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Abstract

In this thesis, we propose a general and effective approach to compute vibrationally-resolved elec-
tronic spectra from first principles. This method is integrated in a versatile quantum chemical
computational package and offers a complete “in silico” procedure starting from the geometry
optimization to the generation of the spectrum.

The theoretical background and methods to evaluate the overlap integrals are presented, along
with a discussion of strategies for an efficient evaluation of spectra of large systems, which features
a huge number of possible vibronic transitions. The presented procedure relies on the general-
purpose method to select a priori the transitions that should be calculated by estimating their
probability. The implemented method uses a partition of the transitions by groups called classes,
which permits the usage of several computational schemes to speed up the calculations. The details
of the procedure and the possibilities of fine-tuning of the calculations are presented, as well as an
insight into its internal workout.

The integrated approach to compute vibrationally resolved optical spectra can be applied to
a large variety of systems ranging from small molecules in the gas phase to macrosystems in con-
densed phases, whenever nonadiabatic couplings are negligible and the harmonic approximation is
reliable. The given examples of absorption spectrum of S1 ← S0 electronic transitions of anisole,
photodetachment spectrum of SF6

−, emission T1 → S0 phosphorescence spectrum of chlorophyll
c2, UV spectrum of acrolein in the gas phase and aqueous solution, a photoelectron spectrum of
adenine adsorbed on the Si(100) surface, and porphyrin are chosen to illustrate the possibilities of
the procedure and some of its characteristics.

It is shown that despite the fact that our computational scheme has been tailored for large
systems, it can be utilized as well to generate high quality spectra for small systems. Moreover,
good quality spectra can be effectively computed even for large systems with hundreds of normal
modes, paving the route to spectroscopic studies of systems of direct biological and/or technological
interest.
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Conventions used in this document

In this document several mathematical symbols will be used to represent the physical and chemical

concepts needed to grasp the underlying theory behind the computation of vibronically resolved

UV-visible spectra. Their meaning will be explained as they are introduced. However, to ease the

reading of this document, this chapter intends to briefly sum up the conventions used throughout

the document.

Typographic conventions

A represents a matrix or vector. The character is upper-case.

A represents a submatrix or subvector of A.

Ai represents an element i of a vector A. Occasionally, the notation A(i) can be preferred

for clarity.

Aij represents an element i, j of a matrix A. Occasionally, the notation A(i, j) can be preferred

for clarity.

AT represents the transpose of matrix/vector A.
′ placed next to a variable/symbol, the latter describes the initial state.
′′ placed next to a variable/symbol, the latter describes the final state.

Main mathematical symbols

NA represents the number of atoms of the molecule.

N represents the number of normal modes in the molecule. For linear molecules, N = 3NA−5

while for the others, N = 3NA − 6.

Q is a vector representing the normal coordinates of one electronic state.

q is a vector representing the dimensionless normal coordinates of one electronic state.

Ψ is the molecular wave function.

ψe is the electronic wave function.

ψn is the nuclear wave function.

ψv is the vibrational wave function.

ψvi
is the monodimensional vibrational wave function associated to the normal mode i.

v is a vector of quantum numbers representing a vibrational state. It is used as an equivalent

to ψv in matrix notation in harmonic approximation.
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Introduction

The theoretical spectrum generation as an important tool for prac-

tical cases

For years there has been a constant interplay between molecular spectroscopy and computational

chemistry. Computed data have become crucial for the interpretation of experimental results and,

conversely, accurate spectroscopic measurements have been used as benchmarks to validate theo-

retical approaches. For small molecular systems, state-of-the-art quantum mechanical (QM) ap-

proaches to computational spectroscopy are at present capable of providing results comparable

to the most accurate experimental measurements [1]. Among the most challenging examples, we

can mention theoretical spectroscopic studies of systems with several interacting electronic states,

based on the evaluation of accurate ab initio post-Hartree-Fock potential energy surfaces (PES),

and variational calculations of rovibronic energy levels beyond the Born-Oppenheimer approxima-

tion [2, 3]. The high accuracy of the results achievable for small systems clearly demonstrates the

potentiality of computational chemistry experiments to become key tools for the prediction and

understanding of spectroscopic properties of all kinds of molecular systems: this reflects a more

general trend, since nowadays the experimental characterization of new systems relies more and

more on computational approaches, e.g. for the evaluation and rationalization of structural, ener-

getic, electronic and dynamic features [4–6]. Nevertheless, up to very recently direct comparisons

between experimental and computed spectroscopic data have been rather scarce. As a matter of

fact, even for small molecular systems comparisons have mostly been restricted to energy levels (vi-

brational, electronic, rovibrational), which as a rule must be extracted from the experimental data

by a non trivial interpretation (involving at the very least band assignment). Alternatively, model

Hamiltonians have been extensively applied to extract experimental spectroscopic constants and to

simulate spectra using trial constants - an approach which in a sense is equally far removed from

experimental spectroscopy, as from electronic structure methods. However, the need for integrated

approaches, capable of accurately simulating optical spectra, but at the same time easily accessible

to non-specialists, is strongly felt. Such tools would allow for the exploitation of the recent and

ongoing developments that are taking place in the field, resulting in easy and, ideally, automatic

vis-à-vis comparison between experimental and theoretical results.
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A brief overview of the available methods to compute absorption

and emission UV-visible spectra

Many attempts have been made toward a fully ab initio simulation of vibronic spectra of medium to

large molecular systems, by both time-dependent and time-independent approaches [7,8]. Eigenstate-

free time-dependent methods are the main (when not the only) route to deal with systems for which

eigenstate calculations are unfeasible, as is the case for strongly non-adiabatic systems involving

conical intersections [7], or for systems propagating on highly anharmonic potential energy surfaces

(PES) [9,10]. On the other hand, for large and semi-rigid molecules, when non-adiabatic couplings

are negligible and the harmonic approximation is reliable, vibronic eigenstates are known once a

harmonic analysis of the relevant PES is performed (a step required for the characterization of the

PES, independently of the method adopted to compute the spectrum). Within the simplest zero-

order harmonic approximation it is assumed that the PES of the initial and final state do not differ

in shape, so that the vibrational levels are identical. Obviously such an approach can only provide a

very rough estimation of the real spectrum, and in general most vibrational transitions are actually

missed. A significant improvement is represented by the Linear Coupling Method (LCM) [11]. Here

the multidimensional coupling constants are obtained from the ground state frequencies and normal

modes, and the excited state energy gradients evaluated at the ground state geometry. Thus, the

approach does not require computation of the excited state equilibrium geometry, frequencies and

normal modes, which have only recently become feasible for large systems. However, the Linear

Coupling Method does not take into account changes in vibrational frequencies and/or in nor-

mal modes between the excited and ground state. More accurate approaches require a detailed

knowledge of the multidimensional potential energy surfaces (PES) of both electronic states or,

within the harmonic approximation, at least computation of equilibrium geometry structures and

vibrational properties. Till recently, computations of vibronic spectra have been limited to small

systems or approximated approaches, mainly a consequence of the difficulties in obtaining accurate

descriptions of excited electronic states of polyatomic molecules. Recent developments in electronic

structure theory for excited states [12] within the Time-Dependent Density Functional Theory(TD-

DFT) [13,14] and resolution-of-the-identity approximation of Coupled Cluster theory(RI-CC2) [15]

have paved the route toward the simulation of spectra for significantly larger systems.

Aim of this work

In this work, we aimed at developing a fast and general-purpose procedure to compute vibronically-

resolved ultraviolet-visible spectra. To fulfill our objective, the principle stated by Franck [16]

and formalized by Condon [17] was well adapted. However, the Franck-Condon principle is not

sufficient to permit the generation of an electronic spectrum. As a matter of fact, we first had

to develop a thorough theoretical method that could be efficient and versatile. Once it has been

sufficiently consistent, its encoding could start. This part cannot be neglected because it plays

also an important role in the overall speed of the calculation program. As a result, we will also

give a substantial place to the programming strategies to fully take advantage of modern computers

performances and not diminish the intrinsic qualities of our method. In addition to being a concrete

application of a theoretical method, the program must allow the users to customize the calculations
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to their needs. In this project, we have chosen to build an easy-to-use tool that could be handled

by non-specialists without requiring an in-depth understanding of the underlying principles it relies

on. A straightforward approach would be to create a stand-alone software but this has several

disadvantages. The main one is that such a program is not self-contained and must be able to

interface it with existing calculation packages to extract the data it needs. Consequently, it is

easier and more efficient to integrate directly the procedure in a quantum mechanical computational

package. This gives access to the internal functionalities of these softwares as well as the quantities

they have computed. In this work, we chose to implement our method inside the well-known

computational package gaussian [18].

Once the procedure has become stable enough, we applied it to several test cases. From these

experiments, we were able to refine our model, from a theoretical perspective [19] as well as from a

computational perspective to improve its efficiency. Additionally, these models help us to improve

the range of application of the program as well as the possibilities to fine-tune its results. Finally,

we used it for some specific studies [19–21].

The document is divided in three parts organized in four chapters. In the first chapter, we

will discuss the main approximations underlying our work and will present the exact calculation

of the overlap integral between the vibrational ground states of two electronic states. In the

second chapter, we will focus on the general calculations of the overlap integrals between arbitrary

vibrational states. The strategies of computations will be discussed from two perspectives. In a

first time, we will present the theoretical method we adopted in our case to generate efficiently the

vibronic spectra. Then, we will consider the implications of such an approach from a programming

point of view. This will pave the way to our third chapter which will describe the procedure

inside gaussian. The presentation will be done with an emphasis on its usage and the possibilities

it offers to parametrize the calculation of the spectra and the output. When relevant, we will

explain the programming strategies we adopted to maximize the speed of the procedure. Finally,

in the last chapter, we will present some applications of our procedure or method with different

systems and conditions. These examples will highlight the influence of some parameters on the

spectrum generation (sulfur hexafluoride anion, chlorophyll c2 ) and the possibilities offered by the

full integration in a quantum chemical computational package such as gaussian (acrolein, adenine

on a silicon surface). We will also present a full study of the UV-vis spectra of two systems with

respect to experimental results: porphyrin and anisole.
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Chapter 1

A theoretical approach to compute

UV-visible spectra

1.1 Field of application of the theoretical method

In this document, all discussions will be done assuming a certain number of approximations. The

first and most important one is the Born-Oppenheimer (BO) approximation, related to the concept

of separability of the potential energy surface of each electronic state. In our approach, we will

always assume that it does not break down. Because the nuclei are far heavier than the electrons,

they move more slowly. Hence, it can be assumed, with a good approximation, that the electrons

are interacting and moving in a field of fixed nuclei. A direct consequence of this approximation is

that the total Hamiltonian H of the Schrödinger equation can be written as the sum of an electronic

Hamiltonian He and a nuclear Hamiltonian Hn where the swift electrons are represented by an av-

erage field in which the nuclei move. Another consequence of this approximation, which will be

widely used further in this document is the possibility to rewrite the total molecular wave function

Ψ as the product of an electronic wave function ψe and a nuclear wave function ψn. The simulated

spectra, in our case, are generated from vibrational transitions so the electronic parts of the wave

function and the Hamiltonian will not be explicitly treated and only the nuclear Shrödinger equa-

tion needs to be considered.

The BO approximation is however not sufficient as the nuclear wave function describes com-

plex movements involving vibrations, rotations and translations. Since we focus on vibrational

displacements, it is necessary to find a way to separate, as far as possible, the vibrations from the

other sources of nuclear motions. It is possible to do so using the Sayvetz conditions [22], also

known as the Eckart conditions [23]. These conditions are physically less intuitive than the Born-

Oppenheimer approximation and also imply some restrictions on the relevant systems. To define

them, let us formulate the nuclear Hamiltonian in a classical approach. In the case of an isolated

molecule, the nuclear Hamiltonian Hn is correlated to the kinetic energy V which can be expressed

as

V =

NA
∑

a=1

1

2
maVa ·Va (1.1)

where NA is the number of atoms in the molecule and ma and Va are the mass and the velocity
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of nucleus a, respectively.

At the center of mass of the molecule, let us define a set of orthonormal coordinates from which

the position of each nucleus is measured. This rotating frame of reference Rl is at a distance R

from the origin of the fixed spatial frame of reference R and has an angular velocity ωr. From a

physical point of view, R represents the translation of the molecule in the cartesian space while ωr

represents its rotation.

In the frame of reference Rl, the position of some nucleus a is defined by the vector ra and its

displacement is given by δa = ra−ra0
where ra0

is the equilibrium position. The set of instantaneous

displacements δa corresponds to the vibrations of the atoms in the molecule.

Figure 1.1: Diagram of the two frames of reference with a nucleus a. The fixed spatial frame of reference R is
defined by the set (X,Y,Z) and the rotating frame of reference Rl is defined by (x,y,z).

The velocity of the nucleus a in the spatial frame of reference R is:

Va =
dR

dt
+ ωr × ra +

dδa

dt
(1.2)

Using equation 1.2, the kinetic energy can be written

V =
1

2

NA
∑

a=1

{

ma

(

dR

dt

)2

+ma

(

ωr × ra

)2
+ma

(

dδa

dt

)2

+ 2ma
dR

dt
· (ωr × ra)

+ 2ma
dR

dt
· dδa

dt
+ 2ma

(

ωr × ra

)

· dδa

dt

}
(1.3)

The first three terms of the right-hand side of equation 1.3 represent the translational, rota-

tional and vibrational movements, respectively. The last three terms correspond to the interactions

between these movements.

To be able to separate the vibrational wave function from the rotational and translational ones

in the nuclear wave function, it is necessary to cancel or at least highly reduce the value of these

last terms.

As a consequence of equation 1.3, the nuclear Hamiltonian is defined with 3NA + 6 coordinates,

one for each Cartesian coordinate of each nucleus (3×NA coordinates), 3 for the translation vector

ra and 3 for the rotation vector ωr each. However, the molecule has 3NA degrees of freedom so it

is possible to set 6 conditions among the coordinates. These correspond to the Eckart conditions.

16



The first condition, which corresponds to 3 conditions in Cartesian coordinates, is

NA
∑

a=1

mara = 0 (1.4)

and implies that the center of mass does not shift during a molecular vibration.

By differentiating this relation with respect to time, another consequence of this statement can

be expressed.

d

dt

(

NA
∑

a=1

mara

)

=

NA
∑

a=1

ma

(

ωr × ra +
dδa

dt

)

= ωr ×
NA
∑

a=1

mara +

NA
∑

a=1

ma
dδa

dt
= 0 (1.5)

⇒
NA
∑

a=1

ma
dδa

dt
= 0 (1.6)

Hence, the first Eckart condition imposes that there is no linear momentum of vibration.

From this expression, both interactions between the translation and the rotation, and between

the translation and the vibrations are null. Only the sixth term of equation 1.3, corresponding to

the interaction between rotation and vibrations remain. This term is rather complex and cannot

be easily cancelled out, even with the last three remaining conditions to set.

The second Eckart condition states that no angular momentum is created during a molecular

vibration. Hence, any global rotation induced by a vibration is counterbalanced by the rotating

system. This can be formulated as
NA
∑

a=1

mara0
× ra = 0 (1.7)

To link this equation to the term of rovibrational interaction, the latter must be slightly rewrit-

ten. Using the scalar triple product, a permutation of the vectors is possible.

NA
∑

a=1

ma

(

ωr × ra

)

· dδa

dt
=

NA
∑

a=1

ma

(

ra ×
dδa

dt

)

· ωr = ωr ·
NA
∑

a=1

ma

(

ra0
+ δa

)

· dδa

dt
(1.8)

Derivating the second condition of Eckart with respect to time, one obtains

d

dt

NA
∑

a=1

mara0
× ra =

NA
∑

a=1

ma

[

dra0

dt
× ra + ra0

× dra

dt

]

=

NA
∑

a=1

ma

[

(ωr × ra0
)× ra +

(

ra0
× (ωr × ra) + ra0

× dδa

dt

)

]

= 0

(1.9)

Using the anticommutative properties of the cross product, the first term of the right-hand side

of equation 1.9 becomes

(ωr × ra0
)× ra = −ra × (ωr × ra0

) = ra × (ra0
× ωr) (1.10)
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The cross product satisfying the Jacobi identitya, the first two terms of the right-hand side of

equation 1.9 can be replaced by a single cross product given by the relation

ωr × (ra × ra0
) = −

[

ra0
× (ωr × ra) + ra × (ra0

× ωr)
]

(1.11)

Applying the second Eckart condition, equation 1.9 is reduced to

NA
∑

a=1

mara0
× dδa

dt
= 0 (1.12)

It is now possible to simplify equation 1.8 as

NA
∑

a=1

ma

(

ωr × ra

)

· dδa

dt
= ωr

NA
∑

a=1

maδa ·
dδa

dt
(1.13)

Unfortunately, it is not possible to completely remove the rovibrational interaction. However,

this term, called Coriolis energy, is very small and is generally included in the rotational movement

of the molecule. Consequently, if the Eckart conditions are met, it is possible to write the nuclear

wave function as

ψn = ψrψv (1.14)

where ψr is the rotational wave function and ψv the vibrational wave function. As the trans-

lational motion is completely separated from the rotational and vibrational ones, it can be treated

separately and will be ignored in our treatment of the radiative transitions.

Finally, a last important approximation applied throughout this work is the harmonic oscil-

lator approximation. The potential surface near a local minimum can be modelled by a set of

simple harmonic oscillators corresponding to the vibrational modes of the molecule. In this set-

ting, each molecular vibration can be described as a linear combination of independent coordinates

(Q1, . . . , QN , N = 3NA − 6b) called normal coordinates, that will be detailed further. It is then

possible to express the multidimensional vibrational wave function ψv as a product of N monodi-

mensional functions ψvi
(Qi).

It should be noted that the approach presented here can be extended to deal with anharmonic

aThis identity can be shown using the vector triple product identity:

a × (b × c) = b(a · c) − c(a · b)

Such a relation can also be applied to b × (c × a) and c × (a × b):

b × (c × a) = c(b · a − a(b · c))

c × (a × b) = a(c · b − b(c · a))

Since the dot product is communative, the following equalities can be written:

a · b = b · a ; a · c = c · a ; b · c = c · b

Using this property, it is straightforward to obtain the Jacobi identity:

a × (b × c) + b × (c × a) + c × (a × b) = 0

bN = 3NA − 5 for linear molecules
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oscillators, making necessary corrections to adapt the formulae to this model. However, this treat-

ment goes beyond the scope of this document and will not be discussed here.

To make the formulae used later in this document as clear as possible, the convenient Dirac

notation will be used.

1.2 Analysis of the transition probability

In this section, we will present the formulae used to compute the absorption and emission spectra of

UV and visible radiations. While the analysis of the transitions is necessary to generate these spec-

tra, a complete description of the light matter interaction is not indispensable to the understanding

of the present document. Such an interaction can be treated with two different approaches. The

simpler one is called semiclassical and uses a classical electromagnetic field to describe the radia-

tion and quantum mechanics for the molecule. The second one, the quantum field theory, treats

both field and system with quantum mechanics. Whatever the choice of the method to describe

the interaction, the time-dependent perturbation is necessary. In this discussion, however, we will

restrict our study to some important concepts, focusing on the case of absorption. More thorough

and detailed analyses can be found in books about spectroscopy such as “Vibrational States” by

S. Califano [24] or “Molecular Spectra and Molecular Structure” by G. Herzberg. [25].

When a system is thermically excited, its vibrational state before a radiative transition can be

different from the ground state (case of hotbands). Hence, the calculation of an absorption (or

emission) spectrum will require the knowledge of the transition probabilities between each possible

initial and final states.

As a brief description, the transition probability from one energy eigenstate to a distribution of

eigenstates is assumed to form, in general, a continuum. The measure of the transition probability

is supposed to be done after any possible transition has occured. In this setup, the transition rate,

which is the transition probability per time unit, between an initial state i and a final state f is

given by the Fermi’s golden rule [26, 27]:

Rif =
2π

~
|Vif |2ρ(Ef ) (1.15)

where ρ(Ef ) is the density of states which describes the distribution of final states and Vif is

the matrix element connecting the states.

Vif can also be written 〈 Ψi | Hint | Ψf 〉 where Ψi and Ψf are the wave functions of the

initial state and final state, respectively, and Hint is the interaction Hamiltonian. In the case

of UV-visible radiations, Hint represents the interaction between the molecule and an external

electromagnetic field. The Hamiltonian will then contain multiple moments of the molecule and

powers of the magnetic and electric field. The three most relevant moments are the electric dipole

moment, the electric quadrupole moment and the magnetic dipole moment. However, since the

electric quadrupole and magnetic dipole moments are very small with respect to the first one, only

the electric dipole moment is generally considered in interactions between light and matter. As a
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consequence, Hint can be replaced with the relation

Hint = (−→µE · ~e)E0 (1.16)

where −→µE is the electric dipole moment and ~e is a dimensionless unit vector indicating the

direction of the electric field whose intensity is E0

Hence, equation 1.15 can be written

Rif =
2πE2

0

~

∣

∣〈Ψi | −→µE · ~e | Ψf 〉
∣

∣

2
ρ(Ef ) (1.17)

The transition between the vibronic states i and f occurs when the molecule absorbs a photon

of energy ~ω corresponding to the difference of energy between them. It should be noted that the

probability of a transition from the state i to the state f is sharply centered on Ef = Ei + ~ω. As

a consequence, the density of state can be written ρ(Ef = Ei + ~ω) and is more commonly replace

by a Dirac function δ(Ef − Ei − ~ω).

We define the absorption cross section as the rate of photon absorption per molecule and per

unit of radiant energy as:

σ(ω) =
4π2ω

c

∣

∣〈Ψi | −→µE · ~e | Ψf 〉
∣

∣

2
δ(Ef − Ei − ~ω) (1.18)

The stick spectrum from a given vibronic state i can be calculated as a sum of the absorption

coefficient σ(ω) over all possible final vibronic state f . If temperature is taken into account, the

different initial states and their Boltzmann population ρi are taken into account in equation 1.18:

σ(ω) =
4π2ω

c

∑

i

ρi

∑

f

∣

∣〈Ψi | −→µE · ~e | Ψf 〉
∣

∣

2
δ(Ef − Ei − ~ω) (1.19)

where
∑

f represents all possible final states for a given energy of transition.

If we assume that the orientation of the studied system is completely random, then the Cartesian

components of the electric dipole moment are the same, so that we can average them, writing:

∣

∣µ
∣

∣

2
= 3
∣

∣µE(x)
∣

∣

2

σ(ω) =
4π2ω

3c

∑

i

ρi

∑

f

∣

∣〈Ψi | µ | Ψf 〉
∣

∣

2
δ(Ef − Ei − ~ω) (1.20)

For the emission spectra, we will use the following formula:

σ(ω) =
4ω3

3~c3

∑

i

ρi

∑

f

∣

∣〈Ψi | µ | Ψf 〉
∣

∣

2
δ(Ef − Ei + ~ω) (1.21)

1.3 The transition dipole moment integral

The absorption or emission spectrum can be calculated using the relations given in equations 1.20

and 1.21, respectively. From the equations of the stick spectrum, it appears that the probability of a

transition is proportional to the square of the transition dipole moment integral 〈Ψi | −→µE ·~e | Ψf 〉,
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and the intensity of a spectrum line depends mainly on the transition probabilities for a given

incident energy. Evaluating correctly each probability of transition is an essential prerequisite to

the correct computation of the complete spectrum.

To simplify the equations, some conventions will be used. The initial state i will be referred with

the single quote (′) and the final state with the double quote (′′). For convenience, this notation is

slightly different from the spectroscopic conventions as the relative energies of the initial and final

states are not taken into account in our notation.

In this section the Franck-Condon principle will be used to evaluate the probability of a transi-

tion with respect to the overlap of the vibrational wave functions of the initial and final vibrational

states. To summarize it, Franck [16] firstly proposed that during a transition, the electron jump in

a molecule takes place in such a short time that the relative positions and velocities of the nuclei are

nearly unaltered by the molecular vibrations. Following this principle, the most intense transition

will be from the chosen initial state to a final state being at a minimum of the lowest potential

surface vertically upward as shown in figure 1.2. The implications of this approximation and its

domain of application will be discussed below.

However, before using it, it is necessary to simplify the transition dipole moment integral using

simple schemes first. Let us separate the electric dipole moment µ into an electronic part µe and

a nuclear part µn depending on the electrons and the nuclei of the system, respectively. From the

Born-Oppenheimer approximation, the molecular wave function Ψ can be written as a product of

an electronic wave function ψe and a nuclear wave function ψn. Consequently, the transition dipole

moment can be developed into two integrals:

〈Ψ′ | µ | Ψ′′ 〉 = 〈 ψ′
eψ

′
n | µe | ψ′′

eψ
′′
n 〉+ 〈 ψ′

eψ
′
n | µn | ψ′′

eψ
′′
n 〉 (1.22)

Since µn is independent from the coordinates of the electrons, the second term of equation 1.22

can be written

〈 ψ′
eψ

′
n | µn | ψ′′

eψ
′′
n 〉 = 〈 ψ′

n | µn | ψ′′
n 〉〈 ψ′

e | ψ′′
e 〉 (1.23)

The electronic wave functions of different electronic states are orthogonal to each other so

〈 ψ′
e | ψ′′

e 〉 = 0. Equation 1.22 is now reduced to the first integral:

〈Ψ′ | µ | Ψ′′ 〉 = 〈 ψ′
eψ

′
n | µe | ψ′′

eψ
′′
n 〉 (1.24)

The integral 〈 ψ′
e | µe | ψ′′

e 〉 corresponds to the electronic transition dipole moment and will

be written µif from now on. As a consequence, the transition dipole moment depends now on the

nuclear wave functions and the electronic transition moment:

〈Ψ′ | µ | Ψ′′ 〉 = 〈 ψ′
n | µif | ψ′′

n 〉 (1.25)

As detailed in section 1.1, we suppose that the Eckart conditions are fulfilled so that the nuclear

wave function can be, with a good approximation, separated into a rotation and a vibrational

contribution as shown in equation 1.14. In this case, it is possible to neglect the rotation of

the molecule (more in-depths and technical details about this approximation can be found in the

explanation following eq. [IV,76] in reference [25]). Finally, the transition dipole moment integral
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can be written:

〈Ψ′ | µ | Ψ′′ 〉 = 〈 ψ′
v
| µif | ψ′′

v
〉 (1.26)

Actually, the relation given in equation 1.26 is not sufficient to calculate the transition moment

since there is no general analytic solution for µif . Previously, the Franck-Condon principle has

been described as an approach ignoring the shifts of the nuclei during the transition so that the

electronic transition moment is supposed constant. However, we will adopt a slightly more general

approximation and take into account a small variation of the positions and velocities of the nuclei

during the transition. Physically, it will mean that a broader range of transition can be correctly

simulated to improve the quality of the theoretical spectrum.

Since the shifts of the nuclear positions in the molecule are assumed to be fairly low during the

transition, it is possible, with a good accuracy, to develop the electronic transition dipole moment in

a Taylor series about the equilibrium geometry of the final state. To treat the motions of the nuclei

induced by the vibrations, the Cartesian coordinates are not well suited as 3NA coordinates are

needed to describe each vibration. We will now introduce a new set of N coordinates {Qi} called

normal coordinates. Each normal coordinate Qi represents the whole of the nuclear motions for a

given vibration and so can be expressed as a linear transformation of the Cartesian displacement

coordinates X:

Qi =

NA
∑

k=1

√
mk

∑

τ=x,y,z

(L+)ikτXkτ (1.27)

where mk is the mass of atom k, Xkτ is one of the Cartesian coordinates of the motion of

its nucleus and (L+)ikτ is the coefficient of the linear transformation. In matrix notation, this

transformation is simply written as:

Q = L+M1/2X (1.28)

L+ is the (N × 3NA) matrix pseudoinverse [28] of L and corresponds to the transformation

matrix from mass-weighted Cartesian coordinates to normal coordinates and M is the diagonal

matrix of atomic masses.

The Taylor expansion of the electronic transition moment in the set of normal coordinates is:

µif (Q′′) ≃ µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

Q′′
k +

1

2

N
∑

k=1

N
∑

l=1

(

∂2µif

∂Q′′
k∂Q

′′
l

)

0

Q′′
kQ

′′
L + . . . (1.29)

where Q′′
0 represents the equilibrium geometry of the final state.

The zeroth order term corresponds to a static electronic transition dipole. This is a direct

application of the Franck-Condon principle which was proposed by Franck [16] and mathematically

formalized by Condon [17] to calculate the probabilities of vibronic transitions. As a consequence,

it is referred as the Franck-Condon approximation. When dealing with fully-allowed transitions

(µif (Q′′
0)2 ≫ 0), this approximation generally gives very good results.

However, in the case of weakly-allowed (µif (Q′′
0) ∼ 0) or dipole-forbidden transitions (µif (Q′′

0) = 0),

this approximation is not describing correctly the overall spectrum, missing the most likely tran-

sitions. It is necessary to consider a variation of the dipole moment during the transition. A first

approximation is to consider a linear variation of the dipole moment with the normal coordinates.
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This corresponds to the first order of the Taylor expansion and is referred as the Herzberg-Teller [29]

approximation.

Both approximations are schematically shown in fig-

Figure 1.2: The Franck-Condon principle is

shown by the vertical dotted line. Following

this principle, the highest probability of

transition corresponds to 〈 0
′ | 2′′ 〉 where the

overlap of the wave functions is the highest.

ure 1.2. Taken together, they generally lead to a very

good accuracy of the theoretical spectrum of a radiative

transition. In some cases [30], the third term of equation

1.29 can be relevant to fully describe the complete spec-

trum. Because it implies heavy calculations with little

benefits in general, it is often not taken into account. In

the code developed during this thesis work, we introduced

a simple way to take into account parts of this term so

this approximation will also be presented here.

The development to a further order of the Taylor ex-

pansion of the electronic dipole moment is almost never,

to the best of our knowledge, considered in published

work, the involved calculations being greatly cumbersome

for a very little expected gain. Hence, the electric dipole

moment will be set equal to the sum of the first three

terms of the right-hand side of equation 1.29 from now

on.

Using equation 1.29, the transition dipole moment in-

tegral given in equation 1.26 can be written

〈Ψ′ | µ | Ψ′′ 〉 = µif (Q′′
0) 〈 ψ′

v
| ψ′′

v
〉

+
N
∑

k=1

(

∂µif

∂Q′′
k

)

0

〈 ψ′
v
| Q′′

k | ψ′′
v
〉

+
1

2

N
∑

k=1

N
∑

l=1

(

∂2µif

∂Q′′
k∂Q

′′
l

)

0

〈 ψ′
v
| Q′′

kQ
′′
l | ψ′′

v
〉

(1.30)

The overlap integral 〈ψ′
v
| ψ′′

v
〉 is also referred as the Franck-Condon integral. Those in the sec-

ond and third terms of equation 1.29 depend on the normal coordinates and therefore cannot be, in

this form, generalized to any problem. To simplify the calculation of the integral given in equation

1.30, it is necessary to transform them in more versatile and usable Franck-Condon integrals.

For simplification purpose, the treatment of the Franck-Condon and overlap integrals will be

done in the framework of the harmonic approximation. For the study of semi-rigid systems, where

the Franck-Condon approximation is the most efficient, this approximation is in general sufficiently

reliable and provides good results. In this framework, the total vibrational Hamiltonian, expressed

in terms of normal coordinates and the associated momenta, can be written as a sum of one-

dimensional vibrational Hamiltonians:

Hv =
N
∑

i=1

Hvi
=

N
∑

i=1

Ti + Vi =
N
∑

i=1

−~
2

2

d2

dQ2
i

+
1

2
ω2

iQ
2
i (1.31)
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where ωi is the angular frequency of motion of the oscillator which is directly related to its

frequency νi through the equation ωi = 2πνi.

As noted in section 1.1, it is possible to write the vibrational wave function as a product of

monodimensional wave functions:

ψv =
N
∏

i=1

ψvi
(Qi) (1.32)

Each monodimensional wave function depends on one normal coordinate Qi and one quantum

number vi. For clarity, the harmonic oscillators will be represented by their quantum numbers vi.

These vibrational quantum numbers are gathered in a vector v which defines unequivocally the

vibrational state in the same way as the vibrational wave function.

Back to equation 1.29, the last two terms in its right-hand side can be developed as combinations

of Franck-Condon integrals using the annihilation and creation operators, respectively ai and a†i .

These operators are prime elements of the second quantization, a formalism commonly used to

analyze many-body problems by shifting it to a matter involving one or two particles. To introduce

them, we will consider the Schrödinger equation of the monodimensional harmonic oscillator. It is

simple to connect our study to this particular case by recalling that in the harmonic approximation,

the total energy of the isolated system can be written as the sum of N energies corresponding to

each monodimensional oscillator, Evi
:

E =
N
∑

i=1

Evi
(1.33)

Applying the Hamiltonian operator, expressed as the sum of monodimensional Hamiltonian op-

erators, to the wavefunction given in equation 1.32, we obtain N independent Schrödinger equations

of one-dimensional harmonic oscillators:

Hvi
ψvi

= Evi
ψvi

(1.34)

Using equation 1.31, the Schrödinger equation becomes:

− ~
2

2

d2ψvi

dQ2
i

+
1

2
ω2

iQ
2
iψvi

= Evi
ψvi

(1.35)

~

ωi

d2ψvi

dQ2
i

− ωi

~
Q2

iψvi
= −2Evi

ω~
ψvi

(1.36)

This equation can be simplified by replacing the normal coordinates Q by a new set of variables

q, using the following relation:

qi =

√

ωi

~
Qi (1.37)

These variables are dimensionless and so are called dimensionless normal coordinates. By in-

troducing them in equation 1.36, we obtain:

d2ψvi

dq2i
+

(

2Evi

ω~
− q2i

)

ψvi
= 0 (1.38)
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This equation can be solved exactly and its eigenvalues are the energies satisfying the relation

Evi
= ~ωi

(

vi +
1

2

)

(1.39)

where vi is a quantum number belonging to the set of the nonnegative integers (vi = 0, 1, . . .).

The eigenfunctions of equation 1.38 are given by the formula:

ψvi
= Nvi

Hvi
(qi) e

−q2
i /2 (1.40)

where Nvi
is a normalization factor:

Nvi
=

(

ωi

π~

)1/4 1
[

2vi(vi!)
]1/2

(1.41)

and Hvi
(qi) is a Hermite polynomial of degree vi defined by:

Hvi
(qi) = (−1)vieq

2
i
dvi

dqvi

i

e−q2
i (1.42)

For any quantum number (vi + 1 greater or equal to 2, it is possible to obtain the Hermite

polynomial using the following recursion formula:

Hvi+1(qi) = 2qiHvi
(qi)− 2viHvi−1(qi) (1.43)

We will now define the creation and annihilation operators mentioned previously as:

a†i =
1√
2

(

qi −
d

dqi

)

(1.44)

ai =
1√
2

(

qi +
d

dqi

)

(1.45)

If we apply the creation operator on equation 1.40, we obtain:

a†iψvi
=

1√
2

(

qi −
d

dqi

)

Nvi
Hvi

(qi)e
−q2

i /2

=
1√
2
qiNvi

Hvi
(qi)e

−q2
i /2 − 1√

2
Nvi

(

dHvi
(qi)

dqi
e−q2

i /2 +Hvi
(qi)

d e−q2
i /2

dqi

)

(1.46)

Based on the definition of the Hermite polynomial given in equation 1.42 and using the rela-

tion given in equation 1.43 for the substitution, the derivative of the Hermite polynomial can be

expressed as:
dHvi

(qi)

dqi
= 2qiHvi

−Hvi+1(qi) = 2viHvi−1(qi) (1.47)

Hence, equation 1.46 can be written

a†iψvi
=
√

2Nvi
(qiHvi

(qi)− viHvi−1(qi)) e
−q2

i /2

=
1√
2
Nvi

Hvi+1(qi)e
−q2

i /2 (1.48)
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From the equation of the nomalization factor 1.41, we can simply define that

1√
2
Nvi

=

(

ω

π~

)1/4 (vi + 1)1/2

[

2vi+1(vi + 1!)
]1/2

= (vi + 1)1/2Nvi+1 (1.49)

As a consequence, equation 1.48 can be reduced to the following relation:

a†iψvi
= (vi + 1)1/2ψvi+1 (1.50)

Applied to the multidimensional vibrational wave function ψv , it is straightforward to see that

the creation operator a†i will only apply to the one-dimensional wave function ψvi
. Using the

notation of the vibrational quantum numbers v , the effect of the creation operator on the vibrational

wave function can be summed up as:

a†i | v ′′ 〉 =
√

v ′′
i + 1 | v ′′ + 1′′i 〉 (1.51)

where |v ′′+1′′i 〉 represents the vibrational state described by the multidimensional wave function

ψ′′
v+1i

= ψ′′
v1
. . . ψ′′

vi−1
ψ′′

(vi+1)ψ
′′
vi+1

. . . ψ′′
vN

. From the energy perspective, this vibrational state differs

from the state represented by |v ′′ 〉 by the eigenvalue of the monodimensional Schrödinger equation

E
v
′′

i +1 = ~ω′′
i (v ′′

i + 1/2) = E
v
′′

i
+ ~ω′′

i .

Given this relation, we will represent the vibrational state whose wave function is ψ′′
vi+1 in the

compact form | v ′′
i + 1i 〉 in our matrix notation.

In the same way, it is possible to show that the annihilation operator involves a “lowering” of

the quantum numbers:

ai| v ′′ 〉 =
√

v ′′
i | v ′′ − 1′′i 〉 (1.52)

From equations 1.44 and 1.45, the normal coordinate Qi can be written

Qi =

(

~

ωi

)1/2

qi =

(

~

2ωi

)1/2
[

ai + a†i

]

(1.53)

Let us firstly consider the second term in the right hand side of equation 1.30, and more

precisely the integral 〈 v ′ | Q′′
k | v ′′ 〉. We replace first the normal coordinate Qk by the creation

and annihilation operators using the relation given in equation 1.53. Applying these operators on

the corresponding vibrational state as shown in equations 1.51 and 1.52, it is possible to develop

this term in a combinations of Franck-Condon integrals.

〈 v ′ | Q′′
k | v ′′ 〉 = 〈 v ′ |

√

~

2ω′′
k

[

ai + a†i

]

| v ′′ 〉 (1.54)

=

√

~

2ω′′
k

[

〈 v ′ | ai | v ′′ 〉+ 〈 v ′ | a†i | v ′′ 〉
]

(1.55)

=

√

~

2ω′′
k

[
√

v ′′
k 〈 v | v ′′ − 1′′k 〉+

√

v ′′
k + 1 〈 v | v ′′ + 1′′k 〉

]

(1.56)

Following the same approach, it is possible to develop 〈 v ′ | Q′′
kQ

′′
l | v ′′ 〉 in a combination of
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Franck-Condon integrals. We present firstly the case l 6= k, more straightforward to formulate.

〈 v ′ | Q′′
kQ

′′
l | v ′′ 〉 = 〈 v ′ |

√

~

2ω′′
k

[

ai + a†i

]

√

~

2ω′′
l

[

aj + a†j

]

| v ′′ 〉 (1.57)

=
~

2
(√

ω
′′
k

√
ω
′′
l

)

[

〈 v ′ | aiaj | v ′′ 〉+ 〈 v ′ | aia
†
j | v ′′ 〉

+ 〈 v ′ | a†iaj | v ′′ 〉+ 〈 v ′ | a†ia
†
j | v ′′ 〉

]

(1.58)

=
~

2
(√

ω
′′
k

√
ω
′′
l

)

[

√

v ′′
k v ′′

l 〈 v ′ | v ′′ − 1′′k − 1′′l 〉

+
√

v ′′
k (v ′′

l + 1) 〈 v ′ | v ′′ − 1′′k + 1′′l 〉

+
√

(v ′′
k + 1)v ′′

l 〈 v ′ | v ′′ + 1′′k − 1′′l 〉

+
√

(v ′′
k + 1)(v ′′

l + 1) 〈 v ′ | v ′′ + 1′′k + 1′′l 〉
]

(1.59)

In the particular case l = k, the annihilation and creation operators are applied on the same

mode and the resulting expression of 〈 v ′ | Q′′
k
2 | v ′′ 〉 can be written:

〈 v ′ | Q′′
k
2 | v ′′ 〉 =

~

2ω′′
k

〈 v ′ | aiai + aia
†
i + a†iai + a†ia

†
i | v ′′ 〉 (1.60)

=
~

2ω′′
k

[

√

v ′′
k (v ′′

k − 1) 〈 v ′ | v ′′ − 2′′k 〉

+ (2v ′′
k + 1) 〈 v ′ | v ′′ 〉

+
√

(v ′′
k + 1)(v ′′

k + 2) 〈 v ′ | v ′′ + 2′′k 〉
]

(1.61)

The complete formula of the transition dipole moment integral including equations 1.56, 1.59

and 1.61 can be found in appendix A.

1.4 A particular case of the Franck-Condon integrals : 〈 0′ | 0′′ 〉
In the previous section, the transition dipole moment integral has been expressed with respect

to the electronic transition moment and its derivatives as well as the Franck-Condon integrals.

The electronic transition moment and its derivatives can be expressed with finite differences and

their calculation can be performed by some quantum mechanical methods such as Time Dependent

Density Functional Theory. We will consider for now that they are already known and will focus

in this section on the calculation of the Franck-Condon integrals.

As a starting point, we will consider in this section the overlap integral between the vibrational

ground states of both electronic states involved in the transition, 〈 0′ | 0′′ 〉. Each vibrational wave

function is the product of one-dimensional wave functions, solutions of the Schrödinger equation of

the harmonic oscillator given in equation 1.38, so that we can write, in normal coordinates:

| 0 〉 =
N
∏

i=1

N(vi=0)e
−ωiQ

2
i /2~ =

N
∏

i=1

(

ωi

π~

)1/4

e−ωiQ
2
i /2~ (1.62)
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To simplify the previous equation, we will introduce a new variable γi = ωi/~, that will be called

the reduced frequency. Consequently, the vibrational wave function has the following expression

| 0 〉 =
N
∏

i=1

(

γi

π

)1/4

e−γiQ
2
i /2 (1.63)

From equation 1.63, it can be seen that a problem will arise when trying to calculate the overlap

integral, as each vibrational wave function is expressed in a different set of normal coordinates.

Hence, a way to express a set of normal coordinates with respect to another one will be convenient.

However, in most cases, the transformation is not necessarily obvious and the mixing of the normal

modes during the electronic transition needs to be taken into account. Duschinsky [31] took an early

interest in this problem when studying polyatomic molecules. He proposed a linear transformation

between the normal coordinates of both states to deal with the mixing of the normal modes in the

transition, often called Duschinsky effect in the literature. In our case, we will express the normal

coordinates of the initial state as a linear combination of the normal coordinates of the final state:

Q′ = JQ′′ + K (1.64)

This transformation is a good approximation when the molecule does not undergo a noticeable

distortion during the transition. An extensive discussion of the transformation between the normal

coordinates including a possible distortion of the molecule and the limitations of the Duschinsky

transformation has been done by Lucas [32]. This case is rather rare for medium and large molecules

where the conditions described in section 1.3 to apply the Franck-Condon principle are met. As a

consequence, we will limit ourselves to the Duschinsky transformation to express one set of normal

coordinates with respect to the other one.

This linear transformation can be straightforwardly obtained. Let us consider a shift vector S

of the nuclear Cartesian coordinates between the initial and final states. Using this vector, we can

express the nuclear coordinates of the initial state with respect to those of the final state:

X′
eq = X′′

eq + S (1.65)

For simplification, we will transpose this relation to the mass-weighted Cartesian coordinates

and we will use the more common notation L−1 to represent the pseudoinverse matrix of L. We

can now switch to normal coordinates thanks to the relation given in equation 1.28 .

L′Q′ = L′′Q′′ + M1/2S (1.66)

The relation between normal coordinates of the initial and final states can be written:

Q′ =
(

L′
)−1

L′′Q′′ +
(

L′
)−1

M1/2S (1.67)

Comparing equations 1.64 and 1.67, the rotation matrix and shift vectors can be defined with

the following relations:

J =
(

L′
)−1

L′′ and K =
(

L′
)−1

M1/2S
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Because Q′ and Q′′ form each one an orthonormalized basis set, the columns of L′ and L′′ are

orthonormalized. This makes easier the computation of J and K as the left inverse
(

L′
)−1

can be

replaced by the transpose of L′.

J =
(

L′
)

T
L′′ and K =

(

L′
)

T
M1/2S

A consequence of this expression and the orthonormalization of the columns of L′ and L′′ is

that J is an orthogonal matrix. We can directly deduce two interesting properties for J, the inverse

of J can be replaced by its transpose, which does not need calculation, and the sum of the square

of each element in a row or a column of J is equal to unity.

Based on this transformation, it is now possible to express both vibrational wave function in

the same set of normal coordinates Q′′. Since ψ′
v=0 is expanded in terms of an orthonormalized set

Q′′, we need to control that the overlap integrals are still normalized with this change. This can

be easily done by checking that ψ′
v=0 is appropriately normalized :

L2

∫

|ψv |2dQ′′ = 1 (1.68)

where L is the normalization constant. Applying J−1 in equation 1.64, we obtain the “inverse”

Duschinsky transformation to express Q′′ with respect to Q′

L2

∫

|ψv |2d(J−1Q′ + J−1K) = L2

∫

|ψv |2J−1dQ′ = 1 (1.69)

Therefore, the normalization constant L is equal to the square root of the Jacobian determinant,

det(J)1/2. The normalized overlap integral between the fundamental vibrational states can be

computed with the inclusion of this constant.

〈 0′ | 0′′ 〉 = det(J)1/2

(

γ′1
π

)1/4

. . .

(

γ′N
π

)1/4(γ′′1
π

)1/4

. . .

(

γ′′N
π

)1/4

∫ +∞

−∞

dQ′′
1 . . . dQ

′′
Ne

−γ′

1Q′

1
2/2 . . . e−γ′

NQ′

N
2/2e−γ′′

1 Q′′

1
2/2 . . . e−γ′′

NQ′′

N
2/2

(1.70)

To simplify the above equation, we will switch to a more compact matrix notation.

〈 0′ | 0′′ 〉 = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2

∫ +∞

−∞

dQ′′
1 . . . dQ

′′
Ne

− 1
2
(Q′TΓ′Q′+Q′′TΓ′′Q′′) (1.71)

where Γ′ and Γ′′ are diagonal matrices of the reduced frequencies γ′i and γ′′i , respectively. To

calculate the integral in equation 1.71, it is preferable to proceed to a change of variables. The

details of this change are given in appendix B. We will only give its main features to obtain the

overlap integral.

We introduce a new vector a defined as a linear transformation of the normal coordinates Q′′ :

a = bQ′′ + c (1.72)
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This vector is chosen so that the following identity is satisfied:

Q′TΓ′Q′ + Q′′TΓ′′Q′′ = aTa + d (1.73)

The interest of this procedure is to easily calculate the integration over the whole configuration

space by using the mathematical result

∫ +∞

−∞

e−λx2

dx =

√

π

λ
(1.74)

By equating the coefficients of Q′′ in equation 1.73, we obtain the following results for b, c and

d:

b = (JTΓ′J + Γ′′)1/2

c = (JTΓ′J + Γ′′)−1/2JTΓ′K

d = KTΓ′K−KTΓ′J(JTΓ′J + Γ′′)−1JTΓ′K

Changing the variables from Q′′ to a, and replacing b and d by their value, the overlap integral

〈 0′ | 0′′ 〉 can be written:

〈 0′ | 0′′ 〉 = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2e

[

− 1
2
KTΓ′K+ 1

2
KTΓ′J(JTΓ′J+Γ′′)−1JTΓ′K

]

× 1

det
[

JTΓ′J + Γ′′
]1/2

∫ +∞

−∞

da1 . . . daNe
− 1

2
aTa

(1.75)

As a result, the normalized overlap integral between each vibrational ground state of the elec-

tronic states is given by the following equation:

〈 0′ | 0′′ 〉 = 2N/2 det
[

Γ′ Γ′′
]1/4

[

det(J)

det
(

JTΓ′J + Γ′′
)

]1/2

× exp
[

−1

2
KTΓ′K +

1

2
KTΓ′J(JTΓ′J + Γ′′)−1JTΓ′K

]

(1.76)
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Chapter 2

Strategies to compute the

Franck-Condon integral 〈 v ′ | v ′′ 〉

2.1 Introduction

In this chapter, we will consider the general case 〈 v ′ | v ′′ 〉 where v
′ and v

′′ are non-fundamental

vibrational states. Mathematically, we will suppose | v ′ 〉 6= | 0 〉 and | v ′′ 〉 6= | 0 〉a. Using equation

1.40, the overlap integral is given, in matrix notation, by the relation

〈 v ′ | v ′′ 〉 = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2

(

N
∏

i=1

2v
′

i 2v
′′

i (v ′
i !)(v

′′
i !)

)−1/2

×
∫ +∞

−∞

dQ′′
1 . . . dQ

′′
N

(

N
∏

i=1

H
v
′

i
(Γ′

i
1/2
Q′

i)Hv
′′

i
(Γ′′

i
1/2
Q′′

i )

)

× exp
[

−1

2
(Q′TΓ′Q′ + Q′′TΓ′′Q′′)

]

(2.1)

From the definition of the Hermite polynomial given in equation 1.42, it is plain to see that the

overlap integral defined above cannot be easily evaluated. Hence, a direct calculation is generally

out of question and another, more accessible procedure needs to be devised.

Without pretending to exhaustivity, we will present several approaches to the calculation of the

overlap integrals. These methods are sometimes intended for particular cases or tackle the problem

from different perspectives, and it may be sometimes difficult to find out which one is the best,

as we will be show below. Hence, we will favor a chronological presentation of these methods and

focus afterward on those used in this work.

Earlier works, mainly centered on diatomic molecules, were presented soon after Franck stated

the principle of a slow nuclear motion with respect to the electronic transition [16] and Condon dis-

cussed the mathematical formalism of this theory [17,33] to apply it to bands study. Hutchisson, in

1930, proposed an analytic method to calculate the overlap integrals of diatomic molecules using the

harmonic approximation [34]. In this case, restricted to linear oscillations, only monodimensional

oscillators are involved in the electronic transition. Hutchisson developed the Hermitian polynomial

using a generating function and was able to formulate an analytic expression of the overlap integrals

aThe formalism presented here is also applicable to the case where one of the vibrational state is fundamental
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to study the main bands of Na2, K2, I2 and H2. Later, he removed the restriction on the linear

oscillation, taking into account the anharmonicity of the oscillator with the Schrödinger theory of

perturbation [35]. A few decades later, Manneback [36] proposed a recursive approach to solve the

overlap integrals of diatomic molecules. This method was seemingly less general than Hutchisson’s

as it was devised for the case of harmonic one-dimensional oscillators. Smith [37] showed that

recursion formulae could be directly derived from Hutchisson’s analytic expressions of the overlap

integrals. At the same time, new methods started to favor the less cumbersome second quantization

to express the transition dipole moment integral instead of the analytic formulae. Although it had

been firstly used to analyze the one-dimensional harmonic oscillator [38, 39], the formalism of the

second quantization is of even greater importance when dealing with multidimensional harmonic

oscillators where the complete formula of the overlap integral becomes really complex and difficult

to read.

At this same period also a thorough development of theoretical methods to formulate the

Franck-Condon integrals in the case of polyatomic molecules really started, almost three decades

after Herzberg and Teller had first discussed the application of the Franck principle to polyatomic

molecules and the resulting selection rules [29]. A first example of polyatomic molecule was studied

in 1950 by Craig [40] but the author restricted its analysis on the totally symmetrical vibration of

benzene. Coon et al. [41] used the Franck-Condon principle to study the structure of polyatomic

molecules in excited state from the vibronic bands of ultraviolet absorption spectra. Having ex-

tended the application of analytic formulae to more generic systems, they still restricted them to

symmetrical vibrations. In their original work, they focused on triatomic systems with a C2v sym-

metry where few possible overlap integrals need to be taken into account, but similar approaches

were also applied to larger systems [42].

Sharp and Rosenstock [43] used generating functions to bypass the problematic calculation of

the Hermite polynomials, equating the coefficients of dummy variables, and were able to obtain

general formulae for the Franck-Condon integrals of polyatomic molecules. The calculations were

set in the framework of the harmonic approximation but did not impose any restriction on the

symmetry of the vibration, devising a general-purpose method. This method can be seen as a

generalization of the one presented by Hutchisson and we will present it in greater details further,

as the formalism they introduced underlie our calculations of the transition dipole moment integrals.

The original published work [43] contained a listing of overlap integrals for transitions to overtons

and combination levels up to four simultaneously excited modes and the equations took into account

excited initial states for the transitions (hotbands). However, the quickly-raising complexity of the

analytic formulae were error-prone and many works afterwards preferred, partly for this reason,

to use recursive formulae. Correction of these original formulae have been proposed later [44],

sometimes accompanied by extensions of the set of analytic formulae [45].

Overcoming the previous restrictions on the applicable systems to perform the Franck-Condon

calculations, the original work of Sharp and Rosenstock found a large audience and was used as a

direct application [46] or as a basis for new developments in analytic methods. Baranov et al. [47,48]

used the generating functions, among other models, to obtain general expressions to evaluate any

overlap integrals with up to two excited normal vibrations in each vibronic state. Their approach

breaks down two remaining limitations in the original analytic formulae. The first one was purely

conceptual and concerned the approximation of the electronic transition dipole moment. While
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Sharp and Rosenstock restricted their study to the Franck-Condon approximation, Baranov et al.

extended it to the Herzberg-Teller approximation. Weber and Hohlneicher [45], among others,

showed that the original analytic formulae were compatible with higher order of the Taylor series

of the electronic transition dipole moment. The other limitation concerned the quantum numbers

of each excited mode. The formulae obtained by Baranov et al. [47] could be used directly for

any combination while restricted to two excited modes. To simulate the photoelectron spectrum

of dichlorocarbene, Kohn et al. [49] used the formulae of the overlap integrals obtained with the

Sharp and Rosenstock method to devise a general expression for the cases with the final vibra-

tional state corresponding to combination bands of three simultaneously excited modes. Contrary

to Baranov et al., they only considered transitions from the fundamental vibrational state. While

not using the formalism of Sharp and Rosenstock, Mebel et al. [50, 51] contributed to the general-

ization of the analytic formula treating the case of four simultaneously excited modes in the final

state. Finally, Islampour et al. [52] proposed a general closed-form expression with no restriction

on the number of simultaneously excited modes in the initial and final states. Kikuchi et al. [53]

proposed an alternative expression stemming directly from the generating function given by Sharp

and Rosenstock. On the whole, the complexity of these more general formulae, caused by the

piling of sums and products, renders difficult their implementation in a general-purpose optimized

procedure. Recently, Chang [54, 55] proposed new and simpler formulae for overlap integrals with

up to four excited modes in the final state. However, they are limited to transitions from the

fundamental vibrational state. Other approaches [56, 57] were also employed to obtain analytic

formulae. Faulkner and Richardson [56] proposed two methods for calculating the transition dipole

moment integrals, at the level of approximation of Franck-Condon, as well as Herzberg-Teller. Their

first method consisted of a linear transformation of the normal coordinates in the initial and final

state to remove the Duschinsky rotation and so be able to express the general overlap integrals

as a product of monodimensional integrals. While their original work assumed that at least one

of the vibrational state involved in the transitions was the ground state, Kulander [58] removed

this restriction. Their second method is based on a perturbative expansion of the vibrational wave

functions of the excited electronic state in terms of the ground electronic state vibrational wave

functions. However, as acknowledged by the authors, the slow convergence of the perturbative

theory expressions mostly ruled it out as an efficient general-purpose procedure in actual compu-

tation. Recently, Borrelli and Peluso [59] proposed a perturbative method to handle the normal

mode mixing and calculate the Franck-Condon integrals. Their method offers to reduce the storage

requirement for the calculations but at the expense of increasing computational costs when dealing

with large systems.

The difficulty to generate straightforward analytic expressions and encode them into a auto-

matic procedure to compute the transition dipole moment integrals make often more interesting the

use of recursion instead. Ruhoff [60,61] proposed a complete recursive approach based on the gener-

ating formula of Sharp and Rosenstock by generalizing Lermé’s [62] procedure for two-dimensional

Franck-Condon factors. Since it is using exactly the same formalism, this method can be imple-

mented in a program as a unique way to calculate the Franck-Condon integrals or together with

analytic formulae as a “back-up” when the latter cannot cover all necessary transitions. Previously,

Kupka and Cribb [63] used a different approach to obtain generating functions similar to Sharp

and Rosenstock. From them, recursion expressions were then derived and could also be used in
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addition to analytic ones.

Slightly later than Sharp and Rosenstock, Doktorov et al. [64, 65] used the coherent states de-

scribed by Glauber [66] to derive recurrence relations for any overlap integrals without regard to

the number of simultaneously excited modes in each state. Their work, providing an out-of-the-box

method theoretically applicable to any molecular system, has been widely used in Franck-Condon

calculations program [67–70]. The equivalence of the formulae obtained by Doktorov et al. and

Sharp and Rosenstock to calculate the overlap integrals has been shown by Liang and Haiyang [71].

More recently, Malmqvist amd Forsberg [72] used LU decomposition proceduresb to obtain trian-

gular matrices and derive recursion formulae to evaluate the overlap integrals for multidimensional

harmonic oscillators.

When dealing with polyatomic molecules, most works were done in the framework of the har-

monic approximation. While most methods are general assumed to be valid in the case of anhar-

monicity, the adaptation is rarely discussed. There are several reasons to this neglect. A simple

one lies on the complexity of the expressions with the “simple” case of the harmonic oscillator.

Developing an efficient and versatile method to compute the transition intensities and generate the

vibronically resolved spectrum is not straightforward. For this reason, it is generally advisable to

focus on the harmonic case. Another reason concerns the speed of the calculations. Even simple

schemes to introduce the anharmonicity cause an important increase in the number of terms in

the equations of the Franck-Condon integrals and in the calculations of the electronic structures.

Hazra et al. [73] proposed a simple scheme to account partially for the anharmonicity, aiming pri-

marily at resolving the failures of the vertical Franck-Condon approach. They expanded the final

state potential energy surface around the equilibrium geometry of the initial state assuming the

separability of the normal modes. In this case, it might happen that for some modes, the inap-

propriate curvature of the potential energy surface leads to imaginary frequencies. If a frequency

is real, then the potential is treated with the harmonic approximation. Otherwise, they calcu-

late the corresponding complete one-dimensional potential at the anharmonic level to construct

the excited-state vibrational Hamiltonian. Luis et al. [74, 75] proposed a method to simulate a

vibronically resolved spectrum taking into account the anharmonicity. The latter is introduced

as a second-order perturbation treatment of the Franck-Condon factors initially calculated at the

harmonic level. Because of the computational costs, their study remained at the scale of small

systems.

It is noteworthy that in our work, we remained in the framework of the harmonic approximation.

2.2 Analytic formulae and recursive methods

Based on the methods we have just presented, we can identify two general approaches of the prob-

lem of calculation of the Franck-Condon integrals. The recursive and analytic approaches are not

restricted to Franck-Condon calculations but represent generic ways to deal with a matter where

multiple calculations, often interlinked, are required. Because each one has its own advantages and

drawbacks, a good knowledge of their applicability and their limits is necessary to take fully ad-

bA procedure for decomposing an n × n matrix A into a product of a lower triangular matrix L and an upper
triangular matrix U
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vantage of each one. Also, because calculations are now mostly, if not all, performed by computers,

we must also take into account the implication of the choice of one method with respect to the

efficiency of the program and the resources it will need.

Analytic methods rely on a set of formulae to perform a calculation. They often are a good choice

when the problem to handle is relatively small or can be sufficiently simplified. Their underlying

principle is to have a set of specialized equations for each task. In our case, the calculation of

overlap integrals, the generating functions used in the most widely adopted analytic approaches

will give a formula for each kind of transition, with a precise set of quantum numbers representing

each electronic state. Having a large number of equations, each one for a transition, enables a

quick computation of the Franck-Condon integrals. However, because these equations are complex,

they must be generated beforehand. As a direct consequence, a first, major restriction of these

analytic approaches is the need to generate all the required overlap integrals before running the

actual calculation and store them in the core of the program. Hence, this strategy induces a marked

growth of the program size. Also, because all formulae need to be created beforehand, one needs

to “predict” the possible transitions, so it is difficult to design a general-purpose program based

solely on this approach. This limitation is not a problem when analyzing small systems and some

particular, symmetrical, medium size systems. However, for large systems the number of possible

combinations of excited modes with their respective quantum numbers increase steeply as the

number of normal vibrations grow, so that it is unrealistic to consider the whole of the transitions.

Even for other analytic methods, such as those based on closed-form expressions [47,49,50,52,53],

the piling of loops means a drop in performances and their calculations lose rapidly in efficiency.

Consequently, even these methods are difficult to consider for a really versatile use. While they can

theoretically be used without regard to the value of the quantum numbers, the most advanced of

these methods consider up to four modes, the formulae of the overlap integrals being already really

complex.

Nevertheless, the greatest advantage of these methods is the easiness and efficiency to compute

the overlap integrals once they have been formulated, along with their accuracy. The program will

not need much of the memory of the computer to run but many accesses to different equations to

compute a given spectrum. Another grievance made to the analytic approach is the risk of errors

in the formulae, which might be difficult to spot a posteriori. However, this risk is now generally

low because the calculations are treated by computational tools dedicated to this kind of tasks.

On the other side, the recursive approach only needs a few, often simple, formulae. The under-

lying concept, applied to Franck-Condon integrals, is that when considering some transition, it is

likely that similar transitions have been calculated before, with a few differences in the vibrational

states. Ideally, the previously treated transition differs from the current one by only one quantum

number altogether. Based on this idea, each overlap integral could be directly computed from al-

ready calculated integrals with the same formula or restricted set of formulae. A direct consequence

is that the code will not be weighed down by a large number of equations to store in the code.

Likewise, because any new integral is connected to previously calculated ones, it means that only

the overlap integrals between ground states need to be known exactly and any other transition can

be evaluated from it. This is a notable advantage of the recursion approach with respect to the

analytic one, which makes it perfectly adapted to large molecules. However, this interconnection
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between overlap integrals can become really cumbersome when treating large systems with many

possible transitions to deal with. Because any new overlap integrals need one-to-many previously

calculated overlap integrals, the latter need to be stored. Without entering into the technical im-

plications of the storage that will be discussed in section 2.6, the choice made at this point in the

program can be really costly for the efficiency of the code. Hence, recursion approaches always need

to find a good compromise between storage and re-calculation, some overlap integrals not being

stored and rather recalculated on demand in the latter case. Finally, because the computations rely

on previously calculated Franck-Condon integrals, the risk of a propagation of error exists. How-

ever, this risk is limited by the low number of formulae -and so the transcription errors- and the

reachable precision of the computers nowadays which should be far higher than needed. However,

a strict control might be required when dealing with large sequences of recursive calculations to

ensure that the imprecisions of the results cannot pile up to a non-negligible error.

To summarize the main advantages of both methods, we can say that on a controlled number of

combinations, analytic formulae give quick and precise results while a recursive approach is needed

for a general-purpose method applicable to large molecules. We will now present in the following

sections two approaches, the original Sharp-Rosenstock [43] analytic approach with the generating

function and a recursive derivation from it done by Ruhoff [60].

2.3 The general analytic approach of Sharp and Rosenstock

As presented before, Sharp and Rosenstock proposed early a method to compute any kind of overlap

integrals without restriction on the nature of the transition. This method has the advantage to be

straightforward, sometimes at the cost of the compactness of the formulae. Because the method is

general enough to consider any kind of transition, whatever the number of simulaneously excited

modes in the initial and final states, it is still widely used and referred to. We will present here its

principle.

The main idea of the method designed by Sharp and Rosenstock is to use the overlap integrals

〈 v ′ | v ′′ 〉 as coefficients in a power series of dummy vectors T and U. Formally, this power series

should be written:

f(T,U) =
∞
∑

v
′

1,...,v ′

N
=0

∞
∑

v
′′

1 ,...,v ′′

N
=0

N
∏

i=1

T
v
′

i

i

N
∏

j=1

U
v
′′

j

j

(

N
∏

i=1

2v
′

i 2v
′′

i

v ′
i !v

′′
i !

)1/2

〈 v ′ | v ′′ 〉 (2.2)

where
∑∞

v
′′

1 ,...,v ′′

N
=0 represents N sums, one for each quantum number vi.

This formal mathematical notation is really cumbersome to deal with while developing the

power series. To ease the reading of the following equations, we will adopt a more compact albeit

less correct pure matrix notation. In this notation, the previous equation can be simply written:

f(T,U) =
∑

v ′

∑

v ′′

Tv ′

Uv ′′

(

2v ′

2v ′′

v ′!v ′′!

)1/2

〈 v ′ | v ′′ 〉 (2.3)

Replacing the overlap integral by its value given in equation 2.1, the power series can be ex-
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panded as the following sum:

f(T,U) =
π−N/2

v ′!v ′′!
det
[

Γ′ Γ′′
]1/4

det(J)1/2
∑

v ′

∑

v ′′

Tv ′

Uv ′′

×
∫ +∞

−∞

dQ′′
(

H
v
′(Γ′1/2

Q′)H
v
′′(Γ′′1/2

Q′′)
)

exp
[

−1

2
(Q′TΓ′Q′ + Q′′TΓ′′Q′′)

]

(2.4)

We will define the generating function of the Hermite polynomial [76] H
v
′′(Γ′′1/2

Q′′) in matrix

notation with the following identity

∞
∑

v ′′=0

Uv ′′

v ′′!
H

v
′′(Γ′′1/2

Q′′) = exp
[

−U2 + 2UTΓ′′1/2
Q′′
]

(2.5)

A similar equation can be obtained with the Hermite polynomial H
v
′(Γ′1/2

Q′) and the dummy

variable T. Similarly to the problem described while studying the overlap integrals between vibra-

tional ground states, we need to transform the normal coordinates of the initial states using the

Duschinsky transformation given in equation 1.64. The development induced by this transforma-

tion is given in equation B.1. Using the generating function and replacing Q′ by Q′′, the power

series in equation 2.4 can be formulated:

f(T,U) = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2 exp
[

−U2 −T2
]

×
∫

dQ′′ exp
[

−1

2

(

Q′′TJTΓ′JQ′′ + Q′′TJTΓ′K + KTΓ′JQ′′ + KTΓ′K

+ Q′′TΓ′′Q′′
)

+ 2UTΓ′′1/2
Q′′ + 2TTΓ′1/2

JQ′′ + 2TTΓ′1/2
K
]

(2.6)

The same approach used in section 1.4 can be applied. However, because calculations are rather

long, all the developments will be treated in appendix C and only the result will be given here.

For convenience, we report here the expression of the Sharp and Rosenstock matrices, A, B,

C, D and E:

A = 2Γ′1/2
J(JTΓ′J + Γ′′)−1JTΓ′1/2 − I (2.7)

B = −2Γ′1/2
(J(JTΓ′J + Γ′′)−1JTΓ′ − I)K (2.8)

C = 2Γ′′1/2
(JTΓ′J + Γ′′)−1Γ′′1/2 − I (2.9)

D = −2Γ′′1/2
(JTΓ′J + Γ′′)−1JTΓ′′1/2

K (2.10)

E = 4Γ′′1/2
(JTΓ′J + Γ′′)−1JTΓ′1/2

(2.11)

Each formula to compute the overlap integrals is generated using the identity obtained from

the two expressions of the power series given in equations 2.3 and C.13:

∑

v ′

∑

v ′′

Tv ′

Uv ′′

(

2v ′

2v ′′

v ′!v ′′!

)1/2

〈 v ′ | v ′′ 〉

= 〈 0′ | 0′′ 〉 exp
[

UTCU + DTU + TTAT + BTT + UTET
]

(2.12)

In this form, the equalization of the coefficients of powers of the dummy variables U and T to
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formulate the overlap integrals is difficult. By switching back from matrix notation to a standard

notation and replacing the exponential by the equivalent power series, the previous identity can be

expressed in a more manageable layout:

∞
∑

v
′

1,...,v ′

N
=0

∞
∑

v
′′

1 ,...,v ′′

N
=0

N
∏

i=1

T
v
′

i

i

N
∏

j=1

U
v
′′

j

j

(

N
∏

i=1

2v
′

i 2v
′′

i

v ′
i !v

′′
i !

)1/2

〈 v ′ | v ′′ 〉

= 〈 0′ | 0′′ 〉
∞
∑

n=0

[

∑N
i=1 DiUi + BiTi +

∑N
j=1 UiCijUj + TiAijTj + UiEijTj

]n

n!

(2.13)

In principle, equation 2.13 gives all possible combinations of overlaps at once. Practically, only

one integral is calculated at a time. In this case, the sums in the left-hand side of the equations

are unnecessary and can be removed, so that only one term remains there. As explained before,

to find the formula of a given overlap integral 〈 v ′ | v ′′ 〉, we need to look for all the coefficients of

exactly the same combination of powers of Ti and Uj . Because of this condition, one can see that

n does not need to be developed further than a limit equal to
∑N

i=1(v ′
i + v ′′

i ).

Finally, the sums over i and j in the right-hand side of equation 2.13 can be restricted to the

value of the indexes corresponding to non-zero quantum numbers. It should be noted that the way

we wrote the summation is not adapted to this process and to do so, one should write the sums

separately for each term.

To clarify these explanations, let us consider a practical example where one wants to compute

the overlap 〈 0′ | 0′′ + 2′′i + 1′′j 〉. This corresponds to the general case of a transition from the

vibrational ground state of the initial state to a combinations of two modes with the quantum

numbers : v ′′
i = 2, v ′′

j = 1.

In this case, all terms with the dummy variable T can be removed and equation 2.13 is the

simple identity:

U2
i U1

j

(

2221

2!1!

)1/2

〈 0′ | 0′′ + 2′′i + 1′′j 〉

= 〈 0′ | 0′′ 〉
3
∑

n=0

[

DiUi + DjUj + UiCiiUi + UiCijUj + UjCjjUj + UjCjiUi

]n

n!

(2.14)

The terms in the right-hand side of equation 2.13 are simplified to only consider the relevant

indexes i and j. After developing the polynomial in the right-hand side, the following identity is

obtained:

41/2 × 〈 0′ | 0′′ + 2′′i + 1′′j 〉 = 〈 0′ | 0′′ 〉 × 1

2
×
[

Di
2Dj + 2CiiDj + 2CijDi + 2CjiDi

]

(2.15)

C is symmetrical so that Cji = Cij . Hence, the analytic formula of the overlap integral 〈 0′ |
0′′ + 2′′i + 1′′j 〉 is:

〈 0′ | 0′′ + 2′′i + 1′′j 〉 =
1

4
× 〈 0′ | 0′′ 〉 ×

[

Di
2Dj + 2CiiDj + 4CijDi

]

(2.16)

38



Using this approach and generalizing it to each overlap integral is very simple in theory. How-

ever, it is very complex in practice to develop the right-hand side of equation 2.13 when the quantum

numbers are high and the number of modes in the combination bands increase. As a consequence,

the number of terms to compute the overlap integrals grows steeply. This induces risks of errors,

be it by forgetting terms or mistyping them.

These errors can be avoided by using specialized computational tools for symbolic algebra [77].

They can be used to treat almost automatically the large equations resulting from taking into

account combinations of many simultaneously excited modes with higher numbers of quanta.

2.4 A recursive method based on the Sharp-Rosenstock approach

The original method proposed by Sharp and Rosenstock is purely analytic [43]. However, recursion

equations based on this model were devised to remove this potential drawback, a strong inadequacy

to treat generic problems of medium to large systems.

We will present in this section a recursive approach proposed by Ruhoff [60] which uses a for-

malism similar to Sharp and Rosenstock’s. A first change occurs in the expression of the generating

function of the Hermite polynomial given in equation 2.5. The values of the dummy variables U

and T being totally free, one can assume that they are near zero. Doing so, the exponential of the

right-hand side of equation 2.5 can be expressed with a Maclaurin series, a particular case of the

Taylor series. In this case, equation 2.5 can be written in the following form:

∞
∑

v ′′=0

Uv ′′

v ′′!
Hv ′′(Γ′′1/2

Q′′) =

(

∞
∑

v ′′=0

Uv ′′

v ′′!

∂v ′′

∂Uv ′′
exp
[

−U2 + 2UTΓ′′1/2
Q′′
]

)

U=0

(2.17)

⇒ Hv ′′(Γ′′1/2
Q′′) =

(

∂v ′′

∂Uv ′′
exp
[

−U2 + 2UTΓ′′1/2
Q′′
]

)

U=0

(2.18)

In the same way as before, the convenient matrix notation is used at the expense of a correct

mathematical formulation. The partial derivative given here corresponds in reality to a product of

derivatives:
∂v ′′

∂Uv ′′
=

∂v
′′

1

∂U
v
′′

1

1

∂v
′′

2

∂U
v
′′

2

2

. . .
∂v

′′

N

∂U
v
′′

N

N

(2.19)

For the purposes of concision and clarity, we will continue to use the matrix notation, which

does not alter the validity of our demonstration.

The generating function given in equation 2.18 for the Hermite polynomial, by setting some

conditions on the dummy variables, does not require anymore the powers of U to be used with

respect to the expression chosen by Sharp and Rosenstock in equation 2.5. A direct consequence of

this is the possibility to express plainly the overlap integral 〈 v ′ | v ′′ 〉 without the need of a power

series. Introducing equation 2.18 in the formula of the overlap integral given in equation 2.1, we
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obtain the following relation, using the same general matrix notation as in equation 2.3:

〈 v ′ | v ′′ 〉 = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2
(

2v ′

2v ′′

v
′!v ′′!

)−1/2
∫

dQ′′

(

∂v ′

∂Tv ′
exp
[

−T2 + 2TTΓ′1/2
Q′
] ∂v ′′

∂Uv ′′
exp
[

−U2 + 2UTΓ′′1/2
Q′′
]

)

T=U=0

exp
[

−1

2
(Q′TΓ′Q′ + Q′′TΓ′′Q′′)

]

(2.20)

By reordering the terms in the integral after having used the Duschinsky transformation to

replace Q′, we can reach a more familiar expression:

〈 v ′ | v ′′ 〉 = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2
(

2v ′

2v ′′

v
′!v ′′!

)−1/2

×
(

∂v ′

∂Tv ′

∂v ′′

∂Uv ′′
exp
[

−T2 −U2
]

∫

dQ′′ exp
[1

2

(

Q′′TJTΓ′JQ′′

+ Q′′TJTΓ′K + KTΓ′JQ′′ + KTΓ′K + Q′′TΓ′′Q′′
)

+ 2UTΓ′′1/2
Q′′ + 2TTΓ′1/2

JQ′′ + 2TTΓ′1/2
K
]

)

T=U=0

(2.21)

In this form, the equation is similar to the power series given in equation 2.6. By establishing

this parallel to the method of Sharp and Rosenstock, we can directly use the results we obtained

there, taking care of adapting them to our slightly different case.

As a consequence, the previous equation of the overlap integral can be simply integrated to the

following form:

〈 v ′ | v ′′ 〉 =
(

2v ′

2v ′′

v
′!v ′′!

)−1/2
(

∂v ′

∂Tv ′

∂v ′′

∂Uv ′′
〈 0′ | 0′′ 〉

× exp
[

UTCU + DTU + TTAT + BTT + UTET
]

)

T=U=0

(2.22)

This equation represents the starting point to generate our recursion formulae. The method we

will employ here is derived from the work of Lermé [62] who presented a method to obtain recursion

relations for mono- and bidimensional Franck-Condon integrals.

The exponential in the right-hand side of equation 2.22 can be differentiated with respect to Ui

and Ti with i representing any mode (i ∈ {1, . . . , N}). A complete differentiation is not necessary

as we are looking for relations between overlap integrals. As a matter of fact, we will consider two

independant kinds of partial differentiations, initiating the treatment by a derivative with respect

to Ui, that will be studied first, and Ti, which will be the second case.

In the following equations, we will use a mixed notation, abandoning the matrix notation when

necessary. In addition, the exponential stays untouched by differentiation so that it can be replaced

by a function F (T,U) = exp
[

UTCU + DTU + TTAT + BTT + UTET
]

. Because the derivatives

of F (T,U) will be with respect to elements of U and T, we will recall that F (T,U) is a relation
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of the form:

F (T,U) = exp
[

N
∑

i=1

DiUi + BiTi +
N
∑

j=1

UiCijUj + TiAijTj + UiEijTj

]

(2.23)

Let us differentiate F (T,U) with respect to Ui so that equation 2.22 can be written:

〈 v ′ | v ′′ 〉 =
(

2v ′

2v ′′

v
′!v ′′!

)−1/2
(

∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

N

∂U
v
′′

N

N

〈 0′ | 0′′ 〉

[

Di +
{

N
∑

j=1

2CijUj

}

+
{

N
∑

j=1

EijTj

}

]

F (T,U)

)

T=U=0

(2.24)

The right-hand side of equation 2.24 can be expanded into 2N+1 terms, each one with a depen-

dence on a dummy variable Uj or Tj , except for one. To eliminate this problem, 2N differentiations

must be performed, one for each element Uj and Tj . To do so, we will use the Leibniz product rule

which gives a general expression for arbitrary-order derivatives of products of functions:

dn

dxn
f(x)g(x) =

n
∑

k=0

(

n

k

)(

di

dxi
f(x)

)(

dn−i

dxn−i
g(x)

)

(2.25)

where
(

n
k

)

is the binomial coefficient.

In our present study, f(x) would be “2 CijUj” in the case a derivative with respect to Uj or

“EijTj” for Tj , and g(x) would be F (T,U). It is straightforward to see that the terms of the sum

in equation 2.25 are null for k ≥ 2. Given this fact, three relations can be derived from the Leibniz

product rule:

◮ ∀j ∈ {1, . . . , N},
∂v

′

j

∂T
v
′

j

j

EijTjF (T,U) = EijTj
∂v

′

j

∂T
v
′

j

j

F (T,U) + v ′
jEij

∂v
′

j−1

∂T
v
′

j−1

j

F (T,U) (2.26)

◮ ∀j ∈ {1, . . . , i− 1, i+ 1, . . . , N},
∂v

′′

j

∂U
v
′′

j

j

CijUjF (T,U) = 2CijUj
∂v

′′

j

∂U
v
′′

j

j

F (T,U) + 2v ′′
j Cij

∂v
′′

j −1

∂U
v
′′

j −1

j

F (T,U) (2.27)

◮
∂v

′′

i −1

∂U
v
′′

i −1
i

2CijUjF (T,U) = 2CiiUi
∂v

′′

i

∂U
v
′′

i

i

F (T,U) + 2(v ′′
i − 1)Cii

∂v
′′

i −2

∂U
v
′′

i −2
i

F (T,U) (2.28)
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Using the three conditions above, the overlap integral can be written:

〈 v ′ | v ′′ 〉 =
(

2v ′

2v ′′

v
′!v ′′!

)−1/2
〈 0′ | 0′′ 〉

×
(

[

Di +
{

N
∑

j=1

2CijUj

}

+
{

N
∑

j=1

EijTj

}

]

× ∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

+
N
∑

j=1

v ′Eij
∂v

′

1

∂T
v
′

1

1

. . .
∂v

′

j−1

∂T
v
′

j−1

j

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

+
N
∑

j=1
j 6=i

2v ′
jCij

∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

j −1

∂U
v
′′

j −1

j

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

+ 2(v ′
i − 1)Cii

∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −2

∂U
v
′′

i −2
i

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

)

T=U=0

(2.29)

By applying the conditions on the dummy variables (U = T = 0), we can simplify the first term

of the right-hand side of equation 2.29 and only keep the factor Di. Analyzing all the terms in the

right-hand side, we can see that each one is very similar to the formula of a Franck-Condon integral

given in equation 2.22, the only needed correction being the factor (2v ′

2v ′′

v
′!v ′′!)−1/2. To illustrate

this, let us consider a single term of the previous equation and transform it into a Franck-Condon

integral:

(

2v ′

2v ′′

v
′!v ′′!

)−1/2
〈 0′ | 0′′ 〉 × 2× v ′

j × Cij

× ∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

j −1

∂U
v
′′

j −1

j

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

= 2v ′
jCij

(

2v ′′
i 2v ′′

j

)−1/2
(

2v
′

1 . . . 2v
′

N 2v
′′

1 . . . 2v
′′

i −1 . . . 2v
′′

j −1 . . . 2v
′′

N

v ′
1! . . . v ′

N !v ′′
1 ! . . . (v ′′

i − 1)! . . . (v ′′
j − 1)! . . . v ′′

N !
)−1/2

〈 0′ | 0′′ 〉

∂v
′

1

∂T
v
′

1

1

. . .
∂v

′

N

∂T
v
′

N

N

∂v
′′

1

∂U
v
′′

1

1

. . .
∂v

′′

i −1

∂U
v
′′

i −1
i

. . .
∂v

′′

j −1

∂U
v
′′

j −1

j

. . .
∂v

′′

N

∂U
v
′′

N

N

F (T,U)

=

(

v ′′
j

v ′′
i

)1/2

Cij〈 v ′ | v ′′ − 1′′i − 1′′j 〉 (2.30)

The procedure presented above can be systematized for each term of the right-hand side of

equation 2.29. By doing so, we can obtain a simpler form which will be one of our two recursion

formulae:

〈 v ′ | v ′′ 〉 =
1

√

2v ′′
i

[

Di〈 v ′ | v ′′ − 1′′i 〉+
√

2(v ′′
i − 1) Cii〈 v ′ | v ′′ − 2′′i 〉

+
N
∑

j=1
j 6=i

√

2v ′′
j Cij〈 v ′ | v ′′ − 1′′i − 1′′j 〉+

N
∑

j=1

√

v ′
j Eij〈 v ′ − 1′j | v ′′ − 1′′i 〉

] (2.31)

42



where (2v ′′
i )−1/2 is a common factor from the initial differentiation.

In the same way, starting by differentiating equation 2.22 with respect to Ti, we can generate

a second, complementary recursion equation. The development being equivalent to what has been

presented here, only the result will be given:

〈 v ′ | v ′′ 〉 =
1

√

2v ′
i

[

Bi〈 v ′ − 1′i | v ′′ 〉+
√

2(v ′
i − 1) Aii〈 v ′ − 2′i | v ′′ 〉

+

N
∑

j=1
j 6=i

√

2v ′
j Aij〈 v ′ − 1′i − 1′j | v ′′ 〉+

N
∑

j=1

√

v ′
j Eji〈 v ′ − 1′i | v ′′ − 1′′j 〉

] (2.32)

In the general case, several vibrational states are populated in the initial state (T > 0 K) and

both equations 2.31 and 2.32 are necessary. The second one is more general and allows to express

an overlap integral with respect to overlap integrals involving lower quanta for the initial state. The

first relation is generally used when the transition starts from the fundamental vibrational state of

the initial state.

Practically, to express a given overlap integral 〈 v ′ | v ′′ 〉 with non null v
′ and v

′′, according

to the overlap integral 〈 0′ | 0′′ 〉 the recursion is done in two main steps. Firstly, equation 2.32 is

used until the fundamental vibrational state of the initial state (v ′ = 0′) is “reached” and finally

equation 2.31 to express every resulting overlap integral with respect to 〈 0′ | 0′′ 〉.
In the absence of excitation provoked by the temperature, only the fundamental vibrational

state of the initial state is populated and equation 2.31, without the last term in the right-hand

side, is enough to perform all recursive calculations.

2.5 Aiming at an efficient calculation

From the different relations given previously, it is possible to compute any overlap integral. In

the case of the analytic approach from Sharp and Rosenstock [43], and in general all methods of

this kind, the expressions that need to be generated and calculated become rather complex for

transitions between combinations bands. A direct consequence is that many implementations are

often tailored to particular systems or groups of systems. A general-purpose method is more easily

obtained and developed from recursion formulae. This implementation, however, is not without

constraints due to the very principle of recursivity.

Some problems have been discussed briefly in section 2.2 but in this section, we will focus on

two major difficulties which have been regularly discussed in works dealing with the generation

of vibronically resolved spectra using the Franck-Condon principle. Because of the redundant

calculations involved by the very principle of recursivity, it is often more efficient to store overlap

integrals than to recompute them each time they are needed. Therefore, in a first part, we will

discuss about the methods available to store these integrals and index them in memory. While this

problem is mostly computer-centered, it has a major impact on the efficiency of programs based

on recursion approaches and must be carefully treated to take full advantage of the computers

performances. The second point is the limitation of the transitions to deal with. Theoretically,

there is no limit to the value of the quantum number of each mode. This means that an infinity

of overlap integrals should be taken into account, which is impossible to carry out. A procedure
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for limiting the transitions to take into account is necessary and possible schemes to do so will be

discussed afterwards. For each of these two issues, we will make a brief overview of solutions.

2.6 Indexing and recovering overlap integrals

The facility to evaluate each overlap integral given by recursivity is impeded by the constant re-

calculations involved. As mentioned previously, the storage of the Franck-Condon integrals once

they have been calculated can be a solution to this problem. However, a direct saving in memory is

generally not a good solution. Indeed, considering equations 2.31 and 2.32, one can see that several

kinds of integrals are needed and there is no certainty about the moment the latter were computed.

Presented in another way, a straightforward storage of each integral can cause its recovery to be

difficult when it has to be recalled. From this observation, two constraints can be formulated to

optimize the efficiency of the calculations.

The first one, indirectly related to the storage, is that the order of the calculations is important

in recurrence expressions. To understand this requirement, the simplest way is to consider the

complete recursion to express a given overlap integral with respect to the overlap integral between

the fundamental ground states. Let us consider the simple case of a non-linear triatomic molecule

(N = 3) and a particular transition 〈 1, 0, 0 | 2, 1, 0 〉. This example is chosen to be as generic as

possible and to make use of both recursion formulae. As explained in section 2.4, the more general

relation given in equation 2.32 is applied first and then the second relation from equation 2.32. For

the latter, i is chosen to be the highest mode in energy with a non-zero quantum number. A simple

diagram showing all necessary overlap integrals is given in figure 2.1.

Figure 2.1: Recursion scheme for the transition 〈 1, 0, 0 | 2, 1, 0 〉 in the case of a non-linear triatomic molecule.

As shown in this figure, a complete recursive calculation will require several times the same

overlap integrals (in this case, twice 〈0, 0, 0 | 2, 0, 0 〉 and four times 〈0, 0, 0 | 1, 0, 0 〉). To avoid this,

storage is highly interesting, especially when the number of normal modes, and so the possible com-

bination bands, increase. To be truly efficient, most, and preferably all, necessary overlap integrals

should be available in memory, which requires that they have been computed before. To satisfy
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this condition and also to avoid incessant lookups in the memory, one must take care of the order

of calculations of the Franck-Condon integrals. From the recursion relations, the main restriction

is to choose a consistent method to consider all necessary integrals. Several approaches are possible

and are chosen to be coherent with the choice of the first differentiation. A straightforward one,

used in our case, is to gradually increase the quantum number starting from the mode of lowest

energy. Starting from mode 1, the quantum number is increased until a limit v1max . When this

limit is reached, v2 is increased by one and v1 reset to zero. The first quantum number is increased

until it reaches the limit another time and the second quantum number is incremented by one. If

it reaches the limit v2max , then the third quantum number is set to one and so on. Each time, the

mode corresponding to the first differentiation, i, is chosen to be the highest mode with a non-zero

quantum number.

Having set a calculation scheme, a second constraint needs to be overcome, that is to say, find-

ing a general way to store and recover previously calculated overlap integrals. Without going too

deeply into the technical details which would be outside the scope of this work, it is important to

note that several general modes exist to deal with recursive calculations. Berger et al. [68] proposed

a classification in three methods, the last one having two variations. Historically, since the com-

puter performances were limited, emphasis was put in a global storage of the data and so complex

storage mecanisms were devised to save and index a possibly large number of integrals. Methods

of this kind were referred as conventional methods in reference [68]. Because of the complexity of

the most efficient indexing algorithms, their implementation can be difficult and require powerful

mathematical and computer tools. Another approach favors a partial storage (semidirect method).

In this case, only some integrals are saved and the rest is calculated if necessary. The burden on the

memory is partly lifted with respect to an overall storage. Moreover, the integrals that need to be

saved may be chosen freely and ad hoc methods can be devised, so that indexing is less cumbersome.

Consequently, the efficiency of the data extraction/insertion is less critical for the performance of

a procedure of simulation of Franck-Condon spectra. Finally, putting aside the storage and per-

forming each calculation of overlap integrals with a complete reccurence expression corresponds to

the direct method. In this case, calculations can be done starting from 〈 v ′ | v ′′ 〉 to reach 〈 0′ | 0′′ 〉
as shown in figure 2.1 or the other way, starting from the transition between vibrational ground

states. It is noteworthy that reducing the storage needs will increase the importance of the calcu-

lation order to avoid as much as possible redundant calculations and keep an optimum efficiency.

Saving less overlap integrals also means that more calculations are required and so, as mentioned

in section 2.2, a balance between calculations and storage needs to be found. It is noteworthy that

the performances of the processors increase faster than the memory latency. As a consequence,

the direct and semidirect methods are increasingly interesting. However, a pure, direct method is

currently not easily efficient for large systems because of the huge redundance of calculations. As

a result, semidirect or conventional methods are still preferable for a general-purpose program.

These methods should be seen as general principles of working out the problem of the numerous

computations involved by recursivity. To be practically effective, the choice of a conventional or

semidirect kind of storage must be accompanied by a strategy to manage the memory and the

saving of the transition intensities. Consequently, we will present some quite successful algorithms

to index overlap integrals in memory. While these algorithms were originally devised for a global
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storage, that is to say for a conventional method, they are also valid in the case of a partial storage.

Taking into account this characteristic, we will firstly present the general principle of these indexing

algorithms without regard to the chosen kind of method. However, the latter may have a noticeable

influcence on their implementation inside the program, so we will indicate when it is the case.

The problem of indexing really started with the study of medium-size systems. Gruner and

Brumer [67] considered the general case of polyatomic systems and proposed to store overlap inte-

grals in a binary tree. Extensive details on the principles underlying the tree structure in computer

science can be found in references [78, 79]. This structure has a strong analogy to actual trees

and consists in a “branching” relation between nodes which represent addresses in the memory.

A particular node corresponds to the starting point of the tree and is called the root of the tree.

The nodes connected to it are referred as its children and each one is the start of a subset, also

called subtree, disjoint from the others. The set of nodes being finite, some nodes do not have any

children. These nodes are called terminal nodes or, still by analogy to the natural tree, leaves.

In the particular case of the binary tree, each node can have at most two children, which can be

conveniently referred as left subtree and right subtree.

Gruner and Brumer [67] proposed a simple and efficient method using binary trees to find any

overlap by associating a change in mode i to the left subtrees and a change of the quantum number

vi to the right subtree. As an example, let us reconsider our triatomic molecule. However, this

time we will assume that all transitions start from the vibrational ground state of the initial state

for simplification. To generate our binary tree, let us fix the following limit: v1max = 2, v2max = 1,

v3max = 2 which will define the complete structure of our tree. The corresponding binary tree is

represented in figure 2.2.

In each node are stored the addresses of the left

Figure 2.2: Example of a binary tree for a triatomic

molecule. Only transitions from the vibrational

ground states are considered here and maximum

quantum numbers have been set to (2,1,2). The

circled numbers correspond to the value of vi.

and right subtrees. In case there does not exist a left

or right subtree, the corresponding address is null.

Because of the structure of the tree, it is unnec-

essary to store the value of the quantum numbers

(represented by the circled numbers in the figure

2.2). The procedure to find a specific overlap inte-

gral is as follows. Starting from the first mode at

the root of the tree, the right branches are followed

v1 times. From the reached node, the left branch is

followed once and then the right branches v2 times.

This last step, left once and right vi times, is per-

formed again until the last mode (N) is done. From

this procedure, one can see that when the searched overlap is found, the corresponding node is not

necessarily a leaf from the strict observance of its definition. The terminal nodes in our case will be

all those without a left branch. In their original implementation, Gruner and Brumer [67] used two

arrays. One was storing the overlap integrals and the other one, the binary tree, stored the index

of the first array to find each overlap integral. In their terminal nodes, they stored these indexes in

place of the left subtree address. In following implementations of binary trees [61, 69, 70], the first
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array was discarded and the overlap integrals were directly stored in the “terminal nodes” of the

binary tree.

The binary tree is not without strong drawbacks. The main problem is the high memory need.

Gruner and Bruner proposed to solve it by using disk memory, which is unfortunately really slow

to access. Ruhoff and Ratner [61] proposed to use the definition of the recursion formulae to

restrict the binary tree to a chosen subset of overlap integrals. To classify the overlap integrals,

they introduced the idea of levels “L” as the sum of all quantum numbers of the initial and final

vibrational states. From this definition, the overlap integral of the group L can be calculated from

the overlap integrals of the levels “L-1” and “L-2”. Hence, overlap integrals from lower levels can

be discarded, which reduces the burden on the memory. However, one can see that to be truly

efficient, all integrals of a given level “L” should be calculated at the same time. This imposes new

conditions on the order of calculation of the overlap integrals. Moreover, the decrease in memory

usage is only partial and the memory requirement still grows steeply with the number of normal

modes. Later, Hazra and Nooijen [69] used the approach presented by Ruhoff and Ratner [61] and

proposed a way to improve it by discarding in each level the overlap integrals corresponding to

the least probable transitions. While this reduced again the size of the binary tree, the memory

usage could still exceed the resources available for the program so a restriction was introduced. If

the number of integrals in a given level cannot be stored in the memory of a computer, the level

is “divided” in sets of size smaller than the set limit and calculations are run for each set. This

method has several disadvantages when applied to medium-to-large systems. Firstly, the threshold

on the transition probabilities is arbitrarily set. As Hazra and Nooijen pointed out, calculations

may need to be restarted from the beginning if the threshold is not set correctly and is too high and

too many overlap integrals are discarded. Also, the limitations on the size of the levels can cause

redundant calculations, some overlap integrals being recalculated several times when switching to

another “set”. While Hazra and Nooijen considered that the limitation on the size was a minor

problem and should not be reached too much by each level, one could point out that this statement

is strongly dependent on the available memory and on the number of normal modes. Dierksen and

Grimme [70] used a similar procedure as Hazra and Nooijen but discarded the arbitrary threshold

on the transition probability for the storage in the binary tree. Because all overlap integrals are

stored, the risk of recalculation when the binary tree is “flushed” is very low. However, the memory

usage is also higher and the resets can be more frequent if the available resources are limited.

The binary tree is a powerful approach for a conventional method to compute the overlap in-

tegrals but its memory consumption makes it tricky to use when the latter is limited. When

implemented in a standalone program, the memory usage can be freely set within the limit of the

available memory of the computer. However, when integration within another software is retained

(as in our case), the memory consumption must be controlled to be within the limits fixed by the

main program. As a result, such an approach is not well adapted to our needs.

Another approach, presented by Schumm et al. [80] relies on hash tables. The underlying theory

is slightly less obvious to grasp than the trees previously discussed and we will only overview its

general principle. More in-depth discussions about hashing can be found in references [78, 79]. In

the case of the hash table, the storage structure is a common array. The particularity lies in the use

of a transformation function, called hash function, which maps a set of keys on the array indexes.
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The complexity of the method comes from the fact that in theory several keys can lead to the same

array address. Hence, recovering the index from the key is not enough, one also needs to control that

the index is the one looked for. When several keys lead to the same array address, this is referred

as a collision and the risk of their occurrences need to be reduced. This is done through verification

procedures whose complexity increases with the probability of collisions. The principal condition

for an efficient hashing is that the hash function must, as much as possible, evenly distribute the

keys on the array adresses, in particular to avoid the concentration of collisions on some zone of

the memory.

To avoid too many collisions, which would imply complex collision resolutions methods, Schumm

et al. [80] proposed to oversize the storage array with respect to the number of integrals to store. To

create their hash functions, they used a number of approximations. The first and more important

one is to set a constant maximum number of quanta for each mode, defined as “B-1”. The hashing

is then done in two steps. Firstly, a number of N figures in base “B” is created by placing side

by side each quantum number defining the final state. It should be noted that in their work,

Schumm et al. assumed that all transitions stemmed from the same vibrational state, which could

however be different from the ground state. Additionally, they observed that the modes with lower

energies were more likely to have a high number of quanta than modes of higher energies. Hence,

the quantum numbers are ordered by decreasing energy from left to right. In a second step, the

obtained number is converted in decimal base. This conversion explains their choice to “invert”

the order of the modes so that the final result is as small as possible. As an example, we will use

their procedure to retrieve the array index for a given final state | 2, 1, 0 〉. We will assume that the

maximum number of quanta for each mode is 3, so B = 4. The complete sequence of hashing can

be described with the following scheme:

| 2, 1, 0 〉 → (012)4 → 24 × 410
0 + 14 × 410

1 + 04 × 410
2 = 610

where the subscripts 4 and 10 represent the numeral base (so 10 corresponds to the decimal

base).

It is straightforward to see that the obtained index can become huge. As a consequence, two

problems can occur. The first one is that if one wishes to avoid collisions, an array whose size is at

least “BN” is needed. As Schumm et al. observed, this is practically unviable for medium-to-large

systems, even on modern computer and collisions are unavoidable for a general treatment. Hence,

a collision treatment is necessary to find the correct array address when such a case happens. A

second problem is due to the limitations of the machine precision. An integer is generally limited to

a maximum that it should never exceedc. For medium-size system, this limit can be easily reached,

especially if “B” is chosen relatively high. To avoid this issue, Schumm et al. proposed some further

approximations and a slightly more complex key. Considering the case of phenol, they proposed to

keep the first six digits of the number obtained by placing side by side the quantum numbers and

then discard all quantum numbers equal to zero. This method is efficient to reduce the value of

the index but the evenness of the distribution is less controlled. Moreover, the risk of collisions is

increased as several combinations will give exactly the same index.

cThe behavior of a program when dealing with a number which overcome the machine precision depends on the
programming language and is not always standardized. In any case, the program cannot keep the exact value of the
number and the real index is then lost.
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Because of the need of a transformation function and a collision control, the hash table seems

less interesting than the trees structures. However, chosen correctly, the hash function can be re-

ally fast and tuned to specific needs, for example a limited available storage space. In the same

way as binary trees and their flushing, the collision handling must be limited or, if possible, made

unnecessary. It is rather interesting in the case of a semidirect method of recurrence calculations

in which the set of overlap integrals to store is limited and has been chosen beforehand. Then, the

hash function can be tailored to the conditions of application.

These interesting features and the relative freedom on the storage structure and size make the

approaches based on a hash function very interesting for our included procedure. Taking into

account the progress of processor performances and the possibility of parallel calculations, we can

divide the overlap integrals to treat in sets. A set will be composed of all overlap integrals meeting

two conditions on the final state. The first one is that the number of excited modes, that is to say

the number of non-zero quantum numbers of the final state must be the same. The second one

is that the excited modes must be the same. A set is defined by the maximum allowed quantum

numbers reachable by each mode. Contrary to Schumm et al., we do not impose that this maximum

number of quanta must be the same for each mode.

As an example, let us consider a non-linear molecule with 4 atoms. Its number of vibrational

modes is N = 6. For now, we will not consider the initial state and only treat the final state. We

choose a particular set defined by the ket |3, 2, 0, 2, 0, 0〉. From condition 1, an overlap integral with

the final state given by | 2, 1, 0, 1, 0, 0 〉 belongs to this set but not an overlap integral correponding

to the transition to the state | 1, 1, 1, 2, 0, 0 〉. The second condition will not be met if the final state

is | 2, 1, 0, 0, 1, 0 〉. This primary division of the complete set of overlap integrals makes possible

some simplifications. Since each integral has the same number n of excited modes, we can create a

first mapping of the index:

| 2, 1, 0, 1, 0, 0 〉 → | 2, 1, 1 〉

In the perspective of an independent treatment of each set, this operation can be done before

the actual calculations of the line intensity of each transition. The correspondance between the

position of a given mode in the “shortened” list and its correct index in the vector v
′′ is stored in a

n-dimension list. Using the reduced lists of quantum numbers v ′′
i and maximum quantum numbers

v ′′
imax

, the mapping function we used can be defined as the expression:

F (v ′′, v ′′
max

) =
n
∑

i=1

v ′′
i

i−1
∏

j=1

(v ′′
jmax

+ 1) (2.33)

where v represents the subset obtained previously by discarding all zero quantum numbers.

The function, through the term “v ′′
jmax

+ 1”, accounts for the storage of subsets corresponding to

lower classes with the same excited modes as those of the reduced list of quantum number. This

will be discussed in details in chapter 3 and more precisely in section 3.7.

In practice, and as we will show in chapter 4, n does not need to be high, a maximum of 10

excited modes being sufficient even for large systems to simulate accurately the transition spec-

tra. Moreover, except some particular cases, v ′′
imax

is often small so that there is a relatively low

probability that the generated index might be too high for the programming language upper limit
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for integers. If needed, additional protections can be devised. The creation of small sets is also

done to avoid the risk of collisions by allowing a unique storage address for each overlap integral.

In this frame, our mapping function corresponds to a minimal perfect hash function and collision

resolution is unnecessary.

In our discussion, we have neglected the initial state until now. The principle of our hashing

procedure is to obtain a single index since our storage array is linear. The initial state can be

simply treated by using a bi-dimensional array, each dimension representing one electronic state.

The hash function given in equation 2.33 is used alternatively on the initial state and the final state

depending on the needs. The memory usage becomes slightly more complex to manage but can be

handled by increasing the memory available for the procedure or, if many initial vibrational states,

include the possibility of collisions in the array.

The division in sets could also be used in a binary tree. However, the construction of the

structure imposes a higher memory consumption with no important benefit with respect to the

hash table.

2.7 Prescreening of the overlap integrals

While the issue of the storage has been resolved, calculations cannot be performed if we need to

treat an infinity of transitions. Previously, we already assumed that we could determine a limit for

each mode for the maximum number of quanta (vimax) to take into account, in order to manage the

indexing of the overlap integrals. It is indeed obvious that a method needs to be devised to avoid

calculating non relevant transitions. An important characteristic of such a scheme is that it has to

be consistent and not restricted to particular cases. We can define two kinds of approaches to limit

calculations, those performed a priori [19, 70, 81–83], relying on prescreening through evaluation,

and those done in real-time [67–69, 84]. By “real-time”, we refer to the fact that the criterion is

applied during the calculations of the transition probabilities. If this criterion is not met, calcula-

tions of some of the following integral will not be performed then.

Because they are the most obvious to consider and are in general easier to devise, we will firstly

present some representative methods applied during the calculations. Maybe the most simple one

uses the bounds of the spectrum as the energy criterion to determine which transitions need to

be computed. More precisely, all combinations of quantum numbers of the initial and final states

that correspond to energy differences falling into an interval defined by the lower and upper bound

of the spectrum are evaluated. To be exact, the previous definition supposes that these bounds

were relative to the energy of the transition between the vibrational ground states of the electronic

states. To find all integrals satisfying these conditions, a consistent and thorough analysis must be

carried out. Kemper et al. [85] proposed a backtracking algorithm to count all possible states for

a giving energy interval. Contrary to most previous algorithms such as the one presented by Beyer

and Swinehart [86], their method retained the information on the levels involved in the transition,

rendering possible the calculation of the overlap integrals. While the procedure was designed for

an arbitrary precision of the energy levels, including anharmonicity, we will present it here in the

case of the harmonic approximation. In this context, the energies of the overtones are proportional

to the number of quanta as written in equation 1.39. The counting starts from the first mode
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which is supposed to be the lowest in energyd, after all quantum numbers have been initialized to

0. The associated quantum number v ′′
1 is incremented and two controls are performed each time.

If the corresponding energy is included in the interval of interest, then the transition to this final

state can be treated. If the energy exceeds the upper limit, then the quantum number is decreased

(v ′′
1 = v ′′

1 − 1) and the previous procedure is now applied to the second mode (i = 2). The sequence

is repeated until the last mode, i = N , is treated. At this point, the algorithm looks for the highest

integer j lower than N whose corresponding quantum number is non-zero (v ′′
j 6= 0). The latter is

decreased by one (v ′′
j = v ′′

j − 1) and the previous loop incrementing the quantum numbers is done

on the interval i = [j + 1, N ]. The complete procedure is run until j = 0.

Berger and Klessinger [84] pointed out that the original procedure did not take into account the

initial state and so assumed that all transitions were starting from the vibrational ground state.

To remedy to this problem, they proposed to use two backtracking procedures, one for each state.

They named it an interlocked algorithm because one procedure, for the final states, run inside the

other one treating the initial states. For each combination of quantum numbers of initial state

corresponding to an energy inferior to the upper bound, the backtracking procedure described

above is run on the combinations of final state. This is done until the backtracking procedures have

reached their end in both states.

Figure 2.3: Case of the 2B1 → 2A2 transition of

the Phenoxyl radical. The number of transitions

whose corresponding energies fall in the interval

0-upper bound is reported with respect to the

upper bound energy. All transitions start from

the vibrational ground state. Calculations were

done at the TD-DFT level for the excited state

(B3LYP/TZVP).

Because it is simple to implement and intuitive

physically, this method, or similar counting meth-

ods, has been commonly used in many algorithms

to compute Franck-Condon integrals and simulate

absorption or emission spectra [67, 68, 70, 81]. Its

main problem is the rapid drop in performance if a

large interval of energies is requested for the spectum

simulation. As a matter of fact, from the way the

backtracking is constructed, the interval has a not a

direct impact on the performance since the most im-

portant value is the upper bound of the spectrum for

absorption, or the lower bound for emission. Con-

sequently, for a case corresponding to a small inter-

val near the energy of the transitions between the

vibrational ground states, the performance can be

very good. For a more general need, and if a large

spectrum is required, the computational times in-

crease steeply to reach undesirable heights as shown

in figure 2.3.

Hazra and Nooijen [69] proposed a different approach where the limitation is not set on the

energy of the transition but on the analysis of the probability of transition. As we mentioned before

when considering the problem of storage, Hazra and Nooijen used a threshold to discard the less

likely transitions. By doing this, they also removed gradually the transitions to combinations bands

dThe counting can also be carry out in a descending order; the main constraint is to keep the same order throughout
the procedure.
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of the same excited modes but with higher quanta. This behavior is a “natural” consequence of

their treatment of the overlap integrals by increasing the level, that is to say the sum of all quantum

numbers. This is done through a backward study of the recursion formulae given in equations 2.31

and 2.32. Instead of finding which overlap integrals are needed to calculate 〈 v ′ | v ′′ 〉, they looked

for all integrals that could be calculated knowing 〈 v ′ | v ′′ 〉. Hence, starting from the level L0

(〈 0′ | 0′ 〉), they listed all possible integrals from the level L1 which could be calculated from

the integrals between vibrational ground states. From L0 and L1, overlap integrals of the level

L2 could be computed. Each time an overlap integral is calculated, the corresponding probability

of transition is confronted to a threshold. If it is lower, the overlap integral is discarded. As a

consequence, after having reached a maximum, the number of overlap integrals in higher levels will

gradually drop until no more overlap integrals need to be done.

This approach is independent from the energy bounds of the spectrum and so is more general,

depending solely on the studied system. However, its implementation has major drawbacks. A

previously mentioned one is the arbitrary value of the threshold. This is especially problematic

because of one assumption made by Hazra and Nooijen to calculate the overlap integrals. If a

precursor, that is to say an overlap integrals belonging to the right-hand side of equations 2.31 or

2.32, is missing because the corresponding probability of transition was too low, the calculation is

still performed without it. In other words, a given overlap integral 〈 v ′ | v ′′ 〉 is computed with the

overlap integrals available in the memory and those missing, supposed very small, are neglected.

This statement breaks the normalization of the overlap integrals and makes it impossible to control

correctly the quality of the simulation and the chosen approximation. As a consequence, while

the method offers a way to avoid dependence on the spectrum bounds, the absence of a reliable

evaluation method of the approximation makes it hardly viable practically. It should be noted that

the problem can be partly overcome by recalculating the missing precursors. However, because

only two levels are stored at a time, the calculation of these integrals can be time consuming and

drop the efficiency of the method.

The analysis of the transition probabilities offers a way for a consistent simulation of the spec-

trum whose performance rely solely on the nature of the studied system. However, this can be

at the expense of the speed when the upper bound of the spectrum is really low with respect to

the energy of the transitions between vibrational ground states. Approximation methods done in

real time are difficult to handle from the perspective of the storage as there is no way to know

beforehand the number of overlap integrals that will need to be computed and saved. In this kind

of situation, binary trees are often preferred because of its sturdy organization. While Schumm et

al. [80] used an algorithm of energy counting with an hash table, they had to take into account

the risk of collisions and oversize their storage array, thus losing one of the main advantages of this

method over the tree structure.

The overlap integrals that need to be calculated can be known beforehand by applying an evalu-

ation method. Most of them attempt to assess the probabilities of transitions and fix a threshold to

choose the most likely ones. However, an efficient a priori evaluation is difficult to design because

it must meet several conditions. The first one is that it must be relatively fast, that is to say

that its computational cost must be kept as affordable as possible. A direct consequence is that

the complete calculation of the Franck-Condon integrals is typically out of question. Hence, an
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approximation of the transition probabilities is favored. This necessary approximation will cause

additional constraints on the evaluation method. The main one is that it must be consistent and

efficient whatever the molecular system studied and the approximation of the electronic transition

dipole moment applied, with respect to its Taylor series given in equation 1.29. This condition

is especially difficult to meet as taking into account all possible cases will often lead to a more

complex evaluation system with a higher computation cost. General-purpose evaluation methods

are fairly recent and were designed to deal with newly accessible simulations of UV-visible spectra

for medium-to-large systems. We will present two methods revolving around the approximation of

the Duschinsky rotation [70,81] and our own procedure [19,82].

A first and simple approximation is to neglect the mode mixing and consider a one-to-one

relation between the modes of the initial and final states. After possible reordering, the Duschinsky

transformation matrix J corresponds to the identity matrix. The interest of this approximation,

called parallel mode approximation, is that the multi-dimensional Franck-Condon integrals can be

calculated as products of one-dimensional integrals, using the following relation:

〈 v ′ | v ′′ 〉 =
N
∏

i=1

〈 v ′
i | v ′′

i 〉 (2.34)

The one-dimensional Franck-Condon integrals can be calculated using the analytic [34, 35] or

recursion formulae [37] for monodimensional oscillators.

Applied to most real systems, a first difficulty arises from the fact that the normal modes are

rarely uncoupled and the one-to-one correspondance between the normal modes of the initial and

final states does not exist. Ervin et al. [81, 87] proposed as a first approximation, to consider the

greatest overlap between each mode of the initial state and the final state. This overlap can be

qualitatively determined from the Duschinsky matrix, taking the element with the highest absolute

value in each row or column.

Figure 2.4: Transformation of the correct Duschinsky matrix in an identity matrix in the case of the π → π⋆

transition of the phenoxyl radical (DFT - B3LYP/TZVP). In each row, only the element with the highest absolute
value is kept and the other one are disregarded. The intensity of the shading corresponds to the relative intensity of
the square of each element. For the first two matrices, modes are ordered by increasing frequencies.

Figure 2.4 shows similar procedure for the case of the weakly-allowed π → π⋆ transition be-

tween electronic states 2B1 and 2A2 of the phenoxyl radical. Calculations have been performed at

the Density Functional Theory [88,89] (DFT) level for the initial state and Time-Dependent Den-

sity Functional Theory [13, 90, 91] (TD-DFT) level for the final state, with the B3LYP exchange-
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correlation functional and the TZVP basis set. Instead of absolute values, the relative intensities

of the square of each element of the rotation matrix J are graphically shown in the left drawing.

For each column, the highest value is taken and the other ones are disregarded. Practically, it

corresponds to setting to one the square of the corresponding element and to zero the other ones.

The result is shown in the second matrix. Finally, the modes are reordered and the rotation matrix

is equivalent to the identity matrix.

Comparing the correct Duschinsky matrix shown on the left of figure 2.4 and the “new” ro-

tation obtained by this procedure, it is obvious that the uncoupling is generally too strong an

approximation. In addition to being often difficult to justify, it will generally lead to important and

uncontrollable errors. Moreover, another problem immediately pointed out by Ervin et al. [81] is

that the parallel mode approximation can simply fail in some cases. It can happen than for a given

mode of the initial state, several possible overlaps are found with the selection scheme described

previously while for another one, there is none. From the perspective of the rotation matrix, it will

mean finding some rows with two or more non-zero elements and others with none.

As an example, let us consider the case of the S0(1A1)→ S1(1B2) transitione of anisole. Calcula-

tions were done at the DFT and TD-DFT levels, respectively, using the B3LYP exchange-correlation

functional and the 6-311+G(d,p) basis set. In the same way as the phenoxyl radical, we choose the

element with the highest absolute value. The result of this approximation is shown in figure 2.5.

Figure 2.5: Approximation of the Duschinsky matrix by only taking into account the element of highest absolute
value in each column in the case of the S0 → S1 (DFT - B3LYP/6-311+G(d,p)). In the right matrix, the dotted lines
show the rows with more than one elements and the dashed line the empty rows.

To overcome such a problem, Ervin et al. suggested a manual reassignment. This solution is

unfortunately not satisfactory for an automated procedure and the arbitrariness of the selection

remains. As a result, a treatment of the rotation matrix purely restricted to the parallel mode

approximation level is not sustainable for a general-purpose procedure.

Ervin et al. [81] proposed a compromising method between a complete treatment of the modes

mixing, using the correct rotation matrix, and their neglect as in the parallel mode approximation.

They divide the modes into two groups, uncoupled modes and coupled modes. The modes belong-

ing to the first group are treated with the parallel mode approximation while the modes belonging

to the second one are treated exactly. In a practical way, the Duschinsky matrix is treated as a

block-diagonal matrix instead of an identity matrix.

eTransition has a mixed n → π∗/π → π∗ character.
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While correcting the flaws we mentioned earlier, this method arises new difficulties. The first

one is the criterion to decide if a mode is uncoupled or not. Ervin et al. proposed a threshold

on the absolute value, considering a mode uncoupled if an element of the corresponding column

(or row) represents at least 95% of the sum of all the elements of the column. In addition to the

arbitrary criterion, the high value means that if the coupling is very strong between a large number

of elements, the gain of this method with respect to the complete treatment of the Duschinsky

matrix might be relatively low. However, the method can be really effective with symmetrical rigid

systems where the coupling of the modes is limited.

A more subtle problem can occur if one wishes to account for a better approximation of the

electronic transition dipole moment beyond the Franck-Condon principle. In this case, terms out-

side the blocks are necessary to calculate the transition dipole moment integrals and the block-

diagonalization can introduce important errors. Indeed, in the case of dispole-forbidden and weakly-

allowed transitions, the overlap integral 〈 v ′ | v ′′ 〉 is not the main component in the expression

given in equation A.1.

Finally, the difficulty to use this method lies also in the fact that there is no a priori evaluation

of the impact of these approximations on the outcome results. To be more precise, the method

does not include an evaluation of the probability of transitions between each vibrational state. As

mentioned in their work, Ervin et al. focused on acceleration of the computations rather than on

a rigorous prescreening of the overlap integrals. The limitation of the overlap integrals is done

through the energy counting and an evaluation of the transition probability in a similar way as

Hazra et Nooijen but without cancelling any term of the recursion formulae.

Dierksen and Grimme [70] proposed also a block-diagonalization but choosing a different ap-

proach to proceed. Firstly, instead of simply discarding the elements outside the block, they calcu-

late a block-diagonal model rotation matrix by replacing the exact normal modes of the final state

by an approximate set. Their procedure requires a threshold on the sum of the elements Jij
2 for

each row and column. This threshold is used to choose the blocks in the original Duschinsky matrix

and the new transformation matrix L̃′′ is generated so that out-of-blocks elements are cancelled.

Contrary to Ervin et al. [81], the new Duschinsky matrix obtained in such a way is not used for

the actual calculations but as a prescreening. For each block of this matrix, the Franck-Condon

integrals with the corresponding transition energies satisfying the conditions fixed by the bounds

of the spectrum are calculated using the recursion formulae of Doktorov et al. [65]. The overlap

integrals above a second threshold are kept while the other ones are discarded. The “complete”

Franck-Condon integrals are obtained by multiplying those preserved in each block and compared

to a third threshold. If they are above this lower limit, the correct overlap integral between the

same combinations bands is calculated with the original Duschinsky matrix.

With respect to the previously discussed method, this approach improves the reliability of the

simulated spectrum by taking into account the correct Duschinsky effect. However, the method

suffers from a few flaws, some of them being the same as those pointed out above. The first one

is the use of two arbitrary thresholds, the second one generating the two limits presented above to

discard the overlap integrals. Because they need to be set by the user, the method is not directly

usable in an automatic procedure. Moreover, as pointed out by Jankowiak et al. [83], more than
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one calculation should be run with different thresholds for the block approximation and the overlap

integrals to control the reliability of the prescreening.

The major limitation of this method, in the same way as the one presented by Ervin et al. [81],

remains its dependency on the distribution of the values Jij
2 for each row and column of the

Duschinsky matrix. The optimum configuration is that only a few elements have a noticeable

square value in each case and all the other ones are negligible. After reordering so that these

elements are centered around the diagonal, it is possible to easily form small blocks Unfortunately,

if the formed blocks are relatively big with respect to the dimension of the Duschinsky matrix, the

gain can be seriously reduced. This situation emerges when a large number of elements in each

row and column have a small value but none properly stands out. A workaround in this situation

would be to lower the first threshold, but the consequence is that the model rotation matrix differs

strongly from the original one.

The performances of the approach proposed by Dierksen and Grimme is also strongly intertwined

to their choice of storage discussed in the previous section where the binary tree is flushed whenever

full. In the case of a restricted available memory and large blocks, recalculations can be important,

aggravating the loss in performance. As a consequence, the method seems more suitable to rigid

and symmetrical systems [92,93].

Finally, the same problem of the reliability of evaluating the Franck-Condon integrals in the

case of weakly-allowed or dipole-forbidden transitions exists here.

The two methods represent globally an improvement in the computational time needed to

simulate a theoretical spectrum. However, efficiency is strongly dependent on the rotation matrix

and the coupling of the normal modes. Moreover, the impact of the value of the thresholds on the

accuracy of the simulation is difficult to ascertain before the complete calculation has been run.

2.8 The evaluation method FCClasses

The procedure we wish to implement should not require much interaction from the user and only

a relatively basic knowledge on the theoretical background underlying it to be accessible to non-

specialists. The implementation of the method proposed by Dierksen and Grimme is not unfeasible

as a “black-box” procedure but a correct automatic choice of the thresholds is difficult without at

least an additional run of the calculations with different parameters for the evaluation to control

the quality of the first try. This can lead to rather poor performances when the blocks of the model

Duschinsky matrix are rather large.

In this work, we looked for a more versatile approach and used the transition probabilities

to screen the Franck-Condon integrals. The theoretical basis underlying our method has been

originally presented in references [19, 82, 94]. It has been initially implemented in a standalone

program, fcclasses [95], which was used to describe the principles of the evaluation. We present

here its important features.

Firstly, we associate to each overlap integral a class Ci corresponding to the number of excited

modes in the final state. Presented differently, the class Ci will “contain” all overlap integrals with i

non-zero quantum numbers in the final state. This partition is very important in our method since

it allows a very straightforward control of the calculations to limit the treatment, and consequently
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the computational costs, to the required accuracy (see section 4.4 for a discussion of the influence of

the classes on the generated spectrum). Each class contains in theory an infinity of overlap integrals

but only a finite number of transitions have a significant probability. Our method estimates for

each mode a maximum quantum number vimax above which the corresponding overlap integrals can

be neglected. To do so, reference data from the first two classes, C1 and C2, are stored and used

to evaluate the overlap to compute in each “higher” class. The advantages of using the overlap

integrals of these classes are twofold. The first one is that these integrals are computationally

cheap and are generated quickly even in the case of large molecules. The second interest lies in the

recursion formulae “adapted” to these classes and the information they provide. As we defined the

class with respect to the final state, we will focus on equation 2.31, supposing that the transitions

start from the vibrational ground state of the initial state. In the case of C1, this equation can be

reduced to the following expression:

〈 0′ | v ′′ 〉 =
1

√

2v ′′
i

[

Di〈 0′ | v ′′ − 1′′i 〉+
√

2(v ′′
i − 1) Cii〈 0′ | v ′′ − 2′′i 〉

]

(2.35)

In the previous equation, the factors Cii and Di give respectively information on the effect of

the shifts in equilibrium positions and the frequencies on the overlap integrals of overtone, and

more precisely on the vibrational progression of mode i. These properties can be verified from the

expressions of the matrix C and vector D given in equations 2.9 and 2.10, considering the particular

case J = I. Taking into account this approximation, their formulae can be written:

C = 2Γ′′1/2
(Γ′ + Γ′′)−1Γ′′1/2 − I ; D = −2Γ′′1/2

(Γ′ + Γ′′)−1Γ′′1/2
K

The second term of equation 2.35 is then cancelled if Γ′
ii = Γ′′

ii while the first term is dependent

on K.

In the case of overlap integrals belonging to the class C2, the recursion formula contains also

the off-diagonal terms of C.

〈 0′ | v ′′ 〉 =
1

√

2v ′′
i

[

Di〈 0′ | v ′′ − 1′′i 〉+
√

2(v ′′
i − 1) Cii〈 0′ | v ′′ − 2′′i 〉

+
√

2v ′′
j Cij〈 0′ | v ′′ − 1′′i − 1′′j 〉

]

(2.36)

where j 6= i.

It is straightforward to see that the elements Cij are null in the case where there is no rotation

of the normal coordinates (J = I) and the third term of equation 2.36 will exist only if there is a

coupling of modes i and j.

If we store directly the Franck-Condon factors, we will have redundant information on the shifts

in equilibrium geometries and frequencies. A simple scheme is used to remove, as far as possible,

these effects from the data stored in class C2.

Before continuing, let us define two arrays FC1
and FC2

which store the reference data from

classes C1 and C2. FC1
is a bidimensional array containing the Franck-Condon factors such as

FC1
(i, v ′′

i ) = |〈 0′ | 0′′ + v ′′
i 〉|2. FC2

is a tridimensional array whose indexes are both excited modes

i and j as well as their quantum number. However, we only store data corresponding to the cases

v ′′
i = v ′′

j so only one value is needed. As explained before, the data from class C2 must essentially
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account for the Duschinsky mixing. Hence, instead of the Franck-Condon factors, we keep the

quantity FC2
(i, j, v ′′

i = v ′′
j ) =

∣

∣〈0′ | 0′′ + v ′′
i + v ′′

j 〉
∣

∣

2−FC1
(i, v ′′

i )×FC1
(j, v ′′

i )/
∣

∣〈0′ | 0′′ 〉
∣

∣

2
. To explain

the choice of this definition, let us assume that there is no mode mixing (J = I). In this case, the

multi-dimensional Franck-Condon integrals can be defined as a product of one-dimensional integral

as shown in equation 2.34. As a result, we can write:

〈 0′ | 0′′ + v ′′
i + v ′′

j 〉 =
N
∏

k=1

〈 0′k | v ′′
k 〉 = 〈 0′i | v ′′

i 〉 × 〈 0′j | v ′′
j 〉 ×

N
∏

k=1
k 6=i,j

〈 0′k | 0′′k 〉

A similar expression can be formulated for the overlap integrals belonging to class C1:

〈 0′ | 0′′ + v ′′
i 〉 = 〈 0′i | v ′′

i 〉 ×
N
∏

k=1
k 6=i

〈 0′k | 0′′k 〉

By definition, FC2
(i, j, v ′′

i = v ′′
j ) = 0 if there is no mode-mixing. To meet this condition, it is

enough to write the relation:

FC2
(i, j, v ′′

i = v ′′
j ) =

∣

∣〈 0′ | 0′′ + v ′′
i + v ′′

j 〉
∣

∣

2 −
∣

∣〈 0′i | v ′′
i 〉
∣

∣

2 ×
∣

∣〈 0′j | v ′′
j 〉
∣

∣

2 ×
N
∏

k=1
k 6=i,j

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

The second term in the right-hand side of the previous equation can be written as a product of

〈 0′ | 0′′ + v ′′
i 〉 and 〈 0′ | 0′′ + v ′′

j 〉, noticing that:

∣

∣〈 0′ | 0′′ + v ′′
i 〉
∣

∣

2∣
∣〈 0′ | 0′′ + v ′′

j 〉
∣

∣

2

=
∣

∣〈 0′i | v ′′
i 〉
∣

∣

2 ×
{

N
∏

k=1
k 6=i

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

}

×
∣

∣〈 0′j | v ′′
j 〉
∣

∣

2 ×
{

N
∏

k=1
k 6=j

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

}

=
∣

∣〈 0′i | v ′′
i 〉
∣

∣

2 ×
∣

∣〈 0′j | v ′′
j 〉
∣

∣

2 ×
{

N
∏

k=1

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

}

×
N
∏

k=1
k 6=i,j

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

=
∣

∣〈 0′i | v ′′
i 〉
∣

∣

2 ×
∣

∣〈 0′j | v ′′
j 〉
∣

∣

2 ×
{

N
∏

k=1
k 6=i,j

∣

∣〈 0′k | 0′′k 〉
∣

∣

2

}

×
∣

∣〈 0′ | 0′′ 〉
∣

∣

2

Hence, we have:

∣

∣〈 0′i | v ′′
i 〉
∣

∣

2 ×
∣

∣〈 0′j | v ′′
j 〉
∣

∣

2 ×
N
∏

k=1
k 6=i,j

∣

∣〈 0′k | 0′′k 〉
∣

∣

2
=

∣

∣〈 0′ | 0′′ + v ′′
i 〉
∣

∣

2∣
∣〈 0′ | 0′′ + v ′′

j 〉
∣

∣

2

∣

∣〈 0′ | 0′′ 〉
∣

∣

2

Consequently, we obtain the following relation:

FC2
(i, j, v ′′

i = v ′′
j ) =

∣

∣〈 0′ | 0′′ + v ′′
i + v ′′

j 〉
∣

∣

2 − FC1
(i, v ′′

i )× FC1
(j, v ′′

i )
∣

∣〈 0′ | 0′′ 〉
∣

∣

2

Given the explanations above, a difficulty still remains to start the prescreening. Because FC1
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and FC2
will be used to determine the maximum quanta in each class, it means that we need to find

a different method to choose these limits for the classes C1 and C2. Practically, we set manually

the maximum number of quanta in these classes. Since these overlap integrals are computationally

cheap, we can set a high enough limit to work in most cases. This somewhat arbitrary choice

has been deducted from experience and proved to be valide in most cases. It should be pointed

out that more complex schemes could be devised, such as a single threshold on the probability of

transitions. The calculations would be run twice for each class, the first time to find the highest

quantum number C1max = max(v ′′
i ) and the second time to store the data for the prescreening using

this limit for each mode. However, such a scheme, more expensive in terms of computational time,

is not necessary in practice and C1max and C2max are directly set, automatically or by the user.

Calculations are carried out for class C1 and then class C2. For class C3 and above, a two-step

procedure is used. Firstly, the maximum quantum numbers v
′′
max

are set by the evaluation method

and then the actual calculations are performed. To perform the prescreening, we set an additional

limit, Nmax
I , which represents the maximum number of integrals to compute in a given class. This

number lets us control roughly the computational cost of the overall simulation, but at the risk of a

loss in accuracy of the generated spectrum if it is set too low. A good compromise between resources

usage and precision of the spectrum is set by default. Two thresholds, ǫ1 and ǫ2 are defined for

the sets of data FC1
and FC2

, respectively. These two sets are treated in parallel. For each mode

i, two maximum quantum numbers, respectively vC1

imax
and vC2

imax
, are obtained by decrementing the

number of quanta v ′′
i until the conditions FC1

(i, v ′′
i ) ≥ ǫ1 for the first set and FC2

(i, j, v ′′
i ) ≥ ǫ2 with

j 6= i for the second set, are met.

The maximum number of quanta is chosen as the maximum of these two values,

v ′′
imax

= max(vC1

imax
, vC2

imax
)

Once the set v
′′
max

has been defined, the corresponding number of integrals to calculate is roughly

estimated, for a given class Cn, as NI = NCn × 〈v ′′
max
〉n, where NCn represents the number of

combinations of the n excited oscillators and 〈v ′′
max
〉 is the arithmetic mean of the N maximum

quantum numbers. If the number of integrals to compute NI is higher than the allowed limit

Nmax
I , the thresholds ǫ1 and ǫ2 are increased and the set of maximum quantum numbers v

′′
max

is

re-estimated. When the condition NI ≤ Nmax
I is fulfilled, all Franck-Condon integrals are computed

using the correct maximum number of quanta v ′′
imax

for each mode.

The tests are sufficiently fast to allow a rather large number of trials in a very short computa-

tional time. Hence, the thresholds ǫ1 and ǫ2 can be chosen very low. By default, they are set to

10−9.

To avoid large needs in storage, the overlap integrals are treated by groups of combination bands

of the final state. A group in this case contains all the transitions to final states with the same

set of excited modes (v ′′
i > 0). This strategy matches our storage policy described in section 2.6

and the storage is then kept to a minimum, the storage array being reset after each “group” has

been treated. While this causes some recalculations of overlap integrals when progressing to higher

modes, the induced computational times on modern computers are generally on a par with those

needed for managing large storage requirements.
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The method can be straightforwardly used for temperature as described in Appendix C in

reference [94]. The temperature was not treated during the development and the implementation

of the procedure so it will not be extensively treated further in this document.

2.8.1 Extending the evaluation method to the Herzberg-Teller calculations

The evaluation approach presented above was originally designed to treat calculations done in the

frame of the Franck-Condon principle, considering a constant electronic transition dipole moment.

The data stored in FC1
and FC2

provide general information on the influence of the shift in geometry

positions, the change in frequencies and the Duschinsky mixing on the vibrational progression so

they are needed whatever the level of approximation used to calculate the intensity of a transition.

However, when dealing with weakly-allowed or dipole-forbirdden transitions, we cannot correlate

anymore the quantities used for the prescreening with the probabilities of transition. If we develop

the electronic transition dipole moment µif in a Taylor series up to the first order, the transition

dipole moment integral is given by the formula:

〈Ψ′ | µ | Ψ′′ 〉 = µif (Q′′
0) 〈 v ′ | v ′′ 〉+

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

[
√

v ′′
k 〈 v ′ | v ′′ − 1′′k 〉

+
√

v ′′
k + 1 〈 v ′ | v ′′ + 1′′k 〉

]

(2.37)

The evaluation method we described previously gives all necessary information on the first term

of the right-hand side of equation 2.37 but does not take into account the second and third term.

In the case of a dipole-forbidden transition, we have µif (Q′′
0) = 0 and only the second and third

terms contribute to the line intensity. Hence, the information provided by FC1
and FC2

can fail in

accounting for the transition probabilities.

This problem is amplificated if we consider a borderline case where the normal modes are

uncoupled and there is no change in equilibrium geometries and frequencies between the initial

and final state. In a concise, matrix notation, the above conditions can be summed up as J = I,

K = 0 and Γ′ = Γ′′. As discussed previously, these conditions will cause the data in FC1
and FC2

to be null. As a consequence, the maximum quantum numbers are all equal to zero when doing

the evaluation. However, the transitions to final states corresponding to | 0′′ + 1′′k 〉 have a non-zero

intensity because of the second term in the right-hand side of equation 2.37 but would not be taken

into account because the prescreening evaluated only zero maximum quantum numbers.

While this hypothetical case is practically unlikely, this example shows the need to improve our

evaluation strategy to take into account the influence of the terms stemming from the Herzberg-

Teller approximation of the electronic transition dipole moment. To do so, let us define a new array

HC1
which will store the square of the pure Herzberg-Teller contribution for a given mode k for the

transition 〈 v ′ | 0′′ + v ′′
k 〉. These data are calculated contemporarily to those of FC1

in class C1:

HC1
(k, v ′′

k ) =

∣

∣

∣

∣

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

[
√

v ′′
k 〈 v ′ | 0′′ + v ′′

k − 1′′k 〉+
√

v ′′
k + 1 〈 v ′ | 0 + v ′′

k + 1′′k 〉
]

∣

∣

∣

∣

2

Additionally, if we refer to equation 2.37, another difficulty arises from the fact that the sum-

mation runs on the N vibrational modes. While this is not a problem for the second term in
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the right-hand side of this equation, the third term, where a quantum is created implies that the

calculations of 〈Ψ′ | µ | Ψ′′ 〉 will require to treat the case of modes outside the class we are treat-

ing. However, by definition of the class, the modes outside of it can only be excited with a single

quantum number in the case of 〈 v ′ | 0 + v ′′
k + 1′′k 〉. Let us consider such a mode k and apply the

recursion formula given in equation 2.31 to express the corresponding integral with respect to over-

lap integrals with lower quanta. As we did in section 2.8, we neglect the effect of the temperature,

that is to say we treat all transitions from the vibrational ground state. The recursion formula can

then be written:

〈 0′ | v ′′ + 1′′k 〉 =
1

√

2(v ′′
k + 1)

[

Dk〈 0′ | v ′′ 〉+
N
∑

l=1

√

2v ′′
l Ckl〈 0′ | v ′′ − 1′′l 〉

]

(2.38)

The terms are non-zero only for the modes l belonging to the class.

However, for our evaluation to be as thorough as possible, it needs to account for these contri-

butions outside the class. Consequently, we create a fourth array for our prescreening, H
oc

C1
, whose

elements are defined, in class C1, as :

H
oc

C1
(k) =

∣

∣

∣

∣

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

〈 v ′ | 0′′ + 1′′k 〉
∣

∣

∣

∣

2

It should be noted that, contrary to the three previous arrays, this one is not used to estimate

the maximum quantum numbers v
′′
max

but rather to improve the efficiency of the code by reducing

the modes to take into account outside the class.

For these two new arrays, we add two new thresholds, ǫH

1 and ǫH

2 , respectively. When the first

order ot the Taylor series of the electronic transition dipole moment is taken into account, the

procedure can be summed up as follows. Class C1 is treated first. Elements for the arrays FC1
,

HC1
and H

oc

C1
are calculated and stored in their respective arrays. Class C2 is then treated and the

array FC2
is filled as described in section 2.8. When considering higher classes Cn, the prescreening

is proceeding similarly to the case Franck-Condon. To find the maximum quantum numbers, three

tests are run in parallel for each normal mode k, confronting FC1
(k, v ′′

k ) and ǫ1, HC1
(k, v ′′

k ) and ǫH

1 ,

and FC2
(k, l, v ′′

k ) and ǫ2 for each mode l 6= k. Once the tests are finished, their maximum number of

quanta, respectively vC1

imax
, vH

imax
and vC2

imax
are confronted. The chosen maximum number of quanta

is defined as the highest of these three values. The same simple scheme described in the previous

section lets us assess the number of integrals NI that will be computed with the chosen set v
′′
max

.

If this number exceeds the maximum allowed number of transitions to calculate, ǫ1, ǫH

1 and ǫ2 are

increased and the set of maximum quantum numbers v
′′
max

is re-estimated.

If the selection of out-of class modes is enabled (ǫH

2 ≥ 0), then a loop is run once the evaluation

is finished on all the normal modes k to find if they should be treated in the Herzberg-Teller

contribution. If H
oc

C1
(k) ≥ ǫH

2 , then the mode k is counted in the summation in equation 2.37,

otherwise no.

When the prescreening procedure is complete, the calculations of the different transition dipole

integrals are done.
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2.9 Evaluating the reliability of the prescreening: the sum rules

When using an evaluation method, it is important to have a precise idea of its reliability. In

general, the actual calculation is not performed in the prescreening so that the correct intensity of

the discarded transitions is not known. Logically, the efficiency of an evaluation must not only be

defined by the gain in computational cost but also by its accuracy.

The latter can be evaluated precisely through analytic sum rules. While this method can also

bring information on the shape of the spectral distribution [96], we will use it here to control the

convergence of the calculation [19].

Let us consider the summation part in the formulae of the absorption and emission spectra

given in equations 1.20 and 1.21. We also set aside the energy term, so that all dependance to the

incident energy is discarded. The corresponding quantity, I
tot

, is defined as:

I
tot

=
∑

i

ρi

∑

f

∣

∣〈Ψi | µ | Ψf 〉
∣

∣

2
=
∑

i

ρi

∑

f

〈Ψi | µ | Ψf 〉〈Ψf | µ | Ψi 〉 (2.39)

Using the relation in equation 1.26 and the orthonormality of the vibrational wave functions,

the previous relation can be written:

I
tot

=
∑

i

ρi

∑

f

〈 v ′ | µ | v ′′ 〉〈 v ′′ | µ | v ′ 〉 =
∑

i

ρi〈 v ′ | µif · µif | v ′ 〉 (2.40)

In the case where all transitions are taken from the vibrational ground state, that is to say

we neglect the temperature, I
tot

is simply the square of the transition dipole moment integral

〈0′ | |µif |2 | 0′ 〉. In the present section, we will consider the general case of a any vibrational state

in the initial state.

In the frame of the Franck-Condon approximation, the electronic dipole moment is a constant

which can be taken out of the sum.

I
tot

=
∣

∣µif (Q′′
0)
∣

∣

2
∑

i

ρi〈 v ′ | v ′ 〉 =
∣

∣µif (Q′′
0)
∣

∣

2
(2.41)

Hence, we will have convergence of the spectrum when the condition
∑

i ρi
∑

f

∣

∣〈 v ′ | v ′′ 〉
∣

∣

2
= 1

is met.

In the framework of the Herzberg-Teller approximation of the electronic transition dipole mo-

ment, I
tot

cannot be so simply calculated. Considering the Taylor expansion of the electronic

transition dipole moment given in equation 1.29 and the general equation of I
tot

, it is straightfor-

ward to see that we will need the annihilation and creation operators of the second quantization

to obtain the sum rules. However, the development of µif in the Taylor series about the equilib-

rium geometry of the final state is not immediate because the annihilation and creation operators

obtained this way act on the quantum states of the final state and not the initial state. A simpler

expression for I
tot

can be formulated by using a Taylor series of µif about the equilibrium of the
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initial state instead of the final state, limiting the series to the second order:

µif (Q′) = µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k +

1

2

N
∑

k=1

N
∑

l=1

(

∂2µif

∂Q′
k∂Q

′′
l

)

0

Q′
kQ

′
l (2.42)

It is noteworthy that µif = µif (Q′) = µif (Q′′), however the equivalence of each term in the

right-hand side of equations 1.29 and 2.42 is not true.

Because the expression of I
tot

is now dependent on the chosen electronic state as the reference

of the Taylor expansion, we will use a subscript to represent this dependence, I
tot

Q′ for the initial

state and I
tot

Q′′ for the final state. Using equation 2.42 and limiting the Taylor series to the zeroth

and first orders, I
tot

Q′ can be written:

I
tot

Q′ =
∑

i

ρi〈 v ′ |
[

µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k

]

·
[

µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k

]

| v ′ 〉 (2.43)

The normal coordinates Q′
i are transformed as a combination of annihilation and creation op-

erators following the relation given in equation 1.53. We recall the properties of these operators,

taking into account the orthogonality of the vibrational states:

〈 v ′ | a†k | v ′ 〉 =
√

v ′
k + 1 〈 v ′ | v ′ + 1′k 〉 = 0 (2.44)

〈 v ′ | ak | v ′ 〉 =
√

v ′
k 〈 v ′ | v ′ − 1′k 〉 = 0 (2.45)

Since the vibrational wave functions are orthonormal to each other, the only way to have non-

zero terms is by applying the same number of times the annihilation and the creation operators on

the same quanta. As a consequence, in the framework of the Herzberg-Teller approximation, we

will have non-zero terms in two cases:

〈 v ′ | a†kak | v ′ 〉 = (v ′
k + 1) 〈 v ′ | v ′ 〉 = v ′

k + 1 (2.46)

〈 v ′ | aka
†
k | v ′ 〉 = v ′

k 〈 v ′ | v ′ 〉 = v ′
k (2.47)

From these remarks, it is straightforward to see that all terms with an odd power of any

normal coordinate Q′
k will be null. Hence, the terms µif · (∂µif/∂Q

′
k)Q′

k, as well as the terms

(∂µif/∂Q
′
k)Q′

k · (∂µif/∂Q
′
l)Q

′
l with l 6= k will be null.

To formulate completely the analytic limit, we will express it with respect to the Cartesian com-

ponents of the electronic transition dipole moment and its derivatives. The Cartesian coordinates

x, y, z will be represented by the greek letter τ . Taking into account the previous observations,

equation 2.43 can be written

I
tot

Q′ =
∑

τ=x,y,z

∑

i

ρi〈 v ′ | µif (Q′
0, τ)

2
+

N
∑

k=1

(

∂µif (τ)

∂Q′
k

)2

0

Q′
k
2 | v ′ 〉 (2.48)

with

Q′
k
2

=
~

2ω′
k

× [akak + aka
†
k + a†kak + a†ka

†
k]
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In the case of the Herzberg-Teller approximation, the analytic limit I
tot

Q′ is given by the expres-

sion:

I
tot

Q′ =
∑

τ=x,y,z

µif (Q′
0, τ)

2
+
∑

i

ρi

N
∑

k=1

(

∂µif (τ)

∂Q′
k

)2

0

~

2ω′
k

(2ω′
k + 1) (2.49)

A practical problem arises from the fact that we might not have the necessary data for the

Taylor series of the electronic transition dipole moment about the equilibrium geometry of the

initial state. In this case, it is also necessary to have an analytic limit depending on the final state,

I
tot

Q′′ . As previously, we replace the electronic transition dipole moment by its Taylor series about

the equilibrium geometry, this time of the final state, given in equation 1.29:

I
tot

Q′′ =
∑

i

ρi〈 v ′ |
[

µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

Q′′
k

]

·
[

µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

Q′′
k

]

| v ′ 〉 (2.50)

Let us use the inverse of the Duschinsky transformation given in equation 1.64 to express the

normal coordinates of the final state as a linear combination of the normal coordinates of the initial

state:

Q′′ = J−1Q′ − J−1K (2.51)

Introducing equation 2.51 into equation 2.50, we obtain:

I
tot

Q′′ =
∑

i

ρi〈 v ′ |
[

µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

N
∑

l=1

(

JT
)

kl
Q′

l +
(

JT
)

kl
Kl

]2

| v ′ 〉

=
∑

τ=x,y,z

∑

i

ρi〈 v ′ |
[

µif (Q′′
0, τ) +

N
∑

k=1

(

∂µif (τ)

∂Q′′
k

)

0

N
∑

l=1

(

JT
)

kl
Q′

l +
(

JT
)

kl
Kl

]2

| v ′ 〉 (2.52)

The square of the double sum in the bracket,

N
∑

k=1

(

∂µif (τ)

∂Q′′
k

)

0

N
∑

l=1

(

JT
)

kl
Q′

l +
(

JT
)

kl
Kl ,

is then expanded and only the terms with even powers of the normal coordinates Q′
k, including the

power 0 are kept. Replacing the remaining normal coordinates by the annihilation and creation

operators and following the method presented before, the analytic limit I
tot

Q′′ can be expressed as:

I
tot

Q′′ =
∑

τ=x,y,z

µif (Q′′
0, τ)

2
+
∑

i

ρi

N
∑

k=1

(

∂µif (τ)

∂Q′′
k

)2

0

N
∑

l=1

{

(

JT
)2

kl

~

2ω′
l

(2ω′
l + 1)

+ 2µif (Q′′
0, τ)

(

JT
)

kl
Kl +

N
∑

m=1

(

JT
)

kl
Kl

(

JT
)

km
Km

}

(2.53)

It is important to note that the exactness of the analytic limit I
tot

Q′′ given above depends on

the accuracy of the linear transformation approximation given in equation 2.51. If the Duschinsky

transformation does not correctly represent the normal coordinates of the final state with respect

to those of the initial state, then the analytic limit can be partially erroneous.
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Finally, let us consider the Taylor series of the electronic transition dipole moment about the

equilibrium of the geometry of the initial state up to the second order. Because of the complexity

of the analytic limit depending on the final state, we will only treat here the case of I
tot

Q′ . Replacing

µif in equation 2.40 by its Taylor expansion, one obtains:

I
tot

Q′ =
∑

i

ρi〈 v ′ |
[

µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k +

N
∑

k=1

N
∑

l=1

(

∂2µif

∂Q′
k∂Q

′
l

)

0

Q′
kQ

′
l

]2

| v ′ 〉 (2.54)

Firstly, let us consider only the operator in equation 2.54. After expanding it, we only keep

terms with even powers of each normal coordinate Q′
k. By doing this, we have the following terms,

for each Cartesian coordinate represented by τ :

µif (Q′
0, τ)

2
+

N
∑

k=1

{

(

∂µif (τ)

∂Q′
k

)2

0

Q′
k
2

+ 2µif (τ)(Q′
0)

(

∂2µif (τ)

∂Q′
k
2

)

0

Q′
k
2

+

(

∂2µif (τ)

∂Q′
k
2

)2

0

Q′
k
4

+
N
∑

l=1
l 6=k

(

∂2µif (τ)

∂Q′
k
2

)

0

(

∂2µif (τ)

∂Q′
l
2

)

0

Q′
k
2
Q′

l
2

+ 2

(

∂2µif (τ)

∂Q′
k∂Q

′
l

)2

0

Q′
k
2
Q′

l
2

}

Considering the terms above, we have 3 possible combinations of normal coordinates, Q′
k
2, Q′

k
4

and Q′
k
2Q′

l
2. After replacing the normal coordinates by the annihilation and creation operators,

it is unnecessary to fully develop the obtained polynomials. As a matter of fact, keeping in mind

the orthogonality of the vibrational wave functions, only the operators keeping unchanged the

vibrational states, that is to say without creating or annihilating any quantum, are to be taken into

account. As a consequence, we finally obtain the following expressions:

〈 v ′ | Q′
k
2 | v ′ 〉 =

~

2ω′
k

(

2v ′
k + 1

)

(2.55)

〈 v ′ | Q′
k
2
Q′

l
2 | v ′ 〉 =

~
2

4ω′
kω

′
l

(

(2v ′
k + 1)(2v ′

l + 1)
)

=
~

2

4ω′
kω

′
l

(

4v ′
kv

′
l + 2v ′

k + 2v ′
l + 1

)

(2.56)

In the case of Q′
k
4, more combinations of operators are possible. To resolve this problem, let us

develop the polynomial [ak + a†k]4:

[ak + a†k]4 = a4
k + 4a3

ka
†
k + 6a2

ka
†
k

2
+ 4aka

†
k

3
+ a†k

4

It is straightforward to see that only the middle term in the right-hand side of the previous

equation, 6a2
ka

†
k

2
can keep unchanged the number of quanta in the vibrational state. If we apply

this operator to v
′, we obtain:

〈 v ′ | 6a2
ka

†
k

2 | v ′ 〉 = 〈 v ′ | akaka
†
ka

†
k + aka

†
kaka

†
k + aka

†
ka

†
kak + a†ka

†
kakak + a†kaka

†
kak + a†kakaka

†
k | v ′ 〉

= v ′
k(v ′

k − 1) + v ′
k
2

+ v ′
k(v ′

k + 1) + (v ′
k + 1)(v ′

k + 2) + (v ′
k + 1)2 + (v ′

k + 1)v ′
k

= 6v ′
k
2

+ 6v ′
k + 3
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Using the previous relation, the term 〈 v ′ | Q′
k
4 | v ′ 〉 can be written:

〈 v ′ | Q′
k
4 | v ′ 〉 =

~
2

4ω′
k
2

(

6v ′
k
2

+ 6v ′
k + 3

)

(2.57)

Using equations 2.55, 2.56 and 2.57, the analytic limit I
tot

Q′ is given by the following expression:

I
tot

Q′ =
∑

τ=x,y,z

µif (Q′′
0, τ)

2
+
∑

i

ρi

N
∑

k=1

{

~

2ω′
k

[

(

∂µif (τ)

∂Q′
k

)2

0

+ 2µif (τ)(Q′
0)

(

∂2µif (τ)

∂Q′
k
2

)

0

]

(

2v ′
k + 1

)

+
~

2

4ω′
k
2

(

∂2µif (τ)

∂Q′
k
2

)2

0

(

6v ′
k
2

+ 6v ′
k + 3

)

+
N
∑

l=1
l 6=k

~
2

4ω′
kω

′
l

[(

∂2µif (τ)

∂Q′
k
2

)

0

(

∂2µif (τ)

∂Q′
l
2

)

0

+ 2×
(

∂2µif (τ)

∂Q′
k∂Q

′
l

)2

0

]

(

4v ′
kv

′
l + 2v ′

k + 2v ′
l + 1

)

}

(2.58)
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Chapter 3

Implementation inside gaussian

3.1 Introduction

The previous chapters presented the necessary theoretical background and calculations strategies

to compute the Franck-Condon integrals and finally simulate absorption or emission UV-visible

spectra. In this chapter, we will present a practical procedure to generate these spectra.

Most available programs to compute Franck-Condon integrals are standalone. Many of them

are direct implementations of calculation [45, 68] or prescreening [70, 81, 82] methods. Because

they are mainly intended for internal use, they are generally lacking a simple and easy-to-use

interface or are not distributed at all. This confers an exclusive character to them and often

makes difficult their usage as well as the interpretation of the data they produce. Moreover, being

a direct implementation of theoretical methods, the code is in general straightforwardly written,

without paying much attention to its optimization. However, considering the steep increase of

overlap integrals to compute with respect to the spectral range, (see figure 2.3 for an example of

the relation between the spectra range and the number of transitions), the program will need to

repeat a huge number of times very similar operations. Consequently, a lack of code efficiency can

have a significant impact on the computational costs to generate each spectrum, irrespective of the

theoretical performances of the method used to compute it.

In our work, we aimed at providing an efficient and simple procedure to compute spectra of

radiative transitions, accessible to non-specialists. Instead of implementing a standalone software,

we integrated it into the well-known quantum mechanical computational package gaussian [18].

We will briefly present this program in the next section, including a description of its internal

structure. For now, we will focus on the main objectives and the constraints we fixed or had to

follow to code our procedure. We will refer to it inside gaussian as a module, that we will call

franck. As mentioned before, the prescreening method we use her has been originally encoded

in a standalone software, fcclasses [95]. While the latter contained some remarkable algorithms,

a complete rewriting of the implementation with further optimization has been performed here to

allow a smooth and efficient integration into gaussian.

Two main constraints imposed by the integration are the necessity to fully blend into the

existing code and carefully manage the memory usage of our module. The first point means

adapting to the general framework and the available computational tools to avoid redundant code
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and efficiently use the resources and data available through the calculations done by other modules.

The memory requirement must also be carefully controlled as our data will have to “coexist” with

other information needed by gaussian inside the allocated memory. This problem is far more

complex that for a standalone program as we do not have any direct control on the memory

resources.

In addition to these imposed limitations, we also set several supplementary requirements for

our code to meet. We chose to write franck in a highly modular form. Avoiding a monolithic

structure, it is possible to simply and easily add new computational methods as well as maintaining

the code more efficiently. Also, ad hoc functions specialized in a particular task can be called only

if required by the calculation settings, avoiding real-time controls during calculations that might

hamper the efficiency of the procedure. This decision, however, causes a slight redundance of the

code.

We also wished for our procedure to be as automated as possible, requiring as little setting as

possible. Two objectives were pursued in this case. This choice makes the whole procedure easier to

handle even for users with little knowledge of the internal structure and theoretical background of

our code and the Franck-Condon calculations in general. While, for an experienced user, this means

being able to focus on the settings he or she wished to adjust without having to pay much attention

to the other parameters. To reduce to a minimum the necessary interventions from the user, it

means that all necessary options to perform the calculations can have a default value adapted to

most cases, often stemming from extensive benchmark studies, or that their value can be correctly

set by franck with respect to the studied systems. A major problem, discussed in sections 2.7 and

2.8, concerns the settings required by the evaluation methods. The current prescreening method

we implemented, described in section 2.8, needs a few parameters but they can be safely set to

generic values with satisfactory results in almost every case. Some values, such as the bounds of

the simulated spectrum, can be simply adjusted by the program once the energy of the transition

between the vibrational ground states of the initial and final states is known. In the following

description, we will present the parameters that can be adjusted and their default value.

This choice of simplicity in usage was also made for the output, limited to a “compact”, readable

form by default. After having summed up the main features chosen for the generation of the

spectrum, the procedure lists the intensity of the main transitions as well as the vibrational states

involved, and finally prints the spectrum. For the output just as the calculation, many parameters

are available to adapt the generation of the spectrum to a particular case which is not satisfactorily

treated with the default settings or to fine-tune it for a specific need of the user.

While satisfying these constraints, a particular attention was paid that the chosen solutions

would not impede at all - or to a minimum if unavoidable - the efficiency of our calculations. This

imposed sometimes to stray from a straightforward encoding of the formulae we described before in

chapter 2 and choose more suitable expressions, at the possible expense of their “direct” readibility

when controlling the code.

Following the modular structure of the code, this chapter will be organized as follows. The first

part will be centered on a general presentation of the integration inside the gaussian development

version (revision version G03). This will be done from a technical point of view with an emphasis
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on the way the user can interact with it and control the calculation. Then, the diverse functions

of the procedure will be globally presented by tasks, such as the extraction of data, the output or

the calculation of the transition dipole moment integrals.

3.2 Overview of gaussian and the interaction between franck and

the rest of the software

Based on the basic laws of quantum mechanics, gaussian is able to predict the energies, the molecu-

lar structures and the vibrational frequencies of molecular systems, as well as many other molecular

properties. It is commonly used to study molecules or reactions in a wide range of conditions, even

for systems which might be difficult or impossible to study experimentally, such as transition states

or compounds with a very short lifetime. The relative simplicity of usage along with its perfor-

mances and its versatility makes it a very interesting tool for quantum chemists and non-specialists.

From a programming perspective, gaussian is written in Fortran and its structure is highly

modular. While the knowledge of this language is unnecessary to understand the following pre-

sentation and the rest of the chapter, it is useful to know that a subroutine is a callable sequence

of instructions defined inside a Fortran programa. The software relies on a set of independent,

specialized subprograms, called links, that can be called if necessary. Three links, Link 0, Link 1

and Link 9999, have a central place in the execution of gaussian and are always called, whatever

the type of calculations required. Link 0 is the gaussian executable which is launched by the user.

It remains as a background task while gaussian is running. Soon after the initialization, Link 1 is

called. This subprogram has an interesting role for us because, among its many tasks, it is in charge

of the treatment of the instructions given in input by the user. The reading of those commands

and parameters followed by their interpretation leads to the creation of a route consisting of an

ordered list of links, that will be followed by the program. Finally, the last link, Link 9999 is in

charge of closing the calculation. It prints a summary of the results of the calculation in the output

and manages the final writing in the different working files of gaussian.

The complete list of the available links as well as their role would be long and out of the scope

of this presentation. However, it should be pointed out that the naming of a link follows an estab-

lished convention that gives a general idea of its function. Each subprogram, except links 0 and 1

described above, is an executable file called “lxyy.exe” or “lxxyy.exe”. The number x (or xx ) repre-

sents the overlay, that we could define as the identification number of a group of links which have

a similar purpose or aim at determining similar chemical properties. As an example, the overlay

5 (x = 5) concerns all the links that compute the Self-Consistent Field (SCF) wavefunction, and

links of the overlay 7 aim at calculating the first and second derivatives of the energy with respect

to nuclear coordinates. The number yy identifies uniquely the link inside the overlay.

In this work, we implemented our procedure inside the link l716. This link completes the eval-

uation of the energy derivatives by computing the harmonic vibrational frequencies and normal

modes from the force constants. An interesting feature implemented in this link is the possibility

aA subroutine can be seen as a small subprogram intended for a very specific task that needs to be repeated several
times.
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to read directly from the input file its own option in a specific, dedicated zone. Our module can

take advantage of this functionality to offer a large panel of parameters to set. To understand how

it is working, let us consider a simple generic input file.

%NProcs=Number_of_processors_to_use

%Mem=Memory_allocated_to_gaussian

%Chk=name_of_the_checkpoint_file

#P route section

Description

Charge Multiplicity

Atomic Types and Coordinates

The first two lines set the resources at the disposal of gaussian, that is to say the number of

processors and the memory it is allowed to use. The memory set here is then used as an upper

limit that cannot be exceeded by the whole of the variables contemporarily stored in the gaussian

working array. Depending on the type of calculation requested to gaussian, the program can have

very disparate needs in memory. For the same amount of available memory, the procedure franck,

when called, can have different resources at its disposal. To be able to work in most conditions and

also not hamper the other calculations that remain to be done, our procedure must use as little

memory as possible.

The third line instructs gaussian to store the values it has computed into a binary file called the

checkpoint file. This file contains quantities stored at machine precision that have been calculated

by gaussian as well as the options given in the input. The data it stores will be of importance

later for our computations.

These lines are options for the Link 0 and their order is not important. The rest of the input

is interpreted by Link 1 and is partitionned in sections defined as a block of text (instruction,

comments, data...) terminated by a blank line.

The line starting by “#” is called the route section. This is the part where the user can define

the type of calculations gaussian must perform along with the parameters it has to use. Three

important data are generally given there, the type of calculation such as geometry optimization

(keyword Opt), frequency calculations (keyword Freq), the method (Hartree-Fock, DFT, TD-DFT,

semi-empirical...), and the basis set if needed by the method. While default values exist for these

three fields, they are generally not adapted to the needs of the user and must be explicitly given.

The description, also called in gaussian the title section can be used by the user to write

comments on the calculation. It is not interpreted by the program.

Finally, the specifications of the molecular system are given, starting by the charge and multi-

plicity on a single line and a list of the atoms and their coordinates afterwardsb.

bThe molecule specification can also be given as a Z-matrix instead of Cartesian coordinates as described in our
example.

70



To enable the reading of additional options in the input file by the link l716, we add the key-

words VIBROT and READANHARM as suboptions of Freq. The link will now look for its own options

in a dedicated section at the end of the input filec :

%NProcs=Number_of_processors_to_use

%Mem=Memory_allocated_to_gaussian

%Chk=name_of_the_checkpoint_file

#P FREQ=(VIBROT,READANHARM) rest of the route section

Description

Charge Multiplicity

Atomic Types and Coordinates

"dinautil" section

The “dinautil” section is primarily intended to direct the calculations of spectroscopic properties

beyond the harmonic analysis of the rovibrational transitions.

The main options concerning the type of job run by gaussian and the necessary parameters to

carry it out as desired by the user remain in the route section at the beginning of the input while

the specific settings to simulate the Franck-Condon spectra are in the zone below, that we will refer

as the dinautil section. It is important to note that keywords cannot be freely interchanged between

these two sections. While the first one is interpreted by Link 1, the second one is analyzed by Link

716 and they do not share the same list of recognized keywords. Another remark, consequence

of the previous observation, is that the dinautil section can only be controlled by l716 and more

exactly a specific subroutine inside it, once it has been called. This means that in case of errors

in this line, the program can only indicate it after possibly long calculations. Consequently, it is

advisable to carefully set the options in the dinautil section to avoid such a problem.

Finally, for experienced users of gaussian that are using the dinautil section for the first time,

the keywords wrote there are not summed up by gaussian at the beginning of the output as it is

the case for the route section because it has not been read by Link 1 when the corresponding part

of the output is written. However, hese keywords can be found further in the output:

----------------------------------------------------------------------

Using the following non-standard input for DiNa:

"dinautil" section

However, this section is in the flow of the output and is not easily pinpointed, so it can be rather

cumbersome to find the settings used for the generation of the spectrum. Consequently, the main

parameters chosen by the user or set by default are summed up at the beginning of the output

written by franck.

cWe presented the dinautil section in the input after the listing of the atomic coordinates but it can be later de-
pending on the options, for example when isotopic substitution, external basis set, specific thermodynamic conditions,
etc. are requested by the user. In this case, it is after the listing of these data
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The generation of a spectrum requires in practice a single keyword in the dinautil section which

corresponds to the orders of the Taylor series of the electronic transition dipole moment shown in

equation 1.29 that must be taken into account:

• FC : computes the Franck-Condon spectrum (order 0 of the Taylor series)

• FCHT : computes the Franck-Condon Herzberg-Teller spectrum (order 0 and 1 of the Taylor

series)

• HT : computes the Herzberg-Teller spectrum (order 1 of the Taylor series)

It should be noted that we use the expression “Herzberg-Teller approximation” to refer gener-

ically to the first order of the Taylor expansion of the electronic transition dipole moment inde-

pendently of the state of reference. A stricter definition should restrict its usage to the case of the

initial state chosen as reference to match the original work of Herzberg and Teller [29]. Currently,

the procedure uses the equilibrium geometry of the final state for the Taylor expansion. As a result,

the HT approximation in this case will be different from the original HT one and corresponds more

precisely to a FCHT calculation. A more complete discussion will be done in section 3.9 and in the

study of the porphyrin in section 4.7.

From now on, we will focus on the options for the generation of theoretical spectra. The

corresponding keywords must all be given in the dinautil section, so their position in the input file

will not be given in the following discussions. For convenience, we will also adopt the acronyms

FC, FCHT and HT to describe the type of calculation of the transition dipole moment integrals

with respect to the approximation of the electronic transition dipole moment.

While one of the previously given keyword is enough to start the generation of a UV-vis spec-

trum, a supplementary option can be given to indicate the type of transition to consider.

• ABS/ABSORPTION (default) : simulates an absorption spectrum

• EMI/EMISSION : simulates an emission spectrum

By default, the spectrum of absorption transitions is generated. An emission spectrum can be

chosen with the keywords EMI or EMISSION.

Once the type of calculation, and optionally the type of transition to compute, has been found,

the procedure franck is called. While it is fully integrated into gaussian and uses, as far as pos-

sible, the computational tools and data it offers, our procedure works mainly as a plugin, connected

to the subprogram l716 by two subroutines. The first one interprets the keywords given in input

for the spectrum computation and controls the vailidity of the values given by the user. It also

sets the default values for the missing options and prints the main information in the output. For

example, in the case of an FC calculation and an absorption spectrum, the output is:
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**********************************************************************

Generation of the Franck-Condon spectrum

**********************************************************************

Approx. of the electronic transition dipole moment: FC

Type of transition requested: ABSORPTION

Another important task of this first subroutine is to extract the data needed to perform the

calculations. Finally, it calls the second subroutine which will manage the actual computations to

generate the final spectrum. These two subroutines constitute the central structure of franck and

most tasks are directed by one of them. The diagram in figure 3.1 shows the general structure of

our procedure and the task of the main subroutines.

Figure 3.1: Simplified diagram of the organization of franck

The blocks with a bright yellow background correspond to tasks performed by the first subrou-

tine (franck1), while those with a bright blue background are the tasks of the second subroutine

(franck2). The correction and recalculation of the input data, described in section 3.3, is partly

done by each subroutine, hence the gradient has a background color of the block. The computa-

tions of the transition dipole moment integrals are carried out by a specific subroutine depending

on the type of calculation requested, so a magenta background was used, that we can generically
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call franck3.

In this diagram, we also considered the case of calculations taking into account the second order

in the Taylor series of the electronic transition dipole moment, referred as D2 in the procedure.

Calculations at this level of approximation are really expensive in terms of computational time and

the expected gain in accuracy of the theoretical spectrum generally does not justify them. As a

result, we voluntarily set aside this option for now, the procedure for calculations including “D2”

being similar to HT albeit longer and more complex.

The first control sequence causes the end of the procedure if an erroneous value is given to an

option and the program is unable to correct it unambiguously. The second control will be discussed

in the following section and checks the validity of the data given in input. In addition to these

verifications, a constant supervision of the memory usage of the procedure is performed. The latter

is stopped if it has not sufficient resources to continue.

3.3 Extraction of the required data and adjustments

To perform the computations of the transition dipole moment integrals and to generate the re-

quested UV-vis spectrum, some data are needed for both the initial and final states:

• The atomic types and coordinates

• The atomic masses

• The energy of the equilibrium structure

• The vibrational frequencies

• The nuclear displacements caused by the vibrations

• Optionally (for HT and FCHT calculations), the electronic transition dipole moment and its

derivatives with respect to the final state

In this section, we will focus on the data sources and then the treatment of these data. These

information are all available from gaussian, requesting the calculation of the frequencies as the

type of job. However, gaussian can only treat one electronic state at a time while two are needed

to simulate the spectrum of an electronic transition. Data from another source than the current

calculation are needed. gaussian provides two files in output that we can use for this. The first

one is the standard readable output file and the second one is the binary checkpoint file, mainly

used to restart calculations.

Choosing the standard output file requires writing a specific function to read it and extract the

necessary data. Two problems are inherent to this approach. Firstly, the output is written to be

readable by a human. The precision is chosen to be enough for exploitation but can be insufficient

for our calculations. Some additional options such as FREQ=HPMODES placed in the route section can

be used to increase the number of digits printed for some values (here the normal modes), but the

improvement remains limited. Secondly, depending on the type of job, the chosen method and the

options set by the user, the layout of the output, as well as the displayed information, can strongly

change, making very difficult the conception of a simple and versatile reading subroutine.
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Nonetheless, using the gaussian output file as the source of data has several advantages. The

number of files that can be read is virtually unlimited and the data can be visually controlled by

directly reading the output. These characterstics make them simpler to deal with when developing

new features or adding new calculation methods, especially since they can be read by other, external

programs to confront the results.

The binary checkpoint file is also a really interesting source of data since values are stored inside

at machine precision. Moreover, it is a file whose construction is well organized to make possible

the re-use of the quantities inside it by gaussian, whatever the type of calculations required by

the user when the file has been created. However, such files are more complex to handle because

of their internal structure which depends partly on the processor architecture in the computer on

which the calculation has been run. This problem is mostly overcome by internal tools of gaussian

which are able to retrieve specific data in this file. However, these tools can only work correctly

if the checkpoint file was written on a computer with the same processor architecture as the one

on which gaussian is instructed to generate the spectrumd. To each piece of information, such as

the number of atoms, the atomic coordinates, the forces and the force constants, corresponds an

index. The reading tools of gaussian provide a framework which fills an array given in input with

the quantities found at a given index. However, this system can only handle one checkpoint file

throughout the run of gaussian.

Though the treatment of the checkpoint file appears simpler that for the gaussian output

files, finding the correct indexes can be challenging. This is accentuated by the fact that only

essential data are stored inside and other quantities such as the frequencies and the normal modes

must be calculated from them. As a consequence, the development of the procedure was started

reading external gaussian output files. While the procedure can now perfectly handle data from

the current calculation and the checkpoint files, the possibility to read the output files remains.

For now, the input data can be extracted from three kinds of source: current calculation (CALC),

checkpoint file (CHK), gaussian output file (READ). The source must be specified for both initial

(1) and final (2) states. By default, data for the initial state are taken from the checkpoint file

(CHK1) and those for the final state from the current run of gaussian (CALC2). If only one source

is given in input, the procedure attempts to “guess” the correct source for the other state by using

its default value first, and if chosen in input, the other source providing data at machine preci-

sion. Because the extraction from the gaussian output file requires a filename given in input, the

procedure never assumes that the missing data source is of this kind. If the checkpoint file or the

current calculation is chosen as the source for both states, the calculations end with an error. Data

for both states can be chosen from gaussian output files. In this case, the module expects two

filenames after the dinautil section.

NoReord FC READ1 READ2 (dinautil section )

File1

File2

dIn reality, the problem is more complex, as different processor types can “produce” compatible checkpoint files.
Nonetheless, it is advisable to convert the checkpoint files upon transfering them to use on different kinds of computers.
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In our example, and the following examples as well, we will write the keyword NoReord in

the dinautil section. This option is not directly associated to franck and the generation of the

spectrum. However, it has an influence on the procedure as it cancels the reordering of the frequen-

cies and normal modes in spectroscopic order, and keep the original order by increasing energy of

vibration.

Regarding the gaussian output files, if one of these file cannot be found, the procedure is

stopped and an error is raised.

The sources chosen for the calculations are printed in the gaussian output file of the current

job. In the case of default setting, this part of the input will be:

Data for initial state taken from: Checkpoint file

Data for final state taken from: Current calculation

In the case of information taken from gaussian output file, the filename is written.

When choosing the checkpoint file as one of the sources of data, one must be careful that the

ckeckpoint file is not rewritten during the gaussian calculations. This is for example the case if

geometry optimization is asked together with frequencies calculations. It is highly advisable to

run geometry optimization and frequencies calculations separately when intending to perform the

simulation of a UV-vis spectrum. The default procedure should be:

1. Optimization of the geometry of the initial state

2. Optimization of the geometry of the final state

3. Frequencies calculation for the initial state

4. Backup of the checkpoint file obtained before

5. Frequencies calculation for the final state + generation of the spectrum. The checkpoint file

obtained at the end of the frequencies calculation of the initial state is used as the checkpoint

file of this calculation (%Chk=checkpoint file obtained at point 3 )

Once the sources of data have been chosen and are valid, the data can be extracted. Three

controls are performed upon analyzing the retrieved quantities: all necessary data have been found

to carry out correctly the calculations, there is no imaginary frequency (the procedure handles only

stable states), and the molecular system is the same in the initial and final states. If one of these

criteria is not met, the job is stopped with an appropriate error raised. In the case of FCHT or HT

calculation, an additional keyword, NSTATE=value , allows to choose the excited state of interest.

By default, it is the first excited state (NSTATE=1). However, it should be chosen to be the same as

the state of interest chosen with the suboption Root of the keyword TD.

Next, the procedure maximizes the overall superposition of the structure in initial and final

states in two steps. Such a stage is important to reduce as much as possible the spurious effects

that the displacements due to translation and rotation can introduce in the spectrum. The transla-

tion can be exactly removed by superposing the center of masses of the two equilibrium structures

but the rotational effects can generally only be minimized by maximizing their mutual superposi-

tion. Firstly, the structure of the initial state is reoriented along the Eckart axes after the center of
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mass has been translated to the origin of the fixed spatial frame of reference. The corresponding

rotation matrix is used to reorient the matrices of the Cartesian forces and Cartesian force con-

stants. Secondly, the structure of the final state is superposed to the initial state’s one and the

rotation matrix is used to reorient the matrices of Cartesian forces, Cartesian force constants, and

the electronic transition dipole moment and its derivatives if present. In the gaussian output file,

franck describes the steps of the procedure and prints the new geometries of the initial and final

states.

Initial state structure is set in Eckart orientation.

Final state structure is superposed to it.

New orientation in initial state

[...]

New orientation in final state

[...]

The vibrational frequencies and normal modes are calculated from the matrices of forces and

force constants. Once all values have been extracted and calculated when necessary, the procedure

checks if modifications of some of them were requested by the user.

As a matter of fact, some values can be be corrected to improve the accuracy of the generated

spectrum. These adjustments regard the difference of energy between the electronic states which

can be set by the keyword ENERINP=value and the frequencies. There are two ways to modify the

frequencies. The first one is to replace those of the initial or final state, or even both together, by

new frequencies. This is done with the keywords InFrS followed by a digit representing the inital

(0) or final (1) state. The frequencies are listed after the dinautil section and before the filenames

of the gaussian output files if present. The lists can be written on an arbitrary number of lines

and end with a blanck line. To change the vibrational frequencies of the initial and final states,

one will use the keywords InFrS0 and InFrS1, respectively:

NoReord FC InFrS0 InFrS1

list of frequencies for the initial state

list of frequencies for the final state

Another method to adjust the frequencies is based on a mode-specific scaling enabled with the

keyword SclVec. The principle is described in the subsection below.

3.3.1 A simple scheme for anharmonicity

When considering the computational strategies and the methods to calculate the Franck-Condon

integrals, we limited our study to the harmonic approximations. However, improving the accuracy

of simulated spectra may require to go beyond harmonicity and to take into account anharmonic ef-

fects, couplings between modes, vibrational or vibronic resonances. As hinted before, the complete

treatment of the anharmonicity in the calculation of the transition dipole moment integrals requires
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a complex methodology which is beyond the purpose of the present document. Nonetheless, a par-

tial treatment of the anharmonicity could be taken into account relatively easily by using some

external data. As a first step in this direction, we chose to apply anharmonic corrections to the

vibrational frequencies of both ground and excited electronic states. The calculation of anharmonic

frequencies still represents a complicated task, even for medium size molecular systems. Although

successful approaches for vibrational state calculations have been already reported (including the

treatment of molecules in electronic excited states [97, 98] and the computation of Frank-Condon

factors [99]), significant problems remain, especially in relation to the dimensionality of the po-

tential energy surface. As the size of the molecular system increases, the number of calculations

needed to describe the anharmonic potential energy surface becomes so large that accurate fre-

quency evaluations based on full-dimensional variational approaches will not be practical at least

in the near future. On the other hand, in many cases the effect of anharmonicity can be accounted

for in an approximate manner: thus, for example, scaling of harmonic frequencies by a (uniform

or frequency dependent) factor tends to provide better agreement with experimental data. This

procedure has been extensively applied for calculations of vibrational frequencies in the ground elec-

tronic state, and adequate scaling factors are proposed in the literature [100–102]; however, much

less information is available concerning excited state vibrational frequencies, and the selection of

a specific scaling factor would at present be rather arbitrary. Therefore, the procedure introduces

a simple scheme to derive excited state mode-specific scaling factors starting from the ground

state ones: in turn, the latter can be obtained e.g. by means of perturbative anharmonic frequency

calculations [103], or derived by a comparison with easily accessible ground state experimental data.

To do so, three sets of frequencies are used. Harmonic frequencies of both electronic states

can be calculated directly from ab initio calculations and are used as a basis. They are directly

extracted from the input sources chosen by the user. The user provides a set of frequencies that will

replace those of the lower state in energy (initial state in absorption and final state in emission).

The reason of this choice comes from the original purpose of this method as presented previously.

As a matter of fact, it is generally only possible to carry out calculations including anharmonicity

for the ground state, hence the limitation. In this case, anharmonic perturbative [103] calculations

are performed for the ground electronic state and the obtained frequencies are given in input after

the dinautil section in the same way as with the keywords InFrS0 and InFrS1. Because the list

of frequencies is given by the user, they can be taken from a different source than anharmonic

calculations, for example experimental frequencies.

After franck has read the input values, it can use them to correct the frequencies in both

ground and excited electronic states. In order to derive mode-specific scaling factors for each

particular normal mode Qi, the frequency scaling vector α is computed first, using the formula

α′
i = ϑ′i/ω

′
i where ϑ′ is the vector of the anharmonic (or experimental) frequency, and ω is the

harmonic frequency. To proceed further, we assume that, if there is a one-to-one relation between

the normal modes Q′
i and Q′′

i of the initial and final state, the scaling factors α′
i and α′′

i are equal.

However, the normal modes are in general not coincident (J 6= I), and α′ cannot be transferred

directly to scale the frequencies of the final state. In other words, the scaling vector must be

adapted to the excited state frequencies. In the case of small-amplitude vibrations, this can be

obtained by expressing the normal modes of the excited state as linear combinations of the normal
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coordinates of the initial state, by means of the Duschinsky transformation. The Jik coefficients

can now be applied to derive the relation between the initial (k) and final (i) state mode-specific

anharmonicity scaling factors:

α′′
i =

N
∑

k

Jik
2α′

k (3.1)

An application of this procedure is described in section 4.8.

3.4 Control of the output

Before continuing with the treatment of the input data to compute the transition dipole moment

integrals and generate the UV-vis spectrum, we will present in this section the possibilities of

modifying the output to one’s own needs or wishes. These options do not have an influence on the

calculations of the overlap integrals and generally, will not increase the computational times.

A first option is available to print some of the basic matrices used throughout the calculations.

The printing is enabled by the keyword PRTMAT=value where value is an integer formed by digits

(1-7) representing one of the matrices J, K, A, B, C, D, E:

• 1 ← J: the rotation matrix, also called Duschinsky matrix. It provides information on the

variations of the normal modes between the initial and final states and show their mixing.

• 2 ← K: the shift vector. It gives an insight on the shift of the equilibrium positions of the

nuclei in the structure between the initial and final states.

• 3 ← A: one of the Sharp and Rosenstock matrices (see eq. 2.7). It gives in a first approxi-

mation information of the effect of the shift in frequencies on the vibrational progression for

the modes of the initial state.

• 4 ← B: one of the Sharp and Rosenstock matrices (see eq. 2.8). It gives in a first ap-

proximation information of the effect of the shift in equilibrium positions on the vibrational

progression for the modes of the initial state.

• 5 ← C: one of the Sharp and Rosenstock matrices (see eq. 2.9). It gives in a first approxi-

mation information of the effect of the shift in frequencies on the vibrational progression for

the modes of the final state.

• 6 ← D: one of the Sharp and Rosenstock matrices (see eq. 2.10). It gives in a first ap-

proximation information of the effect of the shift in equilibrium positions on the vibrational

progression for the modes of the final state.

• 7 ← E: one of the Sharp and Rosenstock matrices (see eq. 2.11), and the only one which

directly accounts for the interactions between the vibrational states of the initial and final

electronic states.

If one wishes to print the Duschinsky matrix J and the shift vector K, the option will be written

PRTMAT=12. The order of the digits is unimportant and doubles are ignored. However, because of

the limitations on the size of the integers in Fortran, the latter should be avoided. In our case, the
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corresponding part of the output will be:

--------------------------------------------------

Printing matrices as requested

--------------------------------------------------

Duschinsky Matrix

------------------------------

list of the elements of the matrix formatted on 5 columns

Shift Vector

------------------------------

list of the elements of the vector

In practice, the Duschinsky matrix written in the output file is the transpose of the matrix J

given in equation 1.64 and represents the normal coordinates of the final state in the basis set of the

normal coordinates of the initial state. In other words, the columns of the printed matrix represent

the normal coordinates of the initial state (Q’) while its rows correspond to those of the final state

(Q”).

As described in section 2.8, the prescreening method used in the procedure is independent

from the bounds of the spectrum. However, to print it, the procedure needs to know its char-

acteristics. The first two parameters are the energy of the lower bound (SPECMIN=value ) and

the energy of the upper bound (SPECMAX=value ). Their values, given in inverse centimeters, can

be defined relatively to the energy of the transition between the fundamental vibrational states

of both electronic states or absolutely. By default, the energies are relative and the spectrum

ranges from SPECMIN=-1000 cm−1 to SPECMAX=+8000 cm−1 for an absorption spectrum and from

SPECMIN=-8000 cm−1 to SPECMAX=+1000 cm−1 in the case of emission. Switching to absolute values

is done by inserting the keyword NORELI00 in the dinautil section. When doing so, both bounds

are expected to be in absolute energies. Hence, it is highly advisable to redefine both SPECMIN and

SPECMAX in this case. A control will check that the lower bound of the spectrum has a lower energy

than the upper bound (SPECMAX > SPECMIN). If not, the procedure stops and an error is raised.

Another important characteristic of the spectrum is the interval of energy separating two points

of measurement. The lower is this interval, the higher is the resolution of the spectrum. By default,

the value, defined with the keyword SPECRES, is set to 8 cm−1. It is important to note that a really

high resolution can greatly hamper the speed of the calculation, especially in association with the

full-width at half-maximum used for the convolution described below.

In reality, we never obtain stick absorption or emission spectra but continuous ones comprised

of bands. The reasons of the broadening of the spectral lines over a range of frequencies instead

of a single frequencies are generally manifolds. A first, natural broadening is a consequence of the

uncertainty principle which states that the shorter is the lifetime ∆t of a system in an excited state,

the higher is the imprecision in the energy ∆E of this state, following the relation ∆E∆t ≥ ~/2.

As a consequence, the states involved in a transition whill have slightly different energies in each
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molecule. Such a broadening is homogeneous and the distribution is represented by a Lorentzian

distribution. Two other effects are due to the conditions of the system when the analysis are carried

out. When exposed to temperature, each molecule is in motion if the thermal energy is sufficient.

Molecules traveling toward the detector of the spectometer will have transition frequencies which

differ from those at rest or moving away. The higher is the temperature, the larger is the distribution

of velocities, causing an additional broadening of the spectral bands. This phenomenon is especially

present in liquid phase and leads to an inhomogeneous broadening represented with a normal

distribution (Gaussian function) In this case, the presence of nearby particles also cause interactions

that will modify even more the energies of transition for each system, leading to an homogeneous

distribution.

To account for these effects, the theoretical spectrum can be convoluted with a Gaussian-type

exponential or a Lorentzian function. The Half-Width at Half-Maximum can be set with the

keyword SPECHWHM. By default, it is 135 cm−1. It should be noted that the values for these four

options, SPECMIN, SPECMAX, SPECRES and SPECHWHM are not directly summarized in the output of

franck, which means that only non-default parameters are printed when the dinautil section is

rewritten (see section 3.2 for more details). The resolution should be chosen with care in relation

with the desired convolution of the spectrum. A high resolution with a large width of bands can

be extremely time-consuming.

In our procedure, we assumed that the inhomogeneous breadening is dominant, so the convo-

lution is obtained with a normal distribution. However, a Lorentzian function will be added in the

future to simulate a natural broadening.

The probability density is represented by a Gaussian function fG :

fG(ω) =
1

ς
√

(2π)
exp
(

−(ω − ω0)2

2ς2

)

(3.2)

where ω0 is the expected value, in our case the exact energy of the transition, and ς is the

standard deviation. The standard deviation is related to the half-width at half-maximum with the

expression:

ς =
SPECHWHM
√

2 ln(2)

Replacing ς by SPECHWHM, the Gaussian function can be written:

fG(ω) =
ln(2)

SPECHWHM
√
π

exp
(

− ln(2)(ω − ω0)2

SPECHWHM2

)

(3.3)

About 99.7% of the surface is covered within an interval of 6 standard deviations about the

center of the peak ω0 (ω = 3ς)e. This corresponds to a range of about 5.1×SPECHWHM. A safer zone

covering 3.5× SPECHWHM on each “side” of the expected value is chosen to represent our Gaussian

function. In this case, the number of intervals (Linewidth) on which will span a single band is

given by the formula:

Linewidth = 7 ∗
⌊

SPECHWHM

SPECRES

⌋

where ⌊x⌋ represents the floor function.

eThis value corresponds to the confidence interval and is given by multiple tables available in literature.
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For each transition, the intensity of the line of absorption or emission, σv ′,v ′′ is calculated thanks

to the formula given in equation 1.20 or 1.21, respectively:

Absorption : σv ′,v ′′ =
4π2ω

3c
ρ
v
′

∣

∣〈 v ′ | µif | v ′′ 〉
∣

∣

2
δ(Ev ′′ − Ev ′ − ~ω0)

Emission : σv ′,v ′′ =
4ω3

3~c3
ρ
v
′

∣

∣〈 v ′ | µif | v ′′ 〉
∣

∣

2
δ(Ev ′′ − Ev ′ + ~ω0)

where ρ
v
′ is the Boltzmann population of the vibrational initial state, Ev ′ and Ev ′′ are the

energies of the initial and final vibronic states, respectively, and ω0 is the energy of the transition.

As written before, the calculated spectrum is not continuous but discretized in a finite number

of measuring points NPoints equal to:

NPoint =

⌈

SPECMAX− SPECMIN

SPECRES

⌉

where ⌈x⌉ represents the ceil function.

While the center of the band remains the energy of the transition ω0, in practice, the center

on the discretized spectrum is chosen to be the higher measuring point with an energy lower than

ω0. Starting from this point, the band is sampled on the Linewidth/2 measuring point before and

after the central point. For each sampling point i, the intensity corresponding to the convolution

σc
v ′,v ′′ is calculated with the relation:

σc
v ′,v ′′ = σv ′,v ′′ × ln(2)

SPECHWHM
√
π

exp

[

ln(2)

(

ωi − ω0

SPECHWHM

)2
]

where ωi is the energy of the measuring point i.

Because of the sampling to compute the spectral bands, a small interval of energy between

measuring points associated to a large half-width at half-maximum will cause a large number of

calculations for each transition. Nonetheless, a resolution too low can slightly distort the accuracty

of the final spectrum.

It is noteworthy that a different spectrum is calculated for each class Cn as well as the transition

between the fundamental vibrational states, treated as a single class C0. The spectra are summed

to give the overall spectrum:

+------------------+

| Final Spectrum |

+------------------+

Axis X = Energy (in cm^-1)

Axis Y = Intensity

------------------------------------------------------------

Axis_X Axis_Y

It is possible to request that each spectrum is printed with the keyword ALLSPECTRA. A new

section following the general spectrum is created in the output file.

82



+--------------------+

| Specific Spectra |

+--------------------+

Number of spectra: xx

-- Spectrum num. 1: I00 spectrum --

-- Spectrum num. 2: Overtones spectrum --

-- Spectrum num. yy : yy -states combinations spectrum --

-- Previous line is repeated until the last class considered

in the calculations

------------------------------------------------------------

Axis_X Axis_Y

xx is the number of spectra, that is to say, the highest class + 1. All the spectra are listed one

after another with an horizontal dashed line to separate each one.

Only the convoluted spectra are printed. Two ways are possible to obtain the stick spectrum.

The first one is to choose SPECHWHM in order for Linewidth to be equal to 0. It is enough to define

it lower than SPECRES. Another method is to generate it from the assignment printed in the output

file.

Indeed, to facilitate the analysis of the UV-vis spectra, the procedure prints the transitions

whose probability is above a given threshold. By default, its value is set to 1% of the squared tran-

sition dipole moment integral 〈 0′ | µif | 0′′ 〉. It can be changed with the keyword PRTINT=value

where value is used as a factor of
∣

∣〈0′ | µif | 0′′ 〉
∣

∣

2
to define the minimum probability a transition

must have to be shown. The list of all transitions satisfying this condition is given in a specific

section introduced by the title “Overlap integrals computation” with the following structure.

Firstly, the energy corresponding to the transition between the fundamental vibrational states is

printed in inverse centimeters. This energy is used as the reference, the transition energies being

relative to it. Then, the listing of the transitions is divided into sections corresponding to the

classes ordered by increasing number of excited oscillators, starting to 0. For each transition, five

pieces of information are given: the non-zero quantum numbers of the initial state v
′, the non-zero

quantum numbers of the final state v
′′, the relative energy of the transition ω0 − (E0′′ − E0′), the

squared transition dipole moment integral
∣

∣〈 v ′ | µif | v ′′ 〉
∣

∣

2
and the intensity of the spectrum line

σv ′,v ′′ .
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--------------------------------------------------

Overlap integrals computation

--------------------------------------------------

Energy of the 0-0 transition: E(0,0) cm^(-1)

Notes about the overlap integrals description:

- DeltaE is the relative energy of the transition (wrt 0-0)

- TDMI**2 is the squared transition dipole moment integral

- Intensity is the line intensity (absolute value)

[...]

-- To: single overtones --

Initial State: <list of the excited modes i: i^v |

Final State: |list of the excited modes i: i^v >

DeltaE = value | TDMI**2 = value , Intensity = value

........................................

By adding the intensities given for each transition with respect to the energy of the latter, it is

possible to compute the stick spectrum. Only the transition with a low intensity are discarded, so

that the resulting stick spectrum should have a satisfactory accuracy. More transitions are obviously

obtained by lowering the threshold using PRTINT. However, the printing of the information is done

directly after the transition dipole moment integral has been evaluated. This permits to avoid

increasing the storage by saving in memory the intensities to write them later in the output. The

drawback of this choice is that, the lower is the threshold, the more interaction the procedure will

have with the output. This time-consuming operation can noticeably slow down the calculations

so it is advisable to avoid setting a very low threshold. Additionnally, it is possible to use a high

threshold to lighten the output when the aim is to assign the most intense transitions only. It is

important to note that in the case of weakly-allowed or dipole-forbidden transitions, the intensity

of the reference transition can be really low. Consequently, the default parameter can give a very

long list of transitions with very low probabilities.

3.5 Calculation of the required matrices

Going back to the calculations, the procedure, after the extraction and recalculation of the data,

follows a common trunk at first. This part is centered on the construction of the generic matri-

ces which will be mostly used in the recursion formulae to compute the overlap integrals. The

transformation matrices L are computed from the nuclear displacements caused by the vibrations.

As discussed before, an important property of these matrices is the orthonormalization of their

columns, to that we have the relation:

NA
∑

i=1

∑

τ=x,y,z

Liτj
2 = 1
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To meet this requirement, the elements of L are calculated with the following formula:

Liτj =

√
mi δn iτj

∑NA

k=1

∑

̺=x,y,z mk

(

δnk̺j

)2 (3.4)

where δn iτj represents the displacement of the nucleus i along one Cartesian coordinate τ in-

duced by the vibration j. mi is the mass of atom i. Practically, i and τ are accounted for in a

single column of dimension 3×NA.

Once L′ and L′′ have been calculated, the Duschinsky matrix is obtained using the relation

J =
(

L′
)

T
L′′. It is possible to ignore the mode coupling so that the rotation matrix is equal to

identity with the keyword JIdent. The principle, however, is different from the scheme used by

Ervin et al. [81, 87] in their parallel mode approximation. The model Duschinsky matrix in this

case is used to simulate a spectrum when the rotation of the normal modes is purely not taken into

account. Because of the difficulty encountered by Ervin et al. in their approximation of the J with

several systems, a simpler, but less accurate, procedure was devised here. Its primary objective

was to simulate the behavior of simple models such as the Linear Coupling Method described more

precisely in the Introduction of this document, which was used as a reference in section 4.8. Hence,

this approximation of the Duschinsky matrix can be used to compare and gain a better under-

standing on the consequences of ignoring, or inversely taking into account, some characteristics of

the potential energy surface of the excited state.

K is then calculated from the relation K =
(

L′
)

T
M1/2S where S is the difference of equilibrium

geometries in Cartesian coordinates between the initial and final state (S = X′
eq −X′′

eq). The cal-

culations of the transition dipole moment integrals are all performed in atomic units, which require

some conversions from the units used by gaussian (such as the atomic mass unit).

The electronic transition dipole moment and its derivatives are then evaluated depending on the

type of calculation requested by the user. In case of FC calculations, the zeroth-order of the Taylor

series of µif with respect to the normal coordinates of the final state given in equation 1.29 can be

considered as a constant scaling factor for the line intensities in the spectrum. As a consequence,

its exact value is ignored and the norm of µif (Q′′
0) is currently set to unity.

When dealing with an approximation beyond the Franck-Condon principle, the procedure re-

quires the electronic transition dipole moment and its derivatives with respect to the normal modes.

The latter are not directly available from gaussian which gives the derivatives with respect to the

displacements in Cartesian coordinates, ∂µif/∂X
′′. The relation between these derivatives and

those with respect to the normal coordinates is straightforward, using the transformation given in

equation 1.28:
(

∂µif (τ)

∂Q′′
k

)

0

=

NA
∑

l=1

∑

̺=x,y,z

Llk̺M
−1/2
kk

(

∂µif (τ)

∂X ′′
l̺

)

0

(3.5)

where Mkk is an element of the diagonal matrix M which is equivalent to the mass mk used in

equation 3.4.

Currently, the procedure only deals with the Taylor expansion of the electronic transition dipole
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moment about the equilibrium geometry of the final state. As a result of this choice, it does not

expect this information in the data of the initial state. For example, if the calculation of an emission

spectrum from an electronic excited state to the ground state is requested by the user, it will look

for the derivatives of the electronic transition dipole moment in the source file of the latter. If they

have only been calculated with respect to the excited state, then the procedure will be unable to

generate the FCHT/HT spectrum. Such an issue can be resolved by calculating the derivatives

also in the ground state but this slightly reduces the desired flexibility of our procedure. It should

be noted that this has not been a problem for our studies presented in chapter 4. Nonetheless,

we describe in the conclusion of this chapter a scheme currently in development to overcome this

limitation by allowing the procedure to extract from any data sources and carry out correctly the

calculations.

It should be noted that depending on the method chosen in the route section, the derivatives of

the electronic transition dipole moment might not be calculated. This behavior can be changed by

switching from analytic frequencies to numerical frequencies. When choosing to extract the input

data from the gaussian output files, one should be careful that all necessary data to evaluate

the derivatives of µif are printed. This problem can happen when the molecule has a symmetry

different from C1. In this case, only a part of the derivatives will be written, the other ones being

infered thanks to the symmetry. However, franck is currently not able to do so. Consequently,

when planning to use the output file as input data for the simulation of spectra, it is advisable to

disable the treatment of the symmetry with the option NoSymm in the route section. Unfortunately,

the drawback of this setting is an increase of the computational costs.

In the gaussian output file, the values of ∂µif/∂X
′′ are not directly available. They are

recovered by finite differences, the electronic transition dipole moment being computed after each

displacement of an atom at a time along a single Cartesian coordinate. Practically, µif (X′′
eq) is

calculated first and printed. Then, the first atom is slightly displaced along the x axis by a quantity

−δstep and the corresponding µif (X ′′
1x−) is calculated. The same atom is then displaced from its

equilibrium position along the same axis, this time by a quantity +δstep and µif (X ′′
1x+) is calculated.

The same procedure is done along the axes y and z and for all atoms of the system. The derivatives

of µif with respect to the Cartesian coordinates are then obtained with the relation:

(

∂µif (τ)

∂X ′′
kτ

)

0

=
µif (X ′′

kτ+)− µif (X ′′
kτ−)

2× δstep
(3.6)

δstep is a constant set by default at 10−3Å. When evaluating the first derivatives, franck

assumes that δstep has this value.

Unfortunately, standard calculations do not provide a way to compute easily the second deriva-

tives of the electronic transition dipole moment. Since only one atom is moved at a time, the

available data can only permit to evaluate the diagonal elements of these derivatives. Hence, in the

current implementation of the procedure, the terms of the second-order of the Taylor series of the

electronic transition dipole moment, and so the calculations at the level of approximation “D2”, are

restricted to the diagonal terms. The evaluation of these derivatives is possible by supposing that

the first derivatives are obtained through finite differences by displacing the atoms of a distance

δstep/2 instead of δstep , leading to the coordinates X ′′
kτ(+/2) or X ′′

kτ(−/2) instead of X ′′
kτ+ or X ′′

kτ−,
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respectively. Applying twice the finite differences, one can write:

(

∂2µif (τ)

∂X ′′
kτ

2

)

0

=
∂

∂X ′′
kτ

(

∂µif (τ)

∂X ′′
kτ

)

0

=
∂

∂X ′′
kτ

(

µif (X ′′
kτ(+/2))− µif (X ′′

kτ(−/2))

δstep

)

=
µif (X ′′

kτ+)− µif (X ′′
eq)− (µif (X ′′

eq)− µif (X ′′
kτ−))

δstep
2

=
µif (X ′′

kτ+) + µif (X ′′
kτ−)− 2µif (X ′′

eq)

δstep
2

(3.7)

While being partial, accounting for the diagonal terms of the second derivatives can still pro-

vide a refinement of the accuracy of the generated spectrum, particularly in the case of symmetric

molecules. This also sets a basic framework for a generalization taking into account all elements

of the second derivatives. However, the computational costs at this level of approximation of the

electronic transition dipole moment are quite high so that the full treatment of the second deriva-

tives should be reserved to very specific cases.

The rest of the common trunk compute the Sharp and Rosenstock matrices A, B, C, D and E

and finally the overlap integral between the fundamental vibrational states of the initial and final

states 〈 0′ | 0′′ 〉. This part is a direct implementation of the formulae given previously.

The treatment of the transitions is not directly done by the second central subroutine franck2

but by specific subroutines (that can be generically called franck3) which are called depending on

the type of calculation as shown in figure 3.1.

3.6 General structure to organize the computation of the transi-

tion dipole moment integrals

As hinted before, franck has several, similar subroutines to manage the calculations of the tran-

sition dipole moment integrals depending on the highest order considered in the Taylor series given

in equation 1.29. Indeed, the higher the order, the more calculations are necessary to evaluate the

intensity of a single transition. Without even considering the recursion, equation A.1 shows that

only one overlap integral is needed for FC calculations, while 2N are required for HT calculations

and 4N2 for D2. While, in the current procedure, D2 is limited to the diagonal terms, theoretically

lowering its order of magnitude to N , the recursion formulae for some terms such as 〈 v ′ | v ′′ + 2′′k 〉
are more cumbersome than for HT calculations. Based on this observation, it is obvious that to be

as efficient as possible, our calculations must be restricted to the necessary terms. Different ways

are available to tackle the matter such as using conditional blocks inside the calculations. However,

there are several disadvantages to this approach. The first one is that the tests must generally be

performed for each transition. For a huge number of transitions, as it is the case in most simula-

tions of UV-vis spectra, this can noticeably hamper the efficiency of the computations. A second

problem is related to the difficulty to optimize the calculation schemes because each “order” must

be treated separately, thus preventing the contemporaneous treatment of similar overlap integrals

from different orders. Finally, the memory requirements are not identical for each case and an

optimum management will demand additional tests. The direct consequence for the code is a risk
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of overload, reducing its readibility. This makes it more difficult to maintain it or extend it.

In our implementation inside gaussian, the choice was made to avoid this kind of tests and

to design specific routes depending on the highest term of the electronic transition dipole moment

Taylor series, FC, HT or D2. The structure of each branch is very similar and is shown schemat-

ically in figure 3.2. An obvious drawback of this method lies in the similarity of these structures

and the redundance they create in the program source. This is unavoidable in this case and has

a consequence on the easiness to maintain and develop the code as all branches must be treated

together while retaining the particularities of the calculations, such as a slightly different memory

usage and construction. These specificities will be discussed in greater details in section 3.7. From

experience, be it the overall performances of the procedure or the clarity of the code, the incon-

venience described previously is largely counterweighted by the possibilities offered by the division

of the treatment of the transition dipole moment integrals in parallel segments. Furthermore, this

partition also allows a tailoring of the calculations with respect to the levels of approximation or

also devise specific schemes to increase the efficiency for a particular branch.

Figure 3.2: General diagram of a

branch. For each class, a specific

spectrum is generated and the over-

all spectrum progression is printed

at the termination of the class.

The general procedure is as follows in each branch.

Firstly, the transition dipole moment integral between the

fundamental vibrational states, 〈 0′ | µif | 0′′ 〉, is calcu-

lated and the convoluted spectrum is generated (spectrum

C0). Then, the subroutines for the calculations of the classes

C1 and C2 are called in succession. Finally, a generic subrou-

tine is called to treat separately each class Cn until a maxi-

mum n is reached. This limit can be chosen by the user with

the parameter MAXBANDS=value or decided by the program

upon some criteria. By default, the highest class is C7 but it

might happen than going up to this limit or the one set by the

user is impossible or pointless. Automatically, the program

will also lower MAXBANDS to N if it is accidentally given higher

than the number of normal modes. While performing the pre-

screening, for a given class Cn, the procedure can obtain an

insufficient number of modes with a non-zero maximum num-

ber of quanta v
′′
max

. In this case, it stops the calculations and

does not try the higher classes. This problem is illustrated

with the molecule SF−
6 presented in section 4.3. Finally, it

is also possible to set a minimum improvement in the spec-

trum progression that must be achieved between two classes

Cn and Cn+1. The spectrum progression (SP ) represents the

fraction of the analytic limit I
tot

defined in section 2.9 which

has been recovered summing all the squared transition dipole

moment integrals weighted by the Boltzmann population of the initial state calculated up to now.

Since the Taylor series of the electronic transition is about the equilibrium geometry of the final
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state in our calculation, we use I
tot

Q′′ as the reference analytic limit:

SP =

∑

i ρi
∑

f

∑

τ=x,y,z〈 v i | µif (τ) | vf 〉2

I
tot

Q′′

(3.8)

To keep a consistent notation with respect to the summation indexes, we used the notations v i

instead of v
′ and vf instead of v

′′.

The spectrum progression is evaluated after the completion of each class (including C0) and

printed in the output:

--------------------

++ Spectrum progression: percentage of completion

This result is written in the section dedicated to the assignment, right after the list of the most

probable transitions and just before the line indicating the treatment of the following class.

By default, there is no minimum spectrum progression required between two following classes.

A different value can be set with the parameter SPDelta=value . If SPDelta is greater than 0, the

calculations can be terminated if one of the three conditions is met: the progression between two

classes (SPn − SPn−1) is lower than the threshold SPDelta, the highest class CMAXBANDS has been

handled, or an insufficient number of non-zero maximum quantum number has been chosen by the

prescreening method. It is noteworthy that the current implementation of the method does not

anticipate the value “SPn − SPn−1”. Consequently, the gain of spectrum progression in a given

class Cn is only known after it has been entirely managed, which means that if SPDelta is the first

condition to be met, the procedure will stop after the class Cn for which SPn − SPn−1 < SPDelta.

If the computations end for one of the reasons given above before class MAXBANDS has been done,

franck indicates the cause of the termination in the output and ends. In that case, it does

not raise an error but returns the number of the last class it has completely treated. This value

is used by the main subroutine to print the specific spectra required through the option ALLSPECTRA.

It is important to note that except C1 and C2, necessary for the prescreening methods, the other

classes are independent from each other. An interesting possibility is to treat them in parallel

to speed up the generation of the spectra. Technically, however, this parallelization brings up

several difficulties ranging from minor to complex ones. A first, noticeable one is a more untidy

output at the level of the transition assignment. Indeed, the printing of the information about the

most likely transitions follows immediately the calculation of the corresponding transition dipole

moment integral. Consequently, it is no more possible to partition them by class such as in a serial

approach. A possible solution is to print the class with each assignment so that the output can

be simply post-processed with a simple script. More serious matters concern the handling of the

procedures to force the early termination of the calculations and the memory management which

becomes more difficult, the resources needs automatically increasing. The control procedures mean

here the threshold on the spectrum progression and the insufficient number of quanta to perform

the calculations. The latter is not really cumbersome as the treatment of the class is terminated

immediately after the evaluation of the maximum quantum numbers has been performed. Let us

suppose that all classes Cn with n ranging from 3 to MAXBANDS are dealt contemporaneously and
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the prescreening finds a number of excited modes Nexc lower than MAXBANDS. Then all the classes

above Nexc are done in a short time, the prescreening being far less expensive in computational

time than the actual calculations of the overlap integrals. If the number of available processors

is lower than “MAXBANDS - 2” then the classes higher than Nexc that should have been treated

later once some processors have been freed do not even need to be considered. The matter of

the spectrum convergence is more complex because of the simultaneous handling of the classes. It

is straightforward to see that the number of combinations of the excited modes, represented by

the binomial coefficient NCn, increases with the class until it reaches a maximum when half of the

normal modes are excited. In practice, it is pointless for a vast majority of systems to go beyond the

class C10 . This means that for a molecule with more than 9 atomes, the number of combinations,

and so the computational costs, will keep increasing with the class. If gaussian is run in parallel

on similar processors, one should expect class C3 to finish before C4 and so on until the last class.

A simple strategy would be to evaluate the spectrum progression from the previous class once the

treatment of a class Cn has ended (∆ = SPn − SPn−1). In this case, if the progression relative

to the class Cn is lower than SPDelta, the calculations are stopped at this point for the higher

classes, preventing them to continue until their normal termination. While it can technically be

done, this creates some undesirable side-effects. For example, if transitions of “aborted” classes

have been printed in the section of output dealing with the assignment, the corresponding spectrum

should be printed. However, the latter is incomplete, which makes its analysis rather approximative.

Consequently, it is preferable not to print them to avoid misinterpretations between two calculations

when the treatment of the same class has been stopped at different moments or one of them has

been terminated correctly in only one case. Currently, the safer choice is to deactivate SPDelta

when a parallel calculation is run.

It is also obvious that a storage array is necessary for each class to save the computed overlap

integrals used in the recursion formulae. A direct consequence is an increase in memory requirement

when the parallelization run. However, as hinted at the end of sections 2.6 and 2.8, we restrict the

storage to small subsets so that the storage really needed for a class is indeed very limited. The

creation of the subsets will be discussed more in-depth in the following section.

3.7 Management of the classes and calculation of the transition

dipole moment integrals

As mentioned above, the classes are treated in three groups, C1, C2 and Cn which corresponds to

all the classes starting from C3. This partition follows the principle of the prescreening method

described in section 2.8 and discussed in the following section. Here, we will suppose that the

limit v
′′
max

is known and will focus on the calculation of the transition dipole moment integrals.

While the partition in three kinds of classes follows the general scheme of the evaluation method

implemented in franck, the structure to compute the spectral lines is designed to be generic, so

that implementing a new method or modifying this one can be done with little consequences on

the calculation procedure.

In each class, the transitions are treated by groups corresponding to a specific combination of

excited modes of the final state. In the case of C1, we have N sets, one for each mode of the final

90



state. For C2, there are N×(N−1) sets to represent the combinations of 2 modes of the final state.

For higher classes, the problem is similar but the number of combinations depend on the non-zero

maximum quantum numbers evaluated through the prescreening. This number NC is given by the

relation:

NC =
N !

(N − n)!n!

where n represents the class and N the number of non-zero maximum quantum numbers eval-

uated through the prescreening.

Each set is treated separately and independently. Hence, the storage array for the overlap

integrals can be reset after each set has been terminated. In the most simple form, the sets can be

listed with the use of nested loops taking care to avoid double counts. In the following discussion,

we will restrict our study to the transitions from the fundamental vibrational state of the initial

state, discarding in this way the thermal effects. Now, let us consider a generic class Cn and some

combination of n excited modes, thus choosing a single set of the class. These selected modes will

generate a subset v
′′
max

of dimension n, containing only the non-zero maximum quantum numbers

of the final state. We also need to define a second set of dimension n, v
′′
id

, which will store the

proper index of each excited mode. For example, if we consider the first mode of the final state, j,

taken in the set, its number of quanta is given by the subset v ′′
1 and its order in the entire list of

the normal modes of the final state can be retrieved inside the set by v ′′
1id

, so that we can write the

equivalence v ′′(v ′′
1id

) = v ′′
j .f The number of transitions to compute in the set is the product of the n

maximum quantum numbers to take into account for each mode i of the set, v ′′
imax

. To evaluate the

intensity of one of these transitions, the equation of the transition dipole moment integral given in

equation A.1 is used, taking into account all the terms needed for the type of calculation requested

by the user. We will study here the most common types of calculation, starting by FC and then

the case of FCHT and HT, which are in practice equivalent in term of computational costs.

In the case of FC the transition dipole moment integral is

〈 0′ | µif | v ′′ 〉 = 〈 0′ | v ′′ 〉 (3.9)

We assumed here |µif (Q′′
0)| = 1 as done by our procedure. Using the recursion formula given

in equation 2.31, equation 3.9 can be written:

〈 0′ | µif | v ′′ 〉 =
1

√

2v ′′
k

[

Dk〈 0′ | v ′′ − 1′′k 〉+
√

2(v ′′
k − 1) Ckk〈 0′ | v ′′ − 2′′k 〉

+

N
∑

l=1
l 6=k

√

2v ′′
l Ckl〈 0′ | v ′′ − 1′′k − 1′′l 〉

] (3.10)

We presented here the general case but our set is limited to n non-zero quantum numbers at

most. It is straightforward to see that the summation will only run on the modes of the set. We

define v
′′ a subset of v

′′ containing only the modes selected in the set. Additionally, the recursion

can be carried out with any mode i as the starting differentiation (see equation 2.24), so that it

can be chosen equal to the last mode n of the set with a non-zero quantum number for simplicity.

fv ′′

1id
in v ′′(v ′′

1id
) represents an index of v

′′.This notation was chosen here to avoid a pile-up of subscripts
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Finally, it can be pointed out that all overlap integrals required in equation 3.10 are relative to

| v ′′ − 1′′k 〉. We denote the latter with a circle above v so that | v̊ ′′ 〉 = | v ′′ − 1′′k 〉 Consequently,

equation 3.10 can be written:

〈 0′ | µif | v ′′ 〉 =
1

√

2v ′′
n

[

D(v ′′
nid

)〈 0′ | v̊ ′′ 〉+
n
∑

k=1

√

2̊v ′′
k C(v ′′

nid
, v ′′

kid
)〈 0′ | v̊ ′′ − 1′′k 〉

]

(3.11)

It is noteworthy that only portions of the vector D and the matrix C are necessary to carry

out the calculations in a set. While the equation corresponds to a single row of C, one should keep

in mind that our strategy of a partial storage of the overlap integrals implies that at the beginning

of a set, only the overlap integral 〈 0′ | 0′′ 〉 is known. As a consequence, the recursive calculations

will also require to treat all subsets of the current set, with dimensions ranging from 1 to n− 1, so

that n× n elements of C are effectively needed. When dealing with medium-to-large systems, the

number of normal modes of the system can be really large while the classes remain comparatively

small in most cases. From the previous observation, it means that in practice the program will

need to look for a small quantity of elements in large vectors and matrices. From a computational

perspective, this constant scan of the memory is largely inefficient and delays the calculations. To

reduce the impact of this search on the speed of the procedure, new reduced matrices are created

before starting the calculations by selecting the elements that will be needed in the original Sharp

and Rosenstock matrices using the vector v
′′
id

. Figure 3.3 shows an example of making of a reduced

matrix C by extracting the required elements from the original matrix C.

Figure 3.3: Construction of the matrix C in the case of a set in class C2. The first excited mode
is i and the second one is j, so that v ′′

1id
= i and v ′′

2id
= j. In the same way, each element of

the submatrix of C uses the same transformation. As an example, C(1, 2) satisfies the equivalence
C(1, 2) = C(v ′′

1id
, v ′′

2id
).

Calculations of the transition dipole moment integrals assuming a linear variation of the elec-

tronic transition dipole moment with the normal coordinates have been partially discussed in section

2.8.1, but with an emphasis on the implications for the prescreening method. Here, we will focus

on the possibilities of optimization of the computations and the use of submatrices to speed up the

calculations. In the case of FCHT, the integrals are calculated with the formula:

〈 0′ | µif | v ′′ 〉 = µif (Q′′
0) 〈 0′ | v ′′ 〉+

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

[
√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
√

v ′′
k + 1 〈 0′ | v ′′ + 1′′k 〉

]

(3.12)
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In the frame of a recursive calculation, equation 3.12 cannot be calculated immediately, as the

N overlap integrals corresponding to the third term in its right-hand side are unknown at the time

〈 0′ | v ′′ 〉 is evaluated. Using equation 2.38, it is possible to express these integrals with respect to

overlap between lower quanta:

〈 0′ | µif | v ′′ 〉 =µif (Q′′
0) 〈 0′ | v ′′ 〉+

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

[

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
√

v ′′
k + 1

{

1
√

2(v ′′
k + 1)

[

Dk〈 0′ | v ′′ 〉

+
N
∑

l=1

√

2v ′′
l Ckl〈 0′ | v ′′ − 1′′l 〉

]

}

]

(3.13)

After transposing the general case to the treatment in set and reordering the terms in equation

3.13, we obtain:

〈 0′ | µif | v ′′ 〉 =

[

µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

Dk√
2

]

〈 0′ | v ′′ 〉

+
n
∑

k=1

[(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

+
N
∑

l=1

(

∂µif

∂Q′′
l

)

0

√

~

2ω′′
l

C(l, v ′′
kid

)

]

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

(3.14)

The factor before 〈 0′ | v ′′ 〉 is a constant that needs to be calculated only once. It is estimated

along with 〈 0′ | µif | 0′′ 〉 in the subroutine franck2 which handles the computations of the

transition dipole moment integrals. It is then stored and re-used afterwards. It is also noteworthy

that the derivatives of the electronic transition dipole moment are always coupled to the inverse

square root of the reduced frequencies corresponding to the same mode. In actual calculation, it is

more efficient to save and use directly the product of the derivatives and reduced frequencies:

µ̇k =

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

and µ̇
k

=

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

Finally, a wider submatrix of C than for FC is required here. Since the original submatrix

C is still needed for the recursion calculation of 〈 0′ | v ′′ 〉, increasing its size would mean a loss

in efficiency. Another strategy adopted in franck is to use a second submatrix, C, to store the

n × N elements needed in equation 3.14. However, instead of simply copying the elements, they

are multiplied by the corresponding µ̇, so that, for a mode i of the set corresponding to the mode

j in the entire list of normal modes, we have the relation:

C(k, i) = µ̇kC(k, v ′′
iid

)

Using this submatrix, equation 3.14 can be written:

〈 0′ | µif | v ′′ 〉 = µcst〈 0′ | v ′′ 〉+
n
∑

k=1

[

µ̇
k

+
N
∑

l=1

C
lk

]
√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉 (3.15)
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with

µcst = µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

Dk√
2

These schemes allow to reduce the number of operations to do when computing the intensity of

each transition and so the computer costs of the FCHT/HT calculations. However, even with these

improvements, they still are more cumbersome with respect to FC because of the n×N additional

operations to perform for each computation of a transition intensity.

It is noteworthy that the creation of small matrices imply an increase of memory usage for the

procedure. In case of FC calculations, this increase is really small as, for class C10 C and D will

occupy 8× (10×10+10) = 880 B (B standing for bytes), which is very small on current computers.

In the case of FCHT of HT calculation, the third submatrix C requires an additional memory

proportional to the number of normal modes of the systems ((8 × 10 × N) B for class C10). For

information, this submatrix alone will require, in the case of class C10 about 1 kilobyte (1 KB = 210

bytes) for a molecule of 6 atoms and 1 megabyte (1 MB = 220 B) in the case of system with about

4371 atoms. The memory used by C can be reduced using the threshold ǫH

2 presented in section

2.8 to remove the lowest contributions from the out-of-class modes in equation 3.15. On modern

computer, however, the extra memory consumption induced by the usage of submatrices will not

be noticeable, even with the entire submatrix C taken in account.

The calculations with the second derivatives of the electronic transition dipole moment are given

in appendix A.

Until now, we described the generation of the sets with the use of nested loops. The problem

of this approach is that the loops must be written explicitly. Hence, each class must be treated

by an ad hoc procedure. A consequence of this approach is that it becomes very cumbersome to

treat classes of higher order and it is practically impossible to devise a general-purpose method

working for every class. For franck to be as flexible as possible on its conditions of usage, generic

loops were not used to treat classes C3 and above but a similar principle was used. It only requires

beforehand the number of modes with non-zero maximum quantum numbers, N , given by the

prescreening and the order of the class, n. If n is greater than N , the routine ends as not enough

excited modes for the class were found by the evaluation method. Otherwise, the enumeration of

the different combinations of final state is performed. Let us define Zn the set to be calculated and

ZN the set of all modes chosen by the prescreening to be treated in a given class, so that Zn ⊂ ZN .

The first set is generated by taking the first n modes in ZN . Then, the first (n − 1) modes of Zn

are kept unchanged and the last one is replaced by the (n + 1)-th mode in ZN . This sequence is

reproduced until the last mode of ZN has been used. At this moment, the second to last mode of

Zn, that is to say the (n − 1)-th is replaced by the n-th mode in ZN and the last mode of Zn by

the mode (n + 1) in ZN . As described before, the last mode of Zn is regularly replaced until the

last mode of ZN has been treated. The entire procedure is repeated until Zn corresponds to the

last n modes in ZN , meaning that the loop is finished.

While simulating a arbitrary number of nested loops, the performance of such a procedure is

lower than using real loops which can be optimized at the compiler level. However, most of the

computational time is spent in calculation of the overlap integrals and the transition dipole moment

integrals so that the increase of time was negligible in our tests with various systems, ranging from
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phenoxyl radical to the coumarin C153 [82].

3.8 Managing the storage and the indexing of the overlap integrals

In the previous section, we focused on the possibility to efficiently compute the transition intensities

considering a general approach independent from the prescreening method. We will discuss here

about the technical implementation of the prescreening method presented in section 2.8 along with

some considerations about the storage of the overlap integrals.

When the evaluation method was presented in section 2.8, it was explained then that this

approach required three parameters, C1max , the maximum number of quanta to treat for each mode

in C1, C2max , the maximum number of quanta for both simultaneously excited modes in C2, and Nmax
I

which represents an estimate of the maximum number of integrals to compute in each class. They

can be set in our procedure with the keywords MAXC1=value , MAXC2=value and MAXINT=value ,

respectively. C1max is set by default at 20 and C2max at 13. MAXINT is expressed in millions of

integrals, so that its default value is MAXINT=100 which corresponds to Nmax
I = 108.

Classes C1 and C2 represent a limited number of possible final states to explore in a given set

(C1max for C1 and (C2max)2 for C2). As a consequence, it is possible to treat them with the Sharp

and Rosenstock analytic formulae [43]. They are generated beforehand with a specialized program

of symbolic algebra and directly inserted in the code of the procedure. A method similar to the

one written by Weber and Hohlneicher [45] was used to obtain these formulae. Practically, it is

impossible to cover all possible cases if C1max and C2max have been set really high by the user, such

as it is required for SF−
6 described in section 4.3. However, it is possible to deal at least with

the combinations treated with the default settings. Classes C1 and C2 have a specific function to

compute the transition intensities. This one can handle equally a recursive or analytic calculation

of the overlap integrals and the transition dipole moment integrals. By default, it attempts an

analytic treatment and if the required formula is not found, falls back to the recursive calculations.

From a computational perspective, on a modern computer (Opteron 2 GHz), the times to calculate

the overlap integrals for the FC calculations, are roughly the same on a system such as the phenoxyl

radical with a slight advantage for the analytic approach. The gain is more noticeable as the system

becomes larger. The interest of the analytic formulae is twofold. Firstly, they avoid the risk of

propagating the error in the calculation of an overlap integral such as it can happen with recursivity.

This makes them very interesting to generate the pool of data that will be used later on for the

prescreening. Secondly, in the case of FCHT and HT calculations, analytic formulae can directly

provide the third term of equation 3.12 concerning the increase of one quantum. Computations are

then slightly cheaper than a recursive treatment in this case. It is possible to deactivate the use of

analytic formulae with the keyword NOINTAN.

A second specificity of the function used in classes C1 and C2 is that it is in charge of collecting

the value that are required for the prescreening. While FC1
and FC2

are easily obtained, the values

for HC1
, which only stores the HT contribution, are a bit more complex to evaluate in the case of

recursion formulae because of our FC-HT mixing in µcst in equation 3.15. As class C1 is very little

demanding in terms of computational costs, it is easier to use µcst−µif (Q′′
0) to generate HC1

once

the exact transition intensity has been calculated. Additionally, as discussed in reference [19], the

value effectively stored for the evaluation of the HT contribution is HC1
/I

tot
, so that we have to
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compute:

HC1
(k, v ′′

k ) =

∣

∣

∣

∣

〈 0′ | µif | 0′′ + v ′′
k 〉 − µif (Q′′

0)〈 0′ | 0′′ + v ′′
k 〉
∣

∣

∣

∣

2

Itot

Currently, the implementation does not discard any terms outside the class so that the fourth array

H
oc

C1
is not used. For higher classes starting from C3, the prescreening is called at the beginning.

Depending on the type of calculation, FC or FCHT/HT, the prescreening follows the procedure

described in section 2.8 or subsection 2.8.1, respectively. The three thresholds, ǫ1, ǫ2 and ǫH

1 are

all set equal to 10−9. A single trial of the prescreening is computationally very cheap. Hence, the

increment of the thresholds when the condition NI ≤ Nmax
I is not met is set low: ǫ = 1.02 × ǫ.

Incidentally, the increment is the same for each threshold, which means that their values are always

the same. A consequence of a slow evolution of the threshold is that a large number of trials might

be needed to find a correct set v
′′
max

satisfying the condition on the number of integrals to estimate.

This causes a difficulty for the output as it can become quickly really long. To avoid this problem,

the current approach is to hide the prescreening. The reason for this choice, in addition to the large

output generated, is that it will mix in the section dedicated to the assignement of the most likely

transitions, making their reading more difficult. Because the prescreening itself does not provide

any useful information for a common usage, this sequence can be safely hidden. However, a message

can be written in the output during the prescreening:

Warning : insufficient number of quanta for mode i

This message means that the threshold was to low and that one of the conditions:

FC1
(i, v ′′

i ) ≥ ǫ1 , HC1
(i, v ′′

i ) ≥ ǫH

1 (for FCHT/HT calculation) , FC2
(i, j, v ′′

i ) ≥ ǫ2 (∀j 6= i)

is met immediately for v ′′
i = C1max in the case of the first two conditions, or v ′′

i = C2max for the last

one. Consequently, C1max or C2max should be increased to perform correctly the prescreening.

While the prescreening aims at improving the generation of the UV-vis spectra by correctly

choosing the transitions to compute, the storage also plays an important role in the overall efficiency.

As a matter of fact, in the recursion approach, a major part of the run time of the procedure is spent

in the calculation of the transition dipole moment integrals on the one hand, and the retrieval of

the overlap integrals for the recursion on the other hand. Storage is critical and must be kept as low

as possible. An important reason discussed in 2.6 is that if not controlled carefully, it will quickly

saturate the available memory. This problem is even more critical when tackling parallelization

of the calculations. It was previously explained that classes starting from C3 could be treated

contemporaneously. It is even possible to push further parallelization by handling simultaneously

each set, that is to say each combination of excited modes of the final state in a class. When

dealing with the set parallelization, the increase of memory is mainly due to the storage of the

overlap integrals. In this case, a very high number of processors is needed to be really efficient,

requiring a specific architecture. At this point, a direct method, without storage for the recursion

can be even more adapted to this strategy. In our procedure, a simple partition in classes is used

and the sets are then treated in serial. While some other arrays such as those containing the results
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of the prescreening, need to be duplicated, the storage of the overlap integrals is the only one that

can be easily limited. As hinted before, the lowest storage need was reached by managing the

sets independently, so that the array dedicated to the overlap integrals is reused for each one. A

consequence mentioned in the previous section is the necessity to recalculate all subsets contained

in a given set. For a set Zn, it will mean recomputing all sets of dimensions ranging from 1 to n−1.

When considering a set from a higher class, it can represent a large number of recalculations, equal

for a set Zn to
n−1
∑

i=1

n!

(n− i)!i! .

For a set of class C10, it represents 1022 subsets previously treated to recalculate. These recalcula-

tions concern only the overlap integrals and not the transition dipole moment integrals and the line

intensity. On a recent processor, this is not too cumbersome so the problem is manageable when

the highest class is relatively low (inferior to 10).

Smaller arrays also mean faster retrieval of the elements inside. The latency to access to

previously computed overlap integrals is critical in recursion formulae. As mentioned in section

2.6, the use here a minimal perfect hash function. This choice avoids any risk of collision, but the

drawback is that the array must entirely fit in memory, otherwise storage is impossible. In practice,

the maximum size occupied by the array among all possible sets is estimated once the prescreening

has been performed and the list v
′′
max

is known. It is obtained for a class Cn as the product of the

n highest maximum numbers of quanta incremented by one, to account for the subsets needed for

the recursion. If the available memory is insufficient, the procedure will raise an error and ends.

Otherwise, the calculations are performed normally. The size of the array is calculated for each set

and corresponds to the number of overlap integrals to compute plus the overlap integral between

the vibrational ground states, N
set

I :

N
set

I =
n
∏

i=1

(v ′′
imax

+ 1)

The calculations run on the indexes of the array from 1, which corresponds to 〈 0′ | 0′′ 〉, to

N
set

I . Two functions are then correlated to the storage, one to convert an array address to the

corresponding vector of quantum numbers v
′′ and the inverse transformation given in equation

2.33. The latter is straightforward to implement while the first is slightly more complex and

computationally more demanding because of test procedures. As hinted by the hash function to

convert the quantum numbers into an array index, the counting of the mode is as follows. The

quantum numbers of the first mode is incremented until it reaches v ′′
1max

. Then, the number of

quanta of the second mode is incremented by one (v ′′
2 = 1) and the quantum number of the first

mode is reset to zero. It is then incremented again until it equals the limit v ′′
1max

. The sequence is

run until the quantum numbers of the n modes reach their maximum. Theoretically, for any index

i, one just need to performs the procedures until it has reached i−1 operation, the first index being

the starting point of the enumeration. In practice, it is rather time consuming and not efficient. It

is possible to reduce the time of the process by half (in the case of FC calculations with phenoxyl

radical) by using some observations about the counting, for a given index i:

• if i ≤ v ′′
1max

+ 1, then the final state is | 0′′ + (i− 1)′′1 〉.
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• if i =
∏n

i=1(v ′′
imax

+ 1), with n ≤ n, then the final state is | 0′′ +
∑n

i=1 v ′′
imax
〉g.

• if i =
∏n

i=1(v ′′
imax

+ 1) + 1, with n < n, then the final state is | 0′′ + 1′′n+1 〉.

If none of this condition is met for a given index, then the quantum number of the highest

excited mode n is obtained by the relation:

v ′′
n =

⌊

i
∏n−1

i=1 (v ′′
imax

+ 1)

⌋

The index i is then modified:

i = i− v ′′
n ×

n−1
∏

i=1

(v ′′
imax

+ 1)

The new index is confronted again to the conditions stated above, this time on the subset n−1.

If none is met, v ′′
n−1 is evaluated in the same way as previously. The procedure is repeated until

the quantum number of the first mode has been found.

3.9 Conclusion and discussion

In this chapter, we focused on the technical implementation of the methods presented in chapter

1 and discussed more in details in chapter 2. While the development of a consistent and versatile

method to compute the overlap integrals and the transition intensities is very important, the way

it is encoded cannot be overlooked at the risk otherwise to lose greatly in efficiency of the resulting

program. Consequently, a great care has been taken to optimize the procedure implemented inside

gaussian and to simplify the implementation of new features or algorithms.

As an example, in the current version, the temperature is not fully functional so it has not been

treated here. The discussions remain true in the case of vibrational excited states in the initial state

as they can be simply duplicated to the treatment of the initial state. The vibronic initial states

to consider can be chosen with respect to their Boltzmann population and a similar system of sets

can be applied to them. One of the difficulty lies on the fact that the memory usage is noticeably

increased for the storage of the overlap integrals, which can be problematic for large systems. An-

other issue is that the optimization of the computations is more complex as two recursion formulae

are required. Apart from the matter of efficient calculations, the structure could simply integrate

the management of the temperature by introducing in the second subroutine franck2 shown in

figure 3.1 a loop to perform the calculations of the transition dipole moment integrals for each set

of the initial state.

Another current limitation is that the electronic transition dipole moment and its derivatives

are expected to be given with respect to the final state. Indeed, considering the Taylor series of µif

about the equilibrium geometry of the initial state can be more complex, depending on the type

of calculation required. Applying strictly the Franck-Condon principle, the electronic transition

gv ′′

imax
is the quantum number of the i-th mode of the set. To avoid too many subscripts, it was not explicitly

written in the ket.
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dipole moment is constant:

〈 v ′ | µif | v ′′ 〉 = µif (Q′
0)〈 v ′ | v ′′ 〉 (3.16)

It is noteworthy that, if the relation µif (Q′
0) = µif (Q′′

0) is not satisfied, the absolute intensities

of the spectral bands are different depending on whether the transition dipole moment integrals

are computed with respect to the initial or final state, but the ratio of height between two peaks is

the same. Such a problem would not be visible in the result given by franck since the electronic

transition dipole moment is currently disregarded in this case. However, if one wishes to compare

different spectra, this difference should be taken into account.

When extending the Taylor series of µif given in equation 2.42 up to the first order, calculations

become more difficult. For FCHT calculation, the transition dipole moment integral is:

〈 v ′ | µif | v ′′ 〉 = µif (Q′
0)〈 v ′ | v ′′ 〉+ 〈 v ′ |

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k | v ′′ 〉 (3.17)

The problem here is similar to the one we encountered when calculating the analytic limit I
tot

Q′′

in section 2.9. Using the Duschinsky transformating given in equation 1.64, equation 3.17 can be

written:

〈 v ′ | µif | v ′′ 〉 = µif (Q′
0)〈 v ′ | v ′′ 〉+ 〈 v ′ |

N
∑

k=1

(

∂µif

∂Q′
k

)

0

( N
∑

l=1

JklQ
′′
l + Kl

)

| v ′′ 〉 (3.18)

=

[

µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

N
∑

l=1

Kl

)

0

]

〈 v ′ | v ′′ 〉

+
N
∑

k=1

(

∂µif

∂Q′
k

)

0

N
∑

l=1

Jkl〈 v ′ | Q′′
l | v ′′ 〉

(3.19)

Finally, we replace the normal coordinates of the final state Q′′
l by the annihilation and creation

operators using the relation given in equation 1.53:

〈 v ′ | µif | v ′′ 〉 =

[

µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

N
∑

l=1

Kl

)

0

]

〈 v ′ | v ′′ 〉

+
N
∑

k=1

(

∂µif

∂Q′
k

)

0

N
∑

l=1

Jkl

(

~

2ωl

)1/2

×
[
√

v ′′
l 〈 v ′ | v ′′ − 1′′l 〉+

√

v ′′
l + 1 〈 v ′ | v ′′ + 1′′l 〉

]

(3.20)

We find now a familiar albeit slightly more complex formula with respect to equation 2.37.

Contrary to what seems to show equation 3.20, computational costs are on par with the calculations

of the transition dipole moment integrals with respect to the final state. To justify this statement,
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it is enough to reorder the sums of the second term in the right-hand side of the equation:

〈 v ′ | µif | v ′′ 〉 = µcst〈 v ′ | v ′′ 〉+
N
∑

k=1

µ̇k

[
√

v ′′
k 〈 v ′ | v ′′ − 1′′k 〉+

√

v ′′
k + 1 〈 v ′ | v ′′ + 1′′k 〉

]

(3.21)

with

µcst = µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

N
∑

l=1

Kl

)

0

µ̇k =

(

~

2ωk

)1/2 N
∑

l=1

Jlk

(

∂µif

∂Q′
l

)

0

µcst and the N elements µ̇k can be computed beforehand once and stored to be used directly in

calculations. Using a factorization method as in equation 3.15 is perfectly feasible. The drawback

of this solution is to rely on the Duschinsky transformation to transform the normal coordinates

of the initial states. This is not really a major problem since all our calculations of the transition

dipole moment integrals suppose that this approximation is accurate. However, for medium-to-large

systems, this approximation is often very good.

When considering spectra generated with an approximation of the electronic transition dipole

moment with respect to the initial or final state, it is noteworthy that differences can be seen depend-

ing on the quality of the description of µif by the chosen Taylor series. We have already mentioned

that if the FC approximation is insufficient to describe correctly µif (µif (Q′
0) 6= µif (Q′′

0)) then

the spectral bands will have different heights depending on the state of reference. More gener-

ally, it is straightforward to see that if the Taylor expansion carried out up to a given order is

not accurate enough, then the spectra generated using equations 1.29 or 2.42 will show discrep-

ancies.Additionally, even if this approximation is precise, one should be careful when analyzing

the contributions corresponding to each order of the Taylor series in the generated spectra. To

illustrate this, let us assume that the Herzberg-Teller approximation gives an exact description of

the electronic transition dipole moment, so that we have the following relation:

µif = µif (Q′
0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k = µif (Q′′

0) +
N
∑

k=1

(

∂µif

∂Q′′
k

)

0

Q′′
k (3.22)

Applying this equality to the calculation of the transition dipole moment integrals, one obtains:

µif (Q′
0)〈 v ′ | v ′′ 〉+

N
∑

k=1

(

∂µif

∂Q′
k

)

0

〈 v ′ | Q′
k | v ′′ 〉

= µif (Q′′
0)〈 v ′ | v ′′ 〉+

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

〈 v ′ | Q′′
k | v ′′ 〉

(3.23)

Since we assumed that the electronic transition dipole moment was correctly described by an

expansion in a Taylor series up to the first order, it is expected that the FC principle was unsufficient,

which means that µif (Q′
0) 6= µif (Q′′

0). The FC contribution to the transition intensities correspond

to the squared norm of the first terms in both left-hand side and right-hand side of equation

3.24, while the HT contribution is given by the second terms. Since µif (Q′
0) 6= µif (Q′′

0), it is
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straightforward to see that

∣

∣µif (Q′′
0)
∣

∣

2∣
∣〈 v ′ | v ′′ 〉

∣

∣

2 6=
∣

∣µif (Q′
0)
∣

∣

2∣
∣〈 v ′ | v ′′ 〉

∣

∣

2

which means that the FC contributions will not be the same if the spectrum is generated using

equation 1.29 or 2.42 as the description of µif . For the HT, contribution, let us rewrite equation

3.24 in the following form:

N
∑

k=1

(

∂µif

∂Q′
k

)

0

〈 v ′ | Q′
k | v ′′ 〉 =

[

µif (Q′′
0)− µif (Q′

0)
]

〈 v ′ | v ′′ 〉

+
N
∑

k=1

(

∂µif

∂Q′′
k

)

0

〈 v ′ | Q′′
k | v ′′ 〉

(3.24)

Since the first term in the right-hand side of equation 3.24 is not null, the HT contributions to

the transition intensities are different depending on whether the Taylor expansion of µif has been

carried out with respect to the equilibrium geometry of the initial of final state. Consequently,

while the spectrum of the FC contribution will only differ by the absolute intensities of the spectral

bands, in the case of the HT contribution, even the shape of the spectrum will be different.

As a matter of fact, and as hinted in section 2.9, it should be better to perform the Taylor

expansion of the electronic transition dipole moment about the equilibrium geometry of the initial

state. Such a choice is also more in line with the perturbation theory.

In addition to considerations related to the code optimization, the possibilities of customization

given to the user were presented. Some of these options were necessary to carry out the calcula-

tions, such as those spectrum-related, or to adapt to particular cases, such as the parameters of

prescreening. Others have been added from experience gained with the application of the proce-

dure to study different systems, such as the mode-specific scaling scheme. A list of the keywords

available in the procedure is given in appendix E. We will see some cases studied during this work

in the next chapter.
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Chapter 4

Examples of application of the

procedure

4.1 Introduction

Once the procedure inside the computational package has been mature enough, it could be used

on real cases. Some of them have been chosen to present the possibilies offered by the embedding

inside a general-purpose quantum chemistry package such as gaussian, and others are practical

studies to analyze of experimental results [19, 20].

In this chapter, we will present several of these systems. The first one, the phenoxyl radical, has

been extensively used throughout this work to test the procedure and check new developments. It

was also used as a benchmark when confronting different implementations of the same theoretical

method. We will present with this model system a generic usage of the procedure and the results

obtained.

It will be followed by several short studies designed to illustrate the influence of some parameters

on the generated final spectrum. For sulfur hexafluoride, the defaul parameter for C1max is too low,

leading to a truncated spectrum. Chlorophyll c2 is a large system with many normal modes. It

will be used to discuss the spectrum convergence, with respect to the analytic limit, but also with

respect to the spectrum shape.

As mentioned before, the integration inside a quantum chemistry package gives a straightforward

access to different kinds of computations. As examples, we will show the cases of acrolein in a

solvent environment and adenine adsorbed on a cluster of silicon. The latter is also an interesting

application of our procedure to a large system.

To conclude, we will present two practical studies. In the case of anisole, the vibrationally-

resolved absorption spectrum obtained with the Franck-Condon calculations was used to propose

a new assignment to the spectral bands of a REMPI spectrum. Finally, as an introduction to

chlorophyll c2, we will present a study of the absorption and emission spectra of the porphyrin [19].
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4.2 Phenoxyl

4.2.1 Introduction

Phenoxyl radical plays an important role in combustion chemistry and biology. As an example, it

is a key intermediate, used alone or in a metal complex, in biocatalysis, protein redox reactions,

electron-transfer reactions and biosynthesis (see reference [104] and references therein). It is also

useful as a prototype to discuss the chemical and electronic properties of larger aromatic systems

containing oxygen.

Recently, Dierksen and Grimme [93] used this system as a test case for their algorithm of block-

diagonalization [70]. This molecule represents an interesting challenge from a computational and

as well as spectroscopic perspective. For the latter, the difficulty comes from its high reactivity

toward both second order combinationa and electron transfer processes. As a consequence, it can

only be observed for a short time. It is possible to sufficiently stabilize the phenoxyl radical by

choosing an adequate precursor and working at a very low temperature. The analysis of the elec-

tronic absorption spectrum still remains complex and has been subject to different interpretations

as described in reference [105].

We will focus on the weakly-allowed π−π∗ transition between the electronic ground state which

has a 2B1 symmetry and final state with a 2A2 symmetry. Being weakly-allowed, it represents an

interesting case to study the effects of the Franck-Condon and Herzberg-Teller approximations on

the final spectrum. However, comparison with an experimental absorption spectrum is rendered

difficult by the slight discrepancies observed for the same transition depending on the precursor

of the phenoxyl. Despite this fact, the molecule was chosen as a reference system to test our

procedure during its development and to test new functionalities for several reasons. Thanks to its

aromatic ring, the structure is quite rigid so that the geometry remains mostly unchanged during

the electronic transition. The system is also a good compromise in terms of number of vibrations,

being sufficiently small to allow quick tests while large enough to provide meaningful results when

checking the influence of parameters or the correct behavior of the entire procedure.

In this section, we will mostly discuss the usage of franck inside gaussian, to the expense of

a detailed analysis of the results. This example can be regarded as an application of the theoretical

presentation given in chapter 3 and we will regularly refer to details explained in the latter.

4.2.2 Computational details

From a theoretical perspective, the phenoxyl radical also represents a difficult case for electronic

structure methods because it requires a sophisticated treatment of the electron correlation. For our

aA reaction between phenoxyl radicals when their concentration exceeds 10−4 M, forming new products such as
2,2’- 2,4’ and 2,6’-dihydroxybiphenyls.
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need, the unrestricted TD-DFT method provided very satisfying results and was able to describe

correctly the excited state [12] while DFT was used for the ground state. The B3LYP exchange-

correlation functional and the TZVP basis set were employed.

As described in section 3.3, a standard usage of Franck requires four basic steps, two for the

geometry optimization and two for the evaluation of the frequencies. The generation of the requested

spectrum is performed in the last gaussian job, once the necessary data have been calculated. As

mentioned before, it is advisable to add a fifth step corresponding to the backup of the checkpoint

file to avoid the overwriting of the data obtained at the end of step 3. The complete sequence is

reproduced here to facilitate further references:

1. Optimization of the geometry of state 1

2. Optimization of the geometry of state 2

3. Frequencies calculation for state 1

4. Backup of the checkpoint file obtained in step 3

5. Frequencies calculation for state 2 + generation of the spectrum

As a remark, state 1 and state 2 can be indifferently the initial and final states. By default,

state 1 is assumed to be the initial one and state 2 the final one. Steps 1 and 3 can be run together

in a single gaussian job but not steps 2 and 4 since geometry optimization causes an overwriting

of the checkpoint file during runtime.

Step 4 allows to generate several spectra with the same input data but different parameters, by

performing each time only the last stepb. In such a case, it is advisable to handle the state with

the more demanding calculations first. Once the frequencies have been computed and all necessary

data stored in the checkpoint file (end of step 3), the latter can be recalled for several tests without

redoing steps 1 to 4.

In section 3.3, we also mentioned the possibility to use gaussian output files as data sources

for the initial and/or final states. It should be noted that gaussian still expects a job to perform

even if one does not wish to use information from the calculation in progress to generate the UV-vis

spectrum. Moreover, franck always extracts some data from gaussian, such as the number of

atoms and normal modes and the atomic masses. Consequently, it is necessary to use the same

molecule for the job and in the input files for the generation of the spectrum. However, if only

the spectrum is desired, one can choose a very “light” job such as a single point energy calculation

with a molecular mechanics method (UFF for example).

In this study, we will only consider a standard usage of the routine (gaussian calculation

and checkpoint file as data sources for the spectrum generation) and assume that the geometry

optimization has already been performed for both states, meaning that steps 1 and 2 have been

done. The input files for step 3 and 5 are given in section F.1. In the configuration used in this

example, state 1 was the final state and state 2 the initial state.

bTo be thorough, we should mention that it is even possible to start almost directly from the calculations of the
Franck-Condon spectra using the read-write files and the subprogram l716.exe. However, such a procedure is rather
complex and cumbersome, and requires a good knowledge of gaussian. We will restrict our explanations to a simple
usage.
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4.2.3 Discussion

The weakly-allowed transition 2B1 → 2A2 is the lowest optically observable electronic one in en-

ergy. Photoelectron spectroscopy has shown that an electronic transition also existed in the near-IR

region [106] and theoretical calculations have been able to predict it [92]. However, optical and

polarization techniques have been unable to characterize it [105]. As mentioned in the introduction,

we restricted our study to a single electronic transition. The computed TD-B3LYP,B3LYP/TZVP

energy of transition equals 17000 cm−1, slightly superior to the expected 16000 cm−1 [105]. The

vibrational frequencies are listed in table 4.2. In the second and third columns are reported the

calculated frequencies with the harmonic and anharmonic approximation and in the fourth column

the experimental frequencies. In columns 6 and 7, the normal modes of the final states are listed by

increasing energy. The main terms of their projections on the normal coordinates of the final state

are reported in column 6. The coefficients correspond to the squared elements of the Duschinsky

matrix, J(v ′
i , v

′′
j )2.

We will now detail the generation of the absorption spectrum with the Franck-Condon approxi-

mation. As mentioned in section 3.2, the keyword FC is used in the dinautil section. In our example,

the data for the final state are extracted from the checkpoint file, which is not the expected setting.

As a consequence, we must give explicitly the correct source with the parameter CHK2. In theory,

it is unnecesssary in our case to specify the second source, since the procedure will automatically

choose the current gaussian job. However, it is advisable to give both input when performing a

“non-standard” calculation to avoid some unexpected behavior. Finally, we require the printing of

the Duschinsky matrix J and the shift vector K. The former has been used for our assignment

of the final state vibrations (see table 4.2) and is also very useful to control the mode mixing. A

large coupling can cause the prescreening method to lose partly its efficiency. The shift vector is

interesting to control if the displacement of the nuclei during the transition is not too important.

The dinautil section that we will use is:

NoReord FC CALC1 CHK2 PRTMAT=12

It should be noted that we voluntarily rotated the structure of the initial state to be at an angle

with the one of the final state. This was done to test the superposition procedure in franck. The

reorientation is automatic and carried out as soon as all input data have been extracted from the

respective sources (the reoriented structures are given in section F.2). When finished, the nuclear

displacements induced by the vibrations are recalculated as well as the electronic transition dipole

moment and its derivatives. franck will then print the requested matrices, here J and K and

start the calculation of the transition intensities to generate the spectrum.

With the default settings, the procedure takes 136 seconds on an AMD OpteronTM 2.4 GHz.

The spectrum progression (SP ), reported in the output as a conclusion of the treatment of each

class, represents the recovery of the total spectrum intensity given by the analytic limit described

in section 2.9. The total spectrum convergence, as well as the specific progression for each class are

shown in table 4.1.

c∆SP = SPn − SPn−1
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Class Convergence ∆SP
c

0 3.57 3.57

1 28.43 24.86

2 63.12 34.69

3 87.08 23.96

4 96.87 9.79

5 99.43 2.56

6 99.83 0.40

7 99.87 0.04

Table 4.1: Spectrum convergence

(given in %) for the absorption spec-

trum of the phenoxyl radical with the

FC approximation

We obtain a very good convergence of the spectrum

intensity. This is an expected result because of the rigid-

ity and the C2v symmetry of the molecule. The Duschin-

sky matrix in figure 4.1 shows a very limited mode-mixing

where our prescreening method is particularly efficient.

For a convergence of 99%, it is sufficient to go up to

class C5. Setting MAXBANDS=5, the computational time is

reduced to 62 seconds. This difference is even stronger

when considering FCHT calculations (same dinautil sec-

tion except for the FCHT keyword instead of FC). In this

case, default calculations are done in 16 min 26 s while it

takes “only” 6 min 37 s up to class C5. This trend is ob-

viously more pronunced when dealing with large systems

and avoiding large classes when unnecessary can greatly

reduce the computational costs.

Figure 4.1: Squared elements of the Duschinsky matrix J(v ′
i , v

′′
j )2.

To compare with the experimental spectrum taken

from reference [105], the bands of the spectrum generated with the default settings

(SPECHWHM=135.), are too large. Hence, we reduce the half-width at half-maximum for the convo-

lution to 100 cm−1. Moreover, it is possible to limit the upper bound of the spectrum to 4500 cm−1

with respect to the energy of transition between the vibrational ground states. The dinautil section

becomes:

NoReord FC CALC1 CHK2 PRTMAT=12 SPECHWWM=100. SPECMAX=4500.

As an illustration of our previous discussion in section 3.4 about the influence of the spectrum

parameters on the calculation times, the procedure takes 109 s for FC and 15 min 56 s for FCHT

to deal with the computations of the transition intensities up to C7. Two remarks can be done
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on this improvement. Firstly, since the changes are relatively limited, the gain in computational

time is relatively low. Secondly, the latter is almost equivalent in both cases (FC or FCHT). Such

a behaviour is expected since the number of transitions actually computed is relatively similar

(limited by Nmax
I ).

Figure 4.2: Experimental and theoretical spectra of the 2B1 → 2A2 transition of the phenoxyl
radical. The experimental spectrum from reference [105] is represented in solid black line. Magenta
and blue dashed lines represent the FC and FCHT spectra obtained from harmonic calculations,
respectively. The solid green line shows the FCHT spectrum obtained with the mode-specific
scaling of anharmonicity described in section 3.3.1. Half-width at half-maximum is 100 cm−1 for
all theoretical spectra.

The FC and FCHT spectra obtained with these settings are respectively shown with a dashed

blue and magenta line in figure 4.2. To allow comparison with the experimental spectrum shown in

the same figure with a solid black line, the energy of the 0-0 transition has been set to the origin,

so that the energies of the spectral bands are given in relative values. Despite some differences in

the band intensities, the main peaks are correctly reproduced and we can observe an improvement

of the accuracy by taking into account the Herzberg-Teller approximation. Nonetheless, we find

a small blue shift of the bands of higher energies. To try to correct this, we use the anharmonic

scaling scheme described in section 3.3.1 using anharmonic frequencies calculated with the N07

basis set [107] and reported in the third column of table 4.2. The dinautil section for the FCHT

spectra is now:
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NoReord FCHT CALC1 CHK2 PRTMAT=12 SPECHWWM=100. SPECMAX=4500. SclVec

184.073 371.406 443.384 474.178 524.348 589.958 641.322 785.018 788.014

795.326 905.604 973.180 963.945 976.118 994.008 1075.446 1152.041 1152.759

1256.681 1323.310 1395.345 1415.318 1462.820 1515.760 1562.620 3046.396

3058.730 3071.912 3082.009 3082.952

The generated spectrum with the anharmonicity scaling (FCHT [TA]) is reported with a solid

green line in figure 4.2. We can see a small shift of the bands at higher energies.

As described in section 3.4, the assignment for the most intense bands (chosen with the keyword

PRTINT) is written in the output. As an example, the following information are given for some of

the most probable transitions in the case of FCHT [TA]:

Initial State: <0|

Final State: |0>

DeltaE = 0.0000 | TDMI**2 = 0.4196E-02, Intensity = 0.4005E-02

........................................

Initial State: <0|

Final State: |5^1>

DeltaE = 517.4194 | TDMI**2 = 0.7899E-02, Intensity = 0.7754E-02

........................................

Initial State: <0|

Final State: |5^2>

DeltaE = 1034.8389 | TDMI**2 = 0.7128E-02, Intensity = 0.7216E-02

........................................

Initial State: <0|

Final State: |5^3>

DeltaE = 1552.2583 | TDMI**2 = 0.4100E-02, Intensity = 0.4272E-02

........................................

[...]

Initial State: <0|

Final State: |6^1;5^1>

DeltaE = 1056.2777 | TDMI**2 = 0.3651E-02, Intensity = 0.3703E-02

........................................

[...]

Initial State: <0|

Final State: |6^1;5^2>

DeltaE = 1573.6971 | TDMI**2 = 0.3654E-02, Intensity = 0.3804E-02

........................................

Using the assignment of this spectrum, we generated the stick spectrum with an external script.

The relative intensities of the main peaks are very similar to the experimental spectrum.
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Figure 4.3: Experimental and theoretical stick spectra of the 2B1 → 2A2 transition of the phenoxyl
radical. The theoretical spectrum was generated from the transition assignments given with the
FCHT [TA] spectrum using an interval of 8 cm−1 between two measurement points.
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Initial state (2B1) Final state (2A2)
Mode Harm. Anh.d Exp. [104] Projection Harm.

v ′
1 180.6 184.1 v ′

1 102.5
v ′
2 374.7 371.4 v ′

2 331.6
v ′
3 450.4 443.4 446 0.86 v ′

4 404.5
v ′
4 455.2 474.2 472 v ′

3 437.9
v ′
5 534.6 524.3 520 0.77 v ′

5 + 0.15 v ′
7 521.7

v ′
6 600.5 590.0 616 0.53 v ′

7 + 0.22 v ′
5 530.0

v ′
7 617.6 641.3 635 v ′

6 600.8
v ′
8 764.9 785.0 784 0.62 v ′

8 773.3
v ′
9 800.5 788.0 0.69 v ′

10 + 0.21 v ′
11 809.6

v ′
10 806.3 795.3 v ′

9 820.3
v ′
11 913.3 905.6 0.34 v ′

11 + 0.28 v ′
10 + 0.25 v ′

8 832.5
v ′
12 953.1 973.2 v ′

13 962.0
v ′
13 970.9 963.9 977 0.84 v ′

12 976.2
v ′
14 989.4 976.1 1016 v ′

14 980.8
v ′
15 1011.5 994.0 1038 v ′

16 1023.8
v ′
16 1094.2 1075.4 1072 v ′

15 1043.2
v ′
17 1170.7 1152.0 1140 0.74 v ′

17 + 0.18 v ′
18 1181.7

v ′
18 1171.0 1152.8 1167 0.71 v ′

18 + 0.17 v ′
17 1188.6

v ′
19 1276.9 1256.7 1266 v ′

19 1254.2
v ′
20 1340.9 1323.3 1318 0.75 v ′

20 1366.4
v ′
21 1418.8 1395.3 1397 0.68 v ′

21 + 0.19 v ′
23 1421.0

v ′
22 1447.5 1415.3 1441 0.59 v ′

24 + 0.37 v ′
22 1442.4

v ′
23 1478.5 1462.8 1481 0.81 v ′

25 + 0.16 v ′
21 1573.9

v ′
24 1548.7 1515.8 1515 0.80 v ′

23 + 0.14 v ′
21 1597.7

v ′
25 1587.8 1562.6 1550 0.46 v ′

22 + 0.32 v ′
24 1615.9

v ′
26 3173.3 3046.4 3018 0.88 v ′

26 3172.2
v ′
27 3179.2 3058.7 3054 v ′

27 3174.9
v ′
28 3194.3 3071.9 3065 v ′

29 3194.0
v ′
29 3202.1 3082.0 3074 0.76 v ′

30 + 0.23 v ′
28 3194.9

v ′
30 3205.0 3083.0 3094 0.66 v ′

28 + 0.23 v ′
30 3224.8

Table 4.2: Calculated and experimental frequencies of the initial (2B1) and final (2A2) states of the
phenoxyl. The projection of the normal coordinates of the final state Q′′

i on the basis set of the
normal coordinates of the initial state Q′

j . The coefficients correspond to the squared elements of

the Duschinsky matrix (J2
ij). Only the relevant terms (with coefficients above 0.1) are shown and

coefficients above 0.9 are rounded to 1.

dAnharmonic frequencies have been calculated with the N07 basis set which provides very good results for the
anharmonic calculations [107]

111



4.3 Sulfur hexafluoride

4.3.1 Introduction

The sulfur hexafluoride (SF6) finds a wide range of applications in industry, especially as an in-

sulating gas. It has the ability to easily capture electrons, forming an anion with a long lifetime

with respect to autodetachment. As a result, it is used for example to separate the winding in an

electrical transducer from the magnetic circuit. This molecule has also a greenhouse effect and is

one of the six main gases of this kind targeted by the Kyoto protocol to reduce their usage.

While the neutral form has been extensively studied (see reference [108] and references therein),

the anion form (SF−
6 ) is less known. Recently, a vibrationally resolved electron photodetachment

spectrum has been published [109]. In this short study, we mainly focused on the working of our

procedure and its ability to reproduce this spectrum.

The sulfur hexafluoride (SF−
6 ) represents an interesting case of a relatively small and highly

symmetric system where accurate ab initio methodologies can be applied, giving possibility for an

easy computation of accurate theoretical spectra which can be of great value for the interpretation

of the best available experimental spectroscopic data in the gas phase.

4.3.2 Computational details

For SF6 and its negative ion, frequencies and geometries have been calculated at MP2 [110] level with

aug-cc-pVTZ basis set [111,112]. Moreover the electronic energies of the initial and final electronic

states have been refined at the Coupled Cluster level [113–115]. The CCSD(T) calculations have

been performed with the MOLPRO [116] package.

4.3.3 Discussion

The photodetachment spectrum of SF−
6 is characterized by a broad progression, with the band

maximum shifted by more than 2 eV from the 0-0 transition corresponding to the adiabatic elec-

tron affinity (AEA). These features have been attributed to the significant changes in the geometry

between ionic and neutral species [108,109]. Indeed MP2/aug-cc-pVTZ calculations show a signif-

icant elongation of the S-F bond upon electron attachment (from 1.5750 to 1.7146 Å), while the

molecule octahedral symmetry remains unchanged. Moreover, the theoretical [CCSD(T)/aug-cc-

pVTZ] AEA of 1.06 eV is in very good agreement with the experimental value of 1.0 eV [117]. The

fully theoretical photodetachment spectrum, calculated in an energy range from 0 to 5.0 eV within

the Franck-Condon approximation on the basis of the aforementioned ab initio results (see Figure

4.4), clearly resembles its recently measured experimental counterpart [108].
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Figure 4.4: Theoretical electron photodetachment spectrum of SF−
6 . Full spectrum in a range from

0 to 5 eV calculated within Franck-Condon approximation with combinations between all modes

considered; the energy of 0-0 transition is marked by an arrow.

For the SF−
6 photodetachment spectrum most of the vibrational progression derives from exci-

tation of the single totally symmetric S-F stretching mode (v1). Indeed, the computed spectrum

shows a regular pattern of bands, the most intense corresponding to v1.

Figure 4.5: Comparison between the full spec-

trum (upper panel) and a spectrum with cou-

pling between modes excluded (lower panel)

Figure 4.5 shows a comparison between

the spectrum obtained with only the FC in-

tegrals from class C1 and the complete spec-

trum, where couplings between all modes

are also taken into account. In the lat-

ter case it is found that the weaker bands

gain intensity from excitation of this to-

tally symmetric mode, being related to the

combinations between the overtones of v1

and doubly excited degenerate mode v4 or

v5.

As a consequence of the large changes in the

S-F bond length, the most intense transitions are

related to high overtones, which must therefore be considered to reproduce accurately the spectrum

features. Hence, the default parameter for the maximum number of quanta, MAXC1, is insufficient

to cover all the spectrum. Indeed in the latter case only about 30 % of the spectrum intensity has

been achieved in comparison to 94% when all necessary excitations have been taken into account.

The comparison of the spectra calculated with MAXC1 set to 100 and to 20 is shown in figure 4.6.
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Figure 4.6: Comparison between the full spec-

trum calculated with C1max set to 100 (upper

panel) and the one with the original setting at

C1max = 20 (lower panel)
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4.4 Chlorophyll c2

4.4.1 Introduction

Despite ongoing experimental and theoretical research, the understanding of the molecular mecha-

nism of light harvesting in photosystem II is not yet satisfactory. Quantum chemical computations

of optical properties combined with spectroscopic experiments can undoubtedly contribute to shed

further light on this phenomenon [118]. The triplet states of chlorophylls are of particular interest

due to their dual photodamage and photoprotective role in photosystem II [119].

Figure 4.7: Structure of chlorophyll c2.

Chlorophyll c2 (see Figure 4.7) is a large

molecule with 73 atoms and 213 normal modes.

Chlorophylls c can be found in some brown algae

such as fucus or diatoms (a group of eukaryotic

algae). Contrary to the more common chloro-

phyll a, they do not have the long phytol chain.

Hence, being more compact around the central

porphyrin structure, they are less flexible, mak-

ing them easier to handle in the framework of the

Franck-Condon principle.

The T1 → S0 phosphorescence spectrum of

Chlorophyll c2 has been chosen to demonstrate

various aspects related to spectrum convergence

and applicability of the integrated approacha. In

this study, we will focus on the spectrum conver-

gence and especially on its meaning, depending

on whether one wishes to reach the analytic limit

or obtain the overall spectrum shape.

4.4.2 Computational details

Frequencies and geometries have been calculated, for both singlet ground and triplet excited elec-

tronic states, at the DFT level with the PBE0 [120] functional and 6-31G(d) basis set.

4.4.3 Discussion

When considering large systems such as chlorophyll c2, the maximum number of integrals to com-

pute for each class, Nmax
I , can become a serious limitation. A reason for this is that the number

aThe discussion presented here is centered on the procedure. A more thorough study is planned in the future
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of combinations of the excited modes in the final state increase in each class with the number of

normal modes following the relation
N !

(N − n)!n!

where n represents the class. We recall here that our prescreening method, described in section

2.8, chooses the maximum number of quanta v
′′
max

for each mode so that the number of transitions

to compute does not exceed the limit Nmax
I . This number of transition is roughly evaluated as

the product of the arithmetic mean 〈v ′′
max
〉 and the number of combinations of the excited modes.

Consequently, for the same value of Nmax
I , the larger is a system (an so N) and the lower will be

〈v ′′
max
〉, reducing the quality of the calculations. A solution would be to increase Nmax

I when dealing

with larger systems. However, a higher number of transitions to compute in each state obviously

improves the spectrum quality but at the same time strongly increases the required computational

times and memory usage. To avoid as much as possible such an increase, it is necessary for our

prescreening to be really efficient and choose correctly the most probable transitions.

Firstly, we will study the spectrum convergence with respect to the analytic sum.

Figure 4.8: Convergence of the spectrum

calculation for chlorophyll c2 with the

maximum number of integrals MAXINT set

for each class

Figure 4.8 shows the spectrum convergence with

the increase of Nmax
I from 102 to 1012. As ex-

pected, a very small number of integrals is not

sufficient, and leads only to about half of the

spectrum intensity. Moreover, even as many as

1012 integrals cannot provide the full convergence

of the spectrum intensity. It could be possi-

ble to increase further Nmax
I but the computa-

tional costs are highly expensive at this point.

However, as we will point out below, the ex-

pected gain is low and brings very little im-

provements to the analysis of the theoretical spec-

trum.

Figure 4.9: Convergence of the spectrum

calculation for chlorophyll c2 with classes.

The total convergence up to class Cn is

shown as red blocks, while contribution of

class Cn is shown in blue.

Figure 4.9 shows the spectrum convergence with

classes calculated with Nmax
I set to 1011. It is appar-

ent that the contribution of classes higher than C5 de-

creases steeply, and that the difference in spectrum in-

tensity calculated up to C7 and up to C6 is smaller than

1 % (and below 0.1 % between C7 and C8), confirming

the spectrum convergence with respect to classes. This

shows that even for a large system such as the chloro-

phyll c2, it is unnecessary to treat a large number of

classes. The default value MAXBANDS=7 is adequately set

and our discussions in chapter 3 assuming a maximum

class C10 seem to cover a really large panel of molecular

systems.
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Nevertheless, in most cases the convergence of the spectrum line-shape is much faster [82] than

the full convergence of the total spectrum intensity. This fact is particularly encouraging for large

systems like chlorophyll c2. Figure 4.10 compares spectrum line-shapes calculated with Nmax
I set

to 102, 106 and 109. It is clear that the main spectral features are well reproduced even if total

spectrum intensity is far from convergence. The spectra calculated with Nmax
I = 109 or larger

are identical on this scale. Thus, inspection of the spectrum line-shape indicates that the most

important transitions have been taken into account, and that reliable spectra have been computed

already with Nmax
I set to 109. The analysis of classes contributions to the total spectrum (Figure

4.11) shows that most of the spectrum bands are composed from classes up to C4, with C1 and C2
influencing most the spectrum line-shape.

Contributions of the classes related to the simultaneous excitation of five and more modes are

much flatter, and of little importance for the spectrum line-shape, although they are not negligible

for the spectrum intensity. The present case of chlorophyll turns out to be much more challenging

than that adopted as a benchmark by Dierksen et al. [70] and Jankowiak et al. [83], a very large

polycyclic aromatic hydrocarbon (PAH) derivative with 462 normal modes. Such PAH has a rather

narrow photoelectron spectrum and our method is able to converge it up to values larger than 0.9.

These tests show that our methodology can satisfactorily compute converged spectra also for large

challenging systems. When the interest is focused on the high-energy wing of the spectrum (the

one suffering of the largest relative error) as for instance for computation of nonradiative transition

rates, a careful check of convergence in that energy region must be performed and purposely tailored

methods may result more suitable.
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Figure 4.10: Convergence of the spectrum calculation for chlorophyll c2 with the threshold on the
number of computed integrals. Comparison of spectrum shape calculated with Nmax

I set to 102

(dashed red line) and 109 (solid blue line) is shown on upper panel, while the onset with spectra
calculated with Nmax

I set to 102, 106 (fine-dashed black line) and 109 is shown on lower panel.
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Figure 4.11: Convergence of the spectrum calculation for chlorophyll c2 with classes; contributions
of specific classes are compared with total spectrum (see legend). Classes C0 to C4 are shown
on upper panel, while the onset with contribution of classes C1 to C5 is shown on lower panel.
Contribution of higher classes are not visible in this scale.
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4.5 Acrolein

4.5.1 Introduction

Acrolein is a relatively unstable compounds which is used in plastic and perfurme industries. It has

several interesting chemical properties due to its aldehyde group and double bond. Also, because

of their proximity, the double bond is activated by the aldehyde group, acrolein can play the role of

a dienophile. As a consequence of these characteristics, the molecule finds numerous applications

in organic syntheses.

The UV absorption spectrum of acrolein has attracted significant attention since this molecule

exhibits two conjugated chromophores C=C and C=O, a common feature for many natural systems.

In particular, a blueshift of the n → π∗ transition of the C=O group has been observed in going

from gas phase to aqueous solution (see Ref. [121] and references therein).

The procedure franck is directly integrated inside gaussian and so, allows a straightforward

computation of the gas phase and aqueous solution absorption spectra of acrolein, giving direct

insights into the experimentally observed effect.

4.5.2 Computational details

The structures and frequencies of acrolein have been determined by DFT/TD-DFT computations

with the B3LYP functional and N07 polarized double-ζ basis set [107], both in gas phase and

in aqueous solution. The effect of water solvent has been included by means of the polarizable

continuum model, where the solvent is represented by a homogeneous dielectric polarized by the

solute, placed within a cavity built as an envelope of spheres centered on solute atoms [122].

The solvent is described in the non-equilibrium limit where only its fast (electronic) degrees of

freedom are equilibrated with the excited-state charge density while the slow (nuclear) degrees

of freedom remain equilibrated with the ground state. This assumption is sufficient to describe

absorption spectrum in solution, due to the different time scales of the electronic and nuclear

response components of the solvent reaction field [82].

4.5.3 Discussion

To simulate the spectrum line-shape it is necessary to convolute the stick-spectrum with a Gaus-

sian with an appropriate full-width at the half maximum (FWHM): Figure 4.12 compares spectra

calculated with the values of the FWHM set to 500 cm−1 and 1000 cm−1. For acrolein the lat-

ter choice better reproduces the broad structure of the experimental spectrum. In the present

approach it is possible to improve the Franck-Condon spectrum by considering changes of the tran-

sition dipole moment with the geometry. It is worth mentioning that in the present case inclusion of

the Herzberg-Teller term does not require any additional quantum mechanical computation, since
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the TD-DFT frequencies are calculated numerically giving direct access to the necessary derivatives

of the transition dipole moment with respect to the normal coordinates of the excited electronic

state. Inclusion of the HT term is particularly important for dipole-forbidden or weakly-allowed

transitions where the FC approximation is unreliable.

Figure 4.12: Theoretical absorption UV

spectra of n → π∗ electronic transition

of acrolein: gas phase spectrum in a range

from 2.5 to 5 eV calculated within Franck-

Condon approximation with FWHM of

500 (red line) and 1000 cm−1 (blue dashed

line).

This is the case of the weakly dipole allowed

n → π∗ transition of acrolein (µ = 0.0463 a.u.), where

the HT contribution indeed influences significantly the

spectrum line-shape, as shown by the comparison of

the FC and Franck-Condon Herzberg-Teller (FC-HT)

spectra on Figure 4.13. Both the FC and the FC-HT

spectra are fully converged (100.0 %) to their respective

limits (see Section 2.9).

The FC-HT spectra calculated in gas phase and in

aqueous solution are compared in Figure 4.14. It is

evident that not only the solvent shift is well repro-

duced by the theory, but that also changes in the band

shapes agree with the recent results obtained with a

more accurate but computationally demanding time-

domain approach [121]. Moreover, the present method

works directly in the frequency domain, so that all the

individual vibronic contributions to the total spectrum

are computed and can be easily assigned, as shown in

Figure 4.15.

Figure 4.13: Theoretical absorption UV

spectra of n → π∗ electronic transi-

tion of acrolein: Comparison between gas

phase spectra calculated within either the

Franck-Condon (blue dashed line) or the

Franck-Condon Herzberg-Teller approxi-

mations (pink line).

Figure 4.15 compares the convoluted spectra calcu-

lated within harmonic and anharmonic [TA] approxi-

mation (as described in section 3.3.1). The stick spec-

trum shows that the most pronunced progressions are

related to only a few vibrations. On the whole, a good

agreement is observed between the simulated stick spec-

trum and the experimental high reslution data stem-

ming from supersonic free-jet expansion cavity ring-

down spectroscopy [123]. The most intense bands have

been assigned to the fundamentals or overtones of pure

C=C stretching and C=O stretching [123] vibrations,

while our results shows that a strong mixing prevails for

these modes, as summarized in table 4.3. It should be

mentioned that, although we obtained a good agree-

ment between the computed anharmonic and experi-

mental frequencies for the ground state, the theoretical

results for the excited state are less accurate, showing

a strong increase of anharmonicity upon an electronic

excitation.
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Figure 4.14: Theoretical absorption UV

spectra of n → π∗ electronic transi-

tion of acrolein: Comparison between cal-

culated spectra for acrolein in gas phase

(pink line) and in water solution described

by the CPCM model (black dashed line).

However, these results show the capacities of the

implementation to correctly account for solvent effects

in our vibrationally resolved electronic spectra.

We foresee that the accessibility to an ease and

straightforward method for the computations of vi-

brationally resolved spectra within the integrated ap-

proach here described, may lead to breakthroughs in

the studies of UV-vis spectra in condensed phases.

Figure 4.15: Assignment of the main bands of the theoretical absorption UV spectrum of n → π∗

electronic transition of acrolein in gas phase. Red solid line reports the harmonic spectrum in a
range from 24000 to 40000 cm−1 calculated within Franck-Condon Herzberg-Teller approximation
with FWHM of 1000 cm−1 while the blue dashed line represents the anharmonic [TA] spectrum.
The main stick bands are assigned as nx where n is the excited normal mode and x its quantum
number.
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State 0 State 1
Mode Harm. Anh. Exp. [124] Assignment Harm. Anh. Assignment

3 572 565 564 v ′
C=0 bending

4 507 501 0.9v ′
3

12 1458 1421 1420 v ′
CH2 bending

13 1681 1646 1625 v ′
C=C stretching 1500 1468 0.44v ′

12 + 0.21v ′
13 + 0.23v ′

14

14 1775 1746 1724 v ′
C=O stretching 1568 1538 0.51v ′

13 + 0.37v ′
14

Table 4.3: Selected vibrational frequencies of acrolein in its ground and excited electronic states.
Computed and experimental frequencies (in cm−1) are listed along with their assignment. The
excited state normal modes are expressed as a linear combination of the ground state ones according
to the Duschinsky rotation (only the highest elements are written), e.g v ′′

j = Jjiv
′
i
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4.6 Adenine on silicon (100)

4.6.1 Introduction

Biological molecules represent a natural source of elaborate nanostructures that could support

the bottom-up construction of new materials of relevant technological interest. To fully grasp the

possibilities they offer, it is necessary to have a good understanding of the influence of the nanoscale

organization on the optical, chemical and electric properties of these materials. In particular, the

study of the biomolecular systems in their excited electronic states is very important for the optics,

photonics and sensoristics. Our approach is in line with such a demand as illustrated by simulation

of the photoelectron spectrum of adenine adsorbed on Si(100) surface.

4.6.2 Computational Details

In the case of adenine molecule adsorbed on Si(100) surface, the ONIOM [125] QM/MM scheme

has been adopted for the geometry structures and frequencies with the Si(100) surface represented

by a cluster of 119 Silicon atoms. The QM part corresponding to the adenine molecule has been

calculated at the B3LYP/6-31+G(d,p) level, while the cluster has been modeled by molecular

mechanics using the UFF force field [126].

4.6.3 Discussion

The full valence photoelectron spectrum of adenine is composed from several overlapping excitations

[127]. The present work is aimed to show feasibility of spectra simulations for nanosystems, thus

only ionization from the highest occupied molecular orbital (HOMO) has been considered. The

Si(100) surface has been modeled by a cluster of 119 silicon atoms, shown in Figure 4.16, resulting

in a total system with 636 normal modes.

Figure 4.16: Adenine adsorbed on a cluster of 119 silicon atoms, modeling the Si(100) surface.
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In order to put into evidence spectrum changes upon adsorption, the photoelectron spectra have

been calculated for both isolated adenine molecule and adenine@Si(100), putting. Both spectra

are plotted in the range of 8.0-8.7 eV roughly corresponding to the first band of valence shell

photoelectron spectrum. Figure 4.17 shows the spectra in the absolute energy scale as well as in a

relative scale where the 0-0 transition is set to zero. It can be seen that adsorption on Si surface

yields a small red shift of the excitation origin, while new vibronic transitions corresponding to

intermolecular vibrations modulate the spectrum line-shape.

Figure 4.17: Comparison between the theoretical FC photoionization spectra in gas phase of isolated
adenine (blue dashed line) and adenine adsorbed on a Si(100) surface (solid red line): a) spectra
in an absolute energy range from 8.0 to 8.7 eV calculated within Franck-Condon approximation
with FWHM=100 cm−1; b) spectra shifted to the relative origins of the 0-0 electronic transitions,
isolated molecule (upper panel) and adenine@Si(100) (lower panel); the stick bands show the most
important transitions.

It is interesting to analyze the number of combinations for each class Cn for such a large system,

which is directly related to the number of transitions to compute, and investigate the efficiency

of the adopted selection procedure. Table 4.4 lists NCn for isolated adenine and adenine@Si(100),

and the spectrum intensity achieved with Nmax
I set to the default value 108. It is noteworthy that

in both cases, either an isolated molecule with 39 normal modes or a macrosystem with over 600,
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Adenine Adenine@Si(100)

Class (n) NCn progression NCn progression

3 9.14E+03 84.54% 4.27E+07 87.31%
4 8.23E+04 93.57% 6.75E+09 94.82%
5 5.76E+05 97.48% 8.54E+11 97.37%
6 3.26E+06 98.32% 8.98E+13 97.88%
7 1.54E+07 98.39% 8.08E+15 97.93%

Table 4.4: Convergence of spectra computations for adenine and adenine@Si(100). For each class
Cn the number of combinations of the n excited oscillators NCn and spectrum progression are
listed. The C1 and C2 transitions have been computed by analytical formulae allowing a maximum
quantum number C1max=30, and C2max=20 (MAXC1=30, MAXC2=20) respectively. For the classes Cn,
n ≥ 3 the transitions to be computed have been selected setting the parameter Nmax

I to 108 (the
default value).

almost all spectrum intensity (about 98 %) has been recovered at an equivalent computational cost.

For the cluster, the default value of MAXINT is not sufficient to consider the whole initial pool

even for only three simultaneously excited modes (C3 class). This particular case shows the ability

of the a priori strategy to select only the relevant transitions and discard the less probable ones.
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4.7 Porphyrin

4.7.1 Introduction

We present here a last molecular system that can be linked to the previously described chlorophyll

c2. Porphyrins are very important chromofores, involved in many relevant biological processes like

photosynthesis. Free base porphyrin (H2P), sketched in figure 4.18, is similar to the major building

block (Mg-Porphyrin) of chlorophyll and it is therefore very interesting to study its absorption of

UV and visible light and the corresponding emission properties.

Figure 4.18: Schematic drawing of free base por-

phyrin (H2P). The molecule is in the xy plane

and the x axis passes through the opposite hy-

drogenated N atoms.

These are nicely interpreted according to the

four-orbitals model of Gouterman [128]. For an

idealized D4h symmetry (actually shown by some

metal-porphyrin complexes) two pairs of degen-

erate states give rise to the two bands Q (dark)

and B (intense, also called Soret band). Each of

these bands is actually composed by a couple of

transitions, namely (Qx,Qy), and (Bx,By) with

components polarized in the x and y directions

(considering the molecule in the xy plane oriented

according to figure 4.18). H2P actually belongs

to the D2h point group and the degeneracy be-

tween theQx, Qy and the Bx, By transitions is re-

moved. However the Q bands are still very weak

and a proper calculation of their spectra must

take into account the Herzberg-Teller effect. Re-

cently, a full coordinate analysis of the absorption spectrum of H2P has been published [129], which

includes HT effect but relies on the previously discussed LCM approximation [11], thus neglecting

both Duschinsky couplings and the changes in the oscillation frequencies of the normal modes in

the two electronic states. However, the simultaneous treatment of Duschinsky and Herzberg-Teller

couplings is necessary to account exactly (in the harmonic approximation) for the role of nuclear

vibrations in an optical transition.

The approach used here differs slightly from the implementation in gaussian described pre-

viously. The reason is that the study was done with a standalone version of the prescreening,

fcclasses [95], and some new features were applied to it. This example remains perfectly feasible

in the procedure albeit with some minor changes and shows for the first the first time, to the best

of our knowledge, such an exact calculation for the absorption and fluorescence spectra of the Qx

band of H2P.
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4.7.2 Computational details

The equilibrium structures and vibrational frequencies of the ground and first-excited state of H2P

have been obtained in the frame of the DFT and its time-dependent (TD-DFT) extension for

the excited state, employing the hybrid functional PBE0 [120] and the standard 6-31G(d) basis

set. The derivatives of the electronic transition dipole moment (µif ) with respect to the normal

coordinates are obtained, at no additional computational cost, as a side-product of the numerical

computation of the second derivatives of the TD-DFT excited state energy, needed for the harmonic

analysis at the equilibrium geometry of the excited-state. To generate both absorption and emission

spectra and be able to confront them, a consistent choice for the state of reference to perform the

Taylor expansion of µif is necessary. As explained previously (see the conclusion of chapter 3),

the best choice would be the initial state. As presented in the description of franck, the current

implementation works with the final state as the reference for the Taylor expansion. While we

presented in conclusion of our implementation a possible treatment with respect to the initial state,

the method used here proceeds differently, assuming that the electronic transition dipole moment

can be accurately described with a sufficiently developed Taylor series. We assumed here that the

Herzberg-Teller approximation gives a very good approximation of µif . In this case, it is possible

to write the following relation:

µif = µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

Q′′
k = µif (Q′

0) +
N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k (4.1)

Using equation 2.51, it is possible to subsitute the normal coordinates of the final state Q′′ in

the previous equality:

µif = µif (Q′′
0) +

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

N
∑

l=1

Jkl
TQ′

l − Jkl
TKl = µif (Q′

0) +

N
∑

k=1

(

∂µif

∂Q′
k

)

0

Q′
k (4.2)

Hence, we obtain an equivalence between µif (Q′′
0) and µif (Q′

0):

µif (Q′
0) = µif (Q′′

0)−
N
∑

k=1

(

∂µif

∂Q′′
k

)

0

N
∑

l=1

Jkl
TKl

It is straightforward to see that if the HT approximation is not good enough, then the previous

relation is erroneous. This would mean that a higher degree of the Taylor series should be taken into

accound. As a matter of fact, knowing µif (Q′′
0) and µif (Q′

0), it is possible to check the relevance

of the HT approximation. Such an approach is interesting when µif (Q′
0) is unknown or cannot be

easily computed.

Here, the TD-DFT transition dipole moment µif is polarized along x (see figure 4.18) and in

atomic units its x-component is 0.01802 and -0.1017 at the equilibrium geometry of the ground and

excited states, S0−min and S1−min respectively. Computing µif (Q′
0) with the previous relation

(using µif (Q′′
0)), we obtain 0.02085 au, a value in very close agreement with the TD-DFT result,

supporting the validity of the HT approximation for the present case.

As described in section 2.9, two quantities are defined to check the spectrum convergence, SPFC

for the FC contribution and SPFCHT for the FCHT spectrum. The condition SPFC = 1 is necessary

128



but not sufficient to obtain SPFCHT = 1. It should be noted that the shape of the spectrum is

expected to converge faster than these quantities do as shown in section 4.4 and in references [82,94].

4.7.3 Results and discussion

Absorption and fluorescence spectra
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Figure 4.19: Fluorescence (left panels) and absorption (right panels) computed spectra of H2P
including only the FC contribution or both FC and HT contributions (FCHT). For FC spectra the
intensity is affected by the choice of the reference geometry, as shown by comparison of the left
and right vertical axes. The intensities on the vertical axes are reported in a.u. (see text) and µ
stands for 10−6. The spectra, computed at T=0 K, have been convoluted with a gaussian with a
FWHM=80 cm−1. Stick spectra are also reported and the main bands have been assigned as nx

where n is the excited normal mode and x its quantum number. Combination bands are reported
in parentheses.

In the upper panels of figure 4.19 we report the absorption and fluorescence spectra computed

at T=0 K including both FC and HT contributions (FCHT) and convoluted with a gaussian with a

full width at half maximum FWHM=80 cm−1. The intensities are computed according to equations

1.20, for the absorption, and 1.21, for the emission, skipping the prefactor 4π2/(3c) and expressing

the remaining quantities in atomic units. The maximum number of transitions to compute per

class, Nmax
I , is set to 107, giving for absorption SPFC ≈ 1 and SPFCHT ≈ 1.
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State S1 State S0

Mode Sym ω′′ (cm−1) Projectiona ∆ωb (cm−1)

v ′′
7 a1g 151.89 v ′

7 -4.11
v ′′
13 a1g 310.08 v ′

13 -2.23
v ′′
32 a1g 729.79 0.86 v ′

32 + 0.14 v ′
33 -10.61

v ′′
33 a1g 735.06 0.86 v ′

33 + 0.14 v ′
32 -9.42

v ′′
41 b1g 793.99 v ′

41 -4.25
v ′′
53 a1g 977.93 0.99 v ′

54 -13.17
v ′′
61 a1g 1085.68 0.99 v ′

63 -5.28
v ′′
68 a1g 1213.84 0.98 v ′

68 -12.86
v ′′
70 b1g 1266.58 v ′

71 -4.86
v ′′
75 b1g 1369.50 0.92 v ′

75 -15.48
v ′′
76 a1g 1387.82 0.85 v ′

78 + 0.07 v ′
80 -30.97

v ′′
78 b1g 1420.59 0.97 v ′

79 -32.27
v ′′
90 a1g 1606.43 0.95 v ′

91 -25.88
v ′′
91 b1g 1637.01 0.99 v ′

92 -35.82
v ′′
94 a1g 1671.76 0.94 v ′

94 -15.75

Table 4.5: Relevant normal modes of the two electronic states

The FCHT spectra can be compared with the FC ones reported in the lower panel of figure

4.19 and obtained neglecting the transition dipole derivatives (HT terms) in the Taylor series.

As discussed in section 3.9, the intensity of the FC contribution may change sensibly by adopting

different reference geometries. This is shown by the double vertical axes of the lower panels of figure

4.19 that report the FC intensities computed from the zero-order term of the µif expansion about

the equilibrium geometry of the initial state (S0 −min) (right axes) or the final state (S1 −min)

(left axes).

The comparison of the FC and FCHT spectra shapes shows the dramatic impact of the HT terms

on the spectra. The FC spectra are very narrow, and are by far dominated by the 0-0 transition

(between vibrational ground states). This result depends on the stiffness of the molecule, which

shows only small displacements between the equilibrium structures of the two electronic states. The

other peaks are due to transitions to excited vibrational states of the final state and are labeled as

nx where n represents the excited normal mode v ′′
n and x its quantum number.

The spectrum intensity is mainly related to the progression of normal modes with a1g or b1g

symmetry, which are reported in table 4.5. The a1g modes give rise to progressions which have both

FC and HT contributions (polarized along x), while b1g modes progressions result only from HT

contributions (polarized along y). Symmetry considerations show that HT terms polarized along

x mainly reflect intensity borrowing from the Bx Soret band, while y-polarized HT terms derive

from mixing with the By state (minor contributions may also come from the Qy state).

The normal modes of the excited state which contribute most to the FCHT absorption spectrum

are reported in order of increasing frequencies in the first column table 4.5. The second and third

columns report respectively its symmetry and the frequency. The fourth column shows the modes of

the ground state S0 on which the mode v ′′
n is mainly projected. The coefficients of the combinations

correspond to the squared elements of the Duschinsky matrix (J(v ′
i , v

′′
n)2). Inspection of the data

aThe coefficients correspond to the J(m′

i, n
′′)2 elements.

b∆ω = ω′′

i − ω′

j , where j is the mode v ′

j of S0 which has the highest projection coefficient with v ′′

i .
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shows that the Duschinsky mixing is not very large at least for the most important modes in the

spectrum, the most mixed mode of S1 being 76′′ with a coefficient J(v ′
78, v

′′
76)2 equals to 0.85. The

last column of table 4.5 reports the frequency difference between v ′′
n and the normal mode of the

initial state with the highest projection coefficient v ′
i (ω′′

n − ω′
i).

The FC fluorescence and absorption spectra in figure 4.19 show a good mirror-symmetry. The

highest peak corresponds to the 0-0 transition while the second highest one is due to the excitation

of one quantum on the oscillator v ′′
13 (in absorption) and v ′

13 (in emission), which are fully projected

one into the other (see table 4.5). The FCHT spectra are very different from their FC counterparts,

showing a much richer structure and being much more shifted toward the red (fluorescence) and

toward the blue (absorption), because of the negligible intensity of the 0-0 transition. This is due

to the fact that the HT contributions are much stronger than the FC ones.

The FCHT absorption and fluorescence spectra show some deviation from mirror-symmetry

that are more evident when looking to the assignments of the main bands. Some of the differences

are only seeming: for instance, the strongest stick band is 1′′91
c in absorption and 1′92 in emission,

but table 4.5 shows that these two normal modes are physically the same, being projected one

into the other with a weight 0.99 (the same happens for the bands 1′′53 in absorption and the

1′54 in emission). On the contrary, some differences have a physical meaning: for example the

third (in order of decreasing intensity) stick bands underlying the two highest absorption peaks

(namely 1′′90 and 1′′75) have much weaker counterparts in emission as a consequence of the interplay

of Duschinsky and HT effects. Relevant FC/HT interference effects are seen in the region close to

the 0-0 transition-frequency and a separate paragraph will be devoted to their discussion.

The limited displacements and frequency shifts, together with the moderate Duschinsky mixing,

explain why most of the main transitions in both the FCHT spectra actually correspond to the

fundamental 0 → 1 transition of a single mode. Only in the region of the spectra more distant from

the 0-0 transition (the “red” region in emission and the “blue” region in absorption) the intensities

of some combination bands really dominates the shape of the spectrum.

Study of the FC/HT interferences close to the 0-0 band

Some years ago Hohlneicher and coworkers reported a very interesting analysis of the FC/HT in-

terferences [130–132] on a series of organic molecules. They found out that often a constructive

interference in absorption becomes destructive in emission and viceversa. This phenomenon was ra-

tionalized by showing that for 0 → 1 transitions, the FC transition amplitude is expected to change

sign when considering absorption or emission, unlike the HT one, thus turning a constructive inter-

ference into a destructive one. This feature was already noticed by Small [133] and experimentally

investigated in H2P by Gradyushko et al. [134, 135]. In H2P, FC/HT interferences can only take

place close to the 0-0 transition, where FC contributions are not negligible. Therefore, we investi-

gate in a deeper detail the region in the interval of 700 cm−1 from the 0-0 energy. Mirror-symmetry

is expected between the squares of the transition dipole moment elements
(

∣

∣〈 v ′ | µif | v ′′ 〉
∣

∣

2
)

for absorption and emission. These data are reported as stick bands in figure 4.20, where the 0-0

frequency is set to zero and the 0-0 intensities are set to 1.

Figure 4.20 puts into evidence a breakdown of the absorption/emission mirror-symmetry with a

c1′′

91 represents 1 quantum for the mode v ′′

91, and corresponds here to the vibrational state | 0′′ + 1′′

91 〉
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Figure 4.20: Squares of the transition dipole moments of the T=0 K FC and FCHT absorption and
emission spectra, within a range of 700 cm−1 from the 0-0 transition frequency (set to zero), and
normalized so that the 0-0 stick-band (the same in absorption an emission) has height 1.

huge enhancement of the emission bands 1′7 and 1′13 with respect to the absorption counterparts 1′′7
and 1′′13. This result cannot be due to Duschinsky effects since mode v ′′

7 and v ′
7 coincide as well as

v ′′
13 and v ′

13 (see table 4.5). In order to assess if the mirror-symmetry breakdown is due to FC/HT

interferences, we report in table 4.6 the values of the FCHT, FC and HT x-polarized transition

amplitudes (〈v ′ | µif | v ′′ 〉) for these two bands, using as reference geometry for the Taylor expan-

sion of µif either S0 −min or S1 −min. These two sets of data show that the interpretation of

the observed enhancement in emission depends on the choice of the geometry reference, confirming

the discussion in conclusion of chapter 3. For the 1′′7 band, taking the S1 − min geometry as a

reference leads to attributing to the FC/HT interference the cause of the mirror-symmetry break-

down, whereas the origin of the phenomenon is purely HT if considered with respect to S0 −min.

As for the 1′′13 band, using S1−min as reference geometry the small absorption intensity is a clear

FC/HT destructive interference effect, while the remarkable emission intensity is purely due to the

FC contribution. At variance, adopting the S0 −min reference the absorption intensity comes out

from two very small FC and HT contributions, while the emission intensity is now almost a pure
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TD-DFT results
transition 1′′7 transition 1′′13

abs FCHT -0.0185 0.0050
emi FCHT -0.0343 0.0289

S0 −mind S1 −mind S0 −mind S1 −mind

µif (x) 0.02085 -0.1017 0.02085 -0.1017
abs FC -0.0045 0.0219 0.0071 -0.0346
abs HT -0.0140 -0.0404 -0.0021 0.0395
emi FC 0.0044 -0.0216 -0.0068 0.0340
emi HT -0.0387 -0.0128 0.0358 -0.0052

Table 4.6: FC/HT Interferences for x-polarized transitions 17 and 113. For brevity only the notation
for absorption bands is used. This creates no ambiguity since S0 v ′

7 and v ′
13 modes coincide with

the S1 v ′′
7 and v ′′

13 ones, respectively.

HT effect. Finally, adopting the S0 − min reference for absorption and the S1 − min reference

for emission, no sensible FC/HT interferences would be seen and one would ascribe the absorp-

tion/emission difference simply to a variation of the FC contribution as a result of the different

values of µif (Q0, x) at the two reference geometries.

The reason why the same physical feature can have different interpretations is rather subtle:

Hohlneicher et al. [130–132] noticed that in absence of strong Duschinsky couplings, once chosen a

reference geometry, the FC contributions of fundamental transitions (1n) are expected to be similar

in magnitude but of opposite sign, while the HT contributions do not change sign. Nonetheless,

the HT contributions may be very different in magnitude (see table 4.6) since, if the coordinate

operator Q′′ acts on a ground vibrational state (usually giving the smaller contribution) in absorp-

tion, it acts on a vibrational state with 1 quantum in emission (and viceversa). At variance, HT

contributions in absorption and emission have similar magnitudes considering each of them in a

different reference geometry. On the other hand, the magnitude of the FC contribution may be

deeply different adopting different reference geometries, which clearly reflects in the relevance of

the FC/HT interference term.

Effect of the Duschinsky mixing and frequency changes

In order to check the difference between our calculation and the results with a LCM-similar ap-

proach, we re-computed the FCHT absorption spectrum at T=0 K after switching off the Duschin-

sky couplings (setting J = I) and assigning to the normal modes on S1 the same frequencies they

have on S0, as described in section 4.8.3. As previously explained, our method differs slightly from

a pure LCM one since it takes into account the exact displacement of the atoms between the opti-

mized structures of the initial and final state. Nevertheless, we will assume that it is an accurate

description of the Linear Coupling Method and will refer to it as LCM.

Comparison of the LCM and FCHT spectra is shown in figure 4.21.

The largest difference is visible in the upper panel of the figure and corresponds to a global

shift in the spectrum caused by the neglect of the difference between the S1 and S0 frequencies (the

LCM 0-0 transition frequency is blue-shifted by ≈ 480 cm−1).

dReference geometry for the Taylor expansion of the transition dipole moment µif
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Figure 4.21: Upper panel: comparison of the

T=0 K absorption spectrum of H2P obtained

by an exact calculation and by only considering

equilibrium position displacements (DO). The

spectra have been convoluted with a gaussian

with a FWHM=80 cm−1. In the middle and

lower panels both the spectra have been shifted

so that their 0-0 transitions are in the origin of

the energy axis.

In order to highlight other discrepancies, this dif-

ference is cancelled by setting in both cases the

energy of the 0-0 transition to 0 cm−1, hence

switching to relative transition energies. The re-

sult is shown in the middle panel of figure 4.21

and the lowest panel of the figure represents an

enlargement of the zone corresponding to the two

highest peaks in the middle panel. The heights of

all bands slightly change, and a sensible difference

appears in the relative height of the two main

bands. Additionally, the stick spectra shown in

the lowest panel of figure 4.21 show a noticeable

re-distribution of the intensities. However, the

general shape of the spectrum changes only mod-

erately, as it might have been expected on inspec-

tion of table 4.5, which shows that the mixing

of the normal modes is weak and the changes of

the frequencies are small. Because of that, our

results substantially confirm the ones obtained

for the absorption spectrum of H2P by Minaev

et al. adopting the LCM method. [129]. On the

other hand our calculations indicate that strongly

mixed modes exist also in porphyrin. One exam-

ple is the S1 mode v ′′
74 whose maximum projec-

tion on a single S0 mode is 0.55. However these

mixed modes are not active either by the FC or

the HT mechanisms, and therefore they do not

contribute significantly to the spectrum.

Comparison with experiment

The computed emission spectrum is in good

agreement with the experimental one reported by

Michl et al. (see the fluorescence part of the lu-

minescence spectrum reported figure 1 of refer-

ence [136]). The general shape of the spectrum

is well reproduced, mainly showing a blue-shift

in energy of ≈ 1500 cm−1. The main compu-

tational error is the underestimation of the 0-0

band intensity, already seen in the calculation of

the absorption spectrum by Minaev et al. [129],

which is due to the small value of the transition dipole moment µif (Q′
0) computed at the TD-DFT

level, resulting in a too weak FC contribution to the spectrum.
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It should be noted that in our original work [19], a correction of µif was performed in order

to allow a detailed comparison with the high definition absorption and emission quasi-line bands

reported by Gradyushko and coworkers [134,135]. This scaling procedure is difficult to implement

in an automatic fashion and has not been integrated in our procedure.
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4.8 Anisole

4.8.1 Introduction

Gas phase spectroscopic studies have been currently focused on the interaction between aromatic

molecules, e.g . π-π stacking, and on DNA nucleotide base pairing [137–144]. At the same time,

a great effort has been devoted to microsolvation studies, dealing with complexes formed by organic

molecules and water or other solvents [145–149].

Figure 4.22: Different types of interaction

in complexes of anisole.

Among aromatic molecules, phenol and anisole are par-

ticularly interesting because of the coexistence of pro-

totypical functional groups: the aromatic ring, H-bond

donor and acceptor and the methyl group (anisole);

yielding to a number of different solvent-molecule in-

teraction schemes (see Figure 4.22): hydrogen bonding,

van der Waals forces, dipole-dipole interactions. More-

over, in many cases none of these mechanisms is clearly

dominant and a delicate balance of different terms is

likely to be expected.

Phenol represents the prototype of aromatic alco-

hols and it has been deeply studied as an isolated molecule, as a dimer or as a partner in in-

termolecular complexes [144, 145, 150]: in all the reported cases the leading interaction has been

unambiguously assigned as the formation of a strong hydrogen bond. On the other side, recent stud-

ies of the anisole-water [151] and anisole-ammonia [152] adducts highlighted the complexity of the

potential energy surface of molecular systems that involve the anisole, showing the different bind-

ing properties for these two systems. For anisole-water [146, 147], an hydrogen bond (OH · · ·O) is

formed with the oxygen of anisole yielding to a planar strcture, while for anisole-ammonia [152,153]

interactions with the the delocalized π-electron density of the anisole ring leads to a non planar

one.

The vibrationally resolved absorption spectrum of the S1 ← S0 electronic transitions of anisole

[20] represents an example of the simulation accuracy achievable when good quality geometries and

force fields for both electronic states are provided. This can be acheived by applying the Density

Functional Theory (DFT) and its Time-Dependent (TD-DFT) counterpart [13, 154] to reliable

predictions of geometries and harmonic frequencies of molecular systems in ground and excited

electronic state respectively. The electronic transition between the vibrational ground states can

be further improved by post-Hartree-Fock single point energy calculations. In particular, methods

based on the coupled cluster ansatz are known to provide accurate energies for the ground as well as

singly excited electronic states, with computational costs that are reasonable even for medium-size

systems. Therefore, an integrated QM approach can take advantage of the overall accuracy of the
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energies given by coupled cluster models, while at the same time using the reliable structures and

frequencies computed by methods based on density functional theory.

4.8.2 Quantum mechanical calculations

Geometry optimizations of anisole in the ground and first excited electronic state have been carried

out using the DFT and TD-DFT [13], respectively. The B3LYP functional has been adopted in

conjunction with the 6-311+G(d,p) basis set. While more recent functionals [155, 156] may well

perform better than B3LYP, this was deemed sufficiently accurate for the purpose, especially since

relative energies are anyway corrected at the coupled cluster level (see below). Harmonic vibrational

frequencies have been computed for each structure. For the ground state, the standard procedure

based on the availability of analytical second derivatives for DFT was followed; for the excited state,

frequencies were evaluated by numerical differentiation of the analytical TD-DFT energy gradients.

Anharmonic perturbative [103] calculations have been performed at the B3LYP/6-311+G(d,p) level

for the ground electronic state, and subsequently used to account for anharmonicity in both S0 and

S1 electronic states, as described in section 3.3.1. The zero point vibrational energy (ZPE) can be

expressed [103] as

ZPE =
1

2
(ZPEharm + ZPEanh) + ξ0 −

1

4

∑

i

ξii, (4.3)

where ZPEharm = 1
2

∑

i ωi and ZPEanh = 1
2

∑

i ϑi, ω and ϑ being the harmonic and anhar-

monic fundamental vibrational frequencies, respectively (see Ref. [103] for the definition of ξ0 and

ξii). For the ground electronic state, the anharmonic zero point energy correction has been com-

puted according to equation 4.3, as implemented in the gaussian package [18,103]. For the ground

state the last two terms of equation 4.3 account for just about 0.2 % (≈ 70 cm−1) of the total

ZPE. Thus for the excited state the ZPE has been approximated as an average between ZPEharm

and ZPEanh. All calculations rooted in the density functional theory have been performed with the

gaussian suite of quantum chemistry programs [18].

The energy separation between ground and excited electronic state has been refined by single-

point energy calculations at the coupled cluster level of theory including single and double exci-

tations (CCSD) [113, 114], with the 6-311+G(d,p) and the aug-cc-pVDZ (AVDZ) [111, 112] basis

sets. For the S1 first excited electronic state the equation-of-motion CCSD counterpart (EOM-

CCSD) [115] has been exploited. The CCSD and EOM-CCSD calculations have been performed

with the MOLPRO [116] package.

4.8.3 Results and Discussion

Structure of anisole in S0 and S1 states

The planarity of anisole in both the ground and the first excited electronic states has been de-

termined by the high resolution electronic excitation spectrum of the band origin in the S1 ← S0

electronic transition using laser-induced fluorescence (LIF) spectroscopy [157]. Table 4.7 compares

theoretical and experimental rotational constants, showing an average deviation of about 0.5 % for

both electronic states.
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calc exp [157]

S0

A 0.168591 0.167745

B 0.052032 0.052349

C 0.040065 0.040222

S1

A 0.161597 0.159978

B 0.051761 0.051896

C 0.039500 0.039515

Table 4.7: Comparison of calculated and experimental rotational constants (in cm−1) for anisole in

its ground and excited electronic state.

Figure 4.23: Geometry and numbering

scheme of anisole.

The agreement is remarkable, and confirms the

good quality of the calculated geometries. For the

ground state, accurate structures calculated using the

density functional theory with the B3LYP functional

and basis set of triple−ζ quality have already been

reported [158, 159], but for the excited state the TD-

B3LYP results from this work should be considered as

the best estimates available at present. The structure

and atom numbering of anisole are shown in Figure

4.23, and the geometric parameters for the ground and

first excited electronic states are listed in Table 4.8.

The S1 ← S0 electronic transition has a mixed n→ π∗/

π → π∗ character. The frontier Kohn-Sham orbitals

(MO) involved in the n → π∗ / π → π∗ transition,

computed at the B3LYP/6-311+G(d,p) level for the S1

geometry, are shown in Figure 4.32, and the electron density difference between the ground and ex-

cited states is sketched in Figure 4.24. TD-DFT calculations show that the first electronic excitation

is dominated (≥60%) by the HOMO-LUMO transition, with some contributions from the HOMO-

1 to the LUMO+1 transitions. On inspection of the MO plots, it clearly appears that the most

important effect related to the HOMO-LUMO transition is the transfer of electron density (ELD)

from the oxygen atom to the aromatic ring, and this has been also confirmed by density-difference

plots.
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Figure 4.24: The S1-S0 difference density for the anisole. The electronic density corresponds to the

ground and first excited states computed for the structure optimized at TD-B3LYP/6-311+G(d,p)

level. The regions that have lost electron density as a result of the transition are shown in magenta,

and the regions with the lime color gained electron density. The isosurfaces shown here correspond

to the frontier 0.0035.

The transfer of electron density from the oxygen atom to the aromatic ring leads to some changes

in the structure, but does not affect the molecular symmetry. On the whole, all CC bonds become

longer in the excited state. As for the CO bonds, C1O7 becomes shorter by 0.017 Å and O7C8

longer by 0.009 Å in the excited state. Other structural changes are related to the increase of CCC

angles: C3C4C5 and C6C1C2 by ≈ 3.5 deg, and C1O7C8 by 2.4 deg. These changes are in line with

a decrease of electron density on the oxygen atom, and an increase on the aromatic ring. Earlier

calculations at the configuration interaction singles level (CIS/6-311G(d,p)) [159] predicted both

CO bonds about 0.02 Å shorter with respect to TD-B3LYP, and gave the opposite trend for the

change of the O7C8 bond (see supplementary Table 4.14). On the whole, the geometry of anisole

does not change much during the transition, as required for applicability of the Franck-Condon

approximation.

S0 S1 ∆(S1 − S0)

C1C2 1.401 1.424 0.024

C2C3 1.388 1.425 0.037

C3C4 1.398 1.412 0.015

C4C5 1.390 1.418 0.028

C5C6 1.398 1.426 0.028

C6C1 1.397 1.421 0.024

C1O7 1.366 1.349 -0.017

O7C8 1.420 1.429 0.009

C2H9 1.083 1.081 -0.003

Table 4.8: Selected geometrical parameters (bond lengths in

Å and angles in degrees) of anisole in its ground and excited

state, computed at B3LYP/6-311+G(d,p) and TD-B3LYP/6-

311+G(d,p) level.
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Table 4.8: Continuation

S0 S1 ∆(S1 − S0)

C3H10 1.084 1.081 -0.003

C4H11 1.083 1.085 0.001

C5H12 1.084 1.081 -0.003

C6H13 1.082 1.080 -0.002

C8H14(16) 1.096 1.093 -0.003

C8H15 1.089 1.088 -0.001

C1O7C8 118.6 121.0 2.4

C2C1O7 115.7 113.9 -1.8

C6C1O7 124.5 122.9 -1.6

C1C2C3 120.0 118.1 -1.9

C2C3C4 120.6 119.1 -1.5

C3C4C5 119.2 122.4 3.3

C4C5C6 120.9 119.4 -1.5

C5C6C1 119.5 117.7 -1.7

C6C1C2 119.8 123.2 3.4

H15C8O7 105.9 105.5 -0.3

H14C8O7 111.4 110.6 -0.9

H15C8O7C1 180.0 180.0 0.0

H14C8O7C2 61.3 61.0 -0.2

H16C8O7C2 -61.3 -61.0 0.2

Table 4.8: Selected geometrical parameters (bond lengths in

Å and angles in degrees) of anisole in its ground and excited

state, computed at B3LYP/6-311+G(d,p) and TD-B3LYP/6-

311+G(d,p) level.

Vibrational frequencies in the ground electronic state of anisole

Preliminary to analysis of the vibrational structure of the S1 ← S0 transition, the computed

vibrational frequencies of the ground state must be properly assigned. In line with previous

works [158, 160], we chose to follow the labeling convention proposed by Balfour [161] to refer

to the vibrational modes. For the aromatic ring modes, the Wilson notation [162] is used through-

out the paper. Cardinal numbers are used to number the 42 normal modes of anisole, while the

notation vn refers to the assignment. Experimental and calculated frequencies of anisole in its

ground electronic state are listed in Table 4.9 along with the proposed assignment. In discussing

the assignments, we will follow the scheme given by Varsanyi [163].
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mode sym exp calc assignment

[161] [158,160]a) [159]b) This workc)

1 A” 81.5 90 92 86 v ′
COC torsion

2 A” 209 203 203 200 v ′
10b

3* A’ 260 250 251 253 v ′
COC bending

4 A” 263 266 267 258 v ′
O-CH3 torsion

5 A” 415 412 416 417 v ′
16a

6* A’ 430d) 433 437 438 v ′
9b

7 A” 511 502 509 511 v ′
16b

8 A’ 553 543 549 554 v ′
6a

9 A’ 618 610 616 624 v ′
6b

10 A” 690 669 689 697e) v ′
4

11 A” 752 738 750 757 v ′
11

12 A’ 788 777 782 784 v ′
1

13 A” 819 806 811 812 v ′
10a

14 A” 880 867 877 883 v ′
17b

15 A” 956 941 946 959 v ′
17a

16 A” 975 956 965 982 v ′
5

17 A’ 997 981 988 995 v ′
12

18 A’ 1022 1015 1020 1019 v ′
18a

19 A’ 1039 1041 1045 1040 v ′
O-CH3 stretch.

20* A’ 1073 1075 1079 1083 v ′
18b

21 A” 1143 1138 1146 1147 v ′
CH3 rock.

22 A’ 1151 1147 1153 1164 v ′
15

23 A’ 1169 1165 1169 1178 v ′
9a

24 A’ 1180 1173 1179 1177 v ′
CH3 rock.

25* A’ 1253 1248 1249 1239 v ′
7b

26 A’ 1292 1305 1306 1306 v ′
3

27 A’ 1332 1330 1328 1336 v ′
14

28 A’ 1442 1437 1445 1468 v ′
CH3 sym. def.

29 A’ 1455 1449 1456 1455 v ′
19b

30 A” 1452 1469 1475 1480 v ′
CH3 antisym. def.

31 A’ 1464 1456 1460 1466 v ′
CH3 antisym. def.

32 A’ 1497 1492 1498 1495 v ′
19a

Table 4.9: Calculated and experimental frequencies (in cm−1)

of anisole in its ground electronic state. Modes for which a

revised assignment is proposed are marked by an asterisk.

aB3LYP/6-311++G(d,p) harmonic frequency calculations, frequencies up to 2000 cm−1 scaled by a factor of 0.973
and those of higher frequency range by the factor 0.963.

bB3LYP/6-311G(d,p) harmonic frequency calculations, scaled by a factor of 0.979.
cB3LYP/6-311+G(d,p) anharmonic frequency calculations.
dRef. [159].
eHarmonic frequency value.

141



Table 4.9: Continuation

mode sym exp calc assignment

[161] [158,160]a) [159]b) This workc)

33 A’ 1588 1542 1592 1583 v ′
8b

34 A’ 1599 1606 1612 1601 v ′
8a

35 A’ 2900 2903 2934 2870 v ′
CH3 sym. stretch.

36 A” 2942 2964 2990 2903 v ′
CH3 asym. stretch.

37 A’ 3004 3034 3063 2994 v ′
CH3 asym. stretch.

38* A’ 3026 3063 3101 3007 v ′
13

39* A’ 3037 3070 3094 3042 v ′
7a

40* A’ 3062 3089 3135 3047 v ′
20a

41* A’ 3092 3093 3125 3069 v ′
20b

42* A’ 3105 3101 3117 3078 v ′
2

Table 4.9: Calculated and experimental frequencies (in cm−1)

of anisole in its ground electronic state. Modes for which a

revised assignment is proposed are marked by an asterisk.

Among the tangential in-plane vibrations, Balfour [161] assigned the 1151 cm−1, 1073 cm−1 and

260 cm−1 bands to modes v ′
9b, v ′

15 and v ′
18b, respectively. Hoffman et al. [160] proposed to modify

the original assignment into modes v ′
15, v ′

9b and v ′
18b. Inspection of the displacements underlying the

normal modes computed here suggests still another correction, namely v ′
15, v ′

18b and v ′
COC bending,

respectively. We also propose to assign the vibration at 430 cm−1, not observed by Balfour [161],

but reported recently by Matsumoto et al. [159], to mode v ′
9b. Concerning the radial in-plane

modes, some ambiguities remain about the assignment of the C-X(H) stretching modes (v ′
2, v ′

7a,

v ′
7b, v ′

20a, v ′
20b, v ′

13), which are related to the band at 1253 cm−1 and to five high frequency bands

(over 3000 cm−1). The absorption at 1253 cm−1 has been first assigned by Balfour to the v ′
7a mode,

but Matsumoto et al. changed it to the mode v ′
13, while Hoffman et al. supported the original

Balfour’s assignment. We propose here to reassign this mode to v ′
7b; this entails also a reassignment

of the C-H stretching modes, as listed in Table 4.9. As for the out-of-plane vibrations, all earlier

assignments are confirmed. Finally, concerning the vibrations of the methoxy group, we suggest to

assign the 260 cm−1 frequency to the COC bending mode, as discussed above.

In the present work anharmonic frequency calculations for anisole in its ground state have been

performed for the first time. The results show a very good agreement with the experimental data. In

particular, a RMS deviation of 8 cm−1 between computed and experimental frequencies is achieved,

provided frequencies related to the highly anharmonic modes (involving C-H and CH3 vibrations)

are excluded. Nevertheless, even for strongly anharmonic modes the maximum deviation does not

exceed 40 cm−1, and the RMS value computed with inclusion of all modes is still only 13 cm−1.

Comparable overall agreements have only been achieved by adopting different scaling factors for

the high- and low-frequency portions of the spectrum [160]. However, in this case the relative error

aB3LYP/6-311++G(d,p) harmonic frequency calculations, frequencies up to 2000 cm−1 scaled by a factor of 0.973
and those of higher frequency range by the factor 0.963.

bB3LYP/6-311G(d,p) harmonic frequency calculations, scaled by a factor of 0.979.
cB3LYP/6-311+G(d,p) anharmonic frequency calculations.
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affecting a particular frequency is not easily related to its nature, in the sense that an anharmonic

mode like v ′
2 can show a small deviation, while at the same time a ring deformation like v ′

8b is affected

by a large error (46 cm−1). Overall, it would appear that the anharmonic frequency calculations

for anisole presented here are the most reliable theoretical values reported to date: small residual

discrepancies, where present, are clearly related to the physical nature of the phenomenon and

are not accidental. From another viewpoint, this also provides an indirect support to the use of

theoretical anharmonic corrections for excited state calculations.

Harmonic and anharmonic frequencies in the S1 excited electronic state of anisole

To compare simulated spectra with experimental data, one needs to account for the anharmoni-

city of vibrational modes in the first singlet excited state. Due to the lack of analytical second

derivatives, direct computation of anharmonic frequencies of anisole at the TD-DFT level is not

practical. Here we introduce two approaches to obtain anharmonic correction in the S1 state. Both

are based on the Duschinsky transformation [31] used to represent the excited state normal modes,

and make use of ground state anharmonic frequencies. The calculated (αTA) or empirical (αEA)

mode-specific scaling factors are derived (see section 3.3.1) from comparison of the calculated har-

monic frequencies to anharmonic calculations or to experimental data, respectively. In view of

the good agreement between theoretical and experimental ground state frequencies that has been

highlighted before, in the present instance the two sets of values (Table 4.10) are actually close to

each other, with the exception of a few strongly anharmonic modes.

S0 S1

Mode ω′ ϑ′ αTA αEA ω′′ ϑ′′TA ϑ′′EA

1 90 86 0.956 0.902 72 69 66

2 204 200 0.982 1.024 86 85 85

3 256 253 0.987 1.016 139 136 140

4 268 258 0.963 0.983 199 192 197

5 422 417 0.989 0.984 252 249 256

6 446 438 0.981 0.964 376 376 372

7 517 511 0.988 0.988 437 428 421

8 560 554 0.989 0.987 441 433 436

9 629 624 0.992 0.982 517 512 509

10 697 697f) 1.000 0.990 530 530 524

11 764 757 0.991 0.985 546 540 538

12 797 784 0.984 0.988 604 596 595

13 827 812 0.981 0.990 629 623 620

14 894 883 0.988 0.985 680 673 670

15 971 959 0.987 0.984 781 769 772

Table 4.10: Calculated harmonic and anharmonic frequencies

(in cm−1) and mode specific scaling factors.

fHarmonic frequency value.
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Table 4.10: Continuation

S0 S1

Mode ω′ ϑ′ αTA αEA ω′′ ϑ′′TA ϑ′′EA

16 989 982 0.992 0.985 858 850 845

17 1009 995 0.985 0.988 973 957 960

18 1041 1019 0.979 0.982 990 970 972

19 1065 1040 0.977 0.976 1006 986 982

20 1102 1083 0.982 0.973 1035 1014 1008

21 1169 1147 0.981 0.978 1143 1121 1118

22 1178 1164 0.988 0.977 1152 1136 1127

23 1194 1178 0.986 0.979 1161 1144 1136

24 1201 1177 0.980 0.982 1183 1161 1161

25 1271 1239 0.974 0.986 1278 1247 1258

26 1335 1306 0.978 0.968 1310 1284 1277

27 1357 1336 0.985 0.982 1395 1369 1365

28 1474 1468 0.996 0.978 1420 1390 1389

29 1485 1455 0.980 0.980 1449 1434 1417

30 1493 1480 0.991 0.972 1457 1423 1424

31 1506 1466 0.974 0.972 1476 1450 1446

32 1527 1495 0.979 0.981 1483 1470 1443

33 1624 1583 0.974 0.978 1494 1458 1454

34 1642 1601 0.975 0.974 1521 1483 1482

35 3003 2870 0.956 0.966 3032 2897 2928

36 3060 2903 0.948 0.961 3101 2940 2981

37 3132 2994 0.956 0.959 3153 3014 3025

38 3163 3007 0.951 0.957 3171 3024 3042

39 3170 3042 0.960 0.958 3201 3072 3066

40 3187 3047 0.956 0.961 3208 3061 3078

41 3194 3069 0.961 0.968 3223 3095 3117

42 3204 3078 0.961 0.969 3229 3101 3128

Table 4.10: Calculated harmonic and anharmonic frequencies

(in cm−1) and mode specific scaling factors.

It should be pointed out that TD-DFT frequencies differ significantly from their CIS counter-

parts (see supplementary Table 4.15). In particular, discrepancies of over 50 cm−1 are found for

modes 2, 8, 33, 34, 41 and 42 of anisole. Since previous assignments of the fundamental vibrational

transitions in S1 have been based on CIS calculations [159,160], one can expect that some reassign-

ments are needed. As discussed above, the electronic excitation does not affect significantly the

molecular structure; however, it leads to important changes in vibrational properties. These are

related to changes of normal modes (Duschinsky rotation), as well as to significant frequency vari-

ations for some modes. Table 4.11 lists the assignments and the calculated anharmonic frequencies

for both electronic states.
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S0 S1 ∆ S1-S0

ϑ′g) assignment ϑ′′EA
h) assignment

86 v ′
COC torsion 66 0.89 v ′

COC torsion -20

417 v ′
16a 85 -0.83 v ′

16a -332

200 v ′
10b 140 0.75 v ′

10b [ + 0.17 v ′

O-CH3 torsion ] -60

258 v ′
O-CH3 torsion 197 0.74 v ′

O-CH3 torsion [ - 0.22 v ′

10b
] -61

253 v ′
COC bending 256 v ′

COC bending 3

511 v ′
16b 372 -0.49 v ′

16b + 0.46 v ′
4 -139

438 v ′
9b 421 0.97 v ′

9b -17

812 v ′
10a 436 0.75 v ′

10a [ - 0.16 v ′

17a
] -376

624 v ′
6b 509 -0.61 v ′

6b - 0.39 v ′
6a -115

697i) v ′
4 524 0.48 v ′

16b + 0.48 v ′
4 -173

554 v ′
6a 538 -0.60 v ′

6a + 0.38 v ′
6b -16

959 v ′
17a 595 0.74 v ′

17a -364

757 v ′
11 620 -0.77 v ′

11 -137

883 v ′
17b 670 0.66 v ′

17b [ - 0.29 v ′

5 ] -213

784 v ′
1 772 v ′

1 -12

982 v ′
5 845 0.57 v ′

5 [ + 0.27 v ′

17b
] -136

995 v ′
12 960 -0.70 v ′

12 [ + 0.30 v ′

18a
] -35

1019 v ′
18a 972 -0.58 v ′

18a [ - 0.22 v ′

12 - 0.17 v ′

O-CH3 stretch. ] -47

1040 v ′
O-CH3 stretch. 982 -0.43 v ′

18b + 0.39 v ′
O-CH3 stretch. -58

1083 v ′
18b 1008 0.52 v ′

18b + 0.44 v ′
O-CH3 stretch. -74

1147 v ′
CH3 rock. 1118 v ′

CH3 rock. -29

1164 v ′
15 1127 0.55 v ′

15 + 0.30 v ′
9a -37

1178 v ′
9a 1136 0.67 v ′

9a [ - 0.21 v ′

15 ] -42

1177 v ′
CH3 rock. 1161 0.80 v ′

CH3 rock. [ - 0.17 v ′

15 ] -16

1239 v ′
7b 1258 0.86 v ′

7b 19

1306 v ′
3 1277 0.56 v ′

3 + 0.30 v ′
14 -29

1336 v ′
14 1365 -0.50 v ′

14 [ + 0.18 v ′

3 + 0.16 v ′

8a
] 29

1455 v ′
19b 1389 0.75 v ′

19b -65

1468 v ′
CH3 sym. def. 1417 0.66 v ′

CH3 sym. def. [ + 0.21 v ′

19a
] -49

1601 v ′
8a 1424 -0.49 v ′

8a [ + . . . ] -177

1495 v ′
19a 1446 -0.64 v ′

19a [ + 0.21 v ′

CH3 sym. def. ] -49

1466 v ′
CH3 antisym. def. 1443 v ′

CH3 antisym. def. -23

1480 v ′
CH3 antisym. def. 1454 0.87 v ′

CH3 antisym. def. -26

1583 v ′
8b 1482 -0.81 v ′

8b [ + 0.16 v ′

8a
] -101

Table 4.11: Assignments and calculated frequencies (in cm−1)

for anisole in its ground and first excited electronic state.

gS0 frequencies are listed in such sequence as to to match the corresponding S1 frequencies.
hS1 frequencies are listed in order of increasing harmonic frequency, see ω′ in Table 4.10.
iHarmonic frequency value.
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Table 4.11: Continuation

S0 S1 ∆ S1-S0

ϑ′g) assignment ϑ′′EA
h) assignment

2870 v ′
CH3 sym. stretch. 2928 v ′

CH3 sym. stretch. 58

2903 v ′
CH3 asym. stretch. 2981 v ′

CH3 asym. stretch. 78

2994 v ′
CH3 asym. stretch. 3025 v ′

CH3 asym. stretch. 31

3007 v ′
13 3042 0.54 v ′

13 + 0.36 v ′
20a 35

3042 v ′
7a 3066 v ′

7a 24

3047 v ′
20a 3078 -0.49 v ′

20a + 0.44 v ′
13 31

3069 v ′
20b 3117 0.80 v ′

20b 48

3078 v ′
2 3128 0.92 v ′

2 50

Table 4.11: Assignments and calculated frequencies (in cm−1)

for anisole in its ground and first excited electronic state.

In general, normal modes in the ground and excited electronic states are not identical. In

particular modes 6, 9-11, 19-20, 38 and 40 in S1 are described by approximately equal contributions

from pairs of S0 vibrations. Even for the modes less affected by Duschinsky rotation, significant

changes in vibrational energy may occur: thus, v ′
16a, v ′

10a, v ′
17a, v ′

11 and v ′
8b are shifted by more than

100 cm−1.

Simulated vs experimental spectra

The simulated vibronic profile of the S1 ← S0 electronic transition is compared to the experimental

data from Resonance Enhanced Multi-Photon Ionization (REMPI) spectra [160]. In Figure 4.25,

the best fully theoretical spectrum is shown on an absolute energy scale.

This has been calculated by the Franck-Condon Herzberg-Teller approach, with the frequen-

cies corrected for anharmonicity, and the energy of the electronic transition adjusted based on

(CCSD/EOM-CCSD)/aug-cc-pVDZ single point calculations. In this way a very good agreement

(0.05 eV) between theoretical and experimental results for the 0-0 electronic transition has been

achieved. The DFT/TD-DFT route also yields results close (0.2 eV) to the experiment (see Table

4.7).

calc exp [157]

TD-B3LYP/6-311+G(d,p) 4.694 4.511

EOM-CCSD/6-311+G(d,p) 4.642

EOM-CCSD/AVDZ 4.564

Table 4.12: Comparison of calculated and experimental energy of the S1 ← S0 transition (in eV)

for anisole.

Nevertheless, such an accuracy is still insufficient to discuss the vibrational states in S1, and it is

gS0 frequencies are listed in such sequence as to to match the corresponding S1 frequencies.
hS1 frequencies are listed in order of increasing harmonic frequency, see ω′ in Table 4.10.
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Figure 4.25: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole as a
function of absolute energy (in cm−1).

therefore necessary to compare the values relative to the 0-0 origin: such a comparison is presented

in Figure 4.26.

Both simulated spectra are calculated by the Franck-Condon approximation and include the

anharmonicity corrections, but differ in the (arbitrary) values adopted for the Full-Width at Half-

Maximum (FWHM) (2 and 20 cm−1, respectively). Since the REMPI spectra of anisole show sharp

bands, the best match is achieved with a FWHM of 2 cm−1, and this value has been applied to

produce all other spectra shown in the following.

Figure 4.33, situated at the end of this section, shows how the approximations implemented to

model theoretical spectra affect the calculated vibrational profiles, and more in general the accuracy

of the results.

Panel A displays the spectrum in a range 0-1800 cm−1, which correspond to the full range of

the experimental spectra, while an expansion of the 800-1800 cm−1 region is presented in panel B.

At the first level of approximation, the Duschinsky rotation between normal modes, as well as any

frequency change between the states, are neglected [J = I;ω’(i)=ω(i)]. In other words, this approach

takes into account only the translation between the ground and exited state geometries and normal

modes (K 6= 0), and thus corresponds roughly to the LCM approximation. It should be noted that

LCM [11] estimates displacements from the PES gradient at the ground-state equilibrium geometry

(accounting in principle for anharmonicity to the first order) [11, 96, 164, 165], while our approach

retain the exact displacements from the optimized ground- and excited-state geometries. Next the

Franck-Condon spectra obtained with the the Duschinsky rotation are reported, and finally the

effect of the anharmonic correction is shown. The spectrum corresponding to the Franck-Condon

Herzberg-Teller approximation is not plotted separately, since on the adopted scale it would be

almost superimposable to its Franck-Condon only counterpart. From Figure 4.33 it is evident that
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Figure 4.26: Theoretical (upper panel) and experimental [160] (lower panel) spectra of the S1 ←
S0 transition of anisole. Solid line, spectrum calculated with a FWHM of 2 cm−1; dashed line,
spectrum calculated with a FWHM of 20 cm−1.

the LCM approach provides only a rough estimation of the actual spectra. The two most intense

bands of the REMPI spectrum are well reproduced, but the third band at ≈ 550 cm−1 shows

similar intensity, at variance with the REMPI data. The differences are even more pronounced

for the 800-1800 cm−1 spectral range, where the LCM approximation misses an intense band at

≈ 1700 cm−1, as well as many other weak features. The only spectral region where the LCM shows

a better agreement to the experimental spectra is the (essentially featureless) 0-200 cm−1 range:

here, the spectrum based on TD-DFT geometry and frequencies for the excited state shows an

intense band at ≈ 170 cm−1. The band corresponds to the first vibrational overtone of the 2nd

vibration of S1, and therefore the discrepancy can be traced back to an inappropriate description

of the strongly anharmonic out-of-plane ring deformation v ′
16a coupled with the O-CH3 torsion.

However, in the 200-1800 cm−1 range the Franck-Condon calculations provide an accurate intensity

pattern for all the important bands of the REMPI spectra. Introduction of the correction for

anharmonicity causes a red-shift of the frequencies, and results in a good overall agreement for

the band positions as well. It is worthwhile underlining that the Franck-Condon calculations from

our work are able to reproduce the rich vibrational structure of the REMPI spectra. As a matter

of fact, since the S1 ← S0 electronic transition of anisole is dipole-allowed (µ(Q′
0) ≈ 0.6 a.u.),

the Franck-Condon approximation is sufficient to reproduce all the main spectral features, and the

more computationally demanding Franck-Condon Herzberg-Teller calculations do not introduce

significant improvements.

Vibrational bands in the S1 excited electronic states of anisole

There have been several attempts to assign fundamental vibrations of anisole in its first electronic

excited state based on the vibronic structure of the S1← S0 electronic transition, starting from early
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work by Balfour [166], to the recent papers by Matsumoto et al. [159] and Hoffman et al. [160]. In

these latter, computations of excited state frequencies at the CIS level of theory have also been used

to assist the assignment. Nevertheless, some of the assignments must still be regarded as tentative,

the main difficulties being related to low signal intensity, as well as to the high density of possible

fundamental bands, not to mention overtones and binary combinations. In principle, simulations

of spectra give insight into the vibrational components of each of the vibronic transitions, and

therefore provide a straightforward route to assignment.

In the present work a direct comparison between experimental and simulated spectra has been

used as the basis for the assignment of the vibrational modes in the excited state. It is immediately

apparent from Figure 4.26 that the main features of the experimental REMPI spectrum are well

reproduced by the simulation. For example, one of the most intense bands, at 759 cm−1, has been

assigned to mode v ′
1. The simulated spectrum displays a strong band at 769 cm−1 (772 cm−1 if the

empirical anharmonic correction is adopted), which corresponds to the 15th mode of S1, indeed as-

signed as v ′
1. The reliability of the theoretical approach can also be gauged by a comparison between

the experimental and computed frequencies of the set of the six most intense bands (highlighted in

Table 4.13), which results in an RMSD of 15 cm−1.

expj) ϑ′′TA ϑ′′EA assignmentk)

234l) 204 205
{

0.89 v ′
COC torsion

}

+
{

0.75 v ′
10b+ 0.17 v ′

O-CH3 torsion

}

259m) 249 256
{

v ′
COC bending

}

367 384 393
{

0.74 v ′
O-CH3 torsion- 0.22 v ′

10b

}

2

427 428 421
{

0.97 v ′
9b

}

501m) 512 509
{

-0.61 v ′
6b - 0.39 v ′

6a

}

508 combination

516 combination

527m) 540 538
{

-0.60 v ′
6a + 0.38 v ′

6b

}

621 combination

667 combination

704 combination

750 752 744
{

-0.49 v ′
16b + 0.46 v ′

4

}

2 n)

759m) 769 772
{

v ′
1

}

937m,o) 922 922
{

v ′
17a

}

+
{

. . .
}

Table 4.13: Assignments of S1 ← S0 vibronic transitions of

anisole. All energies are relative to the 0-0 origin. Fre-

quencies are in cm−1. Experimental frequencies that have

been extracted from the plots of REMPI spectra reported in

Ref. [160] are marked by asterisk.

jExperimental data from reference [160].
kIn parenthesis the fundamental modes of S1 resulting from the Duschinsky rotation between S0 vibrations.
lExperimental data from reference [159].

mBands considered for the estimation of the RMS deviation.
nAlternative assignment:

˘

-0.83 v ′

16a

¯

+
˘

-0.61 v ′

6b - 0.39 v ′

6a

¯

combination.
oAverage of four bands considered for the estimation of the RMS deviation.
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Table 4.13: Continuation

expj) ϑ′′TA ϑ′′EA assignmentk)

943m,o) 938 941
{

v ′
17a

}

+
{

. . .
}

948m,o) combination

954m,o) 957 960
{

-0.70 v ′
12

}

994 986 982
{

-0.43 v ′
18b + 0.39 v ′

O-CH3 stretch.

}

1016 1016 1027
{

v ′
17a

}

+
{

. . .
}

1126 1127 1128
{

v ′
12

}

+
{

. . .
}

≈ 1140* 1136 1127
{

0.55 v ′
15 + 0.30 v ′

9a

}

p)

1152 1160 1161
{

0.80 v ′
CH3 rock.

}

1179 1191 1189
{

0.74 v ′
17a

}

2

1271 1247 1258
{

0.86 v ′
7b

}

1288 1284 1277
{

0.56 v ′
3 + 0.30 v ′

14

}

1415 combination

1443 1433 1417
{

0.66 v ′
CH3 sym. def. + 0.21 v ′

19a

}

1455 combination

1479 1483 1482
{

-0.81 v ′
8b

}

q)

1517 1497 1498
{

v ′
12

}

+
{

-0.60 v ′
6a + 0.38 v ′

6b

}

≈ 1540* 1536 1544
{

v ′
1

}

2

1571 combination

1636 combination

1713m,r) 1726 1732
{

v ′
1

}

+
{

v ′
12

}

2967 2897 2928
{

v ′
CH3 sym. stretch.

}

2979 combination

2990 combination

3049 3024 3042
{

0.54 v ′
13 + 0.36 v ′

20a

}

3076 3061 3078
{

-0.49 v ′
20a + 0.44 v ′

13

}

3084 combination

3099 3095 3117
{

0.80 v ′
20b

}

3107 3101 3128
{

0.92 v ′
2

}

Table 4.13: Assignments of S1 ← S0 vibronic transitions of

anisole. All energies are relative to the 0-0 origin. Fre-

quencies are in cm−1. Experimental frequencies that have

been extracted from the plots of REMPI spectra reported in

Ref. [160] are marked by asterisk.

Based on such good accuracy of the simulated spectra, we can therefore attempt to suggest

jExperimental data from reference [160].
kIn parenthesis the fundamental modes of S1 resulting from the Duschinsky rotation between S0 vibrations.
mBands considered for the estimation of the RMS deviation.
oAverage of four bands considered for the estimation of the RMS deviation.
pAlternative assignment:

˘

0.67 v ′

9a

¯

qAlternative assignment:
˘

-0.61 v ′

6b - 0.39 v ′

6a

¯

+
˘

-0.70 v ′

12

¯

combination.
rAverage of 1696 cm−1 and 1713 cm−1 considered for the estimation of the RMS deviation.
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assignments for the reported experimental vibronic transitions [159, 160]. Expansions of the most

relevant spectral regions are shown in Figures 4.27 to 4.31, while the observed vibronic transitions

are compared to the computed ones in Table 4.13 [with either the calculated / theoretical (TA), or

the empirical / experimental (EA) anharmonic correction], which also lists the proposed assignment.

The RMS deviation computed on all bands that have been assigned in this work amounts to 18 cm−1

and 15 cm−1, for TA and EA anharmonic corrections, respectively.

The band at 234 cm−1, assigned to a
{

v ′
COC torsion

}

+
{

v ′
10b

}

combination by Matsumoto et

al. [159], is indeed displayed at 204 cm−1. The lower intensity of the calculated band is in keeping

with the proposed involvement of a Fermi resonance with v ′
COC bending, an effect which is not

accounted for at the present computational level. In correspondence with the band at 259 cm−1,

the simulated spectrum displays a peak of similar intensity (249 cm−1 for TA, 256 cm−1 for EA),

which is connected to mode 5 of S1 (v ′
COC bending): this is in line with the assignment of Matsumoto

et al. [159], but at variance with the proposal (v ′
18b) by Hoffman et al. [160]. The band at 367 cm−1

is assigned in the literature to v ′
16b; while this agrees with the computed frequency of this mode

(376 cm−1 TA, 372 cm−1 EA), the simulated spectrum does not display any transition related to this

fundamental. A seemingly plausible match at 340 cm−1 corresponds in fact to third overtone of v ′
16a,

which, like the first overtone (see section 4.8.3), needs to be considered as an artifact. This leaves as

the best candidate the weaker transition at 384 cm−1, that corresponds to the first overtone of mode

4 of S1, resulting from Duschinsky rotation between v ′
O-CH3 torsion and v ′

10b; a similar interpretation

has been proposed by Matsumoto based on the analysis of dispersed fluorescence (DF) spectra. The

band at 427 cm−1, assigned to v ′
15 by Matsumoto et al. [159] and to the COC bending by Hoffman

et al. [160], can instead be correlated with the 7th (428 cm−1 TA, 421 cm−1 EA) or 8th (433 cm−1

TA, 436 cm−1 EA) mode of S1. As the former is more intense, assignment to v ′
9b is proposed.

In the region between 500 and 530 cm−1, four bands have been observed and assigned to modes

v ′
6a, v ′

10a, v ′
4 and v ′

6b. The simulated spectrum does show four transitions in this range: of these,

the two most intense bands, mode 9 of S1 (512 cm−1 TA, 509 cm−1 EA) and 11 of S1 (540 cm−1

TA, 538 cm−1 EA), can be correlated to mixing of v ′
6b and v ′

6a, while the two weaker ones appear

to be combinations of S1 modes. A very weak transition at 621 cm−1 has been assigned to the v ′
11

fundamental, in line with the calculated frequency for this mode (623 cm−1 TA, 620 cm−1 EA).

However, all the transitions in the 550-730 cm−1 range of the simulated spectrum are related to

combinations of S1 vibrations. Therefore, also the very weak band at 667 cm−1, which has been

assigned to mode v ′
17a, and would match well the computed frequency of mode v ′

17b (673 cm−1 TA,

670 cm−1 EA), should instead be regarded as a combination. An analogous situation concerns the

band at 704 cm−1. The intense peak at 759 cm−1, for which an assignment to v ′
1 is proposed in

the literature, shows two additional weak features on its low-frequency shoulder (see panel A of

Figure 4.27). Only the band at 750 cm−1 has been considered in earlier analyses, and assigned

to v ′
5; however, inspection of the simulated spectrum would rather suggest assignment to the first

overtone of the 6th mode of S1 (
{

-0.49 v ′
16b + 0.46 v ′

4

}

, 752 cm−1 TA, 744 cm−1 EA) or to the
{

v ′
COC bending

}

+
{

-0.61 v ′
6b - 0.39 v ′

6a

}

combination (761 cm−1 TA, 765 cm−1 EA).
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Figure 4.27: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole from

590 cm−1 to 800 cm−1 and from 900 cm−1 to 1050 cm−1. Green solid line, spectrum computed

with inclusion of the “TA” anharmonic corrections; red dashed line, spectrum computed with the

“EA” anharmonic correction; blue long-dashed line, experimental REMPI spectrum.

REMPI spectra display a group of four bands (see panel B of Figure 4.27) around 940 cm−1,

which in the literaure have been assigned to modes v ′
12, v ′

15, v ′
9a and v ′

18a. Only two intense peaks

appear in this region of the simulated spectrum: the band at 957 cm−1 corresponds to the v ′
12

fundamental transition (mode 17 of S1), while all others are combination bands (e.g. involving the

15th mode of S1 (v ′
17a). Moreover, in some cases the experimental intensity could reflect Fermi

resonance with the v ′
12 band, a phenomenon which cannot be reproduced at the current level of

approximation. Other ambiguities concern the band at 994 cm−1, for which assignments as v ′
17a,

v ′
9b and v ′

18b have been proposed by Balfour [166], Hoffman et al. [160] and Matsumoto et al. [159],

respectively. Of the three possibilities, analysis of the simulated spectra supports the latter one: the

transition corresponding to the 19th mode of S1 is much weaker, and can be described as an almost

half and half mixing of v ′
18b and v ′

O-CH3 stretch.. Concerning the band at 1016 cm−1, assigned to O-

CH3 stretching, the computed frequency of mode 20
{

0.52 v ′
18b + 0.44 v ′

O-CH3 stretch.

}

corresponds

closely to the band position. However, if transition intensities are taken into account, assignment

to a combination involving the v ′
17a mode becomes preferable.

Both experimental and simulated spectra show many weak features between 1100 and 1350 cm−1

(see Figure 4.28). The bands at 1126, 1152 and 1179 cm−1 have been assigned to modes v ′
3 and

vCH3 rock., respectively. Inspection of the simulated spectrum allows to correlate the strongest band

(1127 cm−1 TA, 1128 cm−1 EA) to the combination involving v ′
12.

The very weak, broad band at ≈ 1140 cm−1 (not included in the analysis by Hoffman et al.)

can be correlated either with the weak transitions at 1136 cm−1 (1127 cm−1 EA;
{

0.55 v ′
15 +

0.30 v ′
9a

}

), or with the 1143 cm−1 band (1136 cm−1 EA;
{

0.67 v ′
9a

}

). Assignment of the very weak

band at 1152 cm−1 as a CH3 rock. is confirmed by the simulation, while the experimental band

at 1179 cm−1 can be associated in the computed spectrum to a peak at 1191 cm−1 (1189 cm−1

EA; first overtone of v ′
17a), or else to the combination band at the 1205 cm−1. An assignment to
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mode v ′
8a has been proposed for the signal at 1271 cm−1; however, contrary to CIS calculations, our

results do not support such a strong red-shift of this mode. We propose instead assignment to the

v ′
7b fundamental which appears in simulated spectrum at 1247 cm−1 (1258 cm−1 EA). The band

at 1288 cm−1 has been assigned to v ′
13 [159] or to v ′

7a [160]; by contrast, the simulated spectrum

features a transition at 1284 cm−1 (1277 cm−1 EA), which is correlated to the
{

0.56 v ′
3 + 0.30 v ′

14

}

fundamental, and gains intensity from overlap with a strong combination band.

Figure 4.28: (Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole from

1100 cm−1 to 1350 cm−1. Refer to legend of Figure 4.27 for details.

The difficulty of performing assignments in the spectral range between 1400 and 1500 cm−1 (see

Figure 4.29) has already been pointed out by Hoffman et al. [160].

Figure 4.29: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole

1400 cm−1 to 1650 cm−1. Refer to legend of Figure 4.27 for details.

Based on the relative intensities in the simulated spectrum, we suggest that most of the bands
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in the 1400-1460 region that were reported [160] as fundamental transitions, should rather be in-

terpreted as combinations. Only the one at 1443 cm−1 can be related to a fundamental transition,

namely mode 29 of S1

{

0.66 v ′
CH3 sym. def. + 0.21 v ′

19a

}

(1433 cm−1 TA, 1417 cm−1 EA). Con-

versely, the simulated spectrum correlates the S1 fundamentals v ′
19b (1390 cm−1 TA, 1389 cm−1

EA), v ′
8a (1423 cm−1 TA, 1424 cm−1 EA), v ′

19a (1450 cm−1 TA, 1446 cm−1 EA), and v ′
CH3 antisym. def.

(1458 cm−1 TA, 1454 cm−1 EA) to transitions of very low intensity. For the band at 1479 cm−1,

reassignment from v ′
19b to

{

-0.81 v ′
8b

}

or
{

-0.61 v ′
6b - 0.39 v ′

6a

}

+
{

-0.77 v ′
11

}

is proposed, in con-

sideration of the presence of peaks of compatible intensity at 1483 cm−1 (1482 cm−1 EA) and

1469 cm−1 (both TA and EA), respectively. The strong transition at 1517 cm−1 has been recently

assigned by Hoffman et al. as mode v ′
19a involved in Fermi interaction with the first overtone of v ′

1;

however, in the simulated spectrum the first overtone of v ′
1 appears at 1536 cm−1 (1544 cm−1 EA),

and matches the experimental band at about 1540 cm−1, not analysed in [160]. In turn the band at

1517 cm−1, should be instead assigned as the
{

v ′
12

}

+
{

-0.60 v ′
6a + 0.38 v ′

6b

}

combination, related

to an intense transition at 1497 cm−1. Weak bands at 1571 and 1636 cm−1 have been assigned as

v ′
8a and v ′

14 fundamentals, an assignment that is not supported by the present results, since the

simulated spectrum associates to those bands only weak combination transitions.

In a range between 1650 and 1750 cm−1 (see Figure 4.30), the REMPI spectrum shows a group

of intense bands, which have been assigned as combinations involving the v ′
1 mode [160].

Figure 4.30: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole from

from 1650 cm−1 to 1750 cm−1. Refer to legend of Figure 4.27 for details.

These findings are in line with our results, although most computed transitions appear less in-

tense than their experimental counterparts. The part of the spectrum above 1800 cm−1 displays a

rich structure of low intensity bands, most of which are actually related to overtones and combina-

tions. Thus, any attempt to assign transitions to the high frequency fundamentals of S1 should be

considered as tentative. Bands at 2967, 2979, and 2990 cm−1 have been assigned to the symmetric

and antisymmetric C-H stretching vibrations of CH3. The empirical anharmonic frequencies (2928,

2980, and 3025 cm−1, respectively), agree well with the above mentioned experimental data, but a

specific transition can only be associated to the v ′
CH3 sym. stretch. (as a matter of fact, a very weak
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one). The spectral region related to the C-X frequencies of the aromatic ring is shown on Figure

4.31.

Figure 4.31: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole from

3040 cm−1 to 3120 cm−1. Refer to legend of Figure 4.27 for details.

It is apparent that there are many possible bands which could be assigned to the S1 fundamental

transitions. The simulated spectrum displays very weak transitions related to v ′
13, v ′

20a, v ′
20b, and

v ′
2, at 3024, 3061, 3095, and 3101 cm−1, respectively (TA). For v ′

13 and v ′
20a, band intensity is

partially gained from the interaction with overtones or combinatios involving the v ′
1 and v ′

12 modes.

It should be noted that no transition can be associated to the v ′
7a fundamental, at variance with

the assignment of the band at 3084 cm−1.

On the whole, comparison of the experimental REMPI spectrum with its computed counterpart,

which we have explored in the present work, has provided several new insights on the assignment

of the vibronic bands of the S1 ← S0 electronic transition of anisole. In particular, for many bands

that had been assigned to S1 fundamentals, consideration of the relative intensities has suggested

instead a different interpretation, as combinations or overtones.

Conclusions

The procedure presented in this thesis has been used here for an extensive study of a practical

case, anisole. On the whole, a very good agreement between computed and experimental vibra-

tionally resolved REMPI spectrum has been achieved, which confirms the good accuracy of the

DFT/TD-DFT geometries and force fields computed for the ground and excited electronic state,

respectively. In order to reproduce correctly the band intensities and the rich vibrational struc-

ture of the REMPI spectra, it has been necessary to account for changes in structure, vibrational

frequencies and normal modes between the involved electronic states. It is worthwhile underlining

that the remarkable overall agreement, also as far as band positions are concerned, has only been

possible when the frequencies have been corrected for anharmonicity. This implies that the sim-

ple scheme proposed in the present work can be effectively applied to derive mode specific scaling

factors for molecular systems in excited electronic states. In particular, the empirical anharmonic
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correction (EA) benefits from the availability of accurate and well-defined ground state data, and

thus can be effectively exploited even for large systems. The discrepancy between the absolute

position of experimental and simulated spectra needs to be mentioned as the main shortcoming of

the purely theoretical approach. To achieve an appropriate fit between spectra, the energy of the

electronic transition would need to be computed with the accuracy of ≈ 10 cm−1. Thus, even if

DFT/TD-DFT computations are able to provide quite reasonable estimates of the relative ener-

getics of the electronic states, and despite the adoption of a refinement based on Coupled Clusters

calculations, it was still necessary to compare spectra shifted to the 0-0 origin.

With this caveat, the computational approach proposed in the present work leads to a remark-

able agreement with high-accuracy spectroscopic data. In conclusion, it seems evident that the

approach we adopted here is more reliable that a comparison based purely on computed frequen-

cies, and represents a valuable tool for the interpretation of experimental results.
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Figure 4.32: Frontier orbitals involved in the S1 ← S0 transition of anisole, calculated at the
TD-B3LYP/6-311+G(d,p) level for the geometry of the final state.
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Figure 4.33: Theoretical and experimental [160] spectra of the S1 ← S0 transition of anisole.
Spectra computed within the LCM [LCM], Harmonic Franck-Condon (including Duschinsky ro-
tation) [FCHarm.], and Anharmonic Franck-Condon [FCAnh.] approximations are shown. Panel A,
0-1800 cm−1 range; panel B, expansion of the 800-1800 cm−1 region.
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S0 S1

Ref. [158]s) Ref. [159]t) Ref. [167]u) This workv) Ref. [159]w) This workx)

C1C2 1.400 1.401 1.404 1.401 1.422 1.424

C2C3 1.388 1.387 1.393 1.388 1.410 1.425

C3C4 1.398 1.397 1.402 1.398 1.405 1.412

C4C5 1.390 1.390 1.395 1.390 1.415 1.418

C5C6 1.398 1.397 1.402 1.398 1.410 1.426

C6C1 1.398 1.397 1.402 1.397 1.417 1.421

C1O7 1.366 1.365 1.364 1.366 1.321 1.349

O7C8 1.421 1.420 1.418 1.420 1.407 1.429

C2H9 1.083 1.083 1.083 1.072 1.081

C3H10 1.084 1.084 1.084 1.073 1.081

C4H11 1.084 1.084 1.083 1.075 1.085

C5H12 1.085 1.085 1.084 1.073 1.081

C6H13 1.082 1.082 1.082 1.070 1.080

C8H14(16) 1.096 1.096 1.096 1.084 1.093

C8H15 1.089 1.089 1.089 1.079 1.088

C1O7C8 118.6 118.5 116.4 118.6 121.4 121.0

C2C1O7 115.7 115.7 115.7 114.6 113.9

C6C1O7 124.5 124.6 124.9 124.5 123.5 122.9

C1C2C3 120.4 120.1 121.0 120.0 119.1 118.1

C2C3C4 120.6 120.5 119.4 120.6 119.2 119.1

C3C4C5 119.2 119.2 121.0 119.2 121.5 122.4

C4C5C6 120.9 121.0 119.2 120.9 120.0 119.4

C5C6C1 119.5 119.5 119.5 118.2 117.7

C6C1C2 119.8 119.7 119.8 121.9 123.2

H15C8O7 105.9 105.5

H14C8O7 111.4 110.6

H15C8O7C1 180.0 180.0

H14C8O7C2 61.3 61.0

H16C8O7C2 -61.3 -61.0

Table 4.14: Calculated geometrical parameters (bond lengths

in Å and angles in degrees) of anisole in its ground and excited

electronic state.

sB3LYP / 6-311++G(d,p)
tB3LYP / 6-311G(d,p)
uMP2 / 6-311G(d,p)
vB3LYP / 6-311+G(d,p)
wCIS / 6-311G(d,p)
xTD-B3LYP / 6-311+G(d,p)

159



mode CIS/6-31G(d,p)y) CIS/6-311G(d,p)z) TD/6-311+G(d,p)

ω′′ ϑ′′TA ϑ′′EA

1 88 83 72 69 66

2 162 164 86 85 85

3 172 182 139 136 140

4 221 225 199 192 197

5 247 247 252 249 256

6 362 360 376 376 372

7 418 416 437 428 421

8 499 498 441 433 436

9 523 512 517 512 509

10 526 520 530 529 524

11 529 524 546 540 538

12 634 625 604 596 595

13 671 655 629 623 620

14 713 711 680 673 670

15 757 757 781 769 772

16 841 838 858 850 845

17 944 947 973 957 960

18 961 964 990 970 972

19 998 1004 1006 986 982

20 1036 1044 1035 1014 1008

21 1076 1092 1143 1121 1118

22 1133 1135 1152 1136 1127

23 1154 1149 1161 1144 1135

24 1179 1179 1183 1161 1161

25 1234 1247 1278 1247 1258

26 1288 1290 1310 1284 1277

27 1333 1343 1395 1369 1364

28 1415 1419 1420 1390 1389

29 1424 1428 1449 1434 1417

30 1463 1464 1457 1423 1424

31 1465 1466 1476 1450 1446

32 1474 1476 1483 1470 1443

33 1561 1571 1494 1458 1454

34 1629 1642 1521 1483 1482

35 2880 2878 3032 2897 2928

Table 4.15: Calculated frequencies (in cm−1) of anisole in its

first excited electronic state.

yRef. [160] CIS/6-31G(d,p) harmonic frequencies scaled by a factor of 0.9
zRef. [159] CIS/6-311G(d,p) harmonic frequencies scaled by a factor of 0.905

160



Table 4.15: Continuation

mode CIS/6-31G(d,p)y) CIS/6-311G(d,p)z) TD/6-311+G(d,p)

ω′′ ϑ′′TA ϑ′′EA

36 2944 2945 3101 2940 2980

37 2986 2984 3153 3014 3025

38 3020 3021 3171 3024 3042

39 3036 3038 3201 3072 3066

40 3046 3048 3208 3061 3078

41 3060 3064 3223 3095 3117

42 3071 3074 3229 3101 3128

Table 4.15: Calculated frequencies (in cm−1) of anisole in its

first excited electronic state.

yRef. [160] CIS/6-31G(d,p) harmonic frequencies scaled by a factor of 0.9
zRef. [159] CIS/6-311G(d,p) harmonic frequencies scaled by a factor of 0.905

161



162



Conclusion

In this document, we presented a complete approach to generate vibrationally resolved electronic

spectra. The implementation within a quantum chemical calculation package such as gaussian [18]

raises some issues but offers the possibility of a versatile and fully integrated approach. Thanks to

this, it is possible to carry out a complete calculation starting from the geometry optimization and

up to the simulation of the spectrum as requested by the user. Since we intended our procedure

to be particularly efficient for medium-to-large systems such as molecules of biological interest,

a particular care has been devoted to the theoretical method underlying the calculation of the

spectrum and its encoding.

Finally, we presented several applications of our method ranging from illustrations of the pos-

sibilities it offers to extended examples as a support to analyze experimental data. While our

procedure already gives accurate results, ways of improvement still remain. We already mentioned

some further developments which are currently under way such as the inclusion of the temperature

and the possibilities to refer to the initial state for the Taylor expansion of the electronic transition

dipole moment. It should also be noted that in some cases, the prescreening method is not able to

attain a fully converged spectrum with respect to the analytic sum rules. We saw previously that

this could be caused by setting Nmax
I too low with respect to the number of normal modes of the

system. However, it can also happen that the chosen vector v
′′
max is not well suited, leading in this

case to an over-estimation of the limit of the number of transitions to compute in each class [168].

Improvements in the evaluation of the transitions to handle would help to reduce the number of

transitions to compute and so to speed up the calculations when dealing with large systems. Nev-

ertheless, as noted in the case of chlorophyll c2, the shape convergence of the spectrum is faster

than the sum of the squared transition dipole moment integrals. Consequently, the procedure can

be effectively used to analyze electronic spectra even when the convergence with respect to the

analytic sum rule is significantly lower than 100%.

Therefore, the current procedure already provides a fully functional framework to simulate the

electronic spectra of a large range of systems. Moreover, while designed to be easily accessible

to non-specialists, it offers several parameters to control the calculations. As a result, it can be

adapted to very specific needs or to match diverse experimental conditions.
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Appendix A

General formula of the transition

dipole moment integral

Using the boson creation and annihilation operators, the transition dipole moment integral can be

written

〈Ψ′ | µ | Ψ′′ 〉 =µif (Q′′
0) 〈 v ′ | v ′′ 〉

+

N
∑

k=1

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
i

[
√

v ′′
k 〈 v ′ | v ′′ − 1′′k 〉

+
√

v ′′
k + 1 〈 v ′ | v ′′ + 1′′k 〉

]

+

N
∑

k=1

(

∂2µif

∂Q′′
k
2

)

0

~

4ω′′
k

[

√

v ′′
k (v ′′

k − 1) 〈 v ′ | v ′′ − 2′′k 〉+ (2v ′′
k + 1) 〈 v ′ | v ′′ 〉

+
√

(v ′′
k + 1)(v ′′

k + 2) 〈 v ′ | v ′′ + 2′′k 〉
]

+

N
∑

k=1

N
∑

l=1
l 6=k

(

∂2µif

∂Q′′
k∂Q

′′
l

)

0

~

4
(√

ω
′′
k

√
ω
′′
l

)

[

√

v ′′
k v ′′

l 〈 v ′ | v ′′ − 1′′k − 1′′l 〉

+
√

v ′′
k (v ′′

l + 1) 〈 v ′ | v ′′ − 1′′k + 1′′l 〉+
√

(v ′′
k + 1)v ′′

l 〈 v ′ | v ′′ + 1′′k − 1′′l 〉

+
√

(v ′′
k + 1)(v ′′

l + 1) 〈 v ′ | v ′ + 1′′k + 1′′l 〉
]

(A.1)

By reordering the terms according to the overlap integrals, it is possible to rewrite the previous

equation in the following, more convenient form:
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〈Ψ′ | µ | Ψ′′ 〉 =

[

µif (Q′′
0) +

N
∑

k=1

~

4ω′′
k

(

∂2µif

∂Q′′
k
2

)

0

(2v ′′
k + 1)

]

〈 v ′ | v ′′ 〉

+
N
∑

k=1

~

4ω′′
k

(

∂2µif

∂Q′′
k
2

)

0

√

v ′′
k (v ′′

k − 1) 〈 v ′ | v ′′ − 2k 〉

+
N
∑

k=1

{√

~

2ω′′
k

(

∂µif

∂Q′′
k

)

0

√

v ′′
k 〈 v ′ | v ′′ − 1′′k 〉

+

N
∑

l=1
l 6=k

~

4
√

ω′′
kω

′′
l

(

∂2µif

∂Q′′
k∂Q

′′
l

)

0

[

√

v ′′
k v ′′

l 〈 v ′ | v ′′ − 1′′k − 1′′l 〉

+
√

v ′′
k (v ′′

l + 1) 〈 v ′ | v ′′ − 1′′k + 1′′l 〉
]

+

√

~

2ω′′
k

(

∂µif

∂Q′′
k

)

0

√

v ′′
k + 1 〈 v ′ | v ′′ + 1′′k 〉

+
N
∑

l=1
l 6=k

~

4
√

ω′′
kω

′′
l

(

∂2µif

∂Q′′
k∂Q

′′
l

)

0

[

√

(v ′′
k + 1)v ′′

l 〈 v ′ | v ′′ + 1′′k − 1′′l 〉

+
√

(v ′′
k + 1)(v ′′

l + 1) 〈 v ′ | v ′′ + 1′′k + 1′′l 〉
]

}

+
N
∑

k=1

~

4ω′′
k

(

∂2µif

∂Q′′
k
2

)

0

√

(v ′′
k + 1)(v ′′

k + 2) 〈 v ′ | v ′′ + 2k 〉

(A.2)
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Appendix B

Details for the calculation of the

overlap integral 〈 0′ | 0′′ 〉

Let us consider the exponent of e in equation 1.71, −1
2(Q′TΓ′Q′+Q′′TΓ′′Q′′). Using the Duschinsky

transformation given in equation 1.64, this term can be expanded into the following equation:

Q′TΓ′Q′ + Q′′TΓ′′Q′′ =
(

JQ′′ + K
)

T
Γ′(JQ′′ + K) + Q′′TΓ′′Q′′

= Q′′TJTΓ′JQ′′ + Q′′TJTΓ′K + KTΓ′JQ′′ + KTΓ′K + Q′′TΓ′′Q′′
(B.1)

Hence, it means integrating on the whole configuration space the exponential of a trinomial

which is not straightforward. To simplify the problem, we will choose a linear transformation to

the normal coordinates vector Q′′ so that the above polynomial can be reduced to a binomial of

the form x2 + b where b is a constant. In our matrix notation, it will mean to find a vector aa

satisfying the relation:

Q′TΓ′Q′ + Q′′TΓ′′Q′′ = aTa + d (B.2)

The vector a is related to the normal coordinates Q′′ by a linear transformation:

a = bQ′′ + c (B.3)

Now, we will expand the right-hand side of equation B.2 to identify b, c and d using the

development of the exponent of e we wrote earlier.

aTa = (bQ′′ + c)
T
(bQ′′ + c) (B.4)

= Q′′TbTbQ′′ + Q′′TbTc + cTbQ′′ + cTc (B.5)

aTo avoid misinterpretation with the other matrices used throughout this document, we will temporarily break
our typographic convention and use lower case characters for the matrices of the transformation.
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Now, equating the “coefficients” of Q′′, we can find the following relations:

bTb = JTΓ′J + Γ′′

⇒ b = (JTΓ′J + Γ′′)1/2 (B.6)

cTb = KTΓ′J

⇒ c = (JTΓ′J + Γ′′)−1/2JTΓ′K (B.7)

cTc + d = KTΓ′K

⇒ d = KTΓ′K−KTΓ′J(JTΓ′J + Γ′′)−1JTΓ′K (B.8)

It is noteworthy that b is symmetric. This will prove to be useful when dealing with the

formalism for polyatomic molecules.

To perform the integration, it is necessary to change the variables of integrations from {Q′′
i } to

{ai}. To do so, we need to calculate the Jacobian determinant whose elements are given by the

relation:
∂Q′′

i

∂aj
=
∂
∑N

k=1(b−1)ik(ak − ck)

∂aj
= (b−1)ik (B.9)

As a result, the Jacobian determinant is the determinant of the inverse matrix of b.
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Appendix C

Calculation of the power series f (T,U)

Let us rewrite equation 2.6 so that only terms in the exponential depending on Q′′ remains in the

integral.

f(T,U) = π−N/2 det
[

Γ′ Γ′′
]1/4

det(J)1/2 exp
[

−U2 −T2 − 1

2
KTΓ′K + 2TTΓ′1/2

K
]

∫

dQ′′ exp
[

−1

2

(

Q′′TJTΓ′JQ′′ + Q′′TJTΓ′K + KTΓ′JQ′′

+ Q′′TΓ′′Q′′ − 4UTΓ′′1/2
Q′′ − 4TTΓ′1/2

JQ′′)
)

]

(C.1)

Let us apply the same change of variable as in equation B.3 so that the following relation is

true:

aTa + d = Q′′TJTΓ′JQ′′ + Q′′TJTΓ′K + KTΓ′JQ′′+

Q′′TΓ′′Q′′ − 4UTΓ′′1/2
Q′′ − 4TTΓ′1/2

JQ′′
(C.2)

The development on the right side of equation is given in equation B.5. Equating the coefficients

of Q′′, we find that b has the same value as in equation B.6.

b = (JTΓ′J + Γ′′)1/2 (C.3)

However, finding the value of c is not as straighforward as before. By noting that each term of

the identity given in equation C.2 is a scalar, further simplifications can be done.

KTΓ′JQ′′ =
(

KTΓ′JQ′′
)

T
= Q′′TJTΓ′K′

cTbQ′′ =
(

cTbQ′′
)

T
= Q′′TbTc

Using these both identities, it is now possible to easily equate the coefficients of Q′′:

2cTb = 2KTΓ′J− 4UTΓ′′1/2 − 4TTΓ′1/2
J

⇒ cT =
(

KTΓ′J− 2UTΓ′′1/2 − 2TTΓ′1/2
J
)

(JTΓ′J + Γ′′)−1/2 (C.4)

Finally, d can be formulated from the relation cTc + d = 0

d = −
(

KTΓ′J−2UTΓ′′1/2−2TTΓ′1/2
J
)(

JTΓ′J+Γ′′
)−1(

KTΓ′J− 2UTΓ′′1/2 − 2TTΓ′1/2
J
)T

(C.5)
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For now, we will not develop further d. By operating the change of variable and following the

procedure given in appendix B, the power series given in equation C.1 can be written:

f(T,U) = 2N/2 det
[

Γ′ Γ′′
]1/4

[

det(J)

det
(

JTΓ′J + Γ′′
)

]1/2

exp
{

−U2 −T2 − 1

2
KTΓ′K

+ 2TTΓ′1/2
K +

1

2

[

(KTΓ′J− 2UTΓ′′1/2 − 2TTΓ′1/2
J)(JTΓ′J + Γ′′)−1

(

KTΓ′J− 2UTΓ′′1/2 − 2TTΓ′1/2
J
)T]
}

(C.6)

The terms in the exponential in equation C.6 can be reordered and grouped with respect to the

dummy variables U and T, reminding that each term of the exponiential is a scalar.

f(T,U) = 2N/2 det
[

Γ′ Γ′′
]1/4

[

det(J)

det
(

JTΓ′J + Γ′′
)

]1/2

× exp
[

−1

2
KTΓ′K +

1

2
KTΓ′J(JTΓ′J + Γ′′)−1JTΓ′K

]

× exp
[

UT(2Γ′′1/2
(JTΓ′J + Γ′′)−1Γ′′1/2 − I)U

]

× exp
[

−2KTΓ′′1/2
J(JTΓ′J + Γ′′)−1Γ′′1/2

U
]

× exp
[

TT(2Γ′1/2
J(JTΓ′J + Γ′′)−1JTΓ′1/2 − I)T

]

× exp
[

−2KT(Γ′J(JTΓ′J + Γ′′)−1JT − I)Γ′1/2
T
]

× exp
[

UT4Γ′′1/2
(JTΓ′J + Γ′′)−1JTΓ′1/2

T
]

(C.7)

where I is the identity matrix.

The first two lines of the right-hand side is the Franck-Condon integral of the vibrational ground

states as given in equation 1.76. The five last exponentials are widely used for the generation of

the analytic formulae in the method of Sharp and Rosenstock, so we will define 3 matrices (A, C,

E) and 2 vectors (B, D) as:

A = 2Γ′1/2
J(JTΓ′J + Γ′′)−1JTΓ′1/2 − I (C.8)

B = −2Γ′1/2
(J(JTΓ′J + Γ′′)−1JTΓ′ − I)K (C.9)

C = 2Γ′′1/2
(JTΓ′J + Γ′′)−1Γ′′1/2 − I (C.10)

D = −2Γ′′1/2
(JTΓ′J + Γ′′)−1JTΓ′′1/2

K (C.11)

E = 4Γ′′1/2
(JTΓ′J + Γ′′)−1JTΓ′1/2

(C.12)

Using these variables, equation C.7 can be simply written:

f(T,U) = 〈 0′ | 0′′ 〉 exp
[

UTCU + DTU + TTAT + BTT + UTET
]

(C.13)

A useful property of matrix A and C is their symmetry, while E is nonsymmetric. It is

straightforwardly shown by evaluating the transpose of these matrices, recalling that b is symmetric.
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Appendix D

Calculation of the transition dipole

moment integral in the case of D2

In this appendix, we will consider the calculation of the transition dipole moment integrals when

the electronic transition dipole moment is described by a Taylor series up to the second order as

shown in equation 1.29. Our calculations will be restricted to the case of the diagonal elements

available in gaussian.

To make easier the reading of the following discussions, we will adopt some unformal notations

similar to the one used in section 3.7:

µ̇k =

(

∂µif

∂Q′′
k

)

0

√

~

2ω′′
k

µ̈kk =

(

∂2µif

∂Q′′
k
2

)

0

~

2ω′′
k

First, we will restrict our case to the second derivative of the electronic transition dipole moment

(type of calculation: D2):

〈 v ′ | µif | v ′′ 〉 =
N
∑

k=1

µ̈kk

2

[

√

v ′′
k (v ′′

k − 1) 〈 v ′ | v ′′ − 2′′k 〉

+ (2v ′′
k + 1) 〈 v ′ | v ′′ 〉+

√

(v ′′
k + 1)(v ′′

k + 2) 〈 v ′ | v ′′ + 2′′k 〉
]

(D.1)

In reccurence treatment, 〈 v ′ | v ′′ + 2′′k 〉 must be expressed with respect to lower quanta. This

is done using the recursion formula given in equation 2.31:

〈 v ′ | v ′′ + 2′′k 〉 =
1

√

2(v ′′
k + 2)

[

Dk〈 v ′ | v ′′ + 1′′k 〉+
√

2(v ′′
k + 1) Ckk〈 v ′ | v ′′ 〉

+
N
∑

l=1
l 6=k

√

2v ′′
l Ckl〈 v ′ | v ′′ + 1′′k − 1′′l 〉+

N
∑

l=1

√

v ′
l Ekl〈 v ′ − 1′l | v ′′ + 1′′k 〉

] (D.2)

We need to apply reccurence relations again to express three kinds of overlap integrals with
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respect to lower quanta:

〈 v ′ | v ′′ + 1′′k 〉 =
1

√

2(v ′′
k + 1)

[

Dk〈 v ′ | v ′′ 〉+
N
∑

l=1

√

2v ′′
l Ckl〈 v ′ | v ′′ − 1′′l 〉

+
N
∑

l=1

√

v ′
l Ekl〈 v ′ − 1′l | v ′′ 〉

]

(D.3)

〈 v ′ | v ′′ + 1′′k − 1′′l 〉 =
1

√

2(v ′′
k + 1)

[

Dk〈 v ′ | v ′′ − 1′′l 〉+
√

2(v ′′
l − 1) Ckl〈 v ′ | v ′′ − 2′′l 〉

+
N
∑

m=1
m6=l

√

2v ′′
m Ckm〈 v ′ | v ′′ − 1′′l − 1′′m 〉+

N
∑

l=1

√

v ′
m Ekm〈 v ′ − 1′m | v ′′ − 1′′l 〉

]

(D.4)

〈 v ′ − 1′l | v ′′ + 1′′k 〉 =
1

√

2(v ′′
k + 1)

[

Dk〈 v ′ − 1′l | v ′′ 〉+
N
∑

m=1

√

2v ′′
m Ckm〈 v ′ − 1′l | v ′′ − 1′′m 〉

+
√

v ′
l − 1 Ekl〈 v ′ − 2′l | v ′′ 〉+

N
∑

m=1
m6=l

√

v ′
m Ekm〈 v ′ − 1′l − 1′m | v ′′ 〉

]

(D.5)

Restricting our study to the neglect of temperature, as it is currently the case in our procedure,

then the last term in the right-hand side of equations D.2, D.3 and D.4 are cancelled and equation

D.5 is not taken into account. Introducing equation D.2 and D.3 in equation D.2, one obtains:

〈 0′ | v ′′ + 2′′k 〉 =
1

√

2(v ′′
k + 2)

{

Dk ×
(

1
√

2(v ′′
k + 1)

[

Dk〈 0′ | v ′′ 〉

+
N
∑

l=1

√

2v ′′
l Ckl〈 0′ | v ′′ − 1′′l 〉

]

)

+
√

2(v ′′
k + 1) Ckk〈 0′ | v ′′ 〉

+
N
∑

l=1
l 6=k

√

2v ′′
l Ckl ×

(

1
√

2(v ′′
k + 1)

[

Dk〈 0′ | v ′′ − 1′′l 〉

+
√

2(v ′′
l − 1) Ckl〈 0′ | v ′′ − 2′′l 〉

+

N
∑

m=1
m6=l

√

2v ′′
m Ckm〈 0′ | v ′′ − 1′′l − 1′′m 〉

]

)

}

(D.6)

Using equation D.6, a fully usable recurrence formula can be expressed in place of equation D.1.
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Upon reordering the terms with the same overlap integrals, one obtains:

〈 0′ | µif | v ′′ 〉 =
N
∑

k=1

µ̈kk

2

[

√

v ′′
k (v ′′

k − 1) 〈 0′ | v ′′ − 2′′k 〉

+
N
∑

l=1
l 6=k

√

v ′′
l (v ′′

l − 1) Ckl
2〈 0′ | v ′′ − 2′′l 〉

+
N
∑

l=1
l 6=k

N
∑

m=1
m6=l

√

v ′′
l v ′′

m CklCkm〈 0′ | v ′′ − 1′′l − 1′′m 〉

+
N
∑

l=1

√

2v ′′
l CklDk〈 0′ | v ′′ − 1′′l 〉

+
(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

〈 0′ | v ′′ 〉
]

(D.7)

In our computational strategy, the transition dipole moment integrals are calculated inside a

set of some class Cn. In this framework, equation D.7 is given by the relation:

〈 0′ | µif | v ′′ 〉 =
N
∑

k=1

µ̈kk

2

[

√

v ′′
k (v ′′

k − 1) 〈 0′ | v ′′ − 2′′k 〉

+
n
∑

l=1
v
′′

lid
6=k

√

v ′′
l (v ′′

l − 1) C(k, v ′′
lid

)2〈 0′ | v ′′ − 2′′l 〉

+
n
∑

l=1
v
′′

lid
6=k

n
∑

m=1
m6=l

√

v ′′
l v

′′
m C(k, v lid

)C(k, v ′′
mid

)〈 0′ | v ′′ − 1′′l − 1′′m 〉

+
n
∑

l=1

√

2v ′′
l C(k, v ′′

lid
)Dk〈 0′ | v ′′ − 1′′l 〉

+
(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

〈 0′ | v ′′ 〉
]

(D.8)

Let us now consider the general case of any type of calculation up to D2. To do so, we add

equation D.8 to the formula of the transition dipole moment integral given for the case of FCHT
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calculations in section 3.7. However, instead of equation 3.15, we will use the clearer equation 3.14:

〈 0′ | µif | v ′′ 〉 =

[

µif (Q′′
0) +

N
∑

k=1

µ̇k

Dk√
2

]

〈 0′ | v ′′ 〉

+
n
∑

k=1

[

µ̇
k

+
N
∑

l=1

µ̇lC(l, v ′′
kid

)

]

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
N
∑

k=1

µ̈kk

2

[

√

v ′′
k (v ′′

k − 1) 〈 0′ | v ′′ − 2′′k 〉

+
n
∑

l=1
v
′′

lid
6=k

√

v ′′
l (v ′′

l − 1) C(k, v ′′
lid

)2〈 0′ | v ′′ − 2′′l 〉

+
n
∑

l=1
v
′′

lid
6=k

n
∑

m=1
m6=l

√

v ′′
l v

′′
m C(k, v lid

)C(k, v ′′
mid

)〈 0′ | v ′′ − 1′′l − 1′′m 〉

+
n
∑

l=1

√

2v ′′
l C(k, v ′′

lid
)Dk〈 0′ | v ′′ − 1′′l 〉

+
(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

〈 0′ | v ′′ 〉
]

(D.9)

By interchanging indexes in some terms, a first shortening of the formula above can be done:

〈 0′ | µif | v ′′ 〉 =

[

µif (Q′′
0) +

N
∑

k=1

µ̇k

Dk√
2

+

N
∑

k=1

µ̈kk

2

(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

]

〈 0′ | v ′′ 〉

+
n
∑

k=1

[

µ̇
k

+
N
∑

l=1

{

µ̇lC(l, v ′′
kid

) +
µ̈ll

2

√
2 C(l, v ′′

kid
)Dl

}

]

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
N
∑

k=1

µ̈kk

2

[

√

v ′′
k (v ′′

k − 1) 〈 0′ | v ′′ − 2′′k 〉

+
n
∑

l=1
v
′′

lid
6=k

√

v ′′
l (v ′′

l − 1) C(k, v ′′
lid

)2〈 0′ | v ′′ − 2′′l 〉

+
n
∑

l=1
v
′′

lid
6=k

n
∑

m=1
m6=l

√

v ′′
l v

′′
m C(k, v lid

)C(k, v ′′
mid

)〈 0′ | v ′′ − 1′′l − 1′′m 〉
]

(D.10)

The last three terms in the right-hand side of equation D.10 are more complex to handle because

of the partial summations. It is noteworthy that the condition v ′′
lid

= k can only be met if mode

k belongs to the set, otherwise it can be safely disregarded. Consequently, for the first summation

on the N modes, two cases exist: k ∈ Zn or k /∈ Zn where Zn is a group containing all the mode
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selected in a set of dimension n. For k /∈ Zn, we can write the following relations:

∑

k/∈Zn

µ̈kk

2

n
∑

l=1

√

v ′′
l (v ′′

l − 1) C(k, v ′′
lid

)2〈 0′ | v ′′ − 2′′l 〉

=
n
∑

k=1

√

v ′′
k(v ′′

k − 1)
∑

l /∈Zn

µ̈ll

2
C(l, v ′′

kid
)2〈 0′ | v ′′ − 2′′k 〉

∑

k/∈Zn

µ̈kk

2

n
∑

l=1

n
∑

m=1
m6=l

√

v ′′
l v

′′
m C(k, v lid

)C(k, v ′′
mid

)〈 0′ | v ′′ − 1′′l − 1′′m 〉

=
n
∑

k=1

n
∑

l=1
l 6=k

√

v ′′
kv

′′
l

∑

m/∈Zn

µ̈mm

2
C(m, vkid

)C(m, v ′′
lid

)〈 0′ | v ′′ − 1′′k − 1′′l 〉

if k ∈ Zn, the conditions on the summation cannot be overcome simply and can be let in such

a way. Finally, it is possible to write equation D.10 as:

〈 0′ | µif | v ′′ 〉 =

[

µif (Q′′
0) +

N
∑

k=1

µ̇k

Dk√
2

+
N
∑

k=1

µ̈kk

2

(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

]

〈 0′ | v ′′ 〉

+
n
∑

k=1

[

µ̇
k

+
N
∑

l=1

{

µ̇lC(l, v ′′
kid

) +
µ̈ll

2

√
2 C(l, v ′′

kid
)Dl

}

]

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
n
∑

k=1

[

1 +
∑

l /∈Zn

µ̈ll

2
C(l, v ′′

kid
)2

]

√

v ′′
k(v ′′

k − 1)〈 0′ | v ′′ − 2′′k 〉

+

n
∑

k=1

n
∑

l=1
l 6=k

√

v ′′
kv

′′
l

∑

m/∈Zn

µ̈mm

2
C(m, vkid

)C(m, v ′′
lid

)〈 0′ | v ′′ − 1′′k − 1′′l 〉

+
N
∑

k∈Zn

µ̈kk

2

n
∑

l=1
v
′′

lid
6=k

√

v ′′
l (v ′′

l − 1) C(k, v ′′
lid

)2〈 0′ | v ′′ − 2′′l 〉

+
N
∑
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2
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∑
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n
∑
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l v
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(D.11)

Some computational strategies can be devised to speed up the calculations. The first one is to

compute only once the factor of 〈 0′ | v ′′ 〉:

µcst = µif (Q′′
0) +

N
∑

k=1

µ̇k

D(v ′′
kid

)
√

2
+

N
∑

k=1

µ̈kk

2

(

2v ′′
k + 1 +

Dk

2
+ (v ′′

k + 1)× Ckk

)

A seeming issue for the speed lies on the distinction between k ∈ Zn and k /∈ Zn for the sums.

A straightforward solution is to extend the dimension of v
′′ from n to N . The first n elements

correspond to the modes treated in the set and the N − n followine elements are the remaining

modes. The sorting is done by our loop described at the end of section 3.7. As a consequence, v
′′

175



is larger than previously. However, as we will see below, it is unnecessary to increase the dimension

of v
′′
id

.

Finally, to take full advantage of the small matrices, it is better to create two new matrices

defined as:

C
kl

=

√

µ̈kk

2
C(vkid

, v ′′
lid

)

D
k

=

√

µ̈kk

2
D(vkid

)

Constructing these matrices, we do not need to know the equivalence of the indexes in v
′′ and

v
′′, which means that the vector v

′′
id

is obsolete. Taking into account the strategies described above

and in section 3.7, the transition dipole moment integral is given by the formula:

〈 0′ | µif | v ′′ 〉 = µcst 〈 0′ | v ′′ 〉

+

n
∑

k=1

[
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k

+

N
∑

l=1

{

C
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√

2 C
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D
l

]

√

v ′′
k 〈 0′ | v ′′ − 1′′k 〉

+
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∑

k=1

[

1 +
N
∑

l=n+1

µ̈ll

2
C

lk

2

]

√

v ′′
k(v ′′

k − 1)〈 0′ | v ′′ − 2′′k 〉

+
n
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k=1

n
∑

l=1
l 6=k

√

v ′′
kv

′′
l

N
∑

m=n+1

C
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C
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〈 0′ | v ′′ − 1′′k − 1′′l 〉

+
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k=1

n
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l=1
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l (v ′′

l − 1) C
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2

+
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l v
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m C
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(D.12)

The additional memory consumption can be quite cumbersome at this level. However, discarding

the matrix C and the vector D implies that the subset v
′′ cannot be described as previously or v

′′
id

must be expanded to contain all elements of v
′′.
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Appendix E

List of the keywords currently

recognized by franck

In this section are summarized the keywords available in the procedure franck along with their

default value and the type of data expected in brackets. Except for the type of calculations, all

keywords are optional.

Type of calculations

FC/FCHT/HT
[

INTEGER, 1
]

: Selects the terms of the Taylor expansion to approximate the tran-

sition dipole moment.

Type of transition

ABS/ABSORPTION
[

INTEGER, 1
]

: Sets the type of transition to be absorption

EMI/EMISSION
[

INTEGER, 3
]

: Sets the type of transition to be emission

Parameters for the electronic transition dipole moment (only avail-

able with READ2)

NSTATE
[

INTEGER, 1
]

: Sets which state should be read for the electronic transition dipole mo-

ment and its derivatives. This keyword is only taken into account if data

for the final state are read from a Gaussian output file.

Parameters for the Classes
a method

MAXC1
[

INTEGER, 20
]

: Sets the maximum number of quanta to reach when calculating

the transitions corresponding to overtones (C1max).

aAn a priori selection of transitions to compute based on an evaluation pool of overtones and two-states combi-
nations
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MAXC2
[

INTEGER, 13
]

: Sets the maximum quantum numbers to reach for both modes

in combination bands of two simultaneously excited modes of

the final state (C1max).

MAXINT
[

INTEGER, 100
]

: Sets the maximum number of transtions (in millions) computed

for each class (Nmax
I ).

MAXBANDS
[

INTEGER, 7
]

: Sets the highest class to compute

SPDelta
[

FLOAT, 0.0
]

: Forces the termination of the calculation if the relative spectrum

convergence between two consecutive classes is lower that the

given threshold (∆SP = SPn − SPn−1). A value lower or equal

to 0.0 deactivates the control.

NOINTAN
[

BOOLEAN,FALSE
]

: Deactivates the use of the Sharp and Rosenstock analytic formu-

lae to compute overlap integrals in the case of single overtones

and two-states combinations.

Parameters for the spectrum layout

NORELI00
[

BOOLEAN,FALSE
]

: By default, spectra bounds are given with respect to the energy

of the 0-0 transition. This keyword must be given if absolute

energies are given as spectrum bounds by the user.

SPECMIN
[

FLOAT,−1000
]

: Sets the lower bound (in cm−1) of the final photoelectron spec-

trum.

SPECMAX
[

FLOAT,+8000
]

: Sets the upper bound (in cm−1) of the final photoelectron spec-

trum.

SPECRES
[

FLOAT, 8
]

: Sets the gap (in cm−1) between two points of the discretized

spectrum. This value can greatly influence the times of com-

putations, very low values slowing greatly the calculations, es-

pecially if SPECHWHM is set high.

SPECHWHM
[

FLOAT, 135
]

: Sets the Half-Width at Half-Maximum (in cm−1) for the convo-

lution of the spectral bands expressed with a Gaussian function.

Selection of the input source

CALC1/CHK1/READ1
[

INTEGER, 2
]

: Selects the source of data for the initial state between the cur-

rent calculation, the gaussian checkpoint file or a gaussian

03/DV output file (given below). By default, the checkpoint

file is used.

CALC2/CHK2/READ2
[

INTEGER, 1
]

: Selects the source of data for the final state between the cur-

rent calculation, the gaussian checkpoint file or a gaussian
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03/DV output file (given below). By default, the current

calculation is used.

Parameters of the output printing

ALLSPECTRA
[

BOOLEAN,FALSE
]

: Prints in the gaussian output the resulting spectra for each

set of combinations (class) in addition to the final spectrum.

This printing is deactivated by default.

PRTMAT
[

INTEGER, 0
]

: A succession of figures to print different matrices used as a

basis for integrals calculations : 1 for the Duschinsky matrix

J, 2 for the shift vector K, 3 for A, 4 for B, 5 for C, 6

for D and 7 for E, where A, B, C, D, E are the Sharp

and Rosenstock matrices. The order of the figures is not

important.

PRTINT
[

FLOAT, 0.01
]

: Sets which integrals should be printed in output. The thresh-

old is a fraction of the I00 intensity.

Interaction with the computational parameters

InFrS0
[

BOOLEAN,FALSE
]

: Forces the program to use frequencies given by the user for the

initial state. These frequencies are given after the dinautil section.

InFrS1
[

BOOLEAN,FALSE
]

: Forces the program to use frequencies given by the user for the

final state. These frequencies are given after the dinautil section.

JDusch/JIdent
[

INTEGER, 0
]

: Forces the program to use the normal Duschinsky matrix (JDusch)

or an identity matrix as the Duschinsky matrix (JIdent). In the

latter case, rotation of the normal modes is not taken into ac-

count.

SclVec
[

BOOLEAN,FALSE
]

: Enables computation of a scaling vector to modify frequencies of

the final states using the scaling vector of the frequencies of the

initial state and the Duschinsky matrix. When this keyword, is

given, user frequencies are asked for the initial state in the same

way as InFrS0.

ENERINP
[

FLOAT, 0.
]

: Replaces the computed ∆E between initial and final states by a

user-given one.
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Appendix F

Supplementary data for the study of

the 2B1→ 2A2 transition of the

phenoxyl radical

F.1 gaussian Input files

State 1 (step3): Final state

#P B3LYP TZVP td=(nstates=2,root=2) nosymm Freq=(HPModes)

Phenoxyl radical - S2 TDDFT - Frequences

0 2

O -0.00002 -0.13421 0.08764

C -0.00001 -0.05709 1.32916

C 1.19565 0.01015 2.13303

C 1.17959 -0.00275 3.56649

C -1.19564 0.01046 2.13303

C -1.17959 -0.00243 3.56648

C 0. 0.00304 4.29533

H 2.14742 0.04605 1.61652

H 2.13226 -0.00225 4.08495

H -2.1474 0.04661 1.61651

H -2.13226 -0.00166 4.08494

H 0. -0.01592 5.37493
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State 2 (step5): Initial state

%Chk=phenoxyl_S0.chk

#P b3lyp TZVP FREQ=(HPMODES,VIBROT,READANHARM) nosymm

Phenoxyl S0 (opt,freq) + reorient + calc FC

0 2

O -0.03370 0.13686 0.14749

C -0.02110 0.06304 1.39847

C 0.88507 0.86725 2.19459

C 0.88779 0.77586 3.56447

C -0.91205 -0.83030 2.11252

C -0.88711 -0.90069 3.48342

C 0.00733 -0.10339 4.21826

H 1.55054 1.53449 1.66167

H 1.56882 1.38111 4.15065

H -1.58891 -1.43099 1.51831

H -1.55698 -1.57147 4.00791

H 0.01824 -0.16719 5.29925

NoReord FC CALC1 CHK2 PRTMAT=12

F.2 Reoriented/superposed structures

Initial state

O -0.022648 0.132622 -2.247202

C -0.010048 0.058802 -0.996222

C 0.896122 0.863012 -0.200102

C 0.898842 0.771622 1.169778

C -0.900998 -0.834538 -0.282172

C -0.876058 -0.904928 1.088728

C 0.018382 -0.107628 1.823568

H 1.561592 1.530252 -0.733022

H 1.579872 1.376872 1.755958

H -1.577858 -1.435228 -0.876382

H -1.545928 -1.575708 1.613218

H 0.029292 -0.171428 2.904558

182



Final state

O 0.005053 0.106083 -2.304993

C -0.011068 0.063052 -1.061930

C 0.835218 0.868394 -0.216024

C 0.874920 0.733988 1.210718

C -0.902192 -0.772758 -0.295366

C -0.839171 -0.885115 1.132432

C 0.035624 -0.129486 1.898227

H 1.486683 1.588735 -0.696273

H 1.582037 1.347008 1.758963

H -1.633754 -1.358814 -0.838784

H -1.516408 -1.579721 1.617460

H 0.080659 -0.229093 2.972446
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