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Abstract 

In bacterial genomes a fraction of transcribed sequences do not code for proteins or 

structural RNAs, but have been shown to be involved in fundamental processes, such as 

regulation of gene expression, mRNA processing and stability or structural RNA 

maturation. In this thesis a systematic procedure to identify and classify families of 

repeated sequences sharing a common RNA secondary structure was applied to the study 

of 40 bacterial genomes. Sequences able to fold in a stable stem loop structure were 

clustered according to sequence similarity, and grouped within homogeneous families. The 

study led to the identification of 57 families of repeated sequences, sharing a common 

secondary structure and potentially coding for structured RNAs. All previously known 

such families have been detected by the used procedure, and are listed within the final set, 

together with 37 novel ones. Their location in relation to protein coding genes was 

evaluated, and a correlation was found between structure and positioning within intergenic 

regions. 

A new software tool is also described, Scaffolder, designed to help in high-throughput de 

novo genome sequencing by finding connections between contigs produced by random 

shotgun sequencing, and assisting the researcher in the whole process. The software, 

accessible both as a command line tool and as a web application, can guide all the final 

phases of genome assembly by storing the current assembly status, displaying networks of 

connected contigs and untangling multiply connected ones by a combination of  

computational and experimental procedures. 
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Introduction 

Genome annotation 

Sequencing the human genome and that of other organisms created the conditions for 

sequence studies at the genomic scale, by allowing systematic analysis of the structure and 

organization of genomic regions. Genome annotation is a major challenge in genome 

projects and consists of identifying the location of known functional elements, such as 

genes and regulatory regions, as well as recognizing the role of unknown sequences, by 

attaching to them biologically relevant information.  

The basic level of annotation relies on looking for sequence similarities into databanks 

containing known protein or DNA sequences such as Swiss-Prot or GenBank. Programs 

based on heuristic algorithms such as BLAST [Altschul et al 1990] are preferentially used 

in this kind of analysis. Genes may also be found by using predictive techniques. 

Searching for open reading frames (ORFs) in prokaryotes and other organisms 

characterized by uninterrupted genes allows gene identification in most cases: comparison 

of predicted ORFs with already described proteins allows to identify common structural 

proteins and enzymes involved in specific metabolic pathways.  Databases such as KEGG 

[Kanehisa et al 2000] are used to evaluate which pathways are involved in a particular 

species or strain. 

Gene detection in eukaryotes requires more complex procedures. The Ensembl project, 

born in 1991 to provide a centralized resource for researchers involved in genome 

analyses, uses a pipeline which first identifies the corresponding full-length cDNA for a 

given protein sequence retrieved by protein databases, and then detects the complete 

structure of transcript by aligning the cDNA to the genome. Finally expressed sequence tag 

(EST) collections are used to better define untranslated mRNA boundaries. Previously 

unknown genes may be identified by gene prediction programs based on various methods, 
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ranging from complex probabilistic models [Majoros et al. 2004] to neural network based 

exon detecting tools [Xu Y et al. 1994]. Integrated approaches such as in Genscan [Burge 

et al. 1997] are probably the best currently available, associating good sensitivity with low 

levels of wrong identifications. 

In addition to genes, other functionally relevant sequences, such as protein binding sites or 

sites for attachment to nuclear scaffold, may be detected by using automated methods. 

Other interesting aspects can be evaluated by comparing sequences of closely or distantly 

related genomes such as orthologue genes and conserved sequences outside the coding 

portions. With the continuously increasing number of available complete genomes, use of 

automatic annotation methods is essential to quickly perform large-scale annotations aimed 

to detect functional genomic elements. 

Computational methods in functional RNA detection 

The discovery of several classes of functional RNAs in eukaryotes and the evidence that 

the majority of genome is transcribed but does not code for proteins [Kampa et al. 2004] 

stimulated bioinformaticians to develop new strategies able to detect these sequences by 

scanning the non-coding portion of the genome. Functional RNAs are molecules that exert 

their biological function at the RNA level, rather than through an encoded protein. They 

are known to be involved in plenty of biological processes such as gene expression 

regulation, post-transcriptional processing and maintaining chromosomal structure. In 

some cases such as antisense RNA (aRNA), their activity is only depending on their 

primary sequence, but, more often, their activity is connected to their three-dimensional 

structure. 

Various classes of functional RNAs are reported in table 1, together with their main 

biological functions. Functional RNAs can be detected by sequence similarity by using 

BLAST like tools, but this procedure is often not useful where structure rather than 
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sequence defines the classification and role of a RNA molecule. This happens when 

structure rather than primary sequence is preserved during evolution, due to its direct 

involvement in biological function. 

Currently two approaches can be followed to scan genomes looking for functional RNAs:  

1) Identify by structure analysis sequences potentially able to fold in a stable structure. 

2) Identify sequence and or structure patterns that are typical for a family of RNAs. 

 

Table 1. Functional RNA classes  

A list of the main functional RNA classes is shown together with name, common abbreviation, main 

functions and distribution among different organisms 
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Secondary structure analysis  

Nucleic acid folding can be considered as a multi-step hierarchical process in which a 

three-dimensional structure can be guessed starting from the secondary structure, which in 

turn is obtained by two-dimensional folding of the primary structure according to the rules 

of base pairing [Tinoco et al 1999]. This is due to the fact that interactions involved in 

forming secondary structure, basically the hydrogen bonds involved in classical A-T G-C 

Watson Crick and in G-U base pairing, are generally stronger than the additional ones 

involved in stabilizing tertiary structure. In principle, once the secondary structure is 

known, it is possible to infer the final structure by using the secondary structure 

information as a scaffold onto which the 3D structure in space is modelled. 

Four types of secondary structure domains exist: helices, bulges, loops and junctions. 

Helices are Watson-Crick duplexes; loops, bulges and junctions are all unpaired regions 

terminated and defined by one or more helices (see Figure 1). Loops can be divided in 

internal and hairpin according to whether they are flanked by two helices or one. A bulge 

is a special case of internal loop, with no free base on one side and at least one free base on 

the other side, and a junction is the stretch of sequence connecting two adjacent structures. 

In addition pseudoknots may be formed when a loop is involved in the formation of a stem 

through base pairing with sequences located outside the loop itself (see Figure 2). Analysis 

of secondary structure deals with the correct recognition of most or all these domains in 

nucleic sequence.  

Starting from these considerations in the last 30 years scientists have tried to design 

methods that allow the prediction of the secondary structure starting from nucleic acid 

sequence.  
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Figure 1. RNA secondary structure 

The representation of the secondary structure of human RNA component (H1) of ribonuclease P is shown 

predicted by using the Mfold tool, that implements the Zuker algorithm. Base pair types are colored 

differently: GC in red, UA in blue, GU in green. Letters indicate different secondary structure domains: 

hairpin loop (a), stem or helix (b), multi branched loop (c), internal loop (d) and bulge loop (e). 
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Figure 2. RNA secondary structure of a pseudoknot  

The representation of the secondary structure of a pseudoknot domain is shown. Matching base pairs are 

highlighted in yellow within the structure. The secondary structure was created by using the Pseudoviewer 

software. 

 

 

Inverted repeat search 

A first step in secondary structure analysis is the identification of sequence regions able to 

fold as helices. Because the interactions involved in helix formation are the canonical 

Watson-Crick pairs (GC and AT or AU for RNA), they can be detected by looking for 

inverted repeats, i.e. aligning the sequence with its reverse complement by standard 

algorithm such as Needleman-Wunsch. Given two sequences X and Y it is possible to 

construct a scoring matrix s(i, j) between all possible couple of bases of two sequences. It 

is possible to determine the best alignment with a “traceback” procedure that starting from 

the final part of alignment connects all matching bases in order to obtain the maximum 

score. This procedure is too simple to fully predict the secondary structure of an RNA but 

it is fast and can be useful for initial screening of long sequences to define putative 

boundaries of structured RNAs. 
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Maximization of pairing 

A complication of the previously described procedure consists of looking for structures 

including maximum number of base pairs among all the possible ones. The Nussinov 

algorithm [Nussinov et al 1980] does this by giving the same weight to each base pair. The 

folding problem is considered as a variant of the maximum circular matching problem 

(MCMP) that has the scope to obtain for a circle the maximum number of chords without 

intersection. (See Figure 3). 

Considering sequence B, composed by B1, … Bn nucleotides, that contains the 

subsequence Bi, Bj of length p with j > i,  let Bk be a nucleotide between i and j-1 

positions. With a first recursion the algorithm tests the ability of Bk to pair with Bj, i.e. 

verifies if bases are AU or GC for each k position. With a nested recursion the algorithm 

calculates also the base pairs contained by subsequence delimited by Bk+1 and Bj-1 and Bi 

and Bk-1. After testing all k positions, the best value is saved in the matrix M(i, j). If Bj 

cannot pair with any k then M (i, j) = M (i,j-1). The maximum number of base pairs is 

obtained by incrementing p and repeating the search. 

! 

M(i, j) =max

M(i,k "1) + M(k +1, j "1)

M(i, j "1)

i # k < j = i + p

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

 

The algorithm can consider, in addition to the standard Watson-Crick pairs (GC and AU), 

also the non standard GU pair often present in RNA structures. Once the scoring matrix is 

filled, it is possible to identify the secondary structure by a standard traceback procedure. 

Although the search for stems is exhaustive, the solution found is often not unique, and the 

extreme simplicity of the scoring system may prevent reliable prediction of a correct 

secondary structure. An improvement of this method is the introduction of a scoring 

system based on the free energies associated with the formation of each base pair type, but 

even this thermodynamic model is not adequate to consistently predict correct secondary 
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structures. Moreover Nussinov algorithm cannot predict pseudoknots because base pairs 

occurring in these structures overlap with others, i.e. the representation of folding process 

as the MCMP is in contrast with the pseudoknot structure (see Figure 4). Since prediction 

of pseudoknots is computationally complex, most algorithms prefer to keep these 

structures out of their evaluated folding space. For this reason algorithms able to predict 

pseudoknots will not be described here.  

 

 

 

Figure 3. Circular plot of a RNA secondary structure 

The representation of the secondary structure of the molecule shown in figure 2 is shown as a circular plot. 

The sequence is represented by a circle and base pairs as non-intersecting chords. Base pair types are colored 

differently: GC in red, UA in blue, GU in green. The prediction was made by using the Mfold tool. 
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Figure 4. Circular plot of a psudoknotted secondary structure 

The representation of the secondary structure of the pseudoknot domain in figure 3 shown as a circular plot. 

The sequence is represented on a circle and base pairs as intersecting chords. Base pair types are colored 

differently to highlight base pair cross-links. 

 

 

The Minimum Folding Energy: Zuker algorithm   

Zuker and Stiegler developed in 1981 an algorithm, which is still probably the most 

frequently used today within the scientific community, to calculate the secondary structure 

starting from a single sequence. 

 

Given a sequence of nucleotides X = (x1, …, xn) of length n and energy parameters Pij, that 

describe the stability of the base-pair (xi, xj), calculating the best structure means finding 

the structure with the lowest free energy.  

By using the Nussinov algorithm this value, also called the minimum of folding free 

energy (MFE), is the lowest sum of base pair energies involved in the structure: 

! 

E =min (i, j )Pij"( ) 
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In the Zuker algorithm, this is improved by inserting additional corrections, such as one 

that avoids energetically unstable hairpin-loops shorter than three base pairs (i > j + m; 

with m >=3).  

From a thermodynamic point of view the building blocks of secondary structures are all 

loops: stacked base pairs or helices, internal loops, hairpins and multi-branched loops are 

all interpreted as loops with a varying number of unpaired bases. (See Figure 5). The Zuker 

algorithm tries to determine which of the four elementary structures with the exterior pair 

(i, j), has the lowest free energy. A recursive approach is used to evaluate relations and 

produce a two dimensional matrix where all minimum free energies for each i and j is 

stored. Again backtracking is necessary to build the path that gives the MFE secondary 

structure. 

To calculate energies, the algorithm uses the nearest-neighbor model, which assumes that 

the thermodynamic stability of a specific base pair depends on the neighboring bases. In 

this way both binding and stacking energies are evaluated at the same time.  

The algorithm also takes into account the energy associated to each loop, delimited by 

bases j+1 and j-1, and to dangling ends delimited by j+1 and n: 

! 

Ei,n =min Ei,n"1;min Ei+1, j"1 + E j+1,n + Pij( ){ }
 

Energy changes associated to various types of loop have been tabulated in relation to loop 

type and size and are used as energetic penalties. The energy values are derived from 

empirical calorimetric experiments and are minimized by a recursive procedure. E1,n is the 

minimum free energy for the full secondary structure involving the whole sequence X.  

Tools implementing this algorithm have been shown to correctly recognize up to 65% of 

the base pairs of a structure [Gardner et al. 2004]. This number may be improved by 

introducing additional constraints derived from experimental information. For instance the 

flavin mononucleotide (FMN) is able to photocleave RNA specifically at U residues 

involved in G-U base-pairs: this information can directly be used to improve secondary 
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structure prediction. Various limits reduce the accuracy of this method: energy parameters 

calculated in laboratory are often slightly different from in vivo conditions and modified 

bases are ignored although they are known to have an important role in RNA secondary 

structure formation. Recently some chemical modifications involved in base pairs have 

been added to the table and used in evaluating the thermodynamic nearest neighbor model 

[Mathews et al. 2004]. 

 

 
 

 

 

 
Figure 5. Secondary structure decomposition 

The reported secondary structure is decomposed into loops delimited by two or more base pairs. Loops are 

indicated in this way: h for hairpin, i internal and s stacked.  
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MFE evaluation and RNA structure    

In principle the Zuker algorithm should produce the optimal structure; most failures in 

prediction accuracy are more likely to be due to a scoring system’s inaccuracy rather than 

an algorithm problem. The thermodynamic parameters are generally assumed to be 

accurate within a 5-10% range, but surprisingly an incredible number of alternative RNA 

structures lies in this interval. Moreover some RNAs have a bi-stable structure that cannot 

be predicted by looking for the MFE.  

For these reasons, the correct structure might not be the one associated with the MFE, but 

rather one with a higher folding energy than the calculated MFE and therefore it cannot be 

revealed simply by energy minimization. Zuker proposed to also look at suboptimal 

structures [Zuker et al. 1989], and Wutchy et al. in 1998 developed a method to calculate 

the entire ensemble of suboptimal structures ranging between the MFE and an arbitrary 

upper limit. By using this approach, secondary structure prediction may include evaluation 

of several structures for a single sequence. Gardner et al. in 2004 tested tools implementing 

this algorithm on the ability to correctly recognize four kinds of known structured RNAs 

ordered by length: S. cerevisiae Phe-tRNA (73 bp), E. coli RNase P (377 bp), E. coli SSU 

rRNA (1542), and E. coli LSU rRNA (2904 bp). This work demonstrated that sensitivity 

and selectivity of these methods range from 22-63% and 20-60% respectively and that can 

rise to 22-69% and 20-67% by only investigating the first two suboptimal structures.  

Even if algorithm is not completely accurate, the calculate MFE can be thought in principle 

as a good indicator of presence of structured functional RNAs in a genomic sequence. In 

practice, it can be used if some precautions are taken into account: obviously MFE should 

be normalized to sequence length, because the number of base pairs increases with the 

molecule size. Moreover structures derived from higher GC content sequences are likely to 

have lower MFEs than others, as a higher GC percent inevitably results into a larger 
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number of more stable GC pairs [Freyhult et al 2005]. A way to give better statistical 

significance to a MFE it to compare it with MFEs derived from analyzing a set of random 

sequences with the same length and nucleotide composition. Workman and Krogh in 1999 

used the z-score, defined as 

! 

z =
E" µ( )
#

 

where E is the MFE, ! is the average and sigma the standard deviation of the distribution 

of MFE values for a pool of random sequences. They found that in most cases mRNAs 

have a MFE undistinguishable from those obtained from randomized sequences, while a 

striking difference was found in the case of the highly structured ribosomal RNAs 

(rRNAs). Transfer RNAs (tRNAs), although structured, show MFE values similar to those 

obtained for random sequences, and cannot be easily identified by using the z-score 

indicator.  

In 2004 Bonnet et al. analyzed the z-score of a recently discovered class of little functional 

RNAs: the micro-RNAs. They used a variant of the z-score procedure that makes no 

assumptions upon the nature of the MFE distribution, and demonstrated that more than 

70% of known micro-RNAs show low z-scores. They used a Monte Carlo randomization 

test to calculate the probability (p) for a given sequence to fold better than random ones 

obtained by reshuffling of the sequence itself: 

! 

p =
R

N +1
 

where R is the number of random sequences with a MFE less or equal than the original and 

N represents the total number of random sequences. Currently z-score is believed to be a 

good indicator for structured RNAs, in particular long stems, although not very sensitive. 

RNA families in structure prediction     

The limited accuracy of RNA structures predicted on the basis of single sequence folding 
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suggested the need for further biological information to improve the predictions, such as 

that derived from comparative analyses. Three different approaches to predict secondary 

RNA structure by using comparative RNA sequence analysis have been developed: 

- use pre-aligned nucleotide sequences to infer a common secondary structure  

- try to simultaneously align and infer a consensus secondary structure 

- directly align RNA structures derived from folding prediction. 

The first approach is used in the algorithm proposed by Hofacker et al. in 2002.   

 

Considering nucleotides ai and aj at each row (!, ", #, … N) of a sequence alignment A, 

new energy parameters P
A

ij are calculated by combining the average pairing energy of ai 

and aj with the covariance score Cij derived from the analysis of compensatory mutation. 

! 

Pij
" =

1

N
# ai

$
,aj

$( )% Cij

$

&  

The algorithm performs much better than the single sequence folding method previously 

described, achieving sensitivity higher than 70% [Gardner et al. 2004]. Of course the 

intrinsic limit of this approach is related to the quality of the alignment. When identity is 

lower than 70%, incorrect sequence alignments can destroy the co-variation signal.  

The second method is based on algorithm described by Sankoff in 1985, which aims to 

obtain a common base-pair list which maximizes the sum of base-pair weights. Because 

the original algorithm is computationally very expensive, variants containing particular 

restrictions have been implemented [Gorodkin et al. 1997, Mathews et al. 2002]. However 

up to now they have been only able to detect a fraction of present pairs [Gardner et al. 
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2004]. 

The third approach to predict secondary structure is based on aligning the RNA structures 

in order to detect the best common one, independently or with limited dependence on the 

sequences. This can be done, for example, by implementing the tree alignment model 

[Höchsmann et al. 2003]. Obviously the results of this approach are strictly related to the 

quality of the prediction of the single structures. This approach is used at its best when 

individual predictions are made by the first method, starting from a family of closely 

related sequences, and then compared with other molecules belonging to families that have 

different sequences but similar structure. 

Pattern search 

The main limit of using structure prediction to search for functional RNAs is related to the 

stability of the searched secondary structure. The long structured stems of H/ACA 

snoRNAs and miRNAs are often not difficult to spot, but smaller unstable stems like those 

contained in C/D snoRNAs are easily missed [Washietl et al. 2005]. Moreover, when 

functional RNAs are not conserved or no genome related to the analyzed one has been 

sequenced, these methods cannot provide the best results because of the absence of 

covariance information. These conditions are often found in bacteria, where conservation 

is limited or absent in phylogenetically distant species.  

In order to overcome these problems, specific tools have been designed, aimed to detect a 

particular functional RNA class such as tRNA, C/D and H/ACA snoRNAs, tmRNA, 

miRNA [Lowe et al. 1997, Lowe et al. 1999, Laslett et al. 2002, Schattner et al. 2004, Lim  

et al. 2003]; these tools depend on specific RNA features that are often combinations of 

sequence and structure motifs. More general strategies are based on pattern search and on 

covariance models. Pattern search is implemented in very customizable tools, such as 

RNAMotif [Macke et al 2001], that allows to selectively detect functional RNAs sharing 
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structural and sequence characteristics typical of a specific class of RNAs. This approach 

may be very effective in the right context, but of course cannot be used to discover new 

classes of functional RNAs. 

The covariance model (CM), described for the first time by Eddy in 1994, [Eddy et al. 

1994] is a probabilistic model for analysis of RNA secondary structures, analogous to 

sequence search by profile hidden Markov model. A CM is built starting from a sequence 

alignment and a consensus structure and can be used to scan entire genomes. The extreme 

slowness of tools implementing this algorithm requires the use of powerful computational 

resources to search a single structure in a single eukaryotic genome [Klein et al. 2003].  

CM can be also used to detect new undescribed structures as in the algorithm proposed by 

Yao et al. [2005], that it is used to find structured motifs in unaligned but evolutionary 

related sequences. The algorithm first identifies a group of subsequences with the lowest 

MFEs and then it uses a tree-editing algorithm to iteratively align them in order to find the 

consensus structure. To improve the efficiency, the alignments are limited to sequences 

compatible with locally conserved regions found by BLAST search. The best 10 

alignments are used as seeds to the expectation maximization algorithm that predicts the 

RNA secondary structure by using a CM. 

Other strategies based on analyses of substitution patterns and RNA structure modelling 

have been implemented. Pedersen et al. developed a procedure based on two competing 

phylogenetic–stochastic context-free grammar (phylo-SCFG) models of RNA sequence 

evolution: a structural model and a nonstructural model [Pedersen et al. in 2006]. Structure 

is only predicted when a segment of the alignment is better described by the structural 

model than the nonstructural model. The two models describe alignments with identical 

properties, except that the nonstructural model assumes a higher substitution rate and does 

not include correlated base-pair changes, as found in RNA helices. To each structure 

prediction a score is assigned based on the relative likelihood of the alignment under the 
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combined structural/nonstructural model and a purely nonstructural model. This approach 

has been demonstrated to work for tRNAs and microRNA detection but not on snoRNAs 

[Pedersen et al. in 2006]. 

Systematic RNA search in genomes 

Different attempts to perform systematic screenings, looking for functional RNAs, have 

been done in recent years. In 2001 Rivas and Eddy, compared intergenic sequences of two 

related bacteria E. coli and S. typhi, in order to detect putative structured RNAs. They used 

an algorithm based on the covariance model, that is able to compare only two aligned 

sequences. The strategy allowed detecting 275 candidate structural RNA loci that have 

been checked in part for their ability to be transcribed as small non-coding RNAs. 11 out 

of 49 loci predicted to be structured have been shown to be transcribed. Interestingly some 

of these positive sequences belong to a class of already described DNA repeats, sharing a 

conserved palindrome called BIMEs (Bacterial Interspersed Mosaic Elements), known to 

be involved in a variety of biological processes thanks to their RNA structure [Bachellier 

et al. 1999]. In 2005 Berezikov et al., in order to find conserved micro-RNAs, focused 

their attention on sequences conserved across different eukaryotic genomes. They first 

selected conserved sequences, predicted to fold in a stem-loop structure by using tools 

implementing the Zuker algorithm and then evaluated their MFEs by calculating the z-

score with the procedure proposed by Bonnet [Bonnet et al. 2004]. In this way, they 

detected 379 putative micro-RNAs that are conserved across human, mouse and rat 

genomes. 119 of them resulted to be already described and correctly recognized.  

In the same year, Washietl et al. used MFE, calculated by the Hofacker algorithm, to detect 

the presence of structured functional RNA in aligned sequences. The method is based on 

comparison of pre-aligned sequences and contemplates the combination of two scores: the 

structure conservation index (SCI) and the average of Z-score of single sequences that 



 23 

indicates the thermodynamic stability. SCI is defined as the ratio between the consensus 

MFE (EA) and the average of MFE of each alignment sequence (E): 

! 

SCI =
E
A

1

N
E"

 

SCI values are around 1 for sequences sharing both primary and secondary structure 

similarity, but are increased beyond 1 for sequences where secondary structure is better 

conserved than sequence, due to compensatory changes. Sequences not sharing a 

secondary structure would produce very low scores, even down to 0. This method shows 

high sensitivity and specificity when finding several classes of functional RNAs 

characterized by conserved sequence and structure, such as tRNA, miRNA and some 

snoRNAs. 

Washietl et al. performed a genomic screening by using the above described procedure on 

sequences derived from whole-genome alignment of eukaryotic species such as human, 

chimp, mouse, dog, chicken, zebrafish and fugu and predicted more than 30,000 functional 

RNAs, about 1,000 of them conserved across all vertebrates (Washietl et al. 2005). A 

second screening was conducted on the regions of the human genome analyzed by the 

ENCODE consortium, that also contain not conserved sequences, by using both the above 

described procedures by Washietl and by Pederson. The screening identified thousands of 

putative conserved functional RNAs [Washietl et al. 2007], but the structures identified by 

the two approaches show little overlap (< 8%). This probably reflects the fact that the 

Washietl approach is sensitive to alignments with moderate and high GC content and 

relatively low sequence similarity, while the other is sensitive for low GC content and high 

sequence similarity even if this generates many false positive results [Washietl et al 2007].  

The same authors estimated that high false positive ratios, respectively 50% and 70% for 

Washietl and Pederson methods, are obtained by taking into account dinucleotide 

frequencies, when analyzing shuffled alignments. A small fraction of the predicted RNAs 
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was validated by RT-PCR in six tissues: RNA expression was confirmed in about 25% of 

cases. 

The procedure described by Yao [2005] was also used in two genomic screenings. The first 

analyzed potential 5’ UTR of conserved bacterial genes [Weinberg et al. 2007] and 

detected 22 putative structured motifs, some of them recognized as new riboswitch classes. 

The second was carried out on the same genomic regions analyzed by Washietl et al. in 

2007 [Torarinsson et al. 2007] and predicted more than 6,500 structured loci, that only 

partially overlap with the results obtained in the previous screenings, thus extending the 

number of detected candidate functional RNAs by 32%. This increment is also due to the 

fact that alignments featuring many gaps or low sequence conservation and discarded by 

the previous methods are correctly detected by this procedure. Also for this method a 

relatively high false positive rate was estimated, about 50%. 

Repeated stem-loops in bacteria 

Although bacterial genomes are in general more compact than eukaryotic ones, with over 

90% devoted to coding for protein genes, about 10% of DNA is still present as intergenic 

in prokaryotic genomes, and contains sequences coding for functional RNAs as tRNA and 

rRNA, but also less well defined types. Many functional RNAs are present in multiple 

copies in bacterial genomes, and studies on DNA repeats have often ended up by 

identifying families of transcribed sequences potentially coding for structured RNAs. 

Some of these repeats show a complex conserved secondary structure, that is clearly 

related to their activity, as in the case of self-splicing introns [Martínez-Abarca et al. 

2000]. In others a conserved secondary structure has been observed, but is not clearly 

connected to a specific functionality, as in the case of a large class of repeated DNAs 

containing palindromes found in enterobacteria [Bachellier et al. 1999].  

This class of repeats is comprised of sequences shorter than 200 bp, located in intergenic 
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regions and potentially transcribed but not generally coding for proteins. Their degree of 

repetition ranges between 10 and 500 copies in different bacterial species. Members of this 

class include V. cholerae VCR [Rowe-Magnus et al. 2003] and E. coli and S. typhimurium 

BIMEs [Engelhorn et al. 1995, Espéli et al 1997, Gilson et al. 1991]. Other palindromic, 

stem-loop containing repeats from the same class are RSAs and ERICs (or IRUs), simple 

repeats that have been found in E. coli, S. typhi, K. pneumoniae and Y. pestis. Also these 

are located in intergenic regions, in either orientation with respect to replication and 

transcription. Compensatory mutations observed in these families suggest a conserved 

secondary structure, possibly involved in functional roles such as translation interference 

or mRNA protection from digestion. Other repeats like BOCEs have been found in E. coli 

and K. pneumoniae. Overall their functional roles are not clearly defined, but in some 

cases, following experimentally studies, putative functions have been proposed for specific 

repeats. Some members of the BIME family were demonstrated to be involved in 

biological processes as transcription termination, gene expression regulation and protein 

interaction, possibly because of their stem-loop structure [Bachellier et al 1999]. 

A systematic analysis of sequences able to fold as a stem-loop structure was attempted in 

40 wholly sequenced bacterial genomes [Petrillo et al. 2006]. In order to reduce the 

number of possible structures, work was focused on those containing stems at least 12 base 

pair long. Comparison of SLSs contained within genomes with those obtained from 

random genomes demonstrated that natural SLSs are always more than those expected by 

chance. Moreover specific SLS subsets are found to be selectively enriched in natural 

genomes. SLSs with low MFEs (< -15 Kcal) and those with the smallest loops appear to be 

more frequent than expected and are hypothesized to be involved in formation of 

secondary structures, as those found in self-splicing introns [Martínez-Abarca et al. 2000], 

riboswitches [Nudler et al. 2004], and in the previously mentioned class of transcribed 

intergenic repeats including E.coli BIME, Yersiniae ERIC and Neisseriae NEMIS. In these 
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cases the stem is often essential to the attainment of the correct secondary structure and 

may be directly recognized by ribonucleases [Coburn et al. 1999, Gilson et al. 1991, De 

Gregorio et al 2005]. 

Large-scale sequencing in bacterial genome analysis     

The search for functional sequences within complete genomes, is strongly dependent on 

the availability of large masses of genomic sequences. As far as the prokaryotic world is 

concerned, the complete DNA sequence of over 500 bacterial strains is known today and 

more are becoming available every month, from over 3000 bacterial genome sequencing 

projects. An important boost to these numbers is expected to come from the recent 

development of new DNA sequencing technologies such as pyrosequencing and 

hybridization sequencing, respectively used by commercially available high-throughput 

genome analyzers such as Roche 454 GS and Illumina.  

Although these high-throughput techniques look very promising, most currently available 

sequences have been produced by using the standard Sanger method, and today only about 

70 bacterial genomes have been sequenced by using the high throughput approach based 

on pyrosequencing (see table 2). By closely looking at the table, it appears that 4 of them 

are re-sequencing of already sequenced genomes, 52 are de novo sequencing of strains that 

can take advantage of information derived by related already sequenced genomes and 18 

are “real” de-novo sequencing. Even among these last genomes, 7 were sequenced via a 

combination of high throughput and Sanger sequencing, and 11 by exclusively using the 

pyrosequencing approach. Of these, only 4 were completely sequenced and assembled, 

yielding a single genomic sequence, ranging in size between the 250 kilobases of 

Candidatus Sulcia muelleri and the 3.9 megabases of Acinetobacter baumannii.  
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Organism N. genome Size Type Technology Complete 

Escherichia coli K12 1 4,6 resequencing 454 yes 

Chlamydia trachomatis 1 1 resequencing 454 yes 

Saccharopolyspora erythraea 1 8,2 resequencing 454 yes 

Mycobacterium tuberculosis 1 4,4 resequencing 454 yes 

Myxococcus xanthus 3 9,14 strain 454+Sanger yes 

Staphylococcus aureus 2 2,8 strain 454+Sanger yes 

Campylobacter jejuni 1 1,6 strain 454+Sanger yes 

Salmonella Typhi 19 5 strain 454+Solexa no 

Vibrio cholerae 1 4,1 strain 454 no 

Campylobacter jejuni 1 1,6 strain 454 no 

Escherichia coli O157:H7 2 6,2 strain 454 no 

Helicobacter pylori 2 1,6 strain 454 no 

Sinorhizobium meliloti  1 3,6 strain 454 no 

Haemophilus influenzae 9 1,8 strain 454 only 2 

Campylobacter jejuni 1 1,6 strain 454 yes 

Streptococcus pneumoniae 8 2,1 strain 454 yes 

Chlamydia trachomatis 1 1 strain 454 yes 

Brucella abortus  1 2,1+1,1 strain 454 yes 

Mycobacterium avium paratuberculosis 1 ? de novo 454+Sanger no 

Bacillus coahuilensis 1 3,4 de novo 454+Sanger no 

Bacillus pumilus 1 3,7 de novo 454+Sanger yes 

Acaryochloris marina 1 6,5 de novo 454+Sanger yes 

Corynebacterium urealyticum 1 2,4 de novo 454+Sanger yes 

Uncultured Termite group 1 bacterium 1 1,1 de novo 454+Sanger yes 

Acinetobacter baumannii ACICU 1 3,9 de novo 454+Sanger yes 

Beggiatoa 2 7 de novo 454 no 

Vibrio furnissii 1 ? de novo 454 no 

Acidimethylosilex fumarolicum 1 ? de novo 454 no 

Corynebacterium kroppenstedtii  1 2,4 de novo 454 no 
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Organism N. genome Size Type Technology Complete 

Francisella tularensis 1 2 de novo 454 no 

Campylobacter jejuni subsp. jejuni 1 1,8 de novo 454 no 

Acinetobacter baumannii 1 3,9 de novo 454 yes 

Candidatus Sulcia muelleri 1 0,25 de novo 454 yes 

Pseudotrichonympha grassii 1 1,1 de novo 454 yes 

Oligotropha carboxidovorans 1 3,7 de novo 454 yes 

 

Table 2. Organisms sequenced by pyrosequencing 

Organisms sequenced by 454 sequencers based on pyrosequencing technology are shown together with 

number and size of genome strains, type of sequencing, technology used  and project state. 

 

 

The Scaffolding problem 

Large-scale whole genome shotgun sequencing was successfully applied for the first time 

in 1995 to determine the complete genome sequence of Haemophilus influenzae 

[Fleischmann et al. 1995], a 1.8 Mb bacterium, and subsequently used for many other 

bacterial strains, as well as for eukaryotic genomes. Shotgun sequencing consists of 

randomly breaking the genome into a large number of overlapping small fragments and 

sequencing them; final assembly of the fragments produces the complete sequence, 

typically with the help of an assembler tool. In the 1990s Phrap was probably the most 

frequently used assembler tool. It is based on a three-step procedure where after finding the 

best alignment for each matching pair of reads having more than one significant alignment 

in a given region, layouts of contiguous sequences are built, and finally contig sequences 

are generated as a consensus of the highest quality parts of the reads by using consistent 

pair-wise matches. This approach proved to be highly successful and was largely used for 

assembling the human genome. Unfortunately the algorithm expects relatively large 

primary reads (500-1000 bases) and is not adequate for the short reads generated by high 
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throughput sequencing machines, which are typically shorter (40-200 bp).  This novel kind 

of sequencing has been defined “short read sequencing (SRS)” and required the 

development of a new class of programs, able to combine millions of very short reads. 

Two commonly used assembler tools are Newbler [Margulies et al. 2006], developed by 

454 Life Sciences, a Roche owned company, and Euler-SR [Chaisson et al. 2008]. 

Newbler consists of a series of modules that act in subsequent steps, in a fashion similar to 

Phrap. First, the “Overlapper” module finds and creates all pairwise overlaps between 

reads. In the second step the “Unitigger” module constructs larger sequences containing 

overlapping consistent reads that are uncontested by reads external to the sequence. For 

this reason the obtained sequences are called “unitigs”. In the third step, the “Multialigner” 

module takes all the reads that make up the unitigs and aligns all the read signals 

generating a consensus sequence and quality scores for each base within each assembled 

“contig”. 

Euler-SR is based on a different strategy from the “overlap-layout-consensus” approach 

implemented by Phrap and Newbler. It transforms the assembly problem into an Eulerian 

path problem by dividing all reads into overlapping k-tuples that become the vertices of a 

de Brujin graph [Chaisson et al. 2008]. K-tuples are connected by links if they share a 

common segment of at least k-1 bases. The search for a unique ‘Eulerian’ path allows to 

create the final sequence. In most cases several independent paths can be identified 

allowing the assembly of different contigs. In many contigs, the presence of more than one 

link prevents the extension of the contig, given that more than one path do exist, passing 

through the contig, and creating a tangle in the global graph that is diagnostic of the 

presence of repeated sequences. Information on the reads can be used to untangle most of 

these cases but of course repeats larger than the read length cannot be solved. A 

comparative test of the two methods was carried out by assembling Streptococcus 

pneumoniae genome, sequenced by using reads shorter than 120 bases [Chaisson et al. 
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2008]. The genome is known to contain 167 exact repeats longer than 120 bases and is not 

resolvable by any assembler, as fragment assembly should theoretically generate 504 

contigs, 136 of which larger than 500 bases. The ideal assembler should recognize all these 

136 1arge contigs. This analysis revealed that Newbler manages to detect 255 contigs 

longer than 500 bases, collectively covering about 2000 kb while Euler-SR almost 

correctly identifies 127 long contigs, together covering 2001 kb. 

Only in unusual circumstances these programs are expected to produce a single final 

assembled sequence; more often they generate a collection of contigs, whose location 

relative to each other or within the genome is not defined. For this reason sequencing is 

often complemented by a further procedure called “scaffolding”, necessary to order and 

orientate contigs by using other experimental data, such as long-range connectivity 

information. 

Assembly and repeated sequences    

The main cause that prevents the final assembly is the presence in genomes of repeated 

sequences, larger than the average read length. Because of this, the assembler software is 

often unable to separate and univocally assign those sequences to different contigs. 

Moreover some sequencing procedures require masking the repeated sequences and cause 

a sizable fraction of the genome not to be available within the final complete sequence. To 

overcome the problem Sundquist et al. in 2007 proposed a hierarchical sequencing 

strategy, called SHRAP (Short Read Assembly Protocol), based on sequencing multiple 

copies of the genome sheared and inserted in large fragment libraries, for example BAC 

clones, by SRS. Reads coming out from sequencing experiments are used to infer 

positioning of the clones along the genome according to clone maps generated in a pre-

assembly step. The assembler tool is then used to sequence individual ordered clones. 

Tests using simulated data show that the SHRAP strategy is able to assemble large 
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genomes such as human or D. Melanogaster, but no trial with real experimental data have 

been performed yet. Some assembler tools include a scaffolding step that consists in using 

mate pairs data. In 2004 Pop et al. developed a general-purpose tool able to guide the 

scaffolding process called Bambus [Pop et al. 2004]. This tool is currently used in all 

sequencing project at TIGR and can manage several kinds of linking information such as 

mate information, homology data, physical maps and gene synteny, presented as a 

connected graph. 
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Results and discussion  

Families of stem-loop structures in prokaryotic genomes 

Finding repeats able to fold in a stem loop structure 

Sequences analyzed in this study derived from a previous work [Petrillo et al 2006], in 

which the analysis of complete genomes of 40 bacterial genomes, mostly of medical 

interest, predicted more than 5 million sequences as able to fold in a RNA stem-loop 

structure (SLS). SLS was defined as a structure with a stem of at least 12 bp, loop size 

ranging from 5 to 100 nucleotides and in which GU pairing is admitted. Sequences 

predicted to fold with a MFE lower than –5 Kcal/mol were selected for this study, with the 

exception of those falling within either mature RNA species (tRNAs, rRNAs) or known 

Inserted Sequences (IS), in order to avoid known structured repeated sequences. In this 

way the SLS population was reduced to slightly over 2 millions sequences.  

Clustering 

The SLS population was screened for the presence of repeats by clustering them according 

to sequence similarity. Sequence comparison was performed by running an all-against-all 

BLAST within the SLSs of each genome, and the resulting matches were used for the 

compilation of distance matrices in which the E-value is used as a measure of distance. 

BLAST was run without searching for the complementary strand, as in this step the goal 

was to identify similarity between the putative RNAs. In order to limit the selection to 

highly similar sequences, this clustering step was performed by using stringent parameters; 

in order to avoid clustering of SLS containing sequences on the basis of contiguity rather 

than content similarity, connections caused by overlapping sequences were eliminated (see 
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Methods). Clustering was done by feeding the resulting matrix to MCL [Enright et al. 

2002], a tool implementing the Markov Clustering algorithm for unsupervised clustering, 

based on simulation of stochastic flow in graphs. Within MCL, the distance matrix is 

interpreted as a connected graph, where sequences are nodes and similarities are edges. As 

a consequence, groups of nodes characterized by the presence of many connecting edges 

represent clusters of similar sequences. Nodes belonging to a cluster are connected by 

paths that are typically more numerous and of better quality than those between nodes 

lying in different clusters. MCL uses random walking as a means to achieve cluster 

separation, since walking on paths within a cluster is far more likely than walking on paths 

connecting different clusters. Two operations, expansion and inflation, are iteratively 

performed on the matrix in order to progressively increase cluster separation. 

By applying this technique, 523 clusters were identified, composed of at least 7 non 

overlapping genomic elements, as reported in Table 3. Although links between overlapping 

SLSs were removed, a small number of members of the same cluster were still found to 

map onto the same genomic sequence and were joined into larger SCRs, for SLS 

containing regions. Together, the 523 identified clusters, contain 12,254 non-overlapping 

SCRs corresponding to a total of 28,904 SLS elements, corresponding to about 1.3% of the 

originally selected SLS population. Individual clusters contains between 8 and over 4,000 

SCRs. 

Of the 40 analyzed genomes, 29 contain at least one and up to 75 clusters. No clusters were 

identified for the remaining 11 genomes: L. innocua, L. monocytogenes, S. pyogenes, C. 

pneumoniae, C. trachomatis, U. urealyticum, R. prowazekii, T. pallidum, Buchnera, C. 

jejuni and H. pylori. The quality of the described clustering procedure was evaluated by 

aligning SCR members of each cluster by the PCMA multiple alignment tool [Pei et al. 

2003], and analyzing the resulting alignments by using ALISTAT [Bateman et al. 1999]. 
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Table 3. Sequence-based clustering of SLSs 

BLAST-MCL based clustering of SLSs from bacterial genomes described in Petrillo et al 2007. For each 

species, the number of elements within the starting populations, the number of clusters and the number of 

clustered SLSs are reported. The number of SLS containing regions (SCRs), obtained by fusing overlapping 

clustered SLSs, is also reported. Only species featuring at least one cluster, with a minimum of 7 SCRs, are 

listed. 

Division  Species                                             SLSs Clusters 
Clustered 

SLSs 

Clustered 

SCRs 

low-GC Firmicutes Bacillus anthracis 65,220 4 105 38 

  Bacillus halodurans 55,624 6 182 93 

  Bacillus subtilis 56,622 2 32 16 

  Clostridium perfringens 35,027 6 149 81 

  Clostridium tetani 29,883 14 178 123 

  Enterococcus faecalis 40,991 7 317 142 

  Lactobacillus johnsonii 25,668 3 173 26 

  Staphylococcus aureus 32,372 11 275 144 

  Streptococcus pneumoniae 25,095 28 825 386 

            

Mollicutes Mycoplasma genitalium 8,953 1 21 8 

  Mycoplasma pneumoniae 13,926 20 372 165 

            

high-GC Firmicutes Corynebacterium diphtheriae  54,254 9 282 120 

  Mycobacterium leprae 83,094 29 1,721 537 

  Mycobacterium tuberculosis 170,502 59 2,182 636 

            

!-Proteobacteria  Brucella melitensis 69,899 11 399 219 

  Rickettsia conorii 14,933 19 797 383 

            

"-Proteobacteria  Bordetella bronchiseptica 214,459 26 2,009 470 

  Bordetella parapertussis 188,237 30 1,513 518 

  Bordetella pertussis 158,592 52 7,212 4,602 

  Neisseria meningitidis 56,605 44 3,595 991 

            

#-Proteobacteria  Escherichia coli 86,339 12 1,152 431 

  Haemophilus influenzae 25,055 3 39 25 

  Pasteurella multocida 31,209 1 24 8 

  Pseudomonas aeruginosa 206,492 9 526 129 

  Pseudomonas putida 175,088 75 3,640 1,352 

  Salmonella typhi 90,027 8 177 116 

  Salmonella typhimurium 91,844 7 157 94 

  Vibrio cholerae 45,824 7 250 122 

  Yersinia pestis 78,372 20 600 279 

TOTAL   2,230,206 523 28,904 12,254 
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The analysis revealed that over than 80% of the clusters show an average identity higher 

than 60% and that the established consensus was larger than 90 bp for the about half of 

them, while the others produced consensus sequences between 27 and 90 bp (see Figures 6 

and 7). 

 

Figure 6. Average identity of detected clusters 

In the graph bars represent the number of clusters falling within the reported average identity range. 

Members of each clusters were aligned by PCMA and alignment was evaluated by ALISTAT tool.  

 

 

 

 

Figure 7. Consensus lengths of detected clusters 

In the graph bars represent the number of clusters falling within the reported consensus length range. 

Alignment of members of each clusters was fed to ALISTAT tool to calculate consensus. 
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SLS contained in repeats are able to fold in a stable way 

Clusters of similar SLSs were analyzed for their ability to fold into a reliable secondary 

structure, by using the procedure implemented by the RANDFOLD tool [Bonnet et al. 

2004]. This procedure compares the predicted minimum folding energy (MFE) of a 

sequence with those of a large number of random shuffles of the same sequence. Results 

are expressed as a p-value, indicative of the predicted MFE being truly different from the 

others. Since predicted stability of RNA secondary structure is calculated on the basis of a 

nearest neighbour model, which also includes a base stacking component, sequences 

analyzed in this test were shuffled by preserving dinucleotide frequencies, as proposed by 

Workman and Krogh in 1999.  

For each genome, RANDFOLD was run on three different sequence populations: 

SLSs clustered as described above; 

SLSs randomly picked from the initial population; 

Random genomic sequences of the same size as clustered ones. 

The results obtained for each of these populations are reported in figure 8. Sequences 

belonging to each group are assigned to a specific “folding aptitude” class according to the 

p-values calculated by using RANDFOLD. Most SLSs obtained by the clustering 

procedure (panel A) show a non-random probability of folding lower than 0.01 (dark grey 

bars), and, very often, also lower than 0.001 (black bars), whereas only about 20% of the 

SLS from the original population reach these p-values (Figure 8, panel B). Only in four 

genomes, M. leprae, L. johnsonii, M. genitalium and M. pneumoniae, the two SLS 

populations do not show statistically different folding aptitudes. A very small fraction (less 

than 5%) of control sequences showed a non-random folding probability higher than 0.1% 

(light grey bars in Figure 8, panel C). 
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Figure 8. Randfold analysis 

Fraction of sequence elements positive to RANDFOLD test. RANDFOLD test was run onto groups of 

clustered SLSs  (panel A), total SLSs (panel B) and random sequences (panel C) from the 29 genomes listed 

in Table 3. The fraction of elements scoring positive with the indicated probability is diagrammed. Standard 

deviation bars are shown in panels B and C. 
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Finding relations between clusters  

In order to detect possible relationships between clusters, various grouping procedures 

were attempted, based on sequence similarity, strand reciprocity and position on the 

genome. The results, reported in Table 4, allowed to further combine the initial 523 

clusters into a smaller number.  

A first grouping strategy was aimed to pull together clusters whose elements are similar at 

sequence level, as the first clustering procedure was very stringent and elements of the 

same type were likely to be separated in different clusters. The procedure involved re-

clustering SCRs by reusing the same BLAST and MCL tools, under less stringent 

conditions. This analysis reduced the 523 clusters to 301, most of them characterized by a 

larger number of elements, as shown in column ‘sequence’ of Table 4. Within each new 

cluster, overlapping SCRs were further combined as described above, to produce even 

larger non-overlapping regions. 

A second strategy was used to verify the presence of clusters whose members are similar 

but located on opposite strands, i.e. are reverse complement. The idea is based on the 

evidence that the ability to form SLS is generally shared by the two complementary strands 

of a given DNA sequence, except for sequences where G-U pairing is essential to form a 

stem-loop satisfying the minimum requirements. For this reason, a number of clusters are 

likely to be composed of elements from the opposite strands of the same genomic region. 

Again the BLAST-MCL procedure was used to detect this kind of clusters, but this time 

allowing BLAST searches also on the complementary strand. About two thirds of the 

clusters could be paired in this way, thus the total number was reduced to 205 ‘unrelated’ 

clusters, as seen in column ‘strand’ of Table 4. 

The third strategy was used to group clusters whose members represent different parts of a 

larger DNA repeat. To this aim, the genomic position of all members of each cluster have 

been compared in order to find clusters with most elements overlapping or located at short 
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distance (< 150 bp). Once detected, these clusters were joined within one group. This led 

to a further reduction to 137 cluster groups reported in column ‘location’ of Table 4. 

Finally, the resulting set was analyzed by searching again for ISs and repeated structured 

RNAs such as tRNA and rRNA, trying to identify sequences missed during the first 

filtering. SCRs of each cluster were compared with the IS sequences collected in the 

ISfinder database [Siguier et al. 2006] by using BLAST, in order to remove clusters whose 

members match with ISs not described at the time of the initial selection. Clusters related 

to rRNA and tRNA were removed by evaluating the genomic localization of their elements 

respect to those of genes encoding stable RNAs. These tests revealed that 28 cluster groups 

are composed of sequences related with Insertion Sequences, mostly not known at the time 

of the initial filtering, and 11 cluster groups were made by sequence elements contained 

within rRNA precursors. These 39 cluster groups, reported in the columns ‘IS’ and ‘rRNA’ 

of Table 4, have been tagged and excluded in further analysis.  

The whole procedure above described led to the selection of 98 candidate SLS-containing 

repeated DNA families. 
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Grouped by Located within 
Species                                             Clusters 

sequence strand location IS rRNA 

              

B. anthracis           4 3 2 2     

B. halodurans          6 6 4 3   1 

B. subtilis            2 2 1 1   1 

C. perfringens      6 2 1 1     

C. tetani           14 13 10 6 3   

E. faecalis        7 5 3 3 1   

L. johnsonii      3 3 2 2 1   

S. aureus        11 7 5 4     

S. pneumoniae     28 22 13 9 6   

              

M. genitalium        1 1 1 1     

M. pneumoniae        20 20 18 12     

              

C. diphtheriae  9 7 5 4 1   

M. leprae         29 18 11 5     

M. tuberculosis   59 36 21 15 3   

              

B. melitensis          11 7 5 4     

R. conorii           19 6 4 4     

              

B. bronchiseptica    26 8 5 4     

B. parapertussis     30 16 10 5 4   

B. pertussis         52 28 16 4 3   

N. meningitidis       44 9 7 6     

              

E. coli         12 8 6 6   2 

H. influenzae       3 1 1 1     

P. multocida        1 1 1 1     

P. aeruginosa       9 5 4 4     

P. putida           75 35 26 14 4 2 

S. typhi             8 4 3 3   2 

S. typhimurium 7 6 4 4   1 

V. cholerae              7 7 5 4   2 

Y. pestis              20 15 11 5 2   

              

Total 523 301 205 137 28 11 

 

Table 4. Regrouping of SLS clusters 

Clusters reported in Table 3 were tested for sequence similarity, strand reciprocity and relative genomic 

position of their elements, and grouped accordingly. The number of clustered groups is reported in columns 

marked “Grouped by”. The number of groups, whose elements are part of ISs or rRNA genes, is shown in the 

last two columns. 
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Expanding detected repeated families by using Hidden Markov Model 

The procedures described above are not able to check whether cluster members are part of 

larger DNA repeats whose boundaries do not coincide with those of SLSs. Moreover, it is 

also possible that other genomic sequences similar to members of detected family may 

exist even if not containing any SLS. 

For these reasons, a combined iterative procedure, based on Hidden Markov Model 

(HMM) genome searches, was developed and applied to each identified family, aimed to 

identify the complete set of family members. HMM is a statistical model in which the 

system being modelled is assumed to be a stochastic process with unknown parameters 

(Markov process). Hidden parameters are estimated starting from a known set of data and 

are then used to perform further analysis, such as pattern recognition. A sequence 

alignment can be described by a HMM that can in turn be used to detect new sequences 

able to fit to it.  

In this procedure, a HMM is built starting from the alignment of all family members and 

used to scan the parental genome to detect similar sequences. Detected sequences are then 

aligned to the model and alignments are extended by attaching neighbouring sequences, in 

order to define larger models, when possible. Multiple cycles of alignment, elongation, 

model building and genome search were performed until the borders of the repeated 

sequence were reached (see Methods). The entire procedure is schematically represented in 

figure 9 and an example of results obtained from the elongation process is shown in figure 

10. 

At the end of this procedure, if two or more models identify identical sequences on the 

genome, they were considered equal and the corresponding families were fused, leading at 

the final identification of 92 models, which define the families reported in Table 5, 

together with the length of the model and the number of detected sequences, both covering 
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the entire model or part of it. 67 models range in size between 31 and 200 bp, while the 

rest are larger than that, although only two extend over 1 Kb. 

Since some of the repeated families have already been described and sometimes even 

analyzed in depth in the literature, consensus sequences for DNA repeats described in 

literature have been used to scan members of detected families by BLAST. This 

comparison reveals that 25 families are already known and correspond to essentially all 

previously identified SLS containing families. For each of them, size and copy number are 

reported in Table 5, along with the corresponding values derived from literature data 

[Mazzone et al 2001, De Gregorio  et al. 2005, De Gregorio  et al. 2006, Okstad et al. 

2004, Martin et al. 1992, Oggioni et al. 1999, RicBase Rickettsia genome database, Cole et 

al. 2001, Parkhill et al. 2000, Bachellier et al. 1999, Sharples et al. 1990, Aranda-Olmedo 

et al. 2002]. 

The remaining 67 families are not described as such in literature. Their sizes range from 31 

bases to over 2 kbs for a number of elements varying between 9 and 164. Nine of these 

families (Bhal-2, Clot-2, Clot-3, Myt-5 Sal-2, Myt-11, Nem-4, Pam-1, Hin-1) contain little 

previoulsy described DNA sequence motifs, such as CRISPR [Godde et al. 2006], MIRU 

[Supply et al. 2000] and DUS [Davidsen et al. 2004]. The combination of two or more 

specific elements, matching these motifs, generates larger, SLS containing, repeated 

sequences not previously described. Sixteen families are made up of sequences contained 

within larger sequence blocks, either coding for abundant protein motifs or located within 

larger, ill-defined redundant intergenic sequences. 42 families appear to be unrelated to 

previously described sequence elements. 
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Figure 9. SLS pipeline flowchart 

Schematic representation of the procedure used to detect repeated sequences containing SLSs.  
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Figure 10. Elongation process 

Two sequences of M. genitalium Myg-1 family detected by the clustering procedure are aligned with those 

obtained by the elongation process described in Methods. Arrows indicate the same sequences before and 

after the process. 

 

 

 

 
This work Literature 

Species Family 

size copies size copies ref. 

Type Notes 

                

Bant-1 72 104 (29)      I   
B. anthracis 

Bcr1 167 31 (21) 147 12 [A] I   

Bhal-1 74 36 (32)      I   
B. halodurans 

Bhal-2 76 50 (41)      I 

contains CRISPR 

repeats 

C. perfringens Clop-1 93 44 (28)      I   

Clot-1 74 19 (16)      I   

Clot-2 31 34 (32)        

contains CRISPR 

repeats C. tetani 

Clot-3 90 24 (17)      I 

contains CRISPR 

repeats 

Efa-1 163 65 (18)      I   
E. faecalis 

Efa-2 292 11  (9)      G   

L. johnsonii Lac-1 231 34  (6)      G   

Sta-1 105 25 (25)      I   

Sta-2 460 9  (8)      S   

Sta-3 136 24 (15)      I   

S. aureus 

Sta-4 99 46 (27)      I   

BOX 84 205(105) 100-200 127 [B] I   

RUP 63 110 (99) 108 54 [C] I   S. pneumoniae 

Stre-1 45 241(225)      G   

B. melithensis Bru-RS 118 222 (69) 103-105 35-40 [D] I   

Rpe-4 100 97 (74) 95 94 [E] I   

Rpe-5 115 45 (35) 115 55 [E] I   

Rpe-6 108 123 (74) 136 168 [E]     

R. conorii 

Rpe-7 123 186 144) 99 223 [E]     

M. genitalium Myg-1 259 10  (7)      I   

M. pneumoniae 

Myp-1 143 25 (18)      G part of REPMP1 
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This work Literature 
Species Family 

size copies size copies ref. 
Type Notes 

                

repeat 

Myp-2 158 42 (16)      G 

part of REPMP4 

repeat 

Myp-3 558 11  (8)      G 

part of REPMP5 

repeat 

Myp-4 364 8  (7)      G 

part of REPMP5 

repeat 

Myp-5 426 8  (8)      G 

part of REPMP5 

repeat 

Myp-6 468 11 (11)      G 

part of REPMP2/3 

repeat 

Myp-8 674 9  (9)      G 

part of REPMP2/3 

repeat 

Myp-9 226 9  (9)      G 

part of REPMP2/3 

repeat 

Myp-10 330 12 (12)      G 

part of REPMP2/3 

repeat 

Myp-7 131 42 (22)      G  

Cod-1 140 17 (16)      I   

Cod-2 32 43 (39)      G   

Cod-3 170 23 (20)          

C. diphtheriae 

Cod-5 74 35 (29)      I   

Myt-1 72 75 (70)          

Myt-2 115 769(223)      G 

located within PE 

genes 

Myt-3 81 81 (77)      G 

located within PE 

genes 

Myt-4 83 196 (68)      G 

located within PE 

genes 

Myt-5 71 41  (2)      G 

contains CRISPR 

repeats 

Myt-7 136 278 (68)      G 

located within PE 

genes 

Myt-8 92 33 (25)          

Myt-9 67 53 (15)          

Myt-10 154 62 (59)      G 

located within PE 

genes 

M. tuberculosis 

Myt-11 65 56 (21)        

contains MIRU 

repeats 

REPLEP 740 29  (9) 400-880 15 [F] I   

RLEP 641 38 (30) 601-1075 37 [F] S   

Myl-1 371 7  (4)      S 

part of LEPREP 

repeat 

M. leprae 

Myl-2 1979 9  (7)      S 

part of LEPREP 

repeat 

Bor-1 117 196 (92)      I   

Bor-2 167 17  (6)      I   

Bor-3 134 34 (32)    G   

Bor-4 81 164(114)      G   

Bor-5 112 135(101)      G   

B. bronchiseptica 

Bor-6 147 37 (31)      G   

B. pertussis Bor-1 93 128 (78)      I   

ATR 206 14  (9) 183 13 [G] I   

Nem-2 341 11  (7)          

Nem-3 127 10  (9)      G   

Nem-4 36 412(362)      I 

contains DUS 

repeats 

dRS3 33 755(708) 20 770 [G] I   

NEMIS 46 262 (81) 106-158 250 [H] I   

N. meningitidis 

Rep2 65 22 (18) 59-154 26 [G] I   

P. multocida 
Pam-1 155 12 (12)      S 

contains DUS 

repeats 

BoxC 50 22 (20) 56 32 [I]    E. coli 

Eco-1 734 9  (7)      G   
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This work Literature 
Species Family 

size copies size copies ref. 
Type Notes 

                

ERIC 140 19 (19) 127 21 [J] S    

PU-BIME 108 301(199) 40 485 [I]     

H. influenzae 
Hin-1 31 53 (51)      I 

contains DUS 

repeats 

Pae-1 84 133 (61)      I   

Pae-2 287 65 (24)      G   

Pae-3 220 16 (13)      G   

P. aeruginosa 

Pae-4 52 41 (35)          

Ppu-1 617 39 (28)      I   

Ppu-2 2056 10  (8)      S   

Ppu-3 251 27 (23)      G   

Ppu-4 81 41 (24)      I   

Ppu-9 124 57 (31)      I   

P. putida 

REP 39 588(496) 30 804 [K] I   

PU-BIME 43 146(126) 40 100 [I] I   
S. typhi 

PU-BIME* 80 59 (37) 40 >100 [I]     

PU-BIME 78 142 (94) 40 82 [I]     

Sal-1 115 27 (17)      I   S. typhimurium 

Sal-2 120 33  (3)      G 

contains CRISPR 

repeats 

ERIC 103 97 (66) 127 80 [I] I   
V. cholerae 

Vic-1 184 14  (1)      I   

ERIC 115 241(128) 69-127 167 [L] I  

YPAL 168 101 (68) 169 30 [M] I  Y. pestis 

YPAL* 136 26 (13) 130 10 [M] I  

 

 

 

 

 

 

 

Table 5. Families of SLS containing repeated sequences. 

The final set of 92 families of repeated sequences is reported, grouped by species. For each family, the length 

of the model and the number of sequences fitting the model are given. The number of complete sequences, 

i.e. covering the model from end to end, is reported in parenthesis. Previously described sequence families 

have been named in column “Family”, according to the current literature; for each of them, the number and 

typical size of its members are also provided, together with references indicated by letters: Okstad et al. 2004 

[a], Martin et al. 1992 [b], Oggioni et al. 1999 [c], Halling et al. 1994 [d], RicBase [e], Cole et al. 2001 [f], 

Parkhill et al. 2000 [g], Mazzone et al. 2001 [h], Bachellier et al. 1999 [i], Sharples et al. 1990 [j], Aranda-

Olmedo et al. 2002 [k], De Gregorio et al. 2005 [l] and 2006 [m]. For novel families, a systematic name was 

built by fusing a shortened species name to a progressive number. In the column “type”, I, G and S indicate 

the prevalent genomic location of the members of each families within intergenic, genic or border-spanning 

sequences. For some families, small previously described sequence motifs contribute to the formation of a 

substantially larger model; for others, their members are frequently located within larger previously 

described sequences. In both cases, a note is reported in the rightmost column. 
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Secondary structure analyses  

Members of detected families were tested for their ability to share a common stable 

secondary structure by using three different approaches:  

1) RNAz [Washietl et al 2005] was used to check for the presence of a conserved 

secondary structure within a family by analyzing an alignment of six representative 

sequences to their HMM (column “conserved structure” in table 6); 

2) The presence of aligned SLSs was compared with the structure predicted by RNAz 

and agreement between them was evaluated (column “conserved SLS position” in table 6); 

3) The probability of non-random folding for SLSs contained within each family was 

calculated by using RANDFOLD [Bonnet et al 2004] (column “SLS folding aptitude” in 

table 6). 

Only families with either a predicted conserved secondary structure or aligned SLSs are 

reported in Table 6. 57 out of 92 families are predicted to have a conserved secondary 

structure by RNAz. For most (47) of them, marked as “s”, the predicted structure contains 

a stem-loop compatible with the original search. In all except for Cod-2, the position of the 

originally found SLSs is in agreement with the structure predicted by RNAz. Analyzing 

these SLSs by RNADFOLD revealed that 36 of the 47 families have most members with 

very stable SLSs (P <= 0.005).   

For ten of the 57 putative structured families, indicated by “c”, a complex common 

structure is predicted by RNAz, not including a stem-loop compatible with the original 

search. Most of them do not feature aligned SLSs. Only three families, L. johnsonii Lac-1, 

M. leprae REPLEP and E. coli BoxC, show discrepancies between aligned SLSs and stem-

loop structures predicted by RNAz, suggesting alternative foldings.  

RNAz is unable to predict a common structure for 35 of the 92 families: for most of these 

families (29 out of 35) no aligned SLSs are available, indicating the absence of common 
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secondary structures. Aligned SLSs are present in 6 families, M. genitalium Myg-1, M. 

pneumoniae Myp-1 and Myp-4, E. coli Eco-1, P. aeruginosa Pae-3 and R. conorii RPE-6, 

which show no positive score at the RNAz test. All but RPE-6 showed aligned SLSs that 

feature a low folding aptitude, calculated by RANDFOLD (see Table 6). 

 

Species Family P Conserved structure Conserved SLS position SLS folding aptitude Type 

       

B. anthracis Bcr1 0.99 s + + I 

Bhal-1 0.98 s + ++ I 
B. halodurans 

Bhal-2 0.99 c   - I 

C. perfringens Clop-1 0.96 s + + I 

C. tetani Clot-1 0.95 s + ++ I 

Efa-1 0.85 s + +++ I 
E. faecalis 

Efa-2 1.00 s + - G 

L. johnsonii Lac-1 0.97 c  +° - G 

Sta-1 0.84 s + +++ I 

Sta-2 1.00 s + ++ S S. aureus 

Sta-3 0.97 s + + I 

B. melithensis Bru-RS 0.98 s + + I 

Rpe-4 0.73 s + - I 

Rpe-5 1.00 s + + I 

Rpe-6 0.45 -  +° +   
R. conorii 

Rpe-7 0.99 s + ++   

M. genitalium Myg-1 0.06 -  +° - I 

Myp-1 0.00 -  +° - G 

Myp-2 0.95 s + ++ G 

Myp-3 0.89 s + - G 

Myp-4 0.09 -  +° - G 

Myp-5 0.74 s + - G 

Myp-6 0.55 c   - G 

M. pneumoniae 

Myp-7 0.67 s + - G 

Cod-1 0.97 s + +++ I 

Cod-2 0.98 s   - G C. diphtheriae 

Cod-3 0.99 s + +++   

Myt-1 0.74 s + +++   
M. tuberculosis 

Myt-8 0.90 s + ++   

REPLEP 1.00 c  +° - I 

RLEP 1.00 s + ++ S 

Myl-1 0.61 s + ++ S 
M. leprae 

Myl-2 0.97 s + + S 

Bor-1 0.86 s + ++ I 
B. bronchiseptica 

Bor-2 1.00 s + - I 

B. pertussis Bor-1 0.93 s + ++ I 

ATR 1.00 s + - I 

Nem-2 0.93 s + +   

Nem-4 0.93 s + +++ I 

dRS3 0.98 c   - I 

NEMIS 1.00 s + + I 

N. meningitides 

Rep2 0.98 s + + I 

P. multocida Pam-1 0.96 s + +++ S 

BoxC 0.99 c  +° -   

Eco-1 0.18 -  +° - G 

ERIC 0.94 s + ++ S 
E. coli 

PU-BIME 0.94 s + +   

H. influenzae Hin-1 0.96 s + + I 

Pae-1 0.97 s + ++ I 

Pae-3 0.26 -  +° - G P. aeruginosa 

Pae-4 0.93 s + ++   

Ppu-1 0.97 s + + I 

Ppu-2 1.00 s + +++ S 

Ppu-4 0.95 s + - I 
P. putida 

Ppu-9 0.54 s + - I 

PU-BIME 0.97 c   - I 
S. typhi 

PU*-BIME 0.98 s + -   
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PU-BIME 0.98 s + -   

Sal-1 0.94 c   - I S. typhimurium 

Sal-2 1.00 c   - G 

ERIC 0.90 s + - I 

YPAL 1.00 s + +++ I Y. pestis 

YPAL* 0.96 c   - I 

       

 

Table 6. Secondary structure prediction analysis of families 

The ability to form a consensus secondary structure was evaluated by RNAz: the prediction scores are 

reported in column “P” for each family. The type of predicted structure is indicated in column “conserved 

structure”, where "s" indicates a stem-loop based structure, while "c" indicates a more complex structure, 

where a stem-loop compatible with the original search is not present. For each family, the aligned 

localization of the original SLSs is indicated by ‘+’ in column  “conserved SLS position”; when SLS 

alignment is not in agreement with the RNAz prediction, a ‘°’ is added to the ‘+’ symbol. The column 

marked “SLS folding aptitude” reports the behavior of family elements in the RANDFOLD test: the number 

of ‘+’ symbols describes the percent of positive elements (‘+++’ if 90% or above; ‘++’ if 70-90%; ‘+’ if 50-

70%; ‘-’ if less than 50%). The localization of family members, as already described in Table 5, is also 

reported in the last column. 

 

 

Genomic localization of detected families  

Most members of the already described families are located within intergenic regions. For 

this reason, genomic localization of the identified families was analyzed and families are 

classified according to the position of the vast majority of their members, relative to 

annotated coding sequences (see Table 5 column “type”). 41 families are mostly intergenic 

(I), 30 genic (G) and 7 tend to span the borders between coding and non-coding sequences, 

and are therefore indicated as border spanning (S). 14 families have no clear predominance 

of genic or intergenic sequences, and, for this reason, were not assigned to a class. 

Genomic localizations are also reported in Table 6 for families that are predicted to fold in 

a secondary structure 

For all families, genomic localization, correlated with the predicted ability of the family 

members to fold into a common, stable secondary structure, are summarized in Table 7. 

Most “intergenic” families show a predicted secondary structure (31 out of 41), in contrast 

to  “genic” ones, that are predominantly not structured. In particular, only 9 out of 30 genic 
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families are predicted by RNAz to be structured and only 5 of them also have a supporting 

SLSs alignment. Border spanning and unclassified sequence families feature a predicted 

secondary structure with frequencies similar to intergenic ones.  

 

Sec. 

Struct. + 

Sec. 

Struct. - 
Genomic location 

SLS 

+ 

SLS 

- 

SLS 

+ 

SLS 

- 

Total  

Genic 5 4 4 17 30 

Border spanning 7 0 0 0 7 

Intergenic 25 6 1 9 41 

Others 9 1 1 3 14 

Total 46 11 6 29 92 

 

Table 7. Structural properties of the SLS families in relation to genomic location 

Columns under “Sec. Struct. +/-” report the number of families, characterized by the presence or absence of a 

conserved secondary structure predicted by RNAz; the labels “SLS +/-” indicate the presence or absence of 

aligned SLSs; “Total” is the sum of rows or columns. 

 

Characterization of specific families 

The described procedure schematically represented in figure 9 led to the identification of a 

large number of families of repeated bacterial sequences, some already known, other not 

previously described. For many of them, a number of tests showed the potential folding of 

the majority of their members into a shared secondary structure. Four examples of such 

families are reported in figures 11, 12, 13, 14, 15, 16 and 17 where the predicted secondary 

structure is shown along with the aligned, originally found, SLSs. One of them, the ERIC 

family from E. coli (see Figure 11), was previously described, while the other three are 

new ones. ERIC elements, as anticipated from literature reports [Bachellier et al, Sharples 

et al 1990], are predicted to fold into a single, long stem-loop structure. Sta-1 family 

(Figure 12) is composed of sequences able to fold into a simple, shorter SLS. Pae-1 and 

Efa-1 families (Figures 13 and 14) feature more complex structures, composed of a pair of 
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adjacent SLSs. The structures predicted for these four families may be predicted on both 

strands, with complementary sequences generally, but not necessarily, folding into 

corresponding stems. For Pae-1, the prediction of different structures on the two strands 

indicates the likely presence of multiple foldings of comparable stability, which, on each 

strand, are alternatively selected as the best one, because of minor base pair differences.  

Two families, M. tubercolosis Myt-1 and P. auruginosa Pae-4, share a predicted secondary 

structure simmetrically located on both strands. Their members are frequently found within 

intergenic regions located between convergently transcribed genes, a position compatible 

with a putative function as bidirectional terminators, as schematically represented in figure 

18. For some of the identified families, secondary structure predictions, although supported 

by high RNAz scores, are not consistent with the originally found SLSs. Generally this 

stems from the prediction, by RNAz, of structures not including SLSs fitting with the 

original SLS definition. PU-BIME and dRS3, shown in figures 15 and 16, are examples of 

such families: in PU-BIME the stem includes a five base internal loop, while in dRS3 the 8 

bp stem is too short. Both cases are not compatible with the original search (see Methods).  

Finally, for about one third of the 92 identified families, it is unlikely that the RNA 

secondary structure play a relevant role, as shown by the absence of either a common 

predicted structure or alignment of originally found SLSs. An example of such families is 

Myt-10, reported in figure 17.  
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Figure 11. ERIC family (E. Coli) 

A representative set of elements from the indicated family was aligned by using the HMM model as a guide. 

In each panel, one row corresponds to one family member (indicated on the right with its genomic position). 

Within each row, sequence conservation is indicated by increasing gray levels and gaps by dotted spaces; 

overlapping SLSs are reported as red and blue lines, the red ones indicating SLSs used to define the original 

HMM model for the family, the blue all the others. Darker colors indicate the SLS folding aptitude, i.e. 

positivity to RANDFOLD for P<=0.005. Common secondary structures, predicted by RNAz, are reported at 

the bottom, just above the ruler in nucleotides: green triangles indicate stems produced by pairing 

complementary regions on the same strand as the identified SLSs, while brown triangles indicate the same 

from the opposite strand. The boxed regions highlight areas where aligned SLSs and predicted structures are 

in agreement. If present, the graphic representation of the secondary structure predicted by RNAz was 

reported. Structure was made by using the by Pseudoviewer software. 
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Figure 12. Sta-1 family (S. aureus) 

The image description is given in figure 11.  
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Figure 13. Pae-1 family (P. auruginosa) 

The image description is given in figure 11.  
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Figure 14. Efa-1 family (E. fecalis) 

The image description is given in figure 11.  
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Figure 15. Pu-BIME family (S. typhi) 

The image description is given in figure 11.  
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Figure 16. dRS3 family (N. Meningitidis) 

The image description is given in figure 11.  
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Figure 17. Myt-10 family (M. tubercolosis)  

The image description is given in figure 11. 

 

 

 

 

 

 
 

 

 
Figure 18. Myt-1 (M. tubercolosis) and Pae-4 (P. aeruginosa) families 

Reported families are analyzed by RNAz on both strands. Predicted secondary structures are reported.  
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Discussion  

Many new classes of functional elements have been identified in eukaryotes within non-

coding genomic sequences and understanding their role pointed to relevant biological 

processes including development, control of proliferation and pathogenesis of diseases. 

Screening for secondary structure conservation, often in combination with comparative 

analysis, was used to detect families of functional RNAs such as miRNAs and snoRNAs. 

This approach is more difficult to use in the prokaryotic world because of the high 

plasticity of their genomes and the reduced amount of intergenic sequences. Still, in 

bacteria, SLSs are known to be essential in different aspects of gene expression and in 

regulation of biological pathways. Some of them are known to be involved in 

transcriptional attenuation and termination [Merino et al. 2005, Ermolaeva et al. 2000] and 

in regulation of mRNA stability [Higgins et a. 1988]. Others form cis-acting regulatory 

regions [Nudler et al. 2004] or partecipate to the formation of the catalytic site within 

enzymes such as RNAse P [Kazantsev et al. 2006]. In some organisms, such as Listeria 

monocytogenes, a SLS within the 3’ UTR of a virulence gene is known to regulate 

invasion of mammalian cells [Johansson et al. 2002] by acting as a RNA thermosensor: at 

low temperature it prevents expression by masking the ribosome binding site, when the 

temperature rises over 37 degrees, its disruption allows translation of the virulence gene 

thus inducing host invasion. 

Here an attempt is described to systematically detect structured sequence families by 

looking at conservation within a bacterial genome. This study originated from the 

observation made by Petrillo et al. [2006] that natural genomes contain more high stability 

SLSs than artificial sequences produced by randomly shuffling their original sequence. 

Even if a large fraction of SLSs are expected to be formed by chance, this unbalance 

suggested that some sequences, and particularly, those able to form stable structures, could 

be preserved by selective pressure, possibly being involved in specific biological function.  
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A systematic approach was used to identify and classify families of repeated sequences 

that share a common secondary structure. This screening was performed on 40 genomes of 

bacterial species representing the prokaryotic divisions that are mostly involved in 

diseases, by using a procedure based on clustering of genomic stretches able to fold in a 

stem loop structure by sequence similarity in order to select only the repeated SLSs. The 

clustering procedure selects a subset composed by 1% of initial SLS population detecting 

clusters composed by a least 7 non-overlapping sequences in 29 of 40 analyzed genomes. 

Interestingly, although the clustering procedure is based exclusively on sequence similarity 

the resulting clusters have been found to be composed by sequences whose potential to 

fold into a stable secondary structure is considerably higher, if compared with the initial 

population. The fraction of SLSs that can be grouped by sequence similarity ranges from a 

consistent 6% of N. meningitides to a small 0.1% of B. subtilis and P. multocida. Looking 

for the ability of clustered SLSs to fold into a reliable secondary structure reveals that only 

few genomes show a low fraction of stable SLSs. Since these genomes have a GC content 

varying from 31.6 of Mycoplasma genitalium to 65.5 of Mycobacterium tuberculosis it is 

likely that GC content does not affect these results. After the refinement steps that are 

described in result section, 137 groups of clusters have been identified. These groups have 

been pruned by removing the ones that have members falling within different copies of 

rRNA and tRNA precursor or within ISs escaped from the initial filtering. Sequences 

belonging to each group have been used to build Hidden Markov Models that then were 

used to scan the original genome to detect all the similar sequences, including those not 

containing any SLS. In this way are detected and recognized also repeated families that 

only incidentally included SLSs within some their members. The procedure allows also 

fusing some groups that are included within a very large repeat or with HMMs that identify 

the same sequences. Finally the resulting 92 families have been analyzed in detail for their 

ability to share a common secondary structure.  
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Since clustering was performed by only looking for sequence similarity it is possible, in 

principle, that some of the detected families contain different SLSs. Moreover the HMM 

procedure, by looking for primary structure, may also extend sequences over areas not 

containing SLSs. Within the families, 35 were indeed identified with no recognizable 

shared secondary structure. Interestingly the majority of members that compose these 

families are located within coding regions where the formation of secondary structures is 

expected to be limited by the translation machinery. Also few previously described 

families such as S. pneumoniae BOX and P. putida REP are predicted to have no common 

secondary structure notwithstanding they have members located within intergenic portions. 

This can be related to the fact that their putative structure is not compatible with the initial 

SLS definition. 

Families predicted to share a common secondary structure  

About two thirds of the identified families are predicted by RNAz to have a common 

secondary structure. Many previously well-characterized intergenic families, such as E. 

coli PU-BIME and ERIC repeats, fall within this group as well as families that are only 

reported as simple repeats and on which no experiments have been made to address their 

function. With only two exceptions, all the known families, for which a secondary 

structure was predicted or demonstrated, fall within structured families, and their sequence 

boundaries are mostly coincident with those reported in literature. Only S. pneumoniae 

RUP and the R. conorii RPE-6 repeats are not recognized as structured although they are 

correctly recognized as repeated families. For RUP family it is thinkable that absence of 

conserved structure is caused by the recognition of only a portion of repeat by the pipeline. 

In some cases, in fact, the HMM extension procedure was unable to extend the initially 

detected sequences to cover the entire repeat.  In addition to S. pneumoniae RUP family 

also the N. meningitidis NEMIS is only partially identified. In particular for RUP repeat 
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only 63 out of 108 bases were detected, while for NEMIS only the central 46 bp core 

common to both partial 108 and 158 bases repeats described in the work of Mazzone et. al 

[Mazzone et al. 2001]was identified.  

Known and novel families 

Although enterobacteria have the best characterized genomes a new repeated family that 

we named Eco-1 has been identified within the Escherichia coli genome. This family 

unlike the ones that are already reported in literature seems to have no predicted common 

secondary structure. On the other hand the well studied PU-BIME, ERIC and BoxC 

families are correctly predicted to be structured. Some of these families have been already 

described in different copy number within related bacterial genomes. This procedure 

identified the PU-BIME repeats also in S. typhi and in S. typhimurium. Our procedure 

identifies two variants of PU-BIME in S. typhi: a full-size and a shorter one while S. 

typhimurium seems to contain only the longer one. All these families share a secondary 

structure even if the full-size S. typhi PU-BIME shows a more complex situation. In S. 

typhimurium also two novel families, Sal-1 and Sal-2 have been detected able to share a 

conserved secondary structure. ERIC families has been detected in E. coli, Y. pestis and V. 

cholerae and this results are in according to the works of De Gregorio et al. in 2005 and 

Bachellier et al. 1999. Y. pestis and E. coli ERIC show a similar predicted secondary 

structure and since Yersiniae ERIC have been shown to regulate the level of expression of 

neighboring genes by folding into RNA harpins is likely that this feature is conserved also 

into E. coli genome. V. cholerae ERIC sequences, instead, are shorter than its homologues 

and are predicted to be not structure. These predictions are in according with the 

observation made by De Gregorio et al in 2005 about the selective erosion of V. cholerae 

ERIC terminal inverted repeat that are fundamental for stem loop forming. For these 

reason we hypothesize that these sequence may not be directly involved in RNA 
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stabilization. Many families that are predicted to be structured have been found in other 

less studied genomes such as mycobacteria, bordetellae and pseudomonacee. As we expect 

for many the predicted common secondary structure is or contains a stem-loop. In some 

cases the prediction is different suggesting that also structures different from the searched 

one has been incidentally detected. However some “noise” has to be taken into account 

dealing with hundred of repeated sequences. Some families feature a double hairpin (see 

EFA-1 and Pae-1 in Figure 18) while others have the searched stem included within a 

complex structure. 

Genomic location of repeated sequence families 

Assuming that repeats are randomly placed over the genome we can expect that since 

bacterial genomes is almost fully coding they fall above all within these portions. Most 

repeats, instead, have been reported to be located within intergenic sequences where they 

do not interfere with the coding information. In our study we find both families with 

members within genic and intergenic regions. Interestingly most families found within 

coding sequences (CDSs) of genomes are predicted to be not structured while most 

intergenic families show highly structured SLS supported also from the presence of 

stacked stable SLS. RANDFOLD analysis shows that 19 out of 27 intergenic families with 

aligned SLSs are enriched in highly structured SLSs, while this is true for only one genic 

family, Myp-2.  

These results suggest that potentially structured families are preferentially located away 

from coding sequences where the translation machinery is expected to interfere with 

secondary structure formation while unstructured ones explain their function acting at 

other levels such as protein level. 

Five novel families Sal-2, Myt-5, Bhal-2, Clot-2 and Clot-3 are composed of small direct 

repeats called CRISPR that are very abundant in bacteria and archea. In some cases these 
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repeats show a dyad symmetry that can be recognized as SLS. These repeats have been 

recently demonstrated to play a fundamental role in bacterial resistance against viral 

infection by acting as a RNA interference-like system [Barrangou et al. 2007]. Also three 

novel intergenic structured families, Hin-1 in H. influenzae, Nem-4 in N. meningitidis and 

Pam-1 in P. multocida are composed of similar sequences, characterized by the repetition 

of short, abundant oligonucleotides, known as DUS [Davidsen et al. 2004]. As well as for 

CRISPR sequences, the repetition at short distance of DNA stretches shorter that the 

searched pattern produces a stem loop larger than the threshold. These sequences are 

required for natural genetic transformation and since they are preferentially located within 

or near to genome maintenance genes, they are thought to be involved in recovery of 

genome preserving functions. A work aimed to detect putative transcriptional terminator 

has evidenced that in some species terminator hairpins are indeed frequently formed by 

closely spaced, complementary instances of exogenous DNA uptake signal sequences  

[Kingsford et a. 2007]. 

Some novel structured families are located within coding sequences. They often contain 

repetitive motifs of one or a few coding regions, such as Lac-1 in L.johnsonii, Pae-3 in P. 

aeruginosa and Efa-2 in E. faecalis. The Cod-2 family, instead, even if show a very 

conserved sequence encodes different peptides being located in different frames. Cod-2 

repeats resemble repetitive sequence elements found by Claverie and coworkers in protein 

coding genes of R. conorii [Claverie et al. 2003]. These repeats have been supposed to be 

involved in de novo creation of long protein segments by repeat insertion. 

Five genic families found in M. pneumoniae are part of large (1.5-5.4 kb), possibly mobile 

repeated DNA sequences having coding capacity  [Himmelreich et al. 1996]. 

About one third of the identified families are found to be “unstructured”. These sequences 

were not the object of the original search; a possible explanation of their detection is the 

incidental presence of SLSs within large repeated sequences. Most such families fall 
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within CDSs (see Table 4, and Myt-10 in Figure 17 as an example). Ten of them are 

contributed by only two genomes: M. tuberculosis and M. pneumoniae. Other unstructured 

families are clustered within the same CDS (Bor-3 and Bor-6 in B. bronchiseptica) or are 

dispersed within multiple CDSs, sharing a common protein domain (Bor-4 and Bor-5 in B. 

bronchiseptica, Pae-2 and Ppu-3 in P. aeruginosa and P. putida, respectively). 
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Genome assembly by “scaffolder” 

The de novo sequencing of two relatively large bacterial genomes (5.5 and 12 Mb), was 

carried out in our laboratory by using as 454 GS20 sequencer and is described elsewhere 

(manuscript in preparation). In both cases high coverage (at least 20-fold) sequencing 

failed to generate a single genomic sequence with standard tools, but produced a few 

hundred (or thousand for the larger one) contigs. This experience prompted us to develop 

methods that could guide the final assembly by integrating both computational and 

experimental techniques, methods that have been implemented and are made available to 

the user through a custom developed package named ‘Scaffolder’.  

The large number of contigs obtained after assembly may be due to a limitation of the 

experimental procedure used for sequencing, i.e. some genomic portions might be 

altogether excluded from sequencing. On the other hand it is also possible that simpler 

reasons might be involved, such as the presence of repeats, and that this be sufficient to 

justify the observed result in terms of contig number and distribution. Starting from this 

assumption, several approaches were attempted, aimed to detect relationships between 

contigs. 

Finding links by using contig similarity and coding information 

In a first approach, attention was focused on sequence boundaries. The probability that two 

sequences end at least with the same n-mer stretch of bases, within a population of a 

hundred sequences from the same genome, is very low when n>=10 (P<<1E-06). As a 

consequence, two sequences ending with the same stretch of bases are likely to be 

overlapping and therefore contiguous within the genome. Search for identical n-mers on 

contig ends, highlighted the presence of a number of matches of 10 or more bases much 

higher than expected and all the identified overlap connections were confirmed by PCR 

experiments. The approach was successful with the earlier version of Newbler (1.0), but 
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subsequently, when the same analysis was performed on contigs produced with newer 

versions of the assembler (1.2), no such overlaps were found anymore, as software 

improvements in the newer version, ended up in removal of duplicated sequences at the 

ends of contigs. 

A similar approach was used on coding genes: BLASTX of all contig 100 bases ends 

against all known bacterial proteins was performed, looking for matching protein-coding 

regions located at the ends of different contigs. The presence of different parts of the same 

gene split in two or more contigs was taken as an indication of contiguity and 

experimentally checked. This approach only turned out to be useful for 3 links connecting 

6 contigs, all confirmed by PCR; however it is clearly dependent on the available protein 

sequences and it is conceivable that it might be more useful when protein sequences from a 

more closely-related bacterial genome are available as a reference. In our case no closely-

related known genome was available as about half the identified ORFs within the contigs 

do not share similarity with protein sequences from any other known bacterial genome.  

Finding links based on initial (raw) reads 

The small number of connections identified by the above described methods led to 

investigate new methods for detecting contig relationships. Considering the high coverage 

reached in sequencing (20-25X), it was taken to be very likely that almost all bases of the 

genome had been sequenced at least a few times, and, as a consequence, that in absence of 

systematic hindering factors, every base was expected to be covered by several reads. 

Under this scenario, it was assumed that contigs fail to be connected due to excess rather 

than lack of links and gaps are the result of ambiguity rather than absence of sequence 

information. Starting from these considerations, an attempt was done to detect, among the 

primary reads, the ones able to support connections between contigs. To this aim, 50 bases 

from each contig-end were aligned to all primary reads by using BLAST. When two 
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different ends align in the correct orientation to the same set of reads, a connection is 

defined between them. This procedure was summarized in figure 19. This procedure led to 

the identification of 177 connections (links) supported by at least one bridging read, 

involving 120 out of 130 contigs larger than 100 bps. Of these contigs, 84 have coverage 

compatible with being a single copy sequence in the genome, while 27 are present as 

double and 8 as triple copy sequences. About 85% of them have at least one connected end 

and 75% both of them as reported in table 8. In table 9 a summary of the identified 

connections is reported. As might be expected, there is a gross correlation between number 

of linked ends and contig coverage, i.e. contigs with coverage higher than one (‘double, 

triple, higher’ table columns) usually show more than one connection on their ends. 

The quality of identified links can be estimated by looking at the number of reads 

supporting it. 85% of the links are confirmed by at least five reads across the ends, 65% by 

more than ten, as shown in figure 20. Sequences obtained by joining the ends of the 

connected contig-ends have been aligned to primary reads by Blastalign [Belshaw et al 

2005]. As shown in one example in figure 19, reads across the artificial sequence junction 

are in a comparable number respect to those aligned in the inner parts of the contigs. These 

results verify the hypothesis that gaps are not due to sequencing limitations, but to some 

kind of difficulty of the assembler program in assembling such multiply linked contigs. 

Looking at reads across the junction in detail, it is interesting to note that when high 

coverage contigs are involved, they are often not 100% identical: in general different 

subpopulations of similar reads may be observed that together configure two or more 

different sequence patterns (see differently colored bases in Figure 19), as would be 

expected from sequence variants of repeated regions of the genome. 
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Figure 19. Finding links by BLAST  

Schematic representation of procedure used to detect reads (colored in orange) across different contig ends 

(in red) was shown on the top. The alignment of contig ends with primary reads made by Blastalign is shown 

in the lower part of the figure.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Linked contig ends 

Linked ends classified according to the number of links. 
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Table 9. Contig coverage related to link number 

Coverage of contigs larger than 100 bases are reported grouped by number of links on each end (‘type’ 

column).  

 

 

 

 

 

 

 

 

 

 

 
Figure 20. Link weight distribution  

Link weight distribution is reported as the fraction of links supported by each number of reads (at least). 

 

 

 

type single double triple higher total

0-0 10 0 0 0 10

0-1 15 1 0 0 16

0-2 3 1 0 0 4

1-1 52 1 0 0 53

1-2 8 0 1 0 9

2-2 4 18 5 0 27

1-3 0 1 0 0 1

3-2 0 2 1 0 3

3-3 2 3 1 1 7

94 27 8 1 130

Coverage
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Displaying relations as a connected graph 

The hundreds of contigs and links may be visualized as a graph. To this aim the Graphviz 

tool has been used to build a graphical representation of the contigs and their relationships 

between contigs (see Figure 21). Within the graph, contigs are represented as nodes and 

links edges. Each contig is represented as a box, whose sides are the extremities of the 

sequence. Ends are connected by edges, which indicate a putative contiguity on genome. 

On each edge the weight, i.e. the number of reads supporting this relation, is reported. 

Contig boxes contain information as contig identifier, length in bases, sequence coverage, 

both raw and normalized to the overall average coverage, i.e. overrepresentation in the 

genome.  

Contig coverage reported in graph is estimated in the following way: 

for contigs larger than the average read length L coverage is the product of L and the 

number of contained reads n, divided by contig length l. 

! 

Cov =
n *L

l  

for contigs shorter than L, n is used as the coverage. 

A color code has been used to classify contigs according to the degree of agreement 

between coverage and number of connections. Classification distinguishes the following 

groups: 

- contigs with no links; 

- single coverage contigs with one link on one end; 

- single coverage contigs with one link per end; 

- multiple coverage contigs with the corresponding number of links on both ends; 

- contigs with less links than those expected by coverage; 

- contigs with links exceeding those expected by coverage. 
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Figure 21. Genomic assembly of a 5.5 Mb bacterium as a connected graph 

Contigs and their relations are displayed as nodes and edges of a connected graph. Contig color is chosen 

according to correlation between coverage and links as explained in Methods. In this graph only contigs 

larger than 100 bps are shown. 
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Graph analysis 

Apart from a small number of isolated contigs, the majority of contigs is part of a single 

complex network. Contigs with a single connection per end are never connected with each 

other, but almost always connected with short hyper-linked, high coverage, contigs. They 

clearly represent repeated sequences that the assembler is unable to untangle and that are 

causing interruptions in long strechtes of unique sequences. 

One very large contig (about 49 Kb) is separated from the network and features double 

coverage and a single link connecting its ends in a circular fashion, as expected from a 

circular extrachromosomal DNA element. PCR and other experimental evidence (not 

shown) confirmed that the DNA molecule is indeed a circular plasmid, for which the 

higher coverage would predict a 2:1 stoichiometric ratio with the chromosome. All 

putative ORFs have been detected and translated and predicted proteins have been used to 

search the KEGG database for matches with known pathways by using the KEGG 

Automatic Annotation Server KAAS. This analysis revealed that the entire type IV 

secretion system, a structure homologous to conjugation machinery involved in 

mobilization of both plasmids and proteins was present.  

Resolutions of ambiguities 

The ambiguities present in the connected graph prevent the identification of a univocal 

path representing the whole genome sequence. In an attempt to solve them, two approaches 

have been tried: one based on computational analysis of primary reads and the other on 

PCR experiments. 

Computational multiple contig separation 

The small size of primary read sequences limits the possibility of using the read itself as a 

mean to untangle the network only to the theoretical case of contigs smaller than 100 

bases. None of them was found in the course of manual analysis of a small number of 
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nodes, but in two cases, by following the sequence through a few reads across contig 

borders it was possible to univocally assign the contigs flanking a repeated contig. This 

observation was used as the base for the development of a computational tool able to 

extend this approach to larger multiple contigs, where the aligned reads contain an 

uninterrupted path of micro-heterogeneity as the one described in figure 22.  

 

Figure 22. Alignment of a high coverage contig with primary reds    

The alignment of a high coverage contig with primary reads detected by BLAST is shown. Micro-

heterogeneities are highlighted by coloring the bases in red and green. 
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A scanning algorithm has been used to develop a software tool able to solve an alignment 

of reads mapping within a multiple contig and generate the sequence components by taking 

advantage of micro-heterogeneities, i.e. column in which two or more different nucleotides 

are consistently present in primary reads. The software procedure was run on several 

multiple contigs, and resulted in separation of the contig into its sequence components. An 

example is reported in figure 23. 

The algorithm is designed to separate the two or more sequence variants combined into a 

contig. In the simplest situation, i.e. when no micro-heterogeneities are found, only one 

variant is reported. Alternatively, when a sequence heterogeneity is found at a given 

position, the procedure creates a number of sequence variants equal to the number of bases 

observed in that position and assigns each overlapping read to the respective variant. For 

example if within the nth-column of alignment G and T bases are alternatively present in 

different reads, the procedure creates the variants N and N+1 respectively containing the G 

or T bases. A threshold indicating the minimum number of reads supporting the evidence 

of a new variant is a parameter configurable by the user. During alignment scanning, the 

reads previously assigned to a variant are used to guess the base to be expected in the new 

alignment position. In most cases the observed bases agree with the expected assignment, 

i.e. in a given position the same base is found in all reads assigned to the same sequence 

variant. Only when a new micro-heterogeneity is found the procedure creates new variants 

and assigns reads to them. When a new read is encountered during the scan process, it 

remains unassigned as long as no micro-heterogeneity exists, but as soon as one is found, 

the read is assigned to a specific variant identified according to the heterogenous base. In 

this way, the method is able to follow sequence variants along the alignment. However, it 

is possible that all reads assigned to a variant end before a new heterogeneity is found, thus 

making impossible any further extension of the variant. In this case, the procedure stops 
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the separation of current variants and creates a new multiple contig representing the region, 

linked to the previously detected variants.  

 

Figure 23. Solving a repeated contig by micro-heterogeneity analysis 

A high coverage contig sequence is aligned to primary reads. Bases not conserved along the alignment, i.e. 

micro-heterogeneities, are differently colored depending on their abundance, in the following order from 

most to least: red, green and blue. The presence of two different sequence patterns indicated by alternating 

colors is highlighted. 
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This multiple region in turn ends when a new micro-heterogeneity is found, and new 

variants linked to it are generated. In this way, a multiple contig is completely separated 

into its components, or, as often observed with larger repeats, it is divided into a variable 

number of multiple contigs, linked by two or more dissimilar sequences.  Application of 

this procedure was able to successfully solve a substantial number of ambiguous contigs. 

Even when one long multiple contig could not be completely separated, it was still possible 

to reduce it into fragments of smaller, more manageable size. 

Resolution of ambiguities by experimental methods 

No matter how well-behaved the computational approach is, there are situations where 

experimental methods are required, often in the form of PCR amplifications. Typically 

PCR experiments are used: 

- to validate the connection of two contigs predicted to be neighbors within the 

genome; 

- to untangle situations in which many contigs are linked to both ends of a multiple 

one;  

- to identify neighbouring contigs by combinatorial PCR within a limited set of non-

connected contigs 

The experimental approach based on combinatorial PCRs is always applicable, in 

principle, but it easily requires an exceedingly large number of reactions: considering only 

the 92 contigs longer than 1000 bases produced by the assembly of the smaller genome this 

approach would require 184 primers and 4186 PCR reactions. In practice this number was 

reduced by only verifying contig connections identified by one of the procedures described 

above, and using the combinatorial approach only on the few remaining unconnected 

contigs. Sequencing of the amplificates by Sanger method was used to validate the 

experiment and correct errors in contig end sequences. 
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To this aim a strategy to assist in the design of PCR primers was developed. Primers are 

searched in contig-ends that do not match on other involved contigs by using the eprimer3 

program from Emboss package and then PCR experiments are simulated with calculated 

primers on each contig combination by using the PrimerSearch program (always from 

Emboss package). The procedure was designed to also give additional information useful 

to experimental design like the primer GC content and length, the melting temperature and 

the expected product length. An example of PCR experiments design is reported in figure 

24. Leaving some parameters such as primer GC content, melting temperature, length and 

ability to prime on other contigs freely modifiable allowed to design a great number of 

primers and to fill a great number of gaps. In some cases it was not possible to find a good 

primer that univocally recognize one contig because flanking contigs have very similar 

ends. To solve also these situations an extension of previous procedure was implemented. 

The new procedure detects identical regions between contigs flanking one side of the 

multiple one and produces a single common primer. In this way the problem is solved by 

analyzing small variations in the amplificate sequences. The application of this strategy is 

not restricted to the presence of near identical contig-ends and allows reducing 

experiments to the number of contigs with different primers. In order to distinguish these 

two procedures the former was named X model and the latter Y model and are 

schematically explained in figure 25. 
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Figure 24. Design of PCR experiment  

The figure reports the primers (upper) calculated to untangle the contig network reported in the graph 

(lower). Sequence, length, melting temperature, GC percent of both forward and reverse primers together 

with number of predicted PCR (“N PCRs”) are shown, together with length of PCR products predicted for 

each contig combination. 

 

 
 

 

 

Figure 25. Solving ambiguities by using PCR experiments 

PCR experiments have been used to untangle two contig networks. Green and yellow boxes indicate single 

and double covered contigs; colored arrows represent the primers required for each model. 
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Scaffolder tool 

All the procedures described above have been implemented into software tools combined 

into a package named “Scaffolder”. The package is designed to assist the researcher in de 

novo sequencing projects, by starting from a set of unconnected contigs and is able to  

detect links between contigs and solve most ambiguities deriving from repeated sequences. 

Scaffolder guides the overall assembly process by linking contigs into a multi-connected 

net, separating repeated sequences by a computational approach based on sequence micro-

heterogeneities and selecting primer pairs to experimentally verify predicted links and 

untangle zones that cannot be computationally solved. It uses several different tools for 

performing the analyses, such as BLAST, and relies on a relational database management 

system (RDBMS) for storing both the initial data and the subsequent results. It also 

integrates an automatic versioning system of the assembly that allows following the quality 

and assessment of the sequences during the assembling procedure over time. Scaffolder is 

organized into independent modules, aimed to:  

- access the DB-stored data (storage engine); 

- analyze and edit the assembly (computing engine); 

- manage subversions; 

- communicate with the user through both a command-line and a web interface. 

The system is written according to the object oriented programming paradigm and is 

mostly implemented in PHP. The code is written as a number of objects, mostly specific of 

the various modules implemented, except for those that integrate command line tools and 

that act as database interface.  

Storage engine 

The storage engine is a module that communicates with the database for accessing or 

uploading data regarding primary reads, scaffolds, links and assemblies. It is designed as a 
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single object whose methods can be accessed only by the computing engine. It does not 

directly access the relational database, but uses independent objects specifically designed 

for communicating with generic RDBMS. The storage engine is able to manage and store 

DNA sequences with associated quality and lengths as when handling reads or scaffolds, 

scaffold ends involved with the relative weight when handling with links. It also 

automatically calculates the coverage and average read length for a specific assembly. 

Moreover, the storage engine keeps track of the assembly subversion and stores every 

operation that modifies the assembly into logs (see below).  

Scaffold analysis 

Scaffolder implements the previously described methods as procedures aimed to analyze 

contigs, scaffolds and links and to guide the design of experiments for validation of the 

predicted relations. The computing engine is composed of one object embedding all the 

procedures and is connected with the storage engine for retrieving and uploading data. 

Some of the procedures call external tools, as BLAST or PrimerSearch. 

The computational engine of Scaffolder allows identifying links between contigs (see 

“Finding links based on initial (raw) reads” paragraph) and draws the graph of scaffold 

relations (described in “Displaying relations as a connected graph” paragraph). The graph 

is implemented as a clickable map where any object may be selected with its neighbors to 

create sub-graphs that include all the objects directly connected to it up to a given “depth” 

(see Figure 26). 

Visual inspection of large graphs can give an idea of global connectivity, but it is not 

suitable for statistic purposes. For this reason, the computational engine of Scaffolder 

implements methods for displaying scaffolds also in a tabular way together with 

information, such as length, coverage, number of connections and number of reads. An 

example is reported in figure 27. 
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In order to solve ambiguities, make computational analysis or drive experimental design, 

several functionalities have been implemented, such as those that allow identifying and 

automatically aligning initial reads to one scaffold sequence or to two contiguous scaffold 

ends. The alignments are displayed in color, to emphasize the presence of micro-

heterogeneities (see for example Figures 19 and 22), and can be fed as input to the micro-

heterogeneity analysis tool, to separate sequence variants starting from a multiple coverage 

contig. 

PCR experiments can be used to validate putative links or untangle the connections of 

contigs flanking a repeated one. The automatic procedure of designing and testing the 

primers by both X and Y models (described in “Resolution of ambiguities by experimental 

methods” paragraph), is implemented as operations (functions) that allow designing 

primers between two linked scaffolds or on each end of a single scaffold. 

 

 

 

 

 

 
Figure 26. Assembly of a restricted number of contigs as a subgraph   

A subgraph indicating contigs and their relations is shown. The graph is built starting from the contig 

highlighted by a blue box and is extended to the contigs connected to it following a depth index. This 

subgraph was built by using a depth index of 2.   
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Figure 27. Displaying contigs in tabular way 

The contigs in figure 26 are reported in a tabular way together with their coverage, size in bases and number 

of reads used for assembly. The number of links on each contig end is reported in column “links”. 

 

 

Editing the contigs 

The operations for editing the assembly are structured as a three level hierarchy. With 

respect to the complexity of the action they have to do, they are classified as low-, middle- 

and high-level operations, where higher operations work by using the lower level ones.    

The low-level operations consist of functions that perform basic and simple actions, such 

as creation or deletion of links and scaffolds. They can be called directly from the user in 

order to execute simple tasks or from the higher-level operations as part of more complex 

instructions. 

Middle-level operations consist of tasks involving one or two objects. Essentially they are 

referred to as joining flanking scaffolds and splitting a repeated scaffold into more copies. 

The joining process consists of three consecutive low-level steps: two deletions of linked 

scaffolds, followed by the creation of a larger scaffold, whose sequence is obtained by 

combining those of the deleted ones. The splitting process, instead, consists of the creation 

of a copy of the involved scaffold, optionally having in tow the creation of a couple of 

links from the parent. 

Finally, the high-level operations allow the execution of complex tasks that consists of a 

combination of middle- and low-level ones. For example, the “Split-and-Join” operation 
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splits a repeated scaffold and join its copy to a couple of flanking scaffolds by using 

specific links which are in turn deleted at the end of the process. Another example is 

turning a scaffold into objects connected by links, as a result of micro-heterogeneity 

analysis. 

Version management 

The execution of each assembly editing operation changes the assembly in terms of 

number of scaffolds and links, producing a sort of evolution history of the assembly itself. 

In order to keep track of the overall scaffolding procedure, an automatic versioning system 

has been implemented, where each operation ends with the definition of what is called a 

new “assembly subversion”. As a consequence, contigs, scaffolds and links are originated 

within a subversion and killed in another one. The initial set of contigs are assumed to be 

born at subversion 1. Every scaffold is “alive” until it is fused with others or discarded for 

other reasons. In this way at the end of the assembly procedure, the number of scaffolds 

still alive corresponds to the genomic elements composing the genome, for example 

chromosomes. Scaffolder can show and analyze every assembly stage, only visualizing the 

elements of a particular subversion. In this way, the assembly process may be followed 

over both time and operation by creating graphs for each subversion. 

Scaffold history 

Each scaffold, obtained by using one or more hierarchical processes, is the result of a 

variable number of steps of splitting and fusing “parental” contigs or scaffolds. By using 

the subversioning system, it is possible to follow the story of every single scaffold, in 

terms of which are its ancestors. In order to do this and to describe all the steps that 

conduce to the formation of a given scaffold, a specific method has been implemented. 

Given a scaffold, it produces a historical graph over time (subversions) where nodes are 

the relatives, i.e. from most ancient to the selected one, and edges the parental relations. 
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The graph is built based on the data that the storage engine automatically stores in a 

dedicated table of database when scaffolds are created by fusion or duplication of others 

(see Figure 28). Moreover it is possible for a given a scaffold to create a list of all contigs 

used for its assembling. When the assembling process is able to produce the final sequence 

this list indicates how the initial contigs are located in the genome. 

 
 

Figure 28. Scaffold history 

All the operations that are involved in building of scaffold 476 starting from initial contigs 93, 126, 78, 62 

are reported as described in Results. Each box represents a contig that is flagged as “i” if is created or “f” if is 

deleted during subversion indicated below. 

Assembly progress 

As all operations are logged, an estimation of the duration of the whole process can be 

easily obtained. The trend of the scaffold merging process over time depends on many 

factors, such as the number of gaps to be filled, the number of identified links and linked-

ends, the number of linked elements and isolated ones, the number of high coverage 

objects with multiple connections at their ends, which need to be tested. All these factors 

have been combined into a “scaffolding score”, which is automatically calculated at the 

end of every subversion-step. This index is the sum of two scores, related to scaffolds and 

links respectively. The “scaffold score” gives an estimate of the number of scaffolds by 

taking into account scaffold size and coverage: 

Scaffold score = (0.01*(short + lc) + sc + 1.5*dc + 2.5*hc 
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where short is the number of scaffolds shorter than 100 bases, lc is the number of very low 

coverage, probably erroneous, scaffolds while sc, dc and hc is the number of scaffolds 

with single, double or higher coverage respectively.  

The “link score” indicates the assembly connectivity rate is high if few connections are 

detected and goes down to 0 when the assembly is fully connected: 

! 

Link _ score =
2 links( )
le

"1
# 

$ 
% 

& 

' 
( * scaffolds( )  

where links and scaffolds are the total number of links and scaffolds, while le is the 

number of linked ends 

In figure 29 is reported the scaffolding score variation of our genome project. 

 

 

Figure 29. Progression of the assembly of a 5.5 Mb bacterium in time 

Each step in which assembly was modified is reported together with the subversion, the number of scaffolds 

grouped in classes according to length and coverage. Number of links, linked ends and score as explained 

under Results are reported.  
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Interfaces 

The scaffolder package consists of a set of objects that may be accessed in two ways: as a 

command-line tool or via web interface.  

The command-line tool is composed of a wrapper that calls the computational engine and 

gives full access to the implemented methods. It is the best way to integrate Scaffolder in a 

more complex pipeline. With single commands it is possible to use it for retrieving the 

contigs as map or table, to align reads to a scaffold, to calculate PCR primers, or to  

perform operations on scaffolds. It may also be used to re-run the assembly process in an 

automatic way. The full specifications are given in Table 11. 

 

Available options: 
[-h --help]           This Help 
[-v --version]        Display version 
[-c --cmd]            string 
                      Command to be executed. Allowed values: 
                      help 
                      doScaffList 
                      doXprimers 
                      doYprimers 
                      doAlign 
                      doSimpleVersion 
                      doCompleteVersion 
                      calcVersions 
                      contigs2scaffold 
                      blastOnScaffolds 
                      deleteScaffold 
                      deleteLink 
                      splitScaffold 
                      splitScaffoldAndJoin 
                      unbundleScaffold 
                      joinScaffolds 
                      createLink 
                      stopLinks 
                      explodeScaffolds 
                      createNewLinks 
                      setPlasmid 
 -i --iniFile         string 
                      Project file name 
                      REQUIRED 
[-q --inFile]         string 
                      Input query file 
                       
[-o --outFile]        string Write output into file 
[-s --scaffold]       list A comma separated list of ScaffoldIDs to 
perform command. 
[-l --link]           list A comma separated list of LinkIDs to perform 
command. 
[-e --ends]           list A comma separated list of ends to perform 
command. 
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[-a --assembly]       integer Assembly. 
                      Default = (the most recent one) 
[-u --subversion]     integer Subversion. 

                      Default = (the most recent one) 
[-d --depth]          integer Link depth. 
                      Default = 1 
[-p --prefix]         string Prefix for outfiles command. 
                      Default = tmp/res 
[-m --length]         integer Minimum scaffold length. 
                      Default = 100 
[-r --coverage]       integer Minimum scaffold coverage. 
                      Default = 4 
[-P --prMinLength]    integer Primer minimum length. 
                      Default = 18 
                      Allowed values:{10-20} 
[-g --prGcPercent]    integer Primer GC%. 
                      Default = 50 
                      Allowed values:{30-70} 
[-x --prMaxPriming]   integer Primer max priming. 
                      Default = 12 
                      Allowed values:{5-100} 
[-b --prBorderSize]   integer Scaffold border size. 
                      Default = 500 
                      Allowed values:{50-2500} 
[-E --evalue]         integer Max BLAST evalue. 
                      Default = 0.01 

 

Table 10. Options available by using the Scaffolder command line 

 

 

Web interface 

The web interface grants access to Scaffolder methods in a user-friendly and intuitive way. 

The webpage uses a control bar to give access to all analysis tools and includes an area to 

display results. The control bar is composed of three main panels. The “Data Set” panel is 

used to manage different genome projects and assemblies. A subset of scaffolds may be 

chosen according to length, coverage and weight of connectivity. This panel also allows 

moving through the various subsversions of the assembly process. The panel “Mode” is 

used to select and display scaffold subsets. The third panel gives access to functions that 

modify the assembly state such as deleting subversions, creating and deleting BLAST-

based links and to execute BLAST analysis on a given subset.  When a view mode is 

selected, an additional panel appears containing all the relevant parameters, for example 

when the graph mode is selected the “Map” panel appears with controls for changing graph 

dimension or scaffold display mode. The web page is shown in figures 30 and 31.  
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The graphical view is active and within it scaffolds can be selected by clicking on them. In 

this way the analyzed subset is reduced to the selected scaffold and its close neighbors up 

to a given depth index. Scaffold subsets may also be displayed as a table. Once a scaffold 

is selected, a new panel indicating the available operations appears, where all the 

previously described operations such as analysis of micro-heterogeneity or alignment of 

primary reads to scaffold sequence are easily accessible. This panel also gives access to 

PCR design and result evaluation (Figures 24 and 32).  

 

 

 

 

 

Figure 30. Web interface for Scaffolder (1) 

The web interface for Scaffolder is shown. A control bar at the top hosts boxes for groups of related controls. 

In each box buttons and menus are used to access the various program functions. 
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Figure 31. Web interface for Scaffolder (2) 

The control bar in “Scaffold” mode: once a scaffold is selected it gives access to all the available operations. 

Selection of “Align” button in this module produces the reported alignment of the scaffold sequence with its 

primary reads. 
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Figure 32. Management of PCR experiment results  

The image shows the analysis of sequences produced by PCR amplification. A table shows alignments 

between amplificate sequences and each possible scaffold combination. A second table shows, for each 

combination, the portions of combined sequence aligned with the amplificate sequence and the 

corresponding Bl2seq score. Finally at the bottom alignment combinations are reported with differences 

highlighted. 
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Methods  

Selection of highly repeated SLS 

Initial SLS population is represented by sequences detected in Petrillo et al. 2007 

conducted on 40 bacterial genomes. A subset of sequences predicted to fold into a stem 

loop structure (SLS) with a free energy <=–5 Kcal/mol was analyzed for this study. 

Clusters are obtained by using BLAST [Altschul et al. 1990] and MCL programs [Enrigth 

et al. 2002]. An all-against-all BLAST comparison was performed on the SLS population 

within each genome to create E-value based distance matrices. The resulting matrices were 

pruned by removing links caused by overlapping SLSs and subsequently fed to MCL 

program that produces a set of clusters. BLAST was performed with an E-value cut-off of 

1E-4 and forcing only search on the top strand sequence. The MCL inflation parameter (I) 

was set equal to 4 to have a stringent condition. The alignments of clustered elements were 

produced by PCMA [Pei et al. 2003] by using default parameters. ALISTAT was used to 

analyze alignment within each cluster by using default parameters. 

Analyzing stability of SLS predicted secondary structure  

The probability of original and repeated SLSs and control sequences to form a stable 

secondary structure was tested by running RANDFOLD tool [Bonnet et al. 2004]. The 

shuffling used to create the random distribution was performed by preserving the 

dinucleotide frequencies by using the ‘–d’ option. RANDFOLD was set to compute 1,000 

randomizations for each sequence. In the tests reported in figure 1, all clustered SLSs 

(panel A) were compared to a original SLSs represented by the 5% of initial population 

(panel B) and to a number of genomic sequences having the same size of clustered SLSs, 

randomly extracted from the corresponding genomes (panel C). Control sequences 

analyzed in panels B and C, were selected three times, in order to evaluate average and 

standard deviations. 
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Regrouping clusters in larger families 

The regrouping procedures summarized in Table 2 were made as follows: 

1) Regrouping by sequence was made by using the BLAST-MCL procedure described 

previously on all SCRs, but in a less stringent way. An inflation parameter of 1.4 was used. 

2) Regrouping by strand was performed by using again the BLAST-MCL procedure, but 

allowing this time searches on the complementary strand. The inflation parameter was set 

to 1.4. 

3) Regrouping by location was obtained by joining clusters with SCRs partially 

overlapping or flanking, according to their genomic coordinates. The maximum distance 

allowed in flanking definition was of 150 bp. 

For each regrouping procedure was defined a group of clusters when it contains at least 

50% of the elements derived from original clusters. 

Extension of families members by cycles of HMM searches 

Extension in size and number of detected families were performed by using a procedure 

based on cycles of alignment by PCMA and search on the genome by HMMER package 

tools [Bateman et al. 1999]. In first iteration SCRs of clusters regrouped by sequence (see 

Table 2) were aligned by PCMA with option ‘ave_grp_id’ set to 50 and then alignment 

were fed to the procedure described as Fig 

follows: 

1) Each alignment is used to build a HMM by HMMBUILD and then it is calibrated by 

using HMMCALIBRATE with the default options.  

2) The produced HMM is used to search sequences on the genome by using 

HMMSEARCH with an E-value cut-off set to 1E-10. Independent searches are run on each 

genomic sequence strand. 
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3) Identified sequences are extracted and aligned to their parental HMM by HMMALIGN. 

When overlapping sequences were selected on opposite strands the one with the worse 

score and E-value was discarded to avoid repeated search. 

4) The aligned sequences are extended by attaching to them the neighboring sequences on 

the genome up to 10% of the parental HMM size and are aligned by using PCMA. 

5) A new model is build starting from the alignment of the extended sequences and is fed 

again to the procedure returning to step 1. 

The iterative procedure ends when one of the following criteria is met: 

- The detected sequences that cover the entire model are less than 7; 

- The extended alignment is not able to produce a new HMM, larger than the previous one 

(within a tolerance of 3 bp).    

- The alignment contains a number of gaps higher than 30% of the aligned bases. 

- The extreme value distribution, derived from the model calibration, is in the range 

Average_Score ± 3*Standard_Deviation, derived from HMMBUILD.  

When the procedure ends the obtained HMM and the final alignment are used to define the 

family characteristics. 

Secondary structure analyses 

All SLSs contained in sequences of each family were tested by RANDFOLD as described 

previously and considered as stable if their p-value is < 0.005. Families were classified 

according to the fraction of sequences containing at least one positive SLS. Four categories 

indicated as, ‘+++’, ‘++’, ‘+’ and ‘-’ indicate respectively a fraction of stable SLS of 90% 

or above, 70-90%, 50-70% and less than 50%. Representative sequences of the families 

were chosen to perform other structural analyses in the following way: 

1) All sequences able to match the entire model are sorted by the E-value determined by 

HMMSEARCH. 



 95 

2) Six sequences are picked from this population by selecting the best model-fitting one 

and five more, if available, with progressively increasing of the E-value. 

Sequences were aligned to parental HMM by using HMMALIGN and the resulting 

alignments were analyzed by RNAz (version 0.1.1) [Washietl et al. 2005].  

Alignments with length <=200 bp were used as a single block in RNAz analysis, while 

alignments longer than 200 bp were screened in sliding windows of length 120 and 40 

slide, according to the procedure described by Washietl et al. 2007.  

RNAz was used with default parameters. All alignments with classification score P > 0.5 

were considered as positive. Hits from overlapping windows were analyzed again by using 

larger sliding windows. 
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Scaffolder 

Scaffolder is written in PHP scripting language by using the object-oriented programming 

(OOP) paradigm. The version used is PHP 5.2. Data has been stored in a relational 

database. PostgreSql is the database management system (DBMS) selected and installed to 

manage all the Scaffolder data. Indexing is heavily used for providing quick access to data. 

Finding links between contigs 

1) Identification of links by contig-end similarity was performed by developing and 

running an ad-hoc PHP script, which is able to detect, within a pool of given sequences, 

those ending with the same stretch of N bps, with N varying from 10 to 50. 

2) Connections by coding information were found by running BLASTX (e-value cut-off 

0.01) on all 100 bps contig-ends against all known bacterial proteins annotated in KEGG 

(release 39.0). Two contig-ends were considered as connected when they match by 

BLASTX different regions of at least one common protein at a maximum distance of 30 

aminoacids.  

3) Links by analysis of initial reads were searched by running BLASTN (e-value cut-off 

0.01, minimum match >=30 bps) on all 100 bps contig-ends against all sequenced primary 

reads and considering as connected those contig-ends sharing at least one same matching 

read.  

Building the connected graph  

Connected graphs are done by using dot, a tool of the graphViz package. A specific 

module was developed in order to convert scaffold data and links in a suitable format for 

dot. The same module generates both graph images and html clickable maps. Scaffolds are 

represented in maps as colored boxes whose width is proportional to contig length. Contigs 

are colored according to the following criteria: 
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When one contig has the same number of reads at the ends: 

- Gray: contig without connections 

- Light green: contig with expected coverage and with one link per end 

- Dark green: contig with expected coverage but with only one end linked  

- Yellow: contig with multiple coverage and with the same number of multiple links 

per ends according to the coverage. 

- Orange: contig with multiple coverage, but with a higher number of links than 

expected 

- Light red: contig with a lower coverage than expected and with the same number of 

multiple links per ends 

- Dark red: contig with multiple coverage, but with a lower number of links than 

expected 

Support in design of PCR experiments  

PCR primer design was set up by merging the ends of connected contigs, also taking into 

account their putative orientation. Primers were designed by using the eprimer3 tool from 

the EMBOSS package on each end by using all other contig ends as mispriming library 

(options –mispriminglibraryfile) in order to avoid recognition of other ends. Further 

options, such as minimum GC content and minimum length, were used as default. 

PrimerSearch program, also available in EMBOSS, was used to simulate PCR experiments 

with the identified primers, using a tolerance of 20% of mismatch between primers and 

target sequence.  

Primers identified for the X model were selected for experiments when a unique 

amplificate per combination was predicted.  

Primers identified for the Y model were selected for experiments when only two 

amplificates per combination were predicted.  
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Amplificate sequences were aligned to each combination of scaffold-ends by using bl2seq: 

in this way alignments were evaluated to confirm the PCR results and correct the sequence 

of repeated scaffolds, if necessary.  

Aligning initial reads to a reference sequence 

Reads matching a reference sequence such as a contig or a scaffold sequence, were 

selected from the initial pool by using BLAST (setting e-value cut off 0.01, allowing the 

search without filtering) and discarding all matches shorter than 20bps. Reads matching 

artificial sequences derived from combination of ends were also found in this way. 

Alignment of selected reads to the reference sequence was done by using Blastalign, 

modified in order to launch MEGABLAST instead of BLASTN and setting the maximum 

proportion of allowed gaps in every sequence to 0.99. Aligned sequences were sorted in 

order to display matching reads with 5’ to 3’ order. 

Display alignment  

A PHP script was developed to draw pictures  of alignments where presence of 

heterogeneities are highlighting. The script looks through each column of the alignment 

and when it finds more than one base, differently colors base variants.  

Micro-heterogeneities analysis 

Reads matching for a scaffold (or contig) sequence are detected and aligned as described in 

the previous paragraph. A PHP script was developed to analyze the alignment and find 

hidden sequence variants within the reference sequences. 
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