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Abstract 

 

Systems Biology approaches aim to reconstruct gene regulatory networks 

from experimental data. Conversely, Synthetic Biology aims at using mathematical 

models to design novel biological ‘circuits’ (synthetic networks) in order to seed 

new functions inside the cell. These disciplines require quantitative mathematical 

models and reverse-engineering techniques.  

A plethora of modelling strategies and reverse-engineering approaches has 

being proposed during the last years. Even if successful applications have being 

demonstrated, at present their usefulness and predictive ability cannot still be 

assessed and compared rigorously. There is the pressing and yet unsatisfied need 

for a ‘benchmark’: a perfectly known biological circuit that can be used to evaluate 

pro and cons of such techniques when applied at in vivo networks. 

In order to address this aim, we constructed in the simplest eukaryotic 

organism, the yeast Saccharomyces cerevisiae, a novel synthetic network for In-

vivo Reverse-engineering and Modelling Assessment (IRMA). IRMA is composed 

of five well-studied genes that have been assembled to regulate each other in such 

a way to include a variety of regulatory interactions, thus capturing the behaviour 

of larger eukaryotic gene networks on a smaller scale. It was designed to be 

isolated from the cellular environment, and to respond to galactose by triggering 

transcription of its genes. 

To demonstrate that IRMA is a unique resource to validate the System and 

Synthetic biology approaches, we analysed the transcriptional response of IRMA 
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genes following two different perturbation strategies: by performing a single 

perturbation and measuring mRNA changes at different time points, or by 

performing multiple perturbations and collecting mRNA measurements at steady 

state. We used these data as a ‘gold standard’ to assess either the predictive ability 

of mathematical modelling based on differential equations and, to compare four 

well-established reverse engineering algorithms, NIR, TSNI, BANJO and 

ARACNE. 

We thus showed the usefulness of IRMA as the first simplified model of 

eukaryotic gene networks built “ad hoc” to test the power of network modelling 

and reverse-engineering strategies. 
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Chapter 1 – Introduction 

 

"The reductionist approach has successfully identified most of the components and 

many of the interactions but, unfortunately, offers no convincing concepts or methods 

to understand how system properties emerge...the pluralism of causes and effects in 

biological networks is better addressed by observing, through quantitative measures, 

multiple components simultaneously and by rigorous data integration with 

mathematical models" (Sauer et al., 2007). 

 

For over a century, biological research has been focused on the identification 

and the study of individual cellular components and their specific functions. This 

practice, sometimes called reductionism, purports to understand biological systems by 

dividing them into their smallest possible or discernible elements and understanding 

their elemental properties alone. Despite its enormous success, it is increasingly clear 

that a discrete biological function can only rarely be attributed to an individual 

molecule. Instead, most biological functions stems from the interactions among 

thousands of different molecular species orchestrating the biological processes needed 

to sustain life. The different cellular components, such as DNA, RNA, proteins and 

metabolites, almost never work alone, but interact with each other and with other 

molecules in highly structured complex ways. From these observations, it is clear that 

the central dogma of molecular biology where genetic material is transcribed into 

RNA and then translated into protein is only an oversimplified picture. Identifying 

regulatory, signalling and metabolic pathways, and understanding their coordinated 

action is a key challenge for biology in the twenty-first century.  



 4 

Indeed, modern biology can be considered in a holistic sense. This term may 

not have a precise definition. Aristotele in the Metaphysics concisely summarized the 

principle of holism as follows: "The whole is more than the sum of its parts". Holistic 

science is an approach to research that emphasizes the study of complex systems. This 

practice is in contrast with reductionism since it recognizes feedback within systems 

as a crucial element for understanding their behavior and it is irreducible. Systems that 

have emergent properties are said to be irreducible meaning that it cannot be reduced 

to its individual parts or studied one part at a time, with the expectation of 

understanding the emergent properties of the system. This approach aims to study the 

cell at the systems level by unravelling the regulatory, signalling and metabolic 

interactions, and understanding their coordinated action.  

Biotechnological advances in quantitative high-throughput technology in 

combination with the growing inter-disciplinarity between biology with engineering 

and natural sciences, have made this challenge achievable thanks to the emerging 

fields of Systems and Synthetic Biology (Hasty et al., 2002; Hayete et al., 2007; 

Kaern et al., 2003; Sprinzak and Elowitz, 2005).  

Systems biology aims at developing a formal understanding of biological 

processes via the development of quantitative mathematical models. A model is a 

mathematical formalism to describe changes in concentration of each gene transcript 

and protein in a network, as a function of their regulatory interactions (gene regulatory 

network). When these interactions are unknown, reverse engineering can be used to 

infer them from experimental observations.  

Synthetic biology aims at using such models to design novel biological 

‘circuits’ (synthetic networks) in the cell able to perform specific tasks (e.g. periodic 

expression of a gene of interest), or to change a biological process in a desired way 
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(e.g. modify metabolism to produce a specific compound of interest) (Elowitz and 

Leibler, 2000; Gardner et al., 2000; Khosla and Keasling, 2003; Ro et al., 2006; 

Tigges et al., 2009).  

The usefulness of a model in both Systems and Synthetic Biology lies in its 

ability to formalise the knowledge about the biological process at hand, to identify 

inconsistencies between hypotheses and observations, and to predict the behaviour of 

the biological process in yet untested conditions. There is a variety of mathematical 

formalisms proposed in literature (Di Ventura et al., 2006; Szallasi et al., 2006) to 

model biological circuits, with ordinary differential equations being the most 

common. We gave background of the different modelling strategies and their 

usefulness in simulating both natural and unnatural systems (the ‘synthetic network 

approach’) in Chapter 2. 

Reverse engineering methods are used in Systems Biology to uncover 

unknown molecular interactions from gene expression data that are informative of the 

network dynamics. Typically, the data consist of measurements at steady state 

following multiple perturbations (i.e. gene overexpression, knockdown, or drug 

treatment), or at multiple time points, following one perturbation (i.e. time-series 

data). Successful applications of these approaches have been demonstrated in bacteria, 

yeast and, recently, in mammalian systems (Basso et al., 2005; Della Gatta et al., 

2008; di Bernardo et al., 2005; Faith et al., 2007; Gardner et al., 2003). A plethora of 

novel reverse engineering approaches is being proposed, and their assessment and 

evaluation is of critical importance (Stolovitzky et al., 2007). In Chapter 3, we 

detailed the three well-established reverse-engineering approaches: ordinary 

differential equations (ODE), Bayesian Networks, and Information-theory. 
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  In this scenario, the goal of our work was to provide the System Biology 

community with an in vivo benchmark, which can be used as “ground of truth” to test 

and compare different modelling approaches and reverse-engineering inference 

strategies.  

To this aim we constructed, in the yeast Saccharomyces cerevisiae, a synthetic 

network of five genes regulating each other for In-vivo Reverse-engineering and 

Modelling Assessment (IRMA). We detailed experimental produres and 

computational methods used in this work in Chapter 4. In Chapter 5 we gave a 

background of the design principles at the basis of our synthetic network, such as the 

choice of model organism and of network topology. In Chapter 6 we described the 

construction of the synthetic network and we detailed the characterization of its 

behaviour by analysing the transcriptional response of network genes following two 

different perturbation strategies: by performing a single perturbation, and measuring 

mRNA changes at different time points, or by performing multiple perturbations, and 

collecting mRNA measurements at steady state. 

We tested the usefulness of IRMA as a simplified biological model to 

benchmark both modelling and reverse-engineering approaches (chapter 7 and 8, 

respectively). In Chapter 9, we concluded the thesis and discussed the application of 

the IRMA network as a unique tool for System and Synthetic Biology. 

Part of the work presented in this thesis resulted in a scientific publication 

(Cantone et al., 2009). 
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Chapter 2 – Modelling biological systems: from In 

vivo to In silico biology and back 

 

In biology the term ‘model’ is commonly used for graphical descriptions of a 

mechanism underlying a cellular process, the intrusion of computational biology in 

the ‘wet’ lab has being modifying its use to refer to a set of equations expressing in a 

formal and exact manner the relations among the variables that characterize the state 

of a biological system. The approach of biologists towards knowledge building has 

been mostly empirical but experimental facts remain ‘blind’ without laws or principles 

derived from them. Conversely, theoretical approaches used by modellers have often 

failed to relate to real systems, such that theoretical concepts encapsulated in these 

studies are equally ‘empty’. Instead, theory and experiments need to be viewed in 

close interplay. In silico predictions of the behaviour of a biological system can be 

used to complement in vivo experimental observations and accelerate the hypothesis 

generation-validation cycle of research (Locke et al., 2005). Modelling a cellular 

process can highlight which experiments are likely to be the most informative in 

testing model hypotheses, and allow testing for the effect of drugs (di Bernardo et al., 

2005) or mutant phenotypes (Segre et al., 2002) on cellular processes—thus paving 

the way for individualized medicine. 

A mathematical model is a formalization of the biological knowledge about a 

certain system, where each component of the system is described by an equation, 

which represents its behaviour as a function of its regulators. A priori knowledge, 

which derives from experiments, is essential and needs to be formalized for the 

chosen framework. Ideally, all information relevant to a system (not only 
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concentrations and rates of events, but also spatial distribution, diffusion parameters, 

and so on) would be known to make a maximally accurate in silico replica of the 

system. Unfortunately, even for the best-studied systems, the mass of accumulated 

data still falls short of describing, even qualitatively, the variety of elementary 

processes that each molecular species engages in (post-translational modifications, 

degradation, complex formation, and so on); even less known are details of spatial 

information and the timing of events. Consequently, assumptions are necessary (for 

example, that all gene copies of a multi-copy plasmid are transcriptionally active, or 

that a certain molecule freely diffuses inside a cell or is always monomeric). On the 

other hand, it can be beneficial to exclude some known data to accommodate available 

computational power and to facilitate the analysis (even at the expense of accuracy). 

For example, irrelevant interactions of highly connected proteins could be omitted; 

details such as the cell-cycle regulation of a certain protein could be temporarily set 

aside; abundant species such as ATP or ribosomes might be represented as constant 

pools; or transcription and translation events might be lumped together. 

In order to accurately describe the behaviour of a system, the second step in 

modelling, after the derivation of the equations that describe system components, 

should be to estimate from experiments those parameters, which numerically describe 

system dynamics (e.g. synthesis and degradation kinetics, equilibrium constants, basal 

and maximal concentration of a molecule). With the majority of current experimental 

techniques yielding only qualitative or semi-quantitative data, biologists have two 

different options: 

• Using descriptive information about the system for qualitative 

modelling; 
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• Performing target experiments to estimate unknown reactions 

parameters for quantitative modelling. 

 

2.1 Qualitative modelling 

 

In qualitative modelling, for simulations to be applied and useful in drawing 

non-obvious conclusions, we need to retrieve from biological data at least the 

information required for the formulation of logical statements describing, for instance, 

causal relationships between events involving model components. As an example, 

computer science algorithms used to perform code checks can assess the logical 

consistency of a set of statements: that is, check that no subset of statements is in 

contradiction with any other (Batt et al., 2005). Automated tools such as these and 

others used in qualitative reasoning approaches become indispensable if logical 

inferences are to be made on very large sets of experimental observations. In 

qualitative modelling, kinetic processes are simulated by tracking over discrete time 

the state of the system, defined in terms of a coarse range for each variable. The weak 

specification of such models conserves computer resources needed to explore the 

space of possible behaviours; moreover, it provides high-level predictions applying to 

a whole family of systems—for instance, the number of feedback loops or the ranges 

of variables supporting oscillations or switches. Although simulation of qualitative 

models can be fast, even a rough exploration of parameter space can become 

intractable as the size of the system increases, highlighting the need for increasing 

computer resources and methods to accelerate the parameters search. 
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Anyway, since biological systems have evolved tolerance to random 

fluctuations and perturbations, coarse ranges may suffice to predict correctly a 

system's behaviour (Csete and Doyle, 2002). For genes that are naturally found in 

only two states, the trade-off in accuracy may not even be high. On the other hand, 

simple models can, in some cases, predict behaviours that are far away from reality 

(Fig. 2.1) (Di Ventura et al., 2006). 

 

2.2 Quantitative modelling 

 

Compared with qualitative models, quantitative ones have a natural appeal in that they 

offer greater detail in mimicking reality. Moreover, rich qualitative insights on the 

system are possible using theoretical tools such as bifurcation and stability analysis, 

which, for example, indicate the precise boundaries of parameter ranges to which 

steady states or sustained oscillations correspond, or reveal the stability of the 

solutions before actually solving the dynamical equations representing the system. 

Quantitative models can be either deterministic or stochastic. The most 

popular formalism is the deterministic ordinary differential equations (ODEs). Each 

equation in a set typically represents the rate of change of a species’ continuous 

concentration as a sum or product of, more or less, empirical terms (typically law of 

mass action terms, Michaelis–Menten functions, and so on), accounting for the effect 

of biological events on such concentrations. By definition, the initial state of the 

system in a deterministic model uniquely sets all future states. As analytical solutions 

seldom exist, numerical solutions need then to be computed (once for each set of 

parameter values and initial conditions explored). In general, ODEs are best suited for 
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capturing the behaviour of systems where species are abundant and reaction events 

frequent, because species concentrations are then acceptably approximated as varying 

continuously and predictably. Thus, the deterministic approach approximate the 

average response of a system within a population of genetically identical cells, or the 

average response within single cells measured over a long time period. 

As the number of molecular species and consequently of reaction events 

decrease, the probabilistic nature of biological events becomes more evident. In this 

case, the response of individuals within a population of genetically identical cells may 

be significantly different from the average population response. Population 

heterogeneity arises from stochasticity in molecular events or from noise. For 

instance, occurrence of noise have been found to be exploited by cells to survive a 

variety of environmental changes (Thattai and van Oudenaarden, 2004) or to increase 

sensitivity in signal transduction processes (Hanggi, 2002). To model such stochastic 

systems, two main methods are used. The first comprises using stochastic differential 

equations (SDEs; derived from ODEs by adding noise terms to the equations), the 

solutions for which can be numerically obtained either by computing many 

trajectories (Monte Carlo methods) or approximating their probability distribution and 

then calculating statistical measures (such as mean and variance). Notably, with this 

method noise is imposed on the system and represented by mathematical terms chosen 

a priori, instead of arising from the underlying physical interactions. The second is a 

very successful and exact method introduced nearly 30 years ago, and recently 

enhanced to cope with different reaction timescales or space constraints. With this 

approach, molecules are modelled individually and reaction events are calculated by 

their probability. The price to pay for having a more physically realistic model is the 
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considerable increase in computational time and the need for specialized algorithms 

(Ander et al., 2004). 

 

2.3 Choice of Modelling strategy and pitfalls 

 

The choice of mathematical formalism in modelling depends on what we know 

and on what we want to know about the real system. Considering the functional 

phenomenon being modelled and defining a clear biological question to answer helps 

to chose which modelling strategy is best suited to capture the essential properties of 

the biological system. Thus, if the system includes gradients, the mathematical 

formalism used should handle space. If the system seems noisy (for example, not all 

cells respond in the same way to the same stimulus), then a stochastic approach might 

clarify this point.  

Problems can arise from the mathematical formalism used to simulate a 

system. To illustrate the impact of modelling choices, we will use as example the 

simulations of a simple gene network with a negative feedback (protein B forms 

multimers and sequesters the activator protein AP responsible for its transcription) 

which were modelled using three different formalisms (Figure 2.1; reported in (Di 

Ventura et al., 2006)): a simple boolean model, a quantitative deterministic model 

with ODEs, and a quantitative stochastic model. With a qualitative model, the boolean 

one, the built-in delay produces oscillations (Figure 2.1B). The other two models 

require additional events to be modelled explicitly (for example, degradation to 

balance production), and in contrast to what is observed with the coarser boolean 

model, oscillations did not occur unless multimerization was allowed (Figure 2.1B-F). 
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This simple example is useful to underline the importance of choosing the 

most appropriate model and also to remind that mathematical models represent a 

simplification of the real system, so when drawing conclusions from simulation 

results it is essential to keep in mind the limitations of a given approach to represent 

reality. 
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Figure 2.1 Simulation of a Feedback Loop using different mathematical 

formalisms. (A) Schematic representation of the negative feedback network used in 

the simulations. n indicates the number of B molecules in the active complex. (B-F) 

Time courses of activator protein A (red), B mRNA (blue) and B protein (black). The 

y axis represents the number of molecules, normalized for each species by the 

maximum value reached, except in (B), in which it represents presence or absence of 

the molecules. Simulation of discrete time boolean model (B) with synchronous 

update. Deterministic (C, D) and stochastic (E, F) simulations with B monomer (C, E) 

or octamer (D, F). Oscillations predicted by the boolean model are obtained in the 

deterministic/stochastic model only when B oligomerization is included. The figure 

has been modified from (Di Ventura et al., 2006). 
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2.4 Gaining understanding by mimicking nature 

 

Given the complexity of natural systems, knowledge of all interactions 

happening at the molecular level does not generally provide the modeller with an 

intuitive and coherent comprehension about the process of interest. For instance, 

although we can understand how a signal is propagated in a linear cascade from cell 

membrane to nucleus, we find it difficult to make sense of a highly interconnected 

gene network. As a matter of fact, in many cases, although circuit components and 

their interactions have extensively been identified, this knowledge is not enough to 

explain the circuit mechanism as a whole. This could happen either because some 

components miss or at the opposite because not all the identified interactions are 

relevant. Another problem is ignorance of the effective rules by which proteins and 

genes interact. For example, in vivo values of kinetic parameters such as affinities, 

binding and degradation rates, and so on, are generally unknown. Finally, the 

intracellular environment is intrinsically ‘noisy’, and small copy numbers of 

molecular species limit the predictability of biochemical reactions. Taken together, 

these problems reduce our confidence in the combined understanding we get from 

perturbations, measurements and mathematical modelling. 

To circumvent this problem one strategy is to decompose the network into 

more manageable modules with a defined function and to construct replicas of these 

small natural circuits, which can be used to find out the most adequate modelling 

strategy for describing a certain functional module. This approach is well-known in 

engineering, in which problems are often tackled via simplified empirical models of 

the process to be studied, where the complexity is reduced to facilitate its handling, 

but its key features are kept. For example, a jumbo-jet contains over six million parts 
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and is complex enough to be incomprehensible to the human mind without 

appropriate simplifications. Nevertheless a simplified toy model of a flying airplane 

retains some of the most complex and relevant features of the jumbo-jet 

(fluidodynamics and control) and it is routinely used to derive models and design 

principles for the full-scale plane (Csete and Doyle, 2002).  

Similarly, the field of Synthetic biology has clearly started addressing these 

issues with small circuits of various designs guided by their own collection of models 

(Bennett and Hasty, 2008; Chin, 2006; Hasty et al., 2002; Sprinzak and Elowitz, 

2005). Reconstructing simplified replicas of natural genetic circuits helps to 

understand the sufficient and essential biological features that drive a specific 

function. In this context, for example, the construction of synthetic circuits which are 

able to produce oscillations in bacteria (Atkinson et al., 2003; Elowitz and Leibler, 

2000; Fung et al., 2005; Stricker et al., 2008), and in mammalian cells (Tigges et al., 

2009) aims to a better understanding of natural circadian clocks (Panda et al., 2002). 

The natural circadian rhythms manifest themselves in the periodic variation of 

concentrations of particular proteins in the cell; for example, in Drosophila ‘clock 

genes’ (such as PER, TIM and VRI) oscillate with a 24 hours rhythm and self-

synchronize to the day/night cycle. Using genetic and biochemical techniques, 

researchers have isolated genes and proteins involved in interlocked feedback loops of 

gene expression (Hardin, 2005) (Figure 2.2B) that are necessary for clock function. 

However, many fundamental questions remain difficult to answer: what sets the 

period of the oscillation, how does the clock operate reliably in diverse cellular 

conditions, and what features of its design are responsible for its reliable operation? 

To gain insight into such questions different simplified synthetic circuits were built to 

generate self-sustaining periodic oscillations. Even if they fail to operate as reliably, 
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their construction combined with modelling provide insights in reconstructing a 

specific function. For example a model of the ‘repressilator’ (Figure 2.2C) showed 

that the ring architecture is theoretically capable of sustaining oscillations but not all 

parameter choices give rise to oscillatory solutions. Modelling indicated that high 

protein synthesis and degradation rates, large cooperative binding effects, and 

efficient repression favoured oscillations.  

In conclusion, this reconstructive approach offers several advantages:  

• First, one can test the sufficiency of an arbitrary circuit for generating a 

particular function.  

• Second, one may study the circuit mechanism without impairing 

cellular functions or inducing downstream consequences.  

• Third, different circuit designs with similar functions can be directly 

compared to determine their relative advantages and disadvantages. 

Pushing the engineering analogy even further, systems biology studies can 

help uncovering the 'organizational principles', or 'design principles', of biological 

systems. Although there are obvious radical differences between human-engineered 

and natural systems, natural systems do have solutions similar to human-engineered 

ones in terms of certain emergent properties (for example, modularity and noise 

attenuation), details of design (for example, feedback loops) and behaviour (for 

example, oscillations), as if conforming to a strict set of constraints. Actually, beyond 

their natural appeal, the use of systems-theoretical concepts is perhaps our only 

chance to logically formulate the way a complex biological process operates in a 

concise, synthetic, human-understandable manner. 
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Figure 2.2 Natural and synthetic gene circuits. (A) The synthetic biology paradigm. 

Genetic circuits are composed of interacting genes and proteins (blue shapes, top left). 

The pointed and blunt arrows represent positive and negative regulation, respectively. 

Synthetic circuits (right) based on the natural circuit can be constructed from well-

characterized components (red and orange shapes) with similar regulatory effects to 

form similar or simplified circuits. The dynamics of these synthetic replicas can be 

compared to the natural system as well as to mathematical models. Analysis of natural 

circuits, synthetic replicas and models together can help us understand mechanisms 

used by natural systems. (B) Schematic representation of Drosophila circadian clock. 

It contains a negative feedback loop in which Per and Tim, after a delay, repress their 

own production (via Clk/Cyc, right loop). Interlocked with this negative feedback 

loop there is another loop involving Vri and Pdp1ε (left loop). c, The 'repressilator' is 

a simple synthetic clock circuit consisting of a three-component negative feedback 

loop that operates in E. coli3. The three-element loop provides a delayed negative 

feedback on all components and permits oscillations. In this sense, it models the 

generation of oscillations by delayed negative feedback. However, as can be seen 

from the figure this simple synthetic circuit differs markedly from the natural 

circadian clock in both complexity and design. (Sprinzak and Elowitz, 2005). 
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2.5 Engineering new functions inside the cells 

Although much remains to be learned in this field, simulation predictions of 

natural or engineered biological networks are helping us to identify the logical links 

between system design and system behaviour. As our knowledge will increase, 

synthetic biologist will be able to combine well-characterised modular genetic 

components form different organisms, in order to re-engineer cells and entire 

organisms for numerous applications (including medical, agricultural and ecological 

situations), or even to construct a synthetic cell, having the minimal and sufficient 

number of components to be considered alive (the so called ‘minimal-cell’; (Luisi, 

2007; Luisi et al., 2006)). Several examples of organisms, which were addressed to 

perform a specific task by seeding synthetic circuits inside cells, are present in 

literature: yeast cells producing an antimalaric drug (Ro et al., 2006), bacteria sensing 

environmental toxins and warfare agents (iGEM 2005 and (Looger et al., 2003)) or 

engineered to act like blood cells (iGEM 2007), or even to make a picture (Levskaya 

et al., 2005). 

Thus, although a global and perfect understanding of a living system is not 

expected in the near future, the combination of modelling and experimentation offers 

the possibility of making inroads towards that goal, as well as developing new 

exciting, useful applications. 
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Chapter 3 – Reverse Engineering Approaches 

 

Today, biotechnological advances in the development of high-throughput 

technology platforms, such as microarrays and protein chips, allow measuring 

simultaneously the different cellular components on genome-scale. Molecular biology 

is therefore rapidly evolving into a quantitative science, and as such, it is increasingly 

relying on engineering, applied physics and mathematics to make sense of quantitative 

high-throughput data. 

The challenge for Systems Biology and in particular reverse-engineering is to 

infer gene networks (i.e. the regulatory interactions among genes), transforming high-

throughput heterogeneous data sets into biological insights about the underlying 

mechanisms. To this aim computational algorithms are typically applied on gene 

expression data obtained after the perturbation of a gene of interest (i.e. after 

overexpression or silencing). Gene regulatory networks can be inferred from their 

inputs (perturbations) and outputs (gene expressions). 

There are two broad classes of reverse-engineering algorithms: those based on 

the “physical interaction” approach that aim at identifying interactions among 

transcription factors (TFs) and their target genes (gene-to-sequence interaction) and 

those based on the “influence interaction” approach that try to relate the expression of 

a gene to the expression of the other genes in the cell (gene-to-gene interaction), rather 

than relating it to sequence motifs found in its promoter (gene-to-sequence).  
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3.1 The physical strategy: identifying TF interactions 

 

The physical approach seeks to identify the protein factors that regulate 

transcription, and the DNA motifs to which the factors bind. In other words, it seeks 

to identify true physical interactions between regulatory proteins and their promoters.  

One of the first methods to accomplish this task was introduced by Tavazoie and 

colleagues (Tavazoie et al., 1999). The method assumes that transcripts controlled by 

the same TFs will exhibit similar expression changes under a variety of experimental 

conditions. With a sufficient number of RNA expression experiments, the method 

clusters transcripts based on the similarity of their changes across all the experiments. 

Then the method applies a motif-finding algorithm to identify homologous DNA 

sequences in the promoter regions of the clustered transcripts. The approach assumes 

that homologous DNA sequences are probable TF binding motifs. 

An advantage of this strategy is that it can reduce the dimensionality of the 

reverse-engineering problem by restricting possible regulators to TFs. It also enables 

the use of genome sequence data, in combination with RNA expression data, to 

enhance the sensitivity and specificity of predicted interactions. The limitation of this 

approach is that it cannot describe regulatory control by mechanisms other than 

transcription factors. 
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3.2 The influence strategy: inferring gene networks 

 

The influence strategy for reverse-engineering seeks to identify regulatory 

influences between RNA transcripts. In other words, it aims to describe the 

transcription rate of a set of “output” mRNAs as a function of other “input” 

transcripts. This type of model is sometimes called a gene regulatory network or a 

gene network. In such a model the interaction between two genes does not necessarily 

imply a physical interaction, but can also refer to an indirect regulation via proteins, 

metabolites and ncRNA that have not been measured directly (Figure 3.1). Influence 

interactions include physical interactions, if the two interacting partners are a 

transcription factor, and its target, or two proteins in the same complex. So, even if 

gene network algorithms do not use or model protein and metabolite data they can 

provide a global view of gene regulation that is not restricted to TF/promoter 

interactions. However, the meaning of influence interactions is not well defined and 

depends on the mathematical formalism used to model the network. Nonetheless, 

influence networks have practical utility for:  

1) Identifying functional modules, that is, identify the subset of genes that 

regulate each other with multiple (indirect) interactions, but have few regulations to 

other genes outside the subset;  

2) Predicting the behavior of the system following perturbations, that is, gene 

network models can be used to predict the response of a network to an external 

perturbation and to identify the genes directly ‘hit’ by the perturbation (di Bernardo et 

al., 2005), a situation often encountered in the drug discovery process, where one 

needs to identify the genes that are directly interacting with a compound of interest;  
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3) Identifying real physical interactions by integrating the gene network with 

additional information from sequence data and other experimental data (i.e. ChIP, 

yeast two-hybrid assay, etc.). 

 

 

Figure 3.1 Biological networks are regulated at many levels. (a) Shows an example 

network where protein transcription factors (blue and green shapes) influence the 

expression of different transcripts (brown lines). One protein is a membrane-bound 

metabolite transporter. The metabolite it imports (brown triangle) binds one of the 

transcription factors enabling it to bind DNA and initiate transcription. (b) A gene 

network model of the real network in (a). Since the model is inferred from 

measurements of transcripts only, it describes transcripts as directly influencing the 

level of each other, even though they do not physically interact. 



 24 

In general, one can represent a gene network model as a directed graph (Figure 3.2) 

Depending on the reverse-engineering approach used, one can describe this graph 

mathematically as a system of ordinary differential equations (ODEs), as a Bayesian 

network, or as an association network (Bansal et al., 2007; de Jong, 2002; Faith and 

Gardner, 2005). The representations provide different degrees of simplification of cell 

regulation; lend themselves to different computational strategies described below. 

 

 

Figure 3.2 Gene network models representation. Gene network models are 

represented as directed graphs describing the influence of the levels of one set of 

transcripts (the inputs) on the level of another transcript (the output). One usually 

assumes that networks are sparse, i.e., only a small subset of transcripts act as inputs 

to each transcript. The relation between inputs and outputs is specified by an 

interaction function (fi). 
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3.2.1 Ordinary Differential Equations 

Reverse-engineering algorithms based on ordinary differential equations 

(ODEs) relate changes in gene transcripts concentration to each other and to an 

external perturbation. By external perturbation, we mean an experimental treatment 

that can alter the transcription rate of the genes in the cell. An example of perturbation 

is the treatment with a chemical compound (i.e. a drug), or a genetic perturbation 

involving overexpression or downregulation of particular genes. As ODEs are 

deterministic, the interactions among genes represent causal interactions, and not 

statistical dependencies as the other methods. The model consists of a differential 

equation for each of the N genes in the network, describing the transcription rate of 

the gene as a function of the other genes and of the perturbation. The parameters of 

the equations have to be inferred from the expression data. 

Linear functions have proven to be the most versatile in the analysis of 

experimental data sets (Della Gatta et al., 2008; Gardner et al., 2003). In part, this is 

due to the simplifying power of linear functions; they dramatically reduce the number 

of parameters needed to describe the influence function and avoid problems with 

overfitting. Thus, the amount of data required to solve a linear model is much less 

than that required by more complex nonlinear models. This advantage is crucial in 

light of the high cost of experimental data and the high dimensionality of biological 

systems. On the other hand, the linear model places strong constraint on the nature of 

regulatory interactions in the cell. Therefore, oscillations or multistationarity, which 

are both important properties of real biological networks, and are nonlinear 

phenomena, cannot be captured with linear models. Also, higher noise in the 

microarray data limits their application to make only qualitative statement and not 

quantitative statement about the underlying network. 
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In summary, the ODE-based approaches yield signed directed graphs and can 

be applied to both steady-state and time-series expression profiles. Another advantage 

of ODE approaches is that once the parameters describing interactions among genes 

are known, the model can be used to predict the behaviour of the network in different 

conditions (i.e. gene knockout, treatment with an external agent, etc.). 

 

3.2.2 Bayesian Networks 

 A Bayesian network is a graphical model of probabilistic relationships among 

a set of random variables, with each variable representing one of the N genes in the 

network. The state of each gene in the network is specified by a probability 

distribution function, which is dependent on (i.e. conditioned on) a set of regulator 

genes that are called its parents. The conditional distribution, which describes 

relationships (i.e. the gene-gene interactions) in the network, has one important 

restriction: a gene may be a regulator of any other gene, provided that the network 

contains no cycles (i.e. a gene cannot directly, or indirectly, regulate itself). In order to 

reverse-engineer gene networks using a Bayesian approach, we must find the directed 

acyclic graph that best describes the gene expression data (in the case of time-series 

data, the directed graph can also contain cycles). These means to find two sets of 

parameters: the model topology (i.e. the regulators of each gene), and the conditional 

probability functions, which relate the state of the regulators to the state of the state of 

their targets. Advantages of using Bayesian networks are: 

• It can handle incomplete data sets. 

• It allows one to learn about casual relationships. 

• It can facilitate the combination of domain knowledge and data. 
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• It offers an efficient and principled approach for avoiding the overfitting of 

data. 

• Owing to its probabilistic nature, it can also handle noisy data as found in 

biological experiments. 

Owing to its advantages, researchers have devoted considerable attention in recent 

years to the use of Bayesian network approaches for reverse-engineering gene 

network (Dojer et al., 2006; Friedman et al., 2000; Segal et al., 2003; Yu et al., 2004; 

Zhou et al., 2005). 

 The main limitation of Bayesian networks is that they disregard dynamical 

aspects completely and require the network structure to be acyclic (i.e. no feedback 

loops). To overcome these limitations one may use Dynamic Bayesian networks 

(Dojer et al., 2006; Yu et al., 2004). It is an extension of Bayesian networks, which 

can be used to infer cyclic phenomena such as feedback loops and are also able to 

infer interactions from time-series data in order to capture dynamic behaviours. 

In summary, these approach yields signed directed graphs indicating 

regulation among genes and, like ODEs ones, can analyse both steady-state and time-

series data.  

A word of caution: Bayesian networks model probabilistic dependencies among 

variables (the genes of the network) and not causality, that is, the regulators of a gene 

are not necessarily the direct causes of its behaviour. However, we can interpret the 

edge as a causal link if we assume that a variable X is independent of all the other 

variables (except the target of X), which depends on (i.e. conditional on) all its direct 

causes. It is not known whether this assumption is a good approximation of what 

happens in real biological networks. 
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3.2.3 Information-theoretic approaches 

In Information-theoretic approaches, the network among N genes is reconstructed by 

considering one pair of genes at the time, and checking whether the two genes are co-

expressed across the experimental dataset. In other words, interactions between pairs 

of genes are assigned when they are expressed with a high statistical similarity in 

different experiments. Algorithms begin by adding connections between all gene pairs 

with expression profiles that exceed a threshold of similarity. Ideally, connections in 

this graph will describe true input–output relationships. However, many connections 

in this initial graph may associate genes that, for instance, are regulated by the same 

transcription factor, or that have a common regulator few nodes upstream in the 

network. In other words, the first step of the algorithm does not distinguish similar 

and causal relations, nor between direct and indirect relations. To address this 

problem, a pruning process is undertaken to remove connections that are better 

explained by a more direct path through the graph. What remains are the connections 

that are more likely to be causal interactions.  

Co-expression can be measured either by correlation, which assumes linear 

dependence between variables, or by a more robust measure called Mutual 

Information, which makes no assumption about the form of dependence between 

variables (Bansal et al., 2007). 

Because of its nature, information theoretic approaches yield undirected 

graphs thus differing from Bayesian networks and Ordinary Differential Equation 

approaches. Furthermore, Mutual Information based approaches (which are mostly 
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used) by definition require each experiments to be statistically independent from the 

others. Thus, they can only deal with steady-state experiments.  

Another important aspect, which needs to be considered is that, since this class 

of algorithms is based on statistical dependence between the genes of the network, it 

requires a big training dataset of gene expression levels measured over many different 

experimental conditions. 
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Chapter 4 – Materials and Methods 

 

4.1 Yeast Strains and Plasmids 

 

All S. cerevisiae strains used to construct IRMA were YM4271 background 

(MATa ura3-52 his3-∆200 ade2-101 lys2-801 leu2-3 trp1-901 gal4-∆542 gal80-∆538 

ade5::hisG) kindly provided by M. Johnston (Liu et al., 1993). PCR generated 

cassettes were used for both integration of the new transcriptional units and 

contemporary gene deletion as detailed in the paragraphs below (Brown and Tuite, 

1998). All the integrations were confirmed by PCR. Genotypes of strains and 

plasmids generated in this study are listed respectively in Table 1 and 2. Primers that 

were used to integrate each described cassette in the genome are reported in Table 3.  

 

4.1.1 IRMA Network Construction  

To construct the IRMA containing strain, sequential PCR-based genomic 

integrations were made with the cassettes described in the text below.  

At first two HA epitopes were cloned in pAG32 (Goldstein and McCusker, 1999) 

among Hind III and Bgl II sites. The 2xHA-hphMX4 cassette was amplified by PCR 

and inserted in front of the stop codon of ASH1 gene in YM4271 strain resulting in 

P278 strain. 

To generate P280 strain MET16 promoter (-446 to -1, ATG = +1) was amplified from 

W303 and cloned in YIplac128 between Hind III and Sac I; GAL4 ORF was then 
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cloned between Sac I and Nde I thus resulting in plasmid pMET16prGAL4. The 

MET16prGAL4-LEU2 cassette was integrated in SHE2 locus (-11 to +751). 

CBF1 ORF was amplified from W303 and cloned among Bam HI and Pac I of 

pFA6a-GFP(S65T)-kanMX6 (Wach et al., 1997). Then, the CBF1-GFP-kanMX6 

cassette was integrated downstream of the HO promoter (between -1 to +1758) of 

P280 strain, obtaining P324. 

ASH1 promoter (-591 to -1) was cloned in Pst I and Bam HI of YIplac211 where the 

GAL80-3xFLAG was then inserted between Bam HI and Sac I. The ASH1prGAL80-

3xFLAG-URA3 was integrated in SWI5 locus (-50 to +2299) thus yielding P326. In 

this strain, ACE2 gene was then also deleted (from -345 to +2314) by integrating 

natMX4 cassette from pAG25 (Goldstein and McCusker, 1999).  

Finally, GAL10prSWI5AAA-MYC9- KlTRP1 was integrated in CBF1 locus (-1 to 

+1464) resulting in IRMA containing strain (P340). To build GAL10prSWI5 AAA -

MYC9- KlTRP1, the SWI5AAA locus was tagged at the C-terminus with nine Myc 

epitopes in K2072 strain, which was gently provided by K. Nasmyth (Moll et al., 

1991). SWI5AAA -MYC9- KlTRP1 was then amplified by PCR from the resulting strain 

and cloned in YIplac204 between Eco RI and Aat II. The GAL10 promoter (-523 to -

1) was cloned in YIplac204 between Hind III and Eco RI yielding the vector 

containing the entire integrated cassette. 

 

4.1.2 Promoter Strength Strains 

Strains used for promoter strength measurements were constructed by 

integrating the promoters containing cassettes in the genome of strains reported in 

Table 1. The kanMX4-MET25pr cassette was amplified by PCR from plasmid pYM-
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N34 (Janke et al., 2004) and integrated upstream of the starting codon of GAL4 (in 

P265, a wild type strain), and upstream of the ATG of ASH1 and SWI5 (in P358, a 

she2Δace2Δ strain) to obtain respectively P549, P362 and P364 strains.  

In order to obtain strains which express the CBF1 TF at different levels, we 

integrated at the 5’ of this gene constitutive promoters of variable strength (CYC1, 

ADH1, TEF, GPD promoters) and the CUP1 inducible promoter, which were 

amplified (together with the kanMX4 resistance cassette) from plasmids pYM-N10, 

pYM-N6, pYM-N18, pYM-N14, pYM-N1 (Janke et al., 2004).  

 

4.2 Time-series and Steady-state Experiments 

 

For time-series experiments, yeast cells of IRMA-containing strain (P340) 

were grown at 30°C in YEP containing 2% glucose (YEPD) or 2% galactose and 2% 

raffinose (YEPGR) until mid-log phase. Cells were then collected by filtration, 

washed twice with YEP, shifted respectively in YEPGR (for switch-on experiments) 

or YEPD (for switch-off experiments) and grown at 28°C. Cells were harvested at 

different time points for RNA extraction. 

For steady-state perturbation experiments, centromeric plasmids were 

constructed as follow. CBF1, GAL4, SWI5, ASH1 and GAL80 ORFs were amplified 

from W303 genome and cloned in pENTR/D-TOPO vector (Invitrogen). Each of 

these ‘entry clones’ was then recombined with pAG413GPD-ccdB (Addgene 14142) 

destination vectors by LR Clonase II enzyme, as previously described by (Alberti et 

al., 2007). IRMA containing strain was then transformed with the obtained plasmids 
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as described by (Gietz and Woods, 1994). Transformed cells were grown at 30°C in 

SC (Synthetic complete) medium lacking histidine with 2% glucose or 2% galactose 

plus 2% raffinose to 0.6-0.8 OD600 and then harvested for RNA extraction. 

 

4.3 Promoter Strength Experiments 

 

Strains P349, P362 and P364 were grown in SC medium lacking methionine 

with 2% glucose in presence of different amounts of methionine (from 1mM to 5 µM) 

in order to express variable TF levels; only to express GAL4 (P349) the experiment 

was also performed by adding 2% galactose and 2% raffinose to the SC medium. In 

addition, P349 was transformed with pGPD-GAL80, P362 with pGPD-SWI5aaa and 

P364 with pGPD-ASH1. Different transformed clones were grown in SC medium 

lacking methionine with 2% glucose in presence of 1mM or 50 µM of methionine; 

pGPD-GAL80 transformed clones were also grown with 2% galactose and 2% 

raffinose. The cultured cells described above were harvested for RNA extraction at 

0.6-0.8 OD600. 

W303 strain (with endogenous CBF1 gene), P351, P353, P354 and P360 were 

grown in YEPD up to 0.6-0.8 OD600 and harvested for RNA extraction.  

P365 cells were grown in SC medium containing 16nM CuSO4 until mid-log 

phase, then induced for 2h with different amounts of CuSO4 and harvested to collect 

RNA.  
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4.4 Semi-quantitative and quantitative RT-PCR 

 

Total RNA was prepared as previously described by Cross et al. (Cross and 

Tinkelenberg, 1991), treated with 2.5 units/RNA(µg) of DNAse I (Roche) and cleaned 

up with RNeasy MiniElute Cleaneup Kit (Quiagen) to effectively remove traces of 

genomic DNA. Lack of genomic DNA contamination was checked by PCR 

amplification of total RNA samples without prior cDNA synthesis using primers 

annealing on ACT1 intron. Cleaned RNA (1.5 µg) was reverse transcribed using 

SuperScript III First-Strand Synthesis System (Invitrogen). 

Semi-quantitative PCR reactions were performed with AmpliTaq Gold 

(Applied Biosystems) using an amount of cDNA normalized on ACT1 and PDA1 gene 

expression. 

Quantitative real-time PCR reactions were set up in duplicates using Platinum 

SYBR Green qPCR SuperMix-UDG with ROX (Invitrogen), and amplification was 

performed using a 7000 or 7900 ABI Real-Time PCR machine. Primers were 

designed using PrimerExpress software (Applied Biosystems). Data analyses were 

performed using the Applied Biosystems’ SDS software version 1.2.3. ACT1 values 

were used to normalize the amount of cDNA and ΔCts were calculated as the 

difference between the average ACT1 Ct and the average geneN Ct. List of primers is 

given in Table 4. 
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4.5 Processing of expression data from quantitative RT-PCR 

 

Real-time PCR for the “Glucose steady-state” and “Galactose steady-state” 

datasets were processed as follows: for each gene in each of perturbation experiments, 

expression levels were obtained with the ∆Ct method yielding fold-changes in 

perturbed over non-perturbed conditions. Values were averaged across technical and 

biological replicates. Standard errors were computed using biological replicates.  

Real-time data for the switch-on time-series consisted of five independent 

experiments with a sampling time of 20 min up to 5 hrs; for the switch-off time-series 

the dataset consists of four independent experiments with sampling time of 10 min up 

to 3hrs. The data were processed as follows: for each of the time-series, we computed 

a baseline, by taking the mean value of the time-series, and subtracted it from each of 

its points. An averaged time-series was then computed by taking the mean of each 

time-point across the different experiments. We then summed back the mean of the 

different baselines to the averaged time-series thus obtaining the switch-on and 

switch-off time-series data. The error bars in Figure 6.6 refer to standard errors. 

For promoter strength analysis we had the five datasets described below. In 

each dataset we measured mRNA expression levels both of the promoter gene to be 

characterized and of its regulating TF/s (Figure 7.3 and 7.4). Expression levels were 

obtained with the ∆Ct method and values were averaged across technical replicates.  

MET16 promoter dataset is composed of 18 data points which were collected 

from various strains in which CBF1 is expressed at different levels (P351, P353, 

P354, P360, P365). For ASH1 promoter we collected 29 data points in strain P364 

after induction of SWI5. HO promoter dataset includes 38 data points in strain P364 
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after induction of SWI5 at different levels, plus 34 in strain P362 where ASH1 was 

induced. Expression levels of HO, SWI5 and ASH1 were measured in all 72 data 

points. For GAL10 promoter characterization two datasets were collected: one in 

glucose (composed of 32 data points) and another in galactose containing medium 

(composed of 14 data points). In both datasets, GAL10, GAL80 and GAL4 expression 

levels were measured. 

 

4.6 Mathematical Model of the IRMA network  

 

The mathematical model consists of five nonlinear Delay Differential 

Equations describing the rate of change in mRNA levels of the five genes (Figure 

7.1). It was derived using Hill kinetics for the gene interactions and a 

phenomenological law to describe the interactions between the galactose pathway and 

the genes in the network. The problem of estimating parameter values was defined as 

a nonlinear programming problem (NLP) and handled using a Hybrid Genetic 

Algorithm to the purpose of merging the global-search properties of GAs with the fast 

local convergence of Least Square (LS) methods (Cantone et al., 2009). The in silico 

experiments, mirroring the Glucose steady-state and Galactose steady-state in vivo 

experiments, were carried out by numerically solving the mathematical model: we 

used as initial conditions the steady state predicted by the model in unperturbed 

conditions (either in glucose or in galactose), and we added a constant input, 

corresponding to the gene overexpression, to each of the five equations.  



 37 

4.6.1 Parametrization of the IRMA network 

To fit the 33 unknown parameters of the mathematical model, we relied both 

on promoters’ strength data (steady-state data) and on non-logarithmic averaged time- 

series data set of the switch-on experiments (dynamic data). In both the processes, we 

used a Hybrid Genetic Algorithm (HGA) with two distinct cost functions (Cantone et 

al., 2009).  

Regarding promoter strength data, for each promoter, we fitted to the data the 

equation at steady state of the gene whose expression is driven by the promoter itself. 

For example, in the case of HO promoter, the function fitted was the right-hand side 

of the CBF1 equation (Figure 7.1), thus obtaining:  

 

where x3 is [SWI5] and x5 is [ASH1]. For the fitting, the HGA was used and the 

objective function was defined as: 

 

where n is the number of experimental data points, are the predicted values of the 

mathematical model and  are the experimental data points. 

Results are shown in Figures 7.3 and 7.4. To quantify the strength of network 

connections, according to (Zhang et al., 2002), we defined the promoter strength 

parameter like , where υmax is the maximal transcription rate and km is the 

Michaelis and Menten constant. In our case, since we are estimating the ratio between 
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the maximal transcription rate and the degradation rate d the promoter strength 

parameter becames . Table 5 lists the fitted kinetic parameters and the strength of 

each promoter. 

The decreasing strength ranking of the network promoters is the following: 

1) Gal4 → GAL10 promoter in galactose 

2) Gal4 → GAL10 promoter in glucose 

3) Ash1 → HO promoter 

4) Cbf1 → MET16 promoter 

5) Swi5 → ASH1 promoter 

6) Swi5 → HO promoter 

4.6.2 Fitting of switch-on data 

The parameters, which were fitted from steady data (reusable in dynamic 

simulations of switch-on), are the Michaelis-Menten constants, the relative Hill 

coefficients, the values of  in glucose and galactose and the ratio between the values 

of the kinetic parameter  in galactose and in glucose. From steady-state data we did 

not have estimation of the transcription rates and of the basal activities, but only of 

their ratio to the degradation rates. We could not fit also the degradation rates, and the 

starvation effect parameters (ψ1 and ψ2). The remaining 17 unknown parameters were 

estimated relying on the data set of nonlogarithmic averaged time-series of the switch-

on experiments. The objective function of the HGA was defined as:  
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where n and m are respectively the number of genes and experimental data points, 

are the predicted values of the mathematical model (using the inferred 

parameters) and  are the experimental data points.  

In simulations, the initial values of gene expression were set to the steady state 

values predicted by the model.  

The overall estimated values of the 33 unknown parameters of our DDE model 

are shown in Table 6.  

 

4.7 Reverse Engineering the IRMA network 

 

4.7.1 The Ordinary Differential Equation Approach: the NIR and 

TSNI algorithms 

As described in (Bansal et al., 2007), in the Ordinary Differential Equation 

approach, the gene network dynamics, describing the time evolution of the mRNA 

concentration transcribed by each gene, is modelled by a set of Ordinary Differential 

Equations, one equation for each gene i, in a network of N genes:  

(1) 

where xil is the mRNA concentration of gene i following the perturbation in the 

experiment l; aij represents the influence of gene j on gene i; uil is an external 

perturbation to the expression of gene i in experiment l.  
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Identifying the gene interactions network means to retrieve the matrix A of the 

coefficients aij for each gene i in the model described below. This can be 

accomplished if we measure mRNA concentrations of all the N genes at steady state 

(i.e.  = 0) in M experiments and then solve the system of equations, as done in the 

Network Inference by Regression (NIR) algorithm (Gardner et al., 2003).  

Alternatively, the same system of equations can be solved using a single 

perturbation experiment, and measuring multiple time-points following the 

perturbation, as done in the Time-Series Network Identification algorithm (TSNI) 

(Bansal et al., 2007; Bansal et al., 2006).  

In order to infer the IRMA network from the "Glucose steady-state" and the 

"Galactose steady-state" datasets, we applied the NIR algorithm (Gardner et al., 

2003). NIR solves equation (1) to obtain the network matrix A from gene expression 

data. We considered a fixed number of regressors for each predicted gene (k = 2), i.e. 

we assume that each gene can be regulated by a maximum of 2 other genes. The 

regressor set was chosen according to the residual sum of square error (RSS) 

minimization criterion. Since we have only 5 genes in the network we exhaustively 

searched the best regressors in the space of all the possible couples of genes, In each 

of the experiments, only one gene i was perturbed. NIR requires only the knowledge 

of which gene was perturbed in each experiment. The perturbation value was set equal 

to 1. 

In order to reverse-engineer IRMA from the switch-on and switch-off datasets, 

we applied the TSNI (Time Series Network Identification) algorithm (Bansal et al., 

2007). To estimate the coefficients of the gene interaction in IRMA, the TSNI 

algorithm solves the integral version of equation (1) and identifies the network of 

genes (matrix A). As in the case of NIR, TSNI requires knowledge of which gene has 
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been perturbed in the experiment. In our case, since the perturbation is obtained by 

shifting cells from glucose to galactose or vice versa, we assumed a constant input to 

the SWI5 gene, since this is the first gene that is affected by galactose treatment at the 

transcriptional level. We also assumed, as in the case of NIR, that each gene can be 

regulated by a maximum of 2 other genes (k = 2).  

 

4.7.2 The Bayesian Network Approach: Banjo algorithm 

A Bayesian network is a graphical model for probabilistic relationships among 

a set of random variables Xi, with i = 1 . . . n. These relationships are encoded in the 

structure of a directed acyclic graph G whose vertices (or nodes) are the random 

variables Xi. The relationships between variables are described by a joint probability 

distribution P(X1, . . . , Xn) that is consistent with the independence assertions 

embedded in the graph G and has the form:  

 (2) 

where the p +1 genes on which the probability is conditioned are called the parents of 

gene i and represent its regulators, and the joint probability density is expressed as a 

product of conditional probabilities by applying the chain rule of probabilities and 

independence. This rule is based on Bayes theorem: P(A, B) = P(BA) ∗ P(A) = 

P(AB) ∗ P(B). We observe that the JPD (joint probability distribution) can be 

decomposed as the product of conditional probabilities as in equation (2) only if the 

Markov assumption holds, that is each variable Xi is independent of its non-

descendants, given its parent in the directed acyclic graph G. In order to reverse-

engineer a Bayesian network model of a gene network we must find the directed 
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acyclic graph G (i.e. the regulators of each transcript) that best describes the gene 

expression data D. This is done by choosing a scoring function, which evaluates each 

graph G (i.e. a possible network topology) with respect to the gene expression data D, 

and then by searching for the graph G that maximizes the score.  

Banjo (Bayesian Network Inference with Java Objects) is a gene network 

inference software that has been developed by (Yu et al., 2004). Banjo is based on the 

Bayesian networks formalism and implements both Bayesian and Dynamic Bayesian 

networks; therefore it can infer gene networks from steady-state gene expression data, 

or from time-series gene expression data. In Banjo, heuristic approaches are used to 

search the ’network space’ in order to find the network graph G (that is 

Proposer/Searcher module in Banjo). For each network structure explored, the 

parameters of the conditional probability density distribution are inferred and an 

overall network’s score is computed using the BDe metric in Banjo’s Evaluator 

module. The output network will be the one with the best score (Banjo’s Decider 

module). Banjo outputs a signed directed graph indicating regulation among genes. 

Banjo can analyse both steady-state and time-series data.  

In the case of steady-state data, Banjo, as well as the other Bayesian networks 

algorithms, is not able to infer networks involving cycles (e.g. feedback or feed-

forward loops).  

In order to reverse-engineer IRMA, we applied Banjo on both time-series and 

steady-state datasets. Banjo recovers the Dynamic Bayesian Network that better 

describes the observed data. In order to estimate the JPD of all variables in the 

network, Banjo first discretizes the data using a quantile discretization procedure and 

then constructs a Bayesian Network that summarize the observations. Moreover, 

assuming independence above a certain level among the nodes of the network (length 
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of the chain of parents to be considered for a given node of the network), Banjo 

repeatedly applies the chain rule. The minMarkovLag and maxMarkovLag parameters 

that specify the depth of the parent chain were set to 1. The random local move and 

simulated annealing, were chosen as Proposer/Searcher strategies, respectively. The 

amount of time Banjo uses to explore the Bayesian Network space was set to one 

minute. All the other parameters such as reannealingTemperature, coolingFactor, and 

so on, were left with their default values. Of course the parameter values were not 

arbitrary chosen; those values were selected as best values (in terms of network 

inference accuracy), as described in (Bansal et al., 2007). 

 

4.7.3 The Information-theoretic Approach: the ARACNE algorithm 

Information-theoretic approaches use a pseudo-distance between probability 

distribution called Mutual Information (MI), to compare expression profiles from a set 

of microarrays. For each pair of genes (i, j), their MIij is computed and the edge aij = 

aji is set to 0 or 1 depending on a significance threshold to which MIij is compared. 

The MI can be used to measure the degree of independence between two genes.  

Mutual information MIij between gene i and gene j is computed as: 

MIij = Hi + Hj - Hij    (3) 

where H, the entropy, is defined as: 

    (4) 

The entropy Hk has many interesting properties, specifically it reaches a 

maximum for uniformly distributed variables, i.e. the higher the entropy, the more 
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randomly distributed are gene expression levels across the experiments. From the 

definition, it follows that MI becomes zero if the two variable xi and xj are statistically 

independent (P (xi xj) = P (xi)P (xj)), since their joint entropy is Hij = Hi + Hj. A higher 

MI indicates that the two genes are non-randomly associated to each other. It can be 

easily shown that MI is symmetric, Mij = Mji, therefore the network is described by an 

undirected graph G, thus differing from Bayesian networks and Ordinary Differential 

Equation approaches (directed acyclic graph). The definition of MI in equation (3) 

requires that each data point, i.e. each experiment, is statistically independent from the 

others, thus information-theoretic approaches, as described here, can deal with steady-

state gene expression data set, or with time-series data as long as the sampling time is 

long enough to assume that each point is independent from the previous ones. Edges 

in networks derived by information-theoretic approaches represent statistical 

dependences among gene expression profiles.  

ARACNE (Basso et al., 2005; Margolin et al., 2006) belongs to the family of 

information-theoretic approaches to gene network inference with their relevance 

network algorithm. ARACNE computes Mij for all pairs of genes i and j in the data 

set. Mij is estimated using the method of Gaussian kernel density (Steuer et al., 2002). 

Once Mij for all gene pairs has been computed, ARACNE excludes all the pairs for 

which the null hypothesis of mutually independent genes cannot be ruled out (H0 : Mij 

= 0). A p-value for the null hypothesis, computed using Montecarlo simulations, is 

associated to each value of the mutual information. The final step of this algorithm is 

a pruning step that tries to reduce the number of false positives (i.e. inferred 

interactions among two genes that are not direct causal interaction in the real 

biological pathway). They use Data Processing Inequality (DPI) principle that asserts 

that if both (i, j) and (j, k) are directly interacting, and (i, k) are indirectly interacting 
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through j, then Mi,k ≤ min(Mij, Mjk). This condition is necessary but not sufficient, i.e. 

the inequality can be satisfied even if (i, k) are directly interacting, therefore the 

authors acknowledge that by applying this pruning step using DPI they may be 

discarding some direct interactions as well. 

In order to reverse-engineer IRMA we applied ARACNE on the steady-state 

datasets, “Glucose steady-state” and “Galactose steady-state”, and concatenating them 

to obtain a larger dataset. The lack of any statistical independence assumption for 

time-series data does not allow running ARACNE on them. All the parameters were 

left with their default values. For instance, the software automatically detects the 

Kernel width and Number of bins; no threshold and p-value between both MI values 

and MI P-value were used, respectively; DPI tolerance, which removes false positive 

“mirrored” connections, was left to its default value, 0.15. 

 

4.7.4 Estimation of the Performance of the Algorithms 

In order to assess the inference performances we computed the Positive 

Predicted Value (PPV) and the Sensitivity scores as described in (Bansal et al., 2007). 

We considered the following definitions: 

TP = Number of True Positives = number of edges in the real network that 

are correctly inferred;  

FP = Number of False Positives = number of inferred edges that are not in the 

real network;  

FN = Number of False Negatives = number of edges in the real network that 

are not inferred.  
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Then we computed:  

 

and      

In order to compute the random PPV we considered the expected value of an hyper 

geometrically distributed random variable whose distribution function and expected 

value are, respectively: 

 

In our case, N =number of possible edges in the network; M = number of true 

edges, n = number of predicted edges. Then we computed as random PPV:  

 

Reverse-engineering algorithms can infer interactions with direction of regulation (A 

regulates B and not vice versa − directed graph), or just an undirected interaction (A 

regulates B, or, B regulates A − undirected graph). For unsigned directed networks the 

value of the random PPV is equal to 8/20=0.4, for unsigned directed networks, it is 

equal to 7/10 = 0.70. 
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4.7 Fluorescence Microscopy 

 

For microscopy analysis, yeast cells were grown over-night in 5ml of YEPD or 

YEPG at 28°C. Ten µl of cell suspension were applied on a microscope slide, sealed 

with a coverslip and immediately inspected on Zeiss microscope (Axioplan 2 

imaging) with a 63x oil immersion objective lens (Zeiss). Pictures were taken with 

Axiocam camera controlled by AxioVision software. 
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Strain Name Genotype Source 

P277 MATa, ura3-52 his3-Δ200 ade2-101 lys2-801 leu2-
3 trp1-901 gal4-Δ542 gal80-Δ538 ade5::hisG 

YM42711 

W303 (P265) MATa, ura3-52 his3-11,15 ade2-1 leu2-3,112  
trp1-1 can1-100 

 

P15 MATa, swi5∆::URA3 W303 

P302 MATa, ace2∆::natMX4 W303 

P304 MATa, ace2∆::natMX4 P15 

P366 MATa, cbf1∆::hphMX4 W303 

P274 MATa, gal4∆::kanMX4 W303 

K2072 MATa, ho SWI5(AAA) W3032 

P323 MATa, ho SWI5(AAA)-myc9-KlTRP1 K2072 

P278 MATa, ASH1-2xHA-hphMX4 P277 

P280 MATa, she2Δ::MET16p-GAL4-LEU2 P278 

P324 MATa, hoΔ::CBF1-GFP-kanMX6 P280 

P326 MATa, swi5Δ::ASH1p-GAL80-3xFlag-URA3 P324 

P331 MATa, ace2Δ::natMX4 P326 

P340 MATa, cbf1Δ::GAL10pSWI5(AAA)-myc9-KlTRP1 P331 

P351 MATa, kanMX4-ADHp::CBF1 P265 

P353 MATa, kanMX4-CYC1p::CBF1 P265 

P354 MATa, kanMX4-GPDp::CBF1 P265 

P360 MATa, kanMX4-TEFp::CBF1 P265 

P365 MATa, kanMX4-CUP1p::CBF1 P265 

P349 MATa, kanMX4-MET25p::GAL4 P265 

P355 MATa, ace2∆::natMX4 K2072 

P358 MATa, she2∆::hphMX4 P355 

P362 MATa, kanMX4-MET25p::ASH1 P358 

P364 MATa, kanMX4-MET25p::SWI5(AAA) P358 
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Information under “Source” enables the origins of the various strains to be traced. 

1 The strain was kindly provided by Johnston M. 

2 The strain was kindly provided by Nasmyth K. 

Table 1. List of Yeast Strains and Their Genotype 

 

Plasmid Name Cloned sequence (restriction sites) Backbone 

pGal10pYIp204 GAL10 -523 to -1 (Hind III - Eco RI) YIplac204 

pMet16pYIp128 MET16 -446 to -1 (Hind III - Sac I) YIplac128 

pAsh1pYIp211 ASH1 -591 to -1 (Pst I - Bam HI) YIplac211 

pGal10pSwi5aaaMyc9 SWI5AAA (ORF)-MYC9- KlTRP1 (Eco 
RI - Aat II) 

pGal10pYIp204 

pMet16pGal4 GAL4 (ORF) (Sac I – Nde I) pMet16pYIp128 

pAsh1pGal80-3xFlag GAL80 (ORF)-Nar I-3xFlag (Bam HI 
– Sac I) 

pAsh1pYIp211 

p2xHA 5’- AAC ATC TTT TAC CCA TAC GAT 
GTT CCT GAC TAT GCG GGA GGA TCC 
TAT CCA TAT GAC GTT CCA GAT TAC 
GCT GCT CAG TGC TGA -3’ synthetic 
sequence (Hind III – Bgl II) 

pAG32 

pCbf1GFP(S65T) CBF1 (ORF) (Bam HI - Pac I) pFA6a-
GFP(S65T)-
kanMX6 

pENTRCbf1 CBF1 (ORF) pENTR/D-TOPO 

pENTRCbf1-S CBF1 (ORF without stop codon) pENTR/D-TOPO 

pENTRGal4 GAL4 (ORF) pENTR/D-TOPO 

pENTRGal4-S GAL4 (ORF without stop codon) pENTR/D-TOPO 

pENTRSwi5aaa SWI5AAA (ORF) pENTR/D-TOPO 

pENTRSwi5aaa-S SWI5AAA (ORF without stop codon) pENTR/D-TOPO 

pENTRAsh1 ASH1 (ORF) pENTR/D-TOPO 

pENTRAsh1-S ASH1 (ORF without stop codon) pENTR/D-TOPO 

pENTRGal80 GAL80 (ORF) pENTR/D-TOPO 
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pENTRGal80-S GAL80 (ORF without stop codon) pENTR/D-TOPO 

pGPDCbf1 CBF1 from pENTRCbf1 pAG413GPD-ccdB 

pGPDGal4 GAL4 from pENTRGal4 pAG413GPD-ccdB 

pGPDSwi5aaa SWI5AAA from pENTRSwi5aaa pAG413GPD-ccdB 

pGPDAsh1 ASH1 from pENTRAsh1 pAG413GPD-ccdB 

pGPDGal80 GAL80 from pENTRGal80 pAG413GPD-ccdB 

 

Table 2. List of plasmids 

 

 

Primer Sequence 5’ to 3’ Comments 

HAF TACCGTTGCTTATTTTGTAATTACATAACTGAGACAGTAGAGAATA
ACATCTTTTACCCATACGAT 

ASH1 tagging (P278) 

HA2 CGTGATAATGTCTCTTATTAGTTGAAAGAGATTCAGTTATCCATGT
ATCAATCGATGAATTCGAGCTCG 

ASH1 tagging (P278) 

INTGal4F AGAGAAAGCACAGTAAACCCTCCTTAATTTTCCTTTTGCATAATAC
CACCATGATTACGCCAAGCTT 

MET16p-GAL4 in SHE2 
locus (P280) 

INTGal4R TATATGTTCTATTAACTAGTGGTACTTATTTGCTCTTTTTGAGCTA
AGGCGTATCACGAGGCCA 

MET16p-GAL4 in SHE2 
locus (P280) 

CBF1ATG ATCCATATCCTCATAAGCAGCAATCAATTCTATCTATACTTTAAAA
TGAACTCTCTGGCAAATAAT 

CBF1-GFP in HO 
promoter (P324) 

CBF1C AATTTTACTTTTATTACATACAACTTTTTAAACTAATATACACATT
TATCGATGAATTCGAGCTCG 

CBF1-GFP in HO 
promoter (P324) 

INTGal80F GAGCTAGGTAAATAGATCCTGAGAACGTGTTTAACATCTGCGATAT
ACCATGATTACGCCAAGCTT 

ASH1p-GAL80-3xFlag in 
SWI5 locus (P326) 

INTGal80R ATTCCTAAAGTTATAGTTCACATTGTTATATATGTATCTATAAAGC
GAGGCGTATCACGAGGCCA 

ASH1p-GAL80-3xFlag in 
SWI5 locus (P326) 

Ace2NatFv TCATAATATACGATATATATCTCAAAACGGCAAAATGTAAACATTC
GTACGCTGCAGGTCGAC 

ACE2 deletion (P331, 
P355) 

Ace2NatRv TGTTACTATTATTTATTATGTTAATATCATGCATAGATAAATGTTA
TCGATGAATTCGAGCTCG 

ACE2 deletion (P331, 
P355) 

SWITagF2 AATGGAACGGGGATTATGGTTTCGCCAATGAAAACTAATCAAAGGT
CCGGTTCTGCCGCTAG 

SWI5 tagging (P323) 
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SWITagR2 TTTATTATTAAATATTAAAAAAAGTGTCCATAACATCAATGTTTTT
TTCCTCGAGGCCAGAAGAC 

SWI5 tagging (P323) 

SWI1 CAACATCAAGTGCTTAAAATATAATACGGTTTTCTACACTTTTATT
AACGGACCATGATTACGCCAAGCT 

GAL10p-SWI5(AAA)-
myc9 in CBF1 locus 
(P340) 

INTSwiKL AAAGTAGAAATAGGCCCGTGATTGTCGCGGACCTTCAAGGATGTGA
CGTTCCTCGAGGCCAGAAGACTA 

GAL10p-SWI5(AAA)-
myc9 in CBF1 locus 
(P340) 

MetGAL4Fv TGCACGCCATCATTTTAAGAGAGGACAGAGAAGCAAGCCTCCTGAA
AGATGCGTACGCTGCAGGTCGAC 

 

MET25p in GAL4 locus 
(P349) 

MetGAL4Rv CTTTTTAAGTCGGCAAATATCGCATGCTTGTTCGATAGAAGACAGT
AGCTTCATCGATGAATTCTCTGTCG 

MET25p in GAL4 locus 
(P349) 

PrCBF1Fv CATCAAGTGCTTAAAATATAATACGGTTTTCTACACTTTTATTAAC
GATGCGTACGCTGCAGGTCGAC 

Promoters in CBF1  locus 
(P351-3-4,360, 365) 

PrCBF1Fv TGGATTTCCTCATCCTCAGTAGAAAGCTTATTATTATTTGCCAGAG
AGTTCATCGATGAATTCTCTGTCG 

Promoters in CBF1 locus 
(P351-3-4,360, 365) 

DShe2Fv AGAGAAAGCACAGTAAACCCTCCTTAATTTTCCTTTTGCATAATAC
CCGTACGCTGCAGGTCGAC 

SHE2 deletion (P358) 

DShe2Rv TATATGTTCTATTAACTAGTGGTACTTATTTGCTCTTTTTGAGCTA
ATCGATGAATTCGAGCTCG 

SHE2 deletion (P358) 

MetSwi5Fv ATTGGATTCTAGGGCCAATGTTATTTCTGTCTTAAAGGAGAGCGAA
TCAACGTACGCTGCAGGTCGAC 

MET25p in SWI5 locus 
(P364) 

MetSwi5Rv AAAATTTAGGCTTTGTACTTTTGAGGCATCAAACCAAGAGTTTGAT
GTATCCATCGATGAATTCTCTGTCG 

MET25p in SWI5 locus 
(P364) 

MetAsh1Fv ATGTGGAACAGAAAAGAAATCGGGGCGCTTCCTCTTCTGTATTCCT
TTAATTCGTACGCTGCAGGTCGAC 

MET25p in ASH1 locus 
(P362) 

MetAsh1Fv TCCGGACCAGCAGATAATGCATGCAGTGGTGTTTTGATGTATAAGC
TTGACATCGATGAATTCTCTGTCG 

MET25p in ASH1 locus 
(P362) 

 

All primers listed above were used for amplifying by PCR the cloned cassettes to be 

integrated in the specified locus. They consist of 45-50 nucleotides that are homologous to the 

targeted locus followed by 18-20 (underlined) nucleotides that anneal on the cassette. 

 

Table 3. Oligonucleotides used for PCR-based integrations 
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Primers Sequence 5’ to 3’ Comments 

RTCbf1 GAGGATATGCACACTCACA semi-quantitative 

RTGFP AGATTGTGTGGACAGGTAAT semi-quantitative 

Swi5_1242 AGACCAATATACACCAAGAGG semi-quantitative 

RTMyc9 CGTTCAAGTCTTCTTCTGAGA semi-quantitative 

RTAsh1 CTAGTTACAGTTCTGTCTCT semi-quantitative 

HARv TCAGCACTGAGCAGCGTA semi-quantitative 

FLAG1 CCTTGCATGTTCACTAGAT semi-quantitative 

FLAG2 CGTCATCCTTGTAGTCGAT semi-quantitative 

Gal10Fv TCATGCATTCTGCAAAGCTTC semi-quantitative 

Gal10Rv CCCGTAAGTTTCACCGTTTTT semi-quantitative 

Met16Fv TAATCAAGCTGGAAACGCCAC semi-quantitative 

Met16Rv ATCGGCTGGCTTCATGAATT semi-quantitative 

HOFv TCCAGGGTGAGAGTACTGT semi-quantitative 

HORv CGGACAGCATCAAACTGTAA semi-quantitative 

Ash1Fv CGCTTCCCTGATACATCAAA semi-quantitative 

Ash1Rv TCAATTTCGCAGTTGCGTTC semi-quantitative 

CDC6Fv TAGAATCCGTGGCGGTAACC Both  

CDC6Rv TGGGCCATTCAGATCTTGGA Both 

PCL2Fv TTAACAAACACTGGGCCGAAT Both 

PCL2Rv TGGTGACGTCCCAATCAAAAT Both 

SIC1Fv TATTGTTTCCCACGCAGCAA Both 

SIC1Rv CTGCCTGGCAGATGTAGGTCT Both 

RME1Fv AATTTCCGAAGGGCAAACAA Both 

RME1Rv TGAATTCGTCTAAGTGCGCG Both 

PCL9Fv TCGGTTCCTTCACTGACATCC Both 

PCL9Rv TCAGATTCCACCAACGGTAGG Both 

PIR3Fv TGCCTATGCTCCAAAGGACC Both 
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PIR3Rv CGGCTTCAATAGCAATACCGA Both 

Act1F TTCTGAGGTTGCTGCTTTGGT Both 

Act1R TGGTGTCTTGGTCTACCGACG Both 

Cbf1_826F GCAAACATCGAAAAGTGGACG quantitative 

Cbf1_926R GCATTTCCCAGTTCTTCCTGC quantitative 

Gal4_105F TTCTCCTGGCTCAGTAGGGC Both 

Gal4_205R AGTTACGAGAGGGTGGACGGT Both 

Swi5_1515F TCCTCAATTCGGCACACACA quantitative 

Swi5_1615R CGATTGAACCTCTGGGCAGT quantitative 

Ash1_1267F TCATCTCCATCTCCCTCCACA quantitative 

Ash1_1367R GGTGACCTTGGGCTTGGAGT quantitative 

Gal80_368F TGAAACTTGAAGGCGATGCC quantitative 

Gal80_468R TTGTTGTCCATTGGCTAGCG quantitative 

Met16_618F CAACGAACTTTTGGACCTTGG quantitative 

Met16_718R TGCCCTTCCATCTTCCTGC quantitative 

Gal10_1356F CGGCGTTAATGCGAATCAT quantitative 

Gal10_1456R ACTCGGCGGTAAAAACATCCT quantitative 

HO_1619F AAGGCGAAAAATTGGGCATT quantitative 

HO_1715R CCGCGGACAGCATCAAACT quantitative 

 

Table 4. Oligonucleotides used for semi-quantitative and quantitative RT-PCR 
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Table 5. Fitted promoter strength parameters. Numbers refer to absolute values. 
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Table 6. Estimated Parameters for DE model 
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Chapter 5 - Design Principles for the Construction of 

an in vivo Benchmark 

 

“Influential ideas are always simple. Since natural phenomena need not be simple, we 

master them, if at all, by formulating simple ideas and exploring their limitations.”  

Al Hershey 

Our final goal was to build an in vivo gene network as ground of truth against which 

system and synthetic biology approaches can be assessed. 

 

5.1 Choice of model organism 

 

  We chose as model organism yeast Sacchamyces cerevisiae because it is the 

simplest eukaryote and it shares both transcriptional machinery structure and gene 

transcription mechanisms with higher eukaryotes.  

Considering basic biological concepts, the inside of a yeast cell looks more 

like that of a human cell than that of a bacterium. The DNA is wrapped around 

proteins called histones to form bead-like structures called nucleosomes, and the 

chromosomes are sequestered in a cellular compartment called the nucleus. For these 

and other reasons, yeast is classified as a eukaryote, as are humans, flies, worms and 

plants. 

Most of what we know about eukaryotic gene regulation comes from studies 

of the yeast Saccharomyces cerevisiae. Expression of a typical eukaryotic gene is 
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more complex than is the one of a bacterial gene, because there can be different layers 

of control which involve the presence of nucleosomes and nuclei. As a matter of fact, 

nucleosomes modifications can affect protein binding to DNA, and the sequestration 

of genes in the nucleus implies that regulators often must move from one 

compartment to another in order to perform their task. We reasoned that, even if these 

biological processes are not explicitly formalized when we build the model of a 

biological system, it is essential to consider an organism that has these features. This 

will help to evaluate and compare the modelling assumptions, which are at the basis of 

different system biology approaches, and to understand their limits.  

Among eukaryotes, the yeast has got other convenient features, which lead us 

to choose it as model. This organism grows rapidly, about 20-fold faster than 

mammalian cells and is only 3-fold slower than Escherichia coli. It is unicellular and 

can be easily cultured and manipulated. Mutants can be selected or recognised by 

simple assays, and sequences in and around genes can be altered at will.  The genome 

is completely sequenced and comprises about 6000 genes, only about 2000 more than 

E. coli.  Here, I will use the term yeast to refer to S. cerevisiae. 

 

5.2 Choice of Network Motifs 

 

In order to obtain a good benchmark, we aimed to construct a synthetic 

network that captures the behaviour of larger eukaryotic gene networks on smaller 

scale. Indeed, we decided to include in our network a variety of regulatory 

interactions, which are peculiar of transcriptional regulatory networks. 



 58 

5.2.1 Network Motifs 

Living cells are the product of gene expression programs involving regulated 

transcription of thousands of genes. Gene expression programs depend on recognition 

of specific promoter sequences by transcriptional regulatory proteins, including 

transcription factors. How a collection of regulatory proteins associates with genes 

across a genome can be described as a transcriptional regulatory network. In the 

network, the nodes are genes and the edges represent transcriptional regulation of one 

gene by the protein product of another gene. Thus, a directed edge X → Y means that 

the product of gene X regulates the transcription rate of gene Y. Since the cell is not 

an isolated system, but it continuously responds to external stimuli in order to follow a 

specific developmental program or to adapt to changing environmental conditions, the 

transcriptional network is a dynamic system: after an input signal arrives transcription 

factor activities change, leading to changes in the production rate of proteins.  

In order to study the complex dynamics of cellular networks, during the last 

years several studies aimed to identify the basic building-blocks of transcriptional 

networks and to study the functional relevance of these modular components (Lee et 

al., 2002; Milo et al., 2004; Milo et al., 2002; Shen-Orr et al., 2002; Yeger-Lotem and 

Margalit, 2003; Yeger-Lotem et al., 2004). The approach is based on the identification 

of meaningful patterns on the basis of statistical significance. To define statistical 

significance, the real network is compared to an ensemble of randomized networks, 

which have the same number of nodes and edges as the real one, but where the 

connections are made at random. If a pattern occurs in the real network significantly 

more often than in the randomized networks, it is defined as a network motif. The 

basic idea is that network motifs that occur in the real network more often than in 

randomized networks must have been preserved over evolutionary timescales against 
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mutations that randomly change edges. As a matter of fact, point mutations, which 

occur in a promoter sequence, can alter the binding of a specific transcription factor to 

the promoter thus resulting in the loss of an edge of the transcriptional network. 

Similarly, new edges can be added to the network by either point mutations or by 

duplication events in a promoter region, thus generating a new binding site for a 

transcription factor. Hence, conserved network motifs must have been selected in 

order to survive during evolution because they provide some advantage to the 

organism. If a motif did not offer a selective advantage, it would be washed out and 

occur about as often as in randomized networks. 

The first studies, which aimed to systematically identify network motifs, were 

done in simple organisms such as Escherichia coli and Saccharomyces cerevisiae 

since their regulatory networks has been extensively studied and a large amount of 

information about direct transcriptional interactions can be found in databases such as 

RegulonDB and SGD respectively (Alon, 2006; Harbison et al., 2004; Lee et al., 

2002; Shen-Orr et al., 2002). They found that much of the transcriptional network is 

made of repeating occurrence of some network motifs. The fact that the network 

motifs appear at frequencies much higher than expected at random suggests that they 

may have specific functions in the information processing performed by the network. 

Mathematical analysis of the dynamics of these simple motifs helped to associate at 

each one a specific function, as exemplified by the two examples reported in the 

following paragraph (Shen-Orr et al., 2002). 

 



 60 

5.2.2 Network Motifs are associated with specific functions 

One of the motifs, which are found highly represented in both E. coli and S. 

cerevisiae, is the ‘feed-forward loop’ (Figure 5.1A). This motif is defined by a 

transcription factor (X) that regulates a second transcription factor (Y), such that both 

X and Y jointly bind a common target (Z).  

 Mathematical analysis suggest that this motif may act as a switch that rejects 

transient activation signals and responds only to persistent ones, while allowing a 

rapid system shut-down. This can occur when both transcription factors (X and Y) are 

required to activate Z (that is they act as an ‘AND-gate’). When X is activated, the 

signal is transmitted to the output Z by two pathways, a direct one from X and a 

delayed one through Y. If the activation of X is transient, Y cannot reach the threshold 

level to activate Z, and the input signal is not transduced through the circuit. Only 

when X signals for a long enough time so that Y can accumulate and reach the 

appropriate levels, Z will be activated (Figure 5.1B).  Since expression of the ultimate 

target gene (Z) may depend on the accumulation of adequate threshold levels of the 

first (X) and the second regulators (Y), the feed-forward loop can also provide 

temporal control of a process. 

 Another motif, which can be used in the cell for both ordering events in a 

temporal sequence and responding to sustained signals rather than transient ones, is 

the ‘regulator chain’ motif. It consists of chains of three or more transcription factor in 

which one regulator binds the promoter for a second regulator, and the second binds 

the promoter for a third regulator and so forth. Compared to the feed-forward loop, the 

regulator chain motif has a slower system shut-down (thin red line in the Z dynamics 

panel of figure 5.1B). 
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Figure 5.1 Dynamic features of the Feed-forward Loop and the Regulator Chain 

Motifs. (A) Schematic representation of a coherent Feed-forward Loop and of a 

Regulator Chain. (B) These circuits can reject transient variations in the activity of the 

input X (left side of the graph, indicated by an arrow), and respond only to persistent 

activation profiles (right side of the graph). This is because Y needs to integrate the 

input X over time to pass the activation threshold for Z (thin line). The case of 

regulator chain motif has a slower shut-down than the feed-forward loop (thin red line 

in the Z dynamics panel).   

 

5.2.3 Network Motifs in yeast and higher eukaryotes 

Even if various network motifs are common both in bacteria and yeast, there 

are some motifs that are more represented in eukaryotes than in prokaryotes and could 

therefore reflect differences in the regulatory mechanisms adopted by these 

organisms. For this reason we focused our attention on network motifs which occur 

more often in yeast than in bacteria (Lee et al., 2002; Yeger-Lotem et al., 2004).  

Motifs identified in a study of genome-wide location analysis of all 141 

transcription factors listed in the Yeast Proteome Database (Lee et al., 2002) are 



 62 

depicted in Figure 5.2. They include the feed-forward loop and the regulator chain 

motifs (described above) among the most frequent ones. In particular, 49 feed-forward 

loops, and 188 chain motifs, which varied in size from 3 to 10 regulators, were 

identified. However, Lee et al identified the other frequent motifs, which we discuss 

below: the Auto-regulation, the Multi-Component Loop and the Single Input Motif. 

 

Figure 5.2 Examples of network motifs in the yeast regulatory network. 

Schematic representation of network motifs identified by Lee et al (Lee et al., 2002). 

Regulatory proteins are represented as blue circles, while their target promoters as red 

rectangles. A solid arrow indicates binding of a regulator to a promoter. The dashed 

arrow links the gene to its protein product, representing transcription and translation 

processes.  
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An ‘Auto-regulation’ motif consists of a transcription factor that binds its own 

promoter. This motif is though to reduce response time to environmental stimuli and 

increase stability of gene expression. For example, upon exposure to mating 

pheromone, the concentration of the pheromone-responsive TF, Ste12, rapidly 

increases because it auto-sustains its own gene expression. The consequent 

progressive increase of Ste12 protein leads to the binding of other genes required for 

the mating process. Only 10% of yeast regulators are autoregulated. In contrast, 

studies of E. coli networks indicate that most (52% to 74%) prokaryotic genes 

encoding transcriptional factors are autoregulated; indicating that eukaryotes probably 

evolved different and therefore more frequent mechanisms for stabilizing gene 

expression, such as feed-back loops. 

A ‘Multi-component Loop’ motif consists of a regulatory circuit whose 

closure involves two or more factors. The closed loop structure provides the capacity 

for the feedback control and offers the potential to produce bi-stable systems, which 

switch between two alternative states. This motif is peculiar of yeast and of 

developmental networks of higher eukaryotes since, except the auto-regulation, 

feedback loops composed only by direct transcriptional interactions have not been 

identified in bacteria. This observation contributes to sustain the hypothesis that 

eukaryotes and bacteria often use different peculiar motifs for the same purpose.  

Another motif, which can give rise to bi-stability and is often used by cells to 

respond to environmental stimuli, is the ‘Mixed Negative Feedback Loop’ is. This 

feedback motif is composed of one transcriptional and one protein-protein interaction 

and is a common network motif in many organisms (Figure 5.3B) (Lahav et al., 2004). 

In this motif, protein X is a transcription factor that activates the transcription of gene 

Y. The protein product of gene Y in turn interacts with X at the protein level, often in 
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a negative fashion (Figure 5.3A). This negative regulation can take several forms. In 

some case, Y enhances the rate of degradation of protein X, such as in mammals in 

the case of p53 transcriptionally activating Mdm2, which in turn targets p53 for 

degradation by protein-protein interaction, or as Ime1-Ime2 in S. cerevisiae and σH-

dnaK/J in E. coli. In other cases, Y binds X and inhibits its activity as transcription 

factor by preventing its access to DNA, such as in the case of NFκB activating the 

transcription of its inhibitor IκB, which sequesters it in the cytoplasm thus preventing 

its entry in the nucleus where it works as transcription factor. 

The ‘Single Input’ motif contains a single regulator that binds a set of target 

genes. In this way the expression of the target genes is coordinated under a specific 

condition. This is useful for coordinating the components of the same cell structure or 

the enzymes of a specific metabolic pathway, so that their proportion at the steady 

state can be fixed. For example, several enzymes required for the galactose catabolic 

pathway are controlled by Gal4 transcriptional factor in response to the presence of 

carbon source in the medium. In addition, mathematical analysis suggests that this 

motif can also result in a temporal program of expression resulting from differences in 

the activation threshold of the different target genes. 
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Figure 5.3 Negative Feedback Loop Motif. (A) A generic scheme of the negative 

feedback loop motif is shown. The regulatory protein X activates the transcription of 

the Y gene. Then Y inhibits X by a protein-protein interaction. Blue circles represent 

proteins and the rectangle represents gene promoter.  (B) Examples of negative 

feedback loops with one transcription arm and one protein-protein arm are present in 

diverse systems of mammals (p53-Mdm2 and NFκB-IκB), fruit fly (HSF1-hsp70), 

yeast (smo-Ptc and Ime1-2) and bacteria (σH-dnaK/J). 
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5.2.4 Choice of Network Motifs in IRMA construction 

In order to construct our synthetic network, we combined some of the 

described motifs in a way to obtain a circuit in which some components (Gal80 and 

Cbf1) can respond to different signals (galactose and methionine concentrations) from 

the environment and propagate the signal to the rest of the network. We decided to use 

the Regulator Chain (Cbf1-Gal4-Swi5 regulators) and the Single Input (Swi5 which 

activates three promoters that have different threshold) motifs in order to have a 

sequence of transcriptional events, which can be separately analyzed in time. We 

added to them both a positive (Swi5 activates HO transcription thus closing the 

circuit) and a negative transcriptional feedback loop (Ash1 represses HO 

transcription) thus obtaining a Multi Component Loop, with the aim of enriching the 

dynamic behavior of the network. Finally, in order to provide the circuit of a switch, 

we also used a negative feedback loop composed of a protein-protein interaction 

(Gal80-Gal4) that can turn off the system in response to an external stimulus 

(depletion of galactose from the culturing medium). 

Indeed, our network, apparently simple, is articulated in its interconnections, 

which include a variety of regulatory interactions, thus capturing some features of 

larger eukaryotic gene networks on a smaller scale. 
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Chapter 6 – Results.            

Construction and Characterization of a Gene 

Synthetic Network in Yeast 

 

6.1 Construction of a Gene Synthetic Network in yeast 

 

We designed a synthetic gene network of five genes for In vivo Reverse-

engineering and Modelling Assessment (IRMA). The network, depicted in Figure 

6.1A, is organized in such a way that each gene controls transcription of at least 

another gene in the network. In addition, it can be ‘switched’ on or off by culturing 

cells in galactose or in glucose, respectively, and it can be modulated by using 

different methionine concentrations in the growing medium. 

 

6.1.1 Choice of Network Genes 

Particular care was taken in the choice of genes in order to isolate the network 

from cellular environment.  We searched in literature and in the SGD (Saccharomyces 

cerevisiae Genome Databese; www.yeastgenome.org) for genes, which show some 

essential features. 

• We chose non-essential and non-redundant TF-genes, which do not show 

synthetic lethality and, therefore, can be knocked out without affecting yeast 

viability. 
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• We selected well-characterised promoter/TF-encoding-gene pairs, belonging 

to distinct and non-redundant pathways, to further minimize external 

feedbacks on the network due to pathway crosstalk.  

• We chose promoters for which a single transcription factor (TF) is sufficient 

and essential to activate transcription. Thus, by removing the endogenous TF, 

we maximally reduced influences from the cellular environment on each 

promoter.  

Specifically, we selected as activators and repressors encoding genes: SWI5, 

ASH1, CBF1, GAL4 and GAL80; as promoter genes: HO, ASH1, MET16 and 

GAL10 (Figure 6.1A).  
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Figure 6.1. Construction of IRMA, a synthetic network in yeast. (A) Schematic 

diagram of the synthetic gene network is represented. New transcriptional units 

(rectangles) were built by assembling promoters (red) with non-self coding sequences 

(blue). Genes were tagged at the 3’ end with the specified sequences (green). Each 

cassette encodes for a protein (represented as a circle) regulating the transcription of 

another gene in the network (solid green lines). The resulting network, IRMA, is fully 

active when cells are grown in presence of galactose, while it is inhibited by the 

Gal80-Gal4 interaction in presence of glucose. (B) Schematic diagram of genomic 

integrations of IRMA genes. Each cloned cassette was integrated by homologous 

recombination in a specified genomic locus of a ∆gal4 ∆gal80 Saccharomyces 

cerevisiae strain to contemporarily delete (CBF1, SWI5, SHE2) or to modify (ASH1 

tagging, CBF1 integration under HO promoter) endogenous genes. ACE2 gene 

deletion was achieved by integrating a drug resistance cassette, natMX4 (not shown).  
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6.1.2 Selected promoter/TF-gene pairs 

The first selected promoter/TF-gene pair in the network is the HO promoter 

controlled by two TFs: a cell-cycle independent Swi5 mutant (swi5AAA), and Ash1 

(Moll et al., 1991; Nasmyth et al., 1987). Since ASH1 transcription is also controlled 

by Swi5, we chose as the second promoter/TF-gene pair the ASH1 promoter 

controlled by swi5AAA. 

Swi5 mediates specific HO expression in the late G1 phase (Nasmyth et al., 

1990). It is retained in the cytoplasm by Cdk8 phosphorylation and enters the nucleus 

to regulate transcription only in late anaphase, when Cdc14 dephosphorylates it 

(Visintin et al., 1998).  

In order to overcome Swi5-mediated cell cycle control of the HO promoter in 

the network, we used the swi5AAA mutant in which the three phosphorylated serine 

residues (Ser-522, Ser-646, and Ser-664) are substituted by alanines. These mutations 

lead to constant Swi5 accumulation into the nucleus throughout the cell cycle (Moll et 

al., 1991).  

Specific expression of HO in mother cells is achieved via Ash1-mediated 

repression of HO in daughter cells only (Bobola et al., 1996; Cosma, 2004; Jansen et 

al., 1996). In order to obtain a symmetrical Ash1 distribution in both mother and 

daughter cells, we also planned to delete the SHE2 gene whose mRNA localizes Ash1 

in daughters (Gonsalvez et al., 2003; Long et al., 1997). We thus obtained a 

homogeneous population of cells, where HO transcription is not developmentally 

regulated. In addition, we deleted Ace2 that cooperates with Swi5 in regulating the 

ASH1 promoter (Voth et al., 2007). 
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The third selected promoter/TF-gene pair was the MET16 promoter/CBF1. 

Cbf1 is a DNA binding protein that controls chromosome segregation and sulphur 

amino acids metabolism (Mellor et al., 1990). Specific Cbf1 binding upstream of the 

MET genes is required for its function during transcriptional activation even if it is not 

sufficient to activate transcription alone. Cbf1 tethers the activator Met4 to the MET 

promoters and forms the Cbf1-Met4-Met28 complex, which triggers expression of 

MET genes (Kuras et al., 1997). Among its transcriptional targets, we chose MET16 

since it is the only MET gene that strictly depends on the binding of Cbf1 (Ferreiro et 

al., 2004; O'Connell et al., 1995), while the others can still be expressed at a lower 

level in its absence (Kuras and Thomas, 1995). 

 In order to add a signalling molecule able to activate expression of network 

genes, we chose as the fourth and last promoter/TF-gene pair the GAL1-10 promoter, 

which is tightly regulated by the carbon source via the Gal4 transcription factor. In the 

presence of galactose, Gal4 activator binds to the multiple UASGAL elements in the 

promoter and leads to activation of transcription.  In absence of galactose, Gal4 is 

inactive because of the binding of Gal80 repressor to its activation domain, which 

prevents the interaction of the transcription machinery (Traven et al., 2006). 

 

6.1.3 Network Transcription Factors are essential and sufficient for 

transcription of their target promoter 

 We experimentally verified that the selected TFs are essential and sufficient 

for transcription of their target promoter. To this aim we constructed yeast strains in 

which one of the selected TFs was deleted and, therefore, analysed the transcription of 
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the target promoter in the absence and in the presence of each TF by semi-quantitative 

RT-PCR (Figure 6.2). 

 We analysed transcription of both HO and ASH1 genes in absence of Swi5, of 

its homologous Ace2 and of both (Figure 6.2A). In ∆ace2 strain, both HO and ASH1 

transcription is decreased but not abolished, while in ∆swi5 strain HO is not detectable 

thus confirming that Swi5, but not Ace2, is essential for activating HO transcription. 

Conversely, ASH1 transcription is abolished only in the ∆ace2∆swi5 strain indicating 

that both Swi5 and Ace2 are essential for activating this gene. 

 In order to confirm that Cbf1 is essential for MET16 transcription we analysed 

the wild type and the ∆cbf1 strains. Figure 6.2B shows that MET16 transcript is not 

detectable in absence of Cbf1. 

 Finally, we analysed Gal4 effect on GAL10 expression (Figure 6.2C). Since 

Gal4 is required for the activation of the GAL genes in response to galactose, in the 

wild type strain expression of GAL10 is detectable only when yeast cells are cultured 

in presence of this sugar, while it is not transcribed in glucose due to Gal80 inhibition. 

Yeast cells, which are null for Gal4, are not viable in presence of galactose as the only 

carbon source, for this reason we grew ∆gal4 and ∆gal4∆gal80 strains in the presence 

of both galactose and raffinose. We show that, even in absence of Gal80 repressor, 

GAL10 is not expressed in the absence of Gal4. We thus confirmed that Gal4 is 

essential for the transcription of GAL10 gene. 
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Figure 6.2. HO, MET16 and GAL10 promoters are not transcribed in absence of 

their specific activators. Semi-quantitative RT-PCRs were carried out to amplify the 

indicated genes (oligonucleotides are listed in Table 4). Cells were grown in YEPD or 

YEPGR at 30 °C up to mid-log phase. Strains used: W303 (wt); ∆ace2 (P302); ∆swi5 

(P15); ∆swi5ace2 (P304); ∆cbf1 (P366); ∆gal4 (P274); ∆gal4gal80 (YM4271). (A) 

Transcription of HO and ASH1 are dependent on Swi5 and Ace2 TFs. HO was not 

transcribed in swi5 deletion strain; ASH1 transcription was inactivated in the ace2swi5 

double deletion mutant. (B) Cbf1 is essential for MET16 transcription. (C) GAL10 is 

transcribed only in the presence of Galactose in wt cells. GAL10 transcription is 

abolished in cells lacking Gal4 TF or both Gal4 and Gal80. ∆gal4 and ∆gal4gal80 

were grown in YEPGR.  
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6.1.4 Synthetic Network Construction by contemporary gene knock-

in and knock-out 

We assembled the chosen promoters upstream of non-self gene coding 

sequences to obtain the IRMA network. The network (Figure 6.1A) includes positive 

and negative feedback loops, and other network motifs discussed in the previous 

chapter. These interactions were selected because they coexist normally in many 

sensory and developmental networks in higher eukaryotes as discussed in Chapter 5. 

We combined minimal regions of the chosen promoters upstream of the 

chosen TF encoding genes, in vectors containing different yeast selectable markers. 

Thus, we built the following new transcriptional units: HO promoter/CBF1-GFP, 

MET16 promoter/GAL4, GAL1-10 promoter/SWI5-MYC9, ASH1 promoter/GAL80-

3XFLAG and ASH1 promoter/ASH1-2XHA (Figure 6.1). A fluorescent tag was cloned 

at the 3’ end of the CBF1 ORF to easily monitor its protein product. 

We integrated these cassettes in the genome of a gal4∆542 gal80∆538 yeast 

strain (YM4271 strain) whose GAL4 and GAL80 loci were deleted (Liu et al., 1993). 

We targeted the cassettes in specific genomic loci to simultaneously integrate the 

newly built transcriptional units, and delete all the endogenous counterparts of our 

network genes, thus minimising influences from endogenous genes (Figure 6.1B).  
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Figure 6.3. Galactose triggers activation of IRMA synthetic network. (A)-(B) 

Network genes, and cell genes that are network targets, are expressed only in the 

presence of galactose. Semi-quantitative PCR to amplify IRMA and IRMA-dependent 

genes was carried out using total RNA extracted from cells grown in Glucose (Glc) or 

Galactose-Raffinose (Gal) containing medium. (C) Live imaging of IRMA cells 

grown in glucose and galactose containing medium. Scale bar, 10µm; 63x 

magnification. 
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6.2 Network genes, and their endogenous targets, are 

activated by galactose 

 
We tested transcription of network genes upon culturing cells in presence of 

galactose or glucose. Galactose activates the GAL1-10 promoter, cloned upstream of 

swi5AAA in the network, and it is able to activate transcription of all the five network 

genes (Figure 6.3A).  

We also checked for protein expression of Cbf1-GFP. Living yeast cells grown 

with different carbon sources (galactose or glucose) were analyzed by fluorescent 

microscopy. As shown in Figure 6.3C, positive green cells were visualized only when 

IRMA was cultured in galactose-containing medium. 

Endogenous yeast genes, not included in the synthetic network, but under 

transcriptional control of IRMA genes, such as PCL9, RME1, CDC6, SIC1 and PCL2, 

targets of Swi5, and MET16, target of Cbf1, which are not controlled by galactose in 

wild type yeast, became galactose dependent; furthermore GAL10, which is not 

expressed in the YM4271 background, became network and galactose dependent 

(Figure 6.3B). These genes should not influence the network behaviour by means of 

direct or indirect feedback loops, since their functions are unrelated to any known 

regulation of the chosen promoters. In conclusion, the synthetic network can regulate 

external genes, but is very robust against regulatory inputs from the rest of the 

genome.  
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6.3 Network Genes are modulated by Methionine 

 

 In wild type yeast cells, Cbf1, together with Met4 and Met28 proteins, 

activates the transcription of genes involved in the methionine biosynthesis pathway. 

Methionine modulates the expression of the MET genes by affecting the formation of 

the Cbf1-Met4-Met28 transcriptional complex (Kuras et al., 1997; Thomas and 

Surdin-Kerjan, 1997). High levels of methionine increase the ubiquitination and the 

subsequent degradation of the activator Met4, indeed inhibiting the transcription 

(Chandrasekaran et al., 2006; Chandrasekaran and Skowyra, 2008; Menant et al., 

2006). Conversely, low levels of methionine lead to an increase in transcription levels. 

In figure 6.4, we analysed the expression levels of various MET genes (MET16, 

MET10, MET14 and MET25) when yeast cells were grown in the presence of “low” 

(10 µM) or “high” (1 mM) methionine concentration by both semi-quantitative and 

quantitative real-time RT-PCR (q-PCR). The levels were compared with the standard 

yeast growing condition (‘control’ lane in 6.4A and normalization condition in 6.4B), 

in which we performed all the other experiments. In the control, yeast cells were 

grown in the standard complete medium (YPD), which contains an intermediate 

concentration of methionine (about 140 µM), and thus show an intermediate level of 

MET genes expression. Some MET genes, such as MET16 and MET10, are quickly 

down regulated as methionine concentration increases, thus showing ‘control’ levels 

which are more similar to the low methionine (‘off’ state) than to the high methionine 

(‘on’ state) condition (Figure 6.4 A and B). Conversely, MET14 and MET25 show 

‘control’ expression levels nearer to the ‘on’ state than to the ‘off’ one thus reflecting 

a slower kinetic in response to methionine; furthermore are not fully turned off at high 

methionine concentration (Figure 6.4 A and B). 
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Figure 6.4. Expression of MET genes in wild type yeast cells. MET genes regulated 

by Cbf1 are transcriptionally activated in the presence of low levels of methionine 

(“low” lane in panel A and grey bars in panel B), while they are repressed at high 

methionine concentrations (“high” lane in panel A and black bars in panel B). Semi-

quantitative (A) and quantitative (B) RT-PCR of MET genes were performed on total 

RNA extracted from yeast cells grown in the standard complete medium (YPD; 

“control” lane in panel A and normalization condition in panel B) and at two different 

methionine concentrations (“low” and “high” correspond to 10µM and 1mM, 

respectively). Data in panel B represent the ΔΔCt (mean ± SEM; n=2), which were 

calculated as the difference between the test condition (“low” or “high” methionine 

levels) and the standard condition (YPD medium). 
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 In IRMA network we used MET16 promoter to regulate GAL4 expression. As 

shown by data in figure 6.4, MET16 expression is tightly regulated by methionine 

concentrations since it is completely turned off in the presence of high methionine 

levels and, even at intermediate methionine levels (the ‘control’ condition), its 

transcription appears to be strongly decreased. We thus also tested transcription of 

network genes at steady state upon culturing cells in the presence of different 

concentrations of methionine (“low”, “high” and “control” conditions are defoned as 

above explained) both in glucose and in galactose containing medium (Figure 6.5).  

 Even in the presence of glucose, when normally the network is turned off in 

the control standard growing condition (look at figure 6.3A and ‘control’ bars of 

figure 6.5), network genes are activated in low methionine containing medium, and 

reach the same expression levels that they have in the cells grown in the control in the 

presence of galactose, that is when the network is turned on. These data show that the 

increased GAL4 expression, due to MET16 activation after the removal of methionine, 

turns on all the network genes, while addition of methionine inhibits them, 

independently from galactose.  

 In the presence of galactose, when the network is turned on in the control 

condition, the increase of methionine concentration (“high” methionine) leads to a 

down regulation of network genes at levels, which are comparable to the ones of the 

control in glucose, and is therefore turned off. Conversely, at low methionine 

concentration, expression levels of network genes are even higher than the control 

ones in galactose.  

Curiously, in the presence of galactose, GAL4 steady-state levels, which are 

directly triggered by MET16 promoter, do not show significant variations in response 

to methionine. This effect can have different explanations. Considering that low 
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methionine triggers the stabilization of Met4 protein, which forms a complex with 

Cbf1 and Met28, if we assume that Met28, and not Met4 or Cbf1, is the limiting factor 

for the formation of the transcriptional complex, neither Met4 stabilization or Cbf1 

increase can lead to a further MET16 activation when at the steady state all the Met28 

protein has been recruited in the complex. A second possibility is that MET16 

promoter has already reached its maximum transcription rate or it is in proximity of its 

saturation level in the control condition in the presence of galactose. As a 

consequence, the CBF1 increase, which results at the steady state in low methionine, 

has only a small effect on GAL4 expression.  

Anyway, when low methionine is compared to the control both in the presence of 

galactose, there is a strong increase in SWI5 and consequently in its target genes 

(CBF1, GAL80 and ASH1) expression. This effect is due to Gal4 protein stabilization 

in the presence of galactose (Muratani et al., 2005; Nalley et al., 2006), which at the 

steady state leads to the amplification of the small difference, which is seen at the 

transcriptional level.  
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Figure 6.5. Methionine modulates IRMA genes expression. Expression levels of 

network genes at different methionine concentrations (“low” and “high” correspond to 

10µM and 1mM, respectively; “control” is the standard complete medium, YEP, 

which contains 140µM)) in glucose (white bars) or in galactose/raffinose (grey bars) 

are shown. Data represent the 2-ΔCt (mean ± SEM; n = 2). 
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6.4 Gene expression profiling of IRMA to study its dynamic 

behavior 

 

In order to analyse the dynamic behaviour of the IRMA network, we 

performed perturbation experiments by shifting cells from glucose to galactose 

(“switch-on” experiments) and from galactose to glucose (“switch-off” experiments). 

We collected samples every 20 minutes up to 5 hrs in five independent experiments, 

for the switch-on dataset, and every 10 minutes up to 3 hrs, in four independent 

experiments, for the switch-off dataset. We analysed expression profiles of network 

genes by q-PCR.  

In the switch-on experiment in Figure 6.6, the activation of GAL4 by galactose 

led to transcription of all the other network genes. Their dynamic behaviour is 

evident; a seemingly oscillatory behaviour is present in SWI5 with two peaks at 40 

min and 180 min. The Swi5 targets, CBF1, GAL80 and ASH1, are activated with 

different types of kinetics: CBF1 is delayed with respect to the other two genes. This 

delay is due to the sequential recruitment of chromatin modifying complexes to the 

HO promoter, which follow the binding of Swi5 and other transcription factors. These 

events occur with a precise timing before HO transcription is finally triggered (Bhoite 

et al., 2001; Cosma et al., 1999). Of note, dynamics of GAL80 and ASH1 mRNAs are 

different. This is due both to differences in their degradation rates, and to the effect of 

cell manipulation on GAL80 and GAL4.  Specifically, the first point of the switch-on 

time-series, in Figure 6.6, was measured in glucose, right before shifting cells from 

glucose to galactose. During the standard washing steps, when the glucose medium is 

removed and the fresh new galactose-containing medium is added to the cells, we 
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observed a transient increase in mRNA levels of GAL4 and GAL80 (Figure 6.6, gray 

bar).  

In order to check whether this effect was independent from galactose 

administration, we performed an ad hoc glucose-to-glucose shift experiment (Figure 

6.7). GAL4 and GAL80 showed the same increase, once the cells were transferred 

back in the glucose medium, after the washing steps (Figure 6.7). We believe this 

increase is due to the transient deprivation of carbon source during the washing steps, 

which attenuates the degradation levels of GAL4 and GAL80 mRNAs (Jona et al., 

2000). This effect is unrelated to their transcriptional regulation, being these two 

genes controlled by different promoters. Moreover, the expression levels of the 

MET16 endogenous gene, whose promoter, in our network, is the same promoter as 

GAL4, do not show any increase in the glucose-to-glucose shift (Figure 6.7) and in 

both the switch-on and switch-off experiments (Figure 6.8), further excluding 

dependence on transcriptional regulation. 

In the switch-off experiment (Figure 6.6), as expected, the transcription of the 

whole network is rapidly turned off with a delay in the silencing of CBF1 expression.  
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Figure 6.6. IRMA dynamic behavior in response to medium shift perturbations. 

Time-series expression profiles of network genes after a shift from glucose to 

galactose-raffinose containing medium – switch-on - (left) and from galactose-

raffinose to glucose containing medium – switch-off - (right) are shown. Circles 

represent average expression data for each of the IRMA genes at different time points. 

Dashed lines represent standard errors. Continuous colored lines represent in silico 

data obtained from the DE–based model and show how the model fits experimental 
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data. Gray bar indicates the 10 min interval during which the washing steps and 

subsequent medium shift are performed (see main text). The first point in the switch-

on time-series (left) is measured in glucose right before shifting the cells to galactose; 

the second point at 10 min is the first one in galactose just after the shift has occurred. 

Similarly (right) the first point in the switch-off time-series is measured in galactose 

before shifting the cells to glucose. In the switch-off experimental data, the first point 

of SWI5 at time 0 is off scale, with a value of 0.18. This was done to better show its 

behavior in the figure. Represented data are the 2-∆Ct (mean ± SEM; n = 5 for switch-

on and n = 4 for switch-off). 

 

 

Figure 6.7. GAL4 and GAL80 increase after sugar shift is an IRMA independent 

effect. Expression profiles of the five IRMA genes and the MET16 endogenous gene 

in glucose-to-glucose time-series are shown. Yeast cells were grown in glucose up to 

mid-log phase and then shifted back to glucose containing medium (0 time point), 

after filtering and washing steps in absence of any carbon source. Represented data 

are the 2-∆Ct (mean ± SEM; n = 2). Solid lines represent IRMA genes; the dotted line is 

the MET16 gene.  
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Figure 6.8 Transcription of MET16 endogenous gene is not affected by sugar 

shift in switch-on and switch-off time-series. Expression levels of the MET16 

endogenous gene in IRMA cells during the glucose-to-galactose (switch-on) and 

galactose-to-glucose (switch-off) time-series, described in figure 6.6, are shown. The 

first point in the switch-on and switch-off time-series is measured in yeast cells which 

had been grown up to the steady state in glucose (Glc) and galactose-raffinose (Gal), 

respectively, before washing and shifting in a different medium. The 0 point is the one 

collected just after the medium shift had been performed. After the shift, samples were 

collected every 20 and every 10 min for the switch-on and the switch-off ,respectively 

(see main text). MET16 does not show any transient increase after shifting cells from a 

medium to another one containing a different sugar, as conversely happens to GAL4, 

which is regulated by the MET16 promoter. Represented data are the 2-∆Ct (mean ± 

SEM; n = 5 for switch-on and n = 4 for switch-off). 
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6.5 Gene expression profiling of IRMA to study its static 

behaviour 

 

In addition, we analysed the response of the network to genetic perturbations 

by overexpressing each of the five network genes under the control of the strong 

constitutive GPD promoter, in cells that were grown either in glucose, or in galactose. 

We then measured steady-state expression levels of IRMA genes by q-PCR. We thus 

obtained two datasets, one in glucose, and one in galactose, consisting of the response 

of the five network genes to each of the five perturbations. We will refer to these two 

experimental datasets as the “Glucose steady-state” and “Galactose steady-state” 

(Figure 6.9A-C and Figure 6.10A-C).  

In vivo, upon overexpression of each of the five network genes, the other genes 

were either upregulated, or downregulated, with respect to their basal level 

(transformation with an empty vector) both in galactose and in glucose (Figure 6.9A-

C and Figure 6.10A-C). Following overexpression of the three activators (CBF1, 

GAL4 and SWI5), network genes’ transcription increased in both growing conditions, 

reaching higher levels in galactose, when Gal80 repressor is inactive. In the CBF1 

overexpression experiment, SWI5 responded with a significant increase, whereas 

GAL4, a direct target of CBF1, and the regulator of SWI5 in the network, responded 

weakly. Gal4 protein is stable (Muratani et al., 2005; Nalley et al., 2006), and 

therefore even a small, or transient, increase in its mRNA level in galactose is able to 

induce the GAL10 promoter, which in our network regulates SWI5.  

Overexpression of ASH1 induced smaller transcriptional variations, although a 

slight downregulation of the network genes is evident in galactose containing 
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medium, when the network is on. Remarkably, in the inducing medium, 

overexpression of GAL80 resulted in a downregulation of the other genes, implying 

that the excess of Gal80 binds and represses the Gal4 protein, even in the presence of 

galactose.  
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Figure 6.9. Experimental and simulated gene expression profiles show the static 

behaviour of IRMA in response to overexpression perturbation experiments. (A)-

(C) In vivo expression levels of IRMA genes after overexpression of each gene 

(perturbed gene; indicated by the black dots on the bars) from the constitutive GPD 

promoter (grey bars) and after transformation of the empty vector (white bars). IRMA 

cells were transformed with each of the constructs containing one of the five genes or 

with the empty vector. At least three different colonies were grown in glucose (C) and 

in galactose-raffinose (A) up to the steady-state levels of gene expression. 

Quantitative PCR data are represented as 2-∆Ct (mean ± SEM; n ≥ 3). (B)-(D) In silico 

expression levels of IRMA genes obtained by simulating the overexpression of each 

gene with the DE-based model. 



 90 

 

 

 

 

 

 

Figure 6.10. Experimental and simulated gene expression profiles show the static 

behaviour of IRMA in response to overexpression perturbation experiments 

(Magnification of figure 6.9). Panels (A-D) here correspond to the ones reported in 

figure 6.9.  The y axis scale was lowered and set at 0.2 in order to better show the 

network genes behavior in the figure even when they are expressed at very low levels 

(e.g. in the presence of glucose). 
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Chapter 7 – Results.                                               

IRMA as a Benchmark for Modelling 

  

7.1 Mathematical model of the IRMA network  

 

The most common strategy to model gene networks is the one based on 

nonlinear differential equations (DE) obtained from standard mass-balance kinetic 

laws (Alon, 2006; Szallasi et al., 2006). Therefore, the first step in modelling was to 

derive an appropriate deterministic model of IRMA where each gene of the network is 

described by an equation, which contains a synthesis term and a degradation term. For 

the sake of simplicity, we ignored protein levels (assuming proportionality between 

proteins and their corresponding mRNAs), and considered transcription and 

translation processes as a single synthesis step. Thus the variables in the mathematical 

model represent the mRNA abundance of each gene and the derived DE model 

consists of five equations describing the transcription rate of the five mRNAs - CBF1, 

GAL4, SWI5, GAL80, ASH1 (Figure 7.1). 

 In the following subparagraphs, I will describe the assumptions, which lead to 

the formulation of model. 
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Figure 7.1 IRMA DE model. Each IRMA gene is represented by a differential 

equation (DE), which describes its synthesis and degradation rates as a function of its 

regulator inside the network. In the model, we assumed that protein translation is fast 

enough so that a quasi – steady state approximation can be made and proteins levels 

are considered proportional to their corresponding mRNA concentrations.  So, the 

equations in the model describe the transcriptional rate (d[mRNA]/dt) of the IRMA 

genes; where di, i = 1, . . . , 5 are the degradation rates, kj, j = 1, . . . , 6 are the 

Michaelis-Menten constants, αi are the basal transcription activities of each promoter, 

υi represent the maximal transcription rates. The hat symbol () indicates that the 

value of the relative parameter depends on the medium in which the yeast is grown 

(glucose or galactose). Moreover, as explained below, γ is an affinity constant, τ 

models the delay in the HO promoter activation, and the terms ∆(·) model the 

transient increase lasting 10 minutes (the time required to perform the washing steps 

during medium shift) in mRNA stability due to the cell manipulation, as described in 

the previous chapter, with magnitude ψ1 and ψ2. 

 



 93 

7.1.1 Modelling the Binding of Transcription Factors to Promoters  

 Transcription of a gene results from the binding of a TF (X) to specific DNA 

sites (D) in the promoter region of the gene and can be thought as a two steps 

chemical reaction: 

      (1) 

Considering mRNA formation as the rate-limiting step of transcription (kmRNA << kon), 

we can focus our attention on the first step, which is transcriptional complex 

formation. If the TF is a repressor, transcription occurs only when the repressor is not 

bound to the promoter, that is, when D is free. Conversely, if the TF is an activator, 

transcription occurs when it binds to D forming the [XD] complex. The DNA site can 

thus be either free, D, or bound, [XD], resulting in a conservation equation: 

     D + [XD] = DT      (2) 

where DT is the total concentration of the site. 

Formation of the [XD] complex happens because the transcription factor, X, 

and its target DNA, D, diffuse in the cell and occasionally collide. This process can be 

described by mass-action kinetics: X and D collide and bind each other at a rate kon. 

The rate of complex formation is thus proportional to the collision rate, given by the 

product of concentrations of X and D: 

rate of complex formation = kon X D 

The complex [XD] dissociates at a rate koff. The rate of change of [XD] based 

collision and dissociation processes is described by: 
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    d[XD]/dt = kon XD - koff [XD]     (3) 

At the steady state, when the concentrations of molecular species involved in the 

reaction do not change in time, the above equation is equal to zero. Solving it at the 

steady state, the balance between the association of X and D and the dissociation of 

[XD] leads to the chemical equilibrium equation: 

     Kd [XD] = XD      (4) 

where Kd is the dissociation constant (Kd = koff / kon), which as the units of a 

concentration. The higher is the dissociation constant, the higher is the rate of 

dissociation of the complex, that is, the weaker is the binding of the TF to DNA. 

 Considering that [XD] transcriptional complexes dissociate within less than 1 

sec, we can average over times much longer than 1 sec and consider the ratio of D 

over DT as the probability that the D site is free averaged over many binding and 

unbinding events. We can derive the probability that D is free by substituting (DT – D) 

with [XD] and solving Equation 3, which yields: 

   (5) 

If we consider that, in the case of a repressor, the promoter is transcribed when the 

DNA binding sites are free, we can describe the rate of transcription (the 

concentration of the mRNA over time) as the product between the probability that the 

D site is free with a constant υ :        

      (6) 
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Conversely, an activator protein increases the rate of transcription when it binds to its 

DNA site in the promoter. Using the same reasoning as above, we can derive the 

probability that X is bound to D substituting (DT – [XD]) with D and solving Equation 

3:            

         (7) 

 In the case of an activator, the rate of transcription is proportional to the 

probability that it is bound to D and thus we have: 

        (8) 

Even if we derived transcription rates assuming that the binding of the TF to 

the promoter is faster than the mRNA transcription (which corresponds to say that 

kmRNA << kon), this is not always true in biology. Thus, considering also the second 

step of the reaction in (1), in which from the [XD] complex we have mRNA 

transcription, and considering it as an enzymatic reaction, the rate of complex 

dissociation also depends on kmRNA and Equation 3 becomes: 

  d[XD]/dt = kon XD - koff [XD] - kmRNA [XD]    (9) 

 Reasoning as above, if we consider that the concentration of [XD] changes 

much more slowly than the one of X or D (quasi – steady state assumption in 

Equation 4) and that the total concentration of DNA binding sites do not change over 

time (in Equation 2), we obtain the same Equations as in (4), (5) and (7), in which 

now the dissociation constant is equal to the Michaelis and Menten constant (KM = koff 

+ kmRNA / kon). Substituting the concentration of free D or of [XD] complex in the 

following: 
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    d[mRNA] = kmRNA [XD]     (10) 

we obtain the same as Equation (6) and (8), respectively (where υ = kmRNA DT).  

 However, in order to obtain a more realistic description of promoter binding in 

our model we needed to take into account that many TFs inside the cell are composed 

of several repeated protein subunits, and they often has got more than one binding site 

inside the target promoter. These events can lead to cooperativity in the binding 

reaction of the TF to the DNA. In order to take into account the cooperative binding 

we added at Equation 5 and 7 the Hill coefficient, which provides a way to quantify 

this effect. We thus obtained a classical Hill function, a phenomenological equation 

that describes the fraction of a macromolecule saturated by ligand as a function of the 

ligand concentration. For the same reasons we explained above, the Hill function can 

be used to model the transcriptional activation or repression. For an activator X the 

equation is the following: 

        (10) 

where h is the hill coefficient (a pure number that refers to the cooperativity of the 

activation binding reaction) and K is the Michaelis and Menten constant. In the case of 

inhibition the function becomes: 

        (11) 

 Indeed, in our model, in order to describe mRNA synthesis we assumed that 

each promoter has got a basal level of transcription and can be activated or repressed 

by its regulators following a Hill kinetic (Kaern et al., 2003). The activation-

repression rates are assumed to be proportional to the Hill function via some constants 



 97 

υI, which represent the maximal transcription rates; while mRNAs degradation rates 

are supposed to be well described by using first order degradation kinetics. 

 

7.1.2 Modelling Galactose Regulation 

In deriving the model, particular care was taken in modelling the galactose 

regulation on the GAL10 promoter, in order to capture its main features, but without 

increasing model complexity. In the yeast cells, regulatory genes of the galactose 

pathway are GAL4, GAL80 and GAL3. Gal4 is the transcription factor, which binds to 

the four UASGAL in the GAL10 promoter and consequently triggers its transcription in 

the presence of galactose. Gal80 is a repressor, which interacts with Gal4 activation 

domain thus blocking the recruitment of the transcriptional machinery in the absence 

of galactose. As a matter of fact, Gal4 can bind to its target promoter only when Gal80 

is inhibited. The galactose sensor is Gal3 protein, which determines Gal80 

dissociation from Gal4. In summary, when galactose is present, Gal3 binds Gal80 and 

this interaction triggers the relief of Gal80 inhibition and Gal4 activates GAL10 

promoter (Figure 7.2 A and B) (Traven et al., 2006).  

In literature different models of the galactose pathway in yeast have been 

proposed but they are extremely detailed and they would have increased the number 

of equations to be used in our model (Acar et al., 2005; Bennett et al., 2008; Verma et 

al., 2004). In order to keep our model as simplest as possible, we assumed that 

galactose directly binds to Gal80 and influences its affinity for the GAL10 promoter 

(we considered the Gal80 inhibition directly on GAL10 and not on Gal4), that is we 

did not considered Gal3-Gal80 and Gal80-Gal4 complexes formation (Figure 7.2 C 

and D). Thus, to describe the interactions between galactose and the GAL genes of the 
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network, we used a phenomenological rate law for the activation of the promoter of 

SWI5 (Figure 7.1). We assumed that the activation of SWI5 by Gal4 is also inhibited 

by a Michaelis-Menten like term proportional to the amount of GAL80 mRNA and 

inversely proportional to an affinity constant , which depends on the presence or the 

absence of galactose and was experimentally measured (Figure 7.4 and Table 6).  

Furthermore, we modelled the effect of the transient deprivation of carbon 

source, which lead to an increase in GAL4 and GAL80 mRNA levels during medium 

shift in the switch-on time-series, as an additional transient perturbation to the 

degradation rates of GAL4 and GAL80 mRNAs lasting 10 min (the time estimated to 

perform the washing steps). This increase in mRNA stability is represented by the 

terms ∆(ψ1) and ∆(ψ2) in the degradation of GAL4 and GAL80, respectively (Figure 

7.1). 

 

7.1.3 Modelling HO promoter regulation 

In our network, the expression of CBF1 driven by the HO promoter is both 

activated by Swi5 and repressed by Ash1. HO promoter transcription is triggered by 

an ordered recruitment of transcription and chromatin remodelling factors. The first 

factor that arrives to HO is Swi5, which activates the sequential chain of events that 

result in promoter transcription after a certain lag time (Bhoite et al., 2001; Cosma, 

2002; Cosma et al., 1999; Mitra et al., 2006). This delay is also evident in our network 

in the activation of CBF1 during switch-on and switch-off experiment (Figure 6.6). 

We thus included an explicit delay in the activation of CBF1 by Swi5 (represented by 

τ in Figure 7.1). 
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Furthermore, in order, to model the multiple regulations by Swi5 and Ash1, 

there are two alternative strategies (Alon, 2006): modelling this effect as the non-

competitive interaction between Ash1 and Swi5 (i.e. as a logical AND gate) or 

considering the multiple regulations as the combined action of the activation and 

repression terms (i.e. as an OR gate). From literature we know that Swi5 and Ash1 

have got distinct binding sites on the HO promoter so, they do not compete for the 

binding neither interacts with each other (Maxon and Herskowitz, 2001). It has been 

reported that Ash1 inhibits HO transcription preventing the recruitment of the Swi/Snf 

complex by Swi5 probably through it interaction with the large Sin3-Rpd3 histone 

deacetylase complex (Carrozza et al., 2005; Mitra et al., 2006). Taking into account 

these evidences, we modelled Swi5 and Ash1 regulation on CBF1 expression as a 

non-competitive interaction. This is a type of inhibition that reduces the maximum 

rate of the chemical reaction without changing the apparent binding affinity of the 

promoter.  
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Figure 7.2. Galactose regulatory pathway. (A)-(B) Schematic model of galactose 

pathway is shown. (A) In the presence of galactose, Gal80 repressor is inhibited by 

Gal3 binding and Gal4 triggers transcrption of GAL genes. How exactly Gal3–Gal80 

complex formation relieves Gal80 inhibition of Gal4 is not yet known. Gal3 interacts 

with Gal80 in the cytoplasm and then elicit a conformational change in the Gal80–

Gal4 complex. Gal80 dissociates from Gal4 on binding to Gal3 and ‘shuttles’ between 

the cytoplasm and the nucleus. (B) Under non-inducing conditions, Gal80 binds to 

Gal4 dimers and blocks its interaction with the transcriptional machinery.  (C)-(D) 

Simplified model of galactose pathway as assumed in IRMA mathematical model.
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7.2 Estimating Model Parameters 

In order to estimate the unknown parameters, we experimentally measured 

promoters’ strength of the promoter, which we used in IRMA network, namely 

GAL10, MET16, ASH1 and HO. We constructed different strains in which an 

inducible promoter replaced the endogenous one of each TF gene. In this way, we 

were able to induce the expression of the TF at different levels, and then we measured, 

by q-PCR, the transcription of the corresponding promoter gene, at steady state, for a 

total of 165 data points (Figure 7.3 and 7.4).  

To characterize MET16 promoter, we constructed a copper-inducible strain 

carrying CBF1 under the control of CUP1 promoter and we measured CBF1 and 

MET16 using different concentration of copper. Since CBF1 and MET16 showed 

small variations, even in a wide range of copper concentrations (black dots in the 

upper graph of Figure 7.3), in order to extend the dataset we constructed four more 

strains in which CBF1 was under the control of constitutive promoters of different 

strength (the CYC1, ADH1, TEF and GPD promoters).  

Similarly, in order to evaluate the strength of the ASH1 promoter we 

constructed an inducible strain carrying SWI5 under the control of the MET25 

promoter and we measured SWI5 and ASH1 using different concentration of 

methionine (Figure 7.3 lower panel). 

For the HO promoter, since both Swi5 and Ash1 regulate it, we measured the 

level of expression of ASH1, SWI5 and HO in: 

1) MET25-SWI5 inducible strain after inducing Swi5 by different methionine 

concentrations, both in the presence of an endogenous Ash1 and in colonies, which 

over express Ash1 at different levels; 
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2) MET25-ASH1 inducible strain after inducing Ash1 by different methionine 

concentrations, both in the presence of an endogenous Swi5 and in colonies, which 

over express Swi5 at different levels. 

In order to characterize GAL10 promoter, which is regulated by both Gal4 and 

Gal80, we measured GAL10, GAL4 and GAL80 in an inducible strain carrying GAL4 

under the control of the MET25 promoter, both in the presence of an endogenous 

Gal80 and in colonies, which over express Gal80 at different levels. The experiment 

was performed both in glucose and in galactose containing medium (Figure 7.4). 

 For both HO and GAL10, we plotted surfaces in order to show their expression 

as a function of the two regulators (Figure 7.4). 

We thus obtained four datasets, one for each promoter, and we fitted to these 

data the equation at the steady state (Figure 7.1) of the gene whose expression in our 

network is driven by the promoter itself (Figure 7.3 and 7.4). In this way, we 

estimated 16 (out of the 33) parameters, which consist of the Michaelis-Menten and 

the relative Hill coefficients.  

The remaining 17 unknown parameters, which could not be computed from 

promoters’ data, were estimated from the switch-on time-series by using a novel 

stochastic optimization algorithm (Cantone et al., 2009). In order to simulate the 

switch-on data, we chose as initial conditions the steady state equilibrium of the 

model in glucose, thus recapitulating the experimental conditions. Simulated data 

fitted semi-quantitatively in vivo data, despite the simplifying assumptions, being on 

average within the experimental standard errors (Figure 6.6, left panel).  
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Figure 7.3. Fitting of MET16 and ASH1 promoter strength data to Hill function. 

Upper panel: MET16 expression levels (y axis) after induction of CBF1 expression (x 

axis). Lower panel: ASH1 expression levels (y axis) after induction of SWI5 

expression (x axis). Dots represent experimental data (2-ΔCt ± SEM; n = 2). Error bars 

represent technical errors. Red lines represent the fitting of the Hill function for the 

target gene. 
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Figure 7.4. Fitting of GAL10 and HO promoter strength data to Hill function. 

GAL10 expression levels (z axis represented by colour) after induction of GAL4 

expression (x axis) and GAL80 (y axis) at different levels in the presence of glucose 

(upper panel) and galactose (middle panel). Lower panel shows HO expression levels 

(z axis represented by colour) after induction of SWI5 expression (x axis) and ASH1 (y 

axis) at different levels. Left panels show experimental data (expression levels) as 2-

ΔCt (grey area represent regions in which data are not present). Right panels show 

fitting results. 
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7.3 Model Predictive Power 

 

In order to test the model predictive performance we used both the switch-off 

time-series and the Glucose steady-state and Galactose steady-state datasets.  

The model was able to predict, semi-quantitatively, the behaviour of the 

network during the switch-off experiment (Figure 6.6, right panel). Specifically, the 

model correctly predicted the delay in CBF1 silencing, in contrast to the fast switch-

off dynamics of SWI5. Furthermore, the small variations of GAL4 and GAL80, which 

are due to the low expression level of these two genes in glucose containing medium, 

were captured by the model. Differences in the starting amount of CBF1, SWI5 and 

ASH1 during the switch-off may be due to the unmodelled effect of protein 

accumulation of network genes. Indeed, the switch-off experiment is performed after 

having grown cells overnight in galactose, prior to galactose removal. 

In order to further validate the predictive power of the model, we performed 

the previously described Glucose steady-state and Galactose steady-state 

overexpression experiments in silico, by simulating an overexpression of each of the 

five genes using the model. In Figure 6.9 and 6.10, we compared in vivo and in silico 

experiments. There is a semi-quantitative agreement, both in the Galactose and 

Glucose steady-state experiments. The model, despite some discrepancies in the 

predicted transcription levels, correctly captured the overall trend among each 

perturbed set of genes. We observed that SWI5 predicted expression levels are smaller 

than their experimental counterparts, and this effect propagates in turn to its targets.  

To explain this behaviour, we noticed that the Gal4 protein is stable (Muratani 

et al., 2005; Nalley et al., 2006), and therefore, even a small, or transient, increase in 
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its mRNA level is able to induce the GAL10 promoter, regulating SWI5 in our 

network. Since we did not model explicitly protein dynamics, a small increase in 

GAL4 mRNA, cannot fully activate GAL10 in the model, and neither cause the 

consequent large increase in SWI5 mRNA seen in vivo. 

The model was able to recapitulate some of the expected biological features, 

such as the higher expression levels in the galactose containing medium, and the 

Gal80 repression activity when GAL80 is over-expressed in the presence of galactose. 

The model can also be used to link the observed dynamics to the topology of 

the network; we show by simulation that both the positive feedback loop (Swi5-Cbf1-

Gal4) and the delay in the activation of the CBF1 promoter are essential for the non-

monotonic behaviour characterised by damped oscillations in the levels of SWI5 and 

CBF1. Removing any of the interactions in the positive loop, or the delay, makes the 

oscillations smaller (Figure 7.5), or totally disappear (Figure 7.6).  
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Figure 7.5. Simulations of the switch-on and switch-off time-series. (A) 

Simulations of network genes expression obtained by the DE model with parameters 

as in Table 6. (B) Simulations of network genes obtained by the model without the 

positive feedback loop (no activation of CBF1 by Swi5 by setting k1=3 [a.u.] in Table 

6). Gene expression is in absolute values (2-ΔCt). 
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Figure 7.6. Influence of CBF1 activation delay on the dynamics of the network. 

Simulations of network genes expression in the switch-on (starting at the 0 time) and 

switch-off time-series (after 3000 minutes) without delay in CBF1 activation are 

shown. Gene expression is in absolute values (2-ΔCt). 
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Chapter 8 – Results.         

IRMA as a Benchmark for Reverse-engineering 

 

8.1 Reconstructing the network: a reverse engineering 

approach  

 

The IRMA synthetic network can be used to assess the ability of experimental 

and computational approaches to infer regulatory interactions from gene expression 

data.  We used the switch-on and switch-off time-series, and the steady-state 

perturbations in galactose and glucose, in conjunction with four published algorithms 

as representatives of reverse-engineering approaches, BANJO (Bayesian network) 

(Yu et al., 2004), NIR and TSNI (Ordinary differential equations)  (Della Gatta et al., 

2008; Gardner et al., 2003), and ARACNE (Information theoretic) (Basso et al., 

2005). ARACNE was not applied to the time-series data, since it is not appropriate in 

this case.  

Figure 8.1, Figure 8.2 and Figure 8.3 show the results of the ODE, Bayesian 

and Information-theoretic reverse engineering approaches, respectively.  

Reverse engineering performance was quantified in terms of percentage of correctly 

predicted interactions out of the total number of predicted interactions (i.e. Positive 

Predictive Value – PPV), and, in terms of percentage of all the true interactions that 

have been correctly identified by the algorithm (i.e. Sensitivity  - Se) (Bansal et al., 

2007).  
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 In order to test the significance of the algorithms, we computed the “random” 

performance, which refers to the expected performance of an algorithm that randomly 

assigns edges between pair of genes. For example, for a fully connected network, the 

random algorithm would have a 100% accuracy (PPV=1) for all the levels of 

sensitivity (as any pair of genes is connected in the real network).  In our network, the 

expected PPV for a random guess of directed interactions among genes is PPV=0.40 

(40%), so any value higher than 0.4 will be significant. In the case of undirected 

interactions, the random PPV=0.70 (70%). 

 

8.1.1 Reverse-engineering Time-series Data 

On time-series data, the best performance both in terms of PPV and of Se was 

achieved by the ODE approach (TSNI) on the switch-on data with a PPV=0.80 and a 

Se=0.50 (Figure 8.1A). ODE performed better than random (PPV=0.60, Se=0.38) also 

on the switch-off data, in Figure 8.1B, albeit with a lower precision.  

Dynamic Bayesian Networks (BANJO) performed better than random 

(PPV=0.60, Se=0.38) only on the switch-off experiment, with the same performance 

as TSNI for this data set (Figure 8.2B). Bayesian Networks failed to perform better 

than random on the switch-on data (Figure 8.2A) probably because of the lower 

number of points (15) as compared to the switch-off time-series (21 points).  

By comparing the inferred networks from BANJO and TSNI in the switch-on 

and switch-off experiments, it is clear that both methods are extracting similar 

information, albeit with less precision in the case of BANJO. If we consider only the 

interactions inferred by both methods on the same dataset (compare Figure 8.1A with 

Figure 8.2A, and Figure 8.1B and 8.2B), we obtained only two interactions, both 
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correct (PPV=1). This result hints to the possibility that meta-algorithms, combining 

results from multiple reverse-engineering algorithms, may improve reverse-

engineering performance.  

We could not apply the ARACNE algorithm to our time-series datasets 

because application of information-theoretic approaches on time-series data requires 

that each data point is statistically independent from the previous one, and in our case 

this assumption cannot be made. 

 

8.1.2 Reverse-engineering Steady-state Data 

When reverse-engineering from steady-state data, NIR was able to recover the 

network with a PPV=0.60 and a Se=0.38 in the galactose dataset (Figure 8.1C), but it 

did not perform better than random (PPV=0.40 and Se=0.25) in the glucose dataset 

(Figure 8.1D). NIR and TSNI correctly recovered the same three regulatory 

interactions of Swi5, in galactose steady-state and switch-on time-series, respectively. 

BANJO was better than random both in the galactose dataset (PPV=0.60, Se=0.38) 

and in the glucose one (PPV=0.50, Se=0.38); albeit with a lower precision in the last 

one (Figure 8.2C and 8.2D). BANJO extracted very similar information from both 

steady-state and switch-off time-series, inferring on all of them the same two 

interactions, among the three correct (Figure 8.2B-C-D). These results imply that both 

dynamic time-series data, and static steady-state data, are informative for reverse-

engineering. 

By considering only interactions inferred by both methods on the same dataset, 

in the case of galactose, we selected only one interaction, albeit correctly (PPV=1); 

whereas in the glucose experiment, no interactions were in common. This is a further 

hint that combing results from multiple reverse-engineering algorithms may be 
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beneficial. ARACNE did not perform better than random, which in the case of 

undirected graph is very high (PPV=0.70) (Figure 8.3). ARACNE was designed for 

inference of large networks (of the order of thousands of genes), and it is not directly 

comparable to the other two approaches (Basso et al., 2005). 

From these data, we can conclude that ODE-based algorithms and Bayesian 

Networks  (BANJO) performed similarly for the steady-state data, but ODE-based 

algorithms require more information, that is, the genes that have been directly 

perturbed in the experiment (Bansal et al., 2007).  Information-theoretic approaches 

should not be applied to small networks, due to their inability of inferring the direction 

of regulation. However, they are superior to other methods in the case of large 

networks due to their ability to require a minimal amount of data to infer gene-gene 

undirected interactions (Faith et al., 2007). 
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Figure 8.1. Reverse-engineering the IRMA gene network from steady-state and 

time-series experimental data using the ODE-based approach. The true network 

shows the regulatory interactions among genes in IRMA. Dashed lines represent 

protein-protein interactions. Directed edges with an arrow-end represent activation, 

whereas dash-end represents inhibition; (A) and (B) Inferred network using the TSNI 

reverse-engineering algorithm and the switch-on and switch-off time-series 

experiments. Solid grey lines represent inferred interactions that are not present in the 

real network, or that have the wrong direction (False Positives- FP). PPV (Positive 

Predictive Value = TP/(TP+FP)) and Se (Sensitivity =  TP/(TP+FN)) values show the 

performance of the algorithm for an unsigned directed graph. TP=True Positive, 

FN=False negative. The random PPV for the unsigned directed graph is equal to 0.40. 

(C) and (D) Inferred network using the NIR reverse-engineering algorithm and the 

steady-state experimental data from network genes overexpression in cells grown in 

galactose or glucose medium, respectively. 
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Figure 8.2. Reverse-engineering the IRMA gene network from steady-state and 

time-series experimental data using the Bayesian Network approach. (A) and (B) 

Inferred network using the BANJO algorithm and the switch-on and switch-off time-

series experiments. Solid grey lines represent inferred interactions that are not present 

in the real network, or that have the wrong direction (False Positives- FP). PPV 

(Positive Predictive Value = TP/(TP+FP)) and Se (Sensitivity =  TP/(TP+FN)) values 

show the performance of the algorithm for an unsigned directed graph. TP=True 

Positive, FN=False negative. The random PPV for the unsigned directed graph is 

equal to 0.40. (C) and (D) Inferred network using the BANJO algorithm and the 

steady-state experimental data from network genes overexpression in cells grown in 

galactose or glucose medium, respectively. 
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Figure 8.3. Reverse-engineering the IRMA gene network from steady-state 

experimental data using the Information Theoretic approach. (A) and (B) Inferred 

network using the ARACNE algorithm and the steady-state data from network genes 

overexpression in cells grown in galactose or glucose medium, respectively. Solid 

grey lines represent inferred interactions that are not present in the real network, or 

that have the wrong direction (False Positives- FP). PPV (Positive Predictive Value = 

TP/(TP+FP)) and Se (Sensitivity =  TP/(TP+FN)) values show the performance of the 

algorithm for an unsigned directed graph. TP=True Positive, FN=False negative. The 

random PPV for the undirected graph is equal to 0.70. 
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8.2 Reverse-engineering protein-protein interaction 

 

The networks inferred from the in vivo datasets (Figure 8.1) contain correctly 

identified interactions, but also false positive interactions. We observed that most of 

these false interactions involved the Gal4 and Gal80 proteins.  By taking into account 

that these proteins form a complex, we can consider GAL4 and GAL80 as a single 

component, rather than as two different ones, and simplify the true network 

accordingly, as shown in Figure 8.4 (True Network – Simplified). This simplification 

is justified by considering that reverse-engineering is performed on mRNA 

concentration measurements, but not on protein levels, and therefore a complete 

recovery of the protein-protein interaction is unlikely. 

The number of correctly inferred interactions for the ODE approach increased 

when checked against this simplified true network. All of the inferred interaction are 

correct in switch-on dataset (PPV=1 and Sensitivity=0.67), as shown in Figure 8.4A. 

The same correct interactions are inferred from Galactose steady-state dataset (Figure 

8.4C) even if with a lower precision (PPV=0.80 and Sensitivity=0.67). Results of 

Glucose steady-state are still not better than random (in this case random PPV=0.50) 

(Figure 8.4D). In the case of the switch-off time-series the performance remained the 

same (the ratio between the obtained PPV and the random PPV is 1.5 both in the 

simplified and in the original network inference). This happens because the wrongly 

inferred interactions do not involve the Gal4-Gal80 complex (Figure 8.4B).  
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Figure 8.4. Reverse-engineering the IRMA gene network from steady-state and 

time-series experimental data using the ODE-based approach – Comparison with 

the simplified true network. The Simplified true network depicted on the right shows 

only the regulatory transcriptional interactions among genes in IRMA. We grouped 

the Gal4 and Gal80 proteins as a single component, so that all the interactions 

represent only transcriptional regulation. Directed edges with an arrow-end represent 

activation, whereas dash-end represents inhibition; (A)-(B) Inferred network using the 

TSNI reverse-engineering algorithm and the switch-on and switch-off time-series 

experiments. Solid grey lines represent inferred interactions that are not present in the 

real network, or that have the wrong direction (False Positives- FP). PPV and Se 

values summarize the performance of the algorithm for an unsigned directed graph. 

The random PPV for the unsigned directed graph is equal to 0.50. (C)-(D) Inferred 

network using the NIR reverse-engineering algorithm and the steady-state 

experimental data after gene overexpression in cells grown in galactose or glucose 

medium, respectively. 
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Chapter 9 – Discussion 

 

One of the key challenges of Systems Biology is to reverse-engineer gene 

networks from gene expression data. To date, however, there is not a common 

benchmark in vivo that can be used to assess and compare the different strategies. In 

silico benchmarks, i.e. gene expression data simulated with a computational model, 

have been extensively used to this end (Camacho et al., 2007). However they are 

biased by the modelling strategies used to generate the data and therefore they are not 

‘objective’.  

Together with Systems biology, the field of Synthetic biology is rapidly 

emerging with the aim of building ‘de novo’ biological circuits, or networks, to 

perform specific functions. Modelling the behaviour of biological circuits in silico 

before their construction is a defining feature of Synthetic biology. Ideally, different 

biological networks are modelled and their behaviour simulated in silico to check 

which network better performs the desired task. The selected network is then 

physically constructed. Gene synthetic networks formed of 2-3 genes such as the 

genetic toggle switch in E. coli (Gardner et al., 2000) and in mammalian cells (Kramer 

et al., 2004), the bacterial ‘repressilator’ (Elowitz and Leibler, 2000) or the 

mammalian oscillator (Tigges et al., 2009) have been built to add specific new 

functions to living organisms. However, none of these systems have been constructed 

with the aim to develop a benchmark to implement modelling strategies or reverse-

engineering algorithms but have been thought to resemble a specific function.   

In this work, we developed a synthetic network to assess and benchmark 

modelling and reverse-engineering strategies.  
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We showed that the semi-quantitative prediction of cell behaviour is possible, 

even with a simplified phenomenological differential equation model. One of the 

difficulties in obtaining a predictive and quantitative model in biology is the choice of 

the unknown kinetic parameters, especially for complex networks like the one in this 

work (33 parameters). Different set of parameters may yield similar results. Ideally, 

the kinetic parameters should be identified by appropriate experiments, and this is not 

always possible, particularly if one wants to obtain quantitative values (Rosenfeld et 

al., 2005). In this work, we were able to measure, semi-quantitatively, the strength of 

the promoters, and we estimated 16, out of 33 parameters from these data. 

Remarkably, despite all of the simplifications made, the model showed predictive 

power, albeit semi-quantitative. In order to have more quantitative predictions, the 

predictive ‘scope’ of the model has to be considered. In our case, the model was 

learned from a dynamic time-series of 5 hours after galactose addition, but then used 

to predict the behaviour of the system at long time-scales (i.e. steady state, or switch-

off after having grown cells overnight in galactose). Since proteins were not modelled 

explicitly, their accumulation has larger effects in this case. The model relates only 

transcriptional levels of genes to each other assuming that protein and mRNA 

concentrations are proportional. We believe that the discrepancies between model 

predictions and experimental data are mainly due to this simplification. Hence, our 

model is semi-quantitative. 

 We observed that the model correctly predicts the steady-state 

transcriptional level of GAL4 in galactose (t=0 in Figure 6.6 solid red line - right 

panel), which corresponds to the first point of the switch-off time-series (t=0 in Figure 

6.6, black line with dots - right panel). However, SWI5 (Gal4 direct target in the 

network), CBF1 and ASH1 (directly regulated by Swi5) have much higher 
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transcriptional levels at steady-state (t=0 in Fig. 6.6 black lines with dots – right 

panel), than the last point of the switch-on time-series (t=280 in Fig. 6.6 black lines 

with dots – left panel), despite GAL4 transcriptional level being similar (~0.01).  

 Gal4 protein is more stable in galactose than in glucose and it accumulates 

after glucose-to-galactose shift, despite its low mRNA levels (Muratani et al., 2005; 

Nalley et al., 2006). The 17 unknown parameters, learned during the switch-on 

experiments, were estimated when Gal4 protein has not yet reached its maximal level. 

The model was then used to predict the switch-off time-series, where the level of Gal4 

protein is initially very high. As a consequence, there is an increase in SWI5 levels, 

which in turn drives CBF1 and ASH1 expression, which are not well captured by the 

model. We believe that this is a major determinant of the discrepancy between model 

predictions and experimental data. 

 The same explanation applies for the differences between model prediction 

and experiments in the steady-state overexpression data.  In this case, cells stably 

over-expressed each of the five genes of the network. For the CBF1 overexpression 

experiment (Figure 6.9 A and B), the model accurately predicts GAL4 levels at the 

steady state but, for the same reason we explained above, SWI5 and its target genes 

have higher levels in experiments as compared to the predictions.  

More accurate models, including, for example, a detailed description of the 

galactose system, or those based on different formalisms, can be developed, 

depending on the biological question to be investigated, and assessed against the same 

ground-truth provided by our synthetic network.  

 We also confirmed the usefulness of the network as a benchmark for assessing 

reverse engineering. Our results enabled us to draw some definite conclusions: (1) 

when the dataset are informative, reverse-engineering algorithms are able to correctly 
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identify direct regulatory interactions, but some precautions must be taken when using 

Bayesian networks on dynamic time-series regarding the number of time-points. It is 

likely that the larger number of experimental time points (21 points) in the switch-off 

experiment as compared to the switch-on experiment (16 points) improved the 

performance of Dynamic Bayesian Networks, since this method needs to estimate 

joint probabilities, whereas the ODE approach is not greatly affected by the number of 

points, as long as the dynamics are well captured by the sampling time; (2) by 

comparing the results of different reverse-engineering algorithms on the same dataset 

it is possible to increase the accuracy of the predictions; (3) time-series and steady-

state data are both useful for reverse engineering, but they can convey different 

information; (4) if knowledge of the perturbation effect is available (i.e. which gene 

has been over-expressed) and data points are limited, ODE are superior to Bayesian 

Networks. These conclusions were drawn from our small-scale network consisting of 

five genes only, yet they should hold also for large-scale networks. Comparison of 

reverse engineering methods using in silico expression data has shown that 

performances on small networks (in the order of 10 genes) are in line with those on 

larger networks (in the order of 100 or 1000 genes) (Bansal et al., 2006; Stolovitzky et 

al., 2007). Namely, if an algorithm works better than another on a small network, it 

will do so also on larger networks, as long as the number of experimental data points 

scales with the size of the network. IRMA, therefore can be used to test algorithms 

designed for large-scale networks, with some exceptions. Association-based 

algorithms (such as ARACNE) cannot be properly assessed, since the random 

precision for a small undirected network is too high. We observe, however, that 

transcription factor genes in the network regulate additional endogenous ‘non-

network’ genes (i.e. their well characterised transcriptional targets). Thus, if a 
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sufficient number of genome-wide expression data is collected, then our network 

could be a useful benchmark, also in the case of large-scale networks. 

Concomitantly with our synthetic network, we also generated both dynamic 

and static data sets after perturbing the system and we showed their usefulness for 

testing and comparing some of the available computational tools. These data are now 

available to the community and can be used as gold standard to test published or novel 

developed algorithms. The data sets produced in this work were obtained perturbing 

the system by changing the carbon source or by overexpressing single genes of the 

network, but we also showed that methionine modulates the expression of network 

genes (Figure 6.5) and can therefore be used to perturb system dynamics and collect 

new data sets.  

Furthermore, being an in vivo system, IRMA allows also testing of different 

experimental strategies, which can support computational tools. As new experimental 

techniques, measuring for instance protein levels, will be developed it will be possible 

to test how reverse-engineering algorithms and refined models, which take into 

account also protein dynamics, work in combination with this type of data, instead 

than with gene expression ones.  

In addition, IRMA transcriptional cassettes can be swapped, or substituted 

with different ones, to yield different topologies. It is also possible to extend the 

network, thus increasing both the number of genes and the number of interactions, by 

adding new cassettes. In our strain, one resistance gene (HIS), is available for 

integration of additional cassettes; furthermore new dominant resistance markers such 

as ble(r) and pat, which confer resistance to the antibiotic phleomycin and biaphalos 

respectively, have been  flanked by LoxP sites (Gueldener et al., 2002). Thus they can 
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be Cre-excised and re-integrated in association with different transcriptional cassettes, 

multiple times.  

High-throughput approaches often generate lists of target genes or proteins 

that need a heroic effort to be validated. On the other hand, computational approaches 

can help in inferring the regulatory interactions within a complex biological process; 

in reality, however, it is difficult to identify the appropriate computational approach to 

solve a specific biological problem, without an experimental validation of the 

computational predictions.  

IRMA will help reducing the in vivo validation steps and represents the first 

comprehensive resource, providing both a yeast strain, and gold-standard data, to 

benchmark network-reconstruction and modelling strategies using an “a priori” known 

network.  
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