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Introduction

This work aims at analysing complex phenomena through the con-
struction of appropriate models, followed by an analysis of the char-
acteristic parameters of the models. It all derives from the need to
work, not only with empirical values but with functions that are able
to smooth the histogram and give us the possiblity to omit values
that could be outlier. According to the classical theory of measure,
the data generated by a “correct” model are more “real” then the em-
pirical one, because they are purified from error sampling and from
error of measurement.
We should never forget that there are no “real” models, but rather
models that approximate the reality in a more ore less accuracy.
Models compatible with empirical data can be manifold.
The idea proposed in this thesis is to trasform the histogram data
by means of an approximation function in order to control the error
deriving from empirical data. According to the paradigm:

DATA = MODEL+ ERROR

we may actually thinking to work on the model and keep under control
the error term at the same time.
What we look for is the right compromise between model and error.
Our target is to be able to work with models that are comparable in
order to be able to apply the techniques of a Multidimensional Data



Introduction

Analysis. For that reason, all the histograms will be transformed into
models through the approximation by means of functions of the same
family. In that case we would work with data that have been synthe-
sized through a model, and from there we would obtain N models for
each variable, all corresponding to the i-th observation. Models con-
structed that way can be synthesized through parameters and through
an appropriate quality index of adaptation. Successively we will pass
on to the analysis of the data achieved through adequate techniques
of Multidimensional Analysis.

This thesis has been divided into five chapters.
In the first chapter I will present a concise introduction to symbolic
data, with particular attention to interval data and histogram data.
Then I will introduce the subject matter of the thesis, considered to
be a new type of symbolic data called “Model Data”.

In the second chapter I will present a review of the methods of
symbolic Analysis for interval data and for histogram data, already
introduced, with particular attention paid to the techniques of Prin-
cipal Components Analysis and to Cluster Analysis.

The third chapter is the fulcrum of the thesis and here the construc-
tion of “Model Data” is demonstrated. I will furthermore introduce
some basic definitions of interpolation models and approximates with
a short review of the most common base functions, polynomial func-
tions, piecewise polynomial functions, spline functions and B-spline
functions, which then will be used for the approximation of the his-
tograms, arriving in the end to form the parameters that set up the
“Model Data”.

In the fourth chapter I will show how to analyze these data and
how to carry out a Principal Components Analysis (PCA) with subse-
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Introduction

quent cluster. The proposed technique is a Multiple Factor Analysis
meant to substitute the classical PCA, since we work with block ma-
trix where each of them is created by the parameters of the models
for each variable. On the other hand to carry out a Cluster Analysis,
I have used an interval between models already proposed earlier by
Lauro, Romano, and Giordano in 2006, but re-adapted for the para-
meters available.

A case study is presented in the fifth chapter based on real data.
Particular financial data have been used, that is, a database, referring
to 30 stocks of the S&P MIB, which has registered some variables
from 2004 to 2005 like closing prices, opening prices, daily minimum
and maximum prices, adjusted closing prices, and volumes. All the
methodologies proposed through the routines constructed in Matlab
and the use of the X1-stat. packet have been applied on this database.
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Chapter 1

Symbolic Data

In real life, the use of single valued variables could lead to a loss of
information. For example, daily temperatures registered as the vari-
ation between the minimum and the maximum values should provide
a more realistic view of the weather conditions than the daily aver-
age value. Many application fields take advantage of the statistical
analysis of the interval data, such as the weather condition analysis,
statistical quality control, financial data analysis, etc. Due to recent
developments in data warehousing, a huge amount of continuous data
are stored at any occurrence (such as: Stock Exchange Data).

Traditionally, real-valued vectors have been used to model partici-
pants of a specific domain. If n individuals are evaluated by m vari-
ables, then a n × m matrix will hold all the relationships between
them. However, the real world is too complex to be described in this
relatively simple tabular model. In order to deal with more com-
plex cases we use symbolic data. In this context, data are not confined
to be real values, but can be selected from a wider list: set-, interval-,
histogram-, tree-, graph, function, fuzzy data, etc. Classical data on
p random variables are represented by a single point in p-dimensional
space Rp. In contrast, symbolic data with measurements on p random
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variables are p-dimensional hypercubes (or hyperrectangles) in Rp, or
a Cartesian product of p distributions, broadly defined. The “hyper-
cube” would be a familiar four-sided rectangle if, for example, p = 2
and the two random variables take values over an interval, say, [a1, b1]
and [a2, b2], respectively. In this case, the observed data value is the
rectangle R = [a1, b1] × [a2, b2] with vertices (a1, a2), (a2, b2), (b1, a2)
and (b1, b2). However, the p = 2 dimensional hypercube need not be
a rectangle; it is simply a space in the plane. A classical value as a
single point is a special case. Instead of an interval, observations can
take values that are lists, e.g., {good, fair} with one or more different
values in the list. Or, the observation can be a histogram. Indeed,
there are many possible formats for symbolic data.

Basic descriptions of symbolic data such as interval data and his-
togram data are covered in this chapter, before going on to specific
analytic methodologies in the chapter that follow. At the outset, how-
ever, it is observed that a symbolic observation in general has an in-
ternal variation. For example, an individual whose observed value of
a random variable is [a, b], a 6= b, is interpreted as taking (several) val-
ues across that interval. This is not to be confused with uncertainty
or impression when the variable takes a (single) value in that interval
with some level of uncertainty. A classical observation with its single
point value perforce has no internal variation, and so analyses deal
with variation between observations only. In contrast, symbolic data
deal with the internal variation of each observation plus the variation
between observations.

Symbolic data arise in a variety of different ways. Some data are
inherently symbolic. For example, it may not be possible to give the
exact cost of an apple (or shirt, or product, or . . . ) but it is only
its cost that takes values in the range [16, 24] cents (say). We also
note that an interval cost of [16, 24] differs from that of [18, 22] even
though these two intervals both have the same midpoint value of 20.
A classical analysis using the same midpoint (20) would lose the fact
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that these are two differently valued realizations with different internal
variations.
In another direction, an insurance company may have a database of
hundreds (or millions) of entries each relating to one transaction for an
individual, with each entry recording a variety of demographic, fam-
ily history, medical measurements, and the like. However, the insurer
may not be interested in any one entry per se but rather is interested
in a given individual (Colin, say). In this case, all those single en-
tries relating to Colin are aggregated to produce the collective data
values for Colin. The new database relating to Colin, Mary, etc., will
perforce contain symbolic-valued observations. For example, it is ex-
tremely unlikely that Mary always weighed 125 pounds, but rather
that her weight took values over the interval [123, 129], say.
In these two types of settings, the original database can be small or
large. A third setting is when the original database is large, very large,
such as can be generated by contemporary computers. Yet these same
computers may not have the capacity to execute even reasonably ele-
mentary statistical analyses. For example, a computer requires more
memory to invert a matrix than is needed to store that matrix. In
these cases, aggregation of some kind is necessary even if only to re-
duce the dataset to a more manageable size for subsequent analysis.
There are innumerable ways to aggregate such datasets. Clearly, it
makes sense to seek answers to reasonable scientific questions and to
aggregate accordingly. As before, any such aggregation will perforce
produce a dataset of symbolic values. In the following sections we
focus attention on two type of symbolic data for quantitative variables:
the interval data and the histogram data that is the case in which we
do not have any information about the internal variation interval and
the case in which we have an additional information coming from the
aggregation that leads us to construct a histogram.
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Symbolic Data

1.1 Interval Data

A generic interval variable Y represents a set of bounded intervals:

Yj =
[
yj, yj

]
, j = 1, . . . , n

where yj and yj represent the lower (min) and the upper (max).

To operate on intervals, the algebra defined by Moore (1957) is used.
It defines the basic arithmetic operations in the following way:
If • is one of the symbols +,−,×,÷, we define arithmetic operations
on intervals by:

[a, b] • [c, d] = {x • y : a ≤ x ≤ b, c ≤ y ≤ d} (1.1)

It is not defined the division [a, b]÷ [c, d] when 0 ∈ [c, d].
The sum, the difference, the product, and the ratio (when defined)
between two intervals is the set of the sums, the differences, the prod-
ucts, and the ratios between any two elements from the first and the
second interval, respectively.
An equivalent definition: let = be the set of intervals, and let [a, b],[c, d]
be elements of =, it is:

• [a, b] + [c, d] = [a+ c, b+ d]

• [a, b]− [c, d] = [a− d, b− c]

• [a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• if 0 /∈ [c, d], then [a, b]÷ [c, d] = [a, b]× [1/d, 1/c]

Because of the complexity of multidimensional interval data some spe-
cific tools are needed:

• intervals coding into single valued data (box vertices, midpoints
and radii) and ex-post intervals reconstruction in in order to
visualize the output;
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• intervals direct treatment with a suitable algebra and/or algo-
rithms.

Many authors have dealt with interval data analysis by the encod-
ing in midpoint (Midpoint & Radii PCA [48]), radii or vertices (Ver-
tices Principal Components Analysis (V-PCA) [11]); Symbolic Objects
PCA, [42]) Some authors ([50], [33]) have defined descriptive statis-
tics for interval variables in analogy to the case of single-valued data.
In particular, in [33] there are described interval statistics, such as
mean and deviation from mean and it is showed that they share the
same properties of the corresponding statistics for single-valued data.
Therefore the basic idea is to rewrite statistics for interval data in the
same way as for single-valued data.
Unfortunately, the interval algebra was born in the field of error-theory
where intervals are very small, but this is not longer true for Statistical
Interval.
First of all the so-called wrapping effect leads to wider intervals than
they actually should be. This effect induces a distinction between “in-
terval of solutions” and the “interval solutions”.
To clarify the wrapping effect we consider the following example:
Let the function f(x) = x(x− 1) be considered with 0 < x < 1.
By means of algebra intervals we have the following results:

f([0, 1]) = [0, 1]([0, 1]− 1] = [0, 1]− [−1, 0] = [−1, 0]

By calculating instead, by means of the classical analysis, the real
range of variation of the function f , that is the set:

f([0, 1]) = {f(x)/x ∈ [0, 1]}, it gives the interval [−1/4, 0] ⊂ [−1, 0].

Therefore, we can observe that the result reached with the algebra
of intervals is actually a broader range containing the exact range of
variation of the function here considered.

9
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However, under some conditions, it is possible to obtain the same
range of variation:
Proposition.If f(x1, . . . , xn) is a real rational function in which each
variable xi occurs only once and only at the first power, then the cor-
responding interval expression f(X1, . . . , Xn) will compute the actual
range of the values of f() for xi in Xi:

f(X1, . . . , Xn) = {y/y = f(x1, . . . , xn), xi ∈ Xi, i = 1, . . . , n}.

For example: Let f(x) = x/(x− 2) be a real function, then:

f([10, 12]) =
[10, 12]

[10, 12]− 2
=

[10, 12]

[8, 10]
= [1, 1.5]

But the actual range is [1.2, 1.25] ∈ [1, 1.5].
Making the trasformation:

f(x) =
x− 2

x− 2
+

2

x− 2
= 1 +

2

x− 2

and calculating in [10, 12] it is obtained:

f([10, 12]) = 1+
2

[10, 12]− 2
= 1+

2

[8, 10]
= 1+[0.2, 0.25] = [1.2, 1.25].

In general, it is not always possible to write a rational expression, in
which a number of real variables is larger than one, so that the new
expression contains a single occurrence of each variable. We say that,
in a way, we are obliged to have an interval that contains the effective
range of the function.

Another issue that was born with interval algebra is the fact that,
by the arithmetic point of view, it is not possible to make all the oper-
ations similar to the case of single-valued data, in the sense that there
is no-correspondence between the two cases, because many arithmetic
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1.2. Histogram Data

properties do not hold anymore.
For example, let consider the sum of two intervals:

[1, 2] + [3, 4] = [4, 6]

According to the properties of the classical arithmetic, subtracting the
second addend from the sum we get the first one, but in this case this
does not occur:

[4, 6]− [3, 4] = [0, 3] 6= [1, 2]

Therefore, it is impossible to adapte all statistic formulations that
apply to the single-valued data to interval-data without making the
appropriate amendments.
As said before, it is clear that speaking of variance function for interval-
valued data some complications arise, because we are dealing with a
quadratic function. Therefore, several authors have treated the cal-
culation of the variance through numerical algorithms [33] and by
optimization techniques [31].

Moreover, in the interval data it is supposed that all the values
within the interval have the same probability, in other words, it is
supposed to have a uniform distribution. But in real cases we can
have a different probability distribution within the interval, so it is
possible to work with histogram data that give us additional informa-
tion about the variance within the interval.

1.2 Histogram Data

In many real experiences, data are collected and/or represented by
frequency distributions. If Y is a numerical and continuous variable,
many distinct values yi can be observed. In these cases, the values
are usually grouped in a smaller number H of consecutive and disjoint
bins Ih (groups, classes, intervals, etc.). The frequency distribution of

11
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the variable Y is given considering the number of data values nh falling
in each Ih. The histogram is then the typical graphical representation
of the variable Y . The interest to analyze data expressed by frequency
distributions as well as by histograms, is apparent in many fields of
research. In particular, we may refer to the treatment of experimental
data that are collected in a range of values, whereas the measurement
instrument gives only approximated (or rounded) values. An example
can be given by sensors for air pollution control located in different
zones of an urban area. The different distributions of measured data
about the different levels of air pollutants during a day, allow us to
compare, and then to group them into homogeneous clusters, the dif-
ferent controlled zones.
In a different context of analysis, histograms are the key to understand-
ing digital images. A digital image is basically a mosaic of square tiles
or “pixels” of uniform color that are so tiny that the composed im-
age appears uniform and smooth. Instead of sorting them by colour,
they can be sorted into 256 levels of brightness from black (value 0) to
white (value 255) with 254 gray levels in between. The height of each
vertical “bar” tells you how many pixels there are for that particular
brightness level.

Let Y be a continuous variable defined on a finite support S = [z; z],
where z and z are the minimum and maximum values of the domain
of Y . The variable Y is supposed partitioned into a set of contigu-
ous intervals (bins) I1, . . . , Ih, . . . , IH , where Ih = [zh; zh). Given N
observations on the variable Y , each semi-open interval, Ih, is asso-
ciated with a random variable equal to φ(Ih) =

∑N
u=1 φzu(Ih) where

φzu(Ih) = 1 if zu ∈ Ih and 0 otherwise. Thus, it is possible to asso-
ciate to Ih an empirical distribution πh = φ(Ih)/N . A histogram of
Y is then the graphical representation in which each pair (Ih; πh) (for
h = 1, . . . , H) is represented by a vertical bar, with base interval Ih
along the horizontal axis and the area proportional to πh.
Consider E as a set of n empirical distributions Y (i) (i = 1, . . . , n).

12
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Specifically, for a generic variable, the i-th histogram data is a model
to represent an empirical distribution described as a set of H ordered
pairs Y (i) = (Ih, πh) as:

Ihi ≡ [zhi, zhi] zhi ≤ zhi ∈ <,⋃
h=1,...,H Ihi = [minh=1,...,H{zhi},maxh=1,...,H{zhi}],

πh ≥ 0,∑
h=1,...,H πh = 1.

Figure 1.1: Example of histogram data and its representation

This kind of data, compared to the interval data enjoy a two-
dimensional representation, where horizontally the subdivision in in-
tervals is represented and vertically there are the respective densities.
In particular, the histogram data (see figure 1.1) can be seen as sym-
bolic data divided into many intervals. On each of them it is spec-
ified additional information about its relative frequency (or density
of frequency). Therefore, we might consider working with intervals
of different weight given by the respective frequency and, from this,
build proper descriptive statistics and appropriate distances between
intervals, as long as we choose intervals small enough to be able to
make use of the theory of interval algebra, as specified in the previous

13
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section. In particular, in literature a histogram arithmetic was pro-
posed by Colombo and Jaarsma (1980):

Given two histograms, YA = (IAh, πAh) with h = 1, . . . , n and
YB = (IBh′, πBh′) with h′ = 1, . . . ,m both representing a pairs of
indipendent random variables A and B, and • being some arithmetic
operator in {+,−,×,÷}, C = A • B can be approximated by the
unsorted histogram YC = (ICk, πCk) with k = 1, . . . , n ·m, where

zC(h−1)m+h′ = min {zAh • zBh′, zAh • zBh′, zAh • zBh′, zAh • zBh′},

zC(h−1)m+h′ = max {zAh • zBh′, zAh • zBh′, zAh • zBh′, zAh • zBh′}, and

πC(h−1)m+h′ = πAh • πBh′

Also in this case there are some disvantage:

• some of the constituent intervals of the resultant may overlap;

• making a series of arithmetic operations on a number of his-
tograms, the resulting histogram is expected to have a high num-
ber of intervals;

• condensing the unsorted histograms obtained after each opera-
tion into histograms of l << n ·m intervals in order to avoid an
enormous final number of intervals;

• histogram arithmetic subsumes interval arithmetic, which in turn,
subsumes classic arithmetic.

Moreover, the disadvantage to use the histogram data is that we have
an empirical distribution, so our propose is to model the histogram
through a suitable function that represent the shape of the distribution
purified from the error.
In the next section you will be introduced to the new proposed data
that we have called “Model Data”.

14
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1.3 A new type of symbolic data: “Model

Data”

According to the classical theory of measure, the data generated by a
“correct” model are more “real” then the empirical one, because they
are purified from error sampling and from error of measurement.
We should never forget that there are no “real” models, but rather
models that approximate the reality in a more ore less accurate man-
ner.
Models compatible with empirical data can be manifold.

The idea proposed in this thesis is to trasform the histogram data
by means of an approximation function in order to control the error
deriving from empirical data.
According to the paradigm:

DATA = MODEL+ ERROR

we may actually consider working on the model and keep the error
term under control at the same time.
Therefore, provided that our data have been suitable processed as a
function, they may be summarised through the function parameters
and some indices of goodness of fit.
In this case, we will work on data summarized through a function, so
for each variable you will get N functions, each of which corresponds
the i- th observation. Schematically it can be summarised as in the
figure 1.2. The new data have to be proportional in number to the
parameters of the function, in this way any function will be replaced
by its own parameters and our data will be as many as the units ×
variables× number of parameters. Assuming that all the functions
have k parameters: b1, . . . , bk and an appropriate index (I) of goodness
of fit, we can summarise the data as in the figure 1.3.

The problem is now to derive some functions that, from a mathe-
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Figure 1.2: Different type of Symbolic Data

matical point of view, are the best approximations of the data, such
as the spline or B-spline; therefore we need to identify which one could
have the best grade of the interpolator function.
How “Model Data” are built will be presented in the third chapter.
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Figure 1.3: Table of the parameters of the new Data
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Chapter 2

A review of Symbolic Data
Analysis

This chapter deal with principal components and clustering techniques.
These methods are extensions of well-known classical theory applied
or extended to symbolic data. Our approach has been to assume the
reader is knowledgeable about the classical results, with the present
focus on the adaptation to the symbolic data setting. In particular
we will review these statistical methods for the two types of data pre-
sented in the previous chapter: interval data and histogram data.

2.1 Principal Components Analysis for Sym-

bolic Data

Among the common data analysis method, Principal Components
Analysis (PCA) is widely used to discover and to visualize the main
structure of a multidimensional data set. A principal components
analysis is designed to reduce p-dimensional observations into s-dimensional
components (where usually s << p). More specifically, a principal
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component is a linear combination of the original variables, and the
goal is to find those s principal components which together explain
most of the underlying variance-covariance structure of the p vari-
ables. PCA takes as input a data matrix of the type X = (xij), where
(xij) is the precise and single value of the descriptive feature Yj for the
i-th object (for i = 1, . . . , n).However, in practice the investigated ob-
jects are often more complex and so more complex data are required in
order to provide an accurate description of these objects. These data
are called symbolic data. The currently existing methods for perform-
ing principal components analysis on symbolic data as interval data
and histogram data are covered in this section.

2.1.1 Principal Components Analysis of Symbolic
Data described by intervals

Principal Components Analysis (PCA) aims to visualize, synthesize
and compare units onto factorial spaces with minimum loss of in-
formation (for example minimum distortion of the distance between
original data). Whereas units are represented by points, it is suffi-
cient to just take care of their position in space. On the other hand,
symbolic objects described by interval valued variables, represented as
boxes in a multidimensional space, needs to be visualized, synthesized
and compared onto the factorial spaces, taking care not only of their
location but also by their size and shape. That is to say, two points
can only be differentiated by their location in space, but two boxes
can be differentiated also by their size (the volume of the box) and by
their shape (a box can be narrow or wide in one ore more dimensions
compared to another box).
According to the Symbolic Data Analysis (SDA) paradigm, consid-
ering the input, the technique of analysis and the output, we may
have two families of analysis: Symbolic(input)-Classical(treatment)-
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Symbolic(output) and Symbolic-Symbolic-Symbolic.
The first family of analysis are historically the first introduced: they
were based on a symbolic input table, a suitable numerical coding of
data, a treatment with classical data analysis technique, a suitable
transformation of classical results into a symbolic description. To this
approach belongs Vertices PCA, Centers PCA and SPCA.
The first approach [11] to the treatment of multidimensional boxes
considered a two step analysis based first on the numerical coding of
a box vertices or its center and then performing a classic PCA on this
coded data (Vertices PCA, Centers PCA).
A second approach [42], implemented in the SODAS/ASSO software,
stresses the fact that a box is a cohesive set of vertices that also de-
pends on its size and shape, introducing a more consistent way to
treat units as complex data representation by introducing suitable con-
straints for the vertices belonging to the same object. This approach
overcomes the drawback of the previous approach, where vertices are
treated as single independent units described by points. Both the ap-
proaches propose to represent boxes on factorial plans as rectangles of
minimum area enclosing the projections of vertices for each box. Such
rectangles are interpreted as well as symbolic objects.
More recently, in order to avoid loss of information due to the data
transformation, the intervals algebra introduced by R.E. Moore [47] is
considered for a different approach to the boxes PCA.
Among the interval algebra theorems for the computation of interval
data functions, one has been emphasized for the treatment of such
kinds of data: “If a system of equations has a symmetric coefficient
matrix, then the midpoints of the interval solutions are equal to the
solution of the interval midpoints” [46]. This theorem permitted the
development of new analysis methods not based merely on the rep-
resentation of intervals by means of its extreme points (the vertices
of the boxes), but based on codifying the intervals by its centre or
midpoints and radii. In this direction, intermediate families of analy-
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sis have been developed. Indeed, they work on a symbolic table as
input, and classical techniques are extended to take into account some
interval algebra theorems or definitions, the output is reconstructed
symbolic data according to the same theorems of interval algebra. We
called this family a hybrid approach since the treatement step is nei-
ther fully classical nor fully based on interval algebra.
We refer in particular to the methods called MRPCA (Midpoints
Radii Principal Components Analysis, [48]), where classic linear al-
gebra techniques are used to treat intervals coded as a pair (midpoint,
radius). This is a hybrid approach in the sense that it takes into con-
sideration some theorems of interval algebra but uses a classic liner
algebra algorithm to analyse data just rebuilding boxes ex-post on the
factorial plans.
In order to accomplish the Symbolic-Symbolic-Symbolic paradigm of
analysis Gioia and Lauro (2006) proposed an approach, developed us-
ing interval linear algebra, called IPCA [34]. This approach is fully
consistent with the interval nature of the descriptors of boxes, and per-
forms a PCA of a interval correlation matrix allowing interval eigen-
values and eigenvectors with interval components.

2.1.2 Generalization of the Principal Components
Analysis to Histogram Data

Nowadays we often need to perform data analysis (such as principal
components, discriminant analysis, regression, multidimensional scal-
ing, etc.) on enormous data sets, so large that it makes standard or
classical analysis extremely difficult to implement and interpret. To
overcome these difficulties it may be necessary and useful to aggre-
gate the data into summary-type classifications or classes, where the
number of classes is drastically smaller than the number of single in-
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dividuals in the original data set.
For example suppose a study involves several cities (or regions, coun-
tries, etc.) classified by occupation, age and gender. It may be useful
to merge the data for each region, retaining the identifying classifica-
tions of “occupation”, “age”, “income” and “gender”. We may wish
to describe and analyze underlying concepts such as unemployment
and we may also want to query the data set relating to the absence or
presence of certain occupations. In these (and related examples) the
aggregation process gives rise to symbolic data rather than classical
data values on some if not all of the variables describing each symbolic
object or observation of the aggregated data set. Most likely, symbolic
data methods may have been an integral part of the aggregation pro-
cedure.
In 1997 Cazes, Chouakria, Diday and Schektman [11] proposed the
Centers and the Tops Methods to extend the known principal compo-
nents analysis method, PCA, to a particular kind of symbolic objects
characterized by multi-valued variables of interval-type.
Subsequently Rodriguez, Diday and Winsberg [51] proposed an ex-
tension of classical PCA to interval data. Using the duality theorem
they presented an improved algorithm for centers PCA and then they
extended centers PCA to histogram-type including the case where the
data are of mixed types, histogram, interval, classical (single-value) as
well as the case where the data is of any one or two of these type of
data.
To extend PCA to histogram type data they developed the idea first
proposed in [25]. They represent each histogram-individual by a suc-
cession of k interval-individuals (the first one included in the second
one, the second one included in the third one and so on) where k is the
maximum number of modalities taken by some variable in the input
symbolic data table.
Instead of representing the histograms in the factorial plane, they are
going to represent the Empirical Distribution Function FY defined in
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[7] associated with each histogram. In other words if we have a his-
togram variable Y on a set E = a1, a2, . . . of objects with domain Υ
represented by the mapping Y (a) = (U(a), πa) for a ∈ E, where πa

is a frequency distrubution, then in the algorithm they will use the
function F (x) =

∑
i/πi≤x πi instead of the histogram.

In particular, letX = (xij) i=1,...,m
j=1,...,n

be a symbolic data table with contin-

uous, interval and histogram variables types, and k = max{s,where s is the number of modalities of Y j}, j =
1, . . . , n where Y j is of histogram type. They define the vector-succession
of intervals associated with each cell of X as:

1. if xij = [a, b] then the vector-succession of intervals associated
is:

x↓ij =


[a, b]
[a, b]

...
[a, b]


k×1

2. if xij = (1 (p1) , 2 (p2) , . . . , s (ps)) with s < k (histogram) then
the vector-succession of intervals associated is:

x↓ij =


[0, p1]

[0, p1 + p2]
...

[0,
∑s

w=1 pw]


k×1

3. if xij = a then the vector-succession of intervals associated is:

x↓ij =


[a, a]
[a, a]

...
[a, a]


k×1
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As well, they defined the row-vector associated with each cell of X as:

1. if xij = [a, b] then the row-vector associated is:

x→ij =

[
a+ b

2

]
1×1

2. if xij = (1 (p1) , 1 (p2) , . . . , s (ps)) where s is the number of modal-
ities of the j-th variable, then the row-vector associated is:

x→ij = [p1, p2, . . . , ps]1×s

3. if xij = a then the row-vector associated is:

x→ij = [a]1×1

So, they apply the algorithm proposed in [50] to the matrix X↓. With
this PCA they can find the shape of the “individual-histogram” in
the principal plane. However since all the individual-histograms will
be projected almost in the same position, they apply another PCA
in order to find a good cluster structure to the individual-histogram.
Therefore they apply a classical PCA to a matrix X→. Using this
last principal component, they translate the individual-histogram to
find the cluster structure of the individual-histogram in the principal
plane.

2.2 Clustering of Symbolic Data

One of the common tasks in (classical as well as symbolic) data analy-
sis is the detection and construction of “Homogeneous” groups C1, C2, . . .
of objects in a population E as such an object from the same group
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show a high similarity whereas objects from different groups are typ-
ically more dissimilar. Such groups are usually called “clusters” and
must be constructed on the basis of the (classical or symbolic) data
which were recorded for the objects. Cluster Analysis is a collective
name for a range of mathematical, statistical or algorithmic methods
for subdividing the total set E into homogeneous clusters which are
typically compiled in a classification C = (C1, C2, . . .). The method
can be classified according to various criteria such as: type of data,
type of clustering criterion, type of classification structure, type of
algorithm, etc. Since the clustering structures (partitioning, hierar-
chical, and pyramidal clustering) are based on dissimilarity measures,
we will first describe these measures as they pertain to symbolic data,
in the particular case when we have real valued-data rappresented by
intervals and histograms.

2.2.1 Dissimilarity measures of Interval Data

The formation of subsets (C1, . . . , Cr) of E into a partition, hierarchy,
or pyramid is governed by similarity s(a, b) or dissimilarity d(a, b) mea-
sures between two objects, say a and b. These measures take a variety
of forms. Since a similarity measure is typically an inverse functional
of its corresponding dissimilarity measure (e.g., s(a, b) = 1− d(a, b)),
and the like), we consider just dissimilarity measures. Distance mea-
sures are important examples of dissimilarity measures.
Definition. A dissimilarity measure d on a set E is a function:

d : E × E → <+

(k, l) → d(k, l)

such as

(i) d(k, l) = d(l, k) ∀(k, l) ∈ E × E

(ii) d(k, k) = 0 ∀k ∈ E
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Definition. A distance measure (also called a metric)is a dissimilar-
ity measure which further satisfies:

(iii) d(a, b) ≤ d(a, c) + d(c, b) ∀a, b, c ∈ E.

Definition. An ultrametric measure is a distance measure which also
satisfies:

(iv) d(a, b) ≤Max{d(a, c), d(c, b)} ∀a, b, c ∈ E.

In this section, we assume that we have a given set of symbolic ob-
jects represented by the rows of a symbolic data array X = (ξkj)n×p.
We want to extract detailed or global information from X by spe-
cial data analysis methods. In order to exploit the power of classical
data analysis, such as multidimensional scaling, clustering, factorial
or discriminant analysis, one approach consists in generating a clas-
sical dissimilarity or similarity matrix from the symbolic objects and
applying the classical methods to this matrix. In literature, several
dissimilarity measures have been proposed for interval data.
Gowda and Diday (1991) proposed a dissimilarity measure D(a, b) for
two multidimensional interval (box) a = (A1, . . . , Ap) e b = (B1, . . . , Bp)
dove Aj =

[
aj, aj

]
, Bj =

[
bj, bj

]
.

This distance function is given in additive form:

D(a, b) =

p∑
j=1

D(Aj, Bj) (2.1)

For the j-th variable, D(Aj, Bj) is obtained by considering three types
of dissimilarity measures defined for pairs of subsets Aj,Bj and incor-
porating different aspects of “similarity”:

D(Aj, Bj) = Dp(Aj, Bj) +Ds(Aj, Bj) +Dc(Aj, Bj)

with the following specification:
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• The component Dp (position component) indicates the relative
positions of the two variable values on real line and it is defined
as follows:

Dp(Aj, Bj) =

∣∣aj − bj
∣∣

|µ(Dj)|
where |µ(Dj)| denotes the length of the maximum interval of the
j-th variable.

• The component Ds (span component) indicates the relative sizes
of the variable values without referring to common parts between
them. It is defined as follows:

Ds(Aj, Bj) =
|la − lb|
ls

where la :=
∣∣aj − aj

∣∣; lb :=
∣∣bj − bj

∣∣ and ls =
∣∣max(aj, bj)−min(aj, bj)

∣∣.
• Finally, the component Dc (content component) is a measure of

the noncommon parts between two variable values. It is defined
as:

Dc(Aj, Bj) =
la − lb − 2µ(Aj ∩Bj)

ls

where µ(Aj ∩ Bj) is the length of intersection between Aj and
Bj.

Ichino and Yaguchi (1994) proposed another dissimilarity measure
between two symbolic objects a and b of the type (2.1). First, they
defined two Cartesian operators, join⊕ and meet ⊗, which were ap-
plied to the pairs of subsets (Aj, Bj):

Aj ⊕Bj :=
[
min(aj, bj),max(aj, bj)

]
Aj ⊗Bj := Aj ∩Bj.
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Now it is possible to define the Ichino & Yaguchi’s dissimilarity mea-
sure:

φ(Aj, Bj) := |Aj ⊕Bj| − |Aj ⊗Bj|+ γ(2 · |Aj ⊗Bj| − |Aj| − |Bj|)

where 0 ≤ γ ≤ 0.5 is a prespecified parameter and |Aj| denotes the
length of the interval Aj. The parameter γ plays an important role in
this definition, in fact it controls the effect of the inner-side nearness
and outer-side nearness between Aj and Bj on the distance.
It is possible to define the generalized Minkowski distance of order q
(q ≥ 1) as:

dq(a, b) =

(
p∑

j=1

φ(Aj, Bj)
q

)1/q

(2.2)

where all the variable Yj may be expressed with different units of
measurements. A normalized formulation for φ is:

ψ(Aj, Bj) =
φ(Aj, Bj

|µ(Dj)|
. (2.3)

De Carvalho (1994,1996,1998) proposes an extensions of the previous
dissimilarity measures of Ichino and Yaguchi that concerns the func-
tion ψ and φ which were combined by Ichino and Yaguchi into the
generalized Minkowski metric. De Carvalho combines several func-
tion, called comparison functions (CF), with an aggregation function
(AF), such as Minkowski’s metric. He suggests the calculation of
comparison function of each variable Yj on the basis of the agreement
indices summarized in the figure 2.1.

De Carvalho has proposed the comparison functions, see figure 2.2
as an extension of the similarity measures defined for classical binary
variables. (Note that each similarity function generates a correspond-
ing dissimilarity function).
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Figure 2.1: Table agreement indices

As for the distance ψ and φ of Ichino and Yaguchi’s proposal, De
Carvalho selects, for each component variable Yj, one of the dissimi-
larities di and combine them with an aggregation function f as with
Minkowski’s metric. This results in the overall dissimilarity:

di
a(a, b) = q

√√√√ p∑
j=1

[wjdi(Aj, Bj)]
q (2.4)

with i ∈ {1, . . . , 5}.
De Carvalho (1996) also proposed another comparion function ψ′ in
combination with an appropriate aggregation function f . This com-
parison function is defined as a further normalization of Ichino and
Yaguchi’s φ function:

ψ′(Aj, Bj) :=
φ(Aj, Bj)

µ(Aj ⊕ bj)
. (2.5)

Souza and De Carvalho (2004) proposed the ”city-block” distance:
Let two vectors of intervals: a = (A1, . . . , Ap) and b = (B1, . . . , Bp)
where Aj =

[
aj, aj

]
, Bj =

[
bj, bj

]
.

The city-block distance is defined as:

d(a, b) =

p∑
j=1

φ(Aj, Bj) =

p∑
j=1

[∣∣aj − bj
∣∣+ ∣∣aj − bj

∣∣] .
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Figure 2.2: Table of comparison function

This distance function is a suitable extension of the L1 metric to in-
terval data.

Chavent and Lechevallier (2002) proposed the Hausdorff distance
defined as:

dH(A,B) = max (supx∈Ainfy∈Bd(x, y), supy∈Binfx∈Ad(x, y)) . (2.6)

If d(x, y) is the L1 City block distance, then Chavent et al. (2002)
proved that:

dH(a, b) = max
{∣∣aj − bj

∣∣ , || aj − bj
}

In 2006 De Carvalho et al proposed a family of distance between
intervals, the metric of norm q defined as:

dLq(A,B) =

(
p∑

j=1

∣∣aj − bj
∣∣q +

∣∣aj − bj
∣∣q)1/q

. (2.7)
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In particular for q = 2 we have the ”Squared Euclidean” distance:

d(a, b) =

p∑
j=1

φ(Aj, Bj) =

p∑
j=1

[(
aj − bj

)2
+
(
aj − bj

)2]
.

Antonio Irpino and Rosanna Verde (2006) proposed the Wasser-
stein distance: If we suppose a uniform distribution of points, an
interval of reals A(t) = [a, b] can be expressed as the following type of
function:

A(t) = [a, b] = a+ t(b− a) 0 ≤ t ≤ 1.

If we consider a description of interval by means of its midpoint m
and radius r, the same function can be rewritten as follows:

A(t) = m+ r(2t− 1) 0 ≤ t ≤ 1.

Then, the squared Euclidean distance between homologous points of
two intervals A = [a, a] and B = [b, b], or described by the midpoint-
radius notation A = (mA, rA) and B = (mB, rB), is defined as follows:

d2
W = (A,B) =

∫ 1

0

[A(t)−B(t)]2 dt =

=

∫ 1

0

[(mA −mB) + (rA − rB)(2t− 1)]2 dt =

= (mA −mB)2 +
1

3
(rA − rB)2.

2.2.2 Distance measures between histogram data

In order to cluster a set of data described by distribution with finite
continue support, or, as called in SDA, by ”histograms” we have to
define a distance between them.
A set of metrics, defined in probability measure spaces, seems particu-
lary interesting to measure the probability between distributions. So,
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they can be proposed in the clustering analysis when data are con-
sidered as (empirical) distributions. These metrics were born in the
framework of convergence theory. See figure 2.3
Gibbs and Su [32] present a good review on metrics between proba-
bility measures (histograms can be considered as the representation of
empirical frequency distribution).
Given a domain Ω on which it is possible to define a Borel σ-algebra
B, two measures µ and ν (like πih are) on Ω, f and g the density func-
tion with respect to a σ-finite dominant measure λ. F and G denote
the corresponding distribution functions. Gibbs and Su [32] present a
review of the most used dissimilarities; see figure 2.4.

Figure 2.3: Metrics and their abbreviation

In a different context of analysis, Chavent et al. ?? propose two
measure for the comparison of histograms: the L2 norm and a two
component dissimilarity. L2 norm is simply computed considering the
weights of the elementary intervals but not their width. While the two
component is a dissimilarity which does not satisfy the usual properties
of distance measures.
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Figure 2.4: Metrics and their definitions
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Chapter 3

Model Data Building

The idea of using a model to represent a histogram data comes from
the need of working with functions, instead of empirical values, that
could smooth a histogram and thus the possibility to leave out outlier
values. Everything is based on the known paradigm:

DATA = MODEL+ ERROR.

Therefore we transform the data represented by a histogram to a model
that synthesizes the shape of distribution with a certain error, obvi-
ously depending on the kind of approximation. We are looking for the
best trade-off between model and error.
The aim is to deal with comparable models in order to use Multidimen-
sional Data Analysis. Therefore all the histograms will be transformed
in models by means of approximations with functions belonging to the
same family.
The best trade-off concerns the choice of the model, or better the
choice of the number of parameters to use in the approximation, and
the error due to the approximation. In a trivial case, it is possible to
achieve a model that perfectly fits the histogram shape in order to get
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an approximation error equal to zero but with a huge number of para-
meters (i.e. the number of histogram bins). In that case the procedure
would be useless because we would simply be dealing with the frequen-
cies of the related histogram classes. The idea is to get a smaller fixed
number of parameters a priori equal for all the histograms and thus
to obtain different approximation errors. So the best arrangement is
to find the number of parameters to fix.
We are supposed to find the number of parameters as well as about
half the number k of the histogram classes fixing that value inside the
interval

[
int
(

k
2

)
− 1, int

(
k
2

)
+ 1
]
, and later work out a suitable index

of goodness of fit that allows us to know the approximation quality.
Therefore, the first step is to choose a suitable function for the ap-
proximation procedure. We could approach with the basis functions
and that way manage to find out the one that better fits the problem.
In this chapter the definition of mathematical model is introduced
differentiating the interpolation models from the approximation ones
and some of the basis functions are described. Later we will see how
to build the model.

3.1 Mathematical Model

Formulating a mathematical model means to determine a function f ,
in an interval I, in a way that is:

• represents data (xi, yi);

• preserves eventual correlation properties of the magnitudes;

• allows us to get new eventual requested information.

In order to work out a model that satisfies such requirements, indis-
pensable for a reliable model, it is necessary to take care of the rules
that control the phenomenon. That information can help to define
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the shape of the model, that is the kind of function f (e.g. a rect, a
parabola, a trigonometrical function, etc.).
Then we can give the following definition:

Definition. Given a finite set of data D =
{

(xi, yi)i=1,...,n

}
belong-

ing to the interval I, each function f , defined on I that describe D, is
called a fitting or model for D; then such function is called interpola-
tion function (or approximation function) according to verify (or not)
the conditions of the function and/or its derivatives in the assigned
points, that is to satisfy (or not) the condition:

f(xi) = yi (generally f (j)(xi) = yj
i j = 0, . . . ,m− 1) ∀i = 1, . . . , n.

called interpolation conditions.
So to determine a model it is, first of all, necessary to establish if f
has to approximate or interpolate the data. In the approximating case
it is also necessary to be able to set a measure of how far f is from
the points D. The use of an interpolation model strictly bound by
the data makes sense only when the data is not affected by negligible
errors. On the contrary, if the data is affected by not negligible errors,
it would not make sense to bind a function and assume those values
because it could amplify the error.
Definition (Interpolation problem). Given n different values
(xi)i=1,...,n called knots, and n corresponding values (yi)i=1,...,n, we
want to determine a function f called interpolation function, that on
the knots (xi)i=1,...,n satisfies certain conditions, called interpolation
conditions. Such conditions, generally, are constraints that the inter-
polation function f (and/or its derivatives), must satisfy on the points
(xi, yi)i=1,...,n.
Definition (Approximation problem). Given n different values
(xi)i=1,...,n called knots, and n corresponding values (yi)i=1,...,n we want
to determine a function f called approximation function, in a way that
the distance between f(xi) and yi is minimum; the choice of the mea-
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sure of such a distance qualifies the approximation problem.
Interpolation and approximation provide two basically different mod-
els, even if historically they have been confusing. One of the reasons
is that among the approximation functions we could choose the ones
that in some knots xi assume the values yi, in other words we could
choose to work out functions that can also be interpolation functions.

3.2 Basis functions approach

A basis function is an element of the base of a function space. In such
a space, each function can be represented as a linear combination of
basis functions.
The well-known basis functions are:

• Polynomial basis

• Piecewise Polinomial basis

• Spline

• B-spline

When the number of interpolation points is high the polynomial does
not normally provide a reliable model because the higher the number
of points, the higher the interpolation polynomial degree, the polyno-
mial oscillations would also increase getting into a not always consis-
tent model with the points trend.
In order to decrease the polynomial degree and its oscillations, parti-
tioning the knots interval in contiguous sub-intervals and building the
interpolation model locally, that is on each sub-interval, could be a
good strategy. That allows us to determine the lowest degree interpo-
lation polynomial independently from how many knots we have.
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Anyway, the eventual discontinuities on the connections between poly-
nomials are not avoided so in order to determine a more satisfying
model it is desirable to be able to construct:

• a low polynomial degree;

• an smooth enough function along the whole interval.

The solution to this problem is provided by particular piecewise poly-
nomial functions called spline.

3.2.1 Polynomial basis functions

Polynomial basis functions are used for approximating because they
can be evaluated, differentiated, and integrated easily and in finitely
many steps using just the basic arithmetic operations of addition, sub-
traction and multiplication.
A polynomial of order n or of degree n− 1 is a function of the form

p(x) = a1 + a2x+ . . .+ anx
n−1 =

n∑
j=1

ajx
j−1

Although polynomials represent a flexible way to represent a function
for their easy computation, they have limited to appeal due to their
local nature, that depends on the choice of interpolation points, and
they have some problems in approximating the function on the ex-
tremes of large intervals. Moreover, the increase of the polynomial
degree does not necessary imply a better representation of the func-
tion, often, the contrary, strong oscillations arise. The situation may
be improved in different ways. One of this is to keep the polyno-
mial degree fixed, to split the intervals of interest into smaller pieces
and consider functions which are continuous on the defined intervals.
Such kind of approximation is called piecewise approximation. It is
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more flexible and it allows us to avoid large oscillation observed for
high-degree polynomial approximation.

3.2.2 Piecewise Polynomial Basis

Assume that the interval [a, b] is split intoM segments by a sequence of
points t = {tm}M

m=1 such that [a ≤ t1 ≤ t2 . . . ≤ tM ≤ b] the piecewise
polynomial function can be defined as following:
Let H be a positive integer. The corresponding piecewise polinomial
function f(t) ∈ PH,t (the space of polynomial order H with knots t)
of order H (degree H − 1) is defined by:

f(t) =
H−1∑
l=0

αlt
lχ {t ∈ [tm, tm+1]}

where χ {t ∈ [tm, tm+1]} is the indicator function defined on each subin-
terval [tm, tm+1).
The defined polynomial is obtained by a separate polynomial in each
interval, in term of basis functions it can be written as:

f(t) =
M∑

m=1

H∑
l=1

αlmφlm

where φlm = Ξ {t ∈ [tm, tm+1]}. The main disvantage of this defini-
tion is that the piecewise polynomial functions are not continuous or
smooth in the interior knots, this problem can be achieved by imposing
the following continuity conditions

fm−1(tl) = fm(tl) m = 1, . . . ,M

and

Dlfm−1(th) = Dlfm(th) m = 1, . . . ,M l = 1, . . . , H − 2.

A more direct way to proceed is to use a basis that incorporates these
constraints, the so called polynomials splines.
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3.2.3 Spline functions

Definition. Given the knots:

x1 < x2 < . . . xn,

a cubic spline function defined on the knots set K = {x1, . . . , xn} is a
function s(x) such that:

• s(x) ≡ p(x) ∈
∏

3 ∀x ∈ [xi, xi+1] , i = 1, . . . , n− 1;

• s(x), s′(x), s′′(x) are continuous functions on the interval [x1, xn] .

Given the points with coordinates (xi, yi)i=1,...,n, for building a interpo-
lation cubic spline function we work out a polynomial that represents
the spline in each interval. On each interval between the consecutive
knots [x1, x2] , . . . , [xn−1, xn] the spline function smust be a polynomial
with at most 3 degrees:

s(x) ≡ pi(x) = ai+bi(x−xi)+ci(x−xi)
2+di(x−xi)

3 ∈
∏
3

x ∈ [xi, xi+1] , i = 1, 2.

On each interval, then, it is required to determine four coefficients
ai, bi, ci, di and so altogether 4(n− 1) coefficients.
In general, a spline function with degree p (or with order p + 1), de-
fined on a subset [a, b] ⊆ <, is a piecewise polynomial function.
The set [a, b] is partitioned in intervals [P1, P2, ..., Pk−1] and t = [t1 < t2 < . . . < tk]
is a ordered knots subset or separation points of those intervals.
The number K of necessary knots so that the function is defined de-
pends on the degree p of the function, that is K > p+ 1.
A spline function s(p, t) takes advantages of the following properties:

• on each interval [tk, tk+1] (k = 1, . . . , K − 1), is a polynomial of
degree at most p;
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• allows derivatives up to order p− 1;

• its derivatives are continuous on the interval [a, b].

Every spline function of degree p on a set of knots t is unequivocally
determined by:

s(p, t) =
∑

αk(z − tk)
p
+ z ∈ [tk, tk+1]

where αk are the real constants. The function (z − tk)
p
+ is called

truncated power basis p.
The truncated power basis are piecewise polynomials and represent
bases for building spline function. The computation of spline function
by means of truncated power functions requires the definition of K +
p− 1 conditions.
In order to decrease the number of operations it could be worth using
a different generation base, such that the related functions are still
spline functions. This leads to the definition of B-spline.

3.2.4 B-spline

The B-spline functions of degree p compose a base in the subspace
of all the spline functions of degree p. Actually, a spline function of
degree p, defined on a knots set {tk}k=0,...,n, can be expressed as a
linear combination of B-spline functions Bi,p on the knots sequence
{tk}k=0,...,n:

S(t) =
m∑

i=0

PiBip(t)

where Pi are m + 1 control points, {t0, . . . , tn} a knots sequence, p is
the polynomial degree, and the functions Bip are the so called B-spline
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3.2. Basis functions approach

functions that are built in the following way:

Bi,1(t) =

{
1 ti ≤ t ≤ ti+1

0 otherwise

Bi,p(t) = t−ti
ti+p−1−ti

Bi,p−1(t) +
ti+p−t

tp−ti+1
Bi+1,p−1(t)

Therefore, a B-spline curve involve more data: a set of m+ 1 control
points, a vector of n + 1 knots and a degree p, and for them the
following expression must agree with: n = m + p + 1. To be more
accurate, if we want to define a B-spline curve of degree p with m+ 1
control points, we will provide m+ p+ 2 knots. On the other hand, if
a vector of n+ 1 knots and m+ 1 control points are given, the degree
of the B-spline curve will be p = n −m − 1. The B-spline functions
exploit the following properties:

1. Partition of unity: ∑
i

Bi,p = 1

2. No negativity:
the B-spline function are always no negative, in fact:

Bi,p(z) =

{
> 0 ti ≤ z ≤ ti+p+1

0 otherwise

3. Local support:
each integer ti can give univocally a B-spline function of degree
p whose support is the interval [ti, ti+p+1], that is, the function
is null outside that interval.

4. Recurrence:
B-spline functions of higher order can be obtained by the ones
of lower order through the recurrence formula:

Bi,p(t) =
t− ti

ti+p−1 − ti
Bi,p−1(t) +

ti+p − t

tp − ti+1

Bi+1,p−1(t)
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The B-spline curve S(t) is a way to represent a curve through each
component of a p degree curve. It takes advantage of the Strong Con-
vex Hull property: a B-spline curve is included in the convex domain of
its control polygon. Precisely, if t ∈ [ti, ti+1), then S(t) is in the convex
hull of the control points Pi−p, Pi−p+1, ..., Pi. If t ∈ [ti, ti+1), there are
just p+1 not null base functions (that is, Bi,p(t), ..., Bi−p+1,p(t), Bi−p,p(t))
on that interval. Since Bk,p(t) is the coefficient of the control point Pk,
just p + 1 control points Pi, Pi−1, Pi−2, .., Pi−p do not have null coeffi-
cients. Since on that interval the base functions are not null and their
sum is 1, their ”weighted” average, S(t), must lie on the convex do-
main defined by the control points Pi, Pi−1, Pi−2, .., Pi−p. The meaning
of ”strong” comes from the fact that S(t) lies on the smallest convex
domain.
Generally the B-spline functions do not go through the control points,
so neither through the starting and final point of the control polygon.
Nevertheless, if a knots has multiplicity is equal to the degree p of the
curve, the curve will pass through that point. For example, in order
to make a cubic B-spline function pass through the starting point, it
is necessary to collapse the first three knots: the knots sequence will
start with 0, 0, 0.
The B-spline curve exploits the property of Local Change: changing
the position of the control points Pi affects the curve S(t) only in the
interval [ti, ti+p+1). This comes from another important property of
the base B-spline functions. We must remember that Bi,p(t) is a not
null function in the interval [ti, ti+p+1). If t is not in that interval,
Bi,p(t) does not affect at all the computation of S(t) because Bi,p(t)
is null. This local change scheme is very important in drawing curves,
because we are able to modify a curve locally without changing the
global shape.
Furthermore, another important property is the Affine Invariance: if
an affine transformation is applied to a B-Spline curve, the result can
be achieved by the affine image of its control points. This is a useful
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3.3. How to approximate a histogram using a B-spline

property when we want to apply a geometrical transformation or even
affine transformation to a B-spline curve, because it establishes that
we can apply the transformation to the control point, which is very
easy, and once we have the control points transformed we have the
transformed B-spline that is the only one defined by those new points.
Then, we do not have to transform the curve.
In short, a B-spline function is basically a spline function with all its
properties and furthermore all the previous comments done up to now
are valid. It is possible to build a spline function and transform it in
a B-spline, and vice versa. The difference lies in the expression of the
curve. In the spline case we would deal with pp-form, or better, poly-
nomial piecewise form while in the B-spline case we would deal with
b-form. In the first case we will have so many coefficients as the spline
function order for each polynomial piece. In the other case the number
of control points will be established by the relation n = m+p+1. For
our purposes we liked using the B-spline function more because with
an equal number of knots we have a smaller number of parameters of
the model.

3.3 How to approximate a histogram us-

ing a B-spline

We would like to derive a smoother approximation from this histogram
to the underlying distribution. We can do this by constructing a spline
function f whose average value over each bar interval equals the height
of that bar.
If h is the height of one of these bars, and its left and right edge are
at L and R, then we want our spline f to satisfy(∫ R

L

f(x)

)
/ (R− L) = h
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or, with F the indefinite integral of f , i.e., DF = f ,

F (R)− F (L) = h · (R− L)

Figure 3.1: Histogram representation

So, with t(i) the left edge of the i-th bar, dt(i) its width, and h(i)
its height, we want

F (t(i+ 1))− F (t(i)) = h(i) · dt(i), i = 1, . . . , n,

or, setting arbitrarily F (t(1)) = 0,

F (t(i)) =
i−1∑
j=1

(h(j) · dt(j)) , i = 1, . . . , n+ 1.

46



3.3. How to approximate a histogram using a B-spline

Add to this the two end conditions DF (t(1)) = 0 = DF (t(n+1)), and
we have all the data we need to get F as a complete cubic interpolant
spline, and its derivative, f = DF , is what we want and plot, all in
one statement, (see figure 3.2).
Since our purpose is to be able to compare different histograms, we

Figure 3.2: Smoothing an Histogram by spline

are going to transform the obtained spline functions, according to the
basis function approach, in B-spline function.
What we get are as many control points as the number of histogram
bars. Since the relation m = n− p− 1 holds, having fixed p = 2 and
having imposed that the curve have to pass through starting and final
points, (i.e. the knots sequence is {t0, t0, t1, . . . , tn− 1, tn, tn}), we will
have m = n− 1. In that case the obtained spline function is perfectly
adapting the histogram.
A way to reduce the number of control points is to decrease the num-
ber of knots and/or to increase the spline function degree.
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The problem is how to find an optimal knots sequence.
The number of knots and the degree of B-spline is chosen low in order
to avoid overfitting and to have a parsimonious representation of his-
togram data. The degree of the B-spline usually do not exceed 3 and
the location of knots should be established in terms of the best fitting
function according to some experimental alternative number of knots,
for example among 3 and 7 depending from the number of classes.
The idea is, to build a spline function starting from a given number
of knots so that it can adjust the histogram in the best way. In the
previous case we saw that the spline function fits perfectly according
to the condition where in each bar the area is equal to the area down
to the spline function in the same interval. This produces that the
difference between those two quantities is equal to zero, therefore if
we regard that difference as error size we could say that we have a
null error and thus a perfect adaptation. But our purpose is not the
perfect adaptation to the histogram because in that way we would
aim to think of an empirical distribution that include the error term.
We want to obtain a spline function that approximates the histogram
except an error term (approximation error). So the starting point is to
define a way to compute the error. By the previous comments we can
consider measuring the error as the sum of the squares of the differ-
ences between the histogram bar area and the spline function area. In
this way we build the objective function to minimize in order to find
out the optimal sequence of knots. So we have to solve the following
bound-constrained optimization problem:

argmin
∑H

h=1

∫ Ri

Li
[s(t)− h(i)]2 dt

s.t. t0 ≤ t ≤ tn
|ti − ti+1| > (Ri − Li)

(3.1)

where Li, Ri and h(i) are respectively left edge, right edge and height
of the i-th bar.
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3.4. Histogram transformation process

In that way we are going to get a different knots sequence for each
histogram and for this reason the B-spline parameters will not be
comparable.
Since we can not determine an optimal sequence for every histogram,
the idea is to create a knots sequence as the average of the obtained
knots in each histogram. Later we will build an approximation spline
function for each histogram starting from the knots mean sequence.
So we will have comparable parameters of B-spline for each variable
and so we could use them for following calculation.

3.4 Histogram transformation process

The starting point of trasformation process is a single value units×variables
matrix where each unit is observed in N occasions. Starting from this,
it is possible to build histograms by pooling occasions. So a new ma-
trix is obtained where in each column there is an histogram variable,
(see figure 3.3).
The step of the process are summarized as follow:

Figure 3.3: Matrix of Histogram Data
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• Step 1: Histograms building.
We want to obtain standardized histograms with the same num-
ber of bars of the same width. Regarding the number of classes
the Strugres formula (1926) has been used: K = 1+log2N where
N is the number of occasions. Moreover, to have a comparison
among histogram we transform the histogram in [0, 1] by means:

y =
x−min(x)

max(x)−min(x)
(3.2)

where x is the occasions vector.
In this way we have built histograms with the same bins {t1, . . . , tK+1}(figure
3.4).

Figure 3.4: Bins sequence

• Step 2: Choose the number of optimal knots.
Let us choose {tk}k=1,...,K+1 as knots sequence, with t1 = 0 and
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3.4. Histogram transformation process

tK+1 = 1, and let use them as starting point to achieve the
optimal sequence of knots. As said before we want to obtain a
smaller number of knots within

[
int
(

k
2

)
− 1, int

(
k
2

)
+ 1
]
. Two

knots are fixed to the extremities, while the others are chosen by
the optimal process (3.1) inside the interval (0, 1). ¿To simplify,
from now on, we suppose to work on five knots.
So, we obtain three significant values for each histogram (the
other two are equal for all the histograms) that is a matrix as in
figure 3.5:

Figure 3.5: Matrix of the knots sequence

• Step 3: B-spline building.
The B-spline are constructed starting from the optimal knots
sequence t by means of

s(t) =
∑

PiBi(t).
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Our purpose is to compare the control points Pi and so the Bi(t)
must be built on the same knots sequence to get the same bases.

• Step 4: Average knots sequence computation.
In order to get the same knote sequence for each histogram vari-
able, the idea is to build a mean vector of the knots calculating
the mean for each column. (figure 3.6)

Figure 3.6: Average knots sequence

This knots sequence will be used (w.r.t. each variable) to calcu-
late approximation spline functions.

• Step 5: Calculation of parameters matrix.
Once we have the B-spline by the mean knots sequence, we will
build the matrix containing the control points that is the para-
meters of the approximation function which will be using during
the next analyses.
Since our purpose is approximating the histogram through a
spline function in order to minimize the error that we make in
the approximation process, we need another output information,
that is a index of goodness of fit. Therefore the index we are
take into account will be the minimum value coming from the
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3.4. Histogram transformation process

optimization process. Then, another output will be a matrix
containing the relative errors of each histogram.
Another important comment to be done is the following: we
started from histogram data that then were normalized in the
interval [0, 1] and we approximated them by means of B-spline
function whose control points will be calculated, to get informa-
tion about the histogram shape. Doing the transformation on
[0, 1] the histogram shape and the spline do not change. (Figure
3.7)

Figure 3.7: Comparing between an histogram and his traslated one

The two splines related to histograms will have the same control
points. But since a histogram is a symbolic information that
is characterized by three fundamental measures: location, size
e shape, we need to retrieve data about location and size. The
information about the histogram location come from (max(x)−
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min(x))/2, while the information about the size come from the
width of all the interval that is max(x)−min(x).

To sum it up, we have a matrix of p blocks (p is the number of vari-
ables) of order m× 3 (m is the number of symbolic units) that repre-
sents the information about the shape; three matrices of order m× p
where one gives us information about the location, another one about
the size and the last one about the goodness of fit of the spline to the
histograms. Those matrices will be taken into account in the following
stages.
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Chapter 4

Model Data Analysis

After having built the Model Data we propose how to analyze this
data. In this chapter we will present two methods: a generalization of
Principal Components Analysis in the case of three way matrix called
Multiple Factor Analysis and a Hierarchical Cluster Analysis based on
a definition of a distance between models.

4.1 Multiple Factor Analysis

Multiple factor analysis (MFA), proposed by Escofier and Pagès in
1982 [29], studies several groups of variables defined on the same set
of individuals. MFA seeks the common structures present in all or
some of these sets. The number of variables in each group may differ
and the nature of the variables (nominal or quantitative) can vary from
one group to the other but the variables should be of the same nature
in a given group. The goal of MFA is to integrate different groups of
variables describing the same observations. In order to do so, the first
step is to make these groups of variables comparable. Such a step is
needed because the straightforward analysis obtained by concatenat-
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ing all variables would be dominated by the group with the strongest
structure.
A similar problem can occur in a non-normalized PCA: without nor-
malization, the structure is dominated by the variables with the largest
variance. For PCA, the solution is to normalize each variable by di-
viding it by its standard deviation.
The solution proposed by MFA is similar: To compare groups of vari-
ables, each group is normalized by dividing all its elements by the
inverse of the first eigen-value which is the matrix equivalent of the
standard deviation. Practically, This step is implemented by perform-
ing a PCA on each group of variables. After normalization, the data
tables are concatenated into a data table which is submitted to PCA.
The data table consisting of a set of individuals (I) described by sev-
eral groups of variables (Kj) and each group corresponds to a table
Xj composed of vk variables. All the Xj table are joined to form a
single matrix X as in the figure 4.1.

Figure 4.1: Data Matrix X

So, the MFA consists of two steps:

1. Separate Analysis: Each table is analysed separately, that is,
J principal components analysis are performed, that is, one for
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4.1. Multiple Factor Analysis

each of the Xj tables. In each case, the first eigen-value for the
first factor is selected and denoted by λj

1

2. Global Analysis: PCA is run on table X, which is formed by
juxtaposing the J table Xj. In this analysis each of the Xj

tables is weighted by the inverse of the first eigen-value given by
the PCA of the proper table, 1/λj

1

The individual data sets are then projected onto the global analysis
to analyze communalities and discrepancies.
All elements (individuals, variables, groups) are represented in Euclid-
ean spaces. These space are named according to the objects they in-
clude:
RK individuals space (defined by all the variables),
RK

j individuals space defined by group j variables,
RI variables space,
Ej sub-space of RI spanned by variables of gropu j,

RI2
groups space.

As said be-

fore, the problem can be roughly decomposed through three items,
each one corresponding to a point of view:

(a) typology of individuals described by the whole set of variables,

(b) overview of relationships between variables,

(c) comparison of variables groups.

Items (a) and (b) are classic in factor analysis: Principal Components
Analysis; Multiple Correspondence Analysis. Item (c) overlaps several
objectives described afterwards.
Whatever the point of view, weighting of variables groups is neces-
sary to make the influence of group comparable in a global analysis.
Concretely, according to the factor analysis point of view, we want to
avoid the possibility of a single group having a dominant influence on
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the first factor (nothing can be required for further factors because
a mutidimensional group will always influence more factors than an
unidimensional one).
The weighting of groups brings about the first eigen-value of factor
analysis applied to the single group j became 1. Therefore, groups are
balanced in the following sense: in any direction, maximum inertia of
thhe sub-cloud assosiated to one group is 1. Thus, in a global factor
analysis, it is impossible for a single group to give rise to the first
factor.
Of course, group contributions to global analysis are not similar: an
unidimensional group cannot exert an important influence on more
than one factor; a multidimensional group will influence several fac-
tors.

The representation of individuals and variables correspond to the
classic aim of factor analysis, thai is to say:
- typology of individuals,
- typology of variables,
- links between the two typologies.

Each group defines a structure on the individuals set. A structure
defined by group j is expressed by the shape of cloud N j

I which rep-
resents an individuals set in PCA of Xj (N j

I belongs to RKj).
In order to compare clouds N j

I one to another, we need a superposed
representation of N j

I which sets up the structure common to the dif-
ferent clouds.

In order to get a global comparison of groups, we need a display
in which each group is represented by one points. In a space I × I
dimension, MFA searches a sequence of dimensions such as each one:
- is associated to a single direction of the variables, space RI . That
constraint necessarily reduces the goodness of fit but ensures the in-
terpretability of the dimensions.
- maximizes, with usual orthogonality conditions, sum of projections
(and not sum of squares). It possesses the disadvantage, very un-
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pleasant from a theoretical point of view, of being satisfied only by
dimensions and not by sub-space. But this disadvantage is the price
to pay in order to obtain properties, analogous to duality relation-
ships in factor analysis, which ensure coherence with previuos points
of view. Those properties are the following: - the s-order axe found
in the space RI2

is the scalar product matrix associated to the s-order
principal component of X found in RI . Hence, these directions have
the same interpretation;
- the coordinate of WjD (where Wj is the scalar products matrix asso-
ciated to group j and D is the individuals weights matrix) with respect
to the s-order axe (in RI2

) is equal to projected inertia of group j vari-
ables along yhe direction defined by the s-order principal component
in RI . A proximity between two groups along direction s indicates
that the common factor s has the same importance in the two groups.

4.2 Clustering analysis for Model Data

As in chapter 2 we had to define distance measures for interval data
and histogram data, now we have to define a distance measure for
Model Data. The idea is to use the Inter-Models distance proposed by
Lauro, Romano, Giordano (2006) and generalize it to this particular
kind of data.
The distance introduced in [52] is based on a linear combination of two
distances embedding information both on the estimated parameters
and on the model fitting.

4.2.1 The Inter-Model Distance

Lauro, Romano, Giordano introduce a Inter-Model (IM) distance which
is able to take into account both the analytical structure of the models
-through the difference between the estimated parameters- and the in-
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formation about the model fitting through the difference between the
adjusted Adj −R2 indexes related to each pair of models.
They consider a collection of utility modelsM =

{
m1, . . . ,mj, . . . ,mJ

}
,

where each entity mj is a K-dimensional vectors defined as:

mj =
(
wj

1, . . . , w
j
k, . . . , w

j
K

)
(4.1)

where the values of wj
k is the information related to the j− th model.

The first (K−1) values are the estimated model parameters, the K-th
value is the information related to the model fitting. For each of the J
fitted utility models the part-worth coefficients (wj

1, . . . , w
j
k, . . . , w

j
K−1)

are assumed to be estimated by Ordinary Least Square (OLS). They
propose to use a statistical index of model fitting (i.e. the Adj −R2)
as supplementary information about the utility functions in order to
exploit the actual predictive power of the utility model.
Thus, let M the data collection (table 4.1) it consists of two kinds of
information: the analytical terms and the statistical model fitting.

Utility models Analytical functional form Statistical model fitting
Model 1 w1

1, . . . , w
1
k, . . . , w

1
K−1 w1

K

. . . . . . . . .
Model j wj

1, . . . , w
j
k, . . . , w

j
K−1 wj

K

. . . . . . . . .
Model J wJ

1, . . . , w
J

k, . . . , w
J

K−1 wJ
K

Table 4.1: The data collection

The two pieces of information are combined to define the following
measure:

IM(mj,mj′|λ) = λIMp + (1− λ)IMr (4.2)

with λ ∈ [0, 1]. The IM measure is a convex combination of two quan-
tities IMp and IMr, where IMp is the L2-norm between the estimated
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parameters:

IMp =

[∑K−1

k=1

(
wj

k − wj′
k

)2
] 1

2

(j 6= j′) (4.3)

and IMr is the L1-norm between the Adj −R2:

IMr =
∣∣∣wj

K − wj′
K

∣∣∣ (j 6= j′). (4.4)

Let us consider J models mj from an arbitrary input space Ω, the
function

MD(mj,mj′|λ) : Ω× Ω → R+

satisfies the following conditions:

1. IM(mj,mj′|λ) ≥ 0 and IM(mj,mj′|λ) = 0∀mj = mj′ ∈ Ω

2. IM(mj,mj′|λ) is simmetric, i.e.IM(mj,mj′|λ) = MD(mj′,mj|λ)

3. IM(mj,mj′|λ) ≤ IM(mj,mj∗|λ)+IM(mj∗ ,mj′|λ)∀mj,mj′,mj∗ ∈
Ω

Propositions 1) 2) are direct consequence of the IM definition as a
convex combination of the two euclidean distances. The 3) can be
shown as follows:
For the first adding term we have for each j 6= j′ 6= j∗:

λ

[∑K−1

k=1

(
wj

k − wj
′

k

)2
] 1

2

≤

λ

{[∑K−1

k=1

(
wj

k − wj∗
k

)2] 1
2

+

[∑K−1

k=1

(
wj∗

k − wj
′

k

)2
] 1

2

} (4.5)

while, for the second adding term we have:

(1− λ)
∣∣wj

K − wj′
K

∣∣ ≤ (1− λ)
{∣∣∣wj

K − wj∗

K

∣∣∣+ ∣∣∣wj∗

K − wj′
K

∣∣∣} (4.6)
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then

ID(mj,mj′|λ) ≤λ
[
IDp(m

j,mj∗|λ) + IDp(m
j∗ ,mj′|λ)

]
+

+ (1− λ)
[
IDr(m

j,mj∗|λ) + IDr(m
j∗ ,mj′|λ)

]
(4.7)

that is

IM(mj,mj′|λ) ≤ IM(mj,mj∗|λ) +MD(mj∗ ,mj′|λ).

It follows that the defined function IM(mj,mj′|λ) is a distance. The
value of λ plays the role of a merging weight of the two compo-
nents IMp and IMr. In the trivial case when λ = 1 the distance
IM(mj,mj′|λ) is defined as a function of the coefficients. We looks
for a λ-value for the set of models, taking the explicative power of the
theoretical models into account.
The definition of the model distance IM takes the explicative power
of each pair of models into account, so that two models with simi-
lar estimated coefficients are differentiated for their fitting values. Of
course, if two models have different coefficient values they should not
be moved closer because of a similar fitting measure. For this reason,
the trimmer value of λ should not be less than a given level.

4.2.2 Clustering utility functions

To classify the J utility functions we need to use an unsupervisioned
clustering technique on these K models parameters. Classical method
as hierarchical classification can be suitably used for this purpose. In
the following we describe the hierarchical classification method wich
is particulary well adapted here.
Our proposal for performing a hierarchical segmentation strategy dif-
fers with respect to the way in which the similarity between two re-
spondents is determined. In the definition of the distance MD the
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value of λ has not been univocally identified. Indeed, the choice of λ
is determined contextually by the classification phase.
The proposed strategy consists in replicating the classification phase
and in computing the related cophenetic coefficient on a finite grid of
λ ∈

[
1

K−1
, 1− 1

K−1

]
. The selected λ∗ minimizes the distortion measure

of the classification. At the optimum the value of λ have to maximize
the Cophenetic Correlation Coefficient (Coph) defined as:

Coph(mj , mj′
|λ) =

P
mj<mj′

�
MD

mj ,mj′ −MD
��gMD

mj ,mj′ − gMD
�

�P
mj<mj′

�
MD

mj ,mj′ −MD
�2P

mj<mj′

�gMD
mj ,mj′ gMD

�2
� 1

2
(4.8)

where MDmj ,mj′ is the distance between each pairs of rows in the

matrix M(J,K) and M̃Dmj ,mj′ corresponds to the linkage distances be-
tween the objects paired in the clusters.
This coefficient measures the distortion of the classification, indicating
how the data fits into the tree-structure obtained.
Given a set Jof model

{
m1, . . . ,mj, . . . ,mJ

}
, the steps of the algo-

rithm, on which the strategy is based, can be summarized as follows:

1. initialization phase: the computation of MDp and MDr is car-
ried out, and a grid of λ ∈

[
1

K−1
, 1− 1

K−1

]
is settled with a user

defined granularity;

2. classification phase: ∀ λ the MD are computed, and according
to an aggregating criterion (e.g. Ward) the clustering algorithm
is performed. The linkage distance relating the tree structure
(dendrogram), about each pairs of objects, is retrieved;

3. optimization phase: for all cluster structures the cophenetic co-
efficient is obtained, and the value of λ∗ is choosen so that the
cophenetic coefficient is maximum;
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The final partition is settled according to the distance:

MD(mj,mj′|λ∗) = λ∗MDp + (1− λ∗)MDr (4.9)

with λ∗ ∈
[

1
K−1

, 1− 1
K−1

]
.

The outcome of a hierarchical classification strongly depends on the
choice of between-individuals and between-clusters distance. Choos-
ing the criterion of the maximum variation enables us to obtain homo-
geneous classes, losing between classes heterogeneity. The hierarchi-
cal classification is carried out with the Ward agglomerative criteria,
which gathers, at each step, the closest clusters. The number of clus-
ters is chosen by visually inspecting the hierarchical tree structure.

4.2.3 Distance between Model Data

In the case of Model Data we have p block matrix where each one can
be seen as a data collection M presented in the 4.2.1; the coefficient
are the control point of the b-spline and the model fitting is the index
of goodness of fit (I) proposed in the chapter 3. Besides, we have
another two pieces of information on the location and the size indicated
rispectively with a and b. So our idea is to reformulate the Inter-Model
distance as the sum of 3 components:

1. a convex linear combination of two quantities, the control points
and the error term;

2. a L1 distance between the location terms;

3. a L1 distance between the size terms.

Practically we have the following distance: ∀j 6= j′

λ

[
K∑

k=0

(pjk − pj′k)
2

] 1
2

+(1− λ) |εj − εj′|+ |aj − aj′|+ |bj − bj′| (4.10)
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4.2. Clustering analysis for Model Data

We can show that 4.10 is yet a distance:

The new proposal is to generalize this distance in the case of block
matrix in the following way:

H∑
h=1

λh

[
K∑

k=0

(pjkh − pj′kh)
2

] 1
2

+ (1− λh) |εjh − εj′h|+ |ajh − aj′h|+ |bjh − bj′h|


(4.11)

Let us notice that the coefficients λh are individually optimized to
define the best distance which discriminates among the N individual
models, for each variable.
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Chapter 5

A case study on real Data

In this chapter it is proposed an application on real data of the meth-
ods already described earlier in this work. The goal is to show how
the proposed methodology could enhance the classical data analysis
based on “punctual” data.
In particular, the case study will allow to better understand how “his-
togram data” can describe complex phenomena by enriching the in-
formation at hand in terms of distributional shapes.
The database under investigation refers to 30 stocks of S&P MIB ob-
served from 2004 to 2005 regarding some variables as closing price,
opening price, daily minimum and maximum prices, adjusted closing
price, and volume.
All the methodologies have been implemented through peculiar rou-
tines created in Matlab able to calculate the Model Data and the
Cluster Analysis, while for the Multiple Factor Analysis the Xl-stat
packet has been used.



A case study on real Data

5.1 Data Structure

The available data have been organized in a matrix of the dimension
6000 (200 days for 30 stocks) times 6 variables. The first step is to
create new variables, which are typical for financial and for techni-
cal analysis, from this initial information: the return calculated as
the difference between two subsequent days of closing prices and the
volatility of five days calculated as a standard deviation of the return.
Notice that to construct these new variables, five observations for each
stock are loss.
Consequently, some other variables have been computed: the “mean
open-close” and the “size open close” calculated as the average and the
absolute deviation between the open and close variables. The same
reasoning has been applied by computing the “mean low-high” vari-
able and the “size low-high” one.
Therefore, the whole set of variables considered in the analysis is:
“mean open-close”, “size open-close”, “mean low-high”, “size low-
high”, “volumes”, “adj close”, “returns”, “volatility”.
At first glance, the observed data matrix leads us to the elimination
of the “seat pagine gialle” stock because it shows no variation and it
is useless to our aims.
The data matrix will therefore be structured as in the figure 5.1.
The first step is to compute the histogram data for each variable and

to build the histogram matrix as illustrated in figure 3.3.
Thus, each histogram in this matrix is approximated by a B-spline

functions according to the algorithm illustrated in the third chapter.
It brings back to the model matrix (see figure 5.2) synthesized through
the parameters so obtained.
Therefore, we work on the block matrix (see figure 1.3) where each

block is formed by the model parameters which now become variables
describing all stocks. (See figure 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10).
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5.1. Data Structure

Figure 5.1: Financial Data Matrix

Figure 5.2: Histogram Matrix approximated by b-spline

Figure 5.3: Table of “Mean Open-Close” variabile
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A case study on real Data

Figure 5.4: Table of “Size Open-Close” variable

Figure 5.5: Table of “Mean Low-High” variable

Figure 5.6: Table of “Size Low-High” variable

Figure 5.7: Table of “Volume” variable

5.2 Case study: Multiple Factor Analysis

In this case study it is supposed that financial analysts wish to use
the data in order to describe the different assets and select a suitable
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5.2. Case study: Multiple Factor Analysis

Figure 5.8: Table of “Adj Close” variable

Figure 5.9: Table of “Returns” variable

Figure 5.10: Table of “Volatility” variable

portfolio according to some desirable features of the stocks.
Indeed, it is essential to describe the whole set of the S&P MIB shares
according to their own structural characteristics. Let us note that such
features has been captured by the model parameters coding since they
take into account valuable information about location (level) and size
(variability, i.e. risk) for each asset.
Aiming at exploring such characteristics we exploit the powerful tool
of graphical display and geometrical interpretation given by multidi-
mensional data analysis.
According to the three-way data structure a Multilple Factor Analysis
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is carried out. The analysis is performed by considering 8 matrices
(one for each variable). Each matrix is 29 times 6, where the six
characteristic parameters of the models are in columns: the first three
parameters are the three B-spline control points, the fourth parameter
is the error term, the fifth and the sixth are the location and the width
of the histogram.
The first phase of the AFM consists of eight separate principal com-
ponent analysis, one for each matrix. In the following some results are
showed.
The analysis executed on the first block regards the “mean open-close”
variable; the most significant factorial axis are the first two that are
able to explain 68, 41% of the variability (figure 5.11).

Figure 5.11: Eigenvalue of first matrix

Studying the correlations between the variables and the factorial
axis it is evident that the variables characterizing the first factorial axis
are “mean open-close error”, “mean open-close location” and “mean
open-close width”, while the second factorial axis is characterized by
the “mean open-close1”, “mean open-close2”, and “mean open-close3”
variables.

Therefore we are able to establish that the first factorial axis gives
us information on the size of the histogram while the second one gives
information on the shape (see figure 5.13).

The combined graphic of observation and variables allows us to
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5.2. Case study: Multiple Factor Analysis

Figure 5.12: Correlation between variables and factor of the first ma-
trix

Figure 5.13: Correlation Cirle of the first PCA

decide which stocks are characterized by more or less high shape and
size values.

You can clearly see (figure 5.14), for example, that the Banca An-
tonveneta is characterized by high location and size values of the
“mean open-close” variable. Furthermore the first axis is also charac-
terized by the error parameter which allows us to stabilize for what
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A case study on real Data

Figure 5.14: Joint grafhic of observation and variables (first PCA)

stock we have obtained the better or worse approximation.
In the analysis of the “size open-close” variable, it results that the

first two factorial axis explain 68, 99% of the variability and that the
first factorial axis is characterized by the 1st, 2nd, and 3rd parameters
that give us information on the histogram shape while the second axis
is characterized by location and width, i.e. information on size.
In the correlations matrix between variables and factors (figure 5.16)

Figure 5.15: Eigenvalue of second matrix

is shown that the error parameter is strongly correlated to the third
axis.

In the joint graphic of observations and variables (figure 5.18) is
clear, for example, that Banca Antonveneta is also characterized by
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5.2. Case study: Multiple Factor Analysis

Figure 5.16: Correlation between variables and factor of the second
matrix

Figure 5.17: Correlation Cirle of the second PCA

high values in the location and width parameters of the “size open-
close” variable.
Similar results can be achieved when considering the analysis of the

other variables.
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A case study on real Data

Figure 5.18: Joint grafhic of observation and variables (second PCA)

The second part of the MFA consists in making a weighted Princi-
pal Component Analysis on the whole matrix, which weights are the
value of the inverse of the eigenvalues found in the separate analysis.
The first results of the Multiple Factor Analysis regard the eigenvalues
of the weighed Principal Components Analysis. The first two factors
explain 42.19% of the variability figure 5.19).
In this phase of the analysis we have not been interested in studying

the correlation among the single parameters of different blocks, (i.e.
we are not interested in knowing if the first parameter of the first vari-
able is correlated to the second parameter of another variable).
What we want to evaluate is the relationship among variable groups.
The graphic 5.20 shows the map of variables. It highlights the con-
nections between the different variables, in terms of proximity or sim-
ilarity.

This is analyzed by studying the chart of RV coefficients (figure
5.21) that, varying between zero and one, is very easy to interpret.
This index represents the correlation between two groups of variables
and is the sum of the squares of the correlations among the columns of
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5.2. Case study: Multiple Factor Analysis

Figure 5.19: Scree plot

Figure 5.20: Map of tables

the two groups of variables. It is valuable the proximity between the
variables representing the prices like “mean open-close”, “mean low-
high” and “adj-vol”; a proximity between the variables that expresses
variability as “size open-close”, “volatily” and “returns”.
Interesting output is achieved from the correlation circle of the partial
axis (see figure 5.22) and from the mapping of the observations (see
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A case study on real Data

Figure 5.21: RV Coefficients

figure 5.23).
We can see that the first axis represents the risk versus the return,

Figure 5.22: Correlation cirle of partial axis

and therefore to the left we find stocks with high returns and larger
volumes exchanged, while to the right we find stocks with high prices
and with a larger risk.
On the other hand the second axis is characterized by stocks that are
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5.2. Case study: Multiple Factor Analysis

Figure 5.23: Map of observations

independent from price, that is they do not act by market logic both
neither from a positive nor from a negative aspect. The negative as-
pect can be linked to high form parameter values. Toward the base
we find stocks which reading make us lean towards an interpretation
linked to stock (low form parameter values).
Since now, the analysts can understand the main behavior of the mar-
ket according to the above description. Anyway, we may wish to select
a set of assets to realize an “optimal” portfolio according to the char-
acteristics under study. At this aim, the second phase of the proposed
strategy will be carried out. In the following subsection the clustering
phase will be described.
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A case study on real Data

5.3 Case study: Cluster analysis

It should be noticed that the distance between two individuals in the
MFA map is the Euclidean one and all the model parameters (i.e.
the variables) share the same importance. The use of a well defined
model-distance is able to classify them.
In this section we show the output of the cluster analysis obtained by
using the inter-model distance for model data 4.11 proposed in the
fourth chapter.
The algorithm produces the tree structure shown in figure 5.24. Tree

Figure 5.24: The tree structure of the Models

structure shows shows three main groups:

Group 1: Bca Antonveneta, Ras, Autostrade.

Group 2: Telecom Italia, Tim, Bca Fideuram, Fiat, Enel, Snam, Medi-
olanum, Capitalia, Unicredito, Bnl, Bca Intesa, Finmeccanica,
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5.3. Case study: Cluster analysis

Edison, Terna, Bca Monte Paschi.

Group 3: Saipem, Mediaset, Alleanza Ass, Stmicroelec, Mediobanca, San
Paolo Imi, Luxottica, Bp Unite, Bco pop Vr e No, Generali Ass,
Eni.

Indeed some similarity between stocks are expected: groupings clearly
defined (banks, insurance companies and utilities/ privatized); Clus-
ters similar to corporate governance as banche popolari (Popolari
Unite and Popolare di Verona and Novara); Enel, Snam Edison (Utili-
ties) but also Telecom and Tim (fusion); privatizations (Finmeccanica
and Terna).

In general, different factor have contributed on the creation of this
clusters. To determine the characteristics of each group, we have built
the prototype asset by computing the average of the parametrers in
each gruop and then reconstruct the Mean Model. We have the three
prototype shown in the figure 5.25. The b-spline, so reconstructed,
give us the information on histograms shape for each variable of each
group. Furthermore, we need to consider, for each B-spline, the para-
meter λ (that give us the quality of information), the location para-
meter and the size one.
In the figure (5.26, 5.27, ??,5.29,5.30,5.31,5.32,5.33) we have plotted,
for each variable, the variability against the location. The ideal stocks
are located in the lower right, according to a pseudo mean-variance
analysis.

As a rule of thumbs, we may decide to choose the best performing
cluster and interpret it as an optimal portfolio. Anyway, let us con-
sider that different features of the stocks can lead to different choices.
In the case study, the Cluster 1 portfolio seems to be superior accord-
ing to location characteristics, but looking at the Size characteristics
the Cluster 2 looks like a more conservative portfolio (less variability
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A case study on real Data

Figure 5.25: Prototypes of the three groups

and so less risk).
In general, in this case study, we refer to a stocks as an object

measured through variables represented by models. Each model rep-
resents a global evaluation of the risk on each stock. If the objective
of a financial operator is to reduce such risk, the reading of the size,
locations and shape synthesized in our scheme is valuable. In par-
ticular, what is important is certainly the interval among values that
one could create in a specific period. Where this interval is particu-
larly high, using the changes in closing prices month by month as a
reference, this would mean an increase in volatility on the market. A
growth in volatility on the market would clearly mean an increment
of the financial risk; an increase of the reduction risk for the finance
company. Each single component of portfolio may therefore represent
a different risk component if you consider it from this aspect.

In finance we measure these risk models using a specific method-
ology called VaR value at risk, that is you take single returns (usu-
ally of portfolio) and you calculate the expected loss with a definite
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5.3. Case study: Cluster analysis

Figure 5.26: Plane variability against location of the “mean open
close” variable

Figure 5.27: Plane variability against location of the “size open close”
variable
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A case study on real Data

Figure 5.28: output2

Figure 5.29: Plane variability against location of the “size low high”
variable
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5.3. Case study: Cluster analysis

Figure 5.30: Plane variability against location of the “volume” variable

Figure 5.31: Plane variability against location of the “Adj Close” vari-
able

85



A case study on real Data

Figure 5.32: Plane variability against location of the “Returns” vari-
able

Figure 5.33: Plane variability against location of the “Volatility” vari-
able
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5.3. Case study: Cluster analysis

confidence interval from a distribution. The hypothesis, that should
absolutely be discussed according to many authors, is if the normal
used as distribution of base in the VaR is reasonable in these analysis.
The answer is usually that the stocks tend not to act in just one way
and therefore different hypothesis should be made.

Usually in this literature (for whom has gone further in measuring
the quantitive risk from VaR) you use different instruments of statisti-
cal kind in measuring the risk. Typically non-parametric instruments
as the study of wavelets (in different contexts of study, e.g., of finan-
cial time series). In other cases you use non-parametric models to
estimate the risk, without any hypothesis, and using non-parametric
methods estimating distribution density (and from there you arrive at
risk evaluations not based on the hypothesis of the normality).

The models “model” the risk of each possible component subject to
symmetric shocks on the system. The groups find models with similar
characteristics starting from the shocks of the system and therefore
they are important in quantity asset allocation methods since they
allow us to visualize the risk in a more consistent form compared to
current methods. The groups would therefore be stocks that had the
same risk characteristics dinamically speaking where stocks “outside”
would have different characteristics (and different risk “forms”).
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Conclusioni

The Symbolic Data Analysis techniques that have been developed dur-
ing the last decade, represent new and well adoptable instruments for
the complex nature of real phenomena. Different methods are devel-
oped for different types of data to analyze, which is the starting point
for any statistical analysis.
Data of an interval nature can be those concerning a “disciplinary”
where each individual is characterized through variables whose values
are inside a range. Hence the necessity to analyze phenomena where
the data are interval values rather than punctual. However, the in-
terval data give us little information regarding the internal variability
while you assume the hypothesis of uniform distribution throughout
the interval of phenomenon variation. With the histogram we can ob-
tain this ulterior piece of information about variabillity in terms of the
divergent distribution of the range.

The histogram construction represents a key factor for Histogram
Data Analysis. In this thesis we were supposed to have data from
big databases and to unite them regarding the different occasions in
which a certain number of statistical units have been observed. The
ground hypothesis is that histograms thus constructed would have the
same number of classes and that they could exceed that same numer-
ousness using the density histogram. The construction of histograms
is a problem that is still worked on to determine the optimal number
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of classes and their width. This problem is by-passed when working
with instruments that allow us to ignore the empirical error.
There are two different types of histograms in literature; the histogram
deriving from punctual data, and the histogram deriving from Sym-
bolic Data [6]. This could be interesting if we start with interval
variables and we want to unite them in order to build a histogram.
For example, in the dataset analyzed in the fifth chapter, if we had
considered the interval [min,max] as a variable of each stock and for
each stock we had n intervals, referred e.g. to n days, we would have
built a histogram based on the overlapping of intervals.

Some characteristics of the histogram are relevant as, e.g. the av-
erage of median, the range, the second, third, and fourth moments
on which we base the concept of variance, symmetry and kurtosis.
The confrontation of these characteristics is fine when we consider
normal models or models that are referrable through transformation.
A more flexible and immediate approach could be the one based on
the confrontation of corresponding classes, where this approach indeed
includes the implicit error in every statistical survey in the confronta-
tion.

On these grounds we build the matrix of the histogram data that
ensures a histogram which corresponds to every individual and to every
variable. Starting from a histogram matrix, we arrive to the problem
of analyzing it.
The techniques developed up to the present work on the density of
probability or on the cumulated frequencies of the histograms. This
thesis want to supply an alternative suggestion regarding histogram
analysis. Based on the idea that the histogram=model+error we re-
place each histogram with an approximation function to analyze spe-
cific parameters.

The type of function used to approximate the histograms charac-
terizes the choice of the parameters of the model.
In the case of B-splines that are characterized by their capacity to ad-
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just themselves to represent rather smooth curves, we have considered
the so called control points as parameters that give us information on
the histogram form. This form is not referable to a known density
function and is defined by parameters not statistically interpretable.
In a different context we could consider approximating histograms
through density functions of probability as long as they enter in a
family of functions and have the same number of parameters and as
long as the latter are comparable. The last case brings a certain inflex-
ibility to the model although contributing with a notable simplicity
and interpretation. On the other hand the proposed approach results
more general considering the former case as a particular case but of-
fers major flexibility in the choice of model and a possible situation
comparability not referable to one single theoretical model.
Alternative proposals are the use of moment generating functions or
“Lambda Generalized” [22] that can represent a compromise between
flexibility and statistical meaning.

In all cases, the objective is, however, to obtain an appropriate
transformation of the original histogram data into a series of approx-
imate function parameters for which the data matrix consists in as
many parameter blocks as the histogram variables consider.
The methodologies of analysis of this kind of data refer to two types of
classical techniques of Multidimensional Analysis; Principal Compo-
nents Analysis and Cluster Analysis. The former aims at pointing out
the structural relationships among the histogram variables, the latter
has the intention to recognize similarities and homogeneous groups of
symbolic units described by a series of histograms.
In the first case the use of factorial techniques for the study of block
matrices, as the Multiple Factorial Analysis proposes, in this context,
becomes central.
This does not exclude the possibility to use the proper methods of the
three-way-analysis with the advantage to confront the variable para-
meters transversally one by one, (see figure 5.34).
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Figure 5.34: Three way array

To classify symbolic models it becomes relevant to define an ade-
quate distance.
The proposed distance (4.11) is the sum of three distances regarding
the three characteristics of a symbolic data, the first addend refers to
the shape the second one to the location and the third one to the size
of the histogram. In this definition not only the comparison of the
parameters of each symbolic model becomes relevant, but also their
grade of adjustment to the histograms for which the first component
is a convex combination of parameters regarding the shape and the
approximation error.
In our proposal equal importance has been given to the three addends,
but that does not exclude that these weights can be defined by the
researcher, based on the problem to analyze. For example, if we were
interested in studying a classification based solely on shape we could
ignore the other two components.
An ulterior development could be to search for optimal weights that
respond to the need of more internally homogeneous symbolic models
but maximally different among themselves.

The representation of the symbolic model prototype to describe
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each class represents an unsolved problem. In the case of represen-
tation through hypercubes, assuming the independence among vari-
ables, it furnishes adequate desription to the symbolic objects case,
described by interval variables, pointing out the three fundamental
aspects of these objects, which are location, size, and shape.
In the case of symbolic models relating dimension of the symbolic ob-
ject there is not a simple geometrical description, if not the respective
sets of definitions of the adopted functions.
In figures 5.35, 5.36, 5.37qualitative representations of symbolic data
are shown.

Figure 5.35: Qualitative representation of interval data

In these representations we have the information on interval vari-
ance, but not on the covariance between the two objects.
Looking at factorial synthesis, where each factor constitutes an inde-
pendent variable, and so, in our case, it is in itself a symbolic model;
the covariance problem is in fact exceeded.
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Figure 5.36: Qualitative representation of histogram data

Figure 5.37: Qualitative representation of model data
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Appendix A

Routine in Matlab Language

In this appendix is reported the Matlab routine. Staring from a matrix
in which there are p variables and n units observed in k occasion, the
first step is to build histograms pooling the occasions for each unit.
In this way we will have a istogram matrix X of n× p order.
Successively, histograms will be replace by b-spline throught a bound-
constrained optimization problem. Then Model Data will be built and
each histogram will be substitute by a 6-dimensional vector composed
of three control points, an error term, and the location and size terms.
This new type of data will be classified with the methodology pro-
posed in the fourth chapter.
For the Multiple Factor Analysis the Xl-stat packet has been used.
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Routine in Matlab Language

A.1 Model Data Building

function [ptfin, errfin, location2, size2]=model(X,d)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% MODEL trasforms a thiny data matrix in model data matrices %

% %

% INPUT PARAMETERS: %

% X: bidimensional array (nd by p). Columns represent p %

% variables, while rows contain n occasions for each of %

% d symbolic units %

% d: scalar. It is number of symbolic units %

% %

% OUTPUT PARAMETERS: %

% ptfin,location2,size2: bidimensional arrays. They contain %

% information about model used for each symbolic units %

% errfin: bidimensional array. Approximation error %

% resulting in substitute symbolic unit by model %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Build 1 by d structure array where each fields (symbolic unit)

% is a n by p array

[n,p]=size(X);

k=n/d;

for i=1:d

data(i).X=X((i-1)*k+1:i*k,:);

end

for i=1:d %for each unit

% Compute models that describe data by means of bspline approximation

% and return model parameters

[nodi location ampiezza]=model1(data(i).X,0);

% save model parameters in matrices

nodi2(i,:)=allin_nodi(nodi);

location2(i,:)=location’;

size2(i,:)=ampiezza’;

end

% compute mean knots sequence

medie_nodi=mean(nodi2);

num=size(medie_nodi,2)/3;

media_nodi=reshape(medie_nodi,3,num)’;

for i=1:d %for each unit

% approximate data by means of bspline built starting from the same

% knots sequence
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[punticontrollofinali errorefinale]=modelfin(data(i).X, ...

media_nodi,0);

% save model parameters in matrices

ptfin(i,:)=allin_nodi(punticontrollofinali);

errfin(i,:)=errorefinale’;

end

% data: is a 1 by d structure array where each fields is %

% a n by p array; d, n and p are respectively the %

% number of different units, occasions and variables %

%------------------------------------------------------------------------------------

function [nodifin location size2]=model1(B,dis)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% MODEL1 builds histograms pooling occasions for each symbolic %

% unit and for each variable. Then histograms are approximate %

% by B-spline functions. %

% %

% INPUT PARAMETERS: %

% B: bidimensional array (n by p). Columns represent p %

% variables, while rows contain n occasions of one %

% symbolic unit %

% dis: if dis=0 no graphical output are displayed %

% if dis=1 graphical output are displayed %

% %

% OUTPUT PARAMETERS: %

% nodifin: bidimensional array. ????????? %

% location,size2: bidimensional arrays. They contain %

% information about location and size of histogram data %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

numosserv=size(B,1);

% Compute number of classes to be used for building histograms with Sturges

% Formula

numclassi=1+ceil(log2(numosserv));

A=B’;

for i=1:size(A,1)

% Standardization of histogram

Y1=(A(i,:)-min(A(i,:)))/(max(A(i,:))-min(A(i,:)));

Y(i,:)=Y1;

location(i,:)=min(A(i,:));

size2(i,:)=max(A(i,:))-min(A(i,:));
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% Compute histogram

[heights,centers] = hist(Y(i,:),numclassi);

heights=heights/size(Y,2);

Sum=sum(heights)

%Plot histogram if required

if dis==1

figure(i)

bar(centers,heights,1);

hold on

end

%compute bins sequence

n = length(centers);

w = centers(2)-centers(1);

t = linspace(centers(1)-w/2,centers(end)+w/2,n+1);

% set upper and lower bound

for j=1:3

lb(j)=eps;

ub(j)=1-eps;

end

%initialize starting point

nodi0=[0.25 0.50 0.75];

% Compute knots sequence that minimize error due to approximation of

% histogram by B-spline

[nodi,fval,flag,output]=fmincon(@(nodi)myfun(nodi,heights,t),nodi0,...

[],[],[],[],lb,ub,@(nodi)mycon(nodi,t));

nodi_finali=sort(nodi);

nodifin(i,:)=nodi_finali;

%Plot B-spline and its control polygon if required

if dis==1

Dsp = costruzione(nodi_finali,t,heights);

diff(nodi_finali);

% Compute control points (px,py)

pix=Dsp.knots;

dimnodi=size(pix,2);

for k=1:dimnodi-4;

a(k)=0;

for j=k+1:k+3;

a(k)=a(k)+sum(pix(j));

end
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px2=a/3;

end

px=px2(2:4);

py=Dsp.coefs(2:4);

fnplt(Dsp,’-g’)

plot(px,py,’:g’);

end

end

%------------------------------------------------------------------------------------

function nodi2=allin_nodi(nodi)

[n,p]=size(nodi);

nodi2=0;

for i=1:n

nodi2=[nodi2 nodi(i,:)];

end

nodi2(1)=[];

%------------------------------------------------------------------------------------

%------------------------------------------------------------------

% Computing B-spline through an interpolate spline

% with a fix knots sequence.

%

function Dsp = costruzione(nodi,t,heights)

numt=size(t,2);

numnodi=size(nodi,2);

nodi=sort(nodi);

for k=1:numnodi

i=1;

while (nodi(k)>t(i+1))

i=i+1;

end

altezza(k)=heights(i);

end

nodi=[min(t) nodi max(t)];

Fvalsext=[0 altezza 0];

sp=spline(nodi,Fvalsext);
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Dsp=fn2fm(sp,’B-’);

%------------------------------------------------------------------------

%

function f = myfun(nodi,heights,t)

numt=size(t,2);

Dsp=costruzione(nodi,t,heights);

f=stimaerrore1(Dsp,t,heights,numt);

%------------------------------------------------------------------------

function [c,ceq] = mycon(nodi,t1)

nodi=sort(nodi);

nodi=[min(t1) nodi max(t1)];

numnodi=size(nodi,2);

for i=1:numnodi-1

c(i)=(nodi(i)-nodi(i+1));

c(i)=c(i)+(t1(2)-t1(1));

%c(i)=c(i)+eps;

end

%c(numnodi)=abs(nodi(1)-nodi(numnodi))+eps;

%c=[c];

ceq=[];

%------------------------------------------------------------------------

%*****************************************************************

% Computing B-spline starting from mean knots sequence

%*****************************************************************

function [punticontrollo errore]=modelfin(B,nodimedi,dis)

numosserv=size(B,1);

numclassi=1+ceil(log2(numosserv));

A=B’;

for i=1:size(A,1)

if dis==1

figure(i)

hold on

end

Y1=(A(i,:)-min(A(i,:)))/(max(A(i,:))-min(A(i,:)));

Y(i,:)=Y1;

%building histograms

[heights,centers] = hist(Y(i,:),numclassi);

heights=heights/size(Y,2);
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%Sum=sum(heights)

%Disegno istogramma 1

if dis==1

bar(centers,heights,1);

end

n = length(centers);

w = centers(2)-centers(1);

t = linspace(centers(1)-w/2,centers(end)+w/2,n+1);

Dsp = costruzione(nodimedi(i,:),t,heights);

%Control Points (px,py)

pix=Dsp.knots;

dimnodi=size(pix,2);

for k=1:dimnodi-4;

a(k)=0;

for j=k+1:k+3;

a(k)=a(k)+sum(pix(j));

end

px2=a/3;

end

px=px2(2:4);

py=Dsp.coefs(2:4);

%

Dsp1(i,:)=Dsp;

px1(i,:)=px;

py1(i,:)=py;

t1(i,:)=t;

%Plot B-spline and control polygon.

if dis==1

fnplt(Dsp1(i,:),’-g’)

plot(px1(i,:),py1(i,:),’:g’,px1(i,:),py1(i,:),’+g’);

title(’Istogramma 1’);

end

e=stimaerrore1(Dsp1(i,:),t1(i,:),heights,numclassi+1);

err=e/(max(t1(i,:))-min(t1(i,:)));

errore(i,:)=err;

end

nodi=px1;

punticontrollo=py1;%--------------------------------------------------------------
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A.2 Cluster Analysis on Model Data

%**************************************************************************

% X is the control points matrix, E is the error matrix, A is the location

% matrix and B is the size matrix.

%

% Il programma suddivide prima tutta la matrice in tante matrici quante

% sono le variabili considerando che per ogni variabile abbiamo determinato

% 3 punti di controllo. Effettua la cluster per ogni matrice definendo un

% lamda ottimale per ognuna di esse ed infine effettua una nuova cluster

% considerando la somma delle distanze di tutti i blocchi di matrici di

% variabili ognuno con il rispettivo lamba determinato in maniera ottimale

%**************************************************************************

function [matriceparametri Z]=divisioneparametri(X,E,A,B,k,legame)

if nargin == 5

legame = ’ward’;

end;

%% k è il numero di colonne di ogni matrice da ottenere(numero di punti di controllo per ogni variabile=3)

%% s=0 non cancellare riga k+1, s=1 cancella la riga k+1

[n,p]=size(X);

d=p/k;

for i=1:d;

matriceparametri(i).X=X(:,1:k);

X(:,1:k)=[];

matriceparametri(i).E=E(:,1);

E(:,1)=[];

matriceparametri(i).A=A(:,1);

A(:,1)=[];

matriceparametri(i).B=B(:,1);

B(:,1)=[];

end

for i=1:d

[Amax, C, VD]=classinew(matriceparametri(i).X,matriceparametri(i).E,matriceparametri(i).A,matriceparametri(i).B,legame);

matriceparametri(i).Amax=Amax;

matriceparametri(i).C=C;

matriceparametri(i).VD=VD;

end

t=(n/2)*(n-1);

VDTOT=zeros(1,t);

for i=1:d;
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VDTOT=VDTOT+matriceparametri(i).VD;

end

VDTOT;

Z=linkage(VDTOT,legame);

% %t=altezza del taglio

I = inconsistent(Z); % I = criterio per scegliere il numero delle classi

[MI,alt]=max((I(:,4)));

kk=size(Z,1);

t=( (Z(alt,3))+ (Z((alt-1),3)) )/2;

%t=Z(alt,3)-0.1

%modificato il 14 Marzo a scopo illustrativo

figure;

[H,N]=dendrogram(Z,0,’colorthreshold’,400,’ORIENTATION’,’right’);

%[H,N]=dendrogram(Z);

% Disegna la linea

% X=1:(size(Z,1)+1);

% line(X,t,’LineWidth’,2);

% %

% G=cluster(Z,’Cutoff’,t)

G = cluster(Z,’MAXCLUST’,3)

%----------------------------------------------------------------------

function [Amax, C,VD] = classinew(PF,E,A,B,legame);

warning off

if nargin == 4

legame = ’ward’;

end;

d=size(E,2);

i=1;

for alfa=1:-0.1:0.2;

VD=misure(PF,E,A,B,alfa);

Z = linkage(VD,legame);

C(i,:) =[cophenet(Z,VD),alfa]; %criterio da max per individuare la migliore classificazione

i=i+1;

end

% for i=1:d

% figure(i)

% hold on;

%

% plot(C(:,2),C(:,1));

% end
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[CophMax,Id]=max(C(:,1));

MAXC=C(Id,:);

Amax=C(Id,2);

VD=misure(PF,E,A,B,Amax);

%VD1=VD’;

C=C(:,1);

C=C’;

%--------------------------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Questa funzione costruisce il vettore delle distanze di lunghezza %

% k*(k-1)/2 %

% Parametri input: %

% PF = Parametri delle funzioni nell’ordine (R1, R2, f1, f2) %

% dove f# = (a, b1, b2,...) %

% Parametri output: %

% VD = Vettore delle distanze %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [VD] = misure(PF,E,A,B,alfa)

k=size(PF,1);

%Dist=zeros(k,k);

p=size(PF,2);

%f1=PF(1,2:p);

%ciclo per l’impilazione del vettore

c=0;

for i = 1:k-1;

for j = i+1:k;

c=c+1;

dpar=(PF(i,:)-PF(j,:));

d1(c)=(sqrt(sum(dpar.^2)));

end;

end;

d1=d1’;

sd=max(d1(:,1))- min(d1(:,1));

c=0;

for i = 1:k-1;

for j = i+1:k;

c=c+1;

p=d1(c);

sd=sd;

vd(c)= epcq(E(i), E(j),A(i),A(j),B(i),B(j), alfa, sd, p);

end;

end;

%m=max(vd);

%z = 0:0.1:m;

%figure;

104



A.2. Cluster Analysis on Model Data

%hist(vd,z)

VD=vd;

%---------------------------------------------------------------------

% Questo programma calcola la distanza tra due funzioni stimate f1 ed f2 %

%

function [MD]=epcq(R1, R2,a1,a2,b1,b2, trim, sd1, d1);

%funzioni differenze (distanza euclidea tra i parametri)

%d1R=d1/sd1;

d1R=d1;

%Calcolo della componente di adattamento relativa

d2=abs(R1-R2);

d3=abs(a1-a2);

d4=abs(b1-b2);

%Calcolo distanza globale combinazione delle due componenti

%trim=parametro d’importanza

MD=((trim*d1R)+(1-trim)*d2)+d3+d4;

% MD = Distanza epc
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