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CHAPTER I 

1. An overview of the secretory pathway 

1.1 The secretory pathway 

One third of the proteins encoded by the eukaryotic genome are 

syntesized on ER-bound ribosomes and are destined to be secreted or to 

localize in one of the organelles of the secretory pathway. In the 

endoplasmic reticulum (ER), which is also the major site of cellular sterol 

and lipid synthesis, neosyntesized products begin their journey through the 

secretory pathway to reach their final destinations. The secretory 

membrane system is primarily responsible for their distribution to the 

endomembrane compartments and their delivery to the exterior of the cells 

The secretory membrane system is made up of distinct organelles including 

the ER, the Golgi complex, endosomes, lysosomes and plasma membrane. 

Within this system, soluble and membrane-bound cargo flows in a highly 

organized and directional way. 

Cargo molecules are first transported from the ER to the Golgi apparatus 

by the mobile elements of the intermediate compartment after which then 

pass through the Golgi stacks via cisternal maturation and vesicular/tubular 

traffic. 

In the Golgi apparatus most proteins and many lipids undergo post-

translational modifications including glycosylation, proteolytic processing, 

sulfation and phosphorylation. The Golgi apparatus is also considered the 

central station for the sorting of cargo molecules. At the exit face of the 

organelle, the Trans Golgi Network, the lipids and proteins are sorted to 

pleiomorphic carriers for further transport to the plasma membrane and the 
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endosome/lysosome system. In order to maintain the organelles’ 

omeostasys this directional membrane flow is balanced by retrieval 

pathways that bring membranes and selected proteins back to their 

compartment of origin (Fig.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
                                                      (Modified drawing from Schekman lab website) 
 
 
 
Figure 1.  Schematic representation of the secretory pathway. After their correct 
folding newsynthesized proteins leave the ER via COPII vesicles. COPI coatomer 
vesicles mediate retrograde transport from the Golgi complex to the ER. 
 
 
 

1.2 The endoplasmic reticulum 

The port of entry for proteins destined for the secretory pathway is the 

ER. These proteins are synthesized by ER-associated ribosomes and co-

Anterograde cargo 

Retrograde cargo 
COPII vesicles 
COPI vesicles 
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translationally translocated across the membrane through the Sec61 

complex. They start to fold co-translationally. Within the lumen of the ER, 

newly syntesized proteins find the most favourable environment for their 

maturation: high calcium concentration, the right redox potential and a set 

of chaperones that assist the folding process as well as enzymes that 

operate several co- and post-translational modifications such as signal 

sequence cleavage, N-linked glycosylation, disulphide–bond formation, 

and the addition of glycosylphosphatidylinositol anchors. It is here that 

individual folded subunits before assembly and oligomerization take place.  

Aberrant proteins which can originate from mutations or unbalanced 

subunit synthesis are extremely harmful to cells. Stringent quality-control 

systems ensure that only correctly folded proteins are sent to their final 

destinations and address the misfolded proteins to their degradation. A 

proper balance between synthesis, maturation and degradation is crucial for 

cell survival. In some cases, for a number of  reasons, this sophisticated 

system can fail and lead to protein-conformational diseases. Some 

examples are familial hypercolesterolemia, osteogenesis imperfecta, 

retinitis pigmentosa, Fabry disease as well as  other diseases where the 

loss-of-function phenotype is often accompanied by an accumulation of 

cellular deposits and therefore a gain-of-toxic-function phenotype. In the 

case of a myopathy known as Paget’s disease, intracellular accumulation of 

aggregates is caused by missense mutations of the p97 (Wheil et al., 2006), 

gene which affects the ability of cells to degrade misfolded proteins, 

especially those delivered into the cytosol from the ER lumen. CTFR 

mutants in cystic fibrosis, on the other hand, illustrate an overzealous 

“quality control”, where biologically active mutants cannot leave the ER. 

Diseases can also be caused by defects in the intracellular transport 

mechanisms, such as in bleeding disorders caused by mutations in the 

carbohydrate-binding sorting receptor ERGIC53. In this case, the mutant is 
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unable to properly package the blood coagulation factors V and VIII into 

COPII vesicles for anterograde trafficking out of the ER (Nichols et al., 

1998). 

1.3 The ER-Golgi Intermediate Compartment   

After their correct folding, newly-synthesized soluble and membrane-

bound secretory proteins leave the ER at the specialized domains of the ER 

membrane, known as ER exit sites (ERES).  The ER export is mediated by 

vesicles (Sheckman and Orci, 1996) directed to the Golgi via the ER-Golgi 

Intermediate Compartment (Hauri et al., 2000a). Vesicle budding is 

mediated by a cytosolic complex consisting of the small GTPase Sar1p and 

the heterodimeric protein complexes Sec23p-Sec24p that form the 

coatomer COPII. Another type of coat proteins known as COPI have been 

shown to be involved in the trafficking of proteins between the ER and 

Golgi complex. These COPI coated vesicles mediate retrograde Golgi to 

the ER transport and their involvement in anterograde transport is still 

being debated (Shima et al., 1999). 

In mammalian cells (but not in yeast) the transport between the ER and 

the Golgi complex involves a collection of membranes and highly mobile 

tubulovesicular clusters called the “ER to Golgi Intermediate 

Compartment” (ERGIC). This was initially defined following the 

identification of a 53 kDa membrane protein (ERGIC53) that was 

predominantly localized to these membranes (Schweizer et al., 1988; Hauri 

et al., 2000b) and demonstrated as promoting the ER export of a subset of 

glycoproteins, i.e. the coagulation factor V and VIII (Nichols et al., 1998; 

Moussali et al., 1999; Hauri et al., 2000b).  The dynamic nature and 

functional role of the ERGIC have been debated for long time. Initially, it 

was proposed that the ERGIC was a specialized domain of the ER (Sitia 
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and Meldolesi, 1992) or the cis-Golgi (Mellman and Simons, 1992), 

however at this time two major hypotesis regarding the pleiomorphic origin 

of the ERGIC exist. According to the maturation model, the ERGIC 

clusters are mobile transport complexes that are formed by fusion of the 

COPII vesicles and carry secretory cargo from the ER to the Golgi 

complex. Adversely, according to the stable compartment model,   ERGIC 

represents a stationary organelle in which ER-derived cargo is first shuttled 

from the ER-exit sites to pre-existing ERGIC clusters in a COPII-

dependent step and from there to the Golgi in a second vesicular transport 

step. The sorting in the ERGIC involves COPI vesicles. COPI vesicles play 

a well-established role in retrograde traffic from both the ERGIC and the 

Golgi (Klumperman et al., 1998; Letourner et al., 1994) back to the ER. 

Moreover, COPI vesicles seem to have a role in post-ERGIC anterograde 

traffic (Pepperkok et al., 1993). COPI might only be necessary indirectly, 

because it recycles cargo receptors and other factors required for 

anterograde transport, however an anterograde budding function of COPI at 

the  ERGIC has to be considered (Shima et al., 1999). Therefore ERGIC 

seems to play a very important role as a sorting station for anterograde and 

rotrograde protein traffic between the ER and the Golgi complex, however 

in light of this observation we must now question if ERGIC’s function goes 

beyond that of sorting. Another function of ERGIC is the initial 

concentration of secretory cargo, such as pancreatic enzymes, that leave the 

ER (Martinez-Menarguez et al., 1999). Increasingly mounting evidence 

indicates that the ERGIC is also involved in conformational-based quality 

control of proteins and protein folding (Breuza et al., 2004). Specific post-

translational modifications associated with this subcompartment are not 

known.  
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1.4 The Golgi apparatus 

The Golgi apparatus is localized around the centrosome (Rambourg and 

Clermont, 1990) and actively maintained there by its interaction with 

microtubule array (Lippincott-Schwartz, 1998). It  is comprised of stacks of 

cisternae interlinked by vesicles and tubular networks and is organized into 

three distinct polarized domains: the cis-Golgi, the medial-Golgi and the 

trans-Golgi network (TGN). It is primarily involved in O-linked 

glycosilation events and N-linked oligosaccharide modifications. A highly 

organized set of glycosyl tranferases, glycosidases, and nucleotide- or 

lipid-linked glycosyl donors and transporters cooperate to produce these 

modifications. Each component of this protein modification machinery has 

a characteristic distribution within the Golgi  complex and therefore several 

Golgi enzymes such as Mannosidase I for the cis-golgi or α-2,6-sialyl 

transferase for the trans-Golgi are commonly used as markers in order to 

identify different sub-compartments. The cis-Golgi network receives 

proteins from the intermediate compartment and is involved in the retrieval 

of a subset of proteins back to the endoplasmic reticulum. In the medial-

Golgi most of the addition and trimming of carbohydrates takes place. The 

TGN is the exit side of the Golgi complex and has an essential role in the 

final glycosilation reactions and the sorting of plasma membrane, 

lysosomes and secretory proteins to their respective final destinations.  

1.5 The homeostasis in the secretory pathway 

The flow of secretory proteins along the secretory pathway is 

continuous and, particularly with specialized secreting cells, can be 

massive.  
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In the meantime it is necessary that the organelle identity is mantained 

in order to ensure an appropriate compartmentalization of the reactions and 

an ordered mechanism of protein synthesis, assembly, modification, and 

delivery. Sophisticated mechanisms of sorting based upon aminoacidic 

signals make the maintenance of organelle homeostasis possible. The ER 

has a very hard job in this because all the proteins of the secretory pathway 

spend a moment of their lives inside this organelle. Proteins residing in the 

ER, such as chaperones like Bip or calreticulin, can use two distinct 

localization mechanisms that, in most cases, cooperate with each other; as 

they exit from the ER  in anterograde vesicles, they then are retrieved from 

a post-ER compartment via a retrograde transport (dynamic retrieval) 

otherwise they are retained in the ER by exclusion from transport vesicles 

(static retention). The best characterized mechanism of retrieval functions 

thanks to at least three specific signals. 

Most soluble ER-resident proteins contain a carboxy-terminal 

tetrapeptide sequence, KDEL, Lys-Asp-Glu-Leu. The addition of this 

sequence to the carboxy-terminus of soluble secreted proteins results in 

their accumulation in the ER while their removal from the C-terminus of 

ER luminal proteins results in their secretion. This data implies that such a 

motif is necessary and sufficient for ER localization (Munro and Pelham, 

1987; Nilsson et al., 1989; Pelham, 1988; Jackson et al., 1990). The KDEL 

sequence is thought to retrieve proteins from the ERGIC or the Golgi 

complex to the ER (Dean and Pelham, 1990). This retrieval is mediated by 

the cis-Golgi localized membrane receptor Erd2p which binds to the KDEL 

sequence in the late IC and the cis-Golgi, and releases the KDEL proteins 

in the ER  (Semenza et al., 1990). Two signals are described as used to 

retrieve integral membrane proteins to the ER. Type I ER-resident 

membrane proteins have cytosolic KKXX or KXKXX (dilysine) motifs at 

their carboxy termini. Direct binding of COPI to the dylisine motif of ER 
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integral membrane proteins permits them to be retrieved to the ER (Cosson 

and Letourneur, 1994). Some type II ER-resident membrane proteins have 

a cytosolic ER localization signal consisiting of two arginine residues (RR) 

often located within the first five amino-terminal residues of the protein. 

Arg-based signals occur in polytopic membrane proteins that are subunits 

of membrane protein complexes such as ATP-sensitive (KATP) channels and 

sulphonylurea receptor proteins, and maintain improperly assembled 

subunits in the ER by retention or retrieval until masked as a result of 

heteromultimeric assembly. Recognition by the coatomer COPI is the 

mechanism that explains the ER retrieval (Michelsen et al. 2005). 

1.6 ER export signals 

When the neosynthesized proteins are properly folded they have to leave 

the ER to reach their final destination. The mechanism of protein export 

from the ER remains controversial. According to the bulk-flow model, 

secretory proteins contain no ER-export signals and as such are packaged 

into transport vesicles by default. However recent evidence suggests that 

newly synthesized proteins destined for transport out of the ER are 

specifically concentrated at the ERES. This  alternative mechanism implies  

the presence of sorting signals and a machinery for signal decoding (Kuehn 

et al., 1998). Recent studies have identified specific residues or sequence 

motifs on transmembrane cargo that directly bind the components of COPII 

complex. For soluble secretory cargo proteins that cannot be bound directly 

by coat subunits no consensus has been described, however evidence 

suggests that transmembrane receptors might link certain lumenal cargo to 

COPII. Transport of the vesicular stomatitis virus glycoprotein (VSV-G) 

has served as a model for the study of secretory protein export from the 

ER. VSV-G is a type I transmembrane protein that traffics to the cell 
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surface and, abundantly expressed in VSV-infected cells, is concentrated 

into ER-derived transport vesicles (Doms et al., 1988). Within its C-

terminal tail, a conserved YXDXE motif is necessary for the efficient 

export of VSV-G from the ER (Nishimura and Balch,1997; Sevier et al., 

2000).  This so-called di-acidic sequence (DXE) motif is found in many 

other secretory proteins that are efficiently exported from the ER including 

the Kir2.1 potassium channel protein (Ma et al., 2001) and the yeast 

membrane proteins Sys1p and Gap1. Moreover, Sys1p depends upon its di-

acidic residues for direct binding to Sec23-Sec24 (Votsmeier and Gallwitz, 

2001) and Gap1p requires its di-acidic motif to form pre-budding 

complexes with Sar1 and Sec23-Sec24 (Malkus et al., 2002). 

However, there exist many other membrane proteins that are efficiently 

exported from the ER and do not contain apparent di-acidic motifs. Other 

types of transport signals have been identified in membrane cargo that exit 

the ER. These generally consist of a pair of  hydrophobic residues and are 

described as di-aromatic or di-hydrophobic motifs. For example, the type I 

transmembrane protein ERGIC53 possesses, within its cytoplasmic tail, a 

conserved pair of aromatic residues (FF) at the extreme C-terminus 

necessary for transport from the ER and evidence suggests that these 

terminal residues play a role in binding to the COPII subunits (Kappeler et 

al., 1997). There is some flexibility in this C-terminal signal as other bulky 

hydrophobic aminoacids can act as substitutes. Other di-aromatic motifs 

(FF, YY or FY) are found in a similar position in membrane proteins that 

exit the ER such as the p24 family (Fiedler et al., 1996) and the Erv41-Erv-

46 complex (Otte and Barlowe, 2002). A third  class of ER export motif 

has been described as the sequence RK(X)RK in the N-terminal cytosolic 

tail of Golgi resident glycosyltransferases which is required for these type 

II membrane proteins to exit the ER. This di-basic motif is located 

proximal to the transmembrane border and directly interacts with the 
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COPII component Sar1 (Giraudo and Maccioni, 2003). Yet a mechanism 

involving 14-3-3 proteins has been described as affecting the cell surface 

expression of several unrelated cargo membrane proteins such as the class-

II-associated invariant chain lip35 (Kuwana et al., 1998), the KCNK3 

subunits (O’Kelly et al., 2002), the assembled KATP channel α subunits 

(Yuan et al., 2003) and HLA-F (Boyle et al., 2006). 14-3-3 proteins 

promote the ER exit by  binding to phosphorylated residues in the cytosolic 

domain of transmembrane proteins and in this way, overriding the ER 

localization dictated by an arginine-based signal of ER retention. Finally, it 

has been demonstrated that a C-terminal valine is required for the transport 

to the cell surface of type I transmembrane proteins such as  proTGF-α, 

MT1-MMP (Ureña et al., 1999), CD8α (Iodice et al., 2001), which 

suggests that C-terminal valines are general determinants of the subcellular 

location of cell surface transmembrane proteins (this will considered more 

in depth in paragraph 2.1.1).  

Other than transmembrane cargo proteins, which are potentially directly 

accessible to COPII subunits, there exist a variety of soluble secretory 

proteins that are efficiently exported from the ER and are not able to  

directly contact the COPII coat. Two non-exclusive models, known as the 

“bulk flow” and “receptor-mediated” export models, have been described 

to explain the export of soluble cargo from the ER (fig. 2). A “bulk flow” 

process appears to operate in the export of amylase and chymotrypsinogen 

from the ER of pancreatic exocrine cells (Martinez-Menarguez et al., 

1999). The receptor-mediated model hypothesizes that the export of soluble 

cargo from the ER is an active process that concentrates cargo into ER-

derived vesicles. In this model, transmembrane cargo receptors would link 

lumenal cargo to the COPII coat. For example, it has been demonstrated 

that ERGIC53 functions as a transport receptor for several soluble 

glycoproteins including blood coagulation factors, cathepsin-Z and alpha1-
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antitrypsin (Nichols et al., 1998; Appenzeller et al., 1999; Nyfeler et al., 

2008). It has been shown that ERGIC53 interacts with Factor VIII in a 

calcium-dependent way. Besides, transmembrane proteins cycling between 

the ER and the Golgi compartments would recognize and bind to specific 

sites within distinct soluble cargo molecules; possible changes in lumenal 

pH and Ca2+ concentration within distinct membrane compartments could 

regulate receptor–cargo interactions. 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                 (Barlowe, 2003) 

 
Figure  2. Bulk flow and receptor-mediated models for export of soluble secretory 
cargo from the ER. a) In the bulk-flow model, soluble cargo molecules depart in 
vesicles at a concentration equal to that found in the ER lumen. b) The receptor-
mediated export model results in a concentrative sorting of soluble cargo in the vesicles. 
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CHAPTER II  

2. The role of the GRASPs in the C-terminal valine-dependent  

transport of the human glycoprotein CD8α  

2.1 Introduction 

2.1.1 The C-terminal valine motif 

There is some evidence that a carboxy-terminal valine residue at the 

cytosolic tail of some cell surface transmembrane proteins is an 

anterograde signal. This signal is part of a PDZ-binding motif present in 

several receptors and channels. 

Deletion or substitution of the valine residues in proTGFα and MT1-

MMP proteins results in a lack of surface expression, ER accumulation and 

proTGFα ectodomain shedding in the culture medium (Ureña et al., 1999).  

In the non-classical MHC class I molecules HLA-F, the C-terminal 

valine also functions as an ER export motif; both a mutant deleted of the C-

terminal valine and a mutant with its valine substituted for a serine are 

retained in the ER (Boyle et al., 2006). Finally, the deletion of C-terminal 

valine residues in FXYD7, a brain specific protein that associates with the 

Na,K ATPase isozyme, significantly delayed and decreased the O-

glycosylation processing of FXYD7 and retarded the rate of its cell surface 

expression. 

C-terminal valine’s importance is also demonstrated by another kind of  

experimental approach that used the protein ERGIC53 as a reporter. 

Mutants of a glycosylated variant of human ERGIC53 in which the dilysine 

signal was replaced by alanines to prevent recycling were generated. A 



 13 

single valine in -1 position substituted for the FF motif was sufficient to 

accelerate the transport of the reporter. It was also demonstrated that the 

valine signal is position, but not context, dependent (Nufer et al., 2002) and 

requires a minimal tail length which was demonstrated to be 19 amnoacids 

for the stem cell factor Kit ligand, another transmembrane protein carrying 

a C-terminal valine (Pahule et al., 2004). 

How the C-terminal valine is decoded and what proteins are involved is 

still under investigation. In vitro binding assays demonstrate that the C-

terminal valine interacts with coat complex COPII, particularly with the 

Sec24Cp (Nufer et al., 2002) and Sec23 (Boyle et al., 2006) proteins. These 

interactions and the ability of a C-terminal valine to efficiently substitute  

the FF ER-export signal of the human ERGIC-53, implicate that the C-

terminal valine could act at the exit from the ER but does not exclude other 

effects on the other steps of the secretory pathway. Moreover, the cytosolic 

tail of proTGFα binds the PDZ-motif-containing proteins (PDZ proteins) 

syntenin and p59/GRASP55 in a C-terminal valine dependent fashion 

(Fernandez-Larrea et al., 1999; Kuo et al., 2000) and the binding to the 

PSD-95 PDZ protein has been correlated to the cell surface expression of 

K+  channel proteins (Tiffany et al., 2000).  

2.1.2 The golgins 

The golgins are a variegated family of proteins that only have the Golgi 

localization, large regions of coiled-coil, and, for many members, the 

capacity to interact with small GTPases in common (some examples in fig. 

3). The diversity amongst the golgins is reflected in the wide range of 

functions that they carry out.  

One of the most-characterized functions of golgins is their role in 

membrane tethering events such as those demonstrated for the ternary 

complex p115, GM130 and giantin (Alvarez et al., 2001). Other golgins 
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perform roles that contribute to efficient transport to the Golgi complex. 

For example, Bicaudal-D1 and Bicaudal-D2 have recently been shown to 

be involved in the tethering of vesicles and possibly of some Golgi 

membranes to the microtubule cytoskeleton (Matanis et al., 2002). 

The Golgi Reassembly Stacking Proteins (GRASPs) were identified by 

in vitro assays as factors required for the stacking of Golgi cisternae (Barr 

et al., 1997; Shorter et al., 1999). There are two isoforms in vertebrates, 

GRASP65 and GRASP55. GRASP65 is localized in the cis-Golgi, while 

GRASP55 is predominantly at the medial Golgi (Barr et al., 1997; Shorter 

et al., 1999). Both proteins are associated with the membrane on the 

cytosolic face of Golgi cisternae by N-terminal myristoylation. 

The GRASPs appear to play important roles in a number of cellular 

processes. In mammalian cells undergoing mitosis, GRASP65 is 

phosphorilated by the Cdk-Cyclin B kinase (Lowe and Barr, 2007), 

whereas GRASP55 is phosphorilated in a pathway involving mitogen-

activated protein kinase kinase (MEK1) (Feinsten and Linstedt, 2007). 

These phosphorilation events modify the biochemical and functional 

properties of the GRASPs and contribute to mitotic fragmentation. 

Perturbing GRASP65 activity inhibits Golgi fragmentation at the G2/M 

transition and this lack of Golgi breakdown prevents cells from progressing 

through mitosis (Sütterlin et al., 2005). Moreover, it has recently been 

demonstrated that phosphorylation of GRASP55 at specific tyrosine is 

necessary for Golgi fragmentation in vitro and mitotic entry in vivo (Duran 

et al., 2008).  

GRASP65 and GRASP55 play important roles in regulating Golgi 

structure thanks to their interaction with other members of the Golgins 

family. GRASP65 binds to GM130 and to the vesicle tethering protein 

p115 (Lowe and Barr, 2007). GRASP55 is a specific binding partner of the 

medial-Golgi localized golgin-45. Disruption of this complex by the 
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depletion of golgin-45 results in dispersal of the Golgi apparatus and 

inhibition of protein transport (Short et al., 2001). 

The GRASPs’ involvement in protein trafficking in the secretory 

pathway is still being debated. There is evidence that they are not directly 

involved in the trafficking along the secretory pathway of commonly 

studied reporter proteins such as VSVG and HRP (Duran et al., 2008). 

However they have been implicated in an “unconventional secretion” of 

proteins during Ditctyostilium and Drosophila development (Kinseth et al., 

2007). Nonetheless a role of GRASPs in the trafficking of at least selected 

cargoes can not be ruled out. GRASP65 has been shown to interact with 

members of the p24 family of cargo receptors that are involved in the 

recycling between the ER and Golgi (Barr et al., 2001). GRASP55 binds to 

Transforming Growth Factor-α (TGF-α) and this interaction is important 

for the TGF-α expression at the cell surface (Kuo et al., 2000). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                               (Short et al., 2005) 

 
Figure 3. Golgins associate with Golgi membranes in a variety of ways. The golgins 
are a variegated family of proteins that have only the Golgi localization, large regions of 
coiled-coil, and for many members, the capacity to interact with small GTPases in 
common. The diversity amongst the golgins is reflected in the wide range of functions 
that they carry out. 
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2.1.3 CD8α, a model system for evaluating the role of the C-terminal 

valine in anterograde transport 

In order to investigate the role of the C-terminal valine in the exocytic 

pathway, Luisa Iodice et al. (2001) used the lymphocyte CD8α 

glycoprotein, an O-glycosylated type I transmembrane protein of the cell 

surface, as a model system for these reasons: first, the protein moves 

rapidly from the ER to the plasma membrane and its post-translational 

modifications are well documentated (Pascale et al., 1992); second, 

progress along the pathway can be monitored by metabolic labeling, 

because specific forms of the protein occur in the ER, the cis-Golgi and the 

trans-Golgi complex (Pascale et al., 1992). 

The newly synthesized protein migrates as a 27-kDa unglycosylated 

form  known as “CD8u” on SDS-PAGE in reducing conditions.  When the 

protein reaches the cis-Golgi it is initially O-glycosylated and forms an 

intermediate transient 29-kDa precursor, CD8i. Afterwards the protein is 

terminally O-glycosylated in the trans-Golgi complex and on SDS-PAGE it 

appears as a 32-34 kDa mature doublet, CD8m. Finally the CD8m moves 

to the plasma membrane (fig. 4).  

The cytosolic tail of CD8α was extensively modified at the carboxyl 

terminus and the mutants were transiently transfected in HuH7 cells. 

Immunofluorescence analysis of the intracellular distribution of the 

mutants showed that the mutants lacking the C-terminal valine presented a 

labeling of the nuclear envelope and a more pronounced Golgi labeling if 

compared with the wild-type distribution of CD8α. A pulse-chase 

experiment showed that the mutations affecting the carboxyl-terminal 

valine did not block terminal glycosylation and the transport of CD8α 

along the exocytic pathway but did decrease the rate of CD8α 

glycosylation. The delayed transport rate could be due to the misfolding of 
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the mutants. The CD8α folding in the ER results in the formation of 

homodimers stabilized by disulfide bridges. An experiment of 

immunoprecipitation and SDS-PAGE in nonreducing conditions showed 

that the mutant and the wild-type CD8u forms contained the same relative 

amounts of dimers after a short pulse. Therefore we can conclude that the 

valine does not play a role in the folding and dimerization of the 

glycoprotein.  

Finally, an experiment of cell fractionation has proven that the C-

terminal valine does not play a role in the transport from the trans-Golgi 

compartment to the plasma membrane and therefore the absence of the 

carboxyl-terminal valine specifically impairs the transport step between the 

ER and the IC. This data demonstrates that the C-terminal valine is 

required for the transport of glycoprotein CD8α from the ER to the IC. 

However which molecular mechanisms are actually involved in decoding 

the C-terminal valine remains unresolved and is currently being 

investigated in the laboratory of Prof. Bonatti. 
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Figure 4. A schematic representation of the intracellular trafficking of the human 
glycoprotein CD8α .  The newly synthesyzed protein migrates as a 27-kDa 
unglycosylated form  known as  “CD8u” on SDS-PAGE in reducing conditions. When 
this reaches the cis-Golgi it is initially O-glycosylated and forms an intermediate 
transient 29-kDa  precursor, CD8i. Later the protein is terminally O-glycosylated in the 
trans-Golgi complex and on SDS-PAGE it appears as a 32-34 kDa mature doublet 
CD8m. Finally, CD8m moves to the plasma membrane. 

CD8α 

CD8u CD8i CD8m 

ER Cis-Golgi Trans-Golgi 
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2.1.4 Experimental background 

It has been suggested that C-terminal valine motifs interact with the 

COPII subunits (Nufer et al., 2002; Boyle et al., 2006) on the basis of in 

vitro binding assays. However, some evidence show that PDZ-motif-

cointaining proteins (PDZ proteins) are directly involved in binding C-

terminal valine-containing motifs. The cytosolic tail of proTGFα binds the 

PDZ protein syntenin and p59/GRASP55 (Fernandez-Larrea et al., 1999; 

Kuo et al., 2000). It has been proven that GOPC, a novel PDZ protein 

resident in the Golgi complex, plays a role in the transport of the C-

terminal bearing receptor FZD8 to the plasma membrane by interacting 

with its cytosolic tail. Furthermore, the mutation of valine to alanine in the 

C-terminus of FZD8 significantly reduces the interaction and the deletion 

of the Ser/Thr-X-Val motif completely abolishes the interaction (Yao et al., 

2001). 

Recent data obtained by G. D’Angelo et al. in the laboratory of Prof. 

Bonatti, and not yet published, gives evidence that CD8α directly binds to 

the golgins GRASP65 and GRASP55 in a C-terminal valine-fashion and 

that these interactions are necessary for the transport of the glycoprotein to 

the plasma membrane. 

Lysates obtained from parental FRT cells and from FRT cells stably 

transfected (fig. 6a,b) or HuH7 cells transiently transfected (fig. 6d) with 

the CD8α constructs indicated and schematically represented in fig. 5, were 

subjected to immunoprecipitation with an anti-CD8 antibody. Efficient 

coprecipitation of GRASP65 and GRASP55 was observed only in the 

immunoprecipitates of cells expressing CD8αwt and the mutant Δ17 

bearing a C-terminal valine, Δ17+. Moreover GM130, which is known to 

strongly bind to GRASP65, also coimmunoprecipitated in a C-terminal-

valine-dependent manner.  
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In order to determine if CD8α directly interacts with GRASP65 and 

GRASP55, Far Western blotting assay was performed. Purified GST 

protein and the fusion proteins bearing the cytosolic tails of CD8αwt and 

CD8αΔYV, GST-CD8αwt and GST-CD8αΔYV, were analyzed by SDS-

PAGE and transferred to nitrocellulose filters. The filters were overlaid 

with purified His-tagged proteins GRASP65, GRASP55, a mutant of 

GRASP65 lacking the two PDZ domains ΔPDZ-GRASP65, and a non- 

related protein as a negative control FAPP2 (fig 6c). The bound proteins 

were detected with an anti-His antibody. His-GRASP65 and His-GRASP55 

bound to GST-CD8αwt but not to GST-CD8ΔYV. As expected, no specific 

interactions were observed between the GST proteins and His-FAPP2. Nor 

was there binding detected with the mutant of GRASP65, ΔPDZ-

GRASP65. Therefore, the C-terminal valine of CD8α triggers direct 

binding to the golgins GRASP65 and GRASP55 and the interaction occurs 

via PDZ domains. 

To determine which transport step the interaction between CD8α and 

GRASP65 occurs at, lysates of cells stably expressing CD8α and pulse-

labeled with 35S-Cys/Met were co-immunoprecipitated with an anti-

GRASP65 antibody (fig 6e). The product of the immunoprecipitation was 

re-suspended and immunoprecipitated with an anti-CD8 antibody. The 

CD8u form of CD8α was highly enriched, indicating that the interaction 

with GRASP65 is transient and occurs before CD8α reaches the Golgi 

complex. This has been confirmed by another experiment based on the 

ability of the fungin drug Brefeldin A to syncronize the ER exit of CD8α 

and CD8ΔYV in stably expressing FRT. BFA has been shown to induce a 

breakdown of the Golgi complex, the redistribution of most of the Golgi 

proteins into the ER and the accumulation in the ER of newly synthesized 

proteins that normally are destined to be secreted or located downstream in 

the secretory pathway (Klausner et al., 1992; Ward et al., 2001). The Golgi 
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matrix proteins such as GRASP65, GRASP55 and GM130 are, instead, 

largely localized to peripheral structures known as Golgi/IC remnants, 

which are close to and communicate with the ERES (Ward et al., 2001). As 

shown in fig. 7, in the absence of BFA, a fraction of GRASP65, CD8α and 

CD8ΔYV are co-localized in the Golgi complex and centrally located IC 

elements. After BFA treatment, the colocalization was completely lost, and 

the GRASP65, CD8α and CD8ΔYV labeling was dispersed into numerous 

puncta throughout the cytoplasm.  However, upon BFA washout where the 

ER export is rapidly restored and the Golgi complex reassembles, CD8α 

again colocalized with GRASP65 in dispersed puncta after 10 minutes of 

BFA washout and it completely recovered its steady-state distribution after 

30 minutes. In contrast, the CD8ΔYV mutant was retained in the ER and 

started to colocalize with GRASP65 only at a 30 minute BFA washout, 

confirming an early defect in the anterograde transport. 

Finally, it was assessed whether the interaction discovered occurs 

physiologically. Lysates of HBP-ALL, human lymphocyte cell line 

expressing both GRASP65 and CD8α, were subjected to a  

coimmunoprecipitation experiment by an anti-CD8 antibody. As shown in 

fig.6f, endogenous CD8α coimmunoprecipitated with GRASP65 and its 

interactor GM130. 
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Figure 5. Schematic representation and intracellular distribution of the constructs 
used. The constructs CD8αwt, CD8α lacking the C-terminal tyrosine-valine 
CD8α−ΔYV and CD8α lacking the entire cytosolic tail, CD8α−TL are schematically 
represented (left panel). FRT cells stably expressing the CD8αwt, CD8α−ΔYV and 
CD8α−TL proteins analysed by immunofluorescence (right panel). (G. D’Angelo et al., 
unpublished data). 
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 Figure 6. CD8α  binds GRASP65 and GRASP55 in a C-terminal-valine-
dependent fashion a,b) Cell lysates obtained from parental FRT cells and from FRT 
cells stably expressing the different CD8α constructs were subjected to 
immunoprecipitation with an anti-CD8 antibody (IP CD8α). The immunoprecipitated 
products were analyzed by SDS-PAGE, followed by immunoblotting performed with 
the antibodies indicated on the right. c) Purified protein GST, GST-CD8wt and GST-
CD8ΔYV were resolved on 12% electrophoresis gel and transferred onto a 
nitrocellulose filter. The filters were incubated with purified proteins His-tagged 
indicated and the bound proteins were detected with an anti-His antibody. d) Huh7 cells 
were transiently transfected to express the different CD8α recombinants indicated along 
the top. Aliquots of total cell lysates were analyzed directly on SDS-PAGE followed by 
immunoblotting (Lysates), or after immunoprecipitation with an anti-CD8 antibody (IP 
CD8α). The filter was cut into three portions and the blots were developed with the 
antibodies indicated on the right. e) FRT cells stably expressing CD8α were pulse 
labeled for 30 min with [35S]-methionine and cysteine and lysed. the lysate was 
immunoprecipitated with an anti-GRASP65 antibody. The immunoprecipitated products 
were resuspended and immunoprecipitated with an anti-CD8 antibody (IP GRASP65 + 
IP CD8α). The CD8u, CD8i and CD8m forms of CD8α are indicated.f) Lysates of 
HBP-ALL cells were subjected to a  coimmunoprecipitation experiment by an anti-CD8 
antibody. Endogenous GRASP65 and GM130 coimmunoprecipitated were revealed by 
western blot. (G. D’Angelo et al., unpublished data). 

f  



 24 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The C-terminal valine mediates dynamic colocalization with GRASP 
proteins. FRT cells stably transfected with plasmids expressing CD8α a) or CD8ΔYV 
(b) were incubated with BFA for 30 minutes and then washed out for the times 
indicated. The cells were treated for indirect immunofluorescence and analyzed by 
confocal microscopy. (G. D’Angelo et al., unpublished data). 
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2.1.5 Objectives 

The results stated above prompted us to further investigate the 

physiological significance of the C-terminal valine-dependent interaction 

between the CD8-α glycoprotein and the GRASPs. Therefore the following 

phase of my thesis project addresses two main objectives: 

1) To locate more precisely at which stage of the early secretory pathway 

the valine signal works by utlilizing a VSV-G ts045-based approach  

2)  To assay whether the interactions identified have a role in the transport 

of the glycoprotein to the cell surface.  

2.2 Results 

2.2.1 The C-terminal valine motif of CD8a promotes an early transport 

step between the ER and the Golgi complex 

First of all, we asked whether the valine functions as a signal of export 

from the ER with a mechanism similar to motifs such as the diacidic motif.  

In order to address this question we utilized as an experimental system 

the temperature-sensitive mutant of the glycoprotein VSV-G (Presley et al., 

1997), VSV-G ts045 and two mutants that we generated in our lab. 

VSV-G ts045 bears a point mutation that makes it unable to correctly 

fold when expressed at a non-permessive temperature (39°C) and which 

therefore becomes trapped in the ER by Quality Control system. Upon a 

shift to 32°C, the protein rapidly folds and moves through the secretory 

pathway to reach the plasma membrane. VSV-G exits the ER thanks to a 

COPII-binding diacidic motif. We generated two mutants constituted of the  

ectodomain and transmembrane domain of VSVG ts045 and bearing the 
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cytosolic tail of CD8α, VSVG-CD8α, or the cytosolic tail of CD8α lacking 

the C-terminal Tyrosine and Valine, VSVG-CD8ΔYV(fig. 8a).  

Our first step was to test if the chimera VSVG-CD8α maintained the 

characteristics of both the viral protein and CD8α: the reversible 

temperature-sensitive phenotype that causes misfolding and retention of 

VSV-G in the ER and its correct folding and exit from the ER upon a shift 

to the permessive temperature, and the C-terminal-valine dependent rapid 

transport to the Golgi complex of CD8α. Both of the chimerae were 

expressed by transfection in COS-7 cells incubated at 40°C. The confocal 

immunofluorescence analysis revealed that at this temperature, both the 

chimeric forms were retained in the ER. In contrast, upon shifting the 

temperature to 32°C, VSVG-CD8α moved quickly to the Golgi complex 

and from there on to the plasma membrane, whereas VSVG-CD8ΔYV 

showed an accumulation in the ER, a delay in transport to the Golgi 

complex and a lack of plasma membrane labeling at the 90 minute time 

point (fig. 8b), in accordance with the previously demonstrated role of the 

C-terminal valine in the anterogreade transport of CD8α. 

And so, in order to test the ability of the C-terminal valine of CD8α to 

interact with COPII coat, we performed a 10°C temperature block 

experiment. At 10°C the recruitment of  COPII components to the ERES is 

allowed, but the following fission step of the nascent carrier is prevented. 

Under these conditions cargo proteins that can directly interact with COPII 

components such as VSVG concentrate at the ERES (Lotti et al., 1996). 

COS7 cells were transiently transfected for the expression of both the 

chimeric proteins kept at 39°C in order to retain the proteins in the ER and 

syncronize the export, and then shifted to a 10°C temperature. As shown in 

fig. 9a, as expected, VSVG accumulated at the ERES at 10°C while 

VSVG-CD8α was unable to do so and VSVG-CD8ΔYV didn’t accumulate 

at the ERES at 10°C either.  Both proteins have a distribution similar to the 
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VSVG-AXA, a VSVG mutant lacking the diacidic motif, which for this 

reason was chosen as negative control. This data indicates that the C-

terminal valine doesn’t work as a COPII-binding motif, which prompted us 

to investigate the role of this anterograde signal in subsequent steps of 

transport. Therefore, using the same constructs as described above, we 

performed a 15°C temperature block; a condition  leading to an 

accumulation of cargo proteins in movment toward the Golgi in the IC. 

Under this condition VSVG-CD8α showed a strong accumulation in the 

IC, similar to the protein VSVG, whereas VSVG-CD8ΔYV did not 

accumulate in the IC and presented a reticular staining as at the 10°C 

temperature and, similar to the mutant VSVG-AXA which is unable to exit 

the ER (fig. 9b). These results suggest that the C-terminal valine acts in the 

step succeeding the ER exit and before arriving at the Golgi complex which 

is likely to be in the IC.  

To further validate this hypotesis we performed a budding in vitro 

experiment. A total microsomal fraction was prepared by differential 

centrifugation from cells that had been pulse-labeled with 35S-Cys-Met, and 

incubated in the presence of an ATP-regenerating system and rat liver 

cytosol. Microsomes were again recovered by centrifuagation, while the 

vesicles generated during the incubation were collected by 

ultracentrifugation. Aliquots of the different fractions were then analyzed  

by SDS-PAGE and western blot (fig.10). We compared the efficiency of 

the budding of the proteins CD8α, CD8ΔYV and of a CD8α mutant 

lacking its entire cytosolic tail, CD8-TL. As a negative control we used a 

CD8-E19, which is a form of CD8α with its cytosolic tail substituted with 

that of the E19 adenovirus protein. This chimera has been shown to have a 

low rate of ER exit (Stornaiuolo et al., 2003). As positive control we used 

CD8-K constituted of the ectodomain of CD8α carrying the KDEL signal 

at the C-terminus, which has been shown to be efficiently exported from 
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the ER. As shown in fig. 10, the efficiencies of the budding of CD8α-wt 

and CD8-ΔYV were very similar and truly comparable to the efficiency of  

the budding of CD8-K. In contrast, as expected, CD8-TL and CD8-E19 had 

a low budding efficiency. These in vitro results confirmed the in vivo data: 

that the C-terminal valine signal does not promote the exit from the ER. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. VSV-G-ts045 based chimeric proteins as a model to thoroughly 
investigate  the role of C-terminal valine in the anterograde transport of CD8α .  a) 
Schematic representation of the constructs used. b) COS-7 cells were transfected with 
the chimeric constructs VSV-G-CD8α and VSV-G-CD8ΔYV and incubated at 40°C, 
they were then shifted to a 32°C incubation for the times indicated and analyzed by 
confocal immunofluorescence microscopy. The accumulation of the proteins in the ER, 
Golgi complex and plasma membrane are reported in the graphs. 

a 

b 
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Figure 9. The C-terminal valine motif of CD8α  promotes an early transport step 
between the ER and Golgi complex. The VSV-Gts045 based constructs VSV-G-
CD8α, VSV-G-CD8ΔYV, VSV-G and VSV-G-AXA were transiently transfected in 
Cos-7 cells. After 48 hours the cells were incubated for 3 hours at 10°C in a, and  at 
15°C in b, they were then treated for indirect immunofluorescence and stained with an 
anti-VSVG antibody (green) and an anti-Sec31 antibody (red) in a, an anti-
GRASP65(red) in b. The percentages of colocalization were quantified and reported in 
the graphs. 
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Figure 10. CD8α  and CD8ΔYV show the same rate of ER export in vitro. FRT cells 
stably transfected for the expression of the proteins CD8α, CD8ΔYV, CD8α -TL, 
CD8α-E19, CD8α-K were pulse-labeled for 15 minutes and then used as the starting 
material for the in vitro binding assay. On the left, the immunoprecipitated form 
recovered in the vesicular and microsomal fraction at the end of the 20 minute 
incubation at 0°C or 37°C. On the right, the quantification of the budding efficiency of 
each protein recovered in the vesicular fraction at 37°C with respect to the total 
(vesicular + microsomal) fractions. 
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2.2.2 GRASP65 and GRASP55 are needed for the full rate of transport of 

CD8α 

To determine the role of the C-terminal valine dependent interaction of 

CD8α with GRASP65 and GRASP55, we used the RNA interference 

(RNAi) technique. First we knocked down the GRASP65 and GRASP55 

expression in COS7 cells. The cells were then transfected for the VSVG-

CD8wt and VSVG-GFP expression, incubated at 40°C and shifted to 32°C 

for the time indicated in fig. 11(a, b). They were then analyzed by 

immunofluorescence. At the 30 minute shift, while in the mock transfected 

cells and in GRASP55-knocked down cells VSVG-CD8α appeared to have 

accumulated in the Golgi complex, in the GRASP65-knocked down cells, 

the protein was mostly distributed to the ER and delayed in its reaching the 

Golgi complex. After 90 minutes of  the 32°C temperature shift, VSVG-

CD8α had reached the plasma membrane in the mock transfected cells 

while, in contrast, in the GRASP65-knocked down cells the chimera 

presented a Golgi staining and in the GRASP55-knocked down cells, the 

chimera was mostly distributed to the Golgi complex and had not yet 

reached the plasma membrane. These results show that, in absence of 

GRASP65, the transport of VSVG-CD8α between the ER and Golgi 

complex is inefficient, while in the absence of GRASP55, the defect in 

transport occurs at a later step, which suggests that GRASP55 acts after 

GRASP65 in the transport. It should be noted that, under the same 

conditions, the transport of VSVG to the cell surface remained unaffected 

suggesting that GRASP65 and GRASP55 have specific roles only in the 

transport of proteins bearing a C-terminal valine. To further investigate 

these roles, a RNA interference experiment was performed at a temperature 

shift of 15°C (fig.11c, d). In the GRASP65-knocked down cells, VSVG-

CD8α resulted to be mostly distributed in the ER, showing that the 
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transport to the IC was inhibited. This distribution did not occur in the 

GRASP55-knocked down cells and, as expected, nor in the mock 

transfected cells. These observations support the hypothesis that GRASP65 

is needed to enter and proceed through the IC while GRASP55 is needed to 

enter or proceed through the Golgi complex. Moreover this data is in 

accordance with the localization of GRASP65 in the IC and the very first 

Golgi cisterna, while GRASP55 localized mostly in the medial Golgi 

cisternae.  
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Figure 11. GRASP65 and GRASP55 are needed for the full transport rate of 
CD8α .  a)The expression of GRASP65 and GRASP55 in Cos-7 cells was knocked 
down by RNAi, the cells were then transfected for the expression of VSV-CD8α or 
VSV-G-GFP, incubated at 40°C and then shifted to a 32°C temperature for the times 
indicated. The percentage of cells showing protein accumulation in the ER, the Golgi, 
and the plasma membrane for each experimental condition is shown in b. c) Cos-7 cells, 
subjected to RNAi as in a and then transfected for the expression of VSV-CD8α were 
incubated at 40°C and then shifted to 15°C for 3 hours. The percentage of cells showing 
protein accumulation in the ERGIC for each experimental condition is shown in d. 

c d 
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2.3 Conclusions 

This phase of the project was based on a strategy utilizing the 

temperature-sensitive mutant of the glycoprotein VSV-G, budding in vitro 

experiments and the RNA interference tecnique whereby we were able to 

demonstrate that: 

 

1) the C-terminal valine motif of CD8α promotes an early transport step 

between the ER and Golgi complex which is not the exit-step from the 

ER; 

 

2) GRASP65 and GRASP55 sequentially decode the C-terminal valine 

motif of the glycoprotein CD8α en route to the Golgi complex. 
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CHAPTER III 

3. The role of the C-terminal valine motif in the transport to the 

plasma membrane of the receptor Frizzled4 and Familial Exudative 

Vitreoretinopathy (FEVR) 

3.1 Introduction 

3.1.1 The Frizzled family  

Frizzleds (FZDs) are cell surface receptors with an important regulatory 

role during embryonic development and in tissue homeostasis in many 

different organs in the adult. These receptors are termed “frizzled” on the 

basis of an early phenotype which was observed in the wing of Drosophila 

when the gene of a prominent member of the receptor was inactivated 

(Chan et al.,1992). 

Ten genes encoding FZDs have been identified in the mouse and human 

genomes, whereas four are known to exist in the Drosophila and three have 

been reported in C.elegans (Nusse, 2005). Due to their structure, FZDs are 

listed as a novel separate family of G-protein coupled receptors (GPCRs), 

the “Class Frizzled” (Foord et al., 2005). As has been observed for other G-

protein coupled receptors, Frizzleds can be considered membrane receptors 

with three basic regions: the extracellualar N-terminus which contains a 

cysteine-rich domain involved in the binding of the receptor’s ligands, the 

lipoglycoproteins of the Wnt family (Nusse, 2003), a transmembrane 

central core composed of seven alpha-helices that span the lipid bilayers, 

and at least three intracellular loops and a C-terminal “tail” that 
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communicate with downstream signaling elements found in the cellular 

cytoplasm (Morris and Malbon, 1999). 

FZDs bind several secreted molecules. The primary endogenous 

agonists are the Wnt proteins, of which there are 19 mammalian forms 

triggering most of the FZD-mediated signaling pathways. 

R-spondin (Nam et al., 2007) and Norrin (Smallwood et al., 2007) can 

directly bind FZDs and activate downstream signaling. Soluble Frizzled-

related proteins (sFRPs) were initially seen as Wnt scavengers that 

prevented Wnt from binding to FZDs however recent studies support the 

concept of direct binding to FZD-CRDs followed by receptor activation 

(Rodriguez et al., 2005).  The connective-tissue growth factor (CTGF) can 

bind the CRD of FZD and inhibit downstream signaling (Mercurio et al., 

2004). Other proteins such as Wnt inhibitory factor-1 (WIF-1), Cerberus 

and members of the Dikkopf family ligands are described as FZD 

antagonists (Hsieh et al., 2004). There is an apparent, though not 

adequately characterized, specificity between individual FZDs and their 

ligands (Kikuchi et al., 2007) further  complicated by the existence of 

several other transmembrane proteins, LRP5/6, RYK and ROR2, that bind  

FZD ligands and serve as WNT co-receptors (Kikuchi et al., 2007). 

Three main signaling pathways are activated by agonist-activated FZDs: 

the FZD/β-catenin pathway, the FZD/PCP (planar cell polarity) pathway 

and the FZD/Ca2+ pathway. In the FZD/β-catenin pathway, agonist 

stimulation results in the activation of the phosphoprotein Dishevelled 

(DVL), leading to inhibition of a constitutively active glycogen-synthase  

kinase 3 which regulates the phosphorylation and destruction  of  β-catenin. 

The spared β-catenin is translocated to the nucleus, where it cooperates 

with TCF/LEF transcription factors to modify gene transcription (Gordon 

and Nusse, 2006). 
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In the FZD/PCP pathway, information is transduced via DVL to the 

small GTPases RHO and RAC and their effectors, ROCK (RHO kinase) 

and the c-Jun-N-terminal kinase-c-jun-AP1 pathway (Seifert and Mlodzik, 

2007). 

In the FZD/Ca2+ pathway, the agonists induce elevation of intracellular 

calcium levels in a G-protein-dependent manner either directly, through 

activation of phospholipases (Slusarski, 1997), or indirectly via a decrease 

in intracellular cyclic GMP (Ma and Wang, 2006), resulting in the  

activation of calcium-dependent kinases, such as calcium-dependent 

protein kinase (PKC) and Ca2+ /calmodulin-dependent protein kinase (Kohn 

and Moon, 2005). 

3.1.2 Frizzled4 and familial exudative vitreoretinopathy (FEVR) 

Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular 

disorder characterized by an abrupt cessation of the growth of peripheral 

capillaries leading to an avascular peripheral retina. This condition may 

lead to compensatory retinal vascularization which is thought to be induced 

by hypoxia from the initial avascular insult. New vessels easily break 

causing exudates and bleeding followed by scarring, retinal detachment and 

blindness. Although the penetrance of the disease approaches 100%, the 

phenotype can vary greatly. In the mildest form, affected individuals are 

asymptomatic and the disease can be diagnosed only by intravenous 

fluorescein angiography. 

The disorder is inherited in autosomal dominant, autosomal recessive 

and X-linked recessive patterns (de Crecchio et al., 1998), and has been 

shown to be associated with mutations affecting several genes. X-linked 

forms of the disease have been described as being associated with 

mutations in the gene that encode the norrin protein, an extracellular ligand 

of Frizzled receptors (Chen et al., 1993; Shastry et al., 1995). Mutations in 
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the gene encoding LRP5, a Wnt co-receptor, have been implicated both in 

autosomal dominant and autosomal recessive FEVR (Toomes et al., 2004; 

Jiao et al., 2004). Autosomal dominant forms of the disease have been 

shown to be caused by mutations in the FZD4 gene (Kondo et al., 2003; 

Robitaille et al., 2002; Nallathambi et al., 2006). Most of these studies were 

genetic anlaysis of FEVR patients however two FZD4 mutants causing the 

disease have been characterized more specifically (Robitaille et al. 2002). 

These two mutants were unable to activate Ca2+ /calmodulin-dependent 

protein kinase and calcium-dependent protein kinase (PKC). The defect in 

one case was caused by a deletion in the coding sequence that resulted in 

deletion of two highly conserved aminoacids which altered the seventh 

transmembrane domain. In the other mutant a deletion of two nucleotides 

led to a frameshift and synthesis of a mutant protein with a completely 

different truncated cytosolic tail. In the second mutuant case defective 

signaling was caused by altered trafficking: the protein is unable to reach 

the plasma membrane and is retained in the ER (Robitaille et al., 2002). 

The genetic dominance of this last FEVR allele has also been subsequently 

explained. Studies based on coimmunoprecipitations of tagged monomers 

of members of the FZD family have demonstrated that the FZD family, like 

G-protein-coupled receptors, form specific homo- and hetero-oligomers 

and that the truncated mutant of FZD4 causing FEVR oligomerizes with 

wild-type FZD4, retaining it in the ER and inhibiting its signalling (Kaykas 

et al., 2003). 

Interestingly, a genetic variant of the FZD4 gene has been also 

associated with advanced retinopathy of prematurity (ROP), a disease very 

similar clinically to FEVR which occurs in infants of short gestational age 

and low birthweight (MacDonald et al., 2005). 
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3.1.3 Objectives 

It should be noted that Frizzled4 and several other members of the FZD 

family, as well as some plasma membrane proteins discussed above, have a 

cytosolic tail bearing a C-terminal valine within a PDZ-interacting motif. 

Interestingly, the mutant FEVR-causing with a different and truncated 

cytosolic tail (and therefore lacking the C-terminal valines), is retained in 

the ER. These observations and our previous results with CD8α prompted 

us to question whether the absence of the C-terminal PDZ-interacting motif 

and, in particular, of the C-terminal valine, is the cause of the FZD4 

mutant’s inability to reach tha plasma membrane. In this vein of thinking 

we decided to:  

1) investigate the role of C-terminal valine in the transport of FZD4 to 

    cell surface,  

2) characterize the partners and the molecular mechanisms involved. 

3.2 Results 

3.2.1 The C-terminal valine is required for the efficient transport of FZD4 

from the endoplasmic reticulum to the plasma membrane 

In order to investigate if the C-terminal valine has a role in the transport 

of FZD4 to the plasma membrane and indentify the transport defect of the 

mutant, we first mutagenized the cytosolic tail of human FZD4. 

The construct HA-FZD4wt encoding for the protein FZD4 with a HA-

tag at the N-terminus, was used as a template to generate by site direct 

mutagenesis the mutants HA-L501fs533, causing the disease as already 

described (Robitaille et al., 2002), HA-FZD4ΔVV, which is identical to the 

wild-type but lacking only the two C-terminal valines and HA-
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(L501fs533)VV, which is identical to the mutant L501fs533, but bearing  

two C-terminal valines (fig. 12 ). 

Cos7 cells were transiently transfected with these recombinant 

constructs and after 48 hours the cells were processed for an 

immunofluorescence-based experiment. Cos7 cells transiently expressing 

FZD4 constructs were stained with a monoclonal anti-HA antibody before 

permeabilization and with a polyclonal anti-HA antibody after  

permabilization. After this, an anti-IgG mouse fluoresceined and an anti-

IgG rabbit rodaminated were used. The cells were then analyzed under a 

fluorescence microscopy. As shown in figure 13 (upper panel) as expected, 

HA-FZD4wt localized primarily in plasma membrane whereas HA-

L501fs533 accumulated in the ER and did not show any surface staining. 

Interestingly, the mutant HA-FZD4ΔVV showed an apparent staining of 

ER but a typical plasma membrane pattern was also clearly visible. Lastly, 

HA-(L501fs533)VV showed a localization which was completely different 

from that of HA-L501fs533 as it presented a strong plasma membrane 

staining which was more similar to that of the HA-FZD4wt one. 

To have a quantitative idea of the localization differences between the 

FZD4 mutants, we calculated the extracellular/intracellular staining ratio 

for all the constructs. The results were reported in a graph (fig. 13, lower 

panel) whereby the mutant bearing C-terminal valine accumulates in the 

plasma membrane in a similar way to FZD4wt, whereas in the absence of 

valine the protein reaches the cell surface less efficiently and accumulates 

in the ER. This data clearly indicates that the C-terminal valine is required 

for an efficient transport from the ER to the plasma membrane of the FZD4 

receptor. 
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Figure 12. Schematic representations of the HA-Frizzled4 constructs. Using the 
HA-Fz4wt as a template the following mutants were generated : HA-L501fs533, 
causing FEVR, HA-Fz4ΔVV, identical to the wild-type but lacking only the two C-
terminal valines and HA- (L501fs533)VV, identical to the FEVR-mutant L501fs533, 
but bearing two C-terminal valines. 

HA-Fz4wt 

HA-L501fsX533 

HA-Fz4ΔVV 

HA-(L501fsX533)VV 

HA 

HA 

HA 

HA 

SAKTSHVAEVFQQIGEFWKGKEREERKWLGEAWKRQ 

SAKTLHTWQKCSNRLVNSGKVKREKRGNGWVKPGKGSET 

SAKTLHTWQKCSNRLVNSGKVKREKRGNGWVKPGKGSETVV 

SAKTSHVAEVFQQIGEFWKGEREERKWLGEAWKRQ VV 
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Figure 13. The C-terminal valine signal enhances intracellular transport of the 
Frizzled4 receptor. Cos-7 cells transiently expressing HA-Frizzled4 constructs were 
stained with a monoclonal anti-HA before the permeabilization (green) and with a 
polyclonal anti-HA after the permabilization (red). The ratios extracellular 
staining/intracellular staining for the constructs were given in the graph. 
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3.2.2 Frizzled4 interacts in vitro with GRASP65 and GRASP55 in a C-

terminal-valine-fashion 

C-terminal valine in some members of the  Frizzled family, like in other 

proteins bearing this signal, is part of a PDZ domain that interacts with 

PDZ proteins. In particular, GOPC has been demonstrated to interact with 

Frizzled4 and to have a role in the translocation of Frizzled proteins to the 

cell membrane. Moreover, since the previous data obtained for CD8α 

demonstrated a direct C-terminal valine dependent  interaction between the 

cytosolic tail of CD8α and GRASP65 and GRASP55, and showed the role 

of the two golgins in the transport to the plasma membrane, we decided to 

test if GRASP65 and GRASP55 play a similar role in the transport of 

FZD4 to the cell surface. Firstly, we decided to test to see if FZD4wt was 

able to interact with GRASP65 and GRASP55 and if, eventually, the 

interaction was mediated by the C-terminal valine of the cytosolic tail of 

the FZD4 receptor. To do so we performed a Far Western blotting. We 

generated four recombinant constructs by fusing the cytosolic tails of  

FZD4wt and the FZD4 mutants described above to the C-terminal of a GST 

protein. The constructs were transformed in bacteria, afterwards the 

proteins GST as control, GST-FZD4, GST-L501fs533, GST-FZD4ΔVV 

and GST-(L501fs533)VV were isolated from the bacterial lysates and 

purified on sepharose-glutathione. They were then analyzed by SDS-PAGE 

and transferred onto nitrocellulose filters. The filters were overlaid with 

purified 6xHis-tagged GRASP65, GRASP55, ΔPDZ-GRASP65. The 

bound proteins were detected with an anti-His antibody and ECL. As 

shown in fig. 14, the cytosolic tail of FZD4 wt bound to both GRASP65 

and to GRASP55 whereas the tails of the mutants L501fs533 and 

FZD4ΔVV, which were both lacking C-terminal valine, did not. 

Interestingly, when we added the C-terminal valine to the tail of the 
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mutant, L501fs533 recovered the binding to the golgins. Moreover, none of 

the recombinant proteins interacted with the GRASP65 mutant which 

lacked the PDZ domains. This data shows a specific interaction between 

the cytosolic tail of FZD4, indicating that the interaction is C-terminal 

valine dependent and suggesting that it occurs via PDZ domains which is 

similar to that observed for CD8α. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Frizzled4 interacts directly with GRASP65 and GRASP55 in a C-
terminal-valine-fashion. Purified proteins GST, GST-FZD4, GST-L501fsX533, GST-
FZD4ΔVV and GST-(L501fsX533)VV were resolved on 12% electrophoresis gel and 
transferred onto nitrocellulose filter. The filters were incubated with purified proteins 
His-tagged indicated on the right. The bound proteins were detected with an anti-His 
antibody. 
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3.2.3 GRASP65 and GRASP55 are required for full transport of the 

receptor FDZ4 to the plasma membrane 

We have shown that GRASP65 and GRASP55 are required for the 

efficient transport of CD8α to the cell surface. Since FZD4 was able to 

interact with GRASP65 and GRASP55 in vitro, we wanted to know if  this 

interaction had a functional significance and, in particular, if the two 

golgins had a role in the transport of the receptor to the plasma membrane. 

Therefore, the expression of GRASP65 and GRASP55 in Cos-7 cells was 

knocked down by RNA interference (RNAi) and the cells subjected to 

RNAi were transfected for the expression of HA-FDZ4wt. After 48 hours, 

the cells were treated for immunofluorescence as above (par 3.2.1) and 

analyzed by confocal microscopy (fig.15a). Both the GRASP65 knocked 

down cells and the GRASP55 knocked down cells showed a weaker 

plasma membrane staining when compared with the plasma membrane 

staining of the mock tansfected cells. Moreover, in the GRASP65 knocked 

down cells, FZD4wt seemed to clearly stain the nuclear envelope 

suggesting a reticular localization and, in both the GRASP65 knocked 

down cells and the GRASP55 knocked down cells, FZD4wt accumulated 

in a concentrated perinuclear region which presumibly was the Golgi 

complex. The extracellular staining/intracellular staining ratio provided in 

the graph (fig. 15b) confirms the features observed: the amount of FZD4 

expressed on the cell surface is reduced in the knocked down cells for the 

golgins. 

This data suggests that GRASP65 and GRASP55 are needed for the full 

transport of the FZD4 receptor as they are needed for the transport of 

CD8α. 
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Figure 15. GRASP65 and GRASP55 are required for full transport of the receptor 
FZD4 to the plasma membrane. a) The expression of GRASP65 and GRASP55 in 
Cos-7 cells was knocked down by RNAinterference. The cells were then transfected for 
the expression of HA-FDZ4 wt, treated for immunofluorescence with an antibody anti-
HA and analyzed by confocal microscopy. b) Cos-7 cells knocked down for the 
expression of GRASP65 and GRASP55 and transiently expressing HA-FDZ4 were 
stained with a monoclonal anti-HA before permeabilization and with a polyclonal anti-
HA after permabilization. The extracellular staining/intracellular staining ratio for the 
constructs were given in the graph. 

 

GRASP55-KD GRASP65-KD mock 

b 

a 
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3.3 Conclusions 

In this phase of the project, by mutagenizing the tail of the receptor 

Frizzled4, by an in vitro interaction assay and by the RNA interference 

technique, we were able to demonstrate that: 

 

1) the C-terminal valine enhances the transport of Frizzled4 from the ER to 

the plasma membrane; 

 

2) Frizzled4 interacts in vitro with GRASP65 and GRASP55 in a C-

terminal valine-dependent fashion; 

 

3) GRASP65 and GRASP55 are required for the full transport of the 

receptor Frizzled4 to the plasma membrane. 
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CHAPTER IV 

4. Materials and methods 

4.1 Materials 

All culture reagents were obtained by Sigma-Aldrich (Milano, Italy). 

The solid chemical and liquid reagents were obtained from E. Merck 

(Darmstadt, Germany), Farmitalia Carlo Erba (Milan, Italy), Serva 

Feinbiochemica (Heidelberg, Germany), BDH (Poole, United Kingdom)  

and Delchimica (Naples, Itlay). All the radiochemicals were obtained from 

Perkin Elmer (Bruxelles, Belgium). The Protein A-Sepharose CL-4B and 

the ECL reagents were from Amersham Biosciences (Milan, Italy). 

The following antibodies were used: an ascite a-lumenal domain of 

VSVG (a kind gift of J. Grunberg); a rabbit anti-Sec31(Marra et al., 2001); 

a rabbit anti-HA (Santacruz); a mouse anti-HA (Santacruz), a mouse anti-

His (Sigma-Aldrich); a rabbit anti-GRASP65 (Marra et al., 2001). 

Peroxidase-conjugated anti-mouse and anti-rabbit IgG were from Sigma-

Aldrich (Milan, Itlay); Texas-Red-conjugated anti-mouse IgG and FITC-

conjugated anti-rabbit IgG were from Jackson Immunoresearch 

Laboratories (West Grove, PA, USA). 

4.2 Cell culture and transfections 

Cos-7 cells were cultured in DMEM 10% FCS at 37° C with 5% 

CO2.The cells were transfected using Fugene (Roche) according to the 

manufacturers’ protocols. 
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4.3 Plasmids 

To obtain the construct VSV-G-CD8α, the region encoding for the 

ectodomain and the transmembrane domain of VSV-G-ts045 were isolated 

for PCR from the cDNA of the protein by using the following oligos 

containing BamHI/EcoRI flanking restriction sites: 

oligoVSVGBamHIup: 

5’-CGCGGATCCATGAAGTGCCTTTTGTACTTAG-3’; 

oligo VSVGEcoRIdown:  

5’-CCGGAATTCGAGAACCAAGAATAGTCCAATG-3’; 

the PCR product was subcloned in pcDNA3.1 (Invitrogen). The cytosolic 

tail of CD8α was isolated by PCR from the cDNA of the human 

glycoprotein CD8α by using the following oligos having EcoRI/XhoI  

flanking restriction sites: 

oligo CD8Ecoup: 

5’-CCGGAATTCCACAGGAACCGAAGACGT-3’; 

oligoCD8Xhodown:  

5’-CCGCTCGAGTTAGACGTATCTCGCCGAAAG-3’.  

The PCR product was subcloned downstream of the  

ectodomain/transmembrane coding region of VSV-Gts045 in pcDNA3.1. 

To obtain the construct VSV-G-CD8ΔYV the following oligos 

BamHI/XbaI flanking restriction sites and a STOP codon introducing were 

used: oligoVSVGBamHIup (above described); 

oligo XbaVSVGΔYV:  

5’-GCTCTAGACTATCTCGCCGAAAGGCTGGG-3’.  

The PCR product was subcloned in pcDNA3.1. 

 

The construct pCDNA5-HA-FZD4 was kindly provided by M. MacDonald 

and M.R. Hayden. The mutants L501fsX533, FZD4ΔVV and 
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(L501fsX533)VV were obtained by site direct mutagenesis using the 

following oligos:  

oligoF4delCTup: 

5’-TGGTCTGCCAAAACTTCACACGTGGCAGAAG-3’; 

oligoF4delCTdw:  

5’-AGTTTTGGCAGACCAAATCCACATG-3’;  

oligoF4insSTOPup: 

5’-AAAGGCAGTGAGACTTGAGTGGTATAAGGCTAG-3’; 

oligoF4insSTOPdw:  

5’-AGTCTCACTGCCTTTTCCAGGCTTC-3’;  

oligo F4addVVup: 

5’CCTGGAAAAGGCAGGTGGTATGAGACTGTGGTATAAGG-3’; 

oligo F4addVVdw: 

5’-CTGCCTTTTCCAGGCTTCA CCCAA-3’. 

In order to obtain the construct GST-FZD4, the sequence encoding the 

cytosolic tail of FZD4 was obtained by PCR using pcDNA5-HA-FZD4 as a 

template and the following oligos with BamHI/XhoI flanking restriction 

sites:  

oligoFZD4tail up: 

5’-CAGGATCCACTCTTCACACGTGGCA-3’; 

oligoFZD4tail down: 

5’-CACTCGAGGGCAACTAGAAGGCACAG-3’; 

The PCR product encoding the cytoslic tail of FZD4 was subcloned 

downstream the region encoding GST in a pGEX-4T-1 vector (GE 

Healthcare) 

The mutants GST-(L501fsX533), GST-FZD4ΔVV and GST- 

(L501fsX533)VV were obtained by site direct mutagenesis using the 

following oligos: 

oligoGST-FZD4 delCT up: 
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5’-GTTCCGCGTGGATCCACTTCACACGTGGCAGAAG-3’ 

oligoGST-FZD4 delCT down: 

5’-TGGATCCACGCGGAACCAGATCCGATTTTG-3’ 

oligoGST-FZD4 insSTOP up: 

5’-AAAGGCAGTGAGACTTGAGTGGTATAAGAATTC-3’ 

oligoF4insSTOPdw; oligo F4addVVup; oligo F4addVVdw (above 

described). 

4.4 Anterograde transport analysis of the VSV-G-based chimerae 

Actively growing Cos-7 cells were transfected with the expression 

vectors encoding the chimerae of the temperature-sensitive mutant VSV-G-

ts045, GFP-VSVG, VSV-G-CD8α and VSV-G-CD8ΔYV by using Fugene 

6.0, in accordance with the manufacturers’ instructions (Roche) and kept at 

39°C to retain the chimeric protein in the ER. 48 hours after transfection, 

cells were moved to the permissive temperature (32°C), to 15°C or 10°C 

(for the temperature block experiment) and the cells were analyzed by 

fluorescence analysis as indicated. 

4.5 In vitro budding assay 

Monolayers of stably transfected FRT cells were pulse-labeled for 15 

minutes with a mix of 35S-Cys and 35S-Met and were scraped in an ice-cold 

buffer B (10 µg/ml leupeptin, 5 µg/ml pepstatin A, 2 µg/ml aprotinin, 25 

µg/ml ALLN in PBS). The cell pellet was re-suspended in 0.4 ml of buffer 

F (10mM Hepes-KOH pH 7.2, 250 mM sorbitol, 10 mM KOAc, 1.5 mM 

Mg(OAc)2, plus protease inhibitors), and then passed through a 22-gauge 

needle 20 times and centrifuged at 1,6x104 g for 3 minutes at 4°C in an 
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Eppendorf centrifuge in order to obtain microsomal membranes. The pellet 

was then re-suspended in 80 µl of Buffer E (50 mM Hepes-KOH pH 7.2, 

250mM sorbitol, 70 mM KOAc, 2.5 mM Mg(OAc)2, 5 mM potassium 

EGTA, plus protease inhibitors). The complete incubation mixtures 

containing 50 µg microsomes, 600 µg of rat cytosol, 1.5 mM ATP, 0.5 mM 

GTP, 10 mM creatine phosphate, and 4 U/ml creatine kinase in a final 

volume of 80 µl of Buffer E were incubated either at 37°C or placed on ice 

for 20 minutes. Reactions were terminated by transferring the tubes to ice, 

followed by centrifugation for 3 minutes at 1.6 x 104 g at 4 °C to obtain a 

medium speed pellet (M) and a supernantant fraction. The supernatant was 

centrifuged for 10 minutes at 10 x 104 g at 4 °C in a Beckamn Coulter TL-

100 centrifuge to obtain a high-speed pellet (V). Subsequently, both the M 

(representing the parental membrane) and V (representing the budded 

membranes) fractions were subjected to lysis and immunoprecipitation 

using an anti-CD8 antibody. 

4.6 Indirect immunofluorescence 

Cos-7 cells transiently transfected as described above were grown on 

glass coverslips fixed in PBS 4% paraformaldehyde for 10 minutes. They 

were then permeabilized with 0,05 % saponin in blocking buffer (0.5% 

BSA, 50 mM ClNH4, 0.02 NaN3 in PBS)  for 30 minutes, washed in PBS 

and incubated with the primary antibodies diluted in blocking buffer for 1 

hour and then with the appropriate secondary antibodies diluted in blocking 

buffer for 1 hour at room temperature. For the immunofluorescence 

experiments of Frizzled-4 mutants localization, Cos-7 cells transiently 

transfected, grown on glass coverslips, fixed in PBS 4% paraformaldehyde 

for 10 minutes, were blocked in blocking buffer for 30 minutes, incubated 

with a polyclonal anti-HA diluited in blocking buffer, fixed again in PBS 
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4% paraformaldehyde for 10 minutes, permeabilized in 0,05 % saponin 

blocking buffer for 30 minutes and then incubated with a monoclonal anti-

HA for 1 hour. The cells were then incubated with the appropriate FITC or 

Texas Red conjugated secondary antibodies for 1 hour. Afterwards the 

coverslips were mounted on slides with Mowiol and  were analyzed with 

an LSM 510 confocal laser scanning microscope. 

4.7 Far western Blotting 

GST proteins were produced: the plasmids were transformed into BL-21 

bacteria. The bacteria were lysed with extraction buffer (Hepes 20 mM pH 

7.4, MgCl2 2mM, KCl 50 mm, NP40 0.5%, glycerol 20%, EDTA 2mM) 

and then subjected to sonication. Bacteria cell debris were pelletted under 

centrifugation for 30 minutes at 10000 rpm, 4°C. The lysates were 

incubated with Glutathione sepharose 4B (Amersham) at 4° for 2 hours 

with gentle agitation. The glutathione sepharose pellets were washed 4 

times with 5 bed volumes of extraction buffer. The conjugated proteins 

were quantified using a spectophotomer. 

The GST proteins (5 µg) were resolved on linear 12.5% polyacrilamide 

gels and then blotted onto nitrocellulose filters. The filters were stained 

with Ponceau, washed with 5% acetic acid and incubated overnight in 

blocking buffer (4% dry non fat milk, 0.2% Triton X100, 0.02% NaN3 in 

PBS). They were then incubated with purified His tagged proteins (kindly 

provided by lab. De Matteis, Consorzio Mario Negri Sud) at a 

concentration of 1µM in blocking buffer for 8 hours  at 4°. After extensive 

washing with PBS 0.1% Tween20, the filters were incubated with a 

monoclonal anti-His and then with a peroxidase-conjugated secondary 

antibody. After washing, the bound antibodies were detected by ECL.  
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4.8 RNA interference 

The siRNAs used were of human GRASP65 (NM_031899) and human 

GRASP55 (NM_015530) consisting of a mixture of four siRNA duplexes 

that were selected using the Dharmacon SMART selection process and 

SMART pool algorithm. They were obtained from Dharmacon (Lafayette, 

CO, USA). The COS-7 cells were plated at 30% confluence in 24-well 

plates and transfected with 50 pmol of GRASP65 or GRASP55 siRNA 

using Oligofectamine (Invitrgen, Milan, Italy) according to the 

manufacturer’s protocol. 48 hours after the initial siRNA treatment, the 

cells were transfected with VSV-G-based or HA-FZD4 constructs. Cells 

transfected with VSV-G-based constructs were kept for 16 hours at 40 °C 

before the transport assay was performed. Then the cells were processed 

for indirect immunofluorescence. 
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Discussion 

In the present study, we have shown that the C-terminal valine has a role 

in transport to the cell surface of the glycoprotein CD8α and the receptor 

Frizzled4. We have shown that it functions in a very early step of the 

secretory pathway. It has been well established, at least for CD8α but just 

as likely for FZD4 transport as well, that the C-terminal valine does not 

play a role in the exit from the ER. We have also demonstrated that 

GRASP65 and GRASP55 decode the information provided by the C-

terminal valine motif and sequentially promote the anterograde transport of 

CD8α and FZD4 along the secretory pathway. The GRASPs knocking 

down by RNAi or the C-terminal valine’s removal results in the same 

transport defect and mutations in the motif which result in the altered 

trafficking lead to the loss of direct binding of CD8α and FZD4 with the 

GRASPs. Surprisingly, the GRASPs do not directly contribute to the 

transport of membrane cargo proteins not bearing the C-terminal valine 

motif and therefore this mechanism is specific for a subset of membrane 

proteins. Therefore, our data provides an explanation for the molecular 

mechanisms behind the previously reported role of the C-terminal valine 

motifs in anterograde transport (Boyle et al., 2006; Crambert et al., 2004; 

Iodice et al., 2001; Paulhe et al., 2004; Urena et al., 1999) and for the 

GRASPs binding to specific cargoes (Barr et al., 2001; Kuo et al., 2000). 

Our data also clearly establishes that as well as both GRASP65 and 

GRASP55 having their functions in Golgi architecture, in mitotic 

progression and in unconventional protein secretion, they also have direct 

roles in the ‘conventional’ transport of secretory cargo between the ER, the 

IC and the Golgi complex. Finally, our data opens up new and interesting 

scenarios for the regulation of the surface expression of receptors such as 
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CD8 and FZD4, which strongly suggests that an alteration in this 

mechanism is the cause of a dominant form of human FEVR.  

What might be the distinctive properties of the C-terminal-valine-

bearing cargo proteins that make them sensitive to the GRASPs? Different 

possibilities can be envisioned here. These proteins might have an as-yet-

undefined ‘retrograde’ signal that would usually be overridden by the 

GRASP-interacting anterograde C-terminal valine motif. In the absence of 

either the valine signal or the GRASPs, the retrograde motif would mediate 

the recycling of these cargo proteins to the ER, as has been suggested for 

the NMDA receptor, where a C-terminal valine motif counteracts the 

activity of an ER-retention arginine-based motif in the protein (Standley et 

al., 2000; Wenthold et al., 2003). As an additional possible mechanism, the 

C-terminal valine could promote an active sorting of these GRASP-

sensitive cargo proteins into anterogradely moving carriers, thereby 

accelerating their transport to the Golgi complex. In the absence of the 

valine or of the GRASPs, these cargoes would instead be transported via a 

bulk-flow mechanism which would necessarily be less effective than the 

mechanism based on active sorting. In the hypothesis that we believe is 

more consistent with the available evidence and results reported here, 

GRASP65 and GRASP55 are envisaged as having specific functions at two 

different stages that are temporally and spatially distinct. The GRASP65-

sensitive step corresponds to an early step in ER-to-IC transport although 

we can exclude the possibility that this valine–GRASPs interaction has a 

role in promoting COPII recruitment to the ERES and/or in the budding of 

carriers from the ER.  

A similar conclusion has recently been reported for yeast where, despite 

the ability of the GRASPs homologue Grh1 to bind to COPII, it is not 

required for the budding of COPII vesicles (Behnia et al., 2007). Therefore, 

the action site of this valine–GRASP65 interaction system has to be placed 
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at a post-ER and pre-Golgi station, i.e. the IC. Unfortunately too little is, at 

present, known at the molecular level about cargo protein’s entry into and 

transit through the IC, to define in detail the molecular mechanisms 

promoting the anterograde transport of these C-terminal-valine-bearing 

proteins. What has so far been established is the compositional 

heterogeneity of the IC with its ‘early’ elements that are physically close 

to, but distinct from, the ERES and its ‘late’ elements that are closer to the 

Golgi complex (Marra et al., 2001). In this context, active sorting of a 

cargo protein from the early to the late IC components (through its 

interaction with GRASP65) would offer a kinetic transport advantage. This 

would occur through the recruitment of the GRASP65–GM130 machinery 

which can form a complex with the transiting C-terminal-valine-bearing 

cargo, and which has a recognized role in promoting the incorporation of 

ER-derived carriers into the Golgi complex (Marra et al., 2007). The 

GRASP55-sensitive transport step for these GRASP-sensitive cargoes 

appears to be within the Golgi complex and it is presumably related to the 

cis-to-medial Golgi transition of the cargoes, considering the block of 

VSVG–CD8α  in the cis/medial Golgi compartment in the condition of 

knocked down levels of GRASP55 and considering the medial Golgi 

localisation of GRASP55. The molecular mechanisms involved in this 

transport block have yet to be defined. An intriguing possibility is that in 

the absence of GRASP55, the C-terminal-valine-bearing cargo proteins 

remain bound to GRASP65, and are therefore stacked in early Golgi 

compartments. 

Finally, interactions with the GRASPs are likely to have an important 

role in the physiology of CD8 and Fz4, two plasma-membrane receptors. 

CD8 is a glycoprotein complex that is mainly expressed in cytotoxic T 

lymphocytes. It consists of two subunits that can associate as homodimers 

and heterodimers: the α subunit, which has a C-terminal valine; and the β 
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subunit, which is devoid of this signal (Parnes, 1989). CD8αβ is the main 

functional co-receptor, although CD8αα is also expressed at the cell 

surface and is functional, whereas CD8ββ is inactive and is retained in the 

ER (Devine et al., 2000; Dialynas et al., 1981; DiSanto et al., 1988; 

Hennecke and Cosson, 1993; Norment and Littman, 1988). The co-

expression of CD8α relocalises CD8β to the cell surface (Hennecke and 

Cosson, 1993, Schmidt-Ullrich and Eichmann, 1990). These considerations  

thus highlight the driving role that the valine signal plays in the promotion 

of the exposure of these receptors at the plasma membrane and hence their 

function. FZD4 and the other members of the FZD family of Wnt receptors 

also form homo-oligomers and hetero-oligomers (Kaykas et al., 2004). 

Recently, it has been shown that this oligomerisation occurs in the ER 

(Kaykas et al., 2004), and that the FZD4 mutation responsible for FEVR 

does not allow anterograde transport of the mutated proteins and blocks the 

transport of the wild-type FZD chains upon oligomerization (Kaykas et al., 

2004). This mechanism would explain the dominant effects of the FZD4-

FEVR mutant in heterozygous FEVR patients (Robitaille et al., 2002). The 

absence of FZD4 receptor expression at the plasma membrane results in a 

signalling defect during embryogenesis that leads to defective 

angiogenesis, aberrant neo vascularization and exudative retinopathy 

(Robitaille et al., 2002). Our results can now provide a molecular 

explanation for the intracellular retention of FZD4-FEVR, as the inability 

of the mutant protein to interact with GRASP65 and GRASP55. 
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