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ABSTRACT 

 

Ocular neovascularization (NV) is a feature of several common retinal and choroidal 

blinding diseases, including proliferative diabetic retinopathy and age-related macular 

degeneration. Unbalanced production of pro- vs anti-angiogenic molecules in the eye 

causes abnormal vessel growth. Although several pro-angiogenic pathways leading to 

ocular NV have been elucidated,  the identification of novel molecules involved in this 

complex process is desirable to  better understand the disease pathogenesis and to develop 

efficient therapeutic strategies. To this aim, we investigated the role of the morphogen 

Sonic Hedgehog (Shh) in the development of ocular NV. 

We observed that the Shh pathway is activated in the retina of the retinopathy of 

prematurity (ROP) and the laser-induced choroidal NV (CNV) murine models of retinal 

and choroidal neovascularization, respectively. We show that systemic administration of 

cyclopamine, a Shh pathway inhibitor, results in reduction of pathological vascularization 

in both models, suggesting that activation of the Shh pathway plays an important role in 

the ocular NV process. We then developed two nucleic acid-based systems for specific Shh 

inhibition in the retina: a Shh-decoy receptor (HIP-Δ-22) able to bind and sequester Shh 

inhibiting its pathway; and short interfering RNAs (siRNA) able to reduce >70% Shh 

expression levels in vitro. Both HIP-Δ-22 and the siRNA inhibited Shh-induced osteogenic 

differentiation of the mesenchymal cell line C3H10T1/2. In the ROP retina, adeno-

associated viral vector-mediated HIP-Δ-22 delivery or periocular injections of Shh siRNA 

resulted in efficient inhibition of the Shh pathway but not of  retinal neovascularization, 

even when the two strategies were combined. Stronger inhibition of the Shh pathway may 

be required to reduce retinal NV in the ROP model. Alternatively, the inhibition of ocular 

NV observed following systemic cyclopamine administration may result from secondary, 

extraocular effects of the Shh pathway blockade. These results suggest Shh as a potential 



 8

therapeutic target for the treatment of ocular NV. Thorough characterization of Shh role in 

ocular NV is required for the development of an appropriate therapeutic strategy. 

 

 

 

 



 9

INTRODUCTION 

 

The Eye: structure and function 

 

The eye is a complex organ with the function of capturing light, allowing vision.  

It is organized into three main layers (Fig. 1) [1]: 

- A fibrous external layer, with structural and protective functions.  

It consists of the sclera, a protective layer located on the posterior part of the eye, and the 

cornea, which is an outer continuation of the sclera and is transparent in order to allow the 

light to enter the eye. Because transparency is of prime importance, the cornea does not 

have blood vessels; it receives nutrients via diffusion from the tear fluid at the outside and 

the aqueous humour at the inside. 

-A vascular layer, supplying nutrients to the eye structures. 

It includes the choroid, a pigmented vascularized layer located between the sclera and the 

retina (see below) and the iris, a thin diaphragm composed mostly of connective tissue and 

smooth muscle, situated behind the cornea. In the middle of the iris is the pupil, a circular 

hole that regulates the amount of light passing through to the retina, which is at the back of 

the eye. The light that enters the eye is refracted on the retina by the crystalline lens, a 

transparent structure located immediately behind the iris; it is suspended in place by 

suspensory ligaments connected to the ciliary body, a muscular ring that regulates the lens 

shape to change the focal distance of the eye so that it can focus on objects at various 

distances. 

-A nervous layer consisting of the retina, representing the light sensitive part of the eye  

(Fig. 2). 

Retina itself is organized into three layers of cells: the outer nuclear layer (ONL), 

containing rod and cone photoreceptors, the inner nuclear layer (INL), comprising 

Amacrine, Muller, bipolar and horizontal cells and the ganglion cell layer (GCL) 

http://en.wikipedia.org/wiki/Transparency_%28optics%29
http://en.wikipedia.org/wiki/Blood_vessel
http://en.wikipedia.org/wiki/Diffusion
http://en.wikipedia.org/wiki/Aqueous_humour
http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/Se/eye.html#scle
http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/Se/eye.html#reti
http://www.tedmontgomery.com/the_eye/retina.html
http://www.tedmontgomery.com/the_eye/iris.html
http://en.wikipedia.org/wiki/Focal_distance
http://en.wikipedia.org/wiki/Retina


containing ganglion cells, and two layers of neuronal interconnections: the outer plexiform 

layer (OPL) and the inner plexiform layer (IPL).  

In addition, a monolayer comprising specialized epithelial cells – the retinal pigment 

epithelium (RPE) – separates the retina from the choroid. The membrane located between 

the RPE and the choroid is called Bruch’s membrane.  

 

 

 

Figure 1: schematic representation of the eye. The eye is a complex organ organized into three main 

layers: a fibrous external layer, consisting of the cornea and the sclera; a vascular layer, containing the 

choroids, the iris and the ciliary body; a nervous layer consisting of the retina. Three chambers containing 

fluid are delimited: the anterior, the posterior and the vitreal chamber. 

 

Photoreceptors in the retina are a specialized type of neuron able to convert light stimuli 

into electric impulses. These signals are then transmitted, through the bipolar cells, to 

ganglion cells, whose axons leave the retina from the optic disk, to form the optic nerve. 

Thus, visual information is carried from the eye to the visual centres of the brain.  

Muller cells represent the principal glial cell of the retina. They form architectural support 

structures across the thickness of the retina and form the so called outer and inner limiting 
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membranes (OLM and ILM) (Fig 2). Muller cell bodies sit in the inner nuclear layer and 

project irregularly thick and thin processes in either direction to the outer limiting 

membrane and to the inner limiting membrane. Muller cell processes insinuate between 

cell bodies of the neurons in the nuclear layers and envelope groups of neural processes in 

the plexiform layers. The outer limiting membrane is formed by junctions between Muller 

cells and other Muller and photoreceptor cells. The inner limiting membrane, on the other 

hand, is formed by the conical endfeet of the Muller cells. 

The eye is divided into three main spaces, or chambers (Fig. 1). The largest is the vitreous 

chamber, between the lens and the retina, filled with the amorphous and somewhat 

gelatinous material of the vitreous body. This material serves mainly to maintain the eye's 

shape. The anterior and posterior chambers also play a major role in maintaining the eye 

normal shape, by balancing the production and drainage of aqueous humor, the fluid which 

fills both of them. These two fluid-filled chambers are separated from each other by the iris 

and are in communication via the pupil; the anterior chamber's boundaries are the cornea 

and the iris; the posterior chamber is demarcated by the iris and the lens (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

http://education.vetmed.vt.edu/curriculum/vm8054/EYE/AQUEOUS.HTM
http://education.vetmed.vt.edu/curriculum/vm8054/EYE/CRNSCLRA.HTM


 

Figure 2. Schematic representation of retinal layers. The different layers of the retina are shown and listed 

on the right. Outer segments of photoreceptor (PRs) are specialized membrane structures where the light is 

captured.  

 

 

Organization and development of the ocular vasculature 

 

In most mammals, the adult retina is vascularized by two independent circulatory systems: 

the choroid and the retinal vessels (Fig.3). During the initial development of the eye, the 

oxygenation of the retina is ensured by the choroidal vessels and the hyaloid system [2]. 

The vascularization of the retina itself occurs only during late gestation and is restricted to 

the inner part of the retina, with the outer retina completely avascular to ensure visual 

function [2]. The hyaloid vessel system is a dense, but transient, intraocular circulatory 

system that undergoes progressive and nearly complete regression during the latest stage of 

ocular development as the lens, the vitreous and the retina mature [3].  
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Figure 3. Distribution of retinal and choroidal vasculature. The adult retina receives oxygen and nutrients 

from choroidal vessels (on the top) and from two different retinal vascular beds: the deep vascular layer, at 

the junction between outer plexiform layer and inner nuclear layer, and the superficial vascular bed, in the 

inner part of the retina.  

 

 

The choroidal vascular system forms during early development, deriving from the neural 

tube vessels and extending around the outer layer of the optic cup. During the second and 

third month of gestation, this primitive plexus is then organized in a complex vascular 

network, that remains separate from neural retina by the basement membrane of the RPE 

[2]. The development of choroidal vasculature depends on the presence of differentiated 

RPE cells and their production of inductive signals such as Vascular Endothelial Growth 

Factor (VEGF) and basic Fibroblast Growth Factor (bFGF) [2]. 

Retinal vasculature development, in humans, starts at the fourth month of gestation with 

the primitive vessels emerging form the optic disk and extending, during the next four 

months, to the periphery of the retina [2]. The formation and maturation of retinal vascular 

network is completed only after birth. This network is organized into two planar layers, a 

deep vascular plexus, at the junction between the INL and the OPL and a superficial 

vascular network, on the inner surface of the retina (Fig. 3) [1]. Retinal vessels 

development follows the differentiation of neural cells: as retina matures, an increase in 
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neuronal activity with increased metabolic demand leads to development of physiological 

hypoxia in the avascular retina [4]. This hypoxic condition induces VEGF production by 

two different types of microglial cells: the astrocytes, located in the ganglion cell layer of 

the retina, and the Muller cells, in the INL [5]. VEGF expression can be indeed induced by 

hypoxia through the activation of a hypoxia-inducible transcription factor (HIF) [6]. 

VEGF, in turn, induces vascular growth with sprouting of endothelial cells towards retinal 

edges. Behind the front of vascularization, the increased oxygen supply suppresses VEGF 

expression, thereby preventing excessive vascular growth [2]. The absence of VEGF, a 

well known endothelial cell survival factor, can induce apoptosis of endothelial cells and 

thus obliteration of undifferentiated vessel, allowing remodeling of capillary network in 

order to meet the metabolic needs of the retina [7].   

 

Ocular Neovascularization and related diseases 

 

Different pathological conditions are characterized by abnormal vessel growth in the eye, a 

phenomenon called ocular neovascularization. The neo-vessels can derive from different 

ocular vascular beds; choroidal neovascularization (CNV) involves the choroidal 

vasculature while retinal neovascularization (NV) affects the retinal vasculature. 

Unbalanced production of pro-angiogenic signals, including VEGF, angiopoietins [8] or 

insulin-like growth factor-1 (Igf-1) [9] and anti-angiogenic molecules, such as Pigment 

Epithelial Derived Factor (PEDF) [10] in the eye induces vessel growth in these 

conditions. The newly formed vessels do not generate an organized vascular network and 

growth irregularly. In addition, their permeability is altered and this usually leads to 

haemorrhages and damage to ocular tissues [2].  

 

 

 



Age Related macular Degeneration and Choroidal Neovascularization  

Age related macular degeneration (AMD) is the most common cause of blindness in 

individuals older than 65 years in developed countries; AMD is a degenerative disorder of 

the retina affecting the macula, an anatomic structure of the primate retina, with the highest 

cone photoreceptors concentration and responsible for acute central vision; the key lesion 

of ARM is the formation of drusen, aggregations of hyaline material located between 

Bruch’s membrane and the retinal pigment epithelium. This is associated with atrophy and 

depigmentation of the overlying retinal pigment epithelium [11].  

AMD is classified into two major forms, the dry (non-exudative) and the wet (exudative) 

type. Dry AMD is due to a slow and progressive degeneration of the photoreceptors with 

RPE hypo- or hyper-pigmentation and gradual failure of central vision [11]. 

Wet AMD is characterized by the pathologic outgrowth of new vessels from the choroid 

(CNV). This type of macular degeneration may have rapid and devastating effects upon 

vision. In contrast with patients with dry AMD, in whom impairment of vision is gradual, 

central vision may be lost over the course of a few days due to the neo-formed vascular 

tufts that extend in the subretinal space, causing accumulation of fluid or blood in the 

posterior part of the retina [2,11]. This can lead to the detachment of the RPE or the retina, 

resulting in vision loss (Fig 4.). 

 

Figure 4. Localization of choroidal neovascular tufts. Choroidal neovasularization (CNV) is characterized 

by abnormal vessels growth between the retina and the choroid, leading to retinal detachment and blindness. 
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It is not clear what is the primary stimulus for the development of CNV; It is possible that 

an hypoxic condition of the retina is involved; maybe alteration of choroidal blood flow or 

the thickening of Bruch’s membrane with lipophilic material could result in decreased 

diffusion of oxygen from the choroids to the RPE and retina, but there’s no clear data to 

proof this hypotesis [12]; 

The most common pathologic finding in wet AMD is accumulation of abnormal 

extracellular matrix and thickening of Bruch’s membrane which can cause increased 

secretion of pro-angiogenic growth factors from RPE cells, such as VEGF and Fibroblast 

Growth Factor 2 (FGF2), contributing to CNV development [12].  

 

Retinal Neovascularization 

In normal circumstances, the blood vessels of the adult retina are quiescent with respect to 

growth [13]. However, several pathological conditions are characterized by rapid and 

abnormal retinal vessels proliferation including proliferative diabetic retinopathy (PDR) 

and retinopathy of prematurity (ROP), with the new vessels usually growing outside the 

retina and in the vitreous [2]. All these conditions are characterized by the presence of non-

perfused and therefore hypoxic retinal tissues as a precedent to the NV [2]; increased 

VEGF levels in the retina and vitreous of patients and animal models with ischemic 

retinopaties have been found, suggesting that this factor might have a role in NV 

development [12]; Indeed, VEGF inhibition results in reduction of retinal NV in animal 

models and humans and its ectopic expression in PRs is sufficient to stimulate NV in 

murine retina [14,15,16].  
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Retinopathy of prematurity 

Since vascularization of the human retina takes place in the final trimester of gestation, a 

premature infant has an incompletely vascularized retina in which “physiologic hypoxia” 

has induced VEGF expression. Placement of an infant into high oxygen to alleviate 

respiratory distress, suppresses VEGF expression leading to the cessation of vessel growth, 

a phase of ROP termed vaso-obliteration. Once the infant is returned to room air, the 

retina, lacking its normal vascular network, becomes hypoxic, leading to VEGF 

upregulation and abnormal new vessels growth [2]. Often, the neovascular processes 

regress spontaneously in 6-12 weeks [17]. 

Diabetes Mellitus and Proliferative Diabetic Retinopathy 

One of the most common causes of ocular NV is Proliferative Diabetic Retinopathy (PDR), 

which is a complication of Diabetes Mellitus (DM). DM is a metabolic disease 

characterized by elevated blood glucose levels (hyperglycaemia) resulting from defects in 

either insulin secretion or action. Insulin is produced by pancreatic beta cells and released 

in response to stimuli such as increases in circulating glucose levels. Insulin exerts its 

actions mainly on liver, skeletal muscle and adipose tissue (canonical hormone targets) 

where it binds to a transmembrane receptor endowed with tyrosine kinase activity (IR) 

[18]. Insulin binding causes IR dimerization and transphosphorylation upon tyrosine 

residues as well as activation of the intracellular IR signalling cascade. IR tyrosine kinase 

phosphorylates the insulin receptor substrate (IRS)-1 and -2 and shc proteins [18]. This 

results in the induction of gene expression and cellular proliferation through the 

Ras/Raf/MEK/MAPK pathway [19]. Phosphorylated IRS proteins can additionally activate 

the phosphaditilinositol-3-kinase resulting in several metabolic actions, such as induction 

of glycogen synthesis and inhibition of glycogen lysis in skeletal muscle and liver [18,19], 

and blood glucose uptake in muscle and adipose tissue [18], thus resulting in reduction of 

glycaemia. Insulin deficiency due to autoimmune destruction of pancreatic β-cells causes 

type 1 DM [20]. This condition is treated by daily subcutaneous injection of recombinant 
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insulin. The most common type 2 DM is caused by insulin resistance in the hormone target 

tissues combined with deficient hormone secretion by pancreatic β-cells [18]. The deriving 

hyperglycemia can be controlled by diet and exercise, oral anti-diabetic drugs or insulin 

injections [18]. The metabolic and biochemical changes associated with DM, such as 

hyperglycemia, associates with protein glycosilation and alteration of several metabolic 

pathways, increased levels of sorbitol and reduced synthesis of phosphoinositides [21]. All 

of these changes are related to induction of severe complications of the DM such as PDR, 

Diabetic Nephropathy and Neuropathy as well as cataract and increased risk for 

atherosclerosis development [21].  

Ocular pathology is one of the most devastating complications of Diabetes Mellitus (DM, 

see below). PDR associates with changes in the retinal vasculature including vessel 

dilation, increased permeability, basement membrane thickening, loss of pericytes and 

formation of microaneurysms [2]. These vascular changes reflect the chronic damage 

sustained by the vasculature as a result of metabolic alterations, including hyperglycemia, 

associated with DM and lead to vascular dysfunction and loss [2]. The ischemia that results 

from the loss of vessel perfusion leads to increased expression of pro-angiogenic factors 

and vessel growth. The new vessels, growing outside the retina into the vitreous, are leaky, 

due in part to the permeability-inducing effects of VEGF that is up-regulated in the 

hypoxic retina. Formation of a fibrous membrane, in combination with traction caused by 

vitreous attachments, can lead to retinal detachment and blindness [2]. 

 

Treatment of ocular neovascularization 

 

Clinical management of ocular neovascularization is performed with different therapeutic 

strategies. Laser photocoagulation is widely used for the treatment of these conditions; it 

uses the heat generated with a laser on specific regions of the eye to seal or destroy 

abnormal, leaking blood vessels in the retina or the choroid;. 

http://aolhealth.com/conditions/retina


Laser therapy is destructive by design; indeed some retinal tissue is intentionally destroyed 

(sacrificed) in order to preserve the function of other, more visually important areas, 

thereby reducing the chance of more serious vision loss and blindness. As a result, patients 

very often experience a loss of peripheral (side) vision, abnormal blind spots, and reduced 

ability to see at night or in dimly lit environments (Fig. 5).  

 

 

 

 

Figure 5: Representation of an eye with CNV subjected to laser photocoagulation. The heat generated 

by a laser is directed to specific regions of the retina (A).This heat cauterizes the CNV, seals it and stops it 

from growing, leaking, and bleeding. However, tissues in and around the CNV process are also cauterized 

and, following treatment, a scar will form creating a permanent blind spot in the field of vision (B). 

 

Recent advances in the elucidation of the molecular mechanisms underlying ocular 

neovascularization led to the identification of VEGF as a central player in the development 

of both retinal and choroidal NV. This have allowed the development of 

biopharmacological treatment of ocular NV based on inhibition of VEGF action; Three 

different anti-VEGF agents have been produced and extensively tested for their ability to 

reduce ocular neovascularization associated with different pathological conditions. A 

pegylated aptamer (pegaptanib,) a monoclonal antibody (bevacizumab) and an antibody 

fragment (ranibizumab) targeting human VEGF have been produced and administered to 

patients with retinal or choroidal NV in several clinical trials [22,23,24,25,26,27]; These 
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drugs are currenty used in clinical practice [22] resulting in regression of 

neovascularization in patients with different ocular NV diseases [23,24,25,26,27]; In most 

cases anti-VEGF molecules are delivered via intravitreal injections [23,24,25,26,27] and 

require repeated administration to result in significant therapeutic efficacy. In addition the 

therapeutic effect is often transient with additional progression of the neovascularization 

after the termination of the therapy. In addition, intravitreal injection is an invasive 

procedure associated with potentially serious complications, such as endophtalmitis or 

retinal detachment, which may be significant for patients requiring serial treatments over 

many years [28,29,30]. 

 

Animal Models of Retinal Neovascularization 

 

Animal models of retinal and choroidal neovascularization have been generated an 

extensively used to improve knowledge about molecular bases of ocular neovascular 

diseases and to test efficacy of experimental therapies for these conditions.  

Two types of animal models of retinal neovascularization exist; the most commonly used 

is the Retinopathy of Prematurity (ROP) mouse, in which a condition similar to what is 

observed in premature infants developing retinal neovascularization is generated [31]. In 

mice, retinal vessels development takes place after birth with the growing vessels 

extending from the optic disk and reaching retinal edges at postnatal day (P-) 17. Thus, the 

vascular network of murine retina at P7 closely resembles that of premature infants with 

ongoing regression of hyaloid vessels and incomplete development of retinal vasculature; 

to induce NV, mice are exposed to high oxygen percentage (75%) from P7 to P12; this 

reduces the physiological hypoxia normally present in the retina at this time point blocking 

the normal retinal vessels growth. When mice are returned to room air the retina, showing 

incomplete vasculature, becomes hypoxic and this leads to de-regulated activation of pro-

angiogenic stimuli and induction of retinal neovascularization [31]. Retinal NV develops in 



100% of these mice between P17 and P21. Murine ROP retina shows a non-perfused 

central region and peripheral neovascular tissue, with vascular tufts extending beyond the 

internal limiting membrane into the vitreous [31]; retinal NV in this model can be assessed 

by intracardiac perfusion with fluorescein-labelled high molecular weight albumin  

followed by analysis of retinal flat mounts under a fluorescence microscope (Fig. 6A). In 

addition counting the number of endothelial cell nuclei on the vitreal side of the inner 

limiting membrane in retinal cross sections allows precise quantification of NV (Fig. 6B). 

Retinal NV can be induced even in rats [32]; newborn rats are exposed to variable oxygen 

between 40% an 80% in a cyclic fashion for 14 days and then brought to room air for 4 

days. About 62% of the animals develop retinal NV in these settings [33].   

 

 

 

Figure 6. Evaluation of retinal neovascularization in ROP mice. 

A) Retinal flat mount of fluorescein-perfused ROP mice showing the classical appearance of retinal vessels 

with absence of vessels in the central part and disorganized vascular network at the periphery. Regions of 

hyperfluorescence represent points of fluorescein effusion due to vessels leakiness (white arrows).  

B) Paraffin cross sections of ROP retina showing neo-vessels on the vitreal side of the inner limining 

membrane (black arrows). The number of neo-vascular nuclei can be counted to quantify the extent of retinal 

NV. 
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The other types of retinal neovascularization models is obtained without oxygen exposure, 

in spontaneous hypertensive rats with extensive retinal degeneration, in which retinal 

vessels first migrate towards the RPE and then grow beyond the inner limiting membrane; 

similarly, transgenic mice expressing VEGF in photoreceptors show new vessels arising 

from retinal vasculature and growing in the subretinal space, demostrating that increased 

expression of VEGF in the retina can stimulate intraretinal and subretinal NV [14].  

The most commonly used model of choroidal neovascularization is the laser induced 

model in which rupture of the Bruch’s membrane is caused by laser photocoagulation. This 

results in inflammatory response to the laser injury and CNV. 

This strategy has been used to induce CNV in primates [34], rats [35,36], rabbits [37] and 

mice [38]. Despite similarities with AMD-associated CNV in humans, the laser model may 

not be appropriate for studies of mechanisms of initiation of CNV since there’s acute 

extensive damage of retinal tissue and Bruch’s membrane with the laser treatment that is 

not seen in clinical CNV. However this model has been extensively used to assess efficacy 

of anti-neovascular therapies. The choroidal neovascularization can be evaluated by 

Fundus Fluorescein Angiograms (FFA) and measurement of the areas of hyperfluorescence 

or by evaluation of subretinal CNV complexes in paraffin cross sections [12].  

 

Experimental therapies for ocular neovascularization 

 

Since actual therapies for ocular NV, despite showing therapeutic efficacy, have several 

side-effects and often result in relapses, strategies for safe and long term inhibition of 

ocular neovascularization, based on ocular gene transfer of anti-angiogenic factors, are 

being evaluated (see attached PDFs [15,16] ). Molecules able to inhibit VEGF expression 

or action represent a promising tool to this aim, given the proven involvement of VEGF in 

different neovascular pathologies of the eye. Long term intraocular production of anti-

VEGF molecules can be achieved by intraocular gene transfer via viral vectors (see 
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below). The soluble form of the Flt-1 VEGF receptor (sFlt-1), which acts as an endogenous 

specific inhibitor of VEGF, has been delivered to the eye, via intra- or peri-ocular injection 

of different viral vectors, resulting in reduction of NV in various models of CNV and 

retinal NV [39,40,41,42]. In addition, the inibition of VEGF gene expression at the level of 

the messenger RNA has been achieved in ocular NV models; Short RNA duplexes, called 

short interfering RNAs (siRNAs), can cause the sequence specific degradation of a target 

mRNA. The siRNA can be exogenously administered or produced in situ from longer 

precursors (short hairpin RNA, shRNA) that can be expressed in the target cells (i.e. 

delivered by a gene therapy vector) and cleaved to produce the siRNA by intracellular 

protein complexes [43,44]. SiRNA and viral-vector delivered shRNA directed to VEGF or 

molecules involved in VEGF signalling pathways have been tested in murine models of 

ocular NV resulting in inhibition of both retinal and choroidal NV [45,46,47]. In addition 

to anti-VEGF molecules, molecules endowed with anti-angiogenic activity are being tested 

for their ability to inhibit ocular NV. Among them, pigment epithelium-derived factor 

(PEDF) is one of the most representative. PEDF is an anti-angiogenic molecule responsible 

for inducing and maintaining the avascularity of the cornea and vitreous compartments in 

physiological conditions [10]; PEDF gene transfer inhibits both retinal and choroidal NV 

in animal models [39,48,49,50]. The results obtained in pre-clinical studies allowed the 

development of a phase I clinical trial in patients with AMD-associated choroidal NV 

(CNV) based on intravitreal injections of viral vectors encoding PEDF. No major toxic 

effects were associated with vector administration and preliminary therapeutic efficacy has 

been reported at the highest vector dose [51]. The identification of additional 

antiangiogenic factors, such as angiostatin [52], endostatin [53] and tissue inhibitor of 

metalloprotease (TIMP)-3 [54], has provided novel tools to inhibit ocular NV. Angiostatin 

is a proteolytic fragment of plasminogen encompassing the first four kringle domains of 

the molecule. Angiostatin [55] and its recombinant derivative K1K3 (containing only the 

first three kringles) [56] have antiangiogenic properties and their intraocular expression 
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obtained with viral vector mediated gene transfer resulted in significant reduction of 

choroidal and retinal NV in animal models [57]. Endostatin is a cleavage product of 

collagen XVIII that is able to reduce choroidal NV when delivered systemically [58]; 

TIMP3 is a potent angiogenesis inhibitor able to block VEGF signalling [58]. Viral vector-

mediated expression of these factors in the eye, resulted in inhibition of ischemia-induced 

retinal NV [58].  

Although inhibition of VEGF seems a powerful strategy for treatment of ocular NV, the 

identification of additional molecules involved in neovascular processes and/or showing 

anti-angiogenic properties, would allow development of additional therapeutic strategies 

that, alone or in combination with anti-VEGF molecules, could allow effective and long 

term inhibition of ocular NV in different conditions; to this aim, the development of 

systems able to provide efficiently and long-term intraocular anti-angiogenic factors 

represents a requirement. 

 

Gene therapy and ocular gene transfer. 

 

Long term intra-ocular production of a desired molecule can be achieved by introduction 

of genetic material encoding for the protein into target cells of the eye (gene transfer). This 

is usually done using viral vectors generated by modification of parental viruses; the viral 

genome is partially or completely deleted of viral genes, which are generally substituted by 

an expression cassette containing the coding sequence for the desired protein downstream 

of an ubiquitous or a tissue specific promoter. Different viral vectors able to efficiently 

transduce ocular cells are available [16].  

For most vectors, the administration route to be used is largely dependent on the targeted 

ocular cell type. Subretinal injections expose the outer retina (PRs and RPE), whereas 

intravitreal injections expose the anterior retina (retinal ganglion cells), to the nucleic acid-

based therapeutic. Vectors commonly used for ocular gene transfer are adenoviral, 
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lentiviral and adeno-associated viral (AAV) vectors, as we reviewed in the attached PDF 

[16]. Among these vectors, AAV represent the most promising ones, given their ability to 

efficiently transduce various ocular cell types resulting in long lasting expression of the 

encoded gene (transgene). Generation of AAV vectors is obtained by deletion of all viral 

coding sequences and insertion of the expression cassette between the inverted terminal 

repeats (ITRs) of the viral genome. The existence of dozens of adeno-associated virus 

serotypes has allowed generation of hybrid vectors: the same AAV vector genome (usually 

derived from AAV serotype 2) is included in external surface proteins (capsids) from other 

AAV serotypes; the resulting recombinant vectors are indicated as ‘AAV2/n’, with the first 

number indicating the genome (i.e. AAV2 in this case) and the second the capsid [59]; 

different rAAV serotypes have different tropism and transduction characteristics. The 

ability of the various AAV serotypes to transduce ocular structures has been extensively 

documented with vectors encoding marker proteins showing that a combination of 

serotypes, injection route and promoters allows selective transduction of different cellular 

populations. The viral serotypes AAV2/5, AAV2/7, AAV2/8 and AAV2/9 are the most 

efficient for transduction of PRs after subretinal injection; AAV2/9 vectors, in addition to 

PRs, efficiently transduce Muller cells [60], while transduction of ganglion cells can be 

achieved by intravitreal injection of either AAV2/2 or AAV2/8 vectors [61]. RPE is 

efficiently transduced by most AAV serotypes upon subretinal injection: those that have a 

predominant RPE tropism in the murine retina are: AAV2/1 and AAV2/4 [59,62,63].  

AAV2/1-mediated RPE transduction has been used as a strategy for intraocular delivery of 

secreted molecules by inducing the production of the desired factor in the RPE cells 

resulting in its secretion into ocular chambers [64].  

In addition, several reports have shown AAV vectors ability to efficiently transduce for 

long-term several other organs, including brain [65,66,67], β-cells [68], skeletal muscle 

[69] and liver [70] after systemic or local injections. Systemic administration of AAV2/1 

vectors results in body-wide and robust skeletal muscle transduction [71]. Similarly, 
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administration of vectors with AAV8 capsids (AAV2/8) results in high levels of liver 

transduction [72].  

 

Sonic hedgehog and ocular neovascularization 

 

The current knowledge of the pathogenetic mechanisms underlying ocular neovascular 

diseases has allowed to develop therapies based on biological drugs. Nevertheless, 

identification of new molecular players and definition of their hierarchy in this process will 

allow to better understand the molecular bases of these disorders and to develop of 

additional effective therapies to be combined with or substituted to those actually used to 

achieve better efficacy. 

Sonic hedgehog (Shh) is a secreted morphogen implicated in a multiplicity of 

developmental and post-natal processes [73,74]. Together with the other hedgehog genes 

(Indian and Desert Hedgehog), it is crucial for the formation of lung, limb, gut and bone 

[75,76,77,78,79,80,81,82]; in addition, its signalling regulates the proliferation of distinct 

cell types via direct activation of genes involved in the progression of the cell cycle 

[83,84]. In adult tissues, several evidences suggest that uncontrolled activation of the Shh 

pathway results in specific types of cancer of brain [85,86], skin [87,88,89], pancreas [90]  

and lung [91]. 

Shh exerts its action through the binding to a transmembrane receptor (Patched, Ptch1). In 

the absence of ligand, the Shh signalling pathway is inactive. In this case, Ptch1 inhibits 

the activity of Smoothened (Smo), a seven transmembrane protein. The transcription factor 

Gli, a downstream component of Shh signalling, is prevented from entering the nucleus 

through interactions with cytoplasmic proteins, including Fused and Suppressor of fused 

(Sufu). As a consequence, transcriptional activation of Hh target genes is repressed. 

Activation of the pathway is initiated through binding of Sonic hedgehog to Ptch1. Ligand 

binding results in de-repression of Smo, thereby activating a cascade that leads to the 



 27

translocation of the active form of the transcription factor Gli to the nucleus [74]. Nuclear 

Gli activates target gene expression, including Ptch1 and Gli itself [74], as well as 

Hedgehog interacting protein (Hip), a Shh binding membrane glycoprotein that attenuates 

ligand diffusion and so acts as negative regulator of Shh pathway [92]. In the eye, Shh is 

expressed throughout retinal development, acting as a precursor cell mitogen [93], while in 

differentiated retina it localizes to the ganglion cell layer [93,94,95]. Correct retinal 

development seems to depend from Shh signalling from ganglion cells [95,96,97]. The 

subsets of retinal cells that respond to Shh signaling are ganglion cells  [98] and astrocytes 

([99] in the inner retina and Muller glial cells [95] in the INL, expressing Ptch1.  

The hedgehog pathway can be blocked by using cyclopamine, a veratrum-derived steroid 

alkaloid, which act as antagonists by binding and inhibiting Smo [100]. Cyclopamine 

administration in animal models reduces the size and spreading of tumors in which Shh is 

activated. [90,101,102,103,104].  

In addition to the roles reported here, Shh has been implicated in vascularization of 

embryonic tissues such as lung [77]; expression of Shh receptor Ptch1 on adult 

cardiovascular tissues has been found, allowing these cells to respond to Shh exogenous 

administration [105]. Thus Shh seems to be implicated in angiogenesis; indeed, it is able to 

upregulate angiogenic factors including VEGF and angiopoietins 1 and 2 in cultured 

fibroblasts [105,106]. In addition, its exogenous administration induces corneal 

neovascularization [105] and increases capillary density and tissue perfusion in a murine 

model of hind-limb ischemia [107]. The Shh pathway is induced in the hind-limb model of 

ischemia reperfusion and its inhibition with Shh-blocking antibodies reduces the 

angiogenic response to ischemia [107].  

Although Shh is required for normal retinal neuronal development [95] [96] [97], its role in 

physiological and pathological ocular neovascularization was unknown. 
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AIM OF THE THESIS 

 

Diabetes Mellitus is a common disease affecting over 200 million individuals in the world. 

Severe complications of DM include proliferative diabetic retinopathy (PDR), which 

together with wet AMD are associated with ocular NV and represent the most common 

causes of vision loss in developed countries.  

The work of my thesis had two different but related aims: 1) to generate gene transfer-

based strategies to obtain glucose homeostasis in DM; 2) To develop new therapeutic 

strategies for the treatment of ocular neovascular diseases: 

Towards the first aim I have developed and characterized a gene transfer-based system for 

pharmacological regulation of the insulin receptor signalling to selectively mimic insulin 

action on a desired insulin target tissue; this system represents a tool for studying the role 

of insulin action on a specific tissue and to induce glucose uptake and homeostasis as 

treatment of DM, thus overcoming the requirement of daily insulin injections in type I DM 

patients.  

Toward the second aim we hypotesized that the Shh pathway is implicated in physiological 

and pathological ocular NV and applied various strategies for systemic or intraocular 

inhibition of the Shh pathway thus assessing its role in ocular vascular development and 

developing therapeutic approaches based on Shh blockade for the treatment of retinal and 

choroidal NV. 
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MATERIALS AND METHODS 

 

Vector Construction and Production 

 

pCLFv2IRE is a CMV expression vector encoding a fusion protein containing the 

extracellular and transmembrane portions (amino acids 1-270) of the human low affinity 

nerve growth factor receptor (LNGFR) fused to two F36V-FKBP12 ligand binding 

domains, followed by the cytoplasmic domain of the human insulin receptor, and a C-

terminal hemaglutinin epitope (HA). Details of the LNGFR- F36V-FKBP fusion sequences 

and expression vector have been described [108,109,110]. The Insulin Receptor 

cytoplasmic domain (amino acids 980-1382) was isolated by PCR from a cDNA library 

prepared by RT-PCR from human skeletal muscle total RNA (Clontech, Palo Alto, CA). 

The following primers were used 5'-

AGCTTCTAGAAGAAAGAGGCAGCCAGATGGGCCGCTG-3' (Forward), and 5'-

AGCTACTAGTGGAAGGATTGGACCGAGGCAAGGTC-3' (Reverse). The PCR 

product was cleaved with XbaI and SpeI prior to insertion at an XbaI site between the 

FKBP and epitope sequences in pCLFv2IRE. 

The pAAV2.1-TBG-LFv2IRE, pAAV2.1-MCK-LFv2IRE, pAAV2.1-CMV-HIP-Δ22 and 

pAAV2.1-CMV-HIP-Δ22-myc plasmids used to produce recombinant AAV vectors were 

cloned as follows. The LFv2IRE fragment was obtained digesting pCLFv2IRE with Eag1 

and BamH1 (Roche, Basel, Switzerland). LFv2IRE was then cloned into pAAV2.1-TBG-

eGFP [111] previously digested with Not1 and BamH1 (Roche, Basel, Switzerland). 

The 1.35 Kb muscle specific promoter from the human muscle creatine kinase (MCK) 

gene [112] was PCR amplified from human genomic DNA. The primers used are the 

following: 5’-aattagctagctgggaaagggctgggc-3’ (Forward) and 5’-

aaatacggccgaggtgacactgacccaa-3’ (Reverse) containing the NheI and PstI restriction sites 
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respectively. The resulting PCR product was digested NheI-PstI (Roche, Basel, 

Switzerland) and cloned into the pAAV2.1-TBG-LFv2IRE plasmid previously digested 

with the same enzymes to remove the TBG sequence. 

The HIP-Δ22 sequence was generated by deleting the last 22 codons of the murine HIP 

coding sequence; this was performed by PCR on C57Bl/6 retinal embrionic cDNA with the 

following primers: Fw- AAGCGGCCGC-

ATGCTGAAGATGCTCTCGTTTAAGCTGCTA; Rev- AAGGATCCC-

TACCTGGTCACTCTGCGGACGTT containing Not1 and BamH1 restriction sites 

respectively. The PCR product was inserted in the Topo Cloning 2.1 vector (Invitrogen 

Life Technologies, Carlsbad, CA) as suggested by manifacturer, sequenced and digested 

Not1/BamH1. The HIP- Δ22-myc sequence was generated in the same way but we used a 

different Rev-primer, containing the myc tag sequence, a new stop codon and the BamHI 

restriction site whose sequence is the following: 

AAGGATCCCTACAGATCTTCTTCAGAAATAAGTTTTTGTTCCCTGGTCACTCTG

CGGACGTTCCTGTCC. 

The HIP- Δ22 and HIP- Δ22-myc sequences were then cloned into pAAV2.1-CMV-eGFP 

[111] plasmid previously digested Not1/BamH1.  

The pShh expression plasmid was generated by PCR amplification of human Shh coding 

sequence from human retinal cDNA (Clontech, Palo Alto, CA) with specific primers; The 

PCR product was inserted in the Topo Cloning 2.1 vector (Invitrogen Life Technologies, 

Carlsbad, CA), sequenced, digested Not1/BamH1 and then cloned into pAAV2.1-CMV-

eGFP [111] plasmid. 

Recombinant AAV vectors were produced by the TIGEM AAV Vector Core by  triple 

transfection of 293 cells and purified by CsCl2 gradients [113]. Physical titers of the viral 

preparations (genome copies, gc/ml) were determined by Real Time PCR (Perkin Elmer, 

Foster City, CA) [114].  
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Anti-Shh siRNA design and production 

 

Five different 19-21nt siRNA oligos targeting regions of sequence identity between human 

and murine Shh mRNA were designed using the online Dharmacon siDESIGN center 

(www.dharmacon.com). The 5’-3’ target sequence for each siRNA is: #1: 

UUAGCCUACAAGCAGUUUA; #2: UGGCGGUCAAGUCCAGCUGAA; #3: 

AAGCUGACCCCUUUAGCCU; #4: UUACAACCCCGACAUCAUA; #5: 

GAAGGUCUUCUACGUGAUC; Control siRNA targeting eGFP were designed (target 

sequence: CGAGAAGCGCGAUCACAUG); All of these sequences were blasted against 

human and murine genomes to ensure they do not recognize additional sequences. The 

siRNA were sinthetized  by Dharmacon (Lafayette, CO); “A4 option” was used for in vitro 

studies, while for in vivo administration the “in vivo option” was used and siRNA were 

resuspended in sterile PBS (Invitrogen Life Technology, Carlsbad, CA). For localization of 

siRNA#2 in the retina, we used BrdU labelled siRNA #2, as previously reported [115]; the 

siRNA oligos, containing BrdU at the 3’ end of both sense and antisense strand, were 

sintetized by Sigma-Proligo (The Woodlands, TX, USA).  

 

Diabetes Mellitus mouse model, vectors administration, AP20187 stimulation, blood 

and tissue collection 

 

To evaluate LFv2IRE expression and tyrosine phosphorylation, 4 weeks old CD1 mice 

(Harlan Italy, S. Pietro al Natisone, Italy) were injected into the tail vein with 5x1011GC of 

the AAV2/8-TBG-LFv2IRE or AAV2/1-MCK-LFv2IRE vectors. Four weeks later mice 

were stimulated or not by intraperitoneal injection of 10 mg/kg AP20187 as described 

[116,117,118,119,120] (ARIAD Pharmaceuticals, Cambridge, MA, www.ariad.com). 

http://www.dharmacon.com/
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Liver or muscles were collected at the time points reported in the Results section for 

further analysis.     

NOD mice (Harlan Italy, S. Pietro al Natisone, Italy) were used for the evaluation of the 

biological effects of the LFv2IRE/AP20187 system. These mice spontaneously develop 

autoimmune insulin-dependent DM between 11 and 15 weeks of age [121]. 11-week old 

female mice were injected or not with a mix of the AAV2/8-TBG-LFv2IRE and AAV2/1-

MCK-LFv2IRE or of the control AAV2/8-TBG-LacZ and AAV2/1-MCK-eGFP vectors 

(5x1011GC/mouse). Plasma glucose levels were monitored weekly by a glucometer (Accu-

Check active, Roche) on blood samples obtained via eye bleeding according to 

manufacturer’s instructions. Four weeks after AAV vector injection, mice with plasma 

glucose levels higher than 250 mg/dl were selected and further studied for the evaluation of 

hepatic glycogen content and muscle glucose uptake. Mice were stimulated or not with 

intraperitoneal injection of 10mg/kg of AP20187 eighteen and six hours (when they were 

fasted to avoid variations in plasma glucose levels) before receiving intravenous injection 

of 1μCi of 2-Deoxy[1-3H] glucose (2-DG; Amersham Pharmacia Biotech, Piscataway, NJ). 

About 70 μl of blood were collected 1, 10, 20 and 30 minutes after the injection via eye 

bleeding, added to 10μl of 5M EDTA and centrifuged at 10000 rpm for 10 minutes. 

Supernatant were then collected and frozen. Skeletal muscles (gastrocnemi and quadriceps) 

and livers were dissected 30 minutes after the 2-DG injection and frozen.  

Control uninjected NOD and CD1 mice were stimulated with insulin (Humulin, 0.75 U/kg; 

Eli Lilly, Indianapolis, IN) and hepatic glycogen content and muscle glucose uptake were 

measured as described. 
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Mouse models of ocular NV, vectors administration, cyclopamine and siRNA 

administration, eyes collection 

 

For ocular neovascularization experiments, we used murine models of ischemia induced 

retinal NV (the ROP mice [31]) and laser induced choroidal NV (the CNV mice [38]). For 

generation of the ROP model we used C57BL/6J mice (Harlan Italy, S. Pietro al Natisone, 

Italy). When reported, newborn mice (P2-P3) received subretinal injection of 1x109 gc of 

AAV2/1-CMV-HIP-Δ22 vectors in the right eye and AAV2/1-CMV-eGFP control vectors 

[111] in the left eye; To induce retinal NV, mice were kept in a chamber with PO2 between 

75% and 78% from postnatal day (P) 7 to P12 to block retinal vessels growth [31]. At P12 

mice were returned to room air until P17 to induce hypoxia in the retina allowing 

development of neovascularization [31]. When stated, ROP mice received daily injections 

of either 50mg/kg cyclopamine or vehicle alone from P12 to P17. Cyclopamine (Toronto 

Research Chemicals, Toronto, Canada and Biomol Research Labs, Plymouth Meeting, PA) 

was resuspended and administrated as described by Berman et al [102]. P17 ROP mice 

were deeply anesthetized with avertin (2,2,2-tribromoethanol, Sigma-Aldrich, Milan, Italy) 

for retinal angiography and/or eyes and tissues collection. To confirm a role for Shh in 

physiological retinal vessels development, wild type C57BL/6 mice were injected daily 

with 50mg/kg cyclopamine or vehicle alone from P1 to P4; eyes were then collected at P5. 

For the Shh RNA interference studies, siRNA#2 or control siRNA were administered via 

subconjunctival injections [39] to ROP mice. Briefly, the lids were open with a forceps if 

required and conjunctiva was lifted up. The siRNA was injected under the conjunctiva with 

a Hamilton syringe and 33G needle. For ISH, Western blot analysis of Shh expression and 

Ptch1 real time, 3 μg of siRNA#2 were injected in the right eye and the same amount of 

control siRNA was injected in the left eye in P12 ROP mice; eyes were collected and 

retinae were dissected at P13 or at P14 for analysis. To assess inhibition of retinal NV, 

mice received 3 or 6 μg of siRNA#2 or control siRNA at P12, P14 and at P15; mice were 
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then sacrificed at P17 and eye collected for further analysis. Results deriving from mice 

receiving 3 or 6 μg of siRNA were pulled since no difference was observed.   

CNV was induced in adult C57BL/6 mice as follows: mice were anesthetized with an 

intraperitoneal injection of 0.15 ml of a mixture of Domitor 1 mg/ml (medetomidine 

hydrochloride, Pfizer Pharmaceuticals, Kent UK) and ketamine (100 mg/ml, Fort Dodge 

Animal Health, Southampton, UK) mixed with sterile water for injections in the ratio 

5:3:42. The pupils of all animals were dilated using topical 1% tropicamide and 2.5% 

phenylephrine (Chauvin Pharmaceuticals, Essex. UK). A slit-lamp mounted diode laser 

system (wavelength 680 nm; Keeler UK) was used to deliver 3 laser burns to the retinas of 

each eye approximately 3-4 disc diameters from the optic disc, avoiding major retinal 

vessels (laser settings 210 mW, 100 ms duration, 100 μm diameter). These settings 

consistently generate a subretinal gas bubble which strongly correlates with adequate laser-

induced rupture of Bruch’s membrane. Anesthesia in mice was reversed using 0.15ml of 

Antisedan (atipamezole hydrochloride 0.10 mg/ml, Pfizer, Kent UK). Animals then 

received daily injections of either 50mg/kg cyclopamine (n=10) or vehicle alone (n=10). 

Fluorescein Fundus Angiogram (FFA, see below) was performed 2 weeks after laser injury 

as this time point corresponds to the period of maximum angiogenesis in this model. 

 

Retinal angiography, immunofluorescence of whole mount preparation, in vivo 

fluorescein angiography and quantification of CNV area 

 

Retinal angiography was performed by transcardiac perfusion with 1.5 ml of a 50 mg/ml 

solution of 2 million molecular weight fluorescein isothyocyanate dextran (FITC-dextran; 

Sigma-Aldrich, Milano, Italy) in phosphate buffered saline (PBS). High molecular weight 

dextran, conjugated to fluorescein, is retained in vessels that are fluorescently labelled 

[31]. In neovascular retina, the newly formed vessels are leaky and retinal hyper-

fluorescence is observed due to fluorescein effusion .[31] In addition, neovascular tufts, 
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corresponding to vessels extending beyond the internal limiting membrane into the 

vitreous are evident [31]. Retinae were dissected and flat-mounted and retinal vasculature 

examined using a fluorescent dissection microscope (Leica Microsystems, Milano, Italy). 

For immunofluorescence on whole-mount preparations, ROP eyes (P5) were removed and 

fixed in 4% (w/v) paraformaldehyde in PBS. The retinae were dissected and fixed in ice-

cold methanol for 10 min. After incubating in PBS containing 50% fetal calf serum (FCS) 

and 1% (w/v) Triton X-100 for at least 1hr at room temperature, the retinae were incubated 

overnight at room temperature with a rabbit anti-mouse collagen IV antibody to label 

vessels [122] (Chemicon, Milano, Italy) diluted 1:200 in blocking buffer. Retinae were 

washed for 1 hr in PBS, incubated for 2 hr at room temperature with Alexa Fluor 594-

conjugated goat anti-rabbit IgG secondary antibody (1:200 dilution in blocking buffer, 

Molecular Probes, Invitrogen, Carlsbad, CA), washed for 1 hr, and mounted. The area of 

the retinal vasculature was measured with imageJ 1.32j software (Wayne Rasband National 

Institute of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/) 

For FFA, pupils of both eyes were dilated as before and 0.2 ml of 2% sodium fluorescein 

was injected into the peritoneal cavity. A Kowa Genesis small animal fundus camera was 

used to obtain fundal photographs of the CNV lesions in all eyes taken approximately 90 

seconds after intraperitoneal fluorescein administration. Eyes in each treatment group were 

excluded if they developed significant lens or corneal opacities, as this would preclude 

laser CNV induction or FFA. Eyes were also excluded if any of the induced CNV lesions 

had coalesced. The fundal photographs were digitized and the number of pixels 

representing the areas of hyperfluorescence quantified using image analysis software 

(Image Pro Plus, Media Cybernetics, Silver Spring, MD, USA). 

 

 

 

 

http://rsb.info.nih.gov/ij/
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Hepatic glycogen measurement 

 

Hepatic glycogen contents was measured by a spectrophotometric assay [123]. Briefly, 

tissues were solubilized in 0,1%SDS, then 1/2 volume of saturated Na2SO4 and 1/2 volume 

of  95% ethanol were added. The samples were chilled on ice for 30 minutes and then 

centrifuged at 4 °C. The pellet was rehydrated and  5% phenol and H2SO4 were added. The 

samples were left at room temperature for 10 minutes and incubated at 30°C for 20 

minutes. Finally, absorbance at 490 nm was measured. The results are expressed in 

micrograms of glycogen per milligram of protein.  

 

In vivo glucose utilization index 

 

The specific blood 2-DG clearance was determined using the Somogyi procedure, as 

previously reported [124]. This method [125] is based on biochemical properties of 2-

deoxiglucose, that is transported by the same carrier that the glucose and is also 

phosphorilated by hexokinases. This 2-deoxiglucose-6-phosphate (2-DG-6) can not be 

further metabolized, and remains inside tissues.  

A tracer dose (1µCi) of 2-deoxy[1-3H] deoxy-D-glucose (2-DG) was injected 

intravenously in anaesthetized mice and its concentration was monitored in blood with a β-

counter on 25 µl blood samples obtained 1, 10, 20 and 30 min after injection. Total 

(labelled and unlabeled) serum glucose levels were measured with Amplex Red 

Glucose/Glucose Oxidase Assay Kit (Invitrogen Life Technologies, Carlsbad, CA). 

Skeletal muscle (gastrocnemius and quadriceps) samples were removed 30 min after 

injection and the accumulation of radiolabeled compounds was measured by disgregation 

of the tissue and β-counter measurement [125]. The amount of 2-DG-6 phosphate per 

milligram of protein was divided by the integral of the ratio between the concentration of 
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2-DG and the unlabeled glucose measured in the serum. The index of glucose utilization 

results are expressed as picomoles of 2DG per milligram of protein per minute.  

 

Cell culture, plasmid and siRNA transfection, AAV transduction, cells and media 

collection 

 

Human embryonic kidney (Hek293) cells were used to assess expression and secretion of 

HIP-Δ22-myc receptor and for production of Shh and HIP-Δ22 conditioned media; 293 

cells were cultured in DMEM (Invitrogen Life Technologies, Carlsbad, CA), 10% Fetal 

Bovine Serum (FBS, Gibco, Invitrogen Life Technologies, Carlsbad, CA), 1% 

penicillin/streptomycin (Euroclone, Celbio, Milan, Italy ) and transfected with Fugene 6 

reagent (Roche, Basel, Switzerland) as suggested by manufacturer. For conditioned media 

production, 48h after transfection cells were washed and serum free DMEM was added; 

12h later conditioned media were collected, centrifuged at 3000rmp for 5’ in a 

microcentrifuge to remove cells and stored at-20°C. For Western blot analysis, transfected 

cells were collected and lysed in lysis buffer (40 mM Tris ph7.4, 4mM EDTA, 5mM 

MgCl2, 1% Triton X100, 100 μM Na3VO4, 1 mM PMSF, 10 μg/ml Leupeptin-Aprotinin-

Pepstatin A-LAP-protease inhibitors, 150mM NaCl) with standard procedures. For AAV 

infection, 293 cells were incubated in serum-free DMEM and infected with AAV2/1-

CMV-HIP-Δ22 vectors (1x104 gc/cell) for 2h at 37°C. Complete DMEM was then added 

to the cells. 48h later cells were washed and incubated in DMEM serum free for 12h; 

media were then collected, 500ul of each medium was concentrated with vivaspin 

(Vivascience, Littleton, MA) as suggested by manufacturer and subjected to Western blot 

analysis. For siRNAs selection, 293 cells were plated in MW12 plates; 80% confluent cells 

were transfected with the pShh plasmid using Fugene 6 reagent (Roche, Basel, 
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Switzerland). 24h later the same cells were transfected with each of the five siRNAs 

targeting Shh or with control siRNAs using Lipofectamine 2000 (Invitrogen Life 

Technologies, Carlsbad, CA). 5pmol of each siRNA were used. After additional 24h, 

transfected cells were collected, lysed in lysis buffer and subjected to Western blot 

analysis.  

 

C3H10T1/2 osteoblastic differentiation and Alkaline Phosphatase assay 

 

Members of the hedgehog gene family have been shown to regulate skeletal formation in 

vertebrates, affecting both chondrocyte, [126] and osteoblast differentiation [75,80]. In 

vitro, Shh induces alkaline phosphatase (AP), a marker of osteoblast differentiation, in the 

mouse mesenchymal cell line C3H10T1/2 [127,128]. Indeed, osteoblast differentiation of 

these cells has been widely used as tool to quantitatively measure Shh activity by 

assessment of AP expression [129]. C3H10T1/2 were cultured in BME (Invitrogen Life 

Technologies, Carlsbad, CA) supplemented with 2mM L-glutamine (Gibco, Invitrogen 

Life Technologies, Carlsbad, CA), 1.5 g/L sodium bicarbonate (Gibco, Invitrogen Life 

Technologies, Carlsbad, CA), 10% heat-inactivated FBS (Gibco, Invitrogen Life 

Technologies, Carlsbad, CA). For differentiation experiments, 1x104cells/cm2 were plated 

in MW12 plates. For experiments with conditioned media, 500 μl of Shh containing 

medium + 500 μl of HIP-Δ22 or eGFP conditioned medium was added. Control cells 

received eGFP medium alone. Conditioned media were changed each 2 days; 6 days later 

cells were stained for AP expression or collected for AP assay. For siRNA experiments, 

C3H10T/2 were transfected with pShh using Fugene 6 reagent (Roche, Basel, 

Switzerland). 24h later and every 2 days, cells were transfected with 5pmol siRNA#2 or 

control siRNA using lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA) as 

suggested by manufacturer. 6 days later cells were stained for AP expression or collected 
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for AP assay; AP staining was performed using Leukocyte alkaline phosphatase kit 

(Sigma-Aldrich, St. Louis, MO) as suggested from manufacturer. For AP assay cells were 

resuspended in a buffer containing 50mM TrisHCl pH 7.5 and 0.1% triton; cells were then 

lysed by 3 cycles of freeze-thaw in dry ice/37°C. Lysates were centrifuged at 14000 rpm 

for 15’, supernatant were collected, protein concentration was determined with Bio-Rad 

Protein Assay Reagent kit (Bio-Rad, Munchen, Germany) and 10ug of each sample was 

used to measure AP levels with the SEAP reporter gene kit (Roche, Basel, Switzerland) as 

suggested by manufacturer. 

 

Anti-myc co-immunoprecipitation 

 

For anti-myc co-immunoprecipitation, conditioned media from pShh or pAAV2.1-CMV-

HIP-Δ22-myc transfected 293 cells were mixed 1:1; as control, 1ml of medium from eGFP 

transfected cells was used. 1.5 μg of anti-myc antibodies (Clontech, Palo Alto, CA) were 

added to each sample and incubated at 4°C over night (ON); The day after, protein A-

sepharose (25ul, Sigma-Aldrich, St. Louis, MO) was added and samples incubated at 4°C 

for 4h. Finally samples were centrifuged at 3000 rpm for 5’, pellets were washed 3 times 

with wash buffer (25mM Hepes pH 7.6, 0.1mM EDTA, 100mM NaCl, 0.1% NP40), 

resuspended in 50 μl of sample buffer (4% SDS, 20% Glycerol, 10% β-Mercaptoethanol, 

0.125M TrisHcl pH 6.8, 0.004% Bromophenol Blue) and subjected to Western blot 

analysis with anti-Shh or anti-myc antibodies. 

 

 

Western blot analysis 

 

For Western blot analysis, muscles and livers from AAV injected CD1 mice were 

omogenized and lysed on ice for 30 min in lysis buffer (40 mM Tris ph7.4, 4mM EDTA, 
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5mM MgCl2, 1% Triton X100, 100 μM Na3VO4, 1 mM PMSF, 10 μg/ml Leupeptin-

Aprotinin-Pepstatin A-LAP-protease inhibitors, 150mM NaCl). Samples were spun at 

14000 rpm for 15 min, the supernatant removed and stored at –80°C. ROP retinae were 

collected al P13 for Ptch1 western blot and at P13 and P14 for Shh Western blot. For anti-

Shh and Ptch1 Western blot, retinae were disgregated in lysis buffer by pipetting and 

incubated on ice for 30’; samples were spun at 14000 rpm for 15’ and supernatant was 

collected. Protein concentrations from tissue and cell lysates were determined by Bio-Rad 

Protein Assay Reagent kit (Bio-Rad, Munchen, Germany). Proteins from total lysates or 

media from transfected cells were submitted to SDS-PAGE on 7 % polyacrylamide gels 

for HA, PY, and IRS-1 protein analysis; for Ptch1, HIP-Δ22-myc and HIP-Δ-22 analysis, 

10% gels were used while for Shh Western blot, proteins were separated on a 12% gel. 

After separation, proteins were transferred to a PVDF membrane (Millipore, Billerica, 

MA). The filter was incubated with anti-HA (1:2000 dilution) (Sigma-Aldrich, St. Louis, 

MO), anti-phosphotyrosine (PY, 1:1000 dilution) (Santa Cruz Biotechnology, Santa Cruz, 

CA) anti-IRS-1 (1:1000 dilution) (Santa Cruz Biotechnology), anti-actin (1:1000 dilution) 

(Santa Cruz Biotechnology), anti-Shh (1:1000 dilution, Santa Cruz Biotechnology), anti-

Ptch1 (1:1000 dilution, Santa Cruz Biotechnology), anti-myc (upstate, 1:1000 dilution), 

anti-HIP (1:1000 dilution, R&D, Minneapolis, MN) antibodies. Mouse anti-PY  and anti-

HIP antibodies were detected with HRP-conjugated anti-mouse antibodies (Sigma, St. 

Louis, MO); rabbit anti-HA, anti-IRS-1, anti Shh and anti-Ptch1 were detected with HRP-

conjugated-anti-rabbit antibodies (Amersham, Piscataway, NJ); Goat anti-actin were 

detected with HRP-conjugated-anti-goat antibodies (Santa Cruz Biotechnology). Finally 

the protein-antibodies complexes were revealed by ECL-Pico chemioluminescent reaction 

(Celbio, Milan, Italy) according to manufacturer’s instructions. 
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Localization of HIP and BRDU labeled siRNA in the eye 

 

AAV2/1-CMV-HIP-Δ22 injected eyes and control eyes receiving AAV2/1-CMV-eGFP 

vectors were collected at P13, fixed in PFA 4% for 12h, embedded in OCT and 

cryosectioned; sections were then permeabilized in PBS containing 0.1% triton (Carlo 

Erba, Milan, Italy), blocked for 1h at RT in PBS, 0.1% Triton, 10% FBS (Gibco, 

Invitrogen Life Technologies, Carlsbad, CA), 0.1% BSA (Sigma-Aldrich, St. Louis, MO) 

and incubated ON with anti-HIP antibody (R&D, Minneapolis, MN) diluted 1:100 in 

blocking solution. The day after, sections were washed in PBS 0.1% Triton and incubated 

with Cy3-labeled anti-rat secondary antibody (Molecular Probes, Invitrogen Life 

Technologies, Carlsbad, CA). Slides were then washed and mounted with vectashield 

(Vinci Biochem, Firenze, Italy). HIP signal was observed under a fluorescence microscope 

(Zeiss, Milano, Italy).  

BrdU labelled siRNA#2 were injected subconjunctivally in P9 mice (5 μg of siRNA/eye); 

injected eyes or control uninjected eyes were collected 1 and 2 days after siRNA injection, 

fixed in 4% PFA, embedded in OCT, sectioned and stained for BrdU as follows: sections 

were post-fixed in PFA 4% for 15’ and washed in PBS. Endogenous peroxidase were 

inactivated by incubating sections in 0.5% H2O2 in EtOH for 15’; After PBS washing, 

sections were denaturated in 2N HCl, 0.5% Triton at 37°C for 15’; NaCl was neutralized in 

0.1% Sodium Tetraborate for 30’ at RT; sections were then incubated in blocking buffer 

(PBS, 10% FBS, 0.1% Triton,) for 30’ and ON with anti-BrdU antibody (diluted 1:100 in 

blocking solution, Sigma-Aldrich, St. Louis, MO). Tha day after sections were washed in 

blocking buffer and incubated with anti-mouse biotinilated secondary antibody (1:1000 in 

blocking buffer, Vector laboratory, CA, USA) for 1h at RT. The reaction was developed 

using the Vectastained Elite ABC-Peroxidase Kit (Vector laboratory, CA, USA) followed 

by 30min DAB staining (Vector laboratory, CA, USA); finally, sections were mounted 

with Eukitt (Kaltek, Padova, Italy). 
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RNA Extraction, Semiquantitative RT-PCR and Quantitative Real-Time PCR 

 

ROP retinae at P13 (one day after 75% oxygen exposure) were harvested for RNA 

extraction. CNV retinae were harvested three days after laser burning and pulled for RNA 

extraction. Total and polyA+ RNA were isolated from retinae of CNV and ROP animals 

treated or not with cyclopamine, and of wild-type age-matched control mice using TRIzol 

Reagent (Invitrogen Life Technologies, Carlsbad, CA) and Oligotex mRNA Purification 

Kit (Qiagen, Milano, Italy). For semi quantitative RT-PCR analysis cDNA was synthesized 

from 100ng of each mRNA using the Omniscript kit (Quiagen, Milano, Italy). For Shh the 

primers used were: Shh-F:GACAGCGCGGGGACAGCTCAC and Shh–

R:CCGCTGGCCCTACTAGGGTCTTC. The reaction was carried in 20ul final volume, 

with 1.5mM MgCl2 and 1% DMSO. The PCR cycles were: 1min at 94°C, 1 min at 60°C, 1 

min at 72°C for 29 times. For VEGF the primers used were: VEGF–F: 

GCACTGGACCCTGGCTTTAC and VEGF–R:GCACTCCAGGGCTTCATCGT. The 

reaction was carried in 20 ul final volume, with 1.5mM MgCl2. The PCR cycles were: 1 

min at 94°C, 1 min at 58°C, 1 min at 72°C for 27 times. For Ptch1 the primers used were: 

Ptch1-F: CGCTCTGGAGCAGATTTCC; Ptch1–R: CCCACAACCAAAAACTTGCC. 

The reaction was carried in 20 ul final volume, 1.5mM MgCl2. The PCR cycles were: 1 

min at 94°C, 1 min at 60°C, 1 min at 72°C for 28 times. For Actin the primers used were: 

Actβ-F: AGATGACCCAGATCATGTTTGAGACCTTC and Actβ–R: 

TTGCGCTCGGAGGAGCAATGATCTTGATC. The reaction was carried in 20 ul final 

volume with 1.5mM MgCl2. The PCR cycles were: 1 min at 94°C, 1 min at 60°C, 1 min at 

72°C for 28 times. The measurement of the band intensities was performed with the 

Quantity One 4.1.1 software included in the Gel Doc 2000 gel documentation system (Bio-

Rad, Milano, Italy). Real-time PCR analysis was performed on mRNA extracted from the 

retinae of the above mentioned mice in order to analyze the Shh, Ptch1 and VEGF 
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transcripts. All primers and probes were synthesized using the Applied Biosystems 

“Assays-bydesign” software and indeed met the established criteria for TaqMan probes 

(Applied Biosystems, Foster City, CA). Each probe was labeled with FAM at the 5’ end 

and MGB at the 3’ end. All reactions (30 ul) were performed with 100 to 200 ng of 

mRNA, 15 ul of Master Mix Reagent Kit (Applied Biosystems, Foster City, CA), 120 

pmol of TaqMan probe, and 10 uM of each specific primer. The following amplification 

conditions were used: 10 min at 25°C, 30 min at 48°C, and 10 min at 95°C. These 

conditions were followed by 40 cycles of denaturation for 15 s at 95°C and annealing for 1 

min at 60°C. The amplification was performed using the ABI Prism 7000HT sequence 

detection system (Applied Biosystems, Foster City, CA) equipped with a 96-well thermal 

cycler. Data were collected and analyzed with the Sequence Detector software (version 

2.0; Applied Biosystems, Foster City, CA). All the reactions were performed in triplicate 

and were normalized against Gapdh detected with specific primers/probes (Applied 

Biosystems, Foster City, CA) labeled with VIC at the 5’ end and with TAMRA at the 3’ 

end. 

 

In situ hybridization 

 

For in situ hybridization, eyes from P13 ROP mice were fixed in 4% PFA, embedded in 

OCT and cryosectioned at 12-14 μm. Sections from different eyes were examined for each 

probe, images shown are representative of that seen all eyes examined (see results section).  

Ptch1 probes were sinthetized by a pBSII/KS+ plasmid (Invitrogen Life Technologies, 

Carlsbad, CA) containing the last 841 bp of murine Ptch1 coding sequence. VEGF probes 

were produced using a pCRII Topo plasmid (Invitrogen Life Technologies, Carlsbad, CA) 

containing the sequence from 185 to 572 bp of murine VEGF. Antisense and sense 

digoxygenin (DIG)-labeled riboprobes were generated as follows: plasmids were linearized 

and sense probes were synthesized using T7 RNA polymerase (Roche, Basel, Switzerland) 
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for Ptch1 probe and SP6 RNA polymerase (Roche, Basel, Switzerland) for VEGF probe 

(Roche, Basel, Switzerland); Antisense probes were produced using T3 RNA polymerase 

(Roche, Basel, Switzerland) for Ptch1 and T7 RNA polymerase for VEGF (Roche, Basel, 

Switzerland). Probe synthesis was carried out following manufactures guidelines. Slides 

were permeabilized with Ripa buffer (150mM NaCl, 1% NP40, 0.5% Na Deoxicolate, 

0.1% SDS, 1mM EDTA, 50mM TrisHCl pH 8), incubated ON in hybridizations solution 

(50% Formammide, 5x SSC, 5x denhards, 500μg/ml salmon sperm DNA, 250 μg/ml Yeast 

RNA)   containing probes (300 ng/ml) at 70°C and the signal was detected with AP-labeled 

anti-DIG antibodies (Roche, Basel, Switzerland) as suggested my manufacturer. Finally 

signal was developed by BCIP/NBT colorimetric AP substrate (Sigma-Aldrich, St. Louis, 

MO). 

 

Histology 

 

Eyes from ROP mice sacrificed at P17-19, were enucleated and fixed in 4% PFA. Eyes 

were embedded in paraffin, sectioned at 6 μm and stained with periodic-acid-Schiff and 

hematoxylin. The number of retinal vascular endothelial cell nuclei on the vitreous surface 

of the internal limiting membrane was counted. Six to eight sections/eye were counted, and 

the counts were averaged. Some eyes in which CNV was induced were enucleated 14 days 

after laser injury. Following overnight fixation in 10% neutral buffered formalin they were 

processed and embedded in paraffin. Serial 6μm sections were cut and stained with 

hematoxylin and eosin and examined using light microscopy. 

 

Statistical analysis 

 

Statistical analysis of differences between groups was performed using the paired 

Student’s t-test using the microsoft excel t-test function. Significance (p≤0.05) is shown as 
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single asterisks. Where p is ≤0.01 two asterisks have been used as described in the legend 

to the figures. For the CNV mice groups, Shapiro-Wilk and D’agostino and Pearson 

omnibus normality tests confirmed the non-normal distribution of CNV area data. A non-

parametric test for unpaired samples (Mann Whitney U test) was therefore used to analyze 

significance of differences (P < 0.05). 
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RESULTS 

 

Gene transfer for pharmacological regulation of the insulin receptor signalling 

 

Generation of a pharmacologically regulated chimeric insulin receptor 

To obtain pharmacological activation of the insulin receptor signalling in a desired cell or 

tissue, we used a recently developed system allowing to pharmacologically regulate 

protein–protein interactions, such as the homodimerization of growth factor receptors with 

tyrosine kinase activity [108,130,131,132]. This system is based on the ability of a small, 

orally bioavailable molecule dimerizer drug, AP20187, to bind to a specific protein module 

contained in the cytoplasmic FKBP12 protein. Any cellular process activated by protein–

protein interaction (such as IR activation) can in principle be brought under dimerizer 

control, by fusing the protein of interest (i.e., the intracellular domain of IR) to the 

FKBP12 binding domain recognized by the dimerizer. Addition of the dimerizer then 

cross-links the chimeric signalling protein, thus activating those pathways induced by the 

protein homodimerization (Fig. 7). 

We generated a chimeric insulin receptor (LFv2IRE) protein responsive to AP20187 by 

fusing the cytoplasmic domain of the human insulin receptor (IR) to two AP20187-binding 

domains (Fv) and to one C-terminal epitope tag (E). The chimeric protein was fused to an 

N-terminal sequence including the low affinity nerve growth factor receptor (LNGFR) 

extracellular and transmembrane domains (L) to localize it to the plasma membrane (Fig. 

7).  

 

 

 

 

 



 

 

Figure 7. Schematic representation of the AP20187–LFv2IRE system.  We constructed a chimeric 

receptor containing the intracellular domain of the insulin receptor (IRβ), including its tyrosine kinase 

domain, fused to two dimerization domains (Fv) which are binding domains for the small dimerizer drug 

AP20187. Addition of AP20187 results in dimerization of the chimeric receptor and induction of intracellular 

signalling. HA: hemagglutinin tag, L: transmembrane domain of the low affinity nerve growth factor 

receptor. 

 

 

We already reported that the AP20187-LFv2IRE system is able to activate the insulin 

receptor signalling and to induce insulin-like biological effects in vitro, in hepatocytes and 

fibroblasts transduced with AAV vectors (see attached PDF [130]).  AP20187 

administration in these cells resulted in time- and dose-dependent activation of both the 

LFv2IRE receptor and the IR substrate IRS-1, leading to the activation of glycogen 

synthesis (see attached PDF [130]). Then we used AAV vectors to induce LFv2IRE 

expression in liver and muscle of normal and diabetic mice to evaluate the AP20187-

dependent activation of the chimeric receptor and the induction of the insulin signalling 

and actions in two of the main hormone target tissues. We used nonobese diabetic (NOD) 
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mice which spontaneously develop autoimmune insulin-dependent DM [121] and 

therefore, are widely used animal models of type 1 DM. 

 

AP20187-dependent LFv2IRE activation in liver and muscle transduced with AAV 

vectors 

To assess the ability of the AP20187 dimerizer to activate LFv2IRE in vivo, we transduced 

liver and muscle with AAV vectors encoding LFv2IRE under the control of liver or muscle 

specific promoters (the thyroxin binding globulin-TBG and muscle creatine kinase-MCK 

promoters, respectively). AAV2/1 and 2/8 vectors were used to transduce muscle and liver, 

respectively. The LFv2IRE receptor contains an HA tag after the IR intracellular domain 

allowing its recognition with specific anti-HA antibodies (Fig. 7). The dose of AAV 

vectors administered systemically in this and the following experiments (5x1011 genome 

copies, GC/mouse) is optimal for both liver and muscle transduction [71,133]. We injected 

wild type CD1 mice systemically with either AAV2/8-TBG-LFv2IRE vectors to transduce 

the liver or saline solution. Four weeks later mice were stimulated or not with an 

intraperitoneal AP20187 injection (10 mg/kg, as suggested elsewhere: www.ariad.com) 

and livers were collected at different time points after drug administration. We then 

evaluated AP20187-dependent LFv2IRE tyrosine phosphorylation (Fig. 8). Livers from 

AAV injected animals expressed similar levels of LFv2IRE as shown by Western blot with 

anti-HA antibodies while no signal was detected in the lane corresponding to livers from 

animals receiving saline (Fig. 8, middle panel). AP20187-dependent LFv2IRE tyrosine 

phosphorylation was evident two hours after drug administration, peaked 6 hours later and 

returned to baseline after 24 hours (Fig. 8, upper panel). Low LFv2IRE basal 

phosphorylation was detected in livers from mice receiving AAV2/8-TBG-LFv2IRE but 

not stimulated with AP20187 suggesting minimal leakiness of the system (Fig. 8, upper 

panel, first lane).  



 

 

Figure 8. Protein tyrosine phosphorylation in AAV-transduced livers upon AP20187 administration: 

time dependency of protein phosphorylation. Western blot analysis of lysates from livers of CD1 mice 

injected with AAV2/8-TBG-LFv2IRE, stimulated with AP20187 and collected at different times after drug 

administration (reported on the top of the figure). Proteins from total lysates were blotted with anti-P-tyrosine 

(αPY, upper panel), anti-HA (αΗΑ, middle panel) or anti IRS-1 (αIRS-1, lower panel) antibodies. Molecular 

masses (kDa) are indicated on the left. 

 

 

Western blot analysis with anti-HA antibodies evidenced a double LFv2IRE band (Fig. 8, 

middle panel). The lower band may represent an LFv2IRE degradation product that does 

not include some tyrosine-phosphorylated residues present in the band of higher molecular 

weight. The 180 kDa band present in the upper panel of figure 8 corresponds to the main 

substrate of the IR tyrosine kinase, the insulin receptor substrate-1 (IRS-1) protein (Fig. 8, 

lower panel). IRS-1 levels of tyrosine phosphorylation follow those of LFv2IRE 

suggesting that it is induced upon LFv2IRE activation. Basal levels of IRS-1 tyrosine 

phosphorylation from endogenous insulin is evident in livers from saline injected mice. 

Since the levels of basal IRS-1 tyrosine phosphorylation are similar in livers from saline- 

and AAV2/8-TBG-LFv2IRE-injected mice that did not receive AP20187, the basal 

LFv2IRE tyrosine phosphorylation levels observed (Fig.8 upper panel) do not seem to 

induce activation of the IR signaling pathway in transduced hepatocytes.  
 49
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We then evaluated AP20187-dependent activation of LFv2IRE in muscle following 

systemic administration of AAV2/1-MCK-LFv2IRE vectors or saline. Four weeks after 

AAV systemic administration mice were treated or not with AP20187 (10 mg/kg). Skeletal 

muscles (gastrocnemi and quadriceps) were collected at different time points after drug 

administration (Fig. 9). We performed Western blot analysis of LFv2IRE expression levels 

on right and left gastrocnemi and quadriceps from AAV injected mice (Fig. 9A, upper 

panel). We detected higher LFv2IRE expression levels in gastrocnemi than quadriceps 

muscles (Fig. 9A, upper panel). The loading control performed with anti-actin antibodies 

showed similar amounts of total protein in all lanes (Fig. 9A, lower panel).  

Therefore, we selected right gastrocnemi to evaluate AP20187-dependent activation of 

LFv2IRE following AAV2/1 systemic administration (Fig. 9B). We detected a tyrosine 

phosphorylated doublet of about 140 kDa (Fig. 9B, upper panel) corresponding to the 

LFv2IRE double band recognized by anti-HA antibodies (Fig. 9B, lower panel) in AAV 

transduced muscles. Since the tyrosine phosphorylated band of lower molecular weight is 

also present in uninjected unstimulated muscles (Fig. 9B, upper panel, first lane), we only 

considered the upper band recognized by the anti-PY antibodies when investigating the 

timing of LFv2IRE activation in muscle. LFv2IRE tyrosine phosphorylation becomes 

evident 30 minutes after AP20187 administration, peaks after 6 hours and is still present 24 

hours later (Fig. 9B, upper panel). Western blot analysis with anti-HA antibodies shows 

that LFv2IRE is present in AAV transduced but not untransduced muscles (Fig. 9B, lower 

panel). LFv2IRE levels are similar among all lanes with the exception of the second lane, 

corresponding to muscles from animals treated with AAV2/1-MCK-LFv2IRE but not 

stimulated with AP20187, where a lower amount of receptor is present. This weak 

difference in LFv2IRE levels, however, cannot account for the almost absent LFv2IRE 

tyrosine phosphorylation (Fig. 9B, upper panel, second lane). The 180 kDa band 

corresponding to IRS-1 (Fig. 9C, lower panel) has tyrosine phosphorylation levels that 



increase 30 minutes after AP20187 administration, remain high after 120 minutes and then 

decrease after 6 hours (Fig. 9C, upper panel).  

 

 

Figure 9. LFv2IRE expression and protein tyrosine phosphorylation in AAV-transduced skeletal 

muscles. A) Western blot analysis of lysates from different muscles of CD1 mice injected with AAV2/1-

MCK-LFv2IRE. Proteins from total lysates were blotted with anti-HA (αΗΑ) antibodies. (rG: right 

gastrocnemious, lG: left gastrocnemious, rQ: right quadricep lQ: left quadricep). B) LFv2IRE tyrosine 

phosphorylation in AAV-transduced skeletal muscle upon AP20187 administration: time dependency of 

protein phosphorylation. Western blot analysis of lysates from right gastrocnemi of CD1 mice injected with 

AAV2/1-MCK-LFv2IRE and stimulated with AP20187 collected at different times after drug administration 

(reported on the top of the figure). Proteins from total tissue lysates were blotted with anti-P-tyrosine (αPY, 

upper panel) or anti-HA (αΗΑ, lower panel) antibodies. C) IRS-1 tyrosine phosphorylation in AAV-

transduced skeletal muscle upon AP20187 administration: time dependency of protein phosphorylation. 

Western blot analysis of lysates from right gastrocnemi of CD1 mice injected with AAV2/1-MCK-LFv2IRE 

and stimulated with AP20187 collected at different times after drug administration (reported on the top of the 

figure). Proteins from total tissue lysates were blotted with anti-P-tyrosine (αPY, upper panel) or anti-IRS-1 

(αIRS-1, lower panel) antibodies. Molecular masses (kDa) are indicated on the left of each panel. 
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This suggests that AP20187 administration triggers LFv2IRE activation which 

phosphorylates IRS-1 upon tyrosine residues. The IRS-1 activation in muscle occurs before 

the levels of LFv2IRE phosphorylation peacks and is rapidly reverted before the receptor 

phosphorylation returns to baseline. These results confirm that AAV2/1 and AAV2/8 

vectors are able to strongly transduce murine muscle and liver with LFv2IRE. In addition, 

our data indicate that AP20187 induces LFv2IRE transphosphorylation in both tissues 

transduced with AAV vectors. This occurs rapidly after drug administration and is reverted 

to baseline levels 24 hours after AP20187 injection in liver but not in muscle, suggesting a 

possible difference in drug clearance from the two tissues. The timing of LFv2IRE 

activation in vivo is in accordance with AP20187 half-life that is 8 hours in murine serum 

(V. Rivera, ARIAD Pharmaceuticals, personal communication). The activated receptor 

induces the IR signaling in both transduced tissues since its activation results in IRS-1 

phosphorylation with kinetics identical to LFv2IRE in liver and similar in muscle. 

However, the kinetics of LFv2IRE activation upon AP20187 administration do not 

perfectly mirror those of the physiological insulin-mediated IR activation which occurs 

few minutes after meal assumptions and returns to baseline in less than two hours [18]. It is 

possible that the development of AP derivatives with half-life and biodistribution different 

from AP20187 may overcome this delay. 

 

AP20187 induces insulin-like actions in muscle and liver of NOD mice transduced with 

AAV vectors 

To investigate the ability of LFv2IRE to induce insulin-like actions in vivo, we used a 

model in which there is no endogenous insulin signaling. IR knockout mice die in the first 

days of life [134]; in other models of type 2 DM, i.e. ob/ob and db/db mice [135], the cause 

of insulin resistance is unclear [136,137,138,139]. Therefore, we decided to use NOD 

mice, a murine model of type 1 DM [121]. We induced LFv2IRE expression in muscle and 
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liver of adult diabetic NOD mice through systemic injection of a mix of the AAV2/1-

MCK-LFv2IRE and AAV2/8-TBG-LFv2IRE vectors (5x1011GC of each vector/mouse). A 

control group of animals received the same dose of the AAV2/8-TBG-LacZ and AAV2/1-

MCK-eGFP vector mix. One month later we evaluated the AP20187-dependent increase in 

glycogen synthesis and circulating glucose uptake as index of insulin-like signalling in the 

transduced tissues. We selected liver to evaluate glycogen synthesis. Since glucose uptake 

in liver is not insulin-dependent [18], we used muscle to evaluate the induction of glucose 

uptake. Fig. 10 shows that liver glycogen levels in mice expressing LFv2IRE and 

stimulated with AP20187 are significantly higher than in unstimulated mice in which 

glycogen levels are similar to those measured in control mice.  

In addition, the effect of AP20187 in mice expressing LFv2IRE is almost superimposable 

to that of insulin treatment (0.75 U/kg body weight) in NOD mice (Fig. 10). This was 35% 

lower, however, compared to the glycogen content measured in insulin-treated wild-type 

controls. Our results demonstrate that AP20187 administration induces glycogen synthesis 

in liver expressing LFv2IRE similarly to insulin [18] and confirms that the basal levels of 

LFv2IRE tyrosine phosphorylation observed in the absence of AP20187 do not impact on 

this aspect of liver glucose metabolism. 

 

 



 

Figure 10. Hepatic glycogen content in AAV-injected NOD mice. NOD mice were injected with AAV2/8-

TBG-LFv2IRE and AAV2/1-MCK-LFv2IRE vectors (black and grey bars) or with control AAV2/8-TBG-

LacZ and AAV2/1-MCK-eGFP vectors (white bar) and stimulated (black bar) or not (grey and white bars) 

with AP20187. After stimulation, livers were collected and hepatic glycogen content was evaluated. The 

number of mice for group (n) is indicated under each bar. Results are reported in micrograms per milligram 

of protein with SE. *=p< 0.05.  Vertical striped bars: wild-type mice stimulated with insulin. Horizontal 

striped bars: NOD mice stimulated with insulin. 

 

 

The glucose utilization index was measured in the skeletal muscle (quadriceps and 

gastrocnemi) of the same mice used in Fig. 10 (injected with the AAV2/1-MCK-LFv2IRE 

and AAV2/8-TBG-LFv2IRE mix) which were stimulated or not with AP20187 (Fig. 11). 

The index was significantly increased in both gastrocnemi and right quadriceps of AAV2/1 

injected mice upon AP20187 administration. The average induction of muscle glucose 

uptake in all muscles analyzed is reported in Fig. 11 (4.6 fold-induction in AP20187-

stimulated mice compared to unstimulated AAV injected mice) and is comparable to that 

obtained in insulin-stimulated NOD mice.  
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Figure 11. Index of glucose utilization by NOD skeletal muscle transduced with AAV2/1.  

Muscle glucose uptake (average of gastrocnemious and quadriceps) in AAV2/8-TBG-LFv2IRE and 

AAV2/1-MCK-LFv2IRE injected mice stimulated (black bars) or not (grey bars) with AP20187. Vertical 

striped bars: wild-type mice stimulated with insulin, n=9 mice. Horizontal striped bars: NOD mice stimulated 

with insulin, n=5 mice. Results are reported in pmol/mg/min with SE. N= 5 mice in the AP20187-stimulated 

group and 3 mice in the unstimulated group. *=p≤ 0.05, **=p≤ 0.01.  

 

 

This result demonstrates that, similarly to liver, AP20187-mediated LFv2IRE activation 

mimics insulin action in muscle of NOD mice. Again, 35% higher values of glucose 

utilization index were found in insulin-stimulated wild-type mice.  

We finally evaluated if AP20187-induced insulin-like signalling results in normalization of 

blood glucose levels in NOD mice transduced with both AAV2/1-MCK-LFv2IRE and 

AAV2/8-TBG-LFv2IRE. Blood glucose levels were monitored for 24 hours after AP20187 

administration and did not decrease neither in AP20187-treated nor in untreated AAV 

transduced diabetic mice (data not shown). One possible explanation for the inability of the 

AP20187/LFv2IRE system to impact on blood glucose levels is that transduction with 

LFv2IRE may be required in tissues other than muscle and liver. In this regard, IR ablation 

in brown adipose tissue [140] or adipose-specific GLUT-4 ablation [141] result in impaired 

glucose tolerance. In addition, since restoration of IR expression in liver, brain and 
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pancreatic β-cells of IR ko mice is sufficient to rescue the lethality and prevent 

hyperglycemia in this model [142,143], mechanisms other than the insulin-dependent 

glucose uptake in canonical insulin target tissues could contribute to the regulation of 

circulating glucose levels. Despite the LFv2IRE ability to induce IRS-1 activation, 

resulting in insulin-like biological actions in both muscle and liver, we cannot exclude that 

the LFv2IRE-AP20187 system does not activate some IR targets downstream of IRS-1 or 

has a different turn-over/half life compared to the endogenous insulin receptor, therefore 

failing to normalize glucose levels in diabetic models. Alternatively, LFv2IRE tyrosine 

phosphorylation levels or timing different from the endogenous IR (as we show in Fig. 8 

and 9) could be responsible for the absence of impact on blood glucose levels.  

 

Evaluation of the involvement of the Sonic Hedgehog pathway in ocular neovascular 

diseases 

 

Sonic Hedgehog pathway is involved in physiological and pathological ocular vessel 

development 

To assess the potential role of the Shh pathway during the development of the 

physiological retinal vasculature, wild type C57BL/6J mice received daily systemic 

administration of the selective Shh pathway inhibitor cyclopamine between post-natal day 

(p) 1 and p4, a time point at which retinal vascular network is developing. At p5 we 

evaluated the extent and morphology of the superficial retinal vascular layer by 

immunofluorescence of retinal whole-mounts stained for a vascular endothelial marker 

(Fig. 12). Despite a similar development in the extension of the neural retina, a reduced 

vascular area was observed in cyclopamine treated animals when compared with vehicle-

treated controls (Fig. 12A). The extension of retinal vasculature was measured confirming 

a significant reduction of the area of vessels development (Fig 12B), thus suggesting that 

the Shh pathway is an important component of normal retinal vasculogenesis. 



 

 

 

Figure 12. Cyclopamine inhibits the development of retinal vasculature in neonatal mice. Panel A. 

Immunofluorescence analysis with anti-collagen IV antibody of P5 retinal flat mounts from animals treated 

with daily subcutaneous injections of either cyclopamine (50 mg/kg, from P1 to P4) or vehicle alone. Panel 

B. The retinal vascular area in pups was measured (n=11 retinae/group). A significant (*=p-value < 0.034) 

decrease in the area of the superficial vascular layer is evident in animals receiving cyclopamine. CNTR: 

control animals receiving vehicle; CYCL: animals receiving cyclopamine. 

 

Next, we investigated the involvement of the Shh pathway in pathological vessels growth 

in murine models of retinal and choroidal neovascularization, the ROP and laser induced 

CNV mice. We analyzed retinal expression levels of Shh and of its transcriptional target 

Ptch1, as an index of Shh pathway activation, by reverse transcription PCR. In addition we 

assessed VEGF expression levels as well since it is reported to be induced in these 

conditions. Upregulation of Shh and Ptch1 expression, similarly to VEGF, was observed in 

both ROP and CNV retinae as compared with age-matched wild type controls (Fig.13A). 

The intensity of the bands corresponding to each gene in panel A was measured and 

normalized on the corresponding actin bands to assess the fold increase in expression in 

neovascular compared with normal retinae. This showed an increase in retinal gene 

expression in neovascular compared to normal eyes varying from 1.28 folds in the case of 

the Ptch1 transcript in the ROP retinae to 2.5 fold in the case of Shh in the CNV retinae 

(Fig. 13B). In situ hybridization was used to assess the tissue distribution of Ptch1 in the 
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ROP retinas. Ptch1 transcript was upregulated in the inner nuclear layer of the ROP retinae 

with a gradient higher in the central than in the peripheral retina (Fig. 13C).  

 

Figure 13. Upregulation of the Shh pathway in the retina of animal models with neovascular disease. 

Panel A. RNA from 6 animals per group was isolated from whole retinae, retrotranscribed and PCR-

amplified with specific primers under semi-quantitative conditions. Each lane is representative of 3 animals 

(6 retinae). Bands corresponding to Shh, Ptch1 and VEGF are more abundant in the samples from the CNV 

and ROP than from the control retinae. Panel B. Fold-increase of Shh, Ptch1 and VEGF expression in the 

ROP (black bars) and CNV (white bars) relative to control samples. The intensity of the bands in panel A 

was quantified, the values from the Shh, Ptch1 and VEGF bands normalized by those from the Actin bands 

and compared between the ROP or CNV groups and control retinae. Panel C. In situ hybridization of Ptch1 

on P13 retinae in normal control (upper panel) and ROP retina (lower panel) reveals upregulation of the 

Ptch1 transcript (blue signal) in the inner retina following hypoxia. Each picture is representative of two eyes. 

Panel D. Western blot analysis for Ptch1 protein in P13 wild type (first three lanes) and ROP (last three 

lanes) retinae shows induction of Ptch1 protein in neovascular eyes. 
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In addition an increase in the Ptch1 protein was observed in the ROP retinae when 

compared with normal controls analyzed by Western blot (Fig. 13D). Therefore, 

expression of Shh and of its transcriptional target Ptch1 is upregulated in murine ischemia-

induced (ROP) or laser-induced (CNV) ocular neovascularization, suggesting an 

involvement of the Shh pathway in ocular neovascular processes. 

 

Systemic pharmacological inhibition of Shh pathway reduces retinal and choroidal 

neovascularization 

To confirm that Shh upregulation plays a role in ocular neovascularization, we inhibited 

Shh pathway in ROP and CNV mice by systemic (subcutaneous) administration of the Shh 

inhibitor cyclopamine. We confirmed the inhibition of the Shh pathway after cyclopamine 

administration in the ROP retina by measuring the mRNA levels of Ptch1 by Real Time 

PCR. VEGF expression was assessed as well. Both transcripts were up-regulated in ROP 

compared to control retinae; The levels of Ptch1 (Fig 14A) and, to a lesser extent, of VEGF 

(Fig. 14B) were lower in the cyclopamine-treated than untreated eyes (Fig. 14) confirming 

the inhibition of the Shh pathway by cyclopamine. 

 

 

 

 

 

 



 

Figure 14. Cyclopamine inhibits the Shh pathway in the ROP retina. Real-Time PCR analysis of Ptch1 

(panel A) and VEGF (panel B) mRNA in the control (white bars) or ROP (P13) retina of animals (n=18 

retinae/group, pooled in 3 samples of 6 retinae each) treated with subcutaneous cyclopamine (50 mg/kg at 

P12) (black bars) or vehicle only (grey bars). Standard errors are depicted. CNTR: control; CYCL: 

cyclopamine. Ptch1 and VEGF expression is reduced in the retina of ROP mice receiving cyclopamine. 

 

We then assessed the impact of cyclopamine-mediated Shh pathway inhibition on retinal 

neovascularization; systemic administration of cyclopamine substantially inhibited 

neovascularization in the ROP model as assessed by retinal angiography (Fig. 15A), 

showing less neovascular tufts in treated compared to control ROP retinae. Histological 

analysis of ROP retinal sections showed reduction of endothelial cells and capillaries over 

the inner limiting membrane in ROP animals treated with cyclopamine (Fig. 15B). We 

quantified inner retinal neovascularization by counting endothelial cell nuclei located 

internal to the inner limiting membrane (ILM) in serial, paraffin sections. The number of 

endothelial cell nuclei was significantly lower in eyes from ROP animals treated with 

cyclopamine than those injected with vehicle alone (P <0.001) (Fig. 15C). These results 

demonstrate that activation of the Shh pathway plays a crucial role to establish hypoxia-

induced retinal neovascularization in mice.  
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Figure 15. Cyclopamine inhibits murine hypoxia-induced (ROP) retinal neovascularization. 

Angiographic (panel A) and histological (panel B) photographs of ROP retinae at P17 from animals treated 

with daily (P13 to P16) subcutaneous injections of cyclopamine (50 mg/kg) (right) or vehicle alone (left). 

Neovascular areas after in vivo perfusion with fluorescein isothiocyanate dextran (FITC-dextran) are evident 

as tufts and effusions (indicated by arrowheads) in the ROP retinae and substantially reduced or absent in the 

ROP retinae treated with cyclopamine (n=13/group). Panel B. PAS staining of retinal sections confirmed that 

pathological capillaries internal to the inner limiting membrane in the ROP retinae are importantly reduced 

when ROP animals are administered with cyclopamine. Panel C. The number of vascular nuclei extending 

from the internal limiting membrane into the vitreous was counted in serial sections on either side of the optic 

nerve. Mean and standard error values for each group are depicted. *= P values≤ 0.001. RPE, retinal pigment 

epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cells layer; arrowheads, 

neovascular capillaries. CNTR: control; CYCL: cyclopamine. 

 

 

 

Systemic administration of cyclopamine also inhibited laser-induced CNV in adult mice 

(Fig. 16). Bruch’s membrane was ruptured in both eyes of adult mice using a high powered 

diode laser. The subsequent formation of subretinal neovascularization arising from the 

choriocapillaris, is maximal approximately 14 days post-laser induction. Fundus 

fluorescein angiography (FFA, Fig. 16A) was performed at this stage and used to quantify 
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the areas of induced CNV in cyclopamine treated and vehicle-only treated animals. 

Systemic cyclopamine delivery resulted in significant inhibition of CNV formation 

compared with vehicle-only control animals (Fig. 16 C).  

The results shown in this section demonstrate that activation of the Shh pathway is an 

important component in the development of both mature and aberrant retinal vessels. Shh, 

Ptch1 and VEGF are upregulated in murine models of ocular neovascularization and 

systemic pharmacological inhibition of the Shh pathway significantly reduces angiogenesis 

in both contexts. Thus we suppose that this pathway may represent a novel and important 

target to which pharmacological or gene-based strategies for ischemic retinopathies and 

exudative AMD could be developed. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 16. Cyclopamine inhibits murine laser-induced choroidal neovascularization. Panel A. 

Representative early phase fundus fluorescein angiograms (FFAs) from control and cyclopamine injected 

animals. Hyperfluorescence (arrowheads) at this phase of dye transit represent the areas of the induced CNV 

membranes. Panel B : Representative H & E stained 6μm thick paraffin sections of eyes demonstrating 

smaller subretinal CNV complexes (arrows) in cyclopamine treated animals. Panel C. CNV complexes in 

animals receiving daily cyclopamine (n=39; mean 2078.9 ± 262.7 pixels) were 59.1 % smaller than those in 

vehicle-only treated animals (n=37; mean 5087.4 ± 1098.9 pixels). * = P < 0.05. (Abbreviations as before; 

RPE, retinal pigment epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cells 

layer). Standard errors are depicted. 

CNTR: control; CYCL: cyclopamine. 
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Development of nucleic acid-based strategies for specific inhibition of Shh pathway 

 

The data reported in the previous sections indicate that Shh pathway plays a role in 

pathological induction of neovascularization, and thus represents a new potential 

therapeutic target for diseases characterized by ocular NV. 

Systemic administration of cyclopamine cannot be considered of therapeutic interest for 

treatment of ocular neovascular conditions because of possible side effects related to 

systemic inhibition of Shh pathway as well as possible unknown systemic actions of 

cyclopamine different from inhibition of Shh.  

Thus we developed two different strategies for specific intraocular inhibition of Shh to 

both confirm its involvement in ocular neovascular diseases and to provide strategies for 

its specific inhibition to be eventually used in therapeutic settings (Fig. 17). 

 

 

Figure  17. Schematic representation of strategies for inhibition of Shh action.  

(A) RNA interference can be used to reduce Shh expression by hypoxic cells. (B) A soluble decoy receptor 

for Shh can be used to block its extracellular diffusion preventing its binding to the Ptch1 receptor. This has 

been generated by deleting the transmembrane domain of the Hedgehog interacting protein Hip (HIP-

Δ22myc).  
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To inhibit Shh action, we generated a soluble decoy receptor (HIP-Δ22) by deleting the 

transmembrane domain of the Hedgehog Interacting Protein (HIP), a membrane 

glycoprotein physiologically binding and sequestering Shh [92]. Deletion of the last 22 C-

terminal aminoacids results in efficient secretion of HIP protein as reported [92]. In 

addition, we added a myc tag at the C-terminal of the protein to allow detection with anti-

myc antibodies generating the HIP-Δ22-myc receptor (Fig. 17B).  

In the second strategy, to inhibit Shh expression, we used short interfering RNAs (siRNA), 

21-23nt dsRNA duplexes able to silence Shh expression in a sequence specific manner 

(Fig. 17A) [44,144,145]. We designed five different siRNA oligos (siRNA#1 to #5) 

targeting regions of sequence complementarity between human and murine Shh mRNA.  

We then tested both systems in vitro for their ability to inhibit Shh pathway. We first 

confirmed that HIP-Δ22-myc is efficiently expressed and secreted in 293 cells transfected 

with constructs encoding the decoy receptor (pHIP-Δ22-myc). Western blot analysis with 

anti-myc antibodies showed the presence of HIP-Δ22-myc in both cell lysates and media of 

transfected but not control cells, as expected (Fig. 18A). To assess the ability of the decoy 

receptor to bind Shh we performed anti-myc co-immunoprecipitations (co-IP) on culture 

media from cells transfected with pHIP-Δ22-myc or with a plasmid encoding Shh (pShh). 

HIP-Δ22 and Shh containing media were mixed and subjected to co-IP. As controls media 

from cells expressing eGFP were used. Western blot analysis with anti-myc and anti-Shh 

antibodies of immuno-purified complexes revealed presence of both HIP-Δ22-myc and 

Shh (Fig. 18B), confirming that, once secreted, the decoy receptor we generated is able to 

bind Shh in vitro.  

Finally, we used conditioned media from transfected cells expressing HIP-Δ22-myc, Shh 

or eGFP to assess the ability of the decoy receptor to block Shh action in vitro. We used 

the murine mesenchimal C3H10T1/2 cells, which are able to differentiate in osteoblasts 

and express alkaline phosphatase (AP) upon Shh addition [129]. When these cells were 
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incubated with Shh conditioned media, the AP expression increased significantly (Fig. 

18C). We observed consistent reduction of AP expression when conditioned medium 

containing HIP-Δ22-myc was added to the Shh containing medium (Fig 18 C), suggesting 

that the decoy receptor sequesters Shh and inhibits its action in these settings. Similar 

results were obtained using conditioned media  containing HIP-Δ22 (devoid of the myc 

tag, data not shown). Then we generated AAV2/1 vectors encoding HIP-Δ22 (AAV-HIP-

Δ22). Western blot analysis on culture media from 293 cells infected with AAV-HIP-Δ22 

confirmed expression and secretion of the decoy receptor upon infection (Fig. 18D). 

 

 

 

 

 

 

 

 

 



 

Figure 18. In vitro characterization of HIP-Δ-22myc. A) Evaluation of Hip-myc expression and 

secretion in transfected 293 cells. 293 cells were transfected with pHIP-Δ22myc (HIP-Δ22myc) or p-eGFP 

(eGFP) expression plasmids. HIP-Δ22myc expression and secretion was analyzed by Western blot with anti-

myc antibodies on lysates and media from transfected cells. B) Evaluation of Hip-myc binding to Shh in 

transfected 293 cells. 293 cells were transfected with pHIP-Δ22myc, p-Shh plasmids or with control p-eGFP 

plasmids. 48 hours later media from transfected cells were collected and media from Shh and HIP-Δ22-myc 

transfected cells were mixed. Mixed (lane 1) and control (lane 2) media were immunoprecipitated with anti-

myc antibodies. Immunopurified proteins were analyzed by Western blot with anti-myc and anti-shh 

antibodies.  C) Hip-mediated inhibition of Shh-induced osteogenic differentiation of C3H10T1/2 cells. 

Conditioned media from HIP and/or Shh transfected 293 cells were added to C3H10T1/2 cells, alone or in 

combination and changed each 2 days. Osteogenic differentiation was assessed 6 days later measuring AP 

activity in cellular lysates. Results are expressed as pg of AP/ug protein ± standard error.  Ctr: C3H10T1/2 

receiving conditioned media from 293 cells transfected with control p-eGFP plasmids; Shh: C3H10T1/2 

receiving conditioned media from 293 cells transfected with p-Shh plasmids; HIP+Shh: C3H10T1/2 

receiving both conditioned media from 293 cells transfected with p-Shh and p-HIPΔ22-myc. D) HIPΔ22 

secretion in AAV-infected 293 cells. 293 cells were infected with AAV-HIPΔ22 or with control AAV-eGFP 

vectors and media from infected cells were concentrated and analyzed by western blot with anti-HIP 

antibodies. *= P<0.05 
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For the RNA interference strategy, we first analyzed the five siRNA oligos we designed 

for their ability to inhibit Shh expression in vitro. 293 cells were first transfected with pShh 

and then co-transfected with each of the five siRNA we designed or with control siRNAs. 

Shh expression levels in treated and control cells were assessed by Western blot. All the 

siRNA efficiently reduced Shh expression (Fig 19A); the siRNA#2 showed the strongest 

Shh inhibition as assessed by measuring the intensity of the Shh bands (Fig. 19B) in 3 

independent experiments. We then selected the siRNA#2 as Shh siRNA for all the 

subsequent experiments. We again used C3h10T1/2 cells to evaluate the ability of Shh 

siRNA #2 to inhibit Shh activity. Cells were transfected with pShh and then co-transfected 

with siRNA #2 or with control siRNAs. AP expression, induced by pShh transfection, was 

significantly reduced when siRNA #2 was co-transfected together with pShh, confirming 

that siRNA#2-mediated inhibition of Shh expression results in inhibition of its activity in 

this setting (Fig. 19 C, D). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 19: Shh siRNA reduces Shh expression and activity in  vitro.  

A). Reduction of Shh protein levels following siRNA treatment of 293 cells. 293 cells were transiently 

trasfected with the p-Shh expression plasmid and, 24 hours later, trasfected independently with each of the 5 

siRNAs we designed or with a control siRNA (CTR). The levels of Shh expression in transfected cells were 

evaluated by Western blot analysis (upper panel). Protein loading was normalized with anti-actin antibodies 

(lower panel). B). Measurement of Shh levels shown in panel A. The intensity of the bands in panel A was 

quantified with the ImageJ software and Shh values were normalized by actin in each lane. Results are 

reported as % of Shh expression relative to cells transfected with the control siRNA (CTR lane). The average 

of three independent experiments is shown. The siRNA #2 results in strong inhibition of Shh expression. C, 

D) siRNA-mediated inhibition of Shh-induced osteogenic differentiation of C3H10T1/2 cells. Alkaline 

phosphatase expression in transfected C3H10T1/2 cells. C3H10T1/2 cells were transfected with p-Shh and 

co-transfected each two days with Shh siRNA #2 or control siRNAs. Osteogenic differentiation was assessed 

5 days later measuring alkaline phosphatase (AP) expression by hystochemical staining (blu staining, A) and 

AP activity in cellular lysates (B). Reduction of AP expression upon siRNA#2 transfection is evident. Results 

are reported in pg of AP/mg protein ± standard error (B). Ctr: C3H10T1/2 cells receiving control siRNA. 

pShh+Ctr: C3H10T1/2 receiving pShh and control siRNA. pShh+#2: C3H10T1/2 receiving pShh and 

siRNA#2.  *=P<0.05. 
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Intraocular delivery of HIP-Δ-22 and of siRNA#2 in ROP mice 

Since the anti-Shh molecules we developed showed ability to block Shh patway in vitro, 

we decided to deliver the HIP-Δ22 receptor and the siRNA#2 to the eye of ROP mice to 

assess if specific intraocular inhibition of Shh pathway can result in reduction of NV in this 

model.  

The HIP-Δ22 receptor was delivered via subretinal injection of AAV-HIP-Δ22 vectors in 

p2 ROP mice; Its intraocular expression was assessed at p13 by anti-HIP 

immunofluorescence on retinal cross sections. HIP-Δ22 expression was localized to the 

RPE cell layer, as expected from the AAV2/1 serotype retinal tropism [62] (Fig. 20A). For 

intraocular delivery of siRNA#2 we decided to inject mice at p12, when they exit from the 

ROP chamber. This time point was selected because, given the expected short half-life of 

the nude siRNA in the ocular fluids [115], the exit from the hyperoxic chamber 

corresponds to the activation of the Shh pathway in the ROP retina (see previous section). 

Since in our experience intraocular injections performed at p12 in ROP mice result in 

inhibition of retinal NV development (unpublished data), we injected the siRNA 

periocularly, under the conjunctiva, since nude siRNA injected periocularly are able to 

enter the eye and concentrate in the retina [115]. To confirm this, we first injected p9 mice 

with BrdU labeled siRNA#2 and assessed intraocular localization of the oligo by anti-

BrdU staining (Fig 20B). We detected retinal siRNA specific staining both one and two 

days after the siRNA injection, with the strongest signal observed in the inner retina two 

days after the injection.  

 

 

 

 



 

 

 

 

Figure 20: Efficient intraocular delivery of anti-Shh molecules.  

A) Intraocular expression of HIP-Δ22 in AAV injected eyes. Newborn C57BL6 mice were injected 

subretinally with AAV-HIPΔ22 vectors. At postnatal day 13 eyes from injected animals were collected, 

cryosectioned and immunefluorecence with anti-HIP antibodies was performed. Arrow point to HIP staining 

(panel on the left) in red; nuclear staining with DAPI is shown in blue. Right panel: control retina from 

uninjected mice stained with anti-HIP antibody confirms the specificity of the staining B) Intraocular 

localization of siRNA#2 upon periocular injection. Postnatal day 9 mice were injected under the conjunctiva 

with BrdU labeled siRNA#2 (left and middle panel) or uninjected  (ctr, right panel). One or two days after  

the injection mice were killed, eye collected and intraocular siRNA localization was assessed by anti-BrdU 

IHC. siRNa specific signal is detected in inner retina  (arrow). P.i.: post injection. 

 

 

Thus, we decided to inject the siRNA in ROP mice at p12 by subconjunctival injections 

performed every other day when inhibition of Shh expression for more than two days was 

needed.  

This preliminary evaluations confirmed that AAV-mediated intraocular HIP-Δ22 gene 

delivery and periocular injection of siRNA#2 result in efficient intraocular delivery of the 

anti-Shh molecules (Fig. 20). 
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Intraocular delivery of HIP-Δ-22 and siRNA#2 results in efficient inhibition of Shh 

pathway 

The ability of the two strategies we designed to efficiently inhibit Shh pathway in vivo in 

ROP retina was then confirmed by evaluating the expression levels of Shh in the retina of 

siRNA injected eyes and the expression of the Shh target gene Ptch1 in both siRNA#2 and 

HIP-Δ22 treated eyes.  

Shh expression levels were assessed by Western blot analysis on ROP retinae receiving 

siRNA#2 or control siRNA at p12 and collected one and two days after the subconjunctival 

injection. As expected from the previous experiments, the Western blot and the 

quantification of the observed bands showed reduction of Shh levels in treated compared to 

control eyes (40 to 55% reduction) with the strongest inhibition obtained two days after the 

siRNA delivery (Fig. 21).  Similar results were obtained when we injected a mix of the 

siRNA#1 and #2 in the same settings (data not shown) so we decided to use the siRNA#2 

alone for further experiments. 

 

 

Figure 21: Shh siRNA reduces Shh expression in vivo in rop mice.  A). Western blot analysis of Shh 

expression levels in the retina of ROP mice injected with siRNA. P12 ROP C57Bl6 mice were injected under 

the conjunctiva with siRNA #2 in the right eye (#2) and with a control siRNA (ctr) in the left eye. One and 

two days after the injection mice were killed and retinae dissected for Western blot analysis of Shh 

expression levels. Protein loading is normalized with anti-tubulin antibodies (Tub, lower panel) B). 

Quantification of the Shh expression shown in panel A. The intensity of the bands in panel A was quantified 

and Shh values were normalized with tubulin in each lane. The stronger reduction of Shh expression is 
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observed 2 days after siRNA#2 administration. Results are reported as percent of Shh expression relative to 

the eyes receiving control siRNA (ctr lane and grey bars), ± standard error. Four animals were analyzed in 

each group. p.i.: post injection. 

 

 

Ptch1 in situ hybridization was then performed on ROP retinae injected with siRNA#2 or 

AAV-HIP-Δ22 to assess if inhibition of Shh was associated with decreased Ptch1 levels. 

Strong induction of Ptch1 was observed in p13 ROP compared to normal retinae (Fig. 22 A 

and B) while reduced expression of this gene was detected in ROP retinae treated with 

siRNA#2 (40% reduction) (Fig. 22A) or with AAV-HIP-Δ22 (35% reduction) (Fig. 22B). 

In addition, Ptch1 real time PCR performed on ROP retinae treated with AAV-HIP-Δ22 

showed inhibition of Ptch1 expression similar to what observed with ISH (Fig. 23). Ptch1 

expression was upregulated in ROP compared to wild type retinae. When AAV-HIP-Δ22 

vectors were delivered to the ROP retinae, Ptch1 expression decreased at levels similar to 

those observed in wild type retinae. These results confirmed that the two Shh inhibiting 

strategies we have developed both result in efficient inhibition of the Shh pathway in the 

ROP retina. 

 

 

 

 

 

 

 



 

Figure 22. Shh siRNA and HIP-Δ-22 reduce Ptch1 expression in  vivo in the ROP retina.  

A) siRNA#2 injection in ROP retinae reduces Shh induced Ptch1 expression. Ptch1 In Situ Hybridization 

(ISH) analysis of wild type and ROP eyes injected with siRNA #2 or control siRNAs. Postnatal day 12 (p12) 

ROP mice were injected subpalpebrally with the siRNA  #2 in the right eye (right panel) and with a control 

siRNA (ctr) in the left eye (middle panel). Wild-type p12 mice were injected in right and left eyes with 

control siRNAs (left panel). One day after the injection mice were killed and eyes collected for Ptch1 ISH 

analysis. B) AAV-mediated HIP-Δ-22 expression in ROP retinae reduces Shh induced Ptch1 expression. 

ROP mice at postnatal day 1 (P1) were injected under the retina of the right eye with AAV-HIPΔ22 and in 

the left eye with a control vector encoding eGFP (AAV-eGFP). Wild type mice were injected in both eyes 

with AAV-eGFP. After induction of retinal neovascularization, P13 mice were killed and retinal Ptch1 

expression analyzed by ISH. Ptch1 expression is upregulated in ROP retinae and reduced upon HIP-Δ22 or 

siRNA #2 delivery. Each picture is representative of 3-4 eyes. ONL: outer nuclear layer, INL: Inner nuclear 

Layer, GCL: ganglion cell layer.  Arrows on the right point to region of positive signal in the INL and GCL. 
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Fig. 23. AAV-mediated HIP-Δ22 expression in ROP retinae reduces Shh induced Ptch1 expression. 

ROP mice at postnatal day 1 (P1) were injected under the  retina of the right eye with AAV-HIPΔ22 vectors 

(ROP+HIP) and in the left eye with a control vector encoding eGFP (AAV-eGFP, ROP). After induction of 

retinal neovascularization, P13 mice were killed and retinal Ptch1 expression analyzed by Real time PCR. 

Results are reported as 2^-DCt. WT: retinae from wild type mice injected with AAV-eGFP. The number of 

retinae in each group is reported on each bar. 

 

 

Impact of intraocular inhibition of the Shh pathway on ocular NV 

Given the efficient inhibiton of the Shh pathway obtained in ROP retina by both siRNA#2 

and HIP-Δ22 intraocular delivery, we assessed the ability of these two strategies to inhibit 

ocular neovascularization in ROP mice. 

Newborn ROP mice were injected subretinally with AAV-HIPΔ22 vectors or with control 

AAV-eGFP vectors (Fig 24 A). In another group of ROP animals we injected siRNA#2 or 

control siRNA at p12 and every other day until p17-19 (Fig 24 B). In both groups, no 

significant reduction in the number of neovascular nuclei was observed in treated 

compared to control eyes (Fig 24 A and B). To assess if the lack of efficacy was due to 

insufficient level of inhibition of Shh, we injected ROP mice at birth with AAV-HIP-Δ22 

or control vectors and co-injected the same mice at p12 with siRNA#2 or control siRNAs. 
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This was done to potentially obtain stronger inhibition of Shh pathway. As reported in Fig. 

24C, we did not obtain reduction of retinal neovascularization. These results show that 

intraocular inhibition of the Shh pathway does not result in significant inhibition of the 

retinal NV observed in the ROP model. 

 

 

Figure 24. Intraocular inhibition of the Shh pathway does not impact on retinal neovascularization. 

A) ROP mice were injected at birth with AAV-HIP-Δ22 or control vectors and retinal neovascularization was 

assessed at p19 by counting the number of endothelial cell nuclei on the vitreal side of the inner limiting 

membrane. B) ROP mice were injected periocularly with siRNA#2 or with control (CTR) siRNAs every 

other day from p12 to p19, when retinal neovascularization was assessed. C) ROP mice were injected at birth 

with AAV-HIP-Δ22 or control vectors and re-injected periocularly with siRNA#2 or with control (CTR) 

siRNAs from p12 to p19, when retinal neovascularization was assessed. No difference in the number of 

endothelial cell nuclei was evident between treated and control eyes in each group. The number of eyes in 

each group is reported in each bar. 
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DISCUSSION 

 

Diabetes Mellitus is a common disease associated with high rate of morbidity and 

mortality. Common severe DM complications, such as proliferative diabetic retinopathy 

(PDR), nephropathy and neuropathy, account for that [21]. Ocular NV is a common feature 

of several blinding diseases, associated both to PDR and to other disorders.  

In both DM and ocular NV, the current knowledge of the molecular bases and mechanisms 

of the disease has led to the development of therapies used in clinic. However these 

therapies are far from being perfect.  

In the case of DM, daily insulin injections for type I DM or diet, exercise, oral anti-diabetic 

drugs and insulin for type II DM are required to maintain euglycemia avoiding 

development of severe complications. However, these requirements lower the patients’ 

quality of life and often fail to result in prevention of complications. For ocular 

neovascular disorders, although VEGF has been identified as a central player in the disease 

development, complete understanding of the molecular events causing abnormal vessel 

growth has not been achieved yet. Thus, the currently used therapies based on VEGF 

inhibition or laser photocoagulation show efficacy but often recurrences require additional 

treatments increasing the risk for side effects.  

Thus, in both DM and ocular NV, a better elucidation of molecular and pathological 

mechanisms underlying the disease would allow the development of additional therapies 

which could either substitute or be associated with the current ones increasing their 

efficacy.  

In the first part of my thesis, I report on the development and characterization of a system 

allowing pharmacologically regulated induction of the insulin receptor signalling at will in 

a desired cell or tissue. The chimeric receptor LFv2IRE we generated efficiently activate, 

upon AP20187 adiministration, the signalling pathways physiologically activated by the 

insulin/insulin receptor interaction. This results in induction of insulin like actions both in 
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vitro, when LFv2IRE is expressed in cultured cells via AAV infection (see attached PDF 

and [130]) and in vivo, when expressed in muscle and liver of AAV-injected wild type and 

diabetic mice, as reported in this thesis (see attached PDF [146]); The results of the 

extensive characterization we performed suggest that this system is a powerful tool to 

mimic insulin action in a desired tissue at will, allowing the study of the role of the 

hormone on canonical and non-canonical insulin target tissues. This could be helpful in the 

context of clarifying the contribution of insulin resistance in individual tissues to the 

pathogenesis of type II DM. Indeed, to this aim, several mouse models with complete  or 

tissue specific IR inactivation have been generated by several groups 

[134,147,148,149,150,151,152] but the complexity of the results obtained in these models 

suggested that additional studies are required to characterize the role of insulin action on 

various hormone target tissues. Our system, allowing specific, rapid and regulated 

restoration of the IR signaling in canonical and non canonical insulin target tissues of 

diabetic mice, alone or in combination, could be useful for that. In addition, AAV-

mediated LFv2IRE expression in insulin target tissues, coupled to AP20187 

administration, could be used to restore glucose homeostasis in diabetic animal models and 

possibly in patients. To test this hypothesis, we expressed the LFv2IRE receptor in muscle 

and liver of diabetic NOD mice; despite induction of insulin like action in both tissues 

upon AP20187 administration (Fig. 10 and 11), we did not observe reduction of serum 

glucose levels. This suggests that insulin action in muscle and liver is not sufficient to 

reduce hyperglycaemia in diabetic individuals, pointing to the importance of other tissues 

(both canonic and non-canonic insulin targets) in glucose homeostasis regulation. 

However, a more detailed characterization of the LFv2IRE/AP20187 targets is required to 

exclude that the lack of activation of targets other than IRS-1 is responsible for the 

observed inability to obtain glucose homeostasis.  

In the second part of my thesis, we assessed the involvement of the Shh pathway in the 

induction of ocular neovascular diseases. In addition to its morphogenic functions in 
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embryonic development, this molecule has been reported to induce the expression of 

VEGF as well as other pro-angiogenic factors [105,106]; thus it could be involved in the 

induction of pro-angiogenic processes in the eye as reported for other tissues [105]. We 

hypothesized that Shh activation could occur both in physiological and pathological retinal 

vessel development. 

Our data, suggesting the involvement of Shh pathway in retinal vessels development and 

proving its activation in the retina of animal models of ocular NV (Fig. 12 and 13), support 

this hypothesis. The evidence that systemic inhibition of this pathway through 

administration of the alkaloid cyclopamine results in reduction of retinal and choroidal NV 

in animal models (Fig. 15 and 16) point to Shh as a potential novel therapeutic target for 

the treatment of ocular NV (see attached PDF [153]). To confirm this, we developed two 

systems for specific intraocular inhibition of Shh pathway, a Shh decoy receptor (HIP-Δ22) 

delivered intraocularly with AAV vectors, and a Shh siRNA (siRNA#2), which was 

injected as nude RNA duplex. These anti-Shh molecules were delivered to the retina of 

ROP mice to test their ability to block Shh pathway in vivo. SiRNA#2, upon periocular 

injection, localizes to the inner retina (Fig. 20); HIP-Δ22 is expressed from RPE cells upon 

AAV infection (Fig. 20) but should be secreted from producing cells thus reaching other 

regions of the eye, where its action could be required. We couldn’t detect HIP-Δ22 

expression in retinal regions other than RPE cells, probably due to low sensitivity of the 

antibody used. 

Upregulation of Ptch1 transcript, representing activation of Shh pathway [154], is evident 

in the INL (probably Muller cells) and in the GCL (ganglion cells and/or astrocytes) of 

ROP retinae (Fig. 13 and 22), as expected by its expression pattern in post-natal retina (see 

introduction section). Shh expressed by ganglion cells, upregulated in hypoxic retina, could 

stimulate production of pro-angiogenic factors from its target cells (Muller, ganglion and 

astrocyte cells) which indeed are the cells responsible for retinal VEGF production during 

physiological and pathological retinal vessels growth [5,155]. Thus, inhibition of ganglion 
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cells derived Shh would be required to impact on this process; intraocular injection of our 

anti-Shh molecules should allow that. Indeed Ptch1 expression in the INL and GCL was 

reduced upon intraocular delivery of siRNA#2 or HIP-Δ22 (Fig. 22 and 23); Ptch1 is a Shh 

transcriptional target, and is commonly considered as a marker of hedgehog pathway 

activation in response to Shh and other Hedgehog proteins [105,154,156,157]. 

Thus Ptch1 reduced expression, evident in Fig. 22, confirms inhibition of the Shh pathway 

in the desired retinal regions. Despite this inhibition, we could not observe the same 

efficacy in reduction of NV as observed with cyclopamine administration. It is possible 

that stronger intraocular inhibition of the pathway may be required to reduce retinal NV in 

the ROP model; Ptch1 expression in ROP retinae injected with AAV-HIP-Δ22 vectors or 

with siRNA#2 was similar to expression levels observed in normal retinae as suggested by 

real time PCR analysis (Fig. 23) and ISH (Fig. 22) for Ptch1 transcript, indicating that the 

anti-Shh molecules we developed are able to reinstate Shh pathway to physiological levels 

of activation. However it is possible that in the ROP retina, a level of Shh pathway 

activation lower than normal is required to inhibit NV. To address this issue, and to obtain 

a more robust Shh inhibition than that achieved by single strategies, we co-administered 

the siRNA#2 and the decoy HIP-Δ22 receptor in ROP mice to obtain higher inhibition of 

Shh action but, again, no NV reduction was observed (Fig. 24C). 

Alternatively, the inhibition of ocular NV observed following systemic cyclopamine 

administration may result from secondary, extraocular effects of the Shh pathway blockade 

or to other unknown actions of this drug independent of Shh pathway inhibition, as 

suggested in human breast cancer cells  [158]. In addition, cyclopamine inhibits the 

activity of all hedgehog proteins [74]; even though Shh is the mostly expressed hedgehog 

protein in the eye and has been reported to induce vascular growth, we cannot exclude that 

other hedgehog proteins, such as Ihh that is expressed in the eye as well [94], can induce 

retinal vessels growth when Shh is blocked. The decoy receptor we designed should indeed 

bind all hedgehog proteins as the wild type HIP protein does [92] while the anti-Shh 
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siRNA we designed is Shh specific; It is possible that stronger inhibition of additional 

hedgehog proteins than that obtained here is required to inhibit retinal NV. The reduction 

of Ptch1 expression in ROP retina to wild type levels suggests that this is not the point 

since its expression is induced by all hedgehog proteins [157]. However, the presence of 

additional unidentified factors involved in hedgehog signalling, which could differently 

interact with the various hedgehog proteins has been supposed [105,157]. Identification of 

these eventual players and study of their role in retinal NV development may help to 

clarify our results.    

Our data suggest that despite Shh involvement in angiogenesis [77,105,106,107] and more 

specifically in ocular neovascular disorders [153], a better characterization of its role  and 

of that of the other hedgehog proteins in these conditions is required to obtain therapeutic 

success through their inhibition. In addition, extensive evaluation of the possible toxic 

effects resulting from Shh pathway systemic or intraocular inhibition will be required, 

given the evidence for the important role of Shh in embryonic and adult tissues 

development and function [94,159,160,161,162,163]. The anti-Shh molecules we 

developed and characterized in this work are available to specifically inhibit the Shh 

pathway at various levels, either intraocularly or systemically, allowing a better 

characterization of its role in ocular neovascular disorders as well as the possible toxicity 

from specific Shh pathway inhibition.  

Finally, our system represents a tool allowing specific short and long term inhibition of 

Shh pathway which could be useful in other contexts: 

-Shh pathway inhibition has been suggested as therapeutic strategy for the treatment of 

different tumors whose growth is related to hedgehog pathway activation such as prostate 

cancer [156], medulloblastoma, basal cell carcinoma and others [74,164]. The molecules 

we developed could thus represent strategies alternative to chemical inhibitors of the Shh 

pathway in the treatment of specific tumors.  
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- The early embryonic lethality of mice lacking Shh [75] does not allow to understand the 

role of its pathway in embryonic and adult tissues. Tissue-specific Shh knock-out 

[165,166] have been generated to overcome this limit. Our somatic gene transfer-based 

system represents an alternative tool to obtain Shh specific inactivation in a desired tissue 

and/or at a desired time point.  
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CONCLUSIONS 

 

During the work of my PhD thesis, I have developed and extensively characterized systems 

allowing the study of the molecular bases of common diseases such as Diabetes Mellitus 

(DM, 1) and ocular Neovascularization (NV, 2):  

1) we generated a chimeric LFv2IRE receptor that can be pharmacologically activated by 

an orally bioavailable drug, the rapamycin derivative AP20187. LFv2IRE, expressed via 

AAV vectors in a desired tissue, allows AP20187-dependent induction of insulin-like 

actions. This system represents a powerful tool to study the role of insulin on single 

tissues. In addition, it could be used to pharmacologically modulate glucose homeostasis in 

diabetic organisms mimicking insulin action; this could be achieved by AAV-mediated 

LFv2IRE expression in selected tissues followed by AP20187 administration.   

2) we developed different strategies for efficient systemic and intraocular inhibition of the 

Shh pathway, that is activated in the retina of animal models of retinal and choroidal NV. 

Reduction of ocular NV is obtained when Shh signalling is inhibited systemically by the 

alkaloid cyclopamine but not when specific inhibition of Shh action through intraocular 

delivery of anti-Shh molecules is achieved. These data identify Shh as a potential 

therapeutic target for treatment of ocular neovascular disorders but suggest that better 

characterization of its role in ocular NV development is required to allow the set up of 

efficient therapeutic strategies for these disorders.  

In conclusion the systems we describe represent useful tools to improve knowledge on the 

role of the different insulin target tissues in glucose homeostasis for DM and of Shh 

pathway in pathological vessels growth for ocular NV; In addition, these systems can be 

used for development of new and efficient therapeutic strategies for the treatment of these 

disorders. 
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ABSTRACT

Diabetes mellitus derives from either insulin deficiency (type I) or resistance (type II). Homozygous mutations
in the insulin receptor (IR) gene cause the rare leprechaunism and Rabson–Mendenhall syndromes, severe
forms of hyperinsulinemic insulin resistance for which no therapy is currently available. Systems have been
developed that allow protein–protein interactions to be brought under the control of small-molecule dimer-
izer drugs. As a potential tool to rescue glucose homeostasis at will in both insulin and insulin receptor defi-
ciencies, we developed a recombinant chimeric insulin receptor (LFv2IRE) that can be homodimerized and
activated by the small-molecule dimerizer AP20187. In HepG2 cells transduced with adeno-associated viral
(AAV) vectors encoding LFv2IRE, AP20187 induces LFv2IRE homodimerization and transphosphorylation
minutes after drug administration, resulting in the phosphorylation of a canonical substrate of the insulin re-
ceptor tyrosine kinase, IRS-1. AP20187 activation of LFv2IRE is dependent on the dose of drug and the amount
of chimeric receptor expressed in AAV-transduced cells. Finally, AP20187-dependent activation of LFv2IRE
results in insulin-like effects, such as induction of glycogen synthase activity and cellular proliferation. In vivo
LFv2IRE transduction of insulin target tissues followed by AP20187 dosing may represent a therapeutic strat-
egy to be tested in animal models of insulin resistance due to insulin receptor deficiency or of type I diabetes.
This system may also represent a useful tool to dissect in vivo the independent contribution of insulin target
tissues to hormone action.

1101

OVERVIEW SUMMARY

Insulin and insulin receptor deficiencies are characterized
by elevated plasma glucose levels. To rescue glucose ho-
meostasis in both conditions we have generated a system for
pharmacological activation of the insulin receptor signaling
pathway. We developed a recombinant chimeric insulin re-
ceptor (LFv2IRE) that can be homodimerized and activated
by the bivalent dimerizer AP20187. In HepG2 cells trans-
duced with adeno-associated viral vectors encoding the re-
combinant receptor, AP20187 activates LFv2IRE in a dose-
dependent manner, resulting in tyrosine phosphorylation of
the insulin receptor substrate IRS-1. In addition, AP20187
binds to LFv2IRE and induces cellular proliferation and
glycogen synthase activity, similar to insulin. Therefore,

LFv2IRE gene transfer in insulin target tissues followed by
AP20187 stimulation may rescue glucose homeostasis in an-
imal models of insulin receptor deficiencies or type I dia-
betes mellitus. Finally, the AP20187–LFv2IRE system may
yield important insights concerning the independent con-
tribution of insulin target tissues to the hormone action.

INTRODUCTION

DIABETES MELLITUS (DM) is a condition characterized by el-
evated blood glucose levels due to lack of insulin action.

This can be caused by decreased or absent circulating insulin,
as in type I DM, in which autoimmune destruction of pancre-
atic beta cells leads to insulin deficiency (Maclaren and Kukreja,
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2001). This condition is treated by daily subcutaneous injections
of recombinant insulin. In the more common type II DM pe-
ripheral insulin resistance determines hyperglycemia, which can
be controlled by diet and exercise, oral antidiabetic drugs, or in-
sulin injections (Taylor, 2001). In rare autosomal recessive syn-
dromes, such as leprechaunism and Rabson–Mendenhall syn-
drome (OMIM 246200 and 262190, respectively), mutations in
the insulin receptor (IR) gene cause severe insulin resistance
with hyperinsulinemia for which no therapy is currently avail-
able (Taylor, 2001). Gene therapy can therefore be considered
an option for patients bearing mutations in the IR. IR somatic
gene replacement in the hormone target tissues should be care-
fully considered because of the hyperinsulinemia associated
with insulin resistance, which could cause severe hypoglycemia
once the IR is expressed on the surface of target cells. A sys-
tem offering tight regulation of insulin action would be desir-
able, similar to what is required in type I DM, for which in-
sulin gene therapy is being evaluated as a potential therapeutic
alternative.

In animal models of type I DM, ectopic expression of in-
sulin from muscle (Shah et al., 1999; Jindal et al., 2001; Mar-
tinenghi et al., 2002; Shaw et al., 2002; Croze and Prud’homme,
2003), liver (Kolodka et al., 1995; Dong et al., 2001; Dong and
Woo, 2001; Auricchio et al., 2002; Yang et al., 2002; Zhang
et al., 2002; Yang and Chao, 2003), exocrine pancreas (Shifrin
et al., 2001), adipose tissue (Nagamatsu et al., 2001), or gut
(Tang and Sambanis, 2003) engineered via virus- or non-virus-
mediated gene transfer results in sustained albeit constitutive
expression of insulin. Attempts at regulating virus-mediated in-
sulin expression in vivo have been performed via pharmaco-
logical or physiological regulation of recombinant insulin tran-
scription. In diabetic mice transduced with viral vectors,
regulation of insulin expression with small-molecule drugs
(pharmacological regulation) (Auricchio et al., 2002) or glu-
cose (physiological regulation) (Lee et al., 2000; Olefsky, 2000;
Thule et al., 2000; Thule and Liu, 2000; Chen et al., 2001;
Alam and Sollinger, 2002; Olson et al., 2003) results in secre-
tion of circulating insulin hours after the administration and
withdrawal of the inducer. This is a serious limitation because
physiological insulin secretion peaks minutes after meal con-
sumption and circulating hormone levels return to baseline in
less than 2 hr. An attempt to address this has led to the devel-
opment of an alternative system based on pharmacological reg-
ulation at the level of insulin secretion that more closely mim-
icks the kinetics of physiological hormone release (Rivera et
al., 2000). An alternative approach is to bypass insulin alto-
gether and directly regulate insulin signaling pathways in cells
normally targeted by the hormone. Insulin action results in pe-
ripheral glucose uptake, glycogen synthesis, and inhibition of
gluconeogenesis and lipolysis, and is exerted mainly on liver,
muscle, and adipose tissue through the interaction of the hor-
mone with a specific tetrameric transmembrane receptor (IR)
endowed with tyrosine kinase activity (Taylor, 2001). On bind-
ing to the hormone, transphosphorylation of the receptor intra-
cellular domains induces the activation of the insulin signaling
cascade (Kahn and White, 1994; Taha and Klip, 1999). The ac-
tivated receptor phosphorylates insulin receptor substrate (IRS)-
1 and -2 and Shc, and this results in the activation of Grb2/Sos
and the Ras/Raf/MEK/MAPK pathway (Taha and Klip, 1999).
This pathway is involved in the insulin-dependent activation of

gene expression and cellular proliferation. Phosphorylated IRS
proteins activate phosphatidylinositol-3-kinase and its down-
stream targets (i.e., PKC� and �), resulting in glucose uptake
(Taha and Klip, 1999).

A system to pharmacologically regulate protein–protein in-
teractions, such as the homodimerization of growth factor re-
ceptors with tyrosine kinase activity, has been developed
(Amara et al., 1997; Blau et al., 1997; Li et al., 2002). This
system is based on the ability of a small, orally bioavailable
molecule dimerizer drug, AP20187, to bind to a specific pro-
tein module contained in the cytoplasmic FKBP12 protein. Any
cellular process activated by protein–protein interaction (such
as IR activation) can in principle be brought under dimerizer
control, by fusing the protein of interest (i.e., the intracellular
domain of IR) to the binding protein recognized by the dimer-
izer. Addition of the dimerizer then cross-links the chimeric sig-
naling protein, activating the cellular events that it controls (i.e.,
IR kinase activity) (Fig. 1).

Therefore, a chimeric insulin receptor (LFv2IRE) was con-
structed with a membrane-localizing domain followed by two
AP20187-binding domains and the intracellular domain of the
IR. Vectors based on adeno-associated viruses (AAVs), which
are promising tools for in vivo gene delivery (Hildinger and Au-
ricchio, 2004), were produced that encoded LFv2IRE. In this
report we evaluate the ability of AP20187 to activate the in-
sulin receptor signaling pathway in cultured human hepatocytes
and fibroblasts transduced with AAV vectors expressing
LFv2IRE.

MATERIALS AND METHODS

Vector construction and production

pCLFv2IRE is a cytomegalovirus (CMV) expression vector
encoding a fusion protein containing the extracellular and trans-
membrane portions (amino acids 1–270) of the human low-
affinity nerve growth factor receptor (LNGFR) fused to two
F36V-FKBP12 ligand-binding domains, followed by the cyto-
plasmic domain of the human insulin receptor, and a C-termi-
nal hemagglutinin epitope (HA). Details of the LNGFR/F36V-
FKBP fusion sequences and expression vector have been
described (Amara et al., 1997; Clackson et al., 1998; Thomis
et al., 2001) and the full sequence is available on request. The
insulin receptor cytoplasmic domain (amino acids 980–1382)
was isolated by polymerase chain reaction (PCR) from a cDNA
library prepared by reverse transcription (RT)-PCR from hu-
man skeletal muscle total RNA (BD Biosciences Clontech, Palo
Alto, CA). The following primers were used: 5�-AGCTTCTA-
GAAGAAAGAGGCAGCCAGATGGGCCGCTG-3� (forward)
and 5�-AGCTACTAGTGGAAGGATTGGACCGAGGCAAG-
GTC-3� (reverse). The PCR product was cleaved with XbaI and
SpeI before insertion at an XbaI site between the FKBP and
epitope sequences in pCLFv2IRE.

The LFv2IRE coding sequence was transferred to the pMX
retroviral expression vector (Onishi et al., 1996) to generate
pMX-LFv2IRE. Retroviral supernatant was generated by tran-
sient transfection of Phoenix-Eco packaging cells (G. Nolan,
Stanford University, Stanford, CA), using FuGENE reagent
(Roche, Basel, Switzerland) according to the manufacturer’s
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protocol. Retroviral supernatants were harvested 48 hr after in-
fection and filtered through a 0.45-�m filter.

The pAAV2.1-TBG-LFv2IRE and pAAV2.1-CMV-LFv2IRE
plasmids used to produce recombinant AAV vectors were
cloned as follows. The LFv2IRE fragment was obtained by di-
gesting pCLFv2IRE with EagI and BamHI (Roche). LFv2IRE
was then cloned into pAAV2.1-TBG-eGFP and pAAV2.1-
CMV-eGFP (Auricchio et al., 2001) previously digested with
NotI and BamHI (Roche).

Recombinant AAV2/1 vectors were produced by triple trans-
fection of 293 cells and purified by passage through CsCl gra-
dients (Xiao et al., 1999). Physical titers of the viral prepara-
tions (genome copies [GC]/ml) were determined by real-time
PCR (Applied Biosystems, Foster City, CA) (Gao et al., 2000).
The AAV vectors used in our experiments were produced by
the Telethon Institute of Genetics and Medicine (TIGEM) AAV
Vector Core (Naples, Italy).

Cell culture conditions, AAV transduction, and drug
stimulation

Ba/F3 cells were a gift from B. Mathy-Prevot (Harvard Med-
ical School, Boston, MA) and were cultured in RPMI medium
1640 plus 10% fetal bovine serum (FBS) in the presence of re-
combinant murine interleukin 3 (IL-3, 1 ng/ml; R&D Systems,
Minneapolis, MN). Eighty percent confluent HepG2 cells were
grown in Dulbecco’s modified Eagle’s medium (DMEM; Cel-
bio, Milan, Italy) with penicillin (10 U/ml)–streptomycin (10
�g/ml)–amphotericin B (0.25 �g/ml) (Invitrogen Life Tech-
nologies, Carlsbad, CA). For infection with AAV, cells were

incubated in serum-free DMEM and infected with AAV2/1-
TBG-LFv2IRE (at the vector doses reported in Results) for 2
hr at 37°C. Complete DMEM was then added to the cells. Forty-
eight hours later, infected cells were starved in serum-free
DMEM for 12 hr and then stimulated with AP20187 (ARIAD
Pharmaceuticals, Cambridge, MA) or insulin (Sigma, St. Louis,
MO) at the doses and times indicated in Results.

Primary fibroblasts (provided by the TIGEM Tissue Culture
Core) were grown to 80% confluency in �-minimal essential
medium (�-MEM; Celbio) with 20% FBS (GIBCO; Invitrogen
Life Technologies) and penicillin (10 U/ml)–streptomycin (10
�g/ml)–amphotericin B (0.25 �g/ml) (Invitrogen Life Tech-
nologies). Fibroblasts were infected with AAV2/1-CMV-
LFv2IRE (4 � 104 GC/cell), similarly to HepG2 cells. Forty-
eight hours later, infected cells were starved in serum-free
�-MEM for 24 hr and stimulated with 2.5 �M AP20187 or 10–6

M insulin for 30 min.

Western blots and immunoprecipitations

AAV-transduced and stimulated HepG2 cells were lysed on
ice for 30 min in lysis buffer (40 mM Tris [pH 7.4], 4 mM
EDTA, 5 mM MgCl2, 1% Triton X-100, 100 �M Na3VO4, 1
mM phenylmethylsulfonyl fluoride [PMSF], leupeptin–apro-
tinin–pepstatin A [LAP protease inhibitors; 10 �g/ml], 150 mM
NaCl). Samples were spun at 14,000 rpm for 15 min, with su-
pernatant removed and stored. Protein concentrations were de-
termined with a Bio-Rad protein assay reagent kit (Bio-Rad,
Munich, Germany) and 30-�g samples of proteins from total
cellular lysates were subjected to sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS–PAGE).

For the immunoprecipitation experiments, cells were lysed
on ice for 1 hr in lysis buffer (50 mM Tris-HCl [pH 7.4], 4 mM
EDTA, 150 mM KCl, 1% Triton X-100, 1 mM Na3VO4, 1 mM
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FIG. 1. Schematic representation of the AP20187–LFv2IRE
system. (A) AP20187-inducible homodimerization of recombi-
nant LFv2IRE expressed via viral vectors. Oblique stripes de-
lineate the AP20187-binding domain, vertical stripes indicate the
IR� intracellular chain including the tyrosine kinase domain, and
horizontal stripes define the HA tag. AP20187 is represented in
black. (B) Scheme of the AAV vectors encoding LFv2IRE. ITR,
inverted terminal repeat; CMV; cytomegalovirus enhancer/pro-
moter; TBG, thyroxine-binding globulin promoter; LNGFR, low-
affinity nerve growth factor receptor transmembrane domain
(amino acids 1–274); Fv, AP20187-binding domain; Ir�, intra-
cellular insulin receptor � domain (amino acids 980–1381); HA,
hemagglutinin tag.

FIG. 2. AP20187-dependent Ba/F3 cell proliferation. Stain-
ing with alamarBlue metabolic dye was used to measure the
number of viable Ba/F3 cells after a 2-day incubation with the
indicated concentrations of AP20187. LFv2IRE-expressing
cells respond to AP20187 in a dose-dependent manner (aster-
isks), whereas Ba/F3 parental cells fail to proliferate (solid
squares). Results are plotted as a fraction of the OD570–600 ob-
tained in IL-3-containing medium.



PMSF, LAP inhibitors [10 �g/ml]). One-milligram samples of
lysates were incubated overnight at 4°C with anti-HA (8 �g;
Sigma), anti-IR� (2 �g; Santa Cruz Biotechnology, Santa Cruz,
CA), or anti-IRS-1 (2 �g; Santa Cruz Biotechnology) antibod-
ies. Protein A–Sepharose (8.3 �g; Sigma) was added and in-
cubated for an additional 3 hr at 4°C. Samples were pelletted,
washed with lysis buffer, and resuspended in Laemmli sample
buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol,
0.004% bromophenol blue, 0.125 M Tris-HCl [pH 6.8]) before
loading on SDS–polyacrylamide gels.

SDS–PAGE analysis was performed on 4% stacking–7% run-
ning polyacrylamide gels. After separation, proteins were trans-
ferred to a nitrocellulose filter (Schleicher & Schuell, Dassel, Ger-
many). The filter was incubated with anti-HA (1:2000 dilution),
anti-phosphotyrosine (PY, 1:1000 dilution) (Santa Cruz Biotech-
nology), anti-IRS-1 (1:1000 dilution), or anti-IR� (1:200 dilution)
antibodies.

Mouse anti-PY antibodies were detected with horseradish per-
oxidase (HRP)-conjugated anti-mouse antibodies (Sigma); rabbit
anti-HA, anti-IRS-1, and anti-IR� were detected with HRP-con-
jugated anti-rabbit antibodies (Amersham Biosciences, Piscat-
away, NJ).

Last, the protein–antibody complexes were revealed by Pico-
ECL chemiluminescent reaction (Celbio) according to the man-
ufacturer’s instructions. Band intensity measurement was per-
formed with Quantity One 4.1.1 software included in the Gel
Doc 2000 gel documentation system (Bio-Rad).

Glycogen synthase assays

Glycogen synthase assay of primary fibroblasts infected and
stimulated as described above was performed as previously re-
ported (Formisano et al., 1993). Experiments were done three
times independently, each time in duplicate.

Generation of an LFv2IRE-expressing Ba/F3 cell pool

Ba/F3 cells were infected with LFv2IRE retroviral super-
natant and, 48 hr after transduction, cells stably expressing the
LFv2IRE fusion protein were isolated by batch purification us-
ing magnetic beads (Dynabeads M-450 goat anti-mouse IgG;
Dynal, Oslo, Norway) coated with an anti-LNGFR antibody
(clone ME20.4, mouse IgG1; Chromaprobe, Maryland Heights,
MO). The purified pool of LFv2IRE-expressing Ba/F3 cells was
expanded for proliferation assays.

Ba/F3 proliferation assays

LFv2IRE-expressing Ba/F3 cells were washed and cultured
in IL-3-free medium for 16 hr before being plated in 96-well
plates at 1 � 104 cells per well. Medium containing AP20187
or IL-3 was added to a final volume of 100 �l, and plates were
incubated for 2 days. Cells were then incubated in medium con-
taining 10% alamarBlue (TREK Diagnostic Systems, Brooklyn
Heights, OH) for an additional 4 to 6 hr before assay. The
OD570–600 value was determined with an enzyme-linked im-
munosorbent assay (ELISA) plate reader.

RESULTS AND DISCUSSION

LFv2IRE is a chimeric insulin receptor fusion protein re-
sponsive to AP20187. It was constructed by fusing the cyto-

plasmic domain of the human insulin receptor (IR) to two F36V-
FKBP AP20187-binding domains (Fv) and a C-terminal epi-
tope tag (E). The chimeric protein was fused to an N-terminal
sequence comprising the LNGFR extracellular and transmem-
brane domains (L) to localize it to the plasma membrane (see
Materials and Methods and Fig. 1). As a preliminary test for
AP20187-responsive biological activity, the chimeric receptor
was introduced into Ba/F3 cells by retroviral transduction and
tested for its ability to support AP20187-dependent prolifera-
tion. Ba/F3 cells are normally strictly dependent on IL-3 for
growth; however, this requirement can be overcome by ex-
pressing appropriate FKBP-signaling domain fusions and cul-
turing in the presence of small-molecule dimerizers (Blau et al.,
1997). Figure 2 shows that, in IL-3-free medium, Ba/F3 cells
stably expressing LFv2IRE, but not parental Ba/F3 cells, pro-
liferate in an AP20187-dependent fashion. Thus, the LFv2IRE
fusion exhibits dimerizer-dependent biological activity in this
system.

To characterize the biochemical pathway induced by
AP20187 in a paradigm insulin target cell expressing LFv2IRE,
we used HepG2 cells transduced with AAV. AAV2/1 vectors
(Xiao et al., 1999) expressing LFv2IRE from either a liver-spe-
cific promoter (TBG) or the ubiquitous CMV promoter were
used in the following experiments.

We analyzed the pattern and identity of tyrosine-phospho-
rylated proteins on AP20187 or insulin stimulation by Western
blot of total cellular lysates and by immunopurification of spe-
cific tyrosine-phosphorylated substrates, respectively.

To demonstrate that AP20187 is able to induce tyrosine phos-
phorylation of intracellular proteins in LFv2IRE-expressing he-
patocytes and that this is AP20187 dose dependent, HepG2 cells
were infected with the same multiplicity of infection (MOI, 4 �
104 GC/cell) of AAV2/1-TBG-LFv2IRE and stimulated 48 hr
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FIG. 3. Protein tyrosine phosphorylation in AAV-infected
HepG2 cells on AP20187 administration: drug dose dependency
of protein phosphorylation. Shown is a Western blot analysis of
total cellular lysates from HepG2 cells infected with AAV2/1-
TBG-LFv2IRE and stimulated for 5 min with various doses of
AP20187 or insulin (10�7 M). Top: AP20187 and AAV vector
doses. Proteins from total cellular lysates were blotted with anti-
phosphotyrosine (�PY, top panel), anti-HA (�HA, middle
panel) and anti-insulin receptor � chain (�IR�, bottom panel)
antibodies. Molecular masses (kDa) are indicated on the left.



later for 5 min with various doses of AP20187 (Fig. 3). Cells
were then lysed and total cellular lysates were separated by
SDS–PAGE, transferred onto a nitrocellulose filter, and blot-
ted with anti-PY antibodies (Fig. 3, top). A 140-kDa band was
evident, the intensity of which increased with AP20187 dose.
The level of tyrosine phosphorylation of the 140-kDa band in-
creased in cells stimulated with AP20187 doses between 1 and
500 nM, at which a plateau was reached. All the following ex-
periments were performed by stimulating HepG2 cells with 2.5
�M AP20187. The 140-kDa tyrosine-phosphorylated band was
evident only in lanes corresponding to AAV2/1-infected cells,
as expected. AAV-infected HepG2 cells that were not stimu-
lated with AP20187 showed detectable levels of tyrosine phos-
phorylation of the 140-kDa band. This represents LFv2IRE ba-
sal tyrosine kinase activity in the absence of the dimerizer,
which may be due to LFv2IRE overexpression on the surface
of HepG2 cells. The 140-kDa band comigrated with a band rec-
ognized by the anti-HA antibody used to blot the same mem-
brane (Fig. 3, middle), absent in noninfected cells and corre-
sponding to the LFv2IRE receptor. A double band was detected
with the anti-HA antibodies: the lower band of the doublet may
represent an LFv2IRE degradation product not including some
tyrosine-phosphorylated residues. The amount of LFv2IRE in
the samples corresponding to transduced hepatocytes was sim-
ilar, suggesting that the difference in intensity of the 140-kDa
band detected by the anti-PY antibodies is due to different lev-
els of LFv2IRE tyrosine phosphorylation. These data demon-
strate that in AAV-transduced HepG2 cells, AP20187 induces
tyrosine phosphorylation of a band with the same molecular
weight as LFv2IRE and that this is dependent on the AP20187

dose. In addition, 500 nM AP20187 stimulates maximal
LFv2IRE tyrosine phosphorylation in this system.

Interestingly, the levels of tyrosine phosphorylation of a 95-
kDa band increased only in the lanes corresponding to insulin-
stimulated uninfected HepG2 cells when compared with non-
stimulated cells (Fig. 3, top). The intensity of the same band
did not increase significantly on AP20187 stimulation in the
lanes corresponding to AAV2/1-infected cells. The 95-kDa
band comigrated with a band recognized by the anti-IR anti-
bodies used to blot the same membrane (Fig. 3, bottom). There-
fore, a band comigrating with the IR� chain was tyrosine phos-
phorylated as expected in HepG2 cells on insulin stimulation,
but not in AAV2/1-infected cells on AP20187 stimulation. This
suggests that in AAV2/1-infected cells AP20187-induced tyro-
sine phosphorylation of substrates occurs independently of en-
dogenous IR stimulation. An additional 140-kDa band (present
in the lanes for AAV2/1-infected cells) was recognized by the
anti-IR antibodies, suggesting that the anti-IR antibody recog-
nizes both the endogenous insulin receptor as well as the chi-
meric LFv2IRE (Fig. 3, bottom).

To demonstrate that AP20187 stimulation of tyrosine phos-
phorylation is dependent on the amount of LFv2IRE expressed
from AAV2/1-treated HepG2 cells, cells were not infected or
infected with various vector doses and stimulated with either
no drug, 2.5 �M AP20187, or 10–7 M insulin (Fig. 4). Infec-
tion of HepG2 cells with increasing doses of vector resulted in
the production of increasing amounts of LFv2IRE (Fig. 4, sec-
ond panel from top), which were correspondingly phosphory-
lated on tyrosine residues on addition of AP20187 but not of
insulin (Fig. 4, top). Interestingly, the rate of LFv2IRE phos-
phorylation in infected nonstimulated cells was proportional to
the MOI of AAV2/1 used for the infection, suggesting that chi-
meric receptor basal activity is directly related to the amount
of LFv2IRE expressed on the cell surface. The level of tyro-
sine phosphorylation of a 185-kDa band increased with vector
dose in the lanes corresponding to AAV2/1-infected cells (Fig.
4, top). The same band was also evident in the lanes corre-
sponding to insulin-stimulated HepG2 cells, either infected or not
(Fig. 4, top). This band comigrated with that recognized by the
anti-IRS-1 antibodies used to blot the same membrane (Fig. 4,
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FIG. 4. Protein tyrosine phosphorylation in AAV-infected
HepG2 cells on AP20187 administration: vector dose depen-
dency of protein phosphorylation. Top: HepG2 cells were in-
fected with various doses of AAV2/1-TBG-LFv2IRE, and were
stimulated with AP20187 or insulin. Proteins from total cellu-
lar lysates were blotted with anti-phosphotyrosine (�PY, top
panel), anti-HA (�HA, second panel from top), anti-insulin re-
ceptor � chain (�IR�, third panel from top), or anti-insulin re-
ceptor substrate 1 (�IRS1, bottom panel) antibodies. Molecu-
lar masses (kDa) are indicated on the left.

FIG. 5. Protein tyrosine phosphorylation in AAV-infected
HepG2 cells on AP20187 administration: time course after drug
stimulation. HepG2 cells were infected with AAV2/1-TBG-
LFv2IRE and stimulated with AP20187 or insulin (top), and
lysed at various times after stimulation. Proteins from total cel-
lular lysates were blotted with either anti-phosphotyrosine
(�PY, top panel) or anti-HA (�HA, bottom panel) antibodies.
Molecular masses (kDa) are indicated at the left.



bottom). This demonstrates that in AAV2/1-infected cells
AP20187 induces tyrosine phosphorylation of a protein with the
same molecular weight as the canonical IR substrate IRS-1, as it
occurs in HepG2 cells stimulated with insulin. This stimulation
depends on the amount of LFv2IRE expressed. In cells infected
with different doses of vector and stimulated with insulin, in-
stead, tyrosine phosphorylation of the 185- and 95-kDa bands,
corresponding to IRS-1 (Fig. 4, bottom) and to the IR� chain
(Fig. 4, third panel from top), respectively, were both similar and
independent of the amount of LFv2IRE expressed, suggesting
that in infected HepG2 cells insulin triggers endogenous tyrosine
kinase activity of IR that does not cross-talk with the recombi-
nant LFv2IRE expressed on the surface of the same cells.

We then performed a time course experiment on HepG2
cells infected and stimulated with the same doses of vector and
AP20187, respectively (Fig. 5). Total cellular lysates, sepa-
rated by SDS–PAGE, transferred to a nitrocellulose filter, and
blotted with anti-PY antibodies showed that tyrosine phos-
phorylation of the 140-kDa band, corresponding to LFv2IRE
(Fig. 5, bottom), was evident 5 min after addition of the drug
and increased until 30 min of AP20187 stimulation (Fig. 5,
top). Blotting the same membrane with anti-HA antibodies
showed that similar amounts of LFv2IRE were present in the
lysates. In addition, tyrosine phosphorylation of the 185-kDa
band, presumably corresponding to IRS-1, followed the same
trend in time of tyrosine phosphorylation as LFv2IRE on
AP20187 (Fig. 5, top). The same band is tyrosine-phosphory-
lated in uninfected HepG2 cells stimulated with insulin. This
result suggests that AP20187 is able to rapidly bind and acti-
vate LFv2IRE, similar to the insulin–IR interaction. Unlike in-
sulin, the AP20187 half-life is 5 hr, after its systemic admin-
istration in mice (data available through the ARIAD Website:
www.ariad.com). This could cause hypoglycemia once the chi-

meric receptor is expressed in diabetic insulin target tissues
and AP20187 is administered. It is therefore crucial to test this
in vivo in animal models of diabetes and to consider potential
modifications of the AP20187 molecule to achieve a shorter
in vivo half-life.

To confirm the identity of the substrates of AP20187-in-
duced tyrosine phosphorylation in HepG2 cells infected with
AAV2/1-TBG-LFv2IRE, a series of immunoprecipitation ex-
periments using antibodies for specific substrates was per-
formed. Total cellular proteins from AAV-infected and nonin-
fected HepG2 cells, stimulated or not with AP20187 or insulin,
were immunoprecipitated with anti-HA (Fig. 6A), anti-IRS-1
(Fig. 6B), or anti-IR (Fig. 6C) antibodies. The immunocom-
plexes were subjected to SDS–PAGE, transferred to a nitro-
cellulose filter, and blotted with either anti-PY or the specific
antibody used for the immunoprecipitation. In Fig. 6A (top),
phosphorylation of the 140-kDa band corresponding to
LFv2IRE seemed stronger in the sample corresponding to in-
fected HepG2 cells stimulated with AP20187 than in that cor-
responding to nonstimulated infected cells. The higher levels
of LFv2IRE tyrosine phosphorylation were due to higher
amounts of LFv2IRE phosphotyrosine content and not to higher
amounts of immunopurified proteins because the amount of im-
munoprecipitated LFv2IRE was higher in the lane correspond-
ing to nonstimulated cells than to AP20187-stimulated cells
(Fig. 6A, bottom). To quantify the different phosphorylation
levels between the bands in lanes 1 and 2 of Fig. 6A, densito-
metric analysis of the bands detected by both anti-PY and anti-
HA antibodies was performed. This revealed a 2.1-fold increase
in the signal in lane 1 compared with lane 2. A stronger dif-
ference between AP20187-treated and -untreated cells would
be expected from the data in Fig. 4. Although the tyrosine phos-
phorylation of LFv2IRE in Fig. 6A, lane 2, confirmed the ba-
sal tyrosine kinase activity of the chimeric receptor in the ab-
sence of the inducer drug, the higher levels of LFv2IRE and
IRS-1 (see Fig. 6B) basal phosphorylation observed in the im-
munoprecipitates than in the total lysates (Fig. 4) may be due
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FIG. 6. AP20187-induced tyrosine phosphorylation of
LFv2IRE, IRS-1, and IR� immunopurified from AAV-infected
HepG2 cells. Cells were infected (first two lanes of each panel)
or not (second two lanes of each panel) with AAV2/1-TBG-
LFv2IRE and stimulated with AP20187 or insulin. Lysates were
immunoprecipitated with anti-HA (A), anti-IRS-1 (B), and anti-
IR� (C) antibodies. For each panel, proteins were blotted with
either anti-phosphotyrosine (�PY, top) or the specific antibody
used for the immunopurification (bottom). Arrows on the left
indicate LFv2IRE (A), IRS-1 (B), and IR� (C).
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FIG. 7. Glycogen synthase activity in AAV-infected primary
fibroblasts on AP20187 administration. Human primary fibro-
blasts were infected (horizontally and vertically striped columns)
or not (hatched and open columns) with AAV2/1-CMV-LFv2IRE
and either stimulated with AP20187 (vertically striped column)
or insulin (hatched column) or nonstimulated (open and horizon-
tally striped columns). After stimulation cells were collected and
subjected to glycogen synthase assay. Ctd, uninfected fibroblasts;
INS, insulin.

http://www.ariad.com


to the specific protein concentration obtained after immuno-
precipitation. No LFv2IRE was immunoprecipitated from non-
infected HepG2 cells, as expected. The results of Fig. 6A dem-
onstrate that AP20187 stimulates LFv2IRE tyrosine
phosphorylation in AAV-infected HepG2 cells. In Fig. 6B, ty-
rosine phosphorylation of IRS-1 immunopurified from infected
HepG2 cells was stronger in AP20187-treated cells than in un-
treated cells. As expected, IRS-1, immunoprecipitated from
noninfected HepG2 cells, was tyrosine phosphorylated only in
the insulin-treated sample (2.7-fold increase compared with the
untreated sample by densitometric analysis after normalization,
using the bands detected by the anti-IRS-1 antibody). These re-
sults demonstrate that, together with LFv2IRE, AP20187 stim-
ulates IRS-1 tyrosine phosphorylation in infected HepG2 cells,
similar to insulin. Finally, lysates from infected and noninfected
HepG2 cells, stimulated with either AP20187 or insulin, were
immunoprecipitated with anti-IR antibodies and blotted with ei-
ther anti-PY or anti-IR antibodies (Fig. 6C). IR tyrosine phos-
phorylation was evident only in the lane corresponding to
HepG2 cells stimulated with insulin, as expected. Similar
amounts of IR were present in the immunoprecipitated samples
as evident from the blot with anti-IR antibodies. The absence
of IR tyrosine phosphorylation in AAV-transduced HepG2 cells
stimulated with AP20187 confirms that protein tyrosine phos-
phorylation by LFv2IRE occurs independently from IR.

To test whether AP20187 stimulation of LFv2IRE resulted
in insulin-like biological effects, human primary fibroblasts
were either infected or not with AAV2/1-CMV-LFv2IRE and
stimulated or not with either insulin or AP20187 (Fig. 7). Glyco-
gen synthase activity was measured to functionally evaluate in-
sulin signaling pathway induction. Cells infected with AAV and
stimulated with AP20187 had higher levels of glycogen syn-
thase activity than did untreated fibroblasts. The level of
AP20187-induced glycogen synthase activity in LFv2IRE-ex-
pressing cells was similar to that of uninfected cells on insulin
stimulation.

In conclusion, we describe a system for pharmacological reg-
ulation of the insulin signaling pathway. This is obtained via
the reversible activation of a chimeric insulin receptor with a
small-molecule drug. We show that this system, transduced via
viral vectors into human hepatocytes and fibroblasts, has bio-
chemical and functional properties similar to the insulin–insulin
receptor system. As for any ideal regulatable system, we show
that its activity is dependent on the dose of chimeric receptor
expressed as well as of drug administered. This system can be
tested in vivo in animal models of IR deficiencies or of type I
diabetes for its ability to rescue glucose homeostasis. Ideally,
coupling this to transcutaneous measurement of blood glucose
levels may represent a noninvasive strategy to treat these dis-
eases. Finally, the AP20187–LFv2IRE system can be used in
vivo to dissect the contribution of insulin target tissues to the
hormone actions.
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Ocular neovascularization associated with proliferative diabetic retinopathy and age-related
macular degeneration is the leading cause of severe visual loss in adults in developed countries.
Physiological and pathological retinal angiogenesis may occur independently in postnatal life
through the complex activation of pro- and antiangiogenic pathways. We report that the Sonic
hedgehog (Shh) pathway is activated in the retina in animal models of retinal and choroidal
neovascularization. We show that pharmacological inhibition of the Shh signaling pathway
significantly reduces physiological retinal angiogenesis and inhibits pathological vascularization in
both models. Under retinal hypoxic conditions, inhibition of the Shh pathway results in reduction of
vascular endothelial growth factor (VEGF) level, along with that of Patched-1 (Ptch1), a canonical
Shh target, thus placing Shh activation upstream of VEGF in experimental retinal neovascularization.
Our data demonstrate the requirement of the Shh pathway for retinal angiogenesis and its
inhibition as a potential therapeutic strategy targeting ocular neovascular disease.
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INTRODUCTION

Exudative age-related macular degeneration (AMD) [1],
proliferative diabetic retinopathy (PDR) [2], and retinop-
athy of prematurity (ROP) [3] are the most common
causes of severe visual loss in adults and neonates in the
developed world. Although different in etiology, their
severe forms share as a common feature the proliferation
of vessels in the retina or choroid (ocular neovasculari-
zation) [4]. The role of retinal ischemia promoting
aberrant vessel proliferation in PDR and ROP is well
established and is also likely to be an important factor in
the development of choroidal neovascularization (CNV)
in exudative AMD. Pathological angiogenesis may result
in subretinal, intraretinal, or intravitreal hemorrhages,
tractional retinal detachment [5], or rubeosis irides
formation, all potentially leading to blindness. To date,
no nondestructive and sustained treatment modalities
are available for ocular neovascular disease [5].

During the development of the physiological retinal
vasculature, gradients in oxygen tension drive the branch-
ing of the retinal vascular bed from the center to the
THERAPY Vol. 13, No. 3, March 2006
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periphery of the tissue [4]. The molecular cues responsible
for pathological and/or physiological angiogenesis have
only partially been elucidated. The balance between
proangiogenic signals such as vascular endothelial growth
factor (VEGF), angiopoietins [6], or insulin-like growth
factor-1 [7] and antiangiogenic molecules, including pig-
ment epithelial-derived factor [8] or maspin [9], is regarded
as being the principal factor promoting endothelial cell
proliferation and migration. The hypoxia-induced cascade
of events leading to angiogenesis is being elucidated. The
present challenge is to identify new molecular players and
define their hierarchy in this process.

Sonic hedgehog (Shh) is a secreted morphogen impli-
cated in a multiplicity of developmental and postnatal
processes [10,11]. Shh is expressed throughout retinal
development [12], while in the differentiated retina it
localizes to the ganglion cell layer [13]. The subsets of
retinal cells that respond to Shh signaling are astro-
cytes [14] and Müller glial cells [15]. The interaction of
Shh with the Patched-1 (Ptch1) transmembrane recep-
tor induces intracellular signaling through the pathway
573
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activator Smoothened (Smo), resulting in the tran-
scription of Gli and Ptch1 itself, among others [16]. A
group of pharmacological inhibitors of the Shh path-
way are the veratrum-derived steroid alkaloids, e.g.,
cyclopamine, which act as repressors by binding
directly to Smo [17,18]. Cyclopamine administration
in animal models reduces the size and spreading of
tumors in which Shh is activated [19–23]. Lately, Shh
has been implicated in angiogenesis by upregulating
three isoforms of VEGF-A and angiopoietin-1 and -2
[24–26]; Shh administration induces corneal neovascu-
larization and increases capillary density and tissue
perfusion in a hind-limb model of ischemia [24]. The
Shh pathway is induced in the hind-limb ischemia
model and its inhibition with Shh-blocking antibodies
reduces the angiogenic response to ischemia [27].
Although Shh is required for normal retinal neuronal
development [12,15], its role in physiological and
pathological ocular neovascularization is unknown.
We investigated the involvement of the Shh pathway
in physiological murine retinal vasculogenesis and its
role in the development of aberrant neovascularization
in well-characterized models of ROP [28] and CNV [5].

RESULTS AND DISCUSSION

Development of retinal vascularization in mice occurs
from postnatal day (P) 0 until P18 when the vascular bed
develops from the optic nerve to the periphery of the
retina [4]. This centrifugal development of retinal vascu-
lature can be appropriately appreciated at P5 [29]. To
assess the potential role of the Shh pathway during the
development of the physiological retinal vasculature,
C57BL/6J mice received daily systemic administration of
the selective Shh pathway inhibitor cyclopamine
between P1 and P4, and we analyzed the extent and
morphology of the superficial vascular layer at P5 by
immunofluorescence of retinal whole mounts stained for
a vascular endothelial marker (Fig. 1). Despite similar
development in the extension of the neural retina, we
FIG. 1. Cyclopamine inhibits the development of

retinal vasculature in neonatal mice. Immunofluores-

cence analysis with anti-collagen IV antibody of P5

retinal flat mounts from animals treated with daily

subcutaneous injections of either cyclopamine (50

mg/kg, from P1 to P4, right) or vehicle alone (left).
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observed a significant reduction in the vascular area in
cyclopamine-treated animals compared with vehicle-
treated controls (n = 11 retinae/group; mean F SEM
vascular area in the cyclopamine-treated animals, 15.75 F
1.82 Am2; mean F SEM vascular area in the vehicle-treated
animals, 10.81 F 0.62 Am2; P b 0.034), demonstrating that
the Shh pathway is an important component of normal
retinal angiogenesis.

Next, we sought to investigate the involvement of the
Shh pathway in murine models of ROP and CNV. We
observed upregulation of Shh and Ptch1 expression
similar to that of VEGF in both ROP and CNV retinae
compared with age-matched controls (Fig. 2A). The fold
increase in expression compared with normal retinae
varied from 1.28 times in the case of the Ptch1 transcript
in the ROP retinae to 2.5-fold in the case of Shh in the
CNV retinae (Fig. 2B). We observed a similar increase in
the Ptch1 protein in the ROP retinae compared with
normal controls (not shown). To confirm the activation
of the Shh pathway in the ROP retinae, we measured the
levels of the Shh direct transcriptional target Ptch1 by
real-time PCR analysis. The levels of Ptch1 were higher in
the ROP than in the wild-type retinae (n = 18 retinae/
group; mean F SEM Ptch1/Gapdh transcript in the ROP
animals, 1.35 F 0.32; mean F SEM Ptch1/Gapdh tran-
script in the controls, 0.76 F 0.07). Therefore, expression
of Shh and of its transcriptional target Ptch1 is upregu-
lated in murine ischemia-induced (ROP) or laser-induced
(CNV) ocular neovascularization.

To test whether Shh upregulation plays a role in ocular
neovascularization, we administered the selective Shh
inhibitor cyclopamine to both ROP and CNV models.
Systemic (subcutaneous) administration of cyclopamine
substantially inhibited neovascularization in the ROP
model as assessed by retinal angiography (Fig. 3A).
Histological analysis of ROP retinal sections showed the
presence of endothelial cells and capillaries over the inner
limiting membrane, which are reduced in the retina of
ROP animals treated with cyclopamine (Fig. 3B). We
quantified inner retinal neovascularization by counting
MOLECULAR THERAPY Vol. 13, No. 3, March 2006
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FIG. 2. Upregulation of the Shh pathway in the retina of animal models with

neovascular disease. (A) RNA from six animals per group was isolated from

whole retinae, retrotranscribed and PCR-amplified with specific primers under

semiquantitative conditions. Each lane is representative of three animals (six

retinae). Bands corresponding to Shh, Ptch1, and VEGF are more abundant in

the samples from the CNV and ROP than from the control retinae. (B) Fold-

increase of Shh, Ptch1, and VEGF expression in the ROP (black bars) and CNV

(white bars) relative to control samples. The intensity of the bands in A was

quantified, and the values from the Shh, Ptch1, and VEGF bands were

normalized to those from the actin bands and compared between the ROP or

CNV group and the control retinae.
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endothelial cell nuclei located internal to the inner
limiting membrane in serial, paraffin sections. The num-
ber of endothelial cell nuclei was significantly lower ( P b

0.001) in eyes from ROP animals treated with cyclopamine
(n = 10; mean F SEM nuclei, 7.66 F 1.74) than in those
injected with vehicle alone (n = 10; mean F SEM nuclei,
19.33F 1.24). These results demonstrate that activation of
the Shh pathway plays a crucial role in establishing
hypoxia-induced retinal neovascularization in mice.

Systemic administration of cyclopamine also inhibited
laser-induced CNV in adult mice (Fig. 4). We ruptured
Bruch’s membrane in both eyes of adult mice using a high-
powered diode laser. This stimulates the formation of
subretinal neovascularization arising from the chorioca-
pillaris, which is maximal approximately 14 days post-
laser induction. We performed fundus fluorescein angiog-
raphy (FFA; Fig. 4A) at this stage and used it to quantify the
areas of induced CNV in cyclopamine-treated and vehicle-
only treated animals. Systemic cyclopamine delivery
resulted in significant inhibition of CNV formation
compared with vehicle-only control animals ( P b 0.01).
CNV complexes in animals receiving daily cyclopamine
(n = 39; mean F SEM pixels, 2078.9 F 262.7) were 59.1%
smaller than those in vehicle-only treated animals (n = 37;
mean F SEM pixels, 5087.4 F 1098.9). The potential side
MOLECULAR THERAPY Vol. 13, No. 3, March 2006
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effects on retinal function and morphology from the
inhibition of the Shh pathway remain to be evaluated in
the neonatal as well as the adult retina.

To characterize Shh targets following its activation
under retinal hypoxic conditions we used in situ hybrid-
ization to assess the tissue distribution at P13 of Ptch1
and VEGF in wild-type, ROP, and cyclopamine-treated
ROP retinae. Both VEGF and Ptch1 transcripts were
upregulated in the inner nuclear layer of the ROP retinae
compared to normoxic controls, and this was inhibited
by cyclopamine treatment (Figs. 5A–5F). We further
analyzed cyclopamine-induced reduction of VEGF levels
in the ROP retinae at the protein level. VEGF immunos-
taining showed a significantly stronger signal throughout
the inner retina, including the inner nuclear layer, inner
plexiform layer, and ganglion cell layer in the ROP
retinae compared to wild-type controls, and this was
inhibited by cyclopamine treatment (Figs. 5G–5I). There-
fore, hypoxia-induced upregulation of Shh is, at least in
part, responsible for VEGF induction in retinal neo-
vascularization. Our data support a model in which
secretion of Shh by ganglion cells leads to VEGF
upregulation in Shh-responsive cells in the inner nuclear
layer and this in turn leads to retinal neovascularization.

Our results demonstrate that activation of the Shh
pathway is an important component in the development
of both mature and aberrant retinal vessels. This pathway
may therefore represent a novel and important target
toward which pharmacological or gene-based strategies
for ischemic retinopathies and exudative AMD could be
developed.
MATERIALS AND METHODS

ROP model, retinal angiography, and immunofluorescence of

whole-mount preparation. All animals used in this study were maintained

humanely with proper institutional approval and in accordance with the

Association for Research in Vision and Ophthalmology Statement for the Use

of Animals in Ophthalmic and Vision Research. C57BL/6J mice [Harlan, S.

Pietro al Natisone (UD), Italy] were used. The ROP model was generated as

described by Smith et al. [28]. P17 ROP animals were deeply anesthetized

with avertin (2,2,2-tribromoethanol; Sigma–Aldrich, Milan, Italy). Retinal

angiography was performed by transcardiac perfusion with 1.5 ml of a 50

mg/ml solution of 2 million molecular weight fluorescein isothiocyanate

dextran (Sigma–Aldrich) in phosphate-buffered saline (PBS). The retinae

were flat mounted, and retinal vasculature was examined using a

fluorescence dissection microscope (Leica Microsystems, Milan, Italy).

CNV induction, in vivo fluorescein angiography, and quantification of

CNV area. Adult mice were anesthetized with an intraperitoneal injection

of 0.15 ml of a mixture of Domitor 1 mg/ml (medetomidine hydro-

chloride; Pfizer Pharmaceuticals, Kent, UK) and ketamine (100 mg/ml; Fort

Dodge Animal Health, Southampton, UK) mixed with sterile water for

injections at the ratio 5:3:42. The pupils of all animals were dilated using

topical 1% tropicamide and 2.5% phenylephrine (Chauvin Pharmaceut-

icals, Essex, UK). A slit-lamp-mounted diode laser system (wavelength 680

nm; Keeler UK) was used to deliver three laser burns to the retina of each

eye approximately three to four disc diameters from the optic disc,

avoiding major retinal vessels (laser settings 210 mW, 100 ms duration,

100 Am diameter). These settings consistently generate a subretinal gas
575



FIG. 3. Cyclopamine inhibits murine hypoxia-induced (ROP) retinal neovascularization. (A) Angiographic and (B) histological photographs of ROP retinae at P17

from animals treated with daily (P12 to P16) subcutaneous injections of cyclopamine (50 mg/kg) (right) or vehicle alone (left). Neovascular areas after in vivo

perfusion with fluorescein isothiocyanate dextran are evident as tufts and effusions (indicated by arrowheads) in the ROP retinae and substantially reduced or

absent in the control retinae (n = 13/group). PAS staining (B) of retinal sections confirmed that pathological capillaries internal to the inner limiting membrane in

the ROP retinae are importantly reduced when ROP animals are administered with cyclopamine. RPE, retinal pigment epithelium; ONL, outer nuclear layer; INL,

inner nuclear layer; GCL, ganglion cell layer; arrowheads, neovascular capillaries.

FIG. 4. Cyclopamine inhibits murine laser-induced choroidal neovascularization. (A) Representative early phase fundus fluorescein angiograms from control and

cyclopamine-injected animals. Hyperfluorescence (arrowheads) at this phase of dye transit represents the areas of the induced CNV membranes. (B)

Representative H&E-stained 6-Am-thick paraffin sections of eyes demonstrating smaller subretinal CNV complexes (arrows) in cyclopamine-treated animals. RPE,

retinal pigment epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
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FIG. 5. Cyclopamine inhibits Ptch1 and VEGF expression induced by retinal ischemic conditions. Sections of P13 retinae from wild-type, ROP, and ROP animals

treated for 1 day (P12) with a subcutaneous injection of cyclopamine or vehicle alone are shown. (A–C) In situ hybridization shows upregulation of the Ptch1

transcript (blue signal) in the inner nuclear layer of the ROP retina (B), while cyclopamine treatment results in the inhibition of Ptch1 induction (C). (D, I)

Similarly, VEGF mRNA and protein are upregulated in the inner retina of ROP animals (E, H), whereas (F, I) upon cyclopamine treatment their levels remain low.

RPE, retinal pigment epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
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bubble that strongly correlates with adequate laser-induced rupture of

Bruch’s membrane. Anesthesia in the mice was reversed using 0.15 ml of

Antisedan (atipamezole hydrochloride 0.10 mg/ml; Pfizer). Animals then

received daily injections of either 50 mg/kg cyclopamine (n = 10, see

below) or vehicle alone (n = 10). FFA was performed 2 weeks after laser

injury as this time point corresponds to the period of maximum angio-

genesis in this model. Pupils of both eyes were dilated as before and 0.2 ml

of 2% sodium fluorescein was injected into the peritoneal cavity. A Kowa

Genesis small animal fundus camera was used to obtain fundal photo-

graphs of the CNV lesions in all eyes taken approximately 90 s after

intraperitoneal fluorescein administration. Eyes in each treatment group

were excluded if they developed significant lens or corneal opacities, as

this would preclude laser CNV induction or FFA. Eyes were also excluded if

any of the induced CNV lesions had coalesced. The fundal photographs

were digitized and the number of pixels representing the areas of

hyperfluorescence quantified using image analysis software (Image Pro

Plus, Media Cybernetics, Silver Spring, MD, USA).

Cyclopamine and vehicle administration. Cyclopamine (Toronto

Research Chemicals, Toronto, Canada, and Biomol Research Labs, Ply-

mouth Meeting, PA, USA) was resuspended and administered as described

by Berman et al. [19]. Animals treated with vehicle received an injection

of the same solution in which cyclopamine was resuspended.
MOLECULAR THERAPY Vol. 13, No. 3, March 2006
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RNA extraction, semiquantitative RT-PCR, and quantitative real-time

PCR. ROP retinae at P13 (1 day after 75% oxygen exposure) were

harvested and pooled for RNA extraction. CNV retinae were harvested 3

days after laser burning and pooled for RNA extraction. Total and poly(A)+

RNAs were isolated from retinae of CNV and ROP animals treated or not

with cyclopamine and from wild-type age-matched control mice using

TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) and the Oligotex mRNA

purification kit (Qiagen, Milan, Italy). For semiquantitative RT-PCR

analysis cDNA was synthesized from 100 ng of each mRNA using the

Omniscript kit (Qiagen). For Shh the primers used were Shh-F,

GACAGCGCGGGGACAGCTCAC, and Shh-R, CCGCTGGCCCTAC-

TAGGGTCTTC. The reaction was carried in 20 Al final volume, 1.5 mM

MgCl2 and 1% DMSO. The PCR cycles were 1 min at 948C, 1 min at 608C,

1 min at 728C for 29 cycles. For VEGF the primers used were VEGF-F,

GCACTGGACCCTGGCTTTAC, and VEGF—R, GCACTCCAGGGCTT-

CATCGT. The reaction was carried out in 20 Al final volume, 1.5 mM

MgCl2. The PCR cycles were 1 min at 948C, 1 min at 588C, 1 min at 728C
for 27 cycles. For Ptch1 the primers used were Ptch1-F, CGCTCTGGAG-

CAGATTTCC, and Ptch1-R, CCCACAACCAAAAACTTGCC. The reaction

was carried in 20 Al final volume, 1.5 mM MgCl2. The PCR cycles were 1

min at 948C, 1 min at 608C, 1 min at 728C for 28 cycles. For actin the

primers used were Actb-F, AGATGACCCAGATCATGTTTGAGACCTTC,

and Actb–R, TTGCGCTCGGAGGAGCAATGATCTTGATC. The reaction
577
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was carried in 20 Al final volume, 1.5 mM MgCl2. The PCR cycles were 1

min at 948C, 1 min at 608C, 1 min at 728C for 28 cycles. The measurement

of the band intensities was performed with the Quantity One 4.1.1

software included in the Gel Doc 2000 gel documentation system (Bio-

Rad, Milan, Italy). Real-time PCR analysis was performed on mRNA

extracted from the retinae of the above-mentioned mice to analyze the

Ptch1 transcript. The probe was synthesized using the Applied Biosystems

Assays-by-Design software and indeed met the established criteria for

TaqMan probes (Applied Biosystems, Foster City, CA, USA). Each probe

was labeled with FAM at the 5V end and MGB at the 3V end. All reactions

(30 Al) were performed with 100 to 200 ng of mRNA, 15 Al of Master Mix

Reagent (Applied Biosystems), 120 pmol of TaqMan probe, and 10 AM of

each specific primer. The following amplification conditions were used:

10 min at 258C, 30 min at 488C, and 10 min at 958C. These conditions

were followed by 40 cycles of denaturation for 15 s at 958C and annealing

for 1 min at 608C. The amplification was performed using the ABI Prism

7000HT sequence detection system (Applied Biosystems) equipped with a

96-well thermal cycler. Data were collected and analyzed with the

Sequence Detector software (version 2.0; Applied Biosystems). All the

reactions were performed in triplicate and were normalized against Gapdh

and tubulin detected with specific primers/probes (Applied Biosystems)

labeled with VIC at the 5V end and with TAMRA at the 3V end.

Western blot analysis of retinal extracts. Eyes from both wild-type and

ROP C57BL/6J mice (P13) were collected and the retinae from each mouse

dissected, pooled, and lysed on ice for 30 min in RIPA buffer (25 mM Tris,

pH 8, 50 mM NaCl, 0.5% NP-40, 0.1% SDS, 1 mM PMSF, 5 Ag/ml leupeptin–

aprotinin–0.5 Ag/ml pepstatin A-LAP protease inhibitors). Fifty micrograms

of protein from total retinal lysates were subjected to SDS–PAGE. SDS–

PAGE analysis was performed on 4–7% polyacrylamide gels. The filter was

incubated with anti-Ptch1 (1:200 dilution) (Santa Cruz Biotechnology,

Santa Cruz, CA, USA) and was then stripped and incubated with anti-actin

(1:1000 dilution) (Santa Cruz Biotechnology) antibodies. Rabbit anti-Ptch1

antibodies were detected with HRP-conjugated anti-rabbit antibodies

(Amersham, Piscataway, NJ, USA); goat anti-actin antibodies were detected

with HRP-conjugated anti-goat antibodies (Santa Cruz Biotechnology).

The protein–antibodies complexes were revealed by ECL-Pico chemilumi-

nescence reaction (Celbio, Milan, Italy). Band intensity measurement was

performed with Quantity One 4.1.1 software included in the Gel Doc 2000

gel documentation system (Bio-Rad).

Histology. Eyes from ROP mice sacrificed at P19 were enucleated and

fixed in 4% paraformaldehyde. Eyes were embedded in paraffin,

sectioned at 6 Am, and stained with periodic-acid-Schiff and hematox-

ylin. A blinded observer counted the number of retinal vascular

endothelial cell nuclei on the vitreous surface of the internal limiting

membrane. Eight to fifteen sections/eye were counted, and the counts

were averaged. Some eyes in which CNV was induced were enucleated

14 days after laser injury. Following overnight fixation in 10% neutral-

buffered formalin they were processed and embedded in paraffin. Serial

6-Am sections were cut and stained with hematoxylin and eosin and

examined using light microscopy.

Immunofluorescence of whole-mount preparation and

immunohistochemistry. For immunofluorescence on whole-mount prep-

arations, ROP eyes (P5) were removed and fixed in 4% (w/v) paraformal-

dehyde in PBS. The retinae were dissected and fixed in ice-cold methanol

for 10 min. After incubating in PBS containing 50% fetal calf serum and

1% (w/v) Triton X-100 for at least 1 h at room temperature, the retinae

were incubated overnight at room temperature with a rabbit anti-mouse

collagen IV antibody (Chemicon, Milan, Italy) diluted 1:200 in blocking

buffer. Retinae were washed for 1 h in PBS, incubated for 2 h at room

temperature with Alexa Fluor 594-conjugated goat anti-rabbit IgG

secondary antibody (1:200 dilution in blocking buffer; Molecular Probes,

Invitrogen), washed for 1 h, and mounted. The area of the retinal

vasculature was measured with the imageJ 1.32j software (Wayne

Rasband, National Institutes of Health, Bethesda, MD, USA; http://

rsb.info.nih.gov/ij/). Immunohistochemistry on cryosections was per-

formed as described previously [30]. Rabbit a-VEGF (Santa Cruz Bio-
578
technology) was diluted 1:1000 and incubated on sections for 90 min.

Sections were incubated with biotinylated secondary antibody (Vector

Laboratories, Burlingame, CA, USA; 1:200) and processed using the ABC

histochemical method (Vector Laboratories) for 1 h at room temperature.

Sections were dried and mounted on a coverslip with Permount (Fisher,

Pittsburgh, PA, USA).

In situ hybridization. In situ hybridization was performed as previously

described [31]. Eyes were cryosectioned at 14 Am. Sections from two

different eyes were examined for each probe; images shown are

representative of that seen in both eyes. Antisense and sense digoxige-

nin-labeled riboprobes were generated using a Boehringer transcription

kit, following the manufacturer’s instructions. The VEGF and Ptch1

probes were synthesized from the cDNA generated in the RT-PCR

experiment described above using the following primers: VEGF-F,

ATGAACTTTCTGCTCTCTTGGG; VEGF-R, CACATCTGCTGTGCTG-

TAGG; Ptch1-F, TTCGCTCTGGAGCAGATTTCCAAGG; Ptch1-R,

ATACTTCCTGGATAAACCTTGACATCC. The amplified fragments were

cloned in the pCr2.1 plasmid (Invitrogen). The VEGF and Ptch1 antisense

probes were linearized with SpeI and NotI, respectively, and retrotran-

scribed with T7 (VEGF) and SP6 (Ptch1). The sense control probes were

generated by digestion and retrotranscription with NotI–SP6 (VEGF) and

BamHI–T7 (Ptch1).

Statistical analysis. For the ROP animals and the wild-type neonates, P

values were calculated using the paired Student’s t test. For the CNV

groups, Shapiro–Wilk and D’Agostino and Pearson omnibus normality

tests confirmed the nonnormal distribution of CNV area data. A non-

parametric test for unpaired samples (Mann–Whitney U test) was there-

fore used to analyze for significance ( P b 0.05).
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Vectors based on the adeno-associated virus (rAAV) are able to transduce the
retina of animal models, including non-human primates, for a long-term
period, safely and at sustained levels. The ability of the various rAAV
serotypes to transduce retinal target cells has been exploited to successfully
transfer genes to photoreceptors, retinal pigment epithelium and the inner
retina, which are affected in many inherited and non-inherited blinding
diseases. rAAV-mediated, constitutive and regulated gene expression at
therapeutic levels has been achieved in the retina of animal models, thus
providing proof-of-principle of gene therapy efficacy and safety in models of
dominant and recessive retinal disorders. In addition, gene transfer of
molecules with either neurotrophic or antiangiogenic properties provides
useful alternatives to the classic gene replacement for treatment of both
mendelian and complex traits affecting the retina. Years of successful
rAAV-mediated gene transfer to the retina have resulted in restoration of
vision in dogs affected with congenital blindness. This has paved the way to
the first attempts at treating inherited retinal diseases in humans with rAAV.
Although the results of rAAV clinical trials for non-retinal diseases give a
warning that the outcome of viral-mediated gene transfer in humans may be
different from that predicted based on results in other species, the immune
privilege of the retina combined with the versatility of rAAV serotypes may
ultimately provide the first successful treatment of human inherited diseases
using rAAV.

Keywords: AAV, gene replacement, gene silencing, neurotrophic molecules, retina, 
retinitis pigmentosa
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1.  Adeno-associated virus: advantages and limitations of 
gene transfer vectors

The adeno-associated virus (AAV) is a small (20 – 25 nm in diameter),
non-enveloped, icosahedric, single-stranded (ss) DNA dependovirus belonging to
the Parvoviridae family [1]. AAV was originally isolated as a contaminant of
adenoviral cultures and, thus, given the name adeno-‘associated’ virus. AAV is native
to humans and non-human primates (NHPs), and exists in nature in > 100 distinct
variants, including both those defined serologically as serotypes and those defined by
DNA sequence as genomovars [2,3]. There is no consistent evidence of the
association between AAV infections and human diseases [1]. The AAV genome
(4.7 kb) consists of two sets of open reading frames: rep, required for viral genome
replication; and cap, encoding for the structural proteins [1]. rep and cap are flanked
by viral T-shaped palindromic elements, the inverted terminal repeats (ITRs) that
are 145 nucleotides in length [1]. Each particle contains a single plus- or
minus-strand genome. AAV is a defective virus that is dependent on the presence of
a helper virus, usually adeno or herpes virus, for replication [1]. In vitro experiments
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have demonstrated that, in the absence of the helper virus,
AAV establishes latency by integrating in a site-specific
manner in human chromosome 19q13.3-qter (AAVS1) [4].
AAV rep proteins mediate the interaction between the AAV
ITRs and the AAVS1 locus, and, thus, are instrumental for
AAV site-specific integration [5]. Recently, the status of AAV
genomes from infected human tissues has been shown to be
mainly episomal [6,7].

Conversion of an AAV isolate into recombinant AAV
(rAAV) vectors for gene therapy is obtained by exchanging the
viral coding sequences between the ITRs with the therapeutic
gene [8]. To produce rAAV, the rep and cap genes (as well as the
helper genes) are provided in trans [9]. In the absence of rep,
rAAV loses its site-specific integration ability [10]. rAAV
integration, in cultured cells, is relatively inefficient, with
integration sites clustered throughout the genome and only a
slight overall preference for transcribed sequences [10]. One
strategy for rAAV vector production is based on
co-transfection into permissive cells (usually human
embryonic kidney 293 cells) of three separate plasmids [8,9].
One plasmid contains the viral ITRs (the only viral sequence
retained in rAAV), flanking the therapeutic gene cassette; a
packaging plasmid encodes for the rep and cap proteins; the
helper plasmid for the essential adenoviral helper genes [8,9].
The versatility of rAAV vectors is that the cap genes in the
packaging plasmid can be interchanged between different
AAV serotypes (from AAV1 to n), resulting in the assembly of
hybrid rAAV with the vector genome (encoding the
therapeutic gene) from one serotype, for example, AAV2, and
the capsid from a different AAV, for example, 1 to n [11,12].
These hybrid vectors are named rAAV2/1-n, where the first
number indicates the serotype of origin of the genome, and
the second the capsid [11]. As capsid proteins are the main
determinants of rAAV tropism and transduction
characteristics (intensity and onset of gene expression) [13,14],
vectors with different capsids have different abilities to
transduce target cells in vivo. This can be partly explained by
the presence of specific receptors for AAV serotypes on the
membrane of target cells. For example, in the case of rAAV2/2,
capsid proteins interact with a membrane receptor complex
that includes heparan sulfate proteoglycans, fibroblast growth
factor receptor 1 and integrin [15-17], whereas rAAV2/5
interacts with O-linked sialic acid and platelet-derived growth
factor receptor [18,19]. The absence of the receptor complex for
rAAV2/2 on the luminal surface of airways epithelia and the
presence of O-linked sialic acid explains the ability of
rAAV2/5, but not of rAAV2/2, to transduce lung
in vivo [20,21]. It is highly likely that postentry events can also
be influenced by different AAV viral capsids.

Compared with other viral vectors, rAAV induces little or
no innate immunity, probably due to the lack of viral
sequences other than the ITRs [22]. In addition, rAAV
generally elicits a reduced cellular immune response against
the transgene product, probably due to the inability of rAAV
vectors to efficiently transduce or activate mature

antigen-presenting cells [23]. Both the humoral and
cell-mediated response to the delivered transgene depend on a
number of variables, including the nature of transgene, the
promoter used, the route and site of administration, vector
dose and host factors [24,25]. The greatest part of these
variables can be suitably modified. Humoral and, recently,
cell-mediated immune responses to the rAAV virion capsid
have been consistently detected in animals and humans
following rAAV vector delivery [2,3,26-28]. The presence of
neutralising antibodies and cell-mediated immunity against
protein capsids has been shown to prevent or greatly reduce
the success of vector readministration and to limit the
duration of transgene expression [26-30]. Several studies have
suggested that evasion of the immune response against the
rAAV capsid can be obtained using different AAV serotypes,
by capsid modification or by immunosuppression [24,25].

The major drawback of rAAV vectors is their relatively
small packaging capacity (4.7 kb). Although recent findings
show that rAAV is capable of packaging and protecting
recombinant genomes as large as 6 kb, these larger
genome-containing virions are preferentially degraded by
the proteasome unless proteasome inhibitors are added [31].
Strategies have been developed to overcome the limited
AAV packaging capacity, taking advantage of the
propension of rAAV genomes to form head-to-tail
concatamers through intermolecular recombination [32-36].
Therefore, a gene and its regulatory elements may be split
into two separate rAAV vectors and co-delivered into target
cells, resulting in the formation of head-to-tail
heterodimers of the two rAAV genomes. The presence of
appropriate splicing signal sequences (trans-splicing
method) or overlapping fragments (overlapping method)
allows expression of the large gene following
post-transcriptional processing, such as splicing or
recombination events [32-36]. The efficiency of the process
depends on the entry of two vectors in the same cell.
Injections in the enclosed subretinal space, and in muscle
as a syncitium, favour the entry of both vectors into the
same cell [37]. The combination of trans-splicing and
overlapping methods strongly increases the levels of
transgene expression [38].

The absence of human diseases associated with their
infection, the low toxicity and immunogenicity, the ability to
transduce both dividing and non-dividing cells, and the
possibility of using a specific serotype to transduce a target
tissue make rAAV an ideal candidate for gene therapy.

2.  rAAV serotypes for constitutive and 
regulated gene expression in the retina

The retina is a thin laminar structure in which various cell
layers are in contact with one another, forming an interactive
and functional entity [39]. The retina represents an ideal target
for gene therapy approaches because of the size of the eye,
which allows the use of small vector doses, and because of its
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immunoprivilege [40]. In addition, the presence of the
blood–retinal barrier, the retinal pigmented epithelium (RPE)
and the intracellular junction in the inner retina avoids vector
spreading to the systemic circulation [40]. The efficiency of the
therapy can be easily monitored via non-invasive and
quantitative methods, such as electroretinography (ERG),
ophthalmoscopy, optical coherence tomography, the
measurement of afferent pupillary responses and visual evoked
potentials [40,41]. The retina is the site of many inherited
diseases for which the responsible gene has been identified
and well-characterised animal models resembling human
retinal abnormalities exist [42-44].

rAAVs are promising vectors for gene therapy in the retina
because they can infect non-dividing cells [1], mediate efficient
and prolonged transgene expression [45,46], and are able to
transduce the retina with different cell tropism and
efficiency [11]. To date, rAAV vectors derived from different
serotypes have been used to improve the efficiency of
transduction in different retinal cell layers (Table 1) [14,47,48],
which are affected in many inherited and non-inherited
blinding diseases [39]. Subretinal injections of both rAAV2/2
and rAAV2/5 in rodents can efficiently transduce
photoreceptors (PRs) and RPE cells [14]. rAAV2/5-mediated
transduction peaks at 5 weeks post-treatment, when rAAV2/2
begins to express. Another characteristic of rAAV2/5 is that it
is able to transduce a considerably higher number of PR cells
than rAAV2/2 (400:1, 15 weeks after transduction), reaching
a number of genomic copies per eye > 30 times that of
rAVV2/2 [14,48]. Many of the features of rAAV2/2- and
rAAV2/5-mediated retinal transduction in rodents have been
validated in feline, canine and NHP models [46,49-52]. In
NHPs rAAV2/2 efficiently targets rod cells and RPE, and is
not able to transduce cones, whereas rAVV2/5 appears to be
more efficient than rAAV2/2 in transducing rod PRs [46,51].
The RPE has been efficiently transduced by subretinal
injections of rAAV2/4, which seems exclusive for this cell type
and which allows stabile expression of transgenes in rodents,
canine and NHPs [48,53]. rAAV2/1 and rAAV2/6 exhibit
higher RPE-transduction specificity and efficiency and faster
expression than rAAV2/2 [14,48]. rAAV2/3 poorly transduces
the retina following subretinal administration, possibly due to
the absence of a specific receptor or coreceptor for capsid
binding [48]. rAAV2/2 is the only rAAV vector able following
intravitreal injections to efficiently transduce retinal ganglion

cells (RGCs), the trabecular meshwork and different cells of
the inner nuclear layer [14,54].

rAAV vectors can efficiently transduce neuroprogenital
retinal cells, with transduction characteristics depending on
the time of administration. For example, subretinal
administration of rAAV2/1 at embryonic day 14 (E14) results
in expression of the transgene in various cells types, whereas if
it is given at postnatal day 0 (P0), transgene expression is
confined to RPE and PRs [55]. Similarly, fetal retina is barely
transduced by rAAV2/2, whereas the same vector can
transduce various retinal cell types if given subretinally soon
after birth; finally, although subretinal fetal administration of
rAAV2/5 results in transduction of cone PRs, amacrine and
ganglion cells, when given at birth, rAAV2/5 transduces both
cones and rods, as well as Müller cells [55].

rAAV capsids and the route of administration influence
vector transduction characteristics in the retina. In addition,
the use of tissue-specific promoters can be exploited to restrict
transgene expression to particular cells types in the retina
(Figure 1). Among them, promoter fragments as well as
cis-acting elements from the RPE65 or VMD2 genes have been
coupled to the proper AAV serotype to target RPE [41,52]. In
1997, Flannery et al. [45] used the proximal region of the
mouse rhodopsin promoter located within -385 to +86 (RPPR)
to restrict rAAV2/2 expression specifically to rat PRs. Recently,
Glushakova et al. [56] have shown that this promoter is
PR-specific, but not rod-specific; subretinal injections in rats
of rAAV2/5 expressing RPPR-driven enhanced green
fluorescent protein (EGFP) resulted in both rod and cone
transduction, suggesting that new insights are necessary to
achieve specific transgene expression in PRs.

The level and timing of transgene expression are important
issues to achieve therapeutic effects and to avoid toxicity.
Systems to regulate gene expression at the transcriptional level
have been devised based on promoters that are inducible
following the administration of small molecule drugs [57].
These systems are based on the use of an engineered
transcription factor activated by a small molecule drug and a
target gene whose expression is driven by the transcription
factor. Ideally, such systems should provide gene expression
that is missing in the absence of the inducer drug, inducible
following drug administration and reversible following drug
withdrawal. In addition, gene expression levels should be
dependent on the dose of drug administered [57]. To date,

Table 1. rAAV-serotype tropism in various species following subretinal injection.

Serotype Mouse Rat Dog/cat NHP

rAAV2/1 RPE [14,48] RPE [47]   

rAAV2/2 RPE + PR [14,48] RPE + PR [45,47] RPE + PR [49,50] RPE + PR [46]

rAAV2/4  RPE [53] RPE [53] RPE [53]

rAAV2/5 RPE + PR [14,48] RPE + PR [47] RPE + PR [52] RPE + PR [51]

rAAV2/6 RPE [48]

NHP: Non-human primate; PR: Photoreceptors; rAAV: Recombinant adeno-associated virus; RPE: Retinal pigmented epithelium.
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different pharmacologically regulated systems have been
successfully employed to tightly regulate the level and the
time at which a gene is expressed. In one system, the small
molecule drug used is rampamycin, whose administration
mediates the formation of a complex between the
DNA-binding and the activation domains of a splitted
transcription factor, resulting in its reconstitution and, in
turn, in the expression of a target gene [58,59]. The ability of
the rampamycin-inducible system to obtain regulated
intraocular erythropoietin (EPO) expression in rats and
NHPs has been tested [60,61]. Subretinal injections of a
rAAV2/2 dual-vector system expressing the transcriptional
factor TF1nc and the soluble factor EPO result in intraocular
EPO secretion peaking 3 days after systemic rapamycin
administration and returning to basal levels 21 days later [60].
Minimal expression of the protein was detectable in absence
of rapamycin, and the levels of EPO in the anterior chamber
fluid increased in a dose-dependent manner [60]. Importantly,
EPO expression was still inducible in the NHP retina
2.5 years after a single intraocular AAV administration [61].
Similar results have been obtained using the tetracycline
(tet)-inducible system, in which a silencer/activator vector and
an inducible doxycycline-responsive EGFP vector were
subretinally injected into wild-type rats [62]. Tet-inducible
EGFP expression was detected 1 week after doxycycline oral
administration and became undetectable 2 weeks after
doxycycline removal [62]. Recently, this system has been used
for a therapeutic approach; intravitreal injections of
AAV2/2-tetON-vIL-10 allowed tet-inducible regulated
expression of IL-10, which was effective in protecting the
retina against destruction in a rat model of uveitis, a chronic
human ocular disease [63]. This protection was dependent on
the level of IL-10 present in the aqueous humor/vitreous
body [63]. Similar to the rapamycin-regulated system,
tet-regulated expression of EPO has been induced in the
NHP retina 2.5 years after a single subretinal rAAV2/2
administration [64]. Folliot et al. [65] have tested whether a

single rAAV2/2 encoding for the tet-regulated destabilised
green fluorescent protein (DGFP), rAAV2/2-tetOFF-DGFP,
could provide quantitative profiles of gene regulation in the
rat neuroretina. In this version of the tet system, gene
expression is induced in the absence of the drug, which turns
off gene expression through reversible binding to and
inactivation of the transcription factor. Intravitreal injection
of rAAV2/2tetOFF-DGFP resulted in full expression of the
transgene in RGCs in the absence of doxycycline; 95% of the
DGFP signal was shut down 48 h post-doxycycline
administration and the signal was undetectable 7 days later.
Initial levels of DGFP expression were restored 21 days after
doxycycline withdrawal.

3.  Applications of rAAV-mediated gene 
transfer in animal models of retinal diseases

3.1  Gene replacement for recessive diseases of 
the retina
Proof-of-principle that rAAV-mediated gene transfer can
rescue retinal diseases has been provided in a number of
animal models to date (Table 2). Recessively inherited retinal
degenerations are caused by loss-of-function mutations;
therefore, gene replacement represents the most appropriate
approach for their treatment. The therapeutic gene has to be
directly delivered into the cells in which the gene is normally
expressed, usually PRs or RPE. So far, the most successful
example of gene replacement with rAAV in the retina has
been provided in a model of Leber congenital amaurosis
(LCA). LCA is the earliest and most severe form of inherited
retinal dystrophy, characterised by blindness or severe visual
impairment from birth [66]. LCA is genetically heterogeneous,
and mutations in eight different genes have been associated
with LCA [66,67]. One form of LCA is caused by mutations in
the RPE65 gene and accounts for 10% of all LCA cases [68,69].
The RPE65 gene encodes for a highly conserved protein that
is primarily expressed in the RPE and endowed with

Figure 1. Histological analysis of EGFP expression under ubiquitous and tissue-specific promoters in the adult murine retina
following subretinal delivery of rAAV2/5. Subretinal administration of rAAV2/5 under CMV (A), RHO (B) and OA1 (C) promoters.
Magnification is ×20 for (A) and (B), and ×40 for (C).
CMV: Cytomegalovirus promoter; EGFP: Enhanced green fluorescent protein; GCL: Ganglion cell layer; INL: Inner nuclear layer; OA1: Ocular albinism 1 promoter; 
ONL: Outer nuclear layer; rAAV: Recombinant adeno-associated virus; RHO: Rhodopsin promoter; RPE: Retinal pigment epithelium.
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isomerase activity for the rhodopsin ligand 11-cis-retinal [70].
A genetically engineered murine model, a naturally occurring
murine model and a canine model (Swedish Briard dog) of
LCA with RPE65 deficiency have been described [71-73]. In
these models, non-adequate levels of visual pigment result in
very poor vision and severely depressed ERG responses [71,72].
rAAV2/5-RPE65 administration in the naturally occurring
rd12 murine model of LCA restores its vision-dependent
behaviour, as well as its retinal structure and function [74]. In
addition, PR function can be restored in RPE65-/- mice

following either early postnatal or in utero administration of
rAAV2/1-RPE65 vectors [75]. These data provide proof that
gene therapy for RPE65-associated LCA is efficacious using
rAAV serotypes, allowing efficient RPE transduction and
showing proof-of-principle of the feasibility of in utero gene
transfer for blinding congenital retinal diseases. Importantly,
subretinal delivery of an rAAV2/2-RPE65 in the Swedish
Briard dog results in structural and biochemical recovery of
the retina and visual cycle that induces stable and long-term
restoration of visual function, as assessed by psychophysical

Table 2. Status of rAAV vector applications in animal models of retinal diseases.

 Transgene Animal model Disease Reference

Gene replacement 
therapy

RPE65

RPGRIP
PDE6β
Peripherin
Mertk
Rs1
OA1
4S
GUSB
PPt-1

Briard Dog
Rd12
RPE65-/- mouse
RPGRIP-/- mouse
Rd1 mouse
Rds mouse
RCS rat
Rs1-/- mouse
OA1-/- mouse
MPSVI cat
MPSVII mouse
INCL mouse

LCA
LCA
LCA
LCA
RP
RP
RP
X-linked retinoschisis
X-linked OA1
MPSVI
MPSVII
INCL

[49,52,76,77]
[74]
[75]
[81]
[82]
[83-85]
[88]
[93,94]
[98]
[50]
[99]
[100]

Inhibition of gene 
expression

P23H ribozymes
P23H siRNA

P23H rat
P23H rat

RP
RP

[116,117]
[124]

Neurotrophic molecules FGF-2

FGF-5, -18

EPO

CNTF

GDNF

BDNF
XIAP

S334ter rat
Light damage rat
Rat glaucoma model
P23H rat
S334ter rat
Light damage rat
Rds mouse
Rd10
Rhodopsin-/- mouse
P23H rat
S334ter rat
Rds mouse
P216Lrds/+ mouse
Rd1 mouse
S334ter rat
Rat glaucoma model
Rat glaucoma model

RP
RP
Glaucoma
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
Glaucoma
Glaucoma

[130]
[132]
[146]
[131]
[131]
[137]
[137]
[137]
[138]
[139]
[139]
[139,141]
[140]
[143]
[144]
[145]
[147]

Antineovascular factors SFlt-1

PEDF

Angiostatin
K1K3
Endostatin
TIMP-3
ZFP activating PEDF
ZFP inhibiting VEGF

ROP mouse
CNV rat
TrVEGF029
CNV monkeys
CNV mouse
ROP mouse
CNV rat
ROP mouse
ROP mouse
ROP mouse
CNV mouse
CNV mouse

ROP
CNV
Retinal NV
CNV
CNV
ROP
CNV
ROP
ROP
ROP
CNV
CNV

[167]
[169]
[171]
[171]
[172,173]
[61]
[179]
[173]
[180]
[180]
[182]
[182]

BDNF: Brain-derived neurotrophic factor; CNTF: Ciliary neurotrophic factor; CNV: Choroidal NV; EPO: Erythropoietin; FGF: Fibroblast growth factor; 
GDNF: Glial cell-derived neurotrophic factor; INCL: Infantile neuronal ceroid lipofuscinosis; LCA: Leber congenital amaurosis; MPS: Mucopolysaccharidosis; 
NV: Neovascularisation; OA1: Ocular albinism 1;  PEDF: Pigment epithelium-derived factor; rAAV: Recombinant adeno-associated virus; 
ROP: Retinopathy of prematurity; RP: Retinal pigmentosa; VEGF: Vascular endothelial growth factor; ZFP: Zinc-finger protein transcription factor.
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testing and ERG measurements [49,52,76,77]. The gene
replacement approach in the Briard dogs represents the first
report of long-term success for the treatment of an inherited
retinal disease. In addition, the absence of systemic toxicity
after rAAV2/2-RPE65 delivery in dogs, and the presence of
only mild and moderate ocular inflammation that resolves
over time [77], paves the way to starting Phase I clinical trials
with rAAV2/2-RPE65 [78].

One LCA form is caused by mutations in the RPGRIP
gene, which encodes for the RPGR-interacting protein, a
PR protein associated with the ciliary axoneme [79]. RPGRIP
is required for the normal localisation as well as the function
of the retinitis pigmentosa (RP) GTPase regulator (RPGR)
in regulating protein trafficking across the connecting
cilia [80]. Subretinal delivery of an rAAV2/2 encoding
RPGRIP in a murine model of LCA lacking RPGRIP
restores the normal RPGR localisation and preserves PR
structure and function [81].

Other attempts at rAAV-mediated gene replacement in
the retina include one carried out in 1997 by Jomary et al. in
the rd1 animal model [82]. The rd1 mice are homozygous for
a nonsense mutation in the PDE6β gene, encoding for the
rod PR cGMP phosphodiesterase β subunit, and are a
well-characterised model of RP. The rd1 mice undergo
complete PR degeneration within the first 3 weeks of
life [44]. Due to the defect affecting the visual cascade, their
PR electrophysiological activity is never normal. Intravitreal
rAAV2/2-mediated delivery of the PDE6β gene in rd1 mice
failed to produce evidence of sustained rescue, which is
probably due to the combination of low levels of PR
transduction and the severity of rd1 degeneration [82].

Gene replacement has been successfully carried out by
Ali et al. [83] in the rds (PrphRd2/Rd2) mice, affected by RP.
These mice carry a null mutation in the rds gene, which
encodes for peripherin, a PR-specific membrane glycoprotein
essential in maintaining the PR outer segment (OS)
structure [44]. The rds mice fail to form the OS, develop an
early loss of retinal function, and their degeneration is
characterised by progressive PR cell death [44]. Subretinal
rAAV2/2-mediated delivery of the rds gene results in
generation of normal OS structure and correction of PR
electrophysiological activity [83]. The effect on PR
ultrastructure of a single rAAV2/2 subretinal injection is
dependent on the age at which animals are treated [84] and on
the area of retina exposed to the vector [85]. Unfortunately,
over time, the OS, which forms following gene transfer,
becomes more wrinkled, the effect on PRs is lost and,
consequently, the functional improvement disappears [84,85].
The authors suggest that this outcome may be due to either
the lack of homogeneous transduction or delayed onset of
transgene expression, or even by toxic effects resulting from
the overexpression of peripherin [84,85]. Recent developments
in rAAV vector delivery technologies and accurate control of
transgene expression can address these issues and result in
long-term rescue of rds gene transfer.

The Royal College of Surgeons (RCS) rat is a model of RP
with a mutation in the Mertk gene, encoding for a receptor
tyrosine kinase, which is normally expressed in the RPE [86,87].
The Mertk gene encodes for a receptor tyrosine kinase involved
in the recognition and binding of OS debris [86,87]. In the
absence of functional Mertk, the RPE cannot phagocytose the
OS discs that are continually shed from PRs [86,87]. The resulting
accumulation of debris in the subretinal space leads to a
progressive loss of PRs. Subretinal delivery of rAAV2/2 vectors
encoding Mertk restores the RPE function and prolongs PR
survival in the RCS rats, as assessed by histology [88]. In addition,
the electroretinographic analysis of treated eyes shows that
functional PRs are still present at 9 weeks, when there is virtually
no activity in untreated control eyes [88].

Successful rAAV-mediated gene therapy approaches have
also been obtained in a murine model of X-linked juvenile
retinoschisis, a common cause of juvenile macular
degeneration in males. The disease is due to mutations in the
Rs1 gene in Xp22.2 leading to the loss of functional
retinoschisin protein [89]. The retinoschisin protein is secreted
from both PRs and bipolar cells, and has been implicated in
cellular adhesion and cell–cell interactions [90-92]. Peculiar to
the disease is an electronegative ERG waveform, indicating a
synaptic transmission deficit. Both intravitreal delivery of
rAAV2/2-Rs1 vector and subretinal delivery of rAAV2/5-Rs1
vectors in an Rs1-deficient mouse model restore the normal
ERG configuration [93,94].

Ocular albinism type 1 (OA1) is another recessive X-linked
retinal disease caused by mutations in the OA1 gene, which is
expressed in the RPE [95]. The OA1 knockout (OA1-/-) mouse
model recapitulates many of the OA1 anomalies, including a
lower number of melanosomes of increased size in the RPE [96,97]

and reduced photoreceptor activity [98]. Subretinal delivery of
AAV2/1-OA1 to the retina of the OA1 mouse model results in
significant recovery of retinal functional abnormalities [98]. In
addition, OA1 retinal gene transfer increases the number of
melanosomes in the OA1 mouse RPE [98].

The successful outcome of retinal gene replacement studies
has also been reported in two forms of mucopolysaccharidosis
(MPS; MPSVI and VII) and in one form of infantile neuronal
ceroid lipofuscinosis. These lysosomal storage disorders result
from deficiencies of the 4-sulfatase (4S), β-glucuronidase
(GUSB) and palmitoyl protein thioesterase-1 (PPT-1)
enzymes, respectively. The enzymatic deficiencies result in
abnormal accumulation of substrates in several tissues,
including the eye, and to progressive retinal degeneration.
Intraocular delivery of rAAV2/2-4S, -GUSB or -PPT-1 in the
corresponding animal models results in persistent activity of
the enzyme in the eye and in morphological, as well as
functional, improvements [50,99,100].

3.2  Inhibition of gain-of-function mutations causing 
dominant diseases
One of the present challenges for gene therapy is the
treatment of dominant disorders caused by gain-of-function
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or dominant-negative mutations, in which the product of the
mutant allele needs to be eliminated for therapeutic purposes.
Autosomal dominant RP (ADRP) accounts for 15 – 35% of
RP, depending on the countries and the ethnic groups
analysed [182], with 25% of mutations occurring in the
rhodopsin gene [101-103]. The most common rhodopsin
mutation in the US is a prolin-to-histidine substitution at
position 23 (P23H) [103]. Several animal models of ADRP
with rhodopsin mutations, which recapitulate the human
disease, are available at present and they represent valuable
tools to test in vivo experimental therapies [104-108]. Transgenic
rats that undergo progressive PR loss carrying a mutant P23H
mouse rhodopsin gene under transcriptional control of the
rhodopsin promoter have been developed [108]. Whether the
common P23H mutation exerts a dominant-negative [109] or
a gain-of-function effect [110], the expression of this mutant
protein in PRs is toxic and results in cell death [110,111]. A
variety of molecules, such as antisense, ribozymes, aptamers,
microRNA and short hairpin RNA (shRNA), are being used
for therapeutic purposes based on their ability to
inhibit/regulate gene expression [112,113]. Ribozymes are
catalytic RNA molecules that are able to cleave
complementary RNA sequence and, in turn, modulate gene
expression [114]. rAAV-mediated delivery of ribozymes to PRs
has been tested to achieve allele-specific inhibition of the
P23H rhodopsin allele in ADRP animal models [115-117].
P23H transgenic rats have been injected subretinally at
different ages (P15, P30 or P45) with rAAV expressing
hairpin or hammerhead ribozymes from the rhodopsin
promoter and targeted to the mutant P23H transcript. A
delay in PR loss has been observed, with the most significant
rescue obtained when treatment occurs early (P15).
Long-term (8 months after rAAV administration)
morphological and functional rescues have been
described [116,117]. The main limit of such an approach is
related to the low efficiency of ribozymes whose
RNA-degradation ability is strongly dependent on RNA
structure and sequence [118]; therefore, alternative approaches,
such as RNA interference (RNAi), have been considered.
RNA duplexes 21 – 23 nucleotides in length, called small
interfering RNAs, are capable of mediating degradation of
target mRNA through the recruitment of the
ribonuclease-containing complex RISC (RNA-induced
silencing complex) [119]. RNAi is as efficient as ribozymes [120]

and is less dependent on RNA secondary structure than
ribozymes [121]. Allele-independent rhodopsin RNAi has been
obtained in vitro. Two different groups [122,123] have shown
that rAAV vectors expressing shRNA complementary to the
rhodopsin mRNA can lead to a 90% reduction of rhodopsin
in both transfected cells and cultured retinal explants.
Silencing of both mutant and wild-type transcripts would
then be coupled to the simultaneous delivery of a
shRNA-resistant wild-type rhodopsin gene [122,123]. The
allele-independent approach described here can be applied to
virtually any rhodopsin mutation. Its limitations consist of

the high efficiency of RNAi required in vivo to completely
knock down endogenous rhodopsin expression, and its
coupling to rhodopsin gene replacement at appropriate
expression levels, to avoid toxicity [109]. Tessitore et al. have
recently tested an rAAV-mediated allele-specific strategy to
silence the P23H rhodopsin allele overexpressed in the P23H
transgenic rat model [124]. Subretinal injections of rAAV2/5
vectors expressing a shRNA specific for the P23H transgene
(rAAV2/5-shP23H) resulted in shRNA expression in the rat
retina and in reduction of rhodopsin P23H mRNA levels to
38.7% of normal. However, the decrease in mRNA was not
sufficient to inhibit PR degeneration of the P23H rat model
either at the morphological or at the functional level [124].

3.3  Neurotrophic molecules for treatment of 
retinal degenerations
Independently of the mutation underlying the disease, RP is
characterised by progressive rod PR degeneration followed by
irreversible, progressive loss of cone PRs, generally due to
apoptosis [125]. A general antiapoptotic treatment is highly
desirable considering the high genetic heterogeneity of the
condition. Delivery of soluble molecules with neurotrophic
activity has been shown to be effective at slowing PR cell
death in various models of RP or on cultured PR [126-129].
Delivery of a neuroprotective factor through rAAV-mediated
gene therapy can provide a persistent, theoretically regulatable
supply of neurotrophic factors to the RP retina. Various
neurotrophic factors have been delivered to the retina of RP
animal models through intraocular injections of recombinant
rAAV2/2 vectors. Subretinal delivery of rAAV vectors
encoding members of the fibroblast growth factor (FGF)
family has been tested in two strains of rats, transgenic for
either the P23H or the S334ter dominant rhodopsin
mutations [130,131]. This resulted in increased PR survival
without significant amelioration of PR function [130,131].
Neither morphological nor functional protection were
observed following subretinal delivery of rAAV2/2-FGF-2 in
light-induced retinal degeneration [132]. These findings
suggest that the mechanism leading to PR cell death is
different in different animal models, as shown in previous
reports [133-136]. The observation that systemic delivery of
rAAV2/2-EPO preserves PR from light damage and in the rds
model, but not in the rd10 mice (bearing homozygous
mutation in the PDE6β gene), supports this hypothesis [137].

rAAV-mediated gene transfer of CNTF, encoding for ciliary
neurotrophic factor, has been well-characterised in the retina
of RP models. A study of rAAV2/2-CNTF subretinal
administration in the rhodopsin-/- mouse has evidenced
significant PR morphological preservation [138]. Intravitreal
injection of rAAV2/2-CNTF vectors in the P23H and
S334ter rhodopsin transgenic rats and in rds mice resulted in
prominent morphological PR rescue compared with the
controlateral eye injected with rAAV2/2-EGFP [139].
Interestingly, there was no improvement in the ERG response
compared with control eyes in the rds mice, whereas the retina
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of the transgenic rats administered with rAAV-CNTF had
lower ERG responses than those receiving rAAV-EGFP [139].
Similarly, morphological, but not functional, rescue of PR
degeneration was observed after rAAV2/2-mediated CNTF
delivery in mice with the P216L peripherin mutation [140].
The discordance between the structural and functional results
suggests that CNTF gene delivery may have negative effects
on retinal electrical activity. This hypothesis has been recently
confirmed by a study in wild-type mice whose ERG was
significantly reduced following rAAV-mediated gene delivery
of CNTF [141]. Interestingly, a Phase I clinical trial of CNTF
delivered by encapsulated cell intraocular implants indicated
that CNTF is safe for the human retina and improves visual
acuity even with severely compromised PRs [142].

Glial cell-derived neurotrophic factor (GDNF) appears to be
the best candidate, among those tested so far, for treatment of
retinal degeneration. Delivery of GDNF, either as a
recombinant protein or by rAAV2/2-mediated retinal gene
transfer, in two genetic models of RP results in both
morphological and functional PR protection [143,144]. In
addition, unlike FGFs, GDNF is not reported to be angiogenic
and, thus, should not lead to neovascular complications, making
it a particularly good candidate for neuroprotection in the eye.

Moreover, it has been shown that rAAV-mediated
brain-derived neurotrophic factor, FGF-2 and XIAP gene
transfer protects RGC in rodent glaucoma models [145-147];
however, additional studies to determine both the mechanism
by which neurotrophic molecules exert their effect in the
retina and their therapeutic:toxic dose ratio should be
performed before their clinical use can be considered.

3.4  Ocular neovascularisation as target of 
rAAV-mediated retinal gene transfer
Ocular neovascular diseases, such as proliferative diabetic
retinopathy, retinopathy of prematurity (ROP) and wet
age-related macular degeneration, represent the most common
blinding diseases in developed countries [148]. An imbalance
between pro- and antiangiogenic factors, including vascular
endothelial growth factor (VEGF) [149,150] and pigment
epithelium-derived factor (PEDF) [151], is involved in abnormal
vessel growth in the retina [152]. The main limitation of existing
treatments for retinal and choroidal neovascularisation (NV),
such as laser photocoagulation or surgical intervention, is that
they do not specifically target the underlying angiogenic
stimuli, resulting in recurrences [153]. Intraocular delivery of
several antineovascular factors is being evaluated as a strategy
for the inhibition of ocular neovascular diseases [154-156] and has
recently passed proof-of-principle in humans [157-159].
rAAV-mediated retinal gene transfer represents an efficient and
safe strategy for sustained and potentially regulated delivery of
antiangiogenic factors to ocular tissues.

VEGF is a potent pro-angiogenic factor induced by
hypoxia [160,161], whose expression is upregulated in animal
models of retinal and choroidal NV [150,162] and in patients
presenting neovascular complications of ischaemic ocular

disorders [163,164]. The soluble form of the Flt-1 VEGF
receptor (sFlt-1) acts as an endogenous specific inhibitor of
VEGF [165]. rAAV2/2-mediated intraocular expression of
sFlt1 inhibits retinal and choroidal NV in animal models.
Intravitreal injections of rAAV2/2 vectors encoding sFlt-1
(rAAV2/2-sFlt-1) [166] have been tested in a murine model of
hypoxia-induced retinal NV, the ROP mouse [167]. Injections
were performed at P2, and retinal NV was induced by
exposing the mice to 75% oxygen from p7 to p12 and
assessed at p19 [166]. A 50% reduction in the number of
neovascular endothelial cells on the vitreal side of the inner
limiting membrane was reported in treated eyes compared
with controls. In a different study, the same strategy described
previously has been tested in a model of choroidal NV that
was induced in adult rats by laser photocoagulation of Bruch’s
membrane (choroidal NV model) [168]. Subretinal injections
of rAAV2/2-sFlt-1 were performed 1 month before choroidal
NV was induced and resulted in 19% suppression of NV
compared with eyes receiving a control vector [169]. sFlt-1
ability to reduce ocular NV was evaluated in a long-term
study in transgenic mice expressing VEGF under the control
of a truncated mouse rhodopsin promoter [170] and receiving
subretinal injections of rAAV2/2-sFlt-1 [171]. Eight months
after rAAV administration, significant regression of the
neovascular vessels, as well as maintenance of retinal
morphology and function, was observed [171]. The authors
also showed that subretinal injections of the vector in NHPs
resulted in sFlt-1 expression for up to 17 months and
prevented the development of laser photocoagulation-induced
choroidal NV at the same time point [171].

PEDF is an antiangiogenic molecule responsible for
inducing and maintaining the avascularity of cornea and
vitreous compartments in physiological conditions [151]. The
antineovascular potential of PEDF can be tested by
rAAV-mediated intraocular delivery in animal models of
ocular NV. Both intravitreal and subretinal injections of
rAAV2/2-PEDF induced intraocular PEDF expression in
adult and newborn mice [172,173], and resulted in significant
reduction of NV in both the choroidal NV and ROP murine
models [172,173]. An independent study has shown that
subretinal injections of rAAV2/1-PEDF vectors result in
intraocular PEDF expression and strong inhibition of retinal
NV in the ROP model [60].

The identification of additional antiangiogenic factors, such
as angiostatin [174], endostatin [175] and tissue inhibitor of
metalloprotease (TIMP)-3 [176], has provided novel tools to
inhibit ocular NV. Angiostatin is a proteolytic fragment of
plasminogen encompassing the first four kringle domains of the
molecule [174]. Angiostatin and its recombinant derivative K1K3
(containing only the first three kringles) [177] have
antiangiogenic properties [177,178]. rAAV2/2 vectors encoding
angiostatin or K1K3 have been injected in animal models of
retinal and choroidal NV. rAAV2/2-angiostatin was injected
subretinally in choroidal NV rats 7 days before laser
photocoagulation [179]. Significant reduction in the size of
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choroidal NV lesions was observed at both 14 and 150 days
after injection of vectors in treated eyes compared with controls.
Similarly, rAAV2/2-K1K3 vectors injected intravitreally in ROP
mice induced significant reduction of neovascular endothelial
cell nuclei counted over the inner limiting membrane [173].

The antineovascular potential of rAAV-mediated intraocular
delivery of endostatin and TIMP-3 has been evaluated by
Auricchio et al. [180]. Endostatin is a cleavage product of
collagen XVIII that is able to reduce choroidal NV when
delivered systemically [181]; TIMP3 is a potent angiogenesis
inhibitor able to block VEGF signalling [176]. Subretinal
injections of rAAV2/1 vectors encoding either endostatin or
TIMP3 in ROP mice significantly inhibit ischaemia-induced
retinal NV [180]. At present, rAAV-mediated strategies, which
act at the level of endogenous promoters, aiming at modulating
the expression of anti- or pro-angiogenic factors are being
evaluated [182]. Engineered zinc-finger protein transcription
factors (ZFP) designed to repress the transcription of VEGF or
to activate the expression of PEDF were generated. rAAV
vectors encoding either the ZFP activator of PEDF or the ZFP
repressor of VEGF reduced the area of NV in the CNV model
following intraocular injections [182].

These promising results represent important
proof-of-principle that rAAV-mediated intraocular expression
of antineovascular factors can be exploited for the treatment
of ocular neovascular diseases. Ideally, the expression of
antiangiogenic molecules in the eye should be tightly
regulated in time and dose [11]. As discussed above,
pharmacological regulation of gene expression in the eye
following rAAV-mediated gene transfer has been successfully
obtained. Alternatively, inducible gene expression can result
from the use of regulatory elements of specific promoters.
Intravitreal or subretinal injections of rAAV2/2 vectors
encoding EGFP under the transcriptional control of
hypoxia-responsive elements [183] resulted in the induction of
reporter gene expression specifically in the sites of active NV
in ROP and CNV murine models [184]. Targeted and
regulated intraocular transgene expression, through either
pharmacological or hypoxia-induced regulation, is a crucial
prerequisite for safe antineovascular therapeutic stategies,
minimising their potential adverse effects.

4.  Expert opinion

The feasibility and safety of gene transfer to the human eye has
been shown with adenoviral vectors. Adenoviral vectors
encoding the herpes simplex virus thymidine kinase have been
delivered intravitreally to eight patients with retinoblastoma [185]

and, similarly, intravitreal injections of adenoviral-PEDF vectors
have been performed in patients with advanced neovascular
age-related macular degeneration [186]. In both Phase I trials, no
serious adverse events or dose-limiting toxicities have been
reported. In fact, resolution of vitreous tumours and evidence of
long-term antiangiogenic activity were reported after single
vector administrations. The data from the adenoviral Phase I

trials are encouraging and to some extent unexpected as the
vectors used are known, from preclinical studies, to induce
cell-mediated immune responses towards the transduced cells,
resulting in short-lived transgene expression.

rAAV vectors are ideal for long-term retinal gene transfer,
which is required in chronic diseases such as RP and allied
disorders. Unlike the adenoviral vectors, rAAV serotypes can
efficiently transduce PRs or RGCs, which are affected in
many blinding diseases (Table 2). The efficacy and safety of
rAAV2/2-based protocols, already successfully tested in the
RPE65-deficient dogs, has been favourably reviewed by the
US Recombinant DNA Advisory Committee, which has
approved two separate protocols for a Phase I study in LCA
patients with RPE65 mutations [78] using rAAV2/2. LCA due
to RPE65 mutations is the ideal candidate target for a first
clinical trial with rAAV in the retina for several reasons:

• LCA is a severe blinding disease; therefore, the benefit:risk
ratio of experimental therapies is favourable.

• Unlike in diseases where loss of visual function is due to
loss of PR cells (such as RP), in LCA due to RPE65
mutations, blindness is often associated with a preserved
retinal architecture [187]; therefore, RPE65 gene transfer
resulting in synthesis of retinoid isomerase in transduced
RPE cells can restore PRs and visual function. 

• RPE65 is expressed in the RPE, which is efficiently targeted
by most of the rAAV vectors tested so far. 

• Retinal diseases, including LCA, should require limited
amounts of rAAV vectors when compared with diseases where
liver, lung or muscle are the target organs. This overcomes
one of the major limitations of rAAV for application in
humans and generally of viral vector-mediated gene transfer
in humans, which is large-scale vector production.

• The eye is immunoprivileged and could theoretically be
protected from the cell-mediated immune responses against
rAAV2 capsids recently observed in the rAAV clinical trials
for haemophilia B [27].

The lesson from the haemophilia B clinical trials warns the
investigators in the field about the low predictability of gene
transfer effects when testing moves from one species to
another, and ultimately to humans. If the RPE65 clinical trials
will provide sound proof-of-principle of the safety and efficacy
of rAAV-mediated gene transfer in humans, many other retinal
diseases, either orphan or common, will be lined up for
treatment with rAAV and the eye could quite unexpectedly
turn into the first major area of success for gene therapy.
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AP20187-Mediated Activation of a Chimeric Insulin 
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ABSTRACT

Diabetes mellitus (DM) derives from either insulin deficiency (type 1) or resistance (type 2). Insulin regulates
glucose metabolism and homeostasis by binding to a specific membrane receptor (IR) with tyrosine kinase ac-
tivity, expressed by its canonical target tissues. General or tissue-specific IR ablation in mice results in com-
plex metabolic abnormalities, which give partial insights into the role of IR signaling in glucose homeostasis
and diabetes development. We generated a chimeric IR (LFv2IRE) inducible on administration of the small
molecule drug AP20187. This represents a powerful tool to induce insulin receptor signaling in the hormone
target tissues in DM animal models. Here we use adeno-associated viral (AAV) vectors to transduce muscle
and liver of nonobese diabetic (NOD) mice with LFv2IRE. Systemic AP20187 administration results in time-
dependent LFv2IRE tyrosine phosphorylation and activation of the insulin signaling pathway in both liver
and muscle of AAV-treated NOD mice. AP20187 stimulation significantly increases hepatic glycogen content
and muscular glucose uptake similarly to insulin. The LFv2IRE–AP20187 system represents a useful tool for
regulated and rapid tissue-specific restoration of IR signaling and for dissection of insulin signaling and func-
tion in the hormone canonical and noncanonical target tissues.

OVERVIEW SUMMARY

Insulin regulates glucose homeostasis by binding to its re-
ceptor (IR) at the level of the hormone canonical and non-
canonical target tissues. A system allowing activation of IR
signaling at will in a desired tissue can be exploited for elu-
cidation of the role of IR signaling in peripheral glucose me-
tabolism as well as for timely rescue of glucose homeostasis
in diabetes mellitus (DM). We have generated a recombi-
nant IR (LFv2IRE) inducible on administration of the small
molecule dimerizer AP20187. We induced LFv2IRE ex-
pression in liver and muscle of nonobese diabetic mice trans-
duced with an adeno-associated viral vector. After AP20187
administration we observed LFv2IRE phosphorylation and
activation of the IR signaling pathway in both tissues.
AP20187 stimulation resulted in increased hepatic glycogen
content and muscular glucose uptake similarly to insulin.

The AP20187–LFv2IRE system represents a tool to dissect
insulin function in the hormone target tissues and to rescue
glucose homeostasis in DM animal models.

INTRODUCTION

DIABETES MELLITUS (DM) is a metabolic disease character-
ized by elevated blood glucose levels resulting from de-

fects in either insulin secretion or action. Insulin deficiency due
to autoimmune destruction of pancreatic beta cells causes type
1 DM (Maclaren and Kukreja, 2001). Nonobese diabetic (NOD)
mice spontaneously develop autoimmune insulin-dependent
DM (Makino et al., 1980) and, therefore, are widely used ani-
mal models of type 1 DM. The most common type 2 DM is
caused by insulin resistance in the hormone target tissues com-
bined with deficient hormone secretion by pancreatic beta cells
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(Taylor, 2001). Insulin exerts its actions mainly on liver, skele-
tal muscle, and adipose tissue (canonical hormone targets),
where it binds to a transmembrane receptor endowed with ty-
rosine kinase activity (the insulin receptor [IR]) (Taylor, 2001).
Insulin binding causes IR dimerization and transphosphoryla-
tion on tyrosine residues as well as activation of the intracel-
lular IR signaling cascade. IR tyrosine kinase phosphorylates
the insulin receptor substrate (IRS)-1 and -2 and Shc proteins
(Taylor, 2001). This results in the induction of gene expression
and cellular proliferation through the Ras/Raf/MEK (MAPK/
ERK kinase)/MAPK (mitogen-activated protein kinase) path-
way (Taha and Klip, 1999). Phosphorylated IRS proteins can
additionally activate the phosphatidylinositol-3-kinase, result-
ing in several metabolic actions, such as induction of glycogen
synthesis and inhibition of glycogen lysis in skeletal muscle and
liver (Taha and Klip, 1999; Taylor, 2001), and blood glucose
uptake in muscle and adipose tissue (Taylor, 2001). To clarify
the role of IR signaling in glucose homeostasis and develop-
ment of type 2 DM, knockout (KO) mice for the IR or for pro-
teins responsible for its signaling show different levels of glu-
cose metabolism impairment. IR knockout (IRKO) mice die of
ketoacidosis within 72 hr of birth (Accili et al., 1996). To elu-
cidate the contribution of insulin resistance in individual tissues
to the pathogenesis of DM, IR tissue-specific inactivation has
been achieved (Bruning et al., 1998; Kulkarni et al., 1999;
Michael et al., 2000; Bluher et al., 2002). Knockouts in mus-
cle (MIRKO) (Bruning et al., 1998; Lauro et al., 1998), liver
(LIRKO) (Michael et al., 2000), adipose tissue (FIRKO) (Lauro
et al., 1998; Bluher et al., 2002), as well as in several other tis-
sues (Kulkarni et al., 1999; Bruning et al., 2000; Nandi et al.,
2004) have been generated, showing complex metabolic ab-
normalities. A critical role of liver insulin signaling in the reg-
ulation of glucose homeostasis and in the maintenance of nor-
mal hepatic function has been suggested (Michael et al., 2000;
Nandi et al., 2004). Hormone action in skeletal muscle and adi-
pose tissue seems less critical for maintenance of euglycemia
(Bruning et al., 1998; Lauro et al., 1998; Bluher et al., 2002;
Nandi et al., 2004). In addition to the reported KO mice, a model
to discern the effects of insulin signaling in single tissues in the
context of defective signaling in others has been obtained by
transgenic partial restoration of IR expression in the liver, brain,
and beta cells of IRKO mice (Okamoto et al., 2004, 2005).
Transgenic IRKO mice were rescued from neonatal death and
ketoacidosis, confirming the central role of liver and suggest-
ing a function for noncanonical insulin target tissues in the reg-
ulation of glucose metabolism. However, the complexity of the
results obtained in the reported models suggests that additional
studies aimed at characterizing the role of insulin signaling in
various hormone target tissues are required. To this end, a sys-
tem allowing specific, rapid, and regulated restoration of IR sig-
naling in canonical and noncanonical insulin target tissues of
diabetic mice, alone or in combination, could be useful.

Systems allowing pharmacological regulation of protein–
protein interactions have been developed (Amara et al., 1997;
Blau et al., 1997; Li et al., 2002) on the basis of the ability of
the small dimerizer drug AP20187 to reversibly bind specific
protein modules. Cellular processes activated by protein–pro-
tein interaction (i.e., IR signaling) can be brought under dimer-
izer control by fusing the protein of interest (i.e., the intracel-
lular domain of the IR) to the binding module recognized by

the dimerizer. AP20187 binding to such a chimeric protein
results in the activation of downstream cellular events in a drug-
dependent and reversible manner. AP20187-based homodimer-
ization systems have been used in vivo after viral vector-medi-
ated or transgenic expression in various tissues. Apoptosis was
induced in various cell types through AP20187-mediated acti-
vation of suicide genes (Xie et al., 2001; Mallet et al., 2002;
Burnett et al., 2004), positive selection of transduced cells has
been achieved with chimeric receptors carrying conditional
growth signals (Neff et al., 2002), and an inducible model of
mammary gland tumorigenesis has been generated with this sys-
tem (Welm et al., 2002).

We have constructed a chimeric insulin receptor (LFv2IRE)
with a membrane-localizing domain (L) followed by two bind-
ing domains for the AP20187 dimerizer (Fv) and the intracel-
lular domain of the IR (IR�; Fig. 1) (Cotugno et al., 2004). We
have reported that this system is able to activate insulin recep-
tor signaling and to induce insulin-like biological effects in
vitro, in hepatocytes and fibroblasts transduced with viral vec-
tors, similar to that obtained by insulin stimulation in control
untransduced cells (Cotugno et al., 2004). AP20187 adminis-
tration in these cells results in time- and dose-dependent acti-
vation of both the LFv2IRE receptor and the IR substrate IRS-
1, leading to the activation of glycogen synthesis (Cotugno et
al., 2004). The LFv2IRE–AP20187 system, delivered by viral
vectors, can be used to obtain rapid tissue-specific restoration
of IR signaling in mice lacking either insulin (i.e., NOD mice)
or the insulin receptor. This could represent an alternative strat-

FIG. 1. Schematic representation of the AP20187–LFv2IRE
system. AP20187 induces the homodimerization of recombi-
nant LFv2IRE, leading to the transphosphorylation of tyrosine
residues in the intracellular domains of the receptor. Active
LFv2IRE phosphorylates insulin receptor substrate-1, resulting
in the induction of insulin signaling. Symbols and abbrevia-
tions: Oblique stripes, AP20187-binding domains; vertical
stripes, IR� intracellular chain including the tyrosine kinase do-
main; horizontal stripes, HA tag; solid, AP20187; PY, phospho-
rylated tyrosine residues; IRS-1, insulin receptor substrate-1.



egy to the transgenic restoration of IR expression in IR-defi-
cient mice, providing modulation of IR signaling at will in the
desired tissue. In addition, the therapeutic potential of the
AP20187–LFv2IRE system can be exploited to restore glucose
metabolism in animal models of DM with kinetics similar to
that of insulin, an essential but limiting step in insulin gene ther-
apy efforts to date (Lee et al., 2000; Jindal et al., 2001; Auric-
chio et al., 2002).

Vectors derived from adeno-associated virus (AAV) are one
of the most promising systems for human gene therapy. Pre-
clinical and clinical studies have proved their excellent safety
profile (Merten et al., 2005). In addition, several reports have
shown the ability of AAV vectors to efficiently transduce, for
the long term, a number of organs including brain (Kaplitt et
al., 1994; Bartlett et al., 1998; Xu et al., 2001), beta cells (Wang
et al., 2006), skeletal muscle (Xiao et al., 1996), and liver
(Grimm et al., 2006). Systemic administration of AAV2/1 vec-
tors (where the first number refers to the genome of origin and
the second to the capsid serotype) results in body-wide and ro-
bust skeletal muscle transduction (Denti et al., 2006). Similarly,
administration of vectors with AAV8 capsids (AAV2/8) results
in high levels of liver transduction (Sarkar et al., 2004). To date,
no effective AAV vector has been reported to efficiently trans-
duce adipocytes.

Here we use AAV2/8 and AAV2/1 vectors to induce
LFv2IRE expression in liver and muscle of normal and diabetic
mice to evaluate the AP20187-dependent activation of the chi-
meric receptor and the induction of insulin signaling and ac-
tions in two of the main hormone target tissues. We show that
AAV vectors efficiently transduce both tissues, leading to
LFv2IRE expression, and that AP20187 administration results
in the activation of LFv2IRE in a time-dependent manner. Ac-
tivated LFv2IRE is able to induce IR signaling, resulting in the
induction of insulin-like metabolic actions.

MATERIALS AND METHODS

Vector construction and production

The pAAV2.1-TBG-LFv2IRE plasmid was produced as pre-
viously reported (Cotugno et al., 2004). The pAAV2.1-MCK-
LFv2IRE and -eGFP plasmids were generated as follows. The
1.35-kb muscle-specific promoter from the human muscle cre-
atine kinase (MCK) gene (Dunant et al., 2003) was amplified
by polymerase chain reaction (PCR) from human genomic
DNA. The primers used (forward, 5�-aattagctagctgggaaaggg-
ctgggc-3�; and reverse, 5�-aaatacggccgaggtgacactgacccaa-3�)
contained the NheI and PstI restriction sites, respectively. 
The resulting PCR product was digested with NheI and PstI
(Roche, Basel, Switzerland) and cloned into either pAAV2.1-
TBG-LFv2IRE or pAAV2.1-CMV-eGFP (Auricchio et al.,
2001) previously digested with the same enzymes to remove
the thyroxin-binding globulin (TBG) and cytomegalovirus
(CMV) sequences, respectively. Recombinant AAV vectors, in-
cluding AAV2/8-TBG-LacZ, generated with the pAAV2.1-
TBG-LacZ plasmid (Auricchio et al., 2001), were produced by
the Telethon Institute of Genetics and Medicine (TIGEM) AAV
Vector Core (Naples, Italy) by triple transfection of 293 cells
and purified by CsCl2 gradients (Xiao et al., 1999). Physical

titers of the viral preparations (genome copies [GC] per milli-
liter) were determined by real-time PCR (Applied Biosystems,
Foster City, CA) (Gao et al., 2000).

Assessment of AAV-mediated muscle and 
liver transduction

Wild-type CD1 mice were injected via the tail vein with 5 �
1011 GC of AAV2/1-MCK-eGFP or AAV2/8-TBG-LacZ vec-
tor. Four weeks later, muscle (right gastrocnemius) and liver
were collected, incubated with 30% sucrose for 2 hr, and then
frozen in O.C.T. compound (Kaltech, Padua, Italy). Frozen tis-
sues were then sectioned into 12-�m-thick cryosections. En-
hanced green fluorescent protein (eGFP) expression in muscle
from AAV2/1-MCK-eGFP-injected mice was assessed with a
Zeiss Axioplan 2 imaging fluorescence microscope (Carl Zeiss,
Oberkochen, Germany).

For detection of LacZ expression, liver sections from
AAV2/8-TBG-LacZ-injected mice were fixed for 10 min in
0.5% glutaraldehyde, stained with 5-bromo-4-chloro-3-indolyl-
�-D-galactopyranoside (X-Gal) (Bell et al., 2005), and analyzed
with a Zeiss Axioplan 2 microscope in bright field.

Mouse models, vector administration, AP20187
stimulation, and blood and tissue collection

To evaluate LFv2IRE expression and tyrosine phosphoryla-
tion, 4-week-old CD1 mice (Harlan Italy, San Pietro al Nati-
sone, Italy) were injected via the tail vein with 5 � 1011 or 
2 � 1012 GC of AAV2/8-TBG-LFv2IRE or AAV2/1-MCK-
LFv2IRE vector. Four weeks later mice were stimulated or not
by intraperitoneal injection of AP20187 (10 mg/kg) as described
(Xie et al., 2001; Mallet et al., 2002; Neff et al., 2002; Welm
et al., 2002; Burnett et al., 2004) (ARIAD Pharmaceuticals,
Cambridge, MA). Liver and muscle were collected at the time
points reported in Results and Discussion for further analysis.

NOD mice (Harlan Italy) were used for evaluation of the bi-
ological effects of the LFv2IRE/AP20187 system. Eleven-
week-old female mice were injected or not with a mixture of
AAV2/8-TBG-LFv2IRE and AAV2/1-MCK-LFv2IRE or of the
control AAV2/8-TBG-LacZ and AAV2/1-MCK-eGFP vectors
(5 � 1011 GC/mouse). Blood samples were obtained weekly via
eye bleeding, and plasma glucose levels were monitored with
a glucometer (ACCU-CHECK Active; Roche, Indianapolis, IN)
according to the manufacturer’s instructions. Four weeks after
AAV vector injection, mice with plasma glucose levels higher
than 250 mg/dl were selected and stimulated or not by in-
traperitoneal injection of AP20187 (10 mg/kg), and plasma glu-
cose levels were monitored for 24 hr as described. The same
mice were further studied for the evaluation of hepatic glyco-
gen content and muscle glucose uptake. Mice were stimulated
or not with AP20187 (10 mg/kg) 18 and 6 hr (when they were
fasted) before receiving an intravenous injection of 1 �Ci of 2-
deoxy[1-3H]glucose (2-DG; GE Healthcare Life Sciences, Pis-
cataway, NJ). About 70 �l of blood was collected 1, 10, 20,
and 30 min after the injection via eye bleeding, added to 10 �l
of 5 M EDTA, and centrifuged at 10,000 rpm for 10 min. Su-
pernatant were then collected and frozen. Skeletal muscle (gas-
trocnemius and quadriceps) and liver were dissected 30 min af-
ter the 2-DG injection and frozen. Control uninjected NOD and
CD1 mice were stimulated with insulin (Humulin, 0.75 U/kg;
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Eli Lilly, Indianapolis, IN) and hepatic glycogen content and
muscle glucose uptake were measured as described.

Four-week-old CD1 mice (Harlan Italy) were injected with
a mixture of AAV2/8-TBG-LFv2IRE and AAV2/1-MCK-
LFv2IRE vectors, or of control AAV2/8-TBG-Lacz and AAV2/1-
MCK-eGFP vectors (2 � 1012 GC of each vector per mouse).
Four weeks later mice were stimulated with AP20187 (10 mg/kg)
and plasma glucose levels were monitored for 24 hr.

Adult nude female mice (Harlan Italy) were systemically
injected or not with a mixture of AAV2/8-TBG-LFv2IRE 
and AAV2/1-MCK-LFv2IRE vectors or of control AAV2/8-
TBG-LacZ and AAV2/1-MCK-eGFP vectors (5 � 1011 GC/
mouse). Two weeks later mice were administered streptozo-
tocin (Zanosar, 200 mg/kg; Pharmacia & Upjohn, a Division 
of Pfizer, Kalamazoo, MI) intraperitoneally. One week later,
60–80% of the mice were diabetic (blood glucose [BG], �250
mg/dl). Nine diabetic mice for each group were selected and
stimulated by intraperitoneal injection of AP20187 (10 mg/kg)

and blood glucose levels were measured as described. The same
mice were then stimulated again with AP20187 and muscle and
liver were collected at the same time points used for the wild-
type CD1 mice tissues collection for further analysis.

Western blots

Muscle and liver from AAV-injected CD1 and streptozotocin-
treated mice were homogenized and lysed on ice for 30 min in
lysis buffer (40 mM Tris [pH 7.4], 4 mM EDTA, 5 mM MgCl2,
1% Triton X-100, 100 �M Na3VO4, 1 mM phenylmethylsul-
fonyl fluoride [PMSF], leupeptin–aprotinin–pepstatin A–leucine
aminopeptidase–protease inhibitors [10 �g/ml], 150 mM NaCl).
Samples were spun at 14,000 rpm for 15 min and the supernatants
were removed and stored at –80°C. Protein concentrations were
determined with a Bio-Rad protein assay reagent kit (Bio-Rad,
Munich, Germany) and proteins from total lysates were subjected
to sodium dodecyl sulfate–polyacrylamide electrophoresis (SDS–

FIG. 2. AAV-mediated murine liver and muscle transduction. Wild-type CD1 mice were injected with 5 � 1011 GC of AAV2/1-
MCK-eGFP or AAV2/8-TBG-LacZ. Muscle cryosections from AAV2/1-MCK-eGFP-injected (A) or control uninjected (B) mice
were analyzed by fluorescence microscopy for eGFP expression. Liver cryosections from AAV2/8-TBG-LacZ-injected (C) or
control uninjected (D) mice were subjected to X-Gal staining for assessment of LacZ activity.



PAGE) on 7% polyacrylamide gels. After separation, proteins
were transferred to nitrocellulose filter (Schleicher & Schuell,
Dassel, Germany). The filters were incubated with anti-influenza
virus hemagglutinin (anti-HA, 1:2000 dilution; Sigma-Aldrich,
Munich, Germany), anti-phosphotyrosine (PY, 1:1000 dilution;
Santa Cruz Biotechnology, Santa Cruz, CA), anti-IRS-1 (1:1000
dilution; Santa Cruz Biotechnology), anti-actin (1:1000 dilu-
tion; Santa Cruz Biotechnology), or anti-IR� (1:200 dilution;
Santa Cruz Biotechnology) antibodies. Mouse anti-PY anti-
bodies were detected with horseradish peroxidase (HRP)-con-
jugated anti-mouse antibodies (Sigma, St. Louis, MO), rabbit
anti-HA, anti-IRS-1, and anti-IR� were detected with HRP-con-
jugated anti-rabbit antibodies (GE Healthcare Life Sciences),
and goat anti-actin was detected with HRP-conjugated anti-goat
antibodies (Santa Cruz Biotechnology). Last, the protein–anti-
body complexes were revealed by SuperSignal West Pico
chemiluminescent substrate (Celbio, Milan, Italy) according to
the manufacturer’s instructions. Band intensity was measured
with ImageJ 1.36b software (http://rsb.info.nih.gov/ij).

Hepatic glycogen measurement

Hepatic glycogen content was measured by a spectrophoto-
metric assay (Bergmeyer, 1983). Briefly, tissues were solubi-
lized in 0.1% SDS and then a half-volume of saturated Na2SO4

and a half-volume of 95% ethanol were added. The samples
were chilled on ice for 30 min and then centrifuged at 4°C. The
pellets were rehydrated and 5% phenol and H2SO4 were added.
The samples were left at room temperature for 10 min and in-
cubated at 30°C for 20 min. Finally, absorbance at 490 nm was
measured. Results are expressed as micrograms of glycogen per
milligram of protein.

In vivo glucose utilization index

Specific blood 2-DG clearance was determined with 25 �l
of the previously collected plasma samples, using the Somogyi
procedure as previously reported (Somogyi, 1945). The glucose

utilization index of muscle samples was determined by mea-
suring the accumulation of radiolabeled compounds (Ferre et
al., 1985). The amount of 2-DG 6-phosphate per milligram of
protein was divided by the integral of the ratio between the con-
centration of 2-DG and the unlabeled glucose measured. The
glucose utilization index is expressed as picomoles of 2-DG per
milligram of protein per minute.

Statistical methods

An unpaired t test between the various data sets was per-
formed using the Microsoft Excel t-test function. Significance
at p � 0.05 is indicated by single asterisks in the figures; where
p � 0.01, two asterisks are used.

RESULTS AND DISCUSSION

AP20187-dependent LFv2IRE activation in liver and
muscle transduced with AAV vectors

To assess the ability of the AP20187 dimerizer to activate
LFv2IRE in vivo, we used AAV vectors to transduce murine
liver and muscle, two main targets of insulin action. We gen-
erated AAV vectors encoding LFv2IRE under the control of
liver- or muscle-specific promoters (the thyroxin-binding glob-
ulin [TBG] and muscle creatine kinase [MCK] promoters, re-
spectively). The LFv2IRE receptor contains an HA tag follow-
ing the IR intracellular domain, allowing its recognition with
specific anti-HA antibodies (Fig. 1). AAV2/1 and AAV2/8 vec-
tors were used to transduce muscle and liver, respectively. The
dose of AAV vector administered systemically in this set of ex-
periments (5 � 1011 GC/mouse) has been shown to be optimal
for both liver and muscle transduction (Gao et al., 2002; Sarkar
et al., 2004; Denti et al., 2006). To confirm this, we evaluated
liver and muscle transduction after systemic administration, 
at 5 � 1011 GC/mouse, of either AAV2/1-MCK-eGFP or
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FIG. 3. Protein tyrosine phosphorylation in AAV-transduced liver on AP20187 administration: time dependency of protein
phosphorylation. Shown is a Western blot analysis of lysates from liver samples of CD1 mice injected with AAV2/8-TBG-
LFv2IRE, stimulated with AP20187, and collected at various times after drug administration (conditions indicated above the pan-
els). Proteins from total lysates were blotted with anti-phosphorylated tyrosine (�PY), anti-HA (�HA), anti-IRS-1 (�IRS-1), or
anti-actin (�Actin) antibodies. Molecular masses (kDa) are indicated on the left.
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FIG. 4. LFv2IRE expression and protein tyrosine phosphorylation in AAV-transduced skeletal muscle. (A) Western blot analysis
of lysates from various muscles of CD1 mice injected with AAV2/1-MCK-LFv2IRE. Proteins from total lysates were blotted with
anti-HA (�HA, top) or anti-actin (�Actin, bottom) antibodies. rG, right gastrocnemius; lG, left gastrocnemius; rQ, right quadriceps;
lQ, left quadriceps. (B) LFv2IRE tyrosine phosphorylation in AAV-transduced skeletal muscle on AP20187 administration: time de-
pendency of protein phosphorylation. Shown is a Western blot analysis of lysates from right gastrocnemius of CD1 mice injected
with AAV2/1-MCK-LFv2IRE and stimulated with AP20187, and collected at various times after drug administration (conditions
indicated above the panels). Proteins from total tissue lysates were blotted with anti-phosphorylated tyrosine (�PY, top), anti-HA
(�HA, middle), or anti-actin (�Actin, bottom) antibodies. (C) IRS-1 tyrosine phosphorylation in AAV-transduced skeletal muscle
on AP20187 administration: time dependency of protein phosphorylation. Shown is a Western blot analysis of lysates from right
gastrocnemius of CD1 mice injected with AAV2/1-MCK-LFv2IRE and stimulated with AP20187, and collected at various times
after drug administration (conditions indicated above the panels). Proteins from total tissue lysates were blotted with anti-phospho-
rylated tyrosine (�PY, top) or anti-IRS-1 (�IRS-1, bottom) antibodies. Molecular masses (kDa) are indicated on the left.

AAV2/8-TBG-LacZ in wild-type CD1 mice (Fig. 2). Thirty to
40% of hepatocytes were transduced (similarly to what was pre-
viously reported; Gao et al., 2002) and 80–90% of muscle fibers
were eGFP positive.

This vector dose was therefore used to induce LFv2IRE ex-
pression in muscle and liver. We injected wild-type CD1 mice
systemically with either AAV2/8-TBG-LFv2IRE vector to
transduce the liver or saline solution. Four weeks later mice



were stimulated or not by an intraperitoneal injection of
AP20187 (10 mg/kg, as suggested elsewhere; see ARIAD Phar-
maceuticals, www.ariad.com) and liver samples were collected
at various time points after drug administration. We then eval-
uated AP20187-dependent LFv2IRE tyrosine phosphorylation
(Fig. 3). Liver samples from AAV-injected animals expressed
similar levels of LFv2IRE as shown by Western blot with anti-
HA antibodies, whereas no signal was detected in the lane cor-
responding to liver samples from animals receiving saline (Fig.
3, second panel from the top). Loading control performed with
anti-actin antibodies (Fig. 3, bottom) showed that similar
amounts of protein were loaded in each lane with the excep-
tion of the fourth lane, where a slightly higher level of actin is
present. AP20187-dependent LFv2IRE tyrosine phosphoryla-
tion was evident 2 hr after drug administration, peaked 6 hr
later, and returned to baseline after 24 hr (Fig. 3, top). Low
LFv2IRE basal phosphorylation was detected in liver samples
from mice receiving AAV2/8-TBG-LFv2IRE but not stimu-
lated with AP20187, suggesting minimal leakiness of the sys-
tem (Fig. 3, top, first lane). Western blot analysis with anti-HA
antibodies evidenced a double LFv2IRE band (Fig. 3, second
panel from the top). The lower band may represent an LFv2IRE
degradation product that does not include some tyrosine-phos-
phorylated residues present in the band of higher molecular
weight. The 180-kDa band present in the top panel of Fig. 3
corresponds to the main substrate of the IR tyrosine kinase, the
insulin receptor substrate-1 (IRS-1) protein (Fig. 3, third panel
from the top). IRS-1 levels of tyrosine phosphorylation follow
those of LFv2IRE, suggesting that it is induced on LFv2IRE
activation. Basal levels of IRS-1 tyrosine phosphorylation from
endogenous insulin are evident in liver samples from saline-in-
jected mice. Because the levels of basal IRS-1 tyrosine phos-
phorylation are similar in liver samples from saline- and
AAV2/8-TBG-LFv2IRE-injected mice that did not receive
AP20187, the basal LFv2IRE tyrosine phosphorylation levels
observed (Fig. 3, top) do not seem to induce activation of the
IR signaling pathway in transduced hepatocytes. The blots

shown in Fig. 3 are representative of three independent exper-
iments. The intensity of each tyrosine-phosphorylated band in
the three independent experiments was quantified and normal-
ized with the corresponding LFv2IRE or IRS-1 band, confirm-
ing the timing of LFv2IRE and IRS-1 phosphorylation depicted
in Fig. 3 (data not shown).

We then evaluated AP20187-dependent activation of
LFv2IRE in muscle after systemic administration of AAV2/1-
MCK-LFv2IRE vector or saline. Four weeks after systemic
AAV administration mice were treated or not with AP20187
(10 mg/kg). Skeletal muscle (gastrocnemius and quadriceps)
was collected at various time points after drug administration
(Fig. 4). We performed a Western blot analysis of LFv2IRE ex-
pression levels in right and left gastrocnemius and quadriceps
muscles from AAV-injected mice (Fig. 4A, top). We detected
higher LFv2IRE expression levels in gastrocnemius than in
quadriceps muscle (Fig. 4A, top). The loading control per-
formed with anti-actin antibodies showed similar amounts of
total protein in all lanes (Fig. 4A, bottom). Therefore, we se-
lected right gastrocnemius to evaluate AP20187-dependent ac-
tivation of LFv2IRE after systemic AAV2/1 administration
(Fig. 4B). We detected a tyrosine-phosphorylated doublet of
about 140 kDa (Fig. 4B, top) corresponding to the LFv2IRE
double band recognized by anti-HA antibodies (Fig. 4B, mid-
dle) in AAV-transduced muscle. Because the tyrosine-phos-
phorylated band of lower molecular weight is also present in
uninjected unstimulated muscle (Fig. 4B, top, first lane), we
considered only the upper band recognized by anti-PY anti-
bodies when investigating the timing of LFv2IRE activation in
muscle. LFv2IRE tyrosine phosphorylation becomes evident 30
min after AP20187 administration, peaks after 6 hr, and is still
present 24 hr later (Fig. 4B, top). Western blot analysis with
anti-HA antibodies shows that LFv2IRE is present in AAV-
transduced but not untransduced muscle (Fig. 4B, middle).
LFv2IRE levels are similar among all lanes with the exception
of the second lane, where a lower amount of receptor is pres-
ent; the second lane corresponds to muscle from animals treated
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FIG. 5. LFv2IRE expression levels compared
with endogenous IR in murine muscle and liver
transduced with AAV. Western blot with anti-IR�
antibodies were performed on muscle (A) and liver
(B) of mice injected with 5 � 1011 GC of AAV2/
8-TBG-LFv2IRE or AAV2/1-MCK-LFv2IRE, 
respectively, and on liver of mice injected with 2 �
1012 GC of AAV2/8-TBG-LFv2IRE (C). (D)
Western blot with anti-IR� antibodies performed
on liver of control uninjected animals. (E) Quan-
tification of LFv2IRE expression reported in
(A–C). The intensity of each LFv2IRE band in
(A–C) was measured. LFv2IRE expression is
reported as the percentage of endogenous IR lev-
els � SE. Solid column, LFv2IRE band intensity
in (A); shaded column, LFv2IRE band intensity in
(B); open column, LFv2IRE band intensity in (C).
The number of animals in each group (n) is de-
picted under the corresponding column.
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with AAV2/1-MCK-LFv2IRE but not stimulated with
AP20187. This weak difference in LFv2IRE levels, however,
cannot account for the almost absent LFv2IRE tyrosine phos-
phorylation (Fig. 4B, top, second lane). The loading control per-
formed with anti-actin antibodies (Fig. 4B, bottom) shows that
similar amounts of total protein were loaded in each lane. The
180-kDa band corresponding to IRS-1 (Fig. 4C, bottom) has ty-
rosine phosphorylation levels that increased 30 min after
AP20187 administration, remained high after 120 min, and then
decreased after 6 hr (Fig. 4C, top; loading control is shown in
Fig. 4B, bottom). This suggests that AP20187 administration
triggers LFv2IRE activation, which phosphorylates IRS-1 on
tyrosine residues. IRS-1 activation in muscle occurs before
LFv2IRE phosphorylation peaks and is rapidly reverted before
receptor phosphorylation returns to baseline. The timing of
LFv2IRE and IRS-1 tyrosine phosphorylation in muscle was
confirmed by quantifying the intensity of the tyrosine-phos-
phorylated bands from two independent experiments, which
were normalized with the corresponding HA or IRS-1 bands
(data not shown).

To evaluate whether the levels of LFv2IRE expression in
liver and muscle were similar to the amount of endogenous IR,
Western blot analysis of tissue total lysates was performed with
anti-IR� antibodies, which recognize the IR intracellular do-
main present in both IR and LFv2IRE. Figure 5 shows that
LFv2IRE levels in treated muscle were about 60% of the en-
dogenous IR level (Fig. 5A and E), whereas in liver the
LFv2IRE expression levels were similar to those of the en-
dogenous IR (Fig. 5B and E).

To assess whether injection of higher doses of AAV vectors
results in increased LFv2IRE expression and tyrosine phos-
phorylation, we systemically injected wild-type CD1 mice with
a mixture of 2 � 1012 GC each of AAV2/8-TBG and 2/1-MCK-

LFv2IRE per mouse. Four weeks later mice were stimulated or
not with AP20187 (10 mg/kg), liver and muscle were collected
at the same time points analyzed in Figs. 3 and 4, and the lev-
els of LFv2IRE expression and phosphorylation were evaluated
by Western blot. Figure 5C and E shows that liver LFv2IRE
expression after administration of 2 � 1012 GC of AAV was
comparable to that obtained when administering 5 � 1011 GC
(Fig. 5B and E), suggesting that this lower dose used in our ex-
periments results in peak LFv2IRE liver expression. In addi-
tion, the LFv2IRE phosphorylation levels and timing on
AP20187 administration in liver samples from mice adminis-
tered the high AAV dose were the same as those observed in
animals injected with the lower vector dose (data not shown).
Similar results were obtained in muscle (data not shown).

Our results confirm that AAV2/1 and AAV2/8 vectors are
able to strongly transduce murine muscle and liver with
LFv2IRE. In addition, our data indicate that AP20187 induces
LFv2IRE transphosphorylation in both tissues transduced with
AAV vectors. This occurs rapidly after drug administration
and reverts to baseline levels 24 hr after AP20187 injection
in liver but not in muscle, suggesting a possible difference in
drug clearance from the two tissues. The timing of LFv2IRE
activation in vivo is in accordance with AP20187 half-life,
which is 8 hr in murine serum (V. Rivera, ARIAD Pharma-
ceuticals, personal communication). The activated receptor in-
duces IR signaling in both transduced tissues because its ac-
tivation results in IRS-1 phosphorylation with kinetics
identical to LFv2IRE in liver and similar to LFv2IRE in mus-
cle. However, the kinetics of LFv2IRE activation on AP20187
administration do not perfectly mirror those of the physio-
logical insulin-mediated IR activation that occurs a few min-
utes after a meal, in that it returns to baseline in less than 2
hr (Taylor, 2001). It is possible that the development of AP

FIG. 6. Hepatic glycogen content in AAV-injected NOD mice. NOD mice were injected with AAV2/8-TBG-LFv2IRE and
AAV2/1-MCK-LFv2IRE vectors (solid and shaded columns) or with control AAV2/8-TBG-LacZ and AAV2/1-MCK-eGFP vec-
tors (open column) and stimulated (solid column) or not (shaded and open columns) with AP20187. After stimulation, liver sam-
ples were collected and hepatic glycogen content was evaluated. The number of mice per group (n) is indicated under each col-
umn. Results are reported as micrograms per milligram of protein, with the SE. *p � 0.05, relative to shaded and open columns.
Vertically striped column, wild-type mice stimulated with insulin; horizontally striped column, NOD mice stimulated with insulin.



derivatives with half-lifes and biodistribution different from
AP20187 may overcome this delay.

AP20187 induces insulin-like actions in muscle and
liver of NOD mice transduced with AAV vectors

To investigate the ability of LFv2IRE to induce insulin-like
actions in vivo, we used a model in which there is no endoge-
nous insulin signaling. IR knockout mice die in the first days
of life (Accili et al., 1996); in other models of type 2 DM, that
is, ob/ob and db/db mice (Meinders et al., 1996), the cause of
insulin resistance is unclear (Kahn and Flier, 2000; Shimomura
et al., 2000; Haluzik et al., 2004; Werner et al., 2004). There-
fore, we decided to use NOD mice, a murine model of type 1
DM (Makino et al., 1980). We induced LFv2IRE expression in
muscle and liver of adult diabetic NOD mice through systemic
injection of a mixture of the AAV2/1-MCK-LFv2IRE and
AAV2/8-TBG-LFv2IRE vectors (5 � 1011 GC of each vector
per mouse). A control group of animals received the same dose
of the AAV2/8-TBG-LacZ and AAV2/1-MCK-eGFP vector
mixture. One month later we evaluated the AP20187-dependent
increase in glycogen synthesis and circulating glucose uptake

as an index of insulin-like signaling in the transduced tissues.
We selected liver to evaluate glycogen synthesis. Because glu-
cose uptake in liver is not insulin dependent (Taylor, 2001), we
used muscle to evaluate the induction of glucose uptake. Fig-
ure 6 shows that liver glycogen levels in mice expressing
LFv2IRE and stimulated with AP20187 are significantly higher
than in unstimulated mice, in which glycogen levels are simi-
lar to those measured in control mice. In addition, the effect of
AP20187 in mice expressing LFv2IRE is almost the same as
the effect of insulin treatment (0.75 U/kg body weight) in NOD
mice (Fig. 6). This was 35% lower, however, compared with
the glycogen content measured in insulin-treated wild-type con-
trols. Our results demonstrate that AP20187 administration in-
duces glycogen synthesis in liver expressing LFv2IRE similarly
to insulin (Taylor, 2001) and confirms that the basal levels of
LFv2IRE tyrosine phosphorylation observed in the absence of
AP20187 do not impact on this aspect of liver glucose metab-
olism.

The glucose utilization index was measured in skeletal mus-
cle (quadriceps and gastrocnemius) of the same mice used in
Fig. 6 (injected with a mixture of AAV2/1-MCK-LFv2IRE and
AAV2/8-TBG-LFv2IRE), which were stimulated or not with
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FIG. 7. Index of glucose utilization by NOD
skeletal muscle transduced with AAV2/1. (A)
Single muscle glucose uptake in AAV2/8-
TBG-LFv2IRE- and AAV2/1-MCK-LFv2IRE-
injected mice stimulated (solid columns) or not
(shaded columns) with AP20187. rG, right gas-
trocnemius; lG, left gastrocnemius; rQ, right
quadriceps. Vertically striped columns, wild-
type mice stimulated with insulin; horizontally
striped columns, NOD mice stimulated with
insulin. (B) Muscle glucose uptake [average 
of rG, lG, and rQ shown in (A)] in AAV-in-
jected mice stimulated (solid column) or not
(open column) with AP20187. Results are re-
ported as picomoles per milligram per minute,
with the SE. n � 5 mice in the AP20187-stim-
ulated group and n � 3 mice in the unstimu-
lated group. *p � 0.05, relative to shaded 
column (A) and to horizontally striped column
(B); **p � 0.01, relative to shaded column 
(A and B). Vertically striped column, wild-
type mice stimulated with insulin (n � 9 mice).
Horizontally striped column, NOD mice stim-
ulated with insulin (n � 5 mice).



AP20187 (Fig. 7). The index was significantly increased on
AP20187 administration in both gastrocnemius and right
quadriceps of AAV2/1-injected mice (Fig. 7A). The average in-
duction of muscle glucose uptake is reported in Fig. 7B (4.6-
fold induction in AP20187-stimulated mice compared with un-
stimulated AAV-injected mice) and is comparable to that
obtained in insulin-stimulated NOD mice. This result demon-
strates that, similarly to liver, AP20187-mediated LFv2IRE ac-
tivation mimicks insulin action in the muscle of NOD mice.
Again, 35% higher values of the glucose utilization index were
found in insulin-stimulated wild-type mice. We finally evalu-
ated whether AP20187-induced insulin-like signaling results in
normalization of blood glucose levels in NOD mice transduced
with both AAV2/1-MCK-LFv2IRE and AAV2/8-TBG-
LFv2IRE. Blood glucose levels were monitored for 24 hr after
AP20187 administration and did not decrease either in
AP20187-treated or untreated AAV-transduced diabetic mice
(data not shown). In addition, blood glucose levels were mon-
itored in wild-type CD1 mice injected with the higher vector
doses, both under fed and fasted conditions, and again no
change in glycemic levels on AP20187 administration was ob-
served (data not shown). AP20187-induced LFv2IRE and IRS-
1 phosphorylation and blood glucose levels were evaluated in
streptozotocin-treated diabetic nude mice transduced with AAV
(n � 9 diabetic mice per group). The results are the same as
those obtained in NOD mice (data not shown).

One possible explanation for the inability of the AP20187–
LFv2IRE system to impact on blood glucose levels is that trans-
duction with LFv2IRE may be required in tissues other than
muscle and liver. In this regard, IR ablation in brown adipose
tissue (Guerra et al., 2001) or adipose-specific GLUT-4 abla-
tion (Abel et al., 2001) results in impaired glucose tolerance.
In addition, because restoration of IR expression in liver, brain,
and pancreatic beta cells of IR KO mice is sufficient to rescue
the lethality and prevent hyperglycemia in this model (Okamoto
et al., 2004, 2005), mechanisms other than insulin-dependent
glucose uptake in canonical insulin target tissues could con-
tribute to the regulation of circulating glucose levels. The pos-
sibility that higher muscle and liver transduction levels are re-
quired to impact on blood glucose levels in diabetic mice is
unlikely because (1) we reach a plateau in LFv2IRE expression
in both muscle and liver; (2) levels of LFv2IRE expression are
similar to endogenous IR; and (3) more importantly, AP20187-
induced liver glycogen storage and muscle glucose uptake in
transduced diabetic mice are similar to those induced by insulin
in untransduced animals.

Despite the ability of LFv2IRE to induce IRS-1 activation,
resulting in insulin-like biological actions in both muscle and
liver, we cannot exclude that the LFv2IRE–AP20187 system
does not activate some IR targets downstream of IRS-1 or has
a different turnover/half-life compared with the endogenous in-
sulin receptor, therefore failing to normalize glucose levels in
diabetic models. Alternatively, LFv2IRE tyrosine phosphoryla-
tion levels or timing different from that of the endogenous IR
(as we show in Figs. 3 and 4) could be responsible for the ab-
sence of impact on blood glucose levels.

In conclusion, we describe an innovative system allowing
regulated induction of the insulin signaling pathway in vivo.
This is obtained via the reversible activation of a chimeric in-
sulin receptor with a small-molecule drug. We show that this

system, transduced via state-of-the-art AAV-mediated gene
transfer into murine liver and skeletal muscle, is able to acti-
vate insulin signaling and to induce insulin-like biological ac-
tions. The combination of AAV-mediated somatic gene trans-
fer with a powerful system for pharmacological modulation of
intracellular signaling represents a novel strategy to study sig-
nal transduction pathways in vivo and organ functions and in-
teractions in the regulation of metabolic pathways.

ACKNOWLEDGMENTS

The authors thank Graciana Diez-Roux for critical reading
of the manuscript. This work was supported by the Italian Min-
istry of University and Research (grant RBNE01AP77), the
Ruth and Milton Steinbach Foundation, the Italian Ministry 
of Agriculture (DM 589/7303/04), the Italian Health Institute
(Progetto Malattie Rare, grant 526A/1), and the European
Commission (Diagnostic Molecular Imaging and Clinigene
grants LSHB-CT-2005-512146 and LST-2004-1.2.4-3, respec-
tively).

REFERENCES

ABEL, E.D., PERONI, O., KIM, J.K., KIM, Y.B., BOSS, O., HADRO,
E., MINNEMANN, T., SHULMAN, G.I., and KAHN, B.B. (2001).
Adipose-selective targeting of the GLUT4 gene impairs insulin ac-
tion in muscle and liver. Nature 409, 729–733.

ACCILI, D., DRAGO, J., LEE, E.J., JOHNSON, M.D., COOL, M.H.,
SALVATORE, P., ASICO, L.D., JOSE, P.A., TAYLOR, S.I., and
WESTPHAL, H. (1996). Early neonatal death in mice homozygous
for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109.

AMARA, J.F., CLACKSON, T., RIVERA, V.M., GUO, T., KEENAN,
T., NATESAN, S., POLLOCK, R., YANG, W., COURAGE, N.L.,
HOLT, D.A., and GILMAN, M. (1997). A versatile synthetic dimer-
izer for the regulation of protein–protein interactions. Proc. Natl.
Acad. Sci. U.S.A. 94, 10618–10623.

AURICCHIO, A., HILDINGER, M., O’CONNOR, E., GAO, G.P., and
WILSON, J.M. (2001). Isolation of highly infectious and pure adeno-
associated virus type 2 vectors with a single-step gravity-flow col-
umn. Hum. Gene Ther. 12, 71–76.

AURICCHIO, A., GAO, G.P., YU, Q.C., RAPER, S., RIVERA, V.M.,
CLACKSON, T., and WILSON, J.M. (2002). Constitutive and reg-
ulated expression of processed insulin following in vivo hepatic gene
transfer. Gene Ther. 9, 963–971.

BARTLETT, J.S., SAMULSKI, R.J., and MCCOWN, T.J. (1998). Se-
lective and rapid uptake of adeno-associated virus type 2 in brain.
Hum. Gene Ther. 9, 1181–1186.

BELL, P., LIMBERIS, M., GAO, G., WU, D., BOVE, M.S., SAN-
MIGUEL, J.C., and WILSON, J.M. (2005). An optimized protocol
for detection of E. coli �-galactosidase in lung tissue following gene
transfer. Histochem. Cell Biol. 124, 77–85.

BLAU, C.A., PETERSON, K.R., DRACHMAN, J.G., and SPENCER,
D.M. (1997). A proliferation switch for genetically modified cells.
Proc. Natl. Acad. Sci. U.S.A. 94, 3076–3081.

BLUHER, M., MICHAEL, M.D., PERONI, O.D., UEKI, K., CARTER,
N., KAHN, B.B., and KAHN, C.R. (2002). Adipose tissue selective
insulin receptor knockout protects against obesity and obesity-related
glucose intolerance. Dev. Cell 3, 25–38.

BRUNING, J.C., MICHAEL, M.D., WINNAY, J.N., HAYASHI, T.,
HORSCH, D., ACCILI, D., GOODYEAR, L.J., and KAHN, C.R.
(1998). A muscle-specific insulin receptor knockout exhibits features

PHARMACOLOGICAL REGULATION OF IR SIGNALING 115



of the metabolic syndrome of NIDDM without altering glucose tol-
erance. Mol. Cell 2, 559–569.

BRUNING, J.C., GAUTAM, D., BURKS, D.J., GILLETTE, J., SCHU-
BERT, M., ORBAN, P.C., KLEIN, R., KRONE, W., MULLER-
WIELAND, D., and KAHN, C.R. (2000). Role of brain insulin re-
ceptor in control of body weight and reproduction. Science 289,
2122–2125.

BURNETT, S.H., KERSHEN, E.J., ZHANG, J., ZENG, L., STRALEY,
S.C., KAPLAN, A.M., and COHEN, D.A. (2004). Conditional mac-
rophage ablation in transgenic mice expressing a Fas-based suicide
gene. J. Leukoc. Biol. 75, 612–623.

COTUGNO, G., POLLOCK, R., FORMISANO, P., LINHER, K., BE-
GUINOT, F., and AURICCHIO, A. (2004). Pharmacological regu-
lation of the insulin receptor signaling pathway mimics insulin ac-
tion in cells transduced with viral vectors. Hum. Gene Ther. 15,
1101–1108.

DENTI, M.A., ROSA, A., D’ANTONA, G., STHANDIER, O., DE AN-
GELIS, F.G., NICOLETTI, C., ALLOCCA, M., PANSARASA, O.,
PARENTE, V., MUSARO, A., AURICCHIO, A., BOTTINELLI, R.,
and BOZZONI, I. (2006). Body-wide gene therapy of Duchenne mus-
cular dystrophy in the mdx mouse model. Proc. Natl. Acad. Sci.
U.S.A. 103, 3758–3763.

DUNANT, P., LAROCHELLE, N., THIRION, C., STUCKA, R.,
URSU, D., PETROF, B.J., WOLF, E., and LOCHMULLER, H.
(2003). Expression of dystrophin driven by the 1.35-kb MCK pro-
moter ameliorates muscular dystrophy in fast, but not in slow mus-
cles of transgenic mdx mice. Mol. Ther. 8, 80–89.

FERRE, P., LETURQUE, A., BURNOL, A.F., PENICAUD, L., and
GIRARD, J. (1985). A method to quantify glucose utilization in vivo
in skeletal muscle and white adipose tissue of the anaesthetized rat.
Biochem. J. 228, 103–110.

GAO, G., QU, G., BURNHAM, M.S., HUANG, J., CHIRMULE, N.,
JOSHI, B., YU, Q.C., MARSH, J.A., CONCEICAO, C.M., and WIL-
SON, J.M. (2000). Purification of recombinant adeno-associated
virus vectors by column chromatography and its performance in vivo.
Hum. Gene Ther. 11, 2079–2091.

GAO, G.P., ALVIRA, M.R., WANG, L., CALCEDO, R., JOHNSTON,
J., and WILSON, J.M. (2002). Novel adeno-associated viruses from
rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad.
Sci. U.S.A. 99, 11854–11859.

GRIMM, D., PANDEY, K., NAKAI, H., STORM, T.A., and KAY,
M.A. (2006). Liver transduction with recombinant adeno-associated
virus is primarily restricted by capsid serotype not vector genotype.
J. Virol. 80, 426–439.

GUERRA, C., NAVARRO, P., VALVERDE, A.M., ARRIBAS, M.,
BRUNING, J., KOZAK, L.P., KAHN, C.R., and BENITO, M.
(2001). Brown adipose tissue-specific insulin receptor knockout
shows diabetic phenotype without insulin resistance. J. Clin. Invest.
108, 1205–1213.

HALUZIK, M., COLOMBO, C., GAVRILOVA, O., CHUA, S.,
WOLF, N., CHEN, M., STANNARD, B., DIETZ, K.R., LE ROITH,
D., and REITMAN, M.L. (2004). Genetic background (C57BL/6J
versus FVB/N) strongly influences the severity of diabetes and in-
sulin resistance in ob/ob mice. Endocrinology 145, 3258–3264.

JINDAL, R.M., KARANAM, M., and SHAH, R. (2001). Prevention of
diabetes in the NOD mouse by intra-muscular injection of recombi-
nant adeno-associated virus containing the preproinsulin II gene. Int.
J. Exp. Diabetes Res. 2, 129–138.

KAHN, B.B., and FLIER, J.S. (2000). Obesity and insulin resistance.
J. Clin. Invest. 106, 473–481.

KAPLITT, M.G., LEONE, P., SAMULSKI, R.J., XIAO, X., PFAFF,
D.W., O’MALLEY, K.L., and DURING, M.J. (1994). Long-term
gene expression and phenotypic correction using adeno-associated
virus vectors in the mammalian brain. Nat. Genet. 8, 148–154.

KEPPLER, D., and DECKER, K. (1983). Methods of enzymatic anal-

ysis: Poly-, oligo- and disaccharides. In Methods of Enzymatic Anal-
ysis, 3rd ed. H. Bergmeyer, ed. (Academic Press, New York, NY).

KULKARNI, R.N., BRUNING, J.C., WINNAY, J.N., POSTIC, C.,
MAGNUSON, M.A., and KAHN, C.R. (1999). Tissue-specific
knockout of the insulin receptor in pancreatic beta cells creates an
insulin secretory defect similar to that in type 2 diabetes. Cell 96,
329–339.

LAURO, D., KIDO, Y., CASTLE, A.L., ZARNOWSKI, M.J.,
HAYASHI, H., EBINA, Y., and ACCILI, D. (1998). Impaired glu-
cose tolerance in mice with a targeted impairment of insulin action
in muscle and adipose tissue. Nat. Genet. 20, 294–298.

LEE, H.C., KIM, S.J., KIM, K.S., SHIN, H.C., and YOON, J.W. (2000).
Remission in models of type 1 diabetes by gene therapy using a sin-
gle- chain insulin analogue. Nature 408, 483–488.

LI, Z.Y., OTTO, K., RICHARD, R.E., NI, S., KIRILLOVA, I.,
FAUSTO, N., BLAU, C.A., and LIEBER, A. (2002). Dimerizer-in-
duced proliferation of genetically modified hepatocytes. Mol. Ther.
5, 420–426.

MACLAREN, N.K., and KUKREJA, A. (2001). Type 1 diabetes mel-
litus. In The Metabolic and Molecular Bases of Inherited Disease,
8th ed. Scriver, C.R., Sly, W.S., Childs, B., Beaudet, A.R., Valle, D.,
Kinzler, K.W., and Vogelstein, B., eds. (McGraw-Hill. St. Louis,
MO) pp. 1471–1488.

MAKINO, S., KUNIMOTO, K., MURAOKA, Y., MIZUSHIMA, Y.,
KATAGIRI, K., and TOCHINO, Y. (1980). Breeding of a non-obese,
diabetic strain of mice. Jikken Dobutsu 29, 1–13.

MALLET, V.O., MITCHELL, C., GUIDOTTI, J.E., JAFFRAY, P.,
FABRE, M., SPENCER, D., ARNOULT, D., KAHN, A., and
GILGENKRANTZ, H. (2002). Conditional cell ablation by tight con-
trol of caspase-3 dimerization in transgenic mice. Nat. Biotechnol.
20, 1234–1239.

MEINDERS, A.E., TOORNVLIET, A.C., and PIJL, H. (1996). Lep-
tin. Neth. J. Med. 49, 247–252.

MERTEN, O.W., GENY-FIAMMA, C., and DOUAR, A.M. (2005).
Current issues in adeno-associated viral vector production. Gene
Ther. 12(Suppl. 1), S51–S61.

MICHAEL, M.D., KULKARNI, R.N., POSTIC, C., PREVIS, S.F.,
SHULMAN, G.I., MAGNUSON, M.A., and KAHN, C.R. (2000).
Loss of insulin signaling in hepatocytes leads to severe insulin re-
sistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97.

NANDI, A., KITAMURA, Y., KAHN, C.R., and ACCILI, D. (2004).
Mouse models of insulin resistance. Physiol. Rev. 84, 623–647.

NEFF, T., HORN, P.A., VALLI, V.E., GOWN, A.M., WARDWELL,
S., WOOD, B.L., VON KALLE, C., SCHMIDT, M., PETERSON,
L.J., MORRIS, J.C., RICHARD, R.E., CLACKSON, T., KIEM, H.P.,
and BLAU, C.A. (2002). Pharmacologically regulated in vivo selec-
tion in a large animal. Blood 100, 2026–2031.

OKAMOTO, H., NAKAE, J., KITAMURA, T., PARK, B.C., DRA-
GATSIS, I., and ACCILI, D. (2004). Transgenic rescue of insulin
receptor-deficient mice. J. Clin. Invest. 114, 214–223.

OKAMOTO, H., OBICI, S., ACCILI, D., and ROSSETTI, L. (2005).
Restoration of liver insulin signaling in Insr knockout mice fails 
to normalize hepatic insulin action. J. Clin. Invest. 115, 1314–
1322.

SARKAR, R., TETREAULT, R., GAO, G., WANG, L., BELL, P.,
CHANDLER, R., WILSON, J.M., and KAZAZIAN, H.H., Jr. (2004).
Total correction of hemophilia A mice with canine FVIII using an
AAV 8 serotype. Blood 103, 1253–1260.

SHIMOMURA, I., MATSUDA, M., HAMMER, R.E., BASHMA-
KOV, Y., BROWN, M.S., and GOLDSTEIN, J.L. (2000). Decreased
IRS-2 and increased SREBP-1c lead to mixed insulin resistance and
sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell 6,
77–86.

SOMOGYI, M. (1945). Determination of blood sugar. J. Biol. Chem.
160, 69–73.

COTUGNO ET AL.116



PHARMACOLOGICAL REGULATION OF IR SIGNALING 117

TAHA, C., and KLIP, A. (1999). The insulin signaling pathway. J.
Membr. Biol. 169, 1–12.

TAYLOR, S.I. (2001). Insulin action, insulin resistance, and type 2 di-
abetes mellitus. In The Metabolic and Molecular Bases of Inherited
Disease, 8th ed. Scriver, C.R., Sly, W.S., Childs, B., Beaudet, A.R.,
Valle, D., Kinzler, K.W., and Vogelstein, B., eds. (McGraw-Hill. St.
Louis, MO) pp. 1433–1469.

WANG, Z., ZHU, T., REHMAN, K.K., BERTERA, S., ZHANG, J.,
CHEN, C., PAPWORTH, G., WATKINS, S., TRUCCO, M., ROB-
BINS, P.D., LI, J., and XIAO, X. (2006). Widespread and stable pan-
creatic gene transfer by adeno-associated virus vectors via different
routes. Diabetes 55, 875–884.

WELM, B.E., FREEMAN, K.W., CHEN, M., CONTRERAS, A.,
SPENCER, D.M., and ROSEN, J.M. (2002). Inducible dimeriza-
tion of FGFR1: Development of a mouse model to analyze pro-
gressive transformation of the mammary gland. J. Cell Biol. 157,
703–714.

WERNER, E.D., LEE, J., HANSEN, L., YUAN, M., and SHOELSON,
S.E. (2004). Insulin resistance due to phosphorylation of insulin re-
ceptor substrate-1 at serine 302. J. Biol. Chem. 279, 35298–35305.

XIAO, W., CHIRMULE, N., BERTA, S.C., MCCULLOUGH, B.,
GAO, G., and WILSON, J.M. (1999). Gene therapy vectors based
on adeno-associated virus type 1. J. Virol. 73, 3994–4003.

XIAO, X., LI, J., and SAMULSKI, R.J. (1996). Efficient long-term
gene transfer into muscle tissue of immunocompetent mice by adeno-
associated virus vector. J. Virol. 70, 8098–8108.

XIE, X., ZHAO, X., LIU, Y., ZHANG, J., MATUSIK, R.J., SLAWIN,
K.M., and SPENCER, D.M. (2001). Adenovirus-mediated tissue-tar-
geted expression of a caspase-9-based artificial death switch for the
treatment of prostate cancer. Cancer Res. 61, 6795–6804.

XU, R., JANSON, C.G., MASTAKOV, M., LAWLOR, P., YOUNG,
D., MOURAVLEV, A., FITZSIMONS, H., CHOI, K.L., MA, H.,
DRAGUNOW, M., LEONE, P., CHEN, Q., DICKER, B., and DUR-
ING, M.J. (2001). Quantitative comparison of expression with adeno-
associated virus (AAV-2) brain-specific gene cassettes. Gene Ther.
8, 1323–1332.

Address reprint requests to:
Dr. Alberto Auricchio

Department of Pediatrics
Federico II University

and Telethon Institute of Genetics and Medicine (TIGEM)
Via P. Castellino, 111

80131 Naples, Italy

E-mail: auricchio@tigem.it

Received for publication August 3, 2006; accepted after revi-
sion January 8, 2007.

Published online: February 14, 2007.



Ocular gene therapy: current progress
and future prospects
Pasqualina Colella1,2*, Gabriella Cotugno1,3* and Alberto Auricchio1,4

1 Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131 Naples, Italy
2 The Open University, PO Box 197, Milton Keynes, MK7 6BJ, UK
3 SEMM (European School of Molecular Medicine), C/o IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
4 Medical Genetics, Department of Pediatrics, Federico II University, Via S. Pansini 5, 80131 Naples, Italy

Review
As gene therapy begins to produce its first clinical
successes, interest in ocular gene transfer has grown
owing to the favorable safety and efficacy characteristics
of the eye as a target organ for drug delivery. Important
advances also include the availability of viral and non-
viral vectors that are able to efficiently transduce various
ocular cell types, the use of intraocular delivery routes
and the development of transcriptional regulatory
elements that allow sustained levels of gene transfer
in small and large animal models after a single admin-
istration. Here, we review recent progress in the field of
ocular gene therapy. The first experiments in humans
with severe inherited forms of blindness seem to confirm
the good safety and efficacy profiles observed in animal
models and suggest that gene transfer has the potential
to become a valuable therapeutic strategy for otherwise
untreatable blinding diseases.

Introduction
Gene therapy and the eye

The mammalian eye is a complex organ composed of
specialized structures (Box 1). For vision to occur, light
is focused upon the retina (Box 1), where cone and rod
photoreceptor (PR) cells ‘capture’ and convert photons into
electrical signals that are conveyed to the brain. The
retinal pigment epithelium (RPE) (Box 1) overlays the
PRs and has a fundamental role in vision, providing
essential metabolites and maintaining PR excitability
and structure. Visual function in humans can be comprom-
ised by many inherited or acquired diseases affecting
various eye structures and cell types, such as age-related
macular degeneration (AMD), diabetic retinopathy (DR),
retinitis pigmentosa (RP), Leber congenital amaurosis
(LCA) and glaucoma, among others. The majority of these
diseases are currently untreatable.

Gene therapy (Box 2) holds great promise for the treat-
ment of eye diseases, and proof-of-principle of its efficacy in
animal models and humans has recently been provided, as
we shall discuss below. Indeed, the eye is particularly
suitable for gene therapy because: (i) it is easily accessible
and various routes of gene delivery can be used to target
different layers or cell types in the eye (Box 3); (ii) its small
size and enclosed structure allow the use of low vector and/
or gene doses to achieve a therapeutic effect; (iii) tight
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junctions between RPE cells and the presence of the blood–

retina barrier limit vector and/or gene leakage into the
circulation and confer a useful immune-privileged status to
the eye, thus avoiding generation of an immune response to
either vector components or transgenes; (iv) many genes
directly causing and/or involved in eye diseases have been
identified; (v) rodents and large animal models that
resemble human pathologies are available [1,2]; and (vi)
the external layers of the eye and the retina can be easily
monitored in vivowith non-invasive techniques: in particu-
lar, retinal morphology can be assessed by optical coher-
ence tomography (OCT) and retinal function can be
assessed by objective tests such as electroretinography
(ERG), visual evoked potentials (VEPs) and measurement
of afferent pupillary light responses (PLRs).
Vectors for ocular gene transfer
The delivery of nucleic acids to different eye structures can
be performed both by viral- and non-viral-based methods
(Box 4). Even though non-viral gene transfer efficiency has
been consistently improved, for example by complexing
nucleic acids with lipids or cationic polymers and using
electroporation, the resulting transfection rate is low and
the expression of the transgene is short-lived [3,4]; thus,
viral gene transfer represents themethod of choice for gene
delivery to the eye owing to the availability of different
viral vectors that are able to efficiently transduce ocular
tissues.

For most vectors, the administration route (Box 3) is
largely dependent on the targeted ocular cell type (see
below). Subretinal injections expose the outer retina
(PRs and RPE), whereas intravitreal injections expose
the anterior retina (retinal ganglion cells) to the nucleic-
acid-based therapeutic. In addition, the use of tissue-
specific promoters restricts transgene expression to the
desired cell subtype. Therefore, the combination of cell-
specific promoters, appropriate vectors and injection
routes ideally allows selective transduction of the desired
target ocular cells [5,6].

Viral vectors commonly used for ocular gene transfer are
adenoviral (Ad), lentiviral and adeno-associated viral
(AAV) vectors (Box 4). Non-integrating vectors, such as
Ad and AAV vectors, can result in transient transgene
expression due to loss of vector genomes in dividing cells
[7]. This represents a minor issue for retinal cells, which
have a very low or no turnover and are transduced for a
008.11.003 Available online 25 December 2008 23
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relatively long time after a single administration of non-
integrating vectors like those derived from adeno-associ-
ated virus [8]. Integrating vectors, such as gamma-retro-
virus and lentivirus, can give stable transduction of both
dividing and non-dividing cells, but for gamma-retroviral
vectors, the resulting insertional mutagenesis can cause
malignant transformation [9].

Most of the available transduction data have been col-
lected in murine models, although for some vectors, trans-
duction characteristics have been tested in large animals
[10,11]. In the following sections, we describe how each of
the major types of viral vector has found application in
ocular diseases.

Lentiviral vectors

Lentiviral vectors (LVs) (Box 4) have been widely used for
intraocular gene delivery, and they result in the efficient
transduction of non-dividing cells and the generation of
long-term transgene expression. Transduction of anterior
eye structures has been reported after anterior chamber
injection (Box 3) of human immunodeficiency virus 1
(HIV1)-based LVs in rodents [3]. LV subretinal injection
leads to long-term (two years) transgene expression,
mostly in RPE cells [3], whereas the evidence for trans-
Box 1. Structure of the eye

The eye is organized into three main layers (Figure Ia) whose names

reflect their basic functions: (i) the fibrous layer, consisting of the

cornea and the sclera; (ii) the vascular layer, including the iris, ciliary

body and choroid; and (iii) the nervous layer, consisting of the retina.

In addition, a monolayer comprising specialized epithelial cells – the

retinal pigment epithelium (RPE) – separates the retina from the

choroid. The eye contains three chambers of fluid: the anterior

chamber, the posterior chamber and the vitreous chamber. Light is

focused through the lens upon the retina, where it is converted into

signals that reach the brain through the optic nerve.

Histology of the retina

The retina is organized into three layers of cells (Figure Ib): (i) the

outer nuclear layer (ONL), comprising rod and cone photoreceptor

Figure I. Structural representation of the eye, retinal cells and photoreceptor cells. (a

Ref. [27]. (b) Paraffin cross-section (7 mm) of an adult C57BL/6 retina stained with h

photoreceptor cells. Modified from http://thebrain.mcgill.ca/flash/d/d_02/d_02_m/d_02
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duction of PRs is less robust. Efficient transduction of PRs
has been obtained in neonatal and embryonic retinas [12–

14], but variable results have been reported in adult
animals [3,12,15]. Vectors based on the non-primate lenti-
virus equine infectious anemia virus (EIAV) seem to be
more efficient at transduction of PRs than HIV-based
vectors [12,15].

Adenoviral vectors

Ad vectors (Box 4) have been used for ocular gene delivery
directed both to the retina and anterior eye structures.
Indeed, transduction of the ocular anterior segment can be
obtained by intravitreal or intracameral (Box 3) Ad injec-
tion, whereas only minor retinal expression, mostly in
Müller cells, can be observed after intravitreal injection
(Box 3) [16,17]; by contrast, Ad subretinal injection results
in RPE transduction and only poor PR transgene expres-
sion. In addition, Ad vectors are able to efficiently trans-
duce periocular tissues after subconjunctival injections
(Box 3) [18,19].

The major limitation upon the use of Ad vectors is the
transient nature of the transgene expression, which is
caused by immune-mediated elimination of transduced
cells expressing Ad viral proteins [20]. This makes
cells; (ii) the inner nuclear layer (INL), comprising Amacrine, Müller,

bipolar and horizontal cells; and (iii) the ganglion cell layer (GCL),

containing ganglion and displaced Amacrine cells. The retina has two

layers of neuronal interconnections: the outer plexiform layer (OPL)

and the inner plexiform layer (IPL).

Schematic structure of retinal photoreceptors
Rod and cone photoreceptors (Figure Ic) comprise: (i) the cell body

that contains the organelles; (ii) the inner segment, a specialized

portion that contains mitochondria; (iii) the outer segment, a modified

cilium containing membrane disks filled with opsin proteins, where

light is ‘captured’; and (iv) the synaptic endings, where release of

neurotransmitters occurs.

) Schematic representation of the eye structure. Modified, with permission, from

ematoxylin and eosin. (c) Scheme representing the structure of rod and cone

_m_vis/d_02_m_vis.html.
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Box 2. Gene therapy: definition and strategies

Gene therapy is the treatment of diseases based on the introduction

of genetic material into target cells of the body.

Gene replacement

Delivery of a gene whose function is absent due to loss-of-function

mutations in the affected gene. This can be used in autosomal

recessive diseases (RP or LCA) or in those that are autosomal

dominant due to haploinsufficiency or dominant-negative muta-

tions (RP).

Gene silencing
Delivery of a gene and/or nucleic acid to inhibit the expression of a

gene or a gene product with abnormal function. This approach is

useful in autosomal dominant diseases (RP) arising from gain-of-

function mutations.

Gene addition

Delivery of a gene whose product provides beneficial effects

independently of the primary defective gene (glaucoma or ocular

NV).

Gene correction

Delivery of nucleic acids to ‘repair’ a mutated gene at its locus. Gene

correction can be performed by delivering the correct sequence of

the gene and inducing homologous recombination. Gene correction

approaches are applicable to both dominant and recessive diseases.
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Ad vectors unsuitable for gene therapy of those
ocular diseases that require long-lasting therapeutic gene
expression. Conversely, transient gene expression might
be desirable if toxic transgenic products are required to kill
malignant cells. Recently, the safety and efficacy of intra-
ocular delivery of Ad vectors expressing the herpes virus
thymidine kinase have been successfully tested in patients
with retinoblastoma [21]. Thymidine kinase converts the
pro-drug ganciclovir into a triphosphate form that inhibits
DNA replication, killing the transduced cells.

To avoid the immune responses to Ad viral proteins,
helper-dependent Ad (HD-Ad) vectors have been devel-
oped. These vectors have been deleted of all viral genes
and allow sustained intraocular expression of the trans-
gene product for up to one year after vector administration,
representing a major advance in long-term Ad-mediated
ocular gene therapy [22,23].

Adeno-associated viral vectors

Recombinant AAV (rAAV) vectors (Box 4) are among the
most promising vectors for ocular gene-transfer owing to
their ability to efficiently transduce various ocular cell
types for long periods of time. The ability of the various
rAAV serotypes to transduce ocular structures has been
extensively documented using vectors encoding marker
proteins; it has been shown that a combination of sero-
types, injection route and regulatory elements allows the
selective transduction of different cellular populations
(Figure 1). A quantitative comparison of rAAV2/2- and
rAAV2/5-mediated transduction of RPE and PR cells in
murine retina upon subretinal delivery showed a 400-fold
increase in the number of transduced cells with rAAV2/5
compared with rAAV2/2 [24]. More recently, it has been
shown that the novel rAAV serotypes rAAV2/7, rAAV2/8,
rAAV2/9 are six- to eightfold more efficient than rAAV2/5
for transduction of PRs after subretinal injection [5].
rAAV2/9 vectors, in addition to PRs, efficiently trans-
duceMüller cells [5], and transduction of ganglion cells can
be achieved by intravitreal injection of either rAAV2/2 or
rAAV2/8 vectors [6]. RPE is efficiently transduced by most
rAAV serotypes upon subretinal injection, with rAAV2/4
being the most specific [25]. Anterior eye structures can be
transduced with intravitreal injection of rAAV2/2, rAAV2/
7, rAAV2/8 or rAAV2/9 [6].

Given their versatility and efficacy, as well as their low
immunogenicity and non-pathogenicity, rAAV vectors
represent highly efficient vectors for ocular gene transfer.

Amajor limitationuponuse of rAAVvectors is their cargo
capacity, which is known to be restricted to 4.7 kb. Recently,
Allocca and colleagues [26] have shown that vectors with
rAAV5 capsids (rAAV2/5), which are able to efficiently
transduce RPE and PRs, have a higher packaging capacity
than other serotypes tested, allowing accommodation of
genomes of up to 8.9 kb. This greatly expands the thera-
peutic potential of rAAV vectors to diseases arising from
mutations in large genes such as ABCA4, which encodes
ATP-binding cassette transporter 4, the retinal-specific
transporter associated with the most common inherited
macular dystrophy in humans, Stargardt’s disease (STGD).

Successful examples of ocular gene transfer in animal
models and humans
Viral- and non-viral-vector-mediated gene transfer has
been tested in a large number of animal models of anterior
segment, retinal and optic nerve diseases. Comprehensive
reviews of these data are available elsewhere [3,27,28].
Here, we discuss a selection of recent examples of nucleic-
acid-based therapies for ocular diseases.

Gene transfer to the anterior eye segment

The structures composing the anterior part of the eye
(conjunctiva, cornea, iris, ciliary margin and lens) (Box 1)
are also relevant for vision. In particular, the cornea,
which is an avascular tissue, contributes to the immune
protection of the eye and is essential for light trans-
mission to the retina. Gene delivery has been performed
using both viral and non-viral vectors for the treatment
of acquired and inherited corneal disorders [27]. Corneal
neovascularization (NV), which causes visual impair-
ment, has been successfully targeted by delivering anti-
angiogenic factors via viral vectors (Ad [29] and rAAV
vectors [7]) or via naked DNA [30] in animal models.
Inhibition of pro-angiogenic factors by RNA interference
using small interfering RNAs (siRNAs) [31] or adeno-
virus [32] also resulted in reduction of NV. In addition,
intraocular injection of Ad-b-glucuronidase (GUSB) ame-
liorated corneal manifestations of mucopolysaccharidosis
type VII [33,34].

The importance of using cell-specific promoters: gene

therapy of achromatopsia

Cone PRs are concentrated predominantly in the central
portion of the retina called the macula. The macula is a
specialized region present in higher vertebrates that is
responsible for visual acuity and color vision. Degeneration
of macular PRs and/or the underlying RPE leads to loss of
central vision [35]. In diseases such as STGD, achroma-
25



Box 3. Surgical procedures for ocular gene delivery

Gene delivery to the eye can be performed through several routes of

injection. The injection route is selected based upon the cell or layer

to be targeted and the specific features of the vector used for gene

delivery:

(i) Injection of the vectors into the subretinal space allows

targeting of outer retinal and RPE cells (Figure Ii). This method

is useful for the treatment of retinal degenerations caused by

mutations in genes expressed in PRs or RPE.

(ii) Injection of the vectors into the vitreal space allows transduc-

tion of the inner retina (Figure Iii). This method is useful for the

treatment of inner retinal neovascularization (ROP, DR) or

glaucoma.

(iii) Periocular delivery performed by injecting vector under the

conjunctival membrane (Figure Iiii). Useful for vector-mediated

delivery of secreted antiangiogenic proteins able to enter the

eye from the periocular space for treatment of neovascular

diseases.

(iv) Direct injection into the anterior chamber, allowing transduction

of anterior eye segment tissues (Figure Iiv). Useful for delivery

of secreted anti-inflammatory molecules to reduce inflamma-

tion after corneal transplantation.

Figure I. Intraocular and periocular injection routes. Schematic representation

of periocular (iii), and intraocular (i,ii,iv) delivery routes with the ocular region

targeted by each surgical approach. Modified, with permission, from Ref. [27].
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topsia [36], cone-dystrophies [36] and late-stage retinitis
pigmentosa [37], cone PRs are either primarily affected or
are lost as a consequence of non-cell autonomus rod
degeneration, which is presumably caused by the absence
of rod-derived survival factors. Cone-targeted gene therapy
is therefore relevant to a huge cohort of patients with the
above-mentioned diseases, in which preservation of even a
small number of cones would allow retention of central
vision.

Achromatopsia belongs to a group of autosomal reces-
sive (AR) congenital disorders whose clinical manifes-
tations are usually photophobia, color blindness and
poor visual acuity due to lack of functional cone PRs
[36]. To date, mutations in three cone-specific genes have
been associated with this disease: CNGB3 (encoding cyclic
nucleotide-gated cation channel b-3), CNGA3 (encoding
cyclic nucleotide-gated cation channel a-3) and GNAT2
26
(encoding guanine nucleotide-binding protein transducin
subunit a-2) [38]. The GNAT2 gene product comprises the
a-subunit of transducin necessary for cone hyperpolariz-
ation and visual signal transduction. Subretinal adminis-
tration of rAAV vectors encoding GNAT2 under the
transcriptional control of a 2.1 kb human red–green opsin
promoter construct (PR2.1), which allows cone-specific
expression, has resulted in rescue of both cone-mediated
ERG responses and visual acuity in the Gnat2cpfl3-null
mouse model [39]. This represents the first example of
successful cone-directed gene therapy. Further improve-
ments are required to obtain transduction of all cone
subtypes because the PR 2.1 red–green opsin construct,
which is the most efficient cone-specific promoter tested to
date [40], drives transgene expression only in a subset of
cones [39,40].

High-capacity AAV vectors and LVs allow rescue of a

common inherited macular dystrophy

Hereditary macular dystrophies comprise a hetero-
geneous group of diseases affecting the macula. STGD
is the most common juvenile macular dystrophy and is
inherited as a recessive trait. Thus far, over 400
mutations in the large ABCA4 gene (encoding a protein
of 2273 residues) have been identified [41]. ABCA4 loca-
lizes to the outer segment (OS) disc membranes of PRs
[41] (Box 1) and transports retinoids (intermediates in
the visual cycle) across them. Abca4–/– knockout mice
[42] accumulate retinoids in the disc membranes of PRs,
resulting in lipofuscin deposits between the RPE and
PRs [41]. Abca4�/� mice are characterized by RPE cells
that are each thicker than in wild-type+/+ animals
(Figure 2), slow PR degeneration and abnormal electrical
activity of PRs [43]. A major limitation in the develop-
ment of gene therapies for STGD is the large size of the
ABCA4 gene, which hinders its packaging in vectors,
such as rAAV vectors, that otherwise are generally
amenable for gene transfer to PRs. Recently, Allocca
and colleagues, as explained above [26], have shown that
the rAAV2/5 serotype can incorporate genomes of up to
8.9 kb more efficiently than six other rAAV serotypes,
allowing the production of rAAV2/5 vectors encoding
murine Abca4. Significant improvement of the Abca4�/
� retinal phenotype in mouse has been obtained [26]
after subretinal administration of rAAV2/5 encoding
Abca4. These data provide the basis for treatment of
STGD and for rAAV-mediated gene therapy of other
ocular diseases arising as a result of mutations in other
large genes (e.g. MYO7A, which encodes myosin VIIA
and is defective in Usher IB syndrome). Recently, EIAV-
based LVs encoding Abca4 have been delivered to the
subretinal space of newborn Abca4�/� mice, resulting in
a reduction in the levels of lipofuscin deposits [12].
Because the majority of reports describing rescue of
PR diseases in animal models use rAAV2/5 and because
there are fewer studies that show efficient LV-based PR
transduction, rAAV2/5 should be considered as the pre-
ferred vector for targeting PRs. However, a side-by-side
comparison of EIAV-based LVs versus rAAV2/5 vectors
in adult Abca4�/�mice would be required to establish the
preferred strategy for STGD.
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Novel technologies for treatment of ocular diseases: the

example of ocular neovascularization

Ocular NV is a feature of several common eye diseases,
such as AMD, retinopathy of prematurity (ROP, also
known as retrolental fibroplasia) and DR, each represent-
ing a leading cause of blindness at different ages in devel-
oped countries. NV results from unbalanced intraocular
production of pro- and anti-angiogenic factors, such as
vascular endothelial growth factor (VEGF) A and B and
pigment epithelium-derived factor (PEDF), respectively,
resulting in abnormal vessel growth in the retina or chor-
oid [8]. Ocular gene transfer of several anti-angiogenic
factors is being tested as a strategy for the inhibition of
neovascular diseases of the eye [8]. Here, we review the
example of PEDF because it is among the most represen-
tative.

PEDF is an anti-angiogenic molecule responsible for
inducing and maintaining the avascularity of the cornea
and vitreous compartments in physiological conditions [8].
PEDF gene transfer inhibits both retinal and choroidal NV
(CNV). Intravitreal, subretinal and periocular adminis-
tration of Ad or AAV vectors encoding PEDF results in
reduction of NV in various animal models [8,18,44–47].
This has allowed the development of a phase I clinical trial
in patients with AMD-associated CNV based on intra-
vitreal injections of Ad-PEDF vectors [48]. No major toxic
effects were associated with vector administration, and
preliminary therapeutic efficacy has been reported at
the highest vector dose [48].

Constitutive intraocular expression of anti-angiogenic
molecules such as PEDF can be toxic. Ideally, the expres-
sion of anti-neovascular molecules in the eye should be
tightly regulated in time and dose [8]. Systems for pharma-
cological regulation of gene expression have been devel-
oped and tested in the context of gene transfer [49]. These
are based on the use of promoters and engineered tran-
scription factors that are reversibly activated or repressed
by small molecule drugs (such as rapamycin, tetracycline
or its analogue doxycycline). rAAV-mediated intraocular
gene transfer of either reporter or therapeutic genes under
the transcriptional control of rapamycin- or doxycyclin-
inducible systems resulted in long-term regulated intra-
ocular transgene expression in rats and non-human
primates (NHPs) [8,50–52]. Alternatively, inducible gene
expression can be achieved using promoters that are
responsive to specific environmental cues. Intravitreal or
subretinal injections of rAAV2/2 vectors encoding
enhanced green fluorescent protein (EGFP) under the
transcriptional control of the hypoxia-responsive element
(HRE) result in induction of reporter gene expression at the
site of active NV in murine models of retinal and CNV
(ROP and CNVmodels, respectively) [53]. Recent evidence
for the pharmacological regulation of anti-angiogenic mol-
ecules in the eye transduced with viral vectors has been
obtained. Silva and colleagues developed rAAV2/8 vectors
expressing PEDF upon administration of rapamycin;
rAAV2/8 vectors were delivered to the retinas of ROP mice
and resulted in a significant reduction of NV upon systemic
rapamycin administration [54]. Similarly, HD-Ad-
mediated intraocular gene transfer of a doxycyclin-induci-
ble system encoding a soluble (s) form of the VEGF receptor
Flt1 (also known as VEGF receptor 1 [VEGFR1]), resulted
in drug-dependent sFlt-1 expression and inhibition of
retinal NV in ROP rats [22].

In addition to intraocular delivery of anti-angiogenic
molecules, novel strategies aimed at modulating the
expression of endogenous pro- or anti-angiogenic factors
are being tested for treatment of ocular NV. Artificial zinc-
finger protein (ZFP) transcription factors can be designed
to regulate the expression of a desired target by acting on
its endogenous promoter. ZFP transcription factors that
are able to activate the expression of PEDF have been
generated and expressed in murine retina through rAAV
vectors. This resulted in increased retinal PEDF mRNA
and reduction of NV in the laser-induced CNV model [55].

Finally, the inhibition of pro-angiogenic gene expression
at the level of the mRNA is being tested in ocular NV
models; siRNAs directed against VEGFA or VEGFR1 have
been tested successfully in murine models of retinal and
CNV [56,57]. To avoid repeated administration of siRNAs,
vector-mediated expression of short hairpin RNA (shRNA)
precursor was achieved, eventually resulting in production
of siRNAs against VEGFA and strong inhibition of CNV
[58].

These proof-of-concept results have allowed the devel-
opment of a phase I clinical trial testing the safety of
siRNAs against VEGF in patients with AMD-associated
CNV [56]. This constitutes the first application of siRNA in
humans.

From mouse to human: gene therapy of Leber

congenital amaurosis

Leber congenital amaurosis (LCA) is an early-onset and
severe inherited retinal degeneration in which rods and
cones are non-functional at birth and can be lost within the
first years of life [59,60]. LCA is mainly inherited as a
recessive trait, which has an estimated prevalence of 1:50
000–100 000. LCA-associated mutations have been
reported in 12 genes to date (http://www.sph.uth.tm-
c.edu/RetNet/), accounting for�50% of LCA cases. Success-
ful gene therapy has been described in rodents and large-
animal models of LCA. Effective gene replacement using
rAAV vectors has been reported in rodentmodels of LCA in
which the disease arises owing to deficiency of Rpgrip
(encoding the X-linked retinitis pigmentosa GTPase reg-
ulator-interacting protein 1) [61] and Lrat (lecithin-retinol
acyltransferase) [62] expressed in PRs and RPE, respect-
ively. To date, the most successful example of gene therapy
for an ocular disease is gene delivery for LCA arising from
mutations in the RPE65 gene, which accounts for 10% of
LCA cases. RPE65 encodes the 65-kDa RPE-specific iso-
merase essential for recycling 11-cis-retinal, the chromo-
phore of rod and cone opsins [60]. rAAV-vector-mediated
RPE65 gene replacement has rescued morphological, bio-
chemical and electrophysiological abnormalities present in
murine models with Rpe65 deficiency [63,64]. More impor-
tantly, several groups have reported rescue of vision after
rAAV-vector-mediated gene replacement in the Swedish
Briard dog, a spontaneous RPE65-null model [65–68], and
stable vision improvement has been maintained over eight
years after a single rAAV vector administration [69,70].
These results, in addition to the absence of side effects after
27
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Box 4. Vectors for ocular gene transfer

Transduction of ocular cells can be obtained both by both viral and

non-viral nucleic acid transfer.

Viral vectors

Gene delivery can be accomplished with high efficiency by using

viruses modified as follows: the viral genome is partially or

completely deleted of viral genes, which are generally substituted

in the vector by an expression cassette containing the desired

promoter–transgene combination.

Lentiviral vectors
Lentiviruses are lipid-enveloped double-stranded RNA viruses. The

glycoproteins present in the viral envelope influence the host range

(tropism) for both native lentiviruses and recombinant vectors.

Lentiviral vectors have been derived from human immunodeficiency

virus type 1 (HIV-1) or from non-primate lentiviruses such as the

equine infectious anemia virus (EIAV) and others. Lentiviral

structure allows the generation of hybrid vectors with heterologous

envelope glycoproteins. The most used envelope protein in

recombinant lentiviral vectors is the G glycoprotein of the vesicular

stomatitis virus (VSV-G), which has a broad tropism and confers

stability to the recombinant vector. Lentiviral vectors package up to

8 kb of genome, which is randomly integrated into the host

chromosomes.

Adenoviral vectors

Adenoviruses are non-enveloped double-stranded DNA viruses;

several serotypes have been isolated, and the vectors employed in

gene therapy derive mostly from serotype 5. Production of

adenoviral (Ad) vectors has been generally obtained by partial

deletion of the viral genome; the expression of the remaining viral

genes in host cells causes immune responses and clearance of

transduced cells, resulting in transient transgene expression. Help-

er-dependent Ad vectors in which all viral genes have been deleted

have been generated. Ad vectors can accommodate up to 36 kb of

exogenous sequences and do not integrate into target cells.

Adeno-associated vectors

Adeno-associated viruses (AAVs) are small, non pathogenic, single-

stranded DNA viruses that exist in over 100 distinct variants, defined

as serotypes or genomovars.

Generation of AAV vectors is obtained by deletion of all viral

coding sequences and insertion of the expression cassette between

the inverted terminal repeats (ITRs). Hybrid vectors have been

generated by including the same AAV vector genome (usually

derived from AAV2) in external surface proteins (capsids) from other

AAV serotypes; the resulting recombinant vectors (rAAVs) are

indicated as ‘rAAV 2/1, 2/2, 2/3, 2/4, 2/5. . .2/n’, with the first number

indicating the genome (i.e. AAV2 in this case) and the second the

capsid [31]; different rAAV serotypes have different capsids, tropism

and transduction characteristics.

Non-viral vectors

Nucleic acids can be additionally delivered as naked DNA or as a

complex with lipids or cationic polymers. These compounds usually

improve the efficacy of DNA delivery to the target cells. Double-

stranded short interfering RNA sequences (siRNAs), used to induce

RNA interference of a target transcript, are usually delivered via non-

viral methods.

Figure 1. rAAV-mediated transduction of the murine retina: influence of serotype,

injection route and promoters on the transduction pattern. Different rAAV

serotypes transduce different retinal cell types (a,b), and different routes of

injection of the same vector result in transduction of different cell layers (c,d). In

addition, the use of ubiquitous promoters allows transgene expression in all

vector-targeted cells (e), whereas cell-specific promoters allow restriction of

transgene expression in a desired cell type (f). Figure 1 shows a fluorescence

microscopy analysis of enhanced green-fluorescent protein (EGFP) four weeks

after: (i) subretinal injection of rAAV2/1 CMV-EGFP (a) or rAAV2/5 CMV-EGFP (b),

showing transduction of RPE alone (a) or of both RPE and PR cells (b); (ii)

intravitreal (c) or subretinal (d) injection of rAAV2/2, resulting in transduction of

retinal ganglion cells (RGCs) and Müller cells (c) or of PR and RPE cells (d); and (iii)

subretinal injection of rAAV2/5 CMV-EGFP (e) or rAAV2/5 RHO-EGFP (f), showing

EGFP expression in RPE and PR cells with the ubiquitous CMV promoter (e) or

EGFP expression restricted to PR cells with the cell-specific RHO promoter (f). Scale

bar represents 25 mm. Abbreviations: CMV, cytomegalovirus promoter; RHO,

human rhodopsin promoter.

Figure 2. Electron microscopy analysis of RPE from pigmented five-month-old

Abca4�/� mice after rAAV delivery. One-month-old Abca4�/� mice (animal models

of STGD) were subretinally injected with rAAV2/5-CMV-Abca4 (a) or with rAAV2/5-

CMV-EGFP (b), and RPE abnormalities were evaluated four months after treatment.

RPE thickness, increased in the control-treated Abca4�/� eye (b), is normal in the

rAAV2/5-CMV-Abca4-treated eye (a). White arrows (b) indicate the irregularly

shaped lipofuscin deposits, which were reduced in the eye treated with the

therapeutic vector (a). Scale bar represents 1 mm. Abbreviations: Abca4, murine

ATP-binding cassette sub-family A member 4; CMV, cytomegalovirus promoter;

EGFP, enhanced green-fluorescent protein; STGD, Stargardt’s disease.
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rAAV vector subretinal delivery in NHPs [71], have paved
the way to three ongoing clinical trials using rAAV2/2
vectors for RPE65 gene-replacement in patients affected
by LCA due toRPE65mutations [72–75]. This form of LCA
is particularly suitable for gene therapy because RPE65
patients have a preserved retinal morphology despite
severe and early vision impairment [76]. The results of
short-term safety and preliminary efficacy have been
reported for three trials (Table 1). Three LCA patients
28
between 17 and 26 years of age with severe vision loss and
carrying missense or nonsense mutations were enrolled in
each trial and each received a single subretinal injection of
rAAV2/2 encoding RPE65. Differences in each trial
included: vector manufacturing procedures; the RPE65



Box 5. Outstanding questions

� What are the tropism, transduction characteristics and potential

toxicity of novel viral vectors in the primate retina?

� Is the fine tuning of gene expression by physiological or

pharmacologically regulated elements necessary to obtain ther-

apeutic efficacy in animal models that have been resistant to

retinal gene therapy to date?

� How important to the success of ocular gene therapy will be the

availability of animal models that properly recapitulate human

diseases?

� How important to the success of ocular gene therapy will be the

availability of translational units (which provide manufacturing of

clinical-grade vectors, testing of vector toxicity and regulatory

offices) for efficiently moving proof-of-principle studies in animals

into human clinical trials?

� How can we maximize the interaction between basic scientists

and clinicians or surgeons to speed up the elucidation of disease

mechanisms and the characterization at both clinical and

molecular levels of patients with blinding diseases to properly

define inclusion criteria and endpoints in clinical trials?

Table 1. Clinical trials of in vivo ocular gene therapy

Disease Vector Transgene Clinical centers Phase NCT number Refs

Retinoblastoma Adenovirus Herpes virus thymidine

kinase gene

Texas Children Hospital, Houston, TX, USA I Not found [21]

Age-related macular

degeneration

Adenovirus Pigment epithelium

derived factor gene

Wilmer Eye Institute, Johns Hopkins University

School of Medicine, Baltimore, MD, USA

I NCT00109499 [48]

Leber congenital

amaurosis

Adeno-associated

virus type 2

RPE65 gene Children’s Hospital, Philadelphia, PA, USA;

Second University of Naples, Italy

I NCT00516477 [77]

Leber congenital

amaurosis

Adeno-associated

virus type 2

RPE65 gene Moorfields Eye Hospital, London, UK I NCT00643747 [76]

Leber congenital

amaurosis

Adeno-associated

virus type 2

RPE65 gene Scheie Eye Institute of the University of

Pennsylvania, Philadelphia, PA, USA;

University of Florida/Shands, FL, USA

I NCT00481546 [78,80]
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expression cassette, which contained either the RPE-
specific RPE65 promoter [73] or the ubiquitous chicken
b actin (CBA) promoter [74,75,77]; the AAV vector injec-
tion volumes; and the baseline conditions of the patients’
visual function. Despite these differences, some important
conclusions can be drawn: in all studies, absence of
systemic toxicity and of significant immune responses
was reported, suggesting the safety of the procedure. Sig-
nificant efficacy has been demonstrated too; indeed, micro-
perimetry [73] and Goldmann analysis [74] both suggested
visual field extension. In addition, navigation tests indi-
cated improvement of visual function. Cideciyan and col-
leagues [77] reported a significant increase in visual
sensitivity, with evidence of both cone- and rod-based
vision. Maguire and colleagues [74] show significant im-
provement of the pupillary reflex by pupillometry, which
objectively assesses therapeutic outcome in patients with
limited visual function. These preliminary results from
three independent clinical studies are indeed promising
and might constitute the first successful examples of gene
therapy for inherited ocular diseases.

Concluding remarks and future prospects
The last decade has seen the proof-of-principle in animal
models of the effectiveness and safety of gene delivery to
the retina as a therapeutic strategy for otherwise blinding
diseases: the design of improved viral vectors and thera-
peutic gene expression cassettes has enabled long-lasting
therapeutic efficacy tailored to the appropriate disease and
cellular target.

The preliminary positive results obtained in the recent
clinical trials for LCA [73–75,77] show the potential of gene
transfer for the treatment of ocular diseases. Higher doses
of vector, younger treatment ages and appropriate clinical
read-outs will be instrumental in defining the therapeutic
potential of this approach for LCA caused by RPE65
mutations.

More importantly, the promising safety and efficacy
results observed in these first attempts in humans encou-
rage the application of a similar strategy to other blinding
diseases. The possibility of packaging the large Abca4 gene
in an AAV vector [26] or an LV and the efficacy observed
after their delivery in animal models [12,26] are important
steps towards developing AAV- or lentiviral-based clinical
trials for the common STGD or for the other retinal
degenerations associated with ABCA4 mutations [41].
Similarly, clinical trials can be considered for other ocular
diseases not described above for which gene transfer in
animal models has proved successful, such as forms of LCA
other than that associated with RPE65 mutations (i.e.
RPGRIP [61] and LRAT [62]), severe retinitis pigmentosa
(i.e. receptor tyrosine kinase Mertk deficiency [78,79],
Usher IB syndrome [80]), retinoschisis [81–83] and glau-
coma [84–87]. For several of these diseases, gene transfer
of neurotrophic molecules can be considered a strategy to
slow or halt the progression of degeneration of PR [88,89]
or retinal ganglion cells [84–87] alone or in combination
with gene-replacement [88] or gene-silencing approaches.

To rapidly augment the therapeutic success obtained so
far in ocular gene transfer, several issues need to be
addressed over the coming years (Box 5). It will be import-
ant to systematically characterize the tropism of different
vector serotypes, their transduction characteristics and
their potential immunogenicity in retinas similar to that
of the human (i.e. NHP, porcine, canine). Regulation of
gene expression via either physiological elements or
pharmacologically inducible transcriptional systems will
be instrumental for avoiding toxicity and for obtaining
therapeutic levels of transgene expression in the appro-
priate retinal target cell. An additional crucial step in this
path will be the availability of high-quality clinical-grade
vector batches that are produced under good manufactur-
ing practice (GMP) conditions. Suitable protocols should be
put in place for scaling-up production in the future, when
large amounts of vectors will be required for treating
common ocular diseases.
29
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Importantly, diseases such as STGD, RP or glaucoma
might represent less favorable gene therapy targets than
LCA arising fromRPE65mutations: in these cases, preven-
tion of the progression of visual loss rather than the restor-
ation of visual function should be the aim. Such treatments
will require detailed characterization of the clinical history
of the disease and availability of genotype–phenotype cor-
relations, where applicable, to select the appropriate
patients and to determine the endpoints for clinical trials.
Therefore, the degree of interaction among ophthalmolo-
gists, centers for the molecular diagnosis of genetically
heterogeneous inherited retinal diseases and researchers
with high expertise in vector development and testing in
small- and large-animalmodels, aswell as the availability of
facilities for GMP production of clinical-grade gene therapy
vectors, will dictate the further clinical development of
nucleic-acid-based therapies for ocular diseases.
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