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Introduction

In this thesis we start studying the boundedness properties of various classical

operators of harmonic analysis, in weighted Lebesgue and Orlicz spaces, in

terms of the membership of the relevant weights to the so called Ap-classes.

Subsequently, we describe both in the functional and probabilistic context the

functions of Bounded Mean Oscillation functions (BMO) and their relations

with Ap weights. We present some of our sharp results in the functional setting

that we would like to extend to the BMO-Martingales space. We conclude

describing an application in Mathematical Finance, due to Geiss [Ge].

The structure of thesis is the following. In the first chapter we describe

the Ap and Gq classes and their properties. The Ap-class was introduced in

[Mu1] in 1972, where the Hardy-Littlewood maximal operator is proved to be

bounded in the Lebesgue space Lp(Rn, w), equipped with the measure w(x)dx,

if and only if w ∈ Ap. The same role is played by the Ap-class in the study of

boundedness of the the Hilbert transform [HMW] and of other singular integral

operators [CFe].

The theory of weights arises often in various contexts of mathematical

analysis including the theory of degenerate elliptic equations [FKS, Mo], the

related nonlinear potential theory [HKM], and the theory of quasiregular maps

[AIS].

One of the most useful results in the field, is probably, the selfimproving

property of Muckenhoupt’s weights. The surprising fact that the weights are

more regular than they seem to be a priori was observed already by Muck-

enhoupt [Mu1]. The same phenomenon was studied by Gehring in [G] where

he introduced the concept of reverse Hölder inequalities and proved that they

improve themselves. Later Coifman and Fefferman [CFe] showed that Muck-

enhoupt’s weights are exactly those weights which satisfy a reverse Hölder
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inequality. Since then reverse Hölder inequalities have had a wide number of

applications in modern analysis.

In the second and third chapter we describe weak and strong inequalities for the

Hardy-Littlewood Maximal Function in connections with Ap and Gq weights

in the Lebesgue and Orlicz spaces.

In the fourth chapter we illustrate the boundedness properties of the singular

operators through the Ap weights. In particular we obtain a sharp estimate for

the Riesz Potential in terms of a precise power of the Ap-constant of a weight.

In the fifth chapter, we pass to study the BMO space, introduced in 1961 by

John and Nirenberg [JN], and consider its connections with Ap-weights. In

particular we show, in one dimension, sharp inequalities between some A2-

constants and BMO norm.

The BMO space is extremely important in various areas of Mathematics.

In particular, in the last part of thesis we describe the probabilistic version of

BMO and of the Ap-condition, through the BMO-martingale space, in which

some of previous results continue to hold.

Finally, we give an informal introduction to the theory of Mathematical

Finance with special emphasis on the BMO-martingale and show how this

space is useful in the problem of pricing an option and describing the evolution

of stock’s price.
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Chapter 1

Weighted Integral Inequalities

In this chapter we recall basic definitions and properties of Ap and Gq weights,

respectively from Muckenhoupt [Mu1] and Gehring [G], and show some known

results and our sharp results about the improvement of the integrability expo-

nent.

1.1 The class of weights Ap and Gq

Let us assume that a weight ω is a non negative locally integrable function on

Rn and we consider only cubes Q ⊂ Rn with sides parallel to the coordinate

axes. The n-dimensional Lebesgue measure of a subset E of Rn will be denote

by |E|, while we will set

ωQ =

∫
Q

ω(x) dx =
1

|Q|

∫
Q

ω(x) dx

to denote the mean value of ω over Q.

Definition 1.1. We say that ω satisfies theAp-condition (briefly ω ∈ Ap(Rn)),

1< p<∞, if there exists a constant A ≥ 1 such that, for any cube Q ⊂ Rn,

one has

(1.1)

∫
Q

ω(x)dx

(∫
Q

ω−
1
p−1 (x)dx

)p−1

≤ A.

We call the Ap-constant of ω as

(1.2) Ap(ω) = sup
Q

∫
Q

ω(x)dx

(∫
Q

ω−
1
p−1 (x)dx

)p−1

,
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where the supremum is taken over all cubes Q ⊂ Rn with edges parallel to the

coordinate axes.

The Ap-class was introduced in 1972 by B. Muckenhoupt [Mu1] in connec-

tion with boundedness properties of the Hardy-Littlewood Maximal Operator

M (see Chapter 2 for details) defined on the weighted space Lploc(Rn, ωdx) by

(1.3) Mf(x) = sup
x∈Q

∫
Q

|f(y)|dy.

One of the most prominent examples of a Muckenhoupt weights ω ∈ Ap,
1 < p <∞, is given by ω(x) = |x|α when −n < α < n(p − 1). Moreover, if

0<δ <1, then ω(x) = |x|−n(1−δ) ∈ A1; also ω(x) = |x|n(p−1)(1−δ) ∈ Ap.
Now we report the specific definitions for Ap-class when p = 1 and p =∞.

Definition 1.2. [Mu1] For p = 1, A1-class consists of all weights ω such that

the quantity

(1.4) A1(ω) = sup
Q

∫
Q

ωdx

ess inf
x∈Q

ω(x)

is finite for every cube Q ⊂ Rn and we call it A1-constant of ω.

Definition 1.3. [H] For p =∞, A∞-class consists of all weights ω such that

the quantity

(1.5) A∞(ω) = sup
Q

(∫
Q

ωdx

)(
exp

∫
Q

log
1

ω
dx

)
is finite for every cube Q ⊂ Rn and we call it A∞-constant of ω.

There is also a characterization that gives an equivalent definition of A∞-

class, namely

Proposition 1.1. ([Mu2], [CFe]) A locally integrable weight ω :Rn−→ [0,+∞)

belongs to the A∞-class iff there exist constants 0<α≤1≤K so that

(1.6)
|F |
|Q|
≤ K

(∫
F
wdx∫

Q
wdx

)α

for each cube Q ⊂ Rn with sides parallel to the coordinate axes and for each

measurable set F ⊂ Q.
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In Muckenhoupt’s paper [Mu1] was proved the following result, also known

“backward propagation” of the Ap condition: if a weight belongs to the class

Ap , then it also belongs to the class Ap−ε for some ε > 0. In other words, we

have the inclusion

Ap ⊂ Ap−ε.

Two years later Coifman and Fefferman proved in [CFe] the following lemma.

Lemma 1.2. [CFe] If ω ∈ Ap, then ω ∈ Ap−ε, where ε ∼ Ap(ω)−
1
p−1 , and

there exists a constant C such that

Ap−ε(ω) ≤ CAp(ω).

Another important result, useful to illustrate the properties of Ap weights

is the following

Theorem 1.3. [W1] A locally integrable weight ω is in Ap, p > 1, if and only

if there exists 1<p1<p such that for every cube Q(
|F |
|Q|

)p1

≤ Ap1(ω)

∫
F
ω dx∫

Q
ω dx

for every measurable subset F of Q.

Now, we pass to describe another important class of weights, the Gq-class,

born almost simultaneously (1973), thanks to F.W. Gehring [G], in connection

with local integrability properties of the gradient of quasiconformal mappings.

Definition 1.4. A weight v on the space Rn satisfies the Gq-condition if

there exists a constant G ≥ 1 such that, for all cubes Q ⊂ Rn as above, we

have

(1.7)

(∫
Q

vq(x)dx

) 1
q

∫
Q

v(x)dx
≤ G

and we refer to (1.7) as a “reverse” Hölder inequality. We call the Gq-constant

of v as

(1.8) Gq(v) = sup
Q


(∫

Q

vqdx

) 1
q

∫
Q

vdx


q′

3



where q′ = q
q−1

is the Hölder exponent of q.

We consider the case q = 1 and q =∞ and define G1-class and G∞-class.

Definition 1.5. G1-class consists of all weights v such that G1(v)-constant,

defined by

(1.9) G1(v) = sup
Q

(
exp

∫
Q

v

vQ
log

v

vQ
dx

)
,

is finite, with vQ =

∫
Q

v dx.

Definition 1.6. G∞-class consists of all weights v such thatG∞(v)-constant,

defined by

(1.10) G∞(v) = sup
Q

ess sup v
x∈Q∫
Q

v dx

is finite.

The following characterization gives an equivalent definition of G1-class

and it’s similar to definition of A∞ in (1.6):

Proposition 1.4. A locally integrable weight v : Rn −→ [0,∞) belongs to

G1-class iff there exist constants 0 < β ≤ 1 ≤ H so that

(1.11)

∫
E
wdx∫

Q
wdx

≤ H

(
|E|
|Q|

)β
for each cube Q ⊂ Rn with sides parallel to the coordinate axes and for each

measurable set E ⊂ Q.

Gehring [G] showed the improvement of the integrability exponent in a reverse

Hölder inequality also known “forward propagation” of Gq condition: that for

any class Gq there exists an η > 0 for which we have the inclusion

Gq ⊂ Gq+η.

The last result has numerous applications in the theory of weighted spaces,

quasiconformal mappings, and partial differential equations.

Now we report a result for Gq weights, similar to Theorem (1.3).
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Theorem 1.5. [Mi] A locally integrable weight v is in Gq, q > 1 if and only

if there exists q1 > q such that for every cube Q(∫
E
vdx∫

Q
vdx

)q′1

≤ Gq1(v)
|E|
|Q|

where q′1 = q1
q1−1

, for every measurable subset E of Q.

The relationship between the Gehring and Muckenhoupt classes is studied

in a number of papers. In [CFe] Coifman and Fefferman proved that each

Gehring class is contained in a Muckenhoupt class and vice versa, i.e., we have

inclusions of the form

Ap ⊂ Gq Gq1 ⊂ Ap1 ,

for some 1 ≤ p, q, p1, q1 ≤ ∞.

We resume some of the properties of the classes Ap and Gq in the following

proposition

Proposition 1.6. [GR] Let ω a weight and let 1<p , q<∞. Then

1. A1 ⊂ Ap ⊂ Aq, for 1 ≤ p < q <∞.

2. ω ∈ Ap =⇒ ωα ∈ Ap, 0 ≤ α ≤ 1.

3. ω ∈ Ap if and only if ω1−p′ ∈ Ap′, with p′ = p
p−1

.

4. ω ∈ Ap iff there exist u, v ∈ A1, so that ω = uv1−p.

5. G∞ ⊂ Gq ⊂ Gp, for 1 < p ≤ q <∞.

There are some limiting relations between constants A1, A∞, G1 and G∞ de-

fined above, as the following theorems show.

Theorem 1.7. [StWh] Let ω : Rn −→ [0,+∞) be a weight, then

ω ∈ Gq ⇐⇒ ωq ∈ A∞.

Sbordone and Wik [SW] proved the following

(1.12) A∞(ω) = lim
p→∞

Ap(ω),

5



and later Moscariello and Sbordone [MS] established an analogous result for

Gq-weight as

(1.13) G1(v) = lim
q→1

Gq(v).

These formulas give a quantitative version of the equalities

A∞ =
⋃
p>1

Ap =
⋃
q>1

Gq = G1.

proved by Muckenhoupt in [Mu2].

A precise relation among A∞ and G1 constants in one dimension was due to

R. Corporente [C] in the following theorem

Theorem 1.8. [C] Let h : R −→ R be an increasing homeomorphism onto

such that h, h−1 are locally absolutely continuous. Then

(1.14) A∞(h′) = G1((h−1)′),

where h′ is a first derivative of h.

1.2 Improvement of the integrability exponent

In this section we report some results about the so-called “sharp self-improvement

of exponents” property of the Ap and Gq classes in one dimension.

Let us begin with some results about the improvement of the integrability

exponent of a Gq-weight through the following Theorem

Theorem 1.9. [DS] Let q > 1 and assume v ∈ Gq. Then v ∈ Gr with

r ∈ [q, q1) and q1 is the unique solution of the equation

ϕ(x) = 1−Bq x− q
x

(
x

x− 1

)q
= 0

where B is such that (∫
I

vqdx

) 1
q

≤ B

∫
I

vdx,

with I ⊂ R. Moreover, for q ≤ q0 < q1 we have

[Gq0(v)]
1
q′0 ≤ B

1
q′

[
q

q0ϕ(q0)

] 1
q

.

The result is sharp.
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Note that Theorem 1.9 also shows that the best integrability exponent of all

non increasing functions in Gq is equal to the best integrability exponent of a

power type function in Gq.

Theorem 1.9 was generalized to all functions in 1992 by Korenovskii [Ko1]

in the following

Theorem 1.10. [Ko1] Let 1 < q <∞ and let f ∈ Lq(I). If f ∈ Gq, then

f ∈ Gp for p ∈ [q, β) and β verifies the equation

1−M qx− q
x

(
x

x− 1

)q
= 0

where M is such that (∫
I

f qdx

) 1
q

≤M

∫
I

fdx,

with I ⊂ R.

In [Ko1] there is also a Ap version of the same result.

Theorem 1.11. [Ko1] Let p > 1 and assume ω ∈ Ap. Then ω ∈ As with

s ∈ [p, p1) where p1 is the unique solution of the equation

ψ(x) = 1− p− x
p− 1

(Ax)
1
p−1 = 0

where A is such that ∫
I

ωdx

(∫
I

ω−
1
p−1dx

)p−1

≤ A,

with I ⊂ R. Moreover, for p1 < p0 ≤ p we have

Ap0(ω) ≤ A

[
p0 − 1

(p− 1)ψ(p0)

]p−1

.

It is worth noting that in the special case p = q = 2 we have explicit values

of q1 and p1 and the above theorems enjoy a simpler presentation.

Theorem 1.12. [Ko1] Let ω : R→ [0,∞[ be a weight such that A2(ω) = A <

∞. Define for 1 +
√

A−1
A

< s ≤ 2,

(1.15) ψ(s) =
1

s− 1
[1− A(2− s)s].

Then As(ω) <∞ for any s in such a range and

(1.16) As(ω) ≤ A

ψ(s)
.

The result is sharp.
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Theorem 1.13. [DS] Let v : R → [0,∞[ be a weight such that G2(v) = B <

∞. Define for 2 ≤ r < 1 +
√

B
B−1

,

(1.17) ϕ(r) = r −Gr(v)(r − 2)
r2

(r − 1)2
.

Then Gr(v) <∞ for any r in such a range and

(1.18) Gr(v)
2
r′ ≤ 2B

ϕ(r)
.

Various relations occurring among Ap and A2 constants of weights and their

powers are collected in the following

Lemma 1.14. [S2] Let ω : R −→ R be a weight. For p > 1 we have

(1.19) [A2(ω
1
p−1 )]p−1 ≤ Ap(ω) Ap(ω

−1).

For 1 < p ≤ 2 we have

(1.20) Ap(ω) ≤ [A2(ω
1
p−1 )]p−1.

For q > 1 we have

(1.21) A2(ω) ≤ Aq(ω)Aq(ω
−1).

Proof. For any interval I ⊂ R, Hölder inequality implies

1 ≤
∫
I

ω

∫
I

ω−1

hence [∫
I

ω
1
p−1

∫
I

ω−
1
p−1

]p−1

≤

≤
∫
I

ω

(∫
I

ω−
1
p−1

)p−1

·
∫
I

ω−1

(∫
I

ω
1
p−1

)p−1

≤ Ap(ω)Ap(ω
−1)

taking supremum with respect to all intervals I we obtain (1.19).

Fix an interval I and take p such that 1 < p ≤ 2; then we have 1 ≤ 1
p−1

and Jensen inequality implies∫
I

ω ≤
(∫

I

ω
1
p−1

)p−1

hence ∫
I

ω

(∫
I

ω−
1
p−1

)p−1

≤
[∫

I

ω−
1
p−1 ·

∫
I

ω
1
p−1

]p−1

≤
[
A2(ω

1
p−1 )

]p−1

.
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Taking supremum with respect to all intervals I we obtain (1.20).

If q > 1 assume

Aq(ω)Aq(ω
−1) = A <∞.

Since that Aq(w) = [Ap(w
− 1
q−1 )]q−1 where p = q/(q − 1), we have

Ap(ω
1
q−1 )Ap(ω

− 1
q−1 ) = A

1
q−1 .

Replacing ω with ω
1
q−1 in (1.19) we get[
A2((ω

1
q−1 )

1
p−1 )

]p−1

≤ Ap(ω
1
q−1 ) Ap(ω

− 1
q−1 ).

But (q − 1)(p− 1) = 1, hence

A2(ω) ≤ A

that is (1.21).

Up to now we have been dealing with the self-improvement of exponents p

and q in Ap and Gq classes.

Now we consider the problem of the exact Gq-class pertaining to all Ap-

weights. This was solved for p = 1 in [BSW] and for p > 1 has been recently

settled by Vasyunin [V], who found the exact range of exponents q so that

a weight in the Ap-class belongs to the Gq-class. Let us first state the main

result in [BSW].

Theorem 1.15. [BSW] Let ω belong to the A1-class with A1(ω) = A. Then,

for every 1 ≤ q < A
A−1

(1.22) [Gq(ω)]q−1 ≤ 1

Aq−1(A+ q − qA)
.

The constant on the right hand side as well as the upper bound of q cannot

be improved. In fact, the weight ω(t) = t
1

(A−1)

A
is an extremal, which gives

equality in (1.22) and lies in Lq if and only if q < A
A−1

.

In order to state the result from [V], we fix p > 1 and δ > 1 and denote by

x = x(p, δ) the positive solution to the equation

(1− x)(1− x/p)−p =
1

δ
.

Then 0 < x ≤ 1 and we put

p∗ = p∗(p, δ) =
p− x
x(p− 1)

we have the following

9



Theorem 1.16. [V] Suppose that a weight ω belongs to Ap and let A = Ap(ω).

Then ω belongs to Gq for each 1 ≤ q < p∗(p,A). The bound for q is optimal.

We report a result contained in [S1] that gives a simple proof of previous

theorem in a special case.

Theorem 1.17. [S2] Suppose that a non-decreasing weight ω : [a, b]→ [0,∞)

belongs to A2 and A = A2(ω). Then for 1 ≤ q <
√

A
A−1

, ω−1 belongs to Gq

and for any [c, d] ⊂ [a, b]

(1.23)

(∫ d

c

ω−q dx

)1/q

≤ q

A− q2(A− 1)

∫ d

c

ω−1 dx.

The result is sharp.

Another point of view concerns the improvement of power exponents per-

taining to A2 weights. Namely, assume that the weights ω belongs to A2 and

set A = A2(ω). Then, it is easy to check that

A2(ωθ) ≤ Aθ for 0 ≤ θ ≤ 1.

In the next Theorem we describe the so called optimal “self-improvement of

exponents” property of the A2 class.

Theorem 1.18. [AS] Assume A2(ω) = A < ∞, then for 1 ≤ τ <
√

A
A−1

we

have ωτ ∈ A2 and

(1.24) A2(ωτ )
1
2τ ≤ τA

A− τ 2(A− 1)
.

The upper bound on τ cannot be improved.

Proof. Let us recall that the exact continuation of Muckenhoupt condition A2

in one dimension ([Ko1], [S2], [V]) reads as follows: for 1 +
√

A−1
A

< s ≤ 2

(1.25) As(ω) ≤ A

ψ(s)

with

(1.26) ψ(s) =
1

s− 1
[1− As(2− s)].

10



From definition of As(ω), we deduce, for any interval I ⊂ R,

(1.27)

∫
I

ω−
1
s−1 ≤

 1∫
I

ω

· A

ψ(s)


1/(s−1)

and also, taking into account that A = A2(ω) = A2(ω−1) we deduce that

(1.28)

∫
I

ω
1
s−1 ≤

 1∫
I

ω−1

· A

ψ(s)


1/(s−1)

.

Multiplying (1.27) and (1.28) and using the Hölder inequality in the form

1 ≤
∫
I

ω(x)dx

∫
I

ω−1(x)dx,

we obtain ∫
I

ω
1
s−1 (x)dx

∫
I

ω−
1
s−1 (x)dx ≤

[
A

ψ(s)

]2/(s−1)

.

Hence, for 1 +
√

A−1
A

< s ≤ 2 we have

A2(ω
1
s−1 ) ≤

[
A

ψ(s)

]2/(s−1)

.

If we set τ = 1
s−1

we obtain immediately, for the range 1 < τ <
√

A
A−1

,

[A2(ωτ )]1/2τ ≤ A

ϕ(τ)

where ϕ(τ) = τ
[
1− A(1− 1

τ2 )
]

which coincides with (1.24).

The optimality is seen by mean of power functions. Namely, choose ω(x) = |x|r

with 0 < r < 1, then we have

A2(|x|r) =
1

1− r2

and A2(|x|rτ ) =
1

1− τ 2r2
<∞ if and only if 1 < τ <

√
A
A−1

=
1

r
.

11



12



Chapter 2

The Hardy-Littlewood Maximal

Operator

In this chapter we start to define the weak and strong type inequalities. A

weighted inequality for an operator is a boundedness result from some Lp

space to some Lq space when at least one of those spaces is taken with respect

to a measure different from Lebesgue measure. Many times the measures are

absolutely continuous with respect to Lebesgue measure and the densities are

called weights; that is, if dµ(x) = ω(x)dx, ω is the weight.

A question of considerable interest in harmonic analysis is, “What types of

weights ω have the property that T is bounded on Lp(ω)?” where 1 < p <∞,

and T is an operator which is bounded on the (unweighted) space Lp. Here,

Lp(ω) = Lp(Rn, ω) denotes the weighted Lebesgue space, that is as usual, the

Banach space of all measurable functions f on Rn with finite norm, defined by

||f ||Lp(ω) = (

∫
Rn
|f(x)|pω(x) dx)1/p,

where a weight ω is supposed to be a non-negative locally integrable function.

Typically T is the Hardy-Littlewood maximal operator, singular integral

operators, or various related operators of interest in harmonic analysis.

In this chapter we will describe the Hardy-Littlewood maximal operator,

first introduced by Hardy and Littlewood [HL] in one dimensional case for the

purpose of the application to Complex Analysis.

It is a classical tool in harmonic analysis but recently it has been success-

fully used in studying Sobolev functions and partial differential equations.
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We will focus attention on weighted norm inequalities for Hardy-Littlewood

type maximal operators. The importance of the maximal operator stems from

the fact that it plays a very significant role in the estimate of different operators

in analysis.

We will consider weak type (1, 1) inequalities satisfied by several types

of Hardy-Littlewood maximal operators. As is well known, weak type (1, 1)

inequalities satisfied by Hardy-Littlewood maximal operators are keys to prove

their strong type (p, p) boundedness via Marcinkiewiczs interpolation theorem.

2.1 Hardy-Littlewood maximal function

Let f be a locally integrable function on Rn. Then, we have different definitions

for the H-L Maximal function, as following

Definition 2.1. Let Br = B(0, r) be the Euclidean ball of radius r centered

at the origin. The Hardy-Littlewood maximal function M∗f is defined

by

(2.1) M∗f(x) = sup
r>0

∫
Br

|f(x− y)|dy.

This can equal to +∞.

We can define the Hardy-Littlewood maximal function in another way, with

cubes in place of balls, namely

Definition 2.2. If Qr is the cube [−r, r]n, we define the centered Hardy-

Littlewood maximal function as

(2.2) M
′
f(x) = sup

r>0

1

(2r)n

∫
Qr

|f(x− y)|dy.

When n = 1, M∗ and M
′

coincide, while if n > 1, then there exist constants

cn and Cn, depending only on n, such that

(2.3) cnM
′
f(x) ≤M∗f(x) ≤ CnM

′
f(x).

Because of inequality (2.3), the two operators M∗ and M
′

are essentially in-

terchangeable, and one can choose that more appropriate, depending on the

circumstances. In fact, we can also give a more general definition for the H-L

maximal function:
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Definition 2.3. Let f be a locally integrable function on Rn. The non-

centered Hardy-Littlewood maximal function is defined by:

(2.4) Mf(x) = sup
x∈Q

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to

coordinate axes and containing x.

Again, M∗ is pointwise equivalent to M , so in the following we call M the

Hardy-Littlewood maximal operator and Mf the Hardy-Littlewood max-

imal function.

Note that the maximal operator M is sublinear and homogeneous, that is,

M(f + g) ≤Mf +Mg and M(λf) = λ(Mf), ∀λ ≥ 0.

The Hardy-Littlewood maximal operator appears in many places but some

of its most notable uses are in the proofs of the Lebesgue differentiation theo-

rem and Fatou’s theorem and in the theory of singular integral operators.

2.2 Weak and strong type inequalities for the

H-L maximal operator

We begin recalling the definition of weak and strong type inequalities.

Definition 2.4. Let (X,µ) and (Y, ν) be measure spaces, and let T be an

operator from Lp(X,µ) into the space of measurable functions from Y to C.

We say that T is weak (p, q), q <∞, if

ν({y ∈ Y : |Tf(y)| > λ}) ≤
(
C‖f‖p
λ

)q
,

and we say that it is weak (p,∞) if it is a bounded operator from Lp(X,µ) to

L∞(Y, ν).

We say that T is strong (p, q) if it is bounded from Lp(X,µ) to Lq(Y, ν).

If T is strong (p, q) then it is weak (p, q), in fact if we let Eλ = {y ∈ Y :

|Tf(y)| > λ}, then

ν(Eλ) =

∫
Eλ

dν ≤
∫
Eλ

∣∣∣∣Tf(x)

λ

∣∣∣∣q dν ≤ ‖Tf‖qqλq
≤
(
C‖f‖p
λ

)q
.
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When (X,µ) = (Y, ν) and T is the identity, the weak (p, p) inequality is the

classical Chebyshev inequality.

Definition 2.5. Let (X,µ) be a measure space and let f : X −→ C be a

measurable function. We call the function af : (0,∞) −→ [0,∞] , given by

af (x) = µ({x ∈ X : |f(x)| > λ}),

the distribution function of f associated with µ.

Proposition 2.1. Let φ : [0,∞) −→ [0,∞) be differentiable, increasing and

such that φ(0) = 0. Then∫
X

φ(|f(x)|)dµ =

∫ ∞
0

φ′(λ)af (λ)dλ.

To prove the previous equality it is enough to observe that the left-hand

side is equivalent to ∫
X

∫ |f(x)|

0

φ′(λ)dλdµ

and change the order of integration. If, in particular, φ(λ) = λp then

(2.5) ‖f‖pp = p

∫ ∞
0

λp−1af (λ)dλ.

Since weak inequalities measure the size of the distribution function, rep-

resentation (2.5) of the Lp norm is ideal for proving the following interpolation

theorem, which will let us deduce Lp boundedness from weak inequalities. It

applies to a larger class of operators than linear ones (note that maximal opera-

tors are not linear): an operator T from a vector space of measurable functions

to measurable functions is sublinear if

|T (f0 + f1)| ≤ |Tf0|+ |Tf1|,

and

|T (λf)| = |λ||Tf |, ∀λ ∈ C.

Theorem 2.2. (Marcinkiewicz Interpolation) Let (X,µ) and (Y, ν) be

measure spaces, 1 ≤ p0 < p1 ≤ ∞, and let T be a sublinear operator from

Lp0(X,µ) + Lp1(X,µ) to the measurable functions on Y , that is weak (p0, p0)

and weak (p1, p1). Then T is strong (p, p) for p0 < p < p1.
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The following statements are central to the utility of the Hardy-Littlewood

maximal operator.

1. For f ∈ Lp(Rn), 1 ≤ p ≤ ∞, M(f) is finite almost everywhere.

2. If f ∈ L1(Rn), then there exists a positive constant c such that, for all

α > 0;

|{x|Mf(x) > α}| ≤ c

α

∫
Rn
|f |.

This property is called a weak-type bound and establishes that M is

weak (1, 1); it can be proved using the Vitali covering lemma.

3. If f ∈ Lp(Rn), 1 < p ≤ ∞, M(f) ∈ Lp(Rn) and

||Mf ||Lp ≤ Cp||f ||Lp

where C is a constant depends only on p.

Property (3) says the operator M : f −→ Mf is bounded on Lp(Rn) (strong

(p, p)). It is clearly true when p = ∞, since we cannot take an average of

a bounded function and obtain a value larger than the largest value of the

function.

It is worth noting (3) does not hold for p = 1. This can be easily proved by

calculating Mχ where χ is the characteristic function of the unit ball centered

at the origin.

M is not bounded in L1(Rn), in fact for f ≥ 0, Mf is not in L1 unless

f(x) = 0 for a.e. x, since Mf(x) ≥ C|x|−n for large x, with C > 0 if f 6= 0.

We have the following very important Theorem about local integrability of

maximal operator.

Theorem 2.3. (Hardy-Littlewood Maximal Theorem) Let f be an integrable

function supported in a cube Q ⊂ Rn. Then Mf ∈ L1(Q) if and only if

f log f ∈ L1(Q).

The properties (2) and (3) are contained in this theorem

Theorem 2.4. The operator M is weak (1, 1) and strong (p, p), 1 < p ≤ ∞.
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Moreover, let us note that, from definition, follows

‖Mf‖∞ ≤ ‖f‖∞,

so by the Marcinkiewicz interpolation theorem, to prove Theorem 2.4, it will

be enough to prove that M is weak (1, 1).

Now, we show a proof when n = 1 but before we need the following one-

dimensional covering lemma.

Lemma 2.5. Let {Iα}α∈A be a collection of intervals in R and let K be a

compact set contained in their union. Then there exists a finite subcollection

{Tj} such that

K ⊂
⋃
j

Ij and
∑
j

χIj(x) ≤ 2, x ∈ R.

Proof. of Theorem (2.4) (n=1)

Let Eλ = {x ∈ R : Mf(x) > λ}. If x ∈ Eλ then there exists an interval Ix

centered at x such that
1

|Ix|

∫
Ix

|f | > λ.

Let K ⊂ Eλ be compact. Then K ⊂
⋃
Ix, so by lemma 2.5 there exists a finite

collection {Ij} of intervals such that K ⊂
⋃
j

Ij and
∑
j

χIj ≤ 2. Hence,

|K| ≤
∑
j

|Ij| ≤
∑
j

1

λ

∫
Ij

|f | ≤ 1

λ

∫
R

∑
j

χIj |f | ≤
2

λ
‖f‖1.

Since the previous inequality holds for every compact K ⊂ Eλ, the weak (1, 1)

inequality for M follows immediately.

Note that Lemma 2.5 is not valid in dimensions greater than 1. Theorem

2.4 can be proved in Rn using dyadic maximal function but we don’t investigate

it here.

2.3 Weighted norm inequalities for the H-L

maximal operator

A very interesting question in harmonic analysis is what type of weights ω

have the property that an operator T is bounded in Lp(ω) with 1<p<∞ and

where T is bounded in Lp(Rn).
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We start giving a generalization of the maximal function. Let µ be a posi-

tive Borel measure on Rn, finite on compact sets and satisfying the following

doubling condition:

(2.6) µ(2Q) ≤ Cµ(Q)

for every cube Q ⊂ Rn, with C > 0 independent of Q. We say that µ is a

doubling measure.

Definition 2.6. Let µ as above, dµ = ω(x)dx, and let f ∈ L1
loc(Rn). The

weighted Hardy-Littlewood maximal function is defined by:

(2.7) Mωf(x) = sup
x∈Q

1

ω(Q)

∫
Q

|f(y)|ω(y)dy,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to

coordinate axes containing x.

The analogous of the property (3), in Section 2.2, for weighted maximal

operators is the following

Theorem 2.6. Let µ a doubling measure in Rn such that dµ = ω(x)dx, then

for every p, with 1 < p < ∞, there is a constant Cp > 0 such that for every

f ∈ Lp(ω), we have(∫
Rn

(Mωf(x))pω(x)dx

) 1
p

≤ Cp

(∫
Rn
|f(x)|pω(x)dx

) 1
p

.

Also the Theorem 2.3 can be extended to Mω for a doubling measure µ

such that dµ = ω(x)dx.

It is fundamental the fact that Mω is bounded in Lp(w) for every 1 < p <

∞, if the weight ω is doubling. In particular Mω is bounded if ω is a A∞

weight.

It was B. Muckenhoupt who made the key discovery, by studying the

weighted inequality for the maximal function.

In particular, it is known that Muckenhoupt’s Ap-condition is a necessary

and sufficient condition for boundedness in the case of the Hardy-Littlewood

maximal operator or singular integral operators, as proved in the following

Muckenhoupt’s theorem [Mu1].
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Theorem 2.7. [Mu1] Let 1 < p <∞, then M is a bounded operator in Lp(ω)

if and only if ω ∈ Ap.

We have also a weak-type of Theorem 2.7.

Theorem 2.8. [Bu1] For 1 ≤ p <∞, the weak (p,p) inequality

ω({x ∈ Rn : Mf(x) > λ}) ≤ c(p, n)

λp

∫
Rn
|f(x)|pω(x)dx

holds if and only if ω ∈ Ap.

The following Theorem due to Perez is a generalization of the previous results.

Theorem 2.9. [P] The following statements are equivalent.

1. For every 1 < p <∞, and whenever ω ∈ Ap

M : Lp(ω) −→ Lp(ω)

2. For every 1 < p <∞, and whenever ω ∈ A∞

Mω : Lp(ω) −→ Lp(ω).

Some years later Buckley in [Bu1] proved a result which shows how the

operator norms specifically depend from the Ap-constant of ω.

Theorem 2.10. [Bu1] If ω ∈ Ap, 1 ≤ p <∞, then

‖Mf‖pLp(ω) ≤ C(p)Ap(ω)p
′‖f‖pLp(ω)

where p′ is the conjugate exponent of p and C is a positive constant depending

only on p. The power p′ for Ap(ω) is the smallest possible, and hence the best

one, since Ap(ω) ≥ 1.

Before to see the proof of the Theorem 2.10 we need of a preliminary Lemma.

Lemma 2.11. [Bu1] If f ∈ Lp(ω) and fQk ≥ α > 0 for each of the disjoint

cubes {Qk}, then ∑
k

ω(Qk) ≤ Ap(ω)

(
‖f‖Lp(ω)

α

)p
.
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Proof. (of Theorem 2.10) First, we show that for 1 ≤ p <∞,

(2.8) ω({Mf > α}) ≤ c(p, n)Ap(ω)

(
‖f‖Lp(ω)

α

)p
.

where c(p, n) is a positive constant, depending only on p ≥ 1 and n ∈ N.

Without loss of generality, we assume that f(x) ≥ 0 and that ‖f‖Lp(ω) = 1.

Suppose that Mf(x) > α > 0 so that fQk ≥ α for some cube Qk centered at x.

Let Er = {x : |x| < r,Mf(x) > α}. The Besicovich covering Lemma [Be] tells

us that Er can be covered by the union of Nn collections of disjoint cubes, on

each of which the mean value of f is at least α. Choose the collection {Qk},
whose union has maximal ω-measure. Thus,

ω(Er) ≤ Nnw

(⋃
k

Qk

)
≤ c(p, n)Ap(ω)

αp
,

by Lemma 2.11. Letting r −→∞, we get (2.8).

Suppose now that p > 1, if ω ∈ Ap then ω ∈ Ap−ε where ε ∼ Ap(ω)1−p′ ,

see Lemma 1.2, and trivially w ∈ Ap+ε, with norm no larger than Ap(ω).

Applying the Marcinkiewicz Interpolation Theorem to the corresponding weak-

type results at p− ε and p + ε, we get the strong type result we require with

the indicated bound for the operator norm.

To see that the power Ap(ω)p
′

is best possible, we give an example for R

(a similar example works in Rn for any n). Let ω(x) = |x|(p−1)(1−δ), so that

Ap(ω) ∼ 1
δp−1 . Now, f(x) = |x|−1+δχ[0,1] ∈ Lp(ω). It is easy to see that

Mf ≥ f
δ

and so
‖Mf‖pLp(ω)

‖f‖pLp(ω)

≥ Cδ−p ∼ Ap(ω)p
′
.

This result is sharp in the sense thatAp(ω)
p′
p cannot be replaced by ϕ(Ap(ω)

p′
p )

for any positive non decreasing function ϕ growing slower than t
p′
p .

Now we report similar results of weighted integral inequalities for the

Maximal Operator by mean of Gehring condition (see Chapter 1).

Theorem 2.12. [P] Let 1 < p <∞. Then Mω : Lp(Rn) −→ Lp(Rn)

Mω : Lp
′
(ωp

′
) −→ Lp

′
(ωp

′
)
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if and only if 
ω ∈ Gp′

M : Lp
′
(Rn) −→ Lp

′
(Rn)

Mωp′ : Lp(ωp
′
) −→ Lp(ωp

′
).

2.4 Our results: sharp weak-type inequalities

for the H-L maximal operator on weighted

Lebesgue space

In this section we will find the best constant in the corresponding weak esti-

mates on Lp(R, dx) for the weighted maximal function Mv, under the assump-

tions Gq(v) <∞, 1
p

+ 1
q

= 1.

Let us to consider theMf , (uncentred) maximal function of f ∈ L1
loc(R, ωdx).

Our aim is to prove the following sharp result in one dimension.

Theorem 2.13. [A1] The best constant in the theorem 2.8 is c(p, 1) = 2.

In the special case ω(x) = 1 we reobtain a sharp result due to [Ber],[GM]

and [GK]. In order to prove theorem (2.13), we actually prove the following

weighted double weak type inequality, in the same spirit of [GK] .

Theorem 2.14. [A1] Let ω be a Ap weight on R, 1 ≤ p < ∞, and assume

that f : R→ [0,∞) belongs to Lploc(R, ω). Then we have, ∀λ > 0:

(2.9)

∫
{Mf>λ}

ω(x)dx +

∫
{f>λ}

ω(x)dx ≤

≤ 2Ap(ω)− 1

λp

∫
{Mf>λ}

fpω(x)dx +
1

λp

∫
{f>λ}

fpω(x)dx.

The inequality is sharp.

Proof. Fix λ > 0 and set

Eλ = {x : Mf(x) > λ}
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we may assume that
∫
{f>λ} ω(x)dx = ω({f > λ}) <∞. For any x ∈ Eλ there

exists an interval Ix containing x such that

(2.10)

∫
I

f(y)dy > λ.

By Lindelöf’s theorem there exists a countable subcollection {Ij} of {Ix} such

that ⋃
j∈N

Ij =
⋃
x∈Eλ

Ix.

As in [GK], define for m ∈ N

Fm =
m⋃
j=1

Ij.

By lemma 4.4 in [Ga] there exist two subcollections of {Ij : j = 1, 2, ....,m},
S1 and S2 such that

Fm = (
⋃
j∈S1

Ij) ∪ (
⋃
j∈S2

Ij) = F1 ∪ F2

and Ik ∩ Ij = Ø if j, k ∈ S1 or if j, k ∈ S2. For i = 1, 2 we have, by (2.10)

(2.11) ω(Fi) =
∑
j∈Si

ω(Ij) <
1

λp

∑
j∈Si

ω(Ij)

(∫
Ij

f(x)dx

)p

.

Using Hölder inequality we have

ω(Fi) ≤
1

λp

∑
j∈Si

ω(Ij)

|Ij|p

∫
Ij

fp(x)ωdx

[∫
Ij

ω−
1
p−1dx

]p−1

=
1

λp

∑
j∈Si

ω(Ij)

|Ij|

[∫
Ij

ω−
1
p−1dx

]p−1 ∫
Ij

fpωdx

≤ 1

λp
Ap(ω)

∑
j∈Si

∫
Ij

fpωdx

by the assumption Ap(ω) < ∞. Since the intervals Ij for j ∈ Si are pairwise

disjoint we deduce

(2.12) ω(Fi) ≤
Ap(ω)

λp

∫
Fi

fpωdx for i = 1, 2.

23



Therefore

(2.13) ω(Fm) + ω(F1 ∩ F2) = ω(F1) + ω(F2) ≤

≤ Ap(ω)

λp

∫
F1

fpωdx+
Ap(ω)

λp

∫
F2

fpωdx =

=
Ap(ω)

λp

∫
Fn
fpωdx+

Ap(ω)

λp

∫
F1∩F2

fpωdx.

By mean of the inequality [GK]

(2.14)
1

λp

∫
F1∩F2

fpωdx+ ω({f > λ}) ≤ 1

λp

∫
{f>λ}

fpωdx+ ω(F1 ∩ F2)

and, using (2.13) and (2.14), we deduce that

ω(Fm)+ω({f > λ}) ≤ Ap(ω)

λp

∫
Fm

fpωdx+
1

λp

∫
{f>λ}

fpωdx+
Ap(ω)− 1

λp

∫
Eλ

fpωdx.

Since Fm is an increasing sequence of measurable sets whose union is Eλ,

we get (2.9) letting m → ∞. Since inequality (2.9) reduces for ω = 1 to

inequality (2.1) in [GK], it is sharp.

Theorem (2.13) is a simple consequence of Theorem (2.14) as for as we note

that {f > λ} ⊂ {Mf > λ}.

The counter part of Theorem (2.14) in the setting of weighted maximal

operator acting on unweighted space is the following Theorem (2.15). Our aim

is to prove the following sharp form of weak type property of Mv on Lp(R),

where Mv is defined as in 2.7.

Theorem 2.15. [A1] Let 1 ≤ p, q ≤ ∞, if Gq(v) < ∞ and f ∈ Lp(R),

1
p

+ 1
q

= 1, then, for any λ > 0 we have

(2.15) |{Mvf > λ} ≤ 2Gq(v)

λp
‖f‖pLp(R).

The inequality is sharp.

Similarly as before, we first prove the following double weak type inequality.
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Theorem 2.16. [A1] Let Gq(v) <∞ and 1
p

+ 1
q

= 1. Then

(2.16)

|{Mvf > λ}|+ |{f > λ}| ≤ 2Gq(v)− 1

λp

∫
{Mvf>λ}

fp(x)dx+
1

λp

∫
{f>λ}

fp(x)dx.

Proof. Fix λ > 0 and set

Eλ = {x : Mvf(x) > λ}.

For any x ∈ Eλ there exists an interval Ix containing x such that

1

v(Ix)

∫
Ix

f(y)v(y)dy > λ.

By Lindelöf’s theorem, there exists a countable subcollection {Ij} of {Ix} such

that ⋃
j∈N

Ij =
⋃
x∈Eλ

Ix.

Define for m ∈ N

Fm =
m⋃
J=1

Ij.

Then, there exist two subcollections of Ij : j = 1, 2, ...,m, S1 and S2 such that

Fm = (
⋃
j∈S1

Ij) ∪ (
⋃
j∈S2

Ij) = F1 ∪ F2

and Ik ∩ Ij = ∅ if j, k ∈ S1 or if j, k ∈ S2. For i = 1, 2 we have, applying

Hölder’s inequality

|Fi| =
∑
j∈Si

|Ij| <
1

λp

∑
j∈Si

|Ij|

(
1

v(Ij)

∫
Ij

fvdx

)p

≤

≤ 1

λp

∑
j∈Si

|Ij|
v(Ij)p

∫
Ij

|f |pdx

(∫
Ij

|v|qdx

) p
q

=

=
1

λp

∑
j∈Si


(∫

Ij

|v|qdx

) 1
q

∫
Ij

vdx



p

∫
Ij

|f |pdx ≤ Gq(v)

λp

∫
Fi

fpdx.
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Hence, we obtain

|Fi| ≤
Gq(v)

λp

∫
Fi

fpdx.

Therefore

(2.17) |Fm|+ |F1 ∩ F2| = |F1|+ |F2| ≤

≤ Gq(v)

λp

∫
F1

fpdx+
Gq(v)

λp

∫
F2

fpdx =

=
Gq(v)

λp

∫
Fm

fpdx+
Gq(v)

λp

∫
F1∩F2

fpdx.

By mean of the inequality [GK]

(2.18)
1

λp

∫
F1∩F2

fpdx+ |{f > λ}| ≤ 1

λp

∫
{f>λ}

fpdx+ |F1 ∩ F2|,

and, using (2.17) and (2.18), we deduce

|Fm|+ |F1 ∩ F2|+
1

λp

∫
F1∩F2

fpdx+ |{f > λ}| ≤

≤ Gq(v)

λp

∫
Fm

fpdx+
Gq(v)

λp

∫
F1∩F2

fpdx+
1

λp

∫
{f>λ}

fpdx+ |F1 ∩ F2|.

Therefore

|Fm|+ |{f > λ}| ≤ 2Gq(v)− 1

λp

∫
Fm

fp(x)dx+
1

λp

∫
{f>λ}

fpdx.

Since Fm is an increasing sequence of measurable sets whose union is Eλ, we

get (2.16) letting m −→∞.

Thanks our results and Theorem (1.12) and Theorem (1.13) mentioned in

Chapter 1, we deduce the exact continuation of the weak type properties for

M and Mv.

Proposition 2.17. Let A2(ω) = A <∞; then for 1 +
√

A−1
A

< s ≤ 2 we have∫
{Mf>λ}

ω ≤ 2A

λsψ(s)
‖f‖sLs(R,ω)

where ψ(s) is as (1.15) in Theorem 1.12.

Proposition 2.18. Let G2(v) = B <∞; then for 2 ≤ r < 1 +
√

B
B−1

we have

|{Mvf > λ}| ≤ 2

λr

[
2B

ϕ(r)

] r′
2

‖f‖rLr(R)

where ϕ(r) is as (1.17) in Theorem 1.13.
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Chapter 3

Sharp estimates for the

weighted Maximal Operator in

Orlicz spaces

In this chapter we prove an integral inequality for the weighted maximal func-

tion in Orlicz spaces, generalizing a previous result due to C. Perez [P], with

precise evaluation of the norm in terms of the Gq-constant of the weight, in

the same spirit of works by Buckley [Bu1] and Capone-Fiorenza [CF].

3.1 Introduction

Let us start to recall some definitions and notations.

A Young function is a convex function Φ : [0,∞) −→ [0,∞), increasing on

[0,∞) and satisfying

lim
t→0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
=∞.

Moreover, Φ has a derivative ϕ which is nondecreasing, nonnegative, such that

ϕ(0+) = 0 and ϕ(∞) =∞ and so that

Φ(t) =

∫ t

0

ϕ(x)dx

and we can take ϕ to be right-continuous. The Young function complementary

to Φ is given by

Ψ(t) = sup
s
{st− Φ(s)} =

∫ t

0

ψ(x)dx
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where ψ(x) = inf{s : ϕ(s) ≥ x}. These functions verify the Young’s inequality

ab ≤ Φ(a) + Ψ(b) ∀ a, b > 0.

More in general, if a Young function Φ is not necessarily convex we have an

Orlicz function. The Orlicz space, LΦ(Ω) consists of all measurable functions

f on Ω such that ∫
Ω

Φ

(
|f |
λ

)
dx <∞ for some λ > 0.

LΦ(Ω) is a complete linear metric space with respect the following distance

function:

distΦ(f,g) = inf

{
λ > 0 :

∫
Ω

Φ

(
|f − g|
λ

)
dx ≤ λ

}
.

If Φ is a Young function, LΦ(Ω) can be equipped with the Luxemburg norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Ω

Φ

(
|f |
λ

)
dx ≤ 1

}
,

and becomes a Banach space.

If we put Φ(t) = tp, 0 < p <∞ then the space LΦ(Ω) coincides with the usual

Lebesgue space Lp(Ω). Note that Lp(Ω) is a Banach space only when p ≥ 1.

In the same way we can define the weighted Orlicz class as the set of all

functions f for which∫
Ω

Φ

(
|f |
λ

)
ωdx <∞ for some λ > 0,

where ω is a non negative measurable function on the space Rn. As before

LΦ(Ω, ω) denotes the weighted Orlicz space.

In the following we are going to report some common important properties

and results about Young functions.

Definition 3.1. Let Φ be a Young function. Φ satisfies the ∆2-condition

(Φ ∈ ∆2) if there is c > 0 such that

(3.1) Φ(2t) ≤ cΦ(t), ∀t ≥ 0.

Note that if ∀ Φ,Ψ ∈ LΦ(Ω) complementary functions we have that both

verify ∆2 - condition, LΦ(Ω) is a reflexive Orlicz space.

Now we report a result about the equivalence between a growth condition

and ∆2-condition.
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Theorem 3.1. [KR] Let Φ be a Young function, then

(3.2) Φ ∈ ∆2 ⇐⇒ pΦ(t) ≤ tΦ′(t) ≤ qΦ(t) ∀t > 0

with 1 < p ≤ q.

We give an example of growth exponents of a Young function.

Example 3.1. The Young function

Φ(t) =


t2 t ∈ [0, 1]

e2(t−1) t ∈ [1, 2]

e2

16
t4 t ∈ [2,+∞[

verifies the following growth condition

2Φ(t) ≤ tΦ′(t) ≤ 4Φ(t), ∀t > 0.

In many applications (calculus of variations, interpolation etc.) it is useful

to assume that a Young function is, in a certain sense between two powers tp

and tq.

3.2 Preliminary results

In the Chapter 2 we have seen that one reason why the class of Muckenhoupt

weights is important for analysis is that the maximal operator is continuous

in weighted Lp-spaces, if and only if the weight function is a Muckenhoupt

weight.

In [CF] the boundedness properties of the Hardy-Littlewood maximal op-

erator M was generalized to weighted Orlicz spaces LΦ(ωdx) with a precise

dependence of the constant c in the inequality∫
Rn

Φ(Mf)ω dx ≤ c

∫
Rn

Φ(|f |) dx

in terms of growth conditions on Φ and Ap(ω)-constant. This extended a

previous weighted maximal Theorem between Orlicz spaces due to Kerman-

Torchinsky [KT].

29



Now, we want to give an analogous theorem related to the weighted maxi-

mal operator

Mvg(x) = sup
x∈Q

1∫
Q
v(y) dy

∫
Q

|g(y)|v(y) dy

over the unweighted Orlicz space LΨ(dx) as the following∫
Rn

Ψ(Mvg) dx ≤ c

∫
Rn

Ψ(g) dx

generalizing a previous result due to C. Perez [P] concerning the case Ψ(t) = tp.

Our study is motivated by the fact that recently, there has been new interest

in computing norms of some classical operators between weighted spaces, how

we will see in next sections.

To estimate parameter in terms of the Gq constant involved, we will fol-

low a technique of reducing the problem to the one dimensional case via non

increasing rearrangement in the spirit of the following result [DS].

Lemma 3.2. [A2] If n = 1 and v∗ : [a, b] −→ [0,∞) is a non increasing

function such that Gq(v
∗)<∞. Then, there exists η ≥ c1[Gq(v

∗)]1−q such that

(3.3) Gq+η(v
∗) ≤ co Gq(v

∗)

with co and c1 depending only q.

Proof. By [DS], if q1 > q is the unique solution to the equation

ϕ(x) = 1− x− q
x

(
x

x− 1
)q[Gq(v

∗)]q−1 = 0

and if q2 is any number in the interval (q, q1), we have

[Gq2(v∗)]
1
q′2 ≤

[
q

q2ϕ(q2)

]1/q

[Gq(v
∗)]

1
q′ .

The equation ϕ(q1) = 0 can be rewritten as

(q1 − q)
q1

(
q1

q1 − 1

)q
[Gq(v

∗)]q−1 = 1.

Set now η = q2 − q; since η < q1 − q, then we have

η

q1

(
q1

q1 − 1

)q
[Gq(v

∗)]q−1 < 1,
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and therefore

η < q1

(
q1 − 1

q1

)q
[Gq(v

∗)]1−q.

Defining c̃1 = q1

(
q1−1
q1

)q
, for 0 < ηo < c̃1[Gq(v

∗)]1−q, we have

[Gq+ηo(v
∗)]1−

1
q+η ≤

[
q

(q + ηo)ϕ(q + ηo)

]1/q

[Gq(v
∗)]

1
q′ .

The result follows choosing η < c̃1[Gq(v
∗)]1−q such that η > 1

2
c̃1[Gq(v

∗)]1−q =

c1[Gq(v
∗)]1−q and co =

[
q

(q+ηo)ϕ(q+ηo)

]1/q

.

Lemma 3.3. [A2] Let Gq(v) <∞ and let Q be a fixed cube in Rn. Then the

non increasing rearrangement v∗(t) of v on Q belongs to Gq on the interval

[0, |Q|] and we have

Gq(v
∗) ≤ c(n, q) Gq(v)

for some constant c(n, q) > 0.

Proof. By Theorem 4.1 in [S3] (for ϕ(t) = tq), we have

(3.4) Gq(v
∗) ≤ [(2n + 1)3qn]

1
q−1 Gq(v).

Lemma 3.4. [A2] If Gq(v) <∞, then there exists a constant η ≥ c(n, q)[Gq(v)]1−q

such that

(3.5) Gq+η(v) ≤ c(n, q) Gq(v).

Proof. Let us fix Q a cube in Rn. According to Lemma 3.3, if v∗ is the non

increasing rearrangement of v on Q, then there exists c(n, q) such that

(3.6) Gq(v
∗) ≤ c(n, q)Gq(v).

Then, using Lemma 3.2 and equation (3.6), we obtain

Gq+η(v
∗) ≤ c2(n, q) Gq(v),

where c2(n, q) is positive constant, depending on n, q.

In particular, for a positive constant(∫ |Q|
0

v∗(t)q+η dt

) 1
q+η

≤ c′(n, q, η)[Gq(v)]
q+η−1
q+η

∫ |Q|
0

v∗(t) dt.
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By the familiar properties of the rearrangements, and then passing to sup

with respect to the cube Q, we deduce

(3.7)

(∫
Q

vq+η dx

) 1
q+η

≤ c′(n, q, η)[Gq(v)]
q+η−1
q+η

∫
Q

v,

that is equivalent to (3.5).

3.3 Our main theorem

We prove the main Theorem.

Theorem 3.5. [A2] If Ψ : [0,∞) −→ [0,∞) is a convex increasing function

such that

rΨ(t) ≤ tΨ′(t) ≤ sΨ(t) ∀ t > 0

with 1 < r ≤ s, and if v is a weight verifying the G r
r−1

condition, then∫
Rn

Ψ(Mvf) dx ≤ c(n, r, s)[G r
r−1

(v)]
r
r−1

∫
Rn

Ψ(|f |) dx

for any f ∈ L1(Rn).

Lemma 3.6. If Ψ verifies the conditions of Theorem 3.5, then there exists a

positive constant c such that Ψ(λt) ≤ cmax{λr, λs}Ψ(t), for all λ, t > 0.

Proof. See [FK].

Now, we prove Theorem 3.5 as follows:

Proof. Let f such that Ψ(|f |) ∈ L1(Rn), otherwise there is nothing to prove.

Put

[f ]λ =

 f if |f | > λ

0 if |f | ≤ λ
, [f ]λ =

 0 if |f | > λ

f if |f | ≤ λ

so that f = [f ]λ + [f ]λ. Since G r
r−1

(v) < ∞, by Lemma 3.4, there exists

η > 0 such that Gr0(v) <∞ with r0 = r
r−1
− η. If s0 = r

r−1
+ η we have easily

also Gs0(v) <∞ and therefore by theorem (2.15) we have∫
Rn

Ψ(Mvf) dx =

∫ ∞
0

Ψ′(λ)|{Mv(f) > λ}|dλ ≤
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≤
∫ ∞

0

Ψ′(λ)|{Mv(fλ) >
λ

2
}|dλ+

+

∫ ∞
0

Ψ′(λ)|{Mv(f
λ) >

λ

2
}|dλ ≤

≤ c(n)2r0G r0
r0−1

(v)

∫ ∞
0

Ψ′(λ)

λr0

(∫
Rn
|fλ|r0 dx

)
+

+c(n)2s0G s0
s0−1

(v)

∫ ∞
0

Ψ′(λ)

λs0

(∫
Rn
|fλ|s0 dx

)
=

= c(n)2r0G r0
r0−1

(v)

∫ ∞
0

Ψ′(λ)

λr0

(∫
|f |>λ
|f |r0 dxdλ

)
+

+c(n)2s0G s0
s0−1

(v)

∫ ∞
0

Ψ′(λ)

λs0

(∫
|f |≤λ
|f |s0 dxdλ

)
=

= c(n)2r0G r0
r0−1

(v)

∫
Rn
|f(x)|r0

(∫ |f(x)|

0

Ψ′(λ)

λr0
dλ

)
dx+

+c(n)2s0G s0
s0−1

(v)

∫
Rn
|f(x)|s0

(∫ ∞
|f(x)|

Ψ′(λ)

λs0
dλ

)
dx.

Using Lemma 3.6, we have∫ |f(x)|

0

Ψ′(λ)

λr0
dλ ≤ cq

∫ |f(x)|

0

1

λr0+1

(
λ

|f(x)|

)p− η
2

Ψ(|f(x)|)dλ =
2qc

η

Ψ(|f(x)|)
|f(x)|r0

.

In the same way, we have∫ ∞
|f(x)|

Ψ′(λ)

λs0
dλ ≤ 2qc

η

Ψ(|f(x)|)
|f(x)|s0

.

Hence,∫
Rn

Ψ(Mvf) dx ≤
(
c(n)

2qc

η

∫
Rn

Ψ(|f(x)|) dx
)(

2r0G r0
r0−1

(v) + 2s0G s0
s0−1

(v)
)
.

Using Lemma 3.4 for q = r/(r − 1)

G r0
r0−1

(v)

η
∼ [G r

r−1
(v)]

r
r−1 .

Therefore, ∫
Rn

Ψ(Mvf) dx ≤ c(n, r)[G r
r−1

(v)]
r
r−1 .

∫
Rn

Ψ(|f(x)| dx.
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Chapter 4

Sharp estimates for some

operators on weighted Lebesgue

spaces

For a long time it has been of interest to find, for a given operator T , sharp

bounds for the operator norms ||T ||Lp(ω) in terms of the Ap-constant of the

weight ω. The aim is on controlling the operator norm by a suitable power of

the Ap-constant of ω. One seeks to prove an estimate of the form

||Tf ||Lp(ω) ≤ CArp(ω)||f ||Lp(ω)

for a suitable r where the constant C is independent of f or ω. Since Ap(ω) ≥ 1

it is desirable to find estimates with r = r(p) as small as possible.

To obtain the sharp estimates is of course significantly more difficult than

to just prove continuity. Such estimates have applications in PDE; see for

example in the case of the Hilbert transform, the work by Fefferman, Kenig

and Pipher [FKP]. More recently, Volberg and Petermichl [AIS], [PV] solved

a famous problem related to quasiregular maps through a sharp bound for the

weighted Beurling operator.

In this chapter we illustrate some result of optimal estimate for the growth

of the norm of the operators as Hilbert transform, Riesz transform, Beurling-

Alhfors, Calderon-Zygmund, Potential Riesz, in terms of the Ap-constant. In

particular, we will exhibited the optimal exponent for the Ap-constant in a

weighted inequality for the fractional integral operator Iα, also called Riesz
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potential, of any order α ∈ (0, n).

4.1 Good-λ methods

Good-λ inequalities, brought to Harmonic Analysis, provide a powerful tool

to prove boundedness results for operators or at least comparisons of two

operators. A typical good-λ inequality for two non-negative functions F and

G is as follows: for every 0 < δ < 1, there exists γ = γ(δ) and for every

ω ∈ A∞,

ω{x : F (x) > 2λ,G(x) ≤ γλ} ≤ Cδω{x : F (x) > λ}.

The usual approach for proving such an estimate consists in first deriving

a local version of it with respect to the underlying doubling measure, and then

passing to the weighted measure using that ω ∈ A∞.

Weighted good-λ estimates encode a lot of information about F and G,

since they give a comparison of the ω-measure of the level sets of both func-

tions. One gets, for instance, that for every 0 < p < ∞ and all ω ∈ A∞ then

||F ||Lp(ω) is controlled by ||G||Lp(ω). The same inequality holds with Lp,∞ in

place of Lp or with some other function spaces. Thus, the size of F is controlled

by that of G.

In applications, one tries to control a specific operator T to be studied by a

maximal one M whose properties are known by setting F = Tf and G = Mf .

4.2 Calderón- Zygmund operator

Calderón-Zygmund operators have been thoroughly studied since the 50s.

They are singular integral operators associated with a kernel satisfying cer-

tain size and smoothness conditions. Let us recall some concepts.

Let K(x, y) be a locally integrable function defined off the diagonal x = y

in Rn × Rn, which satisfies the size estimate

(4.1) |K(x, y)| ≤ c

|x− y|n
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and, for some ε > 0, the regularity condition

(4.2) |K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x − z| < |x − y|. A continuous linear operator T : C∞0 (Rn) −→
L1
loc(Rn) is a Calderón-Zygmund operator if it extends to a bounded operator

on L2(Rn), and there is a kernel K satisfying (4.1) and (4.2) such that

T (x) =

∫
Rn
K(x, y) f(y)dy

for any f ∈ C∞0 (Rn) and x /∈ supp(f).

If T is a Calderón-Zygmund operator with smooth kernel, in particular it

is already bounded on (unweighted) L2, it was shown in [Co] and in [CFe].

In the same papers it is provided that if T is any Calderón-Zygmund oper-

ator with standard kernel and if M is the Hardy-Maximal operator, then for

any 0 < p <∞ and ω ∈ A∞, there is a constant C depending on p and ω such

that,

∫
Rn
|Tf(x)|pω(x) dx ≤ C

∫
Rn
Mf(x)pω(x) dx

for any function f such that the left-hand side is finite.

This means that T is controlled by the Hardy-Littlewood maximal function

M in Lp(ω) for all 0 < p < ∞ and w ∈ A∞ and therefore T is bounded on

Lp(ω) if M is bounded on Lp(ω), which by Muckenhoupt’s theorem means

ω ∈ Ap. In particular, the range of unweighted Lp boundedness of T , that is

the set of p for which T is strong-type (p, p), is (1,∞).

Moreover, in [LOP], authors proved the followingA1 bound for the Calderón-

Zygmund operator

||T ||Lp(ω) ≤ c(n, p)A1(ω),

where c is a positive constant depending only on p and the dimension and

where A1 stands for A1-constant of Muckenhoupt of ω.

4.3 Riesz Trasform

We recall that if f ∈ Lp(Rn), 1<p<∞, then for i=1, ..., n the Riesz transforms

are defined by
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Ri(f)(x) = lim
ε→0

dn

∫
|y|≥ε

yi
|y|n+1

f(x− y) dy

with dn = Γ((n+1)/2)π(n+1)/2. It is known that the multiplier for this operator

is given by dnxi/|x|, which is formally the Fourier transform of the kernel of

Ri(f).

The symbol Ri stands for the ith direction Riesz transform on Rn and is

defined by its Fourier multiplier as follows:

R̂if(x) = i
xi
|x|
f̂(x).

On Rn, it is well-known that the classical Riesz transforms Ri , 1 ≤ i ≤ n,

are bounded on Lp(Rn, dx) for 1 < p <∞ and are of weak-type (1, 1) with

respect to dx. As a consequence of the weighted theory for classical Calderón-

Zygmund operators, the Riesz transforms are also bounded on Lp(Rn, ω(x)dx)

for all ω ∈ Ap, 1<p<∞, and are of weak-type (1, 1) with respect to ω(x)dx

for ω ∈ A1. Furthermore, it can be shown that the Ap condition on the weight

is necessary for the weighted Lp boundedness of the Riesz transforms.

Recently, Petermichl [P2] established the best possible bound on the norm

of the Riesz transforms in the weighted Lebesgue space Lp(Rn, ω) in terms of

the Ap-constant of the weight ω, for 1<p<∞. The result is contained in the

following theorem

Theorem 4.1. [P2] There exists a constant c so that for all weights ω ∈ A2 the

Riesz transforms as operators in weighted space Ri : L2(Rn, ω) −→ L2(Rn, ω)

have operator norm ||Ri||L2(ω) ≤ cA2(ω). This result is sharp.

4.4 Hilbert Trasform

In mathematics and in signal processing, the Hilbert transform is a linear

operator which takes a function, f(x), to another function, H(f)(x), with the

same domain. The Hilbert transform is named after David Hilbert, who first

introduced the operator in order to solve a special case of the Riemann-Hilbert

problem for holomorphic functions. It is a basic tool in Fourier analysis, and

provides a concrete means for realizing the conjugate of a given function or
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Fourier series. Furthermore, in harmonic analysis, it is an example of a singular

integral operator, and of a Fourier multiplier. The Hilbert transform is also

important in the field of signal processing where it is used to derive the analytic

representation of a signal f(x).

The Hilbert transform was originally defined for periodic functions, or

equivalently for functions on the circle, in which case it is given by convolution

with the Hilbert kernel. More commonly, however, the Hilbert transform refers

to a convolution with the Cauchy kernel, for functions defined on the real line

R (the boundary of the upper half-plane).

Definition 4.1. The Hilbert transform is defined on R is defined as follows:

(4.3) Hf(x) =
1

π

∫ +∞

−∞

f(y)

x− y
def
= lim

ε→0

∫
|x−t|>ε

f(y)

x− y
dy

when the integral exists (because of the possible singularity at x = y, the

integral is to be considered as a Cauchy principal value).

We recall that the Hf is zero if f is a constant, while the Hilbert transform

of a real function is a real function.

Boundedness

Before to describe the weighted case, we recall the boundedness properties

of H in the classical Lebesgue space. If 1 < p <∞, then the Hilbert transform

on Lp(R) is a bounded linear operator, meaning that there exists a constant

Cp such that

||Hf ||p ≤ Cp||f ||p,

for all f ∈ Lp(R). This theorem is due to Riesz (1928) [R] (see also [Ti]). The

best constant Cp is given by

Cp =

 tang π
2p
, for 1 < p ≤ 2

cot π
2p

for 2 < p <∞.

This result is due to Pichorides [Pi].

The weighted case is now well known through the famous Helson-Szëgo

Theorem [HS] and the Hunt-Muckenhoupt-Wheeden Theorem [HMW].

The first one states that the Hilbert transformH is bounded in the weighted

space L2(ω) if and only if ω is of the form ω = exp{u + Hv} with u, v ∈ L∞

39



and ||u||∞ < π/2. This condition must be equivalent to A2-condition but there

is not a direct proof of the equivalence.

The Hunt - Muckenhoupt - Wheeden theorem states that the Hilbert trans-

form H is bounded in Lp(ω) if and only if ω ∈ Ap. More precisely,

Theorem 4.2. [HMW] Let 1 < p <∞. For the inequality∫ +∞

−∞
|(Hf)(x)|pω(x) dx ≤ c

∫ +∞

−∞
|f(x)|pω(x) dx,

where the positive constant c does not depend on f ∈ Lp(R, ω), it’s necessary

and sufficient that ω ∈ Ap.

Buckley [Bu2] also showed that the Hilbert transform is bounded on Lp(w)

with an operator norm which is at most a multiple ofAαp (w), wheremax{1, p′/p}≤
α. In particular, for p = 2 he showed that the dependence on A2(w) was at

least linear, and at most quadratic.

Petermichl and Pott [PP] very elegantly showed α ≤ 3/2 in the following

theorem

Theorem 4.3. [PP] H : L2(R, ω) −→ L2(R, ω) has operator norm ||H||L2(ω) ≤
cA2(ω)3/2.

Later, Petermichl [P1] improved this estimate in the following theorem.

Theorem 4.4. [P1] There exists a constant c so that for all weights ω ∈ A2 the

Hilbert transform as an operator in weighted space H : L2(R, ω) −→ L2(R, ω)

has operator norm ||H||L2(ω) ≤ cA2(ω) and this result is sharp.

This theorem immediately implies the following more general version:

Theorem 4.5. [GR] For 2 ≤ p <∞ there exists c(p) only depending on p so

that H : Lp(R, ω) −→ Lp(R, ω) has operator norm ||H||L2(ω) ≤ cAp(ω).

4.5 Riesz Potenzial : a sharp estimate

Recall that a weight ω, namely a locally integrable nonnegative function in

Rn, belongs to the class Ap for some p ∈ (1,∞) if the quantity

(4.4) Ap(ω) = sup
B

(
1

|B|

∫
B

ω(x) dx

)(
1

|B|

∫
B

ω(x)
1

1−p dx

)p−1
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is finite. Here, B denotes any ball in Rn and |B| stands for its Lebesgue

measure.

Up to now we have seen that boundedness properties of various classical

operators of harmonic analysis in weighted Lebesgue spaces can be charac-

terized in terms of the Ap-weights. Now, we address a parallel issue for the

Riesz Potential Iα, of any order α ∈ (0, n). The Riesz potential of a function

f : Rn → R is defined as

(4.5) Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy for x ∈ Rn.

A very classical result states that Iα is bounded from Lp(Rn) into L
np

n−αp (Rn)

if 1<p < n
α

. Weighted inequalities for fractional integrals can be characterized

in terms of the Ap condition. As shown in [MW], a necessary and sufficient

condition for the boundedness of Iα from Lp(Rn, ω) into L
np

n−αp (Rn, ω) is that

ω
np

n−αp ∈ A1+ q
p′

, where p′ = p
p−1

. (See also [Ma] for an alternate treatment of

weighted inequalities for potentials in terms of capacities.)

If ω is merely in Ap for some p ∈ (1, n
α

), then there still exists a power p,

larger than p and depending on Ap(ω), such that Iα is bounded from Lp(B,ω)

into Lp(B,ω) for any ball B ⊂ Rn [FKS].

Our result provides sharp quantitative information on this statement, and

reads as follows.

Theorem 4.6. [ACiS] Let n ≥ 2, α ∈ (0, n) and 1 < p < n
α

. Let ω ∈ Ap.

Then, there exist positive constants k = k(α, p, n) and C = C(α, p, n) such

that if

(4.6) p− kAp(ω)
1

1−p < q < p

then

(4.7)

(
1∫

BR
ω(x)dx

∫
BR

|Iαf(x)|
nqp

nq−αpω(x) dx

)nq−αp
nqp

≤

≤ CRαAp(ω)
nq−α
nq(p−1)

(
1∫

BR
ω(x)dx

∫
BR

|f(x)|pω(x) dx

) 1
p

for any ball BR ⊂ Rn of radius R and every function f ∈ Lp(BR, ω) (continued

by 0 outside BR). Moreover, the exponent nq−α
nq(p−1)

for Ap(ω) is sharp.
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Our approach to Theorem 4.6 is related to an argument from [CFr]. In

fact, its proof relies upon a combination of an estimate for Iαf in terms of

Mf appearing in [He] and the Buckley’s result (see Theorem 2.10 ), and ex-

ploits a property of Ap weights established in [CFe]. It is however interesting

that keeping track of the exact dependence of the quantities involved in this

argument can lead to the sharp bound (4.7).

Proof. (of the Theorem (4.6))

Given any ε > 0, define

(4.8) Iεαf(x) =

∫
{|x−y|≥ε}

⋂
BR

f(y)|x− y|α−ndy for x ∈ BR.

A constant C1 = C1(α, p, n) exists such that

(4.9) |Iαf(x)− Iεαf(x)| ≤ C1ε
αMf(x) for x ∈ BR

see [He]. On the other hand, by Hölder’s inequality,

(4.10)

|Iεαf(x)| ≤ ||f ||Lp(BR,ω)

(∫
{|x−y|≥ε}

⋂
BR

|x− y|(α−n)p′ω(y)
1

1−p dy

) 1
p′

for x ∈ BR.

Owing to a result from [CFe], a constant k as in the statement exists such

that, if q fulfills (4.6), then ω ∈ Aq and

(4.11) Aq(ω) ≤ C2Ap(ω)
1

1−p

for some constant C2 = C2(p, n). For any such q, another application of

Hölder’s inequality to the integral on the right-hand side of (4.10) yields

(4.12)

|Iεαf(x)| ≤ C3||f ||Lp(BR,ω)ε
α−nq

p

(∫
BR

ω(y)
1

1−q dy

) q−1
p

for x ∈ BR,

for some constant C3 = C3(α, p, n). Combining (4.9) and (4.12), and choosing

ε =

(
Mf(x)

||f ||Lp(BR,ω)

(∫
BR
ω(y)

1
1−q dy

) q−1
p

)− p
nq

entail that

(4.13)

Iαf(x) ≤ C4(Mf(x))1−αp
nq ||f ||

αp
nq

Lp(BR,ω)

(∫
BR

ω(y)
1

1−q dy

) α
nq′

for x ∈ BR,
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for some constant C4 = C4(α, p, n). From (4.13) and (4.5) one infers that

||Iαf ||
L

nqp
nq−αp (BR,ω)

≤ C4||Mf(x)||
nq−αp
nq

Lp(BR,ω)||f ||
αp
nq

Lp(BR,ω)

(∫
BR

ω(y)
1

1−q dy

) α
nq′

(4.14)

≤ C5Ap(ω)
nq−αp
nq(p−1) ||f ||Lp(BR,ω)

(∫
BR

ω(y)
1

1−q dy

) α
nq′

,

for some constant C5 = C5(α, p, n), whence, by the definition of Aq(ω), one

obtains that

(4.15)

(
1∫

BR
ω(x) dx

∫
BR

|Iαf(x)|
nqp

nq−αpω(x) dx

)nq−αp
nqp

≤ C6R
αAp(ω)

nq−αp
nq(p−1)Aq(ω)

α
nq

(
1∫

BR
ω(x) dx

∫
BR

|f(x)|pω(x) dx

)1/p

,

for some constant C6 = C6(α, p, n). Hence, inequality (4.7) follows, owing to

(4.11).

In order to prove that the exponent nq−αp
nq(p−1)

in (4.7) is sharp, consider a

ball centered at 0 of any radius R, and functions f and weights ω having the

form f(x) = φ(wn|x|n) and ω(x) = ψ(wn|x|n) for x ∈ Rn, for some functions

φ, ψ : [0,∞) −→ [0,∞), with φ vanishing outside [0, wnR
n). Here, wn denotes

the Lebesgue measure of the unit ball. One has

(4.16) Iαf(x) ≥ 2α−n
∫
{|y|<|x|}

f(y)

|x|n−α
dy = 2α−n|x|α−n

∫ wn|x|n

0

φ(r) dr.

Thus, on setting wnR
n = t, we get

sup
f

(
1∫

BR
ω(x) dx

∫
BR
|Iαf(x)|

nqp
nq−αpω(x) dx

)nq−αp
nqp

(
1∫

BR
ω(x) dx

∫
BR
|f(x)|pω(x) dx

)1/p

(4.17)

≥ C7 sup
φ

(
∫ t

0
ψ(s)ds)

α
nq

(∫ t
0
(
∫ s

0
φ(r)dr)

nqp
nq−αp s

(α−n)qp
nq−αp ψ(s)ds

)nq−αp
nqp(∫ t

0
φ(s)pψ(s)ds

)1/p

≥ C7

(∫ t

0

ψ(s)ds

) α
nq

sup
0<τ<t

(∫ t

τ

r
(α−n)qp
nq−αp ψ(r)dr

)nq−αp
npq

(∫ τ

0

ψ(r)
1

1−pdr

) 1
p′
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for some constant C7 = C7(α, n), where the last inequality holds by a classical

characterization of one-dimensional Hardy-type inequalities – see e.g. [Ma,

Theorem 1.3.1/1].

Now, choose ψ(s) = s(p−1)(1−δ) for s > 0, with δ ∈ (0, 1). It is then

well known that Ap(ω) ≈ δ1−p as δ → 0+, up to multiplicative constants

depending only on p and n [Bu1]. Next, take q = p− aδ, for sufficiently small

a depending on k, in such a way that condition (4.6) is fulfilled. Computations

show that, with these choices of ψ and q, the rightmost side of (4.17) ≈ δ
α
nq
−1

as δ → 0+, up to multiplicative constants depending only on α, p and n. Since

Ap(ω)
nq−α
nq(p−1) ≈ δ

α
nq
−1 as well, the sharpness of the exponent nq−α

nq(p−1)
follows.
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Chapter 5

BMO-Space

In this chapter we will illustrate the space of functions of bounded mean oscil-

lation (BMO space), introduced by John and Nirenberg (1961), and extremely

important in various areas of analysis including harmonic analysis, PDEs and

function theory.

In Harmonic analysis, this space plays the same role in the theory of Hardy

spaces that the space L∞ of bounded functions plays in the theory of Lp-spaces.

5.1 Definitions and notations

We begin with some notations. If Ω ⊂ Rn is any measurable set of finite

positive measure |Ω| and f is an integrable function, let us recall that fΩ =
1

|Ω|

∫
Ω

fdx =

∫
Ω

fdx indicates the integral mean of f over Ω.

Definition 5.1. A function f is said to be a BMO function if it is in L1
loc(Rn)

and the “mean oscillation” is finite, that is

(5.1)

∫
Q

|f − fQ| dx <∞.

Here Q is a cube in Rn with sides parallel to the coordinate axes.

The supremum is called the BMO norm of f and is denoted by ||f ||∗:

(5.2) ‖f‖∗ = sup
Q

∫
Q

|f − fQ| dx.
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Every bounded (measurable) function is in BMO and

||f ||∗ ≤ inf{||f − a||∞ : a constant}.

Clearly, constant function have zero BMO norm.

Note that BMO space is a Banach space.

Moreover, Fefferman (1971) showed that the BMO space is dual to H1, the

Hardy space with p = 1.

It’s important to note that BMO is not equal to L∞ but the inclusion holds

L∞ ⊂ BMO and we have

‖f‖∗ ≤ 2‖f‖∞.

A typical example of a function that is in BMO but not in L∞ is log |x|. Now

we sketch the proof.

Let I = (a, b) ⊂ R. We show for an appropriate choice of CI ,

(5.3)

∫
I

| log |x| − CI | dx ≤ 1,

which in turn implies that ‖ log | · |‖∗ ≤ 2.

In order to prove (5.3) we consider three cases:

i) 0 < a < b

ii) −b < a < b

iii) the rest

In the case i), we pick CI = log b and note that∫
I

| log |x| − log b| dx =

∫
(a,b)

(log b− log x) dx =

=

∫
(a,b)

log b dx−
∫

(a,b)

log x dx = (b− a)− a(log b− log a).

Therefore, ∫
I

| log |x| − log b| dx = 1− a log b− log a

b− a
,

and (5.3) follows since 0 < a < b.

In the case ii) we may restrict ourselves to −b < a < 0 < b. Again pick

CI = log b and note that∫
I

| log |x|−log b| dx =

∫
(a,−a)

| log |x|−log b| dx+

∫
(−a,b)

(log b−log x) dx = W+K.
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From the above computation we have

K = (b+ a) + a(log b− log(−a)).

To compute W we observe that the integrand is an even function, so

W = 2 lim
ε→0+

∫
(ε,−a)

(log b− log x) dx = 2(−a log b+ a log(−a)− a).

Thus

W +K = (b− a) + a(log b− log(−a))

and so ∫
I

| log |x| − log b| dx = 1− (−a)
(log b− log(−a))

b+ a

b+ a

b− a
.

Since −b < a < 0 < b also in this case (5.3) follows.

The remaining cases can be reduced to either i) or ii) since we are dealing

with an even function.

Now we give an example of function that does not belong to BMO.

Example 5.1. Let us show that the function g(x) = sign (x) log 1
|x| does not

belong to BMO([−1, 1]). Indeed, for 0<h<1 and I ≡ [−h, h] we have gI = 0

and∫
I

|g(y)− gI | dy =
1

2h

∫ h

−h

∣∣∣∣log
1

|x|

∣∣∣∣ dx =
1

h

∫ h

0

log
1

x
dx = 1 + log

1

h

h→0−→∞.

This example shows that if the absolute value of a function belongs to the

BMO-class, this does not imply that the function itself is a BMO-function.

We shall give a result which provide many example of BMO functions.

Theorem 5.1. [GR] If ω is an A1 weight, then logω ∈ BMO with a norm

depending only on the A1(ω).

5.2 Estimates of rearrangements of the BMO-

functions

The aim of the present section is to show that if a function f is in BMO,

then its non-increasing rearrangement f ∗ is also in BMO. The importance of
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the equimeasurable rearrangements of functions comes from the fact that in

certain cases they preserve the properties of the original functions and in the

same time have a simpler form. Let us give the definitions.

Definition 5.2. The non-increasing rearrangement of the function f is a

non-increasing function f ∗ such that it is equimeasurable with |f |, i.e., for all

y > 0 they have the same distribution function (see Definition 2.5)

af∗(y) = |{x ∈ [0, |E|] : f ∗(x) > y}| = |{t ∈ E : f ∗(t) > y}| = af (y)

for any measurable set E ⊂ Rn.

This property does not define the non-increasing rearrangement uniquely:

it can take different values at points of discontinuity (the set of such points

is at most countable). For definiteness let us assume in addition that the

function f ∗ is continuous from the left on (0, |E|]. The relation between the

distribution function and the non-increasing rearrangement is given by the

following equality:

f ∗(x) = inf{y > 0 : af (y) < x}, 0 < x < |E|.

This formula shows that in a certain sense the non-increasing rearrangement

is the inverse function to the distribution function.

An equivalent definition of the non-increasing rearrangement can be written

in the following way:

f ∗(x) = sup
D⊂E, |D|=x

inf
y∈D
|f(y)|, 0 < x < |E|.

Sometimes instead of the non-increasing rearrangement it is more convenient to

use the non-decreasing rearrangement. For the function f , measurable on

the set E ⊂ Rn, the non-decreasing rearrangement is defined via the following

equality:

f∗(x) = inf
D⊂E, |D|=x

sup
y∈D
|f(y)|, 0 < x < |E|.

The function f∗ is non-negative, it is equimeasurable with |f | on E and it is

non-decreasing on [0, |E|). The connection between the non-increasing and

non-decreasing rearrangements is given by the equality

f∗(x) = f ∗(|E| − x)
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which holds true at every point of continuity, i.e. almost everywhere on (0, |E|).
The equimeasurability of functions f ∗, f∗ and |f | implies that∫ |E|

0

ϕ(f ∗(u)) du =

∫ |E|
0

ϕ(f∗(u)) du =

∫
E

ϕ(|f(x)|) dx.

The most important properties of the equimeasurable rearrangements f ∗ and

f∗ follow directly from their definition and consist in the identities:

sup
D⊂E, |D|=x

∫
D

|f(y)| dy =

∫ x

0

f ∗(u) du, 0 < x < |E|

inf
D⊂E, |D|=x

∫
D

|f(y)| dy =

∫ x

0

f∗(u) du, 0 < x < |E|.

Often it is useful to consider the following functions

f ∗∗(t) =
1

t

∫ t

0

f ∗(u) du, f∗∗(t) =
1

t

∫ t

0

f∗(u) du, t > 0.

Theorem 5.2. [BDS] Let f ∈ BMO(Rn), then

f ∗∗(x)− f ∗(x) ≤ 2n+4‖f‖∗, 0 < x <∞.

In particular, from Theorem 5.2 it follows that the rearrangement operator is

bounded in BMO.

The following Theorem shows that the non-increasing rearrangement f ∗ of

a BMO-function f is also a BMO-function.

Theorem 5.3. ( (n = 1), [GRo]; (n ≥ 1), [BDS]) Let f ∈ BMO(Rn). Then

f ∗ ∈ BMO([0,∞)) and

‖f ∗‖∗ ≤ C‖f‖∗ ,

where the constant C depends only on the dimension n of the space (one can

take C = 2n+5).

5.3 The distance in BMO to L∞

We have seen that BMO functions are not necessarily bounded, so it’s natural

to study the distance between f ∈ BMO to L∞, defined as follows

(5.4) distBMO(f, L∞) = inf
g∈L∞

||f − g||∗.
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Beginning to consider again the function log |x|. Fix (0, b) = I ⊂ R and

consider those x ∈ I where log |x| is large, i.e., consider the set

Eλ = {x ∈ I : | log |x| − CI | > λ}, λ > 0,

where CI = (log | · |)I . We are interested in Eλ for large values of λ. We can

write Eλ as the sum of two sets:

Eλ = {x ∈ I : x > eλ+CI} ∪ {x ∈ I : x < e−λ+CI}.

If λ is large the first set is empty and so for λ big enough we get:

|Eλ| ≤ |{x ∈ I : x < e−λ+CI}| = e−λeCI .

Now by Jensen inequality

eCI ≤
∫
I

elog x dx =
|I|
2

and consequently

|Eλ| ≤
|I|
2
e−λ.

The remarkable fact is that a similar estimate holds for arbitrary f ∈ BMO

and I ⊂ R. The bounds for the distance (5.4) are expressed in terms of

constants in the following theorem, due to John and Nirenberg

Theorem 5.4. [JN] There exist constants C1, C2, depending only on the di-

mension n, such that for every f ∈ BMO(Rn) and every cube Q ⊂ Rn

(5.5) |{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1 |Q| e−( C2λ
‖f‖∗ ), λ > 0.

In this theorem, the authors showed that the distribution function, correspond-

ing to a function of bounded mean oscillation, is exponentially decreasing.

Remark 5.1. In terms of equimeasurable rearrangements the inequality (5.5)

can be rewritten in the following form:

(5.6) (f − fQ)∗(x) =
‖f‖∗
C2

log
C1|Q|
x

, 0 < x ≤ |Q|.

So, if f ∈ BMO, then its equimeasurable rearrangement do not grow faster

than the logarithmic function as the argument tends to zero.
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Remark 5.2. In a certain sense the John-Nirenberg theorem is invertible.

Namely, if f is a locally summable on Rn function such that for any cube

Q ⊂ Rn

(5.7) |{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1|Q| e−C2λ, λ > 0

where the constants C1 and C2 do not depend on Q, then we want to prove

that f ∈ BMO(Rn).

Indeed, let us rewrite (5.7) in the form

(f − fQ)∗(x) ≤ 1

C2

log
C1|Q|
x

, 0 < x ≤ |Q|.

Then

1

|Q|

∫
Q

|f(x)− fQ| dx =
1

|Q|

∫ |Q|
0

(f − fQ)∗(y)dy ≤ 1

C2

1

|Q|

∫ |Q|
0

log
C1|Q|
y

dy =

=
1

C2

∫ 1

0

log
C1

u
du =

1

C2

(1 + logC1).

Taking the supremum over all cubes Q ⊂ Rn, we obtain

‖f‖∗ ≤
1

C2

(1 + logC1).

The John-Nirenberg theorem implies the following

Corollary 5.5. If f ∈ BMO(Rn), then f ∈ Lploc(Rn), for any p <∞.

Proof. It is enough to prove that (f − fQ) ∈ Lp(Q) for any cube Q ∈ Rn. The

John-Nirenberg inequality in the form 5.6 yields∫
Q

|f − fQ|pdx =

∫ |Q|
0

(f − fQ)∗(t) dt ≤

≤
(
‖f‖∗
C2

)p ∫ |Q|
0

logp
(
C1|Q|
t

)
dt =

=

(
‖f‖∗
C2

)p
|Q|C1

∫ 1
C1

0

logp
(

1

u

)
du <∞.

Corollary 5.6. Let f ∈ L1
loc(Rn) verify (5.5), then for λ > ‖f‖∗

C2
and for any

cube Q, ∫
Q

e
|f(x)−fQ|

λ dx ≤ C1

(C2
λ
‖f‖∗ )− 1

.
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5.4 A precise interplay between BMO space

and A2-class.

The interplay between BMO and A2 is well known: f belongs to BMO if and

only if there exists λ ≥ 1 such that ω = ef/λ belongs to A2.

In the following we will try to illustrate this subject giving optimal bounds,

in the particular case n = 1.

For f ∈ BMO, consider the set

(5.8) If = {λ > 0 : A2(ef/λ) <∞}.

As observed in [GJ] this set is non empty. Note that the “openess” property

of A2-class, namely:

if ω ∈ A2, then automatically ωτ ∈ A2 for some τ > 1

(see Chapter 1) implies that If does not have a minimum. In [GJ] the infimum

of If was introduced

(5.9) ε(f) = inf If

and recognized to give the right upper and lower bounds for the distance of f

to L∞ (defined in (5.4)), through the following theorem.

Theorem 5.7. ([GJ]) If f ∈ L1
loc(Rn) then

c1 distBMO(f, L∞) ≤ ε(f) ≤ c2 distBMO(f, L∞)

where c1 and c2 are constants depending only on the dimension.

Our aim is to establish more precise estimates for ε(f) in the one-dimensional

case. For example, we will show that in Theorem 5.7 we can take c2 = e/2.

We will also obtain another expression for the functional ε(f) in which

A2-constants appear.

We will rely on the following version of John-Nirenberg inequality due to

A. Korenovskii ([Ko2], [Ko3]).

Theorem 5.8. Let f ∈ BMO(R). Then for any interval I and for any λ > 0

1

|I|
|{x ∈ I : |f(x)− fI | > λ}| ≤ e1+ 2

e exp

(
−2λ

e‖f‖∗

)
.

The constant (2/e) in the exponent cannot be increased.
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Proposition 5.9. [AS] The function f belongs to BMO if and only if If is a

non empty set. If we define

ε(f) = inf If

then

(5.10) If = (ε(f),∞)

and

(5.11) ε(f) ≤ e

2
‖f‖∗.

Proof. Condition A2(ef/λ) <∞ is equivalent to

(5.12) s(f, λ) = sup
I

∫
I

e
|f−fI |
λ dx <∞

where the supremum is taken with respect to all intervals I ⊂ R. Actually, for

λ > 0 the following inequalities hold

(5.13)
1

2
s(f, λ) ≤ A2(ef/λ) ≤ s(f, λ)2

(see Ch. IV, Corollary 2.18 in [GR]).

Then it is obvious that

λ0 ∈ If , λ1 > λ0 =⇒ λ1 ∈ If .

Moreover, due to Theorem 1.18, the set If does not contain its infimum

ε(f). This means that (5.10) holds true. To establish (5.11) we repeat a

standard argument [GR] invoking Theorem 5.8∫
I

e|f−fI |/λ =

∫ ∞
0

et/λ

λ
|{x ∈ I : |f(x)− fI | > t}| dt ≤

≤
∫ ∞

0

et/λ

λ
e(1 + 2/e) e−(2/e‖f‖∗) t |I| dt =

= |I| e
(1 + 2/e)

λ

∫ ∞
0

e( 1
λ
− 2/e‖f‖∗) t dt = |I| e

(1 + 2/e)

λ

(
2

e‖f‖∗
− 1

λ

)−1

if λ > e
2
‖f‖∗.

Corollary 5.10. [AS] For any f ∈ BMO(R)

(5.14) ε(f) ≤ e

2
distBMO(f, L∞).
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Proof. It is easy to check that for g ∈ L∞

ε(f) = ε(f − g).

Then, using (5.11) we obtain

ε(f) ≤ e

2
‖f − g‖∗

for any g ∈ L∞. This immediately implies (5.14).

More precisely, we obtain another representation for ε(f).

Theorem 5.11. [AS] For any f ∈ BMO

(5.15) ε(f) = inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
.

Proof. By Theorem 1.18 we deduce that, if A2(ef ) = A <∞, then

(5.16) ε(f) ≤
√
A− 1

A
.

In fact, for ω = ef and λ >
√

A−1
A

, we deduce A2(ω
1
λ ) < ∞. Hence the

inclusion (√
A− 1

A
,∞

)
⊂ If

holds and this implies (5.16).

Moreover, by applying this observation with f/λ in place of f and using the

following property of the functional ε(f):

ε(µf) = µ ε(f) for µ > 0,

we deduce, for λ ∈ If
1

λ
ε(f) ≤

√
A2(ef/λ)− 1

A2(ef/λ)
,

hence

ε(f) ≤ inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
.

To get the inequality (5.15) it is sufficient to observe that

inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
≤ inf{λ : λ ∈ If} = ε(f).
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Corollary 5.12. [AS] For any f ∈ BMO, we have

(5.17) 0 ≤ ε(f) ≤ 1;

moreover

(5.18) ε(f) < 1

if and only if

A2(ef ) <∞.

Proof. Let us introduce, as in [GJ] and in [To], for f ∈ BMO

p(f) = inf{p > 1 : Ap(e
±f ) <∞},

then by Lemma 1.4 in [GJ] one has

p(f) = ε(f) + 1 ≤ 2.

Hence (5.17) holds true.

From (5.16) we deduce that if A2(ef ) <∞, then

ε(f) ≤
√
A− 1

A
< 1.

Conversely, if ε(f) < 1, there exists λ0 < 1 such that

A2(ef/λ0) <∞.

In view of (5.12), (5.13) we obtain

s(f, λ0) <∞

and therefore s(f, 1) <∞, which in turns implies A2(ef ) <∞.

5.5 Explicit bounds for the norm of composi-

tion operators acting on BMO(R)

In this section we improve a recent result of Gotoh [Go] who establishes a pre-

cise relation among constants in the P. W. Jones [Jo] Theorem about home-

omorphisms of the line preserving BMO. We give also an explicit bound for

the distance to L∞ after composition (see [ACS]).
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Let h : R −→ R be an increasing homeomorphism. In the recent paper

[Go], the relation between the norm of the operator

U : f ∈ BMO −→ f ◦ h−1 ∈ BMO

and the A∞-constants α,K of ω = h′ according to Proposition 1.1 , was

determined. The following Theorem gives an important relation between A∞

and BMO(R) that we need in the following.

Theorem 5.13. [Jo] The following conditions are equivalent

i) There exists c ≥ 1 such that

‖f ◦ h−1‖∗ ≤ c‖f‖∗

for any f ∈ BMO(R);

ii) h′ ∈ A∞;

iii) (h−1)′ ∈ A∞.

Theorem 5.14. [Go] Let h : R −→ R be an increasing homeomorphism, if h′

verifies
|I|
|J |
≤ K

(∫
I
h′ dx∫

J
h′ dx

)α
for any interval J ⊂ R and for each measurable set I ⊂ J , where K ≥ 1 ≥
α > 0, then

(5.19) ‖f ◦ h−1‖∗ ≤ C
K

α

where C > 0 is some universal constant.

In the following Theorem we give an expression for the constant C in (5.19).

Theorem 5.15. [ACS] Let h be an increasing homeomorphism from R into

itself and assume that ω = h′ verifies the A∞ condition:

(5.20)

∫
E
ω dx∫

I
ω dx

≤ K

(
|E|
|I|

)α
for any interval I ⊂ R and for each measurable set E ⊂ I, where

K ≥ 1 ≥ α > 0. Then

(5.21) ‖f ◦ h−1‖∗ ≤
K

α
e2+ 2

e‖f‖∗

for any f ∈ BMO(R).
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Proof. Following [Go], we fix the interval I and set I ′ = h(I). It is worth

noting that assumption (5.20) for ω = h′ reads as

(5.22)
|h(E)|
|h(I)|

≤ K

(
|E|
|I|

)α
for E measurable, E ⊂ I. Fix f ∈ BMO and set g = f ◦ h−1. By the

John-Nirenberg Theorem, see Theorem 5.8, if we define for t > 0

Et = {x ∈ I : |f(x)− fI | > t}

we have

(5.23)
|Et|
|I|
≤ e

1 +
2

e · e
− 2t

e‖f‖∗ .

On the other hand, let I ′ be an interval of R, if we set

µ(t) = |{y ∈ I ′ : |g(y)− fI | > t}|

we have, by (5.22) and (5.23),

(5.24) µ(t) = |h(Et)| ≤ |h(I)| ·K

e1 +
2

e · e
− 2t

e‖f‖∗


α

.

By well known inequalities and identities from measure theory:

(5.25)

∫
I′
|g − gI′ | ≤ 2

∫
I′
|g − fI | =

2

|I ′|

∫ ∞
0

µ(t) dt

and by the simple calculations induced by (5.24)∫ ∞
0

µ(t) dt ≤ |I ′| ·Ke(1+ 2
e

)α e

2α
‖f‖∗

we arrive at the estimate∫
I′
|g − gI′ | ≤

K

α
e(2+ 2

e
)‖f‖∗.

Taking supremum with respect to the intervals, we obtain (5.21).

Now our aim is to give an explicit bound for the distance to L∞ after

composition. Let us begin with the following Lemma which is in the same

spirit as Theorem 2.7 in [JN1].
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Lemma 5.16. [ACS] Let h : R −→ R be a homeomorphism such that (h−1)′ ∈
Ap, 1 < p < ∞. Let ω be a weight on R and set A2(ω) = A; then, for

0 ≤ σ < 1
p

√
A
A−1

we have

(5.26) A2(ωσ ◦ h−1)
1
2 ≤

[
Ap(h

−1)′
] 1
p

[
σpA

A− σ2p2(A− 1)

]σ
.

The inequality is sharp.

Proof. We will use Theorem 1.18 which describes the so called optimal “self-

improvement of exponents” property of the A2 class. Let σ to be determined

later and set

L =

∫
I

(ω ◦ h−1(x))σ dx

∫
I

1

(ω ◦ h−1(x))σ
dx.

We make the change of variables t = h−1(x), h−1(I) = J in the first integral:

1

|I|

∫
I

ωσ ◦ h−1(x) dx =
1

|I|

∫
J

ωσ(t)

(h−1)′(h(t))
dt ≤

by Hölder’s inequality

≤
(

1

|I|

∫
J

ωσp(t)dt

) 1
p
(

1

|I|

∫
J

1

[(h−1)′(h(t))]p′

) 1
p′

.

We change back to the x variable into the last integral, obtaining

1

|I|

∫
J

1

[(h−1)′(h(t))]p′
dt =

1

|I|

∫
I

[(h−1)′(x)]1−p
′
dx

hence, taking into account that
|I|
|J |

=

∫
I

(h−1)′,

1

|I|

∫
I

ωσ ◦ h−1(x) dx ≤
[
|J |
|I|

] 1
p
(∫

J

ωσp(t)dt

) 1
p
(∫

I

(h−1)′(1−p
′)(x) dx

) 1
p′

≤

≤
(∫

J

ωσp(t)dt

) 1
p [
Ap(h

−1)′
] 1
p .

Similarly, the second factor in L can be majorized as follows∫
I

(ωσ ◦ h−1(x))−σ dx ≤
(∫

J

ω−σp(t)dt

) 1
p [
Ap(h

−1)′
] 1
p

and hence

L ≤
[∫

J

ωσp
∫
J

ω−σp
] 1
p [
Ap(h

−1)′
] 2
p .

58



Taking supremum with respect to J , we obtain

L ≤ [A2(ωσp)]
1
p
[
Ap((h

−1)′)
] 2
p

and, finally, taking supremum with respect to I on L

A2(ωσ ◦ h−1) ≤ [A2(ωσp)]
1
p
[
Ap((h

−1)′)
] 2
p .

We now choose σ. From Theorem 1.18 it follows that, if τ = σp <
√

A
A−1

, then

A2(ωσp) <∞. Then, we choose σ < 1
p

√
A
A−1

and (1.24) gives

[A2(ωσp)]
1
p ≤

[
σpA

A− σ2p2(A− 1)

]2σ

.

It remains to show that the inequality (5.26) is sharp. This is a consequence

of the choice h(t) = t which reduces (5.26) to the form

A2(ωσp)1/σp ≤ σpA

A− σ2p2(A− 1)
.

which agrees with the sharp implication in Theorem 1.18.

Let us now consider the functional ε(f) = inf If where f ∈ BMO and If

is defined by (5.8). From Proposition 5.9 and Theorem 5.7 we know that f

belongs to BMO if and only if If is not empty and that ε(f) is equivalent to

the distance functional

distBMO(f, L∞) = inf
g∈L∞

‖f − g‖∗.

Let us prove the following:

Theorem 5.17. [ACS] Let h : R −→ R be an increasing homeomorphism such

that (h−1)′ belongs to the Ap-class. Then for any f ∈ BMO(R)

(5.27) ε(f ◦ h−1) ≤ p ε(f).

Moreover, there exists an equivalent norm ‖ · ‖′∗ on BMO such that

(5.28) dist′BMO(f ◦ h−1, L∞) ≤ p dist′BMO(f, L∞).

Proof. Fix λ ∈ If and set Aλ = A2(ef/λ). Let us prove that

(5.29) ε(f ◦ h−1) ≤ λ p

√
Aλ − 1

Aλ
.
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By previous lemma, with ω = ef/λ we deduce that for 0 ≤ σ < 1
p

√
Aλ
Aλ−1

one

has

A2

eσf ◦ h
−1

λ

 <∞.

In other words, for µ > λ p
√

Aλ−1
Aλ

, µ belongs to the set If◦h−1 and this

immediately implies (5.29).

Let us recall that actually (see Theorem 5.11)

ε(f) = inf{λ
√
Aλ − 1

Aλ
: λ ∈ If}.

Then by (5.29) we get (5.27).

Let us note that if h is an increasing homeomorphism such that

(h−1)′ ∈ A1 and also h′ ∈ A1, then inequality (5.27) reduces to the optimal

identity

ε(f ◦ h−1) = ε(f)

for any f ∈ BMO. In this sense our result is sharp. In fact we benefit of the

coupled inequality to (5.27)

ε(g ◦ h) ≤ p ε(g)

for any g ∈ BMO and for any p > 1. Passing to the limit in both inequalities

we obtain the stated identity.

Now let us observe that, since (h−1)′ belongs to Ap, in particular it belongs

to A∞ and then by Theorem 5.13 there exists c > 0 such that

(5.30) ‖f ◦ h−1‖∗ ≤ c ‖f‖∗

for any f ∈ BMO. Now it is a routine matter to see that

(5.31) distBMO(f ◦ h−1, L∞) ≤ c distBMO(f, L∞)

with the same constant c than in (5.30), for any f ∈ BMO. To this end, we

note that for any f, g ∈ BMO (5.30) implies that

(5.32) ‖f ◦ h−1 − g ◦ h−1‖∗ ≤ c ‖f − g‖∗.

If we restrict ourselves to g ∈ L∞ by (5.32) we deduce

(5.33) distBMO(f ◦ h−1, L∞) ≤ ‖f ◦ h−1 − g ◦ h−1‖∗.
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In view of (5.32),(5.33) we conclude with (5.31). By means of Theorem 5.7

and Theorem 5.8 we deduce the inequality

ε(f ◦ h−1) ≤ c k2
e

2
ε(f)

which is largely less precise than (5.27).

To prove (5.28) remember ([Ga], p. 258) that, if H denotes the Hilbert

transform:

Hg(x) =
1

π

∫ +∞

−∞

g(y)

x− y
dy,

and ϕ ∈ BMO, then ϕ = f + Hg + α with f ∈ L∞, g ∈ L∞ and α constant,

and

(5.34) ‖ϕ‖′∗ = inf{‖f‖∞ + ‖g‖∞ : ϕ = f +Hg + α}

defines a norm on BMO equivalent to ‖ϕ‖∗. Now if we set

dist′BMO(ϕ,L∞) = inf
ψ∈L∞

‖ϕ− ψ‖′∗

the identity

(5.35) dist′BMO(ϕ,L∞) =
π

2
ε(ϕ)

holds for any ϕ ∈ BMO ([Ga], Corollary 6.6). If we equipe BMO with the

norm (5.34) in view of (5.27), (5.28) holds.
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Chapter 6

BMO-Martingale and

probabilistic Ap-condition

The theory of martingales is a powerful tool for studying properties of stopping

times which are of great importance in risk theory, mathematical finance, sta-

tistical sequential analysis etc. We will illustrate some of classical results and

some recent developments in the theory of martingales and its applications.

The origin of martingale lies in the history of games of chance. Martingale

referred to a class of betting strategies that was popular in 18th century France.

The concept of martingale in probability theory was introduced by Paul

Pierre Lvy, and much of the original development of the theory was done by

Joseph Leo Doob.

The Martingale was long considered to be a necessary condition for an

efficient asset market, one in which the information contained in past prices is

instantly, fully and perpetually reflected in the asset’s current price.

This chapter is articulated in this way: in the first section we recall some

classical definitions of Theory of Probability; in the second section we define

martingale as a process stochastic. Subsequently, we introduce the BMO-

martingale space and its relationships with a probabilistic version ofAp-condition.

Finally, we conclude with an application of BMO-martingales in Mathematical

Finance.
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6.1 Preliminary definitions

Definition 6.1. In probability theory, the sample space or universal sample

space, Ω of an experiment or random trial is the nonempty set of all possible

outcomes or states of nature and are often given the symbol ω. For example, if

the experiment is tossing a coin, the sample space is the set {head, tail}. For

tossing a single six-sided die, the sample space is {1, 2, 3, 4, 5, 6}. Any subset

of the sample space is usually called an event. More precisely, an event is a

set of outcomes to which a probability is assigned.

Definition 6.2. A σ-algebra F over a set Ω is a nonempty collection of

subsets of Ω that is closed under complementation and countable unions of

its members. It is a Boolean algebra, completed to include countably infinite

operations.

Formally, a σ-algebra F is characterized by the following properties:

(i) ∅ ∈ F

(ii) F ∈ F =⇒ FC ∈ F , where FC = Ω\F

(iii) An ∈ F , n ∈ N =⇒ A :=
⋃
n∈N

An ∈ F .

Elements of the σ-algebra are called measurable sets. An ordered pair

(Ω,F), where Ω is a set and F is a σ-algebra over Ω, is called a measurable

space. If U is an arbitrary family of subsets of Ω then we can form a special

σ-algebra from U , called the σ-algebra generated by U . We denote it by σ(U)

and it is the smallest σ-algebra over Ω that contains U .

Definition 6.3. The probability measure P is a function P : F → [0, 1],

that assigns to each event a probability between 0 and 1. It must satisfy the

probability axioms:

(a) P (∅) = 0, P (Ω) = 1,

(b) if An ∈ F , n ∈ N, with An ∩ Am = ∅, n 6= m then P (
⋃
n∈N

An) =
∑
n∈N

P (An).

Because P is a function defined on F and not on Ω, the set of events is not

required to be the complete power set of the sample space; that is, not every

set of outcomes is necessarily an event.
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The triple (Ω,F , P ) is called probability space. The subsets I of Ω which

belong to F are called F -measurable sets. In a probability context these sets

are called events and we use the interpretation

P (I) = “the probability that the event I occurs”.

In particular, if P (I) = 1 we say that “I occurs with probability 1”, or “almost

surely (a.s.)”.

Definition 6.4. If (Ω,F , P ) is a given probability space, then the function

Y : Ω −→ Rn is called F-measurable if

Y −1(U) := {w ∈ Ω;Y (w) ∈ U} ∈ F ,

for every open sets U ∈ Rn.

Definition 6.5. Let (Ω,F , P ) be a probability space. Then a random vari-

able X is formally defined as a F -measurable function,

X : Ω −→ Rn X : w → X(w).

An interpretation of this is that the preimage of the “well-behaved” subsets

of Rn are events (elements of F), and hence are assigned a probability by P .

Definition 6.6. In probability theory the expected value (or mathematical

expectation, or mean) of a discrete random variable is the sum of the proba-

bility of each possible outcome of the experiment multiplied by the outcome

value (or payoff). In general, if X is a random variable defined on a probability

space (Ω,F , P ), then the expected value of X (denoted E(X) or sometimes or

〈X〉) is defined as

E(X) =

∫
Ω

XdP.

Note that not all random variables have an expected value, since the integral

may not exist.

Definition 6.7. In probability theory, a conditional expectation (also

known as conditional expected value) is the expected value of a real random

variable with respect to a conditional probability distribution.
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Thus, if X is a random variable, and A is an event whose probability is

not 0, then the conditional probability distribution of X given A assigns a

probability P (X = x | A) to the interval (−∞, x], and we have a conditional

probability distribution, which may have a first moment, called E(X|A), the

conditional expectation of X given the event A.

The conditional expectation of X given random variable Y , denoted by

E(X|Y ), is another random variable, obtained essentially by averaging the

random variable X down to the granularity of the random variable Y . The

expected value has the property of monotonicity and linearity.

Definition 6.8. Given a complete probability space (Ω,F , P ), a filtration

Ft, t ≥ 0, is an increasing sequence of σ-algebras Ft ⊂ F such that

• F0 contains all the P-null sets of F

• Ft = ∩
u>t
Fu for all t ≥ 0.

A σ−algebra represents the information known until “t”.

Now, we are able to define a stochastic process, which is the counterpart to

a deterministic process. In fact, there is not a unique way of how the process

might evolve under time (as is the case, for example, for solutions of an or-

dinary differential equation); in a stochastic or random process there is some

indeterminacy in its future evolution, described by probability distributions.

This means that even if the initial condition is known, there are many possi-

bilities the process might go to, but some paths are more probable and others

less.

Familiar examples of processes modeled as stochastic time series include

stock market and exchange rate fluctuations, signals such as speech, audio and

video, medical data, blood pressure or temperature, and random movement

such as Brownian motion or random walks. We give a more rigorous definition.

Definition 6.9. Given a probability space (Ω,F , P ), a stochastic process

is a collection of Rn-valued random variables indexed by a set T , denoted by

{Xt}t∈T . It can be expressed by the form
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X = (Ω,F , (Ft)t∈T , (Xt)t∈T , P )

where Ft is the filtration and Xt is Ft-measurable.

Usually T ⊂ R+ and t ∈ T is seen as “time”.

6.2 Martingales

The theory of martingales plays a very important an useful role in the study of

stochastic processes. A martingale is a stochastic process (i.e., a sequence of

random variables) such that the conditional expected value of an observation

at some time t, given all the observations up to some earlier time s, is equal

to the observation at that earlier time s. Precise definitions are given below.

Definition 6.10. A discrete-time martingale is a discrete-time stochastic

process, i.e. a sequence of random variable M1,M2,M3, ... that satisfies for all t

E(|Mt|) < +∞;

E(M(t+1)|M1, ...,Mt) = Mt

i.e., the conditional expected value of the next observation, given all the

past observations, is equal to the last observation.

Definition 6.11. Similarly, a continuous-time martingale with respect to

the stochastic process Xt is a stochastic process Mt such that for all t

E(|Mt|) < +∞;

E(Mt|{Xτ , τ ≤ s}) = Ms, ∀s ≤ t.

Definition 6.12. In full generality, a stochastic process M is a martingale

with respect to a filtration Ft and probability measure P if

1. M is adapted to the filtration, i.e. each Mt is Ft-measurable for all t;
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2. Mt is integrable for all t, i.e. E(|Mt|) < +∞, for all t;

3. E(Mt+1|Ft) = Mt for all t.

A related notion is that of a super or sub-martingale. If, in the definition

of a martingale, we replace the equality in 3. by an inequality we get super or

sub-martingales.

For a sub-martingale we demand the relation for every t,

Mt ≤ E(Mt+1|Ft),

while for a super-martingale the relation is for every t

Mt ≥ E(Mt+1|Ft).

Definition 6.13. An adapted process X = (Xt,Ft) is said to be a semi-

martingale if Xt can be written as Mt + At, where M is a local martingale

and A is a stochastic process that is locally of bounded variation.

Semimartingales are good integrators, forming the largest class of processes

with respect to which the Ito integral (see definition (6.15))can be defined. Ex-

amples of semimartingales are all continuously differentiable processes, Brow-

nian motion and Poisson processes. Note that sub-martingales and super-

martingales are semimartingales.

The most important (continuous) stochastic process which is a martingale

is Brownian motion, which gets its name from the botanist Robert Brown

(1828). In fact, he observed how particles of pollen suspended in water moved

erratically on a microscopic scalefirst moving in one direction and then zig

zagging in another. The motion was caused by water molecules randomly

buffeting the particle of pollen.

Later the one-dimensional Brownian motion was used by Louis Bachelier

around 1900 in finance for modeling random behavior that evolves over time,

as fluctuations in an asset’s price. A first rigorous proof of its (mathematical)

existence was given by Norbert Wiener in 1921 and for this reason it is called

Brownian motion o Wiener process.
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Definition 6.14. Let (Wt,Ft)t∈T be an R-valued continuous stochastic process

on (Ω,F , P ). Then (Wt,Ft)t∈T is called a standard Brownian motion if

• W0 = 0

• Wt is almost surely continuous

• Wt has independent increments with distribution Wt−Ws ∼ N(0, t− s)
(for 0 = s < t).

N(µ, σ2) denotes the normal distribution with expected value µ and variance

σ2.

Now we give a definition of stochastic integral, born to define a new inte-

gral for stochastic processes. It extends the methods of calculus to stochastic

processes such as Brownian motion and has important applications in mathe-

matical finance and stochastic differential equations.

Definition 6.15. The Ito stochastic integral can be written in this way:

It =

∫ t

0

HsdWs,

where W is a Brownian motion or, more generally, a semimartingale and

H is a locally bounded predictable process. The paths of Brownian motion

fail to satisfy the requirements to be able to apply the standard techniques of

calculus because it is not differentiable at any point and has infinite variation

over every time interval. Then, the integral cannot be defined in the usual

way as Riemann-Stieltjes integral but the integral can be defined as long as

the integrand H is adapted, which means that its value at time t can only

depend on information available up until this time.

Definition 6.16. Let (Ω,F) be a measurable space and (Ft)t∈T be a filtration.

Then, an F−measurable random variable τ : Ω −→ T ∪ {+∞} is said to be a

stopping time with respect to Ft, if for all t ∈ T

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.
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A stopping time may actually take the value ∞ on a nonempty subset of Ω.

Moreover, τ is a finite stopping time if

P (τ(ω) < +∞) = 1.

The idea behind the definition of a stopping time is that the decision to

stop at time t can be based only on the information available up to that time.

An example in real life might be the time at which a gambler leaves the

gambling table, which might be a function of his previous winnings (for ex-

ample, he might leave only when he goes broke), but he can’t choose to go or

stay based on the outcome of games that haven’t been played yet.

The following theorem called Doob’s optional stopping theorem (or optional

sampling theorem) is one of central facts in the theory of martingales sequences.

It says that, under certain conditions, the expected value of a martingale at a

stopping time is equal to its initial value.

Theorem 6.1. Doob’s optional stopping theorem

Let Mt : t ≥ 0 be a sequence of random variables defined on a probability space

Ω,F ,P, which is a martingale sequence with respect to the filtration Ft and

0 ≤ τ1 ≤ τ2 ≤ C be two bounded stopping times. Then

E(|Mτ2| | Fτ1) = Mτ1 .

Stopping times are frequently used to generalize certain properties of stochas-

tic processes to situations in which the required property is satisfied in only a

local sense.

Definition 6.17. Let {Mt} be a martingale and τ be a stopping time adapted

a filtration {Ft} and let t∧τ denote min{t, τ}; note that t∧τ is also a stopping

time. Then, the process M τ
t = Mt∧τ is a martingale, and we say that {M τ

t } is

the martingale {Mt} stopped at t.

Definition 6.18. A martingale Mt is said local martingale if there exists a

sequence of stopping times τn : Ω −→ [0,∞) increasing to infinity, such that

the stopped martingale Mt∧τn is a martingale for each n. Such a sequence (τn)

of stopping times is called fundamental sequence.
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Definition 6.19. A stopping time τ is predictable if it is equal to the limit of

an increasing sequence of stopping times τn satisfying τn < τ whenever τ > 0.

We assume that all local martingales with respect to the filtration Ft are

continuous. It’s important to observe that the following properties are equiv-

alent [ESY]:

1. any local martingale is continuous,

2. any stopping time is predictable,

3. for every stopping time τ and every Ft-measurable random variable U ,

there exists a continuous local martingale M with Mτ = U a.s..

6.3 BMO-martingale and probabilistic Ap con-

dition

In the Chapter 5 we have define the BMO space in the analytic context; now

we will see it in the probabilistic setting and show some of exciting results

about BMO in the theory of exponential local martingales.

Definition 6.20. Let M be a uniformly integrable Ft-martingale satisfying

M0 = 0. For 1 ≤ p <∞ set

‖M‖BMOp = sup
τ
‖E[|M∞ −Mτ |p|Fτ ]

1
p‖∞

where the supremum is taken over all stopping times τ . The normed linear

space {M : ||M ||BMOp <∞} with norm ||M ||BMOp is denoted by BMOp.

In particular, for p = 1, we have

‖M‖BMO = sup
τ
‖E[|M∞ −Mτ ||Fτ ]‖∞,

and when M ∈ BMO, M is said BMO-martingale.

Note that, if M ∈ BMO and τ is a stopping time, then M τ ∈ BMO and

||M τ ||BMO ≤ ||M ||BMO. It can be shown that for any p, q ∈ [1,∞) we have

BMOp = BMOq (see [Ka]). Therefore we will often omit the index and simply

write BMO for the set of BMO martingales.

Moreover, the following result holds
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Corollary 6.2. [Ka] Let 1 < p <∞. There is a positive constant Cp depending

only on p, such that for any uniformly integrable martingale M

‖M‖BMO ≤ ‖M‖BMOp ≤ Cp‖M‖BMO.

Now, let L∞ be the class of all bounded martingales and let H∞ be the class

of all martingales M such that 〈M〉∞ is bounded. Since ||M ||BMO ≤ 2||M ||∞
and ||M ||BMO2 ≤ ||〈M〉∞||

1/2
∞ , these two classes L∞ and H∞ are contained in

BMO.

The following Theorem is the John-Nirenberg inequality inBMO-martingales

space.

Theorem 6.3. [Ka] (John-Nirenberg inequality) If ‖M‖BMO < 1
4
, then for

any stopping time τ

(6.1) E[exp(|M∞ −Mτ |)|Fτ ] ≤
1

1− 4‖M‖BMO

.

The next inequality, which is also called the John-Nirenberg inequality, was

given by Garsia [Gar] for discrete parameter martingales and by Meyer [Me]

for general martingales.

Theorem 6.4. If ‖M‖BMO2 < 1, then for every stopping time τ

(6.2) E[exp(〈M〉∞ − 〈M〉τ )|Fτ ] ≤
1

1− ‖M‖2
BMO2

.

The following Remark shows the connection between BMO-functions and

BMO-martingales.

Remark 6.1. [Ka] Let D = {z : |z| < 1} be the unit disc in the complex

plane, ∂D its boundary and m(dθ) the normalized Lebesgue measure on ∂D.

An integrable real valued function f is in BMO(R) if there exists a positive

constant C such that for all intervals I ⊂ ∂D,

1

m(I)

∫
I

|f − fI | m(dθ) ≤ C,

where fI = 1
m(I)

∫
I
f dm and the smallest constant with the previous property

is denoted by ‖f‖∗ is the BMO-norm of a function. Now, let

h(z) =

∫ 2π

0

f(t)P (r, θ − t) m(dt) (z = reiθ ∈ D),
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where P (r, η) = 1−r2

1−2r cos(η)+r2 is the Poisson kernel. Then h is the harmonic

function in D with boundary function f . Let now B = B(Bt,Ft) be the complex

Brownian motion starting at 0 and let τ = inf{t : |Bt| = 1}. The process

(h(Bt∧τ ),Ft∧τ ) is a uniformly integrable martingale. In particular, if f is in

BMO, then the process h(Bτ ) is a BMO-martingale and there are constants

C1, C2 > 0, independent of f , such that

C1‖f‖∗ ≤ ‖h(Bτ )‖BMO ≤ C2‖f‖BMO.

Conversely, if X is a uniformly integrable martingale adapted to the filtra-

tion (Ft∧τ ), then there is a unique Borel measurable function f defined on ∂D

such that f(Bτ ) = E[X∞|σ(Bτ )]. Let us consider the mapping J : X −→ f .

Then there is a constant C such that

‖J(X)‖∗ ≤ C‖X‖BMO

for all BMO-martingales X adapted to the filtration (Ft∧τ ). The family of all

real-valued BMO-functions on ∂D is identified in this way with the family of

all BMO-martingales X which have X∞ measurable with respect to σ(Bτ ).

Now, we give the definition of Exponential martingale.

Definition 6.21. For a continuous local martingale M , with quadratic varia-

tion 〈M〉, we define exponential local martingale E(M) as

E(M)t := exp

(
Mt −

1

2
〈M〉t

)
0 ≤ t <∞.

with E(M)0 = 1 and where 〈M〉t denotes the increasing process associated

with Mt. Moreover, E(M) solves the ”stochastic differential equation” (SDE)

dE(M)t = E(M)tdMt, t ≥ 0,

with initial condition E(M)0 = 1.

It plays an essential role in various questions concerning the absolutely conti-

nuity of probability laws of stochastic processes.

We observe that E(M) is a local martingale, it is a martingale if and only

if E[E(M)t] = 1 for all t > 0. In fact, generally, we have E[E(M)t] ≤ 1 for

every t.
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However, E(M) is not always a uniformly integrable martingales and verify

this is often difficult.

The following Theorem gives a sufficient condition to have a uniformly inte-

grable martingale. This fact is very useful when we have to solve mathematical

finance problems.

Theorem 6.5. [Ka] Let M be a martingale in BMO, then the stochastic

exponential E(M) is an uniformly integrable martingale.

Now, we give an analogous definition of Ap-condition in probabilistic set-

ting.

Definition 6.22. Let 1 < p < ∞. We say that the stochastic exponential

E(M) satisfies Ap-condition if

sup
τ
‖E[{E(M)τ/E(M)∞}1/(p−1)|Fτ ]‖∞ <∞,

where the supremum is taken over all stopping times τ . Particularly, if p = 1

sup
τ
‖E(M)τ/E(M)∞‖∞ <∞.

We observe that the previous Ap-condition is a probabilistic version of the

Muckenhoupt’s condition described in the first chapter.

The next result is similar to Lemma (1.2).

Lemma 6.6. [Ka] Let 1 < p < ∞. If E(M) satisfies Ap condition, then it

satisfies also Ap−ε for some ε with 0 < ε < p− 1.

In the next Theorem it is shown the connection between Ap and BMO-

martingale.

Theorem 6.7. [Ka] The following conditions are equivalent.

(a) M ∈ BMO.

(b) E(M) satisfies Ap-condition for some p ≥ 1.

(c) sup
τ

∥∥∥E[log+ E(M)τ
E(M)∞

|Fτ ]
∥∥∥
∞
<∞.
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6.4 The distance in BMO to L∞

In this section we see comparable upper and lower bounds for the distance in

BMO to L∞ (class of all bounded martingales) in probabilistic setting.

For M ∈ BMO-martingales, let a(M) be the infimum of the set of a > 0

for which

sup
τ
‖E[exp(a|M∞ −Mτ |)|Fτ ]‖∞ <∞},

where the supremum is taken over all the stopping times τ and let distBMO( , )

be the distance on the space BMO deduced from the norm ‖ · ‖BMO, by usual

procedure.

Then, there is a very beautiful relation between a(M) and distBMO(M,L∞):

Theorem 6.8. ([Va], [E]) Let M ∈ BMO be a martingale, then we have

(6.3)
distBMO(M,L∞)

4
≤ a(M) ≤ distBMO(M,L∞)

4
.

Note that Theorem 6.8 is the probabilistic version of Theorem 5.7 where

a(M) “plays the role” of ε(f).

This result was originally obtained in 1978 by J. Garnett and P. Jones

([GJ]) in classic analysis. In 1980, N. Th. Varopoulo established the proba-

bilistic version for Brownian martingales and in 1985 M. Emery proved it for

continuous martingales.

Dellacherie, Meyer and Yor proved in [DMY] that L∞ is neither closed nor

dense in BMO whenever BMO 6= L∞. In the classical setting Garnett and

Jones [Ga] proved for locally integrable function f on Rn that

f ∈ BMO − closure of L∞ ⇐⇒ ef , e−f ∈ Ap, ∀p > 1.

Now we report a probabilistic analogue of this result. For a uniformly

integrable martingale M , let

(6.4) p(M) = inf{p > 1 : E[exp(M∞)|F ], E[exp(−M∞)|F ] ∈ Ap}.

From Hölder inequality it follows that E[exp(M∞)|F ] satisfies Ap, for all p >

p(M).

Lemma 6.9. [Ka] If p(M) <∞, then p(M) ≤ 2, M ∈ BMO and

p(M)− 1 = a(M).
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Theorem 6.10. [Ka] Let M ∈ BMO, then M belongs to the BMO-closure of

L∞ ⇐⇒ E[exp(M∞)|F ], E[exp(−M∞)|F ] ∈ Ap, for all p.

6.5 Sharp estimates on the norm of the mar-

tingale transform

In the previous chapters, we have investigated some sharp estimates for

singular integrals, which are one of the main subject of Harmonic Analysis.

Now we briefly see the martingale transforms, which serve as a good analog

of singular integrals. The discrete (martingale) approach very often gives the

technical key to the continuous (singular operator) case. In its turn, for ex-

ample, the weighted estimate of the Hilbert transform with matrix weight is

equivalent to finding important regularity properties of vector (=multivariate)

stationary stochastic processes.

Let (Mt)t≥0 be a sequence, denoted by M , of a real integrable functions

on a probability space (Ω,F , P ) and (Yt)t≥0 its difference sequence : Mt =∑t
k=0 Yk, t ≥ 0. Then, if for all t ≥ 1 the expectation of a product of Yt and

ϕ(Y0, ..., Yt−1) is zero for all real bounded continuous functions ϕ on Rn, then

M is a martingale. We can define the martingale transform M ′ of M as

M ′
t =

∑t
k=0 εkYk, where (εt)t≥0 is a sequence of numbers εt ∈ {−1, 1}.

Notice that M ′ is also a martingale. Moreover, it is important to note that

Mt may be sums of independent random variables with mean zero. But the

independence of the increments may be destroyed and M ′
t will in general no

longer have the independent increments property.

The boundedness of singular integral operators in L2(ω) for ω ∈ A2 has

been known for a long time, by the Hunt-Muckenhaupt-Wheeden Theorem

and in the Chapter 4 we have seen some of results of optimal estimate for the

growth of the norm of some operators.

Now, we show some result, see [Wt] and [DPV] for martingale transforms,

but before, we need to recall some their notations.

We consider the standard dyadic lattice as the family of intervals L :=
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{[m2n, (m+ 1)2n; m,n ∈ Z}. Each interval I ⊂ R gives to its Haar function,

denote by hI :

hI :=
χIl − χIr√
|I|

where Il, Ir denote the left and right children of I respectively, and χE

stands for the characteristic function of the set E. Denote by L(I) the set of

all dyadic subintervals of the interval I, including I itself.

Hence, we consider the martingale transform Tσ as the operator defined by

Tσf :=
∑
J∈L

σI〈f, hJ〉hJ ,

where σI assumes the values +1 and −1 only.

One of the problem is to find an estimate on the norm ||Tσf ||.
For p = 2, Wittwer [Wt] showed that the the martingale transform is

bounded linearly in A2(ω), Muckenhoupt constant of a weight ω.

Theorem 6.11. [Wt]

||Tσf ||L2(ω) ≤ cA2(ω)||f ||L2(ω)

for any ω ∈ A2 and f ∈ L2(ω).

Subsequently, Dragičević, Petermichl and Volberg [DPV], generalized the

Burkholder’s sharp estimate [Bur], obtained a sharp Lp bounds for martingale

transform.

Theorem 6.12. [DPV] For every σ and every 1 < p <∞,

||Tσf ||p ≤ p∗ − 1.

The motivation of their work was to search for Lp estimates for the Ahlfors-

Beurling operator T .

6.6 Mathematical Finance: the Black-Scholes

model

In this section we give briefly, thanks to Geiss’s paper, some ideas about the

possible applications in Mathematical Finance of previous results, without
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giving precise definitions and theorems. The field of Mathematical Finance

has undergone a remarkable development since the seminal papers by F. Black

and M. Scholes [BS] and R. Merton [M], in which the famous Black-Scholes

Option Pricing Formula was derived.

In 1997 the Nobel prize in Economics was awarded to R. Merton and M.

Scholes for this achievement, thus also honoring the late F. Black.

The idea of developing a formula for the price of an option goes back as far

as 1900, when L. Bachelier firstly had the innovative idea of using a stochastic

process as a model for pricing an option.

In this chapter we will consider the so-called European call option.

Definition 6.23. An European call option is generally defined as a contract

between two parties in which one has the right but not the obligation to buy

(call) one unit of the underlying stock at a fixed time T (time horizon) and at

a fixed price K (the strike price). Moreover, the buyer pays a price for this

right.

This determines the value CT of the option (payoff) at time T as a function

of the (unknown) value ST of the stock at time T , namely

CT = (ST −K)+.

We note that the option is worthless (at time T) if ST ≤ K, and is worth

the difference between ST and K if ST > K.

In 1965, P.R. Samuelson, Nobel prize winner, proposed as a model for a

stock price process the geometric Brownian motion with parameters µ ∈ R

(drift) and σ2 > 0 (volatility) obeying the stochastic differential equation

(6.5) dSt = µStdt+ σStdWt,

where (Wt)0≤t≤T is a standard Brownian motion starting at W0 = 0.

Here, µ is the average growth rate and volatility is the variable that deter-

mines the magnitude of random changes in short-term interest rates. In other

words, to greater the volatility corresponds a greater range in which interest

rates are likely to fluctuate.
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Using Ito’s formula one finds that the solution to (6.5) is given by the

process

(6.6) St = S0 exp

[
(µ− σ2

2
)t+ σWt

]
which is called geometric Brownian motion and describes the price evolution

of a stock. Hence, St follows a log-normal process i.e.

ln St ∼ N

[
ln S0 + (µ− σ2

2
)t, σ2t

]
,

while lnSt/S0 follows normal distibution with expectation (µ − σ2

2
)t and

variance σ2t.

This model is today one of the standard reference model to describe the

price evolution of a stock; although promoted by Samuelson, it now is often

called the Black-Scholes model. The mathematical structure of the problem

and its connections to martingale theory were subsequently worked out and

clarified by J.M. Harrison and D.M. Kreps; a detailed account can be found

in Harrison/Pliska (1981).

6.7 The approximation of stochastic integrals

and weighted BMO

The seller, with the received payment for option, can realize an replicating

portfolio in order to minimize the risk. A market in which is possible to repli-

cate an option is said to be a complete market. Completeness is a rather

delicate property which typically gets lost if one considers even minor modifi-

cations of a basic complete model. For instance, in the classical Black-Scholes

model, the geometric brownian motion becomes incomplete if the volatility is

influenced by a second stochastic factor or if one adds a jump component to

the model.

However, this portfolio will be construct entirely self financing and thus deter-

ministic (non stochastic) and it will have the same payoff as the call option at

expiration and therefore, by the fundamental theorem of finance, the portfolio

value must equal the call option value. An economically very reasonable as-

sumption on a financial market consists of requiring that there are no arbitrage
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opportunities, i.e. opportunity for risk-free profits. It states that two equiv-

alent goods in the same competitive market must have the same price. The

principle of no arbitrage is a concept of central importance to the theory,

which allows to determinate a unique option price in the Black-Scholes model.

Let us consider a typical situation in financial mathematics, where we as-

sume a semimartingale S = (St)0≤t≤T where St > 0 stands for the price of a

risky asset at time t, and a random variable f(St) (the function f : (0,∞) −→
[0,∞) is a Borel measurable) describing the pay-off of an european option.

Assume that

f(St) = v0 +

∫ T

0

HudSu,

where v0 is the option’s price and (Hu)0≤u≤T is a predictable process (also

satisfying an appropriate regularity condition).

The Ito stochastic integral represents the payoff of the continuous-time

trading strategy consisting of holding an amount Ht of the stock at time t. In

this situation, the condition that H is adapted corresponds to the necessary

restriction that the trading strategy can only make use of the available infor-

mation at any time and implies that the stochastic integral will not diverge

when calculated as a limit of Riemann sums.

From a financial point of view, this formula states that seller can replicate

the option f(St) at an initial cost given by the constant v0 and subsequently

trading in the stock S as prescribed by the predictable trading strategy H.

The problem is the that dynamic replication assumes continuous asset price

movements, but real asset prices can move discontinuously (markets are not

always open), destroying the possibility of accurate replication and providing a

meaningful likelihood of bankruptcy for any uncovered option seller who does

not have unlimited capital.

Hence, in practice one has to replaced the continuously adjusted hedging

portfolio by a discretely adjusted one. Keeping the initial value v0 and trading

at time knots τ = (ti)
n
i=1 this yields to the hedging error

Err(τ) :=

∫ T

0

HudSu −
n∑

i=1
vi−1(Sti − Sti−1

),

where the Fti−1
-measurable vi−1 describe the positions in the discretely ad-
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justed portfolio. If one wishes to trade n times only, then it is naturally to ask

for 0 = t0 < ... < tn = T such that the error Err(τ) becomes minimal in some

sense.

In 2005 S. Geiss [Ge] combined two objects rather different at first glance:

spaces of stochastic processes having weighted bounded mean oscillation (weighted

BMO) and the approximation of certain stochastic integrals, driven by the ge-

ometric Brownian motion, by integrals over piece-wise constant integrands.

Recall, for reader’s convenience, the definition of weighted BMO, as follows

Definition 6.24. [Ge] Let (Ω,F , P ) be a probability space and let {Xt}t∈T
be an adapted stochastic process, with X0 = 0 and {Φt}t∈T be a geometrical

Brownian motion with Φt > 0, ∀t ∈ T , then

||X||ΦBMO = sup
τ

∥∥∥∥E [ |XT −Xτ |p

Φp
τ

|Fτ
]∥∥∥∥ 1

p

∞

where the supremum is taken over all stopping times τ .

Usually, the approximation error is measured with respect to L2, but this

approach has some drawbacks: the resulting distributional tail estimates are

rather weak.

Then, one would use Lp spaces with 2 < p < ∞, but spaces of weighted

BMO are more appropriate because in general, estimates with respect to BMO-

spaces imply Lp estimates and secondly, by a weighted John-Nirenberg type

Theorem, one can obtain significant better tail-estimates.
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