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A S. Maria Regina Pacis

In teoria, non c’è differenza tra pratica e teoria.

In pratica, la teoria è diversa dalla pratica.

In theory, there is no difference between practice and theory.

In practice, theory is different from practice.

Jan LA van de Snepscheut
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Introduction

Seismic Hazard is a physical process or an event that describes the potential for

dangerous, earthquake-related natural phenomena such as ground shaking, fault

rupture, or soil liquefaction. These phenomena could cause adverse consequences to

society such as loss of life, destruction of buildings, properties or threat to human

society or its well-being. Seismic Risk is the probability of a specific loss as conse-

quence of a seismic hazard.

The output of the seismic hazard analysis could be a description of the intensity

of shaking of a nearby magnitude eight earthquake or a map which shows levels

of ground shaking in different regions of a country having equal chance of being

exceeded, while the output of the seismic risk analysis could be the probability of

damage from a nearby magnitude eight earthquake or the probability of fatalities

due to seismically induced buildings accidents.

For a correct evaluation of the seismic hazard we have to consider several aspects:

• the characterization of the source or sources of the hazard, in terms of size,

spatial location, orientation, slip type, probability of rupture, etc.;

• the characterization of the seismic wave propagation until a particular location;

• the site response to a particular earthquake, in terms of peak ground accelera-

tion (PGA) or in term of response spectra (relation between amplitude of the

ground accelerations and its frequency): in fact the amplitude of earthquake
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ground motion can be increased or decreased by both the properties and the

configuration of the near surface material through which seismic waves prop-

agate. For this reason the same earthquake, at the same distance from the

source, can produce different ground acceleration in function of the site re-

sponse.

By considering the approach to seismic zonation of a country, characterized by

ground motion, slope instability and liquefaction, we can divide the knowledge level

in three parts which are more and more accurate:

• Grade 1: the only knowledge we have is from historical earthquakes, from

interviews with local residents and from geological and geomorphological maps;

the typical scale of this mapping is 1 : 1 000 000÷ 1 : 50 000.

• Grade 2: the knowledge is from simplified geotechnical studies, from air photos,

from field studies and from remote sensing; the typical scale of this mapping

is 1 : 100 000÷ 1 : 10 000.

• Grade 3: this level of knowledge is the more accurate and it is based on

geotechnical investigation and analysis of recorded data of ground motion; the

typical scale of this mapping is 1 : 25 000÷ 1 : 1 : 5 000.

From this, it is clear that for a more accurate mapping of seismic hazard it is

necessary to have a kind of sensors which can record with high accuracy and in a

broad frequency band, in particular at low frequency, because much of the energy

released during an earthquake results in teleseismic signals with periods ranging

from hours to seconds.

The work we present is related to the development of a new kind of seismic

sensor, optimized for very low frequency and having a sensitivity best of the actual

commercial instrument and very little dimensions. It is based on the schema of the
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folded pendulum and it is monolithical, so we can have a great sensitivity in low

frequency because of the little contribution due to the thermal noise. This work

describe how we have implemented this sensor to use as an accelerometer and the

various hints to reach some original results. This thesis work is organized in the

following parts:

• in the chapter 1 we will discuss about seismic signals and about the instruments

used to measure them.

• the chapter 2 is dedicated to the mechanics of the sensor, and it is presented an

analytical discussion of the folded pendulum, followed by our implementation

and the most significative measurement on the mechanical part;

• in the chapter 3 is discussed the readout of the system, with a little description

of the optical readout, the electronic implementation and the measurement of

the electronic noise;

• in the chapter 4 we will present the feedback control necessary to use the sys-

tem as an accelerometer and so the improvement in sensititvities as seismome-

ter and as accelerometer with different readout systems and configuration, in

comparison with commercial products;

• in the last chapter are exposed the conclusion of the this work and a little

discussion on the possible development of the system.
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Chapter 1

Seismic waves

A description of seismic waves requires the characterization of the internal forces and

deformations in solid materials. We’ll show a brief review of the theory of stress and

strain and how they are linked through the constitutive relationships that describe

the nature of the elastic solids. Then, by using this theory we construct the seismic

wave equation for elastic wave propagation in uniform whole space and, by solving

this equation, we obtain the solutions, that are plane waves called body waves, and,

if in the medium there is a free surface, we’ll show that exists other solutions, called

surface waves.

1.1 Stress and strain tensor

The mechanical response of a material can be characterized with some parameters

related to the internal force (stress) and deformation (strain); some relations can be

used to relate the stress parameters to the the strain ones.
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The stress tensor

The stress tensor describes internal forces in a solid volume. Let’s consider a small

volume inside of a solid body; the external forces that act on this block are called body

forces: they are originated outside the block and act on every molecule within the

block. The existence of a surface on the voulme generate the surface forces, which are

forces that act on the surface of the block through surrounding molecules, through

atomic and molecular bonding. Principally, these forces are between neighbors and

next-nearest neighbors. The surface force on the unit area of the surface is called

the stress [21].

Let’s consider an infinitesimal plane of arbitrary orientation within an homoge-

neous elastic medium in a static equilibrium. Let be n̂ the unit normal vector that

specify the orientation of the plane. The force on the unit of area exerted by the

side in the n̂ direction across this plane is called traction and is represented by a

vector ~t(n̂). The component of ~t normal to the plane is termed normal stress; the

parallel component is called shear stress. Note that in the case of a fluid, there is

no shear stress and ~t = −P n̂, where P is the pressure.

By indicating with n1, n2 and n3 the component of n̂ normal to the planes x2 x3, x1 x3

and x1 x2 respectively, we can define the stress tensor Tij in Cartesian coordinates

system by the traction across this planes as:

Tij =


t1(n1) t1(n2) t1(n3)

t2(n1) t2(n2) t2(n3)

t3(n1) t3(n2) t3(n3)


Because the stress tensor is symmetric, it contains only six independent components.

The traction across any arbitrary plane of orientation defined by n̂, may be obtained

by multiplying the stress tensor with n̂

~t(n̂) = T n̂

5



Figure 1.1: The effects of the strain tensor E (on the left)

and the rotation sensor W (on the right) with respect of

the deformation of a square in a bidimensional cartesian

reference system (x, z).

The stress tensor is a linear operator which produces the traction vector ~t from

normal ~n, so it exists independently of any particular coordinate system. The stress

tensor generally varies with position in a material; it is a measure of the force acting

on infinitesimal planes at each point in the solid. The stress provides a measure

only of the forces exerted across these planes and has units of force on unit of area;

other forces may be present (for example the gravity), termed body forces, that have

dimension of forces on unit of volume or mass.

The strain tensor

If we consider a volume in a three dimensional space, we can identify any point with

a vector ~r = (x1, x2, x3). If there is a deformation, the point ~r can be indicated with

a new vector ~r′ = (x′1, x
′
2, x
′
3), and we can define the deformation vector ~u = ~r′ − ~r.

In this way the coordinates x′i depend on the coordinates xi and so the deformations

ui depend on xi. Consider an infinitesimal deformation, the differential d~u is

dui = ∂juijdxj +O(dx2
j)
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where we adopt the Einstein’s convention (a repeated index means the sum over

this index) and the convention that ∂juij = ∂ui
∂xj

. The matrix ∂juij is the Jacobian

matrix J (displacement gradient matrix) associated with the displacement field ~u in

the Cartesian coordinate system.

The matrix J can be written as a sum of a symmetric matrix E and a skew-

symmetric matrix W , where E = (J + JT )/2 and W = (J − JT )/2. The elements

of E and W are

Eij =
1

2
(∂juij + ∂iuji)

Wij =
1

2
(∂juij − ∂iuji) (1.1)

The symmetric matrix E represents a second order symmetric tensor (the irrota-

tional strain sensor) and W matrix a second order skew-symmetric rotation ma-

trix [21].

Consider an infinitesimal cube like that shown in figure 1.1. The off-diagonal

elements of E cause shear strain; for example, in two dimension, if W = 0 and there

is no volume change, then

J = E =

 0 θ

θ 0

 =

 0 ∂3u13

∂1u31 0


where θ is the angle (in radians) through which each side rotates. Note that the

total change in angle between the sides is 2θ. The W tensor, instead, causes rigid

rotation, so, if E = 0, then

J = W =

 0 θ

−θ 0

 =

 0 ∂3u13

∂1u31 0


1.1.1 The Hooke’s law

In elastic media stress and strain are related by a stress-strain relationship (consti-

tutive relationship). The most general linear relationship between stress and strain
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tensor is the Hooke’s law [21]:

Tij = cijklEkl (1.2)

where cijkl is the elastic tensor. The equation 1.2 assumes perfect elasticity, so there

is no energy loss as the material deforms in response to applied stress. The elastic

tensor is a fourth-order tensor with 81 components: because of the symmetry of the

stress and strain tensor, only 21 of these components are independent.

By assuming isotropy (that is cijkl invariant with respect to rotation), it can be

shown that the number of independent parameters can be reduced to two and

cijkl = λδij + µ(δilδjk + δikδjl)

with λ and µ called Lamé parameters of the material and δij the Kronecker’s delta.

Then the stress-strain relationship 1.2 for an isotropic solid is [8]:

Tij = [λδij + µ(δilδjk + δikδjl)]Ekl

= λδijEkk + 2µEij (1.3)

The Lamé parameters completely describe the linear stress-strain relationship

within an isotropic solid:

µ is termed the shear modulus and it is a measure of the resistance of the material

to shearing;

λ does not have a simple physical explanation.

Other commonly used elastic constants for describing isotropic solids are:

• E, the Young modulus: the ratio of extensional stress to the resulting exten-

sional strain for a cylinder being pulled on both ends:

E =
(3λ+ 2µ)µ

(λ+ µ)

• k, the bulk modulus: the ratio of hydrostatic pressure to the resulting volume

change, a measure of the incompressibility of the material:

k =
λ+ 2µ

3
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Figure 1.2: Picture of the force on the x2−x3 face of an infinitesimal

cube in (x1, x2, x3) cartesian space.

• σ, the Poisson’s ratio: the ratio of the lateral contraction of a cylinder (being

pulled on its ends) to its longitudinal extension:

σ =
λ

2(λ+ mu)

1.2 The equation of the seismic wave

In the last section we have considered the stress, strain and displacement field in a

static equilibrium and constant in time; because seismic waves are time-dependent

phenomena that involve velocities and accelerations, we need to account for the

effect of momentum, so we must apply dynamic’s law to a continuous medium.

Let’s consider the force on an infinitesimal cube dV = dx1 dx2 dx3 in (x1, x2, x3)

coordinate system, as shown in figure 1.2. The surface forces on each surface of the

cube are given by the product of the traction vector and the surface area:

F S
i = Tij nj

and, integrating over all the face

F S =

∫
S

T · n̂ dS (1.4)
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There may also exist a net body force on the cube that acts proportionally to

the volume of material, that, for all the volume, is

FB =

∫
V

~f dV (1.5)

By indicating with ρ the density, the mass of an infinitesimal cube is dm = ρ dV .

The acceleration of the cube ~a = ~̈u is given by the second time derivative of the

displacement ~u.

By substituting the equations 1.4 and 1.5 into ~F = m~a we obtain∫
S

T · n̂ dS +

∫
V

~f dV = ρ~a (1.6)

Applying the theorem of the divergence to the tensor∫
S

T n̂ dS =

∫
V

∇ · T dV (1.7)

the equation 1.6 becomes ∫
V

[
∇ · T + ~f − ρ~a

]
dV = 0 (1.8)

The equation 1.8 is valid for arbitrary volume V , so the integrand function vanishes

everywhere and we obtain the momentum equation [8]

∇ · T + ~f − ρ~a = 0 (1.9)

With no body forces, we have the homogeneous equation of motion

∇ · T − ρ~a = 0 (1.10)

that describes the seismic wave propagation outside source regions.

1.2.1 The seismic wave equation

To solve the equation 1.10, we require a relationship between stress and strain,

and we can express T in terms of displacement ~u. By using the linear, isotropic

10



stress-strain relationship 1.3 and the definition of strain tensor 1.1 we have:

Tij = λ δij∂kuk + µ (∂iuj + ∂jui) (1.11)

If we substitute the equation 1.11 in the equation 1.10 we can write

ρ~a = ∇λ (∇ · ~u) +∇µ · [∇~u+ (∇~u)T ] + (λ+ µ)∇∇ · ~u+ µ∇2~u

and by using the vector identity

∇2~u = ∇∇ · ~u−∇×∇× ~u

we obtain the seismic wave equation [22]:

ρ~a = ∇λ(∇ · ~u) +∇µ · [∇~u+ (∇~u)T ] + (λ+ 2µ)∇∇ · ~u− µ∇×∇× ~u (1.12)

By considering the first two terms on the right-hand side of the eqauation, we

see that they involve gradients in the Lamé parameters themselves and are non-

zero whenever the material is non-homogeneous. Furthermore, we can consider

the velocity as a function only of the depth, so the material can be modeled as a

series of homogeneous layers. Within each layer, there are no gradient in the Lamé

parameters and so these terms go to zero. The different solutions of each layer are

linked by calculating the reflection and transmission coefficients for waves at both

sides of the interface separating the layers. The effects of a continuous velocity

gradient can be simulated increasing the number of layers. Then, if we ignore the

gradient terms, the momentum equation for homogeneous media becomes:

ρ~a = (λ+ 2µ)∇∇ · ~u− µ∇×∇× ~u (1.13)

that is the standard form for seismic wave equation [21] [8] [22]. However, it is im-

portant to remember that it is an approximate equation, which neglects the gravity

and the velocity gradient terms and assumes a linear, isotropic Earth model.
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Figure 1.3: P- and S- wave velocities for some different materials.

1.2.2 The P- and S- waves

We can separate the equation 1.13 into solution for P-waves and S-waves by taking

the divergence and the curl, respectively. Taking the divergence of equation 1.13

and using the vector identity ∇ · ∇ × ~ψ = 0, we obtain

∇2(∇ · ~u)− 1

α2

∂2(∇ · ~u)

∂t2
= 0 (1.14)

where the P-wave velocity, α, is given by

α2 =
λ+ 2µ

ρ

Taking the curl of equation 1.13 and using the vector identity ∇ × ∇φ = 0, we

obtain

∇2(∇× ~u)− 1

β2

∂2(∇× ~u)

∂t2
= 0 (1.15)
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where the S-wave velocity, β, is given by

β2 =
µ

ρ

A table of typical seismic waves velocities is shown in table 1.3.

Potentials

The vector ~u is often expressed in terms of the P-wave scalar potential φ and S-wave

vector potential ~ψ, using the Helmholtz decomposition theorem (Each differentiable

field can be expressed as the gradient of scalar field plus the curl of vectorial field):

~u = ∇φ+∇× ~ψ (1.16)

with ∇ · ~ψ = 0, so we have:

∇ · ~u = ∇2φ (1.17)

∇× ~u = −∇2 ~ψ (1.18)

being ∇ · ~ψ = 0. Substituting into 1.14 and 1.15, we may obtain

∇2φ− 1

α2

∂2φ

∂t2
= 0

(1.19)

∇2 ~ψ − 1

β2

∂2 ~ψ

∂t2
= 0

The P-wave solution is given by the scalar wave equation for φ; the S-wave solution

is the vector wave equation for ~ψ.

The polarization of P- and S- waves

The general solutions of equations 1.19 are plane waves described by the general

function:

~u(~r, t) = ~A(ω)ei(
~k·~r−ωt)

13



Figure 1.4: Displacement due to an harmonic plane P-wave (top)

and S-wave (bottom) traveling along the horizontal direction.

where ~k = (ω/c) k̂ is the wave vector and c the phase velocity of the wave. Other

parameters and their relationship are shown in table 1.1.

By considering the equation for P-wave, because ~u = ∇φ, we have ux = ∂xφ,

uy = 0 and uz = 0. Note that for a plane wave, propagating in the x̂ direction,

there is no change in the ŷ and ẑ directions, so the spatial derivative ∂y and ∂z

are zero. For P-waves, the only displacement occurs in the direction of propagation

Name Symbol Relationship

Period T T = 1
f

= 2π
ω

= λ
c

Frequency f f = ω
2π

= 1
T

= c
λ

Angular frequency ω ω = 2πf = 2π
T

= c|~k|

Velocity c c = λ
T

= f λ = ω

|~k|

Wavelength λ λ = c
f

= c T = 2π

|~k|

Wave vector ~k ~k = ω
c
· k̂ = 2π

λ
· k̂ = 2πf

c
· k̂

Table 1.1: Harmonic wave parameters
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along the x̂ axis; such wave is termed longitudinal. Because ∇×∇φ = 0, the motion

is curl-free or irrotational. Since P-waves introduce volume changes in the material

(∇ · ~u 6= 0), they can also be termed compressional or dilatational. However, note

that P-waves involve shearing as well as compression; this is why the P velocity is

sensitive to both the bulk and shear moduli.

Consider a plane S-wave propagating in the positive x̂ direction. The displace-

ment is

ux = (∇× ~ψ)x = ∂zψy − ∂yψz = 0

uy = (∇× ~ψ)y = ∂xψz − ∂xψz = ∂xψz (1.20)

uz = (∇× ~ψ)z = ∂yψx − ∂xψy = −∂xψy

thus giving

~u = ∂xψzŷ − ∂xψyẑ

The motion is in the ŷ and ẑ directions, perpendicular to the propagation direction.

S-wave particle motion is often divided in two components: the motion within a

vertical plane through the propagation vector (SV-waves) and the horizontal motion

in the direction perpendicular to this plane (SH-wave). Because∇·~u = ∇·(∇× ~ψ) =

0, the motion is pure shear without any volume change.

Particle motion for harmonic P-wave and for harmonic shear wave polarized in

the vertical direction (SV-wave) is illustrated in figure 1.4.

1.2.3 Surface waves

At this point our discussion has been limited to body waves, solutions to the seismic

wave equation which exist in whole spaces. Because free surfaces exist in a medium,

are possible other solutions, called surface waves. There are two types of surface
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Figure 1.5: A model with a continuous velocity increasing with depth

(on the left) will curve back toward the surface the ray paths T (p)

(on the right).

waves that propagate along Earth’s surface, Rayleigh waves and Love waves. For lat-

erally homogeneous models, Rayleigh waves are radially polarized (P/SV) and exist

at any free surface, whereas Love waves are transversely polarized and require some

velocity increase with depth (or a spherical geometry). Surface waves are generally

the strongest arrivals recorded at teleseismic distances and they provide some of

the best constraints on Earth’s shallow structure and low-frequency source proper-

ties. They differ from body waves in many respects: they travel more slowly, their

amplitude decay with range is generally smaller, and their velocities are strongly

frequency dependent.

Love waves

This waves are formed through the constructive interference of high order SH surface

multiples (i.e. SSS, SSSS, SSSSS, etc. ), thus, it is possible to model Love waves as

a sum of body waves. To see this, consider monochromatic plane wave propagation

for the case of a vertical velocity gradient in a laterally homogeneous model. In this

case, a plane wave defined by ray parameter p will turn at the depth where β = 1/p.
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Figure 1.6: The relationship between the phase velocity and the

group velocity is shown. The dashed lines show the group and the

phase velocities at a fixed value of the ray parameter p.

Along the surface the plane waves will propagate with horizontal slowness defined

by p. If the surface bounce points are separated by a distance X(t), then the travel

time along the surface between bounce points is given by pX(p). This follows from

our definition of a plane wave and does not depend upon the velocity model; in

contrast, the travel time along the ray paths is given by T (p) and is a function of

the velocity-depth profile (see figure 1.5): if these travel times are not the same,

as it generally happens, destructive interference will occur except at certain fixed

frequencies. Along the surface, the phase (0 to 2π) of an harmonic wave will be

delayed by ωpX(p), where ω is the angular frequency of the plane wave. The phase

along the ray path is delayed by ω T (p) − π/2, so the requirement for constructive

interference is

ω =
n2π + π/2

T (p)− pX(p)
(1.21)
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where n is an integer n = 0, 1, 2, ... . The wave travels along the surface at velocity

c = 1/p, thus the equation 1.21 defines the c(ω) function for the Love waves, often

termed as dispersion curve. The values of ω given n = 0 are termed the fundamental

modes; highest modes are defined by larger values of n. The frequency dispersion

in the Love waves results from ray geometry and does not require any frequency

dependence in the body wave velocity β.

c is defined as phase velocity, and it is the velocity with which the peaks and troughs

at a given frequency move along the surface. When the phase velocity varies as a

function of frequency, as in equation 1.21, the wave is spreaded and the group velocity

U (the velocity with which the energy propagates) will be different from the phase

velocity. In the Love waves, the energy must move along the actual ray path and

thus the group velocity U is defined by

U =
X(p)

T (p)

The relationship between the phase velocity and the group velocity is shown in

figure 1.6 as a sum of SH surface waves.

Rayleigh Waves

The reflection coefficient of SH polarized waves at the free surface is equal to one,

and the interference between the downgoing SH-waves and those turned back toward

the surface, produces Love waves. The P/SV system is more complicated because

the surface reflections involve both P- and SV-waves. In this case, the upgoing

ad downgoing body waves do not sum constructively to produce surface waves.

However, a solution is possible for inhomogeneous waves trapped at the interface:

the resulting surface waves are termed Rayleigh waves [8] [22].

Now we examine what occurs when P- and SV-waves interact with a free surface.

For a laterally homogeneous medium, the displacements for harmonic plane waves
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Figure 1.7: Ground displacement occurring from a Love (top) and

a Rayleigh (bottom) waves traveling horizontally.

propagating in the +x̂ direction are given by

~u = Ae−iω(t−px−ηx) (1.22)

where p is the horizontal slowness and η =
√

1/c2 − p2 is the vertical slowness for the

wave velocity c. Consider a plane wave solution for φ and ψy (the only component

of ~ψ that produces SV motion for plane wave propagation in the x̂ direction):

φ = Ae−iω(t−px−ηαz) (1.23)

ψy = Be−iω(t−px−ηβz) (1.24)

where A and B are the amplitude of P- and SV-waves respectively, and the vertical

slownesses are ηα and ηβ. The ray parameter p is constant and both P- and SV

are assumed to have the same horizontal slowness. By considering the boundary

conditions at the free surface (z = 0), both the normal and the shear traction must
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vanish, and, recalling the equation 1.3 it is possible to obtain a set of equations for

the ray parameter and for the vertical slownesses:

A(2pηα)−B(p2 − η2
β) = 0

(1.25)

A[α2(p2 + η2
α)− 2β2p2]−B(2β2ηβp) = 0

This coupled set of equations describes the free surface boundary condition for P-

and SV-waves with horizontal slowness p. When p < 1/α, there are two real solu-

tions, a positive value of ηα for down-going P-waves and a negative value for up-going

P-waves (assuming the z axis points down-going). Similarly, when p < 1/β, then

ηβ is real and there exist both down-going and up-going SV-waves. Our interest is

in the case of p > β−1 > α−1 and both ηα and ηβ are imaginary. In this case the

equation 1.22 becomes

~u = ~Aeiωηz e−iω(t−px) (1.26)

where we see that imaginary values of η will lead to real values in the exponents

and so the wave amplitude decays exponentially as a function of depth. For z = 0

we have only single imaginary values of η and the linear system of equation for A

and B given in 1.25 has a non trivial solution only when the determinant vanishes;

substituting ηα and ηβ, we can obtain an equation involving the ray parameter p

and the body waves velocities α and β(
2p2 − 1

β2

)2

− 2p2

(
p2 − 1

α2

)1/2(
p2 − 1

β2

)1/2

= 0 (1.27)

called the Rayleigh function, that has a single solution, with the exact value of p

depending upon α and β. By using the solution for p we can obtain the relative

amplitude of the P and SV components and so, using the relations 1.16, the vertical

and horizontal displacements also.

Particle motion for both Love and Rayleigh waves are compared in figure 1.7, where
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Figure 1.8: A simple inertial seismometer for measuring horizontal

motion.

we see that Love waves are purely transverse motion, whereas Rayleigh waves contain

both vertical and radial motion; in both cases, the wave amplitude decays strongly

with depth..

1.3 Seismic sensor

In this first chapter we have discussed Earth’s motion in terms of the displace-

ment field ~u(~x, t), but we have not mentioned how these movements are actually

recorded. A device that detects seismic wave motion is termed seismometer; the

entire instrument package, including the recording apparatus, is called seismograph.

The most common type of seismometer is based on the inertia of a suspended mass,

which tends to remain stationary in response to external vibrations. As an example,

figure 1.8 shows a simple seismometer scheme that will detect horizontal ground

motion.
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A mass is suspended with a wire and connected in a manner that it can move only

in the horizontal direction (as a pendulum). The motions is dumped using a dash pot

to prevent excessive oscillations near the resonance frequency of the system. What

is measured is the differential motion between the mass and the seismometer case,

which is rigidly connected to the Earth (see figure 1.8). In alternative seismometer

designs, the displacement or acceleration of the mass may be measured. Another

scheme, which is similar to the one shown in figure 1.8, can be used to detect

vertical ground motion; in this case, for example, a simple configuration can be

a mass suspended with a spring, constrained to move along the vertical direction.

Both vertical and horizontal instrument, based on a suspended mass, are called

inertial seismometers.

1.3.1 Accelerometer

The best modern instruments are more sophisticated than the simple mechanical

seismograph illustrated in figure 1.8. They are designed to achieve a linear response

to Earth motion over a wide range of both amplitude and frequency. Mechanical

non-linearity can arise from the finite length of the levers and springs used in the

project’s design. For example, the design shown in figure 1.8 will be linear only

for excursions of the mass which are small compared to the length of the lever

arm. Linearity is often maintained in modern instrument through the use of force-

feedback designs in which the mass is maintained at fixed point. The seismograph

records a measure of the force that is required to keep the mass at rest, being the

mass constant the force applied is directly proportional to the external acceleration,

so this force is directly related to Earth’s acceleration: by a mesarue of the applied

force we can have a measure of the acceleration, so the same mechanical sensor

(seismometer) became an accelerometer when we add a feedback control.

22



1.3.2 Different type of sensors

Modern seismometers can be roughly divided into three types by purpose of use:

sensitivity seismometers for earthquake research observation, strong-motion seis-

mometers for earthquake engineering, and control-type seismometers for secondary

disaster prevention.

• Sensitivity seismometers for earthquake research observation: a typical sensi-

tivity seismometer is an electrodynamic seismometer. This kind of seismome-

ter measures micro earthquakes, that the human body cannot feel. This seis-

mometer is required to detect the rising part of the waveform of P- and S-waves,

which will be necessary for determining the hypocenter, and to record the ex-

act times. To ensure this sensitivity observation, it is essential to eliminate

miscellaneous man-made vibrations. Thus, sensitivity seismometers should be

installed in earthquake observation stations distant from urban cities or in

very deep underground observation bore.

• Strong-motion seismometers for earthquake engineering: a strong-motion seis-

mometer mainly refers to a seismometer used to record how the ground under

a structure responds to strong earthquake motions. Strong-motion seismome-

ters start up only after they detect an earthquake greater than a preset level.

They use their vertical movement components to detect the earliest P-waves,

and this detection starts them up. They record waveform data with a delay

circuit of ten seconds. It does take some time to cause the circuit to rise, but

the seismometers can actually obtain the waveform that was generated ear-

lier than the seismometers started recording. The earthquake data, including

waveform, will be recorded; the data stored can be remotely accessed through

the public telephone or data line. Thus, data from multiple locations can be

collected and managed. Modern seismometers are computer systems with com-
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munication capability and with internal sensitivity sensors, rather than mere

mechanical seismometers. The conventional seismometers were used solely for

recording waveforms. The combined use of high-performance sensors, such as

servo acceleration sensors, and a microprocessor has changed this conventional

seismometer into a new recording system equipped with multiple channels and

functions. The new strong-motion sensor also collects wind direction and speed

data along with seismic data. For this reason, the modern seismometer is also

used as a disaster prevention system.

• Control-type seismometers for secondary disaster prevention: control-type

seismometers issue an alarm signal immediately after an earthquake motion

greater than a preset level occurs. These seismometers are not necessarily

required to record seismic waves. However, they do need to offer accuracy

and reliability that are different from those seen in other seismometers, since

malfunction will directly cause huge economical loss or social disorder. These

control-type seismometers are used to protect the infrastructure of our mod-

ern society, including railroads, nuclear plants, petrochemical complexes, and

power and gas facilities. One of the familiar examples of use of the control-

type seismometer is the emergency shut-down system to stop elevators in case

of an earthquake. The simplified type is often interlocked with an automatic

broadcast system in places where people gather, such as department stores

and banks, in order to prevent panics in case of an earthquake. Display-type

seismometers are used to display the extent of damage and the correct seismic

intensity immediately after an earthquake. This information will be useful for

evacuation and safety activities.
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1.3.3 Low frequency sensor

As have we said a seismometer measure the oscillation of the ground, and it is based

on the reading of the relative displacement of a suspended inertial mass with respect

the ground. For an horizontal seismometer the motion of this mass is free, and the

system can be schematized like a pendulum: in this way we can underline that it

has a certain response frequency with a characteristic band of frequency.

Today’s seismometers can be divided into three rough categories depending on their

frequency band:

• Short-period (SP) seismometers measure signals in the range [0.1, 250]Hz

• Broadband sensors (BB) measure signals in the range [0.01, 50]Hz

• Very broadband (VBB) seismometers measure ground motion at frequencies

from below 0.001Hz to approximately 10Hz

For nearly a quarter of a century, the development of seismic sensors with low

noise and high resolution in the low frequency band [0.001, 10]Hz has languished.

The choice of seismometer for this field of seismology is now over 20 years old, and

is no longer being manufactured.

As we have introduced in section 1.3.1, in an accelerometer the ground acceler-

ation on the sensor mass is balanced by a generated force in the opposite direction.

The force can be generated by a current through a coil, that acts as a current-force

transducer, and the current needed to balance the external force is linearly propor-

tional (for little movement of the test mass) to the external acceleration, thus the

sensor directly measures the acceleration.

The possible improvements on this type of sensor are related to:
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• have a lower resonance frequency of the inertial part to relax of the specifica-

tions for the control in force-balanced configuration;

• have a monolithic design, to have an high mechanical quality factor, low hys-

teresis, low dissipation, low thermal noise, low coupling factor between differ-

ent degrees of freedom;

• development of an optical readout, to get high sensitivity, low coupling with

electromagnetic noise;

• development of the electronic part with low noise and high resolution ADC;

• a reduction of the cost of realization and maintenance.

In the next chapters we will discuss how we have realized an accelerometer and

the original improvements for the development of the sensor, on the mechanical part

and on the readout system.
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Chapter 2

Mechanics of the accelerometer

An accelerometer is a seismic sensor to measure the ground motion when it is shaken

by a perturbation. This motion is dynamic and the seismic sensor also has to give

a dynamical physical variable related to this motion.

Our goal to reach is to measure the Earth’s motion at a point with respect to this

same point undisturbed; this measurement is done in a moving reference frame, in

other words, the sensor is moving with the ground and there is not fixed undisturbed

reference available to have a relative measure, so the displacement cannot be mea-

sured directly. According to the principle of inertia, we can only observe the motion

if it has an acceleration; seismic waves cause transient motions and this implies that

there must be acceleration.

So, because the measurements are done in a moving reference frame (the Earth’s

surface), the sensor is based on the inertia of a suspended mass, which will tend

to remain stationary (according to the inertial principle) in response to external

motion. The relative motion between the suspended mass and the ground then will

be a function of the ground’s motion.

For this reason our first attention is to realize a physical system whose mechanic

can have a mass that tends to remain stationary when an external force acts on it,
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like, for example, a suspended oscillating mass as a pendulum.

2.1 Mechanical model

To have an oscillating mass we need of a force that acts as function of the displace-

ment, to restore the position of the mass when it move from the original (equilibrium)

position. This force can be an elastic force, like a spring connected to the mass or

a gravitational force like that of a simple pendulum.

Our system is monolithic so we have both the type of force.

2.1.1 Introduction

Each oscillating system has a first principal resonance frequency due to the oscillat-

ing mass and to restoring force that charactherize the response of the system. The

displacement of the ground can be obtained directly as the relative displacement be-

tween the mass and the Earth. Given a direction for the motion, if we imagine that

the ground move in a versus, the oscillating mass move in the opposite versus, so we

measure a phase shift of π in the measure of ground displacement. Similarly if the

ground moves with a very fast sinusoidal motion (at frequency above the resonance

frequency), we can expect that the mass remain stationary and thus the ground

sinusoidal motion could be measured directly. The amplitude of the measurement

would also be the Earth’s amplitude and the seismometer would have a gain of 1.

Thus the seismometer measures the relative displacement directly at high frequen-

cies and we can say the seismometer response function (motion of mass relative to

earth motion) is flat at high frequencies with a phase shift equal to π.

When we analyze the response in very low frequencies, the ground moves very slowly,

the mass has “the time to follow” the ground motion and, in other words, there is a

little relative motion and less phase shift, so the gain is low. This is also the reason
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of the optimization of the system in low frequency: when the resonance frequency

is very low, the corresponding gain at that low frequencies is high with respect to a

system with higher resonance frequency, so we have a better mechanical sensitivity

in that range of frequency; this permits a good sensitivity for the detection of the

movement as input for the feedback control (and then a good sensitivity for the

acceleration).

At the resonance frequency, if the damping is low, the mass could get a new push

at the exact right time, like pushing a swing at the right time, so the mass would

move with a larger and larger amplitude, thus the gain became larger than 1. For

this to happen, the push from the Earth must occur when the mass is at an extreme

position (top or bottom) and there must be a phase shift of −π
2
.

By this short considerations we understand that the system must have the lowest

possible resonance frequency and the lowest dissipation (that is a low viscosity). It

is convenient that the restoring force is a gravitational force to minimize the thermal

noise of the system, so we can imagine to realize a simple system by using a simple

pendulum.

2.1.2 Folded pendulum

As explained in section 2.1.1 to have a good sensitivity in low frequency we need of

a low resonance frequency. Considering the simple pendulum shown in figure 2.1;

the resonance frequency is

fr =
1

2π

√
g

l

that we can rewrite as

ω2
r =

g

l

where ωr = 2πfr. From this last equation we can see that if we want to have a

resonance frequency of 500mHz we need of a pendulum with an arm whose length
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Figure 2.1: Schema of a simple pendulum.

is

l =
g

ω2
r

=
9.8ms−2

(2π · 0.5)2s−2
≈ 1m

and if we want a frequency of 50mHz (equal to 20 seconds) we need of a length of

100m.

The folded pendulum, called also Watt-linkage, is a system developed in 1962 [16],

recently rediscovered for applications who require the study of ultra-low frequency

phenomena [26]. In fact, a monolithic mechanical design has the great advantage

of avoiding the shear effects at the contact surface among mechanical parts that

can generate hysteresis and dissipation, resulting in a very compact sensor, with

characteristics of thermal sensitivity and a Q-factor that assure a very good sensor

directivity: coupling factors of less than 10−4 among the different degrees of freedom

have been obtained in monolithic structures [11]. A broadband singleaxis monolithic

folded pendulum of reasonable size with natural frequency of about 700mHz has

already been built [11]. Following this direction, we have developed an improved

version of this monolithic seismic sensor, with good performances in terms of noise,
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Figure 2.2: Basic schema of the folded pendulum. Both the arm and

the horizontal bar are considered with mass, the points represents

the center of mass of the single elements.

sensitivity and frequency band. In the following sections we will describe the status

of the monolithic FP sensor prototype and its mechanical and optical performances.

The folded pendulum schema, shown in figure 2.2, is a configuration that allow

an arbitrary low resonance frequency with little dimension of the system. It is con-

stituted with a simple pendulum connected via a rigid massively bar to an inverted

pendulum: theoretically with this configuration we have a stable equilibrium with

no elastic restoring force (no material stress) and the only restoring force is the

gravitational one.

2.1.3 Open loop mechanical transfer function

In figure 2.3 is shown the equivalent diagram of the folded pendulum; as we see, it

consist of two arms, a pendulum of mass ma1 on the left and an inverted pendulum
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Figure 2.3: Equivalent diagram of the folded pendulum.

of mass ma2 on the right, connected with a rigid bar, whose mass, analytically, is

divided into two equivalent mass approximated with the two point mass mp1 and

mp2, respectively placed on the pendulum arm and on the inverted pendulum arm

(an accurate description of the anlysis is given by Liu et al. [26]). The two arms

have, as pivot point, the points O and O′, same length l, and the two mass mp1 and

mp2 are at the same distance lp from the points O and O′; the points C and C ′ are

the center of mass of the two arms. The bar is hinged to the two arms in the center

of the two mass mp1 and mp2, the points P and P ′. The points O, O′, P , P ′, C and

C ′ have coordinates xO, xO′ , xP , xP ′ , xC and xC′ respectively, while θ and θ′ are the

two angles from the vertical directions.

In the approximation of small oscillations (little angle of deflection of the vertical

arms) we consider θ ≈ θ′, ẋC ≈ ẋC′ and ẋP ≈ ẋP ′ .

To solve the Lagrange equation of the system we calculate the kinetic energy T and
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Figure 2.4: Theoretical transfer function of the folded pendulum for

resonance frequency of 721mHz and different values of Ac.

the potential energy V ,

T =
1

2
(I1 + I2)θ̇

2 +
1

2
(ma1 +ma2)ẋ

2
C + (mp1 +mp2)ẋ

2
P (2.1)

V =
1

2
(2mp1 +ma1)lg −

1

2
(ma1 −ma2)lg cos θ − (mp1 −mp2)lpg cos θ (2.2)

where I1 and I2 are the moments of inertia of the two arms along the perpendicolar

axes through their center of mass C and C ′ respectively. Now we can suppose that

a force f is applied directly on the pendulum platform in the x direction, and two

forces, fx1 and fx2 are applied at the ends of the two pendula arms, in the pivot

points O and O′, by the frame (an earthquake, for example); so the potential of the

horizontal forces is

U = −
∫

(fx1 + fx2) dxO −
∫
f dxP (2.3)
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The Lagrangian expression became L = T − V −U ; to have L as a function of only

two variable, xO and xP , we can introduce the following terms:

xC = xO −
1

2
lθ θ =

xO − xP
lP

I1 =
1

12
ma1l

2 I2 =
1

12
ma2l

2 (2.4)

By solving the Lagrange equations

d

dt

∂L

∂ẋO
− ∂L

∂xO
= 0 and

d

dt

∂L

∂ẋP
− ∂L

∂xP
= 0 (2.5)

and merging the two equations into one to have fx1 +fx2, by retaining the first order

terms, we can express them as

−
[

1
3
(ma1 + ma2)

l2

l2p
+ (mp1 + mp2)lp

]
ẍP +

+

[
1
3
(ma1 + ma2)

l2

lp
− 1

2
(ma1 + ma2)l

]
ẍO =

= −
[

1
2
(ma1 − ma2)

l
lp

+ (mp1 − mp2)lp

]
· (xO − xP )g − lPf

(2.6)

Now we assume that f = Feiωt, xO = XOe
iωt, xP = XP e

iωt and set xO = 0 and

f = 0 respectively for force excitation and base excitation. We can choose to give

the force excite and the base excite in a form similar to that of a simple pendulum,

having the following transfer functions

XP

F
=

1

Meω2
0

(
1− ω2

ω0

) (2.7)

XP

XO

=
1− Ac ω

2

ω2
0

1− ω2

ω2
0

(2.8)

where

Me =
1

3
(ma1 + ma2)

l2

lp
+ (mp1 + mp2) (2.9)

ω2
0 =

(ma1 − ma2)
l

2lp
+ (mp1 − mp2)

(ma1 + ma2)
l2

3l2p
+ (mp1 + mp2)

g

lp
(2.10)

34



Ac =

(
1

3lp
− 1

2

)(
ma1 +ma2

)
(ma1 + ma2)

l
lp

+ (mp1 + mp2)
lp
l

(2.11)

in which we can see that if Ac = 0 the folded pendulum is equivalent to a simple

pendulum with ewuivalent mass Me and equivalent length

le =
(ma1 + ma2)

l2

3l2p
+ (mp1 + mp2)

(ma1 − ma2)
l

2l2p
+ (mp1 − mp2)

lp (2.12)

A graph of the transfer function described by the equation 2.8 is shown in fig-

ure 2.4 where we have calculated the response to base excite with a mechanics with

resonance frequency of 720mHz. Note that the response of the mechanical system

is flat for low frequency and decrease to the increasing of the frequency, showing a

trend like that of a low-pass filter.

From the equation 2.10 we can see that with an opportune choice of the values of

the mass ma1, ma2, mp1 and mp2 we can obtain any equivalent length, that is the

same to say any arbitrarily low resonance frequency.

By considering two extreme cases of the folded pendulum, we can confirm these

equations: in a first case, we can degenerate the folded pendulum to a simple pen-

dulum by choosing the value for the mass mp1 as

mp1 � ma1, ma2, mp2 (2.13)

that is a low value for the mass of the arm of the simple pendulum and both the

mass of the inverted pendulum, obtaining the resonance frequency

ω0 =

√
g

lp
(2.14)

the frequency of a simple pendulum; in a second case, the case of an inverted pen-

dulum, with mass ma1 related to other mass as

ma1 � ma2, mp1, mp2 (2.15)
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Figure 2.5: Folded pendulum schema for the analysis of the potential

energy.

(that is equivalent to trascurate the oscillating mass of the inverted pendulum arm

and both the mass of the simple pendulum) we obtain the frequency of a bar with

a fixed extreme

ω0 =

√
3g

2l
(2.16)

As a final note, to optimize the schema of a folded pendulum, we can see, by ana-

lyzing the equation 2.12, that if we set ma1 + ma2 = 0 or lp = 2
3
l we have Ac = 0:

setting lp = 2
3
l means that the points P and P ′ are on the center of percussion of the

two arms, so if it is impossible to reduce to zero the mass af the two arms we can

have the best isolations performance having the flexure hinge locate at the center of

percussion of the two arm.

2.1.4 Potential energy of a folded pendulum

To evaluate the potential energy of the simple pendulum see the schema in figure 2.5,

in which we consider all the arm to be massless and neglect the stiffness of the
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Figure 2.6: Folded pendulum potential energy as function of the

deflection angle θ.

elastic flexure joint. The pendula’s arm have the same length L and are at distance

S each other; a mass M (the only massive element) is at distance D from the simple

pendulum. With this schema the resonance frequency became

ω2
r =

g

l

(
1− 2

D

S

)
(2.17)

and the potential energy is a function of the deflection angle θ and is

Upot(θ) = MgL(1− cos θ)

[
1− 2

S

(
L sin θ +

√
D2 − L2(1− cos θ)2

)]
(2.18)

As showed in the figure 2.6, we see that the folded pendulum has a well in θ = 0

and a hill when θ > 0, corresponding to a tilt towards the inverted pendulum arm.
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Figure 2.7: Detail, for small angle, of the folded pendulum potential

energy as function of the deflection angle θ.

The graphs are been plotted with the length of both the arm L = 81.5mm at a

distance S = 102mm each other, while the resonance frequency is being varied by

moving position D, that is the center of mass of the horizontal bar.

The minimum of the potential energy is in the position θ = 0, condition in which

the two arm are parallel (vertical position of the arms). We note that if the center

of mass (position of the mass M in figure 2.5) have a great displacement from its

equilibrium position, we have a great value of θ: but if the value of θ is grater than

the value of θ corresponding to the hill of the potential, the system will be instable.

Experimentally this is one of limit condition to lower the resonance frequency of the

system.
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In the two figures 2.6 and 2.7 are shown different resonance frequencies and we

can see (with magnifying of the second figure also) that the equilibrium condition

(minimum of the potential) is more stable at high frequencies. In any case the

stability in open loop is assured, with not too low frequency, because the fixed part

of the structure of the system (solidal with the ground) limits the movement of the

oscillating mass1.

In literature [25] we can find that the maximal horizontal amplitude of the folded

pendulum decrease with respect the resonance frequency as ∼ f 1/2 and the depth

of the potential well decrease as ∼ f 3, so the lower is the resonance frequency the

flatter is the bottom of the potential well as we can expect.

Considering the flexure joint’s restoring force we can add a quadratic term κθ2/2 to

expression of the potential in the equation 2.18 being the the angular spring constant

κ corresponding to a torque force equal to τelastic = −κθ.

2.1.5 Thermal noise

To calculate the internal thermal noise, ThN(ω), of FP we use the Fluctuation

Dissipation Theorem:

Th2
N(ω) =

4KBT

ω2
Re[Y (ω)] (2.19)

where KB is the Boltzmann constant, T is the temperature and Y (ω) is the inverse

of impedance Z(ω) defined as

F (ω) = Z(ω)iωx(ω) (2.20)

The internal thermal noise of a Folded Pendulum can be calculated introducing

the complex equivalent spring constant k(1 + iφ(ω)), where the loss angle is equal

to φ(ω) = 1/Q [32]. If the FP dynamics shows small hysteresis, it is possible

1Obviously we have a mechanical saturation of the dynamics when we reach this limit, with

consequently discontinuity of the position signal
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to measure the decay time τ to step response at resonance frequency f0 and to

calculate Q = πf0τ . If the FP dynamics show considerable hysteresis (this happens

at low frequency) it is necessary to measure the quality factor at several natural

frequency and interpolate the function Q = af 2
0 . Defining

Kg = (ma1 −ma2)
gl

2l2p
+ (mp1 −mp2)

g

lp

Ke =
k

l2p

Me = (ma1 +ma2)
l2

3l2p
+ (mp1 +mp2) (2.21)

we can write the resonance frequency of a folded pendulum (equation 2.10) formally

similar to that of a simple pendulum with resonance frequency

f0 =
1

2π

√
Kg +Ke

Me

(2.22)

Using equation 2.22, the thermal noise of FP is

Th2
N(ω) =

4KBT

ω2

ω(Kgφg +Keφe)

[(Kg +Ke)−Meω2
0]2 +K2

gφ
2
g +K2

eφ
2
e

(2.23)

Since the gravity is dissipative less, φg = 0, the previous equation becomes

Th2
N(ω) =

4KBT

ω

Keφe
[(Kg +Ke)−Meω2

0]2 +K2
eφ

2
e

[m]√
Hz

(2.24)

2.1.6 The calibration mass

Using a more accurate description of the dynamics of the folded pendulum that

consider the effective mass of the single elements (see figure 2.8) and taking into

account also the stiffness of the joints, as specified, assuming that the center of mass

of the pendula is in li/2 and using the approximation of small angle deflection, the

potential energy became:

U(θ) =
1

2

(
ma1gl1

2
− ma2gl2

2
+mp1glp1 −mp2glp2 + k

)
θ2 =

1

2
Keqθ2 (2.25)
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Figure 2.8: Folded pendulum schema taking into account the mass

of the single elements. Note the position of the calibration mass.

where θ is the angle of deflection and k the cumulative stiffness of the joints. The

mechanical characteristics of a FP can be changed by modifying the shape of the

potential energy. It is sufficent, to change the values of the masses mp1 and mp2 ,

by adding an external mass (tuning mass), Ml, placing it at a distance D from

the pendulum suspension point, as shown in figure 2.8. Defining S as the distance

between the FP hinges points, then the values of the masses mp1 and mp2 change

according to the relations

mp1new = mp1old
+Ml

(
1− D

S

)
and mp2new = mp2old

+Ml

(
D

S

)
(2.26)

Therefore, the new values of the masses mp1 and mp2 change the value of the equiv-

alent stiffness Keq, and, as consequence, the value of the FP resonance frequency.

Hence, as a conclusion, the FP resonance frequency can be easily modified by chang-

ing the value, Ml, and the position, D, of a tuning mass.
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Figure 2.9: Variation of the potential as a function of the mass mp2. Note the

instability over a certain value of mp2.

Theoretically the calibration of the resonance frequency can be lowered to an

arbitrary value: in fact by analyzing the equation 2.10, relative to the resonance

frequency, we note that with an opportune choice of the mass of the arm ma1 and

ma2, and the related suspended mass mp1 and mp2 (for example with the same

value ma1 = ma2 and mp1 = mp2), we can have the theoretical frequency equal to

zero, having the only limit on the elastic restoring force term k. But if we see the

figure 2.9, we note that the potential can change its convexity (whose value is related

to the frequency of oscillation), that is the system became instable, so if we choose

an erroneus value for the calibration mass (that we remember that in our model

is related to the absolute and relative value of mp1 and mp2) we cannot have the

oscillation of the system, and the value of the calibration mass cannot be greater as
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Figure 2.10: Folded pendulum resonance frequency as a function of the value of the

loading mass and the position of a tuning mass.

you want.

In the figure 2.10 we have analytically evaluated the frequency versus the mass

position and mass load to have an evidence of the instability region directly with

the sperimental parameters.

To measure the variation of the frequency with respect to the variation of the

geometry of the mass we have used a calibration mass constituted by a fixed mass

of 336 g and two little masses (one for each side of the folded pendulum) of 40 g each

for the fine tuning. The results are shown in the figure 2.11, where we can see the

decreasing of the natural frequency when we increase the distance of the calibration

mass from the simple pendulum; the red circle point is the lower measured frequency,

in stability condition, corresponding to a frequency of 70mHz [1].
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Figure 2.11: Frequency versus mass calibration position. Red circle correspond to

the frequency of 70mHz.

2.2 Mechanical design

To realize the folded pendulum we have used a monolithic structure to have low

thermal noise. With a correct choice of the dimensions we have also a low coupling

through the various degrees of freedom, that is important to have the certainty to

measure the movement only in the direction of interest, make vanishing the spurious

interaction both from the vertical than from the normal direction.

The system is obtained by machining an aluminum block whose external dimensions

are 140×134×40mm3 by a wired electroerosion cut to get internal faces; the various

cuts are made up with a 250µm wire. Particular attention in machining it is used to
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realize the flexure hinges, that, we remember, are also monolithic with the rest of the

structure. The structure has an external part that is solidal with the ground and has

various screw tip to fix several accessories (such as readout system, connector, etc.)

and the structure itself to the ground. Through eight flexure joints (two for each

extreme of each arm, to avoid interference with the normal horizontal direction) is

suspended the inertial mass, that, by measuring the relative movement with respect

the ground, is used as test mass. On the test mass there are some female screw

to fix more weights, the calibration mass, to redistribuite the center of mass of the

oscillating mass, having different resonance frequency.

2.2.1 Mechanical requirements

To have a good system we need to satisfy same requirements like low thermal noise

and low coupling to the transverse degree of freedom; to obtain this ones we have

choose to use a monolytich design to have a great precision in the movements and

avoid undesiderable movement along the other direction together with the low ther-

mal noise characteristics of a similar structure.

A good project give us also a great robustness (in all our experiments to torsion and

load of great weights we haven’t had no breakage).

The choice of the material, aluminum in the version used in our work, give to the

system the immunity to the magnetic field, good thermal conductivity, with a low

cost material that is also easy to machine.

Other requirements are the easy construction procedure (it is relatively simple to

machine to obtain the system with the numerical machining instruments) and little

total dimension to assure great portability to different work area.
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2.2.2 Material choice

Because of his monolithic nature, the folded pendulum structure is greatly con-

ditioned by the choice of the material that constitute it. In fact the material is

important, for a given geometry, for the specific weight that determine the value of

the oscillating mass, the elasticity of the material Young’s module that determine

the value of the elastic part of the restoring force, thermal expansion because the

system has different z-dimension that imply different deformation with respect tem-

perature variation, viscosity from which depends the loss angle.

The material under consideration hade been the aluminum for its mechanical prop-

erty than for is low cost and its good machining property; also the Cu-Be alloy has

been considerated for its good mechanical property, especially breaking strength

(tensile) that permits to use a little thickness for joint realization, having a loewr

elastic restoring force.

A brief material charateristic are indicate in the following table:

Al 7075-T6 Cu-Be C17200

Young’s Module 72GPa 131GPa

Tensile Strength 570MPa 1205MPa

Thermal Expansion 23 ppm/C◦ 17 ppm/C◦

Loss Angle 4 · 10−5 rad 4 · 10−5 rad

2.2.3 Elliptical hinges

The most critical part of the FP are the eight flex joints supporting the test mass,

that we must remember is an integral part of the accelerometer because of his mono-

lithyc design. The upgrade, respect the older version, consists in the choice of the

new geometrical design of the hinges: the older version in fact has a circular form,
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Figure 2.12: Example of the deformation of the hinge with an ho-

rizontal displacement of 370µm. The deformation with respect the

equilibrium position is enlarged by a factor 10.

while the actual form is elliptical [3].

Because the eigenfrequency of the FP depends both by the gravity and by elastic

restoring force of the hinges, to evaluate the frequency response of the hinge ellip-

ticity we have simulated the first eigenfrequency (resonance frequency) of one hinge

of the FP. Our goal is to verify that the higher is the ellipticity the lower is the fre-

quency of the hinge, without evaluate quantitatively the contribution of the elastic

force to the global eigenfrequency of the FP; in this way the valutation is focused

on the single hinge response, to have a qualitatively ellipticity graph to minimize

the contribution on the frequency due to the hinge presence. For these reason the

absolute value of the frequency are not important for our goal, but it is of interest
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Figure 2.13: By this figure we can see that the deformation is com-

pletely elastic, with the value of the stress always below the elastic

limit of the material. The figure is relative to an hinge with ellip-

ticity ε = 3.2.

only the variation of the frequency relatively to the variation of the ellpiticity.

To do this we have simulated, with a FEM application, the frequency of the hinge

with no consideration of the gravity contribution. The shape of the hinge under

study is drawn in figure 2.12, that has the same geometrical characteristic of the

folded pendulum implemented hinge. For that system we have choose, as boundary

condition, the upper face fixed (that is the horizontal red line in the upper of the

hinge skecth, that being fixed it has no oscillations).

By seeing the figure relative to the deformation stress (figure 2.13), that shows the

distribution of the first principal stress fot the hinge implemented (with ε = 3.2),

we see that the stress of the material (on the right of the hinge, in blue color) is
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Figure 2.14: Picture showing the elliptical hinge.

very low, in contrast of the left part of the hinge (red color) that has the max of the

deformation. However this is only the maximum stress of the external part (only

the surface) of the hinge: in fact the central part of the hinge has always a stress

whose value is udner 550MPa, the limit of the elastic stress, so we are always in

the range of elastic deformation of the material.

To design the form of the hinge it is of primary importance to study analytically

the stress to which the hinges is constrained, and the angular stiffness that, how

we have seen in last section, give a contribute to the increase of the first natural

frequency.

The angular stiffness can be modelled using the Tseytlin formula [34], that is

k =
Eat2

16
[
1 +

√
1 + 0.215(2εR/t)

] (2.27)

where a is the width of the joint, t is the thickness at the center, R is the radius of

curvature, E is the Young’s modulus of the material and ε is the hinge ellipticity;
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Figure 2.15: Skecth of the hinge simulated with the finite element

method; the quote value are in millimeters.

the first series of monolithic FP sensors is characterized by circular notch hinges

(ε = 1) while the actual accelerometers have ε = 3.2. An elliptical hinge (with

the minor axis equal to the ratio of the circular hinge) gives to the system a lower

stiffness, because the part of the material under stress have a greater length, so

the stress is sharing out on a major surface. To calculate the correct ellipticity for

the hinge we have used a simulation program based on the finite element analysis

to characterize the stress and to evaluate that the deformation is under the elastic

limit of the material.

As already mentioned, the geometry under study (shown with the implemented

value in figure 2.15) has the major axis equal to 8mm.

By taken fixed the minor axis of the ellipse (equal to 2.5mm) we have varied the

major axis, to have different ellipticity. In figure 2.16 we can see some of the elliptcal

hinges used; let’s note that when the major axis has the value of 2.5mm (with ε = 1)
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Figure 2.16: Four shape of the 2D skecth of the joint with ellipticity

ε = 1 , ε = 2 , ε = 3.2 (implemented) and ε = 4, from left to right.

the hinge is circular, with the dimension of the radius equal to 2.5mm.

Varying the ellipticity we have simulated the response of each type of hinge

and analyzing with finite elements method, F.E.M., the characteristic of ellipti-

cal hinge, using the COMSOL c© [15] simulation application, we have obtained the

curves shown in figure 2.17, in which we see that the natural frequency of an hinge

decrease to the increasing of the ellipticity of the hinge, as it is also clear from equa-

tion 2.27.

Stress evaluation

From the figure 2.17 we can also see the stress of the material. The boundary condi-

tion, used to calculate the stress, consist to fix the upper face of the structure (red

line in the upper of the hinge in figure 2.12) and to move of a predefined distance

the lower face (green line in the lower of the hinge): in this way we have measured
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Figure 2.17: Eigenfrequencies and the first principal stress of the hinge as function

of ε, the hinge ellipticity.

the stress of the material constituting the hinge under condition of stress and load

similar to those existing on a hinge of the accelerometer in working conditions2. The

stress that we have taken under study is the bending stress, due to the deformation

of the hinge when the suspended mass move from a equilibrium position to an ex-

2 By analyzing the geometry of an arm we have evalutated that a displacement of the lower

part of an arm (whose length is equal to about 80mm ) of 2mm, given the lenght of the geometry

under analysis, with similitude triangle, we obtain a displacement of the oscillating part of the

hinge of figure 2.12 equal to 37µm.
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treme position3. The load has been choosen by dividing the total suspended mass

by eight (do we remember that there are 8 flex joint constituting the accelerometer)

so we have choose as value for the load a force of 1N (we remember that the weight

of the oscillating parts is about 800 g). For the stress due to the bending we have

calculated a displacement of 37µm.

In the figure 2.17 we can see that the first principal stress of the hinge, with el-

lipticity varying in the interval ε ∈ [1, 4], is always below the limit of the elastic limit

of 550MPa of the material when the hinge has the maximum deformation (corre-

sponding to an extreme position of the test mass), that is a warranty of robustness

and long-term durability of the mechanics.

In conclusion we can say that the stress trend have also a recoil on the behavior

of the frequency of an ideal hinge (the analysis is made only on an hinge whitout

oscillating mass), demonstrating that the frequency contribution is minor with high

ellipticity.

2.3 Realized prototype

The sketch of the mechanical part of the realized system is shown in figure 2.18,

where we can see a schema of the folded pendulum with the pendulum arm on

the left and the inverted pendulum on the right. In the central part we see the

oscillating mass suspended to the two arms and in particular the calibration mass,

that is not monolithic with the rest of the system, and can be moved in different

position, and fixed with screw, to obtain different resonance frequencies. Note that

3 In a preliminar analysis on an hinge with ellipticity ε = 3.2, we have evaluated the bending

stress σB = 49.9MPa and tensile stress σT = 2.1MPa with the load and σB = 47.6MPa and

σT = 0MPa without the load.
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Figure 2.18: Schema of the realized folded pendulum in a lateral

projection.

all the suspension are made up with the elliptical hinge, as already discussed the the

section 2.2. In this figure we can see, from this perspetive, four of the total eight

joint.

A picture of the system is shown in figure 2.19, where the FP is completed with

the readout system based on an optical lever (see section 3.1) and the actuator, all

mounted on a metal base necessary to level it (the yellow cable is the optical fiber

and the black cable the electrical connection of the actuator).

All the system can be covered with an apposite cup that can be fixed with screw to

this base, to preserve it from dust, light (the light can introduce noise on the light
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Figure 2.19: Picture showing the realized mechanics and the optical

lever readout.

sensor) and wind.

2.3.1 Measured open loop transfer function

To measure the transfer function in open loop we need to excite the oscillating mass

with an external force. We have different method, but obviously all are based on

the measure of the value of the force and on the response of the mass. In a first

elaborated method we have mounted the folded pendulum on a frame that we can

move with a sliding stepper motor; we used two reading apparatus based both on the

optical lever: a first one measure the displacement of the test mass with respect the

moving frame (the base of the folded pendulum); a second apparatus is constuituted

by a mirror solidal with this frame and the laser of this apparatus is solidal with the

ground. So when we move the frame we can measure the input signal (the motion of

the frame) and the output (the movement of the test mass with respect the frame).

55



Figure 2.20: Typical Labview programming screenshot to generate

the input signal and to read the output signal to estimate the transfer

function.

This method is conceptually correct but it is not easy to perform: in fact the frame

has a weight too high to move with the slider; because the slider has a motor that

act via an elicoid in a versus and there is a spring that make the “return” in the

opposite versus, we have that with at relatively high frequency (about 5 − 10Hz)

if we want to excite, for example, with a sine wave the motion of the frame is not

described by a perfect sine wave, but there an hysteresis in the motion. This is not

a problem because we measure also the motion of the frame so we can calculate

the correct transfer function however, but we can’t have a uniform ditribution in

frequency.
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Figure 2.21: Labview user interface of the programming screenshot

shown in figure 2.20.

An easy way to measure the transfer function is to excite directly the test mass

with the voice-coil actuator. In this way we have that the frame is fixed to the

ground (so there is no mechanical actuator) and the force is only electromagnetic:

as input signal we use the voltage on the voice-coil and as output signal the motion

measured with the optical lever. The input signal is generated with an opportune

Virtual Instrument, VI, of Labview c© [20] provided form the National Instruments,

programmed to generate a white noise analog signal on the out and acquire the input

and output signal from the folded pendulum (see figure 2.20 and 2.21). The output

signal from the acquisition system is the signal that we send on the voice-coil: to

avoid drop voltage (we remeber that the voice-coil has a load of about one hundred
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Figure 2.22: Measured tranfer function of the FP in open loop.

ohms), in the circuital chain, before the voice-coil, we had insert an operational

amplifier in a buffer configuration, to use it as current driver for the voice-coil4.

During the measure all the system is covered with a metallic box to prevent light

(for the photodiode) and wind (for the folded pendulum) disturb.

The measure is explained in the following. The system is being configurated

in the operative configuration, with the voice-coil that work as actuator, a readout

system constituted by an amplifier and a PSD (see section 3 for details). The open

loop transfer function is evaluated as the response to an excitation. To have the

response over all frequencies, we must actuate the excitation to the system with a

signal having all the interest frequencies. To do this we have used a white noise signal

with a filter to attenuate the high frequencies (in speciments a Butterworth filtering

4In our case we have used an LT1028 [24] from Linear Technology [23]
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with cutoff frequency at 100Hz). The transfer function that we have obtained is

shown in figure 2.22.

2.4 Q, mechanical quality factor

As have seen in section 2.3.1 the lowest natural frequency measured is about 70mHz

with a Q < 10, which is a very good result for a monolithic FP sensor with these

dimensions. Note that the position of the calibration mass has been fixed with an

accuracy of about ±1mm. In section 2.1.6 we have also seen that, to further de-

crease the natural frequency without reaching the FP instability, it is necessary to

improve the tuning mass positioning system. As shown before, tuning the FP at its

lowest possible natural frequency maximizes the sensor sensitivity at low frequen-

cies, but at the same time reduces the restoring force of the pendulum to external

perturbations, so that the test mass easily touches the frame, saturating the sensor.

This may be a problem of dynamics for the FP as seismometer, that can be partially

solved enlarging the gaps among the central mass-arms and arms-frame, (for another

prototype we have reached the value of 2mm): having more free space to oscillate

the system can be kept in working more easily being less critical to individuate the

point of the minimum of the potential; with this enlarging we have obtained an im-

provement for the quality factor because the larger air gap is a good help to evacuate

the air inside cavity (formed by the arms and structure). In fact in previous version

the air gap had a value of 250µm with a consequential low value for Q. When the

FP is used as an accelerometer it would be not a problem, being the central mass

kept in its rest position by a force feed-back control. But actually the real problem

is the fact the FP quality factor Q decreases together with its natural frequency, so

that the performances of the monolithic FP sensor decrease at low frequency. This

effect is fully taken into account in equation 2.10, but what is still missing is the

59



theoretical prediction of the Q of the mechanical system.

The easiest way to overcome this problem is a direct measurement of the Q. For

this task we performed a set of measurements in air in order to obtain an experi-

mental curve expressing Q as function of the FP’s resonance frequency, f0. We are

well aware that these measurements are largely dependent also on the environmen-

tal conditions, but they are important to obtain an empirical physical law for our

prototype, useful to predict the values of Q at different resonance frequencies.

For this task we have measured the quality factor with different resonance frequency.

To vary the resonance frequency we have used the calibration mass (see section 2.1.6)

in different position and weights: for a given weight of the calibration mass, we have

measured the various quality factors versus the resonance frequency by varying the

position of the weight, obtaining several set of measure (each set corresponding to

a weight).

2.4.1 Measured quality factor in air

The measure is done with the system in open loop, by manually positioning the

oscillating mass to an extreme (of the available space) and leaving it to oscillate:

in this mode we have a free oscillation that is naturally damped according to the

mechanical characteristic of the folded pendulum. If there is no damping, we obtain

theoretically a sinusoidal signal, but, because of the damping, we obtain a sinusoidal

wave form that is modulated (in amplitude) by an exponential factor related to the

quality factor Q (see figure 2.23 and 2.24).

All the measurements were done using the readout system described in section 3.6,

modified with substitution of the operational amplifier INA106 with INA105 to have

more dynamic for the signal to detect the large signal of the system in open loop

(we remember that the INA106 has same characteristic of the INA105 but have a
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Figure 2.23: Damping of the folded pendulum in free oscillation.

Note the exponential decay of the apmplitude of the sinusoid.

multiplier factor 10 instead of 1, gain of the INA105).

To fit the quality factor we used the analitical form for the signal5:

A · exp−
t
τ sin(2πf0t+ φ) +B (2.28)

from which we have estimated the resonance frequency f0 and the quality factor

Q = 1/2ξ (where ξ = 1/(ω0τ) being τ the time decay of the exponential and

ω0 = 2πf0 the pulsation), together with the time decay, τ , the phase φ, and the

5An analytical form that include directly the Q factor is of the type

A · exp−
t·Q
f0 sin(2πf0t+ φ) +B

but in this way we have a ratio of two unknown quantity (Q and f0) in the argument of the

exponential function that make the fit too difficult to realized, as more than one experiment has

shown.
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Figure 2.24: Damping of the folded pendulum in free oscil-

lation, first 20 seconds.

known term B related to the offset.

2.5 Quality factor with different weights

It is interesting to measure the quality factor with respect the variation of the

weight of the oscillating mass. The results are shown in the following sections, and

a comparison of all the graphs is shown in figure 2.27. Note that for all the sets

of measurements are indicated only the value of the weight of the calibration mass

(the only that is variable) while the weight of the oscillating mass, fixed in the

construction project, is equal to 760 g.
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Figure 2.25: Measured quality factor with calibration mass of 240 g

in air.

Calibration mass weight of 240 g in air

For the first set of measure we have used a tuning mass of Ml = 240 g, two mass

of 120 g each6. The results of this set of measurement are reported in figure 2.25,

where it appears evident that all the measurements follow a linear law7. In fact

fitting the data we obtained

Q = a · fn + b = 170 · fn − 0.40 (2.29)

6The calibration mass was constitute by two weigths of 118 g each one plus two screw driver

whose weights was about 2 g each, for a total weight of calibration mass equal to 2×118 g+2×2 g =

240 g.
7 By considering the the internal friction (because of low frequency and amplitude) we must

take into account the hysteresis versus the viscous phenomena: for the viscous damping Q ∝ f and

for the hysteretic damping we have Q ∝ f2. In this case we are far from the frequency at which

the hysteresis is prevalent on the viscous damping.
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with a confidence factor equal to R = 0.95. Note that, according to equation 2.29

for f0 = 10mHz we have Q = 1.3, a very low value, that would prevent the use of

the monolithic FP sensor at these low frequencies.

Our experimental tests have demonstrated that the values of the quality factor Q

depends on the sum of the central mass and tuning mass weights. Increasing them,

the Q at the same resonance frequencies should increase. Moreover, equation 2.29

describe also the performance of the monolithic FP in vacuum. In fact, a Q ≈ 3000

was measured for a mechanical FP (Alloy 7075-T6 with f0 = 500mHz) in vacuum

at a pressure of the order of 10−2mbar [11]. Therefore, if we extend this result to

our monolithic FP protoype, that is Q = 3000 at a natural resonance frequency,

f0 = 721mHz, take into account that the material used is the same and assume

the validity of equation 2.29 with b = 0, then at f0 = 10mHz and in vacuum we

should get a quality factor of Q ≈ 40. This implies that it is in principle possible to

tune the monolithic FP at frequencies of the order of 10mHz in moderate vacuum

(10−2mbar) acting on the positions and weights of the central and tuning masses,

still having a Q enough high to use it as seismometer or as accelerometer.

Calibration mass weight of 100 g

This set of measure is being obtained by using a calibration mass whose weight is

100 g, two masses of 50 g each8.

By observing the figure 2.26 we note that the lower reachable resonance frequency

is higher that the previous set of measure (see also figure 2.27); this is because a

lower weight of the oscillating mass give us a not perfect sinusoidal signal, with

an amplitude depending on the phase, having some problem to fit the data (see

the equation 2.28), and we can’t have a reasonable value for Q. The signal is more

8The calibration mass was constitute by two weigths of 50 g each one plus two screw driver whose

weights was about 2 g each, for a total weight of calibration mass equal to 2×50 g+2×2 g ≈ 100 g.
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Figure 2.26: Measured quality factor with calibration mass of 100 g.

similar to a theoretical sine when the amplitude of the oscillation becames smaller,

but we can’t make the measure with an arbitrary little oscillation because for very

low amplitude the system is “auto-excited” by the ground noise and oscillations

will be always present: so if we make measure in similare condition we’ll obtain an

infinite value for Q. For this reason we have omitted similar value of Q for these

frequencies: incrementing the value of the weight can have a a signal ”more” similar

to a sinusoid at lower resonance frequency so we can show the values for Q until

frequency of about 200mHz.

Calibration mass weight of 350 g

It is interesting to evaluate how the quality factor Q vary to the variation of the

values of the weights. A new set of measure is being obtained by using a calibration
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Figure 2.27: Quality factor comparison of the folded pendulum with

different resonance frequency and different weights of the calibration

mass.

mass whose weight is about9 350 g and the results are shown in figure 2.27.

Calibration mass weight of 500 g

This set of measure is being obtained by using a calibration mass whose weight is

about 500 g, four masses of about 120 g each10.

Definetively we can summarize in figure 2.27 all the measurement, in which we

9The calibration mass was constitute by two weigths of 118 g each one, two weights of 50 g each

one plus two screw driver whose weights was about 2 g each, for a total weight of calibration mass

equal to 2× 118 g + 2× 50 g + 2× 2 g ≈ 340 g.
10The calibration mass was constitute by four weigths of 118 g each one plus two screw driver

whose weights was about 2 g each, for a total weight of calibration mass equal to 4×118 g+2×2 g ≈

476 g.
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Figure 2.28: Linear regression quality factor comparison of the

folded pendulum with different resonance frequency and different

weights of the calibration mass. See also table 2.1

can see that the trend is linear, as the theory predict. In the figure 2.28 we have

fit these data with a linear regression by fitting the function Q = a · f + b, where

a is angular coefficient, f the frequency and b is the known term, in which we have

fixed b = 0 that is to impose that when the freqeuncy is zero the quality factor must

be zero. The table 2.1 shows the linear regression parameter of the quality factor

measurements at different weights of the calibration mass; each value corresponds

to a series of measures characterized by the same weight, where the Weight field is

the weight of the calibration mass, and a is the fitted angular coefficient.

In particular we see that a more heavy oscillating mass, obtained in our measurement

with a greater weigth of the calibration mass, affect the value of the quality factor

increasing it, so we conclude that to improve the quality factor, it is better to have

an heavier oscillating mass.
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Calibration mass weight a

100 g 150

240 g 170

350 g 180

500 g 190

Table 2.1: Linear regression parameter of the quality factor measurement at different

weights of the calibration mass.

2.5.1 Measured quality factor in vacuum

To have this set of measure we have inserted the folded pendulum with the same

apparatus11 (tilt plane, laser source) in a vacuum chamber12. A first set of measure

it has been useful to understand the behaviour of the quality factor with respect to

the variation of the air pressure. We have chose different resonance frequency from

300mHz to 450mHz 13. The graphs are shown in figure 2.29 and, a comparison

among different resonance frequenceis, in figure 2.30.

From the figures 2.29 and 2.30 we can see how the quality factor increase to

the decreasing of the pressure: we note that in low pressure, about 10−4 bar (that

is also the limit of the rotative pump that we have used), a little variation of the

pressure can generate a great variation of the Q (for a given resonance frequency).

11In the section A.3 we describe how we have modified the cabling with this readout to resolve

some problem due to the cabling of the vacuum chamber.
12The vacuum instrumentation is constituite by a vacuum chamber with a rotative pump able to

reach the pressure of about 10−4 bar, a pressure sensor Pfeiffer Vacuum Active Pirani transmitter

TPR 280 and a display Pfeiffer Vacuum TPG 256 A MaxiGaugeTM measurement unit.
13Because it is very difficult to control the tilt of the system in the vacuum chamber, we have chose

to limit our lower resonance frequency to 300mHz. This limit is principally due to the deformation

of the chamber when we pump out the air and to the impossibility to control externally the tilt in

a micrometric way.
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Figure 2.29: Measured quality factor versus air pressure. Resonance

frequency f = 450mHz.

For this reason we must use care to set the correct pressure in vacum chamber with

a good precision. For these reason we have also great error in fixing the pressure

to an assigned value (due to the fact that when we turn off the pump we have an

increasing of the pressure, and when we turn on a decreasing), so we can obtain very

different value for Q because of the high slope of the curve.

Theoretically by decreasing much more the pressure, we must observe a plateau for

the curve that fix the highest quality factor, but to this it necessary to use a turbo

pump to reach pressure under 10−4 bar.

2.6 Simulation

The simulation of the system can be done only with finite element analysis, FEM,

because from an analytical point of view there are several problem due to the in-
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Figure 2.30: Measured quality factor versus air pressure at different

resonance frequency.

evitable approximation that necessitate a similar type of analysis. In any case the

anlytical analysis of the approximated system has permitted a qualitatively study

of the problem throughout we have identified some elements of the system on which

we must focus a particular attention to reach some objective.

The finite element analysis of a similar system has several problems, the principal

related to the mechanical dimensions of the object, that present great escursion in

the dimensions of the various elements: infact we have value for the oscillating mass

of the order of ten centimeter and for the thickness of the hinge of a tenth millimeter

(we remember that the system is monolythical), having so a ratio of the dimension of

about 103; a similar great difference is a problem for a correct FEM simulation due

to the fact that the mesh that we use to discretize the system, must be dimensioned

in a convenient manner for different parts of the system.

Another element, not usual for this type of analysis, is the gravity contribution for
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the forces on the system that act as a restoring force: in fact, normally, in the FEM

analysis the gravitational effects for the eigen-frequency analysis are not considered,

because the effects related to the gravity are of the second order for the resonance

frequency for commons objects, respect to the effects due to the elastic restoring

forces, depending both from material than from the shape of the structure; if, in

this consieration, we add the fact that the eigen-frequency of a similar system is

less than 1Hz with restoring gravitational forces comparable with restoring elastic

forces we can imagine that the simulation can be particularly innovative and it is

very hard to obtain consistent results.

The results of the simulation have never done good results: we have simulated

the system with different application, that have done similar results, but always far

from the real value14, probalby due to a not correct procedure of analysis. For this

reason we have used the results of the simulations, as a qualitatively approach to

find a best solution for a given project, having only an idea for the results, saving

the time and cost of realization for bad test.

14We have simulated the first resonance frequency of the mechanical part, with the same mesh,

with different finite elements analysis application like Comsol c©, Abacus c©and Ansys, and compar-

ing the results of this various simulations, we have obtained very similar results each other, but

very far from the real value, sperimentally evaluated.
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Chapter 3

Readout

The readout system is based on the reading of a signal generated by a position

sensing device (PSD) excited by a light beam whose direction is deviated by the

mirror movement. This signal is a current signal, so we need of an amplifier to

convert it in a tension signal; then we amplify this signal of a convenient ratio and

we can read the posistion of the inertial mass.

We can decide to use directly this signal if we want to use the folded pendulum as a

seismometer or to manipulate it in a convenient manner to have an accelerometer.

3.1 General schema of the readout system

In figure 3.1 we can see a skecth of the readout system. The general schema is

based on an optical lever: a light source, solidal with the frame, generate a beam,

that has the main characteristic to have a rectilinear propagation in space; this light

beam is reflected by a mirror fixed on the test mass. When there is a pertubation

of the ground we have a movement of the test mass (oscillating mass) with respect

to the frame (seismometer principle), so we have that the reflected beam translate

of a distance proportional to this displacement. To detect the movement there is
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Figure 3.1: Readout general schema. A light beam is reflected by a

mirror and his displacement is red by a sensor.

a position sensing device, PSD, based on a photodiode with a resistive layer, that

has the capability to give the position of the center of the spot of the light beam

with a sufficient resolution. So with this sensor we can generate a current signal

proportional to test mass movement.

Analyzing this schema we can note that if we want a better performance we must

increase the incidence angle θ of the light beam with respect to the mirror: in fact,

as we can see in figure 3.2, if we consider two position of the test mass, A and B,

given θ as the angle of the light beam with respect to the normal to the mirror, we

observe that a variation of the position p (from A to B for example) give a variation

73



Figure 3.2: Mirror movement and light beam displacement.

s on the sensing device, equal to p = s cos θ, that is

s =
p

cos θ
(3.1)

The equation 3.1 shows that with the same distance p, when the angle θ became

greater (it assume a value near 90o), the cosine in the denominator became little

and s gets the greater value. Obviously there is a limit to the angle θ depending on

the dimension of the spot light of the beam and the dimension of the surface of the

PSD.

3.2 Light sources

As we have described in the last section the measurement of the displacement is

achieved with a light beam. We have tried different light sources to have the best

performance. To have an easy positioning of the light beam it is of great utility to
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Figure 3.3: Picture showing the optical lever.

use the optical fibers that allow to have the light source far from the system and

carry the light in a comfortable manner.

In our experiments we have used different type of light sources. The most valu-

able type are a red laser, OZ-2000-635-4 from OZ OPTICS LTD, with a wavelenght

of 635nm and a power of 10mW , and a second type is a Super Luminescent Light

Emitting Diode, SLED, with wavelenght of 830nm (infrared) and a power of 1mW .

An high power is useful, but we must take into consideration that if the power is

too high we have problem due to the saturation of the displacement sensor. When

we used the red laser we have attenuated the power (often the laser source devices

have a control electronics to regulate and stabilize the power) if we use it on a single

system: in other case, when we used more than one system, by using a fiber beam

splitter it is useful to have a great power available.

The SLEDs, compared to traditional LEDs, have a greater optical efficiency, and,

in regard their optical characteristics, they are in between laser diodes and normal
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LEDs. As laser diodes, they provide an almost monochromatic beam, but with a

relatively short coherence length (well below 1mm). On the other hand they are

not lasing, so they are mode hopping free. The very short coherence length make

the LEDs unsuited to cases in which coherent light is needed, as in interferometric

optical readouts. For an optical level based readout there is no need of coeherent

light: on the contrary the use of incoherent light can be an advantage; in fact the

short coherence length avoids the effect of ghost fringes, due to multiple rejections

within optical components or windows, which can, in some cases, spoil the sensitiv-

ity of the readout system.

So a good idea is to use the SLED, but if we want a great improvement of the

system, as we’ll see later, we must abandon the optical lever readout principle and

use an interferometric readout, for which it is necessary a laser source.

To carry out the light to the system, it is very useful to use optical fibers, that

permits a confortable way to assemble our readout system. In general we have

adopted single mode, SM, fibers in order to get a good and stable beam quality and

to filter out beam position and angular jitter that would otherwise be dominating

for a free space sources.

It is important to point out that the fiber components must have small dimensions

to fit into the box that cover the folded pendulum: they should be compact and the

most simple as possible. Taking in account these requirements, the reference solution

for the fiber focusers must be chosen among the pigtail style fiber collimators, which

can be found on the market either in the aspherical micro-lens or graded index

versions. At the extremity of any fiber we attached a focuser, simply constituted by

an opportune convergent lens, whose utility is to focuse the divergent light outcoming

from the fiber. Although some fiber have integrated in the fibers the focuser, we

have used fiber without this focuser to have a more modular system (in this way we

can connect beam splitter, vacuum put through, extension cable, etc.).
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It is worth noting that, differently from the traditional adjustable fiber couplers,

which can be fixed to the relative support with screws, the pigtail collimaters need

suitable holders to be adapted to the interfaces of the support.

3.3 Choice of the position sensor

This sensor must be constituted on a system that can detect the presence of the light

beam in space. A such sensor is based on the photodiode peculiarity to generate a

current when it is excited by the light. In fact a similar transducer is very convenient

for our scope because it generate electrical signal that can be manipulated in a very

efficiency manner. So the choice is made by choosing on two different type of sensor:

the quadrant photodiode sensor and the PSD, acronym of Position Sensing Device.

In order to get the best choice among this two sensors, we make a comparison on

the sensitivity [9].

3.3.1 Quadrants photodiodes sensitivity

A quadrant photodiodes is constituted by four square photodiodes disposed as shown

in figure 3.4, each one labeled with the capital letter A, B, C and D; the total sensing

area is a square of dimension 2b× 2b while the distance of the various photodiodes

is 2a from each other. If we have a circular light beam whose diameter (waist) is w

then, to detect correctly the position, must be w > 2a.

In a similar configuration, the response of the quadrant in the x direction is:

x = K
(A+D)− (B + C)

A+B + C +D

while along the y direction

y = K
(A+B)− (C +D)

A+B + C +D
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Figure 3.4: Schematic of a quadrant photodiode.

Because we are interested to the movement in one direction, we can considering only

the x direction. By supposing a gaussian beam, we can define f(x) as:

f(x)
.
=

1

w
√
π
e−

x2

w2

By defining g(x) as

g(x)
.
= f(x) · [H(b) + (H − b)−H(a)−H(−a)]

where H(x) is the Heaviside distribution, so we have that H(x + b) − H(x + a)

represent the left quadrant area and H(x− b)−H(x− a) the right quadrant area,

we have that the current generated by the incident light is

I(x) =
eηP

hν
g(x)

If the center of the photodiode is located in the x = 0 position, the slope around

the center is given by

g′(0) = f(b) + f(−b)− f(a)− f(−a)
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Figure 3.5: Schematic of position sensing device: the circle repre-

sent the area of the laser beam at a x distance from one end.

so the minimum detectable beam displacement (shot noise limited) is

∆xQmin =

√
2hν

ηP
· 1

g′(x)
=

√
2hν

ηP
· w
√
π

2
(3.2)

The dynamical range is defined as maximum detectable displacement of the beam,

over the sensor, that can give a signal, that is the the diameter of the light beam

(in fact to have a significative signal we must have that the laser beam cover at

least two photodiodes in each instant, because when it cover only one photodiode

we cannot have information about the effective position).

3.3.2 Position sensing devices sensitivity

Let’s consider the figure 3.5 showing the schema of a PSD of length L, on which

there is a circular laser beam at distance x from one extreme. The response of the

PSD is given by

x = K
I1 − I2
I1 + I2
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where I1 and I2 are the current generated at the two end of resistive substratum of

the sensor:

I1 =
eηP

hν

x

L

and

I2 =
eηP

hν

L− x
L

The slope of the signal, that has a linear trend along the beam diplacement, is

dL

dx
=

2

L

eηP

hν

so the minumum detectable displacement (also in this case shot noise limited) is

∆xPmin =

√
2hν

ηP

L

2
(3.3)

The dynamical range of the PSD has the whole length of the detector to which we

must subtract the diameter of the spot size, that is exactly1 L − 2w: if we use a

little spot size we can approximate it to L.

3.3.3 Quadrant photodiodes and PSD sensitivity compari-

son

In the beginning of this section we have seen that (equations 3.2 and 3.3) the sen-

sitivity and dynamical range of the quadrant photodiodes and the position sensing

devices are

Sensitivity Dynamical range

Quadrant
√

2hν
ηP

w
√
π

2
w

PSD
√

2hν
ηP

L
2

L− 2w

1 Practically is not possible to use the total PSD lenght, because there is a great non linearity

response when the light beam is in the area near the electrodes.
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To compare this quantity we define a merit factor as

m =
dynamical range

sensitivity

So, for the quadrant we have

mQ =
w

w
√
π

2

√
2hν
ηP

=
1√
π
· 1√

hν
2ηP

(3.4)

and for the PSD

mP =
L− 2w

L
2

√
2hν
ηP

≈ 1√
hν

2ηP

(3.5)

where we have used the approximation L − 2w ≈ L as explained in section 3.3.2.

As we can see, the two merit factor has about the same value (they differ of a factor
√
π ' 1.8), but if we analyze the only contribution of the sensitivity, because we are

interested to measure little displacement (for control application, to use the folded

pendulum in closed loop as accelerometer, see chapter relative to the control design),

we see that the ratio of the two sensitivities (from the equations 3.2 and 3.3) is:

∆xQmin
∆xPmin

=
w
√
π

L
(3.6)

From this equation we see that the quadrant can be more sensitive than the PSD:

in particular if we calculate the numeric value of the sensitivities of the two sensor,

with a light that have w = 100µm, power of the incident light equal to 1mW and

a wavelength of 830nm (note that the characteristics of the light sources have a

contribution with the same value in the valutation of the sensitivity), we have that

∆xQmin =

√
2hν

ηP
w = 3.1 · 10−8w = 3.1 · 10−12m/

√
Hz (3.7)

and, for a PSD of length 6mm

∆xPmin =

√
2hν

ηP
L = 3.1 · 10−8L = 1.9 · 10−10m/

√
Hz (3.8)
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From these equations we see that in our measurements the best sensitivity results

were achieved with the quadrant photodiode sensor, gaining about one order of

magnitude.

Altough the best choice seems to be the quadrant photodiode, for pratical mo-

tivation we have chosen the PSD.

The quadrant photodiode sensor is a good choice when the detectable displacement

is very little, because this sensor shows a good linearity only for little displacement

of the spot size, centered on the sensor; for this reason the quadrant can be used

with no linearity problem only in the accelerometer setup.

Our choice is on the PSD, because in this configuration the sensitivity requested by

our apparatus is limited by the electronics (ADC dynamical range, see section 3.4.2),

and the sensitivitiy advantage of the quadrant is not crucial, so the sensitivity limit

reachable with the PSD is lower than that offer the readout. Moreover with the PSD

we have a greater dynamics2 that permits the use of the system as seismometer and

as accelerometer.

3.4 Position Sensing Device

The position sensing device consist of a uniform resistive layer formed on the surface

of a high resistive semiconductor substrate, having on the both ends of the resistive

layer two electrodes to read the position signal. The active area is also a resistive

layer that has a PN junction that generates a current when a spot light strikes on

it (photocurrent). It is product either in the mono-dimensional than bi-dimensional

2 This consideration is valid only in open loop, because when we use the system as an accelerom-

eter the displacement is very reduced.
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Figure 3.6: Position sensing device schematic that showing a sec-

tional view of the sensor.

version3.

The figure 3.6 shows a schema that illustrates the operating principle of the mono-

dimensional PSD, used in our system. The PSD has a P resistive layer on an N

high-resistive silicon substrate: the P layer is the active area for the photoelectric

conversion and the output electrode are connected to the ends of this layer. On the

other side there is the silicon substrate type N connected to a common electrode.

This is the same configuration of a PIN photodiode excpet for for the P resistive layer

on the surface. When a spot light strikes on the PSD, in that point (precisely on

the area lightned) is generated an electric charge proportional to the light intensity

that is propagated through the resistive layer until the two electrodes. The value of

the current that is present on the two electrodes depends inversely by the distance

of the electrode from the spot light: for example if the spot light is at the center

3The 2D version has one common electrode plus 4 electrodes, two for each directions.
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between the two electrodes, we have that the resistive substrate offer a resistance

that is equal for both the electrode, so the current is the same on the two ends; for

example, if the spot is nearest the electrode 2 than electrode 1, we have that the

current “see” a lower resistance versus the electrode 2, so we have that the current

“produced” by the electrode 2 is larger than that relative to the electrode 1.

By indicating with X the distance from the center of the resistive substrate and the

center of the spot light, L the length of the substrate (length of the active area of

the PSD), I1 the current on the electrode 1, I2 the current on the electrode 2, and

I0 the total photocurrent generated by the spot light (I0 = I1 + I2), we have the

following relation to calculate the distance X measuring the current:

I1 = L/2−X
L
· I0

I2 = L/2+X
L
· I0

(3.9)

and
I2 − I1
I2 + I1

= 2
X

L
(3.10)

This last equation shows the relation that makes the intensity of the current inde-

pendent from the light intensity, that we have used in our apparatus, making the

system robust with respect the light oscillation intensity level.

The position sensing device used is the model S3931 from Hamamatsu c© [18].

3.4.1 PSD noise

The noise that affect the PSD is a combination of thermal noise and shot noise, with

regard of the electronics noise due to the amplifier that convert the current signal

in tension signal.

The thermal noise, iR, is given by the current, generated by the photodiode, flowing
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through the resistance R of the sensor4:

Thermal Noise i2R =
4KBT

R
(A2/Hz) (3.11)

where KB is the Boltzmann constant and T the temperature, so, if we work at a tem-

perature of 20◦C, the factor 4KBT assume the value 4KBT = 1.62 ·10−20m2 kg / s2.

The shot noise, iPhD, is given by:

Shot Noise i2PhD = 2qIPhD (A2/Hz) (3.12)

where q = 1.602 · 10−19C is electron charge and IPhD is the combination of the

Photogenerated current, IPh, and the Dark current, ID, of the photodiode part of

the PSD, that is IPhD = IPh + ID. The thermal noise and shot noise sources are not

correlated so we can add them obtaining the total current noise IN as follows:

IN =
√
I2
R + I2

PhD (A) (3.13)

where

IR =
√
i2R ·B IPhD =

√
i2PhD ·B (3.14)

being B the bandwidth. Definitively we have

IN(R, IPhD, B) =
√
i2R ·B + i2PhD ·B =

√(
4KBT

R
+ 2qIPhD

)
·B (3.15)

expressed as root mean square value in ampere. Note that the total noise is given

as specific values of construction of the sensor R, IPhD and B.

4Note that the expression of the equation 3.11 can be expressed in volt as v2 = KBTR being

v = R · i.
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Noise evaluation

For our system the noise is summarized in the following:

Thermal noise iR = 5.7 · 10−13A/
√
Hz from the eq. 3.11

Shot noise iPhD = 1.33 · 10−11A/
√
Hz from the eq. 3.12

Total noise IN = 1.33 · 10−9A from the eq. 3.15

where we used the parameters of our sensor as follows:

RPSD = 50 kΩ PSD resistance

T = 298.15 oK Temperature, 25 oC

ID = 0.15nA Dark current

IPh = 550µA Photogenerated current

B = 10 kHz Bandwidth

3.4.2 PSD signal to noise ratio

To calculate the signal to noise ratio we define IPh = η P as the photogenerated

current caused by incident light on the sensor, where η is the sensitivity (efficiency)

of the sensor and P the power of the light beam, so we have

SNR
.
=
IPh
IN

=
IPh√[

4KBT
R

+ 2q (ID + IPh)
]
·B

(3.16)

with IPh and ID defined in the previous subsection, and IN evaluated vie the eq. 3.15.

SNR evaluation

The signal to noise ratio that we obtain with our sensor is
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Signal to noise ratio SNR = 410 · 103 from the eq. 3.16

where we have used the parameters given in the following

η = 0.55 Sensitivity at λ = 830nm

P = 1mW Light power

ID = 0.15nA Dark current

IPh = 550µA Photogenerated current

IN = 1.33 · 10−9A Total noise

3.5 Power supply

From different test, we have seen that to achieve low noise measurement of the dis-

placement signal it is necessary to have a correct power supply voltage. All the

components necessitate of a supply voltage in the interval Vsupply ∈ [±8,±16]V

(some components, as the operational amplifier, has a large range, but other limite

the range to this this interval). To have the best noise performance we must have

a stable constant voltage of the power supply. In our first measurement we used

a DC regulated power supply with a regulated voltage in the interval of our inter-

est, with which we have made up several measurements at different voltages. To

characterize the stability response of supply voltage, we have made some measure-

ments in different conditions with two INA (integrated instrumentation amplifier)

integrated circuit, INA105 [13] and INA106 [14]: this type of circuit amplify the

relative voltage on the differential input and give on the output of the difference of

the voltage on the input, offering a good CMRR. As power supply we have used the

DC regulated power supply with the tension of ±15V and ±9V , and, as stabilized
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Figure 3.7: Comparison of the noise generated from the IC INA105

with different type of voltage suppply: note the best performance of

the battery

reference tension, two 9V olt NiMh battery (with two battery we can have a dual

supply voltage of ±9V ). The results are shown in figure 3.7 and 3.8, where we can

see the best performance of the battery.

Best performance in term of stability and durability (sufficent long durability is

necessary for our application if we want to acquire signal for long time) can be ob-

tained with common battery, as lead-acid battery. In their gel version, (also known

as “gel cell”) are a rechargeable valve regulated lead-acid battery with a gelified

electrolyte. This type of batteries virtually eliminate the electrolyte evaporation,

spillage (and subsequent corrosion issues) common to the wet-cell battery: chemi-

cally they are the same as wet (non sealed) batteries except that the antimony in
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Figure 3.8: Comparison of the noise generated from the IC INA106

with different type of voltage suppply: note the best performance of

the battery

the lead plates is replaced by calcium. This preserves the mechanical characteristics

but renders the construction far less prone to gassing. There are no problem related

to the electrolysis of water because the requested output current is very low (about

30mA).

Because of the low noise performance and of the portability, we have choose the

battery to perform our measurement. Obviously with a non-switching supplier with

a correct stabilization we can have performance very similar to the battery, but in

this case we can’t have the portability.

Our choice is to use two 12-Volt lead-acid battery (the common car battery) be-

cause of their low cost, high durability (about two months with the continuos con-

sumption of our circuitry), easy commercially availability and great diffusion in

geophysics and geotechnical laboratory. The voltage of this battery is about 12V
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Figure 3.9: Electronic schematic of the reading circuit.

(V ∈ [12.00, 12.65]V ), that is compliant with our integrated circuits specifics.

3.6 Reading amplifier

The reading electronics would to convert the current signal generated by the PSD

into a tension signal, to use this last to correct the motion of the folded pendulum

with an appropriate control circuit, making the accelerometer. The schematic of the

reading circuit is shown in figure 3.9 and we note that it has a part to convert the

signal in a tension signal and a part, after a series of analog manipulation, that use

a divider to have a signal indipendent from the light source power.

3.6.1 Generality on noise reduction

As we see from the schematics of the readout circuitry (figure 3.9), the reading circuit

is made with a chain constitued of more than one stage. To obtain the maximum

signal to noise ratio at the end of the chain we need to amplify with the maximum

gain on the first stage: in fact when we amplify a signal with a certain gain on the
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first stage we have a certain signal to noise ratio SNR; in the following steps we

only can degenerate the SNR, because if we amplify, in the second stage, the signal

output from the first stage we amplify the noise of the first stage also. Analytically

we can express this concept defining the noise factor N as

N =
SNRin

SNRout

(3.17)

with the signal to noise ratio SNR in input and output of each stage expressed in

decibel, and calculate the noise factor, of a system with n devices in cascade, with

the Friis formula:

Ntot = N1 +
N2 − 1

G1

+
N3 − 1

G1 ·G2

+
N4 − 1

G1 ·G2 ·G3

+ ...+
Nn − 1

G1 ·G2 · ... ·Gn−1

(3.18)

where Ntot is the noise factor on the last stage and Gi (i = 1, 2, ..., n) is the gain

of the i-th stage. From this formula we can immediately see that the best noise

performance is achieved with the gain on the first stage5.

3.6.2 Amplifier noise

As explained in the introduction of this section, the aim of the amplifier electron-

ics is to convert the current signal outcoming from the PSD into a tension signal

(current-tension converter). Our electronic schematics is constituted of more than

one stage (see figure 3.9). From the schematics we see that we use three opera-

tional amplifiers (specifically the OP27 provided by Analog Devices, [4]) and two

differential amplifiers (one INA105 and one INA106 differential amplifier, both from

Burr-Brown, [12]). The first stage makes the current-tension converter, and the

other stages are the amplifier and some other circuits that make some operations on

the signal, as an integrated analog divider circuit that we use to make the output

5For example if we consider a system with three stages it is convenient to have maximum gain

on the first stage and the minimum gain on the last stage.
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Figure 3.10: Input voltage noise density of the single stages of the

reading amplifiers. The noise is calculated considering the noise of

the single amplifer integrated with the interactions of the various

resistor on the input, if present.

signal indipendent from the light power fluctuations (AD734 from Analog Devices).

Every electronic signal have random fluctuation, n(t), around an expected value,

s(t): these fluctuation is the noise that affect the signal.

In most cases the distribution of the noise is a good approximation of a gaussian

function centered on the signal value in absence of noise, that is equivalent to say

that mean value of the noise has a null value. The entity of the fluctuation is char-

acterized by the standard deviation, σ, calculated, from signal s(T ) generated form

the noise, with a mean on the deviation: this value is the noise power, n(t)2.
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Figure 3.11: Input voltage noise density of the reading amplifier

at the various stages. The noise of every stages is calculated by

considering the noise of the previous stages.

3.6.3 Operational amplifier noise

The noise that produces an operational amplifier can be represented schematically

as the noise generated by a tension generator and by a current generator. This noise

can be divided into three part: thermal noise, 1/f noise and shot noise.

Generally for an operational amplifier is specified the corner frequency, that is

the frequency at which the 1/f noise is more greater than the other noise: in this

way we can observe that generally the voltage noise curve is given by a decreasing

curve (1/f) followed, for frequency higher than the corner frequency, by an horizontal

curve (a constant noise), white noise like (see figure 3.12). For our OP27 operational

amplifier6 the voltage noise corner frequency is 2.7Hz, and the noise for frequency

6See [6] for datasheet.
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Figure 3.12: OP27 operational amplifier noise voltage versus fre-

quency: note the frequency corner. From OP27 datasheet [6]

greater than the corner freequency is Vn = 3nV/
√
Hz. In the same manner is

defined a corner for the current noise, and, from the datasheet, we see that the

variation of the current have a corner frequency at 140Hz, above of which we have

a noise of 0.4 pA/
√
Hz.

To have the voltage noise for this transimpedance amplifier, we must convert this

noise current in a voltage noise, following the transfer function of the schematic of

this stage. Note that the contribute of the current noise is strongly dependent by the

resistor, being the gain proportional to the resisotr and then to the output voltage.

Because the corner frequency for the current is higher than the corner frequency

for the voltage, and in the datasheet is not indicated the value for our interest

frequencies, for our numerical evaluation of the noise, we have set the value for the

current noise to a value higher than high frequency limit, extrapolating it to the
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Figure 3.13: Schematic of the general circuit for the noise analysis.

lower frequency, and for high frequency value, we have assigned an approximative

value of In = 2 pA/
√
Hz to overstimate the noise.

To describe the noise of an operational amplifer used in our work, in general, we

can use the schematic represented in figure 3.13 in which we see the most general

operational amplifier configuration to describe our readout schematics: the genera-

tors, that we see in figure, are substitutable by an equivalent noise generator Vne,

that is:

V 2
ne = V 2

n + I2
nR

2
t (3.19)

where Rt = R3 + (R1‖R2) is the thermal resistance that affect the amplifier7 and Vn

and In as defined above. To this term we add the thermal noise generated from the

resistors, so the equation 3.19 became

V 2
ne = V 2

n + I2
nR

2
n + 4KBTRt (3.20)

with KB the Boltzmann constant and T the temperature.

So we can analyze directly the noise at frequency greater than 2.7Hz (where the

7This sum is valid only if we assume that the generator are statistically independent.
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noise is constant), obtaining (using the equation 3.20)

Vne =
√
V 2
n + I2

nR
2
n + 4KBTRt (3.21)

In this way we need to know the only value of the resistors that we used in our

singles stages of the general configuration to get the noise generated by the single

operational amplifier and then by all the electronics.

A capacitor, in parallel to the resistor on the feedback of the amplifier, makes a

low-pass filter whose cut-off frequency is given by

fc =
1

2πR2C2

(3.22)

so the noise band became8

B = 1.57 · fc (3.23)

In table 3.1 there is a report of the input voltage noise of the operational am-

plifiers used in our circuit9; only for the OP27 is specified the corner frequency

(2.7 Hz), so with the other integrated circuits we suppose that the corner frequency

is 10Hz. For all the IC we have approximated the noise curve to a white noise for

frequency above the corner frequency and 1/f noise from frequency under the corner

frequency: in the figure 3.14 there are the curves drawn with this approximations.

To represent the noise on the reading circuit at any frequencies, we have reported

the results in the figures 3.10 and 3.11. In the figure 3.10 is plotted the curve of the

input voltage noise density of the single stage constituting the chain, considering the

noise generated by the configuration of the amplifier as explained in the numerical

example in the following sections, where:

8We remember that for a first order filter the equivalent noise band is obtained by multiplying

the band for the factor 1.57 (see B.4 for more details).
9The values reported are all referred to input (RTI).
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Figure 3.14: Input voltage noise density of the single com-

ponents (RTI)

• Noise TIA is the transimpedance amplifier noise,

• Noise INV is the noise of the inverting amplifier,

• Noise Diff NUM is the noise of the differential amplifier at “the numerator”

(the INA106 integrated circuit),

• Noise Diff DEN is the noise of the differential amplifier at “the denominator”

(the INA105 integrated circuit),

• Noise DIV is the noise of the integrated divider circuit differential (AD734).

To have an idea of the absolute noise of the single stage, no interaction with the other

component of the circuit are considered. Note, in comparison to the figure 3.14, that

the noise is higher when we add the resistors.

In the figure 3.11 are plotted the input voltage noise density at the “sequential”
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Specification Density

Operational f0 = 10Hz f0 = 100Hz f0 = 1kHz

amplifier µV p-p nV/
√
Hz nV/

√
Hz nV/

√
Hz

OP27 0.08 f ∈ [0.1, 10]Hz 3.5 3.0 3.0

OPA227P 0.09 f ∈ [0.1, 10]Hz 3.5 3 3

INA105 2.4 f ∈ [0.1, 10]Hz - - 60

INA106 1.0 f ∈ [0.1, 10]Hz - - 30

INA114 1.4 f ∈ [0.1, 10]Hz 15 11 11

AD734 DIV - - 1 000 1 000

Table 3.1: Input Voltage Noise of differential amplifiers used

stage10 summing the noise due to the interaction with the other components of the

circuit (that generate noise) that affects the signal “before” that the signal is coming

in this stage (in this way the noise of the first stage is equal to the noise of the first

stage single component, the noise of the second stage is the noise of the second stage

single component summed to the noise of the first stage single component, and so

on); we can note that, while the signal is propagate along the circuit, crossing the

various stages, the noise increase.

In any case we see that the greater noise of the circuit is represented by the analog

divider noise, that fix the higher limit for total noise, being greater than the noise

of the ADC (see figure 3.16 to have an idea of the ADC noise compared to the

theoretical TIA noise with an high feedback resistor).
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Figure 3.15: A transimpedance amplifier to convert the current sig-

nal generated in a tension signal.

3.6.4 Transimpedance amplifier

The output of the PSD is a current signal11, so, to have a tension signal, we need

to use a current-tension converter that in our case is constituted by a circuit based

on an operational amplifier transimpedance schema (TIA). The configuration is

that shown in figure 3.15, where we see that an input current Iin produces, via

an operational amplifier, a tension signal Vout. The operational amplifier’s input is

connected to the signal source (in our case the photodiode) and the inverting input

directly to the ground; the output of the operational amplifier is connected in series

10The acronyms of the legend are the same of that in the figure 3.10 but in this case are indicated

also the number of the stage, because the figure shows the global theoretical noise at that stage.
11The projectual choice that the output of this this sensor is a current signal, that must be

converted to a tension signal, must not be considered a limitation (since we need of an ulterior

electronic stage), because if we have, for example, a long cable to connect the sensor to the amplifier

we can have a voltage loss along the cable, having a different tension in input to the readout circuit.

In fact a lots of sensor give the output signal in current (very common is the 4− 20mA standard,

for which we note that the minimum is not zero to avoid misreading in case of a broken wire or

bad contact).

99



with the input voltage on the next stage of the chain.

With this schema the value of tension is equal to Vout = −RTIAIin, with RTIA the

feedback resistor.

In this configuration, with the non-inverting input connected directly to the ground,

the inverting input is a virtual ground, and we have no problem due to the bias

current because the only tension can be generated by the photodiode (about a

tenths of volt).

The signal to noise ratio, SNR, that we have in the output of the transimpedence

amplifier, depends on the feedback resistance RTIA, and is given by

SNR
.
=
UP
UN

=
UP√

U2
PSDnoise + 2 · U2

TIAnoise

=
IP ·RTIA√

(IN ·RTIA)2 + 2 · U2
TIAnoise

(3.24)

where in the last equation we have used the equation 3.15 for the noise generated

from the photocurrent of the photodiode.

Transimpedance amplifier noise

To evaluate the noise of the first stage of the amplifier, we use the curve shown in

the figure 3.12 (or fig. 3.14). The noise is a specific of construction of the operational

amplifier: in our schema we have used an OP27 (Analog Devices), so we see that

the value depends from the frequency (see section 3.6.3): for high frequency (above

the various corner frequencies) we have that the noise is constant and assumes the

value (using the equation 3.21)

VnoiseTIA =
√
V 2
noiseOP27 + A2

noiseOP27R
2
TIA + 4 ∗KB ∗ T ∗RTIA = 20nV

√
Hz

(3.25)

For the range of frequency of our interest we have drawn the voltage input noise

density in figures 3.10 and 3.1112.

12Note that on the first stage the sequential stage noise and the single stage noise are the same.
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Transimpedance SNR

The signal to noise ratio is evaluated with the use of the equation 3.24. The param-

eter that we use (with our apparatus) are:

RTIA = 20.500kΩ Feedback resistance

IPh = 260µA Photogenerated current

IN = 9.15 · 10−10A Total noise

UTIA = 0.1µV from the figure 3.12

As for the noise, we note that the term UTIAnoise depends on the frequency: we

choose, as upper value, the noise at f = 0.01Hz so we setting the noise UTIA =

0.1µV , having SNR = 284 · 103:

Consideration on the transimpedance amplifier noise

As explained in the section 3.6.1 it is very important to reduce the noise on this

first stage, to have the minimum reachable noise on the rest of the circuit. Other

motivation on the optimization of the noise for this stage can be found if we think to

use a digital processing to manipulate the signal to obtain a digital divider instead

of an analog divider (as described in this work). So it is very useful to analyze

the noise in the best condition. To do this analysis we have measured simply the

noise generated by an OP27 amplifier13 in transimpedance configuration with a

feedback resistor of 260KΩ in parallel with a capacitor of 150 pF 14. The noise

measurement has be done with the input terminal in open circuit15, and making

a digital acquisition with a common ADC of 16 bit with sampling frequency Fs =

13We have used the OPA227P from Burr-Brown[12].
14In this configuration we have a low-pass filter with cut-off frequency equal to fc = 4 kHz
15If we imagine to short circuit the input we have inevitably little current on the inverting input

and, being the amplitude ratio theoretically infinite, a saturation on the output of the amplifier
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Figure 3.16: Measured noise of the transimpedance amplifier

(OP27) in comparison with the ADC 16 bit theoretical noise.

1000Hz. The results are shown in figure 3.16: in this figure we see the theoretical

noise of the amplifier (continuous black line) as a sum of the voltage noise spectral

density of the OP27 (blu line), the contribution of the feedback resistors (red dotted

line) and the, most relevant, current noise spectral density of the OP27 multiplied

the resistor R to have the corresponding volt value (the continuous red line, just a

little under the total OP27 noise). Note that, with this feedback resistor (a very

high value), all the various noise source produce a noise smaller than the noise due

to the current noise multiplied for the resistor.

The measured value on the output of the amplifier is given with the green line and

the ADC limit with the black dotted line16. As we can see we must to distinguish

16The quantization noise is being calculated as E = VR

216 ·
√

1
Fs

= 9.65 · 10−6V/
√
Hz where VR is

the range in volt of the ADC equal to VR = 20 volt and the sampling frequency is Fs = 1 kHz.

102



Figure 3.17: Schematic of an inverting operational amplifier.

the case in “high” frequency where the only limit on the noise is given by the ADC17

and case in low frequency where the limit is given by the amplifier itself. So in low

frequency we have a not improvable limit due to the electronic characteristic of the

component used.

3.6.5 Inverting amplifier

To normalize the signal (see section 3.6.7) we need to make the summation of the

signal on the denominator of the divider. To make the sum we use an INA differential

amplifier (see section 3.6.6 and 3.6.7) by inverting the signal in output of one of the

two TIA amplifier.

To evaluate the noise that introduce the inverting amplifier in the chain, we use

the concept explained in the section 3.6.3. The noise voltage and noise current is

described in the datasheet of the OP27 and in the section 3.6.3: the new parameter

17A simple calculation give us, for an ADC of 18 bit in the same condition, a value of 2.41 ·

10−6V/
√
Hz.

103



is given from the value of Rt, that we remember is

Rt = R3 + (R1‖R2) (3.26)

and, following the figure 3.17, by setting the value for the resistors as R1 = 10KΩ,

R2 = 10KΩ and R3 = 5.63KΩ, we have Rt = 10.63KΩ. For high frequency, by

using the equation 3.21 we have that the noise is:

Vne =

=
[

V 2
n + I2

n ·R2
n +

+ 4 ·KBT ·Rt

] 1
2

=
[

(3 · 10−9)2 + (2 · 10−12)2 · (10.63 · 103)2 +

+ 4 · 1.38 · 10−23 · 298.15 · 10.63 · 103
] 1

2

V/
√
Hz

= 2.5 · 10−8 V/
√
Hz = 25nV/

√
Hz

(3.27)

while the noise voltage density is given in the figure 3.10 for the single stage and in

the figure 3.11 at the output of inverting amplifier inserted in the circuit.

3.6.6 Differential amplifier

To use the divider we must have at the numerator a signal that is the difference of the

voltage given by the two transimpedance amplifiers and as denominator the sum of

them. The sum on the denominator is made up by inverting the tension value of one

transimpedance amplifier and than by using a differential amplifier, an INA105 [13]

(from Burr-Brown, [12]): in this way we make a sum, V1 − (−V2) = V1 + V2. The

difference on the numerator is made up directly with a differential integrated ampli-

fier, V1 − V2, and in our case, to have a greater resolution, we use the INA106 [14]
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(also from Burr-Brown, [12]) that has the peculiarity with respect the INA105 to

multipliy the difference for a factor equal to 10, to have 10 · (V1 − V2).

Differential amplifier noise

For the single stage on the numerator the evaluated noise is the noise of the INA106,

while the noise in the circuit can be calculated by using the equation 3.21, so we

have for the numerator:

VnoisediffNUM =
√

2 · V 2
noiseTIA + V 2

noiseINA106 (3.28)

whose plot is shown in figure 3.11. In the equation 3.28 we note that have summed

the noise of the single stage (the noise of the INA106) to the noise at the output of

both the TIA amplifiers.

For the denominator we apply the same formula with the INA105, having the

noise of the INA105 for the single stage and the noise in the circuit (equation 3.21):

VnoisediffDEN =
√
V 2
noiseTIA + V 2

noiseINV + V 2
noiseINA105 (3.29)

that is plotted in figure 3.11. In the equation 3.29 we have summed the noise of the

single stage (the noise of the INA106) to the noise of the first TIA amplifier and to

the noise of the inverting amplifier.

3.6.7 Divider

The last stage of the chain is constituted from an AD734, an integrated circuit18 that

we use in a configuration as divider. With the divider we have a signal indipendent

from the light source power: in fact by normalizing the amplitude of the signal with

18Provided from Analog Device, [7].
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respect to the sum of the two output of the PSD, we make the output of the reading

circuit indipendent from the variation of the power of the light. The output of the

transimpedance amplifier is a voltage that is proportional to the position of the

light beam, so, for a given position of the folded pendulum, if we indicate with V1

the tension signal in the output of the first transimpedance amplifier and with V2

the value of the signal of the second transimpedance amplifier, we can obtain the

absolute position of the FP as P = V1 − V2.

Now, if we imagine that the light source accomplish a variation of the power, for

example by a K factor, the position became P ′ = KV1 −KV2 = K · (V1 − V2): in

this way cannot know if a variation of P depends on a variation of FP position or

by a variation of the light power. To make up for remedy of this mistake, we divide

P ′ with respect the sum of the tensions so we have

P =
V1 − V2

V1 + V2

and if we imagine to have a variation of the light power we’ll have

P ′ =
K(V1 − V2)

K(V1 + V2)
=
V1 − V2

V1 + V2

so we became independent from the light power.

We can expect other variation, more than the light incident power, that justify

the use of a divider when we use the system as seismometer: in this case the oscilla-

tion of the test mass is very considerable and we can have a displacement of the spot

light on the PSD very large: theoretically this displacement must be horizontally,

but sperimentally we can have a little vertical component, so the total incident light

power can vary with the variation of the horizontal position. In any case the dimen-

sion of the spot light is not hard defined, because it is a gaussian spot with a width

of about19 0.1mm (see Appendix A for detail). Being the amplitude of the PSD

19 Because of the presence of a light focuser collimator, the beam outcoming from the fiber is
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equal to 1mm, we have a residual light out of the sensitive surface of about 0.1 %

that can vary, in case of horizontal-vertical misalignment, during the oscillation, so

there is always a little contribute due to the misalignment that we cannot directly

control.

Divider noise

As mentioned in the previous section, to accomplish the division we use the AD734.

From the datasheet we can see that the AD734 has several configuration that permits

a lots of operation; in particular there are two methods to use it as divider: the first

is to use it as multiplier in a feedback loop, while the second use the capability

of varying the scaling voltage (see [7]). In any case we must be careful to the

denominator that must have a tension higher of about 0.1 volt20, but in the second

one we must have that the numerator must be Numerator < 1.25 ·Denominator,

having in this a sort of limitation on the dynamics of the signal, so we use the first

method.

Because we have chosen to use the divider in a configuration as multiplier, we use

the specific of the AD734 as multiplier, that are provided in the range of frequency

f ∈ [102, 106] (see table 3.1). By using the equation 3.21 we have the curve shown

in the figure 3.11: as we can see the noise generated by AD734 is greater than the

other noise and it is this component that is responsible of the higher noise of the

circuit.

described by a “cone”, so the waist is depending from the optical distance between the collimator

and the PSD.
20With our schema this is not a problem because the output of the transimpedance amplifier

has always a value greater than about one volt, so the denominator, that is the sum of the two

tension signal never be less of 0.1 volt.
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3.7 The better choice

As we have seen in this chapter the limitation on the readout is the noise of the

analog readout circuit. The limitation is due to the analog divider noise. To decrease

this noise we can use a digital divider, and if we make same little variation on the

circuit we can improve greatly the dynamic of the reading circuit.

To do this necessarily we must use an ADC in the readout chain (in the analog

circuit the ADC is the last component, and it is used only if we want to digitalize

the signal). The circuit can remain substantially the same, but same operation can

be done numerically.

By analyzing the first stage of the stage of the circuit, we see that it is constituted by

a transimpedance amplifier: this choice cannot be varied, because it is necessary to

make the transduction from the signal current to the noise current. But if we increase

the value of the feedback resistor we can have a greater value for the signal outcoming

from the TIA amplifiers. The greater value is depending also from the light source (in

fact is obviously related to the power of the light) and on the efficiency and physical

dimension of the PSD, this last, fixing the lower value for the current21. Being our

input ADC range [−10V,+10V ] the optimum is reached when the dynamic of the

folded pendulum give an input value for the ADC that cover all the available range,

and this can be done principally by choosing the displacement dynamic of the FP

(that is depending on the use as seismometer or accelerometer, remembering that,

in this last case, the movements is very little), and the geometric configuration of

the optical lever, together with the choice of the feedback resistor and, not last, the

supply voltage of the operational amplifier, that must be higher to permit to the

21Seeing the figure 3.6 we see that if the motion of the folded pendulum do not move the light

beam on all the surface (from left to right for example) not all the dynamic of the system in used,

making a lower value for the current that is not equal to zero.
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output voltage to cover the range of the ADC22.

The second stage, is to make the sum of the two signal that must be used in the

denominator of the divider. Being the input of the ADC almost 10V , an analog

summation must give a result with a maximum value of 10V (precisely −10V

having the current the negative sign); but in this way the maximum tension voltage

of the transimpedance amplifier cannot be 10V , but must be 5V . So we can do the

summation digitally, as a simple sum of the TIA output, having no problem to use

the value “20” numerically.

The digital difference at the numerator of the divider is not convenient, because

we lost a great dynamic in the definition of the difference, so it is useful to make

an analog difference centered in 0V (that is when the FP is in the low potential

position). In this way the value of the analog differential amplifier can be also

amplified to an arbitrary value (we have used an INA114 with a resistor gain of

2 050 Ω, that makes gain of G = 1 + 50 kΩ/R ≈ 25), matching the range of the

ADC.

The divider is digital.

We can summarize this concept by indicating as ADCTIA1 and ADCTIA2 the signals

digitized respectively by the TIA1 and the TIA2 analog output of the TIA amplifiers,

and ADCDiff the output of the differential operational amplifier digitized by a third

channel, having the normalized signal as:

Position =
ADCDiff

ADCTIA1 + ADCTIA2

(3.30)

22For example if the supply voltage is ±9V the output voltage can be maximum ≈ ±8V and in

this case we have loss in the dynamics of about 20%.
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Chapter 4

The accelerometer

Usually many instruments work by treating the measured value as a disturbance,

and measuring the input required to nullify that disturbance. Also in our case we use

this approach, where the disturbances are the forces applied to the test mass by the

movements of the Earth’s surface. This method allows a non-linear measurement (of

the disturbance) to be replaced by a linear measurement (of the balancing action);

this in turn allows the construction of systems with very high dynamic range and

good linearity. A particular case of this type is acceleration measurement.

4.1 Force balanced accelerometer

In this type of system, the force applied to the system results in an acceleration to

a test mass. The mass displacement is sensed, and an opposing (restoring) force is

applied to nullify the acceleration. The mass therefore moves in only a small zone

around the null point since some small motion is needed in order to detect that the

mass tries to move (a little movement necessary to sense the displacement): this

permits the use of large masses with weak suspensions (to enhance sensitivity) and

reduces the need for a long range of travel for such test mass. Central to this system
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Figure 4.1: Schematic drawing of the feedback control design.

is the displacement sensor, that must have high resolution and wide bandwidth, but

it does not require a wide range, as if the system is working correctly, the mass

should not move at all1.

In our force-balance system, we use the optical position sensor to detect the dis-

placement and a voice coil to actuate a balancing force. To generate the correct

signal to send to the actuator we have made a control system that has, as input, the

signal from the reading circuit, while the output is opportunely amplified and sent

to the voice coil. The voice coil, fixed to the ground2, acts on a magnet fixed to the

1For this reason it is possible to use a PSD sensor with a little dimension, having a lower noise,

or, as we’ll see later, a different system based on an interferometric readout.
2This described is a second version of the system: the first one had the voice-coil on the

oscillating mass, but this solution was not exactly mechanical reproducible because there was

problem with the two wires that carry the current to the voice coil; in fact these wires connect

mechanically the oscillating mass to the ground introducing a further damping factor that depends

by the geometrical form of the wire, and that can be very different from a version to another: in

this way we have a not exactly reproducible system, depending the quality factor on the random

curvature ratio of the wires. On the other part by putting the magnet on the oscillating part we

have a loss of generality, having an “oscillating magnet” that can interact with the ferromagnetic
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test mass, so when we introduce a current in the wire it is generated a force on the

oscillating mass that tends to lockup the oscillating mass. By measuring the current,

we have a measure linearly proportional to the external acceleration, so the sensor

directly measures acceleration, because a measure of the current give us a measure

of the force, and so of the acceleration: in our case we must measure directly the

voltage on the voice coil to obtain a value that is proportional to the acceleration of

the ground, and after a calibration we can have the measurement of the acceleration.

The figure 4.1 shows a logical schematic of the Force Balance Accelerometer,

FBA: the logical block C design the control network, VC represent the voice coil

actuator, G′ the mechanical system and H the transducer for the feedback.

G is the direct action block that include the actuator and the mechanical system:

note that the external acceleration acts on this block; the 1/M block has the logical

function to convert the force acting on the oscillating mass into an acceleration. The

other symbols assume the following means:

r is the reference signal (for our application it is constant, and equal to r = 0

when we calibrate the system to have zero volt in out when it is in its equilibrium

position);

error is the error signal, that is the “input” for the controller (note that if the

system is in an equilibrium position and there is no external acceleration the error

signal is error = 0);

Va, is a tension signal that represent the acceleration correction signal: it is this

signal that we read to know the disturbance/external acceleration value;

F is the force actuated by the voice coil;

aV C the corresponding acceleration deriving from the voice coil;

aext the external acceleration that is considered as a disturbance, summed to the

material around, resulting in changing of the potential of the system.
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Figure 4.2: Schematic of the intrinsic lag time of a digital control

unit.

acceleration of the actuator that must to be nullified;

a the total acceleration incoming into the mechanic;

VP a tension signal that represent the position.

4.2 Digital and analog controller

To realize the control system we can follow two type of implementation, a digital

controller or an analog controller. The substantial difference is on the presence of

a processor unit to calculate the feedback action in the numerical implementation.

The effects are the same in both the cases, but it is easiest to use the analog one

because of its simplicity for the realization, requiring only operational amplifiers

and some passive components (such as resistors and capacitors). On the other part

it is preferible to search the time constant in a numerical way: in fact it is more
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simple to find the time constant in a digital implementation (we must change only

the numerical value in our program and observe the behaviour of the system) rather

than in the analog way (changing the time constant necessitate to change the resis-

tors and capacitors physically on the circuit). So, it is a good idea to choose the

configuration and the time constants, implementing it with a numerical program

designed to follow our specification, and experiment immediately the variation of

the parameters.

To do this, it is of primary importance to have a real-time system, because the

various time constants that characterize the control action must have exactly the

time requested at the time of the execution. It is also necessary to have a sufficient

speed for the CPU to manage the data in the correct time, generally related to the

bandwidth of control requested by the project.

By seeing the schema in figure 4.2 we can see that for a digital control implemen-

tation we have always a lag time; in particular in figure we can see that the various

process are syncronized by the sample clock. The first interval of time is requested

by the sampling process (IN1 for the first event, IN2 for the second event and so

on); when the digitalization is completed, the value is red (R1), processed (P1) and

then wrote (W1) to the DAC (OUT1). As we can see the operations cannot be ex-

pleted in the same time, so we have, as a consequnce, necessarily also a lag time for

the actuation of the control signal. For example if we consider a clock frequency of

1 kHz we have a time delay for the actuation of 1ms; a real-time processing assure

a constant computing time (R + P + W time equal constant3), so if we have that

the computing time is less than SamplePeriod − time(IN) we can have a correct

control signal, respecting the assigned time constants, except for the time delay of

3Often we can have an in-time processing, where the time of the computing time is not constant

but less than the time requested by the project, ensuring to complete the computing in time to

actuate the control action requested for the next clock.
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Figure 4.3: Acoustic noise that affect the measured transfer func-

tion.

a sample period (latency time).

In general to have a good control of the system we must have a good position signal

outcoming from readout system. In the chapter relative to the readout we have seen

how to minimize the noise in the analog and digital cases and how can be optimized

readout circuitry having chosen the control type. The implementation based on the

analog system give us a dynamic lower than the digital one (principally due to the

high noise of the divider integrated circuit), but has a good portability due to the

little dimension of the circuitry, while the digital control need of real time computing

that, at the moment, increase the dimensions and limite the portability; the analog

one has also a low cost with respect the digital one, so we have chose to implement

a version of the control system also analogically.
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4.2.1 Open-loop transfer function analysis

When we project the control system we make a function that “transform” the sig-

nal in an opportune way that generate an output that nullify the movement of the

oscillating mass. To do this we must consider the dynamical characteristics of the

system to control, that are summarized by the open loop transfer function of the

mechanic.

The parameters of the control system are strongly dependent from the characteristic

of the system to control, so the parameters can vary to the variation of the geome-

try of the mechanical system. Specifically if we vary the distribution of the masses,

by moving the calibration masses, we necessarily must re-parametrize the transfer

function of the corrector network. For this reason the control design must be done

after that we have chosen the mass distribution.

We remember that this transfer function is obtained by exciting the oscillating mass

with the voice-coil actuactor, having in this way the typical transfer function of

a second order mechanical system. By analyzing the open loop transfer function

shown in this figure, we see that the response is flat in low frequency and decrease

“linearly” (the decreasing obviously is not linear, but have the aspect of a linear

decreasing in the Bode graph) in high frequency, with a rate of 40 dB/decade; we

note a principal peak, corresponding to the resonance frequency (characteristic of

a second order system) with its corresponding phase shift; we see also a secondary

peak, not well defined with a corresponding spread in phase at frequencies in the

interval f ∈ [17.2, 18.7]: after several measurement (also validated with other in-

struments) we can conclude that this is an acoustic effect because by analyzing a

spectrum of the acoustic noise in our lab (see figure 4.3) we have a peak at this

frequency4; other transfer function measurement around that interval of frequency

4On the vertical axis is reported a value in volt: our system was not calibrated for an exact

correspondence from acoustic sound pressure level and the output value in volt of the microphonic
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(not reported in this thesis work) has given different frequency or no peak, depend-

ing on the ambiental characteristics of the laboratories in which we have installed

the sensor.

4.3 Feedback control design

As mentioned introducing this chapter the control system work on the FBA princi-

ple, principally because it permits a good linearity on the response in acceleration.

The control system must be parametrized with correct time characteristics, depend-

ing on a specific system configuration to control; for example, we have seen that

by adding a calibration mass we can vary the resonance frequency5 and by varying

the weigth of the calibration mass we can vary the mechanical quality factor6 that

generate a different (and in our case, with a similar form until the system don’t

became instable) open loop transfer function, with different frequency and different

width of the peak of resonance. For this reason in this thesis work we have chose

to work with the folded pendulum without calibration mass, having the mechanical

system some “default” characteristics that are simply reproducible.

So the system on which act with our control system is that described by the transfer

function shown in figure 2.22; by observing the Bode magnitude graph of the re-

sponse of the system we see that the response of the system is the typical response

of a second order mechanical oscillator: at low frequency we have a constant gain,

while, for frequency higher than the resonance frequency, the gain decrease to the

increasing of the frequency; at the resonance frequency we have a very high peak in

system, because with this graph we would only give a qualitative idea of the acoustic measurement,

so we have considerated unnecessary to calibrate the microphone.
5See section 2.1.6 for more details.
6See section 2.5 for more details.
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the Bode magnitude graph (f0 = 721mHz) due to its high quality factor Q.

Phase lead parameter

By using the FBA principle, the system will have a delay, a limited upper frequency

response, and some additional phase compensation is required to assure stability (for

example to avoid undesired oscillations); this can be done by including a phase-lead

circuit [35], but the global frequency of the entire system (mechanical and feedback

parts) is increased, so the global system have a frequency greater than the mechani-

cal one [17]. To better understand this concept we can imagine that if the oscillating

mass is not in the reference point (displacement due to an external acceleration that

perturbs the system from its equilibrium position) and to nullify the displacement

we use, in our control system, a force only proportional to the error position, we

have that this force is equal to zero only when the error is zero: but in this way

we have that, due to the inertia of the oscillating mass, when this last goes on the

other side of the reference point, the error and the force change versus, pushing fur-

ther the oscillating mass that reach the other side, generating an oscillation of the

system (a situation similar to a mass constrained with a spring), having a second

order system not damped. The presence of a phase-leading parameter operate the

correction taking into account the position error and the derivative of the position

error, having that the correction action is reinforced when the position error is high

and is weaken when it is decreased: in this way the actuation force change its sign

within a leading time respect to the condition of null error, having also a restoring

force when the oscillating mass cross the zero position, giving the same effect of a

dissipative phenomena.
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Null position error

Another choice is to fix a pole in the origin obtaining a system type 1: given a

general analytical representation of the transfer function in a factorized form with

time constant:

G(s) = K
1

sγ

(1 + τz1s)(1 + τz2s) . . .
(

1 + 2δz1
s

ωzn1+ s2

ω2
zn1

)(
1 + 2δz2

s

ωzn2+ s2

ω2
zn2

)
. . .

(1 + τp1s)(1 + τp2s) . . .
(

1 + 2δp1
s

ωpn1+ s2

ω2
pn1

)(
1 + 2δp2

s

ωpn2+ s2

ω2
pn2

)
. . .

(4.1)

with a pole in the origin we has the term 1/sγ with γ = 1; this system has tha main

characteristic to have the regime position error equal to zero; we must remember

that our reference signal (see figure 4.1) is always constant (and set to zero during

the calibration with a correct levelling of the folded pendulum and centering of the

optical lever), so if we not use a pole in the origin the control system is unable to

reach the zero value for the position of the oscillating mass [28].

4.3.1 Corrector

Summarizing, our choose are a pole at 0Hz to have a null position error, two zeros

at 0.200Hz before the resonance peak to dump it and two poles at 44Hz used as

low-pass filter to eliminate the high frequency disturb. The transfer function of this

corrector is shown in figure 4.4 and the closed loop Bode in figure 4.5.

4.3.2 PID control design

To implement the control system we have implemented a corrector network with a

PID controller. The design of the network, shown in figure 4.6, is based on a PID

controller (Proportional-Integrative-Derivative) whose implementation is made up
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Figure 4.4: The transfer function of the analog corrector.

with an operational amplifier, designed as “OpAmp5” in figure. The other opera-

tional amplifiers, “OpAmp6” and “OpAmp7”, make a low-pass second order filter

to attenuate the high frequency disturbance, while the last amplifier, “OpAmp8”

is a buffer that acts only as a current driver for the voice-coil. Because the cut-

off frequency of the low-pass filter is high enough, we study only the PID part of

the control, that acts with frequency lowest the resonance frequency. By indicating

on the amplifier “OpAmp5” with prefix -a the group of the direct inverted input

impedance, with -b the feedback impedance and with -c a mix of them, we have

that the corrector has a transfer function given by7

C(s) = −(1 + sτa)(1 + sτb)

(sτc)
(4.2)

7See also Appendix B for details.
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Figure 4.5: The closed loop Bode transfer function.

where the variuos groups are constituted by the components:

τa = R5aC5a

τb = R5bC5b

τc = R5aC5b

(4.3)

The equation 4.2 can be written as

G(s) = −R5bC5a

( 1
R5aC5a

+ s)( 1
R5bC5b

+ s)

(s)
(4.4)

that makes an evidence of the nature of the poles and zeros and their positioning

on the frequency axis with the direct value of the resistive and capacitive elements.

The analog PID implementation

The analog implementation is based on an electronical circuit that makes a filter

with several operational amplifiers (see figure 4.6). The input of the signal is di-

rectly the output of the analog divider circuit (discussed in section 3.6). As already
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Figure 4.6: Schematic of the analog control circuit.

discussed the control system has a pole in the origin (at 0Hz), two zeros at the

frequency of 200mHz and two poles at 44Hz. To have this time constants we have

set the values of the resistors and capacitors as:

R5a = R5b = 800 kΩ

C5a = C5b = 1µF

R6a = 2.1 kΩ

R6b = R7b = 3 650 Ω

C6 = C6 = 1µF

The double pole in high frequency (that can be considered as a “double” low-

pass filter) is implemented with two active RC circuit in series, each based on an

operational amplifier having a resistor and a capacitor on the feedback; a resistor

on the inverting input permits to have a known (fixed) gain for one of the low-pass
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filter, and inserting a trimmer, R6a, on the other operational amplifier we have a

variable gain with which we can vary the complessive gain of the analog corrector

network.

4.4 Calibration of the accelerometer

Being the accelerometer based on a FBA schema it has has a flat response down

to DC, and so a static response to static changes in the acceleration: that is if we

have a permanent tilt we will have a permanent output. This characteristic can be

used to calibrate the accelerometer, having an absolute and constant acceleration to

refer, as the gravity acceleration. On this characteristics is based the tilt method:

we tilt the FP by a known angle and measure the resulting gravity component,

that is the constant acceleration that we consider. In closed loop the output of the

accelerometer is given by

Vout =
m

β
(g sin θ + ẍ)

where m is the test mass, β is the response of the feedback actuator and θ is the

tilt angle. To calibrate the accelerometer we have fixed the folded pendulum on

a platform (the base that we can see in the picture in figure 2.19) that have three

point of contact with a levelled plane. Each point of contact consist of micrometrical

screws, so we can adjust the platform level to have the best levelling and then tilt

it, along the direction of interest, with respect to the axis that vary the g gravity

component. So tilting the platform we can measure the factor m/β observing the

changes in DC output tension signal with respect the variation of θ. To measure the

tilt of the platform we have disposed it in a way that, by tilting only one screw, we

had the tilt in the interest direction; the screw has a forward pass equal to 0.25mm
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voltage applied to the voice-coil actuator.

for each round8, so by counting each round (or fraction of round) we had a measure

of the tilt. At this point the angle was been evaluated as θ = arctan(b/a), where

b is the height variation (related to the number of round of the screw) and a the

distance from the adjustable screw and the other fixed point of contact.

The figure 4.7 shows the corresponding value of the tension applied on the voice coil

with respect the acceleration in the horizontal direction. The range chosen for the

acceleration is the maximum reachable by the driver acting on the voice coil (the

setup is that of the analog controller, descripted in section 4.3.2).
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photodiode readout.

4.5 Sensitivity Curve

The theoretical sensitivity curve of the monolithic FP sensor is defined by three

main noise sources: internal thermal noise, readout noise and electronic noise. The

internal thermal noise is dependent on the material and on the mechanical design (see

section 2.1.5), while the readout noise and electronic noise are, instead, related to

the external devices used to acquire the output signal. The readout noise is strongly

dependent by the used system: in the section 3.3.3 we have seen the characteristics

of two sensors (a PSD and a quadrant photodiode) used with an optical lever, from

which we have calculate the best performance of the quadrant photodiode. In the

figure 4.8 we see a comparison of the noise considered in the readout chain whose

8By rotating the screw of 28 round we have a variation of the height equal to 7mm, so one

round is equal to 1 round = 7.00/28mm = 0.25mm/round.
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Figure 4.9: Skecth of the Michelson interferometer using a mirror

solidal to the oscillating mass.

values are been calibrated and expressed in meters: the thermal, ADC, shot and

electronic noise; we can see that the great limitations is given from the shot noise

and the electronic noise, both dependent from the optical lever readout system.

4.5.1 Interferometric readout

Basing the readout on an interferometric readout we can have a great improvement

on the noise. In the figure 4.9 we have skecthed a Michelson interferometer: a

laser beam pass through a beam splitter that split the beam in two orthogonal

directions and this two beam, reflected by the two mirror (M1 and M2) generate

interference on the sensor photodiode. By fixing the mirror M1 to the oscillating

mass, and the mirror M2 to the frame of the folded pendulum (that is solidal with

the ground) we have that the interference fringes moves with respect the oscillating

mass movements having, in this way, an high sensitivity for the readout. Comparing

the noise obtained with the interferometer in figure 4.10 with the noise in figure 4.8
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Figure 4.10: Theoretical noise curves for Michelson interferometer

readout.

we can see that the readout noise have an improvement of a 3÷ 4 magnitude order,

eliminating the limitations due to the shot noise.

To compare the sensitivity of the FP seismometer with other geophysical in-

struments, we reported in figure 4.11 the sensitivity of the STS-2 by Streckeisen,

that represents the state-of-art of the low frequency seismic sensors [31]. This fig-

ure shows that the monolithic FP sensor has already a sensitivity comparable or

better (with interferometric readout) of the STS-2 in the band 10−3 ÷ 10Hz. We

reported the Peterson New Low Noise Model (NLNM) [10], that is the minimum

Earth’s noise; from a collection of seismic data from 75 sites located around the

world, Peterson found that there is a characteristics Earth’s noise that can be de-

scribed by two curves that limiting the upper and the lower of this noise; the lower

limit delineate a minimum level of earth noise: noise levels below the NLNM curve
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are never, or extremely rarely, observed.

All these tests were performed in air and with no thermal stabilization, evaluated

at a temperature T = 300 oK, and are obtained with the transfer function of the

folded pendulum with a resonance frequency f0 = 70mHz.

It is interesting to investigate the sensitivity as accelerometer with different read-

out systems, and compare this values with the commercial products. In this case

force actuator keeps dynamically the oscillating mass at the equilibrium position,

corresposnding to the zero point of the PSD (or quadrant photodiode) and to a dark

interference fringe of the Michelson interferometer. The transfer function to refer

is the closed-loop one, defined as the test mass displacement with respect to the

ground, xp(ω)− xs(ω), as a function of the ground acceleration, as(ω):

xp(ω)− xs(ω)

as(ω)
=

1− Ac
ω2

0 − ω2
(4.5)

where the ground acceleration is defined as

as(ω) = ω2xs(ω) (4.6)

The figure 4.12 shows the sensitivities as accelerometer with the optical lever

readout (based on the PSD and quadrant photodiode sensor) and the interferometer

readout, together the STS-2 sensitivity. As it was expected, also in this case we see

the improvement with the interfermeter readout.
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Figure 4.11: Theoretical and experimental sensitivity curves of the

seismometer with different readout systems and comparison with

Streckeisen STS-2.
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systems and comparison with Streckeisen STS-2.
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Conclusions

The work that we present is related to the technologic development of a new kind of

seismic sensor, optimized for very low frequency and having a sensitivity best of the

actual commercial instrument and very little dimensions. A similar instrument can

give a contribute, in the low frequency band measurement, to the seismic zonation

of a country: to have a more accurate mapping of seismic hazard, it is necessary to

have a kind of sensors which can record with high accuracy and in a broad frequency

band; in particular at low frequency, where much of the energy is released during

an earthquake, we can sense teleseismic signals with periods ranging from hours to

seconds. Having this target, we have developed a new oscillating mechanical system

with tunable resonance frequency and high quality factor. The system is based on a

folded pendulum design having a monolithic structure to reduce the thermal noise,

realized with electro-discarge machining of a block of aluminum.

Summary of the work

The resonant frequency of the system is about 720mHz, but it is possible to tune

the resonance frequency down to 70mHz, by adding a calibration mass on the oscil-

lating part of the folded pendulum. Because of the monolitic structure of the system,

the mechanical noise of the system is very low (see figure 4.8): the system has sev-

eral part in suspension and it is possible to realize a monolithic structure with the

131



realization of some flexible hinges. Previous version of the folded pendulum had cir-

cular hinges, and with this new version, we have adopted elliptical hinges, that have

best performance in terms of durability (with this design the hinge receive a lower

stress with the same deformation of the older one), giving a lower frequency to the

entire system also (see the FEM simulation relative to this study, see section 2.2.3).

The lower stress of the material due to the new hinge design, has permitted the

introduction of other variation with respect the previous version, by increasing the

space between the oscillating part and the frame (fixed to ground), having a greater

displacement of the oscillating mass (useful in the seismometer configuration), that

has as good improvement to eliminate the air gap in this space; in this way we have

reduced the dissipative effect due to the air flowing, having in air a greater mechan-

ical quality factor, Q, with the possibility to reach the value of about Q ≈ 140 at

resonance frequency of about f0 ' 800mHz and a Q ≈ 10 at a resonance frequency

of f0 = 70mHz. Some in vacuum measurement demonstrate that the quality factor

increase of a factor ten at pressure of P = 10−4mbar.

Furthermore, with the adopted design, the system has almost a purely uniaxial re-

sponse, with a cross-coupling ranging from 10−4 to 10−3 with respect to all the other

degree of freedom.

We have also introduced a new readout system, based on an optical lever: a

light source solidal to the ground generate a light beam that is reflected by a mirror

solidal to the oscillating mass; when there is a movement of the oscillating mass

due to the ground shaking, the light beam is deflected and a sensor, based on a

position sensing device photodiode, solidal with the frame, sense the movement

by detecting the light beam position. A dedicated electronics generate a voltage

signal proportional to the light position, and so to the mass displacement, taking

into account, and eliminating, the various noise of this approach (like laser power

fluctuation, misalignment, etc.), giving a total noise very low, in comparison to other
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readout system. However a new interferometric readout system has been developed,

that permits to obtain a sensitivity, for the global system, in the band 10−3÷10Hz,

better than other systems, like the Streckeisen STS-2, that represents the state-of-art

of the low frequency seismic sensors.

With a voice-coil acting on a magnet, we can apply a force on the oscillating mass.

We have realized an analog (and digital) feedback control circuit, that, by using the

position signal can generate a signal, that conveniently manipulated, can drive the

voice-coil to “immobilize” the oscillating mass, having in this way an accelerometer,

with the possibility to measure directly the acceleration of the ground.

By summarizing with this work we have:

• designed and realized the monolithic part of the sensor;

• tested a calibration procedure to tune the resonance frequency, reaching the

lower frequency of 70mHz

• realized and tested an optical readout system, with an analogic reading cir-

cuitry

• estimated the sensitivity curve with different readout system in open-loop

• realized and tested an analogic control system to realize, in closed-loop, the

accelerometer with the optical lever readout

Future Development

A development of the system can be made with an improvement on the mechanical

part, on the read out and then on the control system to close the loop to have an

accelerometer. The parameter and the implementation of this last one is depend-

ing by the two other, but the development of the mechanical part, can be made
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independently from the development of the the readout and viceversa. An improve-

ment of the readout can be made up by changing the philosophy of the circuitry, by

passing from the analog operation (to obtain the divider) to the digital one, having

in this way a totally numeric readout and control system (the only analog part is

consituted by the two transimpedance amplifiers and one instrumentation amplifier,

see section 3.6.4), while introducing the interferometric readout we can have a great

improvement on the sensitivity of the system.

Another great improvement is reached with a new project of the mechanical part,

that allows a greater quality factor and a more stable system in low frequency (under

300mHz).

Mechanical improvement and simulation with FEA analysis

Of great utility is the study on the finite elements analysis: a knowledge of the

correct procedures can give an instrument that permits to compute the solution of

the dynamic of the folded pendulum. As already mentioned in the section 2.6, there

are several problem on this type of analysis, but if we can have simulation method

to calculate the response of the system with high accuracy, we can save a lot of time

by sparing the realization of a piece before to know the improvement of the project.

Actually we have made some experiment but we had only qualitative value of the

resonant frequency; in fact the experimental value had a sistematic error of about

500 % with respect the simulated one, altough we have the correct trend on several

data.

With aid of the simulation we can obtain a good project design to have a system that

has a natural very low frequency with a minimal stress of the joint; we remember

that the higher is the joint’s width the higher is the stiffness of the joint, so the

natural frequency of the folded pendulum is higher because of the elastic restoring

force. On the other part a little width make the joint more fragile, so we can have the
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rupture of the joint, obtaining a not reliable system. In this optics the simulations

is a useful way to search the correct trade-off between the width and the resonance

frequency.

Readout and control improvement

As discussed in the introduction of this chapter, it can be performed an ulterior

improvement on the readout and control system. As shown in the figure 4.11 we can

see that with an interferometric readout we can reach a level of sensitivity better

of several magnitude orders: on this point we have developed the interferometer

readout, based on an optical laser source with a compact apparatus constituting

the interferometer. With this interferometric readout we can improve the use as

accelerometer by developing a new control system. To do this it is necessary also to

use the optical level readout: in fact in a first step the optical lever provides the error

signal for the FP in order to reduce, within an interferometric fringe, the movement

of the mirror fixed with the inertial mass; in a second step the interferometric signal

is used then as an error signal for the control. In this last phase the Michelson

interferometer (also described in figure 4.9), far better of the optical lever, provides

a more accurate error signal, and it allows the locking of the test mass position with

respect to the frame.

Actually, with the optical lever, the digital divider (see section 3.6.7) is imple-

mented with a real-time computer VME based, but it is possible to use a PC with a

specific operating system, or some commercial product based on FPGA microcon-

troller. Because of the low complexity of the execution of the operations, we can

make a digital divider using a PIC (Programmable Interface Controller); this type of

implementation can be used because of the low frequency of the signal to elaborate,

that not require great velocity in computing. In this case we can use a circuit like

that described in section 3.7, actually used with a PC in off-line analysis (obviously
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not used with control system).

It possible to use the numerical solution with the control system also, just imple-

menting the actual control system on the PIC.
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Appendix A

Work hints

A.1 Structural specification of the folded pendu-

lum

All the mechanical specification are summarized in the table A.1, in which we have

indicated the physical characteristics of the system (dimension and weight of the

most significative parts), while in the table A.2 the physical mechanical measure-

ments on the prototype that reports some value in different configuration.

The mechanical open loop transfer function is reported in the section 2.3.1 with the

comment on the method used for the measurements.

A.2 Spot light waist

We have measured the gaussian spot light waist of the SLED at different distance.

Because of the presence of a light focuser collimator, the beam outcoming from the

fiber is described by a “cone”, so the waist is depending from the optical distance

between the collimator and the PSD surface. We have measured the dimension of
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Material Aluminum 7075/T6

Hinge type elliptical, ε = 3.2

Oscillating central mass 760 g

Pendulum mass 80 g

Inverted pendulum mass 72 g

Pendulum length (lp1) 81.5mm

Inverted pendulum length (lp2) 81.5mm

Pendulum arm length (l1) 81.5mm

Inverted pendulum arm length (l2) 99.8mm

Dimension 140× 134× 40mm3

Total weight 914 g

Table A.1: Mechanical specification of the realized prototype.

Frequency with no calibration mass 721± 1mHz

Minimum reached resonance frequency 70mHz

Vertical to horizontal coupling 10−4 ÷ 10−3

Quality factor in air at f0 = 721mHz 130± 10

Quality factor in air at f0 = 450mHz 80± 10

Quality factor in air at f0 = 70mHz 12± 1

Quality factor in vacuum (10−4 bar) at f0 = 450mHz 500± 50

Table A.2: Mechanical behaviour.
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Figure A.1: Incident spot light waist dimension.

the spot light by using a quadrant photodiode, obtaining two different value (one

for each quadrant) and the value is shown in figure A.1. The value of the waist is

the width of the gaussian function that describe the incident spot light.

A.3 Cross talk of the electronic circuit

When the accelerometer was in the vacuum chamber, we have noted that the mea-

surement was affected by great cross talk from the voice-coil signal. The effect is

shown the figure A.2 in which we can see four graph that point out this problem.

The variables V 1 and V 2 are the signal outcoming from the two transimpedance

operational amplifier, V Coil is the voltage signal sent to the voice-coil actuator (in

this csae a white noise) and x is the position signal (V 1− V 2)/(V 1 + V 2) obtained

following the equation 3.30 (see section 3.7).

On the upper-left of the figure we can see the transfer function (module and phase)
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Figure A.2: Transfer functions and coherence of various signal

showing the cross talk between all the signal.

V 1 (and V 2 in red) versus V Coil, while on the down-left the coherence of these

two signal; on the upper-right the transfer function of x versus V Coil and on the

down-right the relative coherence. By a rapid analysis of the coherence we can see

that upon the frequency of about 20Hz we see that the coherence increase to 1

for all the signal, while the transfer function (that should be a simple horizontal

line) has an increaseing of the module upon 20Hz and the phase (that should be a

random distribution of the point) show a decreasing from π to 0 rad.

The problem was due to the cross talk from the cable of the voice-coil signal versus
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the PSD cable signal, because in this type of measure, having the necessity to pass

the cable into the vacuum chamber, we have made a vacuum connector that allow

to pass the signal in and out the chamber, and the variuos cable was very near each

other: this circumstance has created the pick up of the voice-coil signal (that have

a great current) on the signal of the PSD.

The problem was been resolved by a new cabling with coaxial cable and BNC con-

nector.
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Acronym Meaning

BB Broadband, related to the frequency band of an instrument

FBA Force Balance Accelerometer

FEA Finite Elements Analysis

FP Folded Pendulum

IC Integrated Circuit

LED Ligth Emitting Diode

NLNM New Low Noise Model of the Peterson’s noise model

OS Operating System

Q Mechanical Quality factor, see section 2.4

PID Proportional-Integrative-Derivative automatic control design

SLED Super Luminescent light Emitting Diode

SM Single Mode

SP Short Period, related to the frequency band of an instrument

TIA TransImpedance operational Amplifier converter

VI Virtual Instrument, a special application of Labview [20]

VBB Very Broadband, related to the frequency band of an instrument

Table A.3: Less common acronyms used in this thesis work.

A.4 Acronyms

Less common acronyms used in this thesis work are shown in table A.3.
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Appendix B

Mathematical hints

B.1 Transfer function of a PID feedback control

Given the the schema design of an analogic pid controller, shown in the figure B.1,

where Zais the impedance on the inverting input

1
Za

= 1
ZR5a

+ 1
ZC5a

= 1
R5a

+ 1
1

jωC5a

= jωR5aC5a+1
R5a

(B.1)

and Zb the impedance on the feedback

Zb = ZR5b
+ ZC5b

= R5b + 1
jωC5b

= jωR5bC5b+1
jωC5b

(B.2)

we have

G(ω) = −Z2

Z1

= − jωR5bC5b+1
jωC5b

· jωR5aC5a+1
R5a

= − (1+jωR5bC5b)(1+jωR5bC5b)
jωR5aC5b

(B.3)
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Figure B.1: Electronic schema of an analog PID controller.

By setting s = jω we have that

G(s) = − (1+jτa)(1+jτb)
jτc

= −
τa(

1
τ1

+s)τb(
1
τb

+s)

sτc

= − τaτb
τc

( 1
τ1

+s)( 1
τb

+s)

s

= −R5aC5aR5bC5b

R5aC5b

( 1
R5aC5a

+s)( 1
R5bC5b

+s)

(s)

= −R5bC5a

( 1
R5aC5a

+s)( 1
R5bC5b

+s)

(s)

(B.4)

where

τa = R5aC5a

τb = R5bC5b

τc = R5aC5b

(B.5)
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Figure B.2: LC resonance circuit.

B.2 Quality factor: an electric approach

Consider the circuit shown in figure B.2: it is an RLC circuits with an LC bandpass

filter. The reactance of the LC part at frequency f is:

1

ZLC
=

1

ZL
+

1

ZC
=

1

jωL
+ jωC =

j
1
ωL
− ωC

=
jωL

1− ω2LC
(B.6)

from which we have that ZLC =∞ if ω = 1/
√
LC. Considering the the combination

of the LC part with R it forms a voltage divider: because of the opposite behaviors

of the inductor and the capacitor the impedance of the parallel circuit LC goes to

infinity at the resonance frequency f0 = 1/2π
√
LC, giving a peak in the response

at this frequency, as shown in figure B.3; obviously the same consideration are valid

for the pulsation ω (rad/s) remembering that ω = 2πf (that is ω0 = 1/
√
LC).

Pratically the losses of the inductor and capacitor limit the sharpness of the

peak; a Q spoiling resistor R is added to reduce the sharpness at resonance peak.

This circuit is known as a parallel LC resonance circuit. The quality factor Q is
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Figure B.3: Peak of LC resonance circuit

a measure of the sharpness of the peak and it is equal to the resonance frequency

divided by the width of the the peak at the −3dB points, Q = f0 /∆f3dB. So for a

parallel RLC circuit Q = ω0RC [19].

B.3 The dB unity

The ratio of the power of two signal can be expressed in bel as

bel = log
P2

P1

where P2 and P1 are the two power. For expample we can consider the case of the

power dissipated by two resistor, where this ratio became:

bel = log
V 2

2 /R

V 2
1 /R

= log
V 2

2

V 2
1

= 2 log
V2

V1

The bel is a unity too big, so commonly is used the decibel, dB, so the ratio became:

1 dB
.
= 20 log

V2

V1
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As we can see the decibel is a ratio so it is important to define a value as a reference

for the ratio.

Commonly we use the decibel also to define the dynamics of a system; for example

if we consider a 16 bit ADC, it has a dynamics equal to 96.33 dB1: in fact if we fix

as 1 the more little number that we can represent with a such ADC (corresponding

to the minimum value in volt that we want to digitize), the maximum number is

216 = 65 536, so the ratio became:

20 log
65 536

1
≈ 96.33 dB

In the same way we can say that a 18 bit ADC has a dynamics of 108.37 dB.

B.4 Equivalent noise band

Consider a linear system represented by a quadrupole characterized by the transfer

function

A(f) =
Vo
Vi

where Vi is the input signal and Vo the output signal. Now consider a white noise

whose spectral density is vn in input to the quadripole (that we suppose with no

noise); the effective value of the noise voltage on the output depends by the transfer

function of the quadripole. Because of the uniform spectral density, the noise band

of the system is not the band of the transfer function but it that of the ideal filter

whose square tranfer function cover the same area of the square module of the

quadripole transfer function (see figure B.4).

The effective value of the output noise of the filter is [30]

V 2
no =

∫ ∞
0

|A(f)|2v2
ndf = v2

n

∫ ∞
0

|A(f)|2df

1This consideration assume that we use a PCM method and have an uniform quantization for

the tension value.
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Filter order Noise band

1 1.57 ·B

2 1.11 ·B

3 1.05 ·B

4 1.025 ·B

Table B.1: Equivalent noise band and filter order

By sustituting on ideal filter (low-pass or band-pass) whose equivalent band is BEq

and gain in middle band A0, the effective value of the output noise is

V 2
no,B = v2

n · |A0|2 ·BEq (B.7)

where BEq is the equivalent band noise when V 2
no,B = V 2

no, that is

BEq =
1

|A0|2

∫ ∞
0

|A(f)|2df

So to evaluate the output noise of a linear filter that has on the input a white

noise source [19] we must cosider his equivalent noise band and the gain in the

middle band, that is, from the equation B.7:

V 2
no = v2

n · |A0|2 ·BEq

where the band noise can be evaluate on depending of the filter order as indicated

in the table2 B.1

2Note from the table that when the order of the filter is higher the factor tends to 1 because

the shape of the band tends to became rectangular
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Figure B.4: Equivalent band skecth.
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