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1. THE FEATURES OF CANCER 

 The last quarter century of cancer research has indicated the tumorigenesis as a 

multi-steps process involving dynamic changes in the genome and its regulation.1 Despite 

the large number of cancer types actually described, most of them share in common the 

manifestation of six essential alterations: self sufficiency in growth signals, insensitivity 

to growth-inhibitory signals, evasion of programmed cell death (apoptosis), limitless 

replicative potential, sustained angiogenesis and tissue invasion and metastasis. Each of 

these physiological changes is considered as a novel capabilities acquired during tumor 

development that preserve the neoplastic cell from the anticancer defense mechanisms.2 

  

 

 

 

 

 

 

 

 

Figure 1. The six acquired capabilities of cancer cells 
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1.1 Self sufficiency in growth signals.  

 The autonomy of the proliferation of tumor cells from the growth signals was the 

first of the six acquired capabilities to be disclosed by cancer researchers. It has been 

widely demonstrated that normal cells can move from the quiescent state into a 

proliferative active state under the regulation of the growth signals. The normal 

proliferative process can be simplified in three main steps: 

1.  Growth extracellular signals that bring the message (diffusible growth factor, 

 extracellular matrix component and cell-to-cell adhesion/interaction molecules) 

2.  Transmembrane receptors that transmit the signal into the cells 

3.  Intracellular circuits that translate the messages into action 

 To achieve growth-signals autonomy, three common strategies have been 

highlighted involving modification of at least one of the mechanisms above described. 

While the proliferation of normal cells is regulated from the presence of growth 

extracellular signals released from another cell type (heterotypic signal), tumor cells 

develop the ability to produce growth-factors to which they are responsive bypassing the 

dependence on growth-factors released from other cells within the tissue.3 

 Also, the transmembrane receptors can be themselves targets of deregulation 

during tumorigenesis, being overexpressed or structural altered. The result is that cancer 

cells become hyperresponsive to levels of growth factors that normally would not 

stimulate proliferation.3 Tumor cells can also modify the cell surface receptor system 

promoting the types of extracellular matrix receptors (integrins) that transmit pro-growth 

signals.4 Integrins connect the cells with the extracellular matrix (ECM) and when 
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activated by binding specific moiety of the ECM they can stimulate the cells to move 

from the quiescent state to the active proliferative state conferring them resistance to 

apoptosis. When integrins do not recognize these extracellular links the cells undergo 

cycle arrest and apoptosis.4 

 The third mechanism to acquire growth factors autonomy derives from alterations 

of the intracellular circuits that receive and process the growth signals emitted from the 

transmembrane receptors. The SOS-Ras-Raf-MAPK cascade revealed to play a critical 

role in this strategy, in fact in about 25% of tumors the Ras proteins are present in altered 

form that enable them to start the stream of events for the proliferative activation without 

any dependence from their normal upstream signals. In some other case the presence of 

modifications on other components of the growth pathway signals of Ras5 or on the cross-

talking connections with Ras can be hypothesized as alternative mechanism to alter the 

intracellular circuits.6  

 An emerging theory to further explain the acquisition of the growth signals 

autonomy of the cancer cells is the cell-to-cell growth control (heterotypic regulation), 

which appears to operate in the majority of human tumors as well as they do for normal 

cells.7 

1.2 Insensitivity to growth-inhibitory signals.  

 In normal tissues the normal cellular quiescent state and tissue homeostasis is 

maintained by the activity of antiproliferative signals that interact with transmembrane 

receptors coupled to intracellular circuits. Apart from the nature of the growth inhibitory 

signals (soluble growth factors, immobilized in the extracellular matrix or on the surface 

of the nearby cells), they induce cellular growth arrest though two main mechanisms. 
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 First, the antiproliferative signals can force the cells to move from the active state 

to the quiescent state (Go) where they can move back when the extracellular signals 

permit. In alternative strategy the cells can be forced into postmitotic state where them 

acquire specific differentiation-associated trails. Evading these anti-proliferative signals 

let the cancer cells to proliferate. The components governing the transit of the cell from 

the G1 to S phase (TGF/pRb/E2Fs/CDK4/ p15INK4B/p21) are mainly responsible for the 

sensibility of the cell to the anti-growth signals.8 It follows that the disruption of this 

circuits altering the expression or the functionality of the single components can be 

considered as one of the strategy for the cells to become not responsive to growth-

inhibitory signals.9  

 Our tissues can also regulate cell multiplication by instructing cells to enter 

irreversibly into postmitotic, differentiated state. Recently, several mechanisms of the 

tumor cells to avoid terminal differentiation have been reported.10 However, the 

components involved in this process are not yet completely understood and required 

further investigation.    

1.3 Evasion of programmed cell death (apoptosis).  

 The normal tissue homeostasis is also regulated by the programmed cell death 

(Apoptosis), which is normally present in latent form in all cell types through the body. 

 When activated by a variety of physiologic signals, the apoptotic program can start 

a series of events that result in the cell death by disrupting the cell membranes, breaking 

down the cytoplasmatic and nuclear skeleton, degrading the chromosomes and 

fragmenting the nucleus. The apoptotic circuit can be divided into two main classes of 

components, sensors and effectors. The extracellular factors (IGF-1/IGF-
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2/FAS/TNFtheirreceptors (IGF-1R/FAS/TNF-R1)11 and intracellular sensors12 

monitor the cell conditions activating the effectors which produce the apoptotic death. An 

important effector of the apoptotic program is the p53 (also known as DNA-guardian) that 

can respond to DNA damages upregulating expression of proapoptotic factors such as 

Bax, that stimulates mitochondria to release cytochrome C, a potent catalyst of apoptosis. 

 Other well documented effectors of the apoptosis are the intracellular proteases 

termed caspases, that activated from sensors like FAS or effectors like p53 and 

cytochrome C can selectively destruct subcellular structures and genome. 13 

 The mutation of the p53 suppressor gene and its resulting loss of a capability to 

monitor the DNA state  has been observed in greater than 50% of human cancer forms 

and is considered as one of the key component to understand the strategies adopted by the 

cancer cells to acquire resistance to apoptosis.14   

1.4 Limitless replicative potential.  

 The three acquired capabilities above described lead to an uncoupling of a cells 

growth program from the state of its environment. However, the understanding of these 

mechanisms have still left unsolved questions about the expansive tumor growth. Studies 

performed on cell cultures have widely demonstrated that all types of normal mammalian 

cells carry an intrinsic and independent cell-autonomous program that limits their 

proliferation.15  

 The senescence of cultured human fibroblasts can be overcome by disabling the 

pRb and p53 suppressor proteins, enabling these cells to continue proliferating until they 

enter into state named crisis. This phase is characterized by massive cell death and the 

occasional emergence of modified cell (1 in 107) that has acquired the ability to multiply 
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without limits (immortalization). The crisis state has been described as the consequence 

of a mechanism termed “counting device” , which is indicated as the progressive loss of 

base pairs in the terminal region of the chromosomes (also known as telomeres) during 

the replicative generations. The shortening of the telomeres disable them to protect the 

ends of the chromosomal DNA, which can participate in the end-end chromosomal 

fusion, producing the karyotipic disarray associated with the death of the affected cells.16 

 Alternatively, most of the human tumor cells appear to maintain intact the 

telomeres17 probably by upregulating the expression of enzymes that protect the telomeres 

by adding hexanucleotide units at the end of DNA. This acquired phenotypic capability is 

clearly a key component to explain the unlimited replication of  tumor cells, however 

further investigations need to be performed on the phenomenon of senescence and its 

circumvention which could potentially provide  more information about the “Limitless 

replicative potential”.18 

1.5 Sustained angiogenesis.   

 The normal cells reside within 100 M of capillary blood vessels in order to 

receive the nutrient and the oxygen necessary to guarantee their survival and functions. In 

the course of organogenesis this correct distance is carefully regulated by a complex set 

of events termed angiogenesis. The balance between the positive and negative signals 

encourage or block angiogenesis. Soluble inducer (VEGF/FGF1/2) and inhibitor 

(thrombospondin-1) factors along with their tyrosine kinase receptors displayed on the 

surface of the endothelial cells3,19 represent one class of these signals. Also integrins and 

adhesion molecules mediating cell-matrix contribute maintaining  this balance.20  
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 The ability of the tumor cells to induce and sustain the angiogenesis is not evident 

in the preliminary phase of the tumorigenesis21, but it seems to be acquired in successive 

steps of the tumor development. The angiogenic switch from vascular quiescence can be 

achieved by different strategies. One of them involves altered gene transcription of the 

positive control and negative signals. Alternatively in some cell types the downregulation 

of the endogenous inhibitor signal thrombospondin-1 has been associated with the loss of 

p53 function, which occurs in most of the human tumors.22 Moreover, activation of ras 

oncogene has been correlated with the upregulation of VEGF expression  in certain types 

of cells.23 Despite that the knowledge of this process is still very limited, it is already 

clear that tumor angiogenesis offers an attractive target therapeutic for the treatments of 

many tumors. 

1.6 Tissue invasion and metastasis.  

 Primary human tumors acquire the ability to generate pioneer cells that move out 

invading adjacent tissue or distant sites. This process of colonization of new terrain in the 

body termed metastasis let the cancer cells to find new environment where at least 

initially the nutrients an the space are very abundant. The acquisition of this new 

capability is characterized from complex processes which are not yet completely 

understood. However, they are often associated with at least one other of the five 

capabilities above described, involving both changes of the microenvironment and 

activation of extracellular proteases. Several classes of proteins are altered in cells bearing 

invasive and metastatic abilities, including cell-cell adhesion molecules (CAMs), 

calcium-dependent cadherin families, which mediate cell-to-cell adhesion and integrins, 

which link cells to the extracellular matrix substrates.24 
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 Moreover, many lines of evidence have indicated the upregulation of extracellular 

proteases and the downregulation of their inhibitors as alternative strategy for the cancer 

cells to achieve invasive and metastatic capability.25 Modifications of the functions or 

expression of the extracellular proteases can play a role also in other hallmark capabilities 

like angiogenesis26 and growth signaling.27 

2. EPIGENIC REGULATION  

 The understanding of the processes responsible for the acquisition of the 

enumerated six capabilities suggested that multiple changes in the genomes of cancer 

cells are required for their manifestation. The genome instability underlying all the 

processes above described is characterized from the malfunction of specific components 

of the system that monitors and repairs the DNA. Growing evidence suggests that the 

disruption of the epigenic events could represent a novel pathway for the onset and 

progression of cancer.28 In fact, dynamic chromatin remodeling has been correlated with 

many DNA-templated biological processes, including gene transcription; DNA 

replication and repair; chromosome condensation; and segregation and apoptosis.29 

 DNA is conserved in a condensed and densely packed structure named chromatin. 

Chromatin is composed of regular repeating units of nucleosomes, which are complex of 

146 nucleotide base pairs of DNA wrapped around the core histone octamer. The histone 

octamer is constituted of two copies each of H2A, H2B, H3 and H4 proteins, which can 

interact with DNA through the charged amino-side chains of amino acids like Lys and 

Arg, mainly localized in the N-terminal tail-region (Figure 2). The dynamic changes of 

chromatin are achieved through structural modification of histones (ATP-dependent 
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complexes, covalent histone modifications), utilization of histone variants and structural 

variation of the DNA (DNA-methylation).30  

  

  

 

 

 

 

 

Figure 2. Nucleosome structure 

 

2.1 Covalent histone modifications.  

 The covalent histone modifications are classified in eight different classes 

including lysine acetylation, lysine and arginine methylation, serine and threonine 

phosphorylation, lysine ubiquitylation, glutamate poly-ADP ribosylation, lysine 

sumoylation, arginine deimination and proline isomerization (Figure 3).31 

 The variety of molecular mechanisms underling the single covalent modification 

can be broadly generalized in two categories, “cis” mechanisms and “trans” 

mechanisms. “Cis” mechanisms produce alteration of intra- and internucleosomal 

contacts via changes of steric interactions. Prominent examples of the components 
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involved in these mechanisms are histone acetyltransferases (HAT) and histone 

deacetylases (HDACs), two families of enzymes that promote or repress the gene 

transcription by adding and removing acetyl groups from the side chains of Lys localized 

in specific position of the N-terminal region of histones.32“Trans” mechanisms involve 

the combination of specific histone modifications. First specific histone regions are 

modified by enzymes termed “writers” ( e.g. histone methytransferase). Next, these 

modifications are recognized by second protein components of the system called 

“readers” (e.g. inhibitor of growth proteins,  heterochromatin protein 1 and polycomb 

proteins) that translate the signal in the activation or repression of the transcription. 

Finally, when the signal is not anymore required it is removed by some other enzymes 

termed “erasers” (e.g. the jumonji, AT-rich interactive domain 1 demethylases).33 

 In addition, cross talking between existing histone modifications within the same 

histone tail or among different histone tails introduce another level of complexity in 

chromatin remodeling.31                                       

 Recently, a noteworthy correlation between loss of function of some components 

involved in the histone covalent modifications and tumorigenesis have been disclosed, 

providing the rationale for the development of alternative strategies for the treatment of 

tumors.  
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Figure 3. Dynamic changes of chromatin 

 

2.2 Histone Lysine acetylation.   

 The acetylation state of the N of Lys present in N-teminal tails of histones has 

been traditionally related with the modulation of the transcriptions events and with many 

other cellular functions including DNA replication and repair. Although transcriptional 

regulation is highly complex and dynamic, in general an increase level in histone 

acetylation causes remodeling of chromatin from a tightly packed configuration to a 

loosely packed configuration, which subsequently leads to transcriptional activation. On 

the other side, a decrease in histone acetylation cause the stabilization of condensed 

chromatin resulting in transcriptional silencing. Many lines of evidence have indicated the 
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inappropriate silencing of critical genes like tumor suppressor genes as one of 

mechanisms that could promote the tumorogenesis process.34  

 In addition to modification of histone, many non-histone cellular proteins like p53, 

pRb, E2F and Hsp90 undergo acetylation regulation, which mediate their involvement in 

diverse biological functions.35A relevant example is the p53 protein that loses its 

capability to monitor an correct potential genomic damages when inactivated by the 

deacetylation of the Lys localized in specific regions. Levels of acetylation of histone and 

non-histone proteins HDACs depend on the activities of two families of enzymes, histone 

acetylases (HATs) and histone deacetylases (HDACs) which add or remove acetyl groups 

from the protein substrates, respectively. 

 

 

 

 

 

 

 

 

Figure 4. Histone lysine acetylation 
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 There are three known families of HATs, the Gcn5-related N-acetyl transferase 

(GNAT) family, the MOZ/YBF2/SAS2/TIP60 (MYST) family 

andtheCBP/p300family.36They operate in forms of multisubunit complex acetylating with 

poor specificity multiple lysine sites in the core histones, which results in release of DNA 

promoting active transcription. Moreover, HATs acetylate several non-histone proteins 

such as p53, E2F and Hsp90 modulating their transcription activities on target genes.51 

Several studies support the connection between HATs deregulation and oncogenesis, 

demonstrating that aberrant localization or activation of HATs as well as its inactivation 

can origin  oncogenic process.36 

 HDAC enzymes remove the acetyl group from the histones comprising the 

nucleosome. Hypoacetylation results in a decrease in the space between the nucleosome 

and the DNA that is wrapped around it. Tighter wrapping of the DNA diminishes 

accessibility for transcription factors, leading to transcriptional repression. 

 

2.3 HDACs classification. 

 The 18 human HDACs identified at date have been categorized into four classes 

based on their homology with distinct yeast HDACs (Figure 5). Class III HDACs is an 

evolutionary distinct family of sirtuine (silent information regulators), that remove the 

acetyl group by a unique enzymatic mechanism dependent on the cofactor NAD+. Class I, 

II and IV HDACs catalyze the deacetylation of histones in cooperation with a Zinc atom 

which is localized in the bottom of an enzyme pocket. 
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Figure 5. HDACs classification 

 

2.3.1 Class I (HDAC 1, 2, 3, 8)  

 The members of this class present homology with the yeast Rpd1.  HDAC I and II 

are exclusively localized in the nucleus, because of the lack of the nuclear exporting 

signal (NES).37 HDAC 3 has both a nuclear import signal (NIS) and NES suggesting that 

despite it has been mainly found in the nucleus HDAC 3 can also localize in the 

cytoplasm. The nucleus localization of HDAC 3 could be explained by its recruitment by 
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HDACs 4, 5, 7 (Class II) when they are bound to DNA via co-repressors.38 HDAC 8, is 

mainly found in the nucleus, but respect to the other HDAC enzymatic subtypes 

belonging to class I, it needed to be overexpressed to be localized because of its normal 

low abundance.39 HDAC 1 and 2 (482 and 488 aa) are highly similar enzymes with an 

overall sequence identity of 82%. The catalytic domain is present on the N-terminal 

region and represents the major part of the enzymes. When produced by recombinant 

techniques in vitro, HDAC 1 and 2 are inactive suggesting the necessity of the presence 

of co-factors that form complex with them to restore the HDAC activity. In addition both 

the activity and complex formation are further regulated by phosphorylation.40 HDAC 3 

(428 aa) is most similar to HDAC 8 (with 34% overall sequence identity) and has N-

terminal localization of the catalytic domain as all class I HDACs. In addition to the NLS 

that the other class I HDACs posses, a NES is also present in HDAC 3 (region 188-313). 

Apart from its capability to deacetylase the histones, studies performed in vitro and in 

vivo have demonstrated that HDAC 3 can also regulate the activity of HDAC 4, 5, 7 

forming oligomers with them through complex formation with SMRT (silencing mediator 

for retinoic acid and thyroid hormone receptors) and N-CoR (nuclear receptor co-

repressor).41HDAC 8 (377 aa) consists largely of the catalytic domain with a NLS in the 

centre.  It is not yet completely clear if the HDAC 8 activity is regulated by co-repressor 

complex of proteins. The few information about the exact localization of HDAC 8 in our 

hands revealed a varying degree of its expression in several tissue.42 

2.3.2 Class IIa (HDAC 4, 5, 7, 9)  

 The members of this family present homology with the yeast Hda1.  HDAC 4, 5, 

7, 9 are able to shuttle in and out from the nucleus in response to certain cellular signals.43 

The shuttling of HDAC 4, 5 and 7 (1084, 1122 and 1215 aa) between nucleus and 
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cytoplasm have been studied extensively  in differentiating muscle cells and described in 

a clear model.44 In response to differentiating signals HDAC 4 is phosphorylated by 

Ca2+/calmodulin-dependent kinase (CaMK), resulting in the export of HDAC 4 along 

with CRM1 (cellular export factor for proteins bearing a leucine-rich NES). Once in the 

cytoplasm the phosphorylated HDAC 4/CRM1 complex is recognized and bound from a 

14-3-3 protein (a cytosolic anchor protein) which retains HDAC 4 in cytosol. After that 

terminal differentiation occurs HDAC 4 is released from 14-3-3 protein due to decrease of 

its phosphorylation state and can shuttle back to the nucleus.45 HDAC 5 resides in the 

nucleus during the proliferation state  and it shuttles from the nucleus to the cytoplasm 

during the differentiation events. The mechanism of HDAC 5 export can be mediated 

from the same components already described for HDAC 4 (CRM1/ CaMK/14-3-3), 

although, since HDAC5 also has a NES domain, it could not be confirmed that it is solely 

responsible for the transport of HDAC 5 out of the nucleus.46 It follows that both HDAC4 

and HDAC5 reside initially in the same compartment, but end up in the cytosol and the 

nucleus respectively. HDAC 7 has a high degree of homology with HDAC 5 except the 

lack of the NES domain. As already described for HDAC 5 also HDAC 7 can shuttle 

from the nucleus to the cytoplasm during the differentiating events depending on the 

presence of CaMK and 14-3-3 protein. All three HDACs have their catalytic domains on 

the C-terminal half of the protein, and the NLS is situated close to the N-terminus. The N-

termini of HDAC 4, 5, 7 interact specifically and repress the myogenic transcription 

factor MEF2, which plays a crucial role as a DNA binding transcription factor, in muscle 

differentiation. When associated with HDAC, MEF2 is inhibited blocking muscle cell 

differentiation. CaMK dissociates of this complex by phosphorylating the HDAC 

restarting the muscle cell differentiation.44 Alternatively,  the activity of HDAC 4, 5 and 7 

20 

 



is also associated with the presence of HDAC 3.47 Thus, the activity of HDAC 4, 5, 7 

seems to be a link between DNA binding recruiters and HDAC3-containing HDAC 

complex. 

 HDAC 9 splice variants are considered as separate group related to HDAC 4, 5, 7 

and localized in the nucleus or cytoplasm depending on the variants. The catalytic domain 

is located in the N-terminus region. There are three different splice variant of HDAC 9, 

which are HDAC 9a, HDAC 9b and HDRP/HDAC 9c (1011, 879 and 590 aa).43  

 HDRP/HDAC 9c lacks the catalytic domain and presents 50% homology with N-

terminus region of  HDAC 4 and 5. The loss of the catalytic domain is overcoming by the 

capability to recruit HDAC 3. In addition HDAC 9 is able to interact with MEF2, 

indicating that HDAC 9 could have an important role in muscle differentiation.48 

2.3.3 Class IIb (HDAC 6 and 10).  

 HDAC 6 (1215 aa)  is evolutionary most closely related to HDAC 10 (669 aa) 

(37% sequence identity) and presents low degree of homology with the other HDAC 

isoforms. HDAC 6 is mainly localized in the cytoplasm but can be found also in the 

nucleus in complex with HDAC11, while HDAC 10 has been found in both nucleus and 

cytoplasm.49 

 HDAC 6 represent a very unique enzyme within the HDAC family, because it 

contains to catalytic domains arranged in tandem, which are very similar to the catalytic 

domain of HDAC 9.51 Another unique feature of HDAC 6 is the presence in the C-

teminus region of a HUB domain, which is a signal for ubiquination, indicating that is 

enzyme is very highly degraded.43 HDAC 6 functions also as tubulin deacetylase, 

regulating microtubule-dependent cell motility.49 
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 HDAC 10 (669 aa) is the most recently identified isoform of the class IIa HDACs. 

It has a catalytic domain in N-terminal, a NES and a putative catalytic domain in C-

terminus. HDAC 10 is found to interact with HDACs 1, 2, 3 and HDAC 4, 5, 7 indicating 

an is potential role as recruiter rather than deacetylase. However, when expressed alone 

HDAC 10 shows the capability to deacetylate the histones.51 

2.3.4 Class IV (HDAC 11).  

 The HDAC 11 has been classified recently as member of the class IV HDAC. It is 

located mainly in the nucleus but also in cytoplasm as complex with HDAC 6. HDAC 11 

appears more closely related to HDAC 3 and 8, presenting the catalytic domain situated at 

the N-teminus, with proven deacetylase activity that can be inhibited by trapoxin (HDAC 

inhibitor).52 

2.3.5 Class III (Sir 1-7).  

 Actually seven distinct mammalian HDAC have been identified and classified as 

members of this families of enzymes based on their unique catalytic domain characterized 

by its requirement for nicotine adenine dinucleotide (NAD) as cofactor.53 Moreover they 

present higher overall identity degree with the yeast Sir2. Sir 1, 2, 6 and 7 are mainly 

localized in the nucleus while Sir 3, 4 and 6 have been found more in the mitochondria. In 

eukaryotes, sirtuins regulate transcriptional repression, recombination, the cell division 

cycle, microtubule organization, and cellular responses to DNA-damaging agents. 

Sirtuins have also been implicated in regulating the molecular mechanisms of aging.54  
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2.4 HDACs and cancer.   

 Zn++-dependent HDACs, class I (HDAC 1, 2, 3, 8), class IIa (HDAC 4, 5,  7, 9a, 

9b and HDRP/HDAC 9c) and class II b (HDAC 6 and 10) have been extensively 

associated with oncogenesis, while only recent studies indicate that Class III (Sir T1-7) 

could be involved in cancer process as well. Since the aim of our study was the design 

and synthesis of analogues of FK228, a well known Zn++-dependent HDACs inhibitor, 

herein we are going to focus our attention on the understanding of the connection of 

aberrant recruitment and expression of this family of enzymes with cancerogenesis.29 

 Most studies relating to the aberrant recruitment of HDACs have reported that 

HDACs can be physically associated with DNA-binding oncogenic fusion proteins 

resulting in repression of specific onco-suppressor genes.55 Moreover HDACs can also 

interact with specific repressive transmission factors that are overexpressed in the tumoral 

cells, producing repression of the transcription of fundamental growth-regulatory 

components like CDKN1A (encoding p21WAF1/CIP1).56 

 In addition to aberrant recruitment of HDACs to specific loci, also altered 

expression of specific HDACs in several tumoral cells has been reported. For example, 

HDAC 1 is overexpressed in prostate,57 gastric,58 colon,59 and breast carcinomas,60 while 

HDAC 2 is overexpressed in colorectal,61 cervical62 and gastric cancer.63An increased 

expression of HDAC 3 and HDAC 6 has been observed in colon60 and breast64 cancer, 

respectively.  

 These evidences highlighted that HDACs-inhibition induces in transformed cells 

biological responses such as apoptosis, cell cycle inhibition and differentiation through 

the selective reactivation in tumor cells of silenced oncogenic transcriptional repressors.65 
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This preliminary assumption might be confirmed in part from the recent finding that only 

transformed cells are sensitive to HDAC inhibitors-induced apoptosis.66 

 Thus, the transformed cells seem to alter the epigenome in such way that 

otherwise-silenced genes can be activated by HDACi. It follows that the therapeutic 

effects of HDACi are not accomplished by reversing the aberrant transcription mediated 

by the transforming oncogene, but rather through the effects on the malignant epigenome 

that result in the tumor-specific induction of pro-apoptotic gene. 

2.5 Biological effects of HDACs inhibition (effects on histonic proteins). 

 HDAC-inhibition represents an emerging strategy for intervention in oncology. 

HDACi are considered as multitarget drugs exhibiting a range of cellular effects, 

including differentiation, inhibition of proliferation and induction of apoptosis. 

2.5.1 HDAC-induced apoptosis.  

 In vitro studies have demonstrated that the treatment with HDACi results in an 

apoptotic response of the tumor cell lines ten folds higher then normal cell lines.67 Despite 

the relationship between treatment with HDACi and tumor cell death had been widely 

demonstrated, the pathways which are engaged to mediate this effect need to be still fully 

elucidated. In addition, it seems that the effects of HDACi can be cell-type-dependent, 

and there is growing evidence that structurally diverse HDACi can have different effects 

in the same cell type. This might be directly related to the selectively of the inhibitors 

toward specific HDAC enzymatic isoforms.66  

Death-receptor (extrinsic) pathway. Many studies have hypothesized a transcriptional 

activation of death receptor family TNF and their ligands following HDAC1 treatment.68 
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However, the correlation between HDACi signal and death receptors remains still 

controversial. In fact, almost all the HDACi-death receptor studies have been performed 

in vitro using human tumour cell lines, while only limited information are available on the 

effective role of the death receptor pathway on the HDACi-response. Insinga and 

colleagues performed an in vivo study using PML–RAR transgenic mice that develop 

AML to try to address this ssue.69 HDACi-induced expression of TRAIL and Fas in AML 

cells was suppressed in vivo using TRAIL- and Fas-selective small interfering RNA 

(siRNA), resulting in a 50% reduction in apoptosis following treatment of mice with 

valproic acid (VPA). Despite these data provided more information on the potential 

dependence of HDACi activity from the death receptor pathway, this  correlation 

remains still unsolved.  

Mitochondrial (intrinsic) death pathway. The involvement of the mitochondrial 

apoptotic pathway in HDACi-mediated tumor cell death has been proposed from alarge 

number of independent studies. A prominent example supporting this hypothesis is 

represented from the primary B-cell lymphomas overexpressing BCL2 that are 

completely resistant to SAHA and LBH589. How HDACi trigger  activation of the 

intrinsic apoptotic cascade is a major question that remains to be fully answered. Two 

main models have been reported to address this issue. 1) Selective activation or induction 

of BH3-only proteins. BH3-only proteins regulate the activation of intrinsic apoptotic 

pathway by interacting with pro-apoptotic factors (Bax and Bak) or anti-apoptotic BCL2 

family proteins.70 BH3-only  proteins can be activated transcriptionally or through post-

transcriptional modifications in response to HDACi treatment.71 However, the member of 

the BH3-only proteins family more sensible to HDACi and how they are activate in 

response to these agents are currently undefined. 2) Regulation of ROS 
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production/activity. The regulation of ROS production and activity represents an 

alternative pathway proposed as mechanism of HDACi-induced apoptosis and to explain 

the tumour-selective killing activity of these agents. This observation is supportedfrom 

several studies that have highlighted suppression of apoptotic activity of HACi when the 

cells are in presence of free radical scavengers.72 How the levels of free radical are 

elevated in the cells after HDACi treatment  remains still to be fully elucidated. 

2.5.2 Cell-cycle arrest.  

 Tumor cell-cycle arrest associated with induction of cellular differentiation was 

the first capability described for HDACi.73 Except Tubacin,74 which is HDAC6 specific 

inhibitor, all HDACi studied to date can induce cell-cycle arrest G1/S, through the p53-

independent induction of CDKN1A (encoding p21WAF1/CIP1), that promotes the 

hypophosphotylation of pRb.75 CDKN1A down-stream events seem to be partially 

responsible of the G1 arrest observed; in fact, HDACi can also repress cyclin A and D 

genes, that contribute at the loss of CDK2 and CDK4 kinase activities and  

hypophosphotylation of pRb. In addition, two important genes involved in DNA 

synthesis, CTP synthase and thymidilate synthetase, are repressed following HDACi 

treatment contributing to G1/S arrest.76Moreover, in response to HDACi treatment the 

cells can activate other potential growth inhibitory mechanisms including regulatory 

genes such as GADD45 α and GADD45 β65, and upregulation of TGFβ receptor 

signalling, leading to repression of c-MYC and cell-cycle arrest.77 

 Additionally, HDACi can also mediate G2/M-phase arrest by activating a G2-

phase checkpoint, although this is a much rarer event than HDACi-induced G1 arrest. In 

26 

 



some cases, the loss of the G2-phase checkpoint can determine apoptotic sensitivity to 

HDACi.78 

2.5.3 Tumour angiogenesis, metastasis and invasion.   

 HDACi have showed anti-angiogenic, anti-invasive and immunomodulatory 

activities in vitro and in vivo, that could contribute to the inhibition of tumor development 

and progression. The anti-angiogenic activity has been associated with the capability of 

HDACi to downregulate pro-angiogenic genes like vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF), hypoxia inducible factor-1 (HIF1), 

angiopoietin, tunica intima endothelial kinase 2 (TIE2) and endothelial nitric oxide 

synthase (eNOS).79 These mechanisms along with others such as downregulation of the 

expression of chemokine (C-X-C motif) receptor 4 (CXR4) or suppression of endothelial 

progenitor cell differentiation80 evidence that HDACi suppress neovascularization 

through alteration of genes directly involved in angiogenesis. 

 The anti-metastatic effect following HDACi treatment might be achieved through 

transcriptional repression of matrix metalloproteinasis (MMPs) or upregulation of 

TIMP1, TIMP2 and RECK, which play crucial roles in the negative control of MMPs.81  

 Recent studies have highlighted also a potential role of HDACi during the 

antitumor immunity response either by directly affecting malignant cells in order to make 

them more attractive targets or by altering immune cells activity and/or cytokine 

production. One of the proposed mechanisms is that HDACi can augment the 

immunogenicity of tumor cells by upregulating the expression of major histocompatibility 

complex (MHC) class I and II proteins and co-stimulatory/adhesion molecules like CD40, 

CD80, CD86 and intracellular adhesion molecule 1 (ICAM1).82 Moreover, it has been 
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demonstrated that HDACi can also stimulate the expression on the surface of the tumor 

cells of MICA and MICB, two MHC class I chain-related molecules which interact with 

the activating immunoreceptor NKG2D (natural killer cell protein group 2D) presents on 

the surface of killer cells T cells and CD8 T.83 

 As mentioned above the alternative strategy for HDACi to achieve 

immunomodulatory effects is by enhancing the immune responses through the directly or 

indirectly variation  of cytokine secretion which results in alteration of the activities of 

immune cells.84 At the present it is unclear whether this variation is closely correlated 

with the hypeacetylation of histones within the promoter/enhancer regions of cytokine 

genes or with other effects of HDACi.  

 

2.6 Biological effects of HDACs inhibition (effects on non-histonic proteins) 

 The anti-cancer effects of HDACi above described are mainly correlated to their 

capability to regulate gene expression through the stabilization of hyperacetylated 

histones. However, histones are not the only molecular targets of HDACs, and therefore 

HDACi can affect tumor cell biology through pathways that do not directly involve 

histones.85 

HDACi-induced apoptosis through ”indirect” regulation of gene expression. Increasing 

evidences indicate that HDACi-mediated gene expression is not necessarily correlated 

only with the acetylating state of histones but rather also with the regulation of 

transcription factors such as E2F1, p53, STAT1, STAT3 and NF-B.86 It has been 

observed that the hyperacetylation of these proteins in response to HDACi can affect the 
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expression of downstream target genes, not through direct promoter hyperacetylation of 

these genes, but through the activity of the hyperacetylated transcription factors. 

Moreover, recent studies support a role for acetylation of transcription factors in 

mediating the selective induction of apoptotic genes in response to DNA damage. For 

example, although several studies have demonstrated that expression of wild type p53 is 

not necessary for the HDACi-induced apoptosis, these agents can regulate the activity of 

both wild and mutated p53 to induce a p53-mediated apoptosis.87 The activation of p53 

results in a transcriptional induction of pro-apoptotic genes including Bax, the BH3-only 

genes Puma and Noxa, and in a functional repression of anti-apoptotic factors such Bax, 

BCL-XI and BCL2, which are directly bound by p53.88 Together, these p53-mediated 

responses initiate a strong apoptotic signals. The stabilization of the hyperacetylated form 

of wild-type p53 increases the expression of p53 target genes such as those above 

mentioned to start the apoptosis.89 

 Intriguingly, recent evidences have reported the capability of HDACi to induce the 

specific degradation of mutant p53 through strong induction of the wild-type p53 activity 

induced by mutant p53.90 

 In some instances it has been observed that the hyperacetylation and activation of 

transcriptional factors can prolong cell survival instead than cell death. This could be the 

case for the NF-B protein p65/RelA, that, when hyperacetylated can not be sequestered 

by inhibitor and NF-kB and can translocate to the nucleus where it is involved in the 

activation of anti-apoptotic genes including X-linked inhibitor of apoptosis (XIAP) and 

BCL-XL.91 
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HDACi-induced apoptosis independent of altered gene expression. Although most of the 

biological effects such as apoptosis and cell cycle arrest of HDACi have been correlated 

with direct and indirect regulation of transcriptional factors, it is probable transcription-

independent effects of HDACi are also important in their anticancer activities.92 For 

example, while the hypoacetylated form of the DNA end-joining protein Ku70 binds to 

and sequester Bax in the cytoplasm, acetylation of Ku70 in response to HDACi releases 

Bax, which can interact with mitochondrial membrane initiating apoptosis.93  

 In addition HDACi have showed the capability to affect the activity of  diverse 

kinase-mediated signal transduction pathways resulting in dysregulated phosphorylation 

of various downstream substrates. For example, HDAC 6, protein phosphatase PP1, and 

-tubulin form a complex that once disrupted by HDACi results in -tubulin 

hyperacetylation and microtubule stabilization.94  

 Recently, it has been highlighted also a potential involvement of HDACs in the 

regulation of the activity of heat-shock protein 90 (Hsp90), which is an abundant 

chaperone whose overexpression in tumor cells and correlates with poor prognosis and 

resistance to chemotherapy.95 Inhibition of HDAC6 induce hyperacetylation of Hsp90, 

which leads to the proteasomal degradation of Hsp90 client proteins HER2/neu, ERBB1, 

ERBB2, Akt, c-Raf, BCR-ABL and FLT3. The importance of hyperacetylation of 

proteins such as Hsp90 and -tubulin as major mediator of HDACi-induced apoptosis 

remains to be determined.96  
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3. HDAC INHIBITORS 

 Until now, many inhibitors of Class I, II and IV HDACs have been isolated from 

natural source or synthetically developed. HDACi cause cell cycle arrest and/or apoptosis  

of many tumors by blocking the access of hostone and non histone substrates to the 

enzyme catalytic pocket. With few exceptions, HDACi can be divided in six different 

classes based on their chemical features,97 including:  

1.  Short-chain fatty acids such as valproic acid (VPA) and butyric acid 

2.  Hydroxamates such as Trichostatin A (TSA), Suberoylanilide hydroxamic acids 

 (SAHA) 

3.  Benzamides such as MS-275 and CI-994 

4.  Cyclic peptides such as FK228, Trapoxin A, Apidicin and CHAPs 

5.  Electrophilic ketones (Triluoromethylketone),  

6.  Other hybrids compounds such as Depudecin and MGCD-0103  

 

 The first known member of HDACi is the butyrate which was proposed to have 

anticancer activities based on its capability to induce cellular differentiation. Only in 

1990, the suppression of tumor cell growth/survival following butyrate treatment was 

linked with the inhibition of HDACs activity.98 

 Several HDACi are currently in phase I/II clinical trials both in hematological 

malignancies and in solid tumors. Compared with agents used initially which were active 
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at millimolar or micromolar concentrations, some newer agents such as FK228 and TSA 

are effective at nanomolar concentrations and are relatively less toxic.  

 Despite the wide range of structures, most of these HDACs inhibitors can be 

broadly characterized by a common pharmacophore that consists in a hydrophobic cap 

that blocks the access to the active site (1) connected by a spacer (2) to a functional zinc-

binding group (ZBG) (3) (Figure 6).99  

 

  

 

 

 

 

Figure 6. Pharmacophore model for HDACi-TSA 

  

 The different ZBGs (carboxylate, hydroxamate, sulfhydrilic and ketone) interact 

with the Zn++ ion located in the bottom of a tunnel (11 A deep in HDLP) completing 

along with two aspartates and one histidine the coordinator sphere of the metal. The 

channel accommodates the linker region of the ligand and provide additional stabilization 

through hydrophobic interaction. The cap region of the different HDACi can be oriented 

toward several distinct pockets in the solvent-exposed entrance of the channel that are less 

conserved across the different HDAC isoforms (Figure 7).  
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Figure7. Proposed model of interaction of TSA with HDAC active-pocket. 

 Although most of HDACi under investigation were not developed to be selective 

inhibitors of individual HDAC subtypes, it remains still a challenge to develop selective 

inhibitors which could be useful to achieve more information about the underlying 

biochemical processes involved in the cancerogenesis.100
 

 Among those under pre-clinical investigation, FK228 (also known as FR901228 or 

Romidepsin) is a natural product isolated from Chromobacterium Violaceum (Figure 

8).101  It is structurally unrelated to the other HDAC inhibitors bearing a unique bicyclic 

depsipeptide which works as stable prodrug (Figure 8). As Furumai et al. have 

demonstrated, FK228 becomes activated by the reduction of its disulfide bond after 

uptake into cells releasing a sulfidryl group that appears to be important for the 
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interaction with the Zinc cation located at the bottom of the active site.102  In addition, it 

shows high selectivity toward class I HDACs,103 which seems to be mainly relevant for 

therapeutic intervention in oncology.104  

 

  

Figure 8. FK228 structure and its proposed mechanism of activation into the cell  

  

 Despite its exceptional activity,  no significant derivatizations have been 

performed on FK228 mainly due to its synthetic difficulties, which were highlighted from 

Simon and co-workers that first reported its synthesis (18% overall yield in 16 steps105).  

 Very recently, an improved synthetic route has appeared, in which the heptenoic 

acid was build using an asymmetric Noyori hydrogen transfer reaction, however no 

increase in overall yield (13%) was achieved.106   

 In both the studies, three principal challenges associated with the synthesis of the 

byciclic depsipeptide structure were noticed, that are (1) the asymmetric synthesis of the 
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(3S,4E)-3-hydroxy-7-mercapto-4-heptenoic acid; (2) the macrolactonization to form the 

16-membered cyclic depsipeptide; and (3) the oxidation of thiols to form the 15-

membered ring. 
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4. RESULTS AND DISCUSSION 

4.1 Design. 

 To overcome the synthetic difficulties identified from the previous synthesis,105-106 

the most synthetic challenging moiety (3S,4E)-3-hydroxy-7-mercapto-4-heptenoic acid in 

FK228 was modified into a structure that can be easily assembled using readily available 

starting materials, yet still has a capability to retain the same conformation required for 

the biological activity.107 

 First, the trans double bond in the heptenoic acid was replaced by an isosteric 

amide bond. Often, to develop peptidomimetics, an amide bond in peptides has been 

successfully replaced with a trans double bond because of its structural rigidity and 

capability to present two alkyl chains on opposite sides.108  

 Second, the ester bond to form the depsipeptide was replaced by another amide 

bond for facile ring closure that can provide higher synthetic yield and increased in vivo 

stability.109 

 These two simple modifications transformed the synthetically challenging 

heptenoic acid into (S)-3-Amino-4-(2-mercaptoethylamino)-4-oxobutanoic acid, a 

structure that can be easily assembled with an L-aspartic acid and a cysteamine (Figure 

9). 

 

 

 

 

Figure 9. From (3E,4S)-3-hydroxy-7-mercapto-4-heptenoic acid to S)-3-Amino-4-(2-

mercaptoethylamino)-4-oxobutanoic acid. 
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 To assure similar structures between FK228, the novel FK228 analogue bearing a 

L-Ala at position originally occupied by Z-Dhb was examined by molecular modeling. A 

Monte Carlo conformational search using MacroModel110 (version 9.1, Schrödinger) and 

united atom AMBER force field, showed the almost identical structure compared to 

FK228 (RMSD = 0.20 Å; Fig. 1B). Thus, the isosteric replacement of (3S,4E)-3-hydroxy-

7-mercapto-4-heptenoic acid  with (S)-3-(2-mercaptoethylcarbamoyl)-3-aminopropanoic 

acid appeared to not alter significantly the original backbone structure of FK228 (Figure 

10).  

 

(A) (B)
 

 

 

 

 

Figure 10. Structures of a novel FK228 analogue. (A) Analogue design and (B) 

conformation (orange) overlaid on FK228 (green). 
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4.2 Synthesis.  

 All the 62 compounds (1-62) have been synthesized adopting a high efficient 

solid-phase synthetic route, which we have developed and reported in the first part of our 

study as platform for the production of a large number of compounds.107 Subsequently, 

five generations of compounds were prepared (Figure 2-6), wherein in addition to the 

introduction of the aspartilcysteamine moiety, the first two primary involved the 

incorporation of variegate amino acids to the positions occupied by L-Val and Z-Dhb in 

the original FK228 structure. The biological results achieved from the preliminary 

screening of the first series of analogues inspired the design of the other successive three 

series of compounds.  

 As shown in scheme 1, the FK228 analogues were synthesized anchoring a 

cysteamine by reductive amination on an Aminomethylated-Polystyrene (AM-PS) resin 

previously functionalized with a backbone amide linker (BAL linker).111 To the resulting 

secondary amine (1), the first amino acid, Fmoc-L-Asp(OAl), was coupled with HBTU112 

for 12 h (80% yield). However, when several coupling methods were screened (see Table 

1), TFFH113 was found to provide a higher yield (95%). Also, coupling the amino acid as 

a symmetric anhydride by treating with DIC was effective (98% yield). Thus, the 

aspartylcysteamine (2) was constructed by one simple coupling reaction and represents a 

surrogate for the challenging heptenoic acid that was synthesized over five steps (51% 

yield) in the previously reported synthesis. 
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Table 1. Conditions for the coupling of Aspartic acid. 

RESIN AA1 CC2 t (h) YIELD 

N
H

STrt

 

Fmoc-Asp(OAll)-OH (4 eq) 
HBTU/HOBt/DIEA  

(4:4:8 eq)  
12 80% 

N
H

STrt

  Fmoc-Asp(OAll)-OH (4 eq) 
Bop/HOBt/DIEA  

(4:4:8 eq) 
12 85% 

N
H

STrt

  Fmoc-Asp(OAll)-OH (4 eq) 
PyBrop/DIEA  

(4:4 eq) 
12 88% 

N
H

STrt

  Fmoc-Asp(OAll)-OH (4 eq) 
TFFH/DIEA  

(10:10 eq) 
12 95% 

N
H

STrt

  Fmoc-Asp(OAll)-OH (10 eq)
DIC/DIEA  

(5:5 eq) 
12 98% 

N
H

STrt

 
Fmoc-Asp(OAll)-OH (4 eq) 

DIC/DIEA  

(2:2 eq) 
12 98% 

 

 

 The remaining four amino acids required to build a linear pentapeptide were 

introduced using standard N-Fmoc/tBu solid-phase peptide synthesis strategy (64-68). For 

the construction of the bicyclic structures, the D-Cys was conserved in all FK228 

analogues. All reactions used to prepare linear pentapeptides (68) proceeded with high 

yields and high purity (> 95%). 

 The allyl protecting group of the linear pentapeptides (68) was selectively 

removed, followed by the deprotection of the N-Fmoc group and then the macrolactam 

(69) was formed by treating with a coupling reagent like HBTU for 3 h with high purity 

(> 95%).  
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 Next, the Trt protecting groups was selectively removed by TFA (1% in DCM), 

and the resulting free thiols were oxidized using iodine to make a disulfide bond. The 

bicyclic FK228 analogue (1-62) was cleaved from the resin by TFA (95%) and 

characterized by HPLC and ESI-MS. The synthetic scheme developed revealed to be very 

powerful providing high overall yield (75-90%) and purity (80-94%) for all the 

compounds herein described. 

 

Scheme 1. Synthesis of FK228 analoguesa   
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aReagents and conditions. (a) NaBH3CN; (b) Fmoc-Asp(OAl),DIC; (c) Piperidine; (d) 
Fmoc-AA1, HBTU; (e) Fmoc-AA2, HBTU; (f) Fmoc-D-Cys(Trt), HBTU; (g) Fmoc-AA3, 
HBTU; (h) Pd(PPh3)4, DMBA; (i) HBTU; (j) 1% TFA; (k) I2; (l) TFA 
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 To synthesize the analogues 1 and 34, Z-Dhb was introduced in solid phase 

adapting the steps reported in the previous synthesis.105  

 A monocyclic peptide bearing L-Thr at the position of the Z-Dhb (69) was 

constructed as described above in the general scheme. Then, the -hydroxyl group of the 

Thr was first tosylated and then eliminated by DBU treatment resulting in the introduction 

of Z-Dhb (70) as described in scheme 2. The formation of the tosylated intermediate and 

its successive dehydration were quantitative monitored by analytical HPLC.  

 Next, due to the presence of the - unsaturated system of Z-Dhb, the reaction 

conditions for formation of the disulphide bridge were investigated adopting also an 

alternative solution phase strategy in order to evaluate potential side reactions resulting 

from the iodine treatment. 

 Thus, first the disulphide bond was formed using iodine at similar reaction 

conditions described in scheme 1, and the bicyclic compound was finally removed from 

the resin using TFA (95%) and later characterized by HPLC and ESI-MS.  

 Alternatively, the solid phase synthesis was stopped after the formation of the     

Z-Dhb and the monocyclic compound 71 was cleaved from the resin, recovered and then 

oxidized to 1 in solution using milder oxidant reagent like DMSO for a time of 36-48 h.  

 Both the strategies for the conversion of the monocyclic intermediates 70 and 71 

to 1 were monitored by HPLC and later confirmed by ESI-MS and resulted to be 

quantitative. Interestingly, no significative side products were noticed for the solid-phase 

oxidation with iodine, probably due to the short time of reaction which minimized the 

possibility of undesired reactions. Moreover, higher yields were observed with the solid 

phase strategy (75% Vs 60% yields), probably because of the work-up required to remove 

the DMSO from the solution, which resulted in a loss of material.  
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Scheme 2. Synthesis of Z-Dhb analogue in solid phasea 
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(f) DMSO/CH3OH/H2O/NaHCO3 
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4.3 Antitumoral activity and Structure-activity relationship study (I part) 

 FK228 has been reported to strongly inhibit the growth of several human cancer 

cell lines, such as T24 cells derived from urinary bladder carcinoma.114 To examine 

antitumoral activity, a total the 62 analogues synthesized were preliminary screened using 

T24 cells at the concentration of 0.5 and 5 M. The potency exhibited by FK228 is shown 

so that comparisons can be made between the natural product and our synthetic 

analogues. The histogram for each series of compounds shows the percent of inhibition of 

growth produced by a concentration of 0.5 and 5 M compound. Later, to further evaluate 

the efficacy of the active compounds identified, two of them were selected and assessed 

on six different cancer cell lines (prostate and bladder). 

 

 

 

4.3.1 First series. 

 The compounds 1 was generated introducing the aspartilcysteamine moiety in the 

original amino-acidic sequence of the FK228 (L-Val-Z-Dhb-D-Cys-D-Val), while the first 

series of analogues was synthesized through the incorporation of variegate natural amino 

acids bearing aliphatic (L-Ala, L-Val, L-Leu, L-Ile, L-Pro), aromatic (L-Phe, L-Trp, L-

His) and polar (L-Lys, L-Asp, L-Thr) side-chains at the position 3, which was occupied 

from a Z-Dhb in the original FK228. Moreover, the study of the third position was 

accomplished introducing unnatural amino acids such as L-Phg, Aib, D-Ala.  
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 The growth inhibition data shown in the Figure 11 evidence that, surprisingly, no 

compound of this first generation provided satisfy activity (IC50 > 100 M, data not 

reported), whether the presence of Z-Dhb or not at position 2 (1-15). These results 

appeared to advise that the presence of the aspartilcysteamine moiety results in 

significative structural-changes that lead to a loss of potency no matter the nature and the 

stereochemistry of the amino-acids introduced at the position 3. 

  

NHN
H

HN

N
H

NH

NH S
S

O

O
O

OO
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3

 R3   R3 

1 Z-Dhb  8 L-Phe 

2 L-Ala  9 L-Trp 

3 L-Val  10 L-Lys 

4 L-Ile  11 L-His 

5 L-Leu  12 L-Asp 

6 L-Pro  13 L-Thr 

7 Gly  14 L-Nle 

   15 D-Ala 

Figure 11. I series of compounds 
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4.3.2 Second series. 

 Despite the discouraging results observed testing the first series of compounds, we 

proceeded with the synthesis of the second generation of compounds, which was created 

keeping the position 3 as L-Ala, while the position of L-Val was investigated with 

different L- and D- amino acids. 

 The choice to keep a L-Ala at position 3 in place of a Z-Dhb resulted from two 

main considerations: 

1.  No significant difference in terms of activity were observed between the 

 compounds bearing Z-Dhb (1) and L-Ala (2) at the position 3.  

2.  The introduction of a Z-Dhb moiety required some more steps of reactions. 
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2

 R2   R2 

16 L-Ile  20 L-Nle 

17 L-Leu  21 L-Asp 

18 L-Phe  22 L-Ala 

19 L-Lys  23 D-Val 

 

Figure 12. II series of compounds  
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 As shown in Figure 12 only the compound 18 with a L-Phe at the position 2 

produced 37 % cell growth inhibition at 5 M while the other members of the series (16, 

17, 19, 20, 21, 22, 23) containing respectively (L-Ile, L-Leu, L-Lys, L-Nle, L-Asp, L-Ala, 

D-Val,) at the position 2  were found to be inactive providing results in lane with those 

observed testing the first series of compounds.  

 Thus, almost all the compounds belonging to the first and second series did not 

provide any satisfy activity; however the introduction of an aromatic ring like L-Phe 

partially restored the cytotoxic activity leading to the compound 18 which is 1000-fold 

less potent than FK228.  

  

4.3.3 Third series. 

 The compound 18 was selected as new lead compound to synthesize a new batch 

of analogues replacing the L-Ala in position 3. 

 As reported in the histogram in Figure 13, the introduction of polar like L-Lys and 

L-Asp at position 3 (24 and 25) appeared to be not tolerated resulting in a completely loss 

of activity. Conversely, the presence of bulkier aliphatic amino acids as L-Ile and L-Leu, 

resulted in compounds (27  and 28) at least twice more potent than 18, while the analogue 

bearing the unnatural amino acid L-Nle at the position 3 (29) revealed to be about 10 

times more potent than 18.  Moreover, when a L-Phe was introduced in place of a L-Ala 

(26) an additional increment of activity was observed leading to the most potent 

compound of the third series, which showed  99 % growth inhibition at 5 M (70% 

growth inhibition at 0.5 M).  

 Interestingly, the replacement of the L-Phe with different aromatic amino acids as 

L-Tyr and L-Trp produced a loss of activity. Also, a stereo chemical preference was 
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observed at the position of Z-Dhb, that when was substituted with a D-Phe resulted in a 

compound which was significant less potent than 26.   
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 R3   R3 

18 L-Ala  29 L-Nle 

24 L-Asp  30 L-Pro 

25 L-Lys  31 L-Tyr 

26 L-Phe  32 L-Trp 

27 L-Ile  33 D-Phe 

28 L-Leu  34 Z-Dhb 

 

Figure 12. III series of compounds.  

 The biological information achieved testing this third series of compounds let us 

formulate two important considerations. First, the enhancement of activity observed for 
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the compounds 27-29 provided more evidences that validated our hypothesis on the 

involvement of the aromatic ring in 18 in restoring the citotoxicity. Second, the further 

significative increment of cytotoxicity resulted from the introduction of a second L-Phe 

and subsequent decrease of activity following its replacement with amino acids bearing 

different aromatic side chains or stereochemistry, revealed additive important features of 

the position 3, such as stereo preference, important for the activity. 
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4.3.4 Fourth series. 

 The fourth generation of compounds was designed starting from 26 and replacing 

the position 5 originally occupied from a D-Val. First, the importance of the C-

stereocenter with D-configuration at the position 5 was demonstrated synthesizing and 

testing the compounds bearing respectively an L-Val and Gly (44 and 40) in position 5, 

which were found to be remarkably less potent then 26 (Figure 5).  
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 R5   R5 

26 D-Val  40 Gly 

35 D-Ala  41 Aib 

36 D-Leu  42 D-Phe 

37 D-Ile  43 D-Phg 

38 D-Nle  44 L-Val 

39 D-Pro    

 

Figure 13. IV series of compounds  
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 Also, a loss of potency was achieved introducing a further aromatic ring at the 

position 5 using amino acid like D-Phe and D-Phg, probably due to the excessive 

increment of the size of the molecules that impede the right interaction with the target (42 

and 43). Finally, a significant difference of activity was observed for the compounds 

achieved with the introduction of amino-acids with aliphatic side chains. The presence of 

amino acid with  no substitution or mono alkyl substituted on the -carbon such as D-Ala, 

D-Leu and D-Nle resulted in compounds less potent of 26. When the D-Val was replaced 

with a D-Ile an enhancement of activity was observed, leading to the compound 37, 

which is about 3-fold more potent than 26, suggesting that the ,dialkyl substitution of 

the D-amino-acid in position 5 helps to keep the right placement of the compound in its 

site of interaction.  
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4.3.5 Fifth series. 

 The fifth series of compounds was synthesized to investigate the requirements of 

the aromatic moieties at the position 2 and 3, replacing the two L-Phe of 26 with amino 

acids bearing aromatic ring with different distance from the backbone structure, size and 

electronic density.  

 First, the possibility to modify the distance of the aromatic moiety was evaluated 

introducing unnatural amino acids like L-Phg and L-Hph. As reported in the histogram in 

figure 6 the introduction of a single L-Phg at 3 lead to a slightly less potent compound 

(45). The replacement of the L-Phe at position 3 as well as the introduction of a L-Phg in 

both the positions resulted in completely inactivation (46 and 47).  

 Thus, the deletion of a -carbon of both the L-Phe in 26 resulted in a loss of 

citoxicity which is more significant when the position 2 is replaced with a L-Phg (46 and 

47). Successively, the distance  between the aromatic rings at the positions 2 and 3 with 

the backbone structure was increased introducing a L-Hph. The replacement of the L-Phe 

at position 3 (48) produced a loss of potency, while the introduction of a L-Hph at 

position 2 provide the compound 49 which is slightly more potent than 26. Interestingly 

when both the L-Phe were replaced with L-Hph, the resulted compound (50) showed 

higher antitumoral activity. Thus, while the loss of activity of the compound 48 along 

with what we have already observe for the compound 45 (L-Phg instead than L-Phe) 

seemed to exclude the possibility to vary the distance at the position 3, the enhancement 

of activity showed from the compound 49  indicated a better flexibility of the site of 

interaction of the aromatic ring in position 2 . Suddenly when two L-Hph were introduced 

(50) the negative effect of the replacement of the position 3 not only is compensated from 
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the presence of a second L-Hph at position 2, but even a kind of “synergistic” 

enhancement of activity was observed. 

 Next, the introduction of amino acids with increased size of the aromatic ring like 

L-2-Nal,  L-1-Nal, L-Trp and L-Phe(4-Ph) was evaluated. As showed in the histogram in 

Figure 6, the replacement of the L-Phe at position 3 with L-2-Nal  (51) leading a slightly 

increment of activity. The introduction of a L-2-Nal at position 2 provided the compound 

52 which was less potent than 26. According with the results achieved from the 

simultaneous replacement with two L-Hph, also the introduction of two L-2-Nal at the 

positions 2 and 3 of the compound 26, produced a significant enhancement of activity 

leading to the most potent compound of this study (compound 53, 100% inhibition at 0.5 

M, IC50 = 0.02 M).   The synthesis of three more compounds was performed using 

amino acids like L-1-Nal, L-Phe(4-Ph), L-Trp. First, the size of the aromatic ring was left 

invariated while its position was modified by using L-1-Nal instead than L-2-Nal (54). 

The activity of 54 (90% inhibition at 0.5 M) was very similar to that showed from 53, 

indicating that the modification of the placements of the two naphtyl groups is well 

tolerated from our structures. Next, the size of the aromatic rings was increased  by 

replacing the two L-Phe with  L-Phe(4-Ph) (57). The compound 57 showed citotoxicity at 

concentration similar to those previously observed for 26, suggesting that this substitution 

is well tolerated but not productive in terms of activity.  

 The compound 55 was designed based on the information achieved from the 

studies on the modifications of the distance and the size of the aromatic rings, introducing 

a L-Hph at the position 3 and a L-2-Nal at the position 3. Unfortunately, no enhancement 

of activity was observed leading to the compound 55 which showed 80% inhibition at 0.5 

M. 
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 The last modification on the size of the aromatic rings was performed replacing 

the two L-Phe of 26 with amino acids like L-Trp (56) that produced a completely loss of 

citotoxity probably due to the presence of the NIn that could represent a new potential 

point for the formation of hydrogen bonds that impedes the compound to reach the site of 

interaction. 

 Finally, the introduction of aromatic amino acids para-substituted with electron 

donators and acceptors groups as L-Phe(4-F), L-Phe(4-NO2) was evaluated in order to see 

if the strength of the interaction of the aromatic rings could be increased. The compounds 

58 and 59 resulting from the introduction of a L-Phe(4-F) respectively at the positions 2 

and 3 did not show any significant enhancement of activity if compared with 26.. 

 Conversely, the introduction of L-Phe(4-NO2) at the position 2 and 3 (compounds 

60 and 61) produced compounds slightly less potent then 26. Thus, the effects of the 

electron donators or acceptors on the activity was not fundamental and the loss of activity 

observed with 60 and 61 is probably due to the increment of polarity.  

 Last, we designed the hybrid compound 62 which was synthesized combining the 

structural features of the two most active analogues reported in the fourth and fifth series 

(37 and 53) in order to produce a “synergistic” enhancement of potency. The compound 

62 was constructed keeping two L-Nal at the positions 2 and 3 while the D-Val at position 

5 was replaced with D-Ile. Unfortunately, the desired enhancement of citotoxicity was not 

observed, and a compound less potent than 53 was achieved, probably due to the 

excessive increment of the size of the structure that loses the capability to correctly 

interact with the target inside the cells. 
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 R2 R3 R5  R2 R3 R5 

26 L-Phe L-Phe D-Val 54 L-Nal(1’) L-Nal(1’) D-Val 

45 L-Phe L-Phg D-Val 55 L-Hph L-Nal(2’) D-Val 

46 L-Phg L-Phe D-Val 56 L-Trp L-Trp D-Val 

47 L-Phg L-Phg D-Val 57 
L-Phe(4-

Ph) 
L-Phe(4-Ph) D-Val 

48 L-Phe L-Hph D-Val 58 L-Phe L-Phe(4-F) D-Val 

49 L-Hph L-Phe D-Val 59 L-Phe(4-F) L-Phe D-Val 

50 L-Hph L-Hph D-Val 60 L-Phe L-Phe(4-NO2) D-Val 

51 L-Phe L-Nal(2’) D-Val 61 
L-Phe(4-

NO2) 
L-Phe D-Val 

52 L-Nal(2’) L-Phe D-Val 62 L-Nal(2’) L-Nal(2’) D-Ile 

53 L-Nal(2’) L-Nal(2’) D-Val     

 

Figure 14. V series of compounds 
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4.4 Structure-Activity Relationship (summary) 

 As summarized below, the results of MTT-assay provided enough information to 

accomplish exhaustive Structure-activity relationship study that clarified the structural 

requirements of each position required for the antitumoral activity (Figure 15). 
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Figure 15. Structure-Activity relationship  

 

  Position 2. The presence of L-aromatic side chain amino acids is necessary for the 

antitumoral activity. The increment of the size of the aromatic rings such as Naphtyl 

instead than Phenyl group is preferred to achieve enhancement of activity. The 

introduction of aliphatic or polar side chains amino acids is not well tolerated. 
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L-C

  L-C


  D-C


  

Aromatic  > Aliphatic > 
Polar  

Aromatic  > Aliphatic > 
Polar  

Aliphatic > Aromatic > 
Polar  

Nal(2’) > Nal(1’) > Hph > 
Phe  

Nal(2’) > Nal(1’) > Hph > 
Phe  

D-Val and D-Ile > D-Nle > 
D-Leu > D-Ala  

Polar and aliphatic amino 
acids are not tolerated 

Polar amino acids are not 
tolerated 

Polar amino acids are not 
tolerated 
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 Position 3.  L-aromatic side chain amino acids are necessary for the antitumoral 

activity. The increment of the size of the aromatic rings such as Naphtyl instead than 

Phenyl group is preferred to achieve enhancement of activity. The introduction of 

aliphatic or polar side chains amino acids is not well tolerated. 

 Position 5. D-aliphatic side chain amino acids are necessary for the antitumoral 

activity. The presence of a -disubstituted carbon such as D-Val and D-Ile is required to 

achieve enhancement of activity. The introduction of aliphatic or polar side chains amino 

acids is not well tolerated. 
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4.5 Antitumor activity (II part) 

 The last part of the MTT study was conceived to confirm the effective capability 

of our analogues as antitumor agents. Two representative compounds were selected (26 

and 53) and tested on a panel of six different cancer cell lines (prostate and bladder) at 

concentrations of 0.001, 0.01, 0.1, 0.5, 1 and 5 M (Figure 16). Both the compounds 

showed to strongly inhibit the growth of all six cancer cell lines. Comparison between the 

activities evidenced that the compound 53 confirmed to be more potent than 26 on each 

single cancer cell line, showing growth inhibition at nanomolar concentrations 

comparable with those reported for FK228.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Antitumoral activity of 26 and 53 on various cancer cells.  
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4.5 HDAC assay.  

 To evaluate that the antitumor activity of our analogues resulted from the same 

mechanism of action previously described for FK228, the compounds 26 and 53, which 

have been previously selected for the MTT assay on six cancer cell lines, were tested as 

HDAC inhibitors using cell nuclear extract of urinary bladder cancer cells T24.  

 FK228 has been reported to behave as prodrug that becomes activated through the 

reduction of the disulphide bridge releasing the sulfidrilic function of the (3S,4E)-3-

hydroxy-7-mercapto-4-heptenoic acid  that interacts with a Zn++ atom placed on the 

bottom of the active site of the HDACs. To investigate the effective capability of FK228 

to inhibit isolated HDAC enzymatic isoforms, Furumai et al. tested it as reduced form 

preincubating FK228 with a solution of a reductive agent like DTT at a concentration that 

did not invalidate the results of the test.102 Thus, for our analogues we replied the same 

test condition reducing them by the treatment with an ethanolic solution of DTT 100 M. 

 The reduction of the disulphide bridge was monitored by analytical HPLC and 

stopped at 12 h when no significant amount of the oxidized form could be detected.  

As reported in Figure 7, both the compounds tested did not show significant capability to 

inhibit the HDACs activity at the same concentrations that were observed to effect the 

tumor cell growth.  

 Thus, our hypothesis of modification resulted in structural modifications of the 

original FK228 that inactivate its original HDAC-related mechanism of action. However, 

as mentioned in the MTT assay results, at least one of our analogues (53) has kept the 

antitumor activity at concentration comparable to those exhibited from FK228.  
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Figure 16. HDAC activity of 26 and 53 
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5. CONCLUSION 

 In summary, we have designed a novel FK228 analogue by simple isosteric 

replacement, and the modifications enabled rapid and efficient synthesis of a number of 

FK228 analogues in solid-phase.   

 Structure-activity study of a total of 62 FK228 analogues have revealed a new 

compound (53) with high antitumoral activity on various cancer cells.  Moreover, HDAC-

inhibition and the MTT studies clearly evidenced an unexpected loss of correlation 

between the antitumor activity and HDACs inhibition, that needs to be further 

investigated. 

 Based on the preliminary information in our hands we have formulated two 

hypothesis to explain the unexpected trend of our compounds.      

1. The introduction of the aspartilcysteamine moiety into the original FK228 

 produces noteworthy structural changes that result in a loss of the characteristics 

 required to inhibit HDACs, which is compensated from the acquisition of a new 

 capability to interact with an alternative target. 

2. Our analogues partially mimic the activity of FK228, that could normally interact 

 with an additional target apart from HDACs inside the cells which have been not 

 yet highlighted. 

 

 In any instances, it is our opinion that this study represent an exceptional starting 

point that could be accomplished following two alternative directions.  

 First, an in-depth biological study is required to provide the answers to the 

unsolved questions emerged in the course of the study, resulting in the identification of a 

new potential target for intervention in oncology. 
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 Finally, alternative isosteric modifications of the (3S,4E)-3-hydroxy-7-mercapto-

4-heptenoic acid should be hypothesized using similar building blocks, in order to restore 

the original HDACs-related activity keeping the synthetic advantages highlighted in this 

study.  
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6. EXPERIMENTAL SECTION 

 

6.1 Materials  

 N-Fmoc-protected amino acids, 5-(4-formyl-3,5-dimethoxyphenoxy)butyric acid 

(BAL), aminomethyl-polystyrene (AM-PS) resin and bromo-tris-pyrrolidino 

phosphoniumhexafluorophosphate (PyBrOP) were purchased from EMD Biosciences 

(San Diego, CA). O-Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU), N-hydroxybenzotriazole (HOBt), benzotriazolyloxytris-

(dimethylamino)phosphonium hexafluorophosphate (BOP) and tetramethylfluoro-

formamidinium hexafluorophosphate (TFFH) were purchased from Advanced ChemTech 

(Louisville, KY).  Disopropyl carbodiimide (DIC), N,N-diisopropylethylamine (DIEA), 

sodium cyanoborohydride, pyridine and trityl chloride were purchased from Acros 

Organics (Morris Plains, NJ).  Tosyl chloride was purchased from Alfa Aesar (Ward Hill, 

MA).  Triisopropylsilane (TIS), cysteamine hydrochloride, 5,5’-dithiobis(2-nitrobenzoic 

acid) (Ellmann’s reagent) and 1,8-Diazabicyclo[5.4.0]-undec-7-ene (DBU) were 

purchased from Sigma-Aldrich (St. Louis, MO). N-Fmoc-protected amino acids, the 

following side chain protecting groups were used: Asp(OAl), Cys(Trt), Thr(tBu) and 

Trp(Nin-Boc).  Solvents and reagents were reagent grade and used without further 

purification unless otherwise noted.  

Analytical thin-layer chromatography was performed on silica gel plates (250 m; 

Sorbent Technologies, Atlanta, GA).  Column chromatography was carried out using 

flash-grade silica gel (mesh 230-400; Sorbent Technologies, Atlanta, GA). 1H and 13C-

NMR spectra were acquired on JEOL ECLIPSE 270 (270 MHz) NMR spectrometer.  All 

synthesized compounds were analyzed by analytical HPLC (Agilent 1100 series HPLC 
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system) equipped with a C18-bounded analytical reverse-phase HPLC column (Vydac 

218TP104, 4.6 x 250 mm) using a gradient elution (10 to 90% acetonitrile in water (0.1% 

TFA) over 40 min; flow rate = 1.0 mL/min; diode-array UV detector).  Accurate 

molecular weights of compounds were confirmed by ESI-mass spectrometry using an 

Applied Biosystem 4000 Q TRAP® LC/MS/MS System. 
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6.2 S2-(Trityl)cysteamine hydrochloride  

 Cysteamine hydrochloride (200 mg, 1.73 mmol) was dissolved in DCM-DMF 

(1:1, 10 mL).  Trityl chloride (725 mg, 2.60 mmol) was added to the solution, and the 

reaction mixture was stirred for 2 h at room temperature.  Then, the solution was 

concentrated in vacuo and subsequently co-concentrated with toluene (3 ×15 mL), ethanol 

(3 ×15 mL), and dichloromethane (3 ×15 mL). The product was purified by column 

chromatography (DCM/MeOH, 9:1) to yield pure compound (500 mg, 90% yield).  Rf 

0.63 (DCM/MeOH, 9:1).  1H NMR (270 MHz, CDCl3): δ = 2.26 (t, 2H), 2.60 (t, 2 H), 

7.15-7.29 (m, 9H) and 7.40-743 (m, 6 H). 13C NMR (270 MHz, CD3OD):  = 38.42, 

67.07, 126.83, 127.84, 129.36, 144.36.  
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6.3 General method for Peptide Synthesis (61-69) 

 250 mg AM-PS resin (0.46 mmol/g, 0.115 mmol) was swelled in DMF over 1 h, 

and a DMF solution (2 mL) of 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid (46.3 mg, 

1.5 equiv), HBTU (65.4 mg, 1.5 equiv), HOBt (26.4 mg, 1.5 equiv), DIEA (60 L, 3.0 

equiv) was added to the resin.  The mixture was shaken for 12 h, and after washed the 

resin with DMF (3 × 1 min) the Kaiser ninhydrin and TNBS tests115-116of the resin were 

found negative. Then, reductive amination was performed using S-tritylcysteamine 

hydrochloride (163.7 mg, 4 equiv) and NaBH3CN (28.9 mg, 4 equiv) in DMF (4 mL) at 

room temperature for 12 h. After the reaction was finished, the resin was washed with 

DMF (3 × 1 min) and showed positive result by p-chloroanilin test,117 indicating the 

formation of the secondary amine (63).   

 The coupling of the first amino acid was carried out using Fmoc-Asp(OAl) (181.9 

mg, 4 equiv), DIC (36 L, 2 equiv), and DIEA (40 L, 2 equiv) with DMF/DCM (1:1) 

for 12 h (63). After the resin was washed with DMF (3 × 1 min) and a negative p-

chloranilin test was observed.  The yield of the coupling reaction using the symmetric 

anhydride was determined by measuring the level of the amino acid attachment as 

described below.  To dried resin (10 mg), was added DBU/DMF (2% v/v, 2 mL) and the 

resulting mixture was gently shaken for 30 min.  Then, the solution was diluted to 10 mL 

with CH3CN.  Aliquot of the solution (2 mL) was further diluted to 25 mL with CH3CN 

for measuring UV absorbance.  On the other hand, a reference solution was prepared 

without the resin.  UV adsorbance of the solution at 304 nm was measured using a 

UV/Vis spectrophotometer (Agilent Technology, 89090A), and the Fmoc loading level 

was calculated by the following equation.  

Fmoc loading (mmol/g) = (Abssample – Absref) x 16.4/mg of resin. 
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 As summarized in Table 1, the coupling reaction with the symmetric anhydride of 

Fmoc-Asp(OAl) was found to be most effective (98% yield) compared to other reagents 

used.  

 Next, the N-Fmoc protecting group of Asp(OAl) was removed by the treatment 

with piperidine (20% in DMF; 1 × 5 min and 1 × 25 min).  The resin was washed with 

DMF (3 × 1 min) and the coupling of the second amino acid was performed using Fmoc-

AA1 (4 equiv) with HBTU (174.6 mg, 4 equiv), HOBt (70.5 mg, 4 equiv) and DIEA (160 

L, 8 equiv) in DMF (4 mL) for 2 h at room temperature (64).  After 2 h the resin was 

washed with DMF (3 × 1 min), the Kaiser ninhydrin test of the resin was found negative.  

The coupling of the remaining amino acids (Fmoc-AA2, Fmoc-D-Cys(Trt), and Fmoc-

AA3) was performed repeating the steps described above.  The synthesis of the linear 

peptides (67) was monitored by analytical HPLC which showed one major peak (> 95% 

purity) that was later confirmed by HR-ESI-MS.  

 After the construction of the linear peptides (67), the allyl protecting group of Asp 

was removed by treating the resin with tetrakis(triphenyphosphine)-palladium(0) (13.3 

mg, 0.1 equiv) and N,N’-dimethylbarbituric acid (179.4 mg, 10 equiv) in DCM/DMF 

(3:1, 3 mL) for 30 min at room temperature under nitrogen atmosphere, and the reaction 

was repeated again.  After the resin was washed with DMF (3 × 1 min), the Fmoc group 

of D-Val was removed with piperidine (20% in DMF; 1 × 5 min, 1 × 30 min) and the 

resin was washed with DCM (3 × 1 min) and DMF (3 × 1 min).  The lactam bond was 

formed by the treatment with HBTU (261.7 mg, 6 equiv), HOBt (105.7 mg, 6 equiv), and 

DIEA (240 L, 12 equiv) in DMF (3 mL) for 3 h (68).  When the reaction was finished, 

the resin washed with DMF (3 × 1 min), the formation of the monocyclic compound (4a-

l) was monitored by Kaiser ninhydrin test and analytical HPLC after cleaving small 
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amount of resin (about 10 mg).  No detectable amount of the linear peptides was left 

indicating high yield in cyclization (> 95%). 

 The S-Trt protecting groups were removed by dilute TFA (1% in DCM, 5 × 2 

min) and the release of free thiol was monitored by Ellmann’s test.118 Then the resin was 

washed with DCM (3 × 1 min) and DMF (3 × 1 min), and the oxidation of thiols was 

carried out by using I2 (292 mg, 10 equiv) and DIEA (100 L, 5 equiv) in DCM (4 mL) 

for 30 min at room temperature (69).  After the reaction was finished, no significant 

amount of the monocyclic peptide was detected by analytical HPLC.  Then, the resin was 

washed with DMF (3 × 1 min) and DCM (3 × 1 min) and dried in vacuo overnight. 

 The bicyclic FK228 analogues (5a-l) was cleaved from the resin by the treatment 

with TFA/TIS/water (10 mL, 90:5:5) for 3 h at room temperature.  Then, the resin was 

filtered and the TFA solution was concentrated under gentle stream of nitrogen to the 

volume of approximately 1 mL.  The peptide was precipitated by adding cold diethyl 

ether (20 mL) and centrifuged.  The washing with diethyl ether was repeated again and 

the resulting product was dried overnight, followed by characterization by analytical 

HPLC and high-resolution ESI-MS.   
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6.3.1 Compound 69  

 The monocyclic compound (70) containing Thr at the position of Z-Dhb was 

prepared by following the same procedures described above.  To create Z-Dhb on resin, 

the -hydroxy group of Thr was tosylated by treating the resin with tosyl chloride (110 

mg, 5 equiv) in pyridine (186 L, 20 equiv). The reaction was carried out for 30 min at 

room temperature, and monitored by analytical HPLC by cleaving small amount of the 

resin.  No significant amount of starting material with the free hydroxyl group was 

observed.  Then, the resin was washed with DMF (3 x 1 min) and DCM (3 x 1 min) and 

the tosylated peptide was treated with DBU (172 L, 10 equiv) in DMF (3 ml) for 24 h to 

produce a monocyclic peptide containing Z-Dhb (70).  After washing the resin with DMF 

(3 × 1 min), the reaction was monitored by analytical HPLC and one major peak (> 90%) 

was observed. 

Compounds 1 and 34 (Oxydation with I2). The S-Trt protecting groups of the 

intermediate 70 were removed by dilute TFA (1% in DCM, 5 × 2 min) and the release of 

free thiol was monitored by Elmann’s test.26 Then the resin was washed with DCM (3 × 1 

min) and DMF (3 × 1 min) and the oxidation of thiols was carried out by using I2 (292 

mg, 10 equiv) and DIEA (100 L, 5 equiv) in DCM (4 mL) for 30 min at room 

temperature.  After the reaction was finished, the resin was washed wit DMF (5 × 1 min) 

and no significant amount of the monocyclic peptide was detected by analytical HPLC.  

Then, the resin was washed with DMF (3 × 1 min) and DCM (3 × 1 min) and dried in 

vacuo overnight. 

The bicyclic FK228 analogues (1 and 34) was cleaved from the resin by the treatment 

with TFA/TIS/water (10 mL, 90:5:5) for 3 h at room temperature.  Then, the resin was 

filtered and the TFA solution was concentrated under gentle stream of nitrogen to the 
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volume of approximately 1 mL.  The peptide was precipitated by adding cold diethyl 

ether (20 mL) and centrifuged.  The washing with diethyl ether was repeated again and 

the resulting product was dried overnight, followed by characterization by analytical 

HPLC and high-resolution ESI-MS.   

 

Compounds 1 and 34 (Oxydation with DMSO). The monocyclic intermediate 70 was 

cleaved from the resin by the treatment with TFA/TIS/water (10 mL, 90:5:5) for 3 h at 

room temperature.  Then, the resin was filtered and the TFA solution was concentrated 

under gentle stream of nitrogen to the volume of approximately 1 mL.  The peptide 71 

was precipitated by adding cold diethyl ether (20 mL) and centrifuged.  The washing with 

diethyl ether was repeated again and the resulting product was dried overnight. The 

peptide 71 was recovered and solubilized in a solution of CH3OH/H2O (9:1 100 ml) and 

NaHCO3 (38 mg, 4 eq) and DMSO (2ml) were added. The solution was stirred for 36 h, 

when not detectable amount of monocyclic compound could be observed by analytical 

HPLC. Next, the CH3OH was evaporated and 50 ml of EtOAc were added. The organic 

layer was extracted with 1 N HCl (3 x 25 ml), satured NaHCO3 (3 x 25 ml), H2O (3 x 25 

ml) and satured NaCl (3 x 25 ml) and dried with anhydrous Na2SO4. Finally, the EtOAc 

was evaporated and the final product was dried overnight, followed by characterization by 

analytical HPLC and high-resolution ESI-MS.   
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6.4 Biological assay to determine antitumor activity  

 Human transitional carcinoma cell lines T24, TCCSUP, 253J and human prostate 

cancer cell lines PC-3, LNCaP, Du-145 were cultured in T medium (Invitrogen) 

supplemented with 5% fetal bovine serum and 1% penicillin-streptomycin.  2x103 Cells in 

50 µL of medium were plated into each well of a 96-well plate one day before adding 

compound.  Each compound was diluted with DMSO to two folds of the concentrations, 

then 50 µL of the compound-containing medium was added into cells.  Each treatment 

was performed in triplicate on the same plate. For each compounds reported the 

treatments were repeated at least three times on different plates. Three days later, cell 

proliferation was measured with a cell proliferation kit (Roche). Briefly, 10 µL of MTT 

(3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide) was added into each well 

for 4 h, then 100 µL of the solubilization solution was added and cells were incubated for 

overnight.  The spectrophotometrical absorbance of the samples was measured with a 

SpectraMax M5 plate reader (Molecular Devices) at 565 nm.  The data were presented as 

percentage inhibition using non-treated cells as control. 
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7. Table of characterization 

1: 48.0 mg, overall yield: 75%, purity: 85%, tR 14.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H36N6O6S2, calculated mass: 556.2138, found: 556.2126. 

2: 50.7 mg, overall yield: 81%, purity: 94%, tR 13.1 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C22H36N6O6S2, calculated mass: 544.2138, found: 544.2154. 

3: 50.0 mg, overall yield: 75%, purity: 90%, tR 16.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C24H40N6O6S2, calculated mass: 572.2451, found: 572.2450. 

4: 51.0 mg, overall yield: 76%, purity: 82%, tR 16.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C25H42N6O6S2, calculated mass: 586.2607, found: 586.2626. 

5: 54.0 mg, overall yield: 80%, purity: 81%, tR 16.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C25H42N6O6S2, calculated mass: 586.2607, found: 586.2626. 

6: 49.2 mg, overall yield: 75%, purity: 80%, tR 17.0 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C24H38N6O6S2, calculated mass: 570.2294, found: 570.2267. 

7: 47.6 mg, overall yield: 78%, purity: 81%, tR 12.9 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C21H34N6O6S2, calculated mass: 530.1981, found: 530.1955. 
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8: 60.3 mg, overall yield: 85%, purity: 87%, tR 19.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C28H40N6O6S2, calculated mass: 620.2451, found: 620.2462. 

9: 66.7 mg, overall yield: 88%, purity: 92%, tR 23.1 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C30H41N7O6S2, calculated mass: 659.2560, found: 659.2581. 

10: 62.2 mg, overall yield: 90%, purity: 87%, tR 11.1 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C25H43N7O6S2, calculated mass: 601.2716, found: 601.2724. 

11: 61.0 mg, overall yield: 87%, purity: 84%, tR 12.3 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C25H38N8O6S2, calculated mass: 610.2356, found: 610.2388. 

12: 59.5 mg, overall yield: 88%, purity: 80%, tR 13.3 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H36N6O8S2, calculated mass: 588.2036, found: 588.2075. 

13: 56.1 mg, overall yield: 85%, purity: 85%, tR 13.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H38N6O7S2, calculated mass: 574.2243, found: 574.2242. 

14: 52.6 mg, overall yield: 78%, purity: 84%, tR 19.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C25H42N6O6S2, calculated mass: 586.2607, found: 586.2630. 

15: 51.3 mg, overall yield: 82%, purity: 79%, tR 13.5 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C22H36N6O6S2, calculated mass: 544.2138, found: 544.2159. 
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16: 51.4 mg, overall yield: 80%, purity: 83%, tR 14.9 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H38N6O7S2, calculated mass: 558.2294, found: 558.2324. 

17: 53.9 mg, overall yield: 84%, purity: 78%, tR 15.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H38N6O6S2, calculated mass: 558.2294, found: 558.2312. 

18: 57.2 mg, overall yield: 84%, purity: 82%, tR 16.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C26H36N6O6S2, calculated mass: 592.2138, found: 592.2118. 

19: 58.0 mg, overall yield: 88%, purity: 86%, tR 10.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H39N7O6S2, calculated mass: 573.2403, found: 573.2418. 

20: 50.1 mg, overall yield: 78%, purity: 81%, tR 15.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C23H38N6O6S2, calculated mass: 558.2294, found: 558.2315. 

21: 54.8 mg, overall yield: 85%, purity: 75%, tR 12.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C21H32N6O8S2, calculated mass: 560.1723, found: 560.1745. 

22: 48.1 mg, overall yield: 81%, purity: 76%, tR 11.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C20H32N6O6S2, calculated mass: 516.1825, found: 516.1783. 

23: 52.6 mg, overall yield: 84%, purity: 78%, tR 12.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C22H36N6O6S2, calculated mass: 544.2138, found: 544.2164. 
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24: 61.5 mg, overall yield: 84%, purity: 85%, tR 15.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C27H36N6O8S2, calculated mass: 636.2036, found: 636.2058 

25: 68.7 mg, overall yield: 92%, purity: 80%, tR 12.8 (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C29H43N7O6S2, calculated mass: 649.2716, found: 649.2754. 

26: 69.1 mg, overall yield: 90%, purity: 81%, tR 22.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H40N6O6S2, calculated mass: 668.2451, found: 668.2462 

27: 56.9 mg, overall yield: 78%, purity: 80%, tR 22.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C29H42N6O6S2, calculated mass: 634.2607, found: 634.2634. 

28: 58.4 mg, overall yield: 80%, purity: 85%, tR 22.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C29H42N6O6S2, calculated mass: 634.2607, found: 634.2634. 

29: 58.5 mg, overall yield: 80%, purity: 94%, tR 22.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C22H36N6O6S2, calculated mass: 634.2607, found: 634.2594. 

30: 55.5 mg, overall yield: 78%, purity: 82%, tR 18.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C28H38N6O6S2, calculated mass: 618.2294, found: 618.2254. 

31: 61.7 mg, overall yield: 86%, purity: 84%, tR 19.0 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H40N6O7S2, calculated mass: 684.2399, found: 684.2420. 
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32: 70.0 mg, overall yield: 86%, purity: 86%, tR 19.9 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C34H41N7O6S2, calculated mass: 707.2560, found: 707.2587. 

33: 67.6 mg, overall yield: 88%, purity: 80%, tR 23.4 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H40N6O6S2, calculated mass: 668.2451, found: 668.2488 

34: 52.1 mg, overall yield: 75%, purity: 75%, tR 19.3 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C27H36N6O6S2, calculated mass: 604.2138, found: 604.2166. 

35: 60.4 mg, overall yield: 82%, purity: 84%, tR 20.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C30H36N6O6S2, calculated mass: 640,2138, found: 640.2154 

36: 66.7 mg, overall yield: 85%, purity: 80%, tR 20.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C33H42N6O6S2, calculated mass: 682.2607, found: 682.2654. 

37: 62.8 mg, overall yield: 80%, purity: 85%, tR 24.4 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C33H42N6O6S2, calculated mass: 682.2607, found: 682.2624. 

38: 70.0 mg, overall yield: 86%, purity: 82%, tR 20.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C33H42N6O6S2, calculated mass: 682.2607, found: 682.2628. 

39: 57.5 mg, overall yield: 75%, purity: 80%, tR 21.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H38N6O6S2, calculated mass: 666.2294, found: 666.2334. 
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40: 59.0 mg, overall yield: 82%, purity: 85%, tR 17.5 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C29H34N6O6S2, calculated mass: 626.1981, found: 626.1952. 

41: 58.7 mg, overall yield: 78%, purity: 78%, tR 20.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C31H36N6O6S2, calculated mass: 654.2294, found: 654.2254. 

42: 74.1 mg, overall yield: 90%, purity: 85%, tR 28.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C36H40N6O6S2, calculated mass: 716.2451, found: 716.2411. 

43: 62.2 mg, overall yield: 77%, purity: 77%, tR 25.0 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C36H38N6O6S2, calculated mass: 702.2294, found: 702.2267. 

44: 67.6 mg, overall yield: 88%, purity: 88%, tR 23.4 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H40N6O6S2, calculated mass: 668.2451, found: 668.2473. 

45: 66.2 mg, overall yield: 88%, purity: 86%, tR 21.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C31H38N6O6S2, calculated mass: 654.2294, found: 654.2264. 

46: 64.0 mg, overall yield: 85%, purity: 84%, tR 21.0 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C31H38N6O6S2, calculated mass: 654.2294, found: 654.2314. 

47: 62.6 mg, overall yield: 85%, purity: 85%, tR 20.6 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C30H36N6O6S2, calculated mass: 640,2138, found: 640,2154. 
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48: 64.3 mg, overall yield: 82%, purity: 92%, tR 24.0 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C33H42N6O6S2, calculated mass: 682.2607, found: 682.2590. 

49: 65.9 mg, overall yield: 84%, purity: 88%, tR 23.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C33H42N6O6S2, calculated mass: 682.2607, found: 682.2650. 

50: 74.5 mg, overall yield: 88%, purity: 92%, tR 24.2 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C34H44N6O6S2, calculated mass: 696.2764, found: 696.2751. 

51: 71.0 mg, overall yield: 85%, purity: 85%, tR 25.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C36H42N6O6S2, calculated mass: 718.2607, found: 718.2601. 

52: 72.3 mg, overall yield: 88%, purity: 80%, tR 25.3 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C36H42N6O6S2, calculated mass: 718.2607, found: 718.2611. 

53: 81.3 mg, overall yield: 92%, purity: 90%, tR 29.4 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C40H44N6O6S2, calculated mass: 768.2764, found: 768.2798. 

54: 79.5 mg, overall yield: 90%, purity: 88%, tR 28.9 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C40H44N6O6S2, calculated mass: 768.2764, found: 768.2734. 

55: 72.4 mg, overall yield: 86%, purity: 92%, tR 27.3 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C37H44N6O6S2, calculated mass: 732.2764, found: 732.2743. 
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56: 77.2 mg, overall yield: 90%, purity: 90%, tR 22.5 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C36H42N7O6S2, calculated mass: 746.2669, found: 746.2698. 

57: 83.0 mg, overall yield: 88%, purity: 82%, tR 27.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C44H48N6O6S2, calculated mass: 820.3077, found: 820.3112 

58: 69.4 mg, overall yield: 88%, purity: 87%, tR 23.5 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H39FN6O6S2, calculated mass: 686.2357, found: 686.2320. 

59: 67.1 mg, overall yield: 85%, purity: 85%, tR 22.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H39FN6O6S2, calculated mass: 686.2357, found: 686.2390. 

60: 73.8 mg, overall yield: 90%, purity: 94%, tR 22.5 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H39N7O8S2, calculated mass: 713.2303, found: 713.2287. 

61: 75.5 mg, overall yield: 92%, purity: 81%, tR 22.8 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C32H39N7O8S2, calculated mass: 713.2303, found: 713.2343. 

62: 82.8 mg, overall yield: 92%, purity: 84%, tR 29.7 min (analytical HPLC, 10 to 90% 

acetonitrile in water (0.1% TFA) over 40 min, flow rate of 1.0 mL/min), molecular 

formula: C41H46N6O6S2, calculated mass: 782.2920, found: 782.2954 
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