve complete isolation. 
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The effectiveness and applicability of barrier methods vary according to the 

types and nature of contaminants present, physical conditions of the site 

and the design life of the barrier.  

As stated above (Fig. 1.1), natural attenuation refers to the decrease in the 

mass and/or concentration of a contaminant due to physical, chemical or 

biological mechanisms and intrinsic bioremediation, i.e. natural 

bioremediation by indigenous microorganisms, is becoming a favoured 

treatment technology for contaminated sites. Indeed natural processes have 

been found to be satisfactory for removal of many pollutants (Rügge et al., 

1995; Semprini et al., 1995), and other more aggressive treatments still do 

not totally eliminate contaminants or do not result in expected removal or 

destruction rates (Bredehoeft, 1992; Valkenburg, 1994; Uhlman, 1995). 

 

1.5.2. Process based techniques 

1.5.2.1. Physical methods 

Soils that contain a wide range of contaminants and contaminant mixtures 

can be treated by physical methods. Physical processes separate 

contaminants from uncontaminated material by exploiting differences in 

their physical properties (e.g. density, particle size, volatility) by applying 

some external force (e.g. abrasion) or by altering some physical 

characteristic to enable separation to occur (e.g. flotation). Depending on 

the nature and distribution of the contamination within the soil, physical 

processes may result in the segregation of differentially contaminated 

fractions (for example, a relatively uncontaminated material and a 

contaminant concentrate based on a size separation) or separation of the 

contaminants (for example oil or metal particles) from the soil particles. 

The range of physical processes includes a diverse variety of methods that 
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include both in situ and ex situ approaches. This variation has been 

classified into two main groups (Barber et al., 1994): 

• Washing and sorting treatments which are commonly referred to as 

soil separation and washing. The main aim of the processes is to 

concentrate the contaminants into a relatively small volume so that 

the costs associated with disposal and further treatment are related 

only to the reduced volume of process residues. 

• Extraction treatments which involve processes that remove the 

contaminants from soils by involving a mobilizing and/or releasing 

process to remove the contaminant from the soil matrix. Three main 

categories of extraction treatments are soil vapour extraction, electro-

remediation and soil flushing and chemical extraction. 

 

1.5.2.2. Chemical methods 

Chemical treatments for the remediation of contaminated soils are designed 

either to destroy contaminants or to convert them into less environmentally 

hazardous form. Chemical reagents are added to the soil to bring about the 

appropriate reaction. In general, excess reagents may need to be added to 

ensure that the treatment is complete. This in turn may result in excessive 

quantities of un-reacted reagents remaining in the soil following treatment. 

Heat and mixing may also be necessary to support the chemical reaction. 

Chemical processes can also concentrate contaminants in a manner similar 

to physical processes. A range of chemical remediation processes is at 

various stages of development, both for in situ and ex situ applications. 

Many of these are based on the treatment of waste water or other hazardous 

waste. However, the range of processes that have been widely used at full 

scale is restricted. Major types include: 

• oxidation-reduction, 
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• dechlorination, 

• extraction, 

• hydrolysis, 

• pH adjustment. 

Redox reactions can be applied to soil remediation to achieve a reduction of 

toxicity or a reduction in solubility. Oxidation and reduction processes can 

treat a range of contaminants including organic compounds and heavy 

metals. Oxidizing agents that can be used include oxygen, ozone, 

ultraviolet light, hydrogen peroxide, chlorine gas and various chlorine 

compounds. Reduction agents that can be used include aluminium, sodium 

and zinc metals, alkaline polyethylene glycols, and some specific iron 

compounds.  

Chemical dechlorination processes use reduction reagents to remove 

chlorine atoms from hazardous chlorinated molecules to leave less 

hazardous compounds. Dechlorination can be used to treat soils and waste 

contaminated with volatile halogenated hydrocarbons, polychlorinated 

biphenyls, and organochlorine pesticides.  

Extraction techniques that can be used for the treatment of contaminated 

soils include organic solvent extraction, supercritical extraction, and metal 

extraction using acids. The methods are applicable to soils, wastes, sludge 

and liquids. The extraction liquid containing the contaminant has to be 

collected for treatment.  

Hydrolysis refers to the displacement of a functional group on an organic 

molecule with a hydroxide group derived from water. A restricted range of 

organic contaminants is potentially treatable by hydrolysis, although 

hydrolysis products may be as hazardous, or even more hazardous, than the 

original contaminant.  
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pH adjustment refers to the application of weak acidic or basic materials to 

the soil or groundwater to adjust the pH to acceptable levels. A common 

example is the addition of lime to neutralize acidic agricultural soils. 

Neutralization can also be used to affect the mobility or availability of 

contaminants such as metals by enhancing their precipitation as 

hydroxides.  

 

1.5.2.3. Stabilization/Solidification 

Stabilization/solidification methods operate by solidifying contaminated 

material, converting contaminants into a less mobile chemical form and/or 

by binding them within an insoluble matrix offering low leaching 

characteristics. These processes can be adopted to treat soils, wastes, sludge 

and even liquids, and a variety of contaminant types. However, the 

treatment of organic contaminants is generally more difficult and more 

expensive. An added benefit is the improved handling and geotechnical 

properties of the treated product that might result compared with the 

original contaminated material. Stabilization/solidification processes have 

been applied both in situ and ex situ, the latter being both on and off site. 

With an ex situ approach it may be necessary to landfill the stabilized 

product if an alternative use or disposal option is not possible. A 

disadvantage here is that the volume of the stabilized product can be 

considerably greater than the original contaminated material because of the 

quantities of stabilization materials that have been added.  

 

1.5.2.4. Thermal methods 

The number of technologies that are commercially available is considerably 

restricted. Techniques under development and commercially available can 
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be either in situ or ex situ. Three ex-situ techniques that operate in different 

temperature regimes will be outlined (Barber et al., 1994; Wood, 1997): 

• thermal desorption, 

• incineration, 

• vitrification. 

Thermal desorption involves the excavation of the contaminated soil 

following by heating to temperature in the region of 600 °C. At these 

temperatures the volatile contaminants are evaporated and subsequently 

removed from the exhaust gasses by condensation, scrubbing, filtration or 

destruction at higher temperatures. Following treatment it may be possible 

to re-use the soil depending on the temperatures used and the concentration 

of any residual contamination. Thermal desorption has its primary use in 

the treatment of organic contamination although it has also been used for 

the treatment of mercury-contaminated soils.  

Incineration involves the heating (either directly or indirectly) of excavated 

soil to temperatures of 880-1200 °C to destroy or detoxify contaminants. 

Incineration can also be used for the treatment of contaminated liquids and 

sludge. Incineration results in the destruction of the soil texture and 

removes all natural humic components. Residues may also have high heavy 

metal contents. Exhaust gasses need to be treated to remove particulates 

and any harmful combustion products. A range of methods of incineration 

are available although the use of rotary kilns is probably the most 

widespread. Costs of treatment are heavily dependent on the water content 

of the material being treated and any calorific value that the material may 

have. Vitrification involves the heating of excavated soil to temperatures in 

the region of 1000-1700 °C. At these temperatures vitrification of the soil 

occurs forming amonolithic solid glassy product. Contaminants will either 

be destroyed or trapped in the glassy product. The technology works by 
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melting the alumino-silicate minerals in the soil which, on cooling, solidify 

to form the glass. In soils or wastes where there are insufficient alumino-

silicates these can be added in the form of glass or clay. The product from 

vitrification may have very low leaching characteristics. Exhaust gases 

require treatment for the removal of any volatile metals or hazardous 

combustion products. Vitrification is an expensive process and likely to be 

restricted in use for particularly hazardous contaminants that are not readily 

treated by other methods. 

 

 

1.6. Biological methods 
Biological remediation, or bioremediation, is a process in which indigenous 

or inoculated microorganisms, for instance fungi, bacteria and other 

microbes, degrade (metabolize) organic contaminants found in soil (and 

groundwater), converting them to innocuous end-products. 

It uses naturally occurring bacteria and fungi or plants to degrade or 

detoxify substances hazardous to human health and/or the environment. 

The microorganisms may be indigenous to a contaminated area or they may 

be isolated from elsewhere and brought to the contaminated site. 

Contaminant compounds are transformed by living organisms through 

reactions that take place as a part of their aerobic or anaerobic metabolism. 

Usually, aerobic biodegradation is much more efficient than the anaerobic 

process and it is widely used in relation to the chemical nature of the 

contaminant. Both processes can be applied in series to reduce the 

complexity and toxicity of the contaminant. Biodegradation of a compound 

is often a result of the actions of multiple organisms. For bioremediation to 

be effective, microorganisms must enzymatically attack the pollutants and 

convert them to harmless products. The control and optimization of 



                                                                                                                         Introduction 

33 

bioremediation processes is a complex system of many factors. These 

factors include: the existence of a microbial population capable of 

degrading the pollutants; the availability of contaminants to the microbial 

population; the environment factors (type of soil, temperature, pH, the 

presence of oxygen or other electron acceptors, and nutrients). 

Bioremediation technologies can be broadly classified as in situ and ex situ. 

In situ techniques involve treatment of the contaminated material in place. 

By contrast, ex situ techniques are those treatments which involve the 

physical removal of the contaminated material for treatment. 

 

1.6.1. In situ bioremediation 

These techniques (U.S. EPA, 2001, 2002) are generally the most desirable 

options due to lower cost and less disturbance since they provide the 

treatment in place avoiding excavation and transport of contaminants. In 

situ treatment is limited by the depth of the soil that can be effectively 

treated.  

In many soils effective oxygen diffusion for desirable rates of 

bioremediation extends from a range of only a few centimetres to about 30 

cm into the soil, although depths of 60 cm and greater have been 

effectively treated in some cases.  

The most important land treatments are as follows: 

 Bioventing, the most common in situ treatment that involves 

supplying air and nutrients through wells to contaminated soil to 

stimulate the indigenous bacteria. Bioventing employs low air flow 

rates and provides only the amount of oxygen necessary for the 

biodegradation while minimizing volatilization and release of 

contaminants to the atmosphere. It works for simple hydrocarbons 

and can be used where the contamination is deep under the surface. 



.CChapter 1                                                                                                                             . 

34 

 Biosparging that involves the injection of air under pressure below 

the water table to increase groundwater oxygen concentrations and 

enhance the rate of biological degradation of contaminants by 

naturally occurring bacteria. Biosparging increases the mixing in the 

saturated zone and thereby increases the contact between soil and 

groundwater. The ease and low cost of installing small-diameter air 

injection points allows considerable flexibility in the design and 

construction of the system. 

 Bioaugmentation, that involves the addition of microorganisms 

indigenous or exogenous to the contaminated sites. Two factors limit 

the use of added microbial cultures in a land treatment unit: 1) non-

indigenous cultures rarely compete well enough with an indigenous 

population to develop and sustain useful population levels, and 2) 

most soils with long-term exposure to biodegradable waste have 

indigenous microorganisms that are effective degraders if the land 

treatment unit is well managed.  

 Biostimulation, that involves some stimulation of the numbers and 

activities of natural populations, usually bacteria or fungi, so they 

can better break down pollutants into harmless products. 

Biostimulation is based on the assumption that a polluted medium 

(soil, water, etc.) already contains microbes that are capable of 

destroying or detoxifying particular pollutants in that medium. The 

reason for the persistence of a pollutant, therefore, may be due to one 

or more of the following: a) unbalanced and/or inappropriate levels 

of nutrients or aeration; b) strong binding of the pollutant to the 

medium (adsorption) that prevents the availability of the pollutant for 

destruction or transformation by microbes; or c) inactivity of the 

native microbes caused by excessively high (toxic) concentrations of 
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pollutants. Accordingly, provision of appropriate nutrient and 

environmental conditions, including alleviation of toxicity problems, 

should allow natural pollutant cleanup or stabilization to proceed. 

 

1.6.2. Ex situ bioremediation 

These techniques involve the excavation or removal of contaminated soil 

from ground. Some examples are reported below: 

 Landfarming is a simple technique in which contaminated soil is 

excavated and spread over a prepared bed and periodically tilled 

until pollutants are degraded. The goal is to stimulate indigenous 

biodegradative microorganisms and facilitate their aerobic 

degradation of contaminants. In general, the practice is limited to the 

treatment of superficial 10-35 cm of soil. Since landfarming has the 

potential to reduce monitoring and maintenance costs, as well as 

clean-up liabilities, it has received much attention as a disposal 

alternative. 

 Biopiles are a hybrid of landfarming and composting. Essentially, 

engineered cells are constructed as aerated composted piles. 

Typically used for treatment of surface contamination with 

petroleum hydrocarbons they are a refined version of landfarming 

that tend to control physical losses of the contaminants by leaching 

and volatilization. Biopiles provide a favourable environment for 

indigenous aerobic and anaerobic microorganisms (von Fahnestock 

et al., 1998). 

 Bioreactors. Slurry reactors or aqueous reactors are used for ex situ 

treatment of contaminated soil and water pumped up from a 

contaminated plume. Bioremediation in reactors involves the 

processing of contaminated solid material (soil, sediment, sludge) or 
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water through an engineered containment system. A slurry bioreactor 

may be defined as a containment vessel and apparatus used to create 

a three-phase (solid, liquid, and gas) mixing condition to increase the 

bioremediation rate of soil-bound and water-soluble pollutants as a 

water slurry of the contaminated soil and biomass (usually 

indigenous microorganisms) capable of degrading target 

contaminants. In general, the rate and extent of biodegradation are 

greater in a bioreactor system than in situ or in solid-phase systems 

because the contained environment is more manageable and hence 

more controllable and predictable. Despite the advantages of reactor 

systems, there are some disadvantages. The contaminated soil 

requires pre-treatment (e.g. excavation) or alternatively the 

contaminant can be stripped from the soil via soil washing or 

physical extraction (e.g. vacuum extraction) before being placed in a 

bioreactor. 

 

1.6.3. Advantages and disadvantages of bioremediation 

Bioremediation may present either advantages or disadvantages. The main 

advantages can be summarized as follows (Vidali, 2001): 

• Bioremediation is a natural process and is therefore perceived by the 

public as an acceptable waste treatment process for contaminated 

material such as soil. Microbes able to degrade the contaminant 

increase in numbers when the contaminant is present; when the 

contaminant is degraded, the biodegradative population declines. The 

residues from the treatment are usually harmless products and 

include carbon dioxide, water, and cell biomass. 

• Theoretically, bioremediation is useful for the complete destruction 

of a wide variety of contaminants. Many compounds that are legally 
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considered to be hazardous can be transformed to harmless products. 

This eliminates the chance of future liability associated with 

treatment and disposal of contaminated material. 

• Instead of transferring contaminants from one environmental 

medium to another, for example, from land to water or air, the 

complete destruction of target pollutants is possible. 

• Bioremediation can often be carried out on site, often without 

causing a major disruption of normal activities. This also eliminates 

the need to transport quantities of waste off site and the potential 

threats to human health and the environment that can arise during 

transportation. A reduction of exposure risks for clean-up personnel 

can also result. 

• Bioremediation techniques are typically more economical than 

traditional methods. 

The main  disadvantages are: 

• Bioremediation is limited to those compounds that are 

biodegradable. Some compounds, such as chlorinated organic or 

high aromatic hydrocarbons are resistant to microbial attack. They 

are degraded either slowly or not at all, hence it is not easy to predict 

the rates of clean-up for a bioremediation exercise. 

• There are some concerns that the products of biodegradation may be 

more persistent or toxic than the parent compound. 

• Biological processes are often highly specific. Important site factors 

required for success include the presence of metabolically capable 

microbial populations, suitable environmental growth conditions, 

and appropriate levels of nutrients and contaminants. 

• It is difficult to extrapolate from bench and pilot-scale studies to full-

scale field operations. 
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• Research is needed to develop and engineer bioremediation 

technologies that are appropriate for sites with complex mixtures of 

contaminants that are not evenly dispersed in the environment. 

Contaminants may be present as solids, liquids, and gases. 

• Bioremediation often takes longer than other treatment options, such 

as excavation and removal of soil or incineration. 

• Regulatory uncertainty remains regarding acceptable performance 

criteria for bioremediation. 

 

 

1.7. Soil quality indicators 
It is important to distinguish soil quality from soil health, which often are 

used interchangeably (Doran and Safley, 1997). Doran et al. (1996) defined 

soil health as 'the continued capacity of soil to function as a vital living 

system, within natural or managed ecosystem boundaries to sustain 

biological productivity, maintain environmental quality, and promote plant, 

animal and human health'. Soil quality is the end product of soil 

degradative or conserving processes and is a combination of the physical, 

chemical and biological properties (Fig. 1.12) that are essential for plant 

growth, regulating and partitioning of surface to ground water, and 

buffering, detoxifying and scrubbing of hazardous chemicals. It is rather 

dynamic and can affect the sustainability and productivity of land use, 

furthermore it is increasingly proposed as an integrative indicator of 

environmental quality (National Research Council, 1993; Monreal et al., 

1998), food security (Lal, 1999) and economic viability (Hillel, 1991).  
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Fig. 1.12. Soil quality as affected by soil properties. 
 

Basic soil quality indicators should (1) well correlate with ecosystem 

functions such as C and N cycling (Visser and Parkinson, 1992); (2) 

integrate soil physical, chemical, and biological properties and processes 

and serve as basic inputs needed for estimation of soil properties or 

functions which are more difficult to measure directly; (3) be measurable 

by as many users as possible and not limited to a select group of research 

scientists; (4) be applicable to field conditions, i.e. they should describe the 

major ecological processes in soil and ensure that measurements made 

reflect conditions as they exist in the field under a given management 

system; (5) be sensitive to variations in management and climate; and (6) 

be components of existing soil data bases where possible (Doran and 

Parkin, 1994). Quantifying these variables through long-term monitoring 

may lead to an understanding about the effects of land management 

practices and natural or human-caused disturbances on the soil component 

of ecosystems (Knoepp et al., 2000).  
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It is often difficult to separate soil functions into chemical, physical, and 

biological processes because of the dynamic, interactive nature of these 

processes (Schoenholtz et al., 2000). Because of this interactions, soil 

indices are extremely variable.  

Many soil chemical properties directly influence microbiological processes 

(e.g. via nutrient and carbon supply), and these processes, together with soil 

physical-chemical processes, determine the capacity of soils to hold and 

supply nutrients cycles (including carbon), and the movement and 

availability of water. Therefore soil chemical indicators are used mostly in 

the context of nutrient relations and may also be referred to as 'indices of 

nutrient supply' (Powers et al., 1998).  

By contrast, biological and biochemical properties, including soil 

respiration, microbial biomass and the activities of soil enzymes, are most 

useful for detecting the deterioration of soil quality (Visser and Parkinson, 

1992) because of their importance in cycling of organic matter and 

regulating active nutrient pools in soils (Caravaca and Roldán, 2003).  

The identification of biological indicators of soil quality is important 

because soil quality is strongly influenced by microorganism mediated 

processes (nutrient cycling, nutrient capacity, aggregate stability), whereby 

the key is to identifying those components that rapidly respond to changes 

in soil quality (Doran and Parkin, 1994). Nevertheless, there is the problem 

of knowing which indicator responds to a specific soil treatment or 

contaminant. Therefore, the use of multiple biological and biochemical 

properties is often suggested (Ros et al., 2006). General biochemical 

properties such as microbial biomass carbon (Brookes, 1995), or 

ecophysiological quotients such as qCO2 and qD (Anderson and Domsch, 

1993), as well as specific biochemical properties such as hydrolytic soil 

enzymes related to C, N and P cycles (Nannipieri et al., 1990) are 
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suggested. Some examples of bioindicators that have been tested as 

potential monitoring tools, especially for contaminants removal, are 

reported in Table 1.2. 

One limitation in using biological assays for soil quality indication is the 

lack of standard methodology. Considerable variation exists among assay 

procedures used by various researchers, making actual activity comparisons 

between sites difficult. It was thus emphasized that if bioassays are to be 

used as soil quality indicators, soil sample pre-treatment, assay procedures 

and units of measurement must be standardized (Dick, 1994). 
 

Table 1.2. Some examples of bioindicators used in monitoring hydrocarbons removal 
(adapted from Maila and Cloete, 2005). 

Bioindicator Pollutant specificity Sensitivity and range tested References 

Enzymes 
   

Soil lipase Diesel oil, mineral oil Sensitive; up to 1 mg m-1 soil  Margesin et al., 1999, 2000;
Soil dehydrogenase Crude oil and refined 

petroleum products 
Moderately sensitive; 20-60% 
(w/w) oil/dry soil 

Frankenberger and 
Johanson, 1983; 

Urease and catalase Mineral oil Less sensitive; detectable at high 
TPH concentration (5000 mg kg-1 
soil) 

Margesin et al., 2000 

Seed germination 
   

Prairie grass (Canada 
blue grass and slender 
wheatgrass) 

Aromatics 
(Halogenated) 

Sensitive; 13-133 μg kg-1 soil Wang and Freemark, 1995; 
Siciliano et al., 1997 

L. sativum PAHs Moderately sensitive, 50-100 mg 
kg-1 soil 

Maila and Cloete, 2002 

Microbial biomass Oil contaminated soil Moderately sensitive Kandeler et al., 1994 

Batteries of bioindicators   
Microbial 
bioluminescence, 
earthworm and seed 
germination 
 

Creosote, heavy, 
medium and light 
crude oils 

Moderately sensitive. 
Earthworm>seed 
germination>bioluminescence 25-
17, 400 μg g-1 soil 
 

Wang and Freemark, 1995;  
Dorn et al., 1998; 
Marwood et al., 1998; 
Phillips et al., 2000; Shakir 
et al., 2002 
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1.7.1. Soil enzymes 

Nutrient cycling in soils involves biochemical, chemical and physico-

chemical reactions, with biochemical processes being mediated by 

microorganisms, plant roots, and soil animals. It is well known that all 

biochemical reactions are catalysed by enzymes, which are proteins that act 

as catalysts without undergoing permanent alteration and causing chemical 

reactions to proceed at faster rates. In addition, they are specific for the 

types of chemical reactions in which they participate (Tabatabai, 1994).  

Burns (1982) classified soil enzymes according to their location in soil 

(Fig. 1.13). Three main enzyme categories (termed biotic enzymes) are 

associated with viable proliferating cells. They are located: (i) 

intracellularly in cell cytoplasm, (ii) in the periplasmic space, and (iii) at 

the outer cell surfaces. Enzymes in the soil solution are generally short-

lived because they are readily inactivated by physical adsorption, 

denaturation or degradation (Sarkar and Burns, 1984). The remaining 

categories are broadly characterized as abiontic (Skujinš, 1976). Abiontic 

enzymes are those exclusive of live cells that include enzymes excreted by 

living cells during cell growth and division from extant or lysed cells but 

whose original functional location was on or within the cell. Additionally, 

abiontic enzymes can exist as stabilized enzymes in two locations: 

adsorbed to internal or external clay surfaces, and complexed with humic 

colloids through adsorption, entrapment, or copolymerization during humic 

matter genesis (Boyd and Mortland, 1990).     
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Fig. 1.13. Soil enzymes location. (i) Intracellular enzymes, (ii) periplasmic enzymes, 
(iii) enzymes attached to outer surface of cell membranes, (iv) enzymes released during 
cell growth and division, (v) enzymes within non-proliferating cells (spores, cysts, 
seeds, endospores), (vi) enzymes attached to dead cells and cell debris, (vii) enzymes 
leaking from intact cells or released from lysed cells (viii), enzymes temporarily 
associated in enzyme-substrate complexes, (ix) enzymes adsorbed to surfaces of clay 
minerals, (x) enzymes complexed with humic colloids (according to Burns, 1982 and 
Nannipieri, 1994). 
 
Enzymes associated with humic substances and to a lesser extent with clay 

particulates are protected against thermal denaturation, proteolysis, 

dehydration or decomposition and are part of a persistent extracellular 

enzyme pool that is independent of the existing microbiota (Burns, 1982; 

Sarkar and Burns, 1984; Miller and Dick, 1995). The humic-enzyme 

fractions retain the original properties of the enzymes (Busto and Perez-

Mateos, 1995) as stable enzyme-organic matter complexes and they were 

found to allow diffusion of substrates to the active enzyme site (Burns, 

1982). Therefore soil can be considered as a sink and source of indigenous 

and persistent enzymatic capacity which is independent of current or recent 
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microbial and plant activity (Galstian, 1974; Burns, 1986; Lähdesmäki and 

Piispanen, 1992; Busto and Perez-Mateos, 1995). Moreover, the enzymatic 

activity of a soil is conditioned by land use history since enzymes are 

produced by living organisms which contribute to the biological soil 

formation.  

The activity and stability of enzymes in soil is regulated by pH 

(Frankenberger and Johanson, 1983; Trasar-Cepeda and Gil-Sotres, 1987; 

Dick et al., 1988), microbial biomass (Häussling and Marschner, 1989; 

Saffigna et al., 1989; Carter, 1991; Srivastava and Singh, 1991), vegetation 

(Juma and Tabatabai, 1978; Harrison, 1983; Perucci et al., 1984; Helal and 

Sauerbeck, 1987; Tarafdar and Jungk, 1987), soil and crop management 

practices (Perucci and Scarponi, 1985; Beck, 1990; Martens et al., 1992; 

Kandeler and Eder, 1993), soil organic matter (Juma and Tabatabai, 1978; 

Chhonkar and Tarafdar, 1984; Sparling et al., 1986), clay minerals 

(Makboul and Ottow, 1979; Huang et al., 1995) and to the soil moisture 

content (Harrison, 1983; West et al., 1988a,b).  
Enzyme activities are an important index of the biological activity of a soil 

because they are involved in the dynamics of soil nutrient cycling and 

energy transfer. Indeed, they reflect the intensity and direction of 

biochemical processes in the soil matrix. Hence, their activity indicates the 

biological capacity of a soil to carry out the biochemical processes which 

are important to maintaining the soil fertility (Galstian, 1974; Dkhar and 

Mishra, 1983; Burns, 1986; Garcia et al., 1994) as soil fertility depends not 

only on nutrient status and availability but also on the turnover of N, P and 

other nutrients (Lopez-Hernandez et al., 1989). Actually, enzymatic 

processes are closely associated with soil fertility as they mediate the 

conversion of unavailable forms of nutrients to forms that are readily 

assimilable by plants and microbial biomass (Sarathchandra et al., 1984; 
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Dick et al., 1988; Sarkar et al., 1989; Dick, 1992; Martens et al., 1992; 

Sinsabaugh, 1994).  

Soil enzymes also participate in the decomposition and synthesis of organic 

substances and are important for the formation of recalcitrant organic 

molecules (Galstian, 1974; Martens et al., 1992).  

As enzymes do not react readily to environmental changes like the soil 

microbial biomass, their activity is a more stable indicator of biological 

processes (Galstian, 1974). 

 

1.7.1.1. Soil enzymes as indicators of pollution 

Soil enzymes are the catalysts not only of important metabolic process 

functions but also of decomposition of organic inputs and detoxification of 

xenobiotics. Such compounds are of crucial concern in the soil 

environment as they could affect many biological and biochemical 

reactions in soils (Dick, 1997).  

Pollution indicators should possess the following attributes (Doran and 

Parkin, 1994; Elliott, 1997): 

1. sensitivity to the presence of pollutant; 

2. ability to reflect different levels of pollution; 

3. constancy in the response to any given pollutant; 

4. sensitivity to the greatest possible number of pollutants; 

5. discriminating between the effect of the pollutant and any prior 

degradation of the polluted soil; 

6. differentiating among pollutants according to the different degrees of 

soil degradation they cause. 

Although their use has been confined to laboratory studies, many enzymes 

have been tested for their potential to monitor pollutants removal, such as 
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pesticides, heavy metals, hydrocarbons and other industrial and agricultural 

chemicals.  

Pesticides including herbicides, fungicides, etc., introduced into the soil 

environment have potential to affect non-target organisms and soil 

biochemical processes (Dick, 1997). In soils, pesticides are subjected to (i) 

biodegradation, (ii) cometabolism, (iii) polymerization and (iv) 

accumulation in microorganisms (Bollag and Liu, 1990). They can be also 

sorbed by clay and metal oxide surface and by humic substances, 

undergoing to abiontic reactions.  

Several investigations have been devoted to study the effects of various 

pesticides on the activities of enzymes in soils from different origin 

(Gianfreda and Rao, 2008). If recommended field application rates are 

used, inhibitory results are temporary, and enzyme activities return to 

levels similar to those in untreated soils in a few weeks or months. When 

pesticides are applied to soils at very high concentrations such as when 

there is an accidental spill, enzymes activities are significantly affected.  

Heavy metals can have toxic effects on soil biology and soil biochemical 

processes. Enzyme reactions are inhibited by metals (i) through 

complexation on the substrate, (ii) by combining with the protein-active 

groups of the enzymes, or (iii) by reacting with the enzyme-substrate 

complex. The oxidation state of the metal (Ross et al., 1981) and the soil 

type (Speir et al., 1992) are important factors in determining the toxicity of 

heavy metals on soil enzymes. 

Soil enzyme activities hold potential also for assessing the impact of 

hydrocarbons on soils and the effectiveness of remediation processes 

(Dick, 1997; Maila and Cloete, 2005) because of their central role in the 

degradation of these molecules in water and carbon dioxide.  
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Therefore, as indicators of soil quality enzymes can provide information 

about the progress of remediation operations or the sustainability of 

particular types of land management (Schloter et al., 2003).  

In considering soil enzymes as an indicator of soil quality, which enzymes 

are important? The soil enzymes most frequently studied are 

oxidoreductases, transferases and hydrolases. Among oxidoreductases, 

dehydrogenase is the most studied partly because of its apparent role in the 

oxidation of organic matter where it transfers hydrogen from substrates to 

acceptors.  Although dehydrogenase activity depends on the total metabolic 

activity of the viable microbial populations, and should exist only in 

integral parts of intact cells, it has not always reflected total numbers of 

viable microorganisms isolated on a particular medium or with oxygen 

consumption or CO2 evolution (Skujinš, 1976). Lots of compounds can act 

as alternative hydrogen acceptors instead of the oxygen, for example the 

extracellular phenol oxidase existing in soil (Howard, 1972), some anions 

in soil, such as nitrate (Bremner and Tabatabai, 1973), and Cu, naturally 

present in soils or in contaminated amendments (Chander and Brookes, 

1991). Some hydrolases and transferases have been extensively studied 

because of their role in decomposition of various organic compounds, and 

thus are important in nutrient cycling and formation of soil organic matter. 

These would include enzymes involved in the C cycle (amylases, 

cellulases, lipases, glucosidases, and invertase), the N cycle (proteases, 

amidases, urease, and deaminases), the P cycle (phosphatases) and the S 

cycle (arylsulphatase) (Dick, 1994). 

 

1.7.2. Soil microbial biomass 

The soil microbial biomass (MB) can be defined as organisms living in soil 

that are generally smaller than approximately 10 μm (Schloter et al., 2003). 
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It is made up of bacteria, fungi, actinomycetes, algae, protozoa and some 

nematodes, and is estimated to contribute about ¼ of the total biomass on 

earth (Pankhurst et al., 1995; Roper and Gupta, 1995). Measurements of the 

carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) contained in the 

soil microbial biomass provide a basis for studies of the formation and 

turnover of soil organic matter, as the microbial biomass is one of the key 

definable fractions (Brookes et al., 1990). The data can be used for 

assessing changes in soil organic matter caused by soil management 

(Powlson et al., 1987) and tillage practices (Spedding et al., 2004), for 

assessing the impact of management on soil strength and porosity, soil 

structure and aggregate stability (Hernández-Hernández and López-

Hernandez, 2002), and for assessing soil N fertility status (Elliot et al., 

1996). Because it is such a sensitive indicator of changing soil conditions, 

the soil microbial biomass as an 'early warning' of effects of stresses on the 

soil ecosystem and contributes to the maintenance of soil fertility and soil 

quality in both natural and managed terrestrial ecosystems (Turco et al., 

1994; Elliott et al., 1996). 

Soil microbial biomass measurements have been used for determining the 

effects of environmental contaminants like heavy metals (Renella et al., 

2004), pesticides (Harden et al., 1993), and antibiotics (Castro et al., 2002) 

on the soil ecosystem, and to monitor bioremediation of oil-contaminated 

soils (Plante and Voroney, 1998). 

Microbial biomass content is an integrative signal of the microbial 

significance in soils because it is one of the few fractions of soil organic 

matter (SOM), biologically meaningful, sensitive to management or 

pollution and finally measurable (Powlson, 1994).  

The quality and quantity of the organic matter of soils normally changes at 

slow rates which are difficult to detect in the short term because of the 
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large pool-size of organic matter and the spatial variability of soils. 

However, the soil microbial biomass, as active fraction of the organic 

matter, responds much more rapidly than soil organic matter as a whole to 

changes in management, climate, etc. For that reason, soil microbial 

biomass and the ratio between microbial biomass and SOM has been 

proposed as an indicator of the state and changes of total soil organic 

matter (Dick, 1992; Powlson, 1994; Pankhurst and Lynch, 1995; Pankhurst 

et al., 1995). Soil microorganisms are continually changing and adapting to 

changes in the environment. This dynamic nature makes them a sensitive 

indicator to assess changes and to predict long-term effects of changes in 

soil resulting from management practices (Kennedy and Papendick, 1995; 

Kennedy and Smith, 1995).  

Soil microorganisms control many key processes in soils, thus contributing 

to the maintenance of soil quality, and are involved in the decomposition 

and accumulation of SOM, nearly all mineral nutrient transformations in 

soils related to plant nutrition and soil fertility (Apsimon et al., 1990; 

Kennedy and Papendick, 1995; Pankhurst et al., 1995).  

Soil microbial biomass also serves as a source and sink for mineral 

nutrients and organic substrates in the short term, and as a catalyst to 

convert plant nutrients from stable organic forms to available mineral 

forms over longer periods (McGill et al., 1986). Finally, the microbial 

biomass is releasing and containing enzymes which are responsible for 

nutrient cycling (Saffigna et al., 1989; Carter, 1991; Ocio et al., 1991; 

Srivastava and Singh, 1991).  

The size and activity of the microbial biomass is regulated by the soil 

organic matter quantity and quality and has been related to climatic 

conditions (Insam, 1990), soil moisture content (Van Veen et al., 1985; 

Doran et al., 1990; Van Gestel et al., 1996), soil temperature (Joergensen et 
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al., 1990), soil pH (Jenkinson and Powlson, 1976; Roper and Gupta, 1995), 

soil structure and texture (Jocteur-Monrozier et al., 1992; Ladd, 1992) and 

to soil and crop management practices (Aoyama and Nozawa, 1990; Ocio 

et al., 1991; Amato and Ladd, 1992; Mueller et al., 1992; Ritz et al., 1992; 

Srivastava and Lal, 1994).  

 

1.7.3. Microbial activity 

Soil microbial activity leads to the liberation of nutrients available for 

plants but also to the mineralization and mobilization of pollutants and 

xenobiotics. Thus microbial activity is of crucial importance in 

biogeochemical cycling. Microbial activities are regulated by nutritional 

conditions, temperature and water availability as well as by proton 

concentrations and oxygen supply.  

There is some concern with the use of microorganisms as bioindicators. 

Indeed, changes in bacterial numbers might be indicative of a stimulated 

biodegradation process, but they do not necessarily represent an accurate 

measurement of the actual biodegradation. Microbial processes have been 

used in monitoring of both hydrocarbons and pesticides removal from soils 

(Wünsche et al., 1995; Margesin et al., 1999; Top et al., 1999). Respiration 

is the most widely used in detecting biotoxicity and biodegradation of 

contaminants (Martin et al., 1978; Weissenfels et al., 1992; Margesin et al., 

2000). However, this process cannot be reliably used to monitor 

hydrocarbons removal, as it is difficult to distinguish biological 

hydrocarbons removal from decomposition of other soil organic 

compounds simultaneously present in the soil (Maila and Cloete, 2005). 

Moreover, it suffers in separating the activity of microorganisms and other 

organisms such as plants, which vary significantly in different systems and 

throughout the season (Dilly et al., 2000). However, soil microbial activity 
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can be estimated using two groups of microbiological approaches. At first, 

experiments in the field that often require long periods of incubation (Hatch 

et al., 1991; Alves et al., 1993) before significant changes of product 

concentrations are detected, i.e. 4-8 weeks for the estimation of net N 

mineralization. In this case, variations of soil conditions during the 

experiment are inevitable, i.e. aeration, and may influence the results 

(Madsen, 1996). By contrast short-term laboratory procedures are usually 

carried out with sieved samples at standardized temperature, water content 

and pH value. Short-term designs of 2-5 h minimize changes in biomass 

structure during the experiments (Brock and Madigan, 1991). Laboratory 

methods have the advantage in standardizing environmental factors and, 

thus, allowing the comparison of soils from different geographical 

locations and environmental conditions and also results from different 

laboratories. Laboratory results refer to microbial capabilities, as they are 

determined under optimized conditions of one or more factors, such as 

temperature, water availability and/or substrate (Schloter et al., 2003). 

 

1.7.4. Cmic/Corg ratio 

The ratio of microbial biomass-C to soil organic-C (Cmic/Corg) is the 

microbial-C content per unit of soil carbon (Anderson and Domsch, 1989; 

Sparling, 1992). The ratio has been proved to be a sensitive indicator of 

quantitative changes in soil organic matter due to the changing of 

management conditions and climate (Anderson and Domsch, 1989; Insam 

et al., 1989). Soils that exhibit a ratio higher or lower than proposed 

equilibrium values, ranging from 0.27 to over 7.0% (Anderson and 

Domsch, 1980; Adams and Laughlin, 1981; Brookes et al., 1984; Woods 

and Schuman, 1986; Sørensen, 1987; Insam et al., 1989), would therefore 

be accumulating or loosing C, respectively (Anderson and Domsch, 1989). 
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Thus, the ratio of biomass-C to total organic C (Cmic/Corg) will increase for 

a time if the input of organic matter to a soil is increased and decreases for 

a time if the input is decreased (Anderson and Domsch, 1989). Constancy 

of the Cmic/Corg ratio is thus an indication of a system at a new equilibrium. 

However, to establish whether the Cmic/Corg ratio of a soil is in equilibrium, 

thus whether a soil has achieved equilibrium in organic matter status, it will 

be necessary to establish a baseline or reference values for each soil and a 

set of conditions to which the tested soil can be compared (Sparling, 1992). 

One problem associated with the Cmic/Corg ratio is that both components 

have a common origin, and are not independent of each other. Also, 

changes in organic carbon will impact more on the ratio than changes in 

microbial biomass since the former is quantitatively much more abundant.  

 

1.7.5. Seed germination 

Various authors have reported from time to time different biomonitoring 

indices based on germination and seedling growth to indicate both heavy 

metals and organic contamination (Abdul-Baki and Anderson, 1973; Chou 

et al., 1978; Mhatre and Chaphekar, 1982). Seed germination assays are 

sensitive to changes in soil toxicity during bioremediation of soil 

contaminated with polycyclic aromatic hydrocarbons (PAHs) or petroleum 

hydrocarbons (Athey et al., 1989; Dorn et al., 1998; Marwood et al., 1998; 

Henner et al., 1999; Knoke et al., 1999; Rezek et al., 2008). Bioindicators 

response to organic pollutants usually varies in different plant species. 

Consequently the use of tests with more than one vegetal species could be 

recommended. 

Because of their simple methodology and potential for use both in situ and 

ex situ they are useful as bioindicator response endpoints. Nevertheless, the 
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application of these tests as potential bioindicators has been confined to 

laboratory-scale studies (Maila and Cloete, 2005).  
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Chapter 2 
 

Aims 
Contamination of soils, groundwater, sediments, surface water, and air with 

hazardous and toxic chemicals is one of the major problems facing the 

industrialized world today. The need to remediate these sites has led to the 

development of new technologies that emphasize the destruction of the 

pollutants rather than the conventional approach of disposal.  

Bioremediation, i.e. the use of microorganisms or microbial processes to 

degrade environmental contaminants, is among these new technologies. 

Bioremediation has numerous applications, including clean-up of 

groundwater, soils, lagoons, sludge, and process-waste streams. One 

important characteristic of bioremediation is that it is carried out in non-

sterile open environments that contain a variety of organisms. Of these, 

bacteria, such as those capable of degrading pollutants, usually have central 

roles in bioremediation, whereas other organisms (e.g. fungi and grazing 

protozoa) also affect the process.  

Several microbial and chemical transformations may occur during 

bioremediation, thereby producing a variety of breakdown products. 

Identification and analysis of these products can be difficult and time-

consuming and may not provide any indication on the impact of either the 

presence of the contaminant or of its transformation products on soil health 

and quality. By contrast, soil biological and biochemical properties are 

highly sensitive to changes caused by management practices and 

environmental stress, and may provide an early warning of soil quality 

changes. Therefore determination of the quality-related properties of soil 

may serve, along with other specific indicators, to assess soil status, quality 
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and productivity and provide an estimate of successful soil reclamation 

processes. 

 

The present work has had two different aims: 

1) The response of an agricultural soil to fresh organic contamination has 

been studied in terms of effects of the selected contaminants on the main 

chemical, biochemical and biological soil properties, in a long-term 

experiment.  

The contaminants studied have been chosen to better represent the class of 

POPs, known as recalcitrant and hazardous compounds. In particular, 

PAHs and chlorophenols have been investigated, and phenanthrene and 

pentachlorophenol have been, respectively, selected as their representative 

model compounds. 

2) Various bioremediation techniques have been tested to remediate the 

artificially contaminated soil. These processes have been approached by 

using both inoculation of microorganisms, able to degrade the target 

contaminant (bioaugmentation), and addition of nutrients, such as compost, 

to enhance the attenuation process naturally occurring in the soil 

(biostimulation), and of dissolved organic matter, to improve the desorption 

and solubility of the organic contaminants.  
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Chapter 3 
 

Strategies for bioremediation of an artificially Phe-

contaminated soil1 

Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant 

widespread environmental pollutants. Bioremediation, accomplished by the 

introduction of PAH-degrading microorganisms (bioaugmentation) and/or 

by applying additional nutrients (biostimulation) into a contaminated 

system is a valuable alternative to traditional chemical and physical 

treatments for the decontamination of PAH-contaminated soils.  

The work reported in this Chapter has been focused on the fate of 

phenanthrene (Phe), selected to represent PAHs, when added to a fresh, 

agricultural soil with no history of PAH contamination. The relative effect 

of compost (C), applied at two different doses, and the efficiency of a Phe-

degrading bacterial culture inoculated into the soil (S) and soil-compost (S-

C1 and S-C2) systems have been investigated.  

Changes in various functionally related properties such as microbial 

biomass, basal respiration, and soil hydrolases and oxido-reductases 

activities were measured over time. The variations of the main physical and 

chemical properties have been also monitored.  

 

__________________________________ 
1A version of this Chapter has been published as: 

Scelza  R., Rao M.A., Gianfreda L., 2007. Effects of compost and of bacterial cells on 

the decontamination and the chemical and biological properties of an agricultural soil 

artificially contaminated with phenanthrene. Soil Biology & Biochemistry 39, 1303-

1317. 
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The soil has showed an intrinsic capability for degrading Phe, enhanced 

and stimulated by the lower compost dose. A simultaneous, rapid increase 

of soil respiration and microbial biomass, and higher phosphatase and 

arylsulphatase activities were measured, suggesting that microbial growth 

and activity had increased. Phe degradation was accelerated immediately 

after inoculum with Phe-degrading culture. Several of the soil properties 

showed differentiated responses to the presence of the Phe, the compost 

and/or the exogenous culture. In particular, soil systems with and without 

the inoculated cells showed similar trends for several of the measured 

enzymatic properties (e.g. phosphatase, arylsulphatase, β-glucosidase and 

urease activities), indicating that the intrinsic soil enzymatic activity was 

not affected by the exogenous microorganisms. Temporary and permanent 

changes were observed for several of the properties investigated, thereby 

providing useful information on the impact of Phe on soil metabolic 

activity. 
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3.1. Introduction 
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, organic soil 

contaminants with hydrophobic and carcinogenic properties (Belkin et al., 

1994). One of the main reasons for the prolonged persistence of 

hydrophobic hydrocarbons in the environments is their low water solubility 

which increases their sorption to soil particles and limits their availability 

to biodegrading microorganisms (Cerniglia, 1993). The decontamination of 

PAH polluted sites is mandatory because many PAH compounds are 

known or suspected to be toxic, mutagenic or carcinogenic (Patnaik, 1992). 

As widely described in Chapter 1, possible fates of PAHs in the 

environment include volatilization, photo-oxidation, chemical oxidation, 

bioaccumulation, adsorption to soil particles, leaching and microbial 

degradation (Fig. 3.1). 

 

Fig. 3.1. Schematic representation of the environmental fate of polycyclic aromatic 
hydrocarbons (from Cerniglia, 1992). 
 

However, microbiological degradation is the major process that results in 

the decontamination of sediment and surface soil (Sims et al., 1990). PAHs 

can be totally degraded (mineralized) or be partially transformed by either a 
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community of microorganisms or by a single microorganism (Cerniglia, 

1984; Gibson and Subramanian, 1984; Cerniglia and Heitkamp, 1989). A 

wide variety of fungi, algae and especially bacteria (Table 3.1) have the 

ability to metabolize PAHs. Generally, the rate of degradation of PAHs is 

inversely proportional to the number of rings in the PAH molecule. Thus, 

the lower weight PAHs are biodegraded more rapidly than the higher 

weight compounds (Cerniglia and Heitkamp, 1989). The microbial 

degradation of PAHs such as naphthalene, phenanthrene, anthracene and 

acenaphthene has been well documented and the biochemical pathways 

have been elucidated (Cerniglia, 1984; Gibson and Subramanian, 1984; 

Schocken and Gibson, 1984; Pothuluri et al., 1992). 

 
Table 3.1. PAHs oxidized by different species of bacteria (adapted from Cerniglia, 
1992). 

 

Biodegradation mechanisms require the presence of molecular oxygen to 

initiate enzymatic attack on the PAH rings (Gibson et al., 1968; Dagley, 

Compound Organisms Reference 

Naphthalene Acinetobacter calcoaceticus, Alcaligenes 
denitrificans, Mycobacterium sp., 
Pseudomonas sp., Pseudomonas putida, 
Pseudornonas fluorescens, Pseudomonas 
paucimobitis, Pseudomonas vesicularis, 
Pseudornonas cepacia, Pseudomonas 
testosteroni, Rhodococcus sp., 
Corynebacteriurn renale, Moraxella sp., 
Streptornyces sp., Bacillus cereus 

 

Ryu et al., 1989; Weissenfels et al., 1990, 1991; 
Kelley et al., 1991; Dunn and Gunsalus, 1973; 
Davies and Evans, 1964; Foght and Westlake, 
1988; Jeffrey et al., 1975; Mueller et al., 1990; 
Kuhm et al., 1991; Walter et al., 1991; Dua and 
Meera, 1981; Tagger et al., 1990; Garcia-Valdes 
et al., 1988; Trower et al., 1988; Grund et al., 
1992; Cerniglia et al., 1984; Barnsley, 1983. 

Phenanthrene Aeromonas sp., Alcaligenes faecalis, 
Alcaligenes denitrificans, Arthrobacter 
polychromogenes, Beijerinckia sp., 
Micrococcus sp., Mycobacterium sp., 
Pseudomonas putida, Pseudomonas 
paucimobilis, Rhodococcus sp., Vibrio sp., 
Nocardia sp., Flavobacterium sp., 
Streptomyces sp., Streptomyces griseus, 
Acinetobacter sp. 
 

Kiyohara et al., 1976, 1982, 1990; Weissenfels et 
al., 1990, 1991; Keuth and Rehm, 1991; Jerina et 
al., 1976; Colla et al., 1959; West et al., 1984; 
Kiyohara and Nagao, 1978; Heitkamp and 
Cerniglia, 1988; Guerin and Jones, 1988, 1989; 
Treccani et al., 1954; Evans et al., 1965; Foght 
and Westlake, 1988; Mueller et al., 1990; 
Sutherland et al., 1990; Ghosh and Mishra, 1983; 
Savino and Lollini, 1977; Trower et al., 1988; 
Barnsley, 1983. 

 

Benzo[a]pyrene 

 

Beijerinckia sp., Mycobacterium sp. 

 

Gibson et al., 1975; Heitkamp and Cerniglia, 
1988; Grosser et al., 1991. 
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1971, 1975; Chapman, 1979; Gibson and Subramanian, 1984). Both atoms 

of oxygen molecule are incorporated into the aromatic ring to form cis-

dihydrodiol. This initial hydroxylation step of unsubstituted PAHs is 

catalysed by a dioxygenase (Fig. 3.2). Since PAHs, such as phenanthrene, 

pyrene, benzo[a]pyrene and benz[a]anthracene, are complex fused ring 

structures, bacteria metabolize PAHs at multiple sites to form isomeric cis-

dihydrodiols (Mueller et al., 1996). Monooxygenases have also been shown 

to be involved in oxidation to form trans-dihydrodiols (Heitkamp et al., 

1988; Kelley et al., 1991). The cis-dihydrodiols undergo re-aromatization 

by dehydrogenases to form dihydroxylated intermediates (Patel and 

Gibson, 1974). 

 

 
Fig. 3.2. Major pathways involved in the metabolism of polycyclic aromatic 
hydrocarbons by bacteria, fungi and algae (adapted from Mueller et al., 1996). 
 

Further, catabolism involves ring cleavage by dioxygenases to form 

aliphatic intermediates. Cleavage of these ortho-dihydroxylated 

intermediates occurs either between the two hydroxyl groups (intradiol or 
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ortho-fission) or adjacent to one of the hydroxyl groups (extradiol or meta 

fission) (Mueller et al., 1996). There are different enzymes for different 

ring fission substrates, each forming a different aliphatic product. The 

aromatic ring dioxygenases are multi-component enzymes which consist of 

a reductase, a ferredoxin and a third component consisting of two proteins, 

large and small iron sulfur protein subunits (Ensley and Gibson, 1983; 

Suen and Gibson, 1993; Suen et al., 1996).  

Bacterial genera, capable of degrading PAHs commonly, include species of 

Pseudomonas, Alcaligenes, Rhodococcus, Sphingomonas, and 

Mycobacterium (Labana et al., 2005). Most of these bacteria have been 

enriched based on their ability to grow on low molecular PAHs such as 

naphthalene, phenanthrene, fluorene, anthracene and acenaphthene.  

The rate and extent of biodegradation of PAHs in soils and sediments is 

affected by multiple factors (Table 3.2).  

 
Table 3.2. Factors affecting bioremediation of PAH-contaminated sites (from Labana et 
al., 2005). 

Physico-chemical factors Biological factors Environmental factors 

Physical/chemical properties of 
PAHs (number of rings, log Kow) 

Organic content of soil 

Structure/particle size of soil 

Presence of contaminants 

Characteristics of the 
microbial population 
(diversity, genetic/catabolic 
potential) 

Temperature 

Moisture 

pH 

Sorption 

Degree of contamination 

 

The major factor limiting the bioremediation of soils and sediments 

contaminated with PAHs is the poor availability of these hydrophobic 

contaminants to microorganisms (Mihelcic et al., 1993; Hughes et al., 

1997). Bioavailability may be the most important factor in determining the 

feasibility of bioremediation of PAHs. 
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Generally, the natural biodegradation of contaminants in soil is slow and 

there is a requirement to accelerate its rate. This can be accomplished by 

two main techniques: bioaugmentation and biostimulation. 

 

3.2. Bioaugmentation 
Bioaugmentation (Fig. 3.3) is defined as the addition of indigenous, 

exogenous or genetically modified organisms, generally microorganisms, 

to polluted sites in order to accelerate the removal of the target toxic 

molecules (Odokuma and Dickson, 2003). There have been numerous 

reports on feasibility and field application of bioaugmentation as a 

remediation technology (Vogel, 1996).  

Indigenous microorganisms are those that occur naturally at a site. They are 

usually present in very small quantities. They are often better distributed, in 

general, than added microorganisms, although not necessarily with regard 

to the target pollutant.  

 

  
Fig. 3.3. Bioaugmentation. 

 

Microbial exogenous inocula are prepared in the laboratory from soil or 

groundwater either from the site where they are to be used or from another 

site where the biodegradation of the chemicals of interest is known to be 
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occurring. Microbes from the soil or groundwater are isolated and are 

added to media containing the chemicals to be degraded. Only microbes 

capable of metabolizing the chemicals will grow on the media. This 

process isolates the microbial population of interest, which may contain 

several different strains of microbes. The isolated microbes can then be 

propagated in a nutrient medium and concentrated to produce an inoculum.  

Using native soils has the advantage that the microbes are more likely to 

survive and propagate when re-injected at the site 

(http://www.craworld.com). The direct enrichment has several advantages 

over isolating and culturing microorganisms, in fact, many species, which 

are not cultivable but may be of importance in degradation of chemicals in 

natural environment, can be enriched.  

While the use of pure culture of isolated strains can be associated with the 

accumulation of partial degradation products which might be more toxic 

than parent materials, mixed consortia are more likely to completely 

degrade the target compounds. Mixed consortia have also been known to 

have the advantage of being more resistant to natural environmental 

conditions and predation (Fewson, 1988), compared to pure cultures which 

often fail to generate the desired activities when released to the 

environments. 

Using microbes from a different site has the advantage that they are known 

to biodegrade the chemicals of concern. However, there is a possibility that 

these microbes will not be able to adapt to their new environment and will 

not propagate. Typically the microbes will adapt if the new environment is 

similar to their native environment.  

Genetic engineering has been used to confer new functions to 

microorganisms and to enhance their catabolic activities. The 

microorganisms constructed are called genetically engineered 
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microorganisms (GEMs). It also provides microorganisms with multiple 

metabolic activities in single strain, which is often required for degradation 

of specific pollutants. Bioaugmentation of contaminated sites with 

microbes that are genetically engineered for degradation of specific 

compounds is an area that is currently being explored as a cleanup option.  

Successful application of bioaugmentation techniques is dependent on the 

identification and isolation of appropriate microbial strains, and their 

subsequent survival and activity, once released into the target habitat, on 

the nature of the xenobiotics, the physico-chemical conditions and the 

metabolic potential of the microflora.  

A key factor involved in the lack of success in bioaugmentation is the rapid 

decline of the population size of the introduced cells (Ramos et al., 1991; 

Thiem et al., 1994). Factors governing the fate of introduced 

microorganisms in various environments include physical-chemical 

parameters (Evans et al., 1993; Shonnard et al., 1994), nutrient availability 

(Goldstein et al., 1985; Fujita et al., 1994; Wilson and Lindow, 1995; 

Watanabe et al., 1998) and the existence of microniches (Postma et al., 

1990). The introduced strain may face intense competition, predation or 

parasitism in sewage, natural water or soil. According to Blasco et al. 

(1997) accumulation of toxic intermediates or end-products of pollutants by 

members of indigenous bacteria also has negative effects on the survival of 

introduced microorganisms. The competition can be controlled by adding 

specific nutrients that inoculants can utilize (Ogunseitan et al., 1991; van 

Veen et al., 1997) or by changing operation parameters (Fujita et al., 1994; 

Blumenroth and Wagner-Döbber, 1998). In addition, it has been reported 

that survival of bacteria added to soil was improved by pre-adaptation of 

the strains on a minimal medium with soil extract (Timmis, 1997) or by 

starvation in an inorganic medium (van Elsas et al., 1994; Watanabe et al., 
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2000). However, good survival and growing capabilities of the 

incorporated strains do not always insure the breakdown of the xenobiotic 

(Lewis et al., 1986; McClure et al., 1991). 

 

3.3. Biostimulation 
Biostimulation (Fig. 3.4), i.e. the artificial creation of an environment that 

promotes the growth of naturally occurring microorganisms capable of 

degrading the target contaminants, is the method in which biodegradation 

by indigenous microorganisms is stimulated and the reaction rates are 

increased.  

 

 
Fig. 3.4. Biostimulation. 

 

This option is adopted when there are indigenous microbes with 

degradation capacity but natural degradation does not occur or the 

degradation is too slow. Biostimulation includes supplying the environment 

with nutrients such as carbon, nitrogen, phosphorus, or other substrates. 

Various additional nutrient sources such as inorganic fertilizers, urea, 

sawdust, compost, manure, and biosolids have been used (Rosenberg et al., 

1992; Walworth and Reynolds, 1995; Cho et al., 1997; Williams et al., 

1999; Namkoong et al., 2002). In particular, composts have enormous 

potential for bioremediation, as they are capable of sustaining diverse 
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populations of microorganisms, all with the potential to degrade a variety 

of organic contaminants, including polycyclic aromatic hydrocarbons 

(Kästner et al., 1995; Kästner and Mahro, 1996; Namkoong et al., 2002).  

Several studies (Kästner and Mahro, 1996; Puglisi et al., 2007) 

demonstrated that bioavailability of phenanthrene is significantly reduced 

in soils amended with compost, but, at the same time, the degradation of 

the contaminant is enhanced by the microflora present in the compost, and 

this process is kinetically more important. Thus, compost addition is an 

important means by which the degradation of easily degradable compounds 

in soils may be induced, providing that suitable bacteria are already 

present. Alternatively, for more recalcitrant PAHs, compost may represent 

a way to reduce their bioavailability by retaining them in the aged fraction, 

since sorption of organic compounds increase with the content of organic 

matter (Means et al., 1980; Hassett and Banwart, 1989).  

Organic amendments activate the autochthonous microorganisms of the 

soil, and indirectly stimulate the biogeochemical cycles therein (Pascual et 

al., 1997). Moreover, they provide various minerals (e.g. N, P, and S) 

essential for plant nutrition. They also increase the soil organic matter 

content and microbial biomass, and influence soil structure and many other 

related physical, chemical and biological properties (Perucci, 1992; 

Jörgensen et al., 1996; Ros et al., 2006; López-Piñeiro et al., 2007), as well 

as soil fertility (Clark et al., 2007). Therefore composts are considered also 

soil ameliorants, especially those obtained from food and vegetable 

residues (Adani et al., 2006), because they have been shown to be very 

effective in changing physico-chemical parameters of soil, such as pH, 

moisture content, and soil structure. Furthermore, land application of 

products from organic wastes, such as composts and bio-fertilizers, is 

gaining importance all over Europe, as integrated and biological agriculture 



Chapter 3                                                                                                                             . 

94 

are becoming increasingly popular. This is because such products are often 

considered beneficial for the soil and at the same time the problem of 

organic waste streams is alleviated, resulting in an environmentally 

acceptable way of recycling waste materials (Lalande et al., 2000; 

Masciandaro et al., 2000).  

Biostimulation can occur simultaneously to the bioaugmentation process in 

case of amendments using active organic residues that may contain 

microbial strains capable of metabolizing pollutants. In this respect, the 

presence of biopolymers (cellulose, hemicellulose and lignin) in sewage 

sludge composts (Li et al., 2001) and decaying rice straw (Glissmann and 

Conrad, 2000) may pave the way for a possible induced degradation of 

PAHs in soil.  

 

3.4. Bioaugmentation vs. Biostimulation 
Bioaugmentation has several advantages over biostimulation. A 

concentrated and specialized population of specific microbes is injected 

and can begin degrading contaminants immediately. Biostimulation is 

dependent on appropriate indigenous microbial population and organic 

material present and, furthermore, there is a delay after injection of 

nutrients as the microbial population propagates. Also, the nutrients are not 

specific and all microbes present at the site will potentially propagate, 

diluting the effect of the nutrients.  

Bioaugmentation can be applied with minimal cost, disruption and time, 

while testing the ability of indigenous microbes can require complex, 

potentially costly, analytical methods to measure density and nutrient 

content.  

Biostimulation modifies the environment to enhance the growth of 

indigenous microbes and, differently from bioaugmentation, sites cannot 
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always be cleaned and closed rapidly within budget amounts and under 

target dates (www.obio.com). 

 

3.5. Case study 
This study reports the decontamination and the chemical and biochemical 

properties of an agricultural soil artificially contaminated with 

phenanthrene, with and without biostimulation and bioaugmentation 

treatments. 

Phenanthrene has been selected as representative of polycyclic aromatic 

hydrocarbons. Phenanthrene, a three ringed PAH, is an ideal model system 

to study various aspects of microbial metabolism and physiology. 

Furthermore, since it is the smallest aromatic hydrocarbon to have a 'bay-

region' and a 'K-region' (Cerniglia and Yang, 1984), phenanthrene is often 

used as a model substrate for studies on the metabolism of other PAHs with 

carcinogenic properties and on the bioavailability and transformation of 

PAHs in soil (Smith et al., 1997; Ortega-Calvo and Saiz-Jimenez, 1998; 

Nam and Alexander, 2001). Moreover, it is suitable for laboratory 

experiments because it is easier to handle and is safer than its higher 

congeners because of its relatively low toxicity levels.  

The effectiveness of biostimulation and bioaugmentation processes in the 

removal of the phenanthrene has been monitored in a long-term 

experiment. In particular, in the bioaugmentation process, a mixed Phe-

degrading microbial culture has been used as an exogenous microbial 

inoculum. The microbial culture was isolated from a Belgian soil 

(Andreoni et al., 2004), characterized by a medium-term (< 3 years) 

exposure to PAHs. Andreoni et al. (2004) identified in the culture different 

strains, such as Achromobacter xylosoxidans, Methylobacterium sp., 

Alcaligenes sp., Rhizobium galegae, Rhodococcus aetherovorans, 
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Aquamicrobium defluvium, and Stenotrophomonas acidaminiphila, all able 

to grow and to degrade phenanthrene, as demonstrate by the decrease of 

phenanthrene content in the same Belgian soil after a biotreatment in the 

presence of the culture enrichments. Furthermore, the Phe-degrading 

microbial culture also contained bacteria that did not use phenanthrene, 

suggesting that the Phe-degraders themselves may be associated with 

bacteria using metabolites of phenanthrene (Andreoni et al., 2004).  

This culture was also used in model systems simulating different Phe 

bioavailability conditions (Russo et al., 2005; Cavalca et al., 2008) and its 

capability to degrade the contaminant was demonstrated.  

In the current study, the mixed culture has been inoculated in an 

agricultural soil, with no history of PAHs contamination, to prove its 

capability to degrade the contaminant in a real system. 

In the biostimulation process, a compost from urban solid waste, 

supplemented at two different doses has been used as a nutrient source. 

To better monitor the effectiveness of both bioremediation processes, the 

dynamics of chemical, biochemical and biological properties that reflect 

soil quality and functioning of the Phe-contaminated soil amended or not 

amended with compost and/or cell cultures has been monitored. 
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3.6. Materials and Methods 
3.6.1. Chemicals 

Reagent-grade Phe (>99% purity) and HPLC-grade solvents were 

purchased from Sigma Aldrich (Germany). All other chemicals, reagent 

grade, were supplied by Analar, BDH (Germany), unless otherwise stated. 

 

3.6.2. Phe-degrading cultures 

A Phe-degrading mixed bacterial culture, isolated from a PAH-polluted soil 

(Andreoni et al., 2004), was kindly provided by Prof. Andreoni of the 

University of Milan, Italy. Cultures were stored at 4 °C in a liquid mineral 

medium, M9 (Kunz and Chapman, 1981), supplemented with Phe (300 mg 

l-1). For longer preservation (about 5 months), the culture was stored at -18 

°C in tryptone soya broth (TSB) medium and glycerol.  

TSB composition (g l-1) was 17.0 g pancreatic digest of casein, 3.0 g papaic 

digest of soybean meal, 5.0 g sodium chloride, 2.5 g dibasic potassium 

phosphate, and 2.5 g glucose. TSB and glycerol were sterilized separately 

in an autoclave at 121 °C for 15 min and then mixed (75:25, respectively) 

under sterile conditions. The culture, grown in M9 mineral medium, was 

centrifuged at 12000 g for 10 min, the supernatant was removed and the 

pellet was re-suspended in 1.5 ml of TSB+glycerol solution. For the 

inoculation in soil systems, a microbial pre-culture was used. A suitable 

amount (usually 500 ml) of the freshly prepared-phenanthrene stock 

solution in acetone (30 mg ml-1) was left to evaporate, under sterile 

conditions, at the bottom of 100 ml Erlenmeyer flasks, then sterile M9 (50 

ml) was added and inoculated with 10% (v:v) of the culture stored in a 

refrigerator. The flasks were closed with Teflon-lined stoppers and 

incubated at 30 °C in darkness for 24 h on an orbital shaker at 100 rev   

min-1. The cell density of the culture was determined by appropriate 10-fold 
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dilutions in sterile phosphate buffer (pH 7). The several dilutions were 

plated in duplicate on plate count agar medium (PCA composition per litre 

of distilled water: tryptone 10.0 g; yeast extract 5.0 g; dextrose 2.0 g; agar 

15.0 g), incubated at 30 °C for 24 h and then counted. A culture containing 

1·107 CFU (colony forming units) ml-1 was used for soil inoculation. 

 

3.6.3. Degradation of Phe in a soil slurry reactor 

Preliminary experiments were performed by adding 1 g of soil suspended 

in 50 ml of sterile M9 into 100 ml Erlenmeyer flasks supplemented with 10 

mg of Phe (as described above, a suitable amount of the freshly prepared-

Phe stock solution in acetone was left to evaporate in the flask under sterile 

conditions) and inoculated with 10% (v:v) of the culture stored in a 

refrigerator. The flasks were closed with Teflon-lined stoppers and 

incubated at 30 °C for 24 h on an orbital shaker at 100 rev min-1 in 

darkness. Before Phe addition, the soil was sterilized three times by 

autoclaving at 121 °C for 20 min every 24 h. This would also ensure that 

bacterial spores should be destroyed (Shaw et al., 1999). The soil sterility 

was monitored, using the spread-plate method, by determining at increasing 

incubation times the growth of bacterial cells. Four flasks containing Phe, 

soil, and M9 were prepared, inoculated with the bacterial pre-culture, and 

incubated at 25 °C in darkness with agitation on an orbital shaker at 180 

rev min-1. Bottles containing only Phe or soil served as controls. At 

different incubation times the controls and two inoculated flasks were 

processed for the quantification of Phe, and two for determining the protein 

content, according to the Bradford method (Bradford, 1976). 
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3.6.4. Degradation of Phe in solid-state cultures: experimental design 

Experiments to evaluate the Phe removal in solid-state cultures were 

performed with four types of microcosms. Fresh soil (S) was air-dried to 

14% moisture content and passed through a 2-mm sieve. Then it was 

placed (100 g) in closed 1-l glass jars. The compost was added at two 

different doses, 0.27% (C1) and 0.83% (C2). The two amounts correspond 

to a field rate of 10 and 30 t ha-1 of compost, respectively. Three samples 

were obtained: S, S-C1, and S-C2 and these represented the control 

microcosm (M1) (Table 3.3).  

Similar samples were supplemented with microbial cultures (10 ml of the 

Phe-degrading cultures in 100 g of soil) and named M2. Other samples 

were prepared by using the soil previously spiked with Phe (150 g kg-1 of 

soil, as described below), supplemented with the two compost doses and 

formed the microcosm M3, and others, supplemented with both the Phe and 

the microbial culture, formed the microcosm M4. As summarized in Table 

3.3, the total number of samples were 12 and duplicates were performed for 

each microcosm. The microcosms were placed in the dark in a climatic, 

humidity-controlled chamber set at 25 °C. Periodically, in particular after 0, 

15, 45, 140, and 280 d of incubation, two sacrificial replicates were taken 

and split into sub-samples for phenanthrene determination and for all 

physical-chemical and biochemical analyses. Some sub-samples were kept 

at 4 °C and biochemical activities were determined within 5 d from the soil 

collection, while other sub-samples were air dried and used for the 

determination of physical-chemical properties. 
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Table 3.3. Investigated microcosms. 

M1 
     

 S  S-C1a  S-C2b 

 Soil  Soil 
+Compost 

 Soil 
+Compost 

      
M2      
 S-Cells  S-C1-Cells  S-C2-Cells 

 Soil 
+Phec-degrading cultured 

 Soil 
+Compost 
+Phe-degrading culture 

 Soil 
+Compost 
+Phe-degrading culture 

      
M3      
 S-Phe  S-C1-Phe  S-C2-Phe 

 Soil 
+Phenanthrenee 

 Soil 
+Compost 
+Phenanthrene 

 Soil 
+Compost 
+Phenanthrene 

      
M4      
 S-Phe-Cells  S-C1-Phe-Cells  S-C2-Phe-Cells 

 Soil 
+Phenanthrene 
+Phe-degrading culture 

 Soil 
+Compost 
+Phenanthrene 
+Phe-degrading culture 

 Soil 
+Compost 
+Phenanthrene 
+Phe-degrading culture 

aCompost amount = 0.27%. 
bCompost amount = 0.83%. 
cPhe = Phenanthrene. 
dPhenanthrene-degrading culture = 10 ml of culture 100 g-1 soil. 
ePhenanthrene =150 mg kg-1 of soil. 
 

3.6.5. Phe spiked into soil 

A stock solution of Phe (15 g l-1) was prepared in acetone and stored under 

refrigeration at 4 °C. Soil samples were rewet to a moisture content of 14%, 

and homogenized with a stainless steel spatula. Approximately 10 g of the 

rewet soil was spiked with 7 ml of acetone and 1 ml of the Phe-stock 

solution in order to obtain a final concentration of 150 mg kg-1 soil (on the 

basis of 100 g, the total amount of soil). The soil was placed in a 1-l glass 

jar and mixed manually with a stainless steel spatula. Soil was gradually 

added to the glass jars in 10 g aliquots and extensively mixed with the 

spiked soil. This procedure was repeated until the entire amount of soil 

(100 g) was added and mixed. The jars containing the spiked soil were 
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covered with aluminium foil, hermetically closed and left overnight to 

shake for inversion. Then the acetone was left to evaporate for about 2 h 

under a flow hood and the soil was immediately used. 

 

3.6.6. Physical and chemical properties of soil 

The soil investigated was kindly provided by the Dipartimento di Biologia 

e Chimica Agroforestale e Ambientale, University of Bari, Italy, and stored 

at 10 °C. It was surface sampled (0 ±20 cm) from an agricultural area in the 

South of Italy (Bari), and had no history of PAH contamination. Physical-

chemical analyses were performed on air-dried and sieved (> 2 mm) soil 

samples according to standard techniques (Sparks, 1996). The major 

physical-chemical properties of the soil are shown in Table 3.4. According 

to USDA (Soil Survey Staff, 1975) the soil was classified as a sandy clay 

loam soil (clay 32%, sand 45%, and silt 23%). Matured compost obtained 

from solid urban wastes was provided and characterized by the 

Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, 

University of Torino, Italy. Some properties of the compost are shown in 

Table 3.4. 
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 Table 3.4. Main physical-chemical properties of the soil and compost. 

Soil Property  Compost   

pH (H2O) 7.8 (±0.0)a pH (H2O)  9.0 (±0.02)a 

Olsen P (mg kg-1) 19.0 (± 0.8) Volatile compounds (% dry matter)  67.7 (±1.1) 

Moisture (%) 25.0 (±0.1) Moisture (%)  33.7 (±0.8) 

TN (g kg-1) 2.4 (±0.1) TN (g kg-1)  2.8 (±1.1) 

TOC (g kg-1) 24.9 (±0.2) TOC (g kg-1)  31.6 (±6) 

C/N 10.4 (±0.7) C/N  11.4 (±0.6) 

EC (dS m-1) 0.36 (±0.03) EC (dS m-1)  3.2 (±0.1) 

Ca (meq 100 g-1) 28.4 (±0.4) Ash (% dry matter)  32.3 (±0.9) 

Mg (meq 100 g-1) 1.4 (±0.1) Heavy metals (mg kg-1 dry matter)   

Na (meq 100 g-1) 1.1 (±0.3) Cu  146.8 (±2.6) 

K (meq 100 g-1) 1.6 (±0.1) Pb  110.7 (±1.8) 

Clay (g kg-1) 380 (±2) Ni  46.3 (±1.1) 

Sand (g kg-1) 284 (±3) Cr  36.1 (±1.4) 

Lime (g kg-1) 336 (±3) Cd  < 2 

 a Values in parentheses show standard deviation. 

 

3.6.7. Soil biochemical analyses 

A fumigation-extraction method was used to estimate microbial biomass C 

(MB-C) with extractable C converted to microbial C using standard factors 

(Brookes et al., 1985; Vance et al., 1987). Organic C in soil extracts was 

determined as described by Vance et al. (1987). Basal respiration was 

determined, according to Stotzky (1965) with some modifications 

(Piotrowska et al., 2006), after 1, 3, 8, 11, 16, 22, 29, 35, 45, and 53 d of 

incubation. All determinations were made in triplicate and data were 

corrected to oven-dry (16 h at 105 °C) moisture content. Enzyme activities 

were determined on fresh, moist, sieved (> 2 mm) soils as described in 

detail by Rao et al. (2003). Substrates, i.e. p-nitrophenyl-β-D-
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glucopyranoside, p-nitrophenylphosphate, and p-nitrophenylsulphate, for 

β-D-glucosidase (GLU), phosphatase (PHO), and arylsulphatase (ARYL) 

were used, respectively. Specific buffers and pH values were used as 

reported in Rao et al. (2003). 

The activity of urease (UR) was determined as described by Kandeler and 

Gerber (1988). Dehydrogenase (DH) activity was measured with 

tetrazolium salts (TTC) as the substrate, according to Trevors (1984).  

Control tests with autoclaved soils were carried out to evaluate the 

spontaneous or abiotic transformations of substrates.  

The soil and/or the compost (or some of the compost components) were 

tested for possible interference with the analytical methods adopted for 

evaluating enzymatic product concentration and/or adsorption of the 

product released by the enzymatic action (i.e., increase or decrease of 

optical absorbance as a function of soil and/or soil+compost presence). 

Therefore, each analytical method was calibrated in the presence of soil 

with and without the two compost doses. An example is given (Fig. 3.5) of 

the calibration curve obtained for given amounts of p-nitrophenol (p-NP), 

the product produced by GLU, PHO, and ARYL reactions. It is evident that 

different extinction coefficients were obtained, ranging from 18.35 for pure 

p-NP to 15.96 for p-NP+soil and for p-NP+soil+compost. Similar 

responses were obtained for the other enzymatic assays. Appropriate 

extinction coefficients were used for the calculation of enzyme activity 

units.  

Each value is the mean of two determinations. All SDs were smaller than 

the symbol sizes. 
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Fig. 3.5. Calibration curve of p-nithrophenol (p-NP)  with and without 1 g of soil, 
soil+0.27% compost (S-C1), and soil+0.83% of compost (S-C2). 
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One unit of enzyme activity was defined as the number of μmol (for GLU, 

PHO, and ARYL) or μg (for DH and UR) of product released at 30 °C (or 

37 °C for UR) h-1 by 1 g of dried soil.  

Triplicates were performed for each activity assay. 

Total heterotrophic microbial counts for soil, compost, and soil+compost 

(at the two different rates), before and after the addition of the Phe-

degrading culture, were determined by adding 27 ml of a sterile extracting 

solution (Na4P2O7, 2g l-1) to 3 g of soil, compost, or soil+compost in 250-

ml flasks and then incubating on an orbital shaker for 1 h at 150 rpm. After 

a 10-min sedimentation period, appropriate 10-fold dilutions in phosphate 

buffer  (pH 7) were plated in duplicate on PCA medium. The plates were 

incubated at 30 °C for 24 h and then counted.  

 

3.6.8. Phe extraction and detection 

Ethanol (12 ml) was added to duplicate soil samples (0.6 g of dry weight at 

25 °C). The tubes were capped and agitated for 30 min, then centrifuged at 

3000 g for 15 min, and the supernatants were removed. The sediments were 

re-extracted with 12 ml of ethanol/n-hexane (75:25, v:v), and the two 

extracts were combined and concentrated by evaporation under vacuum. 

Each concentrate was resuspended in 5ml of acetonitrile and the Phe was 

quantified by high-performance liquid chromatography (HPLC) using a C-

18 column and a diode-array detector, as described in detail by Russo et al. 

(2005). Methanol and water (86:14, v:v) were the mobile phase, and the 

flow rate was 1.0 ml min-1. The retention time for Phe was about 9.5 min. 

Detection was carried out at 254 nm. Experimental runs were carried out 

with Phe-soil and/or Phe-soil+compost mixtures at different Phe-soil 

(soil+compost) ratios to evaluate the efficiency of the extraction method. 

Phe extraction of 100% was achieved for all the mixtures with the method 
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adopted. All the experiments were carried out at least in duplicate and 

standard deviations were calculated. 

 

3.6.9. Statistic analysis 

All data were subjected to analysis of variance by using SPSS for 

Windows, Version 15.0. The assumptions of normality and homogeneity of 

variances were tested by the Kolmogoroff-Smirnoff test and the Levene 

test. The significant differences between means at P <0.05 were assessed 

according to Tukey’s multiple comparison test. 

 

3.7. Results 
3.7.1. Degradation of Phe in a soil slurry reactor 

A preliminary experiment was carried out in a soil slurry reactor in order to 

get indications about the efficiency of the bacterial culture towards Phe 

utilization in the presence of soil.  

Fig. 3.6 shows the disappearance of the Phe by the cell culture, and the 

protein content (a measure of the cell growth) with and without soil.  

The amount of extractable Phe at zero incubation time was 10% lower than 

the amount added, indicating either a fairly small initial adsorption of Phe 

on soil, or an additional microbial Phe degradation effect by the soil.  

The shape of the Phe degradation curve by the bacterial culture was not 

substantially affected by the soil, although the degradation kinetic constant 

was decreased with respect to that measured with Phe (k = 0.21 d-1 with 

soil against 0.36 d-1 for the control). After incubation for 21 d, no more Phe 

was measured in both systems. A fairly similar behaviour of protein 

increase was also detected, although at lower levels in the presence of soil 

(Fig. 3.6). 
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Fig. 3.6. Phenanthrene (Phe) degradation in a soil slurry reactor by the Phe-degrading 
bacterial culture. Disappearance of: solid Phe (⎯♦⎯); solid Phe+soil (⎯■⎯); 
corresponding cell  growth on solid Phe (---◊---); and solid Phe+soil (---�---). Each 
value is the mean of two determinations. All SDs were smaller than the symbol sizes. 
 

3.7.2. Degradation of Phe in solid-state cultures 

3.7.2.1. Residual Phe 

The evolution with time of extractable Phe from M3 and M4 microcosms is 

shown in Fig. 3.7. At the time zero of incubation (corresponding to 24 h of 

contact between soil and Phe), a 30% reduction of the extractable Phe was 

measured in M3 samples containing only Phe, and no effect was observed 

for the two compost treatments. Conversely, when the Phe-degrading 

bacterial culture was present in the microcosms, the initial extractable Phe 

was further diminished to 40-10% of that initially added.  

In the case of M3, a lower decline of the residual extractable Phe occurred 

with time for both S and S-C2, whereas in the presence of the lower 

compost dose, the S-C1 sample, the amount of the residual Phe decreased 

from 70% to about 50% within 45 d. Thereafter it decreased slowly. At the 
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end of the incubation period, residual Phe ranged from 33% to 45% of the 

initial amount in the three M3 samples.  

A completely different behaviour was observed in the microcosm 

containing the Phe-degrading cells M4. Most of the Phe losses occurred 

within the first 15 d (values proximate to 10% in S and S-C2, and to zero in 

S-C1, respectively). Losses slowed thereafter with little further change 

recorded by the end of the experiment. 
 

 

Fig. 3.7. Extractable phenanthrene (Phe) (%) with time at 25 °C in M3 and M4. The 
microcosms analysed are described in detail in Table 3.3. Each value is the mean of two 
determinations.  
 

The final residual amounts of Phe in M3 and M4 microcosms were also 

measured using the Soxhlet extraction procedure. Values were obtained 

similar (0 ±1%) to those measured using the ethanol/n-hexane extraction.  

The kinetics of Phe disappearance was estimated by a time course analysis 

of data shown in Fig. 3.7. When the data were plotted in a semilog scale, 

one-slope behaviour was observed for the M3 microcosm, whereas a typical 

two slope was observed for M4, i.e. for soils with cells. The kinetics was 
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best fitted by single and two coupled first order exponential equations, 

according to the following expressions: Xt = X0 e-kt, and Xt = X0,1 e-k1t + 

X0,2 e-k2t where Xt (mg l-1), the concentration of Phe at time t, is described 

by X0 for single and X0,1 + X0,2 (mg l-1) for coupled equations, and the 

disappearance constants k for single and k1 and k2 for coupled equations. 

This could imply that in M3 the whole Phe removal process is dominated 

by a single, straightforward key step, whereas for microcosms M4 a more 

complex mechanism, involving a faster intermediate step, occurred.  

Table 3.5 gives the disappearance constants calculated by means of a non-

linear regression routine applied to the Phe disappearance data.  

 
Table 3.5. Values of phenanthrene disappearance constants for S, S-C1, and S-C2 
samples in the microcosms investigated, as described in Table 3.3. 

Microcosm Sample k1 (d-1) k2 (d-1) R2b 

M3 S 0.0019 - 0.95 
 

S-C1 0.0024 - 0.99 

 
S-C2 0.0015 - 0.99 

M4 S-Cells 0.082 0.0012 0.98 
 

S-C1-Cells 0.133 0.0011 0.99 

 
S-C2-Cells 0.057 0.0010 0.97 

         bR2 is the correlation coefficient. 
 

The one-step kinetics occurring for M3 microcosms was characterized by 

very low constants, suggesting a slower utilization/removal of Phe by/from 

soil or soil+compost. By contrast, in microcosms M4 the Phe was almost 

completely removed (more than 90% of the amount detected at zero time) 

within 15 d, with disappearance constants two orders of magnitude higher 

than for M3. Longer times were required for a complete removal. It is 
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noteworthy that: (a) in both cases the constants are in the order S-C1>S>S-

C2; (b) those calculated for the second step in M4 are very similar to those 

obtained for M3 (Table 3.5). That indicates that after the first rapid removal 

of Phe, similar phenomena probably occurred in both M3 and M4. 

 

3.7.3. Physical and chemical properties 

The addition of the two doses of compost had different effects on some of 

the physical-chemical properties of the soil and their variations with time 

(Tables 3.6a, b, c). Some, such as pH, moisture, CEC (data not shown) did 

not change significantly, whereas detectable increases were measured for 

TOC, phosphorus (P2O5), and the alkaline bivalent cations Ca and Mg 

(Tables 3.6a, b, c). The increase of TOC, however, was less than that 

expected on the basis of the total organic carbon supplied by the compost.  

As expected, the addition of the bacterial cells (M2) did not influence these 

properties and their changes except for phosphorus which sharply increased 

from values ranging from 30-50 up to 202-213 mg kg-1, followed by a 

constant decrease with time. By the end of the incubation time the P 

contents were in the range 110-124 mg kg-1 in M2 and M4 and 33-47 mg  

kg-1 soil in M1 and M3. No influence was measured from the addition of 

Phe except for the EC that was reduced on average by more than 50%. No 

variations of EC values with time were, however, observed for any of the 

microcosms investigated.  

With time, a slight decrease of TOC was measured in all the microcosms, 

and after 280 d, in the case of M3 (i.e. the microcosms containing only 

Phe), the TOC values were quite similar to the initial values. Moisture, pH, 

CEC, and TN did not change (data not shown), whereas moderate increases 

of Ca2+ and Mg2+ were measured at longer incubation times (Tables 3.6a, b, 

c). By the end of the experiment, Ca2+ values were higher than the initial 
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ones for all the microcosms, except for the control S, in which Ca2+ 

concentrations diminished from 31.6 to 25.0 meq 100 g-1, even though 

temporary increases occurred at 45 and 140 d. The same behaviour was 

observed for Mg2+ values, but the final amounts in all the microcosms were 

higher than the initial amounts. After 280 d of incubation a decrease of K+ 

was observed in M1 and M3, while no significant differences were detected 

for Na+. 
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Table 3.6a. Major chemical properties of S, S-C1, and S-C2 samples in the microcosms 
investigated, as described in Table 3.3. 

Property Sample  Incubation times (d) 

   0 45 140 280 

TOC (g kg-1) M1 S 28.3 (±1.0)a 27.2 (±0.3) 26.6 (±0.4) 25.9 (±1.4) 

  S-C1 29.4 (±0.4) 28.9 (±0.0) 28.0 (±1.2) 25.9 (±0.3) 

  S-C2 30.4 (±1.0) 29.6 (±0.0) 28.9 (±1.0) 27.4 (±0.8) 

 M2 S 28.7 (±0.1) 27.3 (±0.5) 27.0 (±0.0) 25.4 (±0.4) 

  S-C1 29.4 (±0.6) 28.8 (±0.1) 27.6 (±0.2) 27.3 (±1.0) 

  S-C2 30.9 (±0.0) 29.9 (±0.6) 29.0 (±0.2) 27.6 (±0.2) 

 M3 S 26.7 (±1.3) 25.6 (±0.2) 25.1 (±0.7) 26.2 (±0.3) 

  S-C1 27.5 (±0.0) 25.2 (±0.4) 24.9 (±0.2) 26.6 (±0.9) 

  S-C2 28.3 (±0.4) 27.6 (±0.3) 26.9 (±0.8) 28.0 (±0.2) 

 M4 S 26.6 (±0.3) 26.0 (±0.5) 25.4 (±0.8) 25.4 (±0.1) 

  S-C1 27.7 (±0.1) 26.0 (±0.0) 25.6 (±0.0) 26.3 (±0.1) 

  S-C2 29.8 (±0.5) 28.5 (±0.1) 27.9 (±0.0) 28.2 (±0.6) 

P2O5 (mg kg-1) M1 S 38.9 (±0.9) 46.8 (±2.7) 33.2 (±1.8) 29.3 (±3.1) 

  S-C1 40.7 (±1.1) 45.1 (±0.3) 39.5 (±0.9) 35.6 (±4.6) 

  S-C2 49.1 (±9.8) 57.0 (±0.6) 54.8 (±17.1) 33.5 (±0.3) 

 M2 S 192.3 (±3.8) 178.3 (±18.9) 155.2 (±24.1) 108.3 (±11.6) 

  S-C1 216.1 (±0.7) 83.9 (±15.9) 163.4 (±14.3) 113.3 (±1.5) 

  S-C2 198.2 (±13.3) 207.7 (±15.3) 177.6 (±2.1) 111.8 (±11.6) 

 M3 S 44.0 (±5.6) 45.3 (±6.7) 36.0 (±5.8) 64.3 (±0.4) 

  S-C1 43.4 (±0.1) 42.9 (±6.4) 30.2 (±3.7) 46.2 (±0.1) 

  S-C2 54.8 (±12.2) 41.7 (±13.1) 49.9 (±22.3) 32.4 (±0.2) 

 M4 S 178.8 (±18.1) 102.3 (±18.9) 150.2 (±8.5) 114.2 (±8.9) 

  S-C1 229.9 (±28.3) 204.6 (±22.0) 214.3 (±41.2) 127.1 (±9.5) 

  S-C2 228.8 (±19.5) 240.4 (±58.0) 163.4 (±2.7) 130.6 (±22.9) 

aValues in parentheses show standard deviations.  
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Table 3.6b. Major chemical properties of S, S-C1, and S-C2 samples in the microcosms 
investigated, as described in Table 3.3. 

Property Sample  Incubation times (d) 

   0 45 140 280 

Ca (meq 100 g-1) M1 S 31.6 (±0.2)a 45.8 (±0.5) 48.0 (±0.7) 25.0 (±1.0) 

  S-C1 32.6 (±0.7) 33.2 (±0.4) 34.0 (±0.1) 49.6 (±1.2) 

  S-C2 36.2 (±0.0) 50.5 (±1.0) 52.0 (±0.2) 61.3 (±0.4) 

 M2 S 30.5 (±0.7) 45.3 (±0.0) 47.0 (±0.0) 53.6 (±0.1) 

  S-C1 33.7 (±1.2) 47.1 (±0.6) 50.0 (±0.9) 53.0 (±0.1) 

  S-C2 32.4 (±0.0) 46.7 (±0.1) 48.0 (±0.0) 54.4 (±0.2) 

 M3 S 30.4 (±0.1) 41.7 (±0.4) 45.0 (±0.9) 59.5 (±0.2) 

  S-C1 30.3 (±0.2) 39.1 (±0.6) 41.0 (±0.5) 52.5 (±0.1) 

  S-C2 32.5 (±0.7) 47.1 (±0.1) 51.9 (±0.6) 55.2 (±0.6) 

 M4 S 35.3 (±0.3) 44.4 (±0.9) 45.6 (±0.2) 51.5 (±0.4) 

  S-C1 32.5 (±0.3) 43.9 (±1.0) 44.3 (±0.6) 48.9 (±0.5) 

  S-C2 34.2 (±0.2) 33.9 (±0.4) 35.9 (±0.2) 50.9 (±0.7) 

Mg (meq 100 g-1) M1 S 1.2 (±0.1) 2.2 (±0.3) 2.2 (±0.1) 1.4 (±0.1) 

  S-C1 1.8 (±0.1) 1.8 (±0.3) 1.8 (±0.0) 2.0 (±0.0) 

  S-C2 2.2 (±0.1) 2.7 (±0.2) 2.8 (±0.1) 3.6 (±0.1) 

 M2 S 1.0 (±0.1) 2.3 (±0.2) 2.3 (±0.1) 2.6 (±0.1) 

  S-C1 2.7 (±0.2) 2.4 (±0.1) 2.4 (±0.1) 2.5 (±0.0) 

  S-C2 1.5 (±0.1) 2.7 (±0.1) 2.8 (±0.1) 3.1 (±0.1) 

 M3 S 1.0 (±0.0) 1.9 (±0.1) 2.0 (±0.1) 3.9 (±0.1) 

  S-C1 1.3 (±0.2) 3.1 (±0.1) 3.2 (±0.0) 2.3 (±0.1) 

  S-C2 0.9 (±0.1) 3.1 (±0.1) 3.2 (±0.5) 3.7 (±0.0) 

 M4 S 2.4 (±0.1) 2.7 (±0.1) 2.7 (±0.2) 3.6 (±0.0) 

  S-C1 1.7 (±0.1) 3.6 (±0.0) 3.7 (±0.1) 2.1 (±0.1) 

  S-C2 3.1 (±0.3) 2.0 (±0.0) 2.0 (±0.1) 3.3 (±0.1) 

aValues in parentheses show standard deviations.  
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Table 3.6c. Major chemical properties of S, S-C1, and S-C2 samples in the microcosms 
investigated, as described in Table 3.3. 

Property Sample  Incubation times (d) 
   

0 45 140 280 

Na (meq 100 g-1) M1 S 1.05 (±0.2)a  1.10(±0.5) 1.4 (±0.7) 1.6 (±1.0) 

  S-C1 1.06 (±0.7) 1.25 (±0.4) 1.43 (±0.1) 1.62 (±1.2) 

  S-C2 1.18 (±0.0) 1.21 (±1.0) 1.45 (±0.2) 1.7 (±0.4) 

 M2 S 2.00 (±0.7) 1.90 (±0.0) 1.78 (±0.0) 1.67 (±0.1) 

  S-C1 2.09 (±1.2) 2.13 (±0.6) 1.96 (±0.9) 1.8 (±0.1) 

  S-C2 2.08 (±0.0) 2.16 (±0.1) 1.99 (±0.0) 1.82 (±0.2) 

 M3 S 1.04 (±0.1) 1.21 (±0.4) 1.43 (±0.9) 1.65 (±0.2) 

  S-C1 1.07 (±0.2) 1.15 (±0.6) 1.4 (±0.5) 1.61 (±0.1) 

  S-C2 0.83 (±0.7) 1.24 (±0.1) 1.5 (±0.6) 1.7 (±0.6) 

 M4 S 1.8 (±0.3) 1.92 (±0.9) 1.82 (±0.2) 1.73 (±0.4) 

  S-C1 1.89 (±0.3) 1.71 (±1.0) 1.73 (±0.6) 1.75 (±0.5) 

  S-C2 1.88 (±0.2) 2.08 (±0.4) 2.82 (±0.2) 1.83 (±0.7) 

K (meq 100 g-1) M1 S 1.6 (±0.1) 1.43 (±0.3) 1.0 (±0.1) 0.56 (±0.1) 

  S-C1 1.61 (±0.1) 1.62 (±0.3) 1.12 (±0.0) 0.61 (±0.0) 

  S-C2 1.72 (±0.1) 1.71 (±0.2) 1.2 (±0.1) 0.66 (±0.1) 

 M2 S 1.71 (±0.1) 1.7 (±0.2) 1.53 (±0.1) 1.37 (±0.1) 

  S-C1 1.76 (±0.2) 1.88 (±0.1) 1.66 (±0.1) 1.44 (±0.0) 

  S-C2 1.8 (±0.1) 1.98 (±0.1) 1.72 (±0.1) 1.46 (±0.1) 

 M3 S 1.62 (±0.0) 1.81 (±0.1) 1.2 (±0.1) 0.57 (±0.1) 

  S-C1 1.68 (±0.2) 1.76 (±0.1) 1.14 (±0.0) 0.53 (±0.1) 

  S-C2 1.8 (±0.1) 1.82 (±0.1) 1.23 (±0.5) 0.65 (±0.0) 

 M4 S 1.75 (±0.1) 1.72 (±0.1) 1.53 (±0.2) 1.34 (±0.0) 

  S-C1 1.87 (±0.1) 1.67 (±0.0) 1.5 (±0.1) 1.34 (±0.1) 

  S-C2 2.03 (±0.3) 2.0 (±0.0) 1.7 (±0.1) 1.4 (±0.1) 

aValues in parentheses show standard deviations.  
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3.7.4. Biochemical properties 

The addition of compost having 109 CFU g-1 did not influence the total 

heterotrophic microbial count of the soil (CFU values of 1·107 g-1). After 

the addition of the bacterial cells, an increase up to 2.25·107 CFU g-1 was 

measured for the soil alone, whereas the values decreased to 3.0 and 

4.5·106 CFU g-1 in the cases of S-C1 and S-C2, respectively. That indicated 

a possible inhibitory effect by the endogenous microflora of the compost. 

Accumulated CO2 evolution showed significant differences in the four 

microcosms (Fig. 3.8). At zero time (after 1 d of incubation) the values 

were similar for M1 and M2, about 23 mg CO2 100 g-1 of dry weight soil 

(100 g dw-1), while in the presence of Phe (M3 and M4) the CO2 release was 

2-fold higher, with no differences between the compost amended and non-

amended samples. After 3 d, a very strong increase was detected in M2, M3, 

and M4, followed by a rapid decline until day 10 of incubation. In 

particular, the increase was more evident only for S in M3 and for S-C1 in 

M2, while it was marked for both S and S-C1 in M4. Another increase of S 

respiration was observed after 16 d of incubation in the case of M3 only. 

The behaviour of soil respiration in the four microcosms was very similar 

at longer incubation times and showed relatively constant values by the end 

of the incubation (about 27 mg CO2 100 g dw-1).  

The behaviour of biomass-C did not reflect that of soil respiration (Fig. 

3.9). Some differences of MB-C values were already seen at zero time. In 

M1, for S, and S-C2 the same initial values of MB-C were observed, as was 

a similar behaviour throughout the incubation period. This was 

characterized by a small increase after 45 d and a slow decline at the end of 

the incubation but with higher final values of MB-C for S. By contrast, 

MB-C showed higher values at zero time for S-C1. These slowly declined 

after 15 d, and levelled off to values similar to those for S and for S-C2.  
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Fig. 3.8. Basal respiration of S (⎯♦⎯), S-C1 (⎯■⎯), and S-C2 (⎯ ⎯) samples in 
M1, M2, M3, and M4 (for details see Table 3.3). All SDs were smaller than the symbol 
sizes. 
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The addition of cells (M2) resulted in lower values of MB-C for S-C1 at 

zero time, followed by a small increase at 45 d, and then a slow decline as 

in M1. In S and S-C2 samples, the MB-C declined with time and at the end 

reached the same values as S-C1 (Fig. 3.9). Addition of Phe (M3) strongly 

affected the initial MB-C value of the S sample, which increased 1.75-fold 

with respect to the control (M1) (Fig. 3.9). Furthermore, the effects of Phe 

addition were more visible within 45 d of incubation. In both S and S-C2 

samples the initial MB-C values decreased significantly (by more than 70% 

and 99%, respectively). By contrast, those of the S-C1 sample showed an 

increase at 15 d followed by a decrease to values very close to those of the 

S-C2 sample. The presence of both cells and Phe (M4) resulted in no 

significant differences in MB-C values between S-C1 and S-C2. Lower 

initial values were, however, detected in S-C2. In the case of S, MB-C 

increased at 45 d of incubation, but then declined to zero after 140 d.  

Measurements of enzyme activities (Figs. 3.10, 3.11, 3.12 and 3.13) 

showed different patterns for the four microcosms. With the exception of 

M4, which contained both Phe and microbial cells, the values for 

dehydrogenase activity ranged between 1.8 and 2.5 mg TPF g-1 h-1 in all the 

microcosms (Fig. 3.10). In the case of M4, lower values were observed for 

the two amounts of compost used. After 15 d a decline of DH activity was 

observed in M1, M2, and M3, with no significant differences for C1 and C2. 

This decline was more marked in M3 where the DH activity levelled off to 

nearly zero and then slightly increased with time. After 150 d of 

incubation, a similar behaviour was observed for M1 and M2. In fact, an 

increase of DH activity occurred, followed by a decline at the end of 

incubation.  
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Fig. 3.9. Microbial biomass of S (⎯♦⎯), S-C1 (⎯■⎯), and S-C2 (⎯ ⎯) samples in 
M1, M2, M3, and M4, (for details see Table 3.3). All SDs were smaller than the symbol 
sizes. 
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In the cell inoculated samples (M2) the increase was higher in S, while a 

trend constant with time was observed for S-C2. The DH activity showed 

completely different temporal pattern in M4. After 15 d of incubation there 

was a big increase in the DH activity in the S sample followed by a decline. 

The values for S-C1 were constant with time, while an increase was 

measured in the case of S-C2 at the end of incubation (Fig. 3.10).  

The GLU activity was quite similar in microcosms M1, M2, and M3 (Fig. 

3.11). It showed little differences at zero time, then it slowly declined with 

time. No significant effects were observed for both compost doses. The 

presence of Phe (M3) apparently inhibited the initial values of GLU 

activity. A different trend was observed in M4 where a rapid decline of 

GLU activity occurred in the first 15 d of incubation, followed by a small 

recovery, especially for the sample containing the lower amount of 

compost, and that was followed by a constant decline up to 150 d of 

incubation. At the end of incubation, all the samples had reached quite 

similar values (about 0.9 μmol p-NP g-1 h-1) of GLU activity.  

Neither the initial activity values of soil PHO activity nor its trend with 

time differed significantly in M1 and M2 (Fig. 3.12). The main effects were 

observed for M3, particularly in the first 15 d of incubation. The presence 

of the Phe gave rise to very high values of PHO activity, even at zero time 

when compared to the control samples M1; the PHO activity still increased 

after 15 d, then it rapidly declined to lower values, and after that it 

remained constant with time. By contrast, the presence of both Phe and 

cells resulted in lower values of PHO activity at all incubation times (Fig. 

3.12).  

An initial ARYL activity of about 0.6 μmol p-NP g-1 h-1 was measured in 

M3 and M4 (both with Phe), while M1 and M2 showed lower values, about 

0.35 μmol p-NP g-1 h-1 (Fig. 3.13). After 15 d of incubation, ARYL activity 
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had increased up to 0.5 μmol p-NP g-1 h-1 in M1 whereas it had rapidly 

declined in the other microcosms, especially in M3 and M4. All the 

microcosms presented a peak of activity at 150 d of incubation, and this 

was much higher in M2 for the S-C1 sample. In contrast, this effect was 

more evident in M3 for the S sample. After this period, a decline of activity 

occurred in all the samples, and reached values close to zero for the 

microcosms containing Phe (M3 and M4).  

In the presence of Phe (M3 and M4) negative values of UR activity were 

measured in some samples for several incubation times (data not shown). 

In M1 the three samples S, S-C1, and S-C2 presented an initial UR activity 

of 3.0 μg NH4-N g-1 h-1. This slightly increased at 15 d and then declined 

up to 150 d of incubation. In the case of C1, a strong increase of UR 

activity was observed, to values close to those reached after 15 d of 

incubation. Then there was a constant decline for the higher amounts of 

compost, and a small increase was observed to intermediate activity values 

for the non-amended sample. In the case of M2, the response of UR activity 

was similar in the three samples: initial values ranged between 3 and 3.5 μg 

NH4-N g-1 h-1, and a rapid decline occurred in the first 50 d to activities that 

fell by 66%. This type of response was much more evident for S-C2. 
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Fig. 3.10. Dehydrogenase activity (μg TPF g-1 h-1) in M1, M2, M3 and M4, (for details 
see Table 3.3).  
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Fig. 3.11. β-glucosidase activity (μmol p-NP g-1h-1) in M1, M2, M3 and M4, (for details 
see Table 3.3). 
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Fig. 3.12. Phosphatase activity (μmol p-NP g-1h-1) in M1, M2, M3 and M4, (for details 
see Table 3.3). 
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Fig. 3.13. Arylsulphatase activity (μmol p-NP g-1h-1) in M1, M2, M3 and M4, (for details 
see Table 3.3). 
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3.8. Discussion 
3.8.1. Depletion of Phe in the investigated microcosms 

The depletion of the Phe measured in the M3 samples (Fig. 3.7) might be 

accounted for by real microbial degradation or ageing phenomena. Ageing 

processes usually lead to the adsorption and/or sequestration of organic 

compounds, including Phe (Nam and Alexander, 2001), into the soil 

matrix. The organic compounds become less, or even not bioavailable, and 

can be recovered only by exhaustive extraction procedures. In fresh, non-

sterilized soil, transformations can be carried out by indigenous 

microorganisms provided conditions are appropriate for growth.  

Evidence from several experiments would support the concept that 

microbial Phe degradation rather than a physical ageing phenomenon 

occurred in the M3 microcosm (Fig. 3.7). The soil investigated very likely 

had an indigenous microbial Phe-degradative capacity. This was enhanced 

and stimulated by the addition of the lower amount of compost (there was a 

higher Phe disappearance constant in the S-C1 sample, Table 3.5). The 

addition of Phe to soil and to soil+compost samples led to a rapid increase 

of soil respiration and of microbial biomass (Figs. 3.8 and 3.9). Both 

properties are indicative of an increased microbial growth and activity. 

Similarly, the activities of PHO and ARY (Figs. 3.12 and 3.13), involved in 

the cycles of P and S (two nutrients linked to the growth of 

microorganisms), were higher in M3 than in the control M1.  

It might be hypothesized that the indigenous bacteria of the soil revived 

their activity in the presence of a new carbon source during the incubation 

(and much more when an additional, more available carbon source was 

supplied with the compost) since the soil had not been sterilized. On the 

other hand, Cavalca et al. (2005) demonstrated that Phe-degrading strains 

were enriched by canonical procedures from the same agricultural soil. 
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Moreover, the possible adsorption and/or sequestration of the Phe in the 

soil matrix, that increased with ageing, seems to be negligible as the milder 

ethanol/n-hexane extraction gave values of the extractable Phe equal to 

those obtained with the Soxhlet extraction. The latter is considered to be an 

exhaustive, vigorous extraction capable of extracting PAH even if strongly 

immobilized in the solid matrices. 

The inoculation of the soil systems with a Phe-degrading bacterial culture 

strongly accelerated the Phe degradation. The Phe-degrading bacterial 

culture used in this study was proven to be capable of degrading Phe, not 

only in batch liquid systems (Andreoni et al., 2004), but also when the Phe 

was entrapped in synthetic organic-matter complexes (Russo et al., 2005), 

or adsorbed to an organo-mineral soil colloid (Cavalca et al., 2008). The 

data in Fig. 3.6 further support the capability of the cell culture to degrade 

the Phe when a more complex solid matrix such soil is present in the batch 

system. This degradative capability was also maintained by the culture in 

the solid-state experiments. 

The kinetics of the Phe degradation in the M4 microcosm was characterized 

by a fast initial degradation phase (with respect to M3 the disappearance 

constants were higher by two orders of magnitude, Table 3.5) and a 

subsequent second phase of a slower and diminishing degradation rate. 

Again, a beneficial influence was detected for C1. It is noteworthy that the 

time (15 d) to obtain the complete degradation of the Phe was very similar 

to that occurring in the soil slurry reactor (Fig. 3.6), as well as in liquid 

batch experiments with only Phe (Andreoni et al., 2004). A biphasic 

process was often observed for the degradation of numerous organic 

chemicals and described by single or multiple differential rate equations 

(Thiele-Bruhn and Brummer, 2005). Furthermore, apparent increases in 
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total Phe concentration observed during the experiment (Fig. 3.7) could be 

explained by changing Phe binding strength and extractability. 

Although increasing amounts of compost usually enhance the degradation 

of PAHs (Kästner and Mahro, 1996), no apparent effects were observed 

with the higher compost dose in either the M3 or M4 microcosms. These 

results could be attributed to a possible inhibition towards the indigenous 

(and/or exogenous) soil microbial population by the higher concentrations 

of some compost components (e.g. heavy metals, salts). Probably, the 

higher dose of compost puts the microbial population under stress, thereby 

counteracting the beneficial effects of the organic substrate supply. 

Moreover, the possible degradation of carbon compounds other than Phe, 

stimulated by the addition of higher concentrations of nutrients can be 

hypothesized (Johnson and Scow, 1999). The added nutrients could have 

induced shifts in the metabolism of Phe-degrading microorganisms, or 

favoured the growth of microorganisms not degrading Phe but competing 

with the Phe-degraders for available nutrients. A repression of Phe 

degradation may have resulted. 

 

3.8.2. Responses of chemical and biochemical properties 

The response of the chemical and biochemical properties was very diverse 

in the four microcosms. Furthermore, at the end of the investigation 

permanent changes were observed, mainly biochemical, for several of the 

properties investigated.  

As a general response, microcosms with or without the bacterial cells (see 

M2 vs. M1 and M4 vs. M3) showed similar trends for several of the 

measured enzymatic activities (e.g. PHO, ARYL, GLU, and UR) during the 

course of the experiment. That would indicate that the intrinsic enzymatic 
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activity of the soil (and very often also for the soil+C1/C2) was not affected 

by the simultaneous presence of the Phe-degrading cells.  

By contrast, the properties linked to microbial activity, such as respiration 

and dehydrogenase activity (its initial values) (Figs. 3.8 and 3.10) were 

generally enhanced by the presence of the cells, although differently in the 

presence or absence of the compost. Initial contrasting effects by the added 

cells occurred for the microbial biomass (Fig. 3.9). Moreover, the peaks 

observed for the evolved CO2 during the first few days of incubation (again 

much higher in S-C1, Fig. 3.9) confirm the intrinsic capability of the soil to 

display a microbial activity, in this case enhanced by the addition of 

exogenous cells.  

The similar response exhibited by most of the enzyme activities with or 

without the inoculated microbial cells is not unexpected. Various 

intracellular and extracellular enzymatic forms contribute quantitatively 

and qualitatively to the overall enzymatic activity of soil (Gianfreda and 

Bollag, 1996; Gianfreda and Ruggiero, 2006). Enzymatic categories may 

present different features and their relative composition in terms of both 

origins and locations may change with time and space. Furthermore, the 

response of each component to a given factor will probably differ and the 

final result will be the combination of different, individual changes 

(Gianfreda and Bollag, 1996; Gianfreda and Ruggiero, 2006).  

Probably, the addition of the exogenous cells (and of the compost) might 

have influenced differently the activities of the different categories and 

enzymatic fractions and their relative composition. No significant changes 

might have resulted of the whole activity of a given soil enzyme. 
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3.9. Conclusions 
In conclusion, the results presented here demonstrate that a natural 

attenuation process occurred in the soil investigated, which showed an 

intrinsic capability of degrading Phe. The addition of a limited dose of 

compost, as well as the inoculation with a Phe-degrading bacterial culture 

strongly stimulated and enhanced the attenuation process. Furthermore, 

several of the soil properties showed differentiated responses to the 

presence of the Phe, the compost, and/or the exogenous culture. Temporary 

and permanent changes occurred showing that soil biological investigations 

(such as soil respiration, biomass, and enzyme activities) can give 

information about the intensity and the kind and duration of the effects of 

pollutants on the metabolic activity of soil. Such investigations are thus 

well suited for measuring the effects of pollution on soil health and to act 

as a monitoring tool for the decontamination process of a polluted soil. 
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Chapter 4 
 

Influence of ageing on bioremediation of 

phenanthrene1 

In the previous Chapter, the effects of fresh spiked phenanthrene on the 

main properties of an agricultural soil were studied. The results showed 

different responses due to the presence of the contaminant, particularly 

during the first stage of incubation.  

Furthermore, the addition of compost and microbial culture able to degrade 

phenanthrene appeared to be very efficient in enhancing the natural 

attenuation process occurred in the soil system.  

If a contaminant persists in soil for long time it is subjected to the ageing 

process. This will affect not only the properties of the contaminant but also 

the response of the soil to remediation approaches. Moreover, the status of 

the soil, as a whole in terms of chemical, biological and biochemical 

properties, will be also affected.  

As persistent rather than fresh PAH-contamination of soil is more common 

in polluted sites, it appeared interesting to investigate the effects of aged 

phenanthrene on soil properties and the capability of the compost and the 

microbial culture on its remediation. 

 

 

 

__________________________________ 
1A version of this Chapter has been prepared for publication as: 

Scelza  R., Rao M.A., Gianfreda L.. Properties of an aged phenanthrene-contaminated 

soil and its response to bioremediation processes. 



Chapter 4                                                                                                                             . 

146 

This Chapter is dedicated to establish, in a long-term experiment under 

laboratory conditions, the effect of ageing on the main biochemical and 

chemical properties of an agricultural soil, artificially contaminated with 

phenanthrene and aged for two years, and the efficiency of both the 

phenanthrene-degrading bacterial culture and of the compost on the 

disappearance of the compound.  

Functionally related properties such as several soil enzyme activities 

(hydrolases and oxido-reductases) involved in the cycles of the main 

biological nutrients C, N, S and P were tested before and after ageing. The 

variations of the main physical-chemical properties (i.e. pH, total organic C 

and N, phosphorous) were also monitored. 
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4.1. Introduction 
The sorption of organic compounds to soils and sediments is an important 

process controlling their environmental fate and effects. Organic 

compounds that persist in soil exhibit declining extractability and 

bioavailability to microorganisms and other soil organisms (including 

earthworms and invertebrates), with increasing contact time or 'ageing' 

(Hatzinger and Alexander, 1995; White and Alexander, 1996; Kelsey et al., 

1997).  

In the past it was assumed that these observations were due to the 

degradation of contaminants by microbial processes in soil. However, 

studies utilizing isotopically labelled compounds have demonstrated that 

significant amounts of compound are retained in soil as non-available and 

non-extractable sequestered residues (Northcott and Jones, 2000) (Fig. 4.1).  

 

 
 

Fig. 4.1. Sequestration from diffusion into the solid portion of soil. C = Contaminant, M 
= Microorganisms. 
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Although the ageing phenomenon does exist in the environment, it is still 

not clear which mechanisms are involved in it (Nam et al., 2003).  Among 

the possible mechanisms are the association of organic compounds with 

natural organic matter (Carroll et al., 1994) and the penetration of 

contaminants into small pores in soil (Wu and Gschwend, 1986).  

Some experimental observations showed different competitive effects in 

the sorption of organic contaminants (Xing et al., 1996). According to this 

model, natural organic matter has two different sorptive domains that 

interact with organic contaminants: partitioning domain and hydrophobic 

hole domain. The hydrophobic hole domain exhibits competitive sorption 

behaviour and may be responsible for the desorption and extraction-

resistant fractions of aged contaminants. This concept is consistent with the 

findings that small pores with hydrophobic surfaces are responsible for 

resistant desorption (Werth and Reinhard, 1997) and declined 

bioavailability of contaminants to bacteria (Nam and Alexander, 1998).  

Weber and Huang (1996) proposed that the hydrophobic hole domain is 

located between loose, amorphous humic materials and mineral surfaces 

and is composed of highly compact humic materials, which is typical to 

humin. Earlier studies have demonstrated that humin has macromolecular 

aliphatic chains as major constituents (Almendros and Gonzalez-Vila, 

1987; Almendros and Sanz, 1991) and has significant amounts of small 

pores on its surface (Malekani et al., 1997). In these regards, it seems 

reasonable to hypothesize that the hydrophobic hole domain (which is 

proposed to be responsible for persistence of organic compounds) may 

exist in humin fraction of soil organic matter. 

Ageing is toxicologically significant because the assimilation and acute and 

chronic toxicity of harmful compounds decline as they persist and become 

increasingly sequestered with time (Alexander, 2000). Although ageing 
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reduces toxicity, it does not eliminate exposure and risk. A time-dependent 

decline in bioavailability does not always occur. This may be related to 

properties of the soil or of the compound.  

The extent of ageing differs between soils (Hatzinger and Alexander, 1995; 

Chung and Alexander, 1998, 2002) and may also be affected by 

environmental factors such as drought (White et al., 1997). However, the 

soil organic carbon content has been found to be the major determinant for 

ageing of organic substances (Nam et al., 1998).  

Nam et al. (1998) found that the bioavailability of phenanthrene to 

microorganisms was reduced after 200 d for soils with an organic carbon 

content higher than 2%, whereas no such ageing effects were evident in 

soils with an organic carbon content less than 2%. The degree of ageing 

may also depend on the concentration of the contaminant in the soil (Chung 

and Alexander, 1999).  

As stated above, organic compounds become sequestered as they age or 

persist in soil. This sequestration results in a reduced bioavailability of 

contaminants to bacteria (Nam et al., 1998) and higher organisms such as 

plants (Bowmer, 1991). From a microbial perspective, soils containing an 

aged contamination can be considered oligotrophic (Wick et al., 2003) and 

harsh environments for microbes to proliferate. Nevertheless, some 

microorganisms are able to degrade aged compounds, especially PAHs.  

Uyttebroek et al. (2006) found that Mycobacterium strains were specialized 

in proliferating in the oligotrophic environment of PAH-contaminated soil 

and in degrading sorbed PAHs; in particular Mycobacterium is associated 

with the clay fraction of contaminated soils; this fraction provides food 

sources and nutrient (Kandeler et al., 2000; Sessitsch et al., 2001) to the 

microorganisms and help them to remain active and competitive in the 

oligotrophic environment (Wick et al., 2003). Anyway, the behaviour of 
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aged compounds is much different from that of freshly added chemicals 

(Loehr and Webster, 1996) and bioavailability is one of the main factor 

limiting their biodegradation. 

An important aspect of ageing is its possible mitigation or even elimination 

of the negative effects that an organic pollutant may have on the biological, 

biochemical and phytotoxic properties of the contaminated soil. Several 

findings have demonstrated that the addition of pollutants and mainly of 

recalcitrant compounds such as PAHs might induce temporary and 

permanent changes in several chemical and biochemical soil properties (i.e. 

biomass, enzyme activity) (Andreoni et al., 2004) as well as in soil 

phytotoxicity, as assessed by germination tests (Henner et al., 1999). 

Additionally, the copresence into the soil of compost, capable of sustaining 

diverse populations of microorganisms (Kästner et al., 1995; Kästner and 

Mahro, 1996) and acting as soil ameliorant (Semple et al., 2001) may not 

only influence the distribution and behaviour of the pollutant but also the 

soil properties. With time the soil system will reorganize itself and will try 

to return after disturbance to its original or to a new dynamic equilibrium. 

Laboratory tests suffer from several problems associated with the 

interpretation of the data in terms of issues in the field because it is not yet 

clear how ageing in nature should be simulated in the laboratory and 

because of the possibility that additions of pollutants in a convenient 

solvent may introduce artefacts (Alexander, 2000). Typically, the 

bioremediation of soils containing PAHs, although reducing the 

concentration of many individual compounds, does not rid the treated site 

of PAHs because the microorganisms are present, the environmental 

conditions are conducive to their activity, but somehow the compounds are 

inaccessible.  
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The view that the contaminants became sequestered as they reside in the 

field gains credence in light of the finding that biodegradation of the 

seemingly resistant PAHs takes place if they are extracted and then added 

back to soil (Alexander, 2000).  

 

4.2. Case study 
Chapter 3 has been dedicated to the response of an agricultural soil to a 

fresh phenanthrene contamination. The capability of a mixed microbial 

culture and of a compost to degrade the contaminant have been evaluated. 

Positive results were obtained in both investigated bioremediation 

processes. In this Chapter the research is addressed to test the potential of 

the same microbial culture and of the compost to remediate a soil 

contaminated with phenanthrene and subjected to a 2-year ageing. 

As for the fresh Phe-contaminated soil the main biochemical and chemical 

properties of soil have been measured before and after the ageing process. 

The capability of the soil to sustain the seed germination of two plants, 

Cucumis sativus L. and Lepidium sativum L., with different sensitivity to 

the presence of contaminants has been evaluated, as well. 
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4.3. Materials and Methods 
4.3.1. Chemicals 

Reagent-grade Phe (>99% purity) and HPLC-grade solvents were 

purchased from Sigma Aldrich (Germany). All other chemicals, reagent 

grade, were supplied by Analar, BDH (Germany), unless otherwise stated. 

 

4.3.2. Experimental design 

Fresh soil (S) was air-dried to 14% moisture content and passed through a 

2-mm sieve. Then it was placed (100 g) in closed 1 l glass jars. The 

compost was added at two different doses, 0.27% (C1) and 0.83% (C2), 

corresponding to a field rate of 10 and 30 t ha-1 of compost, respectively. 

Phenanthrene was spiked into the soil as described in details in Chapter 3.  

Three samples were obtained: S-Phe, S-C1-Phe, and S-C2-Phe. Two 

replicates were performed for each sample. The samples were placed in the 

dark in a climatic, moisture-controlled chamber set at 25 °C. One set of 

samples was suddenly analysed and this was considered the zero time of 

incubation. After 650 days of incubation, the remaining samples were 

analysed for chemical and biochemical analyses and phenanthrene 

extraction, as well. Then they were mixed and split again into two 

replicates of 100 g each (Scheme 4.1). One replicate was subjected to 

biochemical analyses, the other one was further split in two samples, 50 g 

per each and only one was seeded with the phenanthrene-degrading culture, 

already described in Chapter 3.  

Seeded samples (S-B, S-C1-B, S-C2-B) were incubated for 100 days under 

conditions previously described (see above) and periodically, little amounts 

(<1g to not disturb the system) of soil were taken (no destructive replicates) 

for phenanthrene detection. 
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Scheme 4.1. Experimental design. M = Microbial culture. 
 

4.3.3. Soil chemical and biochemical properties 

The characterization of the soil and compost has been described in Chapter 

3 (see Table 3.4).  

Chemical analyses were performed in triplicate on air-dried and sieved (<2 

mm) soil samples as described in Chapter 3. Total organic C (TOC) and 

total N (TN) were measured by the ash combustion procedure with a Fisons 

1108 Elemental Analyzer, calibrated with appropriate standards 

(acetanilide). To obtain homogeneous samples, soils (25-30 mg) were air-

dried, pounded and sieved at 0.5 mm prior to analysis. Accuracy (<0.05%) 

and recovery of C and N (for both instrument detection limit 10 mg kg-1) 

were checked by analyzing a sample of the standard material after each set 

of eight sample analyses. 

Activities of arylsulphatase, β-glucosidase, phosphatase, urease enzymes 

and dehydrogenase were detected as described in detail in Chapter 3. 

S-aged Phe S-C1-aged Phe S-C2-aged Phe

100g 100g 100g 100g 100g 100g

Analysis Analysis Analysis

M

Extractable Phe Extractable PheExtractable Phe

MM

10
0d

10
0d

10
0d
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4.3.4. Germination tests 

Germination tests were performed on contaminated soil amended or not 

with compost (APAT, 2004), before and after 650 days of incubation. C. 

sativus L. and L. sativum L. seeds were incubated for 72 h at 25 ±2 °C in 

the dark on 10x90 mm Petri dishes, equipped with soil and soil+compost 

(10 g dw) contaminated with phenanthrene. Control tests were carried out 

with distilled water and uncontaminated soil. A primary root >2 mm was 

considered as the end germination point. Experiments were performed in 4 

replicates. The relative germination R.G. = 100·(Gs/Gc) and the 

germination index G.I. = 100·(Gs/Gc) (Ls/Lc) were calculated for each 

treatment where Gs and Gc are the numbers of roots germinated in the 

sample and control, respectively, and Ls and Lc are the roots length in the 

sample and control, respectively. 

 

4.3.5. Fractionation of humic substances 

After ageing of phenanthrene for 650 days, the soil and soil-compost 

samples were fractionated into fulvic acid (FA), humic acid (HA), and 

humin-mineral (HU) fraction, as described by Nam and Kim (2002), and 

the Phe was then extracted from each fraction. Briefly, 10 g of the 

phenanthrene-aged soil was transferred to a 250-ml Teflon centrifuge bottle 

and 100 ml of 0.1 N NaOH solution was added to the bottle. The 

suspension was shaken on a horizontal shaker (200 rpm) for 24 h at room 

temperature. The dark brown coloured supernatant containing humic and 

fulvic acids was separated from the residual soil solid by centrifugation 

(12860 g for 20 min). The precipitated solid was considered as a humin-

mineral fraction. The solid was recovered and washed with distilled water 

until its pH reached about 7. The supernatant was acidified with 
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concentrated hydrochloric acid (pH <1) to precipitate humic acid fraction. 

The resulting solution contained fulvic acid. 

 

4.3.6. Phenanthrene extraction and detection 

Phenanthrene from the soil and soil-compost samples was extracted and 

detected as described in Chapter 3. 

Phenanthrene was extracted from the three humic fractions according to 

Nam and Kim (2002). The acidified solution containing fulvic acid was 

mixed with 20 ml of n-hexane in a 250-ml Teflon centrifuge bottle, and the 

mixture was shaken on a horizontal shaker (200 rpm) at room temperature. 

After shaking for 24 h, 10 ml of n-hexane layer was recovered and 

concentrated to less than 1 ml by using a rotary evaporator.  

Phe from humic acid fraction was recovered using the mixture of hexane 

and n-butanol. Twenty millilitres of n-hexane and 5 ml of n-butanol were 

mixed with the phenanthrene-humic acid fraction, and the suspension was 

shaken for 16 h at room temperature on a horizontal shaker (200 rpm). 

After shaking, the solvent mixture was recovered from the humic acid 

fraction by centrifugation (18600 g for 20 min) and the solvent was 

concentrated to less than 1 ml by evaporation as described above.  

For extraction of phenanthrene from humin-mineral fraction, 20 ml of n-

butanol was added to a 50-ml Teflon centrifuge tube containing the solid, 

and the suspension was mixed with a vortex mixer for 1 min. The solvent-

soil mixture was then shaken vigorously on a horizontal shaker (200 rpm) 

for 16 h at room temperature and centrifuged at 18600 g for 20 min.  

The extract was concentrated to less than 1 ml by evaporation as described 

above. Solvent extracts from each component of humic substances were 

analysed by high-pressure liquid chromatography under the same operative 

conditions described in Chapter 3. 
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4.3.7. Statistic analysis 

All data were subjected to analysis of variance by using SPSS for 

Windows, Version 15.0. The assumptions of normality and homogeneity of 

variances were tested by the Kolmogoroff-Smirnoff test and the Levene 

test. The significant differences between means at P<0.05 were assessed 

according to Tukey’s multiple comparison test. 

 

4.4. Results 

4.4.1. Phenanthrene removal 

According to what observed for the fresh spiked phenanthrene experiment, 

the amount of the extractable contaminant decreased with time. At the 

beginning of the experiment (zero time) a natural attenuation was 

registered (Fig. 4.1). The best recovery of Phe was observed with the 

higher amount of compost, about 83% of the initial amount as respect to 

76% and 68% of the control and the soil amended with the lower compost 

amount. A 26% reduction (on average) of extractable Phe was, therefore, 

observed immediately after Phe spiking and confirmed what already 

observed in Chapter 3.  

 



                                                                     Influence of ageing on bioremediation of Phe 

157 

 

Fig. 4.1. Extractable phenanthrene in S, S-C1 and S-C2. 
 

During the time, all the samples showed the same trend, characterized by a 

slow decline reaching values close to 30-35% of extractable phenanthrene 

after 650 d of incubation. No differences were observed for both compost 

amounts. After 650 d, soil samples were seeded with the phenanthrene-

degrading culture and the extractable phenanthrene was monitored for 

further 100 d (Fig. 4.2).  

A strong decrease to values close to zero was observed during the 100 d 

incubation period. The samples showed, however, a different trend with 

time. In particular, during the first 14 d, quite constant values were 

observed for all the samples except for S-C2-B where the amount of 

extractable Phe decreased to 15% after 14 d. A strong decline was observed 

for all the samples but at different times, in particular for S, S-C1 and S-C2 

after 14 d, for S-B after 21 d, for S-C1-B after 50 d and for S-C2-B after 7 

d of incubation. After further 7 d incubation (21 d) the values strongly 

decreased for S, S-C2 and S-C2-B, whereas they remained quite constant 

for S-B, S-C1 and S-C2-B. In any case, all samples reached the same value 

after 100 d of incubation. 
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Fig. 4.2. Extractable phenanthrene after microbial culture (B) addition. 
 

4.4.2. Fractionation 

Fig. 4.3a shows the concentrations (mg l-1) of Phe extracted from each 

humic fraction of the three analysed samples. The amounts of Phe extracted 

from the three humic fractions significantly differed from each other. In 

particular, the highest amount of Phe was recovered from HU whereas the 

lowest resulted in FA for all the samples with amounts close to zero. Fig. 

4.3b reports the comparison of the amounts of Phe extracted from the 650 d 

aged unfractionated samples (Fig. 4.1) and the total of Phe amounts 

recovered in the three fractions (sum of the values shown in Fig. 4.3a).  

Higher concentrations of Phe were measured after extraction from humic 

fractions as compared to unfractionated samples. In particular, the extracted 

Phe ranged from 6 to 8-fold recovered from unfractionated samples. And 

the humin fraction contributed more than 78% to this amount. 
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Fig. 4.3. Extracted phenanthrene (Phe) (mg l-1) in 650 d aged samples. Each value is the 
mean of two replicates. (a) Distribution of the extractable Phe in the three humic 
fractions, fulvic acids (FA), humic acids (HA) and humin (HU). (b) Amounts of the 
extractable Phe in the fractionated and unfractionated samples. 
 

4.4.3. Chemical properties 

The main chemical properties were measured and no significant differences 

were observed during the incubation time (Table 4.1). In detail, pH values 

were so close for all the samples, at zero time as after 650 d, even if a little 

increase of pH was observed at the end of the experiment. Total organic 

carbon was not significantly affected by compost addition, even if S-C1 

showed higher values at zero time as respect to S and S-C2, while a little 

increase due to ageing process was detected for the amended samples. 

Phosphorus values strongly increased during ageing ranging from 61.3% 

for S, 67.3% for SC1 and 77.9% for SC2. Also total nitrogen values 

slightly increased after ageing period especially for amended samples. 
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Table 4.1. Chemical properties before and after  ageing process. 

 Property 

 pH TOC  

(g kg-1) 

TN  

(g kg-1) 

P2O5  

(mg kg-1) 

d→ 0 650 0 650 0 650 0 650 

S 7.96±0.1 8.19±0.0 26.18±0.2 24.38±0.2 2.49±0.0 2.42±0.0 22.88±0.6 37.33±0.3 

S-C1 7.92±0.0 8.29±0.0 27.27±0.2 28.55±0.3 2.56±0.0 2.70±0.0 23.31±0.6 34.64±0.5 

S-C2 7.90±0.0 8.26±0.0 25.72±0.1 27.22±0.1 2.41±0.0 2.63±0.0 28.71±3.4 36.84±0.9 

 

4.4.4. Enzymes activities 

Ageing process did not appreciably affect enzyme activities (Figs. 4.4 and 

4.5). No significant differences due to compost addition were observed for 

phosphatase activity at the zero time of incubation. After 650 days of 

incubation, the activity was higher in non-amended soil (4 μmol p-NP g-1   

h-1) and a little difference was observed for S-C1 and S-C2 samples, in 

particular S-C1 showed higher values of activity (3.36 μmol p-NP g-1h-1).  

Differences between samples neither time-dependent nor due to compost 

amounts were observed for GLU activity (values on average of 1.090 μmol 

p-NP g-1h-1).  

All samples showed similar ARYL activities. A strong increase of the 

activity was however observed for all the samples after ageing process (2.7 

μmol p-NP g-1h-1 after 650 d on average against 1.2 μmol p-NP g-1h-1 

measured at the zero time of incubation).  
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Fig. 4.4. Phosphatase (a), β-glucosidase (b) and arylsulphatase (c) activities (μmol p-NP 
g-1h-1) before and after ageing process. 
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Fig. 4.5. Dehydrogenase (μg TPF g-1h-1) (a) and urease (μg NH4-N g-1h-1) (b) activities 
before and after ageing process. 
 

A little decrease of dehydrogenase activity (by 43% on average) was 

observed during the time with no differences between the samples (Fig. 

4.5a). 

Similar values of UR activity were obtained at zero time for all the samples 

(Fig. 4.5b). After 650 d of incubation a no significant decrease was 

observed, with no differences among the samples.  
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4.4.5. Germination tests 

As respect to non-contaminated samples, the presence of aged 

phenanthrene drastically reduced the relative germination (R.G.) in soil 

from 94.9% to 50%  for C. sativus seeds and completely annulled that for 

L. sativum. Compost addition, especially the higher amount C2, enhanced 

this negative effect (Table 4.2). 

Correspondly, lower or null values of G.I. were measured with C. sativus 

and L. sativum respectively. 

Tests performed with fresh Phe-contaminated soils gave similar results, 

although the effect of Phe was more marked. Indeed, slightly lower R.G. 

and G.I. values were calculated as respect to controls (data not shown). 

These results clearly indicate that aged phenathrene was very phytotoxic, in 

particular for L. sativum, more sensitive to the contaminant effect (Fig. 

4.6). The presence of a little compost amount appeared to slightly reduce 

the phenanthrene phytotoxcity, whereas higher amounts greatly enhanced 

it. 

 
Table 4.2. Relative germination percentage (R.G.) and germination index (G.I.) of 
aged-soil samples before and after ageing process. 

 Cucumis sativus L. Lepidium sativum L. 
   
 R.G. (%) G.I. (%) R.G. (%) G.I. (%) 
     
S 94.9 177.8 100 271.6 

S-C1 95.1 178.1 100 273.8 

S-C2 93.8 175.0 100 266.3 

S-aged Phe 50.0 24.2 0.0 0.0 

S-C1-aged Phe 43.3 33.5 2.9 0.2 

S-C2-aged Phe 30.0 19.5 0.0 0.0 
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Fig. 4.6. Seeds of C. sativus in non-contaminated soil (a) and Phe-contaminated soil (b). 
 

4.5. Discussion 
The depletion of phenanthrene after 650 d of incubation, before the 

inoculum with the Phe-degrading culture, could be attributed to the 

presence of two concomitant processes: a natural attenuation process and 

ageing. The initial Phe concentration (Fig. 4.1) was about 13.7 mg kg-1 in 

S, 12 mg kg-1 in S-C1 and 15 mg kg-1 in S-C2. After 650 d losses by 

approximately 46.5%, 34.2% and 52.0% were measured, respectively. As 

the soil was non-sterile, they could be attributed to Phe degradation by 

active indigenous microorganisms. Nevertheless, an ageing phenomenon 

can not be excluded. Indeed, it is well known that persistent organic 

compounds show a declining availability to microorganisms, invertebrates, 

and plants with increased residence time in soil.  

The extent of this sequestration varies among soils. PAH sorption onto 

soils is highly dependent on the soil organic fraction, especially the 

composition of the organic matter, which, according to Gaboriau and Saada 

(2001), is the primary factor controlling phenanthrene retention by the soil. 

Soil used in this experiment had 2.5% of organic carbon. According to 

a b 
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Nam et al. (1998), the decline in Phe-extractability with increasing time of 

persistence would be more rapid in soils with >2.0% organic C. 

The higher recovery of Phe after fractionation of humic substances (Fig. 

4.3b) seems to support this hypothesis. Higher Phe amounts were 

sequestered in humic fractions; in particular they were associated with the 

humin (Fig. 4.3a) in all the samples. This is not surprising since the large 

surface area of humin phase allows for greater sorption of the contaminant 

than in the other fractions of the soil (Kamath et al., 2005). 

Indigenous microorganisms screened from polluted soils were, often, more 

effective to metabolize PAHs than organisms obtained from elsewhere in 

bioremediation (Chapter 3). The microbial Phe-degrading culture used to 

seed the soil samples had been isolated from a PAH-contaminated soil 

(Andreoni et al., 2004) and its capability to degrade the contaminant, under 

different bioavailability conditions, had been detected. In the Chapter 3, it 

was demonstrated that the culture was very efficient when inoculated in a 

fresh Phe-spiked soil, and its efficiency manifested suddenly after its 

inoculation into the contaminated samples. This to indicate that no a lag 

acclimatization phase was necessary to the culture to start Phe degradation. 

In the case of the Phe-aged soil, the culture seems to have not the same 

capabilities (Fig. 4.2). In fact, in the first 14 d of incubation, no declining of 

extractable Phe was observed neither in the seeded nor in the non-seeded 

samples. After 21 d a strong reduction of extractable Phe occurred and its 

amount remained practically constant until the end of the observation 

period. Probably, the culture needed a period to acclimatize itself to the 

system conditions or to implement suitable strategies to access the less 

available Phe, and thereafter to start Phe utilization. Indeed, 

microorganisms have developed a range of strategies to access sorbed or 

sequestered compounds. They can be summarized as follows: waiting for a 
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new equilibrium state; creating concentration gradients; causing 

microenvironmental pH shifts; producing surfactant, solvents, and 

chelators; secreting extracellular enzymes; and degrading exposed 

substituents. All of them require a certain brief or long lapse of time before 

being effective. 

It is also interesting to highlight that as the incubation proceeded (i.e. at 50 

and 100 d of incubation) a reduction of the extractable Phe was noted also 

in non-seeded samples (S, S-C1 and S-C2 in Fig. 4.2). These results could 

be explained by two phenomena possibly occurring in a soil when 

endogenous (resident) and exogenous microorganisms are simultaneously 

present: the limited persistence and effectiveness of exogenous 

microorganisms as compared to the indigenous microflora, due to 

competitive effects by resident microbes (Allard et al., 2000), and 

alternatively the capability of the endogenous microflora to regain its 

degradative activity towards the aged contaminant, once its transformation 

has occurred by the action of exogenous microbes with consequent 

production of less complex organic products, and very likely more 

accessible as carbon sources. The possible use of biomass of the microbial 

inoculation for resident microorganism nutrition could be also 

hypothesized. 

Aged Phe did not strongly affect soil enzymatic activities. Some of them, in 

particular arylsulphatase and phosphatase activities, showed higher values 

after 650 d of incubation in the presence of Phe. This can be explained by 

the reduction of toxicity of an aged compound due to its not complete 

availability, being very likely sequestered in non accessible sites of the soil. 

Therefore, the indigenous bacteria of the soil could have expressed their 

activity, and in turn some of their enzymatic activities, such as when the 

contaminant was absent. This hypothesis seems, however, to be 
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contradicted by the detectable decrease measured for dehydrogenase and 

urease in the presence of the aged Phe. In Chapter 3, the two enzymes were 

shown to be very sensitive to Phe presence. Even negative, not measurable, 

values of urease activity were detected in the microcosms contaminated 

with Phe (M3 and M4). Conversely, the lower but still measurable values of 

both activities in the aged soil indicate that a detectable microbial activity 

is present when the contaminant is under a less available status.  

In contrast to what Henner et al. (1999) observed, germination tests showed 

that even if not available, Phe can strongly inhibit seed germination. Data 

obtained with fresh Phe solutions and fresh Phe-spiked soils have 

demonstrated that Phe was toxic at very low concentrations to both the two 

plant species used. Evidently, the amount of Phe still present as available 

after the ageing period, was high enough to show its phytotoxicity. 

 

4.6. Conclusions 
In conclusion, the results reported in this Chapter still support that complex 

phenomena occur in a soil when a contaminant is present and persist for 

long time in it. As respect to fresh contamination, an aged contaminated 

soil will behave differently only if the contaminant will undergo an ageing 

phenomenon. The higher amounts of Phe extracted by the humic fractions, 

and in particular from humin, strongly indicate that ageing of Phe actually 

occurred and was favoured by the presence of the high level of organic 

matter in the soil.  

Moreover, the effects of an aged contaminant will be probably less evident 

depending on the parameters tested. For instance, the biochemical 

parameters such as the activity of some enzymes appeared less influenced 

when Phe was aged for 2 years as respect to their response to fresh Phe-

contamination. Conversely, germination tests were more sensitive to the 
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contamination and negatively responded to the presence of the aged 

compound. This to highlight that the choice of the biochemical parameter 

to use as indicator of soil quality might be crucial for obtaining correct and 

easily interpretable results. The use of more than one indicator is 

recommended. 
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Chapter 5 
 

Biostimulation of an artificially pentachlorophenol-

contaminated soil1 

Pentachlorophenol (PCP) is a highly chlorinated organic compound that 

has been extensively used as a broad-spectrum biocide, particularly in the 

wood preservation industry. Due to its stable aromatic ring structure and 

high chlorine content, PCP is persistent in the environment, and it has 

become one of the most widespread contaminants in soil and water.  

The response of a fresh, agricultural soil when contaminated with 

pentachlorophenol (PCP) and supplemented with compost (C) or dissolved 

organic matter (DOM) was studied in the laboratory. The concentration of 

PCP and the changes in various functionally related properties (i.e. 

microbial biomass, basal respiration, and soil hydrolase and oxidoreductase 

activity) were measured over 150 days. Variations in the main physical and 

chemical properties of the soils were also monitored.  

 

 

 

 

 

 
_____________________________________ 
1A version of this Chapter has been published as: 

Scelza R., Rao M.A., Gianfreda L., 2008. Response of an agricultural soil to 

pentachlorophenol (PCP) contamination and the addition of compost or dissolved 

organic matter. Soil Biology & Biochemistry 40, 2162-2169. 
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Two different doses of compost (C1 = 0.27% and C2 = 0.83%, 

corresponding to 10 and 30 t ha-1, respectively,) or DOM (D1 = 0.07% and 

D2 = 0.2%) equivalent to the carbon content of the two compost doses C1 

and C2, were used and the following five systems were investigated: soil 

(S), soil-compost (S-C1 and S-C2) and soil-DOM (S-D1 and S-D2). PCP 

concentrations declined progressively and significantly with time. This 

effect was most pronounced for the soils amended with the lower compost 

dose C1 (S-C1) and with the two DOM (S-D1 and S-D2) amounts. 

Significant reduced amounts of PCP were extracted after its 500-d 

residence in the various systems. Higher amounts of the residual PCP were 

extracted from the humic acids (HA), fulvic acids (FA) and humin-mineral 

(HU) fractions of the 500 d aged samples than from the same un-

fractionated samples, indicating that the residual PCP preferentially 

accumulated in the organic fractions of soil. 

The soil showed an endogenous microbial activity as indicated by basal 

respiration, microbial biomass and all the enzymatic activities tested 

(dehydrogenase, β-glucosidase, phosphatase, arylsulphatase, urease). 

Addition of the PCP severely depressed some of the tested biochemical 

properties suggesting an inhibitory effect on microbial activity. Conversely, 

higher basal respiration, and similar β-glucosidase and phosphatase 

activities were measured in comparison with the controls. No significant 

effects were observed following the addition of two doses of the compost 

or the DOM. Fungal colonies belonging to the taxonomic group of 

Ascomycetes and identified as Byssochlamys fulva developed with time in 

all the PCP-contaminated samples. Growth of B. fulva in vitro in the 

presence of PCP showed that the isolate was tolerant to 12.5 and 25 mg l-1 

PCP and degraded 20% of its initial concentration in 8 d. Overall, the 

results indicate that many complex processes occurred in the contaminated 
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soils and combinations of these determined the response to PCP 

contamination. The sorption of PCP to the soil matrix (which increased 

with time) and its degradation/transformation by indigenous soil microbial 

activity, were likely involved. Both the processes appeared to be favoured 

by the presence of dissolved organic matter. 

 

5.1. Introduction 
Since its commercial introduction in 1936, pentachlorophenol (PCP) has 

found world-wide application, e.g., in commercial wood treatment (as a 

preservative, insecticide and microbiocide), for paper production (for 

reduction of slime), in leather industry (as a preservative and fungicide), 

and in agriculture (as an herbicide and insecticide) (Crosby et al., 1981; 

Needham et al., 1981; Secchieri et al., 1991). Nowadays, although it has 

been banned in several countries, the extensive number of soil and water 

contaminated sites, contamination levels, and toxicity have resulted in PCP 

being listed as one of the priority pollutants (U.S. EPA, 2004).  

In soil, PCP may undergo several processes, of which adsorption on soil 

particles is the most common. Indeed, PCP is a weak acid (pKa 4.75); 

therefore it can be present in the environment as both neutral (phenol) and 

charged (phenolate ion) forms. Its adsorption on soil is a combination of 

hydrophobic and electrostatic interactions, the relative importance of each 

being dependent on the environmental conditions, particularly on pH. 

Higher PCP adsorption was usually observed at lower pH (Lee et al., 1990; 

Lafrance et al., 1994) at which the PCP will be expected to exist mostly as 

the neutral phenol. Therefore, PCP adsorption via hydrophobic interaction 

is probably stronger than that via electrostatic interaction. This is not 

surprising, considering the significant hydrophobic character of the PCP 
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molecule, shown by its low solubility in water at neutral pH even when it 

exists as the phenolate ion (Tam et al., 1999).  

Several studies report that PCP adsorption is enhanced by the presence of 

organic matter and the extent of enhancement appeared to increase with the 

amount of organic matter present in the test mixtures (Lagas, 1988; Banerji 

et al., 1993; Lafrance et al., 1994; Tam et al., 1999).  

Currently, increasing interest is addressed to the use of mobile sorbents, 

such as dissolved organic matter, to reduce the sorption to the solid phase 

enhancing mobility and solubility of organic contaminants (McCarthy and 

Zachara, 1989).  

PCP is a strong biocide, therefore it is the most resistant chlorophenol to 

biological degradation (McAllister et al., 1996).  

The biodegradation of PCP has been studied in both aerobic and anaerobic 

systems. Reductive dechlorination has been suggested as the primary PCP 

biodegradation mechanism (Wang  et al., 1998; Vallecillo et al., 1999; 

Tartakovsky et al., 1999; Tartakovsky et al., 2001). Under anaerobic 

conditions, chlorine can be removed from the aromatic ring by reductive 

dechlorination resulting in partially or fully dechlorinated product which is 

then more susceptible to either aerobic or anaerobic attack (Vallecillo et al., 

1999). The aromatic ring is thus totally dechlorinated prior to ring 

cleavage. Further degradation results in the production of methane and 

carbon dioxide (Vallecillo et al., 1999). Under aerobic conditions, the 

biodegradation pathways of PCP are more diverse than under anaerobic 

conditions. Ring cleavage can occur either before or after removal of the 

chlorine substituents, giving rise to a whole array of intermediates of 

varying toxicity (Vallecillo et al., 1999; Reddy and Gold, 2000).  

Although a large number of bacterial and fungal strains, such as 

Flavobacterium sp. (Crawford and Mohn, 1985; Martinson et al., 1986), 
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Mycobacterium sp. (Briglia et al., 1994), Arthrobacter sp. (Edgehill, 1996), 

Phanerochaete sp. (Chung and Aust, 1995), have been reported to be 

capable of degrading PCP in both soil and water, microbial degradation can 

be limited by different factors, for example sub-optimal nutrient levels, 

temperatures and pH (McAllister et al., 1996; Miller et al., 2004a).  

Furthermore, an important consideration is that PCP can be sequestered in 

soil aggregates where reduced accessibility to enzymatic processes limits 

degradation (Warith et al., 1993), and this question of bioavailability is an 

important impediment to the credible application of bioremediation 

treatments in general (Head, 1998).  

Composting and the use of composted materials as supplemental nutrients 

were successfully applied to the bioremediation of PCP-contaminated soils 

(Laine and Jorgensen, 1997; Miller et al., 2004b) with evidence that 

mineralization of the xenobiotic was achieved (Laine and Jorgensen, 1996).  

 

5.2. Dissolved organic matter 
In soils, dissolved organic matter (DOM) is probably the most bioavailable 

fraction of soil organic matter. The size limit, which is used to differentiate 

DOM from particulate organic is somewhat arbitrary, but there is an almost 

universal consensus that it is around 0.45 μm (Zsolnay, 2003).  

Much progress has been made in the understanding of dissolved organic 

matter (DOM) functions and dynamics in soils. Today, it is commonly 

acknowledged that DOM can enhance the solubility and mobility of metals 

and organic compounds (McCarthy and Jimenez, 1985; Blaser, 1994; 

Piccolo, 1994; Zsolnay, 1996; Marschner, 1999; Graber et al., 2001; 

Zsolnay, 2003; Song et al., 2008) and thus contributes to pollutants 

transport or to micronutrients availability. In the presence of DOM, 

weathering rates can be accelerated (Raulund-Rasmussen et al., 1998), and 
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DOM plays a central role during podsolisation (Lundström et al., 1995). 

Furthermore, DOM contains organically bound nutrients such as N, P and 

S, and DOM dynamics will therefore also affect their mobility and 

availability (Kalbitz et al., 2000; Kaiser et al., 2001).  

DOM is also a substrate for microorganisms. In soils, DOM may be the 

most important C source since soil microorganisms are basically aquatic 

and all microbial uptake mechanisms require a water environment 

(Metting, 1993). Moreover, the soluble state is presumably a prerequisite 

for the diffusion of substrates through microbial cell membranes so that the 

degradation of solid phase organic matter or large molecules can only occur 

after dissolution or hydrolysis by exoenzymes. 

Although DOM enhances the water solubility and mobility of highly 

hydrophobic contaminants, due to its hydrophobicity, it can be also sorbed 

onto soil organic material, thus increasing the sorption and reducing the 

mobility of contaminants that may be associated with the DOM (Kile and 

Chiou, 1989). Therefore, as a mobile phase, DOM can enhance the 

mobility of hydrophobic organic compounds such as PAHs, or as a sorbed 

phase, it can increase PAH sorption and decrease mobility (Chiou et al., 

1987; McCarthy and Zachara, 1989; Magee et al., 1991; Liu and Amy, 

1993; Johnson and Amy, 1995).  

As mobile sorbent, DOM can bind contaminants and thus accelerate their 

transport through porous media (McCarthy and Zachara, 1989; Johnson et 

al., 1995; Johnson and Amy, 1995; Kim and Corapcioglu, 2002; Moon et 

al., 2003).  

DOM interacts with organic pollutants through hydrophobic binding, 

forming humic-solute complexes in the aqueous phase (Sabbah et al., 

2004). Humic and fulvic acids (HA, FA) are classes of DOM that, being 

naturally occurring organic material, will interact with organic 
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contaminants in the environment and may also serve as environmentally 

friendly decontamination agents for site remediation as shown by Rebhun 

et al. (1992, 1996), Molson et al. (2002), and Van Stempvoort et al. (2002).  

The binding of organic xenobiotics to DOM and the resulting effects on 

their bioavailability are mainly determined by the hydrophobicity of the 

pollutant and the origins, quantities and properties of DOM (Haitzer et al., 

1999). In general, increasing concentrations of DOM decrease the 

bioavailability of xenobiotics (Haitzer et al., 1998), thus rendering 

ineffective the application of microorganisms to degrade them.  

 

5.3. Transformation of chlorinated phenolic compounds by 

fungi 
The ability to degrade PCP has been demonstrated by a variety of 

microorganisms. It is degraded aerobically by a number of bacterial isolates 

including Flavobacterium sp. (Topp and Hanson, 1990).  

Among microorganisms able to degrade polychlorinated phenols, white-rot 

fungi play a predominant role (Rubilar et al., 2008). White rot fungi are a 

group of organisms very suitable for the removal of chlorinated phenolic 

compounds from the environment. Indeed, they are robust, ubiquitous 

organisms and may survive also in the presence of high concentrations of 

various pollutants, even with a low bioavailability. White rot fungi possess 

the lignin-degrading enzyme system (LDS) that confers them broad 

substrate specificity and ability to oxidize several environmental pollutants. 

Besides the lignin-degrading systems, white rot fungi contain other non-

ligninolytic enzymes that may participate in the transformation of polluting 

substances. Furthermore, enzymes that form extracellular hydrogen 

peroxide from molecular oxygen are also produced; these enzymes utilize 
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glyoxal glucose and other products from cellulose and lignin degradation as 

substrates for the production of H2O2  (Kirk and Farrel, 1987).  

Phanerochaete chrysosporium is one of the most widely studied fungi. It 

has been shown to have non specific ability to degrade many persistent 

toxic organic chemicals, including PCB, PCP, DDT and several polycyclic 

aromatic hydrocarbons (Lin and Wang, 1990; Bumpus and Aust, 1995). 

For this fungus intermediary products and reactions involved in the 

degradation of chlorophenols have been identified (Rubilar et al., 2008 and 

references therein). Extracellular laccases and peroxidases carry out the 

first productive step in the oxidation of chlorophenols, forming para-

quinones and consequently releasing a chlorine atom. Further degradative 

steps involving several enzymes and highly reactive, non-specific redox 

mediators produced by the fungus render it capable of efficiently degrading 

several toxic compounds. Experimental evidences demonstrated that 

Phanerochaete chrysosporium was able to degrade high levels of PCP in 

PCP-contaminated soils (McGrath and Singleton, 2000).   However, other 

white-rot fungi, such as Trametes versicolor, have shown potential as PCP 

degraders (Seigle-Murandi et al., 1991, 1993; Alleman et al., 1992; Lamar 

and Dietrich, 1992; Ricotta et al., 1996; Walter et al., 2005). 

 

5.4. Case study 
The previous Chapters (3-4) have been widely dedicated to the effects of 

phenanthrene on the main properties of an agricultural soil and on the 

effectiveness of some bioremediation strategies on its restoration.  

Different responses for the fresh spiked or aged phenanthrene have been 

detected, confirming that the behaviour of aged compounds is much 

different from that of freshly added chemicals. 
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As they persist in soil, organic compounds become progressively less 

available for uptake by organisms, for exerting toxic effects, and for 

biodegradation and bioremediation.  

In recent years growing attention has been given to the effect of mobile 

sorbents, i.e., dissolved or colloidal-size aqueous phase components, on the 

behaviour of polycyclic aromatic hydrocarbons (PAHs) and other 

hydrophobic pollutants in soils and sediments (Kögel-Knabner and 

Totsche, 1998). Several types of materials were identified as mobile 

sorbents and shown to increase the water solubility of organic and 

inorganic pollutants: inorganic colloids, such as clay and silt minerals or 

iron oxides, and mobile organic colloids (dissolved organic matter, DOM) 

(Nakayama et al., 1986; Short et al., 1988; Chiou, 1989; McCarthy and 

Zachara, 1989). DOM has been shown to specifically enhance the mobility 

of organic contaminants in aquifers and soils. 

The present Chapter is focused on another persistent organic pollutant, 

pentachlorophenol (PCP), different from phenanthrene in terms of 

structure, properties and behaviour in soil, indeed PCP can more strongly 

adsorb to soil particles thus becoming not available for biodegradation.  

In particular, the effects of this chemical on the main soil properties have 

been studied in a long-term experiment. Processes of both biostimulation 

(using compost as nutrient source) and enhancing mobility (using dissolved 

organic matter) of PCP have been carried on. 

To assess the effect of ageing on PCP behaviour, a fractionation of humic 

substances and subsequently PCP extraction from each single fraction 

(humic acids, fulvic acids and humin), have been performed on soil 

samples incubated for longer time. 
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Furthermore, during the experiment, the development of fungal colonies on 

PCP-contaminated soil samples, induced to isolate and identify the specie 

and, preliminarily, to evaluate its potential to degrade pentachlorophenol.  
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5.5. Materials and Methods 
5.5.1. Chemicals 

Reagent-grade PCP (>99% purity) and HPLC-grade solvents were 

purchased from Sigma Aldrich (Germany). All other chemicals, reagent 

grade, were supplied by Analar, BDH (Germany), unless otherwise stated. 

 

5.5.2. Disappearance of PCP in solid-state systems: experimental 

design 

Fresh soil (S) was air-dried to 18% moisture content and 2-mm sieved. 

Then it was placed (100 g) in closed 1-l glass jars. The compost was added 

at two different doses, 0.27% (C1) and 0.83% (C2), corresponding to a 

field rate of 10 and 30 t ha-1 of compost, respectively. DOM was added at 

two rates, D1 (0.07%) and D2 (0.2%), equivalent to the carbon content of 

the two compost doses C1 and C2, respectively. Five samples were thus 

obtained: S (only soil), S-C1 (soil+0.27% compost), S-C2 (soil+0.83% 

compost), S-D1 (soil+0.07% DOM) and S-D2 (soil+0.2% DOM). These 

represented the controls. Similar samples were prepared by using the soil 

previously spiked with PCP (50 mg kg-1 of soil, as described below), 

supplemented with the two compost doses or DOM amounts, and they 

formed the PCP-contaminated samples. For both controls and PCP-

contaminated samples, five sets (S, S-C1, S-C2, S-D1 and S-D2), one for 

each incubation time, were prepared in duplicate. The samples (50 controls 

and 50 PCP-contaminated samples in all) were placed in the dark in a 

climatic chamber set at 25 °C. Periodically, in particular after 0, 20, 65, 150 

d of incubation, two sacrificial sets of replicates, one for controls and one 

for PCP-contaminated samples, were taken and split into sub-samples (two 

per replicate) for pentachlorophenol determination and for all physical, 

chemical and biochemical analyses. Soil samples for biochemical analyses 
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were kept at 4 °C and measurements were made within 5 d of soil 

collection, while physical and chemical properties were determined on air-

dried soil samples. For both controls and PCP-samples, one set of two 

replicates was incubated until 500 d, and then each replicate was split into 

two sub-samples: one was analysed for residual PCP and the other was 

subjected to fractionation of humic substances and analysed to quantify 

PCP contents (see below).  

A stock solution of PCP (5 g l-1) was prepared in acetone and stored under 

refrigeration at 4 °C. Soil samples were rewetted to a moisture content of 

18%, and homogenized with a stainless steel spatula. Approximately 10 g 

of the rewetted soil was spiked with 7 ml of acetone and 1 ml of the PCP-

stock solution in order to obtain a final concentration of 50 mg kg-1 soil. 

The soil was placed in a 1-l glass jar and manually mixed with a stainless 

steel spatula. Soil was gradually added to the glass jars in 10 g aliquots and 

extensively mixed with the spiked soil. This procedure was repeated until 

the entire amount of soil (100 g) was added and mixed. The jars containing 

the spiked soil were covered with aluminium foil, hermetically closed and 

left overnight to shake for inversion. Then the acetone was left to evaporate 

for about 2 h under a flow hood and the soil was immediately used. 

The control samples were treated with the same amount of acetone (without 

PCP) and subjected to the same experimental procedure. Preliminary 

experiments with acetone-treated samples demonstrated that the addition of 

acetone did not affect the chemical and biochemical properties of soil, 

soil+compost and soil+DOM mixtures or their variations with time.  

 

5.5.3. Physical and chemical properties of soil and compost 

Soil and compost used for PCP experiment have been described in Chapter 

3 (see Table 3.4).  
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Physical and chemical analyses were performed in triplicate on air-dried 

and sieved (<2 mm) soil samples as described in Chapter 3. Total organic C 

(TOC) and total N (TN) were measured by the ash combustion procedure 

with a Fisons 1108 Elemental Analyser, calibrated with appropriate 

standards (acetanilide). To obtain homogeneous samples, soils (25-30 mg) 

were air-dried, pounded and sieved at 0.5 mm prior to analysis. Accuracy 

(<0.05%) and recovery of C and N (for both instrument detection limit 10 

mg kg-1) were checked by analysing a sample of the standard material after 

each set of eight sample analyses. 

 

5.5.4. Soil biochemical analyses 

Microbial biomass C (MB-C), basal respiration and enzyme activities 

methods have been described in detail in Chapter 3. As previously 

described, the soil, compost and also DOM were tested for possible 

interference with the analytical methods adopted for evaluating enzymatic 

product concentration and/or adsorption of the product released by the 

enzymatic action. Appropriate extinction coefficients were used for the 

calculation of enzyme activity units as determined by calibration curves 

obtained in the presence of soil, soil+compost, soil+DOM.  

Enzymatic Units are those defined in Chapter 3.  

 

5.5.5. Fractionation of humic substances 

The fractionation of humic substances, i.e., humic acids (HA), fulvic acids 

(FA) and humin-mineral fractions (HU), was performed only on the 500 d 

incubated samples, according to the method described by Nieman et al. 

(2005). Ten g of spiked soil were placed in 40 ml Teflon centrifuge tubes 

and tumbled with 15 ml of 0.5 N NaOH for 17 h. The samples were then 

centrifuged at 10000 g for 10 min, and the supernatant containing humic 
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and fulvic acids was removed. The soil was extracted two more times, once 

with 15 ml and once with 10 ml of 0.5 M NaOH for 4.5 and 6 h 

respectively, and these extracts were added to the previous one. The residue 

obtained thereby represented the humin-mineral fraction. The extract was 

then acidified to pH <2.0 with 2 ml of HCl (37%) and centrifuged to 

separate humic (insoluble) and fulvic acid fractions.  

Pentachlorophenol was extracted from the three fractions, and 

concentrations of the compound were determined by high-pressure liquid 

chromatography (HPLC) as described below.  

 

5.5.6. PCP extraction and detection 

The extraction of PCP from spiked soil, soil+compost and soil+DOM 

systems was performed using a water-ethanol mixture as described by 

Khodadoust et al. (1999). Briefly, 1 g of moist soil was extracted with 20 

ml of water-ethanol (50:50, v:v) on a horizontal shaker (190 rev min-1) for 

1 h. The supernatant was separated from the residual soil by centrifugation 

at 3000 g for 15 min and concentrated by evaporation under vacuum. Each 

concentrate was re-suspended in 2 ml of methyl alcohol for high-

performance liquid chromatography (HPLC) analysis.  

Pentachlorophenol was extracted from humin and humic fractions as 

described by Nieman et al. (2005) with some modifications. The humin-

mineral fraction was solvent extracted by shaking (200 rev min-1) with 20 

ml acetone and n-hexane (1:1, v:v) for 2 h. The solvent was decanted after 

centrifugation at 10000 g for 10 min. Isolated humic acid samples were 

allowed to dry at 30 °C for 24 h and subsequently extracted with 10 ml 

acetone and n-hexane (1:1, v:v) for 10 min followed by 10 min of 

centrifugation at 10000 g (Nieman et al., 2005). Solvent extracts were dried 

under vacuum and redissolved in acetonitrile for HPLC analysis. 
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PCP extraction from fulvic acid fractions was performed according to the 

extraction method of Nam and Kim (2002) described for phenanthrene. The 

acidified solution (6 ml) containing fulvic acid was mixed with 30 ml of n-

hexane (5:1, v:v) in a Teflon centrifuge tube and shaken on a horizontal 

shaker (200 rev min-1) at room temperature. After shaking for 24 h, an 

appropriate volume (3 ml) was recovered and concentrated by using a 

rotary evaporator.  

The residual PCP in all the samples was quantified by HPLC using an 

Agilent Technologies R1100 instrument with a pump and a diode-array 

detector. A Phenomenex 250 x 4.6 mm C-18 column with 4 μm particle 

size and a Phenomenex C-18 (4.6 x 30 mm) guard column were used. 

Analysis was conducted using 68% of acetonitrile and 32% of buffered 

water (1% acetic acid) as mobile phase and the 1.0 ml min-1 flow rate. 

Detection was carried out at 220 nm. The retention time for PCP was about 

10 min.  

Preliminary tests performed with PCP-soil, PCP-soil+compost, and PCP-

soil+DOM mixtures at different PCP-solid phase ratios showed a 100% 

efficiency of the adopted extraction procedures. Four determinations were 

performed for PCP analysis. 

 

5.5.7. Growth and isolation of fungal species 

Samples showing white spots on the surface, were analysed for total fungal 

count using a fungi-specific substrate, Potato Dextrose Agar (PDA) with 

the addition of chloramphenicol (10%). PDA composition (per litre) was 

4.0 g potato extract, 20.0 g dextrose and 15.0 g agar. Colonies were 

isolated and cultivated separately using the same solid medium for several 

days (about 10 d) at room temperature. Identification of colonies was 

carried out by optical microscopy according to general principles of fungal 
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classification (Samson et al., 2000). Experiments to evaluate the ability of 

the isolated fungal strains to degrade PCP were carried out in Erlenmeyer 

flasks containing 100 ml of Potato Dextrose Broth (PDB, with the same 

composition of PDA without agar), at 22 °C in a rotary shaker (85 rpm) 

supplement with initial PCP concentrations of 12.5 and 25 mg l-1. Controls 

were cultured without PCP. Five replicated samples were periodically 

analysed for residual PCP as reported above. 

 

5.5.8. Statistic analysis 

All data were subjected to analysis of variance by using SPSS for 

Windows, Version 15.0. The assumptions of normality and homogeneity of 

variances were tested by the Kolmogoroff-Smirnoff test and the Levene 

test. The significant differences between means at P<0.05 were assessed 

according to Tukey’s multiple comparison test. 

 

5.6. Results 
5.6.1. Disappearance of PCP in soil, soil+compost, and soil+DOM 

systems 

PCP depletion showed different trends in the investigated samples (Fig. 

5.1). At the zero time of the incubation (corresponding to 24 h of contact 

between soil and PCP) a 20% reduction of the extractable PCP was 

measured in all samples. The extracted PCP amounts were significantly 

(P<0.05) affected by incubation time or soil treatment as the sole source of 

variation. By contrast, treatment x incubation time interaction had no 

significant effect. Moreover,  the addition of DOM significantly decreased 

the amount of extractable PCP at any time (Fig. 5.1). 
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Fig. 5.1. Extracted pentachlorophenol (PCP) (%) with time at 25 °C. S (soil), S-C1 
(soil+0.27% compost), S-C2 (soil+0.83% compost), S-D1 (soil+0.07% DOM) and S-D2 
(soil+0.2% DOM). Each value is the mean of two replicates. 
 

The 500 d-aged samples were also subjected to the fractionation of humic 

substances followed by the extraction of PCP from each single fraction 

HA, FA and HU. Fig. 5.2a shows the concentrations (mg l-1) of PCP 

extracted from each humic fraction of the five analysed samples. The 

amounts of PCP extracted from the three humic fractions significantly 

differed from each other (Fig. 5.2a) independently of the addition of 

compost or DOM.  
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Fig. 5.2. Extracted pentachlorophenol (PCP) (mg l-1) in 500 d aged samples (for details 
see legend Fig. 5.1). Each value is the mean of two replicates. (a) Distribution of the 
extractable PCP in the three humic fractions, fulvic acids (FA), humic acids (HA) and 
humin (HU). (b) Amounts of the extractable PCP in the fractionated and unfractionated 
samples. 
 

In particular, in S the highest amount of PCP was recovered from FA 

whereas the lowest resulted in HA. In S-C2 the extractable PCP was higher 

in the humin fraction HU and also in this case the lowest PCP 

concentration was recovered from the HA fraction. S-D1 and S-D2 differed 

little but significantly in PCP distribution, PCP values being higher in HU 

for S-D1 and in FA for S-D2.  

Fig. 5.2b reports for comparison the amounts of PCP extracted from the 

500 d-aged unfractionated samples (Fig. 5.1) and the total of PCP amounts 

recovered in the three fractions (sum of the values shown in Fig. 5.2a). 

Higher concentrations of PCP were measured after extraction from humic 
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fractions as compared to unfractionated samples and the treatment (i.e., the 

presence of additional organic matter and/or compost) significantly 

influenced the measured amounts (Fig. 5.2b). Moreover, these results 

indicate that all residual PCP extracted from soil was located in its organic 

fractions. 

 

5.6.2. Physical and chemical properties 

The addition of the two doses of compost and DOM had different effects 

on some of the physical and chemical properties of the soil and their 

variations with time (Tables 5.1a and b). Some such as moisture, Na, K and 

the alkaline bivalent cations Ca and Mg did not change significantly, 

whereas decreases were generally measured for pH, TOC, and TN. A 

significant decrease in pH (initial values 7.83 - 7.95) (Fig. 5.1a) with time 

was measured in all the control samples, and after 150 d the pH values 

decreased by 0.3 pH units (on average). Conversely, the content of 

phosphorus (P2O5) (Fig. 5.1b) was significantly affected by the treatment. 

The value increased from 18.9 mg kg-1 up to 38.6 mg kg-1 and 26.8 mg kg-1 

with the addition of the two compost doses and the lower DOM amount, 

respectively. The increase (on average 10%) in TOC observed after 

compost or DOM addition was expected, additional organic carbon being 

supplied by either the compost or DOM (as already demonstrated in 

Chapter 3).  

In PCP-contaminated samples, fluctuating, non-significant changes in pH 

occurred on addition of PCP. By contrast, both TOC and TN parameters 

were significantly affected by PCP addition x treatment x incubation time 

interaction (P=0.005 and P<0.0001 for TOC and TN, respectively). 

Consistent decreases of both occurred in S, partially annulled by the 

addition of the compost and DOM. Immediately after PCP addition, the 
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TOC and TN decreased from 24.5 g kg-1 to 17.0 g kg-1 and from 2.2 g kg-1 

to 1.5 g kg-1, respectively. Both parameters significantly increased in 

compost- and DOM-amended samples, reaching for S-D2 the values 

measured in S. By the end of the experiment and even at 500 d incubation, 

equal values of TN and quite similar amounts of TOC were measured for 

both the microcosms. Consequently, no significant variations occurred in 

the C/N ratios.  

 
Table 5.1a. Chemical properties of S, S-C1, S-C2, S-D1 and S-D2 samples 
contaminated (+PCP) or not contaminated (-PCP). 

 Property    Sample Incubation times (d) 

   0 20 65 150 

pH -PCP S 7.95 (±0.0)a 8.04 (±0.0) 7.62 (±0.0) 7.60 (±0.0) 

  S-C1 7.83 (±0.0) 8.00 (±0.0) 7.61 (±0.0) 7.53 (±0.0) 

  S-C2 7.84 (±0.1) 7.95 (±0.0) 7.60 (±0.0) 7.55 (±0.0) 

  S-D1 7.84 (±0.0) 7.92 (±0.0) 7.61 (±0.0) 7.56 (±0.0) 

  S-D2 7.90 (±0.0) 7.92 (±0.0) 7.61 (±0.0) 7.52 (±0.0) 

 +PCP S 7.95 (±0.0) 7.97 (±0.0) 7.73 (±0.1) 8.04 (±0.0) 

  S-C1 7.96 (±0.0) 7.92 (±0.1) 7.74 (±0.0) 7.99 (±0.0) 

  S-C2 7.97 (±0.0) 7.93 (±0.0) 7.86 (±0.1) 7.99 (±0.0) 

  S-D1 7.88 (±0.0) 7.98 (±0.0) 7.87 (±0.0) 8.05 (±0.1) 

  S-D2 7.94 (±0.1) 8.03 (±0.0) 7.83 (±0.0) 7.92 (±0.0) 

TOC (g kg-1) -PCP S 24.5 (±0.2) 19.8 (±0.3) 18.6 (±0.1) 23.7 (±0.1) 

  S-C1 21.7 (±0.3) 20.1 (±0.1) 23.3 (±0.2) 22.6 (±0.1) 

  S-C2 23.5 (±0.3) 21.1 (±0.2) 23.2 (±0.1) 23.2 (±0.1) 

  S-D1 20.8 (±0.4) 20.3 (±0.3) 23.3 (±0.2) 22.7 (±0.1) 

  S-D2 21.3 (±0.3) 19.5 (±0.4) 22.4 (±0.1) 23.3 (±0.1) 

 +PCP S 17.0 (±0.2) 22.2 (±0.3) 23.6 (±0.2) 22.7 (±0.2) 

  S-C1 20.7 (±0.3) 23.1 (±0.2) 26.3 (±0.2) 23.0 (±0.2) 

  S-C2 19.5 (±0.1) 23.2 (±0.2) 23.7 (±0.2) 22.9 (±0.1) 

  S-D1 19.1 (±0.2) 19.7 (±0.3) 23.0 (±0.2) 22.7 (±0.2) 

  S-D2 21.8 (±0.3) 23.3 (±0.3) 24.1 (±0.1) 23.4 (±0.2) 

 aValues in parentheses show standard deviations 
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Table 5.1b. Chemical properties of S, S-C1, S-C2, S-D1 and S-D2 samples 
contaminated (+PCP) or not contaminated (-PCP). 

 Property    Sample Incubation times (d) 

   0 20 65 150 

TN (g kg-1) -PCP S 2.2 (±0.0) 1.9 (±0.0) 1.9 (±0.0) 2.3 (±0.0) 

   S-C1 2.0 (±0.0) 1.9 (±0.0) 2.3 (±0.0) 2.2 (±0.0) 

  S-C2 2.2 (±0.0) 2.0 (±0.0) 2.3 (±0.0) 2.3 (±0.0) 

  S-D1 1.9 (±0.0) 2.0 (±0.0) 2.3 (±0.0) 2.3 (±0.0) 

  S-D2 1.9 (±0.0) 1.9 (±0.0) 2.2 (±0.0) 2.3 (±0.0) 

 +PCP S 1.5 (±0.0) 2.2 (±0.0) 2.3 (±0.0) 2.2 (±0.0) 

  S-C1 2.0 (±0.0) 2.3 (±0.0) 2.5 (±0.0) 2.2 (±0.0) 

  S-C2 1.9 (±0.0) 2.2 (±0.0) 2.3 (±0.0) 2.2 (±0.0) 

  S-D1 1.8 (±0.0) 2.0 (±0.0) 2.2 (±0.0) 2.2 (±0.0) 

  S-D2 2.2 (±0.0) 2.2 (±0.0) 2.4 (±0.0) 2.2 (±0.0) 

C/N -PCP S 10.9 10.2 10.0 10.2 

  S-C1 10.7 10.4 9.9 10.1 

  S-C2 10.7 10.5 10.1 10.0 

  S-D1 11.0 10.2 10.1 10.0 

  S-D2 11.4 10.3 10.1 10.1 

 +PCP S 11.4 10.3 10.3 10.2 

  S-C1 10.4 10.1 10.7 10.3 

  S-C2 10.4 10.4 10.3 10.3 

  S-D1 10.7 9.8 10.3 10.4 

  S-D2 10.1 10.4 10.2 10.5 

P2O5 (mg kg -1) -PCP S 18.9 (±0.3) 30.9 (±0.0) 20.1 (±2.8) 16.5 (±1.7) 

  S-C1 27.5 (±13.9) 34.0 (±0.0) 25.9 (±5.2) 22.4 (±4.7) 

  S-C2 38.6 (±3.6) 35.8 (±0.0) 23.5 (±4.1) 20.7 (±5.9) 

   S-D1 26.8 (±4.6) 44.2 (±0.0) 32.0 (±14.5) 34.7 (±19.5) 

  S-D2 19.4 (±0.4) 37.1 (±0.0) 22.4 (±0.3) 18.0 (±0.2) 

 +PCP S 23.0 (±6.6) 42.2(±0.0) 22.5 (±5.1) 16.4 (±3.6) 

  S-C1 25.9 (±1.8) 51.9 (±0.0) 26.2 (±0.0) 21.2 (±3.1) 

  S-C2 27.4 (±0.6) 53.3 (±0.0) 25.1 (±4.8) 26.0 (±0.4) 

  S-D1 23.5 (±5.8) 40.8 (±0.0) 22.5 (±3.5) 22.9 (±1.8) 

  S-D2 26.5 (±3.9) 57.1 (±0.0) 21.6 (±0.1) 24.2 (±1.2) 

aValues in parentheses show standard deviations 
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A temporary, significant increase in P contents (Fig. 5.1b), much greater in 

PCP-contaminated samples, took place at 20 d incubation where they were 

in the range 34-44 mg kg-1 in the controls and 41-57 mg kg-1 in the PCP-

contaminated samples. A decrease in P with time was detected in all 

samples, and after 150 d the P values were quite similar to the initial ones.  

 

5.6.3. Biochemical properties 

Some enzymatic activities, involved in the cycles of the main biological 

nutrients C, N, S and P, were evaluated, and different patterns were 

observed in the controls and PCP-contaminated samples. Control samples 

showed the same trend of β-glucosidase activity (GLU) (Fig. 5.3), an 

important enzyme in carbon cycling, during the entire incubation period.  

With respect to an average initial value of 0.8 μmol p-NP g-1 h-1, a slight 

significant increase was registered in the first 20 d of incubation, followed 

by a small decrease until 65 d, after which constant values of activity were 

measured by the end of incubation. At that time, S, S-C1 and S-C2 showed 

significant higher values of GLU activity (0.84 μmol p-NP g-1 h-1) than 

DOM-amended samples (0.71 μmol p-NP g-1 h-1). The addition of PCP did 

not significantly affect the values or patterns of GLU activity.  
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Fig. 5.3. β-glucosidase activity (μmol p-NP g-1 h-1) in controls (-PCP) and PCP-
contaminated samples (+PCP). S (soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% 
compost), S-D1 (soil+0.07% DOM) and SD2 (soil+0.2% DOM). Each value is the 
mean of two replicates. 
 

By contrast, the values and behaviour of dehydrogenase activity (DH), 

another key enzyme in the C cycle, were very different in the samples with 

or without PCP and they significantly differed with incubation time (Fig. 

5.4). The presence of PCP severely and significantly depressed DH activity 

and no significant differences were observed between amended or non-

amended samples. Values close to zero were measured at each time. 

In the absence of PCP (Fig. 5.4) DH recorded initial values of 0.8 μg TPF 

g-1 h-1 until 20 d of incubation; after which a sharp increase was noted for 
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all the samples, the rise being constant with time. At 150 d of incubation 

about 8 μg TPF g-1 h-1 were measured, 10-fold higher than those measured 

at the zero time of incubation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Dehydrogenase activity (μg TPF g-1 h-1) in controls (-PCP) and PCP-
contaminated samples (+PCP). S (soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% 
compost), S-D1 (soil+0.07% DOM) and SD2 (soil+0.2% DOM). Each value is the 
mean of two replicates. 
 

Values of arylsulphatase activity (ARYL) of the tested samples are shown 

in Fig. 5.5. ARYL values were significantly (P=0.003) affected by PCP 

addition x treatment x incubation time interaction. In particular, for all the 
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lower values were measured in all samples when compared to the controls 

(Fig. 5.5).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5.  Arylsulphatase activity (μmol p-NP g-1 h-1) in controls (-PCP) and PCP-
contaminated samples (+PCP). S (soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% 
compost), S-D1 (soil+0.07% DOM) and SD2 (soil+0.2% DOM). Each value is the 
mean of two replicates. 
 

Moreover, ARYL activity was also significantly influenced by incubation 

time and treatment as single factors (P=0.001) and their interactions 

(P<0.01). Initial ARYL activity of 0.1 μmol p-NP g-1 h-1, on average, was 

measured in PCP-contaminated samples against 0.3 μmol p-NP g-1 h-1 

detected for the controls. A detectable decline of ARYL activity occurred 

in the first 20 d of incubation, more evident for S and S-C1, followed by a 
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slight increase at 65 d. At 150 d incubation all samples reached values 

close to zero.  

In the control samples phosphatase activity (PHO), a crucial enzyme for the 

transformation of organic P compounds, was significantly (P>0.3) affected 

neither by the sampling time nor by the addition of compost or DOM (Fig. 

5.6). Indeed, PHO activity of about 2.0 μmol p-NP g-1 h-1 was measured for 

all the samples, with no differences among compost- or DOM-amended 

samples.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6.  Phosphatase activity (μmol p-NP g-1 h-1) in controls (-PCP) and PCP-
contaminated samples (+PCP). S (soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% 
compost), S-D1 (soil+0.07% DOM) and SD2 (soil+0.2% DOM). Each value is the 
mean of two replicates. 
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The addition of PCP significantly affected PHO activity only in the first 65 

d of incubation: at zero time no differences in activity were observed when 

compared to the control samples; after 20 d of incubation substantial 

decreases in activity (46 and 50%) occurred in S and S-C1, respectively, 

while a great increase (activity of 3.5 μmol p-NP g-1 h-1) was observed in S-

C2. This opposite trend was suddenly annulled at 65 d of incubation, when 

all the samples levelled off to similar values. This behaviour was constant 

with time. The PHO activities of DOM-amended samples were not 

significantly affected by the presence of PCP all over the monitoring period 

with respect to the control samples. 

A more dramatic effect of the presence of PCP was observed for urease 

activity. Negative values of UR were measured at each incubation time and 

for the majority of samples, thus indicating a possible strong interference of 

the PCP on the activity assay (data not shown). By contrast, controls 

showed detectable UR activity values. All the samples presented an initial 

UR activity of 2 μg NH4-N g-1 h-1. A severe decline for compost-amended 

samples and for S occurred after 20 d of incubation, followed by an 

increase until 65 d to values ranging from 3.3 ±0.4 μg NH4-N g-1 h-1 for S-

D2 up to 5.5 ±0.4 μg NH4-N g-1 h-1 for S-C2. Afterwards, a decline to very 

similar values (on average 3.5 μg NH4-N g-1 h-1) occurred for all the 

samples. 

Soil respiration was significantly and strongly affected by each factor 

considered and also by each of their interactions at P<0.0001 (Fig. 5.7). 

The presence of PCP increased soil respiration. The effect was evident and 

significant already at zero time (after 1 d of incubation) when the CO2 

produced in PCP-contaminated systems was ~ 4-fold higher than that of the 

controls (on average 17 mg vs. 4 mg of CO2 for 100 g-1 of dry wt soil, 100 

g dw-1). For both controls and PCP-contaminated samples, the evolved CO2 



Chapter 5                                                                                                                            .   

202 

increased significantly as the incubation time increased, with similar trends 

in all the samples. At 31 d incubation, however, the increase in the samples 

with PCP was more evident for S-D1 where 100 mg of CO2 100 g dw-1 

were measured. At the end of the incubation all samples reached relatively 

similar values of evolved CO2 (about 40 mg of CO2 100 g dw-1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7. Basal respiration of controls (-PCP) and PCP-contaminated samples (+PCP). S 
(soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% compost), S-D1 (soil+0.07% 
DOM) and SD2 (soil+0.2% DOM). Each value is the mean of two replicates. Each 
value is the mean of two replicates. 
 

In the absence of PCP a similar behaviour was detected for all the samples, 

with no differences among S and compost- and DOM-S samples. Also in 

 

0

20

40

60

80

100

120

140

m
g 

C
O

2
10

0g
 d

w
-1

-PCP S S-C1 S-C2 S-D1 S-D2

0

20

40

60

80

100

120

140

1 2 4 8 10 31 71

m
g 

C
O

2
10

0g
 d

w
-1

Incubation time (d)

+PCP



                                                    Biostimulation of an artificially PCP-contaminated soil 

203 

this case the final values (ranging from 29 to 37 mg of CO2 100 g dw-1) 

were higher than the initial ones.  

The trend of biomass-C (MB-C) was quite similar in samples with or 

without PCP, and reflected the behaviour of DH activity (Fig. 5.8).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. Microbial biomass C (MB-C) of controls (-PCP) and PCP-contaminated 
samples (+PCP). S (soil), SC1 (soil+0.27% compost), S-C2 (soil+0.83% compost), S-
D1 (soil+0.07% DOM) and SD2 (soil+0.2% DOM). Each value is the mean of two 
replicates. Each value is the mean of two replicates. 
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differences in time. The amended samples showed similar values at all the 

incubation times, except at 20 d when a sharp increase was observed for S-

C1. At 150 d all samples reached values of MB-C close to zero. The 

addition of PCP resulted in lower values of biomass C already at zero time. 

After 20 d of incubation, a temporary positive effect was observed for S-C2 

and S-D2, i.e. the soils amended with the higher dose of compost and 

DOM, respectively. Both showed higher values of MB-C. At 65 and 150 d 

the biomass was close to zero for all the samples, irrespective of the 

presence of amendments. 

 

5.6.4. Growth of fungi during incubation 

White spots, easily visible with the naked eye and resembling fungal 

mycelium, started to develop on the surfaces of the PCP-contaminated 

samples at 65 d incubation and intensified during the experiment. The 

phenomenon was much more evident for the S-DOM samples. No spots 

were observed on control samples (Fig. 5.9). The growth of fungi was 

assumed to be induced by the presence of PCP. The biofilm was removed 

from the 150 and 500 d incubated samples and subjected to total fungal 

count (4·105 CFU on average) using a fungi-specific substrate. Two fungal 

colonies differing in morphology were isolated and cultivated separately. 

Both were identified as fungi belonging to the Byssochlamys fulva strain of 

the taxonomic group of Ascomycetes. Byssochlamys fulva is a soil fungus 

which produces heat-resistant spores (Doyle et al., 1998). This species is 

distributed world-wide in bottled fruit, harvested grapes and soil, especially 

in orchards. It has been implicated in the spoilage of canned and bottled 

fruit. It produces pectinolytic (Reid, 1951; Chu and Chang, 1973) and 

ligninolytic (Furukawa et al., 1999) enzymes. In addition, Doyle et al. 
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(1998) analysed a α-amylase from B. fulva capable to produce industrially 

significant levels of maltose (55%, w/w) on hydrolysis of starch. 
 

          

 

          

 

Figure 5.9. Photographs of PCP-contaminated samples at 150 d incubation and the 
isolated fungal colonies. White spots on the surface of the S-D1 PCP-contaminates 
sample, as seen (a) from the front and (a1) from the upper side,  (b) S-D1 control sample 
as seen from the front side; (c) and (d) colonies of Byssochlamys fulva, belonging to 
taxonomic group of Ascomycetes.     
 

Experiments were performed to establish whether the isolated strain could 

transform PCP. When the fungal isolate was grown on PCP, 20% of the 

initial PCP concentration was degraded in 8 days, thus indicating that the 

isolated fungal species was tolerant to PCP and able to degrade it.  
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5.7. Discussion 
When PCP is added to a fresh non-contaminated soil several processes may 

simultaneously take place and concur to determine the response of the soil 

to PCP contamination: i) adsorption of PCP onto the soil that increases 

with ageing and causes its sequestration in the soil matrix, ii) inhibition or 

even repression of endogenous soil microbial activity, iii) 

degradation/transformation of PCP by endogenous microbial organisms 

possibly stimulated by its presence, and iv) subsequent production of PCP 

transformation products, very often more toxic than their parent precursor. 

These processes may be strongly influenced by the addition of nutrient 

sources such as compost or by additional organic matter such as DOM. 

Overall the results reported herein seem to indicate that all the cited 

processes very likely occurred in the investigated systems, thus 

determining their response to PCP contamination. PCP concentration 

actually decreased significantly in the investigated samples (Fig. 5.1). In 

particular, its residence for 500 d in the various systems led to a significant 

reduction in its extractable amount, mainly from the samples amended with 

the lowest compost dose C1 and with the two DOM amounts (Fig. 5.1). 

The fractionation of samples in the humic fractions indicated that PCP was 

in practice recovered only from the organic soil fractions (Fig. 5.2).  

Adsorption of PCP on soil is a combination of hydrophobic and 

electrostatic interactions, and their relative importance is dependent on the 

environmental conditions, particularly on pH and soil organic matter. At 

the soil pH values (7-8) in this case-study PCP, a weak acid with a pKa of 

4.75, is present as a phenolate ion (Tam et al., 1999; Park and Bielefeldt, 

2003) and as such it is to a lesser extent adsorbed to soil, or not at all. PCP 

can, however, form irreversible bonds with soil (Chen et al., 2004) even at 

high pH values (Abramovitch and Capracotta, 2003). Indeed, it forms a 
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non-extractable complex with soil, probably because it may be trapped in 

the clay lamella, and becomes impossible to extract even with exhaustive 

extraction methods. Moreover, PCP is a hydrophobic molecule with low 

solubility in water at neutral pH even when it exists as a phenolate ion 

(Tam et al., 1999). The presence of organic matter may enhance the 

sorption of PCP to soil (Park and Bielefeldt, 2003), and the extent of 

enhancement appears to increase with the amount of organic matter 

(Banerji et al., 1993). By increasing the organic matter of the soil (higher 

TOC values in the compost- and DOM-amended soils) compost or DOM 

addition evidently favoured the sorption of the compound to the soil 

matrix. Additionally, the presence of fungi detected in the PCP-

contaminated systems could also have favoured the entrapment of PCP in 

the humic material, thus rendering PCP hard to extract (Rüttimann-Johnson 

and Lamar, 1997).  

The higher amounts of PCP extracted from the humin fraction (HU), with 

respect to the FA and HA fractions, as well as its lower amounts measured 

in DOM-amended soil samples (Fig. 5.2), seem to support the previous 

hypotheses.  

The investigated agricultural soil showed an intrinsic microbial activity as 

indicated by the increase and/or the constant values of most biochemical 

properties, observed as the incubation time increased. Live microbial cells 

very likely existed in it and their activity was expressed after a first 

acclimation period to the new environmental (laboratory) conditions.  

The lower values of DH activity (Fig. 5.4) and microbial biomass, both 

indicative of microbial growth and activity, and of ARYL activity (Fig. 

5.5) indicate that PCP actually exerted a depressing effect on soil microbial 

activity. Moreover, the absence of significant increases in biomass-C and 

the previously cited enzymatic activities measured in the presence of 
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compost or DOM (Fig. 5.8) clearly indicates that the PCP effect was so 

toxic as to annul any stimulating effect on soil microbial activity by both 

amendments acting as additional carbon sources.  

Pentachlorophenol as a biocide may impact negatively on microflora 

diversity and soil activity. Chaudri et al. (2000) showed that 50 mg kg-1 of 

PCP, the same amount utilized in this study, was deleterious to the soil 

microbial biomass and lower biomass-C values were measured with respect 

to soil not spiked with PCP. Also, smaller concentrations of PCP applied to 

soil significantly decreased the soil microbial biomass (Schönborn and 

Dumpert, 1990). McGrath and Singleton (2000) found that soil DH activity 

dramatically decreased in the presence of 250 mg kg-1 of PCP and did not 

recover throughout the experiment (6 weeks) although soil PCP levels 

dropped to 2 mg kg-1.  

In PCP-contaminated soils the higher respiratory activity (Fig. 5.7), the 

relatively similar, constant activity values of both PHO and GLU, an 

enzyme mainly produced by fungi (Perucci, 1992), the increase in TOC and 

TN during incubation, the constant values of the microbial C/N ratios, 

indicative of high proportions of fungi over bacteria,, and especially the 

detectable growth of fungi, displaying PCP degradative capability, suggest 

that soil microbial activity possibly revived and degradation/transformation 

of PCP occurred with the resulting formation of its metabolites.  

Although no attempts were made to ascertain the presence of PCP 

degradation products in the investigated systems, the presence of its 

metabolites may be hypothesized. Several authors (Sato, 1983; Augustin-

Beckers et al., 1994) have demonstrated that PCP is moderately persistent 

in the soil environment, with a reported half-life of 50 d, and then after this 

period PCP metabolites are formed. These metabolites may be more toxic 

than the parent compound to the indigenous soil microflora (McGrath and 
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Singleton, 2000). The lower biomass-C and DH activity, often used as an 

index of PCP metabolite toxicity (McGrath and Singleton, 2000), as well as 

the reduced ARYL and UR activities, measured at 65 and 150 d of 

incubation, even though PCP concentrations were apparently very low, 

seem to suggest that toxic PCP transformation products were formed.  

 

5.8. Conclusions 
In conclusion, our results appear to confirm that PCP has contrasting 

effects on the properties of a fresh, agricultural soil, caused by several 

complex processes occurring simultaneously in the systems concerned. In 

our experiment, PCP considerably reduced the levels of some biochemical 

properties that diminished with time, thus suggesting a depressing effect on 

the soil microflora which failed to recover from its initial toxic response to 

PCP. Conversely, the presence of the contaminant promoted the 

development of fungal colonies, possibly contributing to its degradation 

and consequent production of PCP metabolites, considered more toxic than 

the parent compound. Indeed, PCP disappeared from the systems and the 

presence of dissolved organic matter improved its depletion. However, an 

ageing phenomenon, partly resulting from the presence of the dissolved 

organic matter and leading to a decrease in extractable PCP, cannot be 

ruled out.  

Although the experiments presented herein are limited by the controlled 

laboratory conditions adopted (i.e., absence of soil fauna and leaching), 

they may be suitable for providing information on the intensity and nature 

of the response of soil to an applied disturbance. Furthermore, such 

investigations may be helpful for further studies aimed at validating and 

extrapolating the data to natural situations. 
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Chapter 6 
 

General conclusions 
The purpose of the present research was to study the response of an 

agricultural soil to the presence of two persistent organic contaminants, 

phenanthrene and pentachlorophenol, belonging to the group of polycyclic 

aromatic hydrocarbons and chlorinated compounds, respectively. 

The efficiency of two strategies, biostimulation and bioaugmentation,  was 

also evaluated for the bioremediation of the contaminated soils. 

In particular, biostimulation was explored by using  a matured compost 

from solid urban wastes. A Phe-degrading culture was used in 

bioaugmentation experiments. It was proven to be competent in degrading 

phenanthrene under different environmental conditions.  

The efficiency of the two bioremediating approaches was also evaluated 

against a Phe-aged (2 years) contaminated soil.  

The obtained results demonstrated that two complex processes occurred 

simultaneously in the contaminated soil: natural attenuation and ageing. 

The soil showed an intrinsic capability in degrading both the added 

contaminants, thus confirming that natural attenuation processes actually 

occurred. On the other hand, an ageing phenomenon, favoured by the 

presence of the high soil organic carbon content or enhanced by the supply 

of  additional organic matter also occurred.  Experiments performed on the 

soil contaminated with phenanthrene and incubated for 2 years supported 

the occurrence of the ageing process.  

The addition of compost as well as the inoculation with the Phe-degrading 

bacterial culture strongly stimulated and enhanced the attenuation process 

toward phenanthrene detoxification in the fresh contaminated soil. 

Furthermore, several of the soil properties showed differentiated responses 
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to the presence of the Phe, the compost, and/or the exogenous culture. As 

respect to fresh contamination, the aged Phe-contaminated soil behaved 

differently because high amounts of Phe were sequestered into the humic 

fractions. For instance, a detectable acclimatization period was needed to 

the Phe-degrading culture to be able to transform the aged phenanthrene. 

When PCP was the contaminant, the levels of some biochemical properties 

diminished with time, thus suggesting a depressing effect on the soil 

microflora which failed to recover from its initial toxic response to PCP. 

Conversely, fungal colonies, possibly contributing to PCP degradation and 

consequent production of its metabolites, considered more toxic than the 

parent compound, developed in the PCP-contaminated soils.  

The temporary and permanent changes observed in several of the tested 

biochemical properties, in response to the presence of the two 

contaminants, strengthen the concept that soil biological investigations 

(such as soil respiration, biomass, and enzyme activities) can give useful 

information on the status of soil quality, and on soil resilience to 

anthropogenic  influences.  

Although the experiments presented herein are limited by the controlled 

laboratory conditions adopted (i.e., absence of soil fauna and leaching), 

they can well act as a monitoring tool for the decontamination process of a 

polluted soil. Furthermore, such investigations may be helpful for further 

studies aimed at validating and extrapolating the data to natural situations.
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Appendix 
 

Proteomics as tool to monitor soil contamination 
Environmental proteomics concerns the study of proteins and peptides 

found in water, sediments, soils, etc.  

In the soil environment, in particular, proteins are released after the death 

and disruption of the cells of organisms, or as extracellular enzymes, which 

are excreted by a number of microorganisms (Skujinš, 1976). Proteins are 

also secreted from plant roots (Brenner et al., 1998).  

Although the extracellular proteins present in soil are quickly decomposed 

into small polypeptide fragments by indigenous soil microbes, a small 

portion is considered to be resistant to microbial decomposition by binding 

with clay minerals and humic substances (Boyd and Mortland, 1990).  

Nowadays, proteomics is rapidly becoming an essential component of 

biological research such as health, environmental and agricultural sciences. 

Analysis of proteins extracted from environmental samples may help to 

characterise the response of microbial communities to stressful conditions 

such as contamination with toxic chemicals (Blom et al., 1992), starvation 

(Matin, 1990), heat (Neidhardt et al., 1984), or oxygen levels (Morgan et  

al., 1986; Spector et al., 1986). Study of proteins can be utilized as a 

'fingerprint' to type the diversity in the sample (Wright, 1992) and as an 

index for monitoring the progress of a biocatalytic reaction in situ 

(Ogunseitan, 1993). 

Proteomics can be used as tool to monitor biological effects of potentially 

toxic contaminants on soil ecosystems as alternative to the traditional study 

of soil enzyme activities and other soil quality indicators. These 

measurements often bear no relation between total levels of pollutants and 

their actual toxicity due to decreased pollutant bioavailability in the 
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complex soil ecosystem and it is extremely important to determine if 

pollutants are affecting soil functions or microbial populations (Singleton et 

al., 2003).  

Soil is a very complex system and because of its high humic matter 

contents it is very difficult to obtain clear protein extracts. Although several 

protein extraction methods are improving (Singleton et al., 2003; 

Ogunseitan, 2006; Benndorf et al., 2007; Solaiman et al., 2007; 

Masciandaro et al., 2008), there is not a standardization of these methods. 

We are now interested in developing a reproducible protein extraction 

method from soil, thus identifying biomarkers of environmental stress, in 

particular the aim of this part of the research is addressed to identify 

proteins as indicators of organic contamination by phenanthrene and 

pentachlorophenol in soil.  

The preliminary study here reported was performed at The University of 

Warwick, Coventry (UK) under the supervision of Prof. Elizabeth M.H. 

Wellington. 

 

Materials and Methods 
Three different methods were selected to extract proteins from Phe- and 

PCP-contaminated soils. A non-contaminated soil was used as control.  

The first method, described in detail by Masciandaro et al. (2008), was 

used to extract extracellular proteins from soil with some modifications. 

Potassium sulphate 0.5 M pH 6.6. was added to soil (1:3, w:v) and the 

extraction was carried out at room temperature for 1 h in an orbital shaker 

at 200 rpm. Soil extracts were centrifuged at 10000 rpm for 15 min at 4 °C 

and filtered through a 0.22 μm millipore membrane to remove bacterial 

cells. Filtrated samples were dialysed against distilled water until reaching 

electrical conductivity values of less than 0.5 dS m-1, as salts could interfere 
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with further assays, such as SDS-PAGE. Then the dialysed extracts were 

concentrated with an Amicon PM-10 diaflomembrane (molecular cut-off 

10.000) under a nitrogen atmosphere.  

All the extractions were done in duplicate using different amounts of soil, 

in particular 30, 60 and 100 g. 

The protein extract was precipitated by the TCA-DOC (Na-deoxycholate 

detergent) method. To one volume of protein extracts 1/100 volume of 2% 

DOC were added and allowed to stand for 30 min at 4 °C. Then 1/10 (v/v) 

of trichloroacetic acid (TCA) 100% (454 ml H2O kg-1 TCA) was added and 

protein samples were precipitated overnight at -20 °C. 

The samples were centrifuged at 14600 g for 15 min at 4 °C and after the 

supernatant was carefully removed, the TCA insoluble fraction was washed 

twice with one volume of cold acetone. After centrifugation, the 

supernatant was removed and discarded and the pellet was air-dried.  

The second method was described by Benndorf et al. (2007). 5 g of soil 

were treated with 10 ml 0.1 M NaOH for 30 min at room temperature. The 

suspension was centrifuged 10 min at 16000 g at 20 °C. About 6 ml of 

supernatant were mixed with 16 ml phenol solution and 10 ml water and 

shaken for 1 h at 20 °C. Afterwards, the phases were separated by 

centrifugation (10 min at 14000 g). About 15 ml of the lower phenol phase 

were collected and washed by mixing with 15 ml water, followed by 5 min 

shaking and subsequent centrifugation (10 min at 14000 g). The proteins in 

the phenol phase (15 ml) were precipitated with the 5-fold volume of 0.1 M 

ammonium acetate in methanol at -20 °C overnight. Then, the sample was 

centrifuged (10 min at 16000 g at 0 °C), the pellet was suspended by 

sonication in 10 ml 0.1 M ammonium acetate in methanol, incubated 15 

min at -20 °C and centrifuged again (10 min at 16000 g at 0 °C). The pellet 

was successively washed in 2 ml 0.1 M ammonium acetate in methanol, 
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2ml 80% acetone, 2 ml 70% ethanol, each washing step including 15 min 

incubation at -20 °C and subsequent centrifugation for 10 min at 16000 g at 

0 °C. 

The third method (not published) was performed for the first time at 

University of Milan, Department of Plant Productions under the 

supervision of Prof. Luca Espen.  

Soil was treated with Tris-HCl buffer (1:5, w:v), 100 mM, pH 7.8 for 2 h at 

room temperature in an side-arm shaker. 

The suspension was centrifuged 30 min at 13000 g at room temperature. 

Supernatant was removed and stored at 4 °C. The pellet was washed with 

further 15 ml of Tris buffer and shaked until resuspended. After 

centrifugation for 30 min at 13000 g (4 °C), supernatant was removed and 

combined with the first one. Phenol solution was added to the combined 

supernatants (1:1, v:v) and shaked for 30 min at 4 °C. After centrifugation 

for 30 min at 4000 g (4 °C), supernatant was discarded and ammonium 

acetate 0.1 M was added to the pellet (1:5, v:w) and incubated overnight at 

-20 °C. The pellet was successively washed four time in 2 ml 0.1 M 

ammonium acetate in methanol, three times in 0.5 ml 80% acetone, each 

washing step including 15 min incubation at -20 °C and subsequent 

centrifugation for 30 min at 13000 g at 0 °C. 

Proteins concentrations was determined by Lowry colorimetric method. 

All the dried pellets were resuspended in 25 μl of sample buffer for SDS-

PAGE (Laemmli, 1970) and heated at 100 °C for 3 min. After a fast 

centrifugation, proteins were loaded on a sodiumdodecylsulphate-

polyacrylamide electrophoresis gel (4% stacking/10% resolving) at 200 V, 

until the tracking dye was near the bottom of the gel. After electrophoresis, 

gels were fixed using the Silver Stain procedure. The relative molecular 
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masses of proteins in the gels were estimated by co-electrophoresis with 

standard protein markers (Sigma-Aldrich, Italy). 

 

Results 
Detectable results were obtained neither with Benndorf et al. (2007) 

method nor with the method performed in Milan. 

By contrast, Masciandaro et al. (2008) method gave positive results but 

only using 100 g of soil. Fig. 1 shows the SDS-PAGE of proteins extracted 

from soil control (S1 and S2), soil+lysozyme (0.1%) (S3 and S4) and 

soil+biochitin (5%) (S5 and S6).  

 
Fig. 1. SDS-PAGE of proteins.  

 

Although visible protein bands were obtained, extracted samples were not 

clear probably because of the presence of humic substances. A calibration 

curve of BSA in the presence of different concentrations of humic acids 

was carried out (Fig. 2). 50 mg ml-1, 100 mg ml-1 and 200 mg ml-1 of humic 

acids were added to BSA solution (1 mg ml-1) to perform the calibration 

curve.  
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50 μg ml-1 humic acids 

100 μg ml-1 humic acids 

200 μg ml-1 humic acids 

BSA (1 mg ml-1) without humic acids 

 

Fig. 2. BSA calibration curves with or without humic acids 
 

The presence of humic acid evidently results in an overestimation of the 

proteins quantification. 

These preliminary results seem optimistic and future studies will be 

devoted to optimizing the protein extraction by using purification steps to 

decrease the presence of interfering compounds that affect protein bands 

and to identify proteins by using innovative techniques such as 2-DE and 

LC-MS analysis. 
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