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ABSTRACT 

 

1.Synopsis of Background 

Ras gene family includes three closely related genes (K-ras, N-ras e H-ras).  These genes 

encode a monomeric GTPase localized at the inner surface of the plasmatic membrane whose activity 

is strictly controlled by the cell (1). Ras isoforms, H-, N- e K-ras, share most of the known functions 

and represent an important convergence point in the transduction of extracellular signals regulating 

proliferation and differentiation. In more than 30% of all human tumours ras genes are interested by 

mutation and encode a constitutively active protein, contributing to several aspects of malignancy (2).  

Today an increasing number of data suggest that tumorigenesis could arise through the 

generation of the so-called “Cancer Stem Cells” (CSC). The cellular origin of CSC, if they arise from 

tissue stem cells or from restricted progenitor/differentiated cells, has not been definitively determined. 

Independently from their cellular origin, CSC are staminal-like cells which give raise to tumours 

instead of normal tissues because of defects in the differentiation pathway (3). So far it has been 

demonstrated that ras oncogenes mediated transformation of differentiated epithelial thyroid cell lines, 

such as FRTL5, is coupled to suppression of the differentiated thyroid phenotype (4, 5). This cellular 

system represents a model in which neoplastic transformation is associated to deregulation of 

differentiation. 

A similar deregulation of thyroid differentiation is observed, in vivo, in anaplastic thyroid 

carcinomas which are characterized by cancerous cells that lack the differentiated phenotype peculiar 

to the follicular thyroid cell from which they have originated. Ras oncogenic mutations occur in about 

50% of these carcinomas, suggesting that they could have a role in the genesis of the anaplastic 

phenotype. The lack of thyroid differentiation is of particular relevance in these tumours, because is the 

reason why the ordinary therapeutic protocols, based on radioactive iodide, do not work. Radioactive 
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iodide accumulation in cancerous thyroid cells is indeed mediated by the NIS gene product whose 

expression is characteristic of terminally differentiated follicular thyroid cells (6). 

2.Aim of research 

Aim of this research was the characterization of the molecular mechanisms through which ras 

oncogene induces dedifferentiation using as a model the epithelial thyroid cell line FRTL5.  

3.Results 

These studies were done by using a chimeric Ras oncoprotein whose activity is Tamoxifen-

dependent (4). This chimeric Ras oncoprotein (ER-HRasV12) was already demonstrated capable of 

reproducing ras oncogene functions in FRTL5 cells in a Tamoxifen-dependent way (4). This inducible 

system allowed the analysis of the kinetic of ras oncogene induced transformation and the isolation of 

primary events, induced by the oncogene, responsible for the loss of differentiation.  

Through the use of such conditional model system, I found that immediately after ER-RasV12  

activation Thyroid specific gene expression is downregulated and in particular NIS transcrption is 

turned off.  I demonstrate that Ras oncoprotein inactivates Pax8 transcriptional activity early on in the 

transformation process and induces inhibition of the TSHr pathway through a double mechanism 

which involves both downregulation of TSHr expression itself plus an additional interference with the 

TSHr signalling, the latter located downstream of cAMP production.  

Such effects were reversible and induced by Ras through the MAPK pathway. I demonstrate  that 

cAMP pathway inhibition is the cause of Pax8 inactivation and that by restoring a functional cAMP 

pathway I can restore both Pax8 activity and thyroid-specific gene expression 

I also engineered a HTS (High-Throughput Screening) assay in order to test the re-differentiating 

action of 50000 compounds.  I found some new structures which could be optimized in order to be 

used as re-differentiating agents in thyroid  cancer therapy or which could be tested as general 

inhibitors of Ras oncogenes activity even in other kind of cancers. 
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INTRODUCTION 

 

1.Ras oncogenes 

Ras gene family in mammals includes three closely related genes (K-ras, N-ras e H-ras).  These 

genes encode a monomeric GTPase localized at the inner surface of the plasmatic membrane whose 

activity is strictly controlled by the cell (1). Ras isoforms, H-, N- and K-Ras, share most of the known 

functions and represent an important convergence point in the transduction of extracellular signals 

regulating proliferation and differentiation. In more than 30% of all human tumours ras genes are 

interested by mutation and encode a constitutively active protein, which contributes to several aspects 

of malignancy(2).  

1.1.Ras proteins  

Ras proteins are extrinsic membrane-bound guanine nucleotide binding proteins which possess 

an intrinsic GTP hydrolysis activity that shuttles them from an active (GTP-bound) to an inactive 

(GDP-bound) signalling state. Reactivation of these proteins occours when their bound GDP 

nucleotide is ejected making place for the binding of the more abundant cellular GTP (7).  

The four mammalian Ras isoforms (H-,N- and the two alternative splicing poduct of the K-Ras 

locus K-Ras4A and KRas4B)  are identical in their first 85 aminoacid and have >90% identity in the 

following 80 aminoacid. The principal divergence is restricted to the last 24 amino acids which 

contains signal sequences for post-translational modifications (8). 

 A key determinant of Ras functioning is indeed post-translational lipid processing of its C-

terminal that is a prerequisite for membrane recruitment and its consequent biochemical activation (see 

paragraph 1.2). The C-terminal CAAX motif is the target of the farnesyl transferase enzyme that 

catalyze the addition of a farnesil isoprenoid lipid followed by proteolitic cleavage of AAX sequence 
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(Ras converting enzyme I) and carboxymethylation of the now terminal Cys residue by the 

isoprenylcysteine carboxymethyltransferase. An additional signal in the C-terminal is required for full 

membrane recruitment. Prenylated K-Ras-4A and H-ras require a further palmitoylation step in which 

a palmitol moiety is attached to upstream C-terminal Cys residues while for prenylated K-Ras-4B a 

string of positively charged Lys residue upstream of the C-terminus is sufficient to mediate its 

anchoring to the membrane(9). 

The overall Ras structure consist of a hydrophobic core of six stranded β-sheets and  5 α-helices 

that are interconnected by a series of 10 loops. Among these loops there are three of them (L1/P-loop( 

aa10-15), L2/switchI( aa26-36) , and L4/switchII( aa59-64)) situated on one facet of the protein that 

have crucial roles in Ras function. All three loops contact infact the γ-phophate of GTP and are 

involved in determining the proper conformation of the GTP-Mg2+ complex in the Ras protein active 

center thus allowing the hydrolysis reaction. In particular the switchII loop (L4) also contains the 

catalitically essential Gln61 residue. The structural difference between the active GTP form and the 

inactive GDP form can be described by position changes in SwitchI(L2) and switchII(L4)  loops. These 

loops are indeed the ones involved in the interactions with upstream Ras regulators and downstreams 

Ras effectors(7). 

 

1.2.Ras proteins activity regulation and Ras oncoproteins 

The lifetime of the active, GTP-bound state of Ras proteins is of great importance since it is only 

in this state that the signal can be transmitted to the effector molecule next in sequence. This time 

window is determined by the rate of GTP hydrolysis. Considered in isolation, The Ras protein is a very 

inefficient enzyme since not only the rate of GDP hydrolysis is very low but also the Ras-GDP 

complex is very stable. The rate of both reactions however can be accelerated  in the process of signal 

transduction through intervention of appropriate partner proteins (7). 

There are two classes of proteins that accelerate such processes: the G-nucleotide exchange 

proteins (GEFs) and  the GTPase activating proteins (GAPs). The function of GEFs is to promote 

dissociation of bound GDP and thus functioning as a positive regulator of Ras protein. The function of 
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GAPs is on the contrary to increase the rate of GTP hydrolysis thus working as a negative regulator of 

Ras protein activity. The coupled activity of both class of proteins, tightly controlled within the cells, 

determines the time window of Ras activation (7, 10). 

Regulation of GEFs and GAPs activity in the cell can be achieved with very different 

mechanisms. Their activity can be regulated through coupling to membrane receptors or through 

second messangers such as DAG and Ca2+ (1, 9, 11). The best characterized example of such 

regulation is the recruitment of the GEF protein Sos by Tyrosine Kinase membrane receptors (RTK). 

RTKs activated by extracellular signals recruit Sos to the plasma membrane through the adaptor 

protein Grb2. Once recruited to the membrane, where Ras is localized, Sos  protein determines Ras 

activation by  promoting dissociation of GDP(11). 

Mutated Ras proteins have been described in a variety of cancer types (see paragraph 1.4). It has 

been shown that oncogenic activity correlates with an increased lifetime of the GTP-bound Ras form. 

Oncogenic mutations of Ras proteins are found in particular at position 12, 13 and 61 (10). When 

Gly12, located in the P-loop as described in the previous paragraph, is replaced by other amino acids 

the conformation of the active site does not allow anymore the intearaction with upstream positive 

regulators (GAP) necessary to stimulate Ras GTP-ase activity thus fixing Ras in the active GTP-bound 

form. The Gln at position 61, in the L4 loop,  is necessary to stabilize the transition state of the GTP 

hydrolytic reaction. When this aminoacid is substituted the intrinsic GTP-hydrolysis  activity of Ras is 

basically abolished and cannot be stimulated further neither by GAPs proteins(7). 

 

1.3.Ras proteins signal transduction pathways 

Once activated by appropriate signals, the conformational changes induced by GTP binding (in 

particular a reorientation of switchI and switchII loops) allow the intearaction of Ras protein with its 

effectors and the thus the activation of signal cascades. An overall view of Ras effectors is shown in 

Figure 1. 
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The Raf-MEK-ERK  MAPK cascade  

The first Ras effector characterized in mammals was the Ser/Thr kinase Raf. In mammals there 

are three Raf isoforms cRaf-1, B-Raf and A-Raf (12, 13). Activated Ras interacts with Raf kinases thus 

facilitating plasma membrane association of normally citosolic Raf. Full activation of c-Raf-1 and A-

Raf is a very complex phenomena that requires multiple signals involving both phosphorylation and 

dephosphorylation events, however Ras recruitment to the plasma membrane is a necessary pre-

requisite for their activation and a sufficient event for B-Raf activation (13, 14).  
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Activated Raf kinase phosphorylate and activate the MEK1 and MEK2 dual-specificity protein 

kinases. MEK1/2 then phosphorylate and activate ERK1 and ER2 MAPKs. Activated ERKs can 

translocate to the nucleus where they phosphorylate and regulate various transcription factors such as 

Ets family transcription factors, ultimately leading to change in gene expression (15, 16). The majority 

of ERK substrates are nuclear proteins and are estimated to comprise over 160 proteins (17).  

The Raf-MEK-ERK cascade has a key role in Ras normal and neoplastic function. It has infact 

been shown that constututely activated Raf and MEK can transform rodent fibroblast and that MEK 

and ERK are necessary for Ras-mediated transformation. Further evidences suggesting that 

mutationally activated Ras and Raf are fucnctionally equivalent come from their incidence in the same 

types of human cancers in which mutations of the two genes are never overlapping (18). 

Although all three Raf isoforms (cRaf-1, B-Raf and A-Raf ) can activate both MEK1 and MEK2 

in vitro they differs in their ability to do so  and it appears that the main cellular activator of MEK 

kinases is B-Raf rather than the other isoforms (19, 20). Indeed B-Raf binds and phosphorylate 

MEK1/2 more efficiently than c-Raf1 and A-raf (20, 21) and only Mouse embryionic fibroblasts 

(MEFs) from B-Raf knock out mice have severely compromised ERK activity while MEFs from c-Raf 

and A-Raf knock out mice shows a relatively normal ERK activation (22-25). As a further 

confirmation of the non-equivalence of the three isoforms, only B-Raf isoform is a human oncogene up 

to present knowledge (26). 

The PI3K pathway 

A second class of Ras effectors is represented by the Phosphatidylinositol-3-kinases (PI3K) 

made up of a regulatory (p85) and a catalytic (p110) subunit. Ras mediated PI3K activation is obtained 

through recruitment of PI3K at the plasma membrane through interaction with the p110 catalytic 

subunit (7). Once activated PI3K converts the second messenger phosphatidylinositol (4,5)biphosphate 

(PIP2) into phosphatidylinositol (3,4,5) triphosphate (PIP3) which recruits and activates the PDK1 

kinase which in turns activatre AKT kinase whose activity promotes cell proliferation and survival 

through activation of the mTOR kinase and  inhibition of FoxO transcription factors(27).  
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The PI3K  pathway is an important driver of cell proliferation and survival. Numerous types of 

human tumors, both sporadic or arising as a component of a cancer  predisposition syndrome, shows 

upregulation of the PI3K pathway. In most cases upregulation of the PI3K pathway is the consequence 

of PTEN deletion or mutation. PTEN is infact a lipid phosphatase that negatively regulate the PI3K 

pathway converting PIP3 back to PIP2(28).  

In vivo data support a functional link between the ras and PI3K pathway indicating that Ras 

activation and PTEN loss can serve the same function during  tumorigenesis(29). 

The Ral pathway and other effectors 

The Ras-like (Ral) guanyl nucleotide-binding proteins RALA and RALB are activated by Ras 

through its direct interaction with a class of GEFs (for example RalGDS) that have biochemical 

specificity for Ral proteins. Thus Ras activation promotes accumulation of Ral proteins in their active 

GTP-bound form. Ral proteins engage multiple effectors and their suggested role is to deflect induction 

of programmed cell death that occour in response to aberrant mitogenic signal (bodemann 2008).  

The number of Ras effectors have been increasing during the years (1, 9). Some of the best 

characterized additional effectors  are PLCε and  TIAM1. The phospholipase PLCε once activated by 

Ras cleave PtdIns(4,5)P2 into inositol-1,4,5-triphosphate (Ins (1,4,5)P3 and diacylglicerol (DAG) 

promoting releasing of Ca2+ and and activation of PKC respecrively. TIAM1 is a Rho GTPase family 

GEF and serves as one rout to activate the Rac and Rho GTPase downstream of Ras. Some of the less 

characterized Ras effectors are AF-6, RIN1 and the RASSF proteins (9, 18). 

Although it is largely unknown whether effectors other than Raf or PI3K have a critical role in 

human cancer , mice models of Ras dependent tumorigenesis showed a reduced tumor incidence when 

PLCε, TIAM1 or RalGDS are lacking (30-32). 

1.4.Ras oncogenes and human cancers 

Aberrant signalling through the Ras pathway occurs as the result of several different classes of 

mutational damage in tumor cells. The most obvious of these is the mutation of Ras genes themselves. 

These mutations, as described in pareagraph 1.2, all compromise the GTPase activity of Ras preventing 

GAPs from promoting hydrolysis of GTP and therefore causing accumulation of Ras in the GTP-
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bound, active form. About 30% of human tumors have activating point mutation in Ras, most 

frequently in K-Ras (85%of total ), then N-Ras (15%) then H-Ras (1%) (Fig. 2) (11) .  

 

 

 

Mutation of Ras genes themselves is not the only way through which Ras signalling pathway can 

be aberrantly activated in human cancers (Fig. 3). Examples of such indirect activation are 1) deletion 

of GAPs protein as the NF1 gene in neurofibromatosis type 1 (33) 2) Upstream growth factor receptor 

activation such as EGFR and HER2 which are frequently activated by overexpression in many types of 

cancer including breast, ovarian and stomach carcinoma (34, 35) 3) Mutation or amplification of Ras 

effectors such as mutations in B-Raf gene or deletion of pTEN (26, 28). 

As a consequence, the /Raf/MEK/ERK pathway is often up-regulated in many human tumors and 

it is emerging that the inhibition of Ras/Raf/MAPK pathway is relevant for many cancer types 

therapies(36-38), especially when used in combination with conventional cytotoxic agents (39). 

Currently inhibitors of the kinase function of Raf and MEK represent the most studied and advanced 

approaches for blocking ERK signalling, with several inhibitors under evaluation in clinical trials and 

additional ones in pre-clinical analysis(36).  
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There is substantial evidence validating the importance of Raf and MEK in Ras promoted cancer 

progression and cancer growth. In particular the finding that mutationally activated Ras and B-Raf 

occur in a non-overlapping occurrence in melanomas, colon carcinomas, papillary thyroid carcinoma 

serous ovarian carcinomas and lung cancers suggests that ras function, in all these type of cancers, is 

facilitated primarily by activation of Raf (14, 40-43). 

Recently, germline de novo mutational activation of H-Ras and K-Ras, B-Raf as well as MEK1 

and MEK2 has been found in patient that comprise a group of related developmental disorders 

(Costello, Cardio-facio-cutaneous (CFC), Leopard’s and Noonan’s syndromes) (36), and suggest that 

aberrant ERK activation will contribute to other human disorders as well as cancer . The non-cancerous 

syndromes showed a weak activation of the MAPk pathway when compared to those seen in cancer 

probably because stronger activity can’t be tolerated during development (10). 
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1.5.Ras oncogenes in experimental  models  

Most of the studies relative to the biological and biochemical properties of Ras oncoproteins 

have been typically done in rodents fibroblast. Nevertheless ras oncogenic mutations are found with 

higher frequency in tumours of haematopoietic and epithelial origin (44). It is indeed demonstrated that 

the cellular context and the developmental stage in which ras oncogenes act plays a fundamental role 

both when considering its ability to promote cancerogenesis or when considering the downstream 

pathways required to do so.  

It has been observed infact that activation of a latent K-ras oncogenic allele in mouse models 

induces exclusively lung tumours, with a complete penetrance, and thymic lymphoma and skin 

papillomas in the 30% of the animals, highlighting the cell-type specific tumorigenic effects of Ras 

oncogene activation ((45-48). Furthermore when the K-Ras oncogenic allele is activated post-natally, 

and not during development,, only lung tumors are observed suggesting that not only the effect or Ras 

oncogene are cell-type specific but are also dependent upon the developmental stage and differentiation 

status of the cell in which these mutations occur (46)   Interestingly, despite the high frequency of K-

Ras mutations in human’s carcinomas of the pancreas and colon very few mice models develop 

neoplastic lesions in those tissues. This data suggest that in those tissues  Ras oncogene mutation may 

not be the primary event and additional mutations are required for a full tumor phenotype  (46).  

The same cell-type specificity has been observed in cellular models. It has been reported, 

dissecting the requirements of Ras signalling for transformation, that immortilized human fibroblasts 

require activation of Raf and Ral-GEFs, Human embryonic kidney cells require the activation of PI3K 

and Ral-GEFs and human mammary epithelial cells require the activation of Raf, PI3K and Ral.-GEFs 

(49). It should be considered also that it has been reported that rodents cells cannot be considered 

completely equivalent to human cells when analysing their susceptibility to cancer(50).  For example it 

was shown that mouse and human cells differ in their use of Ras effector pathways for transformation. 

In NIH-3T3 mouse fibroblasts the Raf/MEK/ERK effector pathway was shown be necessary and 

sufficient for their transformation while in human BJ fibroblasts the RAL-GDS but not Raf or PI3K 

effector pathway was shown to be required for anchorage independent-growth (51).  
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These data, taken together, clearly show that fibroblast studies could not be extended completely 

to other cellular systems and that cell type-peculiar activities relevant to tumorigenesis exerted by Ras 

oncoproteins should be highlighted in each cellular context. 

 

 

2.The Thyroid Follicular Cell (TFC) 

 

2.1.The thyroid gland 

The mammalian thyroid gland consists of two lobes, connected by a very thin isthmus, located in 

front of the trachea.. The thyroid parenchyma is composed of various epithelial cells. Thyroid follicular 

cells (TFCs), destined to produce thyroid hormones, are most abundant and are organized in particular 

spheroid structures known as follicles, each composed of a layer surrounding a closed cavity 

containing the colloid. TFCs are highly differentiated and express a number of proteins required for the 

synthesis and the release, in the blood, of thyroid hormones. thyroid gland is able to produce and 

release thyroid hormones and the regulation of its growth and function is exherted by the 

hypothalamic-pituitary axis. 

2.2.TFCs differentiation  

Both the final structure of thyroid and the differentiation of TFCs occur during embryonic life 

through a process, that in mice, starts around embryonic day (E) 8-8.5 and is completed by E16.5-17 

(Fig. 4).  

Thyroid anlage, the presumptive thyroid-forming district, is evident by E 8-8.5, as a midline 

thickening in the floor of the primitive pharynx (52). The thyroid bud evaginates from the floor of the 

pharynx and by E9.5-10 thyroid anlage begins a caudal translocation towards its final position (53)  
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As soon as the thyroid anlage is visible as an endodermal thickening in the floor of the primitive 

pharynx, the precursors of TFCs acquire a specific molecular signature and can be distinguished by the 

co-expression of four transcription factors Hhex (54), Titf1 (55), Pax8 (55) and Foxe1 (56). It is worth 

noting that each of these transcription factors is expressed also in other tissues but such a combination 

is a unique hallmark of both differentiated thyroid follicular cells and their precursors (57) 

On E12-12.5, the thyroid bud proliferates continuing its downward migration. At E13-14, the 

developing thyroid reaches its definitive position and joins with the ultimobranchial bodies that contain 

the precursors of calcitonin-producing cells (C cells) , originated from the neural crest (58, 59). 

When the thyroid primordium reaches the sublaryngeal position, TFC precursors accomplish 

their functional differentiation and by E15-16 the gland acquires its definitive shape, two lobes 

connected by an isthmus. TFCs start organizing into cords of cells forming small rudimentary follicles. 

In the late fetal life, thyroid increases in size and its parenchyma is organized into small follicles, 

surrounded by a capillary network, enclosing thyroglobulin in their lumen (60). 
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The final differentiation program of TFC requires almost three days. The terminally 

differentiated phenotype of TFC is characterized by the expression of a number of proteins that are 

necessary for thyroid hormones biosynthesis, such as thyroglobulin (Tg, a colloidal protein stored in 

the lumen of thyroid follicles and the substrate for synthesis of thyroid hormones by iodination), 

thyroperoxidase (TPO; the enzyme responsible for Tg iodination) and the Sodium/Iodide symporter 

(NIS; which transports iodine into the thyroid cells). Tg appears around E14 (55) while thyroxine (the 

thyroid hormone) is first detected at E16.5 (61).  

2.3.The Sodium/Iodide symporter (NIS) 

The thyroid gland has the ability to uptake and concentrate iodide, which is a fundamental step in 

thyroid hormone biosynthesis that  occur through the Na+/I- symporter (NIS). 

NIS  expression  

NIS is not properly a thyroid-specific protein since its expression has been detected also in 

extrathyroidal tissues, such as lactating mammary gland, gastric mucosa, salivary and lacrimal glands, 

choroid plexus, skin, placenta, and thymus, among other tissues. In these non-thyroidal tissues NIS 

gene expression is under the control of different mechanisms, the majority of which have not been 

identified yet. Factors known to  regulate NIS expression are listed in Figure 5. 

 



 15 
 

In thyroid follicular cells TSH is required for the maintenance of differentiation and for the 

proliferation. Besides the induction of other thyroid specific differentiation markers (see paragraph 

2.5), TSH stimulates NIS gene expression, and increases iodide uptake by thyrocytes (62, 63). The 

majority of TSH actions on the thyrocytes are mediated by the intracellular increase in cyclic adenosine 

3,5-monophosphate (cAMP) levels, which is secondary to adenylate cyclase activation. Both NIS 

expression and targeting to the plasma membrane are stimulated by TSH through the cAMP pathway, 

however the exact mechanism by which NIS gene promoter is regulated by cAMP has not been fully 

understood. Rat NIS promoter has been extensively studied so far and two important proximal regions 

described are a binding site for Titf1 (TTF1) and a TSH responsive element, where a putative 

transcription factor NTF-1 (NIS TSH responsive factor-1) interacts. The NIS upstream promoter 

(NUE) contains two Pax 8 binding sites and a cAMP response element-like sequence binding proteins. 

NUE region is essential for full responsiveness to TSH (64). 

NIS  protein  

The rat and human (h) NIS cDNAs encode proteins composed of 618- and a 643-amino acid, 

respectively (65, 66). hNIS exhibits an 84% amino acid identity and 93% similarity to rat NIS. The 

current NIS secondary structure model depicts NIS as a protein with 13 transmembrane segments 

(TMS) (Fig. 6), the amino terminus facing the extracellular side, and the carboxy terminus facing the 

cytosol (67, 68). 
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The Na+/I- symporter (NIS) is an integral plasma membrane glycoprotein localized in the 

basolateral membrane of thyrocytes. NIS belongs to the solute carrier family 5 (SLC5A, according to 

the Online Mendelian Inheritance in Man classification, OMIM). NIS is synthesized as a precursor of 

approximately 56 kDa and the mature glycolsylated protein has 87 kDa however the lack of N-linked 

glycosylation of the molecule does not impair its function, stability or targeting to the cellular 

membrane (69, 70). 

NIS  function  

The transport of iodide is a fundamental step in thyroid hormone biosynthesis and occurs through 

the Na+/I- symporter (NIS), an integral plasma membrane glycoprotein localized in the basolateral 

membrane of thyrocytes. NIS couples the inward transport of two Na+ ions, which occurs in favor of its 

electrochemical gradient, to the simultaneous inward translocation of one I- ion against its 

electrochemical gradient(71). After influx into thyrocytes, iodide is then translocated from the 

cytoplasm across the apical plasma membrane towards the follicular lumen, in a process called I- efflux 

that is mediated by a protein called pendrin (a Cl-/I- transporter)(72). 

Differently from other tissues that are able to take up iodide from the circulation, the thyroid 

gland accumulates iodine for a prolonged period of time. This is the result of thyroid microscopic 

features and the prompt oxidation and organification of iodine into selected tyrosyl residues of 

thyroglobulin (Tg), a reaction catalyzed by thyroperoxidase (TPO) in the presence of hydrogen 

peroxide generated by thyroid dual oxidase (DuOx). 

Mutations in NIS protein, impairing its function, have been associated with congenital 

hypothyroidism due to a defect in thyroid iodide uptake(73, 74). 

2.4.The TSH receptor (TSHr)  

A well established regulator of adult thyroid function is the glycoprotein hormone TSH that, 

through its receptor (TSHr), conveys inside the thyroid cells an elevation of the second messenger 

cAMP, thus stimulating thyroid growth and function. Gain-of-function  mutations of the TSHr gene are 
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indeed associated with congenital hyperthyroidism while, on the contrary, TSHr loss-of-function 

mutations are associated with congenital  hypothyroidism (75).  

TSHr expression 

Tshr is expressed on the basolateral membrane of TFCs. In mouse embryo, when the 

developing thyroid has reached its final position, Tg is expressed and Tshr is detected in TFC 

precursors by E14-14.5 (55, 76). At later stages of development Tshr expression increases and remains 

expressed in adult life. Tshr has also been detected in other tissues, such as extraocular tissue, 

lymphocytes, adipocytes and bone (77) although physiological relevance of the expression is a topic of 

debate. 

The TSHR promoter contains functional binding sites for several transcription factors including 

GABP(78), TTF1 (79), TR/RXR (80), CREB and ICER (81), nevertheless there is little fluctuation in 

the TSHR mRNA levels and regulation of functional TSHR is mainly exerted at the posttranslational 

level (82). 

TSHr structure  

Tshr is a member of the glycoprotein hormone receptor family (83), a subclass of rhodopsin-

like G protein-coupled receptors (GPCRs). All members of GPCRs have a transmembrane serpentine 

domain composed of seven helices. In addition, members of glycoprotein hormone receptor subfamily, 

that includes TSH, LH/chorionic gonadotropin and FSH receptor, are characterized by a large 

extracellular amino terminal domain, responsible for hormone recognition and binding (84) (Fig. 7).  

The gene, made up of 10 exons, is translated in a protein 765 amino acid long both in humans 

and in mice. The amino terminal of the protein, encoded by nine exons forms the extracellular domain; 

the 10th large exon encodes the C terminal part of the extracellular domain, the transmembrane 

serpentine domain and cytoplasmic tail. The extracellular domain is characterized by two cysteine-rich 

regions flanking nine leucine-repeats (LRRs) each made of 20-24 amino acids that form a beta strand 

followed by an alpha helix. TSH binds to extracellular domain while transmembrane and intracellular 

domains are involved in transducing signal triggered by TSH binding.  
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Tshr is translated as a monomer but undergoes intramolecular cleavage of its extracellular 

domain. After the cleavage, TSHR consists of two portions (the amino terminal portion and the other 

including the serpentine and cytoplamatic tail) held together by disulfide bonds (85). The cleavage 

involves two steps. In the first step a metalloprotease, acting at the cell surface, recognizes a  specific 

sequence around AA 314. In the second step a disulfide isomerase is involved in the reduction of the 

disulfide bonds that hold the cleaved receptor subunits together. 

TSHr signal transduction 

TSHr is a G-protein coupled receptor. G-proteins are made up by three subunits (α, β and γ) among 

which the α-subunit (Gα) has a GTPase activity and needs to be GTP-bound in order to be active while 

the β- and γ- subunit exist as a tightly associated complex (Gβγ) and are active in this form. Upon 

binding of TSH to the extracellular domain of TSHr  the cytoplasmic domain of TSHr undergoes a 
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conformational change that allow activation of the associated Gα subunit and dissociation of the Gβγ 

subunit (7).   

Thyrocyte growth, as well the maintenance of thyrocyte differentiated phenotype, occurs mainly 

through the TSHR mediated increase in cAMP (86-88) (Fig. 8).  

 

After binding of TSH to the receptor cAMP-dependent protein kinase (PKA) activation is obtained in 

the following way :1) TSH stimulated TSHR dissociates the heterotrimeric G protein activating the 

Gαs subunit. 2) Gαs-dependent activation of adenilyl cyclase(AC) follows, increasing cAMP 
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production.3) cAMP-dependent activates PKA by dissociation of its regulatory subunits. 4) Activated 

PKA phosphorylates target proteins including membrane receptors, signalling molecules and 

transcription factors changing their activities to promote growth and differentiation (7). The variety of 

targets will further amplify and diversify the final outcome of this pathway. Perhaps the most classical 

target for PKA after translocation of its catalytic subunit to the nucleus is the transcription factor 

CREB, whose transcriptional activity will be promoted upon phosphorylation by PKA (89).  

On the other side, Gβγ  dissociated dimers  can activate additional pathways. In thyrocytes Gβγ  

activation has been reported to directly activate  PLCβ,  PKC and PI3K pathways (90). However the 

function of TSHr through Gβγ signal transduction is much less characterized. 

Role of TSHr in TFCs differentiation 

Experiments in terminally differentiated thyroid cell lines have shown that TSH can regulate, 

albeit to different extents, the expression of mRNA of several thyroid specific genes such as Tg (86, 

91, 92), TPO (93, 94), NIS (67, 86),  Foxe1/TITF2 (95) and Pax8 (86, 96).  

The role of TSH/Tshr signaling in vivo during embryonic life has been studied in genetically modified 

mice in which Tshr gene has been disrupted by homologous recombination (Tshr-/-) mice (97) or in 

spontaneous mutant mice carrying a loss-of-function mutation in the Tshr gene (Tshr hyt/hyt) (98). Loss 

of function mice models  show that TSH/TSHr function is necessary, but not sufficient, for NIS and 

TPO gene expression (99). Indeed E16 mouse embryos deprived of TSH/Tshr signaling do not show 

defects in morphology of the gland which displays a normal size and follicular structure though both 

TPO and NIS are undetectable in TFCs (99). Thus TSH pathway is absolutely required for the 

differentiation process of the thyroid even though not sufficient since forcing its expression before E14 

do not anticipate expression of NIS and TPO genes(99).  

It is worth noting that nevertheless the Tshr pathway becomes active by E15 when the expansion of the 

lobes also begins, this signaling is not relevant for the growth of the gland. This is in contrast with the 

role that TSH/Tshr signals have in differentiated TFC, where the TSH-induced cAMP pathway is the 

main regulator of thyroid growth. Actually, both Tshr-/- and Tshrhyt/hyt mice display a severe hypoplastic 

adult thyroid (97, 99, 100).  
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2.5.The Paired-Box transcription factor 8 (Pax8) 

In the terminally differentiated TFC transcription of thyroid functional genes relies on the coordinated 

action of the thyroid specific set of transcription factors (Nkx2.1/TITF1, FoxE1/TITF2, Pax8, HHex) 

among which the transcription factor Pax8 appears to play very relevant roles (101, 102). Pax8 belongs 

to a family of genes called paired box (Pax) genes which have been found in many vertebrate species 

such as zebrafish, frog, chick, mouse and human on the basis of sequence homology to  Drosophila 

segmentation genes. Consistently with their fundamental role in development,  mutations in Pax genes 

have been associated with a number of disease phenotypes (Fig.9) (103). 

 

 In humans, loss-of-function mutations of a single Pax8 allele are associated with congenital 

hypothyroidism (103). The same association can be observed also in mice models but only in the 

appropriate genetic background (104). Experiments in terminally differentiated thyroid cell lines have 

shown that PAX8 is involved in the maintenance of thyrocyte cell type and is essential for the 

thyrocyte-specific promoter activation of the FoxE1/TITF2, TPO, TG, and NIS genes (64, 102, 105-

108).   
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Pax8 expression 

The Pax8 gene is expressed during mouse ontogeny in the developing CNS, thyroid gland, kidney and 

placenta (109, 110). Transcripts of this gene give rise to at least six alternative splice product.  The 

longest isoform is 457 and 450 amino acids long in mice (111) and humans (112) respectively. The 

alternative isoforms differ in their C-terminal sequences while sharing common N-terminal regions 

including the paired domain. These Pax8 isoforms consequently bind DNA in an indistinguishable 

manner, but exhibit distinct transactivation properties (110). Interestingly, the alternative splicing of 

the Pax8 mRNA isoforms is spatially and temporally regulated during mouse embryogenesis(110). 

It has been shown that in rat thyroid cell lines (113) as well as in dog thyrocytes in culture (114), Pax8 

synthesis is regulated by TSH by a cAMP-mediated mechanism. DREAM, a transcriptional repressor, 

seems to be a negative regulator of Pax8 gene, binding to two consensus sequences localized in the 5’ 

UTR of Pax8 (115). Calcium binding to DREAM blocks its ability to associate with DNA and later 

also its repressive activity. TSH is known to increase the free cytosolic Ca++ concentration in thyroid 

cells; it is hypothesized that both Ca++ and the cAMP signal transduction pathways could participate in 

the control of Pax8 expression. However it is worth noting that TSH control on Pax8 expression seems 

to be effective only in adult TFCs since the Pax8 expression is not affected in developing thyroid of 

mice harboring severe alterations in TSH/Tshr signalling (100) 

Pax8 protein 

The Pax gene family consists of tissue-specific transcriptional regulators, essential for normal 

embryogenesis, which share a highly conserved 128-aminoacid long unique DNA-binding domain 

called Paired domain.  Pax genes have peculiar and defined expression patterns in mouse 

embryogenesis suggesting they are involved in a variety of different developmental function.  

The mammalian Pax gene family consists of nine member (Pax1 to Pax9) which are not clustered 

together but map on different chromosomal loci (116, 117). Pax proteins, which all share the Paired 

DNA-binding domain, can be arranged into four groups according to the presence or absence of a 

conserved octapeptide motif and the presence absence or truncation of a homeodomain (Fig. 9). Pax8 

belongs to Pax protein subfamily II which also  includes  Pax2 and Pax5 (118). This subgroup is 
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characterized by the presence of the octapeptide motif and a rudimentary homeodomain encoding only 

the first α-helix of the three helixed canonical homeodomain (109, 119).  

The paired domain, localized at the N-terminal of the protein, is a DNA-binding domain which is 

composed of two sub-domains, PAI and RED each composed of a helix–turn–helix (HTH) motif and 

binding to two distinct half-sites in adjacent major grooves of the DNA helix (120-122) (Fig. 10) The 

paired domain of all members of the Pax2/5/8 family depends on both subdomains for DNA sequence 

recognition (123, 124). The transcriptional activity of Pax8 depends on sequences located at the 

carboxy-terminal of the molecule. A serine/threonine/tyrosine-rich sequence, present in both Pax8a and 

Pax8b isoforms seem to be responsible for the strong transactivating properties of these two isoforms 

(125).  

 

Pax8 activity regulation and transcriptional  cofactors 

It has been demonstrated in vitro as well as in cultured cells that oxidation/reduction state of the thiol 

groups of cysteine residues can regulate the DNA binding activity of Pax8 (126). These effects could 

be mediated by the redox effector factor-1 (Ref-1). The synthesis and the translocation of Ref-1 from 

cytoplasm to nucleus, occurs in thyroid cells upon TSH stimulation (127). The oxidation exerts its 
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effects directly on the paired domain and affects its DNA-binding activity.It was demonstrated as well 

that Pax8 activity is dependent upon TSH in immortilized Rat thyrocytes (86).  

To be considered, besides Pax8 protein activity regulation itself, is that differential association with 

cofactors is another way of regulating Pax8 transcriptional activity. In addition to the synergistic 

cooperation between Pax8 and Titf1 (107, 128), Pax8 can interact with other proteins which can be 

responsible for the target preferences in definite cell types or developmental stages or in response to 

specific stimuli. Pax8 was described to interact with p300 (129-131), Rb (132), PARP (133), Taz 

(134),  and WBP-2 (135). 

   The role of Pax8 TFCs dfferentiation 

The study on Pax8 null embryos has offered some insights on the functional role of this factor 

during development. At E9, the thyroid anlage is correctly formed in proper position, begins to migrate 

but at E11 both the morphological and molecular phenotypes of the developing thyroid change. The 

thyroid bud is much smaller, the expression of Foxe1 and Hhex is strongly down-regulated and TFC 

precursors are still not detected by E12.5 (106). These data indicate that in developing thyroid Pax8 is 

involved in the control of survival and/or expansion of TFC precursors though we do not know the 

target genes that execute this program. In addition Pax8 has a specific upper role in the genetic network 

that maintains the expression of other thyroid-enriched transcription factors. In TFC precursors Foxe1 

is tightly regulated by Pax8, which is necessary for the onset of its expression indicating that Foxe1 can 

be a transcriptional target of Pax8 (106). 

In Pax8 null mice mature TFCs are absent making it difficult to reveal the role of this factor in 

the control of adult thyroid function. All the available data on Pax8 functions in differentiated cells, 

come from studies on cell lines in culture. Consensus sequences recognized by Pax8 have been found 

in the proximal promoters of Tg and TPO and in an upstream enhancer of NIS (64). In both Tg and 

TPO proximal promoters, Pax8 binding sites partially overlap Titf1 binding sequences (105); in NIS 

enhancer the two Pax-8 sites flank a cAMP response element and recently it has been shown that Pax8 

is able to bind in vitro to the 5-flanking region of Foxe1 and ThOX2 genes (107).  
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Functional assays carried out in non thyroid cell lines have demonstrated that Pax8 is required to 

activate the TPO promoter and to a less extent the Tg promoter (105) and NIS enhancer (64). In 

addition, it has been demonstrated that in transformed thyroid cells Pax8 is sufficient to activate 

expression of the endogenous genes encoding Tg, TPO and NIS. These data suggest that Pax8 has an 

important role in the maintenance of functional differentiation in thyroid cells (102). 

 In humans, heterozygous mutations in PAX8 have been reported in both sporadic and familial 

cases of  congenital hypothyroidism. Eight different mutations, seven located in the paired domain, 

(136-140) and one in the C domain (141) have been described.Assays in vitro demonstrate that the 

ability of the mutated PAX8 proteins to bind to specific DNA target is either strongly reduced or 

absent; consistently, the transcriptional activity of proteins is lost.  

3.The TFCs derived cancers 

Thyroid cancers constitute the most frequent endocrine neoplasia with an incidence of one to four new 

cases per 100000 persons per year, remarkably with 2 to 3- fold higher prevalence in women. 

Diagnosis and treatment of thyroid cancer have achieved high levels of medical and technical standard. 

Although some forms of thyroid tumors such as papillary carcinomas show quite good prognosis others 

such as anaplastic tumors have a rather poor prognosis. 

3.1.TFCs malignancies  

The thyroid follicular epithelial cells are considered the precursors of four forms of thyroid neoplasia: 

thyroid adenoma, follicular (FTC), papillary (PTC) and anaplastic (ATC) carcinoma as well as some 

variants therefrom such as Hurthle cell carcinoma. Another way of classifying thyroid cancers is on the 

basis of their differentiation grade with respect to the TFCs cell from which they have originated. 

Follicular-cell-derived carcinomas are thus broadly divided into well-differentiated, poorly 

differentiated and undifferentiated types on the basis of histological and clinical parameters. Well-

differentiated thyroid carcinoma includes papillary and follicular types(142).  

The PTC variant is the most frequent type of thyroid malignancy (85–90% of thyroid malignancies). 

The diagnosis of PTC is based on a series of features such as papillary architecture and characteristic 
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nuclear structure that predict the propensity for metastasis to local lymph nodes. FTC is defined as a 

neoplasm, not belonging to papillary thyroid carcinoma, with evidence of capsular and/or vascular 

invasion. ATC is defined as an undifferentiated, highly aggressive neoplasm with evidence of 

epithelial differentiation (142, 143). Diagnosis of the follicular variant of thyroid carcinoma  on the 

basis of morphological and structural features is not always straightforward (144). 

Most well-differentiated thyroid cancers behave in an indolent manner and have an excellent 

prognosis. By contrast, undifferentiated or anaplastic thyroid carcinoma is a highly aggressive and 

lethal tumour.The presentation is dramatic, with a rapidly enlarging neck mass that invades adjacent 

tissues. There is currently no effective treatment and death usually occurs within 1 year of diagnosis. 

Poorly differentiated thyroid carcinomas are morphologically and behaviourally intermediate between 

well-differentiated and undifferentiated thyroid carcinomas (142). 

3.2.Multistep cancerogenesis 

Cancer is a genetic disease arising bcause of somatic mutations in cancer susceptibility genes. Cancer 

development depends not only on one mutation initiating tumorigenesis but also on subsequent 

mutations driving tumor progression toward malignancy and invasion (145).  

Cancer development happens with a process that fomally is analogue to Darwinian evolution and is 

defined “somatic evolution”. The ability of cancer cells to clonally expand, genetic diversification 

within the expanding clone and selective pressure of the surrounding microenvironment are the factors 

that determines cancer  progression(146). 

The different type of thyroid malignancies have been considered different stages of an overall 

cancerogenic process toward full malignancy whose final step is represented by the Anaplastic thyroid 

carcinomas (ATCs) . ATC, which account for less than 5% of all thyroid cancers, is the most malignant 

thyroid neoplasm and is almost invariably fatal (147). A large portion of ATCs are identified in 

patients who have longstanding goiters or incompletely treated papillary or follicular thyroid cancers 

(148, 149). Careful histopathologic examination of ATC reveals that many of them contain a papillary 

structure or follicular components in focal areas. It is believed that ATC is derived from the follicular 
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epithelial cells and represents a terminal dedifferentiation of preexisting differentiated carcinoma 

(147). 

Besides the presence of pre- or co-existing well-differentiated thyroid carcinoma with less 

differentiated types, the  theory of sequential progression of well-differentiated thyroid carcinoma 

through the spectrum of poorly differentiated to undifferentiated thyroid carcinoma (Fig. 11) is 

supported also by the identification of a  the common core of genetic loci with identical allelic 

imbalances in co-existing well differentiated components (150). 

 

The genetic events that have been identified in the different types of thyroid cancers  indicate a pattern 

of cumulative alterations that have a role in initiation, progression and de-differentiation (Fig. 12) 
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(142). From this analysis it appears that while mutations in the RAS/RAF /MAPK pathway are 

associated with well differentiated carcinoma and thus probably represents tumor initiating events, 

additional mutations of oncogenes and tumor suprressor genes, such as TP53, are necessary in order  to 

allow progression to dedifferentiated anaplastic carcinoma. 

 

3.3.Genetic alterations  

The most commonly involved pathway in thyroid tumorigenesis is the RTK/RAS/BRAF/MAP 

kinase pathway, which seems to be required for thyroid transformation in well-differentiated 

carcinoma. Indeed exclusive non-overalapping  activating events that involve the genes RET, NTRK1 

(neurotrophic tyrosine kinase receptor 1), BRAF or Ras are detectable in nearly 70% of all cases (151).  

Mutations in this pathway are believed to be initiating events (152).  Aberrant activation of PI3K/Akt 

pathway has also been found in thyroid cancers but its role in thyroid tumorigenesis, particularly needs 

to be further clarified but presently it is suggested that this pathway could be involved in the initiation 

of FTC and progression to ATC (153). PAX8/PPARγ (Peroxisome prolferator-activator receptor-γ) 

rearrangement has been identified prevalently in FTC (36–45%) and follicular adenoma (4–33%), 

however the mechanism of transformation are still unclear and coul not only be dependent upon 

inactivation of PPARγ function (154). Inactivating point mutations of the p53 tumour suppressor gene 

are highly prevalent in anaplastic and poorly differentiated thyroid tumours, but not in well-
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differentiated papillary or follicular carcinoma (155, 156) implying  p53 inactivation as an important 

step in late stage progression of thyroid cancer.  

Interestingly, despite TSHr stimulation induces thyrocites proliferation, constitutive activating 

mutations of the main G-protein-coupled receptor of the thyroid, the TSHr or its Gsα subunit GNAS1, 

both of which activate cAMP, are very rare in thyroid malignancies and are found only in toxic benign 

nodules (157). It is indeed believed that activation of the TSH pathway may serve as a protective 

mechanism for tumour initiation in the thyroid (158). 

The RTK/RAS/RAF /MAPK pathway 

The RET gene encodes a transmembrane tyrosine kinase (TK) receptor whose expression and 

function is normally restricted to a subset of cells derived from the neural crest. In thyroid follicular 

cells, RET activation occurs through chromosomal recombination resulting in expression of a fusion 

protein consisting of the intracellular TK domain of RET coupled to the N-terminal fragment of a 

heterologous gene. Several forms have been identified that differ according to the partner gene 

involved in the rearrangement (159-161). The fusion proteins dimerise in a ligand independent manner 

resulting in constitutive activation of the downstream RAS/BRAF/MAP kinase pathway. Thyroid-

specific overexpression of either RET/PTC1 (162, 163)or RET/PTC3 (164) in transgenic mice leads to 

development of tumours with histological features consistent with PTC.  

The neurotrophic receptor-tyrosine kinase NTRK1 (also known as TRK and TRKA) was the 

second identified subject of chromosomal rearrangement in thyroid tumorigenesis. The NTRK1 proto- 

encodes the transmembrane tyrosine-kinase receptor for nerve growth factor. NTRK1 expression is 

typically restricted to neurons. . NTRK1 rearrangements — which show ectopic expression and 

constitutive activation of the tyrosine kinase that are analogous to RET rearrangements — have been 

noted in 5–13% of sporadic papillary thyroid carcinomas. The activated receptor initiates several 

signal- transduction cascades, including ERK, PI3K and the phospholipase-C pathway (142). 

The BRAFV600E mutation is the most common genetic change in PTC, present in about 29–

83% of cases(151) .The majority of the oncogenic mutations of BRAF destabilise the inactive BRAF 

structure, thereby promoting an active conformation and leading to a constitutive catalytic activation 
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(165, 166). The V600E mutant of BRAF is one of the most prevalent somatic genetic events in human 

cancer and possesses the hallmarks of a conventional oncogene (26). The kinase activity of this mutant 

protein is greatly elevated resulting in constitutive stimulation of  ERK activity independently of RAS. 

Undifferentiated or anaplastic carcinomas arising from pre-existing papillary thyroid cancers also have 

a significant prevalence of BRAF mutations, whereas those arising from pre-existing follicular 

carcinoma do not (167-171). Thyroid-specific overexpression of the mutant BRAF in transgenic mice 

leads to development of tumours with histological features consistent with invasive PTC, which exhibit 

foci of classic features, foci of TC features and foci of poorly differentiated carcinomas. These mice 

had a 30% decrease in survival at 5 months (172).  

Mutations of all three RAS genes are found in benign and malignant follicular neoplasms and in 

follicular variant PTC. The role of Ras oncogenes rin thyroid cancerogenesis will be discussed in 

greater detail in paragraph 3.4.  

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway 

It has been reported that alterations to the PI3K/Akt signalling pathway are frequent in human 

cancer. Constitutive activation of the PI3K/Akt pathway occurs due to mutations or amplification of 

the PIK3CA gene encoding PI3K or the Akt gene, or as a result of inactivating mutations in 

components of the pathway, for example PTEN (phosphatase and tensin homologue), which inhibit the 

activation of Akt.  

In sporadic thyroid neoplasm loss of heterozygosity (LOH) at the pTEN locus was found in 27% 

of follicular carcinomas and 7% of follicular adenomas (173), and loss or reduction of PTEN 

expression as well as inappropriate subcellular compartmentalisation has been reported in thyroid 

tumours (143, 174, 175). Additionally,PTEN loss in transgenic mice causes goitre and follicular 

adenomas eventhough is not sufficient for malignant transformation of thyroid cells (176). Somatic 

mutations within the PI3K catalytic subunit, PIK3CA, is present in 23% of anaplastic carcinomas and 

in 8% of FTC and is likely to function as an oncogene in anaplastic thyroid cancer (ATC) and less 

frequently in well-differentiated thyroid carcinomas (177). The occurrence of any genetic alterations at 

the level of PIK3CA, RAS and PTEN were found ito be mutually exclusive in well-differentiated 
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carcinomas, most frequently FTC, and adenomas but not in anaplastic carcinoma suggesting that 

accumulation of mutations in this pathway may be involved in the progression of FTC to ATC(153) . 

The p53 pathway 

p53 inactivation is an important step in late stage progression of thyroid cancer. Thyroid cells 

carrying a mutated p53 gene did not form colonies in soft agar or tumours in athymic mice, suggesting 

that a mutation of the p53 gene is not sufficient for the induction of the malignant phenotype, and 

probably cooperation with other oncogenes is necessary to accomplish full malignancy. However, a 

mutated p53 gene results in a marked loss of the differentiated phenotype in the rat thyroid cell line 

PCCl3, including inhibition of the expression of the thyroid-specific transcription factor PAX8 (178). 

Conversely, re-expression of wt-p53 activity in undifferentiated thyroid carcinoma cell lines inhibits 

cell proliferation and restores differentiation (179, 180). 

The PAX8/PPARγ rearrangement 

PPARγ is a member of the steroid nuclear-hormone receptor superfamily. PAX8/PPARγ 

rearrangement, which consists in fusion of the thyroid-specific transcription factor PAX8 gene with the 

PPARγ gene. It involves a chromosome 3p25 and 2q13 translocation creating a fusion gene, 

encompassing the promoter and proximal 50 coding sequence of the thyroid-specific transcription 

factor PAX8 gene and most of the coding sequence of the PPARγ gene. The fusion product .functions 

trhough a dominant negative effect on the transcriptional activity of wild-type PPARγ (181). These 

rearrangements seems to be restricted to Follicular thyroid adenoma (0-31%) and carcinoma (25-63%) 

(181-184).  

The mechanism of transformation induced byPAX8/PPARg is still unclear as well is unclear 

whether the transforming properties of PAX8/PPARg can be attributed only to inhibition of PPARγ 

function(154). 

3.4.Role of Ras oncogenes  

Constitutive activation of all three Ras oncogenes (H-, K- and N-Ras) is known to occur among 

tumors that originated from the thyroid follicular epithelium of the thyroid gland (185). However, there 
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are significant discrepancies related to the overall frequency of ras mutations (ranging from 7% to 

62%) and their prevalence in specific thyroid tumors (186, 187). Although it is difficult to explain this 

lack of consistency , the mutation screening methods, the selection of patients, and the design of 

individual studies are critical to identify specific association  between mutational status and clinical or 

pathological parameters. However in one of these studies involving highly specific analysis and 

performed on a large number of patients haboring  tumors that included the full spectrum of 

differentiation observed in thyroid cancer of follicular cell derivation, Ras mutations were found to be 

associated with aggressive cancer behaviour, loss of differentiated phenotype and with the presence of 

distant metastasis (188). 

The presence of Ras mutations in benign tumours suggested that  this could have been an early 

event in thyroid tumorigenesis. However, besides  the considerable variability in the prevalence of Ras 

mutations in different series of thyroid cancers as mentioned above,  the high degree of observer 

variation in the diagnosis of follicular adenoma and follicular-variant papillary thyroid carcinoma 

might also explain this finding (189, 190). It should be considered then that  highly specific analysis 

indicates that Ras mutations are more common in poorly differentiated and undifferentiated thyroid 

carcinoma, implicating this phenomenon in tumour progression rather than in tumor initiation(142). 

Studies in vivo with transgenic mice have also given valuable information. A transgenic mouse 

line in which a human N-RAS (Gln61Lys) oncogene was expressed in thyroid follicular cells under 

control of the Tg promoter (Tg-N-RAS) was developed by Santoro’s group. Significantly, Tg-N-RAS 

mice developed thyroid follicular neoplasms; 11% developed follicular adenomas and 40% developed 

invasive follicular carcinomas, in some cases with a mixed papillary/follicular morphology. About 

25% of the Tg-N-RAS carcinomas displayed large, poorly differentiated areas, featuring vascular 

invasion and forming distant metastases in lung, bone or liver (191). Ras oncogene in this mouse 

model  appears to contribute both to tumor initiation and progression. However level of expression of 

Ras oncogene should be taken into account. It was indeed demonstrated in immortalized rat follicular 

thyroid cells  that  RAS oncogene induces de-differentiation in a dose-dependent manner, although 

TSH-independent growth appears to be induced in the presence of both low and high levels of 
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oncogenic RAS expression(4). Thus a reasonable explanation to fit the data would be that low levels of 

Ras oncogene would allow thyroid  tumor initiation while higher levels of expression or higher activity 

through additional mutation on the same pathway would allow tumor progression.  

3.5.Thyroid cancer therapy 

In the case of Differentiated Thyroid carcinomas, both diagnosis and treatment  of both tumor 

remnants or distant metastasis with radioiodine is possible due to the ability of tumor cells to 

accumulate iodine (192). The higher tumor recurrence rate in patients treated only with surgery and 

TSH suppression than in those who also received radioiodine therapy shows the importance of thyroid 

remnant ablation by radioiodine (193). Well differentiated thyroid tumors show indeed good long-term 

survival (194, 195). 

However, the effectiveness of radioiodine therapy depends on the effective radiation dose 

delivered to the tumor tissue, which depends on the iodine concentrating ability of the cells. Thus 

poorly differentiated histotypes and in particular ATC have a very poor prognosis (194, 195). 

Furthermore during tumor progression, up to 30% of patients with persistent/metastatic thyroid 

carcinoma show cellular de-differentiation, characterized by more aggressive growth, loss of iodide 

uptake ability and other markers of thyroid cell differentiation. These patients with de-differentiated 

thyroid carcinoma represent a therapeutic challenge, since treatment options are limited, and usually 

not efficient (196). 

Since thyroid follicular cancer conserves a certain degree of differentiation, one logical 

therapeutic approach is to redifferentiate the cells and reinduce endogenous NIS expression so that 

radioiodine treatment can be performed. Many groups focused on this strategy and several compounds, 

also known to have tumour-inhibitory effects, have partially succeeded in reaching this goal. Among 

them, the most well known has been retinoic acid (RA). Several clinical trials have been done using 

RA in order to increase radioiodide uptake and improve clinical outcome of patients with recurrent 

thyroid cancer (70). In general terms, radioiodide uptake was improved in 20–42% of the cases, but 

tumour shrinkage was observed in very few cases after 131I treatment. The largest study was done on 50 

iodide scannegative patients: 26% had a significant increase in radioiodide uptake, but only 16% had 
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reduced tumour volume (197). Other compounds such as Troglitazone, HDAC inhibitors and 

demethylating agents are currently being tested with promising results (198). 

The MAPK pathway is particularly important in thyroid cancer because it harbors several 

activating mutations in this pathway with a high prevalence, including BRAF mutation, RAS mutation, 

and RET/PTC rearrangement Thus, as for other cancers (199, 200), targeted inhibition of the MAPK 

pathway is potentially an effective therapy for thyroid cancer.  

Given the prominence of this ‘oncogene addiction’ phenotype involving the MAP kinase 

pathway in thyroid and other cancer types, several small molecules that target this pathway are 

currently being tested in vitro and in vivo. In thyroid cancer, this interest is further heightened by new 

information on the role of activated BRAF and MAPK pathway activation in disrupting iodine 

transport and thyroid hormonogenesis(172). 

Inhibitors of MEK1/2 were evaluated with promising results. The potent MEK inhibitor, CI-1040 

(201), entered phase I and II clinical trials on several human cancers, which have recently been 

completed (202, 203). It was recently demonstrated that BRAF mutation was a prerequisite for the 

sensitivity to MEK inhibitors in many cancer cell lines(204). Accordingly preclinical studies on the 

effects of this compound on thyroid cancer cells both in vitro and in vivo demonstrated its selective 

inhibition of proliferation and tumor growth of cells harboring BRAF or RAS mutations but not cells 

harboring RET/PTC1 rearrangement or wild-type alleles encouraging a clinical trial on CI-1040, 

particularly in patients with conventionally incurable thyroid cancer that harbors BRAF or RAS 

mutations (205). Analogously the efficacy of the MEK1/2 inhibitor AZD6244 was proven  in a panel of 

PTC and ATC cell lines and xenografts. Supporting the selection of AZD6244 for phase II clinical 

trials for this types of thyroid tumors (206).  

Additional inhibitors under evaluation include Raf-Inhibitors. For example Sorafenib (BAY 43-

9006) was one of the first compounds to be evaluated in clinical trials (207). Sorafenib is a multikinase 

inhibitor that inhibits BRAF, CRAF and VEGFR3 at low concentrationsin vitro. Despite its promising 

preclinical properties (208, 209), the preliminary efficacy data for sorafenib in patients with thyroid 

cancer appear modest(207). Other RAF inhibitors have been tested for thyroid cancer, yet they did not 
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show better in vitro potencies than sorafenib. For example, AAL881 and LBT613 (Novartis, 

Cambridge,MA,USA) both compounds were effective growth inhibitors of poorly differentiated 

thyroid cancer cell lines with either RET or RAF mutations(210). Presumably, other emerging RAF 

inhibitors may provide a more robust effect against MAP kinase activity in clinical trials.  

Inhibitors of RTKs such as quinazolines are also promising (211). For instance, ZD1839 (Iressa) 

is a potent and selective inhibitor of the EGFR and is currently in advanced clinical development 

(Ciardiello et al. 2001). Another anilinoquinazoline, ZD6474, has been shown to be a selective 

inhibitor of the VEGF receptor-2 (flk-1/KDR) tyrosine kinase (212). Interestingly, this last compound 

has also been shown to inhibit the enzymatic and transforming activity of RET oncoproteins and 

arrests the development of RET/PTC3-induced tumours in nude mice.This compound also prevented 

the growth of two human PTC cell lines that carry spontaneous RET/PTC1 rearrangements. Thus 

targeting RET oncogenes with ZD6474 might offer a potential treatment strategy for carcinomas 

sustaining oncogenic activation of RET such as PTC thyroid carcinomas(213). 

Whereas it is tempting to invoke the concept of oncogene addiction(214) in interpreting the 

apparently selective efficacy of MAPK pathway  inhibitors for cancerous cells, it is important to 

consider that resistance could emerge relatively promptly with chronic single-agent cytostatic therapy. 

MEK inhibitors have been shown to sensitize cancer cells to a number of other agents including 

radiation(215, 216). AZD6244 has been shown to enhance the efficacy of cytotoxic chemotherapy 

agents in preclinical colon cancer studies (217). A key challenge in thyroid cancer systemic therapy 

will be the identification of effective combinations, potentially combining targeted inhibition of BRAF 

signaling with other targeted or cytotoxic agents. 

 

4.The FRTL-5 thyroid cell line 

The availability of cultured, differentiated thyroid cell lines offers an amenable system to study 

the action of activated Ras proteins on the differentiated phenotype of an epithelial cell type.  
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4.1.FRTL-5 cells 

The FRTL5 cell line  derive from spontaneous immortalization of a 3 weeks old rat epithelial 

follicular thyroid cells (218). These cells  retains in culture the expression of all known thyroid 

differentiation markers such as Tg, NIS, TPO and TSHr as well as the the thyroid specific combination 

of transcriptiona factors Titf-1, Foxe1, Hhex and Pax8.  Despite showing some thyroid functional 

properties such as the ability of concentrate iodide and to secrete thyroglobulin, these cells do nor show 

the charctaristic polarization observed in the TFCs and in the standard culture condition do not 

organize into follicular structures. FRTL5 cells rapidly proliferates (duplication time about 36h) and 

their proliferation as well as their differentiation is dependent upon TSH presence in the culture 

medium (5) 

4.2.Transformation of  FRTL-5 cells by Ras oncogene 

It was previously shown that Ras oncogene expression in FRTL5 cells determines neoplastic 

transformation. Such transformation involve the acquiring of the following properties: TSH-

independent growth, anchorage-independent growth, morphological alterations and the ability of 

giving rise to tumors when injected in nude mice.  Ras oncogene mediated transformation of FRTL5 

cells is associated with the silencing of thyroid-specific genes such as Tg, TPO and NIS (5, 219). 

Studies aimed to characterized the pathways through which Ras oncogene induces 

transformation and dedifferentiation of FRTL-5 cells have highlighted that, though in fibroblasts 

constitutive activation of MEK (downstream of Raf) and Rac (downstream of PI3K and Tiam1) is 

sufficient to recapitulate Ras effects, in FRTL-5 cells these pathways can reproduce only the oncogenic  

Ras-induced proliferative phenotype but do not have consequences on FRTL5 differentiation (220). It 

was indeed demonstrated through the use of Ras effector domain mutants that Ras oncogene induced 

dedifferentiation requires activation of the Raf/MEK/ERK pathway plus an additional uncharacterized 

pathway (221). Furthermore It was shown that loss of differentiation is an early event, , thus not the 

result of chronic exposure to the activated oncogene, induced exclusively by high levels of Ras 

oncogene (4). 
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4.3.An inducible system of Ras mediated transformation of FRTL5 cells 

In this study the relation between ras oncogene and thyroid differentiation was investigated by 

using a stable thyroid cell line (FRTL-5)  which constitutively express a conditional ras oncoprotein 

called ER-RasV12 activable by Tamoxifen. In this system ER-RasV12 activation induces de-

differentiation of FRTL-5 cells (4).  

I could thus analyze the kinetics of Ras oncogene action on thyroid-specific gene expression in 

order to define a molecular hierarchy of events. I demonstrate that Ras oncoprotein inactivates Pax8 

transcriptional activity early on in the transformation process and induces inhibition of the TSHr 

pathway through a double mechanism which involves both downregulation of TSHr expression itself 

plus an additional interference with the TSHr signalling, the latter located downstream of cAMP 

production. I demonstrate that such effects are reversible and induced by Ras through the MAPK 

pathway. I also demonstrate  that cAMP pathway inhibition is the cause of Pax8 inactivation and that 

by restoring a functional cAMP pathway we can restore both Pax8 activity and thyroid-specific gene 

expression 
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MATERIALS AND METHODS 

 

 

1.N-terminal Multiple-Tags (TTN, DTN, MTN) gene synthesis and 

cloning in pCEFL expression vector 

1.1.TTN Tag 

The TTN tag (Triple Tag N-terminal ) DNA sequence was designed in order to codify the following 

peptide:MGLNDIFEAQKIEWHEHLEVLFQGPGDYKDDDDKGGKPIPNPLLGLDSTGGPGGE

NLYFQGG. Underlined are the functional sites within the peptide: AVI sequence 

(GLNDIFEAQKIEWHE), Prescission protease cleavage site (EVLFQGP), Flag epitope 

(DYKDDDDK), V5 epitope (KPIPNPLLGLDST), TEV protease cleavage site (ENLYFQ). DNA 

sequence was projected accordingly and is, from 5’ to 3’, the following: 

agggcaagcttatgggcctgaacgacatcttcgaggcccagaagatcgagtggcacgaacacctggaggtcctgttccagggacctggcgactac

aaggatgacgatgacaaaggcggcaagcctatccctaaccctctgctgggcctggactccacaggcggccccggcggcgagaacctgtacttcca

gggcggatccggcgaattctaaatctagagccaag. Underlined are additional restriction sites required for cloning. 

 In order to synthesize such DNA sequence (225 bp long) a previously described PCR-based 

gene synthesis approach was adopted (222). Briefly 6 oligonucleotides (TTN1-6) about 40nt in length 

were designed in order to cover the whole desired DNA sequence with about 10 nt overlaps at both 5’ 

and 3’ ends between adjacent oligonucleotides. Two additional primers (TNF  and TNR) were designed 

in order to amplify the obtained final DNA product (Fig.1). TNF primer (5’end) carrying the HindIII 

restriction site for subsequent cloning into pCEFL recipient vector and the TNR primer (3’end)  

carrying the XbaI restriction site for subsequent cloning into pCEFL recipient vector preceded by two 

additional restriction site (EcoRI and BamH1) to allow following cloning of a desired gene sequence in 

frame with the Tag.   
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Sequences of used oligonucleotides, from 5’ to 3’, were respectively the following:  

TNF (agggcaagcttatgggcctgaacgacatcttcgaggccca),  

TNR (cttggctctagatttagaattcgccggatccgccctggaag),  

TTN1 (aacgacatcttcgaggcccagaagatcgagtggcacgaacacc),  

TTN2 (cgccaggtccctggaacaggacctccaggtgttcgtgcca),  

TTN3 (agggacctggcgactacaaggatgacgatgacaaaggcggcaag),  

TTN4 (ccaggcccagcagagggttagggataggcttgccgcctttgt),  

TTN5 (gctgggcctggactccacaggcggccccggcggcgagaacc),  

TTN6 (gaattcgccggatccgccctggaagtacaggttctcgccgc). 

TTN tag synthesis strategy is schematized in Figure 2. In step1, A PCR reaction (DA-PCR) was 

carried out for every four consecutive oligonucleotides (reaction#1:TTN1-4, reaction#2:TTN3-6) that  

were mixed together in a 50 µL reaction with the outer two oliugonucleotides  (TTN1 and TTN4 for 

reaction#1, TTN3 and TTN6 for reaction#3) at five times molar excess (400nM) to the inner ones 

(80nM) in the presence of 200nM dNTP and 2U Pfu polymerase (BioGem). The PCR  profile 94° for 

20s, 45° for 15s and 72° for 30s was repeated for 20 cycles. In step2, the products obtained from each 

of  the first DA-PCR reactions (each about 130nt long and overlapping for about 80 nt) were gel 

extracted and used basically as inner oligonucleotides in an additional DA-PCR reaction (Reaction#3)  

in which the outer primers (TNF and TNR) were used to further amplify the PCR extended inner 
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product. The obtained product of 225bp was purifed by phenol-chloroform extraction and ethanol 

precipitation, digested and cloned into HindIII/XbaI sites of pCEFL expression vector and sequence 

verified. 

 

1.2.DTN Tag 

The DTN tag (Triple Tag N-terminal ) DNA sequence was designed in order to codify the 

following peptide:MDYKDDDDKGGKPIPNPLLGLDSTGGPGGENLYFQGG. Underlined are the 

functional sites within the peptide: Flag epitope (DYKDDDDK), V5 epitope (KPIPNPLLGLDST), 

TEV protease cleavage site (ENLYFQ). DNA sequence was projected accordingly and is, from 5’ to 

3’, the following:  

agggcaagcttatggactacaaggatgacgatgacaaaggcggcaagcctatccctaaccctctgctgggcctggactccacaggcg

gccccggcggcgagaacctgtacttccagggcggatccggcgaattctaaatctagagccaag. Underlined are additional 

restriction sites required for cloning. 

 In order to synthesize such DNA sequence (150 bp long) a previously described PCR-based 

gene synthesis approach was adopted (222). As already described above for TTN tag synthesis 



 41 
 

oligonucleotides about 40nt in length were designed in order to cover the whole desired DNA sequence 

with about 10 nt overlaps at both 5’ and 3’ ends between adjacent oligonucleotides (Fig.3).  

 

Sequences of used oligonucleotides, from 5’ to 3’, were respectively the following:  

TNF2 (agggcaagcttatggactacaaggatgacgatgacaaaggcg),  

TNR (as for TTN tag synthesis),  

DTN (ccaggcccagcagagggttagggataggcttgccgcctttgtcatcg),  

TTN5 ( as for TTN tag synthesis),  

TTN6 ( as for TTN tag synthesis). 

DTN tag synthesis strategy is schematized in Figure 4. In step1, A DA-PCR reaction was carried 

out for the first four consecutive oligonucleotides (reaction#1:TNF2, DTN, TTN5, TTN6) as described 

in the TTN tag paragraph. In step2, the product obtained from the DA-PCR reaction (about 130bp) was 

gel extracted and used as template (20ng/50µL) in a canonical PCR reaction (Reaction#2)  using  TNF2 

and TNR as primers (500nM each). PCR reaction profile 94° for 20s, 55° for 30s and 72° for 30s was 

repeated for 25 cycles The obtained product of 150bp was purifed by phenol-chloroform extraction and 

ethanol precipitation, digested and cloned into HindIII/XbaI sites of pCEFL expression vector and 

sequence verified. 
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1.3.MTN Tag 

The MTN tag (Triple Tag N-terminal ) DNA sequence was designed in order to codify the 

following peptide:MGLNDIFEAQKIEWHEHLEVLFQGPGGPGGENLYFQGG. Underlined are 

the functional sites within the peptide: AVI sequence (GLNDIFEAQKIEWHE), Prescission protease 

cleavage site (EVLFQGP) and TEV protease cleavage site (ENLYFQ). DNA sequence was projected 

accordingly and is, from 5’ to 3’, the following: 

agggcaagcttatgggcctgaacgacatcttcgaggcccagaagatcgagtggcacgaacacctggaggtcctgttccagggacctggcggcccc

ggcggcgagaacctgtacttccagggcggatccggcgaattctaaatctagagccaag. Underlined are additional restriction 

sites required for cloning. 

 In order to synthesize such DNA sequence (153 bp long) a previously described PCR-based 

gene synthesis approach was adopted (222). As already described above for TTN tag synthesis 

oligonucleotides about 40nt in length were designed in order to cover the whole desired DNA sequence 

with about 10 nt overlaps at both 5’ and 3’ ends between adjacent oligonucleotides (Fig.5).  
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Sequences of used oligonucleotides, from 5’ to 3’, were respectively the following:  

TNF (as for TTN tag synthesis),  

TNR (as for TTN tag synthesis),  

MTN (cagggacctggcggccccggcggcgagaacctgtacttccagggcgga),  

TTN1 ( as for TTN tag synthesis),  

TTN2 ( as for TTN tag synthesis). 

MTN tag synthesis strategy is schematized in Figure 6. In step1, A DA-PCR reaction was carried 

out for the first four consecutive oligonucleotides (reaction#1:TTN1, MTN, TTN2, TNR) as described in 

the TTN tag paragraph. In step2, the product obtained from the DA-PCR reaction (about 130bp) was 

gel extracted and used as template (20ng/50µL) in a canonical PCR reaction (Reaction#2)  using  TNF  

and TNR as primers (500nM each). PCR reaction profile 94° for 20s, 55° for 30s and 72° for 30s was 

repeated for 25 cycles The obtained product of 153bp was purifed by phenol-chloroform extraction and 

ethanol precipitation, digested and cloned into HindIII/XbaI sites of pCEFL expression vector and 

sequence verified. 
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2.C-terminal Multiple-Tags (TTC, DTC, MTC) cloning in pCEFL 

expression vector 

2.1.TTC Tag 

The TTC tag (Triple Tag C-terminal ) encoding vector (pGEM-TAG) was provided from 

Stunnenberg H.G. Laboratory. TTC tag codify the following peptide: 

FGPAGAIAGENLYFQGGGPGGGKPIPNPLLGLDSTGDYKDDDDKGLEVLFQGPHGLNDIFE

AQKIEWHE. Underlined are the functional sites within the peptide: TEV protease cleavage site 

(ENLYFQ), V5 epitope (KPIPNPLLGLDST), Flag epitope (DYKDDDDK), Prescission protease 

cleavage site (EVLFQGP), AVI sequence (GLNDIFEAQKIEWHE).  

DNA sequence of the provided Tag was, from 5’ to 3’, the following: 

gggccggccggcgcgatcgccggcgagaacctgtacttccagggcggcggccccggcggcggcaagcctatccctaaccctctgctgggcctg

gactccacaggagactacaaggatgacgatgacaaaggcctggaggtcctgttccagggacctcacggcctgaacgacatcttcgaggcccagaa

gatcgagtggcacgaatgatga. Underlined are the two terminal stop codons. 

TTC tag was PCR amplified from the original vector with the following primers: The Forward 

TCF primer (5’- ctaggaattcgggccggccggcgcg-3’) carrying the EcoRI restriction site for cloning into 
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pCEFL recipient vector and subsequent upstream in frame cloning of desired gene sequence. The 

Reverse TCR primer (5’-ggctctagattattcgtgccactcgatcttctgggc-3’) carrying the XbaI restriction site for 

cloning into pCEFL recipient vector preceded by a STOP codon.  PCR reaction was carried out in 

50µL including template DNA (100ng/50µL), dNTP(200nM), primers pair (500nM each) and  2U Pfu 

(biogem). PCR profile 94° for 20s, 55° for 30s and 72° for 30s was repeated for 25 cycles. The 

obtained product of 225bp was purifed by phenol-chloroform extraction and ethanol precipitation, 

digested and cloned into EcoRI/XbaI sites of pCEFL expression vector and sequence verified. 

2.2.DTC Tag 

The DTC tag (Triple Tag C-terminal ) was obtained by PCR amplification of the first 150bp of 

the provided TTC tag template (pGEM-TAG) in order to obtain a DNA sequence encoding the 

following peptide: FGPAGAIAGENLYFQGGGPGGGKPIPNPLLGLDSTGDYKDDDDK. 

Underlined are the functional sites within the peptide: TEV protease cleavage site (ENLYFQ), V5 

epitope (KPIPNPLLGLDST), Flag epitope (DYKDDDDK). 

DTC tag was PCR amplified from the original TTC containing vector with the following 

primers: The Forward TCF primer (5’- ctaggaattcgggccggccggcgcg-3’), the same used for TTC 

amplification, carrying the EcoRI restriction site for cloning into pCEFL recipient vector and 

subsequent upsteam in frame cloning of desired gene sequence . The Reverse TCR2  primer (5’- 

ggctctagattatttgtcatcgtcatccttgtagtctcc-3’), annealing almost at the center of the TTC sequence, carrying 

the XbaI restriction site, preceded by a STOP codon, in its tail for cloning into pCEFL recipient vector. 

PCR reaction was carried out as described for TTC tag in chapter 2.1. The obtained product of 151bp 

was purifed by phenol-chloroform extraction and ethanol precipitation, digested and cloned into 

EcoRI/XbaI sites of pCEFL expression vector and sequence verified. 

2.3.MTC Tag 

The MTC tag DNA encode the following peptide: 

FGPAGAIAGENLYFQGGGPGGGLEVLFQGPHGLNDIFEAQKIEWHE. Underlined are the 
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functional sites within the peptide: TEV protease cleavage site (ENLYFQ), Prescission protease 

cleavage site (EVLFQGP), AVI sequence (GLNDIFEAQKIEWHE).  

The MTC tag (Triple Tag C-terminal ) was obtained by generating an internal central deletion in 

the TTC tag template through a PCR-driven overlap extension approach previously described (223).  

Briefly, to generate a product carrying a central deletion, the target gene is amplified from the template 

DNA using two external primers  that anneals to the ends of the template (TCF and TCR primers in 

Fig.7 that are the same used for TTC amplification) plus two internal primers (MTC1 and MTC2 in 

Fig.7), each annealing at the end of the DNA fragments that have to be spliced together, and designed 

in order to generate overlapping sequences by including nucleotide in their tail that span the junction of 

the DNA segments to merge (Fig. 7). 

 

MTC tag amplification strategy is schematized in Figure 8. In step1, two separate PCR reaction 

were carried out. In Reaction#1 template was amplified with TNF and MTC1 (5’-
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gaacaggacctccaggccgccggggccg-3’) primers  while in  reaction#2: MTC2 (5’-

ggcggccccggcggcctggaggtcctgttc-3’) and TNR primers were used. In this way overlapping products 

spanning the junction of the deletion point were generated. PCR reactions were carried out as described 

in chapter 2.1. 

In Step2, products from the first reactions (prduct#1 85bp, product#2 100bp) were gel extracted, 

purified and mixed together (7nM final concentration for each) with the outer two oligonucleotides  

TCF and TCR  (500nM final concentration each) in a 50 µL DA-PCR reaction (as described in 

chapter1.1).The obtained product of 154bp was purifed by phenol-chloroform extraction and ethanol 

precipitation, digested and cloned into EcoRI/XbaI sites of pCEFL expression vector and sequence 

verified. 
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3.Expression and reporter constructs 

3.1.Reporter constructs 

Reporter vectors pNIS-Luc1, NIS-Luc9 and pNIS-Luc5 were previously reported (64). The 

pE1B-luc construct was obtained by cloning a chemical synthesized oligonucleotide ( 5’-

ctcgagtctagagggtatataatggatcc-3’) containing the E1B TATAbox flanked by XhoI site at 5’ and BamH1 

site at 3’  into an XhoI/BamH1 cleaved  pGL3 basic luciferase reporter vector (Promega corporation). 

pNUE-Luc (NUE reporter) construct was obtained by excising with KpnI and XhoI the NUE sequence 

from the previously reported  pNISTKluc3 construct (64) and cloning it into KpnI/XhoI sites of pE1B-

luc construct. The pCp5-E1B-Luc (Cp5 reporter) construct was obtained by excising with PvuII and 

BamHI the Cp5E1b cassette from the previously reported Cp5CAT vector(4) and cloning it into 

SmaI/BglII cleaved pGL3 basic luciferase reporter vector (Promega corporation). The pG5-E1B-Luc 

(G5 reporter) construct was obtained by excising with PvuII and BamHI the G5-E1b cassette from the 

previously reported G5CAT vector (224) and cloning it into SmaI/BglII cleaved pGL3 basic luciferase 

reporter vector (Promega corporation). The 5xCRE-luc (CRE reporter) was previously described (225). 

The pGL3/eGFP basic vector was obtained by substituting the luciferase gene of the pGL3 luciferase 

basic reporter vector (Promega corporation) with the eGFP gene. The eGFP gene was excised with 

NcoI and XbaI enzymes  from the pEGFP n1 vector (clontech) and cloned into the NcoI/XbaI sites of 

pGL3 vector.  The pNUE-GFP expression vector was obtained by excising with NcoI and BamH1 the 

NUE-E1B cassette from the pNUE-luc vector and cloning it into NcoI/BamH1 sites of pGL3/eGFP 

basic vector . The TK-renilla reporter vector was purchased from Promega Corporation (phRL-TK). 

3.2.N-terminal (TTN, DTN, MTN) tagged-Pax8 expression vectors 

Mouse Pax8 gene sequence was amplified by PCR from the previously described pCEFL-

3xFlagPax8  vector (107). Forward primer ( Pd*F 5’- agggcggatcccctcacaactcgatcagatccggc -3’) was 

designed in order to delete the ATG start codon and create an EcoRI restriction site to allow in frame 

cloning downstream of the N-terminal Tags in the pCEFL expression vectors described in chapter1. 

Reverse primer (PRL 5’- ccacagcctttgaccatctgtagtgatatctagagcc -3’) was flanked by an XbaI restriction 
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site.  Amplified Pax8  was purifed by phenol-chloroform extraction and ethanol precipitation, digested 

and cloned into EcoRI/XbaI sites respectively downstream of the TTN, DTN and MTN tags in the 

relative pCEFL expression vectors (chapter1). Amplified Pax8 was sequence verified. 

3.3.C-terminal (TTC, DTC, MTC) tagged-Pax8 expression vectors 

Mouse Pax8 gene sequence was amplified by PCR from the previously described pCEFL-

3xFlagPax8 vector (107). Forward primer ( PCF 5’- agggcaagcttatgcctcacaactcgatcagatcc -3’) was 

flanked by a HindIII restriction site. Reverse primer (PCR 5’- ccacagcctttgaccatctggaattctaatctagagcc -

3’) was designed in order to delete the stop codon and create an EcoRI restriction site to allow in frame 

cloning upstream of the C-terminal Tags in the pCEFL expression vectors described in chapter2.  

Amplified Pax8  was purifed by phenol-chloroform extraction and ethanol precipitation, digested and 

cloned into HindIII/EcoRI sites respectively upstream of the TTC, DTC and MTC tags in the relative 

pCEFL expression vectors (chapter2). Amplified Pax8 was sequence verified. 

3.4.GAL-Pax8 deletion derivatives expression vectors 

The pCEFL-GAL expression vector was obtained by excising the GAL4-DBD (DNA binding 

Domain corresponding to aa 1-146 from yeast GAL4) with BglII and EcoRI from the pM vector 

(clontech) and cloned into BamH1/EcoRI sites of pCEFL expression vector. All transactivation 

domains that were fused to GAL4-DBD were amplified by PCR (25 cycles using 100ng plasmid DNA 

as template and 2U Pfu per 50µL reaction)  with primers flanked by tails introducing respectively, a 

EcoRI site at the 5’ end of the amplicon to allow in frame cloning downstream of  the GAL4-DBD and, 

a XbaI site at the 3’ end of the amplicon. All transactivation domains PCR products were purifed by 

phenol-chloroform extraction and ethanol precipitation, digested and cloned into EcoRI/XbaI site  of 

pCEFL-GAL expression vector and sequence verified.  

pCEFL-GalVp16. Vp16 transactivation domain (aa 416-490 from vmw65 hHSV1) was 

amplified from a previously reported FlagHDVp16 construct (4) with the following primers pair: VF 

5’-ggcgaattcgcccccccgaccgacgtcagcctggggg -3’/VR 5’- gcattgacgactttggggggtgagatatctagagcc-3’.  
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All Pax8 transactivation deletion derivatives domains were amplified from the previously 

reported pCEFL3xFlagPax8 vector (107). 

pCEFL-GP. Contains the whole Pax8 transactivation domain (aa 134-457 in mouse Pax8A 

protein) amplified with the following primers pair: PFL 5’- ggcgaattcaccaaagtgcagcagccattcaacc -

3’/PRL 5’- ccacagcctttgaccatctgtagtgatatctagagcc -3’ 

pCEFL-GP1. Contains the whole Pax8 transactivation domain depleted of the putative inhibitory 

region (226) localized at its C-terminal end (aa 134-425 in mouse Pax8A protein) amplified with the 

following primers pair: PFL 5’- ggcgaattcaccaaagtgcagcagccattcaacc -3’/PRS 5’-

tcctcctacagtgaggcctggcgctagatatctagagcc-3’ 

pCEFL-GP2. Contains the Pax8 transactivation domain depleted of the Homeodomain homology 

region (aa 219-457 in mouse Pax8A protein)  amplified with the following primers pair: PFS 5’- 

ggcgaattcggtcctcgaaagcaccttcgtacg -3’/PRL 5’- ccacagcctttgaccatctgtagtgatatctagagcc -3’ 

pCEFL-GP3. Contains the Pax8 transactivation domain depleted of the Homeodomain homology 

region and the putative inhibitory region (226) localized at its C-terminal end (aa 219-425 in mouse 

Pax8A protein)  amplified with the following primers pair: PFS 5’- ggcgaattcggtcctcgaaagcaccttcgtacg 

-3’/PRS 5’- tcctcctacagtgaggcctggcgctagatatctagagcc -3’ 

pCEFL-GP4. Contains the putative minimal Pax8 transactivation domain (226) (aa 370-457 in 

mouse Pax8A protein)  amplified with the following primers pair: PFSS 5’- 

ggcgaattcgggcgagagatggtgggg -3’/PRL 5’- ccacagcctttgaccatctgtagtgatatctagagcc -3’ 

pCEFL-GP5. Contains the putative minimal Pax8 transactivation domain depleted of the putative 

inhibitory region (226)localized at its C-terminal end (aa 370-425 in mouse Pax8A protein)  amplified 

with the following primers pair: PFSS 5’- ggcgaattcgggcgagagatggtgggg -3’/PRS 5’- 

tcctcctacagtgaggcctggcgctagatatctagagcc -3’ 

 

3.5.Pax8 deletion derivatives expression vectors 

The Paired DNA binding Domain (Pd) of Pax8 (aa 1-133 of mouse Pax8A protein) was 

amplified from the previously described pCEFL3xFlagPax8 vector (107) and cloned into HindIII/XbaI 
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site of 3xFlag-CMV10 (Sigma). Amplification was carried out with primers (PdF 5’- 

agggcaagcttcctcacaactcgatcagatccggc -3’/PdR 5’- ggctctagatttagaattcccggatgattctgttgatggagc -3’) 

flanked by tails introducing respectively, a HindIII site at the 5’ end of the amplicon projected to allow 

in frame cloning downstream of the 3xFlag tag and, a XbaI site at the 3’ end of the amplicon preceded 

by an EcoRI site to allow in frame cloning downstream of  the Pd domain. Paired domain sequence 

was verified. 3xFlag-Pd cassette was then excised with HindIII and XbaI from the pCMV-3xFlag-Pd 

vector and cloned in the pCEFL expression vector (pCEFL-Pd). 

All transactivation domains used were obtained respectively by excision with EcoRI and XbaI 

from the corresponding pCEFL-GAL containing vector (see chapter 3.4) and subcloned in the 

EcoRI/XbaI sites of the pCEFL-Pd expression vector.  

pCEFL-PdVp16. Vp16 transactivation domain (aa 416-490 from vmw65 hHSV1) from pCEFL-

GalVp16. 

pCEFL-Pax8. Pax8 transactivation domain (aa 134-457 in mouse Pax8A protein) from pCEFL-

GP. 

pCEFL-P1. Pax8 transactivation domain depleted of the putative inhibitory region (226) (aa 134-

425 in mouse Pax8A protein) from pCEFL-GP1. 

pCEFL-P2. Pax8 transactivation domain depleted of the Homeodomain homology region (aa 

219-457 in mouse Pax8A protein)  from pCEFL-GP2. 

pCEFL-P3. Pax8 transactivation domain depleted of the Homeodomain homology region and the 

putative inhibitory region (226) (aa 219-425 in mouse Pax8A protein)  from pCEFL-GP3. 

pCEFL-P4. Pax8 minimal transactivation domain (226) (aa 370-457 in mouse Pax8A protein) 

from pCEFL-GP4.  

3.6.Other Expression constructs 

The pCEFL-3xFlagPax8 and pCMV-cPKA expression vectors  have been previously described (107, 

225). The SpRT TSHr coding sequence (Rho-Tagged human-TSHr)(227) was excised by cleavage 

with KpnI and XbaI from the original pcDNAIII vector, blunted and cloned into BamH1 blunted sites 

of  pBABEpuro vector. BirA gene was amplified by RT-PCR from previously described ES cells 



 52 
 

clones stably expressing BirA (228) with a forward primer (BrF 5’ 

agggcaagcttatgaaggataacaccgtgcca3’) flanked by a HindIII restriction site in  its 5’end and a reverse 

primer (BrR 5’ggctctagattatttttctgcactacgcaggg3’) flanked by a XbaI restriction sites in its tail. The 

amplificated BirA product was purifed by phenol-chloroform extraction and ethanol precipitation, 

digested and cloned into HindIII/XbaI sites of a pCEFL expression vector carrying Puromycine 

resistance gene instead of Neomicine, and sequence verified.  

4.Cell culture 

Rat thyroid follicular FRTL-5-derived cell lines were maintained in Coon’s modified F12 medium 

(EuroClone, Milano, Italy) supplemented with 5% newborn bovine serum (HyClone, Logan, UT) and 

six growth factors (6H), including bovine TSH 1 mU/ml (Sigma.Aldrich) , and insulin 10 µg/ml 

(Sigma-Aldrich) as previously described (218) (6H medium). Tamoxifen treatment, where indicated, 

was performed by addition of 100 nM 4-hydroxytamoxifen (Sigma-Aldrich) to the culture medium. 

Stimulation of the cAMP pathway, where indicated, was performed by adding to the culture medium, 

respectively Forskolin 10µM (Sigma-Aldrich)  to stimulate adenylate cyclase, 8-CPT 100µM (Sigma-

Aldrich) as cAMP analogue or IBX 100µM (Sigma-Aldrich) to inhibits phosphodiesterases  or 

combination of them as indicated in the text. Inhibtion of PKA activity was obtained by adding to the 

culture medium H-89 (Biomol) 12µM. Inhibition of MAPK pathway was obtained by adding to the 

culture medium 50µM U-0126 (Biomol) or 50µM PD (Biomol). 

Hela cells and NIH 3T3 mouse fibroblasts were grown as previously described (105, 229). 

5.Transfections 

All transfections were carried out by the use of FuGene 6 (Roche Molecular Biochemicals, 

Indianapolis, IN) following the manufacturer’s instructions. For stable transfection experiments, 2x106 

cells were seeded on 100-mm dishes 24hours prior to transfection and transfected with 4 µg/dish of the 

indicated expression vector. Forty-eight hours later, transfected cells were selected in the presence of 1 
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µg/ml of puromycin (Sigma-Aldrich). After 3 weeks of continuous selection single clones were picked, 

screened for expression of the transgene and amplified individually.  

For transient transfections 4x105 cells were seeded on 60-mm dishes 24hours prior to transfection. 

Transfections were performed with 3 µg/dish of Total DNA consisting of 1µg of reporter vector 

encoding Firefly Luciferase (FF luc), 0.5 µg of TK-Renilla vector to follow transfection efficiency, 

cotransfecting  vectors or empty vector up to 3 µg.  Transfection medium was replaced 15hours later 

with standard culture medium, supplemented or not with additional drugs as indicated in the text, and 

cells cultured for additional 48 hours. 

Cells were lysed in 100µL/dish PLB buffer 1x (Promega Corporation) and Firefly and Renilla 

Luciferase activity were assayed respectively on 20µL of each sample with the “luciferase Assay 

system” (Promega Corporation) and the “Renilla assay system” (Promega Corporation) following 

manufacturer’s instructions. Luminescence was measured with LUMAT LB 9507 luminometer 

(Berthold technologies) .Firefly Luciferase activity was normalized on the activity of TK-renilla vector 

in order to correct each sample for transfection efficiency. Data were obtained from at least two 

independent experiments with triplicate samples.   

6.cAMP Enzyme Immunometric  assay  

Cells were seeded on 60-mm dishes and cultured  either in 4H or 6H medium as indicated in the text 

for 72h. Following  treatments described in the text, cells (about 2x10^6) were lysed in 1mL of 0.1M 

HCl/0.5% Triton. cAMP was quantitatively determined on 100µL of cell lysate using the “cAMP EIA 

kit” (stressgen) following manufacturer’s instruction. Briefly, samples were added to wells containing 

antibodies to cAMP together with a cAMP conjugate to alkaline phosphatase that works as a cAMP 

competitor in binding the antibody. Alkaline phosphatase activity bound to the antibody is detected and 

considered inversionally proportional to the amount of cAMP in the sample. A standard curve of 

cAMP was run in the assay in order to determine cAMP (pmol/mL) in each sample. These  values were 

then normalized on total protein present in each sample in order to obtain pmol of cAMP produced per 

mg of Protein.  
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7.PKA kinase activity assay  

 5 x106 cells were seeded on 100-mm dishes and cultured 72h in 4H medium. Following treatments 

indicated in the text, cells were lysed in 100µL of lysis buffer (50mM TRIS, 0.5%Np40,150mM NaCl, 

1mM Na3VO4, 50mM NaF, 5mM EGTA, 2mM EDTA,1mM DTT, 1mM PMSF and protease inhibitor 

cocktail (Sigma)). PKA activity was assayed on 0.5µg of extracted proteins using an ELISA-based 

commercially available assay kit ( “PKA kinase activity assay kit (non radioactive) ”from Stressgen) 

and following manufacturer’s instructions. Briefly, samples were incubated with ATP, 60 min at 30°C, 

in the substrate-coated microtiter plate. Phosphorylation of the peptide substrate is then detected 

through the use of a specific antibody. A standard curve was run in the assay in order to determine ng 

of active PKA in each sample. These values were then normalized on total protein present in each 

sample in order to obtain ng of PKA produce per µg of Protein. 

8.Proteins extraction  

For total protein extracts 2x106 cells were seeded on 60-mm dishes and cultured 48hours with or 

without additional drugs for the time indicated in the text.  Cells were washed in cold PBS and lysed, 

except where indicated differently, in Tissue Lysis Buffer (50mM TRIS pH8, 5mMgCl2, 150mM 

NaCl, 1%Triton, 0.1%SDS, 0.5%deoxicholic acid) supplemented with NaF 10mM, Na3VO4 1mM, 

PMSF 1mM, and protease inhibitor cocktail (Sigma-Aldrich). Lysis was allowed to continue for 15 

min on ice, samples were centrifuged at full speed at 4°C for 25 min. Protein concentration was 

measured by the BCA protein assay reagent (Pierce, Rockford, IL), following the manufacturer's 

instructions. For monodimensional Western blot analysis 30µg were loaded on SDS-PAGE. 

Fractionated protein extraction was performed using the “ProteoextractTM Subcellulare proteome 

extraction kit” (Calbiochem) and following manufacturer instruction. For monodimensional Western 

blot analysis 1/20 of each fraction volume was loaded on SDS-PAGE. 

Protein extracts, where indicated, were precipitated using a methanol-chloroform protocol (230). 

Briefly, proteins (150-300 µg) solved in 150 µl of extraction buffer were progressively mixed with 600 

µl of methanol, 150 µl of chloroform and 450 µl of water. Samples were centrifuged for 5 min at 
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12000 rpm. The upper phase was removed and 450 µl of methanol were added; after vortexing, 

samples were centrifuged for 5 min. All the liquid phase was removed and samples were dried in a 

chemical hood for 30 min. 

9.Flag-Pax8 Immunoprecipitation (IP)  

9.1.Nuclear proteins extraction  

For Flag-Pax8 IP the 5x106 cells of Px31 clone  were seeded on 100-mm dishes and cultured 

24hours with or without Tamoxifen.  At the end of the treatment cells were washed in cold PBS and 

collected in buffer A (85 mM KCl, 0.5% NP40, 5 mM HEPES pH 8.0) (1.5mL /dish) supplemented 

with protease inhibitor cocktail (sigma) and PMSF 1mM, homogenized by Dounce, incubated on ice 

for 15 min and centrifuged at 3500 g for 5 min to pellet the nuclei.  

The nuclei pellet was  resuspended in Lysis Buffer (50mM TRIS pH7.4, 1mM EDTA, 150mM 

NaCl) supplemented with NaF 10mM, Na3VO4 1mM, PMSF 1mM, and protease inhibitor cocktail 

(Sigma-Aldrich) and lysis was proceeded as described in previous chapter8.  

9.2.Immunoprecipitation 

Anti-Flag M2 affinity gel beads ( sigma A 2220) were washed as suggested by manufacturers 

using nuclear lysis bufer. Nuclear lysates (300µg in 1mL of nuclear lysis buffer) were then added to the 

beads (50µL of packed gel) and incubated  o.n. under rotation at 4°C. An aliquote of unprocessed 

Nuclear lysate (10µL corresponding to 1% of total Input proteins ) was stored as INPUT control for 

subsequent analysis.  

After o.n. incubation beads were pellet and supernatant containing unbound  proteins discarded. 

An aliquote of the supernatant (10µL corresponding to 1% of total unbound proteins ) was stored as 

UNBOUND control for subsequent Western Blot analysis. Beads were then extensively washed in 

lysis buffer as suggested by manufacturer. 
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9.3.Elution with 3xFLAG peptide 

Elution of the bait from washed beads was performed by competition with the 3xFLAG peptide 

(sigma F 4799). Beads (50µL) were incubated with 80 µL Elution buffer (TRIS Hcl 150mM, EDTA 

1mM, Glycerol 10%, 3xFlag peptide 500 µg/mL, NaF 10mM, Na3VO4 1mM, PMSF 1mM, protease 

inhibitor cocktail) for 30 min  under rotation at 4°C. Elution step was performed twice and supernatant 

from the two elution steps combined together  (about 160µL).  

An aliquote of the eluted material (5 µL corresponding to 3% of Immunoprecipitated  proteins ) 

was stored as IP control for subsequent Western Blot analysis. Residual eluted material (150µL) were 

precipitated using a methanol-chloroform protocol (described in chapter8) and 10% of it was processed 

by Bidimensional electrophoresis.  

10.Multiple Tagged-Pax8 Affinity purification TESTs 

10.1.Protein extracts preparation 

Protein extracts were obtained by lysing cells with  100µL/100mm dish Co-IP lysis buffer ( 

20mM TRIS-HCL pH 7.9, 120mM KCl, 5mM MgCl2, 5mM EDTA, 0.3% nonidet 40) supplemented 

with inhibitors as described in chapter8.  

Protein extracts were then pre-cleared with 200µL/2mL of Mouse IgG-Agarose (Sigma). Cleared 

lysates were quantified and protein concentration, within different lysates, normalized by adding lysis 

buffer to the lower concentrated one. Protein concentration in the lysates was kept to 5µg/µL for all the 

following experiments. An aliquote of each cleared protein extract was stored as control for INPUT 

fraction. 

10.2.Streptavidin-binding affinity purification  

Paramagnetic streptavidin beads (Dynabeads M280 streptavidin, Invitrogen, DYNAL) were 

washed twice with lysis buffer following manufactorer’s instructions. The beads were immobilized 

using a magnetic particle concentrator (DYNAL MPCTM-S, Invitrogen, DYNAL) rack .Washed beads 
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were blocked 1h at 4°C under rotation with Co-IP lysis buffer supplemented with BSA 200ng/mL. 

After incubation blocking buffer was removed and 600µL protein extract (3mg of total proteins) added 

to each IP (20µL of  Streptavidin beads for IP reaction). Binding was allowed 2h at 4°C under rotation. 

After binding. Beads were immobilized on the magnetic rack and the supernatant containing unbound 

material was discarded. An aliquote of the supernatant was stored as control for UNBOUND fraction. 

Beads were then washed as suggested by manufacturer in co-IP lysis buffer. Methods for elution of 

bound material from the beads are described in the following paragraphs. Chosen elution method is 

indicated time by time in the results section text. 

10.3.V5-IP 

Anti-V5 affinity gel beads (clone V5-10, sigma A 7345) were washed with lysis buffer following 

manufactorer’s instructions. Beads were pellet by 1 min centrifugation at 3000g.Washed beads were 

blocked 1h at 4°C under rotation with Co-IP lysis buffer supplemented with BSA 200ng/mL. After 

incubation blocking buffer was removed and 600µL protein extract (3mg of total proteins) added to 

each IP (60µL of  Anti-V5 resin  for IP reaction). Binding was allowed 2h at 4°C under rotation. After 

binding beads were pellet and the supernatant containing unbound material was discarded. An aliquote 

of the supernatant was stored as control for UNBOUND fraction. Beads were then washed as 

suggested by manufacturer in co-IP lysis buffer. Elution of bound material from the beads can be made 

through SDS boiling or TEV protease cleavage as described in the following paragraphs. Chosen 

elution method is indicated time by time in the results section text. 

10.4.Flag-IP 

Anti-Flag M2 affinity gel beads ( sigma A 2220)  were washed with lysis buffer following 

manufactorer’s instructions. Beads were pellet by 1 min centrifugation at 3000g.Washed beads were 

blocked 1h at 4°C under rotation with Co-IP lysis buffer supplemented with BSA 200ng/mL. After 

incubation blocking buffer was removed and 600µL protein extract (3mg of total proteins) added to 

each IP (60µL of  Anti-Flag resin  for IP reaction). Binding was allowed 2h at 4°C under rotation. 

After binding beads were pellet and the supernatant containing unbound material was discarded. An 
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aliquote of the supernatant was stored as control for UNBOUND fraction. Beads were then washed as 

suggested by manufacturer in co-IP lysis buffer. Elution of bound material from the beads can be made 

through SDS boiling or TEV protease cleavage as described in the following paragraphs or by 

competition with the 3xFlag peptide as described in paragraph 9.3. Chosen elution method is indicated 

time by time in the results section text. 

10.5.Flag/V5 double IP 

Anti-Flag M2 affinity gel beads ( sigma A 2220)  were washed and blocked as described above. 

1200µL protein extract (6mg of total proteins) was added to 120µL of  Anti-Flag resin. Binding was 

allowed 2h at 4°C under rotation. After binding beads were pellet and the supernatant containing 

unbound material was discarded. An aliquote of the supernatant was stored as control for UNBOUND 

FLAG fraction. Beads were then washed as described above and elution was performed with 300µL of 

3xFLAG peptide eluition buffer as described in paragraph 9.3. Half of eluted proteins (150µL)  were 

precipitated by using a methanol-chloroform protocol (described in chapter8) and stored as the IP 

FLAG fraction.  

Residual eluted proteins (150µL)  were furtherly  processed through a V5-IP. Flag-eluted 

proteins were diluted in 1mL of co-IP lysis buffer and V5-IP was performed on this purified lysate 

exactly as described above in the relative V5-IP paragraph. 

10.6.Aspecific elution through boiling in SDS 

Washed beads were incubated 5 minutes at 99°C. with 30µL (volume ratio Beads/Elution buffer 

1:1) of LDS loading buffer 2x (Invitrogen) in order to elute bound material. Beads (Streptavidin, Flag 

or V5 conjugated) were then respectively pellet as suggested by manufacturers and supernatant (about 

30µL) stored as IP fraction. 

10.7.TEV cleavage mediated elution 

Washed beads were incubated in 160µL of TEV reaction buffer (500mM TRIS-HCl pH8, 

0.5mM EDTA, 10mM DTT) supplemenyted with 10U AcTEVTM Protease (Invitrogen ). Reaction was 
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incubated 16h at 4°C. Beads (Streptavidin, Flag or V5 conjugated) were then respectively pellett as 

suggested by manufacturers and supernatant (150µL) stored as IP fraction. Proteins of the IP fraction 

were precipitated using a methanol-chloroform protocol (described in chapter8) and resuspended in 

30µL of LDS loading buffer (Invitrogen). Residual proteins still bound to the TEV-treated beads were 

then eluted through boiling (as described above) and the supernatant stored as UNELUTED fraction. 

10.8.Prescission cleavage mediated elution 

Washed beads were incubated in 160µL of Prescission reaction buffer (50mM TRIS-HCl pH7, 

150mM NaCl, 1mM EDTA, 10mM DTT) supplemented with 10U PrescissionTM Protease (GE 

healthcare ). Reaction was incubated 16h at 4°C. Beads (Streptavidin, Flag or V5 conjugated) were 

then respectively pellet as suggested by manufacturers and supernatant (150µL) stored as IP fraction. 

Proteins of the IP fraction were precipitated using a methanol-chloroform protocol (described in 

chapter8) and resuspended in 30µL of LDS loading buffer (Invitrogen). Residual proteins still bound to 

the Prescission-treated beads were then eluted through SDS boiling (as described above) and the 

supernatant stored as UNELUTED fraction. 

11.Monodimensional SDS-PAGE and Bidimensional electrophoresis 

Protein extracts or immunoprecipitated proteins were resolved by Monodimensional SDS-Page 

or small-format 2-DE and further analyzed by coomassie staining or Immunoblotting as indicated in 

the text. .  

Monodimensional SDS-PAGE separations were performed using precasted NuPAGE 4-12% 

Bis-Tris gels (Invitrogen, Carlsbad, CA). Separation conditions were set following the manufacturer's 

instructions.  

For small-format 2-DE, samples were precipitated and resuspended in 100 µl DeStreak  

Rehydration Buffer with 0.5% (v/v) of 3-11NL IPG Buffer (Amersham Bioscience). Samples were 

applied by passive rehydratation on a 3-11NL 7 cm IPGstrip (Amersham Bioscience). Focusing 

condition was set following the manufacturer's instructions. After focusing IPGstrip were equilibrated.  
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The first step of equilibration (reduction) was carried out with 2% (w/v) DTT; the second one 

(alkylation) was carried out with 2.5% (w/v) iodoacetamide and 0.03% Coomassie Brilliant Blue R-

250. Both steps were performed for 15 min each at room temperature. As described above, the second-

dimension SDS-PAGE separations were performed using precasted NuPAGE 4-12% Bis-Tris ZOOM 

gels (Invitrogen, Carlsbad, CA). Separation conditions were set following the manufacturer's 

instructions.  

Gels were fixed with 50% (v/v) methanol, 10% (v/v) acetic acid aqueous solution for 30 min, 

extensively washed with water, and stained with a colloidal Coomassie solution (Pierce). Stain and 

destain was performed according to the manufacturer’s instructions.  

12.Western Blot 

Gels were elettroblotted on PVDF membranes (Immobilon-P, Millipore, Bedford, ME) and 

screened for different antibodies. Rabbit polyclonal antibodies against Pax8 and NIS were previously 

produced in our laboratory were used respectively at 0.5 µg/ml and 0.2µg/ml (219) .Mouse monoclonal 

antibody  against Rho-Tag and mouse monoclonal antibody against TSHr (mAb 103) were previously 

described (227) and were used both at 1:50 diluition. CREB (48H2) Rabbitt  mAb, Phospho-CREB 

(Ser133) Mouse mAb, PKA C-α (Cell signalling Technologies), PKAβ cat(C-20) (Santa Cruz 

biotechnology), PKA RIIβ, PKA RIIα, PKA RIα (BD Transduction Laboratories), Histone H3 

antibody -ChiP grade (ab1791, Abcam), GAPDH (clone 6C5) (ImmunoChemical), Chicken polyclonal 

anti-BirA (Novus Biologicals), anti-Flag M2 monoclonal (sigma).  and RAS (clone Ras10) (Upstate)  

antibodies were used as suggested by the manufacturers. Secondary antibodies Mouse IgG 

Horseradish peroxidase linked whole antibody (Amersham Biosciences), Rabbit IgG 

Horseradish peroxidase linked whole antibody (Amersham Biosciences) and chicken Ig 

Horseradish peroxidase conjugate (Novus biologicals NB7289) were used   as suggested by 

manufacturers. Immune complexes were detected by enhanced chemiluminescence as instructed by 

manufacturer (Amersham Biosciences, Arlington Heights, IL). Quantitative analysis (QWB), where 

indicated, was performed on at least three independent experiment by capturing and analyzing 
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chemiluminescence with Chemidoc XRS instrument (Bio-Rad, Hercules, CA) supported by the 

Quantity One 4.6.5 software (Bio-Rad).  

13.RNA extraction and Real-Time RT-PCR  

1.5x106 cells were seeded on 60-mm dishes and cultured 48hours with or without additional drugs for 

the time indicated in the text. Total RNA was isolated with RNeasyTM mini kit (Quiagen) following 

manufacturer’s instructions. Four micrograms of total RNA from each cell line were used as a template 

for the synthesis of the first strand cDNA, starting from random hexamers, using the Superscript II 

Reverse Transcriptase kit (Invitrogen Life Technologies, Carlsbad, CA) according to manufacturer’s 

instructions. Real-Time RT-PCR was conducted using an ABI Prism 7700 sequence detection system 

and SYBR Green chemistry (Applied Biosystems, Foster City, CA). Each reaction was carried out in 

triplicate, on duplicate biological samples, using cDNA obtained from 150 ng of total RNA per 

reaction as template. Specific primers pair for each gene analysed were previously described and used 

at 130nM (4). Results were analysed using α-1 tubulin mRNA (4) as reference gene. Analysis of 

results was performed  following Real-Time relative-quantitation guidelines through the relative 

Standard curve method as suggested by Applied Biosystem. Briefly, amplification efficiency was 

calculated from triplicates relative standard curves for each primer pairs and then used to convert Ct 

values obtained from each reaction into relative-expression units  (231). Data obtained in this way were 

then normalized on the relative-expression of reference gene . Statistical analysis was performed on 

normalized relative-expression values of each gene. 

14.Chromatin-IP 

14.1.Crosslinked chromatin preparation 

Briefly  4x106 cells were seeded on 100-mm dishes and cultured 24hours with or without additional 

drugs for the time indicated in the text. At the end of the treatment formaldehyde was added to the cells 

to final 1% for 10 min to crosslink the chromatin and the reaction was stopped by adding glycine to a 

final concentration of 0.125 M. Cells were washed twice with PBS, and collected in cell lysis buffer 
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(85 mM KCl, 0.5% NP40, 5 mM HEPES pH 8.0) (1.5mL /dish) supplemented with a protease inhibitor 

cocktail (sigma) , homogenized by Dounce, incubated on ice for 15 min and centrifuged at 3500 g for 5 

min to pellet the nuclei. The pellet was resuspended in nuclear lysis buffer (10 mM EDTA, 1% SDS, 

50 mM Tris–HCl, pH 8.1) in a ratio 400µL/107cells. Crosslinked  chromatin aliquots were stored at -

80°C or either processed directly.  

14.2.Transcription rate measurement 

Transcription rate measurement was performed through an RNA-polymeraseII-based Chromatin-IP as 

previously described(232). Crosslinked chromatin (400 µL aliquotes) was sonicated on ice with 8 

pulses of 30% amplitude in a BRANSON 250 sonicator . The average chromatin size of the fragments 

obtained was about 300 bp. The sonified chromatin was centrifuged at 14,000 g for 10 min and the 

supernatants, containing soluble chromatin fragments, were diluted 10-fold with dilution buffer (165 

mM NaCl, 0.01% SDS, 1.1% Triton X, 1.2 mM EDTA, 16.7 mM Tris–HCl, pH 8.0) supplemented 

with protease inhibitor cocktail (Sigma-Aldrich). Diluted samples were precleared with 50µL/mL of 

Salmon sperm DNA/proteinA agarose (Upstate) and left 1h under rotation at 4°C. After centrifuging 1 

min at 3000g at 4°C aliquots from the supernatant of each sample (1mL each) were incubated with 2.5 

µg of RNA pol II antibody (Santa Cruz, sc-899), or as negative controls with  2.5 µg of Normal Rabbitt 

IgG  (Upstate) or in the absence of any antibody and left to stay overnight at 4°C under rotation (An 

aliquote of the supernatant  was stored  at 4°C to evaluate INPUT DNA for each sample).  The samples 

were then incubated with 30 µl of Salmon sperm DNA/proteinA agarose (Upstate)  under rotation for 

an additional period of 1h. Immunocomplex were then recovered and washed as suggested by Upstate. 

Eluition was performed with 2x100 µl of elution buffer (1% SDS, 100 mM NaHSO3). Both 

Immunoprecipitated Chromatin and Input Chromatin were incubated at 65°C overnight to reverse 

formaldehyde crosslinks. DNA purification was performed as suggested by Upstate and resuspended in 

100µL TE buffer. The entire chromatin-IP procedure has been repeated  on independent tween 

samples. All obtained DNA samples have been analysed in triplicates by Real-Time PCR. Real-time 

PCR was performed and analysed as described in the previous paragraph using 5µL of DNA as 
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template for each reaction. Primer pairs were designed with the Primer expressR  software (Applied 

Biosystem) to amplify a region of 135 bp in length, corresponding to NIS coding region and located 

about 2kb downstream of Transcription start site (NisF 5’-cccctcaccctgtctaaccc-3’/NisR 5’-

gctgaagagtgaccccagct-3’). For Pax8 gene primers were designed exactly with the same criteria (PaxF 

5’-atgagtgagaaatgatcggcg-3’/PaxR 5’-ggaaggacggagagacaggtt-3’). For each sample 

immunoprecipitated DNA levels have been reported as percent of Total INPUT DNA and the average 

value has been calculated on the two independent chromatin IP.  

14.3.Pax8 binding measurement 

Pax8 Chromatin binding measurement was performed exactly as described above but using 1µg of 

Pax8 antibody for each ChIP instead of the RNA polymerase one. Real-time PCR was performed on 

triplicate samples and analysed as described in the previous paragraph using 5µL of 

immunoprecipitated DNA as template for each reaction. Primer pairs were designed with the Primer 

expressR  software (Applied Biosystem) to amplify a DNA region of about 200bp including the 

putative Pax8 binding site (Di gennaro A, De feliceM. And Di LauroR. unpublished)  on Pax8 gene 

promoter (PP2F 5’- atgtgtctggtgaggctctcag-3’/PP2R 5’- aggctttcatcttccactccc-3’) . For each sample, 

immunoprecipitated DNA levels have been reported as percent of Total INPUT DNA and the average 

value has been calculated on two independent chromatin IP. 

15.Gel mobility shift 

4x106 cells were seeded on 100-mm dishes and cultured 48hours with or without additional drugs for 

the time indicated in the text. Nuclear extracts were prepared from FRTL-5 cells according to the 

previously described method (233). The Pax8 probe is the previously reported  oligoCπ (5’-

TCAGTCACGCGTGACTGGGCAGTG-3’)(108). The Sp1 probe (5'-

ATTCGATCGGGGCGGGGCGAG-3') used to check nuclear extract quality was previously reported 

(225).The chemically synthesized oligonucleotides were labeled with 32P using polynucleotide kinase 

and annealed to the antisense complementary sequences. The end-labeled double-strand 

oligonucleotide probes (80,000 cpm) were mixed with FRTL-5 cell extract (4 µg) in 20 µl of reaction 
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buffer [reaction buffer: 20mM Tris (pH 7.5), 75mM KCl, 5mM MgCl2, 1mM dithiothreitol, 1 mM 

EDTA, 3µg/20µL poly(deoxyinosine-deoxycytosine), 1mg/ml BSA, 10% glycerol] and incubated at 

room temperature for 30 min before loading on the 5% polyacrylamide gel in 0.5x TBE buffer at 200 

V. After electrophoresis in a cold room, gels were dried and processed for autoradiography on Kodak 

(Rochester, NY) OMAX films for 24 h.  

16.EMBL Compounds library 

The Chemical Biology Core Facility screening library used was composed of 50,000 

compounds arrayed in 96well or 384well plates format. The selected compounds of the EMBL 

library were checked for drug-likeness, structural and shape diversity, novelty and compliance 

with medicinal chemistry requirements. At the time at which the screening was performed all 

the compounds of the EMBL library were bought from TRIPOS inc. Compounds were stored 

in DMSO at 10mM concentration. All compounds used for the library screening were diluted 

at 1mM concentration with water (final DMSO 20%) and arrayed in barcoded 96well plates. 

17.GFP assay for High-throughput screening  (HTS-GFP assay) 

17.1.Cell culturing 

NG6 cells (Cl11-dervied cell line stably expressing NUE-GFP) were amplified in complete 6H 

medium to confluency. On day 0 cells were splitted 1:4 in 100mm dishes. On day1 Tamoxifen 

treatment was started and kept up to the end of procedure.  

17.2.Cell plating on 96well assay plates 

On day6 cells were harvested, counted and  diluted in Tamoxifen containing medium in order to 

obtain a 20000cells/100µL cell concentration.  Cells were then plated on CulturePlate 96 F (Black, 

96well,TC, sterile, with lids) from PerkinElmer. Manual plating, for test experiments, was performed 

with ePET multichannel pipettator (8 channel / 50-1200uL) from BioHit. In the automated setup, 
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plating was performed through FlexDrop automated dispenser equipped with stacker (PerkinElmer) on 

barcoded plates. 

17.3.Compounds addition 

On Day 7 compounds were added to the assay plates and cells were then cultured for additional 

48 hours.  

Compound vehicle was DMSO for all the tested compounds and final DMSO concentration 

(0.5%) was kept the same for all compounds tested within an experiment. Cells DMSO tolerance was 

verified prior to the start of the experiment.  

Assay Plate layout was kept the same for all the experiment performed: on the whole column 1 

DMSO vehicle was added to each well (negative control) while on the whole column 12 the known 

MAPK inhibitor U-0126 was added to each well (positive control). Compounds were added 

respectively in the wells from column 2-11(Fig.9). 

 
 

For Pilot screen (PS) 1 µL of DMSO 20%, 1 µL of 1mM U-0126/DMSO 20% or 1µL of each of 

the 1mM compounds/DMSO 20%  solutions arrayed in the PS compounds library were added 

respectively to each well (following the layout indicated in Fig.9) through an automated robotic setup 

(EP3 Robot from PerkinElmer) available at the Chemical core facility of EMBL-Heidelberg.   

For Lead screen (LS) 2.5 µL of DMSO 20%, 2.5 µL of 400µM U-0126/DMSO 20% or 2.5µL of 

each of the 1mM compounds/DMSO 20%  solutions arrayed in the LS compounds library were added 
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respectively to each well (following the layout indicated in Fig.9) through an automated robotic setup 

(EP3 Robot from PerkinElmer) available at the Chemical core facility of EMBL-Heidelberg.   

Dose-response curves were performed by creating a source plate containing, on each row,  a two-

fold factor serial diluition of each compound under testing. Starting solution in well 2 was 550µM 

compound/ DMSO 5.5%   and was serially diluted up to well 11 with cell culture medium/DMSO 

5.5% . On column1 of the source plate was dispensed the cell culture medium/DMSO 5.5% while on 

column2 cell culture medium/110µM U-0126/DMSO 5.5% was dispensed.  Once the source plate was 

created, 10 µL from each source-plate well were transferred in triplicate assay plates through the 

automated robotic setup or, where indicated for test experiments, manually with ePET multichannel 

pipettator (8 channel / 5-100uL) from BioHit. Final layout on Dose-response assay plates is described 

in Fig.10. 

 

17.4.Plate washing 

At the end of the 48hours culturing in the presence of the compounds, , on day 9,  assay plates 

were extensively washed with PBS (supplemented with calcium and magnesium)  in order to 

completely remove from the wells the culture medium that give high-background on green 

fluorescence read-out. As control of culture medium fluorescence background a 96well culture plate 

comtaining only 100µL medium/well, and no cells, was washed along with the assay plates. 
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Automated washing was performed with PlateWasher  instrument, supplied with stacker, from 

perkinElmer. The protocol necessary to abolish background without provoking cell detachment was 

determined as the following:   

 

Manual washing, where indicated for test experiments, was performed with ePET multichannel 

pipettator (8 channel / 50-1200uL).As initial step, culture medium was removed by inverting assay 

plate on absorbent paper and tapping plate on it repeatedly to remove medium completely. 

Subsequently, wells were washed by adding 200uL/well of PBS and removing it by inversion as 

described above. Washing step was repeated twice. PBS (100uL/well), which does not affect 

background, was then added to wells only to allow waiting before read-out. 

17.5.GFP fluorescence read-out 

Washed plates fluorescence was read-out on an EnVision plate reader supplied with stacker 

(PerkinElemer). EnVision parameters for eGFP fluorescence reading in living cells cultured in black 

96well culture plate (perkinElmer) were evaluated on the basis of settings giving the higher ratio 

between positive control plate (containing GFP expressing cells) and background plate (empty wells as 

described in paragraph 17.4). EnVision definitive parameters were established as the following:  
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For each well, as indicated in the protocol,  fluorescence measurement was performed 16 times 

in different positions inside the well (scan 4x4). Fluorescence read-out, for each well, was considered 

as the average value among the 16 measurements obtained by scanning of the well. EnVision plate 

reader was set in order to produce directly averaged fluorescence values. 

17.6.Results analysis (fold activation and determination of hits frequency) 

For each row of each plate fluorescence values  were converted into fold activation values by 

normalizing each compound-treated well fluorescence value on the DMSO-treated one lying on the 

same row. The Reason of such conversion is due, for the GFP-assay, mainly to issues relative to the 

adopted technical procedure of plating cells through FlexDrop automated dispenser 1) each plate can 

contain a different number of cells 2) cells  on different rows are plated through different pins of the 

FlexDrop instrument thus even on the same plate different rows can contain different number of cells. 

All statistical analysis were performed on fold activation values. 

18.Luciferase assay for High-throughput screening (HTS-Luc assay)  

18.1.Cell culturing 

Cl11 cells were amplified in complete 6H medium to confluency. On day 0 cells were splitted 

1:8 in 100mm dishes. On day1 Tamoxifen treatment was started and kept up to the end of procedure.  
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18.2.Cell plating 

On day6 cells were harvested, counted and  diluted in Tamoxifen containing medium in order to 

obtain a 30000cells/90µL cell concentration.  Cell suspension (90µL/well ) was then plated on 

CulturePlate-96  (White opaque, 96well,TC, sterile, with lids) from PerkinElmer. Manual and 

automated plating was performed as described in the GFP assay.  

18.3.Transfection 

Transfection was performed on day7 using as transfection reagent PEI (Polyethylenimine,linear, 

MW∼250000 from Polysciences inc.). PEI was dissolved at 1mg/mL in tissue culture grade water and 

pH adjusted to 7.0 with 1N HCl. Transfection conditions for 96well plates were optimized by testing 

different amount of DNA/well and, for each DNA amount, different ratios between PEI (µg) and DNA 

(ng) amount. Optimized conditions (highest transfection efficiency) were set on 100ngDNA/well and a 

4:1 ratio PEI (µg)/ DNA (ng). 

Definitive transfection mix for each 96well plate was prepared as follow: 10µg of plasmid DNA 

(pNUE-luc) were added to 1mL of 0.15M NaCl and mixed for 5 seconds. PEI (40µL) was then added 

and mixed 10 seconds. Transfection mix was incubated 10 min at Room Temperature and then added 

to assay plates (10µL /well) through the EP3 robotic automated procedure or, where indicated for test 

experiments,  with ePET multichannel pipettator (8 channel / 5-100uL). Transfected cells were rested 

for about 3h in the cells incubator. 

18.4.Compound addition 

After this short 3h incubation of transfected cells,  compounds were added to the assay plates and 

cells cultured for additional 48 hours. Compounds addition procedure and assay plate layout was 

exactly  the same described for the GFP assay. 
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18.5.Luciferase luminescence read-out 

Luciferase read-out was performed on day9. BriteLight (PerkinElemer) solution (100µL/well) 

was added to assay plates through FlexDrop automated dispenser. Each plate was then read at the 

EnVision plate reader 10 minutes after Britelight solution dispension. 

EnVision readout was performed with default parameters for enhanced luminescence 

detection.but measurement time was set to 0.5sec per well and an additional 1 minute of orbital 

shaking was added prior to read-out. 

18.6.Results analysis  

Luminescence read-out results were converted into Fold Activation values as described for the 

GFP-assay. All statistical analysis were performed as described for the GFP-assay on Fold Activation 

values. 

19.ERK phosphorylation assay 

Cl11 cells were cultured 5 days in the presence of Tamoxifen and then 20000 cells/well of 

Tamoxifen treated Cl11 cells were plated on 96well plates on day 1. On day 2, the MAPK inhibitor U-

0126, the unknown selected compounds, or the DMSO vehicle  were respectively added to the cells, 

each at the final concentration indicated in the Results section text, and cells were cultured additional 

24 hours. The activity of each compound was tested on triplicate wells. The entire experiment was 

performed on twin 96well plates. 

Inhibitory activity of compounds on ERK phosphorylation was assayed through the FACETM 

ERK1/2-in cell Western analysis for phospho ERK1/2- kit (active motif) following manufacturer’s 

instruction. Briefly, at the end of the treatments cells were fixed in a 4% formaldeyde PBS solution. 

After inactivation of endogenous peroxidases, washing and blocking,  cells were incubated 3 hours at 

25°C with primary antibodies (phospho-ERK antibody on one 96-well plate and Total ERK antibody 

on the tween 96-well plate), washed and subsequently incubated with HRP-conjugate secondary 

antibody. Developing solution was then added to washed cells and developing reaction was allowed for 

10 minutes. Colorimetric read-out was performed by reading absorbance at 450nm in EnVision plate 
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reader (perkin Elmer). Background absorbance was determined by incubating cells with the secondary 

antibody in the absence of any primary antybody. Each absorbance value was subtracted of the average 

background absorbance obtained in the plate. Each phospho-ERK absorbance value was normalized on 

the corresponding total-ERK signal in the twin plate. Triplicates results expressed as a ratio of 

phosphoERK/Total ERK signal were then averaged.  



 72 
 

RESULTS 

 

1.ER-RasV12 activation induces a rapid downregulation of 

thyroidspecific gene expression   

I analyzed, by Real-Time-PCR, the kinetics of Ras-induced down-regulation of thyroid-specific 

gene expression in a rat thyroid cell line, called Cl11, expressing an inducible H-RasV12 oncoprotein 

(ER-RasV12) (4).  Shortly after ER-RasV12 activation by tamoxifen (4OHT) there is a simultaneous 

decrease of the mRNAs encoding several thyroid differentiation markers, except for the Tg and Nkx2-

1/Titf1 mRNAs that show, at least in the time window used, a small or no decrease, respectively (Cl11 

in Fig. 1). The simultaneous down-regulation of several differentiation markers suggests that Ras 

oncogene might interfere with a regulatory target common to many thyroid-enriched genes. No 

inhibition of gene expression was detected when wild type cells (FRTL-5 in Fig.1)  were treated with 

tamoxifen, thus demonstrating the role of oncogenic Ras in the observed loss of differentiation.. 
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2.NIS downregulation is achieved through an ER-RASV12 mediated 

impairment of NUE (NIS Upstream enhancer)transcriptional 

activity 

In order to approach the mechanisms responsible for the oncogenic Ras induced down-regulation 

of thyroid-specific gene expression, we focused our attention on the gene encoding the sodium-iodide 

symporter (NIS), whose regulatory elements have been extensively studied. First, to test whether the 

decrease in NIS mRNA levels resulted from decreased transcription we measured, by chromatin 

immunoprecipitation, RNA polymerase II occupancy of the NIS gene coding sequence in Cl11 cells  

after activation of  Ras oncoprotein. This assay shows that the amount of RNA polymerase II bound to 

NIS gene is already reduced 6 hours after Ras oncogene activation and almost completely abolished at 

24 hours. These results are consistent with the observed mRNA decrease and indicate that Ras 

activation rapidly inhibits NIS gene transcription (Fig. 2).  

The NIS gene regulatory elements affected by Ras oncoprotein were investigated using 

previously described chimeric constructs (64) in which either the entire upstream region of the rNIS 

gene or deletion derivatives are fused to the LUC reporter gene (Fig. 3). Each construct was transiently 

transfected into Cl11 either in the presence or absence of Tamoxifen (4OHT). The 2.9-kb DNA 

fragment from the rNIS regulatory region (pNIS-Luc1) is significantly down regulated by Ras 

activation. The same extent of inhibition is also seen with the pNIS-Luc9 construct in which the 

sequence located between positions -2495 and -2264, corresponding to the NIS Upstream Enhancer 

(NUE) (64) is fused to the proximal NIS promoter (between positions -564 and +1). In contrast, no Ras 

induced inhibition is observed on the activity of the proximal NIS promoter (pNIS-Luc5). I conclude 

that Ras oncoprotein reduces NIS expression mainly through inhibition of NUE activity. 
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To further assess the ability of oncogenic Ras to inhibit NUE activity independently from other 

surrounding NIS gene sequences we cloned the NUE sequence upstream of the E1B TATA box in 

pGL3-basic and tested its transcriptional activity in Cl11 either in the presence or absence of  4OHT 

(Fig. 4). Again, a severe impairment of transcriptional activity is observed following Ras activation. 

No impairment of NUE transcriptional activity was detected if wild type cells were used (FRTL-5 in 

Fig.4)   

Taken together, these data demonstrate that Ras oncogenic activity inhibits NIS gene expression 

at the transcriptional level and that such inhibition is mediated, at least in part, by interference with the 

stimulatory activity of the NUE regulatory element. 
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3.Activation of Ras reduces both the amount and the activity of 

Pax8 

The NIS enhancer NUE contains at least three functionally relevant protein binding sites: a 

central CRE-like element called NUC surrounded by two Pax8 binding sites ((64), Fig. 5). The two 

Pax8 binding sites have been shown to be necessary for NUE activity (225). In Cl11 cells Ras 

activation induces an early and significant down regulation of Pax8 protein levels (Fig. 6).  

In order to analyze the role of Pax8 down regulation in Ras oncoprotein induced de-

differentiation we stably transfected into Cl11 cells a Pax8 expression vector that encodes a flagged 

Pax-8 protein (Flag-Pax8) under the control of a Ras independent promoter (Fig. 7). I selected 3 stable 

clones (Px31, Px33 and Px37 in Fig. 8) in which the Pax8 protein levels are unaffected by Ras 

activation, since the transfected, flagged protein maintains its expression while the endogenous protein 

is down-regulated (Fig. 7, 8). However, irrespective of Pax8 protein levels, expression of the 

endogenous NIS gene was still down regulated by Ras activation as in the parental cell line (Fig. 8).  

Consistently, also the activity of a transfected NUE enhancer was down regulated by oncogenic Ras, 

both in the presence or in the absence of the Pax8 protein (compare results in Cl11 with those obtained 

in cell lines Px31, Px33 and Px37, Fig. 9). These results suggest that the Ras oncoprotein interferes 

with transcriptional activity of Pax8,  besides the obesrved  negative effect on Pax8 protein levels.  

To further test this hypothesis, we used a reporter construct driving the expression of Luciferase 

under the control of an artificial promoter made by a pentamer of Pax8 binding sites (Cp5, (4)) located 

upstream of the E1B TATA box (Fig. 10). Cp5 is stimulated by both wild type and flagged-Pax8 in 

non-thyroid cells, demonstrating that the addition of the flag does not have any adverse effect on Pax8 

transcriptional activity (Fig. 11). However, data in Fig. 12 show that Cp5 activity is equally down 

regulated by the activated Ras both in the absence (Cl11) and in the presence of Pax8 (Px31, Px33, 

Px37).  

Furthermore, given that there is no interference by the activation of Ras on the DNA binding 

activity of Pax8 (Fig. 13), we conclude that the inhibition of NIS expression by oncogenic Ras is 
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mediated by an interference with Pax8 transcriptional activity. Such an inhibition presumably precedes 

the observed decrease in Pax8 protein levels.  
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4.Role of the TSHr/cAMP pathway in ER-RASV12 induced 

dedifferentiation 

Pax8 transcriptional activity has been suggested to be dependent upon TSH stimulation of the 

cAMP pathway (86, 234). TSHr mRNA is rapidly reduced after Ras activation (Fig. 1). Such a 

decrease is immediately reflected in a reduction in TSHr protein level (Fig. 14A) and in a functional 

impairment of the cAMP pathway, as demonstrated by a significant decrease in the levels of 

phosphorylated CREB protein (Fig. 14B). Again, none of these effects could be observed in FRTL-5 

cells treated with tamoxifen, thus demonstrating that they are truly a consequence of Ras activation 

(Fig. 14A and B, FRTL-5). In addition, TSH has been previously established to be necessary for 

maintaining thyroid differentiation (235, 236) and in particular for NIS expression (99, 237). I thus 

hypothesized that inhibition of the TSHr/cAMP pathway could be a crucial event in Ras oncoprotein 

induced NIS down regulation .  

4.1.TSHr downregulation is not the master event in oncogenic Ras 

induced de-differention 

In order to test if oncogenic Ras was down regulating NIS through inhibition of TSHr expression 

we used an approach similar to the one illustrated above for Pax8. Thus, I stably transfected into Cl11 

an expression vector encoding the human TSHr (227) under the control of a Ras independent promoter 

(Fig. 15). In the stable hTSHr expressing clones (T4 and T17 in Fig. 16), expression of the ectopic 

TSHr is maintained after Ras activation. However, irregardless of TSHr protein levels, the expression 

of the endogenous NIS gene was still down regulated by Ras activation as in the parental cell line (Fig. 

16). I conclude that TSHr expression down regulation is not the crucial event in oncogenic Ras induced 

de-differentiation of FRTL5 cells. 
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4.2.The reduction of cAMP intracellular levels induced by oncogenic Ras is 

not the cause of the dedifferentiated phenotype   

Measurements of intracellular cAMP demonstrates that while in the parental cell line Ras 

activation decreases cAMP levels, in clones T4 and T17 such a decrease is not observed. This evidence 

is in support of the persistent expression of a functional TSHr in clones T4 and T17 (Fig. 17). In 

keeping with these observations, addition of the cAMP analogue 8-CPT to Cl11 was ineffective in 

contrasting the inhibitory effect of activated Ras on the endogenous NIS expression (Fig. 18). As well 

as for endogenous NIS expression, reagents capable of increasing cAMP levels, such as Forskolin, 8-

CPT and the phosphodiesterase inhibitor IBX, were ineffective in contrasting the inhibitory effect of 

activated Ras on NUE transcriptional activity (Fig. 19).  I conclude that Ras oncoprotein induced NIS 

down regulation is not due either to the decreased levels of TSH receptor or to a reduced production of 

cAMP, since restoring either of them does not prevent the negative effect exerted by activated Ras. 

4.3.Oncogenic Ras inhibits the TSHr/cAMP pathway by acting also 

downstream of cAMP production 

Even though in T4 and T17 clones TSHr expression and cAMP levels are maintained (fig. 16 

and 17), CREB phosphorylation in these clones is still impaired by Ras activation, as in the parental 

cell line Cl11 (Fig. 20). This observation suggests that oncogenic Ras acts downstream of TSHr. Given 

also that either Forskolin/IBX and 8-CPT could not rescue CREB phosphorylation in the presence of 

activated Ras (Fig. 21), I conclude that Ras oncogene also inactivates the cAMP pathway through a 

mechanism downstream of those regulating intracellular cAMP levels. Interestingly, using cells stably 

transfected with a constitutively active Ras oncoprotein, I demonstrate that the observed down 

regulation of phosphorylated CREB is a persistent effect of oncogenic Ras (Fig. 22). 

 

4.4.Oncogenic Ras Inhibits PKA activity 

Ras oncoprotein in our cells inhibits CREB phosphorylation at Ser133. However, many signaling 

pathways and several different kinases converge on CREB Ser133 (89). Given the specific stimulation 
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of PKA, via cAMP, by forskolin, I tested whether oncogenic Ras interferes with forskolin induced 

CREB phosphorylation. To this end, I acutely stimulated Cl11 cells with Forskolin, in the absence or in 

the presence of oncogenic Ras  and measured phosphorylated CREB by quantitative WB (QWB). The 

results of such an experiment show that Ras significantly reduces Forskolin induced CREB 

phosphorylation, (Fig. 23) even though cAMP levels are equally stimulated both in the presence or in 

the absence of the oncoprotein (Fig. 24),  strongly suggesting that Ras interferes with PKA activity. In 

support of this conclusion, I show a reduced PKA activation by forskolin in the presence of oncogenic 

Ras (Fig.25). Such a reduction is not due to alterations in levels or subcellular localization of PKA 

regulatory and/or catalytic subunits (Fig. 26 and 27). I conclude that oncogenic Ras in thyroid cells 

interferes with PKA activity. The mechanism of such interference remains to be elucidated. 
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5.Pax8 activity is impaired by Ras oncogene  through inhibition of 

the cAMP/PKA  pathway 

Given that oncogenic Ras negatively interferes with PKA, we wondered whether such 

interference could explain the observed reduction in Pax8-dependent transcription.  

5.1.Pax8 activity is regulated by PKA  

First, to test if PKA regulates Pax8 activity, I measured the stimulation of the Cp5 reporter by 

Pax8 in the NIH 3T3 cell line either in the presence or absence of a PKA catalytic subunit alpha 

(cPKA) expression vector. I found indeed that Pax8 transcriptional activity is strongly enhanced 

(approx. 30 fold) by PKA over-expression, without a significant effect on the levels of Pax8 protein 

(Fig28).  

5.2.PKA catalytic subunit over-expression restore Ras oncogene induced 

Pax8 inactivation and NUE activity 

I next tested whether PKA could rescue the inhibition exerted by oncogenic Ras on Pax8-

dependent NIS transcription. Even though I have shown that in our cells Ras does not impact on the 

amount of intracellular PKA (Fig. 26), I reasoned that PKA over expression might counteract Ras 

inhibition, whatever the nature of the inhibitory mechanism is. I therefore measured the effect of cPKA 

over-expression on Ras oncogene induced inhibition of Cp5 transcription. These experiments were 

carried out in both Cl11 and Px31 cells since these two cell lines express, after Ras activation, very 

little (Cl11) or normal levels (Px31) of the Pax8 protein (Fig.8). I observed that cPKA greatly 

stimulates Cp5 activity in the presence of activated Ras and such an effect is even more pronounced in 

Px31 cells, where the levels of Pax8 are close to normal (Fig. 29A and B). As predicted, the PKA 

specific inhibitor H89 completely blocks the observed stimulation of Cp5 transcription, thus 

demonstrating that the observed effect is PKA dependent (Fig. 29B). Finally, I could demonstrate that 
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also the activity of NUE is rescued by transfection of PKA, again with a better efficiency in Px31 (Fig. 

30B) than in Cl11 (Fig. 30A) cells.  

Taken together, these data strongly suggest that the negative interference exerted by oncogenic 

Ras on PKA causes a reduction of Pax8 transcriptional activity that, in turn, provokes a diminished 

transcription of NIS. It remains to be ascertained what mechanism Ras uses to reduce Pax8 protein 

levels. Recent data (A. Di Gennaro, M. De Felice and R.D.L., unpublished results) suggesting that 

transcription of the Pax8 is auto-regulated, might provide an unifying view of these events, and would 

highlight the block of PKA as the highest in the hierarchy of events leading to Ras-induced de-

differentiation of thyroid cells in culture.  

In support of this hypothesis I found that oncogenic Ras turns down very early Pax8 gene 

transcription (Fig. 31) and that  this effect is associated with a decreased binding of Pax8 protein itself 

to its own gene promoter (Fig. 32). 
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6.A minimal Pax8 transactivation domain is required to confer PKA 

responsiveness 

6.1.Oncogenic Ras does not induce major post-translational modification 

on Pax8  

In order to test whether oncogenic Ras and the subsequent impairment of PKA kinase activity 

was acting by modifying Pax8 protein itself I decided to analyse its migration on a bidimensional gel 

before and after activation of oncogenic Ras. To this aim I immunoprecipitated the flagged-Pax8  

protein from the Px31 clone (described at page 21) in which Flag-Pax8 expression is kept constant also 

after Ras oncogene activation. Immunoprecipitated Flag-Pax8, from untreated and Tamoxifen-treated 

cells, were loaded on a bidimensional gel and analysed by Western Blot (Fig 33). This analysis showed 

that there are no macroscopic modifications induced by oncogenic Ras on Pax8 protein. Indeed its 

migration pattern appeared to be unmodified by oncogenic Ras. However this negative result could be 

due to technical limits. For example, Pax8 protein is known to be highly phosphorylated (234), it is 

reasonable to think that remotion of a single phosphate on  a highly phosphorylatd substrate would not 

produce a clear migration variation still being functionally extremely relevant. In order to refine the 

analysis and reduce the background I decided to identify a minimal Pax8 domain required for 

oncogenic Ras regulation. 

6.2.Identification of Pax8 transactivation domain minimal regions 

responsive to ERRASV12 

In order to investigate the Pax8 protein region necessary to confer oncogenic Ras responsiveness 

I engineered a series of Pax8 transactivation domain deletion derivatives and fused each  of them to the 

GAL4 DNA binding domain (Fig. 34). In this way I could have compared Pax8 transactivation 

domains activity in Cl11 before and after activation of Ras oncogene in transient transfection assays 

using an artificial  GAL4 responsive  reporter vector (G5 reporter vector: it contains 5 binding sites for 
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GAL4) thus avoiding interfearence of the endogenous Pax8 protein activity on my analysis. Unluckly 

the Pax8-GAL4 derivatives had very poor, if no activity in our cells (Fig.35) and this was unlikely to 

be dependent upon technical issues since the GalVp16 control fusion protein (GAL4 DNA binding 

domain fused to the Vp16 transactivation domain) worked as expected in the assay. I reasoned that the 

poor activity of the Pax8-GAL4 derivatives could have been due to an incompatibility of  the DNA 

binding properties of the GAL4 domain and  the ability of the Pax8 transactivation domain to promote 

transcription. I thus decided to pursue an alternative strategy in which I could keep using the Pax8 

paired DNA binding domain. However, to do so I could not use our Cl11 cells anymore since 

endogenous Pax8 in untreated cells would have covered the activity of the deletion derivatives on Cp5 

reporter vector. I thus decided to use an NIH-derived stable cell line expressing the ERRASV12 

oncogene (De vita G., unpublished data) which does not express Pax8. 

6.3.Oncogenic Ras action is FRTL-5 specific 

I tested whether oncogenic Ras could regulate Pax8 activity in the NIH-derived stable cell line 

expressing the ERRASV12 oncogene (NIH-ERRAS). I transiently transfected Pax8 together with the 

Cp5 reporter vector in these cells and tested its activity with or without Tamoxifen (Fig. 36). 

Surprisingly, I found that in these cells oncogenic Ras activation increases Pax8 activity, rather than 

decreasing it, and that this increase was not due to the Tamoxifen treatment itself (Fig. 37). I wondered 

what were the effects of Ras oncogene on the PKA pathway in these cells and so I tested CREB 

activity by using an artificial CREB-responsive  reporter vector containing 5xCREB binding sites 

(CRE reporter vector) (Fig. 38). I found that in NIH cells oncogenic Ras upregulates CREB activity 

rather than decreasing it thus having an opposite effect  with respect to the FRTL-5 derived cells. 

6.4.Identification of Pax8 transactivation domain minimal regions 

responsive to PKA 

In NIH cells we could not analyse oncogenic Ras mediated inhibition of Pax8 activity since this 

effect appears to be FRTL-5 specific. However we could test PKA mediated regulation of Pax8 

activity. I reasoned that since oncogenic Ras action on Pax8 is mediated by PKA, identification of the 
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PKA responsive minimal Pax8 domain should have coincided with the oncogenic Ras responsive 

domain. I thus fused Pax8 transactivation domain deletion derivatives to the Pax8 paired DNA-binding 

domain (Fig.39). I tested the activity of the Pax8 deletion derivatives in NIH cells by cotransfecting 

them with the Cp5 reporter vector (Fig. 40). I found that Pax8 deletion derivatives  had an activity 

comparable to the endogenous Pax8 with the only exception of deletion P4 which showed a reduced 

activity. I next tested their regulation by PKA in NIH cells (Fig. 41). I found that all Pax8 

transactivation domain deletion derivatives were responsive to PKA. This PKA responsiveness was not 

mediated by the Paired DNA binding domain since the Pd-Vp16 fusion protein (Vp16 transactivation 

domain fused to the Pax8 paired DNA binding domain)  was not regulated by PKA. 

 I conclude that a minimal transactivation domain (aminoacid 370-454 in the mouse Pax8 

protein) is required to confer PKA responsiveness. This minimal domain is the region to which the 

majority of cofactor have been identified to interact with, strongly suggesting that PKA acts by 

modifying  Pax8-cofactors interactions. 
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7.Characterization of oncogenic Ras induced modifications of  Pax8 

transcriptional complexes 

7.1.Gel filtration analysis of Pax8 transcriptional complex   

In order to gain clues about .eventual variations in Pax8 transcriptional complexes I performed a 

gel filtration analysis. Through this analysis is possible to sort proteins by molecular weight. A linear 

relationship exist between the logarithm of Molecular Weight and the volume (each collected fraction 

is 0.5mL) at which the protein is eluted (Fig.42A).  If gel filtration is performed on a cellular extract  

whose conditions are appropriate (protein interactions are kept)  is possible to understand  distribution 

of a given protein in macromolecular complexes. Indeed I performed a gel filtration test run on Cl11 

cells in order to analyze whether or not Pax8 was partner of a macromolecular complex. In Fig42B is 

shown the total proteins eluition profile along the collected fractions. Proteins from each fraction were 

precipitated, resuspended in an appropriate volume and analysed by Western Blot to check Pax8 

distribution (Fig. 42C).  Results  showed that Pax8 (∼50KDa)  is eluted, as expected, in fractions 

corresponding to low molecular weight (fractions 14-17 should contains proteins ranging from 80KDa 

to 40 KDa  as determined from the standard curve)  but also in fractions corresponding to high 

molecular weight (fractions 9-11 that correspond to proteins ranging from 330 KDa to 160 KDa) 

suggesting Pax8 it is partner of a macromolecular complex. Furthermore TTF1 which is a known Pax8 

cofactor is eluted within the same High Molecular Weight fractions strengthening  the result. This 

distribution along the fractions it is not random since GAPDH, a cytosolic protein of about 42 KDa, is 

eluted exclusively in low molecular weight fractions.  

I thus  analysed by gel filtration extracts of Cl11 cells treated or not with Tamoxifen. Results 

obtained with this analysis showed very similar profiles of Pax8 distribution in Tamoxifen treated and 

untreated cells (Fig.43) . I thus conclude that through this technique is not possible to detect any 

macroscopic alterations of the multimolecular Pax8 complex induced by oncogenic Ras. 
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7.2.Generation of multiple Tags to isolate Pax8 cofactors 

I thus decided to isolate Pax8 cofactors in order to analyze them qualitatively before and after 

Ras oncogene activation. To this end I generated a series of  different multiple Tags (Fig. 44) that 

should have allowed a very efficient tandem IP procedure for cofactor isolation.  

The starting point was a triple-tag, obtained from Stunnenberg H.G. Laboratory, that I called 

TTC (Triple Tag C-terminal). This TTC tag was projected to be fused to the C-terminal end of the 

protein of interest  and consisted of three different kind of peptide tags 1) the V5 epitope tag (V5) 

(238) 2)the Flag epitope tag (Flag TM) (239, 240) and 3) The Biotin acceptor peptide tag (AVI) that is 

the minimal target peptide recognized by the bacterial biotin ligase BirA (241), separated by two 

proteases cleaveage sites (respectively the Tobacco etch virus protease TEV (242) and the Human 

Rhinoivirus 3C protease (243) Prescission) as illustrated in Figure 44. Since Pax8 was never tagged at 

the C-terminal I synthesized through appropriate PCR reactions (see materials and methods for details) 

a specular triple-tag in order to fuse it at the Pax8 N-terminal end (TTN in Fig. 44). Furthermore since 

the triple tags are both 68 aminoacid long I decided to synthesize two shorter kind of tags. The double-

tag, both for the N-terminal (DTN) and C-terminal (DTC) fusion, is basically like the triple-tag but it 

miss the Prescission  cleavage site and the AVI sequence. On the other hand since it was demonstrated 

that the BirA/AVI biotinylation system allowed a very efficient isolation of transcription cofactors in a 

single step IP procedure (244, 245), I also synthesized a mono-tag, again  both for the N-terminal 

(MTN) and C-terminal (MTC) fusion, consisting of only the Prescission  cleavage site and the AVI 

sequence. 

7.3.Evaluation of Tagged-Pax8  chimaeric proteins activity 

I fused each of the generated Tag to Pax8 protein and tested the activity of these chimaeric 

proteins by evaluating their ability to transactivate the Cp5 artificial promoter (5x Pax8 binding sites) 

in NIH cells (Fig. 45). Results showed that DTN-Pax8 is the only protein that keep an activity and an 

expression very similar to the already characterized FlagPax8. The other tagged Pax8 proteins shows 
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very modest expression when compared with FlagPax8 and, though being functional, an increased 

activity with respect to FlagPax8.  

Since  from data presented up to here it appears that PKA induced regulation of Pax8 protein is 

connected to Ras oncogenic action I also tested whether these tagged Pax8 were still responsive to 

PKA in order to chose an appropriate Tag (Fig. 46). The analysis showed that all  the chimaeras were 

equally responsive to PKA as the wild-type Pax8. 

I thus selected two Pax8 tagged versions for different reasons. The DTN-Pax8 (Double Tag 

fused to Pax8 N-terminal end as described in Fig.44) since it presents a very good expression level and 

an activity very similar to the wild-type control. I also selected the TTN-Pax8 (Triple Tag fused to 

Pax8 N-terminal end as described in Fig.44) since even though not express at  optimal levels in 

transient transfections it is the best tag among the ones carrying the AVI sequence.  

7.4.Generation of stable cell lines expressing different multitag-Pax8  

In order to obtain a suitable system to isolate and compare Pax8 cofactors before and after Ras 

oncogene activation I generated several stable cell lines starting from Cl11 cells.  

I stably transfected in Cl11 cells the  DTN-Pax8 protein. Among the clones obtained (Fig. 47) 

the F16 clone was selected since  it expressed the grater amount of DTN-Pax8 and a comparable 

amount of endogenous Pax8 and ER-RasV12 with respect to the parental Cl11 cell line. 

Since the AVI tag requires the biotinylating bacterial BirA enzyme I generated a cell line which 

express both the TTN-Pax8 and the BirA biotin ligase (Fig. 48) and an additional control cell line that 

express only the BirA enzyme (Fig. 49). As expected and shown in Figure 48 none of the obtained 

TTN-Pax8 expressing clones (E clones) had an expression of the ectopic Pax8 comparable to the 

endogenous one. This represent an issue since the endogenous Pax8 can compete with the bait for 

cofactors. However I choose the best  TTN-Pax8/BirA expressing clone (E15) and a comparable BirA 

expressing control cell line ( D16) in order to analyse, within the same cellular extract, different IP 

procedures and establish whether use the DTN-Pax8 system or either project additional kind of tags. 
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7.5.Testing of BirA/Avi biotinylation system and elution procedures 

I used the E15 clone expressing TTN-Pax8 and BirA (Fig. 48) in order to compare different 

immunoprecipitation procedures. As first I decided to test in our E15 clone 1) Working of BirA 

biotinylation of the AVI Tag on TTN-Pax8 by purifying TTN-Pax8 with streptavidin conjugated beads 

2)Efficiency of eluting the bait (TTN-Pax8) by TEV or Prescission protease cleavage. The 

experimental scheme is sllustrated in figure 50A  Results, illustrated in figure50C, showed that 

effectively in our system BirA biotynalates TTNPax8. Infact TTNPax8  is found in the streptavidin 

bound fraction (clone E15, IP#1 in Fig50C) while the endogenous untagged Pax8 is exclusively in the 

Unbound fraction (clone E15, UnBound#1 in Fig50C). Analougously in the BirA only expressing 

clone D6 no signal for Pax8 is detected in the streptavidin bound fraction (clone D6, IP#1 in Fig.50C). 

Concerning Eluition procedures results showed that boiling streptavidin beads in SDS to recover the 

bait is an efficient procedure (compare IP#1,2,3 in Fig.50C). However if looking at the Coomassie 

staining in Figure 50B it is clear that it is also the procedure with the higher background. Infact a lot 

more of aspecific protein bands  are visible by coomassie staining (compare IP#1 in E15 clone with 

IP#2 and IP#3 and with IP#1 in clone D6 in Figure 50B). On the other hand both TEV and Prescission 

protease cleavage-based eluition greatly reduce the background when looking at the coomassie staining 

(compare IP#1 with IP#2 and #3 in Figure 50B). Furtermore both TEV and Prescission protease 

mediated cleavage of  TTN-Pax8 bait is almost complete. Infact cut by TEV should produce a Pax8 

migrating band at the same height of the endogenous pax8 since it removes completely the Tag (see 

TTN tag in Fig44). My results shows that TEV cut all the TTN-Pax8 has been cut, even though 

strangely  not all the cut TTN-Pax8 is eluted from the beads since it can be recovered only by boiling 

the TEV treated beads ( look Pax8 band height in IP#2 and Uneluted #2 in Fig. 50C). Prescission 

protease, on the other hand should remove only the AVI tag (see TTN tag in Fig 44) generating a 

DTNpax8 like band migrating slightly belove the TTN-Pax8 band. I detected an aspecific cut of 

Prescission protease on the TEV cleaveage site. Infact in IP#3 in Figure 50C is clearly visible the 

presence of two bands one migrating as expected like a DTNPax8 and the other one migrating like the 

endogenous Pax8. However with prescission protease the bait can be completely eluted from the beads 
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since no Pax8 is visible when Prescission treated beads are boiled in SDS (see uneluted #1 clone E15 

in Fig 50C).  

I conclude that Protease-based elution greatly reduces the background and that Prescission 

protease, as previously suggested, is the best cleavage-based eluition system since it allows an almost 

complete recovery of the bait but can’t be used on baits that carry a TEV cleavage site for subsequent 

purification procedures. 

7.6.Comparison of Biotin-based purification system versus V5 and Flag 

epitopes based immunoprecipitations  

The advantage of using a the TTN tagged Pax8 expressing clone (Fig. 44 and 48) is that is 

possible to apply different purification procedures on the same cell lysate thus easily comparing 

different purification protocols. I decided to compare the single-step  biotynalation-based purification 

of TTN-Pax8 versus respectively V5 and Flag immunopurification procedures.I used again the E15 

clone expressing TTN-Pax8 and BirA  and the negative control cell line D6, expressing only BirA,  in 

order to discriminate between specific bands and background. In order to apply the same protease-

based elution procedure to all the purification systems in testing  I had to use TEV protease (see TTN 

tag structure in Fig. 44). 

The experimental scheme is illustrated in figure 51A  Results, illustrated in figure51, showed that 

first of all when lookingat the background (see Comassie staining in Fig. 51B) the three purification 

procedures are not that different between each other. It is infact almost impossible to establish a 

difference within the coomassie staining lanes relative to three protocols (compare IP#1, #2 and #3 in 

Fig. 51B). Furthermore there is no advantage neither in bait recovery. Infact Pax8 Western Blot 

analysis in Figure 51C clearly shows that the amount of recovered bait is almost the same for the three 

procedures.  

I conclude that the biotin-based purification system does not produce results which are 

significant better than the ones that can be obtained by using the standard V5 or Flag epitopes based 

purifications neither in terms of background nor in terms of bait recovery.  Furthermore, since as 

previously shown (see Fig.45 and Fig. 48) the presence of the Avi tag apparently impairs a proper 
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expression of the tagged protein and, as explained above, does not give any evident advantage I 

decided to move on the DTN tag (see Fig.44 for structure and Fig. 45 and 47 for expression of 

DTNPax8). 

7.7.Comparison of V5 and Flag single-step IPs versus double-step IP 

Established that the Avi Tag did not confer any advantage with respect to V5 and Flag epitopes I 

decided to test whether I could improve the IP procedure by combining the V5 and Flag 

immunoprecipitation procedures in a tandem purification protocol. In order to do that I used the F16 

cell line (Fig.47) expressing DTNPax8 (see fig.44 for DTN tag structure).  

I compared, on the same cell lysate, the following purification protocols: 1) Immunoprecipitation 

through V5-antibody conjugated beads  and TEV-mediated elution of the bait 2) Immunoprecipitation 

through Flag-antibody conjugated beads  and elution of the bait by competition with a 3xFlag peptide 

3) Immunoprecipitation through Flag-antibody conjugated beads, elution of the bait by competition 

with a 3xFlag peptide, re-immunoprecipitation of recovered material with V5-antibody conjugated 

beads  and elution through TEV-mediated cleavage of the bait. The experimental scheme is illustrated 

in figure 52A. 

Coomassie staining analysis showed that V5-based purification clearly reduces the background 

with respect to the Flag-based one(compare lanes IP#1 and #2 in Fig. 52B). However bait recovery is 

poor in V5 immunoprecipitation when compared  to the Flag one (compare lanes IP#1 and #2 Fig. 

52C). This poor recovery in the single step V5-based IP is based in part on the inefficient TEV 

protease elution (see Uneluted#1 in Fig. 52C) , but maybe could be improved also by testing different 

kind of commercially available antibodies against V5 epitope. What I found relevant is that 

background of V5-based IP can be further reduced by combining the two V5 and Flag procedures 

without significantly affecting Pax8 bait recovery amount (compare lanes IP#1 and #3 Fig. 52B and  

Fig 53B). 

I conclude that the double Flag/V5 tandem purification protocol is potentially a very good 

system that has its major drawback at present in bait recovery. The first modification that should be 

made to the DTN tag in order to improve bait recovery is the substitution of the TEV cleavage site with 
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the Prescission protease one in order to avoid the almost 50% loss of the bait during protease-based 

elution (see previously discussed Fig. 50 for comparison of elution procedure). Additionally new V5 

antibodies should be tested in order to obtain a purification system suitable for unbiased cofactor 

isolation and identification through mass spectrometry.  

7.8.Analysis of Pax8 cofactors differentially regulated by ERRASV12 

Eventhough at present not suitable for mass spectrometry analysis of Pax8 cofactors the 

DTNPax8 expressing clone F16 and the double Flag/V5 tandem purification protocol can be used to 

analyse through WesternBlot analysis interaction of Pax8 with known cofactors before and after Ras 

activation. I’m planning to use the system in order to analyse Pax8 interaction with the following 

known cofactors either in the absence or in the presence of Tamoxifen: 1) TTF1 (107, 128), 2) p300 

(129-131), 3) Rb (132), 4)PARP (133), 5)Taz (134), 6) WBP-2 (135). As control, obviously, the same 

procedure will be performed on Cl11 as negative control cell line in order to check specificity of the 

observed results. 
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8.Oncogenic Ras induced de-differentiation is a reversible 

phenotype 

Oncogene addiction is today a very known phenomenon that can be used as a weapon 

against cancer cells (214, 246-248). In FRTL-5 cells previous data obtained by using a 

Temperature-sensitive Ras oncogene suggested that once Ras oncogene is activated, thyroid 

differentiated phenotype can’t be restored by simply inactivating Ras oncogene (249-251). 

However,  in those cells, Ras oncogene inactivation required a temperature shift which  could 

have made the results artficious. 

I thus decided to investigate whether our cells are Ras oncogene addicted. I used the 

possibility of simply inactivating Ras oncogene by removal of Tamoxifen from the culture 

medium in order  to analyse the reversibility of oncogenic Ras induced de-differentiation. I 

treated Cl11 cells 5 weeks with Tamoxifen. After these 5 weeks of Tamoxifen treatment  I 

cultured cells for an additional week either in the presence or in the absence of Tamoxifen and 

In analysed their differentiation by looking at the expression of several differentiation markers 

(Fig. 53). I found that even after 5 weeks of oncogenic  Ras activity the differentiated 

phenotype can be restored by suppressing Ras oncogene activity through removal of 

Tamoxifen from the culture medium thus demonstrating the relevance of finding ways to 

inactivate Ras oncogene in order to restore a   normal phenotype. 
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9.Oncogenic Ras de-differentiates FRTL-5 cells through the MAPK 

pathway 

I next wondered which was the pathway through which Ras oncogene was inducing de-

differentiation. Previous studies, performed in a different experimental system,  aimed to the 

identification of signalling cascades involved in oncogenic Ras-mediated dedifferentiation of 

FRTL5 cells suggested the involvement of the MAPK (Mitogen Activated Protein Kinase) 

pathway plus an uncharacterized Ras effector pathway (220, 221). 

I thus tested the effect of MAPK pathway inhibition on oncogenic Ras induced 

phenotype. I analysed in first the role of the MAPK pathway in ERRasV12 induced NUE 

activity impairment  through the use of known inhibitors of MAPK pathway such as U-0126 

and PD-98059 ( Fig. 54). I found  that MAPK inhibition, strongly impairs ERRasV12 ability to 

downregulate NUE activity. 

I tested next whether MAPK inhibition could also restore endogenous NIS gene 

expression. Real-time RT-PCR results showed that MAPK inhibition substantially restore  

NIS expression very close to wild-type levels and  almost completely restore also Pax8 and 

TSHr expression (Fig. 55). The same result was observed by looking at NIS protein levels 

(Fig. 56). Furthermore and very interestingly I found that MAPK inhibition also blocks 

oncogenic Ras mediated impairment of CREB phosphorylation (Fig. 56) highliting the 

existence of a previously unreported crosstalk between the MAPK pathway and the 

cAMP/PKA pathway (89). 

I conclude that oncogenic Ras induced de-differentiation is mainly achieved through the 

MAPK pathway. Complete abrogation of NIS expression however could still require the 

activation of an additional and unidentified pathway. 
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10.Identification of chemical inhibitors of the MAPK pathway 

through a cell-based HTS assay 

Since Ras/Raf/MAPK inhibition is relevant for many cancer types therapies (37-39, 

252). I planned to use this cellular system to set up a cell-based  assay  in order to screen the 

inhibitory activity of a 50000 compound library towards this pathway .  

10.1.GFP expression, driven by the NIS gene enhancer, is sensitive to 

oncogenic Ras activation  

I engineered a Cl11-derived  cell line which stably express GFP under the control of  the 

NIS gene enhancer NUE which we know to be regulated by oncogenic Ras in our cells (Fig.4). 

Thus GFP expression, driven by the NUE enhancer, should be sensitive to ERRasV12 activation 

by Tamoxifen (Fig.57). Indeed, in this Cl11-derived cell line called NG6, GFP expression is 

turned off by addition of Tamoxifen and can be restored by removal of Tamoxifen (Fig. 58), 

exactly in the same way we observed for endogenous NIS gene (Fig. 53).  

10.2.Set-up of cell-based HTS assays  

I set up two different automatable assay formats aimed to detect MAPK inhibitory 

activity of compounds in 96-well plates. (Fig. 59). The first assay, GFP-based, involves the 

use of the NG6 cell line which stably express GFP under the control of NIS enhancer NUE. 

The second assay, Luciferase based, involves transient transfection of a NUE-driven luciferase 

reporter vector in Cl11 cells. In both assays, cells are treated with Tamoxifen for 5days in 

order to allow oncogenic Ras to completely inhibit NUE activity. In this way the activity of 

NUE and thus the expression of the reporter gene, GFP or Luciferase depending on the 

protocol, is abolished. At this point cells are treated 48h additional hours with Tamoxifen plus 

the compound that is to be tested.  
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In order to validate such assays I tested them with increasing doses of the  known 

inhibitor of MAPK pathway U-0126 (Fig. 60). Results indicate that in the definitive automated 

setup (see “materials and method” section ) both assays were quantitatively sensitive to 

MAPK inhibition in a comparable and reproducible way. 

I conclude that these cellular assays are suitable to test the inhibitory activity of lead 

compounds toward the MAPK pathway. 

 

10.3.Pilot Screen 

In order to evaluate suitability of the assays to screen the entire library of compounds  I 

performed an initial Pilot Screen (PS) by using a small pool of compounds (3000). Aim of the 

pilot screen is 1) to evaluate the frequency of compounds that show activity in the assay (Hits) 

2) evaluate reproducibility of obtained results.  

For each kind of cell-based assay I performed the PS twice using a starting compound 

concentration of 10µM. Compounds activity was expressed as fold activation (reporter gene 

activity induced by the compound over reporter gene activity obtained in untreated cells). Fold 

activations obtained, respectively for each kind of assay,  from duplicate PS were then plotted 

against each other (scatter plot) in order to understand reproducibility of results (Fig. 61). In 

the scatter plot reproducibility of results can be immediately visualized. Infact non-

reproducible result tend to spread in the graph away from the bisector line while reproducible 

results tends to be concentrated on the bisector line. Furthermore the scatter plot also allow to 

visually appreciate standard deviation of results distribution by looking at the length of the 

bisector line covered by results. The scatter plots obtained respectively for the Luciferase-

based and for the GFP-based assay clearly showed that the GFP assay was much more 

reproducible. This conclusion is mathematically and quantitatively demonstrated by looking at 

the R squared values obtained for each assay as indicated in Fig. 61.  
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Frequency of Hits for the GFP assay was determined by evaluating 1) parameters 

(average value µ and standard deviation σ) of the Gaussian distribution of obtained “fold 

activation” (Fig.62) 2) number of compounds whose “fold activation”  were greater than the 

average plus three standard deviations ((p<0.03)  (Fig. 62). The frequency of   hits obtained 

from the GFP-based assay was  13 out of 3000 which is an acceptable frequency. I thus 

decided to keep compounds concentration at 10µM for the 50k library screening (Lead 

Screen). 

10.4.Lead Screen 

Since reproducibility of the GFP based assay, as seen in the pilot screen, was largely 

better than that of the Luciferase-based assay we screened the 50K compound library with the 

GFP-based assay. The screening of the library resulted in 312 compounds (Hits) which 

induced a significant (p<0.03) increase of GFP expression (Fig. 63) over the value obtained in 

untreated cells. 

10.5.Hits confirmation and specificity screen 

The activity of the Hits obtained from the lead screen have been confirmed within the 

same GFP assay format  by re-testing the activity of hits in triplicates (Fig. 64).  . I confirmed 

244 out of 312 hits. I next tested the specificity of these hits by testing their autonomous 

fluorescence in a GFP negative cell line. I confirmed the specificity of 182 out of 244 hits (Fig. 

65).   

10.6.EC50 determination and confirmatory screening 

For the each of the specific Hits (182)  I performed dose-responses curves in order to 

determine 1) EC50 concentration  and 2) the maximal response (TOP) obtainable with each 

compound  (Fig. 66). Compounds were ranked and selected on the basis of these parameters. 
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In Figure  67 are shown dose-response curves relative to selected best hit compounds (29) and 

their relative structures and where applicable their EC50 and TOP values. Results were 

confirmed by testing their action in dose-response curves within the technically unrelated 

luciferase based-assay (confirmatory screening).  

Unfortunately all the tested hits gave a fold activation at saturation lower than the one 

obtained with the known MAPK inhibitor U-0126 (compare Fig. 60 with Fig. 67). 

Furthermore, most of the hits had very high EC50 values (25-50µM). 

 

10.7.Hits activity on MAPK pathway and endogenous NIS gene expression 

For each of the selected 29 Hit compounds I choose the working concentration on the basis of 

the dose-response curves shown in Figure 67. The concentration used are reported in Figure 

68 and represents the lowest concentration that determines the mximal effect. I analysed the 

effect of each the Hits on the MAPK pathway by evaluating their ability to inhibit oncogenic 

Ras induced ERK1/2 phosphorylation (Fig. 69) and  their ability to restore transcription of the 

NIS gene by Real-Time RT-PCR (Fig. 70).  Infact I wish that selected compounds counteract 

Ras oncogene induced repression of NIS gene since NIS gene expression in thyroid cancers is 

required for the success of anti-cancer therapy(253).  My results shows that only 2 of the hits 

(F and Y) can modestly inhibit ERK phosphorylation, even though not extensively, and that  

this modest inhibition is indeed associated for both compounds with  a 2 fold increase of NIS 

gene expression. Furthermore I found 4 additional compounds (G, K, Z1 and Z3)  that can 

stimulate NIS expression  (over 2 fold) apparently without affecting ERK phosphorylation. 

Since I’m  interested in the pathways which regulate NIS expression these chemicals could be 

used as a ligand in affinity chromatography  to identify new genes relevant to NIS regulation. 
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Even though the effects of the found compounds are not large and the effective concentration 

very high, their structures (Fig. 71) can be optimized in order to ameliorate these parameters 

and test their effectiveness on humans thyroid cancers cell lines.  
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DISCUSSION 

 
 
 
 

Ras proteins play important roles in growth and differentiation of several cell types . However, 

when de-regulated by certain mutations, Ras proteins constitutively activate diverse downstream 

pathways and can elicit both tumoral transformation and a deranged differentiation phenotype (9, 254). 

Recent results obtained in animal models indicate cell type specific mechanisms involved in oncogenic 

Ras action and suggest that molecular events initiated by Ras activation could either be different or 

have divergent consequences in diverse cell types (45, 46, 255). Oncogenic Ras proteins have been 

shown to play important roles in epithelial cell transformation and are indeed associated with 35% of 

human cancers (9). In particular, mutations on genes encoding Ras proteins have been associated with 

all types of thyroid malignancies, including anaplastic thyroid cancers, thus suggesting  that Ras 

oncoproteins might have a role in the suppression of thyroid differentiated phenotype (142). 

Consistently, experiments performed in immortalized  thyroid cell lines showed that transformation by 

Ras oncogenes inhibits differentiation through still unknown mechanisms (219, 256, 257). 

In this study I demonstrate that activation of Ras oncogene in thyroid cells causes loss of activity 

of the transcription factor Pax8 that can be rescued by over- expression of the PKA catalytic subunit. In 

keeping with this observation, we show a reduced PKA activity and a significant decrease of 

phosphorylated CREB in cells expressing oncogenic Ras. These data indicate novel biochemical 

actions of Ras oncogene that might play important roles in the Ras induced transformed phenotype.  

It was previously demonstrated that such inhibition of differentiation is not an artifact of the 

chimeric Ras molecule used since stable transfectants expressing oncogenic Ras show a similar 

phenotype (4). The global downregulation of thyroid specific  gene expression greatly resembles the 

effect of TSH starvation on thyroid follicular cells (86, 99, 258). The observations reported here show 

that among the earliest events following Ras activation are a  decrease of TSHr protein and  of cAMP 
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signalling, as indicated by a reduced CREB phosphorylation, suggesting that the effects of Ras could 

be mediated by reduced TSHr signalling.  

I tested such a hypothesis by generating a stable cell line which expressed an ectopic TSHr 

(hTSHr) under the control of a promoter not influenced by Ras activation. I demonstrate that in these 

cells TSHr expression, even though effectively rescued in the presence of activated Ras, is not 

sufficient to restore a differentiated phenotype. In addition, in hTSHr expressing cells oncogenic Ras 

still impairs CREB phosphorylation and such an effect cannot be rescued by the cAMP elevating agent 

forskolin. Furthermore, I demonstrate a clear reduction of PKA activity in cells expressing oncogenic 

Ras. I conclude that activated Ras  inhibits the TSHr pathway at two major levels, one of which is  the 

downregulation of TSHr expression and a further level which is located  downstream  of cAMP 

production and results in reduction of PKA activity, with a consequent block in the transduction of the 

cAMP signal to the nucleus.  

This latter effect by oncogenic Ras indicates the presence of an unusual inhibitory interference 

exerted by oncogenic Ras on the cAMP signalling pathway. While it is well established that cAMP 

signalling can interfere with Ras action (89, 259), the data presented in this paper represent a strong 

indication of a block exerted by Ras on cAMP signalling. These data support the notion that the Ras 

oncoprotein inactivates the cAMP pathway through a mechanism that is acting downstream of cAMP 

production and converges on PKA. I propose that in thyroid cells these events lead to the observed 

global down regulation of thyroid differentiation  

 Previous data on dedifferentiated thyroid transformed cell lines such as PCpY cells (rat thyroid 

cell line transformed with polyoma virus middle T antigen ) and ARO cells (human anaplastic thyroid 

carcinoma derived cell line) have shown that re-activation of Pax8 expression can restore a 

differentiated thyroid phenotype and in particular can upregulate NIS expression (102, 260).  

I thus tested whether Pax8 down regulation had a key role in oncogenic Ras induced NIS 

downregulation, by generating a stable cell line expressing an ectopic Pax8 under the control of a Ras 

independent promoter. However, persistent Pax8 expression does not affect the  ability of oncogenic 

Ras to down regulate NIS expression. I provide evidence that Ras activation inhibits Pax8 
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transcriptional activity and that such inhibition is achieved through the inhibition of the TSHr  

pathway. In fact, I found that  Pax8 activity is dependent upon the TSHr/PKA pathway as previously 

suggested (86, 234) and that PKA over-expression rescues oncogenic Ras  induced Pax8 inhibition. 

Consistently, I found that PKA over-expression also restores the ability of Pax8 to stimulate NIS 

transcription mediated by the NUE enhancer.  

I thus envision a mechanism in which  the initial event following Ras activation is a block of 

PKA activity. As a consequence, Pax8 activity is impaired, resulting in a decrease of thyroid-specific 

gene expression. Interestingly, Pax8 transcription itself is under cAMP control (86). Furthermore, 

preliminary evidence suggest that Pax8 transcription is auto-regulated (Di gennaro, A, De Felice M and 

Di Lauro, R, unpublished). Thus, the reduced cAMP signalling induced by oncogenic Ras would 

interfere both with the activity and synthesis of Pax8, resulting in an amplification of the de-

differentiating effect. This effect apperas to be thyroid specifc since neither the inhibition of the cAMP 

pathway nor inhibition of Pax8 activity could be detected in fibroblasts upon Ras oncogene activation. 

Published data support the notion that in thyroid cells oncogenic Ras inhibits cAMP signalling. 

However, the mechanisms proposed envisage both a de-localization of the PKA catalytic subunit and a 

down-regulation of the PKA regulative subunit RIIbeta (261-264). In our system we did not detect 

either of these effects, since we found no effects of oncogenic Ras on either the intracellular 

distribution or protein levels for both regulatory and catalytic PKA subunits. However, we demonstrate 

for the first time a clear Ras-induced downregulation of CREB phosphorylation at Ser133 concomitant 

with a decreased PKA activity.  

Even though CREB Ser133 is the target not only of PKA but also of many other kinases (89, 

265), I clearly show that oncogenic Ras blocks forskolin induced CREB phosphorylation in thyroid 

cells, indicating that PKA is a bona fide target of Ras action. Along the same lines, I show that the 

stimulation of Pax8 activity by PKA over expression, in cells expressing oncogenic Ras, is blocked by 

the PKA specific inhibitor H89.  

I have not identified the mechanism responsible for PKA inhibition by Ras. Since this effect is 

relieved by PKA overexpression, I hypotesize that we might be titrating out an inhibitory mechanism, 
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whose nature is at present unknown. Previous data have shown, for example, that upregulation of PP1 

phosphatase activity can downregulate thyroid differentiation (266). However further studies are 

required in order to define the mechanisms underpinning this Ras-oncogene promoted PKA inhibition. 

It should also be noted that, in addition to a potential general inhibition of cAMP pathway 

induced by Ras oncogene and the consequential effect on Pax8 activity, CREB compromised function 

itself could be relevant to thyroid function. It has been reported that CREB activity is required for 

differentiation  of FRTL5 cells (225, 267) and that mice expressing a dominant negative CREB 

transgene show impairment in thyroid differentiation (268). 

The ability of Ras oncoprotein to negatively regulate differentiation in thyroid cells is of utmost 

importance in therapy. Cancerous thyroid cells can be killed with radioactive iodide, since they have an 

exquisite capacity, mediated by the NIS protein, to accumulate this element that is physiologically used 

for thyroid hormone biosynthesis (269). However for anaplastic cancer, the most aggressive and 

inevitably fatal thyroid cancer, the radioactive iodide-based therapy is ineffective since the expression 

of NIS gene is suppressed in these cells. The understanding of the events causative of loss of thyroid 

differentiation induced by Ras oncogene in cultured cells might give clues on the genes that could be 

targeted in human anaplastic thyroid cancers in order  interest to design new, highly required,  

therapeuthic strategies aimed at re-expression of the differentiated phenotype in cancer cells that will 

allow the ablation of cancerous cells through the well-established therapy protocol based on radioactive 

iodide.(270, 271)  

Oncogene addiction is today a very known phenomenon that can be used as a weapon against 

cancer cells (214, 246-248). In FRTL-5 cells previous data obtained by using a Temperature-sensitive 

Ras oncogene suggested that once Ras oncogene is activated, thyroid differentiated phenotype can’t be 

restored by simply inactivating Ras oncogene (249-251). However,  in those cells, Ras oncogene 

inactivation required a temperature shift which  could have made the results artficious. On the contrary, 

in the cellular system I used in this work, Ras oncogene can be inactivated by simply removing 

Tamoxifen from the culture medium. I found that thyroid differentiated phenotype can be restored by 

suppressing Ras oncogene activity thus demonstrating the relevance of finding ways to inactivate Ras 
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oncogene in order to restore a   normal phenotype. I obtained the same result by inhibiting the MAPK 

pathway with the MEK1/2 inhibitors U-0126 and PD-98059 accordingly to the increasing number of 

data that highlighting the relevance of the MAPK  pathway for thyroid cancer initiation and 

progression toward full malignancy (142, 151, 272, 273). 

I developed  a thyroid cell-based assay system which can sense MAPK  pathway activation and I 

screened the inhibitory activity of  a compound library consisting of 50.000 molecules. The system I 

set up also allow identification of compounds capable of restoring NIS gene expression independently 

from MAPK inhibition.  From the screening I identified two new compounds that can inhibit MEK 

activity and that consequently increase NIS expression in FRTL5 cells dedifferentiated by Ras 

oncogene. These compound may represent lead structures to optimize in order to obtain new classes of 

MAPK pathway inhibitors. In addition I identified four compounds that could increase NIS expression 

without apparently affecting the MAPK pathway. These latter compounds, besides confirming the 

potential involvement of additional Ras oncogene activated pathways in the observed NIS 

downregulation, offer the possibility to further characterize such pathways by using the chemicals as 

ligands in affinity chromatography.  

There are increasing evidences suggesting that targeted inhibition of the MAPK pathway is an 

effective therapy for thyroid cancer such as advanced papillary and anaplastic thyroid cancers that have 

escaped radioiodine sensitivity (172, 205, 206). The inhibition of Ras/Raf/MAPK pathway is indeed 

relevant for many cancer types therapies, especially when used in combination with conventional 

cytotoxic agents (39). Currently inhibitors of the kinase function of Raf and MEK represent the most 

studied and advanced approaches for blocking ERK signalling, with several inhibitors under evaluation 

in clinical trials and additional ones in pre-clinical analysis. Considering the ability of cancer cells to 

escape inhibition,  the availability of alternative compounds which trigger the same  pathway through 

different mechanisms could represents a great resource (252). 
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