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Chapter 1

Introduction

1.1 Introduction and Motivation

Today, the Internet is a critical infrastructure of planetary scale, that af-

fects almost every activity in the developed world. This was not foreseen

in its original design, and for this reason new and increasingly urgent re-

quirements (e.g. of security, reliability, billing, privacy, Quality of Service,

etc.) are coming out. The Internet scenario becomes everyday more com-

plex and constantly evolves driven by multiple uncoordinated actors. For

example, we continuously assist to the appearance of novel applications and

protocols, new-generation network architectures and infrastructures, as well

as new paradigms of data communication (e.g. Peer-to-Peer) and user in-

teraction (e.g. social networks). Because of all this, our current knowledge

of the Network is poor. It is difficult to understand key aspects of the In-

ternet, like its growth rate, properties of network traffic, the distribution of

ISP interconnectivity, etc. [2]. Continuous measurements and analyses are

therefore fundamental to understand, and to keep track of, Internet char-

acteristics and phenomena, and they represent a starting point to influence

such processes and to design the future.

In particular, the research field of Internet traffic measurement and analy-

sis, has dramatically grown in the past ten years, also bringing contributions

to several other fields of research on computer networks. Network traffic, in-
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deed, is affected by all the events and interactions happening in a computer

network. This makes traffic analysis a convenient point of observation to

study computer networks. However, without appropriate tools and knowl-

edge, network traffic appears a chaotic mix of data affected by multiple fac-

tors that are difficult to distinguish from one another. Since the first days

of the Internet until today, the scientific community has made giant steps,

adjusting techniques for traffic measurements, analysis methodologies, and

modeling approaches. However, as mentioned, the Internet is not something

still, neither network traffic. New problems arise, requiring either the de-

velopment of new measurement and analysis approaches, or the revision of

the current ones by taking into account issues like social aspects (e.g. data

privacy), new communication paradigms (e.g. Peer-to-Peer), and the global

scale on which events occur (e.g. distributed monitoring). At the same time,

as mentioned above, requirements of better (i) security and reliability, (ii)

control capabilities, and (iii) support to services offered by the network, are

becoming more urgent. Network traffic analysis can make significant contri-

butions to addressing such requirements.

For example, networking research has recently started dealing with a new

problem that was unforeseen in the original design of the Internet: traffic

classification. That is, the association of traffic flows to the corresponding

network applications that generated them. Up to few years ago almost any

Internet application was using well-known protocol ports that easily allowed

its identification. This is not true anymore. The number of applications

(e.g. Skype) using random or non-standard ports has dramatically increased.

Moreover, often network applications are configured to use well-known pro-

tocol ports assigned to other applications (e.g. port TCP 80) attempting to

disguise their presence. The initial answer to this problem was to resort to

automated inspection of packet content through pattern-matching, in order

to identify the application-level protocols. However this approach has sev-

eral limitations. Firstly, there are privacy concerns regarding the access by

providers to data transmitted by users. Secondly, since packet content in-
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spection is a computationally-intensive task, with the increasing packet rates

supported by network links it is becoming more difficult to deploy. Finally,

payload inspection is not always reliable, and the crescent use of techniques

like protocol encapsulation, traffic encryption, and protocol obfuscation, is

making current techniques inadequate. For these reasons, the research com-

munity started to investigate alternative techniques for traffic classification

based on traffic properties that do not require access to payload content.

In the last four years, dozens of scientific papers have been published,

proposing a variegate set of classification approaches alternative to payload

inspection, typically based on machine-learning techniques applied to statis-

tical features of traffic. However several problems are still unsolved and in

this thesis we address some of them. First, in practice there are no real im-

plementations of the techniques proposed in literature, whereas science needs

to produce prototypes that can be tested and evaluated on real traffic in or-

der to validate such techniques and to demonstrate that viable alternatives

to payload inspection exist. Indeed, because of the complexity and hetero-

geneity of the Internet, and because of its continuous change, new-generation

instruments working on traffic properties must be tested in multiple contexts

and with up-to-date traffic data. To fill this gap, in this thesis we present

TIE, a community-oriented software platform for the development and com-

parison of implementations of traffic classification techniques. TIE has been

developed also taking into account modern challenges that research on traffic

classification must face, such as the need of online classification approaches

(i.e. able to operate in realtime with live traffic) and the development of

multi-classifier systems (i.e. that combine results from different classifiers).

Moreover, even when considering only results from published studies, a

detailed examination of literature shows that up to now there seems to exist

no perfect solution to the problem. All of the studies analyzed present some

drawbacks or lack of complete evaluation. This suggests on one side the

study of the combination of multiple approaches, on the other side, it urges

to look for new techniques. In this thesis we propose a classification approach
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based on statistical properties of traffic when observed at packet-level (i.e. in

terms of packet size and inter-packet time). The choice of these properties is

justified by previous studies, expounded in this thesis, in which we analyzed

traffic at packet-level from different network applications, and we showed

that it presents distinctive characteristics for each application.

Going further in the analysis of current literature, we observe that a

large problem consists in the difficulty to compare the techniques proposed.

This is because there are approaches working on different data, with distinct

definitions, using different typologies of traffic classes and, finally, adopting

different evaluation metrics. In the classification approach presented in this

thesis we adhere to metrics commonly accepted and we include important

metrics that several works have neglected (e.g. byte-accuracy of classifi-

cation). Moreover, we designed TIE with the specific purpose to allow a

rigorous comparison of different classification techniques. In this thesis it

is shown how several design decisions have been made to allow comparison

also among classifiers adopting definitions of classes, and of objects to be

classified, that differ.

Finally, also thanks to TIE, we study the subject of classification through

payload inspection from two points of view. On one side we try to under-

stand if it is possible to remove few limitations held by payload-based ap-

proaches (privacy invasiveness and heavy computational load) in order to

possibly combine them with more recent techniques. We show that it is

possible to considerably reduce both computational load and access to sensi-

tive data while keeping useful classification capabilities. Moreover, we study

two payload-based approaches that represent the state of art in ground-truth

systems (that is, systems for assigning reference classes to objects in order

to evaluate a new classification approach) with the purpose to verify their

reliability. Results obtained from recent traces show that today payload in-

spection presents several problems of accuracy and it can probably not be

considered anymore as a stand-alone classification approach. A general con-

clusion that can be drawn from this thesis is indeed that traffic classification
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in the future will probably resort to multi-classifier systems. The availability

of TIE and the experimental results here shown, related to different ap-

proaches, can certainly serve as a contribution in this direction.

The next section illustrates the organization of the thesis, with specific

references to each chapter.

1.2 Thesis Organization

The thesis is organized as follows. In the next chapter, we introduce net-

work traffic analysis at packet-level. We explain the approach we use when

studying the traffic generated by single applications, which is based on the

search of invariants. That is, properties of network traffic at packet-level

that are associated to specific applications and persist when traffic from the

same applications is observed on different links and at different times. We

then show several results obtained for different categories of applications:

from more traditional ones (e.g. HTTP and SMTP), to more recent (games,

Peer-to-Peer TV) and to malware (computer worms). In all cases we show

how analysis at packet level reveals invariant properties and suggests several

applications, as for example traffic identification and classification.

We introduce the subject of traffic classification in Chapter 3, starting

from motivations and basic definitions. We present a detailed analysis of

literature, and we conclude the chapter by highlighting several relevant open

problems in this field that motivate the work presented in the next two

chapters.

In particular, in Chapter 4 we present TIE, a software platform designed

to fill several gaps in the field of traffic classification, most importantly the

lack of actual implementations of classification techniques. We illustrate

the components of the architecture highlighting the design decisions that

make TIE focused on addressing important issues: comparison of classifi-

cation techniques, multi-classification, online classification. Moreover we il-

lustrate two first classifiers (implemented as TIE plugins) distributed with

TIE: a port-based classifier and a payload-based classifier. These are used
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as reference when studying other approaches in the subsequent chapter. We

conclude Chapter 4 reporting on the connections between TIE and the net-

working research community, showing active collaborations and participation

to international projects.

In Chapter 5 we present experimental studies regarding both machine-

learning (based on statistical features) and payload-based approaches. Specif-

ically, we first present a classification technique relying on features extracted

from packet-level statistics. The most interesting aspect of this study is the

novelty of the features considered, which despite the considerable amount of

works published in literature, are completely new and possess powerful dis-

criminating power. We then analyze a deep payload inspection technique

to understand how much information from packets is really used in success-

ful classifications. We make use of results from such analysis to design and

evaluate a lightweight payload inspection approach with significantly lower

requirements in terms of access to packet content and memory and CPU

usage. Finally, we examine two payload-based approaches largely used in lit-

erature to establish ground-truth for traffic classification. Our experimental

results reveal that they fail in identifying the entire traffic from the consid-

ered traces and that they often contradict each other. We draw conclusions

regarding both the reliability of payload-based approaches in general and the

design of better ground-truth systems.

Finally, in Chapter 6 we summarize findings and conclude the thesis.



Chapter 2

On Packet-level Analysis of
Internet Traffic

2.1 Introduction

Internet traffic is studied by multiple points of view, each of them closely

linked in terms of observed phenomena and of methodologies adopted. In

this chapter we discuss the study of network traffic focused on network ap-

plications. Our purpose is to present findings we obtained when studying

network traffic of various applications that are closely related to the contri-

butions illustrated in the next chapters and pertaining to the field of traffic

classification. It is our opinion indeed, that effective contributions to the field

of traffic classification cannot be made without understanding properties of

network traffic. Two of the objectives that drive our research in the field of

traffic analysis are: (i) the search for peculiar properties of network traffic

that are invariant with respect to the considered context (e.g. network link,

time, etc.); (ii) the analysis of traffic from novel categories of applications

emerged during last years (e.g. games, peer-to-peer, malware). We per-

formed several studies by decomposing and observing traffic at several levels

(e.g. aggregate link traffic, host-level, flow-level, packet-level), however in

this chapter we focus on results obtained when looking at application traf-

fic at packet-level, that is, in terms of Inter-Packet Times (IPT) and Packet

Size (PS). This is for two reasons: (i) some of our most original contribu-
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tions in the field of traffic analysis are related to packet-level analysis; (ii)

part of the contributions to traffic classification presented in this thesis are

actually based on a packet-level view of network traffic.

This chapter is organized as follows. In the next section we first introduce

our approach to packet-level analysis of network traffic and we then present

several results obtained when applying it to the traffic of: (i) classical Inter-

net applications as HTTP and SMTP; (ii) novel applications as games and

Peer-to-Peer TV; (iii) distributed malware like computer worms. The stud-

ies reveal interesting insights into the properties of network traffic that can

contribute to several research areas and in particular to traffic classification.

We conclude the chapter by summarizing, in Section 2.3, how the findings

presented in the previous sections are related to the field of traffic classifi-

cation and in particular to the contributions presented in Chapters 4 and

5.

2.2 Packet-level Traffic Analysis

Network traffic can be decomposed ad observed at different abstraction levels,

some examples are: (i) in terms of aggregate link-traffic; (ii) at host level (iii)

by using on-purpose definitions of sessions; (iv) at connection or flow level;

(v) at packet level. Here we focus our attention on the packet level. Packet-

level traffic characterizations express traffic flows in terms of inter-packet

time (IPT) and packet size (PS).

We focus on a packet-level view of traffic because, when compared to

higher-level approaches, it provides the following benefits: (i) traffic is ob-

served at the deepest level of detail but at the same time observations are

based on only two variables; (ii) working at packet level makes our ap-

proach independent of protocols evolution and applicable to different appli-

cations/protocols; (iii) switching devices often operate on a packet-by-packet

basis, therefore realistic packet-level models are useful to evaluate their per-

formance; (iv) most network performance problems (e.g. Loss, Delay, Jit-

ter) happen at packet level, thus packet-level models are easily applicable
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both to traffic simulations and synthetic traffic generations in order to study

network-related issues;

The general approach we adopted in our study consists into analyzing

statistical properties of traffic looking at it from different points of views:

(i) we analyze properties of aggregate traffic, (ii) we decompose traffic into

sessions (e.g. by source hosts, by flows, etc.), (iii) we measure sessions-related

variables (as arrival times, size, duration, etc.), (iv) and we finally consider

packet-level variables (IPT and PS) inside each session. When analyzing

data, we look for repeating behaviors (the “search for invariants” [3]) and,

by applying the same analysis to different applications, we aim at sketching

similarities and differences. The adopted approach is indeed based on the

observation of traffic both traversing different links and captured at different

times.

Unless when differently specified, we captured and analyzed traffic using

Plab [4], a software platform written in C, partially based on the Libpcap

library [5], and freely available at [6]. Plab was designed to analyze traffic

traces by identifying and storing data related to millions of sessions and to

calculate and dump data ready to be processed by statistical analysis soft-

ware. Also, more intelligence was introduced into the software, such as the

ability to decode optional TCP headers like the MSS or to filter packets

or entire sessions with several criteria. Depending on user-specified param-

eters, a session is identified by: (i) all packets sent and received by a host

(host mode); (ii) all packets identified by source and destination IP and ports

with a default timeout of 60 seconds (flow mode); (iii) as previous mode but

by considering traffic in both directions (biflow mode); (iv) all packets ex-

changed by two hosts related to a specific service (e.g. TCP port 80), with a

user definable timeout (conversation mode). Given one of the above modes,

sessions are assigned an ID, and for each session the IPT between packets

flowing in the same direction are calculated, along with PS. We call such

data packet-level data series. An important aspect of our methodology is

that in the evaluation of such data we usually do not take into account pack-
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ets with empty payload. We indeed want to characterize the traffic generated

by the applications, as much as possible independently of the transport pro-

tocols. By discarding packets with empty payload we drop all TCP-specific

traffic, such as connection establishment packets (SYN-ACK-SYNACK) and

pure acknowledgment packets [7]. For the same reason, in the estimation

of packet size we measured the byte length of the transport-level payload.

These choices make our results reusable for simulation purposes as an input

for TCP state machines and UDP/IP stacks, like in D-ITG [6] and TCPlib

[8]. Moreover, the arrival time of each session, its duration, and bytes trans-

mitted for each direction are calculated by Plab, allowing to perform an

analysis at a higher level (e.g. host/flow/conversation level). IPT and PS

looking at traffic as a whole (aggregate link-traffic) are also calculated.

Part of the process of traffic analysis can be synthetically sketched into

a number of sequential steps (with possible feedback lines) depicted in Fig.

2.1. After the acquisition of a traffic trace (first block), human intervention

Capture
Trace 

inspection

Trace 

sanitization

Measurements 

and preliminary 

analysis

Data 

analysis

Figure 2.1: Life Cycle of Data Analysis.

is usually necessary to inspect it. Understanding which kind of traffic has

been captured is a first fundamental step before performing a detailed sta-

tistical analysis. To do this, we need flexible and automated tools to rapidly

investigate several properties of traffic, from looking into headers and pay-

load (if present) to reporting concise information on hosts, flows, etc. From

this analysis it is possible to choose the aspect on which we want to focus

the characterization and to conceive strategies for automated trace sanitiza-

tion to remove spurious data (step 3). In the next step, the software tool

extracts measurements data from the traffic trace and it may also be able

to perform a preliminary analysis. Finally, the data sets extracted by Plab
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can be loaded into statistical analysis software (e.g. Matlab) and analyzed

by looking at marginal distributions, time dependence, correlations etc. To

this purpose we also developed a library of Matlab scripts, available at [6],

which can be used for statistical analysis of traffic data, together with other

tools made available by the research community.

2.2.1 An Overview of the Applications Considered

Here we introduce the applications analyzed in this section and we briefly

discuss works in literature related to the study of their traffic.

HTTP. HTTP traffic has been obviously the subject of many research

studies. The self-similar nature of HTTP traffic was stressed in [9]. It was

proved that this property has a negative impact on network performance [10].

Self-similarity in HTTP traffic was explained by looking at the distribution

of file sizes, transfer times, and inactivity times, which the authors studied

by analyzing application-level data, as logs from clients and servers. The

authors of [11] expanded the set of variables studied, partially based on

heuristics to detect user clicks, by including: byte lengths of requests and

replies, document size, user think time, etc. The authors of [12] applied a

modeling methodology similar to that in [11] but tried to deal with the advent

of the new HTTP/1.1 standard. They also introduced the concept of user

session, to be used in the traffic generator they implemented. In 2004 the

authors of [13] presented a new modeling approach based on TCP connections

rather than on Web-page structure. They studied parameters as the inter-

arrival time between TCP connections and, for each connection, the number

of request/response exchanges, the delay between responses and subsequent

requests, the number of bytes for each request and each response, etc. They

also added a heuristic, similar to that of [11], to distinguish between requests

of files belonging to the same document and requests of different documents.

Not only most of the models proposed in literature are based on heuristics,

but they are often relatively complex. The only study present at packet level
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- at the time of our study - was [14], where a characterization related to the

traffic of only a single PC in an Ethernet LAN was presented.

SMTP. As for SMTP, a message-level characterization was presented in

[15]. They found that the trend of e-mail exchange follows user activity

during the day and that the processes of arrivals and departures at servers

are Poissonian in nature. In [16], in the context of the ns simulator, the

authors proposed an email traffic characterization based on SMTP connection

arrivals and bytes transferred per SMTP connection. Therefore, again, also

for SMTP a packet-level characterization was not proposed up to the present

work.

Multi-player Network games. Multi-player network games are rapidly

becoming significant contributors to overall Internet Traffic and they are

one of the most popular examples of real-time, interactive, and multimedia

commercial Internet applications. The authors of [17] reported that about 4%

of all packets in a backbone could be associated with only 6 popular games.

In [18] it is also reported that the multi-player network computer games are

predicted to make up over 25% of LAN traffic by the year 2010. Providing

premium service to the increasing on-line gaming community may become a

promising source of revenue for ISPs. Literature shows, indeed, that network

games traffic presents different characteristics from other Internet traffic and

therefore imposes different requirements on the underlying network. One of

the first works related to traffic modeling of network games was presented by

Borella [19]., providing an in-depth analysis of traffic traces from the popular

multi-player first-person shooter game Quake. Empirical distributions of PS

and IPT have been found and analytical distributions approximating them

have been obtained through statistical fitting. In [20] Feng et al. describe

results of the analysis of a 500 million packet trace of a popular on-line, multi-

player, game server. They found that the behavior of the traffic generated

by the server was highly predictable. They also found that the observed on-

line games provide significant challenges to current network infrastructure
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because of the presence of large, highly periodic bursts of small packets. The

list of works examining network games traffic, analyzing them also at packet-

level, incredibly grew in the recent years [21], [22], [23]. In the next section we

show packet-level characteristics and invariant properties of Counter-Strike.

As of May 2002, there were more than 20000 Counter-Strike active servers

[24], and measurements from 2000 [17] indicated that the Half-Life/Counter-

Strike application was generating a large percentage of all observed UDP

traffic behind DNS and RealAudio.

P2P-TV. During last years, the research community has paid an increas-

ing attention to the analysis of P2P IPTV scenarios, conducted with the aim

to analyze the mechanisms of such systems, the traffic profiles, the perceived

quality, and the behavior of the involved peers. This also entails new mea-

surement approaches [25].

Sripanidkulchai et al. [26] showed that large-scale live streaming can be

supported by P2P end-user applications despite the heterogeneous capac-

ity of peers, paving the way to future studies in the field of P2P IPTV.

Zhang et. al [27] presented the first measurement results about their proto-

col Donet [28], which was deployed on the Internet and called Coolstreaming.

They provided network statistics, understanding of the user behavior in the

whole system, and results related to the quality of video reception. In [29] [30]

Hei et al. made a complete measurement of the popular PPLive application.

They made active measurements by configuring their own crawler and pro-

viding many architecture and overlay details such as buffer size and num-

ber of peers in the networks. Based on their measurement studies, Hei et

al. [31] developed a methodology to estimate the overall perceived video

quality throughout the network. Vu et al. [32] made active measurements of

the PPLive system and derived mathematical models for the distributions

of channel population size and session length. Ali et al. [33] made passive

measurements of PPLive and SOPCast applications and analyzed the per-

formance and characteristics of such systems. Our work [34], from which we
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present a packet-level analysis of P2P IPTV traffic in the next section, is dif-

ferent from those cited, because we focus on a set of four applications used

worldwide and because of the live interest of the measured event.

Computer Worms. Computer worms have come to the public attention

as small software, usually written by a single individual, capable to take

down the Internet [35]. A worm is a small, self-replicating, portion of code

which can rapidly spread over hundred thousands systems, generating an

overwhelming amount of overall traffic and consuming huge computational

power. In 2001 the Code Red I and II worms spread all over the world by

exploiting a bug in Microsoft web servers, causing denial of services, sys-

tems and network compromise, and links overload, corresponding to several

billions damage [36]. In 2003, the Slammer worm, the fastest worm ever,

spread to 90% of all potential targets in less than 10 minutes [37]. The

Witty worm, the first to carry disruptive payload, spread in March 2004.

Ironically, it infected hosts proactive in securing their networks [38]. There

is a rich literature of worm studies aiming at characterizing and modeling

how the infections spread across networks, and of research works on worm

detection and containment, based on many different approaches. On the

other side, there is not much work related to a detailed analysis of the traffic

generated by worms and comparing it to other traffic categories. To bet-

ter understand related literature and how our contribution fits in, we can

identify the following main areas: worm behavioral characterization, spread

modeling, detection, traffic characterization. As for the first point, a com-

prehensive classification of computer worms is presented in [39]. Moreover,

an analysis of specific worms (Witty [38], Slammer [40] [37], Code-Red [36])

is presented in several works. However, the results related to their traffic

are basic: how and at which speed the worm spread, the scanning strategy

and rate achieved, the distribution of IPs contacted, and how the packets are

built. Sometimes the aggregate packet rate of worm traffic on a link is shown.

Such information constitutes a valuable analysis of the worm characteristics,
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which is a fundamental first step to understand worms, how they work and

their impact, and to build deeper works on top of that. Another research

field involves modeling the spread of worms using analytical and simulative

approaches, also taking into account the effects of patching, human counter-

measures, and congestion caused by the worms themselves (e.g. [41] [42]).

Such studies can be used to design worm containment strategies. As regards

detection techniques, they can be differentiated mainly in two approaches:

content based and traffic based. Content inspection approaches can be based

on signatures of known worms or on correlation of common patterns found

in packets [43]. Content analysis, however, requires heavy resource consump-

tions and can be made uneffective by mutant worms. In contrast, detection

methodologies based on traffic observations are related to the probing be-

havior of scanning worms. A common approach is to identify illegitimate

scans and the increase of activity due to worm propagation [44] [45]. Rely-

ing on failed connections is obviously not viable for worms based on single

UDP packets (e.g. Witty and Slammer). The works [46] [47] can be partially

ascribed both to the research areas of detection and of worm traffic charac-

terization. Because, starting from the observation of statistical properties of

worm traffic - the exponential growth trend of infections at the early propa-

gation stage - they propose two detection techniques. In the next section we

present part of our work [48] on the analysis of Witty and Slammer, show-

ing how from the traffic analysis of computer worms it is possible to derive

important insights and elements for building traffic fingerprints.

2.2.2 Traffic Analysis of HTTP and SMTP

In this section we perform a packet-level study of HTTP and SMTP traffic in

search of invariant properties by analyzing very large traffic traces captured

from two WAN access links of a University and a research center, different

in load, user population, as well as user practices. We captured traffic from

two stub networks of academic and research Italian institutions during the

period Jan-Dec 2004 : (i) Area della Ricerca di Genova of the Italian National
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Table 2.1: Details of observed sites and traffic traces

Site Max IPs Date Size Pkts Client-Server Conversations
Bandwidth pairs

UNINA 200Mbps 65000 14-19 Jul 2004 60 GB 830M 1M 2.3M
ARIGE 16Mbps 8000 4-10 Oct 2004 3 GB 43M 56000 125000

Research Council and (ii) University of Napoli “Federico II”. For brevity,

we will refer to such sites respectively as ARIGE and UNINA. The observed

links represent the only connection of the networks to the Internet and have a

maximum throughput of 200Mbps and 16Mbps respectively. The observation

of the links resulted in two traffic traces for each node: a trace related to the

traffic generated by clients inside the observed networks reaching HTTP and

SMTP servers on the rest of the Internet - we will call such traffic Egress - and

the other one related to external clients visiting HTTP and SMTP servers

hosted at the observed networks - we will call it Ingress traffic. Here we report

results related only to Egress traffic, which represents the vast majority of

the observed traffic and is related to a large population of users reaching all

kinds of services. The analysis was performed on TCP packets with source

or destination port 80 (HTTP) and 25 (SMTP).In order to preserve privacy,

for each packet we kept only the IP and TCP headers and we scrambled IP

addresses using the wide-tcpdpriv tool from the MAWI-WIDE project [49].

As regards HTTP traffic we also captured the first 3 bytes of payload data

exchanged between each host pair (which under normal conditions correspond

to the method invoked by the client in a HTTP request, see next section for

more details).

Experimental results

We first decomposed network traffic into conversations, a concept previously

introduced in literature [7], defined as the time interval during which two dif-

ferent hosts exchange packets belonging to an association of the kind {source

address, destination address, application-level protocol}, and separated by a
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fixed amount of time of silence. We defined as belonging to the same con-

versation, all packets to and from port TCP 80 (for HTTP) and port TCP

25 (for SMTP), traveling between two hosts, with an inactivity timeout of

15 minutes. As regards HTTP, it is worth to note that such a value is com-

patible with the HTTP session timeout introduced in past papers related

to Web traffic [12] and the distribution of human thinking time modeled by

Mah in [11]. They indeed represent an upper bound, being referred to the

traffic exchanged between a single client and multiple servers instead of only

a single server. Our approach does not take into account single TCP connec-

tions but considers all traffic happening during the conversation as a unique

bi-directional flow of data, which we divided into upstream, which is traffic

from the client to the server (packets with destination port 80 and 25 for

HTTP and SMTP respectively) and downstream, traffic from the server to

the client (the same condition as above but applied to the source port). Both

for HTTP and SMTP we separately studied upstream and downstream traf-

fic, building, for each of them, estimates of packet size and inter-packet time

distributions. We want to stress that we calculate IPTs by subtracting the

timestamps of two consecutive packets belonging to the same conversation

and flowing in the same direction (upstream or downstream).

HTTP Traffic Characterization Details on HTTP traffic traces are re-

ported in Table 2.1. We started studying observed links with a quantitative

analysis of traffic. The three diagrams in Fig. 2.2 show rates for packets,

bytes and opening of new conversations during all the week (from Monday

to Saturday) at the UNINA site. Packet and byte rate are separated into

upstream and downstream. The data has been sampled with a step of 15

minutes. We note diurnal patterns of activity, which is a known phenomenon

in network traffic. Indeed traffic is mainly limited to working hours (9:00-

17:00). Back to Fig. 2.2, it is interesting also to observe that bytes, packets

and conversations tend to follow the same behavior keeping a proportion

among them. Downstream traffic is several times higher than upstream traf-
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Figure 2.2: UNINA packet/byte/conversation rate

fic, both for packets (5:1 ratio) and bytes (15:1 ratio). Different ratios for

packets and bytes anticipate what we will see later studying packet size distri-

butions: upstream packets are usually smaller than downstream packets. All

quantitative values observed at the ARIGE site are in accordance with those

from UNINA keeping the same proportions among them but scaled by a fac-

tor of 20. The periodical patterns in traffic induced us to study payload size

and IPT distributions separately for each day, from Monday to Friday. For

each of the modeled variables (upstream/downstream – payload/inter-packet

time), we found almost identical empirical distributions when comparing re-

sults for all the days of the week (an example for upstream inter-packet times

is shown in Fig. 2.3). This is an important result of this study, because it

proves time-invariant properties of the characterizations found. For each

site we then built average distributions that were representative of the en-

tire considered week. We also applied a statistical fitting methodology (not

shown here but detailed in [50]) to such empirical distributions to come up

with analytical representations of the sample sets. The weekly average em-

pirical distributions were also used to compare PDF and CDF estimates of

corresponding variables at each site. In the following, estimates of the dis-

tributions of upstream and downstream inter-packet time and payload size,

found at both sites, are compared. It can be seen that all the modeled vari-
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ables show strong properties of invariance when the observed link changes.

This is another fundamental finding of our work, which, together with the

time-invariant characteristics cited above, makes the obtained results promis-

ing in terms of generalization capability and therefore applicable in realistic

traffic generation and simulation. However, there are also some differences in

the obtained models. Both analogies and dissimilarities, along with an anal-

ysis of the empirical and analytical models we obtained, are briefly exposed

in the following.

As regards Inter-packet times, to properly read the plots in Fig. 2.4 we

remind that packet timestamps have been collected with a precision of 10µs

and that we applied a log10 transformation to the samples. We can ideally

distinguish among three main overlapping regions in the inter-packet time

distribution graphs. The lowest region, which can be roughly considered as

starting from the first decade up to half of the third decade, is dominated by

back-to-back packets probably due to file-transfers. The next region, which

extends until about 1s, contains samples which are compatible with RTTs

found in Wide Area Networks. Finally, consistently with past works [9] [11]

[12], we can assume that inter-arrivals directly generated by human behavior

(e.g. user clicks) should be located in the last region, that is, beyond 1s. Such

scheme to read inter-packet time distributions has been cross-validated by

several considerations and it can be observed that distributions have sudden

changes in the transitions between one region and another. As we will also

see for payload-size distributions, upstream and downstream traffic behave

quite differently. Much of the samples in the upstream traffic is concentrated

in the central region, while the majority of downstream inter-packet times

are located in the first one. Indeed, while file transfers are the common task

of HTTP servers, clients more often issue lot of requests. In the case of Web,

for example, the first request of an HTML document is typically followed by

more requests for the embedded objects. If such objects are small enough to

be sent within one or few packets (as often is the case [51]), requests are sent

with intervals close to the RTT from the client to the server. This, not only
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justifies the predominance of the central region in the upstream distributions,

but also explains its presence in the downstream distribution along with a

correlation between upstream and downstream inter-packet times.

As regards PS, looking at Fig. 2.5 (in which CDFs are shown instead of

PDFs, being that the diagrams are easier to be compared in this case), we

can see that corresponding distributions from ARIGE and UNINA networks

look very similar. Even though, we noticed that the Maximum Transmission

Unit (MTU) of the network interfaces on the hosts, which limits the size of

packets that can be sent and received, has a partial effect on them. Indeed,

we found several spikes in the distributions. To confirm the hypothesis that

they were not related to specific application or user behaviors, but were

caused by MTUs set on the interfaces, we instructed Plab to decode, when

present, the Maximum Segment Size (MSS) TCP option in SYN segments.

We were then able to build separate payload distributions for conversations

in which peers negotiated a different MSS (based on the smallest MTU on

their interfaces). An analysis of such distributions, and a comparison against

the original global distribution revealed that the peaks in the latter were

generated by packets with maximum payload from conversations in which

the MSS of one of the peers limited the size of the payload. Even if the

four most frequent negotiated MSS (1460, 1380, 512, 536 bytes) were found

to be associated to more than 95% of the total packets, with the first two

covering more than 90%, their distribution was not totally invariant from site

to site. Indeed, a larger percentage of conversations with MSS=1380 bytes is

the reason of the slight difference between UNINA and ARIGE downstream

CDFs.

As we anticipated, upstream and downstream packets have different payload-

size distributions. In general, upstream payloads tend to be smaller, with a

mean value of 500 bytes; average downstream payload size is 1240 bytes. The

downstream distribution is basically dominated by full-length packets. We

identify several of the above-mentioned peaks, which together sum up to the

80% of the distribution. Most of them are concentrated near 500 bytes and
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near 1400 bytes. The remaining 20% of the packets is uniformly distributed

over the total range. If we remind that we discarded packets without payload,

we see that such distribution is consistent with the trimodal distribution of

generic IP packet size found in wide-area traffic studies [52]. For upstream

traffic we found totally different results. 85% of the samples reside in a set

starting from 120 bytes to 1280 bytes.
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Figure 2.5: Upstream and downstream payload size CDFs

Impact of P2P traffic on port TCP:80 on traffic profiles. To stress

the concept of spatial invariance at packet level, in this Section we show how

a process of trace sanitization applied to the UNINA traffic makes the traffic

profile more regular and more similar to the profile of the ARIGE network

traffic. As a side effect, we give some insights about non-HTTP traffic using

port TCP 80. Indeed, we know that few applications are sometimes con-

figured to use port TCP 80 to bypass filters on firewalls. Especially P2P

applications [53]. For this reason, to enforce network usage policies, net-

work administrators sometimes must resort to application-level firewalls or

to more advanced filtering architectures. Latest firewalls and routers, indeed,

are moving toward the use of packet inspection, often done in hardware, to

enforce traffic filtering by application classification; e.g. the NBAR feature

in Cisco routers [54]. An NBAR filter was indeed in action on the UNINA
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site, which blocked all communications with hosts outside the network using

FastTrack and Gnutella protocols. This prevents some popular P2P applica-

tions (Kazaa, Grokster, Limewire, Morpheus etc.) to exchange traffic. At the

ARIGE site there were no such kind of filters instead. This network, though,

is used by a more homogeneous and restricted group of users, mainly re-

searchers, than the large UNINA network. In the latter, different categories

of people (e.g., students) have access to the network. Before starting our

analysis, we were still concerned with the presence of non-HTTP traffic in

our traces, so we investigated it further. We added a feature in Plab to ex-

amine the first 3 bytes of the first packet carrying TCP payload exchanged

in each conversation. As reported in Table 2.2, we observed that almost 94%

of the conversations started with a GET request, 4% with a POST request

etc. Only a small fraction of the sessions presented packets starting with a

byte not corresponding to an alphabetic character. Inside this category, 99%

of the conversations started with the byte 0xe3. As reported in [55], this

is the first byte exchanged by peers opening a communication session based

on the eDonkey2000 protocol (used by eDonkey and eMule file-sharing ap-

plications). Because our interest was in characterizing traffic generated only

Table 2.2: Payload inspection on first packet opening a conversation

Conversation Start GET POS HEA Downstream 0xe3 PRO
Percentage 93.94 4.23 0.7 0.44 0.27 0.2

by applications running over HTTP, we instructed Plab to recognize such

conversations and to filter them out. Also, 0.44% of the conversations were

initiated by the host communicating from port TCP 80 (labeled as ”down-

stream” in Table 2.2). By filtering our traces, we observed that 5.12% of the

processed packets were discarded. Therefore, this non-HTTP traffic repre-

sents a not negligible portion of the captured traffic. As regards the number

of filtered conversations, they account for about 0.7% of the total. This sug-

gests that filtered conversations tend to generate more packets than HTTP
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conversations. By comparing the results obtained with and without filter-

ing such conversations, we observed that discarded traffic had a consistent

impact in terms of payload size and inter-packet time. Comparisons of the

obtained distributions for upstream traffic at the UNINA site are shown in

Fig. 2.6. Observing the properties of such distributions it is clear that fil-
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Figure 2.6: Filtered UNINA upstream: IPT PDF (left), PS CDF (right)

tered conversations increase the portion of back-to-back packets with full

payload, probably due to the presence of file-transfers.

SMTP Traffic Characterization. In this section we present results on

SMTP showing that looking at another type of traffic using the same packet-

level methodology highlights how a different type of traffic exhibits different

properties. Indeed, by comparing traffic from ARIGE and UNINA networks,

also in this case we found a spatial and temporal independence. Therefore,

as for the SMTP traffic we briefly show results of the same approach applied

to traffic related to port TCP 25, captured at UNINA in the same days as

the HTTP traffic trace. The diagrams in Fig. 2.7 show indeed a totally

different behavior from HTTP traffic, and instead reflect the mechanisms of

the SMTP application-level protocol. Servers (mail receivers) tend to send

small packets with inter-packet times mostly concentrated around 300ms.

The CDF diagram shows that about 90% of the payloads are smaller than

100 bytes and almost all payloads do not go beyond 300 bytes.

On the contrary, looking at upstream traffic we find that clients (mail
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senders) behavior is dominated by large back-to-back packets. Also, in the

payload-size distribution we found spikes corresponding to negotiated MSS,

as explained above. The jump at 1380 bytes is easily recognizable in Fig.

2.7.

The observed distribution characteristics are strongly related to the ap-

plication. Indeed in the SMTP protocol the mail receiver answers to com-

mands and data submissions with a rigid syntax in which replies have a

numeric code, therefore they are usually very short. Mail senders, after is-

suing commands, must instead transfer all the mail content, prepended by

headers, and often with binary objects attached. On the other side, knowing

the application characteristics, it is evident that, unlike for HTTP, there is

not much user interaction involved. However, user influence can be seen at

least with the presence of long emails and file attachments. The latter, for

example, lead to a higher percentage of maximum-size packets (data trans-

fer) compared to small-size ones (possibly SMTP commands). This aspect

can also be observed in conversations data, such as conversation duration

and transferred bytes. Once again, this reveals a correlation between these

two observation levels.

Discussion

In this work we applied a packet-level analysis both to HTTP and SMTP traf-

fic. We selected HTTP traffic because it is a traditional Internet application-
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protocol and despite a lot of works about HTTP traffic modeling and char-

acterization are present in literature, few papers are devoted to traffic char-

acterization at packet level. Therefore, the study of HTTP gave us a twofold

opportunity. Firstly, we provided a characterization of a well established

and largely diffused protocol. Secondly, thanks to the large number of pa-

pers studying HTTP (not at packet level) we compared, contrasted, and

understood the results we obtained with a packet-level characterization. Fur-

thermore, in order to show how our approach is simply usable in the case

of other protocols and how a packet-level approach can be useful to under-

stand traffic peculiarities we analyzed also SMTP traffic. This experimental

analysis shows that packet-level characterizations exhibit invariant proper-

ties, in terms of time (temporal invariance) and observed link (spatial in-

variance). We can summarize what we obtained from our analysis in the

following points: (i) packet-level models show invariance with respect to

space and time; (ii) payload size and inter-packet time distributions of up-

stream traffic are very different from those related to downstream; (iii) MSS

can influence the payload-size distribution; (iv) thanks to the sanitization of

traffic traces we found confirmation that P2P traffic using port TCP 80 to

bypass firewalls significantly changes the traffic profile on this port;

2.2.3 Traffic Analysis of a Network Game

In this section we investigate the statistical properties of IPT and PS of a

well known client/server network game, Counter-Strike (CS). Specifically, by

analyzing its traffic under very different network scenarios we look for invari-

ant properties specific to this traffic. In the first subsection we show results

obtained through a comparative analysis between results we obtained from

traffic traces made available by the scientific community, and a study present

in literature. Whereas in the following subsection we show results obtained

by repeating several experiments with a Counter-Strike server and a vari-

able number of clients under a heterogeneous set of network scenarios. Both

studies show how the traffic profiles of this game exhibit strongly invariant
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properties.

Searching invariants in available data

In this subsection we show a brief comparative analysis of the same game

in two different contexts. More precisely, first we perform a characterization

from a WAN traffic trace collected at server-side and made available by the

authors of [20] (see Table 2.3). Then, to study the invariant properties of

CS traffic, we compare our results against those from the analysis performed

in [1], which is related to LAN traffic collected at client-side. We show how

it is possible to see packets Inter-Arrival Times (IAT) at the server, as the

aggregation of Inter-Departure Times (IDT) from a number of clients, even

if the traffic has been captured in two contexts that are totally different.

In the case of the WAN scenario, traffic was captured at a Counter-

Strike server of one of the most popular on-line gaming communities in the

Northwest region of USA, mshmro.com [56]. The server is configured with

a maximum capacity of 22 players (which is the average number of players

in fact). While in this trace the point of observation is from the server, the

other considered scenario is related to traffic captured at client side in a LAN

environment. The results from the second scenario, which we used for the

comparison, have been presented in [1]. In that work Faerber, by analyzing

empirical distributions of IPT and PS of packets flowing in and out clients,

proposed a simple model of Counter-Strike traffic.

Table 2.3: LAN and WAN Traffic Trace Details
Scenario Observation point Log Time Packets

WAN Server 7h:50m 20000000
LAN Client 5h:3m 284519

After the characterization we performed for the traffic captured in the

WAN scenario, we focused on the search for invariants between the two con-

sidered traffic traces by comparing the incoming/outgoing traffic of the server

in one trace against that of the clients in the other trace. In Fig.2.8 we show

the PDFs of both the IPT observed at client-side (IDT) in the LAN sce-

nario and the IPT of aggregate client traffic captured at server side (IAT)
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in the WAN scenario. We found that the average value of the IDT samples

reported in [1] - 41.7 ms which correspond to ca. 23 pkts/s - is consistent

with the mean of the server IAT (from all the 22 clients) that we measured:

0.002 s −→ 506 pkts/s = 22 players × 23 pkts/s.
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Figure 2.8: IPT PDF: client-side IDT (left) [1], server-side IAT (right)
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Figure 2.9: Client-side IAT PDF (left) [1], Frequency spectrum of Server-side packet rate
(right)

In Fig.2.9 the PDFs of the IAT at clients (in the LAN scenario), and the

frequency spectrum of the packet rate of server-to-clients packets (measured

in the WAN scenario) are depicted. From the frequency analysis we found

a notable peak around 19 Hz, probably connected to regular game updates

(ca. each 53 ms) sent from the server to the clients. Indeed, looking at the

PDFs in the left diagram we see that most distributions are centered around

55 ms.
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Experiments with a heterogeneous testbed

Figure 2.10: Experimental testbed

To further investigate the foreseen invariants examined in the previous

subsection we collected more data. To this aim a heterogeneous testbed,

schematically depicted in Figure 2.10, has been set up. We placed the game

server into a LAN. Then, we made tests with clients on LAN, Wi-Fi, Home

ADSL, with different configurations and number of users. We performed a

characterization of the traffic captured in all the experiments, and we found

strong invariants reported in the following. We report here some of the

results of the characterization for the simple LAN scenario, in which four

players (Luca, Alessandro, Biagio, Roberto) played for about 20 minutes

being directly connected to the same LAN where the server was placed. In

tables 2.4 and 2.5 we show some summary statistics for this scenario. Figures

2.11 and 2.12 show respectively the four CDFs of the PS generated by the

four clients in upstream traffic, and the four PDFs of IPT upstream packets.
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Table 2.4: UPSTREAM PS statistics
player mean std iqr max min median entropy

[bytes] [bytes] [bytes] [bytes] [bytes] [bytes] [bits]
luca 42.49 7.99 14.00 61.00 25.00 44.00 4.62

alessandro 43.81 8.41 15.00 61.00 25.00 46.00 4.73
biagio 43.69 8.11 14.00 61.00 25.00 46.00 4.66
roberto 45.66 7.58 12.00 60.00 25.00 49.00 4.49
server 77.48 32.79 32.00 461.00 27.00 72.00 6.67

Table 2.5: UPSTREAM IPT statistics
player mean std iqr max min median entropy

[µs] [µs] [µs] [µs] [µs] [µs] [bits]
luca 41910 7134 171 465432 16730 41687 2.39

alessandro 42876 16783 443 1522475 3668 41716 4.04
biagio 42175 12245 363 1528904 31225 41724 3.65
roberto 41861 1195 264 63509 32183 41728 2.78
server 13912 9975 26720 42177 3 13894 3.22

We can observe how the distributions are similar for all the players. The

distribution of PS from clients is made of very short packets, usally in the

[25,61] bytes interval and mostly concentrated at 50. The packets sent by the

server are usually larger (approximately in the [1,460] bytes interval), gamma-

like distributed, and with higher variance. As for IPT of packets generated

by the clients, they are gaussian-like and centered at ≃ 42 ms. Figure 2.13

shows the autocorrelation of upstream PS for all the four players, revealing

in all cases a high degree of correlation up to the 5th-6th packet which slowly

decades.
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Figure 2.11: LAN scenario: CDF of clients upstream PS
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To show an example of invariant properties with respect to the access

network, in Figures 2.14 and 2.15 the four PDFs of IPT upstream packets

are shown for network scenarios respectively with users connected through

a wireless LAN and users at home connected through an ADSL connection.

The IPT PDF is therefore very characteristic of the game, independently of

the access network to which the clients are connected.
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Figure 2.14: WLAN Scenario: PDF of clients upstream IPT
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Discussion

The search for invariants allowed us to identify the behaviors related to the

application by isolating them from the specific network environment. All

clients have the same behaviors, both in terms of IPT and PS. PS have

shown to be totally invariant with respect to the network, whereas IPT are

strongly invariant but become more spread when the packets traverse a WAN.

In conclusion, we can state that the traffic of Counter Strike is highly pre-

dictable. Allowing, e.g., ISPs to identify it, and to provide specific QoS and

billing accordingly.

2.2.4 Traffic Analysis of Peer-to-Peer TV

In this section we point our attention on the study of P2P IPTV applications.

More precisely, we study the traffic generated by the four most used P2P

IPTV applications at the time of the experiment, and still considered today

among the top ones: PPLive, PPStream, Sopcast, TVants. Analyzing four

applications instead of a single one makes our analysis more complete and

allows to investigate the generalizability of the observed results and to look

for invariants of this traffic category.

The overall study that we performed on this traffic ([34]1), of which here

we present only excerpts related to packet-level analysis, aims at a better

understanding of the mechanisms used by such applications and their impact

on the network, despite their use of proprietary unpublished protocols, by

directly looking at the traffic they generate. We aim at understanding: (i)

which transport-level protocols are used and what are the consequences of

different choices; (ii) how traffic is divided into signaling and data, and into

upload and download directions, in order to study and characterize them

separately; (iii) criteria useful to discriminate between signaling and data

traffic and to identify P2P IPTV traffic; (iv) statistical properties of P2P

IPTV useful to understand the impact on network nodes and links (e.g. long

1This work was developed jointly with Université Pierre et Marie Curie - Paris 6 in the
context of the CONTENT EU NoE



Packet-level Traffic Analysis 34

range dependence); (v) how peers interact, how much they contribute to

content distribution, and what is their typical lifetime; and (vi) what is the

download policy of the different applications. The results presented here

are particularly relevant to identify traffic generated by such applications, to

understand their impact on network nodes and links, and to build realistic

simulations and emulations.

Description of the experiments

With the aim to better understand both traffic properties and peer behav-

ior of a P2P IPTV community during a worldwide event, we considered four

applications. Analyzing different applications allows studying such commu-

nities without being too closely related to the design of the applications and

thus making the results more general. We collected traffic traces during the

2006 FIFA World Cup from June 09 to July 09 because we believe that it

can be representative of events of interest in P2P IPTV communities. The

2006 FIFA World Cup represents indeed one of the biggest worldwide sport

events that attracted tens of millions of viewers from all over the world.

For our experiments, we chose the applications PPLive, PPStream, SOP-

Cast and TVAnts, because they are among the most popular. Actually their

users, on the community website at [57], ranked these applications among the

best and efficient applications to watch live television. Nowadays, these four

applications are still very popular and, e.g. in the case of PPLive [58], esti-

mates indicate millions of users. All the largely deployed P2P IPTV systems

claim to use a mesh-based architecture as those investigated in this work.

The mesh-based architecture used by P2P IPTV systems takes its inspira-

tion from BitTorrent [59] and uses the same kind of swarming protocol, as

in Donet [28]. Instead of building a strict topology (e.g. a broadcast tree),

a mesh is built among peers whose links (peering relationship) depend on

the data availability on each peer. The topology is dynamic and will con-

tinuously evolve according to the peering relationship established between

peers. These P2P protocols generate two kinds of traffic: video traffic which
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is used for exchanging data chunks, and signaling traffic used for exchang-

ing the information needed to get the data. Thanks to the signaling, peers

know how to download the video data chunks by exchanging randomly with

other peers information about the data chunks they have (buffer map) and

the neighboring peers they know. Therefore, with such signaling traffic, each

peer discovers iteratively new peers and new available data chunks. However,

even if these applications are freely available and developers state to use a

mesh-based architecture, their source code is not open and their exact imple-

mentation details and protocols are still widely unknown. Therefore, we can

only count on traffic analysis to understand their transmission mechanisms

and peer behavior.

We collected a huge amount of data, measuring most of the World Cup

soccer games with four different applications at the same time. Here we focus

on four packet traces, one for each application, collected on June 30 in the

campus network of the Université Pierre et Marie Curie - Paris 6. From our

collection, we selected these traces because on that day two very important

quarter-final matches were played, which attracted a lot of P2P IPTV users.

The traces are publicly available at [60]. It is worth stating that we also

analyzed the other collected traces and we obtained results similar to those

presented in this work .

On the selected day, two quarter-final matches were scheduled: Germany

vs. Argentine in the afternoon and Italy vs. Ukraine in the evening. The

choice of this day was motivated by non-technical issues too: to have the

highest number of users involved in the trace we collected, we considered

matches with favorite teams, team of the hosting country, etc. During each

match, we used two computers, each one running a distinct P2P IPTV ap-

plication as well as WinDump[61] to collect the traffic. Therefore we collected

two traffic traces for each match, one for each application. In particular, we

respectively collected traffic from PPStream and SOPCast during the the

first match and from PPLive and TVAnts during the second one. To col-

lect packets from our measurement testbed we used two PCs equipped with
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1.8GHz CPUs, common graphic card capabilities, and running Windows XP.

The PCs were situated in the campus network and were directly connected

to the Internet through a 100Mbps Ethernet link. For all the measurement

experiments, the consumed bandwidth was always relatively low and did

not exceed 10Mbps. The Ethernet cards did not suffer any packet loss and

captured all the packets. For all the experiments, the nodes were watching

CCTV5, a Chinese TV channel available for all the measured applications.

It was important to watch the same TV channel with all the applications to

assure that the behavior of peers was similar in each trace. For example, de-

spite the different applications, during the advertisements a user may stop

watching the channel switching the application off and then switching it on

a few minutes later. After collection, the traces had to be cleaned by remov-

ing packets not related to the applications. This operation was necessary

because we did not know the characteristics of the traffic of such applica-

tions. Therefore, we first captured all the traffic exchanged by the nodes

under test. After that, we inspected the traces and filtered out traffic not re-

lated to the observed applications. This task was done both manually and

using Plab [62].

Experimental Analysis

In this section we analyze traffic characteristics in detail. In particular, we

first describe some general properties of this traffic, then we discuss issues

related to the separation of video and signaling flows, and we show distinct

results for them. The considered applications generate traffic using different

ports and protocols. Table 2.6 contains the information regarding the used

protocols and the sizes of the traces. The time duration of the collection

(≈ 225 minutes) is longer than that of a soccer match (≈ 105 minutes).

We chose to collect the traffic before and after the games to capture all the

effects that the live interest on a soccer game could produce on the behavior

of peers (e.g. flash crowds). We observe that there is much more traffic in the

upload direction (i.e. from our controlled node to the other peers) than in the
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Table 2.6: Summary of packet traces.

PPLive PPStream SOPCast TVAnts

Duration (s) 13,321 12,375 12,198 13,358

Size [MB] 6,339 4,121 5,475 3,992

Download[%] 14.11 20.50 16.13 24.76

TCP 14.09 20.50 0.23 14.71

UDP 0.02 ≈ 0.00 15.90 10.05

Upload[%] 85.89 79.50 83.87 75.24

TCP 85.81 79.50 3.89 61.67

UDP 0.08 ≈ 0.00 79.98 13.57

download one (i.e. from all the other peers to our node). This is due to the

fact that our computers are connected to the Internet through a 100 Mbps

Ethernet link. Therefore, in contrast with more common ADSL connections,

we have equal upload and download capacity. This implies that we are able to

provide video chunks to a large number of peers. Interestingly, we can notice

that PPLive, TVAnts and PPStream make extensive use of TCP, whereas

SOPCast runs mainly on UDP. Moreover we can observe that TVAnts also

relies on UDP for a non negligible percentage of packets. Table 2.7 shows

the ports used by the applications. PPLive and SOPCast present a similar

behavior. Indeed, for these applications, the machine under test uses mostly

the same ports for all the communications with the other peers which, in turn,

use a wide range of different ports. PPStream behaves similarly, except that

it uses a fixed remote port and three different local ports for the very few

UDP packets. It is also interesting to note that both PPStream and PPLive

Table 2.7: Utilized Port number (percentage of packets).

PPLive PPStream SOPCast TVAnts

Remote Peers
TCP Several Several Several 16800 (> 25%)
UDP Several 7201 (100%) Several 16800 (> 60%)

Controlled Peer
TCP 10549 (> 99%) 11430 (> 99%) 8516 (> 99%) 16800 (> 71%)
UDP 5747 (100%) 5747 (42%), 11430 (54%), 8516 (> 99%) 16800 (> 99%)

65535 (4%)
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use the local UDP port 5747. Finally, a peculiar behavior is noticed for

TVAnts, which uses port 16800, both local and remote, for most of the UDP

and TCP packets. This is probably because TVAnts sets a default port on

a new installation that can be changed thereafter by the user. Looking at

Table 2.7, it is also evident how P2P IPTV traffic cannot be reliably identified

by looking at transport protocol ports, motivating the need to find different

ways to recognize their traffic.

As we explained in the previous section, the P2P applications we studied

generate two kinds of traffic: video and signaling. The signaling traffic of

P2P IPTV systems is not expected to be delay-sensitive, because it is used

to exchange information about peers or data availability but is not used for

interactive commands, as for Video on-Demand systems like Joost [63]. In

video on-demand systems, the users may want to move the video playback

instant forward or backward promptly. In the case of P2P IPTV, it is not

possible to have this kind of interactive commands since the data flows are

broadcast live. In general we can say that the signaling and video traffic have

not the same characteristics such as packet size or delay constraints, and they

would have a different impact on the network. Therefore we want to separate

video and signaling traffic in order to analyze their peculiar properties.

Because the protocols adopted by such applications are not open, we rely

on a heuristic based on traffic properties. A simple heuristic to separate

these two kinds of sessions in PPLive traffic was previously proposed by

Hei [29]. Such heuristic works as follows: for each session (same IP addresses

and ports), we count the number of packets larger than or equal to 1200

Bytes. If a session has at least 10 of such large packets, then it is labeled as

a video session. All the non-video sessions are supposed to carry signaling

information. To understand if it was reasonable to apply such heuristic to

all of them, we investigated traffic properties for all of the four applications,

driven by the following considerations. It is expected that video sessions are

essentially composed of large-sized packets sent at small and regular time

intervals, whereas signaling information should be carried by smaller packets
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Figure 2.16: Joint probability distribution of Inter Packet Time and Packet Size.
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Figure 2.17: Upstream flows: Average Packet Size vs Number of Packets.

sent much less often compared to video chunks. For the same reasons we

expect to find that signaling sessions exchange much less packets than video

sessions in general.

Figures 2.16 and 2.17 reveal interesting properties of overall P2P IPTV

traffic generated by the four considered applications. Moreover, they confirm

the above intuitions by showing that there are packets and sessions with

different properties and that the packet size property may be a good heuristic

to discriminate between signaling and video sessions.

Figure 2.16 shows the joint Probability Density Function (PDF) of the

Inter Packet Time (IPT) and Packet Size (PS) of the download traffic. The

IPT of each packet is the time elapsed between that packet and the previous

one of the same session, and as usual for the PS we considered the protocol-

layer payload size, discarding all TCP packets without payload. For each

application we only considered packets related to the prevalent transport

protocol, e.g. TCP for PPLive and UDP for Sopcast. The distributions of

these applications are different but, for all of them, we can distinguish two

main clusters of packets: small-size packets (< 200 Bytes) with large IPT and
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large-size packets (> 1000 Bytes) with small IPT. Most of the video packets

should then belong to the large PS and small IPT cluster. The signaling

packets, instead, should mostly belong to the other cluster with small PS

and large IPT.

In Figure 2.17 instead, we show scatter plots in which, the coordinates of

each point are given by the average PS and the number of transmitted packets

of a session. The number of transmitted packet is plotted on a logarithmic

scale axis. In these diagrams the sessions with the largest numbers of packets

(supposedly video sessions) tend to have high average packet size. Both these

results made us very confident that the cited heuristic could be used for all

the P2P IPTV applications considered. Furthermore, to be sure that this

heuristic does not introduce large errors in our analysis, we also manually

inspected the traces. This verification allowed us to discover that there are

different kinds of signaling packets, that such packets have fixed sizes, and

that these sizes are always smaller than 1000 Bytes. Thus, considering also

the findings about the PS distributions of the four applications, we modified

the heuristic to use a limit of 1000 Bytes instead of 1200 Bytes. Finally, we

can state that, with regard to the traces we consider, the heuristic proposed

is effective in discriminating signaling and video traffic.

In Table 2.8 we report statistics on the ratio of signaling traffic with

respect to overall traffic of all the applications, also separated in download

and upload. We observe that Sopcast is by far the application producing

more signaling traffic, whereas PPLive generates much less signaling than

the others. In all the four cases the amount of signaling traffic we sent is

much smaller than that we received. This can be explained by observing that

we sent a large quantity of video chunks.

Discussion

In this section we analyzed the network traffic generated by four of the most

popular P2P IPTV applications. Such applications use proprietary unpub-

lished protocols, making their study challenging. However this work goes
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Table 2.8: Signaling Traffic Ratio

PPLive PPStream SOPCast TVAnts
Total 4.1% 13.6% 19.3% 10.2%

Upload 2.2% 10.8% 13.6% 7.8%
Download 19.2% 25.8% 48.5% 18.0%

into the direction of improving knowledge of current P2P IPTV systems. We

think the results here presented can be useful in several fields: (i) to identify

traffic generated by such applications; (ii) to understand the impact of their

traffic on the networks; (iii) to build realistic simulations and emulations.

We outlined similarities and differences among such applications in terms

of the transport layer protocols and the related ports they use, deriving some

interesting properties, e.g. which applications run only on TCP and which

ones rely also on UDP, and showing that such traffic cannot be identified by

using port numbers. The first step to understand and identify P2P IPTV

traffic is to discriminate between signaling and data traffic. We discovered

several properties of the traffic that strongly confirm, for all the applications

considered, a heuristic (previously proposed in literature only for PPLive

and with slightly different parameters) to separate signaling and data ses-

sions. This step was fundamental to further analyze operation and exchange

of traffic in P2P IPTV communities [34]. Moreover, we gained some knowl-

edge regarding statistical properties of this traffic (e.g. PS-IPT distribution,

recurring PS, etc.) that in the future we plan to further investigate as means

for application identification through traffic analysis.

2.2.5 Traffic Analysis of Computer Worms

In this section we present the analysis and characterization of the Witty

and Slammer worms. By studying and comparing traffic from three network

links we show interesting properties of time and space invariance and some

peculiarities of worm traffic which make it different from other categories

of traffic commonly found on the Internet. Besides representing the first
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step into understanding worm traffic more deeply, such results can be also

considered for the design of new fingerprinting and detection techniques.

The Witty worm [38] exploited a bug in the ISS firewall software when

it decodes ICQ servers packets [38]. Witty sends a single UDP packet with

source port 4000 to each scanned host. The payload varies from 768 to 1279

bytes because of a random padding which is done to make worm identifica-

tion (e.g. by firewalls) harder. After that 20000 packets have been sent to

randomly chosen IP addresses, it overwrites a small portion of the hard disk,

and then it starts to send packets again. The Slammer worm [40] [37] in-

stead, exploits a bug in Microsoft SQL Server. It sends a single UDP packet

of fixed size (404 bytes) with destination port 1413 to each target. The scan-

ning strategy is random. However, a bug in its random number generator left

a considerable portion of the Internet hosts not scanned. Differently from

other worms (that are latency-limited because they issue a connect() call for

each host to be scanned), as for example Code Red, both Witty and Slam-

mer are bandwidth-limited worms. This is because they send UDP packets

and do not need to wait for any response from the potential victim. So they

are only limited by the bandwidth of the infected machines.

In Tab. 2.9 the traffic traces that have been used in this work are sum-

marized. As for the Witty worm, we analyzed several tens of gigabytes of

data collected and made available by CAIDA [64]. The traffic stored in such

files has been collected by a network telescope, that is, all the traffic directed

towards an unused address space has been captured. This way, unsolicited

traffic (e.g. automated scans) can be detected and observed. The traces here

used have been obtained by filtering the traffic captured by the network tele-

scope, in the days of the spread of the Witty worm, considering only UDP

packets with source port 4000. Moreover, to obtain more traces related to

Witty and to overcome the poor availability of worm traces, we looked into

traffic traces of a trans-oceanic link during the days of the worm spreading,

verifying the presence of packets which can be associated to the Witty worm

(second row of Tab. 2.9). Indeed, the MAWI-WIDE project [49] makes avail-
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able 15 minutes traffic traces of this link for each day of the year since 2000.

An important benefit of such approach is that we also have the availability

of data related to legitimate traffic captured from the same link, and at the

same time, of the worm related traffic. This is good to compare their proper-

ties. As explained in Section 2.2.5, many results from the analysis show that

the Witty traffic selected from this trace has consistent properties with those

from the trace made available by CAIDA (evidence of spatial invariance).

We also looked into the MAWI traces that were captured during the

spread of Slammer. But we could not find packets associated to this worm.

This is probably due to a filtering rule which was set on the routers. Traf-

fic traces related to Slammer have been made available by MIT [40]. They

were obtained by filtering all the traffic traversing two unidirectional links,

considering only UDP packets with port 1413. These traces have been col-

lected on March 25th, 2004, which was one of the days of highest Slammer

activity. All the traces used contain only packet headers until layer 4, that

is, no payload information is stored.

Table 2.9: Traces details.

Worm Source Observation Filter Date Duration Size Infected
point Hosts

Witty CAIDA Net Telescope udp src port 4000 March 20-22, 2004 15m per day 1.3GB 10725
Witty MAWI BIDIR Link ALL March 20-22, 2004 15m per day 2.1 GB 4728

Slammer MIT UNIDIR Link 0 udp dst port 1434 March 25, 2003 8h 44m 842 MB 2523
Slammer MIT UNIDIR Link 1 udp dst port 1434 March 25, 2003 8h 44m 431 MB 5321

Analysis of Witty Traffic. We consider IPT inside host-based sessions

(i.e. an IPT represents the time between two consecutive packets sent by the

same host). We measure IPTs with a resolution of 1µs and apply a logarith-

mic transformation because they range over several orders of magnitude. For

each trace the distribution of IPTs is built by putting together all the IPTs

calculated for each host-based session. In the following, when necessary, we

will refer to the corresponding PDF as the average PDF, to distinguish it

from the PDF made by IPTs of a single session.

In Fig. 2.18 the diagrams of both the CDFs and PDFs of IPTs are
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depicted. The distributions are quite regular, resembling a gaussian distri-

bution. This behavior is invariant with respect to both the site observed

and the time of observation. As for the first point, the mean of the distri-

bution is shifted when the link changes. This can be probably connected to

the number of IPs that can be observed: the lower the number of victims

per host, the larger the average IPT. As for the invariance with respect to

time, we observe that the IPT distribution derived from a specific observa-

tion point does not change in the different epidemical stages. Indeed, as can

be seen from Tab. 2.10, while the first day represents the explosion of the

epidemic, in the subsequent days the infection level decreases dramatically,

probably because of patching (see infection models taking patching into ac-

count [42]). Also, Tab. 2.11 shows that, for each site, all the distribution

statistics but the entropy2 keep approximately the same values as the consid-

ered day changes. In contrast, the entropy follows a descending trend as the

infection decreases, possibly because the number of infected hosts decreases

thus reducing the uncertainty associated to the PDF. This finding suggests

a possible application to identify the evolution status of a worm spreading.
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Figure 2.18: Witty Inter-packet times.

Another interesting aspect that came out from the study of Witty traffic is

related to the payload size. As anticipated, this worm is designed to pad the

packet payload with a random number of bytes. In Fig. 2.19 the CDF and

PDF diagrams of the PS of packets sent by Witty hosts from both CAIDA

2The entropy is calculated as −
∑

i
P (xi) · log

2
P (xi) where P (xi) is the probability

associated to each bin (of width 0.05) of the samples histogram.
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Table 2.10: Witty Traffic statistics.
CAIDA 20/3 CAIDA 21/3 CAIDA 22/3 MAWI 20/3 MAWI 21/3 MAWI 22/3

Pkts 9.261.414 2.986.325 701.314 226.034 102.727 33.941
Src Hosts 7.515 2.128 1.085 2.881 1.141 706
Dst Hosts 6.800.779 2.690.668 683.096 198.663 99.380 33.231

Table 2.11: Witty IPT (log10(x), [x] = 1E − 6s).

Trace Mean Median Max StdDev Entropy (bit)
CAIDA 20/3 4,593 4,459 8,870 0,750 7,825
CAIDA 21/3 4,454 4,415 8,845 0,873 7,247
CAIDA 22/3 4,592 4,513 8,717 0,885 6,570
MAWI 20/3 5,762 5,750 8,898 0,720 6,112
MAWI 21/3 5,413 5,410 8,904 0,902 5,710
MAWI 22/3 5,802 5,670 8,921 0,902 5,118

and MAWI traces of three different days are depicted and compared. The

figures show that in all cases the distributions can be well approximated by

a uniform distribution from 768 to 1279 bytes, which is totally different from

the typical payload size distributions commonly found on Internet links [52].

700 800 900 1000 1100 1200 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bytes

 

 

CAIDA 20/03/2004

CAIDA 21/03/2004

CAIDA 22/03/2004

MAWI 20/03/2004

MAWI 21/03/2004

MAWI 22/03/2004

700 800 900 1000 1100 1200 1300
0

0.5

1

1.5

2

2.5
x 10

−3

bytes (bin width=10)

 

 

CAIDA 20/03/2004

CAIDA 21/03/2004

CAIDA 22/03/2004

MAWI 20/03/2004

MAWI 21/03/2004

MAWI 22/03/2004

Figure 2.19: Witty Payload Size.

A joint PDF diagram displays information related to the PS and IPT

marginal distributions, taking into account also mutual dependencies be-

tween the two variables. In Figures 2.20 and 2.21 the joint PDF diagrams

of Witty traffic, related to MAWI and CAIDA are respectively shown. They

are very similar, confirming a typical behavior, from a traffic characteriza-

tion point of view, of the infected hosts. This is an interesting invariant,

which makes such diagrams (or the information contained) to be considered

for fingerprinting and detection techniques.

To understand how much the traffic properties we found are really pecu-
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Figure 2.20: MAWI: Joint PDF (20/03/2004).
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liar to Witty, we made some comparisons against legitimate traffic. In this

process, in order to make comparisons more meaningful, we tried to remove

all possible differences due to side-effects. For this reason, we chose DNS

traffic as an example, because it runs on the same transport protocol - UDP

- of Witty (in contrast, TCP end-to-end flow control could somehow affect

packet-level variables) and a DNS server, like a worm-infected host, talks to

several different hosts in a short time. Moreover, the DNS traffic analyzed is

from the same MAWI trace of Witty, therefore there are no link-dependent or

time-dependent aspects which could be differently influenced. In Fig. 2.22,

the joint PDF of PS and IPTs calculated for the 4593 DNS servers (hosts

sending packets only from source port UDP 53) found in the MAWI trace

of 20th of March shows a totally different profile. The DNS packet pay-

loads are rarely larger than 250 bytes, with a stronger concentration around

three byte-lengths, and IPTs are spread but with the main peaks in the first

decade and in the region between the fourth and seventh decades. To stress
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Figure 2.22: MAWI DNS joint PDF.

the concept of the possible application of such findings in the field of finger-

printing and classification, in Fig. 2.23 we show the joint PDFs obtained for

two single hosts. On the left, one of the Witty-infected hosts, chosen among

those generating most traffic, is shown. Whereas the diagram on the right

is related to the most active DNS server. The choice of a larger binning and

the less smoothness of surfaces are due to a reduced number of samples com-

pared to the PDFs obtained by averaging data of all hosts. However we can
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see that: (i) the average joint PDFs reflect the properties of the single hosts,

and (ii) the joint PDFs of the two considered hosts are totally different.
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Figure 2.23: Joint PDFs of single hosts: Witty (left) and DNS (right).

Besides looking at marginal distributions, we also studied PS time depen-

dence. For several hosts infected by Witty, we plotted the PS autocorrelation

function from lag 0 to 100 (Fig. 2.24), and compared them to the correspond-

ing ones generated by DNS servers found in the MAWI trace. Such graphs

clearly highlight the different behavior of a Witty-infected host from a legiti-

mate host (a DNS server). The sequence of Witty PS is totally uncorrelated,

whereas there are strong indications of correlation in DNS traffic. The uncor-
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Figure 2.24: PS Autocorrelation: a Witty host (left) and a DNS server (right).

relation of Witty payloads is obviously a consequence of the random padding,

whereas the presence of correlation in DNS traffic might be explained by the

application-protocol structure and by the content of the DNS reply. It is also

interesting, however, that we found a similar distinction as regards packets
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IPTs. Those observed from Witty hosts are uncorrelated at all lags (both

for CAIDA and MAWI traces), whereas for DNS hosts IPTs are correlated

at several lags (Fig. 2.25).
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Figure 2.25: IPT Autocorrelation: a Witty host (left) and a DNS server (right).

Analysis of Slammer Traffic. The scarce availability of Slammer traces

does not allow to compare worm traffic of two totally different links/observation

sites, neither offers the possibility to observe and compare it against large

quantities of legitimate traffic flowing in the same links. However, they of-

fer another interesting insight: the 2 MIT links belong to the same backbone

and the anonymization algorithm applied to both traffic traces is the same.

Therefore we were able to recognize the presence of some infected hosts in

both traces, allowing to compare their behavior in both links.

As reported earlier, PS is fixed in Slammer. Therefore, from a packet-

level point of view, we limited to the analysis of IPTs. Even from this aspect,

Slammer hosts behave more heterogeneously than the Witty ones. The IPT

PDFs calculated for the single hosts show more differences, however the

average PDF is able to represent them. In all cases the profiles found were

quite different from those of DNS traffic shown earlier, and from those of the

small portion of legitimate traffic found on the original MIT traces.

In Fig. 2.26 the average PDFs and CDFs of Slammer hosts on both

links are compared. The very similar shape of the curves is an interesting

invariant. Whereas, the shift of the curves of Link 1 when compared to those
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of Link 0 is explained by the fact that the first link routes less traffic. This

difference is testified by the mean and median values reported in Tab. 2.12,

while the other parameters (e.g. entropy) show general consistency.
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Figure 2.26: CDFs (left) and PDFs (right) of Slammer IPTs.

Table 2.12: Slammer IPT (log10(x), [x] = 1E − 6s).

Source Mean Median Max StdDev Entropy (bit)
Link 0 4,046 3,918 10,47 0,953 8,00
Link 1 4,710 4,455 10,46 1,123 7,70

Like the results found for Witty (and differently from DNS traffic), IPTs

are basically uncorrelated for all the Slammer-infected hosts we analyzed.

However most of them present a very small correlation which oscillates around

0 from lag 0 to lag 100. This can be observed from Fig. 2.27, where two

different hosts from the two links are analyzed.
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Figure 2.27: IPT autocorrelation of two Slammer hosts, on Link 0 (left) and Link 1 (right).
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Discussion. This study represents a first step to understand more deeply

the impact of worms on network traffic, giving insights which we plan to

use for classification and detection purposes. We show that worm traffic

presents interesting properties of spatial and temporal invariance, and looks

very different from other kinds of traffic. This aspect is reflected by: (i)

joint characterization of the marginal distributions of PS and IPT shown by

means of joint PDFs; and (ii) lack of temporal (auto-)correlation in the PS

and IPT time series. In [48] more results and details regarding the traffic

analysis on this category of traffic are reported.

2.3 From Traffic Analysis to Traffic Classifi-

cation

In this chapter we have shown several examples of how, by looking at network

traffic at packet-level, we can gather insights into the properties of different

network applications that are useful to better understand them and the traffic

they generate.

We started by analyzing traditional Internet applications like HTTP and

SMTP. We have shown how each of them presents very distinctive properties

that tend to be invariant with respect to time and observed link. In the case

of HTTP we also observed how extraneous traffic using the same ports (e.g.

Peer-to-Peer file sharing) significantly alters the profiles we found. When

analyzing a novel category of traffic, looking at Counter-strike, we noted

properties very different from typical Internet traffic (e.g. very small packets)

but, again, very regular and independent by the link and the network scenario

considered. In the case of another novel category of applications, Peer-to-

Peer TV, by representing traffic through joint distributions of PS and IPT,

and through scatter plots of average PS and number of packets, we were

able to build heuristics to discriminate between the signaling and the data

traffic of such applications. At the same time we observed common behaviors

of the four applications considered, which belong to the same application
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category. Finally, when looking at two different computer worms, again by

considering joint distributions of PS and IPT, but also by evaluating the

correlation functions, we were able to identify possible fingerprints of the

two worms. For example, by comparing traffic from Witty-infected hosts

against legitimate DNS traffic we showed that joint distributions present

very distinctive profiles both for data averaged on multiple hosts and for

single hosts (even when the two traffic compared used the same transport

protocol, and were captured on the same link and at the same time). The low

correlation of PS and IPT sequences of the two scanning worms, compared

to the much more correlated sequences of legitimate traffic, also allowed to

spot criteria for the identification and detection of this category of malware

through traffic analysis.

It is therefore evident how the distinctive properties here shown, and the

techniques for the extraction, analysis, and representation of traffic data that

we developed, can be useful in identifying and classifying network applica-

tions by looking at the traffic they generate. In Chapter 5 we will indeed

present an original technique for traffic classification relying on the extrac-

tion of features from the joint distributions of PS and IPT. This technique

shows interesting properties of robustness (i.e. difficult to evade) because

based on distinctive behaviors of different categories of network applications.

Moreover, we want to point out that the findings highlighted in this chap-

ter are only a part of the knowledge that was useful to us in producing the

contributions presented in the next chapters. Another relevant part, indeed,

is the background knowledge and the techniques acquired and developed

when working in the field of traffic analysis. As will be clear in the fol-

lowing, traffic classification can be partially viewed as a specific sub-field of

traffic analysis. It heavily depends on its techniques and tools, it exploits

several findings as input to identification techniques, and it takes advantage

of the know-how from traffic analysis (and modeling) for the development

of classification approaches. In this regard, the software platform for traffic

classification, called TIE, that we present in Chapter 4 represents an example
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with respect to software tools and techniques. TIE borrows (and extends)

many concepts and techniques from Plab, the platform that we developed

as an aid in our studies of traffic analysis presented in this chapter: packet

capture, as well as the decomposition of traffic into sessions, and the extrac-

tion of measurements at different levels (which become features when talking

about traffic classification).

Starting from the next chapter we define the problem of traffic classifica-

tion in detail, and in subsequent chapters we then present our contributions

in this research area.



Chapter 3

Internet Traffic Classification
and Identification

3.1 Introduction

In general, to “classify” network traffic means to analyze traffic in order to

ascribe distinct portions of it to the network applications generating them. In

both industrial and academical research, interest in this task has dramatically

grown in the past few years. This is because the traditional approach to clas-

sify traffic by using transport-layer protocol ports is becoming increasingly

unreliable, while finding an alternative solution (as shown in the following)

has been demonstrated to be a non-immediate task. Network traffic classifi-

cation is fundamental to build knowledge on the use of network links, but it

is also a crucial functionality to impose security or quality-of-service policies,

to perform accounting, and many other relevant tasks. In recent years re-

search community and networking industry have investigated and developed

several approaches. None of them solves the problem definitively and all of

them show some drawbacks related to issues such as on-the-field applicabil-

ity, reliability, privacy. Moreover, while the state of art is rapidly improving,

Internet protocols and applications are continuously evolving (encryption is

a notable example closely related to traffic classification), opening new chal-

lenges.

This chapter aims at analyzing traffic classification starting from an in-
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depth study of all the motivations and difficulties that make it an open topic

of research. We provide a critical review of the related literature and, in

order to motivate the rest of the work presented in this thesis, we highlight

some of the most challenging problems to be faced today by the research

community devoted to this field.

3.2 Motivation

Why is traffic classification important? A plausible answer for a researcher

would probably be “knowledge”. The Internet is a system of enormous com-

plexity subject to continuous evolution. Measurements and analysis of what

happens inside this system, for example in terms of network traffic, are there-

fore of paramount importance to improve our knowledge of it. We stressed

this aspect in the introduction of this thesis when talking about traffic mea-

surements and analysis in general, and traffic classification is actually an

important part of traffic analysis. If we cannot classify Internet traffic then

we have no clue of what our links carry, we do not know how people are using

the Internet, what is the new killer application, etc. This is the first step, for

example, to understand the impact of new network applications on our links.

Is it really relevant to characterize or model the network traffic generated by

a specific application or not? Are we doing it under the right assumptions on

network conditions, user population, distribution of nodes etc.? Moreover,

history has shown that links can suddenly be traversed by traffic related to

new forms of malware (e.g. worms, botnets). Being constantly updated on

the categories of traffic in our networks and able to rapidly sketch new trends

and phenomena is important to be prepared and react to new threats.

On the other side, there are several practical applications of traffic classi-

fication, often related to the needs of network providers and operators, that

drive the research in this field. Classifying network traffic is for example fun-

damental to operate a conscious network provisioning. Understanding the

which network applications are used (and their quality of service require-

ments through, e.g., traffic analysis) allows to better allocate resources and
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investments. At the same time service providers are looking for new sources

of revenue, given the high cost of deploying physical infrastructure and op-

erating the network, and traffic classification seems to play a key role in it.

Content-based charging, differentiated accounting and billing depending on

network services, the offering of multiple service level agreements customized

on categories of applications, are all means for providers to participate in the

more profitable value chain of Internet applications [2].

Sometimes papers on traffic classification focus on the detection of specific

(kinds of) applications, we usually adopt the term of traffic identification for

this purpose. This usually happens when such applications are particularly

difficult to recognize (e.g. because of encryption or protocol obfuscation) or

when there is strong interest in accurately detecting them. Several efforts

have been made for example in the detection of Peer-to-Peer file sharing ap-

plications [65] [55] and in Skype traffic [66][67] [68]. For instance, in the case

of Skype, network operators offering integrated services may be interested in

understanding how much their customers use it for voice calls rather than

simple chatting.

It is also evident how the ability to ascribe each single flow of traffic to

a specific network application is fundamental to perform on-the-fly activities

like resource allocation, traffic shaping, service differentiation and quality of

service (QoS). Several papers regarding traffic classification show the specific

purpose of supporting QoS enforcement [69]. In Chapter 4 (Section 4.10) we

report on the integration of the online traffic classification platform that we

developed into a QoS framework for new generation networks which is part

of an European project funded by the EU.

Finally, traffic classification is very relevant in the field of network secu-

rity. After being classified, traffic flows can be subject to the enforcement

of specific security policies through for example packet filtering performed

by routers and firewalls. Several network operators are indeed interested

into limiting, regulating, or denying the use of certain services (e.g. Peer-

to-Peer file sharing, chat, etc.). Firewalls evolved from using protocol ports
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to application-level proxying and payload inspection. However, application-

level proxies can be sometimes evaded by protocol encapsulation (e.g. chat

or file sharing traffic encapsulated into HTTP), while payload inspection can

be tricked by protocol obfuscation techniques and cannot be applied (under

common conditions) when traffic encryption is in use. Thus, the search for

reliable and robust classification techniques is fundamental for the proper

enforcement of security and network-usage policies. Moreover, traffic clas-

sification can be useful in detecting malware traffic, for example related to

worm spreading or attacks[70].

3.3 What makes traffic classification a diffi-

cult task

Traffic classification is today an open problem because of several reasons. As

anticipated, initially Internet traffic was classified on the basis of transport-

layer protocol ports, e.g. port TCP:80 was assigned to HTTP (which initially

was only Web browsing), port TCP:25 to SMTP, and so on. The Internet

Assigned Numbers Authority (IANA) [71] assigns the well-known ports from

0-1023 and registers port numbers in the range from 1024-49151 to appli-

cations, whereas ports from 49152 through 65535 are defined as “dynamic

and/or private”. Since several years port-based classification has not been re-

liable [72] [53] because (i) many applications have no IANA registered ports

while they use numbers already registered by others; (ii) many applications

use random ports numbers or allow users to define any port number; (iii)

often applications are configured to use well-known ports to disguise their

traffic and circumvent security and network-usage policy enforcement; (iv)

sometimes several servers share a single IP address, thus they need to offer

their services through different ports by using network (and port) address

translation.

The need to find new approaches to associate traffic flows to applications

therefore arises. This is difficult today also because of the proliferation of new
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applications running over undisclosed proprietary protocols. Skype [67] and

P2P-TV applications [34] are two notable examples. Accurate studies based

on traffic analysis and manual payload inspection are usually necessary to

understand such protocols and to identify properties useful for classification

purposes. In Chapter 2 (Section 2.2.4) we have presented a detailed study

of four P2P-TV applications showing how it is possible to derive properties

to identify such traffic and to discriminate between their signaling and data

traffic. However, new applications emerge continuously and it is difficult to

investigate each of them in order to update approaches and/or signatures.

Moreover, some applications today use protocol encapsulation, which can

confuse several classification techniques, especially those relying on signatures

built from payload carried by packets. Examples of such applications are

Peer-to-Peer file sharing applications (e.g. KaZaA) [73] and chat applications

(e.g. MSN) [74].

Moreover, the use of encryption makes the task of traffic classification

even harder. This is straightforward for classification techniques based on

payload inspection, which, except for few isolated cases [75], are unable to

cope with encrypted data in absence of the decryption keys. However en-

cryption can also alter the normal behavior of traffic patterns, making the

work of traffic classification harder even for approaches based on statistical

properties of network traffic. Traffic can be encrypted in different modes, be-

cause the protocol implements encryption natively (e.g. Skype) or because

the traffic is tunnelled into an application-level protocol (e.g. SSH) or in

Virtual Private Networks (e.g. through IPSEC); both make traffic classifica-

tion particularly hard [67] [76], while we may reasonably expect that traffic

encryption will become more commonplace as Internet users become more

security-savvy.

As explained in Section 3.2, we often need approaches able to work on-

line in order to report live information or to take actions according to clas-

sification results. The increasing bandwidth of modern network links poses

stringent requirements to the speed of classification algorithms and their
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computational complexity. Payload-based techniques (explained later) are

typically the ones that suffer such problem more than the others. Moreover

the large quantity of traffic makes tasks as manual inspection, trace storage,

and logistics in general, much harder.

Finally, traffic classification is obviously a hot topic when user privacy

is a concern. Available techniques today are evaluated also in terms of how

much invading they are with respect to private content carried by traffic.

Often, some classification techniques cannot be applied because the access

to portions of packets data is not allowed, or some offline techniques cannot

be experimented because private data cannot be stored.

All the above issues put together make classification of network traffic

a challenging task, involving questions related to computational efficiency,

social issues, and continuously evolving technical aspects related to new ty-

pologies of traffic. In the next sections we give some basic definitions related

to traffic classification and summarize the most interesting works produced

by the scientific community.

3.4 Definitions

In this section we give some brief definitions in order to better understand

the variety of items and topics proposed in literature. A first distinction to be

made depends on the classification level. The discrimination can be among

(i) traffic classes (e.g. bulk, interactive, ...); (ii) application categories (e.g.

chat, streaming, web, mail, file sharing, etc.); (iii) applications (e.g. KaZaa,

Edonkey, IMAP, POP, SMTP, ...). Approaches designed for one of such levels

of discrimination cannot always work for the others, and their choice usually

depends on the purpose behind the proposed classification technique (e.g.

class of service mapping). There are also works in literature specifically de-

voted to identifying the traffic of a single application (e.g. Skype), which

usually share similar techniques with the above-mentioned more general ap-

proaches, but are adapted to the specific sub-problem.

A second distinction is on the objects to be classified. We often use the
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general term flow, however, strictly speaking, different kinds of classification

objects are considered in literature:

• TCP connections. Some works in literature focus only on them.

Heuristics or TCP state machines are used to identify the start and the

end of each connection.

• Flows. The commonly accepted definition of traffic flow is given by the

tuple made of {sourceIP , sourceport, destinationIP , destinationport,

transport-level protocol}, plus a flow timeout (values like 60s or 90s are

common).

• Bidirectional Flows (biflows). Same as above, but both directions

of traffic are considered.

• Hosts. Sometimes, classification approaches want to simply classify

the main behavior of a host in terms of the traffic it generates.

Obviously, the techniques presented differ because of the approach used

to discriminate different objects and assigning them classes. It is possible to

sketch four main categories:

• Port-based approaches. These are based on IANA port assignment

and on common knowledge of ports typically used by applications that

do not have registered ports. A very detailed and constantly updated

list is kept at [77].

• Payload-based approaches. These techniques inspect the payload

content at transport level in order to identify strings, related to the

application-level protocol (and in general to the application), matching

a set of pre-defined rules.

• Flow-features-based approaches. Such techniques are usually based

on machine-learning classification techniques applied to features ex-

tracted from traffic flows. We generally talk about flow-features but
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such features may regard flow-level information and statistics (e.g. flow

duration, byte transferred) or even packet-level statistics regarding the

specific flow (e.g. vector of packet sizes). However they are based

on properties that can be obtained by only looking at transport-level

headers.

• Behavioral and host-based approaches. They are based on the in-

teractions of the host under observation with the rest of the world,

usually in terms of number of connections opened, ports used, and also

by using mixes of the above techniques to sketch a typical profile of the

host to be compared against profiles previously stored.

With specific regard to techniques using machine-learning approaches.

There are many different categories of algorithms that have been used in liter-

ature with the purpose to perform traffic classification. In general, machine-

learning algorithms can be separated into supervised learning and un-

supervised learning (or clustering). Supervised learning requires training

data to be labeled in advance and produces a model that fits the training

data. The advantage of these algorithms is that they can be tuned to de-

tect subtle differences and they clearly label the flows upon termination,

unlike the unsupervised ones. Unsupervised learning essentially clusters ob-

jects with similar characteristics together. The advantage is that it does not

require training, and new applications can be classified.

Traffic classification techniques can also be differentiated in online and

offline techniques. The first ones can be used on-the-field on a network

device listening to network traffic. They usually have the ability to perform

classification of a flow before it ends. Such techniques need to be particularly

lightweight or implementable in hardware to keep up with high packet rates

of large network links.

Finally, a relevant aspect in the study of traffic classification techniques is

how the reference data to evaluate the correctness of classification results is

built. This is usually called the ground-truth . These systems usually build

upon payload inspection techniques, sometimes supplemented by heuristics
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and manual inspection. In literature we have also seen the use of protocol

ports for building the ground-truth. This approach is questionable for the

aforementioned reasons about unreliability of port-based classification.

3.5 State of the Art in Traffic Classification

The literature of recent years is rich of proposals and evaluations of ap-

proaches to traffic classification. Following a temporal order, the association

of transport-layer ports to specific applications was, as mentioned, the first

classification technique. Even if it performs poorly, e.g., between 50% and

70% accuracy in classifying flows [72] [53], this method is still used today

and represents the fastest and simplest one. Port-based classification is used

especially when continuous monitoring is in place and there is the need to

build online reports. Such technique is supported by several tools. In partic-

ular, we cite CoralReef [77] for the ability to process huge quantities of traffic

in time, by supporting several advanced network interfaces and frameworks

for traffic capture, and to automatically update historical graphical reports

for the Web.

When the networking community started to understand that port-based

flow identification was becoming unreliable, payload-based approaches started

to emerge, especially in the context of network security[78]. Payload-based

approaches inspect packets’ content to identify byte strings associated to

application, or to perform more complicate tasks as syntactical protocol ver-

ification and protocol conformance. The most common approaches however

are based on a set of signatures (typically in the form of regular expressions

[79]) that are checked against packets’ content (this is also known as pattern

matching). Such approaches are commonly considered very accurate, so that

systems to build ground-truth are typically based on them [80, 81, 55]. The

main drawback of payload inspection techniques, however, is the computa-

tional load required by algorithms performing pattern matching and syntax

analysis on contents of network packets. In [82] a useful classification of

payload inspection techniques with specific regard to computational aspects
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is presented. The computational load required by such algorithms can in-

deed be prohibitive when we want to perform online traffic classification on

a high-bandwidth link. A lot of research is therefore focused on improving

algorithms for pattern matching and their implementation in hardware; such

interest is high also because the same techniques are used in the field of in-

trusion detection [83]. Solutions based on programmable hardware and ASIC

have been typically proposed in literature and developed by the industry [84].

Another problem of payload-based approaches is privacy. Depending on

the usage policy of the network operator and on local laws, access to pack-

ets’ content might not be possible even by automated software. More often,

regulations do not allow to store and archive such data, so that traffic traces

to be later processed by payload-inspection techniques cannot be collected.

Finally, payload-based approaches can be sometimes circumvented by pro-

tocol obfuscation techniques and protocol encapsulation (e.g. applications

running on top of HTTP might be erroneously identified as Web traffic), and

they are typically ineffective when traffic encryption is in place [85].

Several works in literature have shown the value of payload signatures in

traffic classification [86, 55, 87, 72], while others have proposed automated

ways to identify such signatures [75, 88, 89]. Most of the approaches used in

literature are based on open-source software developed by the networking and

research community [80, 81], however there are also several commercial so-

lutions performing protocol identification, some examples are Cisco’s NBAR

[54] and Juniper’s Application Identification [90]. There is usually poor infor-

mation available regarding how the payload inspection is performed in these

proprietary systems.

Because of the several limitations of payload-based techniques, the re-

search community started investigating alternative approaches, both from

the point of view of traffic features to exploit for application identification

and from the point of view of the classification techniques to be applied to

such data. The area of traffic classification using flow-features is the one that

probably produced most literature in the field of traffic classification, with a
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variegate set of approaches that differ in several of the definitions given in

the previous section: level of traffic discrimination, classified objects, clas-

sification algorithm, offline/online algorithm design, etc. The flow-features

proposed vary very widely, from transport-level header fields to flow-level

properties like flow duration, flow size, etc. Features related to the single

packets inside flows are also considered, as the vector of the first n packet

sizes transmitted, or the mean value of packet sizes inside a flow. In [91],

Moore et al. compiled a list of more than 240 flow-features that reflect quite

accurately the different kinds of properties considered by the literature in this

field. As for the classification algorithms, they span from pattern recognition

techniques based on statistical models to data mining and machine-learning

algorithms.

In 2004 Wright et al. [92] presented an approach to traffic classification

that applies Hidden Markov Model (HMM) techniques to perform multiple

sequence alignment. Flows that align close to one another (that have similar

subsequences) are viewed as belonging to the same protocol. The authors

propose two alternative techniques, one based on the sequences of packet

sizes, the second based on packet inter-arrival times. This represents one

of the first works in the field of traffic classification through flow-features.

Results looked promising even if they were based on traces from 2003, when

the novelty and heterogeneity of applications in the link was certainly lower

than in the very recent years. They considered a selected set of TCP-based

applications pre-classified by looking at port numbers.

In [70] Moore and Zuev propose different variations of supervised machine-

learning algorithms based on Naive Bayes. This is one of the few works in

literature considering the whole traffic captured from a link without excluding

some application categories or some transport-level protocols (e.g. applica-

tions running on UDP). The authors use features like flow duration, ports,

mean and variance of payload size or inter-arrival times, to classify objects

that are unidirectional flows. The classes considered are application cate-

gories (e.g. MAIL = IMAP, POP, SMTP). Results show values of accuracy
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(i.e. number of correctly classified flows divided to total number of flows)

around 95%. However the approach makes use of the protocol ports feature,

which in traffic from year 2004 would definitely possess a strong discriminat-

ing power on legacy applications. DNS flows are a good example of flows

easily recognizible by port number. At the same time, DNS flows typically

represent a considerable percentage of the total flows found in a trace, but

they usually carry a very small quantity of traffic. Correct classification of

such flows makes the accuracy increase, but when the accuracy is evaluated

in terms of bytes instead (number of correctly classified flow bytes divided

by the total amount of bytes in the trace) it typically decreases. The au-

thors indeed report byte-accuracy values between 79% and 84%. This is an

important aspect often underestimated by literature (see next section).

Supervised Naive Bayesian classifiers have been also used in other works

(e.g. [93]). Whereas in [94] Zander et al. presented an unsupervised Bayesian

classifier (AutoClass) which is tested against traces from 2000 to 2003 us-

ing only ports to pre-classify the data with ground truth. The approach

classifies bidirectional flows into specific applications (only nine applications

are considered). The same AutoClass algorithm evaluated here is then com-

pared by Erman et al. [95] against two unsupervised clustering algorithms

that were previously not used for network traffic classification: K-Means and

DBSCAN. The results obtained by the AutoClass algorithm are reported as

the best ones, however the DBSCAN algorithm shows interesting potential.

In this work part of the traces have been pre-classified by only using ports,

whereas payload inspection was used for building the ground truth of the

other traces, however only few applications were considered from them, with

no UDP-based applications at all.

Auld, Moore and Gull (in [96]) proposed an approach with substantial

differences with [70]. They made use of a Bayesian Neural Network to per-

form classification of TCP connections and they removed the protocol ports

among the features used. The system proposed achieved very high accuracy

(95%) also when it is evaluated under more realistic conditions: the learning
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phase is performed with a one-day trace, whereas the testing was done with

a trace captured eight month later.

Around year 2006 the first works focused on online traffic classification

started to appear. In [97], Bernaille et al. proposed an online approach based

on the vector of packet sizes from the first (up to ten) packets exchanged in

TCP connections. They evaluated three clustering techniques: K-Means,

Gaussian Mixture Model, Spectral Clustering. The authors were able to

achieve very good results with very few packets (up to four). However they

noted that such technique can be easily circumvented by padding the size

of only the first few packets of each connection. A commercial tool [98] was

used for ground truth, only TCP connections were considered and no byte-

accuracy was reported. In [99] Crotti et al. proposed statistical fingerprints

based on packet size (PS), inter-packet times (IPT), and the order of packets.

Such fingerprints are basically made of joint PDF of PS-IPT from the i-th

packets of flows from the same class (e.g. all second packets from HTTP

connections of the training set will build the joint PDF associated to the

second packet that is observed for a connection). The authors evaluated

the algorithm at the varying of the number of packets (thus of PDF) to be

used for online classification. However, only three simple applications were

considered as classes: HTTP, SMTP, POP3.

Very recently, in [100], Wei and Moore performed a study focused on the

trade-off between selecting good classification features and the latency in-

troduced by collecting and computing them online. They also tested several

machine-learning algorithms by using the tool Weka [101] and selected the

C4.5 decision tree algorithm because of best performance (99.8%). Again,

only TCP traffic was considered and traces from year 2004 are used. TCP

connections are the only objects taken into account also in [102], but with

traces from year 2006 the realtime implementation of their algorithm was not

able to achieve an accuracy greater than 77.5%. A novel contribution of this

paper however is that they proposed a semi-supervised machine-learning al-

gorithm: first clustering is applied to the data, then available labels from pre-
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classification are used to map part of the clusters while other clusters with-

out known labels stay unmapped. This approach, referred as semi-supervised

learning, has recently received considerable attention in the machine-learning

community[103]. In [104] the authors present a detailed survey on traffic clas-

sification through machine-learning techniques, by categorizing and qualita-

tively reviewing several studies in terms of their choice of machine-learning

strategies and primary contributions to the traffic classification literature.

Approaches based on the observation of host behavior and of communi-

cation patterns, instead, are typically based on heuristics. However some of

them have been thoroughly verified and part of these approaches are used to

complement payload inspection techniques in ground-truth systems. Some

heuristics are indeed particularly useful when classifying peer-to-peer traffic

that uses encryption or protocol obfuscation for some flows. For example,

keeping a table of (IP, Port) pairs for each flow that has been classified by

payload inspection, helps to identify unmatched flows that have a source or

destination pair stored in the table. Several heuristics have been presented

and evaluated in literature [55] [105] [72].

Some approaches are more ambitious and propose novel viewpoints to

traffic and representations. In [106] the authors shift the focus from classify-

ing individual flows to associating Internet hosts with applications, and then

classifying their flows accordingly. They do this by adopting a multi-level

observation of the traffic that comprises looking hosts at the social level, by

examining the popularity of a host and communities of hosts interacting with

each other, while connecting this to their transport-level interactions. For

this last point the authors proposed an original approach of representation

and fingerprinting of different applications called graphlets, based on the ob-

servation of simple flow-level information. Similarly, Iliofotou et al. recently

proposed Traffic Dispersion Graphs that can potentially be used to classify

applications using the network-wide interactions of hosts [107]. The common

point of such approaches is that they try to capture interactions observable

even with encrypted traffic and are thus targeted to most recent applications
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and trends.

Recent literature has seen several works devoted to the identification of

traffic from specific applications, because of their impact on overall link traffic

and/or because their use of encryption, which makes harder this task. We al-

ready cited Peer-to-Peer file sharing applications, for which techniques based

on connection patterns and on payload-based signatures have been developed

[53] [55] [87] [65]. Skype is also subject of considerable interest: the proto-

col is not public, different releases of the software behave differently, and the

data is encrypted. In [108] the authors propose an identification technique

that assumes no access to the payload. The technique involves identifying

candidate hosts (and the port they use for Skype traffic) based on properties

of special signaling flows used by Skype, and then trying to detect voice calls

by using techniques similar to those applied by general flow-features-based

approaches. In [66], Suh et al. present a technique to detect relayed Skype

flows by comparing input and output traffic patterns. In [67, 68, 109] the

authors present techniques to identify Skype traffic based on two subsequent

steps: (i) to detect candidate voice flows they first use a Naive Bayesian

Classifier applied to a stochastic characterization of Skype traffic in terms of

inter-packet gap and packet length; (ii) they then detect a Skype fingerprint

from the packet framing structure based on the observation that protocol

obfuscation on headers will still keep a recognizable entropy profile in them.

This is done using the Pearson’s Chi Square test. The last step, however,

requires access to packets payload.

More studies are recently targeted to the classification of encrypted traffic

in general. In [110], Bernaille et al. extend the classifier presented in [97] to

propose a method to detect applications in SSL encrypted connections. Their

approach runs in three steps: recognition of SSL connections, detection of

the first packet containing application data, and recognition of the encrypted

applications by using only the size of the first few application packets (as in

[97]) applied to a clustering algorithm based on Gaussian Mixture Models.

Wright et al. [85] use approaches similar to other flow-level classifiers.
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Even if, compared to [110], their mechanism requires all packets in the con-

nection (instead of few) before classifying it, it must be noted that their

approach is targeted to tunnels of aggregate encrypted traffic (as in VPNs)

instead of SSL connections. Their machine-learning approach relies on a k-

Nearest Neighbor (k-NN) algorithm applied to packet-level features including

packet arrival order. More approaches to classification of encrypted traffic

are also presented in [76] and [111].

We conclude this section highlighting that up to today, despite the large

quantity of works published in the past few years, no implementations of

traffic classifiers that do not rely on protocol ports or payload have been

made available. This is in contrast with two facts: (i) scientific papers seem

to confirm that it is possible to classify traffic by using properties different

from payload; (ii) there are strong motivations for classification in general,

and important reasons to perform classification without relying on packet

content. We do not have an explanation for this contradiction, we can only

make two hypothesis: (i) despite issues related to computational load and

traffic encryption, payload inspection is still effective in identifying traffic,

and industry is still not significantly investing on alternatives, while privacy

concerns seem to be pushed into the background; (ii) effective traffic clas-

sification without relying on the mentioned properties is still more difficult

to implement than it seems from scientific papers. We believe that research

must give more precise answers to questions regarding which, and under

which conditions, viable alternatives to payload inspection exist, and this

can be done only with the availability of real implementations that must be

tested under different situations and with heterogeneous categories of link

traffic. We already cited implementations of classifiers relying on ports ([77])

and payload ([81] [80] [54]). As for implementations targeting alternative ap-

proaches, NetAI [112] is a tool able to extract a set of features both from live

traffic and traffic traces. However it does not directly perform traffic clas-

sification, but relies on external tools to use the extracted features for such

purpose. To the best of our knowledge the only traffic classifier implement-
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Table 3.1: Summary of selected literature on traffic classification
Paper Full Trace Year of Traces Ground Truth Object
[92] (WRIGHT) N 2003 Ports TCP conn.
[70] (MOORE) Y ≤ 2004 Manual + Payload Flow
[96] (AULD) N (TCP) ≤ 2004 Manual + Payload [72] TCP conn.
[97] (BERNAILLE) N (TCP) 2003-2005 Payload [98] TCP conn.
[106] (KARAGIANNIS) Y 2003-2004 Payload Hosts/Flows
[114] [94] (ZANDER) N 2000-2003 Ports Biflows
[100] (WEI) N (TCP) 2004 Manual + Payload TCP conn.
[115] (WILLIAMS) N 2000-2003 Ports Biflows
[99] (CROTTI) N (3 apps.) ≤ 2006 Payload (L7) Flow
[95] (ERMAN06) N (TCP) 2001-2006 Ports/Payload TCP conn.
[102] (ERMAN07) N (TCP) 2006 Payload (BRO) TCP conn.

ing a machine-learning technique presented in literature is Tstat 2.0 [113],

released at the end of October 2008, which (besides supporting classification

through payload inspection) identifies Skype traffic by using the techniques

described in [67]. However such techniques have been specifically designed

for a single application and can not be extended to classify overall link traf-

fic, and more importantly it partially relies on features built by accessing

packet payload. Because of the lack of real implementations and also consid-

ering other issues discussed in the next section, we designed a novel traffic

classification platform to offer the research community a tool to implement

different classification techniques and to compare them. In Chapter 4 we

describe our software in detail, showing the main design criteria, the func-

tionalities offered, and the collaborations started with other research groups

working on it.

3.6 Open Problems in Network Traffic Clas-

sification

Despite the rich literature produced in the field of traffic classification, there

are still many open problems that the research community working in this

field must address. In this section we summarize what we think are the main

topics to be faced in the near future and the problems affecting the current

state of art of research in this area.
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Techniques. To be concise: we still did not find the perfect technique.

Firstly, as observed at the end of Section 3.5, there are no prototypes of real

traffic classifiers available, unless for those based on payload inspection (and

port-based classification obviously). We aim at filling this gap by offering to

the scientific community a software platform that will easily allow to develop

real implementations of classification technique. Aside, from practical imple-

mentations, looking at literature we even do not have a single paper showing

an approach applied to whole traffic, showing 100% accuracy both in terms

of number of objects and bytes, working online, and without relying on ports

or payload. This is obviously a semplification and it is clear that the value of

an approach depends also on the context for which it is thought. But, as will

briefly argued in the following, the works that have been proposed not only

show always some weaknesses, but they are difficult to be fairly evaluated

and compared. Table 3.1 reports few of the most notable works on traffic

classification and highlights some of the points addressed in this section. In

order, each column reports: the paper reference and name of first author, if

the entire traffic from a link trace was considered (Y/N) and, if not, which

traffic was taken into account, the year of the traces used, the tool/approach

used for establishing ground-truth, the objects classified.

Fair Evaluation. Fairly evaluating an approach first requires shared eval-

uation metrics and working criteria. It seems that we have problems on

both of this. As argued in [116] researchers often use disparate metrics in

the overall evaluation of classification techniques. The authors highlighted

how contrasting definitions of accuracy and True Positives are often used

in top-quality papers. We propose that the networking community adopts

common practices from well-established fields, such as the machine-learning

and pattern-recognition fields, and agree on few significant metrics shared by

everyone.

Moreover, there are metrics specifically needed for the problem of net-

work traffic classification. This is the case of byte-accuracy, which is often
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underestimated by literature. In [117] the authors state that byte-accuracy

should always be used when evaluating traffic classification algorithms, and

that, because of the presence of mice and elephant flows, neglecting byte-

accuracy would lead to what in machine-learning literature is known as a

class imbalance problem [118]. The authors show that very few of the works

in literature report byte accuracy. Besides the class imbalance problem, it is

obvious that for most applications of traffic classification (see Section 3.2) it

is much more important to correctly classify flows that produce large quan-

tities of traffic. Recently it has also been proposed to use cost functions for

evaluating classifiers performance depending on the final task for which they

have been designed [119]. Another aspect affecting appropriate evaluation is

instead related to the data that is processed. First, the final evaluation of

an approach - unless highly motivated - should be performed by running the

algorithms on the entire traffic that runs on network links. Table 3.1 shows

how very few works do this. UDP traffic, for example, is highly neglected,

whereas today we know that the percentage of UDP traffic is constantly in-

creasing and new generation applications are often able to work with both

TCP and UDP, or sometimes they even prefer UDP [109]. Moreover, the

traces used are sometimes quite dated compared to the time when the tech-

nique is evaluated (see Table 3.1). Because of the motivations behind traffic

classification, it is evident that this represents a self-contradiction, and it

makes evaluation of the proposed approach doubtful. The same exact ob-

jection can be done in the cases we observed that used protocol ports to

establish the ground-truth (see Table 3.1).

Comparison and Validation. Comparison among different approaches

is the basis for a complete evaluation of the techniques proposed and for a

correct understanding of the state of the art. This cannot be done by only

looking at metrics shown in papers, because different algorithms need to:

be run on the same data, classify similar objects, be tested on more recent

traces, use the same reference, etc. However current literature has two main
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categories of problems regarding validation and comparison: (i) lack of avail-

ability of shared data and implementations; (ii) large differences in several

aspects of the proposed approaches. As for availability of actual implementa-

tions of traffic classifiers, there are currently very few examples available and

most of them are based on payload inspection. If we cannot run them, then

we cannot fairly validate and compare them. Moreover, the traffic classifica-

tion community inherits a historical problem of the traffic measurements and

analysis community in general: lack of sharable traces. Often researchers are

allowed to work on sensitive data but are not allowed to share it. This prob-

lem becomes more difficult in the case of traffic classification, because several

algorithms need access to payload data (which raises privacy concerns), and

even if we want to focus on techniques that do not need payload, ground-

truth creation in general needs to access payload. Two alternative solutions

are possible [116] [120]: moving code to the data, moving anonymized data.

As for moving the code to the data we need to develop and make available

open-source software, in order to make it sharable and observable in its de-

tails (the network operator running the software on sensitive data wants to

be sure of the operations executed on them). We obviously need collabora-

tive agreements between operators and researchers, and adeguate local laws

and regulations. As for moving data, the community is very recently dis-

cussing the possibility of making available anonymized traffic traces along

with ground-truth obtained before anonymization [121], or alternatively the

opportunity of making available anonymous meta-data (features or data al-

lowing feature extraction) along with ground-truth [116]. In the next chapter

we present a software platform that we designed to go in the direction of both

moving tools to the data (it is open-source and community-oriented) and of

distributing of pre-labelled anonymized traffic traces.

The second point afflicting comparability of approaches is their diversity.

Table 3.1 shows how they differ in several aspects. We have approaches clas-

sifying only TCP connections, other consider flows, others work with bidirec-

tional flows. The tools used for establishing ground-truth differ too, causing
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the reference to change, because such tools (as we will show in Chapter 5) are

far from being perfect. Moreover, the proposed approaches classify objects

into different typologies of classes. E.g., the algorithm in [69] considers only

four large traffic classes (Interactive, Bulk data, Streaming, Transactional),

other works group applications into categories (MAIL, Web, P2P, etc..) [106]

[70], finally most papers consider single applications [99] [97]. Researchers

therefore need to agree on creating relations between the different typologies

of classes. To perform automated comparison of such algorithms it is neces-

sary to share a well-defined list of applications and of application groups. In

the next Chapter we address these issues when designing a software platform

for the comparison of classification techniques.

Combination. It is evident that each classification approach offers dif-

ferent advantages. We already pointed out that a perfect technique does

not exist. Traffic is variegate and some techniques perform better with re-

spect to some traffic categories or applications than others. For this reason

researchers will look in the future at the combination of different classifi-

cation approaches. This has been already done with respect to heuristics

and payload-based signatures. However, the machine-learning community in

the last years emphasized the benefit of building multi-classifier machine-

learning systems based on the intelligent combination of different algorithms

(experts) [122]. We have started to see results of applying such approach to

the field of intrusion and anomaly detection [123] [124], and we expect to

see works in the traffic classification field in the near future. Combination of

algorithms obviously requires the definition of common formats even more

than what has been advocated earlier in this section. The software archi-

tecture presented in Chapter 4 was specifically designed to combine different

classification approaches.

Ground Truth: Can We Walk on Solid Ground? First we observe

(see Table 3.1) that many works used protocol ports as ground-truth. We

already observed that we consider such approach inappropriate. We also
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observed how using different techniques can make results more uncertain.

Moreover some ground-truth tools are not publicly available and the tech-

niques used are not always well-documented. In Chapter 5 Section 5.5 we

show how two of the most common tools do not always assign flows to the

same class and how they sometimes are unable to label a non-negligible por-

tion of a very recent traffic trace. This is explainable with the increase of

traffic complexity, of the use of encryption, protocol obfuscation and encap-

sulation. Moreover such tools need to constantly be updated. The research

community should therefore: (i) be more aware on the reliability of such

tools, (ii) share common techniques and procedures, (iii) work to develop ro-

bust and updated techniques. As for the last point, multi-classifier strategies

will also help.

Online Classification. We partially discussed this subject in the related

work section. The final application of traffic classification in most cases

is online classification. Therefore researchers started to produce novel ap-

proaches targeted to this direction. Difficulties in evaluating and comparing

such systems with appropriate metrics increase because performance issues

arise, whereas the lack of availability of real implementations makes com-

parison harder. While we foresee an increasing effort of the research in the

field of online traffic classification, we think that a hot topic in this area will

probably be the robustness of such approaches to evasion and obfuscation

techniques. The reduced set of features available to online classifiers makes

them indeed more vulnerable to such “attacks”. In Chapter 5 Section 5.2 we

present a new set of features promising interesting properties of robustens

to these attacks (but that still need be adapted to be used online). More-

over, the traffic classification platform presented in the next chapter is able

to run online, and in Chapter 5 Section 5.4 we experimentally evaluate a

classification plugin for such platform targeted to online classification.
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3.7 Conclusions

With respect to the scenarios, the problems, and the techniques illustrated

in this chapter, and in particular by considering the issues pointed out

in the last section, in the next two chapters we present our contributions

to the field of traffic classification. In the next chapter, we present TIE,

a software platform for traffic classification which was designed taking in

mind the points highlighted in Section 3.6: TIE is an open-source project,

strongly community-oriented, and focused on comparison of multiple tech-

niques, multi-classification, and online traffic classification. In Chapter 5 we

present a novel technique to perform traffic classification based on packet-

level traffic features, we study the subject of payload inspection by also

proposing a novel approach, and we tackle the subject of reliability of ground-

truth tools by showing the need for better reference tools.



Chapter 4

A Community-Oriented
Platform for Traffic
Classification

In this chapter we introduce a novel software tool for traffic classification

called Traffic Identification Engine (TIE). TIE was designed as a community-

oriented tool, inspired by the observations and recommendations made in the

previous chapter regarding the current challenges that research in traffic clas-

sification must face. Our aim is to offer a common tool for fair evaluation

and comparison of traffic classification techniques and to foster the sharing

of common implementations and data. Moreover, TIE is thought as a multi-

classifier system, supporting the combination of more classification plugins,

and its architecture is designed to allow online traffic classification. Other

properties that in our opinion make it suitable for extensive use and develop-

ment by the research community are: public availability of the source code,

a web site with rich documentation, well-defined data formats, a developers

API, availability of basic classification techniques, and re-use of state-of-the-

art definitions, formats, and techniques.

In the following sections we illustrate the main architecture of the soft-

ware, we give some definitions, and explain main functionalities. Two ba-

sic classification techniques implemented as TIE plugins are also described:

port-based classification and payload inspection through pattern matching.
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We conclude the chapter by describing the involvement of TIE in several in-

ternational collaborative projects. In Chapter 5 instead, we will present our

contributions to the field of traffic classification that have been carried out

also thanks to TIE.

4.1 Architecture Overview

TIE is written in C language and runs on Unix operating systems, currently

supporting Linux and FreeBSD platforms. The software is made of a single

executable and a series of plugins that are dynamically loaded at run time.

A collection of utilities and scripts are distributed with the sources and are

part of the TIE framework.

TIE is made of several components, each of them responsible for a specific

task. Using a modular architecture allows to easily extend, substitute or add

a component without modifying the others and also makes code maintenance

and development easier.

Figure 4.1: TIE: main components involved in classification

Figure 4.1 shows the main blocks composing TIE. The Packet Filter is

able to both capture live traffic or read from a traffic trace, and it can fil-

ter packets depending on several criteria. Packets are then aggregated into

separate sessions (as explained in the following, these can be flows, biflows,

etc.) by the Session Builder, which keeps updated the status of each session.

A set of feature extraction routines (e.g. updating statistics on inter-packet

times) are performed by the Feature Extractor. The classification is per-

formed by the Decision Combiner, which coordinates the activities of several

classification plugins (each one executing a different classification technique).

The Output generates final output files with modalities and in data formats
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that depend on the operating mode (explained in the following). In the next

sections we describe in detail each component and related tasks.

4.2 Operating modes

To implement the very different techniques and approaches existing in litera-

ture, TIE supports operation on various kinds of data and different operating

modes. In this section we briefly introduce the different operating modes.

Their operation will be further defined in the next sections. By default TIE

works as a classifier, however it is possible to run it with the only purpose to

train one or more classification plugins (e.g. plugins implementing machine-

learning techniques). We call it the training phase, and we will refer to it in

the next sections. However, unless when explicitly stated, in the following

we refer to TIE working to perform classification.

To cover different needs of operators and researchers, TIE can operate in

three operating modes:

• Offline: information regarding the classification of a session is gen-

erated only when the session ends or at the end of TIE execution.

This operating mode is typically used by researchers evaluating clas-

sification techniques, when there are no timing constraints regarding

classification output and the user is interested in obtaining informa-

tion regarding the entire session lifetime. This operating mode can be

applied to both live traffic and traffic traces.

• Realtime: information regarding the classification of a session is gen-

erated as soon as it is available. This operating mode implements online

classification. The typical application is policy enforcement of classi-

fied traffic (QoS, Admission Control, Billing, Firewalling, etc.). Strict

timing and memory constraints are assumed. This operating mode

should be applied to live traffic, but it can be used on traffic traces for

debugging purposes.
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• Cyclic: information regarding the classification is generated at regular

intervals (e.g. each 5 minutes) and stored into separate output files.

Each output file contains only data from the sessions that generated

traffic during the corresponding interval. An example usage is to build

live traffic reporting graphs and web pages. This working mode can be

applied only to live traffic.

Obviously the realtime mode is the one imposing most constraints to the

design of TIE’s components. We highlight that TIE was designed since the

beginning targeting online classification and this affected several aspects of

the architecture that will be described in the next sections.

4.3 Packet Collection and Filtering

As regards packet capture, TIE is based on the Libpcap library[125], which is

an open source C library offering an interface for capturing link-layer frames

over a wide range of system architectures. It provides a high-level common

Application Programming Interface to the different packet capture frame-

works of various operating systems. The offered abstraction layer allows

programmers to rapidly develop highly portable applications. Moreover it

defines a common standard format for files in which captured frames are

stored, also known as tcpdump format, which is currently a largely used de

facto standard.

Modern kernel-level capture frameworks on Unix operating systems are

mostly based on the BSD (or Berkeley) Packet Filter (BPF) [5]. The BPF is

a software device that “taps” network interfaces, copying packets into kernel

buffers and filtering out unwanted packets directly in the interrupt context.

Definitions of packets to be filtered can be written in a simple human read-

able format using boolean operators and be compiled in a pseudo-code to

be passed to the BPF device driver through a system call. The pseudo-code

is interpreted by the BPF Pseudo-Machine, a lightweight, high-performance,

state machine specifically designed for packet filtering. Libpcap allows pro-
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grammers to write applications that transparently support a rich set of con-

structs to build detailed filtering expressions for most network protocols. By

few Libpcap calls these boolean expressions can be read directly from user’s

commandline, compiled in pseudo-code and passed to the Berkeley Packet

Filter. Figure 4.2 illustrates how TIE, the Libpcap, and the BPF interact

and how network packet data traverse several layers to finally be processed

and transformed in capture files or in samples for statistical analysis. Finally,

Libpcap allows to read packets from files in tcpdump format rather than from

network interfaces without modifications to the application’s code except for

a different function call at initialization time. This allows to easily write a

single application which can work both in realtime and offline conditions.

To analyze packets, it is necessary to read and interpret link-layer, IP and

transport layer protocol headers. Also, it is necessary to get timestamps of

when packets were first seen on the interface. Those operations are easily ac-

complished because of the format of data returned by the Libpcap library for

each captured packet. Each time pcap next() returns with success it supplies

a pointer to a pcap pkthdr structure and a u char pointer to a contiguous re-

gion of memory containing the captured portion of packet. The pcap pkthdr()

Figure 4.2: Flow of packet data from hardware to the application
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contains: the packet timestamp (in microseconds) assigned by the driver, the

length of the portion of packet actually captured, the length of the packet

as appeared directly on the wire. The timestamp information is fundamen-

tal for the calculation of inter-packet times and to evaluate session timeouts

(Section 4.4), whereas the pointer to packet data allows to treat the packet

as an array of bytes. We defined few elementary macros operating on such

array to decode protocol fields. Few examples are reported in Figure 4.3.

[...]

/*

* Headers

*/

/* IP header length in bytes */

#define PKT_IP_HLEN_B(a) ((a[0] & 0x0f) << 2)

/* IP total length in bytes */

#define PKT_IP_TLEN_B(a) ((a[2] << 8) + a[3])

/* TCP header length in bytes */

#define PKT_TCP_HLEN_B(a) ((a[PKT_IP_HLEN_B(a)+14] & 0xf0) >> 2)

/* UDP header length */

#define PKT_UDP_HLEN_B 8

/*

* Payloads

*/

/* IP payload - valid only for non-fragments */

#define PKT_IP_PAYLOAD_B(a) (PKT_IP_TLEN_B(a) - PKT_IP_HLEN_B(a))

/* IP payload - valid only if applied to last fragment */

#define PKT_F_IP_PAYLOAD_B(a) (PKT_FRAG_OFFSET_B(a) + PKT_IP_TLEN_B(a))

/* TCP payload - valid only for non-fragments */

#define PKT_TCP_PAYLOAD_B(a) (PKT_IP_TLEN_B(a) - PKT_IP_HLEN_B(a) - PKT_TCP_HLEN_B(a))

/* UDP payload */

#define PKT_UDP_PAYLOAD_B(a) (PKT_IP_TLEN_B(a) - PKT_IP_HLEN_B(a) - PKT_UDP_HLEN_B)

/*

* Ports

*/

#define PKT_SRC_PRT(a) ((a[20] << 8) + a[21])

#define PKT_DST_PRT(a) ((a[22] << 8) + a[23])

/* TCP Flags */

#define PKT_TCP_FLAG_FIN(a) (a[33] & 0x1)

#define PKT_TCP_FLAG_SYN(a) (a[33] & 0x2)

#define PKT_TCP_FLAG_RST(a) (a[33] & 0x4)

#define PKT_TCP_FLAG_PSH(a) (a[33] & 0x8)

[...]

Figure 4.3: TIE: Some of the macros implemented to decode protocol fields

As regards packet filtering, we already explained that Libpcap supports

the powerful BPF filters, which are called inside the capture driver. More-
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over, there are additional filtering functionalities working in user-space that

we implemented in TIE. Examples are: skipping the firs m packets, stopping

the analysis after n packets, selecting traffic within a specified time range,

checking for headers integrity (TCP checksum, valid fields etc.).

4.4 Sessions

TIE decomposes network traffic into sessions, which are the objects to be

classified. As seen in Chapter 3 (e.g. Table 3.1), in literature have been pre-

sented approaches to classify different kinds of traffic objects: from flows to

TCP connections and even hosts. To make TIE support multiple approaches

and techniques, we have defined the general concept of session, and specified

different definitions of it (selected using command line switches):

• flow: defined by the tuple {sourceIP , sourceport, destinationIP , destinationport,

transport-level protocol} and an inactivity timeout, with a default value

of 60 seconds.

• biflow: defined by the tuple {sourceIP , sourceport, destinationIP ,

destinationport, transport-level protocol}, where source and destination

can be swapped, and the inactivity timeout is referred to packets in

any direction (default value is 60 seconds).

• host: a host session contains all packets it generates or receives. A

timeout can be optionally set.

When the transport protocol is TCP, biflows typically approximate TCP

connections. However no checks on connection handshake or termination are

made, nor packet retransmissions are considered. This very simple heuristic

has been adopted on purpose, because it is computationally light and there-

fore appropriate for online classification. In the following we show that this

definition simply requires a lookup on a hash table for each packet, as flows

(which indeed are used in online monitoring also for the lightweight process-

ing they require). However, some approaches may require stricter rules to
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recognize TCP connections, at least able to identify the start and end of the

connections with more accuracy. This, for example, because they rely on

features based on the very first packets (as TCP options, or packet sizes)

[100] [97]. Moreover, explicitly detecting the expiration of a TCP connec-

tion avoids its segmentation in several biflows when there are long periods of

silence. This behavior is typical for interactive applications like Telnet and

SSH.

For these reasons, we implemented also additional heuristics, which can

be optionally activated, to follow the state of TCP connections by looking at

TCP flags:

• if the first packet of a TCP biflow does not contain a SYN flag then it

is skipped. This is especially useful to filter out connections initiated

before traffic capture was started.

• The creation of a new biflow is forced if a TCP packet containing only

a SYN flag is received (i.e. if a TCP biflow with the same tuple was

active then it is forced to expire and a new biflow is started).

• A biflow is forced to expire if a FIN flag has been detected in both

directions.

• The inactivity timeout is disabled on TCP biflows (they expire only if

FIN flags are detected).

These heuristics have been chosen in order to trade-off between computa-

tional complexity and accuracy, keeping in mind the TIE’s vocation to work

in online mode. Some applications, however, may require a more faithful

reconstruction of TCP connections. For example payload inspection tech-

niques used for security purposes, may require the correct reassembly of TCP

streams in order to not be vulnerable to evasion techniques [126]. For these

situations, a user-space TCP reassembly state machine may be adopted and

integrated into TIE, however this would significantly increase computational
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complexity compromising online mode under some circumstances (depending

on computational power and link load).

Both biflow and host session types contain traffic flowing in two opposite

directions, that we call upstream and downstream. Information regarding the

two directions must be kept separately, for example to allow extraction of fea-

tures (e.g. IPT, packet count, etc.) related to a single direction. Therefore,

within each session with bidirectional traffic, counters and state information

are also kept for each direction. For both biflow and host session types, up-

stream and downstream are defined by looking at the direction of the first

packet (upstream direction).

In order to keep track of sessions status according to the above definitions

we use a data structure in which each session can be dynamically stored.

Each session type is identified by a key of a fixed number of bits. For

flow and biflow session types the key contains two IP addresses, two port

numbers and the protocol type. For the host session type, the key contains

only one IP address. An IPv4 address is constituted of 32 bits, a port number

is represented with 16 bits and the protocol type requires only 8 bits. So the

maximum theoretical number of sessions that can be encountered on a link is

2104 working with flows and biflows and 232 working with hosts. Therefore, a

static data structure, which would have yield the benefit of a O(1) complexity

for data insertion and search, is not feasible in both cases. Complexity for

data lookup is very important in the design of a classifier, because an access

must be made to this data structure for each single packet. Among dynamic

data structures, balanced binary trees offer a worst-case complexity which is

logarithmic with respect to the number of elements (log2(n)), but we found

that an implementation with hash tables could yield comparable results in all

realistic situations. Specifically, sessions are stored in a chained hash table.

A hash table is basically made of a direct address table (a static array) which

is addressed by an index obtained through an hash function applied to the

original key of the element. Each position into the array is also named slot. A

hash function performs a m to k mapping with k < m, k equal to the length
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of the array, also called the hash table size, and m equal to the number of

values that elements’ keys can assume (2104 or 232 in our example). When

multiple keys map onto the same integer we say that there is a collision. A

hash function must be computationally fast and must be designed to reduce

the number of collisions as much as possible by fairly exploiting all the slots in

the table. In chained hash tables collisions are handled by chaining colliding

elements into a linked list. This allows an unlimited number of collisions to

be handled and does not require a priori knowledge of how many elements

are contained in the collection. When the hash function is well-designed,

and the number of slots is larger than the number of elements, collisions

are rare and the average lookup and insertion time is O(1). But even when

the length k of the array is smaller than the number of elements, if the

hash function is designed to generate indexes with uniform probability when

applied to the population of the keys, then we can assume an average worst

case complexity1 of O(n/k). This means that, for example, even for n = 200

millions of sessions we could choose k = 10 millions, obtaining a complexity

smaller than log2(2e + 08) ≈ 27.5 by allocating an array of pointers filling

less than 40 MB of memory.

There are several strategies for maximizing the uniformity of the hash

function and thereby maximizing the efficiency of the hash table. One

method, called the division method, operates by dividing a data item’s key

value by the total size of the hash table and using the remainder of the divi-

sion as the hash function return value. Selecting an appropriate hash table

size is an important element in determining the efficiency of the division

method. A good rule of thumb in selecting the hash table size for use with

a division method hash function is to pick a prime number that is not close

to any power of two. Figure 4.4 shows the simple hash function used for bi-

flows. The function has been written so that source and destination hosts’

IP addresses/ports can be swapped and still generate the same key.

1That is, the average length of the linked lists is n/k
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/* source ip */

for (i = 12, j = 0; i != 16; i++) {

j = (j * 13) + packet[i];

}

/* source port */

for (i = 20; i != 22; i++) {

j = (j * 13) + packet[i];

}

/* dest ip */

for (i = 16, k = 0; i != 20; i++) {

k = (k * 13) + packet[i];

}

/* dest port */

for (i = 22; i != 24; i++) {

k = (k * 13) + packet[i];

}

return ((j + k + L4_PROTO(packet)) % BIFLOW_TABLE_SIZE);

Figure 4.4: TIE: hash function used to identify and store biflow sessions.

Figure 4.5: TIE: sessions stored into the chained hash table (biflows).
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For each session it is necessary to keep track of some information and

to update them whenever a new packet belonging to the same session is

processed (e.g. status, counters, features). Also, it is necessary to archive

an expired session and to allocate a new structure for a new session. We

therefore associate to each item stored in the hash table a linked list of

sessions structures. That is, each element of the hash table, which represents

a session key, contains a pointer to a linked list of session structures, with

the head associated to the currently active session. Figure 4.5 represents how

sessions are stored into the hash table, and also shows detailed structures

related to biflows. These are commented in the next section, related to

feature extraction.

In order to properly work with high volumes of traffic, TIE is also equipped

with a Garbage Collector component that is responsible of keeping clean the

session table. At regular intervals it scans the table looking for expired ses-

sions. If necessary it dumps expired sessions data (including classification

results) to the output files and it then frees the memory associated to those

sessions. The cleaning interval occurs by default every 10000 packets, but

such value can be changed using a command-line option. Working in offline

mode the Garbage Collector is responsible of appending classification results

to the output file. In cyclic mode its work is synchronized with the dumping

process made at regular intervals. Under realtime mode instead, it is only

responsible to free memory of expired sessions.

4.5 Feature Extraction

In order to classify sessions, TIE has to collect the features needed by the

specific classification plugins activated. For instance, a technique may need to

access the payload of the first packet of a session in order to operate a pattern

matching using some signatures. The Feature Extractor is the component in

charge of collecting classification features and it is triggered by the Session

Builder for every incoming packet. To avoid unnecessary computations and

memory occupation, most features can be collected on-demand by specifying
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command line options. This is particularly relevant when we want to perform

online classification. The calculation of features is indeed a critical element

affecting the computational load of a classifier. In [100] the computational

complexity and memory overhead of some features in the context of online

classification are indeed evaluated.

We started implementing basic features used by most classifiers, con-

sidering techniques of different categories: post-based, flow-based, payload

inspection. At the moment these are the features available to classifiers:

• Always available

– number of upstream/downstream packets

– payload upstream/downstrem bytes

– source/destination port

– transport layer protocol

• On-demand

– Inter Packet Time between the first n packets

– Packet Size of the first n packets

– First n bytes of first packets (in both directions in biflow mode)

– Session payload stream of n bytes

We plan to enlarge the list of supported features by considering both new

kinds of features that we illustrate in Chapter 5 and sets explicitly compiled

and published in literature [91].

Classification features extracted from each session are kept in the same

session structure described in Section 4.4. In Figure 4.5 the biflow structure

is shown. In general, each session structure in the table contains:

• Basic information: a table entry identifier, a session identifier, the

tuple representing the key of the entry (features like protocol ports are

part of this tuple), partial or final classification results, and a pointer

to a previously expired session.
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• Timing information: the timestamps of the last seen upstream and

downstream packets are used to compute features like inter-packet

times [96]. Those related only to packets carrying payload are used to

compute inter-packet times when ignoring non-payload packets. The

timestamp of the last seen packet, independent of traffic direction, is

used to check for session timeout and, together with the timestamp of

the first packet, allow us to compute features as the session duration

(TON) and inter session time (TOFF ).

• Flags: a 32 bit register containing flags about the status of the session.

These flags are mostly used by classification plugins (see section 4.6)

to properly work on sessions.

• Counters: some counters used for features like the number of: packets,

packets with payload, and bytes observed (separately calculated for

both directions).

• Features: Some other classification features that can be enabled through

command line options. The first bytes of the first packet, in both direc-

tions, are provided for lightweight packet inspection techniques. Pay-

load sizes and inter-packet times vectors are provided for statistical or

machine learning techniques[99] [97]. A payload stream vector is finally

provided for deep payload inspection techniques [80].

This structure can be easily extended to collect additional features. More-

over the collection of each on-demand feature is implemented as an inline

function which can be also enabled/disabled at compile time. For each fea-

ture there is a state condition that can be tested by a classification plugin to

verify if the required feature is available.

4.6 Classification

TIE provides a multi-decisional engine made of a Decision Combiner and one

or more Classification Plugins (or shortly classifiers) implementing different
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classification techniques. Each Classification Plugin is a standalone dynami-

cally loadable software module. At runtime, a Plugin Manager is responsible

of searching and loading classification plugins according to a configuration

file called enabled plugins.

typedef struct classifier {

int (*disable) ();

int (*enable) ();

int (*load_signatures) (char *);

int (*train) (char *);

class_output *(*classify_session) (void *session);

int (*dump_statistics) (FILE *);

bool (*is_session_classifiable) (void *session);

int (*session_sign) (void *session, void *packet);

char *name; /* string representing the name of the classification engine */

char *version; /* string representing the version of the engine */

u_int32_t *flags;

} classifier;

Figure 4.6: TIE: interface of classification plugins.

Classification plugins have a standard interface, shown in Figure 4.6. To

help plugin developers, a dummy plugin with detailed internal documenta-

tion is distributed as part of the TIE package. Moreover the other classifi-

cation plugins distributed with TIE (e.g. the Port-based classifier) can serve

as sample reference code.

Each plugin is identified by a name and a version number. After load-

ing a plugin, the Plugin Manager calls the corresponding enable() function,

which is in charge of verifying if all the features needed are available (some

features are enabled by command line options). If some features are missing,

then the plugin is disabled by calling the disable() function. After enabling

a plugin, the load signatures() function is called in order to load classifica-

tion fingerprints. If the loading process encounters an error then the plugin

disables itself.

4.6.1 Decision Combiner

The Decision Combiner is responsible for the classification of the sessions

and it implements the strategy used for the combination of multiple classi-
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fiers. Whenever a new packet associated to an unclassified session arrives,

after updating session status information and extracting features, TIE calls

the Decision Combiner. For each session, the Decision Combiner must make

four choices: if a classification attempt is to be made, when (and if) each

classifier must be invoked (possibly multiple times), when the final classifi-

cation decision is taken, how to combine the classification outputs from the

classification plugins into the final decision. To take these decisions and to

coordinate the activity of multiple classifiers, the Decision Combiner operates

on a set of session flags (Figure 4.7) and can invoke, for each classification

plugin, two functions in the classifier structure: is session classifiable() and

classify session(). The is session classifiable() function asks the classifier

if enough information is available for it to attempt a classification of the

current session. The classify session() function performs the actual classi-

fication attempt, returning the result in a class output structure, shown in

Figure 4.8.

/* Session Flags */

#define SESS_SKIP 0x1 /* 1 => skip session processing */

#define SESS_PL_UP 0x2 /* 1 => 1st upstream pkt with payload received */

#define SESS_PL_DW 0x4 /* 1 => 1st dwstream pkt with payload received */

#define SESS_NO_ALPHA 0x8 /* 1 => payload is not alpha-numeric */

#define SESS_DW_START 0x10 /* 1 => 1st pkt with payload was in dwstream */

#define SESS_LAST_PKT 0x20 /* Last pkt direction:0 => upstream ,1 => downstream */

#define SESS_DONT_CLASSIFY 0x40 /* 1 => session is not to be classified */

#define SESS_CLASSIFIED 0x80 /* 1 => session has been classified */

#define SESS_SIGNED 0x100 /* 1 => signature saved */

#define SESS_EXPIRED 0x200 /* 1 => session expired */

#define SESS_TCP_SYN 0x400 /* 1 => SYN flag seen for this session */

#define SESS_TCP_FIN_UP 0x800 /* 1 => FIN flag seen in upstream for this session */

#define SESS_TCP_FIN_DW 0x1000 /* 1 => FIN flag seen in dwstream for this session */

Figure 4.7: TIE Session Flags: these are set by the Session Builder, the Feature Extractor,
and the Decision Combiner.

To highlight the central role of the Decision Combiner (DC in the fol-

lowing), and how few functions and structures allow a flexible design of its

operating strategy, in the following we illustrate some sample situations re-

garding the four main decision mentioned above.

• When to attempt classification. The DC could decide to not evalu-

ate the current session depending both on information from the classifi-
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cation plugins or on a priori basis. The latter may happen, for example,

when the target of classification is a restricted set of traffic categories.

Such decision can be taken by looking, for example, at the session flags

or at session features. In the first case instead, the DC typically asks

each of the active classification plugins if it is able to attempt clas-

sification on the current session (through the is session classifiable()

function. Depending on the replies from the classifiers the DC can de-

cide to make a classification attempt. For example, the DC may wait

for all classifiers (or the majority of them) to be ready before making

an attempt.

• When each classifier must be invoked. Depending on the clas-

sifiers that are available, the DC could decide to invoke only some of

them, and only at some time, for a certain session. For example, there

could be classification techniques that are applicable only to TCP bi-

flows. Or some classifiers may be invoked only when certain information

is present. This is the case of payload-based classifiers. In general, we

can design Combination strategies with more complicate algorithms,

in which the invocation of a specific classifier depends on several con-

ditions and on the output of other classifiers. For example, only if a

certain classifier returns that the session could be a Peer-to-Peer ses-

sion, then a payload inspection technique is launched. Or if the session

is classified as encrypted the DC may start a specific classifier specif-

/* Generic output given by a classifier */

typedef struct class_output {

u_int16_t id; /* Application identifier */

u_int8_t subid; /* Application sub id */

u_int8_t confidence; /* Confidence associated with match */

u_int32_t flags;

} class_output;

/* Classification output flags */

#define CLASS_OUT_ERR 1 /* classification error */

#define CLASS_OUT_REDO 2 /* classifier wants to re-examine session

when new data is available */

#define CLASS_OUT_NOMORE 4 /* classifier will not re-examine this session */

Figure 4.8: TIE: the class output structure stores the output of a classification attempt.
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ically designed for encrypted of traffic. Basically the algorithm which

determines the choice and the sequence of the classifiers to be invoked

can be very simple or more complex depending on the nature of the

classification problem and available classification techniques.

• When the final classification decision is taken. This choice is

usually connected to the previous one. The DC must decide when TIE

has to assign a class to a session. This can happen at the arrival of

any packet from the considered session. Simple strategies are, e.g.,

when at least one classifier has returned a result, or when all the clas-

sifiers have returned a classification result, etc. In more complicate

approaches, this choice can vary depending on the features of the ses-

sion (e.g. TCP, UDP, number of packets, etc.) and the output of the

classifiers. Moreover, if working in online mode, a limit on the time

elapsed or the number of packets seen since the start of the session is

typically given. If such limit has been passed, a final classification re-

sult (even if labeled as Unknown or no classifier has ever been launched

for the considered session) is assigned.

• How to combine the classification outputs from the classifica-

tion plugins into the final decision. The DC receives a class output

structure (Figure 4.8) from each of the classification plugins invoked.

These must then be fused into a single final decision. The class output

structure contains also a confidence value returned by each of the classi-

fiers, which can be helpful when combining conflicting results from dif-

ferent classifiers, and it determines the final confidence value returned

by the DC. The criteria used by each classification plugin to assign a

value to the confidence value is defined by the designer of the classifica-

tion plugin and must be clearly reported in the plugin documenation,

unless it is always set to the maximum (default). Effectively combin-

ing conflicting results from different classifiers is a crucial task. The

problem of combining classifiers actually represents a research area in
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the machine-learning field per se. Simple static approaches are based

on majority and/or priority criteria, whereas more complex strategies

can be adopted that take into account the nature of the classifiers and

their per-class metrics like accuracy [122].

We distribute TIE with a basic combination strategy as a first sample

implementation. For each session, the decision is taken only if all the clas-

sifiers that are enabled are ready to classify it. To take its decision the

combiner assigns priorities to classifiers in the order of their appearance in

the enabled plugins file. If all the plugins agree on the result, or some of

them classify the session as Unknown, the combination is straightforward and

the final confidence value is computed as the sum of each confidence value

divided by the number of enabled plugins. Instead, if one or more plugins

disagree, the class is decided by the plugin with highest priority. To take

into account the conflicting results of the classifiers, the confidence value is

evaluated as before, and then divided by 2.

All the code implementing the decision combiner is in separate source

files that can be easily modified and extended to write a new combination

strategy. After future addition of further classification plugins, we plan to

add combination strategies that are more sophisticated. For example, in

Section 5.5 of Chatpter 5 we suggest the combination of multiple techniques

for the creation of a ground-truth system, including payload inspection and

heuristics for Peer-to-Peer traffic.

4.6.2 Training Phase

It is possible to run TIE with the purpose to train one or more classifica-

tion plugins that implement machine-learning techniques with data extracted

from a traffic trace. To do this, we first need pre-classified data (ground

truth). These can be obtained by running TIE on the same traffic trace

using a ground-truth classification plugin (e.g. the l7-filter classification plu-

gin illustrated in Sectionsec:tie:l7). The same output file generated by TIE

is then used as pre-classified data and given as input to TIE configured to
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perform a training phase. For each activated classification plugin, the ses-

sion sign and train() functions are used The session sign function is called

for each packet belonging to a session until the SESS SIGNED flag is set and

should store information needed by the training process into a dedicated data

structure managed by the plugin itself. The second one is called at the end

of TIE execution and actually performs the training process using previously

stored data.

4.7 Data definitions and Output format

One of the design goals of TIE, was to allow comparison of multiple ap-

proaches. For this purpose a unified representation of classification output

is needed. More precisely (also with the purpose to make classification plu-

gins “speak the same language”) we defined IDs for application classes (we

simply call them applications) and propose such IDs as a reference. More-

over, as observed in Chapter 3, several approaches presented in literature

classify sessions into classes that are categories grouping applications that

offer similar services. We therefore added definitions of group classes and as-

signed each application to a group. This allows to compare a classification

technique that classifies traffic into application classes with another that clas-

sifies traffic into group classes. Moreover, it allows to perform a higher-level

comparison between two classifiers that both use application classes, by look-

ing at differences only in terms of groups.

To build a valid application database inside TIE, we started by analyzing

those used by the CoralReef suite [77], and by the L7-filter project [80],

because they represent the most complete sets that are publicly available

and because such tools represent the state of the art in the field of traffic

analysis and classification tools. By comparing such to application databases,

we then decided to create a more complete one by including information from

both sources and trying to preserve most of the definitions in there.

To each application class, as shown in Figure 4.9, TIE associates the

following information:
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• An integer application identifier that unically identifies the application.

• A human readable label to be used for readable output.

• A group identifier that associates the application to a category.

Moreover, to introduce a further level of granularity, inside each appli-

cation class we allow the definition of sub-application identifiers in order to

discriminate among sessions of the same application generating traffic with

different properties(e.g. signaling vs. data, or Skype voice vs. Skype chat,

etc.). To each sub-application the following information is associated:

• A sub-application ID.

• A human readable label to be used for readable output.

• A long description.

Each application class has at least the default generic sub-application ID “0”.

To obtain an easily manageable and portable application database we

adopted an ASCII file format. Figure 4.10 shows portions of the tie apps.txt

file. Each line defines one application identified by the pair (AppID, SubID).

To properly define the application groups we started from the categories

proposed by [72] and then we extended them by looking at those proposed

by CoralReef [77] and L7-filter [80]. The resulting database, as shown in

figure 4.11, uses the same format adopted for the applications database file

and contains a label and a description for each group. The association of

typedef struct sub_app {

char *sub_label;

char *descr;

} sub_app;

typedef struct app {

char *label;

u_int8_t group_id;

sub_app *sub_id;

u_int8_t sub_id_count;

} app;

Figure 4.9: TIE: structure for application classes.
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each application to a specific group has been done following the definitions

given in [72] and [77].

The main output file generated by TIE contains information about the

sessions processed and their classification. The output format is unique but

semantics depend on (i) the operating mode in which TIE was run and (ii)

the session type. The output file, by default called class.out, is composed

by a header and a body. The header contains details about the whole traffic

results, the plugins activated, and the options chosen. The body is a column-

separated table whose fields are described in the following:

#AppID SubID GroupID Label SubLabel Description

0, 0, 0, "UNKNOWN", "UNKNOWN", "Unknown application"

#

1, 0, 1, "HTTP", "HTTP", "World Wide Web"

1, 1, 1, "HTTP", "DAP", "HTTP by Download Accelerator Plus"

1, 2, 1, "HTTP", "FRESHDOWNLOAD", "HTTP by Fresh Download"

[...]

1, 7, 1, "HTTP", "QUICKTIME", "Quicktime HTTP"

[...]

4, 0, 1, "HTTPS", "HTTPS", "Secure Web"

5, 0, 9, "DNS", "DNS", "Domain Name Service"

[...]

10, 0, 3, "FTP", "FTP", "File Transfer Protocol"

10, 1, 3, "FTP", "FTP_DATA", "File Transfer Protocol (data stream)"

10, 2, 3, "FTP", "FTP_CONTROL", "File Transfer Protocol (control)"

[...]

Figure 4.10: TIE: definitions of application classes from the file tie apps.txt.

#GID Label Description

0, "UNKNOWN", "Unknown group"

1, "WEB", "World wide web"

2, "MAIL", "Mail"

3, "BULK", "File transfer"

4, "MALICIOUS", "Malicious applications (trojan,worm,virus, attack)"

5, "CONFERENCING", "Conferencing and chat"

6, "DATABASE", "Database"

7, "MULTIMEDIA", "Multimedia (audio/video streaming)"

8, "VOIP", "Voice over IP"

9, "SERVICES", "Generic services"

10, "INTERACTIVE", "Interactive (login/remote control)"

11, "GAMES", "Games"

12, "P2P", "Peer-to-peer"

13, "GRID", "Grid"

14, "NETWORK_MANAGEMENT", "Network management"

15, "NEWS", "News"

16, "FILE_SYSTEM", "File system"

17, "ENCRYPTION", "Encryption"

18, "TUNNELING", "Tunneling"

Figure 4.11: TIE: file format for definitions of group classes.
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• id: the session identifier

• 5-tuple: transport layer protocol, source and destination addresses

and ports

• timestart: timestamp of the start of the session

• timeend*: timestamp of the end of the session

• pkt-up*: number of upstream packets

• pkt-dw*: number of downstream packets

• bytes-up*: number of upstream bytes

• bytes-dw*: number of downstream bytes

• app id: application identifier resulted from classification

• app subid: application sub-identifier resulted from classification

• confidence: confidence value of classification process

The output format is the same for all the operating modes, but the se-

mantics of the fields marked with an asterisk changes. In offline mode those

fields refer to the entire session. In realtime mode they refer only to the pe-

riod between the start of the session and the time the classification of the

session has been made. This is done in order to reduce computations to the

minimum after a session has been classified. Finally, in cyclic mode an out-

put file with a different name is generated for each time interval, and fields

marked with an asterisk refer only to the current interval.
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# tie output version: 1.0 (text format)

# generated by: ./tie -P 20 -t 125

# 2 plug-ins enabled: l7 port

# begin trace interval: 1221921072

# trace interval duration: 300 s

#id src_ip dst_ip proto sport dport dwpkts uppkts dwbytes upbytes t_start t_last app_id sub_id confidence

7 10.0.0.55 10.0.0.129 17 4672 4672 1 1 19 48 1221921072.799580 1221921072.892036 40 0 25

5 10.0.0.55 10.0.0.209 17 4672 4672 1 1 19 225 1221921072.799178 1221921073.033699 40 0 25

12 10.0.0.54 10.0.0.80 17 33332 53 1 1 124 34 1221921073.257437 1221921073.274311 5 0 50

47 10.0.0.55 10.0.0.151 17 4672 4672 1 1 19 48 1221921074.989144 1221921075.108251 40 0 25

51 10.0.0.55 10.0.0.57 17 4672 4672 1 1 169 35 1221921075.039750 1221921075.254110 0 0 0

40 10.0.0.55 10.0.0.125 6 2094 4662 1 1 92 108 1221921074.984972 1221921075.299248 127 0 50

248 10.0.0.54 10.0.0.67 6 38629 1863 1 1 8 5 1221921088.905082 1221921089.114479 57 0 50

Figure 4.12: TIE: an example of classification output file.
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4.8 Port-based classification plugin

The Port-based classification plugin relies on source and destination port

numbers as features, and works on both TCP and UDP protocols. Because

several tools performing port based classification were available, we tried to

reuse the most up-to-date. In our search the CoralReef suite [77], developed

by CAIDA, was the one with the largest and up-to-date port-based applica-

tion database. To “not reinvent the wheel” and to conform to state of the art,

the classification plugin we implemented from scratch relies on the CoralReef

signature file called Application ports master.txt. Figure 4.13 shows some

parts of it. As shown, for each application some fields are defined, among

the most important are:

• name: it univocally identifies the application

• group: it associates each application to a category

• sport: the transport layer source ports

• dport: the transport layer destination ports

• protocol: the transport layer protocols

The last three fields can contain a comma separated list of integer num-

bers and ranges (e.g. “50− 75” corresponds to values from 50 to 75). More-

over the jolly character “*” matches any value.

To import such signatures in the Port-based classification plugin, we im-

plemented a simple parser that retrieves only the above mentioned fields and

stores them into a hash table, in which the generic element has the structure

shown in figure 4.14. Being that TIE determines the direction of a session

differently compared to CoralReef (i.e. we consider the source port the one

from the host generating the first packet), our parser swaps source and desti-

nation ports. Moreover, because TIE manages applications using an integer

identifier key, the parser does the mapping of each application by looking at
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[...]

# ------------------------------------------------------------

description: World Wide Web

name: HTTP

group: WWW

sport: 80,8080

dport: *

sym: 1

protocol: 6

priority: 10

contributor: bigj

date: 1999-07-08

reference: IANA Port assignments

url: http://www.iana.org/assignments/port-numbers

[...]

# ------------------------------------------------------------

description: Post Office Protocol (v2 & v3)

name: POP

group: Mail/News

sport: 109-110,995

dport: *

sym: 1

protocol: 6

priority: 10

contributor: rkoga

date: 2001-03-16

reference: IANA Port assignments

url: http://www.iana.org/assignments/port-numbers

[...]

Figure 4.13: CoralReef file format for port-application definitions.
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its label. At the moment there is not a dedicated file to manage these asso-

ciations, because TIE application database was built starting from the one

defined by CoralReef, thus having the same labels. In the future we plan to

implement such file to avoid modifications to the TIE application database

when Application ports master.txt changes.

When a signature contains port ranges or more source-destination com-

binations, the parser creates an entry in the hash table for each of them.

This approach speeds up the classification process at the expense of few ad-

ditional bytes of memory. Moreover to manage jolly characters inside port

fields we use the 0 value, because it is not a valid port number.

/*

* This is the structure used to store port info

*/

typedef struct port_info {

u_int16_t sport; /* source port (key) */

u_int16_t dport; /* destination port (key) */

u_int8_t proto; /* protocol type (key) */

u_int16_t app_id; /* application ID */

u_int8_t app_subid; /* application sub ID */

} port_info;

Figure 4.14: TIE: element of the port information hash table.

The algorithm implemented by the classifier on each session is very simple.

It performs three lookups into the hash table by specifying the following

information combinations:

• transport protocol and both source and destination ports

• transport protocol and destination port only

• transport protocol and source port only

The lookup, if successful, will return the corresponding entry containing

the application identifier. The confidence value is always set to 100 when a

hit occurs or set to 0 otherwise.

In Chapter 5, Section 5.4, we use the Port-based classification plugin as a

base reference when experimentally evaluating and comparing performance,
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in terms of speed, cpu and memory utilization, of other two classification plu-

gins. Results show that the Port-based classification plugin is the fastest and

the least cpu-intensive technique with also the smallest memory footprint.

4.9 L7-filter classification plugin

Another classification plugin distributed with TIE is based on a deep payload

inspection technique. We chose to implement the same technique used by

L7-filter [80] inside a TIE classification plugin for the following reasons: (i)

we wanted to support at least one payload-inspection technique to compare

it against completely different approaches; (ii) among the publicly available

tools, L7-filter is one of the most popular; (iii) we needed to implement at

least one ground-truth technique in TIE, and L7-filter routines are often used

in literature for ground-truth [99] [127]; (iv) the current version of L7-filter

is not easy to use on traffic traces. Indeed, because of its nature, L7-filter

natively works only on Linux platforms and can only analyze traffic from

a network interface. The only way to run it on previously-captured traffic

is to replay that traffic (e.g. using tcpreplay [128]) on a network interface.

Unfortunately such trick does not allow to work at high traffic rates (∼ 1

Mbps), thus practically limiting its application to small traffic traces. By

supporting the same technique under TIE we do not have these limitations

anymore and we can run it both under Linux and FreeBSD.

L7-filter is an open-source project for Linux and it is available in two dif-

ferent versions: kernel and user-space. The original project was born in ker-

nel space, where many functionalities are implemented by the Netfilter [129]

framework, the same used by iptables to provide firewalling, NAT (Network

Address Translation) and packet mangling under Linux. The user-space ver-

sion, currently in a early stage of development, gets data through Netfilter’s

queues and implements connection tracking from scratch.

The L7-filter classification technique uses regular expressions. The kernel

version is limited only to simple regular expressions, whereas the user-space

version uses the GNU ones. A regular expression (or regexp, or pattern) is a
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rule, in the form of a text string, describing set of strings. In general a regexp

r matches a string s if s is in the set of strings described by r. A regexp can

contain printable characters and some operators among the following:

• The Match-any-character Operator: represented by the “.” char-

acter, it specifies the presence of a generic character.

• The Concatenation Operator: obtained by juxtaposition, it con-

catenates printable characters.

• Repetition Operators: represented by “∗+?{}” symbols, they allow

to specify how many times a character sequence/group has to appear.

• The Alternation Operator: represented by the “|” symbol, it allows

to specify alternatives inside a single regexp.

• List Operators: represented by a list of characters appearing inside

square brackets (“[. . . ]”), they allow to specify a list of characters to

match.

• Grouping Operators: represented by a list of characters and opera-

tors appearing inside brackets (“(. . . )”), they allow to aggregate them

into groups.

• The Back-reference Operator: represented by a “\ < digit >”

sequence, it allows to refer to a group appearing inside the same regexp.

• Anchoring Operators: represented by “ˆ$” symbols, they allow to

specify respectively the start and the end of the string.

For instance, the regex:

^ssh-[12]\.[0-9]

matches the first characters of a SSH connection, where the initial “ssh-”

string is followed by the version number. As specified in the pattern it could

be 1.x or 2.x, where x is a digit from 0 to 9.
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L7-filter during its startup loads the application patterns from several

text files with “pat” extension. A pattern file is composed by several lines as

follow:

• empty and blank lines are skipped

• lines starting with “#” are comments

• the first non-comment line must be the name of the application

• the next non-comment line must be the actual regular expression

• optionally a different regular expression can be specified for the userspace

version if the line begins with “userspace pattern=“

• optionally some flags can be specified to be used by GNU regexp if the

line starts with “userspace flags=“

Figure 4.15 shows the file that defines the regexp associated to the Bittorrent

protocol.

After loading signatures, L7-filter processes packets by collecting the pay-

load of each session into an array, independently of its direction, and removing

the null bytes. Removing null bytes is necessary to pattern matching, be-

cause the regular expression engine uses null-terminated strings. The match-

ing process is triggered by the reception of a packet carrying payload and if

no match is found the session is left unclassified. If after 10 packets the ses-

sion can not be classified, then it will be set as Unknown and its subsequent

packets are ignored.

To develop a TIE classification plugin implementing the same technique

used by L7-filter (TIE-L7) we started from the latest code-repository check-

out of the user-space version. It was necessary to adapt some aspects of

the TIE platform to work with this plugin. First, we had to add to TIE

an option to make several classification attempts for the same session, by

modifying the Decision Combiner. In fact, L7-filter tries to classify a ses-

sion more than once: only if the regexp match fails after the reception of



L7-filter classification plugin 108

the first 10 packets, then the session is marked as Unknown. Moreover, to

let TIE work with the same definition of session, it was necessary to imple-

ment some heuristics to follow the state of TCP connections. We analyzed

the heuristics implemented in the user-space version of L7-filter, that simply

assume that a packet carrying the FIN flag determines the expiration of a

TCP session, and added them as optional. During this study we also iden-

tified few bugs in the user-space version of the code that we reported to the

developers. Moreover, as explained in Section 4.4 we added more heuristics

for TCP connections that can be optionally activated. The pattern matching

routines did not need any change to be ported to TIE’s classification plugin.

However, in order to support the FreeBSD operating system we had to in-

clude the GNU pattern matching libraries into the plugin package, because

the implementation of such libraries under several versions of this operat-

ing system is extremely slow. Furthermore, in order to integrate into TIE

the pattern files containing signatures used by L7-filter, it was necessary to

# Bittorrent - P2P filesharing / publishing tool - http://www.bittorrent.com

# Pattern attributes: good slow notsofast undermatch

# Protocol groups: p2p open_source

# Wiki: http://www.protocolinfo.org/wiki/Bittorrent

#

# This pattern has been tested and is believed to work well.

# It will, however, not work on bittorrent streams that are encrypted, since

# it’s impossible to match encrypted data (unless the encryption is extremely

# weak, like rot13 or something...).

bittorrent

# Does not attempt to match the HTTP download of the tracker

# 0x13 is the length of "bittorrent protocol"

# Second two bits match UDP wierdness

# Next bit matches something Azureus does

# Ditto on the next bit.Could also match on "user-agent: azureus", but that’s in the next

# packet and perhaps this will match multiple clients.

# Recently the ^ was removed from before \x13. I think this was an accident,

# so I have restored it.

# This is not a valid GNU basic regular expression (but that’s ok).

^(\x13bittorrent protocol|azver\x01$|get /scrape\?info_hash=)|d1:ad2:id20:|\x08’7P\)[RP]

# This pattern is "fast", but won’t catch as much

#^(\x13bittorrent protocol|azver\x01$|get /scrape\?info_hash=)

Figure 4.15: L7filter bittorrent pattern file
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port the L7-filter parser into the plugin and to associate each application to

the corresponding TIE identifiers. To set such association, at start-up, TIE-

L7 loads the signatures reading the list from a configuration file, which also

contains associations between each application name and the corresponding

(AppID, SubID) pair.

Finally, to state the equivalence of TIE-L7 with the original L7-filter (the

user-space version) we added to both softwares few routines to output debug

information. Such output reports the list of the sessions detected and the cor-

responding classification result. We performed tests on several traffic traces,

and after fixing small differences, we verified that TIE-L7 and L7-filter pro-

duced the same output. In Chapter 5 we show several experimental studies

related to TIE-L7 by using large traffic traces. Specifically, in Section 5.3 we

analyze in detail what are the portions of sessions (in terms of both packets

and bytes) in which the successful regexp matches happen, and we find that

most of them are related to the first few bytes of the first packet exchanged

by two hosts. In Section 5.4 we analyze and compare the performance, in

terms of speed, cpu and memory utilization, of TIE-L7 against two differ-

ent classification plugins, and we find that it is possible to perform a much

faster and less computationally-intensive payload inspection trading classifi-

cation accuracy. Finally, in Section 5.5 we compare TIE-L7 against another

ground-truth tool, and we find that such tools fail in identifying the entire

traffic of the considered traces and often contradict each other.

4.10 TIE and the Research Community

TIE is a community-oriented tool, that is, it has been designed to allow the

scientific community to easily develop real implementations of classification

techniques to be evaluated by anyone on real (and live) traffic and fairly

compared. However, besides community needs and deficient aspects of the

state of art, during the design of TIE and its development, we have constantly

payed attention to what the scientific community had already produced, both

in terms of functionalities and data definitions/formats. Few examples follow:
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• TIE uses the Libpcap library for live traffic capture and trace manage-

ment, which is a de facto standard supported by most common operat-

ing systems. The vast majority of the traces made publicly available by

the scientific community are in Libpcap (tcpdump) format, this makes

them immediately usable by TIE.

• TIE supports different definitions of sessions according to those pro-

duced in literature (see Table 3.1 in Chapter 3).

• In the definition of classes and class IDs, we have carefully considered

definitions already used by the most popular tools (e.g. CoralReef from

CAIDA [77] and the Linux project L7-filter [80]. Moreover we have

created a class hierarchy made of application groups, applications, and

application sub-IDs, in order to represent the different types of classes

considered in literature and to allow comparison even when they differ

(e.g. approaches classifying applications against approaches classifying

categories of applications).

• In the implementation of the first classification plugins we adopted

definitions and algorithms widely used and accepted, as the CoralReef

file of rules for port-application associations in the case of the Port-

based classifier, and L7-filter algorithm and signatures in the case of

the TIE-L7 classifier.

Furthermore, because designed as a community-oriented tool, TIE was

involved since prototype stage into collaborative projects with other research

groups. RECIPE (“Robust and Efficient traffic Classification in IP nEt-

works”) is a national project of two years (2007/2008) funded by the Italian

Ministry of University and Scientific Research (PRIN 2006 Research Pro-

grams) [131]. Five research units grouping researchers from seven Italian

universities participate to this project, which is is about the development

of efficient techniques and tools for network traffic classification. TIE was

presented in several RECIPE meetings and distributed to project partners,

and it has become the reference tool in the project as regards development
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Table 4.1: TIE classification plugins available and under development. The table highlights
input from the community and joint activities.

Classification
Plugin

Features based on Classification
approach

Status Collaborations and contributions
from the community

Port Protocol ports Port-based Available Developed by UNINA, signatures
from CAIDA [77]

L7 Payload Deep payload
inspection

Available Developed by UNINA, code and sig-
natures from Linux L7-filter [80]

NBC Payload Lightweight
Payload In-
spection (see
Section 5.4)

To be
released

Developed by UNINA

GMM-PS First few packet sizes Gaussian
Mixture
Models [97]

Under
test

Developed by UNINA

HMM Packet size and inter-
packet time

Hidden
Markov Mod-
els [130]

Under
devel.

Development by UNINA

FPT Packet size and inter-
packet time

Statistical
[99]

Under
devel.

Joint work between UNINA and Uni-
versity of Brescia in the context of the
RECIPE research project [131]

Joint Packet size and inter-
packet time

Nearest
Neighbour

Under
devel.

Joint work: UNINA, CAIDA, Seoul
National University

GT Information from
Hosts

Ground-
Truth

In early
devel.

Joint work: University of Brescia,
CAIDA, UNINA

of traffic classification implementations and their experimental comparison.

The development of a classification plugin implementing the technique pre-

sented in [99] for example, is part of a joint collaboration between the re-

search group on computer networks at University of Napoli Federico II and

the telecommunications group at University of Brescia (see Table 4.1).

NETQOS is a European Specific Targeted Research Project (STREP)

from the 5th call of IST FP6 framework, contributing to the strategic ob-

jective of “Research Networking Testbeds” [132]. The NETQOS project is

about the development of an autonomous policy-based QoS management

approach for heterogeneous communications networks, in order to provide

enhanced end-to-end QoS and efficient resource utilization. By addressing

automation of network level policy management, the project allows for dy-

namic adaptation of the managed systems in response to changes of require-

ments in the operational environment. Users and applications are allowed to

dynamically change their Quality of service (QoS) requirements while main-

taining a smooth delivery of the required QoS. In the NETQOS framework,
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two possible categories of applications are considered: NETQOS-aware ap-

plications, which communicate with several components of the architecture

when they are launched in order to active QoS negotiation and management

and measurement tasks, and NETQOS-unaware applications. The latter are

applications that do not directly interact with NETQOS components. In

order to provide adequate QoS to the user, and in general to enforce the ap-

propriate network/transport level policies, NETQOS-unaware applications

must be identified by looking at their traffic. TIE has been integrated into

the NETQOS framework as a component for online classification of traffic

generated by NETQOS-unaware applications. We used TIE configured in re-

altime mode and added functionalities to notify classification results to other

NETQOS components in a specified format. The integration of TIE into a

complex architecture like NETQOS was successful and was validated also

during a formal demo session of the project.

Moreover, TIE has been recognized as reference tool in the European

COST Action IC0703 “Data Traffic Monitoring and Analysis (TMA): theory,

techniques, tools and applications for the future networks” (shortly COST-

TMA) [133]. Started in early 2008, COST-TMA aims at coordinating partici-

pants (more than 40, divided in network operators and research groups active

in the field of traffic monitoring and analysis) to promote the development of

novel techniques and to focus research efforts towards commonly recognized

problems, thus driving research towards real-world applications. One of the

three working groups of the project is devoted to traffic characterization and

identification. TIE was recently presented at the second COST-TMA meet-

ing, held in September 2008, where it earned significant interest and was

elected reference tool for future activities inside COST-TMA regarding traf-

fic classification. At the time of writing discussions about joint activities

with other research groups have already started.

Table 4.1 summarizes TIE classification plugins that are both available or

under development and highlights connections with the research community.

Part of the contributions presented in the next chapter involve the use of
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some of the plugins reported in the table.



Chapter 5

Contributions to Traffic
Classification

5.1 Introduction

In Chapter 3 we presented a critical analysis of the literature and the state

of art in traffic classification, highlighting several important open issues in

this field. The development of TIE, expounded in Chapter 4, was done in

order to fill one of the large gaps present in this research field, by offering

an instrument to the scientific community for testing and evaluating practi-

cal implementations. However, there are other issues in traffic classification

exposed in Chapter 3 that we address in this chapter by investigating new

classification techniques and analyzing limitations of the current ones, both

through experimental analyses. Moreover, we point out that part of the ex-

perimental work presented in this chapter has been carried out thanks to

TIE and some classification plugins written on purpose.

A careful analysis of literature indicates that there is still need to investi-

gate new techniques alternative to payload inspection. The first contribution

of this chapter is a classification technique based on statistical features that

are totally novel and are based on the understanding of packet-level proper-

ties of traffic through several studies (that are discussed in Chapter 2). More-

over, in the experimental analysis of such classification technique, we follow

the recommendations expressed in Chapter 3: we conduct an experimental
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analysis of our technique considering overall link traffic, testing our approach

on recent traces, and reporting results in terms of both byte-accuracy and of

metrics widely adopted in the field of machine-learning and pattern recogni-

tion. In Chapter 3 we observed that the only implementations of traffic clas-

sifiers currently available are based on payload inspection. Such approaches

suffer from limitations that discourage their use or even make it impractica-

ble, such as the need to access to full packet content and the computational

load. We therefore study these limitations of payload inspection approaches

and we come up with a lightweight modification to deep payload inspection

which goes towards the directions of online classification and multi-classifier

systems (see Chapter 3 Section 3.6). We evaluate the proposed approach

by implementing it as a TIE classification plugin and comparing it against

a largely used deep-payload inspection classifier and a port-based classifier,

both of them also implemented as TIE plugins. We conclude the chapter

by investigating, for the first time in literature, the problem of accuracy of

ground-truth systems (also highlighted in Chapter 3 Section 3.6). Indeed,

despite the fact that such systems are used as the reference when evaluat-

ing the classification techniques that are being proposed, there is not much

knowledge about them and their reliability. We carry out an experimen-

tal evaluation by comparing two largely used ground truth systems based on

payload inspection. Results show how both are not able to identify the en-

tire traffic present on a link and how sometimes they contradict themselves.

Such results on one side demonstrate inaccuracy of payload-based classifiers,

on the other urge the scientific community to accurately verify and improve

the systems used for reference when studying traffic classification.
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5.2 Traffic Classification through Joint Dis-

tributions of Packet-level statistics

The experimental analyses reported in Chapter 2 show distinctive proper-

ties of network traffic from different applications when traffic is analyzed at

packet-level, that is, in terms of Packet Size (PS) and Inter-Packet Time

(IPT). The classification technique presented in this section is heavily based

on such studies. Indeed, as will be explained in detail in the following, to

produce features for traffic classification we considered the joint distribu-

tion of PS and IPT and we applied a strong discretization to the estimate

of their joint PDF. As regards the classification technique used to process

such features, we considered machine-learning algorithms like the K-Nearest

Neighbor and SVM. The major contribution of this study is represented by

the introduction of effective packet-level features, which, as far as we know,

have never been previously proposed in literature. We show that, in conjunc-

tion with a machine-learning classification algorithm, such features allow to

build a traffic classifier that looks promising in terms of robustness to evasion

from identification1.

5.2.1 Traffic view and statistical features

We decompose network traffic into biflows, which represent an extension of

flows by considering traffic in both directions, so that the {srcip, srcport} and

{dstip, dstport} pairs can be swapped (see Chapter 3 Section 3.4). The timeout

(of 90 seconds) is evaluated by considering packets in both directions. We

call the two directions upstream and downstream, where the first one refers

to packets sent by the host sending the first packet. Packets sent by the

other host belong to the downstream direction. Biflows can be seen as a

very simple heuristic for TCP connections and an approach to aggregate

packets into udp “sessions”. With the purpose to obtain better classification

1This research activity has been carried out in the context of a collaboration with the
Cooperative Association for Internet Data Analysis (CAIDA), University of California San
Diego, CA, USA, and Seoul National University, Korea.
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accuracy, we classify biflows instead of flows. This choice allows to exploit

the obvious correlation between traffic in both directions, since generated

by the same network application. Even if it is not always possible collecting

traffic in both directions (e.g. fiber links on a backbone), it is straightforward

to apply the same approach to unidirectional traffic information, but with a

probable degradation of classification accuracy.

In Chapter 2 we observed that network applications exhibit distinctive

behaviors for marginal distributions and autocorrelations of PS and IPT.

Specifically, we found a strong invariance of average profiles of PDFs for

each different application when looking at traces coming from different links

and taken at different times (space and time invariance) [50] [134] [48]. By

“average profiles” we mean that the PDFs of thousands flows have been av-

eraged to a single PDF, however we observed this behavior also when looking

at single profiles (i.e. separately considering the PDF of each single flow).

Moreover, we found that IPT and PS of the same packet are usually very

correlated. This can be taken into account by considering the Joint distribu-

tion of PS and IPT. We therefore developed a set of features based on this

observation to build traffic fingerprints of different network applications that

could be processed by a machine-learning algorithm. Because we consider bi-

flows as objects to be classified, a fingerprint of the application will be built

by considering the joint distributions of both directions2.

The machine-learning algorithms targeted however need as input-features

a discrete set of data. We therefore need to identify a binning criterion for

the joint distributions of IPT and PS. An ideal grid is overimposed to the

plane identified by the PS axis and the IPT axis. A bin corresponds to each

cell of the grid. The normalized “height” of each bin is a feature.

Basing on our studies in traffic analysis (see Chapter 2) we applied a

non-uniform binning both to reduce the number of features to be considered

2Since, as shown later in this section, this approach looks successful, we are considering
as a future work to further develop the set of features used by adding to the joint distri-
butions of PS and IPT of each direction, information regarding behavior on the opposite
direction (e.g. number of bytes transmitted in the opposite direction before the considered
packet was received).
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(e.g. to reduce the computational complexity) and because we identified that

distinctive properties can be grouped into ranges of values made of different

sizes. For example, for the packet size parameter we considered the following

upper boundaries (in bytes) for the binning: {2,5,10,100,200,500,1000,1400,∞}.

Whereas for IPT we considered the following upper boundaries (in microsec-

onds): {10,100,1000,10000,500000,1000000,10000000,∞}. Our traffic pro-

cessing platform [62] assigns each observed packet to a biflow and to one

of its two directions. It then updates the discretized joint PDF assigned to

that direction by incrementing the counter associated to a specific bin. The

correct bin is identified by evaluating the packet’s PS and its IPT with re-

spect to the previous packet from the same direction, and comparing such

values against the aforementioned boundaries. At the end of the flow (or at

program termination) the values inside the matrix of bin heights are normal-

ized and dumped to a log file reporting other biflow information (unique ID,

biflow-tuple, flow-level statistics, etc.).

We can visually represent the two upstream and downstream matrices

assigned to a biflow as shown in Figure 5.1, where we consider the binned

joint PDFs of a sample biflow. The height of each bin is indicated by the

darkness of the corresponding cell and it represents the relative frequency of

the packets into the associated range of PS-IPT values. The PS and IPT

values, respectively on the x and y axes, refer to the upper boundaries of

each cell.

In our experiments we also considered other biflow-level parameters as

possible additional features like, for example, the number of packets trans-

mitted for each direction and the biflow duration. Please refer to Section

5.2.4 for details. The matrices representing PS-IPT Joint PDFs however are

the main features used in this work. To give an intuitive idea of how such

features could really be used as fingerprints for classifying traffic, in Figures

5.2 and 5.3 we show random samples of Joint PDF respectively for the Edon-

key application and for the Web application. From these figures we can note

that samples from the two applications look quite different. Samples related
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Figure 5.1: Sample matrices representing two Joint PDFs of PS-IPT

to Edonkey present an upstream traffic mainly constituted of full-size pack-

ets with a majority of small IPT. This traffic is probably associated to a data

transfer. On the opposite direction, instead, we observe small-size packets

with large IPTs of the order of tens of seconds. This can be referred to a

sort of control channel (e.g. subsequent requests of chunks of files). Looking

at Figure 5.3 we observe that samples (a) and (b) have a different behavior

compared to (c) and (d). The first ones have an empty upstream distribution

because the upstream direction was made of a single packet (thus IPT was

not computable). In this case we are probably observing a single HTTP re-

quest (upstream) followed by the transfer of the requested file (downstream).

Samples (c) and (d) instead are probably related to biflows with HTTP us-

ing persistent connections, in which subsequent requests are made inside the
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same TCP connection. Medium-size packets (HTTP requests often do not

fill an entire packet) and IPT of the order of fractions of seconds to few sec-

onds (requests generated directly by the browser or caused by user clicks)

are consistent with our hypothesis.

Features related to PS and IPT, and in particular related to their marginal

distributions, for traffic classification purposes have already been presented

in literature. However, to our knowledge, the approximation of the PS-IPT

joint distribution represents a novel set of features that has never been eval-

uated. In [91], 249 possible discriminators for classification of traffic flows

are listed. Among them we find features like mean and standard deviation

of PS or of IPT, minumum, maximum, quartiles of their distributions. Some

of these features have been used in several papers [70] [96] [114]. However,

not only the detailed approximations of the distributions are never listed

and considered, but such PS and IPT were never taken into account jointly.

Summary statistics like mean, median and standard deviation obviously do

not contain the same information (and thus discriminative power) of approx-

imations of the PDF. For example, by averaging two possible modes that

can be present into an applications: very small packets alternated to full-size

packets are averaged into a mean PS of medium-size packets we loose a lot

of information (even if variance can give us some hints). Moreover the joint

characterization of PS and IPT carries even much more information than the

two separate distributions. For example, without a joint modeling we could

not distinguish between an application generating full-size packets with small

IPT and small-size packets with large IPT, and an application that associates

IPT and PS in the opposite way. The results shown in the next sections con-

firm indeed the discriminative power of the features here considered. Finally,

as regards the use in literature of similar features for traffic classification, we

clarify that the features used in [99] are totally different. The joint distribu-

tions considered in that paper, indeed, represent another kind of information:

the authors consider the order of packet arrivals for all the biflows analyzed,

and build a joint distribution for each category of packets depending on their
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order of arrival, e.g. considering 5 packets per biflow would bring 5 joint

distributions. The first of these joint distributions would therefore repre-

sent statistical properties of the typical first packet seen in the biflows of the

application fingerprinted.

5.2.2 Machine-Learning Approach

To test our approach based on the use of the traffic features described above,

we focus on machine-learning algorithms performing supervised learning. We

suppose indeed that the traffic classes are defined and that we have availabil-

ity of pre-classified data to train our classifier.

The objective of this study is to investigate the effectiveness of using

packet-level features extracted from PS-IPT joint distributions and to iden-

tify an appropriate classification algorithm. Therefore, for our experimen-

tal analysis, we used the WEKA machine-learning software suite [101], of-

ten used in traffic classification studies [135, 93, 95, 136, 70, 115] because

it supports a large set of highly configurable machine-learning algorithms.

This way, we have large flexibility in experimenting with datasets and differ-

ent algorithms. Only after the approach is well-defined and an appropriate

machine-learning algorithm has been selected we can develop a prototype im-

plementation as a TIE classification plugin. To separate training and testing

sets, 50% of each considered trace is chosen randomly to form a pool of train-

ing flows, and the remaining 50% is used for a pool of testing ones. After

experimenting with several machine-learning algorithms we restricted our fi-

nal experiments only on K-Nearest Neighbor and Support Vector Machines

because we achieved best results with them. Here we briefly describe such

algorithms:

k-Nearest Neighbors (k-NN) [69] computes Euclidean distances from

each test instance to the k nearest neighbors in the n-dimensional feature

space. The classifier assigns the majority class label among the k nearest

neighbors to the test tuple. We use k = 1, 3, and 5. Where k determines the

number of nearest training instances against which the algorithm checks the
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Table 5.1: Characteristics of analyzed traces
Set Date Day Start Duration Link type Packets Bytes Biflows
KAIST 2006-09-14 Thu 16:37 21h 16m edge 357 M 259 G 221K
UNINA 2008-05-16 Fri 10:42 18m edge 52 M 40 G 42 K

distance with the sample under classification.

Support Vector Machines (SVM) [137, 138, 127] The principle at

the base of SVM is to construct a separating hyperplane that maximizes

the distance between two sets of vectors (each set pertaining to a class) in

an n-dimensional feature space [138]. Pairwise classification can be easily

extended to multi-class problems in several ways. The parameters of the

separating hyperplane with the maxium distance are derived by solving an

optimization problem. In our setup we used the Sequential Minimal Op-

timization (SMO) [139], which decomposes the optimization problem into

several 2-dimensional sub-problems that can be solved analytically instead

of requiring numerical optimization. Two important parameters in SVM are

the complexity parameter C and the polynomial exponent p [127, 137]. We

use 1 for both of them as in [137].

5.2.3 Traces and Datasets

Our datasets consisted of anonymized payload traces collected at two edge

links located in Korea and Italy (Table 5.1). The KAIST trace was captured

at one of four external links connecting a 1 Gb/s KAIST campus network

and a national research network in Korea. The UNINA trace was captured

at a 1 Gb/s link connecting one of UNINA campus networks to a national

research network in Italy.

For establishing the ground truth in order to evaluate our classification

approach we used Crl pay, a classifier based on payload inspection but also

adopting some heuristics, which has been developed on top of the CoralReef

suite [77] and made available by CAIDA. Crl pay has been originally used in

[106] and [55] (besides more recent works) and details about the techniques

adopted are given in [140]. Thanks to CAIDA researchers and interns Crl pay
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Figure 5.4: Application breakdown by percentage of biflows and bytes.

was recently augmented with more payload signatures from [87, 95, 141].

Moreover we verified several results from the classifier through manual pay-

load inspection. The resulting ground-truth system includes payload signa-

tures of various popular applications, summarized in Table 5.2. Since Crl pay

classifies flows, in order to obtain a list of pre-classified biflows we developed

a simple procedure to merge its classification results to obtain biflows. The

two class labels obtained for both directions matched in almost all cases,

otherwise the conflicts have been solved by manual inspection.

We performed a filtering of data before training and testing machine-

learning algorithms with them. We removed all biflows of very small size,

most of them made of a single packet (for which therefore a joint PDF could

not be built because of lack of IPT). Specifically, by removing all biflows with

less than 10 packets for both directions we removed a high fraction of biflows

(around 80%) from the data set that would only confuse (or make their work

harder) the machine-learning algorithms, while still keeping 99.7% of total

traffic in terms of bytes transferred. This was done with the purpose of (i)

removing biflows generated by single packets, errors, scans, etc. (ii) reliev-
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ing the load of the machine-learning algorithms (iii) focusing on the biflows

that really weigh upon links traffic. Moreover, it is worth noting that more

than 80% of the flows that were removed by the filtering were classified as

unknown or uncertain by Crl pay, confirming that such biflows could have

been counterproductive for our tests. Such filtering had also the effect of al-

most totally removing the biflows classified as unknown by the ground-truth

software and thus not usable for training and testing. However, we must

note that by excluding such categories of traffic (e.g. scans), such approach

as developed and tested here, cannot be considered for the identification of

different kinds of attacks (e.g. port scans, scanning worms), since we are fo-

cusing on traffic generated by applications carrying data. Figure 5.4 shows

payload classification results for our traces after applying the filtering. This

application breakdown is shown by grouping the applications into the cate-

gories shown in Table 5.2, whereas the total number of distinct applications

identified in each trace was around thirty.

Table 5.2: Application categories.
Category Application/protocol
web http, https
p2p FastTrack, eDonkey, BitTorrent, Ares

Gnutella, WinMX, OpenNap, MP2P
SoulSeek, Direct Connect, GoBoogy
Soribada, PeerEnabler

ftp ftp
dns dns
mail/news smtp, pop, imap, identd, nntp
streaming mms(wmp), real, quicktime, shoutcast

vbrick streaming, logitech Video IM
network operation netbios, smb, snmp, ntp, spamassassin

GoToMyPc
encryption ssh, ssl
games Quake, HalfLife, Age of Empires, Battle field Vietnam
chat AIM, IRC, MSN Messenger, Yahoo messenger
unknown -

5.2.4 Experimental Results

We performed several sets of experiments, with different machine-learning al-

gorithms and with different combinations of features. For the algorithms we

considered: 1-NN, 3-NN, 5-NN, and SVM. The best results were always ob-
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Table 5.3: Classification Performance Metrics for UNINA test set
Class TP Rate FP Rate Precision Recall F-Measure
P2P 0.944 0.072 0.943 0.944 0.944
Web 0.915 0.035 0.914 0.915 0.914
FTP 0.413 0.003 0.4 0.413 0.406
SSH 0.938 0.001 0.857 0.938 0.896
Mail 0.931 0.005 0.937 0.931 0.934
SSL 0.713 0.008 0.763 0.713 0.737
DNS 0.921 0.004 0.884 0.921 0.902
Chat 0.849 0.001 0.836 0.849 0.843

tained by the 1-NN algorithm, closely followed by 3-NN and 5-NN. Whereas

the SVM algorithm achieved an overall classification accuracy few percentage

points lower than the others. Therefore, unless specified, the results shown

in this section refer to 1-NN with 50% of the data set used as training set.

As regards the features used, we tried to add few features to the joint PDF.

The use of transport-layer protocol ports, for example, increased overall ac-

curacy of few points. This improvement is predictable, as protocol ports are

still used by several legacy applications. However we removed ports from

the feature sets because we wanted to test the effectiveness of the proposed

approach when using only statistical informations about the biflows, and in

particular we wanted to stress the ability of this novel typology of features

to reach high values of classification accuracy.

The results shown in the following have been obtained with a feature set

made of the values from the joint PDF matrices and with only two additional

features: upstream-downstream packet ratio and biflow duration. For the

first one, we used the ratio given by the number of upstream packets divided

by the sum of upstream and downstream packets. As for the duration of

the biflows, we applied a log10 transformation to the values measured in

milliseconds. These two features were added because such information related

to the packets transferred cannot be derived by a joint distribution (e.g. the

information on the number of packets is lost when computing the PDF). It

is worth to note that overall accuracy does not decrease more than 2% when

excluding these two features.

To measure the performance of classification on the test set, we use four

metrics: overall accuracy, precision, recall, and F-Measure.
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Table 5.4: Classification Performance Metrics for KAIST test set
Class TP Rate FP Rate Precision Recall F-Measure
P2P 0.913 0.05 0.909 0.913 0.911
News 0.931 0.001 0.901 0.931 0.916
Web 0.929 0.04 0.933 0.929 0.931
FTP 0.927 0.005 0.911 0.927 0.919
SSH 0.959 0 0.949 0.959 0.954
Mail 0.932 0.001 0.947 0.932 0.939
SSL 0.985 0.002 0.985 0.985 0.985
DNS 0.92 0.004 0.92 0.92 0.92
Streaming 0.676 0 0.742 0.676 0.708
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Figure 5.5: UNINA Trace: Confusion Matrix by group.

• Overall accuracy is the ratio of the sum of all True Positives to the sum

of all the True Positives and False Positives for all classes.3 We apply this

metric to measure the accuracy of a classifier on the whole test set. The

latter three metrics are used to evaluate the quality of classification results

for each application class instead.

• Precision of an algorithm is the ratio of True Positives over the sum of

True Positives and False Positives or the percentage of flows that are properly

attributed to a given application by this algorithm.

3True Positives is the number of correctly classified biflows, False Positives is the num-
ber of flows falsely ascribed to a given application, and False Negatives is the number of
flows from a given application that are falsely labeled as another application.
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Figure 5.6: KAIST Trace: Confusion Matrix by group.

• Recall is the ratio of True Positives over the sum of True Positives and

False Negatives or the percentage of flows in an application class that are

correctly identified.

• Finally, F-Measure, a widely-used metric in information retrieval and

classification [142], considers both precision and recall in a single metric by

taking their harmonic mean: 2×precision×recall/(precision+recall). This

metric is useful to compare and rank the per-application performance of the

different machine-learning algorithms considered.

Moreover, we compute overall accuracy also in terms of bytes (byte-

accuracy). Because we are interested into evaluating the ability of the clas-

sifier to accurately identify the vast majority of traffic running on a link.

Indeed, because biflows can be made of a very variable number of packets,

it is important to evaluate accuracy by also considering the weight of each

biflow (per bytes or per packets). We define overall byte-accuracy as the ra-

tio of the sum of all bytes carried by True Positives to the sum of all bytes

carried by the True Positives and False Positives for all classes. We do not

report overall accuracy in terms of packets because values are always very
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Table 5.5: Classification Performance Metrics for KAIST test set
Trace Overall Accuracy Overall Byte-Accuracy

UNINA 92.3% 98%
KAIST 92.9% 87%

close to those from byte-accuracy (only bytes from transport-level payload

are included in our calculations). Finally, we also consider the confusion ma-

trix to better understand classification results and to identify which kind of

misclassifications most frequently happen.

Since the classification features here proposed, are closely related to the

typical behavior of the applications in terms of the traffic that they gener-

ate, we expect that applications supporting the same kind of service behave

similarly and thus present similar features. For this reason we grouped the

applications considered into the categories reported in Table 5.2, each cat-

egory corresponds to a class. As reported in Chapter 3, this approach has

been adopted in several works presented in literature. The high values of

overall accuracy shown in Table 5.5 confirm our intuition. Especially in the

case of the byte-accuracy achieved for the UNINA trace, the tested approach

is very successful in correctly classifying the entire traffic contained in our

traces. We suggest that the difference in byte-accuracy between the two

traces can be explained with the misclassification in the KAIST trace of few

Peer-to-Peer biflows carrying large quantities of bytes. This hypothesis is

consistent with the performance metrics of the P2P traffic class obtained for

the two traces and reported in Tables 5.3 and 5.4.

In Figures 5.5 and 5.6 the confusion matrices for both data sets are rep-

resented in graphical form. Each row represents how a single class (reference

on y axis) is classified by the algorithm (prediction on x axis). The confu-

sion matrix is built by counting the biflows for each cell and by normalizing

each row to 1. Values on the main diagonal represent the percentage of cor-

rectly classified biflows for each class. Both matrices show how the classifier

performs excellently (yellow cells on the main diagonal) for almost all traf-

fic categories. However, as for the KAIST trace, we note that the Streaming

category is confused with P2P traffic in several cases. This is confirmed by



Traffic Classification through PS-IPT Joint Distributions 130

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 

e
d
o
n
k
e
y
  

G
n
u
te

lla
 

F
a
s
tT

ra
c
k

B
it
T

o
rr

e
n
t

W
in

M
X

  
  

A
re

s
  
  
 

M
P

2
P

  
  
 

S
o
u
lS

e
e
k
 

E
a
rt

h
S

ta
t

S
o
ri
b
a
d
a
 

F
ile

G
u
ri
 

P
ro

b
a
b
ly

 P
2
P

N
e
w

s
  
  
 

W
e
b
  
  
  

F
T

P
  
  
  

S
S

H
  
  
  

M
a
il 

  
  

S
S

L
  
  
  

D
N

S
  
  
  

S
tr

e
a
m

in
g

 

edonkey  
Gnutella 

FastTrack
BitTorrent
WinMX    

Ares     
MP2P     

SoulSeek 
EarthStat
Soribada 
FileGuri 

Probably P2P
News     
Web      
FTP      
SSH      
Mail     

SSL      
DNS      

Streaming
 

Reference   

Figure 5.7: KAIST Trace: Confusion Matrix with P2P group exploded.

looking at Table 5.4, where Streaming is the only class with values of preci-

sion, recall, and F-Measure below 0.9. The worst performance, in the case of

the UNINA trace, is achieved for the FTP category, which presents all three

metrics around 0.4. Chat and SSL also show some problems. As regards

FTP, the confusion matrix reveals that it is often misclassified as MAIL traf-

fic. Our explanation of this phenomenon is that most of the misclassified

biflows carry FTP signaling sessions, whose behavior is indeed very similar

to some Mail sessions (e.g. POP) when they do not transfer much data.

This hypothesis is confirmed by two observations: (i) the opposite misclas-

sification does not happen: the Mail category is not often misclassified as

FTP ; (ii) despite of the considerably low value of precision for FTP traffic,

the overall byte-accuracy reaches a very high percentage, which lets us think

that the misclassified FTP biflows do not have a large byte-count.

We conclude the analysis of experimental results by showing, in Figures

5.7 and 5.8, the confusion matrices that we obtained when exploding the

P2P traffic category and separately considering eleven different Peer-to-Peer

file sharing applications plus the Probably P2P class. From such graphics we
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Figure 5.8: UNINA Trace: Confusion Matrix with P2P group exploded.

notice two things: firstly, the overall classification accuracy decreases when

considering separate applications instead of grouping them into categories.

Secondly, most of the added confusion when exploding the P2P category

happens among classes associated to Peer-to-Peer applications. The fact

that confusion happens within classes of that category (Peer-to-Peer) con-

firms that the classification approach here presented, and in particular the

adopted traffic features, is able to catch the distinctive behavior of different

categories of traffic rather than protocol or packet details that can be easily

altered and are not necessarily shared by applications supporting the same

kind of service (e.g. PS of the first 4 packets). We therefore look at such be-

havior as a symptom of robustness of the presented approach with respect

to evasion techniques that change simple features (TCP flags, packet size of

first few packets, string-based signatures) in order to confuse classifiers. We

indeed plan to investigate this aspect in future works, also with the intent to

understand the impact of traffic encryption on such classification features.
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5.2.5 Discussion

In the evaluation of this novel traffic classification technique we tried to fulfill

some of the recommendations that we pointed out in Chapter 3 (in particular

in Section 3.6). We proposed an approach that: (i) does not use protocol

ports or payload; (ii) it has been applied and evaluated by considering all the

categories of traffic found on the observed links (e.g. not only TCP traffic);

(iii) we used clear evaluation metrics commonly used by the machine-learning

scientific community; (iv) we reported also the overall byte-accuracy metric

(often neglected in literature); (v) we tested the approach on very recent

traces (the UNINA trace is from mid 2008).

At the same time, however, such desirable properties make our classi-

fication technique difficult to be compared against the others presented in

literature (in Chapter 3 we strongly advocated the thesis that current traf-

fic classification literature lacks and needs comparisons). This is because

most of the approaches proposed in literature present differences that do not

make possible a fair comparison with ours: test on incomplete traffic, use

of protocol ports, missing metrics, old traces, unreliable ground-truth, etc.

We are currently working to implement the technique here presented as a

TIE classification plugin, together with several known techniques in order to

overcome this limitation (see Table 4.1 in Chapter 4. By now, looking at Ta-

ble 3.1, the closest work to ours allowing at least comparison of metrics is

[70], being the only one applied to the whole link traffic and reporting both

session-accuracy and byte-accuracy. This work has already been described in

Chapter 3, therefore here we just comment that it classifies flows, it is based

on a Bayesian machine-learning approach, and among other features it uses

also protocol ports (as mentioned, we do not use protocol ports as features,

even if we verified that it increases classification accuracy). The best results

there presented report an overall accuracy around 96% and byte-accuracy

around 84%. Therefore, in terms of accuracy our approach is comparable to

the one presented in [70], and even outperforms it when both are evaluated

in terms of byte-accuracy.
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Furthermore, we state that one of the most original contributions of this

work is the use of features new in the context of traffic classification and

which showed properties of robustness, that suggest their use in the design

of approaches robust to traffic encryption and protocol obfuscation. Sev-

eral classification techniques based on machine-learning, indeed, heavily rely

on weak features, e.g. related to the very first packets [99] [70] [97]. These

features can be easily altered with the purpose of obfuscation, whereas the

features here proposed are more robust in this sense, as they are very depen-

dent on the behavior of the application in terms of its traffic which is linked

to the kind of service that it is supporting.
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Figure 5.9: TIE-L7: Distribution of the number of attempts per session.

5.3 On the Deepness of Payload Inspection

Deep payload inspection approaches are used to classify network traffic by

executing pattern-matching on the whole content of packets. In this section

we perform an analysis aiming at understanding how deep into each single

packet, and into each flow analyzed, a typical payload inspection classifier

needs to go to identify applications associated to the traffic under observa-

tion. This is of interest to us because it represents a fundamental property,

affecting (i) performance, (ii) privacy issues in traffic analysis and classifica-

tion, (iii) methodologies for capturing traffic traces useful for studying traffic

classification. We consider as reference L7-filter, because it is the state of art

of available payload inspection techniques and it is used in many scientific

works for ground truth creation [99] [127].

We have been able to perform this investigation by using the TIE clas-

sification plugin implementing L7-filter techniques (TIE-L7 in the following)

introduced in Chapter 4. We added several debugging hooks to TIE-L7 to

allow the collection of information related to:
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• the number of attempts made for each session (TIE-L7 tries to match

its regular expression rules against the stream of payload from a session

every time a new packet is seen, by default up to the tenth packet);

• exactly “where” the matches of regular expression rules happened, in

terms of (i) position of the packets inside the session, (ii) position of the

matching string inside the payload stream and (iii) inside each packet.

In the following we show experimental results obtained by processing the

UNINA trace described in Section 5.2. About 52 millions of packets were

processed, TIE-L7 was invoked on a total of 394341 sessions and returned a

match for 380244 of them. Figure 5.9 shows the distribution of the number of

attempts per session. The red portion of the bars represents the percentage

of sessions classified (the payload stream of the session matched against a

regular expression rule). The green color indicates the unclassified sessions

(no match happened); please note that they can result unclassified before the

tenth attempt because such sessions end earlier. We highlight a first relevant

result: the vast majority of the matches (72% of total attemps) happen at the

first packet. The average number of attempts is indeed 1.7 with a variance

of about 3. In general we observe that most of the matches happen before

the fourth packet.

Figures 5.10 and 5.11 respectively represent the distribution of the start

and end matching packets. A regular expression rule from TIE-L7 can indeed

match a string in the payload stream whose parts were carried by separate

packets. Such diagrams confirm that most of the matches start and end with

the first packet, with observable percentages of start and end packets also at

position two and three.

Considering a string that matches a regular expression rule spanning sev-

eral packets, we can compute the offset of its first character and last character

from the beginning of the packets respectively containing them. The distri-

butions of these two offsets, adopting a bin size of 32 bytes, are depicted

in Figures 5.12 and 5.13 respectively. They let us understand which por-

tions of packets payload are really involved in successful matches of regular
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expressions. Results are very interesting, in that they show how almost all

matching strings start (99.98%) and finish (90.77%) in the first 32 bytes of

payload. Specifically, the average offset inside its packet of the first byte

matching a regular expression from TIE-L7 signature set is 0.06. Showing

that the vast majority of matching strings start at the first byte of payload.

The findings reported in this section are interesting from several points

of view. First, they furnish useful information for the tuning and the im-

provement of TIE-L7 / L7-filter and of deep payload inspection approaches

in general. For example, L7-filter has an option to set the maximum num-

ber of packets to check (attempts to perform) before giving up on classifying

a session. This is set by default to ten. From what we have found, depend-

ing on the specific requirements (processing time, access to traffic data, etc.)

this parameter could be set to a lower value without significantly affecting

the performance of classification accuracy. Moreover, from our experimen-

tal analysis we observed that there are rules in the signature set that always

match packets in certain positions, or never match packets after a certain
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position. Being that each new classification attempt is particularly onerous

in pattern matching systems, a possible improvement to speed up the pro-

cessing speed and to alleviate resource usage would be to add an optional

“packet position” field to the signatures, in order to save unuseful attempts.

An attempt destined to fail is indeed the most onerous, because all the the

payload is going to be tested against all the available rules.

The analysis carried out here could be useful also as a guideline when

setting up traffic capturing and archiving of traffic traces that involve the

use of deep payload inspection. Often researchers are challenged by the

decision on the quantity of payload of packets to preserve when capturing

traffic. This usally involves a trade-off between accuracy and completeness

of the data for experiments on a side and space constraints, logistics, and

privacy issues on the other side.

Finally, we anticipate that the findings reported here have inspired the

design of an alternative classification technique based on payload inspection,

which will be illustrated in the next section.
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Figure 5.12: TIE-L7: Distribution of the offset of a matching string inside its first packet

5.4 Lightweight Payload inspection

Starting from the observations and findings shown in the previous section,

here we propose and evaluate a different approach to payload inspection with

the purpose of achieving significant improvements in terms of speed and re-

source requirements (i.e. traffic data, computational power, and memory) at

the partial expense of classification accuracy. The motivation is to propose

an easy-to-deploy lightweight payload inspection approach that can be used

when privacy concerns and elevated bandwidth do not allow to run a deep

payload inspection system. Examples are: to complement online classifica-

tion systems based on machine-learning with a fast payload inspection tech-

nique, or to substitute minimal port-based classification in online contexts

where an approximation of traffic breakdown is needed (e.g. continuously

updated historical traffic graphs).

The findings from the previous section, together with our objectives

brought us to define three main guidelines that led the design of the technique

here proposed:
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Figure 5.13: TIE-L7: Distribution of the offset of a matching string inside its last packet

• Using only the first packet for each direction.

• Using only the first few bytes of the considered packets.

• Not using pattern matching rules, but simple static string comparisons.

Even if relying only on the first few bytes and on the first payload-carrying

packet may raise the objection that circumvention of this technique by pro-

tocol obfuscation would be easy, it is worth noting that protocol obfusca-

tion techniques can be successful in general in circumventing all payload-

inspection approaches based on string matching.

5.4.1 The N-Byte Classifier

To test the feasibility and evaluate the performance of a lightweight payload

inspection approach we developed a TIE classification plugin that we named

N-Bytes Classifier (TIE-NBC in the following). The TIE-NBC plugin imple-

ments a basic static string matching algorithm, applied to both directions of
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the biflow under analysis, by accessing only the first few bytes of the first

packet seen in each direction of a biflow.

Basically, the signature used by this algorithm is an association of a byte

string to a (application id, application subid) pair. For each session (of type

biflow), the first N bytes of payload carried by the first packet in the upstream

direction are tested for matching against the list of signatures (N is specified

at execution time as a command line option, however a maximum of 32 bytes

is defined); the same is done for the downstream direction.

Signatures can be specific to upstream or downstream traffic, so the up-

stream packet is checked only against upstream signatures, and the same

is done for the downstream one. As the directions sensed by TIE could be

reversed with respect to the one considered by the signatures (some appli-

cations protocols are independent of direction), if the ordered match fails

also a reversed direction attempt is made. Not all applications need the

matching of both upstream and downstream flows: this can be specified on

a per-signature basis. In this case the matching on one direction is enough

to classify the session.

Moreover, it may happen that the sequence of known characters in the

payload is prepended with, or interrupted by, a known number of variable

characters. In order to represent the signature with a fixed string, a bitmask

is associated to each signature. Each bit in the mask represents a character of

the payload string: if the bit is 0 the relative character is to be ignored (can

assume every value), if the bit is 1 then the character is compared against

the next signature character. This leads to two advantages with respect

to signature strings: they have the shortest format (showing just the known

characters), and it is avoided the use of special meaning symbols to represent

wildcard characters.

Few examples of signatures are reported in Figure 5.14. To make the bit-

masks human readable, the constants (expressed in hexadecimal format) im-

plementing the bitmasks are represented by preprocessor macros named with

easy to read bit sequences. The bitmasks are represented as an unsigned
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struct fingerprint udp[] = { /* udp fingerprints collector */

/* SNMP */

{ 0, 26, true, {snmp, snmp}, {SIZE(snmp), SIZE(snmp)}},

/* DNS */

{ 0, 5, true, {dns, dns}, {SIZE(dns), SIZE(dns)}},

/* DHCP */

{ 0, 9, true, {dhcp_up, dhcp_dw}, {SIZE(dhcp_up), SIZE(dhcp_dw)}},

[...]

}

struct fingerprint tcp[] = { /* tcp fingerprints collector */

/* HTTP */

{ 0, 1, false, {http_up, http_dw}, {SIZE(http_up), SIZE(http_dw)} },

/* POP */

{ 0, 18, false, {pop_up, pop_dw}, {SIZE(pop_up), SIZE(pop_dw)}},

/* DNS */

{ 0, 5, true, {dns, dns}, {SIZE(dns), SIZE(dns)}},

/* EDONKEY */

{ 0, 127, false, {edonkey_tcp_up, edonkey_tcp_dw}, {SIZE(edonkey_tcp_up),

SIZE(edonkey_tcp_dw)}},

/* GNUtella */

{ 0, 128, false, {gnutella_tcp, gnutella_tcp}, {SIZE(gnutella_tcp),

SIZE(gnutella_tcp)}},

[...]

}

/* Arrays of signatures */

sig_str dns[] = {{"\x00\x01\x00", M_111 >> 4}};

sig_str dhcp_up[] = {{"\x01\x01\x06", M_111}};

sig_str dhcp_dw[] = {{"\x02\x01\x06", M_111}};

sig_str edonkey_tcp_up[] = {{"\xe3\x00", M_101}};

sig_str edonkey_tcp_dw[] = {{"\xe3\x00", M_101}, {"\xc5\x00", M_101}};

[...]

/* Mask aliases: */

#define M_1 0x80000000

#define M_11 0xC0000000

#define M_101 0xA0000000

#define M_110010101011 0xCAB00000

#define M_111111100000001 0xFE020000

#define M_1100001111111111 0xC3FF0000

[...]

Figure 5.14: TIE-NBC: examples of signatures and masks
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integer, 32 bit wide. This sets the limit of 32 bytes for the length of pro-

cessable payloads.

struct fingerprint {

u_int16_t sub_app_id;

u_int16_t app_id;

bool strict;

sig_str *sig_arrays[2]; /* These are two arrays of sig_str .

One for upstream, the other for downstream */

u_int dim[2]; /* dimensions of the two arrays */

};

typedef struct {

char *bytes;

mask_t mask;

} sig_str;

Figure 5.15: TIE-NBC: main data structures used in the classify() function

The function that actually performs the string comparison between the

payload and a signature is sig cmp() (see Figure 5.16). By using a string

comparison against a fixed single portion of the payload and without using

any dynamic rule (as regular expression) the function, which could be also

easily implementable in hardware, is very efficient and requires few computa-

tional resources. Moreover, the attempt is made only on the first packet seen

for each direction of the biflow. In the next subsection we show an exper-

imental analysis of the speed and computational requirements of TIE-NBC

when compared against TIE-L7.

Signatures are grouped into a hierarchy that makes classification attempts

fast (see Figures 5.14 and 5.15). At the highest level there are transport-level

protocols. Each transport level protocol (e.g. TCP) has its own collector of

fingerprints for the applications supported. An application fingerprint (e.g.

for DNS over TCP) contains two arrays of signatures, respectively for the

upstream and downstream directions. A signature consists into a (string,

mask) pair.

This way, for each packet the matching process is done only on the appro-

priate subset of signatures, selected by transport protocol, then by direction

(upstream/downstream). If a biflow signature is valid for both TCP and

UDP transport protocols, then it is simply inserted into both collectors (e.g.
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see dns signature, valid for both directions and both transport protocols, in

Figure 5.14).

5.4.2 Experimental Evaluation

In this subsection we test TIE-NBC with a preliminary set of signatures and

compare both its classification and computational performance against TIE-

L7 and TIE-Port. Indeed, because TIE-NBC can be thought as a compromise

between (a) speed, computational requirements, access to sensitive data, on

a side, and (b) classification accuracy, on the other, we then can intuitively

place it between port-based classification (the fastest technique) and deep

payload inspection (the most accurate technique).

Performance of Classification

We first compare the classification results from TIE-NBC and TIE-Port (de-

scribed in Chapter 4) against TIE-L7. We have collected TIE-NBC signa-

tures for 61 different applications, with a total of 409 signatures (average of

6.7 signatures per application). The collection of the signatures has been

done in three ways: (i) by manual adaptation from L7-filter signatures, (ii)

by payload inspection and manual selection, (iii) adapting some signatures

bool sig_cmp(u_char* bytes, u_char bytes_len, sig_str *s)

{

mask_t tmp_mask;

u_int8_t i, j;

u_int8_t sig_len = mask2len(s->mask);

if (sig_len > bytes_len)

return false;

tmp_mask = 0x80000000; /* binary: 1000 ... 0000 */

for (i = 0, j = 0; i < sig_len; i++) {

if (TEST_BIT(s->mask, tmp_mask, 1)) {

if (bytes[i] != (u_char) s->bytes[j++])

return false;

}

tmp_mask >>= 1;

}

return true;

}

Figure 5.16: TIE-NBC: sig cmp() function, performing string comparison with a byte
mask.
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Figure 5.17: Confusion Matrix of TIE-NBC classification on the UNINA trace (TIE-L7 as
ground truth)

used in [55] and listed at [143]. As regards adaptation of L7-filter signatures,

at a first look they should be easy to translate in fixed strings, but this proved

to be a non trivial task, due to a number of issues. The first one is due to the

different kind of string matching algorithm: while TIE-L7 can match sub-

strings everywhere in the flow, TIE-NBC by design does only per-character

matching in their exact position, and only in the first packet. This leads to

selection of a subset of available L7-filter signatures, namely the ones starting

by “^” (which in regex syntax represents the start of the string). As TIE-L7

works on the whole payload stream of the biflow without discriminating up-

stream and downstream traffic (i.e. payloads are concatenated in a single

stream following the order of arrival), regular expression rules representing

signatures for the downstream direction do not start with “^”. This led to

the exclusion of signatures related to the downstream direction: indeed even

if such signatures can be used as a hint in finding downstream-related signa-

tures for TIE-NBC, this can not be easily automated. Moreover, wherever

in L7-filter rules there is a “+” or “*” (allowing for sequence of characters
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of arbitrary length), the following part of the regex can not be translated

into a TIE-NBC signature. The translation criterion used in these cases is to

expand the regex to one string and a number of associated bitmasks which

hide an increasing number of ignored characters. This can be easily auto-

mated. We were able to separately add more rules by performing a manual

selection upon a list of candidate strings collected by performing payload in-

spection, on pre-classified traffic, which reported common strings for each

class ranked by occurrence. We then extracted and built some useful rules

for TIE-NBC. After observing the promising results shown in the following,

we foresee to make this process more elaborate and fully automated to (i)

generate a large set of reliable signatures for TIE-NBC, (ii) add autonomous

learning capabilities to TIE-NBC. The latter could be done by employing

algorithms presented in literature for similar purposes (e.g. automated com-

mon substring extraction) [75] [89].

Table 5.6: Overall Accuracy of TIE-NBC and TIE-Port (TIE-L7 used as ground truth)
Accuracy Bytes-accuracy

TIE-NBC 66.0% 89.9%
TIE-Port 11.0% 13.5%

We performed an experimental evaluation conducted on several traces.

Here we present the results obtained by processing the UNINA trace used

also in Section 5.3 (about 50M packets, 400K biflows). To evaluate the

expected loss in accuracy when moving from deep payload inspection to

our lightweight approach, we used TIE-L7 as ground truth tool and then

measured the classification accuracy of TIE-NBC. NBC reported an overall

classification accuracy of 66% and an overall byte-accuracy of about 90%,

showing a very good accuracy on heavy flows. Table 5.6 also reports overall

classification accuracy obtained by TIE-Port, with (easily expectable) very

low values. Figure 5.17 represents the confusion matrix (with applications

grouped into categories) of TIE-NBC against TIE-L7. The high colors on

the main diagonal testify a good accuracy on most applications, whereas few

yellow cells outside of it help to identify the application categories that are
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not well identified by TIE-NBC. In Figure 5.18 we also summarized the clas-

sification results for the traffic classes associated to the largest byte-counts,

where for each bar (corresponding to a class) it is illustrated the percentage of

bytes on which TIE-NBC respectively agrees, disagrees, or returns unknown,

with respect to TIE-L7. The figure shows that, among the top traffic classes,

TIE-NBC has significant problems only with Skype. However, it must be

noted, as will be observed also in Section 5.5, that the Skype rule of TIE-L7

is quite aggressive, generating several false positives. We also observe a char-

acteristic that may indicate a positive property of TIE-NBC: about 40% of

the traffic labeled as unknown by TIE-L7 is instead classified by TIE-NBC.

Further investigastions are required to understand if in some situations the

signatures from TIE-NBC can overcome TIE-L7, and there are also issues

related to the reliability of the ground truth used, as reported in 5.5.

Classification time

TIE-NBC was conceived to gain processing speed and reduce resource usage

with respect to deep payload inspection. To verify such expectations and
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perform an experimental evaluation we performed a simple profiling of time

and resource usage upon TIE-NBC, TIE-L7, and TIE-Port. We would like to

highlight that a fair experimental comparison among three different classifi-

cation techniques was in fact possible because all of them were implemented

under the same platform (TIE). This allowed to introduce as less variability

as possible when performing the different tests. For the same reasons, during

the measurements, we verified that TIE was the only user process running

on the host. None of the system related processes was CPU intensive or I/O

intensive. The Operating System was GNU/Linux running the kernel linux

2.6.27-8-generic. Each measurement was performed by running TIE in of-

fline mode, on the same traffic trace (UNINA), and by enabling each time

only the classification plugin under analysis.

We define “classification time” as the difference between exit time from,

and enter time in, the classify() function of the considered classification plugin

(see Chapter 4). This function is called for each classification attempt: in

TIE-Port and TIE-NBC this happens once per session, while in TIE-L7 it

can be happen several times for each session (the default is a maximum of

10 times). This is taken into account in the analysis by considering both

per-attempt and per-session statistics.

To measure the classification time, the code of the classification plug-

ins has been instrumented with calls to the gettimeofday() POSIX function

and logging of profiling information to a file. The resolution provided by the

gettimeofday() function is of 1 µ sec. Accuracy actually depends on CPU

clock frequency, but the measurements have been performed on a Intel(R)

Pentium(R) 4 CPU 3.40GHz that has clock tick duration in the order of 1

nsec. Values measured for TIE-Port can be used as a reference for mini-

mum attainable classification times. For TIE-Port, as shown in Figure 5.19,

the classification time distribution is strongly concentrated in the first bin

[0, 10]µsec, with about 95% of occurrencies. The rest drops down in less than

140µsec. Sample mean value is 2.43µsec with sample variance of 1.10∗10−11,

on 447095 samples.
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Figure 5.19: TIE-Port: frequency distribution of classification time. Only values above
10−6 are reported, in 10µsec wide bins.

For TIE-L7, as shown in Figure 5.20, we can find about 61% of classifica-

tion attempts falling in the range [100, 200]µsec, about 14% in [200, 300]µsec,

about 10% in [0, 100]µsec, with the rest of the samples spanned and rapidly

decreasing around 3 msec. The sample mean value is 212µsec with sample

variance of 8.04∗10−8, on 770314 samples. This behavior, which is much dif-

ferent from the one showed by TIE-Port, was to be expected because of two

main differences into the respective algorithms: the longer mean classification

time of TIE-L7 is consistent with the use of regular expression rules opposed

to hash table lookup; higher variance is due to differences in length and com-

plexity of regular expressions that constitute TIE-L7 signatures, opposed to

an almost constant time of hash table lookup performed by TIE-Port.

For TIE-NBC, as shown in Figure 5.21, we see a distribution similar to

the one of TIE-Port. Most of the attempts fall in the first bin, counting

about 74% in the range [0, 10]µsec, then about 19% in [20, 30]µsec, and

the rest quickly decreasing to less than 170µsec. The sample mean value

is 9.30µsec with sample variance of 4.87 ∗ 10−10, on 355499 samples. These
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Figure 5.20: TIE-L7: frequency distribution of classification time. Only values above 10−5

are reported, in 100µsec wide bins.

results are consistent with the fact that the fixed string comparison done by

TIE-NBC is much less computationally expensive than regular expression

pattern matching, and that TIE-NBC signatures show small variability.

The overall results are summarized in Table 5.7, where we report both per-

attempt and per-session values. This is because, as said, while TIE-Port and

TIE-NBC process each session exactly once, TIE-L7 can try to classify several

times each session. The mean value of classification attempts per session is

obtained from the analysis reported in Section 5.3. From this comparison we

Table 5.7: Classification Time Comparison
per-session per-attempt per-attempt per-session

Classifier Attempts Mean Attempts Mean Time (µsec) Variance Mean Time (µsec)
TIE-Port 447095 1 2.43 1.10 ∗ 10−11 2.43
TIE-NBC 355499 1 9.30 4.87 ∗ 10−10 9.30
TIE-L7 770314 1.7 212 8.04 ∗ 10−8 360.4

find that the lightweight payload inspection technique implemented in TIE-

NBC cuts mean classification time by 97.5% with respect to the deep payload

inspection implemented by TIE-L7, reporting timings comparable with the
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Figure 5.21: TIE-NBC: frequency distribution of classification times. Only values above
10−6 are reported, in 10µsec wide bins.

port-based classification performed by TIE-Port (while still retaining much

of the classification accuracy of payload inspection).

Resource usage

In order to compare resource usage by TIE-L7 and TIE-NBC, memory us-

age and CPU time have been tracked during the execution of TIE with the

respective classification plugins enabled. To have a ground level for compar-

ison, also the port-based classifier TIE-Port has been tracked for memory

and CPU usage. As for the previous tests, each classifier has been measured

by running TIE on the same traffic trace (UNINA) and by enabling only

the classification plugin under analysis. The system was always under con-

ditions of low load. Using the system utility ps, values of VSZ and CPU

are sampled with a period of 30 seconds, and logged to a file. An awk script

processed these log files to extract statistics and a graph of usage-variations

in time. VSZ is the Virtual SiZe, i.e. the total amount of memory used by

the process for both code and data; it does not have to be totally stored in
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Figure 5.22: Memory and CPU usage over time

memory, but it can be partially swapped to disk as well. Besides obvious

memory usage, the bigger VSZ is, the higher is the probability that a swap

to disk is needed, with significant impact on overall performance. CPU is

the percentage of time spent using the CPU (both for user and system code)

with respect to the total running time of the process. It can be used as an

index of CPU intensiveness of the technique under measure. Results of our

measurements are reported in Figure 5.22.

Regarding CPU usage, TIE-L7 and TIE-NBC show similar qualitative

behavior, reaching the maximum in the first 60 seconds, we then see a smooth

decrease to a steady value. Port-based soon reaches its steady level. The

slow decay is probably due to the fact that CPU% reported by ps acts by its

definition as a moving average. TIE-Port reports a mean CPU usage of 12%

(variance of 0.22), 12% for TIE-NBC (variance of 5.16) and 38% for TIE-L7

(variance 134).

Regarding memory usage, TIE-NBC behaves much like TIE-Port, reach-

ing soon (into the first two 30seconds-separated samples) its steady value.

TIE-L7 is slower in reaching its maximum. TIE-Port reports a mean memory
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usage of 25500 KB (variance of 797360), 39496 KB for TIE-NBC (variance of

1247213) and 179166KB for TIE-L7 (variance 362043279). The almost con-

stant behavior of memory usage in time for all the three classifiers can be

explained with frequent activation of the TIE garbage collection system, trig-

gered by the number of packet processed (roughly proportional to memory

usage) (see Chapter 4).

TIE-NBC presents a reduction of 78% in memory usage with respect to

TIE-L7. The much higher quantity of memory required by TIE-L7 is due to

to the need to store more packets per session and more payload per packet.

5.4.3 Discussion

Starting from the empirical study of the deepness of payload inspection for

traffic classification presented in Section 5.3, we proposed a different approach

to payload inspection that we named lightweight. In this section we moti-

vated and presented the proposed technique and its implementation in the

TIE framework as a classification plugin (TIE-NBC). Moreover we conducted

an experimental evaluation that has shown how TIE-NBC offers several ad-

vantages when compared to the deep payload inspection implemented by

L7-filter and TIE-L7, at the expense of a partial loss of overall classification

accuracy. We summarize and highlight here some of the main findings:

• Traffic Data. TIE-NBC needs access only to the first two packets

per direction of a biflow and to a maximum of 32bytes only for each

of those packets. TIE-L7 requires full packets payload and access to at

least the first 10 packets of each biflow.

• Classification Accuracy. When evaluating TIE-NBC classification

accuracy by using TIE-L7 as a ground-truth reference we observed a

per-session overall accuracy of 66% and a per-byte overall accuracy

around 90%. Percentages obtained by TIE-Port under the same con-

ditions are respectively around 11% and 13%.
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• Classification Speed. TIE-NBC experiences a 97.5% reduction in

mean classification time compared to TIE-L7. When compared to TIE-

Port, we observe average values 4 and 148 times higher for TIE-NBC

and TIE-L7 respectively.

• Memory Requirements. Under our experiments TIE-NBC shows a

78% memory reduction when compared to TIE-L7. Moreover we report

respectively for TIE-NBC and TIE-L7 values 1.5 times and 7.0 times

higher than the memory footprint of TIE-Port.

• CPU Usage. TIE-NBC shows values of CPU usage comparable to

TIE-Port and more than 3 times smaller than TIE-L7.

We conclude that the results obtained show how the presented technique

can be considered valuable in several contexts, for example, as a replacement

of port-based classification, when a reduced portion of traffic is available for

classification, or as part of multi-classifier systems for online classification.

Moreover, after having proved the benefits of the presented technique, we will

now focus on designing automated signature collection procedures and on the

development of payload signatures specifically designed for such technique. It

must indeed be observed that the, yet interesting, classification performance

reported in this study has been obtained by using a set of signatures mainly

derived by signatures of other classifiers.

5.5 An Experimental Analysis of Ground Truth

Tools

The purpose of this section is to contribute to shed light on the reliability

of tools used for establishing the ground truth in traffic classification experi-

ments. We evaluate and compare two of the most used tools in literature by

running them on two traffic traces: one from year 2006, the other one from

year 2008. The results show some limitations of the systems under analysis
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and how their decisions can be contradictory when examining the same traf-

fic. We also derive information useful for the design of better ground-truth

tools. Moreover, we highlight that, to the best of our knowledge, this repre-

sents the first work in literature focused on the comparison of two systems

for ground truth in traffic classification.

We already discussed the subject of ground truth in Chapter 3. From

Table 3.1, which reports the approaches used in some of the best scientific

papers about traffic classification presented in literature, we can see that

they typically rely on payload inspection. Often a set of heuristics are also

used [55], while usually manual and semi-automated analysis is necessary

to spot relevant problems that, by altering the reference data, may affect

the experimental analysis. A detailed study proposing an approach, based

on both payload inspection and semi-automated techniques, to the accurate

labeling of traffic has been presented by Moore et al. in [72]. This has

been used, for example, in [96] to build ground-truth. In [97] instead, the

authors used a commercial tool [98], while the open-source IDS Bro [81] was

complemented with a set of signatures and used as ground-truth tool in [102].

In this section we consider:

• L7-filter, introduced in Chapter 4, considered the state of the art of

publicly available tools for payload inspection, and often used in sci-

entific papers to build ground truth [99] [127]. We actually use TIE

running the TIE-L7 classification plugin, which works on the same sig-

nature set and is based on the same algorithm (see Section 4.9).

• Crl pay, which is the ground-truth tool originally developed by Thomas

Karagiannis et al., based on CAIDA’s CoralReef[77] and used in several

scientific papers [106] [53] [144].

The tools are similar in that they rely on payload inspection. However,

while L7 filter presents a variegate set of regular expressions to perform pat-

tern matching against packets payload, Crl pay is more limited in the number

of payload signatures but is very focused on Peer-to-Peer file-sharing appli-
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cations and also uses ports, payload size, and a set of heuristics [140]. To

perform the comparison shown in the following, we used the L7-filter imple-

mentation under TIE and we exploited the set of tools for post-processing

that were developed in the TIE framework. However, we had to overcome

some architectural and formal differences between TIE-L7 and Crl pay. The

latter classifies flows, whereas TIE-L7 operates on biflows. Moreover Crl pay

classifies flows into application categories (MAIL, GAMES, etc.) except for

Peer-to-Peer file sharing, for which is able to discriminate among a compre-

hensive set of applications. Obviously the labels and IDs used by the tools

were also different. All this, required the development of extra tools for the

translation of Crl pay output in the TIE output format, and to map its class

IDs into TIE’s application and group IDs.

We tested TIE-L7 and Crl pay against the same traces described and used

in Section 5.2, shortly named UNINA and KAIST. While in Section 5.2 we

removed mice biflows (biflows with less than ten packets for both directions)

before performing labeling and classification, for the evaluation of TIE-L7

and Crl pay instead, we first ran both of them on the original unfiltered

traces. In Figures 5.23 and 5.24 we report the traffic breakdown obtained

respectively by Crl pay and TIE-L7 on the UNINA trace. Aside from observ-

ing that the percentages of the various traffic categories identified by them do

not match, we note that there is a non-negligible portion of traffic labeled as

Unknown: more than 20% of biflows for Crl pay and about 18% for TIE-L7.

However, we observed that, as regards Crl pay, a large number of Unknown

biflows are made by a single or very few packets. Indeed, after removing

mice biflows we obtained the results shown in the same figures and tagged

as “no mice”. We also note that the biflows labeled as Unknown by Crl pay

do not carry much traffic, being the byte-count of Unknown biflows almost

negligible both before and after removing mice biflows. As regards TIE-L7

instead, Figure 5.24 shows that the portion of traffic labeled as Unknown is

related to biflows with large byte counts and that removing mice flows does

not bring an improvement. We found similar results for the KAIST trace:
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Figure 5.23: UNINA trace: Traffic breakdown performed by Crl pay

about 10% of Unknown biflows for TIE-L7 and 8% for Crl pay. The larger

values for the UNINA trace can be explained by the date of the two traces:

probably signatures from both tools need to be updated and perform better

on an trace from 2006 (KAIST) when compared to one from 2008 (UNINA).

However, we observed for the KAIST trace that while the percentage of un-

known sessions gets quite lower after removing mice biflows, the remaining

Unknown biflows this time still represent a large portion of the overall link

traffic in terms of bytes (around 21GB on a total of 259GB). Behavior of

TIE-L7 with respect to mice filtering, is instead approximately the same as

the one observed for the UNINA trace.

We can conclude that both TIE-L7 and Crl pay fail in labeling the entire

traffic for both traces. This could be only partially explained by the presence

of encrypted traffic. In the case of the KAIST trace the major hypothesis is

the lack of signatures for some peer-to-peer file sharing applications, being

that the Unknown traffic is represented by few flows but a large byte count.

For the UNINA trace, being more recent, this could be due to not being

able to keep such systems up to date with very recent traffic. Moreover we



An Experimental Analysis of Ground Truth Tools 157

 0

 20

 40

 60

 80

 100

U
N
IN

A
(sessions)

U
N
IN

A
(bytes)

U
N
IN

A
m

ice free

(sessions)

U
N
IN

A
m

ice free

(bytes)

P
e

rc
e

n
ta

g
e

 (
%

)

UNKNOWN
P2P

WEB
CONFERENCING

MAIL
SERVICES

ENCRYPTION
OTHERS

Figure 5.24: UNINA trace: Traffic breakdown performed by TIE-L7

observe that Crl pay does not take into account Skype traffic (while TIE-L7

does), whose presence should be visible in a trace from year 2008 (we expect

a more moderate presence of Skype traffic in the trace from year 2006).

After simply looking at the traffic breakdown reported by the two ap-

plications, we then started a detailed comparison of the groud-truth results

obtained by TIE-L7 and Crl pay on the UNINA trace, which is the most

recent. We propose an approach to the comparison of two different ground-

truth results that is based on a modified concept of confusion matrix. Usually

a confusion matrix is built by considering a reference. Our problem here is

that we are evaluating two systems commonly used for reference, and we do

not know which one is wrong for each considered biflow (actually both could

be). We therefore represent a comparison of the classification they performed

by using two different confusion matrices: in the first one we show how one

tool misclassifies the results obtained by the other, whereas in the second

confusion matrix we do the opposite. In practice, we alternatively use one of

the ground-truth tools as a reference. The matrices are normalized per row,

as usual, but they are not square because TIE-L7 and Crl pay identify a dif-
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ferent number of classes. We therefore obtain a square sub-matrix to which

columns associated to classes identified only by the second ground-truth tool

are added.

By reading both confusion matrices we can understand when the two

applications agree or not. In Figures 5.25 and 5.26 they are graphically

represented. Whereas in Figures 5.27 and 5.28 we show confusion matrices

calculated by grouping applications into categories. To easily obtain such

data, related to tests on tens of thousands of samples, and to represent them

graphically, we used the post-processing tools we designed for TIE’s output

files, taking advantage of the automated translation from the Crl pay output

format and application IDs that we have developed.

Observing such matrices reveals a lot of interesting information, which

then must be analyzed case by case with manual intervention in order to

be validated and understood. A lot of cells with high colors on the main

diagonal of the square sub-matrix, however we can see that there are a lot of

evident misclassifications (i.e. situations in which the two systems disagree).

The largely colored column labeled Skype in Figure 5.26 immediately

shows that the Skype rules used by L7 filter are very aggressive. Indeed,

we manually verified that they tend to generate false positives under several

situations. This behavior is visible also in the by-group matrix in Figure 5.28

(Skype belongs to the “conferencing” category). However, Figure 5.25 tells

us that a large part of the traffic recognized as Skype by TIE-L7 is labeled

by Crl pay as Unknown. This is consistent with Crl pay not supporting

Skype identification, while TIE-L7 seems to partially succeed in this. The

confusion between Skype-labeled traffic by TIE-L7 and Peer-to-Peer -labeled

traffic by Crl pay instead, may be mainly due to two opposite situations we

manually verified only partially: (i) Skype traffic generated by hosts running

Peer-to-Peer file sharing applications is unknown to Crl pay and is therefore

catched by one of its heuristics, thus labelled as P2P ; (ii) The Skype rules

from TIE-L7 are very aggressive and can misclassify traffic that is actually

P2P and correctly identified by Crl pay which was specifically focused on
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peer-to-peer traffic. As said, both situations may happen. In general we

verified that Crl pay has a good performance on Peer-to-Peer file sharing

traffic, but sometimes its heuristics can lead to a chain-effect of erroneous

results: let us say that host A exchanges Peer-to-Peer traffic with host B ;

host B then connects to host C using an application that is not recognized

by Crl pay; the result is that host C is then inserted into the table of hosts

exchanging Peer-to-Peer file sharing traffic, and so on. While we observed

that such heuristic can be very effective catching Peer-to-Peer traffic under

most situations, we draw the conclusion that it can become very dangerous

when the coverage of the payload signatures (or alternative techniques) used

by the ground-truth application decreases.

The yellow-colored cells from the Unknown columns of the two matri-

ces tell us for which applications the respective ground-truth system seems

to systematically overcome the other one. E.g., all VNC and SSDP traf-

fic identified by TIE-L7 (Figure 5.25) is labelled as Unknown by Crl pay.

Whereas all the games (CRL Games) recognized by Crl pay, but also Earth-

station and Peerenabler (two peer-to-peer applications), are always labeled

as Unknown by TIE-L7 (Figure 5.26). This happens also for most of the traf-

fic identified as IRC by Crl pay. Yellow-colored cells on the diagonal of the

square sub-matrix (in both matrices), instead, show that the tools almost to-

tally agree on several applications, as DNS, SSH, Direct Connect, and FTP.

It is also interesting to observe from both kinds of matrices (e.g. Figures 5.27

and 5.28) how a lot of traffic considered Unknown by both systems overlaps.

Indeed, around 40% of the biflows unclassified by TIE-L7 are also labeled as

Unknown by Crl pay, and viceversa. This confirms that there is a portion of

traffic that is hard to classify with this kind of ground-truth approaches.

These are only few of the findings and hints that can be drawn by compar-

ing the results of the two considered classifiers. As said, they always require

manual investigation for a careful understanding, but the confusion matrices

are, for example, very effective in spotting the most relevant areas of dis-

agreement and inconsistencies. We started this study also with the purpose
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to identify design criteria for a new ground-truth system, trying to take the

best from both the applications analyzed. This will be implemented in TIE

in the form of a set of separate classification plugins (Crl pay techniques for

Peer-to-Peer file sharing, heuristics, TIE-L7, etc.) that will be managed by

a decision combiner specifically designed for performing off-line classification

for ground truth.

The non-negligible percentage of unclassified traffic that sometimes both

the considered tools report, should also raise an alert on the necessity to (i)

be more rigorous in the evaluation and use of ground-truth tools, and (ii) to

combine efforts towards the design and update of effective approaches. It is

therefore our opinion that making public the tools used for ground-truth cre-

ation is even more important that making implementations of classification

approaches available. Manual inspection of the traces is also an important

duty of a researcher evaluating a traffic classification approach, but it can

only be a complement to automated techniques when the number of flows

considered ranges from tens of thousands to millions.
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Figure 5.25: TIE-L7 vs Crl pay comparison: per-application confusion matrix. (TIE-L7
used as ground truth)
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Figure 5.26: TIE-L7 vs Crl pay comparison: per-application confusion matrix. (Crl pay
used as ground truth)
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Figure 5.27: TIE-L7 vs Crl pay comparison: per-category confusion matrix. (TIE-L7 used
for ground truth)
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Figure 5.28: TIE-L7 vs Crl pay comparison: per-category confusion matrix. (Crl pay used
for ground truth)



Chapter 6

Conclusions

Traffic classification is an important task with multiple applications in several

fields of networking, from establishing knowledge on network usage to real-

time enforcement of filtering rules on specific traffic categories. Because of its

possible applications, traffic classification has several social and economical

implications. However, despite its importance and the numerous works pre-

sented in literature, today the scenario is quite uncertain. Moreover, the few

techniques currently available in practice show limited performance, which in

the future are expected to further decrease because of current traffic trends

(encryption, encapsulation, etc.).

It must also be considered that, because of conflicting interests related to

traffic classification (e.g. providers want to classify and control traffic, while

users often do not want to be controlled), users and software developers will

constantly look for ways to evade the newly found classification techniques,

opening an eternal challenge as it happened in other fields of networking

(e.g. intrusion detection). A negative example may be malicious users cir-

cumventing security policies, but a totally different case may be users trying

to avoid censorship or illegitimate control. The debate on letting providers

access user data carried by packets (required by deep payload inspection

techniques) is also a hot topic involving the scientific community. Discussing

the role of science is outside the scope of this thesis, but from a general point

of view science is in charge of solving problems and increasing knowledge of
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phenomena.

Significant contributions from the scientific community, in regards to traf-

fic classification and problems connected to it, should be not only to conceive

new techniques and solutions, but also to rigorously evaluate them, in order

to provide certain answers to questions regarding what can be done and by

which means. For example, to which extent is it possible to classify net-

work traffic without accessing packet payload? Is access to full payload data

necessary to perform traffic classification through payload inspection?

This thesis shows instead that the large amount of work that has been

proposed by the research community is difficult to evaluate and compare and

that no actual implementations of the novel techniques recently investigated

are currently made available. The first contribution of this work indeed, is

a detailed and critical analysis of the literature and the state of art, from

which we draw a precise list of open problems of research in traffic classifi-

cation. Recommendations and considerations on the main issues to be faced

by research in this field are identified and are the main motivations for the

other contributions presented in this thesis.

We present a software tool made available to the scientific community

that we designed to allow on-the-field evaluation and comparison of actual

implementations of traffic classification techniques. We targeted it towards

emerging problems like online traffic classification and combination of mul-

tiple techniques (multi-classifier systems). While we detail several design

choices made with these intents, we think TIE’s potential is partially demon-

strated by its application in some of the experimental contributions presented

in this thesis and in the interest in it that the scientific community has al-

ready shown.

The development of TIE finds its roots in significant work done in the

theoretical and experimental analysis of network traffic that we carried out,

which was also assisted by the development of specific software tools. Traf-

fic classification can be indeed partially considered as a sub-field of traffic

analysis, borrowing knowledge and techniques from it. Moreover, we can-
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not design effective techniques to classify current network traffic if we do

not understand properties of traffic generated by different applications, es-

pecially the emerging ones. For this reason, and to show the background

behind the novel classification features that we later present, in this thesis

we show several experimental results from the analysis of traffic generated

by various applications. One of the main findings of these studies is that

traffic observed at packet-level (i.e. in terms of packet size and inter-packet

time) has statistical properties that look different depending on the network

application considered and that are partially invariant with respect to space

and time. Aside from exploiting such properties for statistical modeling and

other purposes, we show that they can be very effectively applied to the prob-

lem of traffic classification. Another contribution of this thesis is indeed the

proposal and evaluation of a traffic classification technique based on traffic

features that have never been used before. Their discriminative power looks

particularly interesting when considering that such features are expected to

be quite robust to evasion attempts. This is because they are based on real

observations of traffic from different applications rather than obtained by me-

chanically selecting features from a set of most properties describing traffic

flows. Moreover, they do not require access to payload or to specific header

fields used only by some applications (e.g. TCP flags). The analysis of liter-

ature here presented has indeed shown that we still need to search for more

techniques alternative to payload inspection, which will probably need to be

combined to maximize classification performance. At the same time we noted

that all the practical implementations of real traffic classifiers today avail-

able are based on access to packet content. For this reason, we study this

subject in terms of its currently-known limitations and accuracy. Firstly, we

investigate what we call the deepness of deep payload inspection approaches

(that is, the amount of data from packets’ content that is practically used

in order to successfully identify applications). Secondly, we experimentally

evaluate classification accuracy of two ground-truth systems based on pay-

load inspection. As for the first contribution, our study shows that most
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successful matches obtained on a deep payload inspection tool for classifica-

tion (considered the state of art of open tools) happen on the first packets

exchanged and at the first bytes of payload. Based on this observation we

propose a novel approach to payload inspection, defined lightweight, in the

attempt to remove some of the limitations of current techniques. The ex-

perimental evaluation in this thesis shows that, at the expense of a partial

reduction of accuracy, it is possible to reduce the computational load and to

increase classification speed to values much closer to port-based classification

(the fastest but least accurate technique by far) rather than to deep payload

inspection. These results suggest several applications of the proposed clas-

sifier, for example: (i) in situations where port-based classification is today

still considered the only practical choice (e.g. realtime web reports on link

traffic); (ii) in the context of online classification through multi-classifier sys-

tems (a lightweight and more privacy-friendly payload inspection approach

can indeed be combined to different techniques with the purpose to develop

accurate online traffic classifiers). Finally, we study the problem of ground

truth. To the best of our knowledge for the first time in literature, we question

how accurate tools used for establishing ground truth in traffic classification

could be. We perform an experimental evaluation revealing serious contra-

dictions and inability to exhaustively classify traffic from a network link. The

contribution of this last study is two-fold. On one side it shows that accu-

racy of payload-based approaches is diminishing, motivating the search for

alternative solutions or their combination with different approaches. On the

other side, it confirms some of the issues that we highlighted when analyz-

ing the state of art: the dubious accuracy of ground-truth systems and the

lack of rigorous and complete evaluation of the new classification techniques

there are presented by the scientific community.

Concluding, research in traffic classification is prolific and based on strong

motivations, however there are still many questions to be rigorously an-

swered, especially when considering the continuously evolving scenario of

network traffic and of the Internet in general. In order to improve the state
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of art in traffic classification, this thesis contributes with strategic tools, new

techniques, and by identifying issues and future directions.
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[130] A. Pescapè P. Salvo Rossi A. Dainotti, W. De Donato. Classification
of network traffic via packet-level hidden markov models. In IEEE
GLOBECOM 2008, December 2008.

[131] RECIPE (Robust and Efficient traffic Classification in IP nEtworks).
http://recipe.dis.unina.it.

[132] NETQOS - Policy Based Management of Heterogeneous Networks for
Guaranteed QoS. http://www.netqos.eu.

[133] COST Action IC0703: Data Traffic Monitoring and Analysis (TMA):
theory, techniques, tools and applications for the future networks.
http://www.cost-tma.eu.

[134] Alberto Dainotti, Alessio Botta, Antonio Pescapé, and Giorgio Ventre.
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