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Abstract

In bacterial genomes a fraction of transcribed sequences do not code for proteins or
structural RNAs, but have been shown to be involved in fundamental processes, such as
regulation of gene expression, mRNA processing and stability or structural RNA
maturation. In this thesis a systematic procedure to identify and classify families of
repeated sequences sharing a common RNA secondary structure was applied to the study
of 40 bacterial genomes. Sequences able to fold in a stable stem loop structure were
clustered according to sequence similarity, and grouped within homogeneous families. The
study led to the identification of 57 families of repeated sequences, sharing a common
secondary structure and potentially coding for structured RNAs. All previously known
such families have been detected by the used procedure, and are listed within the final set,
together with 37 novel ones. Their location in relation to protein coding genes was
evaluated, and a correlation was found between structure and positioning within intergenic
regions.

A new software tool is also described, Scaffolder, designed to help in high-throughput de
novo genome sequencing by finding connections between contigs produced by random
shotgun sequencing, and assisting the researcher in the whole process. The software,
accessible both as a command line tool and as a web application, can guide all the final
phases of genome assembly by storing the current assembly status, displaying networks of
connected contigs and untangling multiply connected ones by a combination of

computational and experimental procedures.



Introduction

Genome annotation

Sequencing the human genome and that of other organisms created the conditions for
sequence studies at the genomic scale, by allowing systematic analysis of the structure and
organization of genomic regions. Genome annotation is a major challenge in genome
projects and consists of identifying the location of known functional elements, such as
genes and regulatory regions, as well as recognizing the role of unknown sequences, by
attaching to them biologically relevant information.

The basic level of annotation relies on looking for sequence similarities into databanks
containing known protein or DNA sequences such as Swiss-Prot or GenBank. Programs
based on heuristic algorithms such as BLAST [Altschul et al 1990] are preferentially used
in this kind of analysis. Genes may also be found by using predictive techniques.
Searching for open reading frames (ORFs) in prokaryotes and other organisms
characterized by uninterrupted genes allows gene identification in most cases: comparison
of predicted ORFs with already described proteins allows to identify common structural
proteins and enzymes involved in specific metabolic pathways. Databases such as KEGG
[Kanehisa et al 2000] are used to evaluate which pathways are involved in a particular
species or strain.

Gene detection in eukaryotes requires more complex procedures. The Ensembl project,
born in 1991 to provide a centralized resource for researchers involved in genome
analyses, uses a pipeline which first identifies the corresponding full-length cDNA for a
given protein sequence retrieved by protein databases, and then detects the complete
structure of transcript by aligning the cDNA to the genome. Finally expressed sequence tag
(EST) collections are used to better define untranslated mRNA boundaries. Previously

unknown genes may be identified by gene prediction programs based on various methods,



ranging from complex probabilistic models [Majoros et al. 2004] to neural network based
exon detecting tools [Xu Y et al. 1994]. Integrated approaches such as in Genscan [Burge
et al. 1997] are probably the best currently available, associating good sensitivity with low
levels of wrong identifications.

In addition to genes, other functionally relevant sequences, such as protein binding sites or
sites for attachment to nuclear scaffold, may be detected by using automated methods.
Other interesting aspects can be evaluated by comparing sequences of closely or distantly
related genomes such as orthologue genes and conserved sequences outside the coding
portions. With the continuously increasing number of available complete genomes, use of
automatic annotation methods is essential to quickly perform large-scale annotations aimed

to detect functional genomic elements.

Computational methods in functional RNA detection

The discovery of several classes of functional RNAs in eukaryotes and the evidence that
the majority of genome is transcribed but does not code for proteins [Kampa et al. 2004]
stimulated bioinformaticians to develop new strategies able to detect these sequences by
scanning the non-coding portion of the genome. Functional RNAs are molecules that exert
their biological function at the RNA level, rather than through an encoded protein. They
are known to be involved in plenty of biological processes such as gene expression
regulation, post-transcriptional processing and maintaining chromosomal structure. In
some cases such as antisense RNA (aRNA), their activity is only depending on their
primary sequence, but, more often, their activity is connected to their three-dimensional
structure.

Various classes of functional RNAs are reported in table 1, together with their main
biological functions. Functional RNAs can be detected by sequence similarity by using

BLAST like tools, but this procedure is often not useful where structure rather than



sequence defines the classification and role of a RNA molecule. This happens when
structure rather than primary sequence is preserved during evolution, due to its direct
involvement in biological function.

Currently two approaches can be followed to scan genomes looking for functional RNAs:

1) Identify by structure analysis sequences potentially able to fold in a stable structure.
2) Identify sequence and or structure patterns that are typical for a family of RNAs.
Name Abbreviation |Function Distribution
Ribosomal RNA rRNA Part of translation machinery [All
Transfer RNA tRNA Part of translation machinery [All
Signal recognition SRP RNA Involved in protein trafficking [All
particle RNA
Transfer-messenger tmRNA Rescues stalled ribosomes Prokaryotes
RNA
Small nuclear RNA snRNA RNA maturation, regulation |Eukaryotes
of gene expression and and Archea
telomere maintaining.
Small nucleolar RNA |snoRNA RNA maturation Eukaryotes
and Archea
Ribonuclease P RNAseP tRNA maturation All
Ribonuclease MRP RNAse MRP |rRNA maturation, DNA Eukaryotes
replication
Telomerase RNA Telomerase synthesis Eukaryotes
Antisense RNA aRNA Gene expression regulation  |All
Cis natural antisense  [NAT Gene expression regulation  |Eukaryotes
transcript
Clustered Regularly CRISPR RNA |Host defense from parasites |Prokaryotes
Interspaced Short and Archea
Palindromic Repeats
RNA
MicroRNA miRNA Gene expression regulation  |Eukaryotes
Piwi-interacting RNA [piRNA Silencing of mobile elements |Animalia
Riboswitch Gene expression regulation  |All
Small interfering RNA |siRNA Host defense from parasites, |Eukaryotes
gene expression regulation
Y RNA RNA processing, DNA All
replication
Group II intron RNA maturation All

Table 1. Functional RNA classes

A list of the main functional RNA classes is shown together with name, common abbreviation, main

functions and distribution among different organisms
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Secondary structure analysis

Nucleic acid folding can be considered as a multi-step hierarchical process in which a
three-dimensional structure can be guessed starting from the secondary structure, which in
turn is obtained by two-dimensional folding of the primary structure according to the rules
of base pairing [Tinoco et al 1999]. This is due to the fact that interactions involved in
forming secondary structure, basically the hydrogen bonds involved in classical A-T G-C
Watson Crick and in G-U base pairing, are generally stronger than the additional ones
involved in stabilizing tertiary structure. In principle, once the secondary structure is
known, it is possible to infer the final structure by using the secondary structure
information as a scaffold onto which the 3D structure in space is modelled.

Four types of secondary structure domains exist: helices, bulges, loops and junctions.
Helices are Watson-Crick duplexes; loops, bulges and junctions are all unpaired regions
terminated and defined by one or more helices (see Figure 1). Loops can be divided in
internal and hairpin according to whether they are flanked by two helices or one. A bulge
is a special case of internal loop, with no free base on one side and at least one free base on
the other side, and a junction is the stretch of sequence connecting two adjacent structures.
In addition pseudoknots may be formed when a loop is involved in the formation of a stem
through base pairing with sequences located outside the loop itself (see Figure 2). Analysis
of secondary structure deals with the correct recognition of most or all these domains in
nucleic sequence.

Starting from these considerations in the last 30 years scientists have tried to design
methods that allow the prediction of the secondary structure starting from nucleic acid

sequence.
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Figure 1. RNA secondary structure

The representation of the secondary structure of human RNA component (H1) of ribonuclease P is shown
predicted by using the Mfold tool, that implements the Zuker algorithm. Base pair types are colored
differently: GC in red, UA in blue, GU in green. Letters indicate different secondary structure domains:

hairpin loop (a), stem or helix (b), multi branched loop (c), internal loop (d) and bulge loop (e).
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Figure 2. RNA secondary structure of a pseudoknot
The representation of the secondary structure of a pseudoknot domain is shown. Matching base pairs are
highlighted in yellow within the structure. The secondary structure was created by using the Pseudoviewer

software.

Inverted repeat search

A first step in secondary structure analysis is the identification of sequence regions able to
fold as helices. Because the interactions involved in helix formation are the canonical
Watson-Crick pairs (GC and AT or AU for RNA), they can be detected by looking for
inverted repeats, i.e. aligning the sequence with its reverse complement by standard
algorithm such as Needleman-Wunsch. Given two sequences X and Y it is possible to
construct a scoring matrix s(i, j) between all possible couple of bases of two sequences. It
is possible to determine the best alignment with a “traceback” procedure that starting from
the final part of alignment connects all matching bases in order to obtain the maximum
score. This procedure is too simple to fully predict the secondary structure of an RNA but
it is fast and can be useful for initial screening of long sequences to define putative

boundaries of structured RNAs.
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Maximization of pairing

A complication of the previously described procedure consists of looking for structures
including maximum number of base pairs among all the possible ones. The Nussinov
algorithm [Nussinov et al 1980] does this by giving the same weight to each base pair. The
folding problem is considered as a variant of the maximum circular matching problem
(MCMP) that has the scope to obtain for a circle the maximum number of chords without
intersection. (See Figure 3).

Considering sequence B, composed by Bj, ... B, nucleotides, that contains the
subsequence B;, B; of length p with j > i, let Bx be a nucleotide between i and j-1
positions. With a first recursion the algorithm tests the ability of By to pair with B, i.e.
verifies if bases are AU or GC for each k position. With a nested recursion the algorithm
calculates also the base pairs contained by subsequence delimited by Bi+1 and Bj-1 and B;
and By-1. After testing all k positions, the best value is saved in the matrix M(, j). If B;
cannot pair with any k then M (i, j) = M (i,j-1). The maximum number of base pairs is
obtained by incrementing p and repeating the search.

M@Gk-1)+ M(k+1,j-1)
M(l’.]) =max M(la.]_l)
isk<j=i+p

The algorithm can consider, in addition to the standard Watson-Crick pairs (GC and AU),
also the non standard GU pair often present in RNA structures. Once the scoring matrix is
filled, it is possible to identify the secondary structure by a standard traceback procedure.

Although the search for stems is exhaustive, the solution found is often not unique, and the
extreme simplicity of the scoring system may prevent reliable prediction of a correct
secondary structure. An improvement of this method is the introduction of a scoring
system based on the free energies associated with the formation of each base pair type, but

even this thermodynamic model is not adequate to consistently predict correct secondary
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structures. Moreover Nussinov algorithm cannot predict pseudoknots because base pairs
occurring in these structures overlap with others, i.e. the representation of folding process
as the MCMP is in contrast with the pseudoknot structure (see Figure 4). Since prediction
of pseudoknots is computationally complex, most algorithms prefer to keep these

structures out of their evaluated folding space. For this reason algorithms able to predict

pseudoknots will not be described here.

LAGGUCATGAC .u-;n.r,r'fo
LA VLR gy e
IRRAA : iy 8y
150 sett ! - — gy es,
a \\\\} T 1\' /,A, P A

\ | Liry) oo,

acrBdana

pro>

u
u
o
A
&

1 340

Figure 3. Circular plot of a RNA secondary structure

The representation of the secondary structure of the molecule shown in figure 2 is shown as a circular plot.
The sequence is represented by a circle and base pairs as non-intersecting chords. Base pair types are colored

differently: GC in red, UA in blue, GU in green. The prediction was made by using the Mfold tool.
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Figure 4. Circular plot of a psudoknotted secondary structure
The representation of the secondary structure of the pseudoknot domain in figure 3 shown as a circular plot.
The sequence is represented on a circle and base pairs as intersecting chords. Base pair types are colored

differently to highlight base pair cross-links.

The Minimum Folding Energy: Zuker algorithm

Zuker and Stiegler developed in 1981 an algorithm, which is still probably the most
frequently used today within the scientific community, to calculate the secondary structure

starting from a single sequence.

Given a sequence of nucleotides X = (X, ..., Xn) of length n and energy parameters Pj;, that
describe the stability of the base-pair (X;, X;), calculating the best structure means finding
the structure with the lowest free energy.

By using the Nussinov algorithm this value, also called the minimum of folding free

energy (MFE), is the lowest sum of base pair energies involved in the structure:

E= min@ (,-,j)P,»j)
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In the Zuker algorithm, this is improved by inserting additional corrections, such as one
that avoids energetically unstable hairpin-loops shorter than three base pairs (i > j + m;
with m >=3).

From a thermodynamic point of view the building blocks of secondary structures are all
loops: stacked base pairs or helices, internal loops, hairpins and multi-branched loops are
all interpreted as loops with a varying number of unpaired bases. (See Figure 5). The Zuker
algorithm tries to determine which of the four elementary structures with the exterior pair
(i, j), has the lowest free energy. A recursive approach is used to evaluate relations and
produce a two dimensional matrix where all minimum free energies for each i and j is
stored. Again backtracking is necessary to build the path that gives the MFE secondary
structure.

To calculate energies, the algorithm uses the nearest-neighbor model, which assumes that
the thermodynamic stability of a specific base pair depends on the neighboring bases. In
this way both binding and stacking energies are evaluated at the same time.

The algorithm also takes into account the energy associated to each loop, delimited by

bases j+1 and j-1, and to dangling ends delimited by j+1 and n:
Ei,n = min{Ei,n—l;min(EHl,j—l + Ej+l,n + Pij )}

Energy changes associated to various types of loop have been tabulated in relation to loop
type and size and are used as energetic penalties. The energy values are derived from
empirical calorimetric experiments and are minimized by a recursive procedure. Eq, is the
minimum free energy for the full secondary structure involving the whole sequence X.

Tools implementing this algorithm have been shown to correctly recognize up to 65% of
the base pairs of a structure [Gardner et al. 2004]. This number may be improved by
introducing additional constraints derived from experimental information. For instance the
flavin mononucleotide (FMN) is able to photocleave RNA specifically at U residues

involved in G-U base-pairs: this information can directly be used to improve secondary

15



structure prediction. Various limits reduce the accuracy of this method: energy parameters
calculated in laboratory are often slightly different from in vivo conditions and modified
bases are ignored although they are known to have an important role in RNA secondary
structure formation. Recently some chemical modifications involved in base pairs have
been added to the table and used in evaluating the thermodynamic nearest neighbor model

[Mathews et al. 2004].
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Figure 5. Secondary structure decomposition
The reported secondary structure is decomposed into loops delimited by two or more base pairs. Loops are

indicated in this way: h for hairpin, i internal and s stacked.
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MFE evaluation and RNA structure

In principle the Zuker algorithm should produce the optimal structure; most failures in
prediction accuracy are more likely to be due to a scoring system’s inaccuracy rather than
an algorithm problem. The thermodynamic parameters are generally assumed to be
accurate within a 5-10% range, but surprisingly an incredible number of alternative RNA
structures lies in this interval. Moreover some RNAs have a bi-stable structure that cannot
be predicted by looking for the MFE.

For these reasons, the correct structure might not be the one associated with the MFE, but
rather one with a higher folding energy than the calculated MFE and therefore it cannot be
revealed simply by energy minimization. Zuker proposed to also look at suboptimal
structures [Zuker et al. 1989], and Wutchy et al. in 1998 developed a method to calculate
the entire ensemble of suboptimal structures ranging between the MFE and an arbitrary
upper limit. By using this approach, secondary structure prediction may include evaluation
of several structures for a single sequence. Gardner et al. in 2004 tested tools implementing
this algorithm on the ability to correctly recognize four kinds of known structured RNAs
ordered by length: S. cerevisiae Phe-tRNA (73 bp), E. coli RNase P (377 bp), E. coli SSU
rRNA (1542), and E. coli LSU rRNA (2904 bp). This work demonstrated that sensitivity
and selectivity of these methods range from 22-63% and 20-60% respectively and that can
rise to 22-69% and 20-67% by only investigating the first two suboptimal structures.

Even if algorithm is not completely accurate, the calculate MFE can be thought in principle
as a good indicator of presence of structured functional RNAs in a genomic sequence. In
practice, it can be used if some precautions are taken into account: obviously MFE should
be normalized to sequence length, because the number of base pairs increases with the
molecule size. Moreover structures derived from higher GC content sequences are likely to

have lower MFEs than others, as a higher GC percent inevitably results into a larger
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number of more stable GC pairs [Freyhult et al 2005]. A way to give better statistical
significance to a MFE it to compare it with MFEs derived from analyzing a set of random
sequences with the same length and nucleotide composition. Workman and Krogh in 1999

used the z-score, defined as

where E is the MFE, p is the average and sigma the standard deviation of the distribution
of MFE values for a pool of random sequences. They found that in most cases mRNAs
have a MFE undistinguishable from those obtained from randomized sequences, while a
striking difference was found in the case of the highly structured ribosomal RNAs
(rRNAs). Transfer RNAs (tRNAs), although structured, show MFE values similar to those
obtained for random sequences, and cannot be easily identified by using the z-score
indicator.

In 2004 Bonnet et al. analyzed the z-score of a recently discovered class of little functional
RNAs: the micro-RNAs. They used a variant of the z-score procedure that makes no
assumptions upon the nature of the MFE distribution, and demonstrated that more than
70% of known micro-RNAs show low z-scores. They used a Monte Carlo randomization
test to calculate the probability (p) for a given sequence to fold better than random ones
obtained by reshuffling of the sequence itself:

R
N+1

p

where R is the number of random sequences with a MFE less or equal than the original and
N represents the total number of random sequences. Currently z-score is believed to be a

good indicator for structured RNAs, in particular long stems, although not very sensitive.

RNA families in structure prediction

The limited accuracy of RNA structures predicted on the basis of single sequence folding
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suggested the need for further biological information to improve the predictions, such as
that derived from comparative analyses. Three different approaches to predict secondary
RNA structure by using comparative RNA sequence analysis have been developed:

- use pre-aligned nucleotide sequences to infer a common secondary structure

- try to simultaneously align and infer a consensus secondary structure

- directly align RNA structures derived from folding prediction.

The first approach is used in the algorithm proposed by Hofacker et al. in 2002.
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Considering nucleotides a; and a; at each row (a, B, v, ... N) of a sequence alignment A,
new energy parameters P%; are calculated by combining the average pairing energy of a;

and a; with the covariance score C;j derived from the analysis of compensatory mutation.
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The algorithm performs much better than the single sequence folding method previously
described, achieving sensitivity higher than 70% [Gardner et al. 2004]. Of course the
intrinsic limit of this approach is related to the quality of the alignment. When identity is
lower than 70%, incorrect sequence alignments can destroy the co-variation signal.

The second method is based on algorithm described by Sankoff in 1985, which aims to
obtain a common base-pair list which maximizes the sum of base-pair weights. Because
the original algorithm is computationally very expensive, variants containing particular
restrictions have been implemented [Gorodkin et al. 1997, Mathews et al. 2002]. However

up to now they have been only able to detect a fraction of present pairs [Gardner et al.
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2004].

The third approach to predict secondary structure is based on aligning the RNA structures
in order to detect the best common one, independently or with limited dependence on the
sequences. This can be done, for example, by implementing the tree alignment model
[Hochsmann et al. 2003]. Obviously the results of this approach are strictly related to the
quality of the prediction of the single structures. This approach is used at its best when
individual predictions are made by the first method, starting from a family of closely
related sequences, and then compared with other molecules belonging to families that have

different sequences but similar structure.

Pattern search

The main limit of using structure prediction to search for functional RNAs is related to the
stability of the searched secondary structure. The long structured stems of H/ACA
snoRNAs and miRNAs are often not difficult to spot, but smaller unstable stems like those
contained in C/D snoRNAs are easily missed [Washietl et al. 2005]. Moreover, when
functional RNAs are not conserved or no genome related to the analyzed one has been
sequenced, these methods cannot provide the best results because of the absence of
covariance information. These conditions are often found in bacteria, where conservation
is limited or absent in phylogenetically distant species.

In order to overcome these problems, specific tools have been designed, aimed to detect a
particular functional RNA class such as tRNA, C/D and H/ACA snoRNAs, tmRNA,
miRNA [Lowe et al. 1997, Lowe et al. 1999, Laslett et al. 2002, Schattner et al. 2004, Lim
et al. 2003]; these tools depend on specific RNA features that are often combinations of
sequence and structure motifs. More general strategies are based on pattern search and on
covariance models. Pattern search is implemented in very customizable tools, such as

RNAMotif [Macke et al 2001], that allows to selectively detect functional RNAs sharing
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structural and sequence characteristics typical of a specific class of RNAs. This approach
may be very effective in the right context, but of course cannot be used to discover new
classes of functional RNAs.

The covariance model (CM), described for the first time by Eddy in 1994, [Eddy et al.
1994] is a probabilistic model for analysis of RNA secondary structures, analogous to
sequence search by profile hidden Markov model. A CM is built starting from a sequence
alignment and a consensus structure and can be used to scan entire genomes. The extreme
slowness of tools implementing this algorithm requires the use of powerful computational
resources to search a single structure in a single eukaryotic genome [Klein et al. 2003].

CM can be also used to detect new undescribed structures as in the algorithm proposed by
Yao et al. [2005], that it is used to find structured motifs in unaligned but evolutionary
related sequences. The algorithm first identifies a group of subsequences with the lowest
MFEs and then it uses a tree-editing algorithm to iteratively align them in order to find the
consensus structure. To improve the efficiency, the alignments are limited to sequences
compatible with locally conserved regions found by BLAST search. The best 10
alignments are used as seeds to the expectation maximization algorithm that predicts the
RNA secondary structure by using a CM.

Other strategies based on analyses of substitution patterns and RNA structure modelling
have been implemented. Pedersen et al. developed a procedure based on two competing
phylogenetic—stochastic context-free grammar (phylo-SCFG) models of RNA sequence
evolution: a structural model and a nonstructural model [Pedersen et al. in 2006]. Structure
is only predicted when a segment of the alignment is better described by the structural
model than the nonstructural model. The two models describe alignments with identical
properties, except that the nonstructural model assumes a higher substitution rate and does
not include correlated base-pair changes, as found in RNA helices. To each structure

prediction a score is assigned based on the relative likelihood of the alignment under the
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combined structural/nonstructural model and a purely nonstructural model. This approach
has been demonstrated to work for tRNAs and microRNA detection but not on snoRNAs

[Pedersen et al. in 2006].

Systematic RNA search in genomes

Different attempts to perform systematic screenings, looking for functional RNAs, have
been done in recent years. In 2001 Rivas and Eddy, compared intergenic sequences of two
related bacteria E. coli and S. typhi, in order to detect putative structured RNAs. They used
an algorithm based on the covariance model, that is able to compare only two aligned
sequences. The strategy allowed detecting 275 candidate structural RNA loci that have
been checked in part for their ability to be transcribed as small non-coding RNAs. 11 out
of 49 loci predicted to be structured have been shown to be transcribed. Interestingly some
of these positive sequences belong to a class of already described DNA repeats, sharing a
conserved palindrome called BIMEs (Bacterial Interspersed Mosaic Elements), known to
be involved in a variety of biological processes thanks to their RNA structure [Bachellier
et al. 1999]. In 2005 Berezikov et al., in order to find conserved micro-RNAs, focused
their attention on sequences conserved across different eukaryotic genomes. They first
selected conserved sequences, predicted to fold in a stem-loop structure by using tools
implementing the Zuker algorithm and then evaluated their MFEs by calculating the z-
score with the procedure proposed by Bonnet [Bonnet et al. 2004]. In this way, they
detected 379 putative micro-RNAs that are conserved across human, mouse and rat
genomes. 119 of them resulted to be already described and correctly recognized.

In the same year, Washietl et al. used MFE, calculated by the Hofacker algorithm, to detect
the presence of structured functional RNA in aligned sequences. The method is based on
comparison of pre-aligned sequences and contemplates the combination of two scores: the

structure conservation index (SCI) and the average of Z-score of single sequences that
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indicates the thermodynamic stability. SCI is defined as the ratio between the consensus
MFE (EA) and the average of MFE of each alignment sequence (E):
EA
LE E
N

SCI values are around 1 for sequences sharing both primary and secondary structure

SCI =

similarity, but are increased beyond 1 for sequences where secondary structure is better
conserved than sequence, due to compensatory changes. Sequences not sharing a
secondary structure would produce very low scores, even down to 0. This method shows
high sensitivity and specificity when finding several classes of functional RNAs
characterized by conserved sequence and structure, such as tRNA, miRNA and some
snoRNAs.

Washietl et al. performed a genomic screening by using the above described procedure on
sequences derived from whole-genome alignment of eukaryotic species such as human,
chimp, mouse, dog, chicken, zebrafish and fugu and predicted more than 30,000 functional
RNAs, about 1,000 of them conserved across all vertebrates (Washietl et al. 2005). A
second screening was conducted on the regions of the human genome analyzed by the
ENCODE consortium, that also contain not conserved sequences, by using both the above
described procedures by Washietl and by Pederson. The screening identified thousands of
putative conserved functional RNAs [Washietl et al. 2007], but the structures identified by
the two approaches show little overlap (< 8%). This probably reflects the fact that the
Washietl approach is sensitive to alignments with moderate and high GC content and
relatively low sequence similarity, while the other is sensitive for low GC content and high
sequence similarity even if this generates many false positive results [Washietl et al 2007].

The same authors estimated that high false positive ratios, respectively 50% and 70% for
Washietl and Pederson methods, are obtained by taking into account dinucleotide

frequencies, when analyzing shuffled alignments. A small fraction of the predicted RNAs
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was validated by RT-PCR in six tissues: RNA expression was confirmed in about 25% of
cases.

The procedure described by Yao [2005] was also used in two genomic screenings. The first
analyzed potential 5° UTR of conserved bacterial genes [Weinberg et al. 2007] and
detected 22 putative structured motifs, some of them recognized as new riboswitch classes.
The second was carried out on the same genomic regions analyzed by Washietl et al. in
2007 [Torarinsson et al. 2007] and predicted more than 6,500 structured loci, that only
partially overlap with the results obtained in the previous screenings, thus extending the
number of detected candidate functional RNAs by 32%. This increment is also due to the
fact that alignments featuring many gaps or low sequence conservation and discarded by
the previous methods are correctly detected by this procedure. Also for this method a

relatively high false positive rate was estimated, about 50%.

Repeated stem-loops in bacteria

Although bacterial genomes are in general more compact than eukaryotic ones, with over
90% devoted to coding for protein genes, about 10% of DNA is still present as intergenic
in prokaryotic genomes, and contains sequences coding for functional RNAs as tRNA and
rRNA, but also less well defined types. Many functional RNAs are present in multiple
copies in bacterial genomes, and studies on DNA repeats have often ended up by
identifying families of transcribed sequences potentially coding for structured RNAs.
Some of these repeats show a complex conserved secondary structure, that is clearly
related to their activity, as in the case of self-splicing introns [Martinez-Abarca et al.
2000]. In others a conserved secondary structure has been observed, but is not clearly
connected to a specific functionality, as in the case of a large class of repeated DNAs
containing palindromes found in enterobacteria [Bachellier et al. 1999].

This class of repeats is comprised of sequences shorter than 200 bp, located in intergenic
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regions and potentially transcribed but not generally coding for proteins. Their degree of
repetition ranges between 10 and 500 copies in different bacterial species. Members of this
class include V. cholerae VCR [Rowe-Magnus et al. 2003] and E. coli and S. typhimurium
BIMEs [Engelhorn et al. 1995, Espéli et al 1997, Gilson et al. 1991]. Other palindromic,
stem-loop containing repeats from the same class are RSAs and ERICs (or IRUs), simple
repeats that have been found in E. coli, S. typhi, K. pneumoniae and Y. pestis. Also these
are located in intergenic regions, in either orientation with respect to replication and
transcription. Compensatory mutations observed in these families suggest a conserved
secondary structure, possibly involved in functional roles such as translation interference
or mRNA protection from digestion. Other repeats like BOCEs have been found in E. coli
and K. pneumoniae. Overall their functional roles are not clearly defined, but in some
cases, following experimentally studies, putative functions have been proposed for specific
repeats. Some members of the BIME family were demonstrated to be involved in
biological processes as transcription termination, gene expression regulation and protein
interaction, possibly because of their stem-loop structure [Bachellier et al 1999].

A systematic analysis of sequences able to fold as a stem-loop structure was attempted in
40 wholly sequenced bacterial genomes [Petrillo et al. 2006]. In order to reduce the
number of possible structures, work was focused on those containing stems at least 12 base
pair long. Comparison of SLSs contained within genomes with those obtained from
random genomes demonstrated that natural SLSs are always more than those expected by
chance. Moreover specific SLS subsets are found to be selectively enriched in natural
genomes. SLSs with low MFEs (< -15 Kcal) and those with the smallest loops appear to be
more frequent than expected and are hypothesized to be involved in formation of
secondary structures, as those found in self-splicing introns [Martinez-Abarca et al. 2000],
riboswitches [Nudler et al. 2004], and in the previously mentioned class of transcribed

intergenic repeats including E.coli BIME, Yersiniae ERIC and Neisseriae NEMIS. In these
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cases the stem is often essential to the attainment of the correct secondary structure and
may be directly recognized by ribonucleases [Coburn et al. 1999, Gilson et al. 1991, De

Gregorio et al 2005].

Large-scale sequencing in bacterial genome analysis

The search for functional sequences within complete genomes, is strongly dependent on
the availability of large masses of genomic sequences. As far as the prokaryotic world is
concerned, the complete DNA sequence of over 500 bacterial strains is known today and
more are becoming available every month, from over 3000 bacterial genome sequencing
projects. An important boost to these numbers is expected to come from the recent
development of new DNA sequencing technologies such as pyrosequencing and
hybridization sequencing, respectively used by commercially available high-throughput
genome analyzers such as Roche 454 GS and Illumina.

Although these high-throughput techniques look very promising, most currently available
sequences have been produced by using the standard Sanger method, and today only about
70 bacterial genomes have been sequenced by using the high throughput approach based
on pyrosequencing (see table 2). By closely looking at the table, it appears that 4 of them
are re-sequencing of already sequenced genomes, 52 are de novo sequencing of strains that
can take advantage of information derived by related already sequenced genomes and 18
are “real” de-novo sequencing. Even among these last genomes, 7 were sequenced via a
combination of high throughput and Sanger sequencing, and 11 by exclusively using the
pyrosequencing approach. Of these, only 4 were completely sequenced and assembled,
yielding a single genomic sequence, ranging in size between the 250 kilobases of

Candidatus Sulcia muelleri and the 3.9 megabases of Acinetobacter baumannii.
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Organism N. genome Size Type Technology Complete
\Escherichia coli K12 1 4,6 resequencing 454 yes
Chlamydia trachomatis 1 1 resequencing 454 yes
Saccharopolyspora erythraea 1 8,2 resequencing 454 yes
\Mycobacterium tuberculosis 1 4,4 resequencing 454 yes
\Myxococcus xanthus 3 9,14 strain 454+Sanger yes
Staphylococcus aureus 2 2,8 strain 454+Sanger yes
Campylobacter jejuni 1 1,6 strain 454+Sanger yes
Salmonella Typhi 19 5 strain 454+Solexa no
Vibrio cholerae 1 4.1 strain 454 no
Campylobacter jejuni 1 1,6 strain 454 no
\Escherichia coli O157:H7 2 6,2 strain 454 no
\Helicobacter pylori 2 1,6 strain 454 no
Sinorhizobium meliloti 1 3,6 strain 454 no
| Haemophilus influenzae 9 1,8 strain 454 only 2
Campylobacter jejuni 1 1,6 strain 454 yes
Streptococcus pneumoniae 8 2,1 strain 454 yes
Chlamydia trachomatis 1 1 strain 454 yes
\Brucella abortus 1 2,1+1,1 strain 454 yes
\Mycobacterium avium paratuberculosis 1 ? de novo 454+Sanger no
\Bacillus coahuilensis 1 3,4 de novo 454+Sanger no
Bacillus pumilus 1 3,7 de novo 454+Sanger yes
|Acaryochloris marina 1 6,5 de novo 454+Sanger yes
Corynebacterium urealyticum 1 2,4 de novo 454+Sanger yes
Uncultured Termite group 1 bacterium 1 1,1 de novo 454+Sanger yes
Acinetobacter baumannii ACICU 1 3,9 de novo 454+Sanger yes
Beggiatoa 2 7 de novo 454 no
Vibrio furnissii 1 ? de novo 454 no
Acidimethylosilex fumarolicum 1 ? de novo 454 no
Corynebacterium kroppenstedtii 1 2,4 de novo 454 no
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Organism N. genome Size Type Technology Complete

Francisella tularensis 1 2 de novo 454 no
Campylobacter jejuni subsp. jejuni 1 1,8 de novo 454 no
Acinetobacter baumannii 1 3,9 de novo 454 yes
Candidatus Sulcia muelleri 1 0,25 de novo 454 yes
|Pseudotrichonympha grassii 1 1,1 de novo 454 yes
Oligotropha carboxidovorans 1 3,7 de novo 454 yes

Table 2. Organisms sequenced by pyrosequencing
Organisms sequenced by 454 sequencers based on pyrosequencing technology are shown together with

number and size of genome strains, type of sequencing, technology used and project state.

The Scaffolding problem

Large-scale whole genome shotgun sequencing was successfully applied for the first time
in 1995 to determine the complete genome sequence of Haemophilus influenzae
[Fleischmann et al. 1995], a 1.8 Mb bacterium, and subsequently used for many other
bacterial strains, as well as for eukaryotic genomes. Shotgun sequencing consists of
randomly breaking the genome into a large number of overlapping small fragments and
sequencing them; final assembly of the fragments produces the complete sequence,
typically with the help of an assembler tool. In the 1990s Phrap was probably the most
frequently used assembler tool. It is based on a three-step procedure where after finding the
best alignment for each matching pair of reads having more than one significant alignment
in a given region, layouts of contiguous sequences are built, and finally contig sequences
are generated as a consensus of the highest quality parts of the reads by using consistent
pair-wise matches. This approach proved to be highly successful and was largely used for
assembling the human genome. Unfortunately the algorithm expects relatively large

primary reads (500-1000 bases) and is not adequate for the short reads generated by high
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throughput sequencing machines, which are typically shorter (40-200 bp). This novel kind
of sequencing has been defined “short read sequencing (SRS)” and required the
development of a new class of programs, able to combine millions of very short reads.
Two commonly used assembler tools are Newbler [Margulies et al. 2006], developed by
454 Life Sciences, a Roche owned company, and Euler-SR [Chaisson et al. 2008].
Newbler consists of a series of modules that act in subsequent steps, in a fashion similar to
Phrap. First, the “Overlapper” module finds and creates all pairwise overlaps between
reads. In the second step the “Unitigger” module constructs larger sequences containing
overlapping consistent reads that are uncontested by reads external to the sequence. For
this reason the obtained sequences are called “unitigs”. In the third step, the “Multialigner”
module takes all the reads that make up the unitigs and aligns all the read signals
generating a consensus sequence and quality scores for each base within each assembled
“contig”.

Euler-SR is based on a different strategy from the “overlap-layout-consensus” approach
implemented by Phrap and Newbler. It transforms the assembly problem into an Eulerian
path problem by dividing all reads into overlapping k-tuples that become the vertices of a
de Brujin graph [Chaisson et al. 2008]. K-tuples are connected by links if they share a
common segment of at least k-1 bases. The search for a unique ‘Eulerian’ path allows to
create the final sequence. In most cases several independent paths can be identified
allowing the assembly of different contigs. In many contigs, the presence of more than one
link prevents the extension of the contig, given that more than one path do exist, passing
through the contig, and creating a tangle in the global graph that is diagnostic of the
presence of repeated sequences. Information on the reads can be used to untangle most of
these cases but of course repeats larger than the read length cannot be solved. A
comparative test of the two methods was carried out by assembling Streptococcus

pneumoniae genome, sequenced by using reads shorter than 120 bases [Chaisson et al.
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2008]. The genome is known to contain 167 exact repeats longer than 120 bases and is not
resolvable by any assembler, as fragment assembly should theoretically generate 504
contigs, 136 of which larger than 500 bases. The ideal assembler should recognize all these
136 large contigs. This analysis revealed that Newbler manages to detect 255 contigs
longer than 500 bases, collectively covering about 2000 kb while Euler-SR almost
correctly identifies 127 long contigs, together covering 2001 kb.

Only in unusual circumstances these programs are expected to produce a single final
assembled sequence; more often they generate a collection of contigs, whose location
relative to each other or within the genome is not defined. For this reason sequencing is
often complemented by a further procedure called “scaffolding”, necessary to order and
orientate contigs by using other experimental data, such as long-range connectivity

information.

Assembly and repeated sequences

The main cause that prevents the final assembly is the presence in genomes of repeated
sequences, larger than the average read length. Because of this, the assembler software is
often unable to separate and univocally assign those sequences to different contigs.
Moreover some sequencing procedures require masking the repeated sequences and cause
a sizable fraction of the genome not to be available within the final complete sequence. To
overcome the problem Sundquist et al. in 2007 proposed a hierarchical sequencing
strategy, called SHRAP (Short Read Assembly Protocol), based on sequencing multiple
copies of the genome sheared and inserted in large fragment libraries, for example BAC
clones, by SRS. Reads coming out from sequencing experiments are used to infer
positioning of the clones along the genome according to clone maps generated in a pre-
assembly step. The assembler tool is then used to sequence individual ordered clones.

Tests using simulated data show that the SHRAP strategy is able to assemble large
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genomes such as human or D. Melanogaster, but no trial with real experimental data have
been performed yet. Some assembler tools include a scaffolding step that consists in using
mate pairs data. In 2004 Pop et al. developed a general-purpose tool able to guide the
scaffolding process called Bambus [Pop et al. 2004]. This tool is currently used in all
sequencing project at TIGR and can manage several kinds of linking information such as
mate information, homology data, physical maps and gene synteny, presented as a

connected graph.
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Results and discussion

Families of stem-loop structures in prokaryotic genomes

Finding repeats able to fold in a stem loop structure

Sequences analyzed in this study derived from a previous work [Petrillo et al 2006], in
which the analysis of complete genomes of 40 bacterial genomes, mostly of medical
interest, predicted more than 5 million sequences as able to fold in a RNA stem-loop
structure (SLS). SLS was defined as a structure with a stem of at least 12 bp, loop size
ranging from 5 to 100 nucleotides and in which GU pairing is admitted. Sequences
predicted to fold with a MFE lower than —5 Kcal/mol were selected for this study, with the
exception of those falling within either mature RNA species (tRNAs, rRNAs) or known
Inserted Sequences (IS), in order to avoid known structured repeated sequences. In this

way the SLS population was reduced to slightly over 2 millions sequences.

Clustering

The SLS population was screened for the presence of repeats by clustering them according
to sequence similarity. Sequence comparison was performed by running an all-against-all
BLAST within the SLSs of each genome, and the resulting matches were used for the
compilation of distance matrices in which the E-value is used as a measure of distance.
BLAST was run without searching for the complementary strand, as in this step the goal
was to identify similarity between the putative RNAs. In order to limit the selection to
highly similar sequences, this clustering step was performed by using stringent parameters;
in order to avoid clustering of SLS containing sequences on the basis of contiguity rather

than content similarity, connections caused by overlapping sequences were eliminated (see
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Methods). Clustering was done by feeding the resulting matrix to MCL [Enright et al.
2002], a tool implementing the Markov Clustering algorithm for unsupervised clustering,
based on simulation of stochastic flow in graphs. Within MCL, the distance matrix is
interpreted as a connected graph, where sequences are nodes and similarities are edges. As
a consequence, groups of nodes characterized by the presence of many connecting edges
represent clusters of similar sequences. Nodes belonging to a cluster are connected by
paths that are typically more numerous and of better quality than those between nodes
lying in different clusters. MCL uses random walking as a means to achieve cluster
separation, since walking on paths within a cluster is far more likely than walking on paths
connecting different clusters. Two operations, expansion and inflation, are iteratively
performed on the matrix in order to progressively increase cluster separation.

By applying this technique, 523 clusters were identified, composed of at least 7 non
overlapping genomic elements, as reported in Table 3. Although links between overlapping
SLSs were removed, a small number of members of the same cluster were still found to
map onto the same genomic sequence and were joined into larger SCRs, for SLS
containing regions. Together, the 523 identified clusters, contain 12,254 non-overlapping
SCRs corresponding to a total of 28,904 SLS elements, corresponding to about 1.3% of the
originally selected SLS population. Individual clusters contains between 8 and over 4,000
SCRs.

Of the 40 analyzed genomes, 29 contain at least one and up to 75 clusters. No clusters were
identified for the remaining 11 genomes: L. innocua, L. monocytogenes, S. pyogenes, C.
pneumoniae, C. trachomatis, U. urealyticum, R. prowazekii, T. pallidum, Buchnera, C.
jejuni and H. pylori. The quality of the described clustering procedure was evaluated by
aligning SCR members of each cluster by the PCMA multiple alignment tool [Pei et al.

2003], and analyzing the resulting alignments by using ALISTAT [Bateman et al. 1999].
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Clustered Clustered

Division Species SLSs Clusters SLSs SCRs
low-GC Firmicutes Bacillus anthracis 65,220 4 105 38
Bacillus halodurans 55,624 6 182 93
Bacillus subtilis 56,622 2 32 16
Clostridium perfringens 35,027 6 149 81
Clostridium tetani 29,883 14 178 123
Enterococcus faecalis 40,991 7 317 142
Lactobacillus johnsonii 25,668 3 173 26
Staphylococcus aureus 32,372 11 275 144
Streptococcus pneumoniae 25,095 28 825 386
Mollicutes Mycoplasma genitalium 8,953 1 21 8
Mycoplasma pneumoniae 13,926 20 372 165
high-GC Firmicutes Corynebacterium diphtheriae 54,254 9 282 120
Mycobacterium leprae 83,094 29 1,721 537
Mycobacterium tuberculosis 170,502 59 2,182 636
a-Proteobacteria Brucella melitensis 69,899 11 399 219
Rickettsia conorii 14,933 19 797 383
p-Proteobacteria Bordetella bronchiseptica 214,459 26 2,009 470
Bordetella parapertussis 188,237 30 1,513 518
Bordetella pertussis 158,592 52 7,212 4,602
Neisseria meningitidis 56,605 44 3,595 991
y-Proteobacteria Escherichia coli 86,339 12 1,152 431
Haemophilus influenzae 25,055 3 39 25
Pasteurella multocida 31,209 1 24 8
Pseudomonas aeruginosa 206,492 9 526 129
Pseudomonas putida 175,088 75 3,640 1,352
Salmonella typhi 90,027 8 177 116
Salmonella typhimurium 91,844 7 157 94
Vibrio cholerae 45,824 7 250 122
Yersinia pestis 78,372 20 600 279
TOTAL 2,230,206 523 28,904 12,254

Table 3. Sequence-based clustering of SLSs

BLAST-MCL based clustering of SLSs from bacterial genomes described in Petrillo et al 2007. For each
species, the number of elements within the starting populations, the number of clusters and the number of
clustered SLSs are reported. The number of SLS containing regions (SCRs), obtained by fusing overlapping
clustered SLSs, is also reported. Only species featuring at least one cluster, with a minimum of 7 SCRs, are

listed.
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The analysis revealed that over than 80% of the clusters show an average identity higher
than 60% and that the established consensus was larger than 90 bp for the about half of
them, while the others produced consensus sequences between 27 and 90 bp (see Figures 6

and 7).
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Figure 6. Average identity of detected clusters
In the graph bars represent the number of clusters falling within the reported average identity range.

Members of each clusters were aligned by PCMA and alignment was evaluated by ALISTAT tool.
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Figure 7. Consensus lengths of detected clusters
In the graph bars represent the number of clusters falling within the reported consensus length range.

Alignment of members of each clusters was fed to ALISTAT tool to calculate consensus.
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SLS contained in repeats are able to fold in a stable way

Clusters of similar SLSs were analyzed for their ability to fold into a reliable secondary
structure, by using the procedure implemented by the RANDFOLD tool [Bonnet et al.
2004]. This procedure compares the predicted minimum folding energy (MFE) of a
sequence with those of a large number of random shuffles of the same sequence. Results
are expressed as a p-value, indicative of the predicted MFE being truly different from the
others. Since predicted stability of RNA secondary structure is calculated on the basis of a
nearest neighbour model, which also includes a base stacking component, sequences
analyzed in this test were shuffled by preserving dinucleotide frequencies, as proposed by
Workman and Krogh in 1999.
For each genome, RANDFOLD was run on three different sequence populations:

SLSs clustered as described above;

SLSs randomly picked from the initial population;

Random genomic sequences of the same size as clustered ones.
The results obtained for each of these populations are reported in figure 8. Sequences
belonging to each group are assigned to a specific “folding aptitude” class according to the
p-values calculated by using RANDFOLD. Most SLSs obtained by the clustering
procedure (panel A) show a non-random probability of folding lower than 0.01 (dark grey
bars), and, very often, also lower than 0.001 (black bars), whereas only about 20% of the
SLS from the original population reach these p-values (Figure 8, panel B). Only in four
genomes, M. leprae, L. johnsonii, M. genitalium and M. pneumoniae, the two SLS
populations do not show statistically different folding aptitudes. A very small fraction (less
than 5%) of control sequences showed a non-random folding probability higher than 0.1%

(light grey bars in Figure 8, panel C).
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RANDFOLD positive elements
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Figure 8. Randfold analysis

Fraction of sequence elements positive to RANDFOLD test. RANDFOLD test was run onto groups of
clustered SLSs (panel A), total SLSs (panel B) and random sequences (panel C) from the 29 genomes listed
in Table 3. The fraction of elements scoring positive with the indicated probability is diagrammed. Standard

deviation bars are shown in panels B and C.

37



Finding relations between clusters

In order to detect possible relationships between clusters, various grouping procedures
were attempted, based on sequence similarity, strand reciprocity and position on the
genome. The results, reported in Table 4, allowed to further combine the initial 523
clusters into a smaller number.

A first grouping strategy was aimed to pull together clusters whose elements are similar at
sequence level, as the first clustering procedure was very stringent and elements of the
same type were likely to be separated in different clusters. The procedure involved re-
clustering SCRs by reusing the same BLAST and MCL tools, under less stringent
conditions. This analysis reduced the 523 clusters to 301, most of them characterized by a
larger number of elements, as shown in column ‘sequence’ of Table 4. Within each new
cluster, overlapping SCRs were further combined as described above, to produce even
larger non-overlapping regions.

A second strategy was used to verify the presence of clusters whose members are similar
but located on opposite strands, i.e. are reverse complement. The idea is based on the
evidence that the ability to form SLS is generally shared by the two complementary strands
of a given DNA sequence, except for sequences where G-U pairing is essential to form a
stem-loop satisfying the minimum requirements. For this reason, a number of clusters are
likely to be composed of elements from the opposite strands of the same genomic region.
Again the BLAST-MCL procedure was used to detect this kind of clusters, but this time
allowing BLAST searches also on the complementary strand. About two thirds of the
clusters could be paired in this way, thus the total number was reduced to 205 ‘unrelated’
clusters, as seen in column ‘strand’ of Table 4.

The third strategy was used to group clusters whose members represent different parts of a
larger DNA repeat. To this aim, the genomic position of all members of each cluster have

been compared in order to find clusters with most elements overlapping or located at short
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distance (< 150 bp). Once detected, these clusters were joined within one group. This led
to a further reduction to 137 cluster groups reported in column ‘location’ of Table 4.
Finally, the resulting set was analyzed by searching again for ISs and repeated structured
RNAs such as tRNA and rRNA, trying to identify sequences missed during the first
filtering. SCRs of each cluster were compared with the IS sequences collected in the
ISfinder database [Siguier et al. 2006] by using BLAST, in order to remove clusters whose
members match with ISs not described at the time of the initial selection. Clusters related
to rRNA and tRNA were removed by evaluating the genomic localization of their elements
respect to those of genes encoding stable RNAs. These tests revealed that 28 cluster groups
are composed of sequences related with Insertion Sequences, mostly not known at the time
of the initial filtering, and 11 cluster groups were made by sequence elements contained
within rRNA precursors. These 39 cluster groups, reported in the columns ‘IS’ and ‘rRNA’
of Table 4, have been tagged and excluded in further analysis.

The whole procedure above described led to the selection of 98 candidate SLS-containing

repeated DNA families.
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Grouped by Located within

Species Clusters
sequence strand location IS rRNA
B. anthracis 4 3 2 2
B. halodurans 6 6 4 3 1
B. subtilis 2 2 1 1 1
C. perfringens 6 2 1 1
C. tetani 14 13 10 6 3
E. faecalis 7 5 3 3
L. johnsonii 3 2
S. aureus 11 4
S. pneumoniae 28 22 13 9 6
M. genitalium 1 1 1 1
M. pneumoniae 20 20 18 12
C. diphtheriae 9 7 5 4 1
M. leprae 29 18 11 5
M. tuberculosis 59 36 21 15 3
B. melitensis 11 7 5 4
R. conorii 19 6 4 4
B. bronchiseptica 26 8 5 4
B. parapertussis 30 16 10 5
B. pertussis 52 28 16 4 3
N. meningitidis 44 9 7 6
E. coli 12 8 6 6 2
H. influenzae 1 1 1
P. multocida 1 1 1
P. aeruginosa 9 5 4 4
P. putida 75 35 26 14 4 2
S. typhi 4 3 3 2
S. typhimurium 7 6 4 4 1
V. cholerae 7 7 5 4 2
Y. pestis 20 15 11 5 2
Total 523 301 205 137 28 11

Table 4. Regrouping of SLS clusters

Clusters reported in Table 3 were tested for sequence similarity, strand reciprocity and relative genomic
position of their elements, and grouped accordingly. The number of clustered groups is reported in columns
marked “Grouped by”. The number of groups, whose elements are part of ISs or rRNA genes, is shown in the

last two columns.
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Expanding detected repeated families by using Hidden Markov Model

The procedures described above are not able to check whether cluster members are part of
larger DNA repeats whose boundaries do not coincide with those of SLSs. Moreover, it is
also possible that other genomic sequences similar to members of detected family may
exist even if not containing any SLS.

For these reasons, a combined iterative procedure, based on Hidden Markov Model
(HMM) genome searches, was developed and applied to each identified family, aimed to
identify the complete set of family members. HMM is a statistical model in which the
system being modelled is assumed to be a stochastic process with unknown parameters
(Markov process). Hidden parameters are estimated starting from a known set of data and
are then used to perform further analysis, such as pattern recognition. A sequence
alignment can be described by a HMM that can in turn be used to detect new sequences
able to fit to it.

In this procedure, a HMM is built starting from the alignment of all family members and
used to scan the parental genome to detect similar sequences. Detected sequences are then
aligned to the model and alignments are extended by attaching neighbouring sequences, in
order to define larger models, when possible. Multiple cycles of alignment, elongation,
model building and genome search were performed until the borders of the repeated
sequence were reached (see Methods). The entire procedure is schematically represented in
figure 9 and an example of results obtained from the elongation process is shown in figure
10.

At the end of this procedure, if two or more models identify identical sequences on the
genome, they were considered equal and the corresponding families were fused, leading at
the final identification of 92 models, which define the families reported in Table 5,

together with the length of the model and the number of detected sequences, both covering
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the entire model or part of it. 67 models range in size between 31 and 200 bp, while the
rest are larger than that, although only two extend over 1 Kb.

Since some of the repeated families have already been described and sometimes even
analyzed in depth in the literature, consensus sequences for DNA repeats described in
literature have been used to scan members of detected families by BLAST. This
comparison reveals that 25 families are already known and correspond to essentially all
previously identified SLS containing families. For each of them, size and copy number are
reported in Table 5, along with the corresponding values derived from literature data
[Mazzone et al 2001, De Gregorio et al. 2005, De Gregorio et al. 2006, Okstad et al.
2004, Martin et al. 1992, Oggioni et al. 1999, RicBase Rickettsia genome database, Cole et
al. 2001, Parkhill et al. 2000, Bachellier et al. 1999, Sharples et al. 1990, Aranda-Olmedo
et al. 2002].

The remaining 67 families are not described as such in literature. Their sizes range from 31
bases to over 2 kbs for a number of elements varying between 9 and 164. Nine of these
families (Bhal-2, Clot-2, Clot-3, Myt-5 Sal-2, Myt-11, Nem-4, Pam-1, Hin-1) contain little
previoulsy described DNA sequence motifs, such as CRISPR [Godde et al. 2006], MIRU
[Supply et al. 2000] and DUS [Davidsen et al. 2004]. The combination of two or more
specific elements, matching these motifs, generates larger, SLS containing, repeated
sequences not previously described. Sixteen families are made up of sequences contained
within larger sequence blocks, either coding for abundant protein motifs or located within
larger, ill-defined redundant intergenic sequences. 42 families appear to be unrelated to

previously described sequence elements.
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Figure 9. SLS pipeline flowchart

Schematic representation of the procedure used to detect repeated sequences containing SLSs.
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86268 TCCFCCACTCTTAT RCCGGCAT 99
214206 TCCFCCACTCTTATTGATCAAGRCCGGGATAGTT 99
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430235 ATTCTTGE TAGTGAAA TGGTGGCACTGATACTGTTGGGT 190
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Figure 10. Elongation process
Two sequences of M. genitalium Myg-1 family detected by the clustering procedure are aligned with those
obtained by the elongation process described in Methods. Arrows indicate the same sequences before and

after the process.

Thi k Li
Species Family 1S wor iterature Type Notes
size copies size copies ref.
B. anthracis Bant-1 72 104 (29) I
Bcrl 167 31 (21) 147 12 [A] 1
Bhal-1 74 36 (32) I
B. halodurans contains CRISPR
Bhal-2 76 50 (41) I repeats
C. perfringens Clop-1 93 44 (28) 1
Clot-1 74 19 (16) 1
. contains CRISPR
C. tetani Clot-2 31 34 (32) repeats
contains CRISPR
Clot-3 90 24 (17) I repeats
E. faecalis Efa-1 163 65 (18) I
Efa-2 292 11 (9 G
L. johnsonii Lac-1 231 34 (6) G
Sta-1 105 25 (25) I
S. aureus Sta-2 460 9 (& S
Sta-3 136 24 (15) 1
Sta-4 99 46 (27) I
BOX 84 205(105) 100-200 127 [B] I
S. pneumoniae RUP 63 110 (99) 108 54 [c1 I
Stre-1 45 241(225) G
B. melithensis Bru-RS 118 222 (69) 103-105 35-49 [D] I
Rpe-4 100 97 (74) 95 94 [E] 1
R. conorii Rpe-5 115 45 (35) 115 55 [E] I
Rpe-6 108 123 (74) 136 168 [E]
Rpe-7 123 186 144) 99 223 [E]
M. genitalium Myg-1 259 10 @ L
M. pneumoniae
Myp-1 143 25 (18) G part of REPMP1
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This work

Literature

Species Family Type Notes
size copies size copies ref.
repeat
part of REPMP4
Myp-2 158 42 (16) G repeat
part of REPMPS
Myp-3 558 11 (8) G repeat
part of REPMPS
Myp-4 364 8 (M G repeat
part of REPMPS
Myp-5 426 8 (8) G repeat
part of REPMP2/3
Myp-6 468 11 (11) G repeat
part of REPMP2/3
Myp-8 674 9 @ G repeat
part of REPMP2/3
Myp-9 226 9 @ G repeat
part of REPMP2/3
Myp-10 330 12 (12) G repeat
Myp-7 131 42 (22) G
Cod-1 140 17 (16) I
C. diphtheriae Cod-2 32 836D 6
Cod-3 170 23 (20)
Cod-5 74 35 (29) I
Myt-1 72 75 (70)
located within PE
Myt-2 115 769(223) G genes
located within PE
Myt-3 81 81 (77) G genes
located within PE
Myt-4 83 196 (68) G genes
contains CRISPR
M. tuberculosis Myt-5 71 41 (@ G repeats
located within PE
Myt-7 136 278 (68) G genes
Myt-8 92 33 (25)
Myt-9 67 53 (15)
located within PE
Myt-10 154 62 (59) G genes
contains MIRU
Myt-11 65 56 (21) repeats
REPLEP 740 29 (@ 400-880 15 [F] I
RLEP 641 38 (30) 601-1075 37 [F] S
M. leprae part of LEPREP
Myl-1 371 7 4 S repeat
part of LEPREP
Myl-2 1979 9 (D S repeat
Bor-1 117 196 (92) I
Bor-2 167 17 (6) I
B. bronchiseptica Bor-3 134 343D G
Bor-4 81 164(114) G
Bor-5 112 135(101) G
Bor-6 147 37 (31) G
B. pertussis Bor-1 93 128 (78) I
ATR 206 14 (9@ 183 13 [G] I
Nem-2 341 11 (@
Nem-3 127 10 (9 G
N ingitidi contains DUS
meningitidis Nem-4 36 412(362) I repeats
dRS3 33 755(708) 20 770 [G] I
NEMIS 46 262 (81) 106-158 250 [H] I
Rep2 65 22 (18) 59-154 26 [G] I
. contains DUS
P. multocida Pam-1 155 12 (12) S repeats
E. coli BoxC 50 22 (20) 56 32 (1]
Eco-1 734 9 (@ G
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Thi k Li
Species Family 1S wor tterature Type Notes
size copies size copies ref.
ERIC 140 19 (19 127 21 [J] S
PU-BIME 108 301(199) 40 485 [1]
H. influenzae contains DUS
) Hin-1 31 53 (51) I repeats
Pae-1 84 133 (61) I
P. aeruginosa Pae-2 287 65 (24) G
Pae-3 220 16 (13) G
Pae-4 52 41 (35)
Ppu-1 617 39 (28) I
Ppu-2 2056 10 (8 N
P. putida Ppu-3 251 27 (23) G
Ppu-4 81 41 (24) I
Ppu-9 124 57 (31) I
REP 39 588(496) 30 804 [K] I
S. typhi PU-BIME 43 146(126) 40 100 [1] I
PU-BIME* 80 59 (37) 40 >100 [1]
PU-BIME 78 142 (94) 40 82 [1]
S. typhimurium Sal-1 115 27 (17) I
contains CRISPR
Sal-2 120 33 (3 G repeats
V. cholerae ERIC 103 97 (66) 127 80 [1] I
Vic-1 184 14 (D 1
ERIC 115 241(128) 69-127 167 [L] I
Y. pestis YPAL 168 101 (68) 169 30 M 1
YPAL* 136 26 (13) 130 10 [M] I

Table 5. Families of SLS containing repeated sequences.

The final set of 92 families of repeated sequences is reported, grouped by species. For each family, the length
of the model and the number of sequences fitting the model are given. The number of complete sequences,
i.e. covering the model from end to end, is reported in parenthesis. Previously described sequence families
have been named in column “Family”, according to the current literature; for each of them, the number and
typical size of its members are also provided, together with references indicated by letters: Okstad et al. 2004
[a], Martin et al. 1992 [b], Oggioni et al. 1999 [c], Halling et al. 1994 [d], RicBase [e], Cole et al. 2001 [f],
Parkhill et al. 2000 [g], Mazzone et al. 2001 [h], Bachellier et al. 1999 [i], Sharples et al. 1990 [j], Aranda-
Olmedo et al. 2002 [k], De Gregorio et al. 2005 [1] and 2006 [m]. For novel families, a systematic name was
built by fusing a shortened species name to a progressive number. In the column “type”, I, G and S indicate
the prevalent genomic location of the members of each families within intergenic, genic or border-spanning
sequences. For some families, small previously described sequence motifs contribute to the formation of a
substantially larger model; for others, their members are frequently located within larger previously

described sequences. In both cases, a note is reported in the rightmost column.
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Secondary structure analyses

Members of detected families were tested for their ability to share a common stable
secondary structure by using three different approaches:

1) RNAz [Washietl et al 2005] was used to check for the presence of a conserved
secondary structure within a family by analyzing an alignment of six representative
sequences to their HMM (column “conserved structure” in table 6);

2) The presence of aligned SLSs was compared with the structure predicted by RNAz
and agreement between them was evaluated (column “conserved SLS position” in table 6);
3) The probability of non-random folding for SLSs contained within each family was
calculated by using RANDFOLD [Bonnet et al 2004] (column “SLS folding aptitude” in
table 6).

Only families with either a predicted conserved secondary structure or aligned SLSs are
reported in Table 6. 57 out of 92 families are predicted to have a conserved secondary
structure by RNAz. For most (47) of them, marked as “s”, the predicted structure contains
a stem-loop compatible with the original search. In all except for Cod-2, the position of the
originally found SLSs is in agreement with the structure predicted by RNAz. Analyzing
these SLSs by RNADFOLD revealed that 36 of the 47 families have most members with
very stable SLSs (P <= 0.005).

For ten of the 57 putative structured families, indicated by “c”, a complex common
structure is predicted by RNAz, not including a stem-loop compatible with the original
search. Most of them do not feature aligned SLSs. Only three families, L. johnsonii Lac-1,
M. leprae REPLEP and E. coli BoxC, show discrepancies between aligned SLSs and stem-
loop structures predicted by RNAz, suggesting alternative foldings.

RNAZz is unable to predict a common structure for 35 of the 92 families: for most of these

families (29 out of 35) no aligned SLSs are available, indicating the absence of common
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secondary structures. Aligned SLSs are present in 6 families, M. genitalium Myg-1, M.

pneumoniae Myp-1 and Myp-4, E. coli Eco-1, P. aeruginosa Pae-3 and R. conorii RPE-6,

which show no positive score at the RNAz test. All but RPE-6 showed aligned SLSs that

feature a low folding aptitude, calculated by RANDFOLD (see Table 6).

Species Family P Conserved structure Conserved SLS position SLS folding aptitude Type
B. anthracis Bcrl 0.99 S + + I
B. halodurans Bhal-1 0.98 s + ++ I
Bhal-2 0.99 C - I
C. perfringens Clop-1 0.96 S + + I
C. tetani Clot-1 9.95 S + ++ I
E. faecalis Efa-1 0.85 s + +++ I
Efa-2 1.00 S + - G
L. johnsonii Lac-1 0.97 C +° - G
Sta-1 0.84 s + +++ I
S. aureus Sta-2 1.00 s + ++ S
Sta-3 0.97 S + + I
B. melithensis Bru-RS 0.98 S + I
Rpe-4 0.73 s + - I
R. conorii Rpe-5 1.00 s + + I
Rpe-6 0.45 - +° +
Rpe-7 0.99 S + ++
M. genitalium Myg-1 .06 - +° - I
Myp-1 0.00 - +° - G
Myp-2 0.95 s + ++ G
Myp-3 0.89 s + - G
M. pneumoniae Myp-4 0.09 - +° - G
Myp-5 0.74 s + - G
Myp-6 0.55 c - G
Myp-7 0.67 S + - G
Cod-1 0.97 s + +++ I
C. diphtheriae Cod-2 0.98 s - G
Cod-3 0.99 S + 4+
M. tuberculosis Myt-1 0.74 s * A
Myt-8 0.90 S + ++
REPLEP 1.00 c +° - I
M. leprae RLEP 1.00 s + ++ S
Myl-1 0.61 s + ++ S
Myl-2 0.97 S + + S
B. bronchiseptica Bor-1 0.86 s * A I
Bor-2 1.00 S + - I
B. pertussis Bor-1 0.93 S + ++ I
ATR 1.00 S + - I
Nem-2 0.93 s + +
N. meningitides Nem-4 0.93 s + +++ I
dRS3 0.98 c - I
NEMIS 1.00 S + + I
Rep2 0.98 S + + I
P. multocida Pam-1 0.96 S + +++ S
BoxC 0.99 c +° -
E. coli Eco-1 0.18 - +° - G
ERIC 0.94 s + ++ S
PU-BIME 0.94 S + +
H. influenzae Hin-1 0.96 S + I
Pae-1 0.97 s + ++ I
P. aeruginosa Pae-3 0.26 - +° - G
Pae-4 0.93 S + ++
Ppu-1 0.97 s + + I
P. putida Ppu-2 1.00 s + +++ S
Ppu-4 0.95 s + - I
Ppu-9 Q.54 S + - I
S. typhi PU-BIME 0.97 [ - I
PU*-BIME 0.98 S + -
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PU-BIME 0.98 s + -
S. typhimurium Sal-1 0.94 c - I
Sal-2 1.00 C - G
ERIC 0.90 S - I
Y. pestis YPAL 1.00 s +Ht I
YPAL* 0.96 C - I

Table 6. Secondary structure prediction analysis of families

The ability to form a consensus secondary structure was evaluated by RNAz: the prediction scores are
reported in column “P” for each family. The type of predicted structure is indicated in column “conserved
structure”, where "s" indicates a stem-loop based structure, while "c¢" indicates a more complex structure,

where a stem-loop compatible with the original search is not present. For each family, the aligned

E}

localization of the original SLSs is indicated by ‘+’ in column “conserved SLS position”; when SLS

alignment is not in agreement with the RNAz prediction, a ‘°’ is added to the ‘+’ symbol. The column
marked “SLS folding aptitude” reports the behavior of family elements in the RANDFOLD test: the number
of “+’ symbols describes the percent of positive elements (‘+++’ if 90% or above; “++’ if 70-90%; ‘+’ if 50-
70%; ‘-’ if less than 50%). The localization of family members, as already described in Table 5, is also

reported in the last column.

Genomic localization of detected families

Most members of the already described families are located within intergenic regions. For
this reason, genomic localization of the identified families was analyzed and families are
classified according to the position of the vast majority of their members, relative to
annotated coding sequences (see Table 5 column “type”). 41 families are mostly intergenic
(D), 30 genic (G) and 7 tend to span the borders between coding and non-coding sequences,
and are therefore indicated as border spanning (S). 14 families have no clear predominance
of genic or intergenic sequences, and, for this reason, were not assigned to a class.
Genomic localizations are also reported in Table 6 for families that are predicted to fold in
a secondary structure

For all families, genomic localization, correlated with the predicted ability of the family
members to fold into a common, stable secondary structure, are summarized in Table 7.
Most “intergenic” families show a predicted secondary structure (31 out of 41), in contrast

to “genic” ones, that are predominantly not structured. In particular, only 9 out of 30 genic
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families are predicted by RNAz to be structured and only 5 of them also have a supporting
SLSs alignment. Border spanning and unclassified sequence families feature a predicted

secondary structure with frequencies similar to intergenic ones.

Sec. Sec.
Struct. + Struct. -

Genomic location cLs T sis | sis o< Total
+ - + -
Genic 5 4 4 17 30
Border spanning 7 0 0 7
Intergenic 25 6 1 41
Others 9 1 1 14
Total 46 11 6 29 92

Table 7. Structural properties of the SLS families in relation to genomic location
Columns under “Sec. Struct. +/-” report the number of families, characterized by the presence or absence of a
conserved secondary structure predicted by RNAz; the labels “SLS +/-” indicate the presence or absence of

aligned SLSs; “Total” is the sum of rows or columns.

Characterization of specific families

The described procedure schematically represented in figure 9 led to the identification of a
large number of families of repeated bacterial sequences, some already known, other not
previously described. For many of them, a number of tests showed the potential folding of
the majority of their members into a shared secondary structure. Four examples of such
families are reported in figures 11, 12, 13, 14, 15, 16 and 17 where the predicted secondary
structure is shown along with the aligned, originally found, SLSs. One of them, the ERIC
family from E. coli (see Figure 11), was previously described, while the other three are
new ones. ERIC elements, as anticipated from literature reports [Bachellier et al, Sharples
et al 1990], are predicted to fold into a single, long stem-loop structure. Sta-1 family
(Figure 12) is composed of sequences able to fold into a simple, shorter SLS. Pae-1 and

Efa-1 families (Figures 13 and 14) feature more complex structures, composed of a pair of
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adjacent SLSs. The structures predicted for these four families may be predicted on both
strands, with complementary sequences generally, but not necessarily, folding into
corresponding stems. For Pae-1, the prediction of different structures on the two strands
indicates the likely presence of multiple foldings of comparable stability, which, on each
strand, are alternatively selected as the best one, because of minor base pair differences.
Two families, M. tubercolosis Myt-1 and P. auruginosa Pae-4, share a predicted secondary
structure simmetrically located on both strands. Their members are frequently found within
intergenic regions located between convergently transcribed genes, a position compatible
with a putative function as bidirectional terminators, as schematically represented in figure
18. For some of the identified families, secondary structure predictions, although supported
by high RNAz scores, are not consistent with the originally found SLSs. Generally this
stems from the prediction, by RNAz, of structures not including SLSs fitting with the
original SLS definition. PU-BIME and dRS3, shown in figures 15 and 16, are examples of
such families: in PU-BIME the stem includes a five base internal loop, while in dRS3 the 8
bp stem is too short. Both cases are not compatible with the original search (see Methods).
Finally, for about one third of the 92 identified families, it is unlikely that the RNA
secondary structure play a relevant role, as shown by the absence of either a common
predicted structure or alignment of originally found SLSs. An example of such families is

Myt-10, reported in figure 17.
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Figure 11. ERIC family (E. Coli)

A representative set of elements from the indicated family was aligned by using the HMM model as a guide.
In each panel, one row corresponds to one family member (indicated on the right with its genomic position).
Within each row, sequence conservation is indicated by increasing gray levels and gaps by dotted spaces;
overlapping SLSs are reported as red and blue lines, the red ones indicating SLSs used to define the original
HMM model for the family, the blue all the others. Darker colors indicate the SLS folding aptitude, i.e.
positivity to RANDFOLD for P<=0.005. Common secondary structures, predicted by RNAz, are reported at
the bottom, just above the ruler in nucleotides: green triangles indicate stems produced by pairing
complementary regions on the same strand as the identified SLSs, while brown triangles indicate the same
from the opposite strand. The boxed regions highlight areas where aligned SLSs and predicted structures are
in agreement. If present, the graphic representation of the secondary structure predicted by RNAz was

reported. Structure was made by using the by Pseudoviewer software.
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Figure 12. Sta-1 family (S. aureus)

The image description is given in figure 11.
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Figure 13. Pae-1 family (P. auruginosa)

The image description is given in figure 11.
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Figure 14. Efa-1 family (E. fecalis)

The image description is given in figure 11.
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Figure 15. Pu-BIME family (S. #yphi)

The image description is given in figure 11.
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Figure 16. dRS3 family (N. Meningitidis)

The image description is given in figure 11.
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Figure 17. Myt-10 family (M. tubercolosis)

The image description is given in figure 11.

Figure 18. Myt-1 (M. tubercolosis) and Pae-4 (P. aeruginosa) families
Reported families are analyzed by RN Az on both strands. Predicted secondary structures are reported.
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Discussion

Many new classes of functional elements have been identified in eukaryotes within non-
coding genomic sequences and understanding their role pointed to relevant biological
processes including development, control of proliferation and pathogenesis of diseases.
Screening for secondary structure conservation, often in combination with comparative
analysis, was used to detect families of functional RNAs such as miRNAs and snoRNAs.
This approach is more difficult to use in the prokaryotic world because of the high
plasticity of their genomes and the reduced amount of intergenic sequences. Still, in
bacteria, SLSs are known to be essential in different aspects of gene expression and in
regulation of biological pathways. Some of them are known to be involved in
transcriptional attenuation and termination [Merino et al. 2005, Ermolaeva et al. 2000] and
in regulation of mRNA stability [Higgins et a. 1988]. Others form cis-acting regulatory
regions [Nudler et al. 2004] or partecipate to the formation of the catalytic site within
enzymes such as RNAse P [Kazantsev et al. 2006]. In some organisms, such as Listeria
monocytogenes, a SLS within the 3> UTR of a virulence gene is known to regulate
invasion of mammalian cells [Johansson et al. 2002] by acting as a RNA thermosensor: at
low temperature it prevents expression by masking the ribosome binding site, when the
temperature rises over 37 degrees, its disruption allows translation of the virulence gene
thus inducing host invasion.

Here an attempt is described to systematically detect structured sequence families by
looking at conservation within a bacterial genome. This study originated from the
observation made by Petrillo et al. [2006] that natural genomes contain more high stability
SLSs than artificial sequences produced by randomly shuffling their original sequence.
Even if a large fraction of SLSs are expected to be formed by chance, this unbalance
suggested that some sequences, and particularly, those able to form stable structures, could

be preserved by selective pressure, possibly being involved in specific biological function.
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A systematic approach was used to identify and classify families of repeated sequences
that share a common secondary structure. This screening was performed on 40 genomes of
bacterial species representing the prokaryotic divisions that are mostly involved in
diseases, by using a procedure based on clustering of genomic stretches able to fold in a
stem loop structure by sequence similarity in order to select only the repeated SLSs. The
clustering procedure selects a subset composed by 1% of initial SLS population detecting
clusters composed by a least 7 non-overlapping sequences in 29 of 40 analyzed genomes.
Interestingly, although the clustering procedure is based exclusively on sequence similarity
the resulting clusters have been found to be composed by sequences whose potential to
fold into a stable secondary structure is considerably higher, if compared with the initial
population. The fraction of SLSs that can be grouped by sequence similarity ranges from a
consistent 6% of N. meningitides to a small 0.1% of B. subtilis and P. multocida. Looking
for the ability of clustered SLSs to fold into a reliable secondary structure reveals that only
few genomes show a low fraction of stable SLSs. Since these genomes have a GC content
varying from 31.6 of Mycoplasma genitalium to 65.5 of Mycobacterium tuberculosis it is
likely that GC content does not affect these results. After the refinement steps that are
described in result section, 137 groups of clusters have been identified. These groups have
been pruned by removing the ones that have members falling within different copies of
rRNA and tRNA precursor or within ISs escaped from the initial filtering. Sequences
belonging to each group have been used to build Hidden Markov Models that then were
used to scan the original genome to detect all the similar sequences, including those not
containing any SLS. In this way are detected and recognized also repeated families that
only incidentally included SLSs within some their members. The procedure allows also
fusing some groups that are included within a very large repeat or with HMMs that identify
the same sequences. Finally the resulting 92 families have been analyzed in detail for their

ability to share a common secondary structure.
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Since clustering was performed by only looking for sequence similarity it is possible, in
principle, that some of the detected families contain different SLSs. Moreover the HMM
procedure, by looking for primary structure, may also extend sequences over areas not
containing SLSs. Within the families, 35 were indeed identified with no recognizable
shared secondary structure. Interestingly the majority of members that compose these
families are located within coding regions where the formation of secondary structures is
expected to be limited by the translation machinery. Also few previously described
families such as S. pneumoniae BOX and P. putida REP are predicted to have no common
secondary structure notwithstanding they have members located within intergenic portions.
This can be related to the fact that their putative structure is not compatible with the initial

SLS definition.

Families predicted to share a common secondary structure

About two thirds of the identified families are predicted by RNAz to have a common
secondary structure. Many previously well-characterized intergenic families, such as E.
coli PU-BIME and ERIC repeats, fall within this group as well as families that are only
reported as simple repeats and on which no experiments have been made to address their
function. With only two exceptions, all the known families, for which a secondary
structure was predicted or demonstrated, fall within structured families, and their sequence
boundaries are mostly coincident with those reported in literature. Only S. pneumoniae
RUP and the R. conorii RPE-6 repeats are not recognized as structured although they are
correctly recognized as repeated families. For RUP family it is thinkable that absence of
conserved structure is caused by the recognition of only a portion of repeat by the pipeline.
In some cases, in fact, the HMM extension procedure was unable to extend the initially
detected sequences to cover the entire repeat. In addition to S. pneumoniae RUP family

also the N. meningitidis NEMIS is only partially identified. In particular for RUP repeat
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only 63 out of 108 bases were detected, while for NEMIS only the central 46 bp core
common to both partial 108 and 158 bases repeats described in the work of Mazzone et. al

[Mazzone et al. 2001]was identified.

Known and novel families

Although enterobacteria have the best characterized genomes a new repeated family that
we named Eco-1 has been identified within the Escherichia coli genome. This family
unlike the ones that are already reported in literature seems to have no predicted common
secondary structure. On the other hand the well studied PU-BIME, ERIC and BoxC
families are correctly predicted to be structured. Some of these families have been already
described in different copy number within related bacterial genomes. This procedure
identified the PU-BIME repeats also in S. typhi and in S. typhimurium. Our procedure
identifies two variants of PU-BIME in S. typhi: a full-size and a shorter one while S.
typhimurium seems to contain only the longer one. All these families share a secondary
structure even if the full-size S. #yphi PU-BIME shows a more complex situation. In S.
typhimurium also two novel families, Sal-1 and Sal-2 have been detected able to share a
conserved secondary structure. ERIC families has been detected in E. coli, Y. pestis and V.
cholerae and this results are in according to the works of De Gregorio et al. in 2005 and
Bachellier et al. 1999. Y. pestis and E. coli ERIC show a similar predicted secondary
structure and since Yersiniae ERIC have been shown to regulate the level of expression of
neighboring genes by folding into RNA harpins is likely that this feature is conserved also
into E. coli genome. V. cholerae ERIC sequences, instead, are shorter than its homologues
and are predicted to be not structure. These predictions are in according with the
observation made by De Gregorio et al in 2005 about the selective erosion of V. cholerae
ERIC terminal inverted repeat that are fundamental for stem loop forming. For these

reason we hypothesize that these sequence may not be directly involved in RNA
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stabilization. Many families that are predicted to be structured have been found in other
less studied genomes such as mycobacteria, bordetellae and pseudomonacee. As we expect
for many the predicted common secondary structure is or contains a stem-loop. In some
cases the prediction is different suggesting that also structures different from the searched
one has been incidentally detected. However some “noise” has to be taken into account
dealing with hundred of repeated sequences. Some families feature a double hairpin (see
EFA-1 and Pae-1 in Figure 18) while others have the searched stem included within a

complex structure.

Genomic location of repeated sequence families

Assuming that repeats are randomly placed over the genome we can expect that since
bacterial genomes is almost fully coding they fall above all within these portions. Most
repeats, instead, have been reported to be located within intergenic sequences where they
do not interfere with the coding information. In our study we find both families with
members within genic and intergenic regions. Interestingly most families found within
coding sequences (CDSs) of genomes are predicted to be not structured while most
intergenic families show highly structured SLS supported also from the presence of
stacked stable SLS. RANDFOLD analysis shows that 19 out of 27 intergenic families with
aligned SLSs are enriched in highly structured SLSs, while this is true for only one genic
family, Myp-2.

These results suggest that potentially structured families are preferentially located away
from coding sequences where the translation machinery is expected to interfere with
secondary structure formation while unstructured ones explain their function acting at
other levels such as protein level.

Five novel families Sal-2, Myt-5, Bhal-2, Clot-2 and Clot-3 are composed of small direct

repeats called CRISPR that are very abundant in bacteria and archea. In some cases these
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repeats show a dyad symmetry that can be recognized as SLS. These repeats have been
recently demonstrated to play a fundamental role in bacterial resistance against viral
infection by acting as a RNA interference-like system [Barrangou et al. 2007]. Also three
novel intergenic structured families, Hin-1 in H. influenzae, Nem-4 in N. meningitidis and
Pam-1 in P. multocida are composed of similar sequences, characterized by the repetition
of short, abundant oligonucleotides, known as DUS [Davidsen et al. 2004]. As well as for
CRISPR sequences, the repetition at short distance of DNA stretches shorter that the
searched pattern produces a stem loop larger than the threshold. These sequences are
required for natural genetic transformation and since they are preferentially located within
or near to genome maintenance genes, they are thought to be involved in recovery of
genome preserving functions. A work aimed to detect putative transcriptional terminator
has evidenced that in some species terminator hairpins are indeed frequently formed by
closely spaced, complementary instances of exogenous DNA uptake signal sequences
[Kingsford et a. 2007].

Some novel structured families are located within coding sequences. They often contain
repetitive motifs of one or a few coding regions, such as Lac-1 in L.johnsonii, Pae-3 in P.
aeruginosa and Efa-2 in E. faecalis. The Cod-2 family, instead, even if show a very
conserved sequence encodes different peptides being located in different frames. Cod-2
repeats resemble repetitive sequence elements found by Claverie and coworkers in protein
coding genes of R. conorii [Claverie et al. 2003]. These repeats have been supposed to be
involved in de novo creation of long protein segments by repeat insertion.

Five genic families found in M. pneumoniae are part of large (1.5-5.4 kb), possibly mobile
repeated DNA sequences having coding capacity [Himmelreich et al. 1996].

About one third of the identified families are found to be “unstructured”. These sequences
were not the object of the original search; a possible explanation of their detection is the

incidental presence of SLSs within large repeated sequences. Most such families fall
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within CDSs (see Table 4, and Myt-10 in Figure 17 as an example). Ten of them are
contributed by only two genomes: M. tuberculosis and M. pneumoniae. Other unstructured
families are clustered within the same CDS (Bor-3 and Bor-6 in B. bronchiseptica) or are
dispersed within multiple CDSs, sharing a common protein domain (Bor-4 and Bor-5 in B.

bronchiseptica, Pae-2 and Ppu-3 in P. aeruginosa and P. putida, respectively).
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Genome assembly by “scaffolder”

The de novo sequencing of two relatively large bacterial genomes (5.5 and 12 Mb), was
carried out in our laboratory by using as 454 GS20 sequencer and is described elsewhere
(manuscript in preparation). In both cases high coverage (at least 20-fold) sequencing
failed to generate a single genomic sequence with standard tools, but produced a few
hundred (or thousand for the larger one) contigs. This experience prompted us to develop
methods that could guide the final assembly by integrating both computational and
experimental techniques, methods that have been implemented and are made available to
the user through a custom developed package named ‘Scaffolder’.

The large number of contigs obtained after assembly may be due to a limitation of the
experimental procedure used for sequencing, i.e. some genomic portions might be
altogether excluded from sequencing. On the other hand it is also possible that simpler
reasons might be involved, such as the presence of repeats, and that this be sufficient to
justify the observed result in terms of contig number and distribution. Starting from this
assumption, several approaches were attempted, aimed to detect relationships between

contigs.

Finding links by using contig similarity and coding information

In a first approach, attention was focused on sequence boundaries. The probability that two
sequences end at least with the same n-mer stretch of bases, within a population of a
hundred sequences from the same genome, is very low when n>=10 (P<<1E-06). As a
consequence, two sequences ending with the same stretch of bases are likely to be
overlapping and therefore contiguous within the genome. Search for identical n-mers on
contig ends, highlighted the presence of a number of matches of 10 or more bases much
higher than expected and all the identified overlap connections were confirmed by PCR

experiments. The approach was successful with the earlier version of Newbler (1.0), but
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subsequently, when the same analysis was performed on contigs produced with newer
versions of the assembler (1.2), no such overlaps were found anymore, as software
improvements in the newer version, ended up in removal of duplicated sequences at the
ends of contigs.

A similar approach was used on coding genes: BLASTX of all contig 100 bases ends
against all known bacterial proteins was performed, looking for matching protein-coding
regions located at the ends of different contigs. The presence of different parts of the same
gene split in two or more contigs was taken as an indication of contiguity and
experimentally checked. This approach only turned out to be useful for 3 links connecting
6 contigs, all confirmed by PCR; however it is clearly dependent on the available protein
sequences and it is conceivable that it might be more useful when protein sequences from a
more closely-related bacterial genome are available as a reference. In our case no closely-
related known genome was available as about half the identified ORFs within the contigs

do not share similarity with protein sequences from any other known bacterial genome.

Finding links based on initial (raw) reads

The small number of connections identified by the above described methods led to
investigate new methods for detecting contig relationships. Considering the high coverage
reached in sequencing (20-25X), it was taken to be very likely that almost all bases of the
genome had been sequenced at least a few times, and, as a consequence, that in absence of
systematic hindering factors, every base was expected to be covered by several reads.
Under this scenario, it was assumed that contigs fail to be connected due to excess rather
than lack of links and gaps are the result of ambiguity rather than absence of sequence
information. Starting from these considerations, an attempt was done to detect, among the
primary reads, the ones able to support connections between contigs. To this aim, 50 bases

from each contig-end were aligned to all primary reads by using BLAST. When two
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different ends align in the correct orientation to the same set of reads, a connection is
defined between them. This procedure was summarized in figure 19. This procedure led to
the identification of 177 connections (links) supported by at least one bridging read,
involving 120 out of 130 contigs larger than 100 bps. Of these contigs, 84 have coverage
compatible with being a single copy sequence in the genome, while 27 are present as
double and 8 as triple copy sequences. About 85% of them have at least one connected end
and 75% both of them as reported in table 8. In table 9 a summary of the identified
connections is reported. As might be expected, there is a gross correlation between number
of linked ends and contig coverage, i.e. contigs with coverage higher than one (‘double,
triple, higher’ table columns) usually show more than one connection on their ends.

The quality of identified links can be estimated by looking at the number of reads
supporting it. 85% of the links are confirmed by at least five reads across the ends, 65% by
more than ten, as shown in figure 20. Sequences obtained by joining the ends of the
connected contig-ends have been aligned to primary reads by Blastalign [Belshaw et al
2005]. As shown in one example in figure 19, reads across the artificial sequence junction
are in a comparable number respect to those aligned in the inner parts of the contigs. These
results verify the hypothesis that gaps are not due to sequencing limitations, but to some
kind of difficulty of the assembler program in assembling such multiply linked contigs.
Looking at reads across the junction in detail, it is interesting to note that when high
coverage contigs are involved, they are often not 100% identical: in general different
subpopulations of similar reads may be observed that together configure two or more
different sequence patterns (see differently colored bases in Figure 19), as would be

expected from sequence variants of repeated regions of the genome.
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‘GACAGCCGACGGLCAGCGGAL] UNK_EOFRZXGOZFYXAN
‘GACAGCCGACGGLCAGCGGAT] UNK_ENXB7 INOLDSVAd.
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scale (bp)

100 200 209

Figure 19. Finding links by BLAST
Schematic representation of procedure used to detect reads (colored in orange) across different contig ends
(in red) was shown on the top. The alignment of contig ends with primary reads made by Blastalign is shown

in the lower part of the figure.

n Links Linked ends
1 132

70
18
TOTAL 220
unlinked 40

N

w

Table 8. Linked contig ends

Linked ends classified according to the number of links.
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Coverage

type single | double | triple | higher total

0-0 10 0 0 0 10
0-1 15 1 0 0 16
0-2 3 1 0 0 4
1-1 52 1 0 0 53
1-2 8 0 1 0 9
2-2 4 18 5 0 27
1-3 0 1 0 0 1
3-2 0 2 1 0 3
3-3 2 3 1 1 7

94 27 8 1 130

Table 9. Contig coverage related to link number

Coverage of contigs larger than 100 bases are reported grouped by number of links on each end (‘type’

column).

% of links

0,9
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Figure 20. Link weight distribution

Link weight distribution is reported as the fraction of links supported by each number of reads (at least).
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Displaying relations as a connected graph

The hundreds of contigs and links may be visualized as a graph. To this aim the Graphviz
tool has been used to build a graphical representation of the contigs and their relationships
between contigs (see Figure 21). Within the graph, contigs are represented as nodes and
links edges. Each contig is represented as a box, whose sides are the extremities of the
sequence. Ends are connected by edges, which indicate a putative contiguity on genome.
On each edge the weight, i.e. the number of reads supporting this relation, is reported.
Contig boxes contain information as contig identifier, length in bases, sequence coverage,
both raw and normalized to the overall average coverage, i.e. overrepresentation in the
genome.

Contig coverage reported in graph is estimated in the following way:

for contigs larger than the average read length L coverage is the product of L and the
number of contained reads n, divided by contig length 1.

n*L

Cov =

for contigs shorter than L, n is used as the coverage.
A color code has been used to classify contigs according to the degree of agreement
between coverage and number of connections. Classification distinguishes the following
groups:
- contigs with no links;
- single coverage contigs with one link on one end;
- single coverage contigs with one link per end;
- multiple coverage contigs with the corresponding number of links on both ends;
- contigs with less links than those expected by coverage;

- contigs with links exceeding those expected by coverage.
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A

Figure 21. Genomic assembly of a 5.5 Mb bacterium as a connected graph
Contigs and their relations are displayed as nodes and edges of a connected graph. Contig color is chosen
according to correlation between coverage and links as explained in Methods. In this graph only contigs

larger than 100 bps are shown.
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Graph analysis

Apart from a small number of isolated contigs, the majority of contigs is part of a single
complex network. Contigs with a single connection per end are never connected with each
other, but almost always connected with short hyper-linked, high coverage, contigs. They
clearly represent repeated sequences that the assembler is unable to untangle and that are
causing interruptions in long strechtes of unique sequences.

One very large contig (about 49 Kb) is separated from the network and features double
coverage and a single link connecting its ends in a circular fashion, as expected from a
circular extrachromosomal DNA element. PCR and other experimental evidence (not
shown) confirmed that the DNA molecule is indeed a circular plasmid, for which the
higher coverage would predict a 2:1 stoichiometric ratio with the chromosome. All
putative ORFs have been detected and translated and predicted proteins have been used to
search the KEGG database for matches with known pathways by using the KEGG
Automatic Annotation Server KAAS. This analysis revealed that the entire type IV
secretion system, a structure homologous to conjugation machinery involved in

mobilization of both plasmids and proteins was present.

Resolutions of ambiguities

The ambiguities present in the connected graph prevent the identification of a univocal
path representing the whole genome sequence. In an attempt to solve them, two approaches
have been tried: one based on computational analysis of primary reads and the other on

PCR experiments.

Computational multiple contig separation

The small size of primary read sequences limits the possibility of using the read itself as a
mean to untangle the network only to the theoretical case of contigs smaller than 100
bases. None of them was found in the course of manual analysis of a small number of
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nodes, but in two cases, by following the sequence through a few reads across contig
borders it was possible to univocally assign the contigs flanking a repeated contig. This
observation was used as the base for the development of a computational tool able to
extend this approach to larger multiple contigs, where the aligned reads contain an

uninterrupted path of micro-heterogeneity as the one described in figure 22.
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D TCG T CC A GANC A TOGAH TG TRGRGOCC T TECAC TTOGTGOCCRGGToRCH e
PCTCGTOO0A GANCGGOATOGART GG TAGAGOLLGT TEGACT TGGT GGOCGRGG TGACRTH TTG06C6 e
PCTCGTCCON GARCTGOATOGTG TRGRGOCCG T TECAC TTOGTGUCCAGGTOACH X ) e
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PCTCGTCCCR GAACGGOATOGAATGTAGRGOCCGT TO b ScTIecRc
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Figure 22. Alignment of a high coverage contig with primary reds
The alignment of a high coverage contig with primary reads detected by BLAST is shown. Micro-

heterogeneities are highlighted by coloring the bases in red and green.
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A scanning algorithm has been used to develop a software tool able to solve an alignment
of reads mapping within a multiple contig and generate the sequence components by taking
advantage of micro-heterogeneities, i.e. column in which two or more different nucleotides
are consistently present in primary reads. The software procedure was run on several
multiple contigs, and resulted in separation of the contig into its sequence components. An
example is reported in figure 23.

The algorithm is designed to separate the two or more sequence variants combined into a
contig. In the simplest situation, i.e. when no micro-heterogeneities are found, only one
variant is reported. Alternatively, when a sequence heterogeneity is found at a given
position, the procedure creates a number of sequence variants equal to the number of bases
observed in that position and assigns each overlapping read to the respective variant. For
example if within the nth-column of alignment G and T bases are alternatively present in
different reads, the procedure creates the variants N and N+1 respectively containing the G
or T bases. A threshold indicating the minimum number of reads supporting the evidence
of a new variant is a parameter configurable by the user. During alignment scanning, the
reads previously assigned to a variant are used to guess the base to be expected in the new
alignment position. In most cases the observed bases agree with the expected assignment,
i.e. in a given position the same base is found in all reads assigned to the same sequence
variant. Only when a new micro-heterogeneity is found the procedure creates new variants
and assigns reads to them. When a new read is encountered during the scan process, it
remains unassigned as long as no micro-heterogeneity exists, but as soon as one is found,
the read is assigned to a specific variant identified according to the heterogenous base. In
this way, the method is able to follow sequence variants along the alignment. However, it
is possible that all reads assigned to a variant end before a new heterogeneity is found, thus

making impossible any further extension of the variant. In this case, the procedure stops
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the separation of current variants and creates a new multiple contig representing the region,

linked to the previously detected variants.

GCATCGARTGG TARAGCCCGT TBGACT TGG TOGCCGAGGTORCATGCGGTCGGCE AR GCTTGCGCGCE AAR T COARAGCGTARTGCAGGAT CCGGTCGGTGCC GCGGCGGGTGARGACBGCCTRCTAGATGACGATTT € ATCCTCGCCGGTGCCGATACRGCE GCCGATCTY 155
GCATCGARTGE TAGAGC! ACTTGETGE ACATGCGGRECGGCE ARAGETTECGE EOFR2KGO2IGKEY
GAATEG THGAGCCCG T TCGAC T 166 TGGCCGAGE TGACA TECEGECGACT G_ARR EOFR2KGO1AHRTZ
GAATEG THGAGCCCG T TCGAC T 166 TGGCCGAGE TBACA TECEGECGACT G EOFR2KGO2GCTAH
GAATEG THGAGCCCG T TCGAC T 166 TGGCCGAGE TBACATECGGECGACT G Jc219
GAATEG THGAGCCCG T TCGAC T T66 TGGC ACATGCOGECGGCE EPHA9EX0107YDE
GAATGG TAGAGCCCG T TCGAC T T66 TGGCCGAGE TGACATGCGGECGACT EOFR2KGO1BTCSS
GAATGG TAGAGCCCG T TCGAC T TG6 TGGCCGAGE TGRCATGCGGECGACC AR GCTTG EOFR2KG01C500Y
GAATGG TAGAGCCCG T TCGAC TTG6 TGGCCGAGE TGACATGCGGECGRCE AR GC EOFR2XG01AIDID
GAATGGTAGAGCCCG T TCGAC TTG6 TGGCCGAGE TGACATGCGGECGECC AR GC JZHH4
GAATGGTAGAGCCCG T TCGAC TTG6 TGGCCGAGE TGACATGCG6 EPHA96X 02GINEN
GAATGGTAGAGCCCG TTCGAC TTG6 TGGCCGAGE TGRCATGCEG ENCKSDH01041JC
GARTGG TAGAGCCCG TTCGAC TTGG TGGCCGAGETE ENCKSDHO2FRRIN
GAATIG THBAGCCCG T TCGAC T 166 TGGCCGAGE. EOFR2KGO1EIOSS
GAATEG THGAGCCCG T TCGAC T 166 TGGCCE IPCO
GAATEG THGAGCCCG T TCGAC T 166 TGGCCE EOFR2KGO2INDT4
GAATGGTAGAGCCCGTT ENCHSDH01EFORW
ARAAT CGARAGCG TAATG
ARART CGARAGCG ENKE7 INO2JHAZ0
ARART CGARAGCG TARTGCAGGAT CCGG ENKE7 INOZHOHI0
ARA_TACGARAGCGTRAT. ENHE7 INOZHF 3PH
ARA
EOFR2XG01DUHS 0
ENCKSDM01EKBEY
EOFR2KG01BXNSH
EOFR2KGOZHI4IG
ENKB7 IN02GH452
EOFR2KGO1BONN
EPHASEX01EOLPY
EOFR2KGO1EKART
ENCKSDH01080CH
ENHE7 IN02JU721
EOFR2KGO2JCUFC
ENCKSDMO2FSKLR
EPMAIBROZFETIT
EPMASEX01DJUAL
G TGGCCGAGGE TGACE TRCCGTCAGEE AR AAA_T CGARAGCG TARTGCAGGAT CCGGT [ ENCKSDHOZHL IPH
TGGCCGAGG TGACE TECGGTCGGCE AR ARA_T CGARAGCG TARTGCAGGAT CCGGT GCGGCGE EOFR2KGO1CISHO
TGGCCGAGG TGACGTECGGTCGGCE AR ARA_T CGARAGCG TARTGCAGGAT CCGGT H
TGGCCGAGG TGACATECOGECGGCE AR ARA_T CGARGGC mn%cnuen T CCGGT GCGGCGRGTRAR VUM
TGGCCGAGG TGAC GGCC_AR ARA_T_CGARAGC CGGT CGCGAC66 TRAACACEECCTE EPHASEX 02FKIKA
TGGCCGAGG TGACATGCGGECGGCE AR ARA_T CGARGGC CG6T GCGGCGGGTRAR IT46H
TGGCCGAGG TGACATGCGGECGGCE AR ARA_T CGARGGC CG6T GCGGCGGGTRAR EOFR2KGO1ERKGA
TGCGGTCGGCC AR ARA_T_CGARAGC CG6T GCGGCGG6 TGAACACEGCC TGE EOFR2XGO1BFD41
ARA_T CGARAGC 66 GCGGCGGGTGAACACEGCC TG EOFR2KG01BHPCZ
ARA_T_CGAARGC! CGGT GCG ENXB7INO2FOTI2
S TGCGGT ARA_T CGAAAGC CGGT GCGGCGGETEARCACEGCC TGC TGGATRAC EPMA96X016Y25
TGGCCGAGG TGACATECGGECE GAAAR T CGAAGGC CGGT GCGGCGGE TGARTAC TECC TGC TGGAT EOFR2KGO2IATHI
GCCGAGG TGACATGCGGECGGCE AR ARA_T CGARGGC CGGT GCGGCGGGTGAATACTACCTRCTAGA EPHASEX01AZNGH
GAGGTGAC GGCC_AR ARA_T CGARAGCG TARTGCAGGAT CCGGT GCGGCGGG TGAACACAGCE TGC TGRATRACGATIT € ENKE7 INO2GHPTO
GAGGTGACATGCGRECAECE ARA_T CGARGGC mn%cncen T CCGGT uccecacemnaEcEc STGC TGGATGACGA ENHE?
ARA_T CGARAGCG TAATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGH G EOFR2KGO2I2ZR2
ARA_T CGARAGCG TRATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGH GCCGETE EPHA9EX02F 7RED
ARA_T CGARAGCG TRATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY EPHA9EX 02FUBFH
ARA_T CGARAGCG TAATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY EPHASEX01BYVGA
ARA_T CGARAGCGTAATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY EOFR2KGO1CONT?
ARA_T CGARGGCGTARCGCAGGA GCGGCGG6TGARTACTECC TGC TGGATGACGATTT 66 ENKE7 INOZHECHE
AAA_T CGARGGCGTARCGCAGGAT C GCGGCGGGTGARTAC TRCC TGC TGGATGACGATTT GGTGCCGGT EOFR2XG 0 1D6KHK
ARA_T CGARAGCGTAATGCAGGAT ¢ GCGGCGGGTEARCACGGCCTGC TGGATGACGATTT GGTGCCRET EOFR2XGO1B4RDT
ARA_T CGARGGCG TAACGCAGGAT C GCGGCGGE TGAATAC TECC TGC TGGATGACGA GGTGCC6T ENKE7 INO2G7ABO
ARA_T CGARAGCE TAATGCAGGAT C GCGGCGGGTGAACACGGCC TRCTAGATRACGA GGTGCC6T EPHASEX01CURTL
AT CGARGGCGTAACGCAGGAT ( GCGGCGGG TGAATACTECE TGC TGGATGACGA GGTGCC6T ENCKSDHO1DKLTY
GAAGGCG TAACGCAGGAT ( GCGGCGGG TGAATACTECC TGC TGGATGACGA GGTGCC6] EPHAYEX01BGHTS
GAAAGCG TAATGCAGGAT ( GCGGCGG6 TGAACACEGCC TGC TGGATGACGH GGTGCC6T ENCHSDHO2FGL4P
GO mn%cacsn T o Gccecacsmangcgc STAC TGGATGACGATTT GGTGCC6] EPHA9EX 02 IA9RA
CGTAATGCAGGAT C GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY GGTGCCG6] ENCKSDH01D9RHT
CGTAATGCAGGAT GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY GGTGCCG6] ENHE7 IN02JBLDD
TGCAGGAT ¢ GCGGCGG6 TGAACACEGCE TGC TGGATGACGATITTL GGTGCCG6] ENCHSDHO1C TSNS
TGCAGGAT CCGGT GCGGCGG6 TGAACACEGCC TGC TGGATGACGATT GGTGCCG6T EOFR2HG02JPEEY
Gcscccesmangcgc TGCTGGATGACGATTT GETGCCE EOFR2KG01B225P
GCGGCGGE TGAACACEGCE TGC TGGATGACGA GGTGCCGET GATCTY ENCKSDN01DARNG
GCGGCGGG TGAACACEGCE TGC TGGATGACGA GGTGCC6T GATCTY EOFR2KG01B6026
GCGGCGGG TGAACACEGCE TGC TGGATGACGA GGTGCC6T GATCTY EOFR2KG01EONSF
GCGGCGGG TGAATACTECC TGC TGGATGACGA GGTGCC6T GATCTY ENXET INOZHSCAT
GCGGCGGG TGAATACTECC TGC TGGATGACGA GGTGCC6] GATCTY EPHASEX01D5FO5
GCGGCGG6 TGAACACEGCC TGC TGGATGACGH GGTGCC6] GATCTY EOFR2KGO1DXS04
GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY GGTGCC6] GATCTY EOFR2KGO2IHOND
GCGGCGG6 TGAACACEGCC TGC TGGATGACGATTY GGTGCCG6] GATCTY EOFR2KGO1DCTIT
GGCGGGTGARCACGGCE TAC TRGATGACGAT] GGTGCCG6] GATCTY EPHASEX0ZHKELY
Gccsemaagc'gc STGCTGGATGACGATTT GGTGCCG6] GATCTY ENCHKSDMO1CIIRT
CEECCTEC TGGATGACGATTT GGTGCCC6 GATCTY EPHAIER 0ZHUYNY
GCCTGCTGGATGACGATTT GGTGCCGGT GATCTE EPHAYEH02IFS09
GCC TGC TGGATGACGA GGTGCC6T GATCTY EOFR2KGO2IIKHN
CCTGC TGGATGACGA GGTGCC6] GATCTY ENCKSDNO1ATF 0G
GCTGGATGACGA T GGTGCC6T GATCTY EOFR2KGO2IUGK
CTGGATGACGA GGTGCC6] GATCTY EPHASEX0262H10
GATGACGA GGTGCC6T GATCTY EOFR2KGO2GUDG0
TGACGATTT CT GGTGCC6] GATCTY EOFR2KGO1CF 0V
CGATTY GGTGCCG6] GATCTY ENCKSDHO1BL 0%
GGTGCCG6T GATCTY ENXET INO1DEYES
scale Cbhp)
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 197
SCTCGTCCCAGARCGGCATCGAATGGTA 1
AAGCCCG TTBGAC T TG6 TGGCCGAGG TEACETGCGGTCGGCE AR GCTTGCGCGCG AAR T CGARAGCG TAATGCAGGAT CCGGTCGATACC GLGGCGE TGAACACEGCE TGC TGGATGACGATIT ¢ ATCC TCGCCGGTECCEGTEEGRCE GECOATETY 2
AGCCCETTI TGCGGT AC] 3
scale Chp)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 197

Figure 23. Solving a repeated contig by micro-heterogeneity analysis

A high coverage contig sequence is aligned to primary reads. Bases not conserved along the alignment, i.e.
micro-heterogeneities, are differently colored depending on their abundance, in the following order from
most to least: red, green and blue. The presence of two different sequence patterns indicated by alternating

colors is highlighted.
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This multiple region in turn ends when a new micro-heterogeneity is found, and new
variants linked to it are generated. In this way, a multiple contig is completely separated
into its components, or, as often observed with larger repeats, it is divided into a variable
number of multiple contigs, linked by two or more dissimilar sequences. Application of
this procedure was able to successfully solve a substantial number of ambiguous contigs.
Even when one long multiple contig could not be completely separated, it was still possible

to reduce it into fragments of smaller, more manageable size.

Resolution of ambiguities by experimental methods

No matter how well-behaved the computational approach is, there are situations where
experimental methods are required, often in the form of PCR amplifications. Typically
PCR experiments are used:
- to validate the connection of two contigs predicted to be neighbors within the
genome;
- to untangle situations in which many contigs are linked to both ends of a multiple
one;
- to identify neighbouring contigs by combinatorial PCR within a limited set of non-
connected contigs
The experimental approach based on combinatorial PCRs is always applicable, in
principle, but it easily requires an exceedingly large number of reactions: considering only
the 92 contigs longer than 1000 bases produced by the assembly of the smaller genome this
approach would require 184 primers and 4186 PCR reactions. In practice this number was
reduced by only verifying contig connections identified by one of the procedures described
above, and using the combinatorial approach only on the few remaining unconnected
contigs. Sequencing of the amplificates by Sanger method was used to validate the

experiment and correct errors in contig end sequences.
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To this aim a strategy to assist in the design of PCR primers was developed. Primers are
searched in contig-ends that do not match on other involved contigs by using the eprimer3
program from Emboss package and then PCR experiments are simulated with calculated
primers on each contig combination by using the PrimerSearch program (always from
Emboss package). The procedure was designed to also give additional information useful
to experimental design like the primer GC content and length, the melting temperature and
the expected product length. An example of PCR experiments design is reported in figure
24. Leaving some parameters such as primer GC content, melting temperature, length and
ability to prime on other contigs freely modifiable allowed to design a great number of
primers and to fill a great number of gaps. In some cases it was not possible to find a good
primer that univocally recognize one contig because flanking contigs have very similar
ends. To solve also these situations an extension of previous procedure was implemented.
The new procedure detects identical regions between contigs flanking one side of the
multiple one and produces a single common primer. In this way the problem is solved by
analyzing small variations in the amplificate sequences. The application of this strategy is
not restricted to the presence of near identical contig-ends and allows reducing
experiments to the number of contigs with different primers. In order to distinguish these
two procedures the former was named X model and the latter Y model and are

schematically explained in figure 25.
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Primers X

A B Primer F Length Tm! GC %|Primer R Length Tm GC %! Central| N PCRs
79_R |130_R |TGATGGAGCAGACCTTGC 18] 58.36 55.56)| ACCAGCAATCCGGCAATA| 18 60.03] 50.00 157 1
79 R |139_L |TGATGGAGCAGACCTTGC 18] 58.36 55.56| GGGGAGTAGCGACCCATT| 18 59.89 61.11 157] 1
80_R |130_R |TACGTCACAGGCCAGACA 18] 57.09 55.56)| ACCAGCAATCCGGCAATA| 18 60.03] 50.00 157] 1
80_R |139_L |[TACGTCACAGGCCAGACA 18 57.09 55.56| GGGGAGTAGCGACCCATT 18 59.89 61.1 157 1
Pcrs

IDs Pcr length

79 R-130 R 592

79 R-139 L 794

80_R-130_R 494

80 R-139 L 696

20 (346) |20 (347) 29 (349)

Figure 24. Design of PCR experiment

The figure reports the primers (upper) calculated to untangle the contig network reported in the graph
(lower). Sequence, length, melting temperature, GC percent of both forward and reverse primers together
with number of predicted PCR (“N PCRs”) are shown, together with length of PCR products predicted for

each contig combination.
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Figure 25. Solving ambiguities by using PCR experiments
PCR experiments have been used to untangle two contig networks. Green and yellow boxes indicate single

and double covered contigs; colored arrows represent the primers required for each model.
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Scaffolder tool

All the procedures described above have been implemented into software tools combined
into a package named “Scaffolder”. The package is designed to assist the researcher in de
novo sequencing projects, by starting from a set of unconnected contigs and is able to
detect links between contigs and solve most ambiguities deriving from repeated sequences.
Scaffolder guides the overall assembly process by linking contigs into a multi-connected
net, separating repeated sequences by a computational approach based on sequence micro-
heterogeneities and selecting primer pairs to experimentally verify predicted links and
untangle zones that cannot be computationally solved. It uses several different tools for
performing the analyses, such as BLAST, and relies on a relational database management
system (RDBMS) for storing both the initial data and the subsequent results. It also
integrates an automatic versioning system of the assembly that allows following the quality
and assessment of the sequences during the assembling procedure over time. Scaffolder is
organized into independent modules, aimed to:

- access the DB-stored data (storage engine);

- analyze and edit the assembly (computing engine);

- manage subversions;

- communicate with the user through both a command-line and a web interface.

The system is written according to the object oriented programming paradigm and is
mostly implemented in PHP. The code is written as a number of objects, mostly specific of
the various modules implemented, except for those that integrate command line tools and

that act as database interface.

Storage engine

The storage engine is a module that communicates with the database for accessing or

uploading data regarding primary reads, scaffolds, links and assemblies. It is designed as a
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single object whose methods can be accessed only by the computing engine. It does not
directly access the relational database, but uses independent objects specifically designed
for communicating with generic RDBMS. The storage engine is able to manage and store
DNA sequences with associated quality and lengths as when handling reads or scaffolds,
scaffold ends involved with the relative weight when handling with links. It also
automatically calculates the coverage and average read length for a specific assembly.
Moreover, the storage engine keeps track of the assembly subversion and stores every

operation that modifies the assembly into logs (see below).

Scaffold analysis

Scaffolder implements the previously described methods as procedures aimed to analyze
contigs, scaffolds and links and to guide the design of experiments for validation of the
predicted relations. The computing engine is composed of one object embedding all the
procedures and is connected with the storage engine for retrieving and uploading data.
Some of the procedures call external tools, as BLAST or PrimerSearch.

The computational engine of Scaffolder allows identifying links between contigs (see
“Finding links based on initial (raw) reads” paragraph) and draws the graph of scaffold
relations (described in “Displaying relations as a connected graph” paragraph). The graph
is implemented as a clickable map where any object may be selected with its neighbors to
create sub-graphs that include all the objects directly connected to it up to a given “depth”
(see Figure 26).

Visual inspection of large graphs can give an idea of global connectivity, but it is not
suitable for statistic purposes. For this reason, the computational engine of Scaffolder
implements methods for displaying scaffolds also in a tabular way together with
information, such as length, coverage, number of connections and number of reads. An

example is reported in figure 27.
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In order to solve ambiguities, make computational analysis or drive experimental design,
several functionalities have been implemented, such as those that allow identifying and
automatically aligning initial reads to one scaffold sequence or to two contiguous scaffold
ends. The alignments are displayed in color, to emphasize the presence of micro-
heterogeneities (see for example Figures 19 and 22), and can be fed as input to the micro-
heterogeneity analysis tool, to separate sequence variants starting from a multiple coverage
contig.

PCR experiments can be used to validate putative links or untangle the connections of
contigs flanking a repeated one. The automatic procedure of designing and testing the
primers by both X and Y models (described in “Resolution of ambiguities by experimental
methods” paragraph), is implemented as operations (functions) that allow designing

primers between two linked scaffolds or on each end of a single scaffold.

20 (347)

Figure 26. Assembly of a restricted number of contigs as a subgraph

A subgraph indicating contigs and their relations is shown. The graph is built starting from the contig
highlighted by a blue box and is extended to the contigs connected to it following a depth index. This
subgraph was built by using a depth index of 2.
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INum ID| Coverage Length Reads links
1) 157 67 146 92
2) 91 50 275 128
3) 130 23 3431 734
4) 79 22 4,820 976
5) 80 18 4,817 803

6) 139 18 3,430 576

Figure 27. Displaying contigs in tabular way
The contigs in figure 26 are reported in a tabular way together with their coverage, size in bases and number

of reads used for assembly. The number of links on each contig end is reported in column “links”.

Editing the contigs

The operations for editing the assembly are structured as a three level hierarchy. With
respect to the complexity of the action they have to do, they are classified as low-, middle-
and high-level operations, where higher operations work by using the lower level ones.

The low-level operations consist of functions that perform basic and simple actions, such
as creation or deletion of links and scaffolds. They can be called directly from the user in
order to execute simple tasks or from the higher-level operations as part of more complex
instructions.

Middle-level operations consist of tasks involving one or two objects. Essentially they are
referred to as joining flanking scaffolds and splitting a repeated scaffold into more copies.
The joining process consists of three consecutive low-level steps: two deletions of linked
scaffolds, followed by the creation of a larger scaffold, whose sequence is obtained by
combining those of the deleted ones. The splitting process, instead, consists of the creation
of a copy of the involved scaffold, optionally having in tow the creation of a couple of
links from the parent.

Finally, the high-level operations allow the execution of complex tasks that consists of a

combination of middle- and low-level ones. For example, the “Split-and-Join” operation
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splits a repeated scaffold and join its copy to a couple of flanking scaffolds by using
specific links which are in turn deleted at the end of the process. Another example is
turning a scaffold into objects connected by links, as a result of micro-heterogeneity

analysis.

Version management

The execution of each assembly editing operation changes the assembly in terms of
number of scaffolds and links, producing a sort of evolution history of the assembly itself.
In order to keep track of the overall scaffolding procedure, an automatic versioning system
has been implemented, where each operation ends with the definition of what is called a
new “assembly subversion”. As a consequence, contigs, scaffolds and links are originated
within a subversion and killed in another one. The initial set of contigs are assumed to be
born at subversion 1. Every scaffold is “alive” until it is fused with others or discarded for
other reasons. In this way at the end of the assembly procedure, the number of scaffolds
still alive corresponds to the genomic elements composing the genome, for example
chromosomes. Scaffolder can show and analyze every assembly stage, only visualizing the
elements of a particular subversion. In this way, the assembly process may be followed

over both time and operation by creating graphs for each subversion.

Scaffold history

Each scaffold, obtained by using one or more hierarchical processes, is the result of a
variable number of steps of splitting and fusing “parental” contigs or scaffolds. By using
the subversioning system, it is possible to follow the story of every single scaffold, in
terms of which are its ancestors. In order to do this and to describe all the steps that
conduce to the formation of a given scaffold, a specific method has been implemented.
Given a scaffold, it produces a historical graph over time (subversions) where nodes are

the relatives, i.e. from most ancient to the selected one, and edges the parental relations.
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The graph is built based on the data that the storage engine automatically stores in a
dedicated table of database when scaffolds are created by fusion or duplication of others
(see Figure 28). Moreover it is possible for a given a scaffold to create a list of all contigs
used for its assembling. When the assembling process is able to produce the final sequence

this list indicates how the initial contigs are located in the genome.
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Figure 28. Scaffold history
All the operations that are involved in building of scaffold 476 starting from initial contigs 93, 126, 78, 62

7310
1

are reported as described in Results. Each box represents a contig that is flagged as “i” if is created or “f” if is

deleted during subversion indicated below.

Assembly progress

As all operations are logged, an estimation of the duration of the whole process can be
easily obtained. The trend of the scaffold merging process over time depends on many
factors, such as the number of gaps to be filled, the number of identified links and linked-
ends, the number of linked elements and isolated ones, the number of high coverage
objects with multiple connections at their ends, which need to be tested. All these factors
have been combined into a “scaffolding score”, which is automatically calculated at the
end of every subversion-step. This index is the sum of two scores, related to scaffolds and
links respectively. The “scaffold score” gives an estimate of the number of scaffolds by
taking into account scaffold size and coverage:

Scaffold score = (0.01*(short + Ic) + sc + 1.5*dc + 2.5%hc
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where short is the number of scaffolds shorter than 100 bases, Ic is the number of very low
coverage, probably erroneous, scaffolds while sc, de and he is the number of scaffolds
with single, double or higher coverage respectively.

The “link score” indicates the assembly connectivity rate is high if few connections are

detected and goes down to 0 when the assembly is fully connected:

2( links)

o -1 *(scaﬁolds)

Link _score =

where links and scaffolds are the total number of links and scaffolds, while le is the
number of linked ends

In figure 29 is reported the scaffolding score variation of our genome project.

Date  |Subversion| 10-100 Low Si:lz:: OOODouble Tripke 1000 Tot Plasmids | Links L;r:‘);esd Score
Ap;i:)gg 1 97 16 37 24 9 92 242 1 177 248|201
e 721 97 16 14 10 5 65 192 1 105 148 187.1
M 787 97 16 13 9 5 60 186 1 o7 136 1785
May 827 97 16 12 8 4 58 183 1 93 130 171
May 2 876 97 16 12 8 4 55 180 1 89 124 1675
o 958 97 16 1 7 4 50 174 1 81 12| 1593
e 10 1075 97 16 10 6 4 a4 167 1 68 97 1403
S I TY 97 16 8 6 4 a1 162 1 59 87 1259
J“";'(Jsg 1204 97 16 8 6 4 40 161 1 108 107 2311
Augustel 1281 94 16 7 6 4 38 155 1 98 95 2289
Augstel 1312 93 16 7 6 4 36 152 1 89 89 2141
Octoberd 1341 93 16 7 6 4 34 150 1 84 85| 2066
°°‘°’;_gg§ 1382 92 16 6 5 4 32 146 2 77 771 2006
October® 1489 91 16 4 3 3 25 136 2 55 61 1493
°°‘°gggg 1511 91 16 4 3 3 24 135 2 54 60| 1471
Dﬁ?'z"é’:g 1611 89 16 3 3 3 18 126 2 39 42| 14041
Foptary 1726 88 16 2 2 2 15 121 2 21 30 724
Ff;”z"oaor; 1759 88 16 1 1 1 14 119 2 17 26 54.7

Figure 29. Progression of the assembly of a 5.5 Mb bacterium in time
Each step in which assembly was modified is reported together with the subversion, the number of scaffolds
grouped in classes according to length and coverage. Number of links, linked ends and score as explained

under Results are reported.
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Interfaces

The scaffolder package consists of a set of objects that may be accessed in two ways: as a
command-line tool or via web interface.

The command-line tool is composed of a wrapper that calls the computational engine and
gives full access to the implemented methods. It is the best way to integrate Scaffolder in a
more complex pipeline. With single commands it is possible to use it for retrieving the
contigs as map or table, to align reads to a scaffold, to calculate PCR primers, or to
perform operations on scaffolds. It may also be used to re-run the assembly process in an

automatic way. The full specifications are given in Table 11.

Available options:

[-h --help] This Help

[-v --version] Display version

[-c --cmd] string
Command to be executed. Allowed values:
help
doScafflList
doXprimers
doYprimers
doAlign
doSimpleVersion
doCompleteVersion
calcVersions
contigs2scaffold
blastOnScaffolds
deleteScaffold
deleteLink
splitScaffold
splitScaffoldAndJoin
unbundleScaffold
joinScaffolds
createLink
stopLinks
explodeScaffolds
createNewLinks
setPlasmid

-i --iniFile string
Project file name
REQUIRED

[-g --inFile] string
Input query file

[-0 —-outFile] string Write output into file

[-s —--scaffold] list A comma separated list of ScaffoldIDs to
perform command.

[-1 --1link] list A comma separated list of LinkIDs to perform
command.

[-e --ends] list A comma separated list of ends to perform
command.
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[-a --assembly]
[-u --subversion]
[-d --depth]

[-p —--prefix]

[-m --length]

[-r --coverage]

[-P --prMinLength]

[-g --prGcPercent]

[-x --prMaxPriming]

[-b --prBorderSize]

[-E --evalue]

integer
Default
integer
Default
integer
Default

Assembly.

= (the most recent one)
Subversion.

= (the most recent one)
Link depth.

=1

string Prefix for outfiles command.

Default
integer
Default
integer
Default
integer
Default
Allowed
integer
Default
Allowed
integer
Default
Allowed
integer
Default
Allowed
integer
Default

= tmp/res

Minimum scaffold length.
= 100

Minimum scaffold coverage.
= 4

Primer minimum length.

= 18

values:{10-20}

Primer GC%.

= 50

values:{30-70}

Primer max priming.

= 12

values:{5-100}

Scaffold border size.

= 500

values:{50-2500}

Max BLAST evalue.

= 0.01

Table 10. Options available by using the Scaffolder command line

Web interface

The web interface grants access to Scaffolder methods in a user-friendly and intuitive way.
The webpage uses a control bar to give access to all analysis tools and includes an area to
display results. The control bar is composed of three main panels. The “Data Set” panel is
used to manage different genome projects and assemblies. A subset of scaffolds may be
chosen according to length, coverage and weight of connectivity. This panel also allows
moving through the various subsversions of the assembly process. The panel “Mode” is
used to select and display scaffold subsets. The third panel gives access to functions that
modify the assembly state such as deleting subversions, creating and deleting BLAST-
based links and to execute BLAST analysis on a given subset. When a view mode is
selected, an additional panel appears containing all the relevant parameters, for example
when the graph mode is selected the “Map” panel appears with controls for changing graph

dimension or scaffold display mode. The web page is shown in figures 30 and 31.
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The graphical view is active and within it scaffolds can be selected by clicking on them. In
this way the analyzed subset is reduced to the selected scaffold and its close neighbors up
to a given depth index. Scaffold subsets may also be displayed as a table. Once a scaffold
is selected, a new panel indicating the available operations appears, where all the
previously described operations such as analysis of micro-heterogeneity or alignment of
primary reads to scaffold sequence are easily accessible. This panel also gives access to

PCR design and result evaluation (Figures 24 and 32).
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Figure 30. Web interface for Scaffolder (1)
The web interface for Scaffolder is shown. A control bar at the top hosts boxes for groups of related controls.

In each box buttons and menus are used to access the various program functions.
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ﬁ Data Set Mode 157 @Align scaffold to reads =]

Project Assembly Subversion Min aln length evalue
(prv13 (s ) 1 (20 g@ (o018
Length Coverage Weight alignment type

Scaffolder  |[100  [#)( 4 W1 =
Average coverage is 24.91
Average read length is 106.39

( megablastalign

Clear I

Sequences Blast result Alignment
CACCGGARA

TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGCT TGCAG TRGGAGACC TCCTGCCCCA GCATCG C CCGCCTGCGCC TRGTCCGCCGCGTICTGRT AGGTTTCCTY 157

TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TRCCACATCGGC T TGCAG TRGGAGACC. EOFR2XG 01AU391 N
TGCCCGCAGARC TRGATG T TGAGATHCGAACE 166 TCGC TCCAGTAC T
TGCCCGCAGARC TGGATG TTGAGAT CGAAC TGG TCGC TCCAG TACCACATCGGC TTGCAG TAGGAGACE TCCTGCCCCA GCATES ENXB7 INO2GROFR
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGC TTRCAG TAGGAGACC TCCTGCCCCA GC EOFR2KG 02HSLHN
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TG TCGCTCCAG THCCACATCGGC TTGCAG TRGGAGACC TCC TRCCCE, ENCKSOM02T00RR
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TG TCGC TCCAG TRCCACATCGGC T TGCAG TAGGAGACCTCCT.
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGC T TGCAG TRGGAGACC TCC ENCKSON 02 15850
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TRCCACATCGGC T TGCAG TRGGAGACCTCE ol
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TG TCGC TCCAG TRCCACATCGGC T TGCAG TRGGAGACC ENKE7INODGLAL
TGCCCGCAGARC TGGATG TTGAGAT CGAAC TG TCGC TCCAG TRCCACATCGGC T TGCAG TRGGAGACC EOFR2KG 0103A12
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGCTTGEAG ENHB7 INO2IUKZN
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGCTCCAG TRCCACATCGRCTIGE ENKB7INO2I1U0S
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TG TCGC TCCAG TACCACATCGGCTTG ENKE7 INO2FGRZL
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAGTACCAC ENCHSON02J2NSY
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAGTACCAC EOFR2XG 02HYPYM
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TG TCGCTCCAG TACCAC ENKB7INO1EET11
TGCCCGCAGARC TGGATGTTGAGAT CGARC TGGTCGC ENHE7 INO2IT336
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTC EPHAIGH 01ALILE
TGCCCGCAGARC TGGATG TTGAGAT CGAAC TGG EOFR2KG 02HOPLW
TGCCCGCAGARC TGGATGTTGAGAT C EPHAGGH 01CKES T
TGCCCGCAGARC TRGATGTTGAGAT C ENHB7IN02HI191
TGCCCGCAGARC TGGATG TTGAGA J;
TGCCCGCAGARC TGGATG TTGAGA EPHAOEH 01CYIU2
TGCCCGCAGARC TEGATGTTE EOFR2KG 02 IBUHL
TGCCCGCAGARC TRGATG ENKE7INO1BUTLT ot
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGC T TGCAG TRGGAGACC TCCTGCCCCA GCATCG CB
TGCCCGCAGARC TGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGC T TGCAG TRGGAGACC TCC TGCCCCA_GCATCG € EPHA9GH 0100096
GCCCGCAGARC TRGATGTTGAGAT CGAAC TGGTCGC TCCAG TRCCACATCGGC T TGCAG TRGGAGACC TCC TRCCCCA_GCATCGGCBAGRGCEGECACE W

GCAGARCTGGATGTTGAGAT CGAAC TGGTCGC TCCAG TACCACATCGGC TTGCAG TAGGAGACC TCCTGCCCCA GCATEG -;‘E GCGCCACCTE EOFR2KG 01BJUS0
AGCA ov

ENKB7INO2HHV1G

ENKB7 IN01DUDDO

15 | C EOFR2XG 02GFHE)

GAAC_TGGTCGC TCCAG TACCACATCGGC TTGCAG THGGAGACC TCC TGCCCCA GCATCG CCAGAGCAGCCGCCTGCGCE TRGTE EPHASGH 02FLGHR

GGTCGC TCCAG TACCACATCGGC T TGCAG TAGGAGACC TCCTGCCCCA GCATCG COAGAGCAGCCGCC TGCGCC TRG TCCGCCGCGTICTGGT AGGTITEC | EOFR2KGO2GOFSR
GGTCGCTCCAG TACCACATCGGC TTGCAG THGGAGACC TCCTGCCCCA GCATCG CCAGAGCAGCCGCC TGCGCC TRGTCCGCCGCGTTCTGET AGGTTTCE | ENCHSOMOZFYREY
GGTCGCTCCAGTACCACATCGGCTTGCAG TAGGAGACCTCCTGCCCCA GCATCG CCAGAGCAGCCGCCTGCGCCTBGTCCGCCGCGTICTGET AG EPHASGH 02HISTS
GCTCCAG THCCACATCGGC TTGCAG TRGGAGACC TCC TGCCCCA_GCATEG cg:g:gcccccmceccmemceccecnmmcr AGETTTCCTE EPHASEX01CSOUP
CTCCAG TACCACATCGGC TTGCAG TAGGAGACC TCC TGCCCCA GCATCG Cf CCGCCTGCGCC TRG TCCRCCGCGTTCTRRTTAGETTTCCT | EPHA96KOIBTZLY
CAGTACCACATCGGC TTGCAG TAGGAGACC TCCTGCCCCA GCATEG CCGCCTGCGCCTE EPHAGGH 02H4GIR
CAGTACCACATCGGC TTGCAG TAGGAGACC TCCTGCCCCA GCATE
GTACCACATCGGC T TGCAG THGGAGACC TCCTGCCCCA GCATCG

CCGCC TGCGCC T36 TECGCCECGTICTGGT AGGTTTCCTY ENCHSDMO1B3PES

GTACCACATCGGC TTGCAG THGGAGACCTCCTGCCCCA GCATCG ENHE7 INO1DSOTN

GTACCACATCGGC TTGCAGTHGGAGACCTECTG CCCA GCATCG EPHAYGH 02G6KTE
CCACATCGGC TTGCAG THGGAGACC TCC TGCCCCACGCATEG CCGCCTGCGCC TRGTCCGCCGCGTTCTGGT AGGTTTCCTY ENXE7INO10S0DN —
CATCGGC TTGCAG THGGAGACCTCCTGCCCCA GCATCG EPMAZGX 11ECOYL A
CATCGGCTTGCAGTAGGAGACCTCCTGCCCCA GCATCG CCGC_TGCGCC TRGTCCECCECETTCTE EOFR2XG 01BATAE E3

CATCGGCTTGCAG THGGAGACC TCCTGCCCCA GCATCG A EPHAIGH 02FPAYK

Figure 31. Web interface for Scaffolder (2)
The control bar in “Scaffold” mode: once a scaffold is selected it gives access to all the available operations.
Selection of “Align” button in this module produces the reported alignment of the scaffold sequence with its

primary reads.
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Data Set Map Scaffold 157  [E]|Use PCRs
& Project Assembly Subversion \Width Height Find use |[Scale
(prv13 [3)(po  [#)(p1 3 (30 B‘ (30 B‘ M[ 0.1 B‘
Length Coverage  Weight Scaffold Depth >1
Scaffolder  |(100 (4 (s 2 [ scaforas [ 1 ) NNNNNNNNNNNNNNNNTNGGNNNNNNNGANGANTGGCCGCAGCCNTCTGC‘m
Average coverage is 24.91 Isolated >2

NNNNNNNNNNNNNNNNNNNNNNNCGANACCGCGTGAGCGCGCTCCAGACG(.
a

[Average read length is 106.39 | Show B‘ >3

NNNNNNNNNCNGCTGANNCGCCGCGGGCTAATCAGCTCGCCTGCT!Y

RIC
Link Score combs
79_R-130_R 1
79 R-139 L 2
180_R-130 R 3
B0 R-139 L 14
0_R-139 L 1
0_R-130_ R 2
P_R—m L 3
9 R-130 R |4
Link [Score [Matches
179 _R-130_R*1 1501 | (] |
(—
79 R-139 L1 1380 ] 11 1
[——
180_R-130_R*1 1162 | [ |
(——
B0 R-139 L1 1041 ] 1 1
[
Link IScore Matches
B0 R-139 L1 1273 ] 1 1
——
IB0_R-130 R 1 1122 ] 1 1
[
79 R-139 L1 1003 ] (] 1
I—
79 R-130 R 1 Is_sz ] (] 1
I——
Group 0
79_R-130_R *1
atggagcagaccttgcgcgatacgcc ggtttggcgage t tgcttettcgectccgacgatgegtectatat gctcttegtggctggaggeggegtegget
atggagcagncentgcegcgatacgnngatggeccggtttggecgageccgaggaactggeegecagecatectgettettegect g gatgcgtcctatat tcttegtgget gtcgget
79_R-139 L *1
atggagcagaccttgcgcgatacgcc ggtttggcgage t tgcttettcgectccgacgatgegtectatat gctcttegtggctggaggeggegtegget
atggagcagncentgcegcgatacgnngatggeccggtttggecgageccgaggaactggeegecagecatectgettettegect g gatgcgtcctatat tcttegtgget gtcgget
80_R-130_R *1
tgcg cgat tttgg tggccgcggecgatctgetttttecgectecgacgatgegtectacgtcacag: acttttcgtcgecgg cggctgaccgegecgeygyg
acgnngat tet tggccgcagecatctgettettegectecgacgatgegtectatatcacgggecagacgetettegtggetggaggeggegteggetgagegeggegeoe
80_R-139 L *1
tgcg cgat tttgg tggccgcggecgatctgetttttecgectecgacgatgegtectacgtcacag: acttttcgtcgecgg cggctgaccgegecgeygyg
t acgnngat tet tggccgcagecatctgettettegectecgacgatgegtectatatcacgggecagacgetettegtggetggaggeggegteggetgagegeggegeoe
Group 1
80_R-139 L *1
cc tttegt tcgget aatcagctcgectgettgagcagatcccgcaaggacacacctgegteggecaggetegecagegetggegegggeccggegttcaacgagee
tttcgteg tcggcg. gcgccgcgggctaatcagetcgectgett t gca gcgt gcgcggyg ggcgtt gag
80_R-130_R *1
cc tttegt tcgget aatcagctcgectgettgagcagatcccgcaaggacacacctgegteggecaggetegeagegetggegegggeccggegttcaacgagee
tttcgteg tcggcg. gcgccgcgggctaatcagetcgectgett t gca gcgt gcgcggyg ggcgtt gag
79_R-139_L *1
ccagacgctcttegtgget tcgget caaatcagccagcctgect: teceege ccgegteggetaggettgecgegetggegegggeccggegttcgacgagee
acttttcgtcgecgg tcggctgaccgcgecgcgggctaatcagetcgectgetltgagcagatcccgcaaggacacacctgegtcggecaggetcgeagegetggegeggyg ggcgttcaacgag
79_R-130_R *1
ccagacgctcttegtgget tcgget caaatcagccagcctgect: teceege ccgegteggetaggettgecgegetggegegggeccggegttcgacgagee
acttttecgtcgeegg tcggetgaccgegecgegggctaatcagetegectgettgagecagatececcgcaaggacacacctgegteggecaggetecgeagegetggegegggy: ggcgttcaacgag

Figure 32. Management of PCR experiment results

The image shows the analysis of sequences produced by PCR amplification. A table shows alignments
between amplificate sequences and each possible scaffold combination. A second table shows, for each
combination, the portions of combined sequence aligned with the amplificate sequence and the
corresponding Bl2seq score. Finally at the bottom alignment combinations are reported with differences

highlighted.
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Methods
Selection of highly repeated SLS

Initial SLS population is represented by sequences detected in Petrillo et al. 2007
conducted on 40 bacterial genomes. A subset of sequences predicted to fold into a stem
loop structure (SLS) with a free energy <=-5 Kcal/mol was analyzed for this study.
Clusters are obtained by using BLAST [Altschul et al. 1990] and MCL programs [Enrigth
et al. 2002]. An all-against-all BLAST comparison was performed on the SLS population
within each genome to create E-value based distance matrices. The resulting matrices were
pruned by removing links caused by overlapping SLSs and subsequently fed to MCL
program that produces a set of clusters. BLAST was performed with an E-value cut-off of
1E-4 and forcing only search on the top strand sequence. The MCL inflation parameter (I)
was set equal to 4 to have a stringent condition. The alignments of clustered elements were
produced by PCMA [Pei et al. 2003] by using default parameters. ALISTAT was used to

analyze alignment within each cluster by using default parameters.

Analyzing stability of SLS predicted secondary structure

The probability of original and repeated SLSs and control sequences to form a stable
secondary structure was tested by running RANDFOLD tool [Bonnet et al. 2004]. The
shuffling used to create the random distribution was performed by preserving the
dinucleotide frequencies by using the ‘—d’ option. RANDFOLD was set to compute 1,000
randomizations for each sequence. In the tests reported in figure 1, all clustered SLSs
(panel A) were compared to a original SLSs represented by the 5% of initial population
(panel B) and to a number of genomic sequences having the same size of clustered SLSs,
randomly extracted from the corresponding genomes (panel C). Control sequences
analyzed in panels B and C, were selected three times, in order to evaluate average and

standard deviations.
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Regrouping clusters in larger families

The regrouping procedures summarized in Table 2 were made as follows:

1) Regrouping by sequence was made by using the BLAST-MCL procedure described
previously on all SCRs, but in a less stringent way. An inflation parameter of 1.4 was used.
2) Regrouping by strand was performed by using again the BLAST-MCL procedure, but
allowing this time searches on the complementary strand. The inflation parameter was set
to 1.4.

3) Regrouping by location was obtained by joining clusters with SCRs partially
overlapping or flanking, according to their genomic coordinates. The maximum distance
allowed in flanking definition was of 150 bp.

For each regrouping procedure was defined a group of clusters when it contains at least

50% of the elements derived from original clusters.

Extension of families members by cycles of HMM searches

Extension in size and number of detected families were performed by using a procedure
based on cycles of alignment by PCMA and search on the genome by HMMER package
tools [Bateman et al. 1999]. In first iteration SCRs of clusters regrouped by sequence (see
Table 2) were aligned by PCMA with option ‘ave_grp_id’ set to 50 and then alignment
were fed to the procedure described as Fig

follows:

1) Each alignment is used to build a HMM by HMMBUILD and then it is calibrated by
using HMMCALIBRATE with the default options.

2) The produced HMM is used to search sequences on the genome by using
HMMSEARCH with an E-value cut-off set to 1E-10. Independent searches are run on each

genomic sequence strand.
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3) Identified sequences are extracted and aligned to their parental HMM by HMMALIGN.
When overlapping sequences were selected on opposite strands the one with the worse
score and E-value was discarded to avoid repeated search.

4) The aligned sequences are extended by attaching to them the neighboring sequences on
the genome up to 10% of the parental HMM size and are aligned by using PCMA.

5) A new model is build starting from the alignment of the extended sequences and is fed
again to the procedure returning to step 1.

The iterative procedure ends when one of the following criteria is met:

- The detected sequences that cover the entire model are less than 7;

- The extended alignment is not able to produce a new HMM, larger than the previous one
(within a tolerance of 3 bp).

- The alignment contains a number of gaps higher than 30% of the aligned bases.

- The extreme value distribution, derived from the model calibration, is in the range
Average_Score *+ 3*Standard_Deviation, derived from HMMBUILD.

When the procedure ends the obtained HMM and the final alignment are used to define the

family characteristics.

Secondary structure analyses

All SLSs contained in sequences of each family were tested by RANDFOLD as described
previously and considered as stable if their p-value is < 0.005. Families were classified
according to the fraction of sequences containing at least one positive SLS. Four categories
indicated as, ‘+++’, ‘++’, ‘+’ and ‘-’ indicate respectively a fraction of stable SLS of 90%
or above, 70-90%, 50-70% and less than 50%. Representative sequences of the families
were chosen to perform other structural analyses in the following way:

1) All sequences able to match the entire model are sorted by the E-value determined by

HMMSEARCH.
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2) Six sequences are picked from this population by selecting the best model-fitting one
and five more, if available, with progressively increasing of the E-value.

Sequences were aligned to parental HMM by using HMMALIGN and the resulting
alignments were analyzed by RNAz (version 0.1.1) [Washietl et al. 2005].

Alignments with length <=200 bp were used as a single block in RNAz analysis, while
alignments longer than 200 bp were screened in sliding windows of length 120 and 40
slide, according to the procedure described by Washietl et al. 2007.

RNAz was used with default parameters. All alignments with classification score P > 0.5
were considered as positive. Hits from overlapping windows were analyzed again by using

larger sliding windows.
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Scaffolder

Scaffolder is written in PHP scripting language by using the object-oriented programming
(OOP) paradigm. The version used is PHP 5.2. Data has been stored in a relational
database. PostgreSql is the database management system (DBMS) selected and installed to

manage all the Scaffolder data. Indexing is heavily used for providing quick access to data.

Finding links between contigs

1) Identification of links by contig-end similarity was performed by developing and
running an ad-hoc PHP script, which is able to detect, within a pool of given sequences,
those ending with the same stretch of N bps, with N varying from 10 to 50.

2) Connections by coding information were found by running BLASTX (e-value cut-off
0.01) on all 100 bps contig-ends against all known bacterial proteins annotated in KEGG
(release 39.0). Two contig-ends were considered as connected when they match by
BLASTX different regions of at least one common protein at a maximum distance of 30
aminoacids.

3) Links by analysis of initial reads were searched by running BLASTN (e-value cut-off
0.01, minimum match >=30 bps) on all 100 bps contig-ends against all sequenced primary
reads and considering as connected those contig-ends sharing at least one same matching

read.

Building the connected graph

Connected graphs are done by using dot, a tool of the graphViz package. A specific
module was developed in order to convert scaffold data and links in a suitable format for
dot. The same module generates both graph images and html clickable maps. Scaffolds are
represented in maps as colored boxes whose width is proportional to contig length. Contigs

are colored according to the following criteria:
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When one contig has the same number of reads at the ends:

- Gray: contig without connections

Light green: contig with expected coverage and with one link per end
- Dark green: contig with expected coverage but with only one end linked
- Yellow: contig with multiple coverage and with the same number of multiple links

per ends according to the coverage.

Orange: contig with multiple coverage, but with a higher number of links than
expected

- Light red: contig with a lower coverage than expected and with the same number of
multiple links per ends

- Dark red: contig with multiple coverage, but with a lower number of links than

expected

Support in design of PCR experiments

PCR primer design was set up by merging the ends of connected contigs, also taking into
account their putative orientation. Primers were designed by using the eprimer3 tool from
the EMBOSS package on each end by using all other contig ends as mispriming library
(options —mispriminglibraryfile) in order to avoid recognition of other ends. Further
options, such as minimum GC content and minimum length, were used as default.
PrimerSearch program, also available in EMBOSS, was used to simulate PCR experiments
with the identified primers, using a tolerance of 20% of mismatch between primers and
target sequence.

Primers identified for the X model were selected for experiments when a unique
amplificate per combination was predicted.

Primers identified for the Y model were selected for experiments when only two

amplificates per combination were predicted.
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Amplificate sequences were aligned to each combination of scaffold-ends by using bl2seq:
in this way alignments were evaluated to confirm the PCR results and correct the sequence

of repeated scaffolds, if necessary.

Aligning initial reads to a reference sequence

Reads matching a reference sequence such as a contig or a scaffold sequence, were
selected from the initial pool by using BLAST (setting e-value cut off 0.01, allowing the
search without filtering) and discarding all matches shorter than 20bps. Reads matching
artificial sequences derived from combination of ends were also found in this way.
Alignment of selected reads to the reference sequence was done by using Blastalign,
modified in order to launch MEGABLAST instead of BLASTN and setting the maximum
proportion of allowed gaps in every sequence to 0.99. Aligned sequences were sorted in

order to display matching reads with 5’ to 3’ order.

Display alignment
A PHP script was developed to draw pictures of alignments where presence of

heterogeneities are highlighting. The script looks through each column of the alignment

and when it finds more than one base, differently colors base variants.

Micro-heterogeneities analysis

Reads matching for a scaffold (or contig) sequence are detected and aligned as described in
the previous paragraph. A PHP script was developed to analyze the alignment and find

hidden sequence variants within the reference sequences.
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Blastalign - http://www.bio.ic.ac.uk/research/belshaw/BlastAlign.tar

Complete genomics www.completegenomics.com

Emboss - http://emboss.sourceforge.net/

Encode project - www.genome.gov/10005107

Ensembl - www.ensembl.org

European Read Archive at - http://www.ebi.ac.uk/embl/Documentation/ENA-Reads.html
GenBank - www.ncbi.nlm.nih.gov/Genbank

Graphviz tool - www.graphviz.org

Helicosbio - www.helicosbio.com

[llumina - www.illumina.com

KEGG Automatic Annotation Server KAAS - http://www.genome.jp/kegg/kaas/

PHP — http://php.net
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Phrap - www.phrap.org

Postgresql - www.postgresql.org/

Read Archive - http://www.ddbj.nig.ac.jp/sub/trace sra-e.html

Short Read Archive - http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
Swiss-Prot - www.expasy.org/sprot

TIGR - www.tigr.org
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