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1. INTRODUCTION

Hypertensive disorders in pregnancy remain a major cause of maternal,  fetal  and 

neonatal  morbidity  and  mortality  not  only  in  less  developed  but,  also,  in  the 

industrialized countries.  Pregnant women with hypertension are at  higher risk for 

severe  complications  such  as  abruptio  placentae,  cerebrovascular  accident,  organ 

failure,  and  disseminated  intravascular  coagulation.  The  fetus  is  at  risk  for 

intrauterine growth retardation, prematurity, and intrauterine death. Physiologically, 

blood pressure falls in the second trimester, reaching a mean of 15 mmHg lower than 

levels  before pregnancy.  In the third trimester,  it  returns to pre-pregnancy levels. 

This fluctuation occurs in both normotensive and chronically hypertensive women.

The definition of hypertension in pregnancy is not uniform. It used to include an 

elevation in blood pressure during the second trimester from a baseline reading in the 

first trimester, or to prepregnancy levels, but a definition  based on absolute blood 

pressure values  (systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 

90 mmHg) is now preferred. Hypertension in pregnancy is not a single entity but 

comprises: 

- Pre-existing hypertension, which complicates 1-5% of pregnancies and is defined 

as blood pressure ≥ 140/90 mmHg that either predates pregnancy or develops before 

20 weeks of gestation. Hypertension usually persists more than 42 days post partum. 

It may be associated with proteinuria.

-  Gestational  hypertension,  which  is  pregnancy-induced  hypertension  with  or 

without proteinuria. Gestational hypertension associated with significant proteinuria 

(> 300 mg/l or > 500 mg/24 h or dipstick 2+ or more) is known as pre-eclampsia. 
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Hypertension develops after 20 weeks’ gestation. In most cases, it resolves within 42 

days post partum. Gestational hypertension is characterized by poor organ perfusion.

-  Pre-existing  hypertension  plus  superimposed  gestational  hypertension  with  

proteinuria. Pre-existing hypertension is associated with further worsening of blood 

pressure and protein excretion ≥ 3 g/day in 24-hour urine collection after 20 weeks’ 

gestation;  it  corresponds  to  previous  terminology  “chronic  hypertension  with 

superimposed pre-eclampsia”.

-  Antenatally  unclassifiable  hypertension: hypertension  with  or  without  systemic 

manifestation,  if  blood pressure was first  recorded after  20 weeks’ gestation.  Re-

assessment is necessary at or after 42 days post partum. If hypertension is resolved 

by then,  the condition should be re-classified as gestational  hypertension with or 

without proteinuria. If the hypertension is not resolved by then, the condition should 

be re-classified as pre-existing hypertension. Edema occurs in up to 60% of normal 

pregnancies, and is no longer used in the diagnosis of pre-eclampsia.

The spontaneously hypertensive rat (SHR) represents a widely used genetic animal 

model of hypertension (Okamoto and Aoky, 1963). Several studies have shown that 

the  SHR  can  serve  as  suitable  model  for  essential  hypertension  to  study 

neuroendocrine  and  metabolic  abnormalities  that  characterize  this  disease  during 

pregnancy.  Aoi et al (1976) showed that blood pressure decreases midway through 

pregnancy in SHR and reaches level similar to those found in control Wistar Kyoto 

rats (WKY). Moreover, other authors found a remarkable reduction of pressure at 

delivery  (Zamorano  et  al.,  1980; Lindheimer et  al.,  1983;  Ahokas et  al.,  1990, 

Mattace Raso et al., 2007). The pressure decrease near term could be related to an 
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increase  of  nitric  oxide  in  pregnancy  (Conrad  et  al.,  1993),  or  the  release  of 

hypotensive  substances  by  the  placenta  (Nakanishi  et  al.  1980) rather  than  an 

alteration of insulin resistance (Tanigawa et al. 1999). 

Nevertheless,  the  molecular  mechanisms  behind  the  modification  of  hypertensive 

state during pregnancy remain to be elucidated.
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1.1 ROLE OF RENIN-ANGIOTENSIN SYSTEM (RAS) IN PHYSIOPATHOLOGY OF PREGNANCY

During  pregnancy,  a  number  of  physiological  changes occur  in  the  maternal 

circulation  to  accommodate  the  growing fetus.  These changes  usually  include  an 

increase  in  cardiac  output  and  a  decrease  in  arterial  blood  pressure  and  total 

peripheral resistance. Among many vasomotor systems regulating the blood pressure, 

the  renin-angiotensin  system (RAS) plays  an important  role.  RAS participates  in 

electrolyte homeostasis, in the maintenance of vascular tone, and in cardiovascular 

remodelling. Angiotensin II (Ang II), the main component of RAS, regulates blood 

pressure, body fluid volume and electrolyte balance interacting with the type 1 (AT1) 

and the type 2 (AT2) receptor (Hall et al., 1999; Timmermans et al., 1993). The RAS 

plays a major role in the physiological regulation of the kidney, including the control 

of renal  microvascular  and tubular  function.  Well-known renal  actions of Ang II 

mediated by the AT1 receptor include increased tubular sodium absorption at low 

doses,  inhibition  of  reabsorption  at  higher  doses,  afferent  and  efferent  arteriolar 

vasoconstriction, and glomerular mesangial cell contraction and constriction of renal 

vessels, including the arcuate and interlobular arteries and vasa recta (Arendshorst et 

al., 1999; Navar et al., 1996). These actions produce integrated physiological actions 

including  decreased  renal  blood  flow,  glomerular  filtration  rate,  and  sodium 

excretion.  In addition to direct  effects  of Ang II  on vascular  smooth muscle  and 

tubule  cells,  the  peptide  can  stimulate  the  release  of  vasoactive  factors  from 

endothelial, vascular smooth muscle, mesangial, interstitial, or other cell types within 

the kidney. Thus the vascular and tubular actions of Ang II can be regulated by cell-

to-cell (paracrine or autocrine) mediators produced in response to Ang II, thereby 
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dampening or amplifying the primary effects. The most frequent integrated response 

to  Ang  II  is  net  vasoconstriction, and  the  best  known  counteracting  vasodilator 

mechanisms  include NO  and  the  vasodilator  products  of  arachidonic  acid 

metabolism, especially prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2).

The physiological actions of Ang II at AT2 receptor seems to act in opposite to the 

AT1 receptor. In general, the AT2 receptor inhibits cell growth and proliferation and 

promotes cell differentiation, counterbalancing the opposite effects of Ang II at the 

AT1 receptor (Meffert et al., 1996; Stoll et al., 1995). AT2 receptor has been shown 

to play an important  role  in Ang II  stimulation  of a number  of renal  vasodilator 

substances, including bradykinin (BK) and NO (Carey et al., 2000). Because BK is 

also a renal autacoid that stimulates NO production through the B2 receptor, it was 

possible that the AT2 receptor stimulates a renal BK-NO-cGMP vasodilator cascade 

(Siragy et al.,1990) (figure1 and 2). 
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Fig 1. Schematic description of the regulation of blood pressure and renal function by the AT1 and 
AT2 receptor. 

Fig 2. Schematic description of the balance of actions mediated by AT1 and AT2 receptors.  AT2 
receptor actions counterbalancing actions of AT1 receptors.

There is accumulating evidence to indicate that  Ang II is also capable of inducing 

inflammatory  response  in  the  vascular  wall.  Ang  II  modifies  several  steps  of 

inflammatory  response,  such  as  increase  of  vascular  permeability,  leukocyte 

infiltration, tissue hypertrophy/proliferation, and fibrosis (Cheng et al., 2005). 

11



Hypertension  is  associated  with  an  increased  risk  for  tissue  injury  that  may  be 

mediated by endothelium dysfunction,  the ongoing of inflammatory process, with 

overproduction  of  superoxide  (O2
-)  and  other  reactive  oxygen  species  (ROS)  in 

cardiovascular  system and kidney (Zalba et  al.,  2000; Zhan et  al.,2004). It’s well 

documented that Ang II,  via the AT1 receptors,  enhances the production of ROS 

through  stimulation  of  NAD(P)H  oxidase  in  the  vascular  wall.  The  increased 

oxidative stress contributes to endothelial dysfunction and to vascular inflammation 

by stimulating the redox-sensitive transcription factors (NF-kB) and by upregulating 

adhesion  molecules,  cytokines,  and  chemokines  (Cheng  et  al.,  2005).  As  well 

documented  NF-kB  regulates  expression  of  proinflammatory  enzymes  such  as 

cyclooxygenase  (COX)-2  and  inducible  nitric-oxide synthase  (iNOS),  that  may 

exacerbate tissue damage.

Cyclooxygenase  metabolites  have  been  implicated  in  functional  and  structural 

alterations in glomerular and tubulointerstitial inflammatory diseases (Takahashi et 

al.,1990).  Previous  studies  have  suggested  that  cyclooxygenase  inhibitors  may 

acutely decrease hyperfiltration in diabetes and inhibit proteinuria and/or structural 

injury (Hommel et al., 1987). Hong et al. (2000) focused their experiments on the 

potential role of excess nitric oxide (NO) production by iNOS in the pathogenesis of 

hypertension  in  the  SHR. Excessive  NO  would  result  in  peroxynitrite  anion 

formation, protein  tyrosine  nitration,  hydroxyl  radicals  generation  and thereby 

oxidative/nitrosative  stress  and  hypertension  (Klahr, 1998;  Espey  et  al.,  2002; 

Modlinger et al., 2004). It should be noted that the reduction in NO bioavailability in 

the SHR is, in part, due to Ang II-mediated increase in superoxide production and 
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impaired superoxide scavenger activity (Adler and Huang, 2004). Nonetheless, iNOS 

expression is  significantly increased in the SHR (Chou et  al.,  1998; Vaziri  et  al., 

1998) and its down-regulation by pyrrolidine dithiocarbamate (PDTC), which is a 

known  to  inhibit iNOS  induction  (Liu  et  al.,  1997;  Hong  et  al.,  1998)  could 

contributed  to  the  prevention  of  hypertension  in  PDTC-treated SHR (Rodriguez-

Iturbe et al., 2005). 

Other  studies  have  demonstrated  that  the  treatments  with  either  antioxidant  or 

immunosuppressive/anti-inflammatory  agents  improve  hypertensive  state  in  SHR 

(Rodriguez-Iturbe et al., 2002; 2003; 2005).
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1.2 ROLE OF PLACENTAL PROTEINS IN PHYSIOPATHOLOGY OF PREGNANCY.

The rat placenta has been widely used as a model to study placental development. 

Briefly,  the  rat  placenta  is  composed  of  two  distinct  zones,  the  junctional  zone 

(invasion and endocrine function) and the labyrinth zone (transport barrier) (Knipp et 

al., 1999). The junctional zone is adjacent to the maternal compartment and is mainly 

involved in uterine wall  invasion and the production of hormones/cytokines.  The 

labyrinth zone is the main barrier to diffusion and acts to regulate the transfer of 

nutrients and wastes between the maternal and fetal compartments. Of note is the fact 

that syncytial trophoblast cells form the transport barriers in both the rat and human 

placentas  (Ogata  et  al.,  1997).  Fatty  acids  are  of  critical  importance  in  normal 

development  of  the  foetus,  due  to  the  fact  that  fatty  acids  serve  as  obligatory 

constituents of biological membranes (Uauy et al., 1999), concentrated fuel storage 

(Uauy  and  Hoffman,  2000),  and  precursors  of  intracellular  signalling  molecules 

(Narumiya and Fukushima, 1986). In addition, insufficient fatty acid supply has been 

demonstrated to result in foetal intrauterine growth retardation (IUGR), fetal facial 

dysmorphology and severe postnatal  growth retardation (Abel, 1984; West, 1994; 

Denkins et  al.,  2000).  Central  to these observations is the role  of the placenta  in 

influencing  bi-directional  transfer  of  fatty  acids  between  the  maternal  and  fetal 

circulations. Fatty acids are hydrophobic, and depending on their physicochemical 

properties,  may  passively  diffuse  into  cells  across  the  lipid  bilayer  membrane 

(Hamilton, 1998; Hamilton and Kamp, 1999). However, the capacity of fatty acid 

transfer by free diffusion is limited and not sufficient to satisfy the demand of the 

developing foetus. Therefore, a facilitative, directional transfer of fatty acids from 
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the maternal circulation to the foetus is required to properly meet foetal demands. 

Consistent with this observation, Hornstra et al. demonstrated that fatty acid transport 

is highly directional, with a strong preference in the direction from the mother to the 

foetus (Hornstra et al., 1995). Dutta-Roy and other investigators have demonstrated 

that there exists a preference for transporting long-chain polyunsaturated fatty acid 

(LCPUFAs) over nonessential fatty acids in the human placenta and in BeWo cells, a 

human choriocarcinoma cell line (Campbell et al., 1997; Campbell et al., 1998). This 

observation cannot be explained by simple diffusion of fatty acids alone. Recently, 

several fatty acid transport proteins have been found in the rat and human placentas 

and in in vitro trophoblast cell culture models (Campbell, et al, 1994; Knipp et al., 

2000). These proteins were identified as plasma membrane fatty acid binding protein 

(FABPpm),  fatty acid translocase (FAT),  fatty acid transport  protein (FATP) and 

members of cytosolic fatty acid binding proteins (FABPs). All of these proteins are 

known  to  function  as  fatty  acid  transferring  proteins  in  other  tissues  and  their 

expression in the both the rat and human placentas have been shown. However, the 

regulation of fatty acid transport  across the placenta  remains  to be elucidated.  In 

recent  years,  it  has  become  clear  that  fatty  acids  act  in  an  autocrine  manner  to 

regulate their metabolism, uptake and transport (McDonald and Lane, 1995; Vamecq 

and Latruffe,  1999). Further investigations  demonstrated that this  autocrine effect 

may  be  facilitated  by  nuclear  hormone  receptors  of  the  peroxisome  proliferator-

activated receptor (PPAR) family (Lemberger et al., 1994; Schoonjans et al.,1996). 

There are currently three PPAR isoforms,  α,  β, and  γ, that have been identified in 

various  tissues  from several  species  (Mukherjee  et  al.,  1994;  and 1997).  A wide 
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range  of  structurally  different 

chemicals, including long chain fatty 

acids,  eicossanoids,  leukotrienes, 

hypolipidemic  drugs,  and 

antidiabetic  agents  (Forman  et  al., 

1997; Kliewer et  al.,  1997; Krey et 

al., 1997) have been demonstrated to 

bind and activate PPAR isoforms. It 

must  be  noted  that  for  each  PPAR 

isoform, binding has a moderate degree of specificity, and certain compounds may 

only interact with a particular isoform (Krey et al., 1997). Although each of the three 

PPAR subtypes is known to be expressed in the rat placenta, in particular PPARα 

and PPARγ, measured by RT-PCR and immunohistochemical analyses, seem to be 

expressed at higher levels toward term, the period of maximal fetal and placental 

growth, in response to the increased fetal demand (Wang et al.,2002). PPARα has 

been demonstrated to play a role in regulating lipid catabolism (Krey et al., 1993), 

whereas  PPARγ was demonstrated  to  promote  the differentiation  of  preadipocyte 

fibroblasts to the mature adipocytes (Peraldi et al., 1997). Recently, PPARγ has also 

been shown to be an important regulatory factor for placental development (Barak et 

al.,  1999; Waite  et  al.,  2000). PPAR isoforms have been demonstrated to form a 

heterodimer with another nuclear hormone receptor family,  the 9-cis-retinoic  acid 

receptor (RXR) isoforms that are activated by ligand binding of 9-cis-retinoic acid 

(Levin  et  al.,  1992).  Three  isoforms  of  RXR  family,  α,  β,  and  γ,  have  been 
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characterized in different species (Freebern et al., 1999). The individual PPAR/RXR 

heterodimers bind to the peroxisome proliferator  response element  (PPRE) in the 

promoter  region  of  target  genes  to  control  gene  transcription  (Schoonjans  et  al., 

1996; Simoneau et al.,  1999) (figure 3). The PPAR/RXR heterodimers have been 

demonstrated  to  regulate  the  transcription  of several  target  genes  including FAT, 

FATP,  several  FABP  subtypes,  acyl-CoA  oxidase,  phosphoenolpyruvate 

carboxykinase (PEPCK) (Schoonjans et al., 1995; Schoonjans et al., 1996), which 

collectively exert integrative effects on lipid homeostasis. 

It  has  been  previously  shown  that  nitric  oxide  (NO),  a  free  radical  gas,  is  an 

important  bio-regulator  in  the  cardiovascular,  immune,  nervous  (Moncada  et  al., 

1991)  and  reproductive  systems  (Izumi  et  al.,  1993).  The  maternal  circulatory 

adaptations that accompany pregnancy are also influenced by NO, reducing blood 

pressure and vascular tone and attenuating response to vasoconstrictors (Molnar M 

and Hertelendy, 1992). During pregnancy NO synthase (NOS) activity is expressed 

in the placental  villous tree where it may contribute in regulating placental  blood 

flow, and thereby fetal nutrition and growth. It appears that NO contributes to the 

maternal  circulatory  adaptation  that  accompany  pregnancy,  for  example,  reduced 

blood pressure and vascular  tone  and an attenuated  responses  to vasoconstrictors 

(Molner M. and Heertelendy F. 1992). The placental circulation, which is critical for 

delivery of nutrients and oxygen to the growing fetus in exchange for fetal-derived 

metabolic waste products, is influenced mainly by local synthesis of NO. In addition 

to the constitutive endothelial eNOS, some authors claim the presence of inducible 

iNOS at the end of pregnancy (Casado et al., 1997), as principal sources of NO in 
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placenta. Beyond a key role in blood pressure decrease and fetal perfusion, placental 

NO seems to act in a paracrine fashion to modulate uterine function, and its down-

regulation is related to initiation of labour (Purcell et al., 1997). 

Differently from NO system, the level of COX-2 increases significantly toward the 

end of  gestation  and contributes  to  pregnancy maintenance  and labour  initiation. 

Moreover,  prostaglandins  (PGs)  induce  myometral  contractility,  regulate  fetal 

adaptation  to  labour  process,  maintain  uterine  and  placental  blood  flow  and 

contribute  to  changes  in  extracellular  matrix  metabolism associated  with  cervical 

ripening during parturition, fetal adaptation to the labor process, and maintenance of 

uterine and placental blood flow (Challis et al., 2002). Spatial expression of COX-2 

intensity shifts from the labyrinthine zone to the maternal-invasive junctional zone 

with  the  advance  of  pregnancy  (Xu  et  al.,  2005).  This  shift  suggest  that  PGs 

biosynthesis in the decidua at late-gestation regulates parturition, (Gibb, 1996) and 

thus,  a  shorter  transfer  to  the  myometrium  enhances  the  significance  of  their 

biological  effects.  Interestingly,  PGE2 increased  metalloproteinase  (MMP)-9 

gelatinolytic  activity  responsible  for  collagen  degradation  within  the  fetal 

membranes. Alterations in these processes might influence pregnancy outcome. 

The  fetal  membrane  rupture  and trophoblastic  cells  invasion  process  involve  the 

degradation and remodelling of extracellular matrix (ECM) mainly due to MMPs, a 

family of zinc-dependent proteolytic enzymes. They are synthesized as secreted or 

transmembrane proenzymes and processed to an active form by the removal of an 

amino-terminal propeptide.
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As known  the  strength  of  the  amnion  and  chorion  is,  in  large  part,  a  result  of 

collagen. Collagens I, III, IV, V and VI have been described in various layers of the 

amniochorion. Degradation of collagen during labour is controlled by MMPs which 

have specificities for different collagen types as modulated by tissue inhibitors of 

matrix  metalloproteinases  (TIMPs).  The  ratio  of  the  MMP/TIMP  for  particular 

collagens thus determines whether collagen is degraded. Degradation, along with the 

deposition rate of new collagen by fibroblasts, determines the resultant strength of 

the tissues. MMP-1, MMP-2, MMP-3, MMP-8 and MMP-9 have been described in 

the amniochorion. Major investigative work in fetal membranes has been done with 

MMP-2 and MMP-9, and somewhat less with MMP-1 and MMP-3. Most reports 

suggest that fetal membrane MMP-2 is constitutive, not responding to cytokines, or 

changing with premature rupture of membranes or labor (term or preterm) (Maymon 

et al., 2001; Xu et al., 2002; Fortunato et al., 1999). In contrast, MMP-9, in both the 

latent  form and  active  form,  has  been  shown to  increase  in  amniotic  fluid  with 

preterm premature rupture of membranes (Fortunato et al., 1999), in amniotic fluid of 

rhesus monkey after labor induction with cytokines (Vadillo-Ortega et al., 2002), and 

in human fetal membrane tissue (Xu et al., 2002). MMP-9 can also be induced in 

fetal membrane tissue with PGE2, PGF2α , tumor necrosis factor (TNF)-α and ROS 

(McLaren  et  al.,  200;  Ulug  et  al.,  2001;  Arechavaleta-Velasco  et  al.,  2002; 

Buhimschi et al., 2000; Zaga et al., 2004).

The selective timing of MMP-9 expression just before delivery makes it a potential 

candidate  as  a  molecular  marker  in  the  initiation  of  labour  (Uchide  et  al  2000), 
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differently from other MMPs, such as MMP-2, that is constitutively expressed during 

all phases of pregnancy and enhanced in late gestation (Vadillo-Ortega et al., 2005). 
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1.3 HORMONE MODIFICATIONS IN PHYSIOPATHOLOGY OF PREGNANCY: ROLE OF LEPTIN AND 
GHRELIN

In the last decade many data report the hormones influence on pressure control. In 

particular among these, leptin (Ob), the product of the ob gene, is thought to play a 

critical role in the pathogenesis of hypertensive disorders in pregnancy and actually 

is  considered  as  a  marker  of  pre-eclampsia,  a  form  of  pregnancy  induced 

hypertension.  In  fact,  maternal  leptinemia  is  significantly  higher  in  pregnancies 

complicated by pre-eclampsia  than gestational  age matched controls (Teppa et  al. 

2000).  The  increase  of  hormone  level  predates  the  development  of  preeclampsia 

(Anim-Nyame et al. 2000) and it has been shown that leptin gene expression in the 

placenta is augmented in severe pre-eclampsia (Laivouri et al. 2006). Moreover, a 

dysregulation of autocrine and paracrine function of leptin in fetal-maternal interface 

can be implicated not only in pregnancy-induced hypertension, but also in gestational 

diabetes  and in  the  intrauterine  growth  retardation,  including  disturbance  of  fetal 

bone (Bajoria et al., 2002). 

Leptin, may directly or indirectly influence reproductive function because regulates 

mother’s metabolism, fetus growth and development via pituitary, hypothalamic and 

placental receptors. Recent reports have demonstrated that leptin levels are elevated 

in  serum  during  human  and  rodent  gestation  (Henson  &  Castracane  2006).  In 

particular, during rat pregnancy, the high levels of leptin indicate the existence of a 

physiological state of central leptin resistance, that might explain the increased food 

intake observed during gestation (Garcia et al., 2000).

It  is well recognised that leptin is produced in several  organs and tissues besides 
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white  adipose tissue,  such as  heart,  mammary epithelial  cells,  and placenta.  This 

hormone inhibits food intake, regulates energy expenditure, is a permissive signal to 

the  reproductive  system  and  is  a  metabolic  hormone  affecting  insulin  secretion, 

lipolysis, and sugar transport (Trayhurn et al., 1999). Leptin has been proposed as a 

lipostatic factor that regulates the amount of body fat stores by means of a closed 

feedback  loop  involving  the  hypothalamus  (Rohner  Jean  Reaneaud  et  al.  1996; 

Erickson et al., 1996).

The physiological actions of leptin are linked to the interaction of the hormone with 

specific receptors (Ob-R), which use the JAK/STAT pathway of signal transduction. 

Different  isoforms  of  the  Ob-R  exist,  including  a  long  isoform  (Ob-Rb)  with 

signalling  capacity  and  short  isoforms  with  several  and  not  completely  known 

functions.  In  particular  Ob-Rb is  expressed  in  a  wide  range  of  tissues  including 

hypothalamus  (Tartaglia,  1997). Hypothalamus  is  the  major  site  of  energy 

homeostasis  regulation.  The  arcuate  nucleus  (ARC)  is  a  key  hypothalamic  site 

involved in food intake and body weight. Some ARC neurons express NPY whose 

injection into the third ventricle or paraventricular nucleus (PVN) potently increases 

food  intake.  These  neurons  also  express  Ob-Rb  and  are  inhibited  by  leptin.  A 

separate  population of ARC neurons expresses proopiomelanocortin  (POMC), the 

precursor of alpha-melanocyte-stimulating hormone (alpha-MSH) which powerfully 

inhibits feeding through hypothalamic melanocortin-3 (MC3-R) and melanocortin-4 

(MC4-R) receptors.  POMC is  also colocalized  with Ob-Rb, and is  stimulated  by 

leptin. These opposing neuropeptide systems interact at different levels. Firstly, the 

NPY neurons  coexpress  Agouti  related  peptide  (AgRP),  an antagonist  at  MC4-R 
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which reinforces the action of NPY by inhibiting the action of alpha-MSH. Secondly, 

NPY neurons are thought to inhibit POMC neurons via NPY Y1 receptors, while the 

POMC neurons may inhibit NPY expression and release via MC3-R (Rocha et al., 

2003).

It  has  recently  been  reported  that  ghrelin,  a  gastric  derived  peptide,  plays  an 

important role in the reproductive function both in animals (Gualillo et al.,  2002; 

Caminos et al., 2003) and humans (Gaytan et al., 2003). 

In the CNS this hormone induces GH release and interacts with hypothalamic nuclei, 

stimulating feeding and determining body weight gain (Wren et al., 2000). Ghrelin 

augments  neuropeptide  Y  gene  expression  and  blocks  leptin-induced  feeding 

reduction, implying that there is a competitive interaction between ghrelin and leptin 

in feeding regulation (Nakazato et al., 2001) (figure 4). Expression of ghrelin and 

GHS-R genes has been described in non-pregnant and decidualized endometrium, 

and ghrelin has been involved as paracrine/autocrine regulator of decidualization of 

human  endometrial  stromal  cells,  and  tentatively,  in  the  cross-talk  between 

endometrium and embryo during implantation (Tanaka et al., 2003). Notably, ghrelin 

levels in uterine fluid dramatically increased during fasting in mice, and ghrelin has 

been recently reported to inhibit the development of mouse preimplantation embryos 

in vitro (Kawamura et al., 2003). In good agreement, it has recently observed that 

chronic  ghrelin  treatment  during  the  first  half  of  pregnancy in  the  rat  induced  a 

significant reduction in the litter size (Fernandeez-Fernandez et al., 2005).
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Fig. 4 Leptin and ghrelin act on neuronal populations in the arcuate nucleus which then transmit the 
information regarding current appetite status

In addition,  ghrelin has been detected in human and rat  placenta  (Gualillo  et  al., 

2001), and ghrelin has been demonstrated in human fetal circulation (Cortelazzi et 

al.,  2003).  The role of placental  and fetal  ghrelin  in the regulation of gestational 

growth and metabolism remains to be fully elucidated.

Ghrelin  mRNA  expression  was  persistently  detected  in  rat  ovary  throughout 

pregnancy, with higher levels in early pregnancy and lower expression during the 

later part of gestation (Caminos et al., 2003) and its secretion might influence the 

fetal  growth  and  maturation.  This  reduced  ghrelin  expression  is  less  evident  in 

undernutrited  animals  in  pregnancy;  in  this  situation  plasmatic  levels  and ghrelin 
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gastric mRNA are up-modulated, showing a role of the hormone in mediating the 

physiological responses to undernutrition and could represent an adaptative response 

to prevent long-lasting alterations in energy balance and body weight homeostasis 

(Gualillo et al., 2002). 

Recently,  ghrelin  has  also  been  shown  to  participate  in  cardiovascular  and 

sympathetic regulation. Intravenous injection of human ghrelin elicits a decrease in 

blood pressure without an increase in heart rate in healthy men. Ghrelin has direct 

vasodilatory effects  possibly through GH or nitric  oxide-independent  mechanisms 

(Okumura  et  al.,  2002).  However,  because  the  depressor  response  was  not 

accompanied  by  tachycardia,  it  is  likely  that  the  mechanisms  other  than  direct 

vasodilating  effects,  at  least  in  part,  are  involved  in  this  depressor  response  of 

ghrelin.  Intracerebroventricular  administration  of  ghrelin  suppresses  renal 

sympathetic  nerve  activity  and  decreases  arterial  pressure  in  conscious  rabbits 

(Matsumura  et  al.,  2003).  Therefore,  depressor  effect  induced  by  intravenous 

injection  of  ghrelin  is  partly  explained  by  the  central  inhibition  of  sympathetic 

activity. In addition, intracerebroventricular infusion of subdepressor dose of ghrelin 

augments  the baroreflex sensitivities  assessed by renal  sympathetic  nerve activity 

and heart  rate compared with those of vehicle  infusion (Matsumura et  al.,  2003). 

Ghrelin acts at the central nervous system to modulate sympathetic activity in these 

two different manners; however, brain region where ghrelin acts have not been well 

determined.

Furthermore,  ghrelin  plasmatic  levels  are  significantly  higher  in  patients  with 

pregnancy-induced hypertension (PIH) indicating a significant correlation between 
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ghrelin concentration and  systemic blood pressure in these patients (Makino et al., 

2002).  Therefore  we  speculate  a  role  of  this  hormone  in  cardiovascular  control 

during pregnancy and related pathophysiology.

Ghrelin is also synthesized by placenta and its secretion might influence the fetal 

growth and maturation. During rat pregnancy the maternal concentration of plasma 

ghrelin  is  significantly  lower  than  that  of  non-pregnant  animals,  even  if  ghrelin 

peptide concentrations in the stomach did not change significantly during pregnancy 

(Shibata et al., 2004).
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2. THE AIM OF THE STUDY

On the basis of previous research data, here we studied the adaptative mechanisms 

responsible for the improvement of hypertensive status during pregnancy observed in 

SHR. 

To  this  purpose,  we  evaluated  the  modifications  of  several  cardiovascular  and 

inflammatory  parameters  in  pregnant  or  not  SHR  compared  to  respective 

normotensive  WKY: i.e  (i)  the  changes  of  AT1 and AT2 receptor  expression  in 

kidney, (ii) the vascular response to Ang II in the mesenteric plexus, (iii) the kidney 

modification  of  pro-inflammatory  transcription  factor  NF-κB  and  related  gene 

expression,  such  as  COX-2  and  iNOS  and  (iv)  the  oxidative  stress,  as 

malondialdehyde (MDA) and protein nitrotyrosilation.

Moreover, for the first time, we determined the modifications of AT1, ACE, nitric 

oxide synthase isoforms (eNOS, iNOS), as regulators of vascular tone in placenta. In 

this tissue we also evaluated COX-2 expression and MMPs activity, as indicators of 

labour onset. Finally, to asses fetal development in SHR, we also evaluated placental 

expression  of  PPARα  and  PPARγ,  as  regulators  of  fetal  growth  and  placental 

functions. 

In  order  to  evaluate  prospective  metabolic  and  hormonal  differences  or 

modifications,  in  another  set  of  experiments,  we compared  plasma  leptin  and its 

protein expression in placenta  and adipose tissue at the end of gestation (20d) in 

normal (WKY) and hypertensive (SHR) animals. Differential regulation of the Ob-R 

expression in peripheral tissues and in the hypothalamus in WKY and SHR rats was 
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also evaluated. The plasma ghrelin level and mRNA in the stomach and placenta, 

were also measured.
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3. MATERIALS AND METHODS

3.1 Animals

Non pregnant (-NP) or pregnant (-P) SHR and Wistar Kyoto normotensive rats were 

used.  Twenty-week-old  female  normotensive  WKY (body  weight  211±2.6g)  and 

SHR (body weight 210±2.3 g; n=8 each group, Harlan Italy, San Pietro al Natisone, 

Udine,  Italy)  were  mated  at  oestrous,  and  the  day of  mating,  determined  by the 

presence of spermatozoa after a vaginal smear, was considered day 0 of pregnancy. 

Same  number  of  virgin  WKY  (body  weight  206±2.4g)  and  SHR  (body  weight 

214±1.7g) of the same age served as controls. At the end of gestation animal body 

weight was also determined.

All procedures involving animal were carried out in accordance with the Institutional 

Guidelines  and  complied  with  the  Italian  D.L.  no.116  of  January  27,  1992  and 

associated guidelines in the European Communities Council Directive of November 

24, 1986 (86/609/ECC), using the number of animals as small as possible. 

3.2 Measurement of arterial blood pressure and heart rate in conscious rat

The systolic blood pressure (BP) and heart rate (HR) was measured in conscious rats 

by noninvasive common indirect method using a tail-cuff device in combination with 

blood flow sensor and recorder (Ugo Basile, Biological Research Apparatus, 21025 

Comerio, Italy) (Mattace Raso et al., 2007). Briefly, rats were housed for 30 min in a 

warmed room (28-30°C), then a tail cuff placed about 2 cm from the base of the tail 

for  measuring  systolic  blood  pressure  without  physical  restraint  of  the  animal. 
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Fig. 5 Measurement of arterial blood pressure and heart rate in conscious rat using an tail-cuff device, 
blood flow sensor and recorder.

Care  was  taken  in selecting  an  appropriate  cuff  size  for  each  animal.  Rats  were 

allowed  to  habituate  to  this  procedure  for  2  weeks  before  experiments  were 

performed. Heart rate was detected by a pulse rate counter placed after the tail cuff 

and monitored with the audio signal (figure 5). Before mating and at 6, 14 and 20 

days of pregnancy and in control non pregnant rats, BP and HR values were recorded 

and were averaged from at least three consecutive readings obtained from each rat.
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3.3 Body weight, food intake, and body gain in fat

Throughout pregnancy body weight and food intake were monitored once a week (6, 

14, and 20 d). At the end of the experimental period, food intakes were cumulated. 

Bioelectrical impedance analysis (BIA) was applied to body composition assessment 

at d 20 by a BIA 101 analyzer, modified for rat (Akern, Florence, Italy). Free fat 

mass was calculated by the BIA (50 kHz) prediction equation of Ilagan et al. (1993) 

and fat mass content was obtained as the difference between body weight and free fat 

mass.

3.4 Tissue collection and blood parameters 

At d  20  of  pregnancy animals  were  anesthetized  by enflurane  and  sacrificed  by 

cervical dislocation. Control animals were sacrificed at the second day of diestrus. 

Blood collected by cardiac puncture was centrifuged at 1500xg, at 4 C for 15 min 

and sera were stored at –70 C for later biochemical and hormonal measurements.

Glucose,  high-density  lipoprotein  (HDL),  low-density  lipoprotein  (LDL), 

triglycerides,  and cholesterol  were quantified using nonfasting blood sample.  The 

serum leptin and ghrelin (the bioactive form of the hormone, n-octanoyl modified in 

Ser3)  concentration  was  measured  by  RIA  kits  according  to  manufacturer’s 

instruction (Linco Research, Inc., St Charles, MO).

Subcutaneous white adipose tissue, stomach, placenta, and hypothalamus [dissected 

according to the map of Glowinski & Iversen (1966)] kidney, heart, and mesenteric 

plexus were excised and used for experimental procedures or immediately frozen in 

liquid nitrogen.
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3.5 Western blot analysis

The subcutaneous adipose tissue,  hypothalamus,  and placenta  obtained from each 

animal were disrupted by homogenization on ice in lysis buffer  (Tris-HCl, 20 mM 

pH  7.5,  10  mM  NaF,  150  mM  NaCl,  1%  Nonidet  P-40,  1  mM 

phenylmethylsulphonyl  fluoride,  1  mM  Na3VO4,  10  µg/ml  leupeptin  and  trypsin 

inhibitor). After 1 h, cell lysates were obtained by centrifugation at 100,000 g for 15 

min at 4°C. Protein concentration of the samples was determined by Bio-Rad protein 

assay (Bio-Rad Laboratories, Segrate, Milan, Italy),  using bovine serum albumin as 

the standard. 

For  western  blot  analysis,  35-100  µg  protein  of  tissue  lysate  was  dissolved  in 

Laemmli’s sample buffer, boiled for 5 min, and subjected to SDS-PAGE (8%, 12% 

or 15% polyacrylamide). The blot was performed by transferring proteins from a slab 

gel to nitrocellulose membrane at 240 mA for 40 min at room temperature. The filter 

was  then  blocked  with  1x  PBS,  5%  non  fat  dried  milk  for  40  min  at  room 

temperature and probed with rabbit polyclonal antibodies against AT1, AT2, IκB-α, 

ACE,  PPARα,  PPARγ , Ob  (Santa  Cruz  Biotechnology,  Santa  Cruz,  CA) 3-

nitrotyrosine antibody (Upstate Biotechnology, Lake Placid, NY; 1:5000) or COX-2 

(1:1000, Cayman Chemical,  Ann Arbor, MI) or with mouse monoclonal antibody 

anti-p65 NF-κB (Santa Cruz Biotechnology, Santa Cruz, CA) or against eNOS, or 

iNOS  (DB  Transdaction  Laboratories,  Lexington,  KY,  USA),  or  with  a  goat 

polyclonal  anti-C-term  Ob-Rb  antibody  (Santa  Cruz  Biotechnology,  Santa  Cruz, 
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CA), dissolved in 1x PBS, 5% non fat dried milk, 0.1% Tween 20 at 4°C, overnight. 

The  secondary  antibody  (anti-rabbit  or  anti  mouse  or  anti-goat  IgG-horseradish 

peroxidase conjugate) was incubated for 1 h at room temperature. Subsequently, the 

blot  was  extensively  washed  with  PBS,  developed  using  enhanced 

chemiluminescence detection reagents (Amersham Pharmacia Biotech, Piscataway, 

NJ) according to the manufacturer’s instructions, and exposed to Kodak X-Omat film 

(Eastman Kodak Co., Rochester, NY). Western blot for β-actin or glyceraldehyde-3-

phosphate  dehydrogenase  (GAPDH)  (in  cell  lysates)  or  lamin  protein  (in  nuclei 

lysates) (Sigma; St. Louis, MO) was performed to ensure equal sample loading. The 

protein  bands  on x-ray film were  scanned and densitometrically  analyzed  with a 

model GS-700 imaging densitometer (Bio-Rad Laboratories).

3.6 RT-PCR analysis

Total RNA was extracted by a modified method of Chomczynski & Sacchi (1987), 

using  TRIzol  Reagent  (Life  Technologies,  Milan,  Italy)  according  to  the 

manufacturer’s  instructions.  Reverse  transcription  was  performed  by  a  standard 

procedure (Brenner et al. 1989) using 2 µg of total RNA. After reverse transcription, 

2 µl of RT products were diluted in 48 µl of PCR mix, to give a final concentration 

of 50 U/ml of Taq DNA polymerase (Life Technologies, Milan, Italy), 4 µM of 5’ 

and 3’ primers, 50 µM of each dNTP, 1.5 mM MgCl2, and 1x PCR buffer (20 mM 

Tris-HCl, pH 8.4, 50 mM KCl). The following oligonucleotides were used: ghrelin 

[forward  primer  5’  TTGAGCCCAGAGCACCAGAAA-3’  and  reverse  primer  5’-

AGTTGCAGAGGAGGCAGAAGCT-3’]  and  β-actin  [forward  primer  5’-
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TACAACTCCTTGCAGCTCC-3’  and  reverse  primer  5’-

ATCTTCATGAGGTAGTCAGTC-3’].  PCR primers were synthesised by “Servizio 

di  Biologia  Molecolare,  Stazione  Zoologica  A.  Dohrn”  (Naples,  Italy).  The 

amplification profile for rat ghrelin and β-actin was: denaturation at 98°C for 10 sec, 

annealing at 55°C for 30 sec, and extension at 72°C for 1 min. Thirty five- cycle 

amplification  was  completed  with  an  additional  step  at  72°C  for  10  min.  The 

amplification was performed in an automatic thermal cycler (Biometra, Germany). 

To assure that PCR was performed in the linear amplification range, samples were 

taken after 15, 20, 25, 30, 35, and 40 cycles, showing that the reaction was linear 

over this range (data not shown). Then 10 µl of RT-PCR products were separated by 

1.5% agarose gel electrophoresis in TBE 1× (Tris–base 10.089 M, boric acid 0.089 

M) containing 0.2 µg/ml of ethidium bromide. Fragments of DNA were seen under 

UV light.  β-actin was used as an internal reference. PCR generates a single 347-bp 

product for rat ghrelin and a single 603-bp product for the β-actin gene. The bands of 

ghrelin were scanned and densitometrically analyzed with a model GS-700 imaging 

densitometer (Bio-Rad Laboratories, Milan, Italy).

3.7 Isolated and perfused mesenteric bed

Mesenteric bed preparation was performed according to Warner (1990). Briefly, at d 

20  of  pregnancy  or  at  the  second  day  of  diestrum, rats  were  anaesthetized  by 

enflurane  and  killed  by  cervical  dislocation.  The  superior  mesenteric  artery  was 

cannulated and the mesenteric vascular bed perfused via the artery for 5 min at 2ml/
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min with Krebs buffer containing heparin (20 I.U./ml). The intestine was separated 

from the mesentery by cutting close to the intestinal border of the mesentery and the 

preparation was perfused at 2 ml/min by an infusion pump (Harvard pump type 22, 

Watson-Marlow)  with  warmed  (37°C)  and  gassed  Krebs  buffer  containing 

indomethacin (INDO, 10µM, Sigma, Milan, Italy).  Changes in perfusion pressure 

were  measured  by a  pressure  transducers  Bentley 800 Trantec  (Basile,  Comerio, 

Italy) connected to a recorder (Basile Unirecord, Comerio, Italy).

After an equilibration time (30 min),  mesenteric arterial  reactivity  was evaluated 

adding Ang II, 0.1 nmol on basal tone. To evaluate the endothelium-dependent and 

independent relaxation, Ach (10 nmoles) and SNP (0.1 nmol) were injected on MTX 

(an alpha1-adrenoceptor selective agonist, 100µM) pre-constricted mesenteric bed.

3.8 MDA measurement

MDA levels in the renal and heart tissues were determined as an indicator of lipid 

peroxidation  (Mullane  et  al.,  1988).  Tissues  were  homogenized  in  1.15%  KCl 

solution. An aliquot (200 μl) of the homogenate was added to a reaction mixture 

containing 200 µl of 8.1% SDS, 1.5 ml of 20% acetic acid (pH 3.5), 1.5 ml of 0.8% 

thiobarbituric acid (TBA), and 600 µl of distilled water. Samples were then boiled 

for 1 h at 95 C and centrifuged at 3,000g for 10 min. The supernatant absorbance was 

measured by spectrophotometry at 550 nm.
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3.9 MMPs activity 

Gelatin-zymography  was  performed  to  determine  the  MMP  activity  of  the  pro-

enzyme forms (pro-MMP-9 and pro-MMP-2) and MMP-2 active form, as previously 

described (Okada et  al.,  2001).  Briefly,  two placentas  obtained from each animal 

were pooled and their standardised homogenates were subjected to electrophoresis in 

(2 mg/ml) gelatin-containing polyacrylamide gels in the presence of SDS under non-

reducing conditions. After electrophoresis, the gels were incubated at 37°C overnight 

in 0.1 M Tris–HCl gelatinase-activation buffer (pH 7.4) containing 10mM CaCl2 and 

subsequently  stained  with  0.5%  Coomassie  Blue.  After  intensive  destaining, 

proteolysis areas appeared as clear bands against a blue background.

The  lack  of  active  MMP-9  in  the  zymograms  may  be  due  to  its  high  level  of 

instability and the removal of active enzyme during the washing of specimens, as it 

has been previously suggested (Deleve et al., 2003).

MMPs were identified by their molecular weight compared with standards (Medina 

et  al.,2003).  To measure the activities  of the detected enzymes,  zymograms were 

read  using  a  ScanJet  3c  scanner  (Hewlett-Packard,  Boise,  ID).  Quantitative 

evaluation of both surface and intensity of lysis bands, on the basis of grey levels, 

was performed comparing gelatinolytic activity of WKY and SHR placentas.

3.10 Statistical analysis

All data were presented as mean ± SEM. The different groups were compared for 

variables by the student’ t test or ANOVA, with  Bonferroni’s test for the post-hoc 
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analysis. A p value of ≤0.05 was considered significant. The statistical analysis was 

performed using Graph-Pad Prism (Graph-Pad software Inc., San Diego, CA).
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4. RESULTS

4.1 Systolic blood pressure and heart rate in pregnant or not WKY and SHR

The mean values of systolic blood pressure (mmHg) and heart rate (bpm) detected 

during the experimental period for both SHR and WKY are shown in figure 6 (panel 

A and B, respectively). No differences in blood pressure were observed in WKY-P 

compared to WKY-NP rats (panel A). In SHR-P rats this parameter was significantly 

reduced at d 14 of pregnancy compared to SHR-NP (P<0.05) and the reduction was 

more marked at d 20 (P<0.001), where blood pressure reading was not significantly 

different compared to that of normotensive pregnant rats. 

Similarly,  no changes were observed in heart  rate  among WKY-NP and WKY-P 

(panel B), while in SHR-P during pregnancy a significant decrease of heart rate was 

shown both at 14 and 20 d (p<0.001 vs SHR-NP). At the end of pregnancy also heart 

rate value of SHR-P became close to normotensive pregnant rats. 

4.2 AT1 and AT2 expression in kidney from WKY and SHR

Since  we  observed  an  improvement  in  cardiac  parameters  in  SHR strain  during 

pregnancy, our goal was to investigate if this positive modification was associated to 

the RAS changes. In this regards kidney was used for AT1 and AT2 analysis. SHR-

NP kidney presented a more marked expression of AT1 compared to that of WKY 

controls  (t=2.9,  Fig.  7  panel  A).  For  the  first  time  in  hypertensive  animals,  we 

showed at d 20 of pregnancy a significant decrease of renal AT1 expression (p<0.001 

vs SHR-NP). Moreover, no significant modification was evidenced for renal AT2 

38



Fig.  6 Systolic blood pressure and heart rate of non pregnant (-NP) or pregnant (-P) hypertensive 
(SHR) and normotensive (WKY) rats measured at 0, 6, 14 and 20 days. The results are expressed as 
mean ± SEM of 8 animals.
°p<0.05, and °°°p<0.001 vs SHR-NP; #p<0.05, and ###p<0.001 vs WKY-P.

39



Fig. 7 AT1 (panel A) and AT2 (panel B) expression in kidney from non pregnant (-NP) or pregnant (-
P)  hypertensive  (SHR)  or  normotensive  (WKY)  rats.  Values  are  mean  ±  SEM of  6  animals.  °°
°p<0.001 vs SHR-NP; ##p<0.01 and ###p<0.001 vs WKY-P.
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expression in SHR-NP compared to WKY, while during pregnancy a marked and 

significant increase of AT2 band was found in SHR-P (panel B).

4.3 Effect of Ang II on isolated and perfused mesenteric bed

Basal perfusion pressure in mesenteric artery bed was 19.0±2.1, 16.7± 5.3, 21.6±4.1, 

26.3±2.8 mmHg (n=6) for WKY-NP, WKY-P, SHR-NP and SHR-P, respectively 

without  significant  differences.  The  ANG  II  challenge  caused  an  increase  in 

perfusion  pressure  in  all  groups  examined  (fig.  3).  Albeit  a  trend  of  increase  in 

pressure perfusion was observed in SHR-NP compared with WKY-NP, on the other 

hand in SHR pregnancy a significant reduction in ANG II response was registered 

(p<0.05 vs SHR-NP). The vascular response to ANG II of SHR-P was similar to that 

observed  in  WKY-P,  indicating  that  the  pregnancy  established  the  physiological 

status. In order to evaluate the vasorelaxant activity, Ach, as endothelium-dependent, 

and SNP, as endothelium-independent activator, were used on stable tone induced by 

MTX. We did not observe differences either in MTX increase in perfusion pressure 

or in Ach- or SNP-induced relaxation among groups (data not shown).

4.4 p65 NF-κB and IκB-α, COX-2 and iNOS expression in kidney from WKY 
and SHR

A higher inflammatory status in tissues from SHR has also been associated to AT1 

receptor activation, in fact AT1 antagonism has been shown to inhibit vessel wall 

inflammation (Kaufmann et al., 2003).
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Fig.  8 Ang II (0.1 nmoles bolus injection) effect on basal tone of isolated and perfused mesenteric 
vascular  bed  in  presence  of  indomethacin  (10µM)  from  non  pregnant  (-NP)  or  pregnant  (-P) 
hypertensive (SHR) or normotensive (WKY) rats. Perfusion pressure (mmHg) was reported as mean ± 
S.E.M. of 6 animals each group.
*p<0.05 vs WKY-NP and °° p<0.01 vs SHR-NP. 
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To  confirm  that  in  SHR  pregnancy  the  reduction  in  AT1  expression  was  also 

associated  to  an antinflammatory status  p65 NF-κB expression was evaluated.  A 

trend of decrease in p65 NF-κB expression was shown in pregnant WKY compared 

to  WKY-NP  (Fig.  9,  panel  A).  In  kidney  of  SHR-P  we  observed  a  significant 

(p<0.001) reduction of p65 NF-κB expression compared to that of SHR-NP. Since 

NF-κB activation is regulated by the inhibitory protein IκB-α, we also evaluated its 

expression. As expected, a weak upregulation of the inhibitory protein was detected 

in  normotensive  rats  during  pregnancy  and  a  similar  trend  was  significant   in 

hypertensive animal (Fig. 9, panel B).

The improvement of inflammatory status in SHR pregnant animals was confirmed by 

the direct evaluation of the expression of the main proinflammatory enzyme COX-2 

and iNOS. As shown in fig. 10 A and B, in normotensive animals pregnancy did not 

modify significantly both enzyme expression, anyway a trend of decrease was shown 

in iNOS protein band. Differently, in SHR pregnant animals a significant reduction 

of both COX-2 and iNOS was shown.

4.5 Kidney lipid peroxidation and protein nitrotyrosilation

Hypertension is often associated to oxidative stress and since it has been shown that 

AT1 receptor signalling is linked to the process of oxidative stress-induced vascular 

injury (Akishita et al., 2005), we thought to evaluate kidney lipid peroxidation and 

protein nitrotyrosylation. To this purpose we evaluated the major reactive product 

MDA and several MDA-like aldehydes and ketones, which react with TBA. 
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Fig. 9 p65 NF-kB (panel A) and Ik-B-α (panel B) expression in kidney from non pregnant (-NP) or 
pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± SEM of 6 animals. 
°p<0.05 and °°°p<0.001 vs SHR-NP.
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Fig.  10 COX-2  (panel  A) and iNOS (panel  B) expression in kidney from non pregnant  (-NP) or 
pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± SEM of 6 animals. 
°p<0.05 and °°p<0.01 vs SHR-NP.
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As shown in figure 11 A, pregnancy induced a significant reduction of kidney lipid 

peroxidation both in normotensive (p<0.05 vs WKY-NP) and more significantly in 

hypertensive animals (p<0.001 vs SHR-NP). The hypertensive status in SHR strain 

induced an increase of MDA content also in the heart (p<0.05; data not shown), a 

tissue particularly exposed to oxidative damage, due to a constitutive deficiency of 

defensive systems.

Since  prolonged  production  of  NO  by  iNOS  may  result  in  kidney  damage  and 

inflammation  and  considering  that  peroxynitrite  is  a  specific  marker  of  iNOS 

activity,  we have also determined the levels of nitrotyrosine (downstream reaction 

products  of  peroxynitrite)  of  kidney proteins.  As  reported,  the  increase  of  iNOS 

expression results an increase of protein nitrotyrosylation in kidney of SHR animals 

as compared with WKY. Pregnancy completely inhibited both iNOS expression and 

nitrotyrosylation pattern in hypertensive animals, while no difference was evidenced 

in normotensive rats (fig. 10B and fig. 11B).

4.6 AT1, ACE, iNOS and eNOS expression in placentas from WKY and SHR

To evaluate the pressor sensivity to Ang II, a local modulator of placental function, 

AT1  receptor  protein  expression  in  placentas  was  measured.  Moreover,  we  also 

evaluated the placental source of Ang II, determining ACE protein expression. Fig. 

12A  shows  that  placenta  from  SHR  presented  an  increase  of  AT1  expression, 

compared to that of WKY (P<0.05). Conversely, ACE in WKY tissue lysates was 

expressed at higher levels than that of SHR (P<0.01, Fig. 12B). 
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Fig. 11 MDA content (panel A) and protein nitrotyrosylation (panel B) in kidney lysates from non 
pregnant (-NP) or pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± 
SEM of 8 animals.
*p<0.05 and *** p<0.001 vs WKY-NP; °°°p<0.001 vs SHR-NP.
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Fig.  12 Representative  immunoblot  of  AT1  (A)  and  ACE  (B)  protein  expression  in  placentas 
(two/each animal) from pregnant hypertensive (SHR) or normotensive (WKY) rats. Equal loading was 
confirmed by GAPDH staining. Densitometric analysis values are mean ± SEM of five animals.
*p<0.05, ** p<0.01 vs WKY. 
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Since  NO regulates  placental  functions,  such  as  maintenance  of  blood  flow,  we 

evaluated the expression of iNOS and eNOS to investigate the placenta capability to 

synthesize NO. As appears in Fig. 13A, iNOS expression in placenta of SHR was 

increased in comparison with WKY (P<0.001). The expression of eNOS was similar 

in both strains (Fig. 13B).

4.7 Activity of MMPs and expression of COX-2 in placentas from WKY and 
SHR

Pro-MMP-9, pro-MMP2 and the active MMP-2 activity was measured by gelatin-

zymography (Fig.  14A). The activity of pro-MMP-9, whose active product MMP-9 

is considered a molecular marker in the initiation of labour, was not significantly 

modified  in placentas  from SHR (Fig.  14A.1).  The lack of active  MMP-9 in the 

zymogram could be due to its  high level of instability and the removal  of active 

enzyme during the washing of specimens, as reported above. Conversely, both pro-

MMP-2 and the active MMP-2 present a higher activity in SHR in comparison to 

WKY (Fig.  14A.2 and A.3,  p<0.01 and 0.05,  respectively).  Due to  the profound 

deleterious  reproductive  effects  and  increased  neonatal  mortality  in  absence  of 

COX-2, this enzyme was evaluated, revealing a deficiency of its expression in SHR 

placentas (p<0.05, Fig. 14B and 14B.1).

4.8 PPARα and PPARγ expression in placentas from WKY and SHR

PPARα and  PPARγ,  involved  in  guiding  proper  placental  and  fetal  development 

through fatty acid/lipid homeostasis were evaluated. The expression patterns of 
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Fig.  13 Representative  immunoblot  of  iNOS (A)  and  eNOS (B)  protein  expression  in  placentas 
(two/each animal) from pregnant hypertensive (SHR) or normotensive (WKY) rats. Equal loading was 
confirmed by GAPDH staining. Densitometric analysis values are mean ± SEM of five animals. *** 
p<0.001 vs WKY. 
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Fig  14 Representative  zymogram  of  placental  pro-MMP-9,  pro-MMP-2  and  active  MMP-2  (A) 
activities  and representative  immunoblot  of  COX-2 protein expression (B)  in  placentas  (two/each 
animal) were shown. Densitometric analysis values are given as means ± SEM of five rats. *p<0.05, 
** p<0.01 vs WKY. Equal loading for Western blot analysis was confirmed by GAPDH staining.
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PPARα and PPARγ are reported in Fig. 15 A and B, respectively.  Placentas from 

SHR showed a reduced expression of both PPARα and PPARγ, compared to that of 

normotensive WKY (P<0.05).

4.9 Body weight gain, food intake, and body fat modifications in hypertensive 
and normotensive rats during pregnancy

Body weight gain, food intake, and fat mass of the normotensive and hypertensive 

rats are presented in figure 16. Pregnancy in normotensive as well as in hypertensive 

rats induced a significant increase (P<0.001) in body weight gain (panel A), food 

intake (panel B) and fat mass (panel C).

Interestingly,  SHR-NP showed a significant  increase  of  food intake  compared  to 

WKY-NP (P<0.001). This parameter was evaluated as area under curve (AUC) of 

the  amount  of  food consumed  in  20 days.  However,  in  SHR-P rats  there  was  a 

significant increase in body weight gain compared to that of WKY-P (P<0.01), that 

was paralleled by a significant increase in fat mass content (P<0.001). 

4.10 Hormone levels and blood parameters

Determination of plasma leptin and ghrelin levels of all groups were shown in fig. 17 

(panel A and B, respectively).  In our experimental conditions SHR strain animals 

presented a lower level of plasma leptin versus that of the respective WKY controls 

(P<0.001). Leptin level (ng/ml), measured at gestational d 20, did not significantly 
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Fig.  15 Representative immunoblot of PPARα (A) and PPARγ (B) protein expression in placentas 
(two/each animal) from pregnant hypertensive (SHR) or normotensive (WKY) rats. Equal loading was 
confirmed by  GAPDH staining.  Densitometric  analysis  values  are  mean ± SEM of  five  animals. 
*p<0.05 vs WKY. 
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Fig. 16 Changes in body weight gain (A), food intake (B), and fat mass (C) of non pregnant (-NP) or 
pregnant  (-P)  hypertensive  (SHR) and  normotensive  (WKY)  rats.  Values  are  mean ±  SEM of  5 
animals. AUC, Area under the curve. ***p<0.001 vs WKY-NP; °°°p<0.001 vs SHR-NP; ##p< 0.01 
and ###p<0.001 vs WKY-P.
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Fig. 17 Changes in circulating plasma leptin (panel A) and ghrelin (panel B) in non pregnant (-NP) or 
pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± SEM of 5 animals. 
***p<0.001 vs WKY-NP; and ###p<0.001 vs WKY-P.
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change in comparison with non-pregnant respective controls (3.30±0.10 vs 3.00±0.21 

in WKY rats, and 1.16±0.14 vs 0.56±0.57 in SHR rats). Conversely, plasma ghrelin 

is higher in SHR compared to WKY animals (P<0.001). Neither pregnant group had 

different plasma ghrelin levels than their respective non-pregnant controls.

In Table 1, modifications of serum parameters are reported. Cholesterol, triglycerides 

and glucose were similar in non pregnant WKY and SHR rats. Conversely, SHR-NP 

animals presented a significant reduced plasma LDL cholesterol and a higher HDL 

cholesterol  compared  to  that  of  WKY-NP (P<0.05,  and P<0.01,  respectively).  In 

normotensive animals, pregnancy induced a significant decrease of total cholesterol 

(P<0.01),  LDL  cholesterol  (P<0.001)  and  glucose  (P<0.05),  and  an  increase  of 

plasma  triglycerides  (P<0.05).  In  SHR-P  all  these  parameters  were  similarly 

modified; in particular a very strong increase of triglycerides was observed compared 

to WKY-P (P<0.001).

Groups Cholesterol 
(mg/dl)

LDL

(mg/dl)

HDL

(mg/dl)

Tryglicerides

(mg/dl)

Glucose

(mg/dl)

WKY-NP 124.0±4.7 77.8±4.4 29.8±0.9 82.2±8.1 152.20±12.00

WKY-P 102.8±1.4** 37.6±0.8*** 33.0±1.0 165.4±2.2* 99.60±2.25*

SHR-NP 120.0±4.1 63.0±2.5* 37.8±1.5** 86.2±6.7 165.40±12.45

SHR-P 97.6±3.5** NC 31.6±1.5 440.8±40.0°°°### 124.60±8.29

Table 1. Modifications of serum parameters of non pregnant (-NP) or pregnant (-P) SHR and WKY 
rats. Values are the mean ± SEM.
*p<0.05, **p<0.01, and ***p<0.001 vs WKY-NP °°°p<0.001, vs SHR-NP ###p<0.001 vs WKY-P
NC Not Calculable
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4.11 Ob expression in adipose tissue and placenta from WKY and SHR animals

Fig.  18  (panel  A)  shows  that  subcutaneous  adipose  tissue  from  SHR  animals 

presented a slight reduction of leptin expression,  compared to that  of WKY rats; 

moreover,  pregnancy  in  normotensive  as  well  as  in  hypertensive  rats  induced  a 

significant  increase  (P<0.01  and P<0.05,  respectively)  in  Ob  expression  vs  their 

respective  non pregnant  controls.  Ob protein  in  WKY-P tissue  lysates  was  more 

expressed than in SHR-P. Conversely, as appears in fig. 18 (panel B), Ob expression 

in  placentas  of  SHR-P rats  was  increased  (P<0.01)  in  comparison  with  WKY-P 

animals.

4.12 Ob-Rb expression in subcutaneous adipose tissue and hypothalamus from 
WKY and SHR animals

The expression of the functional isoform of Ob-R, Ob-Rb, in the adipose tissue and 

hypothalamus is reported in figure 19, panel A and B. In adipose tissue there was no 

significant  modulation  of  Ob-Rb expression  in  any group,  but  a  trend  of  Ob-Rb 

decreased  expression  was  revealed  in  both  pregnant  groups  vs  their  respective 

controls (panel A). Hypothalamus from SHR strain animals had a reduced expression 

of Ob-Rb (P<0.05) compared to that of normotensive WKY rats. The same pattern 

was  found  during  pregnancy,  where  Ob-Rb  continued  to  be  underexpressed 

compared to WKY-P (P<0.05).
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Fig.  18 Western  blot  analysis  of  Ob  expression  and  densitometric  analysis  of  protein  bands  in 
subcutaneous adipose tissue (panel A) and placenta (panel B). Panel A shows the modulation of Ob 
expression in adipose tissues prepared from non pregnant (-NP) or pregnant (-P) hypertensive (SHR) 
or normotensive (WKY) rats. In panel B the modulation of Ob expression was shown in placentas 
from pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± SEM of 5 
animals. Equal loading was confirmed by β-actin staining.
**p<0.01 vs WKY-NP; °p<0.05 vs SHR-NP; ##p<0.01 vs WKY-P.
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Fig.  19. Western blot analysis of Ob-Rb expression and densitometric analysis of protein bands in 
subcutaneous adipose tissue (panel A) and hypothalamus (panel B) prepared  from  non  pregnant (-
NP) or pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± SEM of 5 
animals. Equal loading was confirmed by β-actin staining.
*p<0.05 vs WKY-NP; #p<0.05 vs WKY-P.
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4.13 Ghrelin mRNA expression in stomach and placenta from pregnant WKY 
and SHR animals

In  stomach  no  difference  in  ghrelin  mRNA  expression  was  observed  between 

normotensive  and  hypertensive  rats  (fig.  20,  panel  A).  Conversely,  a  significant 

reduction (P<0.05) of ghrelin expression in placenta from SHR-P rats was evidenced 

(fig. 20, panel B).
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Fig. 20 RT-PCR analysis of ghrelin mRNA and its densitometric analysis in stomach (panel A) and 
placenta from pregnant (-P) hypertensive (SHR) or normotensive (WKY) rats. Values are mean ± 
SEM of 5 animals. βactin was used as internal reference.
#p<0.05 vs WKY-P.
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5. DISCUSSION

In this study the SHR have been used to obtain an experimental model of pregnancy 

associated  to  hypertension,  in  order  to  investigate  pressure  adaptations, 

cardiovascular  modification,  hormonal  and  placental  changes  in  comparison  to 

normotensive animals, in order to complete pregnancy and ease parturition.

In normal mammalian pregnancy peripheral vascular resistance and blood pressure 

decrease,  and extracellular  fluid volume increases, while glomerular filtration rate 

and  blood  flow  increase.  Here,  we  found  that  in  WKY  blood  pressure  did  not 

significantly  change  during  pregnancy.  Conversely,  confirming  previous  data,  in 

SHR pregnancy remarkably reduced blood pressure and heart rate in proximity of the 

delivery (Aoi et al., 1976; Mattace Raso et al., 2007). Even if the fall in the heart rate 

can  contribute  to  the  reduction  of  blood  pressure,  we  investigated  further 

mechanisms underling the normalization of pressure values at the end of pregnancy: 

for the first time we evaluated the modification of Ang receptor subtypes (AT1 and 

AT2) expression in the kidney of these animals.

Among  many  systems  regulating  the  blood  pressure,  RAS  and  its  main  active 

component Ang II play an important role in the functional and vascular alterations 

associated with hypertension.  As well known, in the kidney most of the vascular 

actions  of  Ang  II  are  thought  to  be  mediated  via  AT1  receptor  and  its  down-

regulation, that we observed in SHR at the end of pregnancy, is consistent with the 

normalization of blood pressure. As expected, no relevant variations were found in 

AT1 receptor between pregnant or not WKY.
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Although the actions  of  the AT2 receptors  have not  been strengthened,  evidence 

suggest that this receptor mediates functions opposing the vasoconstricting activity 

of AT1 (Ichiki et al., 1996; Munzenmaier et al., 1997). The AT1 receptor is widely 

distributed in adults, whereas the AT2 is highly expressed in the foetal kidney but 

decreased rapidly after birth (Ozono et al., 2000). Furthermore, ablation of the AT2 

receptor  in  mice  results  in  hyperesponsiveness  to  the pressor response to  Ang II 

(Hein et al., 1995; Ichiki et al., 1995) while its over-expression in the vasculature 

causes vasodilatation and counteracts the AT1-mediated pressor effect (Tsutsumi et 

al., 1999). In addition, AT2 expression increases in pathological conditions, such as 

vascular injury (Hutchinson et al., 1999) All these data suggest that the deregulated 

expression of Ang II receptor subtypes may be involved in the altered regulation of 

blood pressure and cardiovascular  homeostasis.  In our experimental  condition the 

significant increase of renal AT2 receptor in pregnant SHR, supports the protective 

role  of  AT2 associated  to  the  strongly marked  decrease  of  AT1.  Moreover,  it  is 

conceivable  that  the  increase  in  AT2  could  support  the  normalization  in  blood 

pressure by subtracting Ang II from AT1 interaction and vasoconstriction.

Apparently,  our  data  are  in  contrast  with  previous  results  indicating  that  Ang II 

receptors at 14 day of pregnancy are differently modified in glomeruli of SHR as 

compared to WKY. In particular, in the glomeruli Ang II receptor numbers increased 

significantly compared to their respective non–pregnant controls (Yang et al., 1994). 

These data cannot be completely compared with our results because of the different 

experimental time (14 d vs 20 d), methodology used (ligand binding vs Western blot 

analysis)  and  the  differential  analysis  of  AT1  and  AT2  receptor  subtypes  here 

63



reported. In our experimental conditions, we evidenced a balance between the two 

subtypes, whose total number could be unchanged.

To evaluate vascular reactivity of SHR compared to that of normotensive WKY, we 

studied the functional modification of mesenteric microcirculation, evaluating Ang II 

responsiveness in these animals. Interestingly, the vasoconstrictor response to Ang II 

was  increased  in  SHR-NP and significantly  reduced  by  pregnancy.  The  vascular 

response in SHR-P at the end of pregnancy (20 d) became similar to that of WKY. 

The vasoconstrictor response of mesenteric resistance vessels to sympathetic nerve 

activation (by MTX) or the vasodilator response to endothelium-dependent (by Ach) 

or  –independent  (by SNP)  agents  did  not  show significant  difference  among  the 

examined groups (data not shown). Taken together, these data strongly support a role 

of RAS in pressure adaptations and cardiovascular modifications evidenced before 

delivery in SHR.

A growing body of evidence suggests that inflammatory mechanisms are involved in 

the physiopathology of hypertension. In fact, Ang II has been implicated in vascular 

inflammation  related  to  hypertension  (Cheng et  al.,  2005) and inhibition  of  AT1 

receptors not only normalizes blood pressure, but also reduces inflammation in SHR 

(Sanz-Rosa et  al.,  2005).  In  the  stroke-prone  SHR the  beneficial  effects  of  AT1 

blockade have been recently shown to be largely due to the broad anti-inflammatory 

effects  of this therapy (Sironi et al.,  2004). In SHR an elevated serum levels and 

tissue  expression  of  cytokines  (IL-6,  IL-1  β  and  TNF-α)  were  evidenced.  The 

inflammatory process appears to be mediated by Ang II, as well as by an increase in 

haemodynamic forces associated with hypertension, through the up-regulation of the 
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transcription  factor  NF-κB  and  down-regulation  of  its  inhibitory  protein  IκB-α 

(Sanz-Rosa et al., 2005). 

The  present  study demonstrated  that  in  SHR strain  pregnancy is  associated  to  a 

marked decrease in p65 NF-κB and a significant increase in IκB-α. It is well known 

that NF-κB activation is regulated by the IκB-α, that retains NF-κB in the cytoplasm. 

Proteolytic processing of IκB-α by the proteasome complex (26S) allows NF-κB to 

enter into the nucleus to direct transcription of specific inflammatory genes (Ghosh 

et  al.,  1998;  Karin  et  al.,  2000).  The  reduction  of  renal  NF-κB  activation  also 

contributes  to  ameliorate  hypertensive  status  in  pregnant  SHR. These data  are  in 

agreement  with  Rodriguez-Iturbe  et  al  (Rodriguez-Iturbe et  al.,  2005),  which 

demonstrated  that  a  long  term  treatment  with  PDTC,  an  inhibitor  of  NF-κB, 

completely  abrogated  hypertension,  hypothesizing  that  NF-κB-induced  renal 

inflammation  seems  to  be  involved  in  the  genesis  and  in  the  maintenance  of 

hypertension in SHR.

As  well  known,  NF-kB  controls  the  expression  of  genes  encoding  the  pro-

inflammatory  cytokines,  chemokines,  adhesion  molecules,  growth  factors  and 

inducible  enzymes,  such as COX-2 and iNOS, all  of  which play critical  roles in 

controlling most inflammatory processes. As here evidenced, pregnancy blunted the 

inflammatory status of SHR, reducing the expression of these enzymes at renal level. 

Our data are also in agreement with a recent study showing that gene expression of 

pro-inflammatory factors, such as IL-1β, TNF-α, ICAM-1 and iNOS, are elevated in 

several tissues (kidney, liver and heart) of SHR strain (Sun et al 2006).
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Furthermore, inflammatory damage is often associated with the over generation of 

ROS, such as O2
-, HO  and H2O2 which results in oxidative stress. Several theories 

have been put forward to explain the increase in superoxide production, and it has 

been  reported  that  antioxidant  therapy can  be beneficial  (Rodriguez-Iturbe et  al., 

2003;  Ulker  et  al.,  2003).  Among  other  products,  peroxidation  of  phospholipids 

generates MDA and here, we observed, that this product is significantly increased in 

kidney of SHR strain. However, our data show that pregnancy ameliorates oxidative 

stress tissue damage,  reducing significantly MDA content  in both strain,  and this 

protective effect is also evident and significant in heart of hypertensive animals (data 

not shown). Since peroxynitrite is a marker of iNOS activity, as well as of oxidative 

stress, the protective effect of pregnancy was also confirmed with the reduction of 

protein nitrotyrosylation at renal level. Our data are in agreement with a previous 

study  showing  that  the  reduction  in  immune  cell  infiltration  in  kidney  by 

administration of mycophenolate mofetil, an immunosuppressive anti-inflammatory 

drug, results in amelioration of hypertension coupled with a decline in renal MDA 

content and in the number of superoxide positive cells in the kidney of male SHR 

(Rodriguez-Iturbe et al., 2002).

In  summary,  the  haemodynamic  alterations  and  the  increased  pro-inflammatory 

parameters,  evidenced in SHR, are strongly modulated by pregnancy.  Our results 

indicate  that  the  improvements  induced  by  this  status  could  be  related  to  the 

modification of AT1 and AT2 expression, to the reduction of inflammatory status, as 

well as of oxidative stress associated to tissue damage.
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Beyond  the  role  of  RAS  at  renal  level,  also  in  human  the  placenta  has  been 

considered to possess a local RAS, which may play a physiopathological role in the 

regulation of uteroplacental blood circulation (Poisner, 1998). Therefore, for the first 

time we evaluated in SHR animals the modification of several placental proteins that 

could  be  involved  in  the  mechanisms  underling  the  placental  adaptation  to 

hypertensive status. Indeed, although a relationship between placental function and 

fetal  well-being is well established (Godfrey et  al.,  2002; Kaufmann et  al.,  2003; 

Pardi et al., 2002; Regnault et al., 2002), the complex regulation of placental growth 

and development in SHR remains poorly investigated.

Examining AT subtype receptors at placental  level, we found an increase of AT1 

compared  to  WKY without  any  modification  of  AT2 receptor  (data  not  shown). 

However,  a  significant  reduction  of  placental  ACE  expression  was  observed. 

Differently from humans, that have alternative pathways for Ang II synthesis other 

than that of ACE, in rats ACE has been shown to be the most important enzyme for 

Ang II formation (Okunishi et al., 1993). Therefore, the reduced expression of ACE 

is most likely associated to a decrease of placental Ang II local level. This placental 

ACE reduction might be related to a lower placental Ang II production, repairing the 

up-regulated vasoconstrictor response due to the increase of placental AT1. In fact, 

the local level of Ang II is involved in the complex regulation of the uteroplacental 

blood flow and uterine contraction (Hagemann, 1997).

There is increasing evidence that, in addition to RAS system, NO plays a role in the 

control of placental blood flow. Pregnancy is associated in rats, as in human, with an 

up-regulation of NOS (Conrad et al., 1997; Melillo et al., 1996) and hence with an 
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increase of NO. In our condition, we found an up-regulation of the inducible iNOS in 

placentas from SHR and no modification of the constitutive eNOS. The increase of 

local iNOS-derived NO, reducing vasculature tone, may be involved in maintaining 

the uteroplacental  circulation  in a  vasodilated  state  to  allow fetal  perfusion.  This 

effect is strengthened by the finding that iNOS gene promoter contains a hypoxia-

responsive element  that,  through feedback regulation,  increases  inducible  enzyme 

expression and compensates the lack of NO or low blood flow (Melillo et al., 1996). 

On  the  other  hand,  the  overproduction  of  NO  from  a  sustained  expression  of 

inducible enzyme found in placentas from SHR is related to an impairment of labour 

onset, since its first step is related to a placental NO dramatic withdrawal, that shifts 

the balance from uterus quiescence to contraction (Purcell et al., 1997).

In SHR a significant reduction in uterus, fetal and placental weight was evidenced 

compared to normotensive rats, without affecting the number of implantation sites 

and litter size (Fernandez Celadilla et al., 2004). It is well known that COX isoforms 

are expressed in rat and human placentas guiding proper pregnancy, labour, and fetal 

development.  In  particular,  at  the  end  of  pregnancy,  COX-2  might  be  primarily 

responsible for sustained myometrial contractility and other events that culminate in 

fetus delivery (Xu et al., 2005), moreover the deficiency of this isoform is associated 

to deleterious  reproductive effects  and increased neonatal  mortality (Loftin et  al., 

2002).

In our experimental condition the down-regulation of COX-2 expression supposes a 

reduction of PGs production, and hence the decrease of vascular permeability and 
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impairment  of  myometrial  contractility,  that  regulates  parturition  and  results 

complicated in SHR strain.

It  is  also  known that  the  fetal  membranes  undergo  striking  changes  in  structure 

before delivery, that involve catabolism of extracellular matrix (Moore et al., 2006). 

The strength of the amnion and chorion is, in large part, a result of several different 

genetic types of collagen arranged in a complex framework and their degradation is 

controlled by matrix MMPs. Proteinases facilitate both normal and pathological (i.e. 

preterm) fetal membrane rupture, in particular it has been demonstrated that MMP-9 

is  induced  in  rat  amnion  immediately  before  delivery  and  that  there  is  also  an 

increase in MMP-2 activity (Lei et al., 1995; Vadillo-Ortega et al., 2005). In SHR 

strain  no  modification  of  pro-MMP-9  activity  was  evidenced,  conversely,  the 

constitutive MMP-2 presents a higher activity in SHR in comparison to WKY.

Moreover,  here  we observed a  significant  reduction  both of  PPARα and PPARγ 

expression that might be related to the well known compromised fetus development 

and growth observed in these rats. First evidence for a key role of PPARγ in placenta 

development has been demonstrated by generating PPARγ null mice (Barak et al., 

1999;  Kubota et  al.,  1999).  This  experimental  approach has  revealed  unexpected 

functions  for PPARγ in murine placental  differentiation.  The PPARγ null  mutant 

fetuses only survive until midgestation and die by day 10 of development presenting 

essentially  placental  alterations.  PPARγ null  mutant  placentas  exhibit  vascular 

anomalies with failure of vascular labyrinth formation. In the labyrinth of these mice 

the trophoblast  fails  to  differentiate  with no or poor compaction,  poor syncytium 

formation and fails to accumulate lipid droplets. These placental alterations, leading 
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to  severe  placental  dysfunctions,  might  be  involved  in  embryo  lethality.  In  our 

experiment the evidence of one embryo lethality was revealed in SHR, while the 

number and weight of fetuses were the same among strains (data not shown).

In contrast  to PPARγ and PPARβ/δ null mice,  no placental  abnormality has been 

observed in PPARα null mice (Michalik et al., 2002). However, our study confirmed 

that  the  rat  placenta  expresses  PPARα,  and  its  expression  is  down-regulated  in 

placenta of SHR strain. Recently, in normal rat the expression of PPARα and PPARγ 

was found to be increased specifically within the labyrinth zone toward term (Hewitt 

et al., 2006). Although the role of placental PPARα remains to be determined, it may 

impact on fatty acid transport and metabolism either alone or in combination with 

PPARγ. Wang et al. (2002) suggested that the presence of PPARα and PPARγ late in 

pregnancy may facilitate the necessary increase in transplacental fatty acid transfer 

stimulated by increased fetal demand. Consistent with this hypothesis, the reduction 

in  labyrinth  in  PPARγ expression  observed  following  glucocorticoid-induced 

placental growth restriction may reduce transfer of maternal fatty acids to the fetus 

and possibly contribute to the restricted fetal growth. In addition, placental PPARα 

may be important in relation to placental steroid production, since previous studies 

indicate that PPARα activation may promote steroidogenesis in human trophoblasts 

by  increasing  the  pool  of  available  cholesterol through  fatty  acid  oxidation 

(Hashimoto  et  al.,  2004).  Although  the  rodent  placenta exhibits  only  limited 

steroidogenic capability relative to other species (Chan et al., 1975), the rat placenta 

is  a  significant  local  source of  progesterone  within  the  intrauterine  compartment 

(Benbow et al., 1995).
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All  the  modifications  of  placental  proteins  in  SHR  confirm  the  altered 

physiopathological  condition  in  these  animals;  in  any  event  adptative  and 

compensative  changes  of  the  parameters  considered  may  contribute  to  re-

establishment of physiological pregnancy and delivery.

However,  the  limitation  of  this  animal  model,  reproducing  human  pregnancy 

associated with hypertension, consists in the lack of the risk of pre-eclampsia, that 

does not occur in SHR. 

Human pre-eclampsia is widely believed to be related to the process of placentation, 

which is strongly different in rat, and represents a pro-inflammatory and pro-oxidant 

state  (Walsh  et  al.,  2007).  Conversely,  in  SHR  animals  the  adaptive  and 

compensative  changes  may  contribute  to  the  re-establishment  of  physiological 

pregnancy and delivery. 

During  pregnancy  in  the  rat,  food intake  is  increased,  whereas  thermogenesis  is 

inhibited.  This  produces  a  positive  energy  balance  required  for  growing  and 

development  of  fetal  and  maternal  tissues  besides  building  up  a  fat  store  for 

subsequent lactation. However, the mechanisms underlying increased food intake in 

gestation are poorly understood. 

During pregnancy, physiological adaptation in the nutritional and hormonal setting is 

necessary for fetal growth and maternal well-being. When pathological conditions, 

such as obesity or hypertension,  occur,  further modifications  are needed to avoid 

maternal complications or fetal programming. 

Leptin  and/or  ghrelin,  initially  thought  to  be  considered  messengers  of  energy 

metabolism, are now considered to play a role in normal and complicated pregnancy 
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(Henson & Castracane 2006; Makino et al. 2002). During pregnancy the increase of 

leptin  level  in  human  correlates  with  a  higher  expression  of  the  leptin  gene  in 

placenta (Masuzaki et al., 1997). Contrasting data are reported about the main source 

of leptin in rat; some authors indicate adipose tissue as the main source of leptin also 

during pregnancy because lack of leptin expression was reported in placenta (Kawai 

et al., 1997). Other authors provide evidence, using RT-PCR, that placenta, may be a 

further source of leptin in rodents and may explain the decrease of leptin levels after 

the delivery (Garcia et al., 2000; Hoggard et al., 1997).

As reported by Kawai et al.  (1997), during rat pregnancy,  maternal plasma leptin 

levels, measured every three days, gradually increased on day 9 to 19, when the peak 

leptin levels occur. Thereafter, maternal leptin levels sharply declined to less than 

those of non-pregnant animals. In our experimental conditions, at d 20 of pregnancy, 

we did not found differences between pregnant or not WKY leptinemia (3.30±0.10 

vs  3.00±0.21,  respectively),  even  if  in  subcutaneous  adipose  tissue  a  significant 

increase  of  leptin  protein  expression  (p<0.01)  was  evidenced.  Moreover,  we 

observed, for the first time using hypertensive animals, at d 20, 2-fold increase of 

serum  leptin  level  (1.16±0.14  SHR-P  vs  0.56±0.57  in  SHR-NP,  t=2.965)  that 

paralleled a significant increase of leptin gene expression in subcutaneous adipose 

tissue (p<0.05). This accounts for the highest amount of adipose tissue in the body 

and contributes to circulating leptin levels. However, SHR strain animals presented 

significantly lower plasma leptin compared to those determined in WKY-NP and 

WKY-P controls. Interestingly, in the placenta compared to the plasma or adipose 

tissue, the opposite seemed to happen: leptin gene expression was higher in SHR-P 
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than  normotensive  animals.  The  increased  plasma  leptin  concentration  during 

pregnancy in SHR may be due to increased placental production. In pregnant SHR, 

increased  serum  leptin  concentrations  and  expression  of  placental  leptin  in  late 

gestation  may seem paradoxical.  If  the  organism were  to  respond to  this  satiety 

signal  (e.g.,  increased  leptin),  food  consumption  would  decline,  and  nutritional 

support for the mother and fetus would be compromised. Since food intake is not 

diminished  in  late  pregnancy,  an  adaptive  process  appears  to  have  evolved  to 

maintain maternal and fetal well-being. In SHR-P the increase of leptin in serum and 

tissues (adipose and placenta) is not accompanied by a food intake modification. One 

possible explanation of this discrepancy may be the resistance to the effects of leptin 

via  “downregulation”  of  hypothalamic  leptin  receptors  in  pregnant  SHR,  as 

evidenced by the marked reduction of the hypothalamic expression of Ob-Rb protein 

bands.  However,  the  possible  involvement  or  alteration  of  other  peptides  or 

peripheral hormones which regulate food intake cannot be excluded. No significant 

modification of hypothalamic Ob-Rb expression was seen at d 20 of pregnancy in 

WKY, even if previous data are suggestive for leptin resistance in the hypothalamus 

and  pituitary  (Szczepankiewicz  et  al.  2006).  Moreover  in  our  conditions,  no 

significant modification of Ob-Rb expression was seen in adipose tissues either in 

normotensive or hypertensive animals.

Previous data demonstrated that SHR is a strain which easily manifests hyperlipemia 

and  hyperlipoproteinemia  during  pregnancy  when  compared  to  the  Wistar  rat 

(Yoshioka et al. 1986). In fact, many data suggest that in late pregnancy, liver lipid 

metabolism  may  be  directed  towards  VLDL  secretion  at  the  expense  of  biliary 
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secretion. This would supply lipids, especially triglycerides, to the placenta for fetal 

energy requirements and to the mammary gland for milk lipids in anticipation of 

suckling (Smith et al. 1998). This study compared the changes in the level of serum 

lipid concentration in pregnant and non-pregnant SHR and WKY rats. The serum 

triglyceride concentration is significantly higher in the last period of pregnancy, i.e. 

2-fold higher in WKY and 5-fold higher in SHR rats. It has been noted that elevated 

plasma  lipid  and  lipoproteins  may  induce  endothelial  dysfunction  secondary  to 

oxidative  stress  and  that  dyslipidemia  may  impair  trophoblast  invasion,  thus 

contributing to a cascade of pathophysiologic events that lead to the development of 

preeclampsia  (Lorentzen  & Henrisksen 1998).  Consistent  with  our  results  on the 

lower leptin serum levels in SHR strain, Anderson et al. (2005) found a significant 

decrease of leptinemia in reduced uterine perfusion pressure (RUPP) animals. RUPP 

is an animal model of preeclampsia characterized by persistent elevation of arterial 

pressure, reduced litter size, fetal and placental weights.

In opposite to leptinemia, our data show an increase of ghrelin plasma level in SHR 

strain  compared  to  that  of  WKY. In  particular,  in  SHR rats  at  the  end of  d  20 

pregnancy we determined the bioactive (n-octanoyl modificated) form of ghrelin, and 

showed a slight increase of plasma hormone. Ghrelin has been shown to participate 

in cardiovascular and sympathetic regulation (Matsumura et al. 2003). Intravenous 

injection of human ghrelin elicits a decrease in blood pressure (Nagaya et al. 2001) 

with  direct  vasodilatory  effects  possibly  through  GH or  nitric  oxide-independent 

mechanisms  (Okumura  et  al.  2002).  However,  in our experimental  condition  this 

weak hormone increase could not account the deep fall of blood pressure evidenced 
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in  SHR-P  before  delivery.  Confirming  previous  data  in  normotensive  animals 

(Shibata et al. 2004), we observed that also in SHR, as well as in WYK, the level of 

ghrelin peptide in the stomach did not change at the end of pregnancy in both strain. 

On the contrary mRNA ghrelin in the placenta of SHR rats was lower than that of 

normotensive  rats,  suggesting  not  only  that  in  the  fetal-placental  unit  there  is  a 

different production of this hormone, but also that circulating level are influenced by 

the release of ghrelin by other regions (i.e. intestinal tract, pancreas or hypothalamus 

or pituitary). Therefore, in SHR the production of placental ghrelin was not related to 

the plasma ghrelin concentration during pregnancy.

In  conclusion,  we  observed  an  opposite  profile  of  serum  concentration  of  the 

examined hormones between WKY and SHR strains, showing a marked decrease of 

leptin and an increase of ghrelin level either in pregnant or not SHR. The inverse 

occurs in placenta expression of leptin: the higher production of leptin in pregnant 

SHR  than  WKY  might  compensate  the  down-regulated  leptin  system  in  SHR 

animals. During pregnancy, SHR animals presented an increase of body weight gain, 

paralleled to an increase of fat mass, compared to pregnant WKY animals, without a 

modification of food intake. Moreover, we found significant higher plasma ghrelin 

levels in SHR, that is not related to gastric or placental contribution. In contrast to the 

defined role of leptin and ghrelin in metabolic adaptations and dietary intake during 

pregnancy, their involvement in energy balance in hypertensive animals remains to 

be clarify.
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