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Introduction

Despite being in some sense a pure “mathematical” topic, Combinatorics on
Words, that is the study of structural and combinatorial properties of se-
quences of symbols, has a variety of applications in many distinct fields which
range from Computer Science, to Biology, Physics and many others (see for in-
stance [44, 45, 46]), which further increases the intrinsic interest of the subject.
In this context, the theory of the so-called Sturmian words and the study of
their fascinating properties has always been of prime importance, with aspects
related to various fields such as Number Theory, Geometry, Computer Vis-
ion, Symbolic Dynamics, Theoretical Physics, Crystallography and so on. The
reason for such a wide variety of applications probably relies in the impressive
number of possible equivalent definitions and characterizations for Sturmian
words, an aspect which has been shown since the fundamental work of Morse
and Hedlund (cf. [51]) in 1940. For instance, an infinite sequence of a’s and b’s
is Sturmian if it is not periodic and balanced (which means that taken any two
substrings of the same length, the number of a’s in the two substrings can differ
at most by 1). Sturmian words can also be characterized as the words having,
for each length n, exactly n + 1 factors of length n. In this sense, they are
the “simplest” (with lowest factor complezity) infinite words which are not
periodic; many interesting properties of Sturmian words can be attributed to
their “simplicity”. What is perhaps the most evident limit of Sturmian words
is that they are words defined over a two letters alphabet. It then appears nat-
ural to extend, where possible, the definitions to any finite alphabet; in many
cases such extension is straightforward, but, as one can expect, many of the
modified definitions are no longer equivalent. Among the other extensions of
Sturmian words, the class of Episturmian words play a central role. Epistur-

mian words have in common with Sturmian words many interesting properties
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and are themselves a well studied subject of interest. Among the other possible
definitions, since Episturmian words share with Sturmian words the property
of having a great number of equivalent definitions, a word is said to be Epi-
sturmian if it is closed under reversal (meaning that if a w is a factor of our
word, also the reversal of w must appear as a factor) and if it has at most one
left special factor for each length (a left special factor is a factor which occurs
preceded by at least two distinct letters). Once again, it appears quite natural
to consider and study nontrivial extensions of Episturmian words, like it has
been done for Sturmian words.

In this thesis two kind of extensions are considered: extension obtained
weakening some hypothesis in the definitions of Episturmian words, and an
extension obtained considering the class of all word having a property which
Episturmian words enjoy, but by which they are not characterized. More spe-
cifically, starting from biological considerations, we considered the extension
obtained substituting in two definitions the reversal operator with a generic
involutory antimorphism (just to stress the meaning of the the operation, we
recall that the Watson-Crick complementarity law is basically an involutory
antimorphism); in this way we obtained two interesting and different exten-
sions of the first kind. For what concerns the second kind of extensions, we
studied two characterizing properties of words which have (like Episturmian
words) a maximal number of palindromic factors.

All the extensions considered have many potential applications which are
yet to be studied, and, since the topic is both promising and new, certainly

deserve to be the subject of further analysis.

Overview

The first part of this thesis is dedicated to the study of the notions needed
to introduce the generalizations and more advanced notions presented in the
second part.

In Chapter 1, after some algebraic notions, the basic concepts and termin-
ology of combinatorics on words are given.

Chapter 2 is devoted to the introduction of Sturmian and Episturmian

words and morphisms, which are the base for the generalizations presented
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in the following chapters. The first section covers Sturmian words; though
this section probably covers much more than what is effectively needed in the
remaining of the thesis, the importance of the topic is such that we felt com-
pelled to present at least an essential survey, with a look at some recent results
like those on Sturmian palindromes. The following sections are dedicated to
Episturmian words and morphisms and contain most of the definition that are
extended in the following.

With Chapter 3, where the first generalizations of Episturmian words are
presented, we get into the core of the thesis. In the first section of the chapter
we introduce the idea on which the following work is based: that of substituting
a generic involutory antimorphism to the reversal operator in the definitions
used for Episturmian words. Following this idea, we introduce the derived no-
tions of pseudopalindromes and the important class of unbordered pseudopal-
indromes. At this point we use these concepts to extend, in the three following
sections, the equivalent definitions for Episturmian words given in Chapter
2. In section 3.5 we show what are the relations between the new classes of
words introduced, showing that the definitions which are equivalent for the
Episturmian case are no longer so and that ¥-standard words and standard
¥-Episturmian words are both proper subclasses of the ¥-standard words with
“seed”. In the following section, we go back to the class of ¥-Episturmian words
(which are somewhat the most difficult class to deal with, since its definition is
far from being constructive), showing several useful structural results and char-
acterizing the standard ¥-Episturmian words which are also ©¥-standard. Many
of the results of this section will be useful in the following chapter. In Section
3.7, mainly based on [14], we show that the choice of considering involutory
antimorphisms to generalize Episturmian words is actually a good choice, since
under some weak and natural conditions, words turn out to be ¥-Episturmian
for some 9. That is, if we consider only some conditions which are always true
for Episturmian words (plus some weak ones which are true for a wide class
of Episturmian words), there must be some ¥ such that the words considered
are ¥-Episturmian. In the last section of the chapter, we show that a wider
class of standard ¥-Episturmian (i.e. dropping one of the requirements in the
definition), still retains (like the “normal” ¥-Episturmian words) a strong link

with Arnoux-Rauzy words.
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Chapter 4 is completely devoted to the study of characteristic morphisms,
i.e., morphisms that map standard Episturmian words into standard ¥-Epi-
sturmian words, which have been thoroughly studied in [11]. Such morph-
isms, which are interesting by themselves, are a useful mean of constructing
¥-Episturmian words, which is not a straightforward task from the definition.
The main result of this chapter is the complete and constructive characteriza-
tion of characteristic morphisms given in Section 4.3, with its vast proof.

In Chapter 5, finally, a completely different generalization of Episturmian
words is given; in this chapter we introduce the class of rich words, i.e., words
which have a maximal number of palindromic factors, and give two character-
izing properties of such words: the first is an equation which links the factor
complexity (the function which counts, for each length, the number of factors
of such length) of a rich word to its palindromic factor complexity; the second
is a structural one and characterizes as palindromes all the factors beginning
with a word, ending with its reversal and having no other occurences of either

one in between.



Chapter 1

Preliminary notions and

definitions

1.1 Basic algebraic notions

As is well known (see for instance [21]), a semigroup S is a set in which an
associative binary operation (product) is defined.

A monoid M is a semigroup having an identity element 1,, such that
lyxz = zly = z for all ¢ € M. A subsemigroup N of M is a submonoid if
1y € N.

The product operation on a semigroup S can be naturally extended to the
powerset P(S): given X,Y C S, we define

XY ={zyeS|zeX andyecY}.
It is also common to define left and right quotients, by setting
XY ={weS|XwnY #0},

and
YX ' ={weS|wXnNnY #0}.

We shall often confuse singletons and their elements, when this does not lead
to ambiguity. For instance, if z € S and Y C S, by zY we will mean the set

{z}Y.
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The subsemigroup generated by X C S is the smallest subsemigroup of S
containing X, and coincides with

xt=|Jx".

n>0

Similarly, the submonoid generated by X C M is equal to

xX=JXx",
n>0
where conventionally X° = {1,,}.
Given two semigroups S, S’, a morphism (resp. antimorphism) ¢ from S
to S’ is a map
p:8 — 9

such that ¢(zy) = @(z)e(y) (resp. p(zy) = @(y)p(z)) for all z,y € S. A
monoid (anti-)morphism ¢ : M — M’ is a semigroup (anti-)morphism such
that ¢(1y) = 1. An isomorphism is a bijective morphism, and an auto-
morphism of M is an isomorphism between M and itself. When ¢ : M — M’
is a morphism or antimorphism and z € M, we shall often use the exponential
notation z¥ for ¢(z).

A semigroup S (resp. monoid M) is free over X C S (resp. X C M)
if every element of X' admits a unique factorization over X, and X+ = S
(resp. X* = M). Free semigroups (monoids) over sets of the same cardinality

are isomorphic.

1.2 Basic combinatorics on words

The free monoid of words

Let A be a nonempty finite set, or alphabet, whose elements are called letters.
The set of finite sequences of letters, or words over A, can be naturally endowed
with the binary operation of concatenation. The semigroup A" thus obtained
is free over A: a word w € A" can be written uniquely as a product of letters
W = Q1ay---Apn, With a; € A, 1 = 1,...,n. Therefore A" is called the free
semigroup over A. The free monoid A* is obtained by adding an identity
element, the empty word € = 14+, to A*: A* = AT U{e}.
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Let w = a;---a, € AT, where a; € A for 1 < 7 < n. The integer n is the
length of w, denoted by |w|. It is natural to set |e| = 0.

A word u is a factor of w € A* if w = rus for some words r and s. In
the special case » = ¢ (resp. s = €), u is called a prefiz (resp. suffiz) of w.
A factor u of w is proper if u # w; it is median if w = rus with |r| = |s|.
We denote respectively by Fact w, Pref w, and Suff w the sets of all factors,
prefixes, and suffixes of the word w.

A subset of A* is often called a language over A. For Y C A*, Pref?Y,
Suff Y, and Fact Y will denote respectively the languages of prefixes, suffixes,
and factors of all the words of Y; in symbols,

FactY = | Factw,

weyY

and similarly for Pref Y and Suff Y.

A code over A is a language Z C A* such that the monoid Z* is free over
Z. Thus Z is a code if and only if whenever 2y, 25, ..., 2,,21,...,2,, € Z are
such that

!
zl...zn:zl...zm’

then n = m and z; = 2/ for 1 = 1,...,n. A prefiz (resp. suffiz) code is a
subset of A" with the property that none of its elements is a proper prefix
(resp. suffix) of any other. Any prefix (or suffix) code is in fact a code. A
biprefiz code is a code which is both prefix and suffix.

1.2.1 Borders and periods

A factor of w € A* is called a border of w if it is both a prefix and a suffix
of w. A word is called unbordered if its only proper border is €. Since the
set of proper borders of the empty word is empty, coherently with the above
definition we do not consider € unbordered.

A positive integer p is a period of w = a;---a, (a; € A, ¢ =1,...,n) if

whenever 1 < 1,7 < |w| one has that
1=7 (modp) = a;=aq;.

Note that with this definition, any n > |w| is a period of w. As is well known

and quite evident (cf. [44]), a word w has a period p < |w| if and only if it has
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a border of length |w| — p. We denote by m,, the minimal period of w, and set
7. = 1. Thus a word w is unbordered if and only if m,, = |w|. If w is nonempty,
then its fractional root z, is its prefix of length |z,| = m,. We can write any

nonempty word w as

where z,, is the fractional root of w, the integer £ > 1 is sometimes called the
order of w, and 2’ is a proper prefix of z,,.

We recall the following fundamental result about periodicity (cf. [44]):

Theorem 1.2.1 (Fine and Wilf). If a word w has two periods p and g, and
|lw| > p+ q—gcd(p, q), then w has also the period ged(p, q).

1.2.2 Infinite words and limits

An infinite word (from left to right) z over the alphabet A is just an infinite
sequence of letters, i.e., a mapping z : N, — A where N, is the set of positive

integers. One can represent z as
m:mlmz...mn... ,

where for any 7 > 0, z; = z(i) € A. A (finite) factor of z is either the empty
word or any sequence z;---z,; with ¢ < 7, i.e., any block of consecutive letters
of z. If 2 = 1, then u is a prefiz of . We denote by Fact z and Pref z the sets
of finite factors and prefixes of z respectively.

The product between a finite word w and an infinite one z is naturally
defined as the infinite word wz having w as a prefix and z; |, as its j-th
letter, for all 7 > |w|. The set of all infinite words over A is denoted by A“.
We also set A® = A* U A“.

A metric on A“ can be defined by setting d(z,z) = 0 for z € A¥, and

d(z,y)=2"*

for y # z, where £ = max{n € N | Pref z N Pref y N A™ # 0} is the length of the
maximal common prefix of £ and y. This metric induces the product topology
on AY = AN+ (where A is discrete), making it a compact, perfect, and totally

disconnected metric space, that is, a Cantor space (cf. [50]). The metric d can
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be “extended” to the whole A% in the following way: define (as above) the
metric d' on (A’)Y, where A' = AU {3} and § ¢ A; then identify any w € A*
with the infinite word w$“. In this way A* is regarded as a subspace of (A')*.

The main benefit of topology for our purposes is the possibility of taking
limits of sequences. We recall that convergence with respect to the product
topology is pointwise, so that a sequence of words (2, )m>o in A* converges
to an infinite word £ = z,---z,--- if and only if for any & > 0, there exists
some N > 0 such that for all n > N, the k-th letter of 2, exists (i.e., 2, € A%
or |z,| > k) and is equal to z;. For instance, the sequence

(amb)mzo

converges to the infinite word a“ = aaa---. A wide family of convergent
sequences, which will appear frequently in the following chapters, is made of
all sequences of finite words (2., )m>o such that for sufficiently large n, the word
Z, is a prefix of 2z, ;.

Forany Y C A*, Y“ denotes the set of infinite words which can be factorized
by the elements of Y. The above example shows that an infinite word which
is the limit of a sequence of words of Y* need not be in Y (take Y = a*b);
however, it is in Y* if Y is finite.

1.2.3 Further definitions and properties

Let w € A®. An occurrence of a factor u in w is any pair (), p) € A* x A* such
that w = Aup. If a € A and w € A*, |w|, denotes the number of occurrences

of a in the word w; trivially we have

wl =" [wla -

acA

For w € A%, alph w denotes the set of letters occurring in w, that is, alphw =
{a € Al |w|, >0}

Let s € A*® and w,u € Facts. We call w a first return to v in s if w
contains exactly two distinct occurrences of u, one as a prefix and the other as

a suffix, i.e.,

w=ul=pu withA\,u€ A" and w ¢ ATuAd".



18 Chapter 1. Preliminary notions and definitions

! — 4 is usually called a return word over

We observe that in such a case, wu~
u in s (see [31]). We call the integer |u| the shift of the first return. An infinite
word s is said uniformly recurrent if for any v € Fact s, the shifts of the first
returns to v in s are bounded above by a constant c,.

If z € Aand vz (resp. zv) is a factor of w € A*, then vz (resp. zv) is called
a right (resp. left) extension of v in w. We recall that a factor v of a (finite
or infinite) word w is called right spectal if it has at least two distinct right
extensions in w, i.e., there exist at least two distinct letters a,b € A such that
both va and vb are factors of w. Left special factors are defined analogously.
A factor of w is called bispecial if it is both right and left special.

We denote by R, the smallest integer k, if it exists, such that w has no
right special factor of length & (and we set R,, = oo otherwise, that is, when w
is an infinite word having arbitrarily long right special factors). The following
noteworthy inequality (cf. [25]) relates the minimal period ,, of a finite word
w and R,:

MTw > Ry + 1. (1.1)

Symmetrically, one can introduce the parameter L, as the minimal length for
which w has no left special factors; L, satisfies m, > L, + 1 too.

A finite word w is primitive if it cannot be written as a power w = u*
with £ > 1. Clearly any unbordered word is primitive, but the converse is
false: consider for instance the word aba. We denote by m(A*) the set of all
primitive words over A. As is well known (cf. [44]), for any nonempty word w
there exists a unique primitive word u such that w = u* for some k > 1. Such
a u is usually called the (primitive) root of w and denoted by /w.

Two words u, v € A* are conjugate if there exist A\, u € A* such that u = Ay
and v = pA. Conjugacy is an equivalence relation in A*; we write u ~ v if u
and v are conjugate.

Suppose that < is a total order on A. One can extend this order to the
lezicographic order on A* by letting, for all v, w € A*,

v<w<= (veEPrefw or v=uav, w=ubw'),

for some u,v',w' € A* and a,b € A such that a < b.
A word is called a Lyndon (resp., anti-Lyndon) word if it is primitive and

minimal (resp., maximal) in its conjugacy class, with respect to the lexico-
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graphic order. For instance, if a < b then w = aabab is a Lyndon word, for its
conjugates (ababa, babaa, abaab, and baaba) are all lexicographically greater
than w.

In the sequel, we shall need the two following simple lemmas; we report the

proofs for the sake of completeness.

Lemma 1.2.2. A word w € A* has the period p < |w| if and only if all its

factors having length p are in the same conjugacy class.

Proof. The case w = ¢ is trivial. Then suppose that p is a period of w =
ar---Qn, a; € A, 1t = 1,...,n. Let u be a factor of w of length p. By
the definition of period, there exists a positive integer + < p such that u =
a;Q;y1° - ApaA1042 -+ A;_1, SO that u is a conjugate of a;a, - - - a,.

The converse is an easy consequence of the following fact: if z,y € A and
u € A*, then zu ~ wy if and only if z = y. Therefore, if all factors of w of length
p are conjugate, one derives that a; = a;;, forallzsuch that 1 <:<n—p. 0O

Lemma 1.2.3. A word w € A* is primitive if and only if m» = |w| for any
integer k > 2.

Proof. Let w be a primitive word, and suppose that w* has a period g < |w|.
Since |w| is a period of w* and |w*| = k|w| > |w| + ¢, by Theorem 1.2.1, w*,
as well as w, has also the period d = gcd(q, |w|). Thus w = u/*/? for some u;
this implies |w|/d = 1 and then ¢ = |w/|, as w is primitive.

Conversely, suppose w € A* is not primitive. If w = ¢, then
Tyt =T =17#0=|w|.

Let then w € AT and let u be its primitive root. Clearly |u| is a period of w*,

and |u| < |w|. O
We remark that also the fractional root z,, of a nonempty word w is trivially

primitive. Hence, by Lemma 1.2.3 we obtain that for any w € A" and k& > 2,

Ty = Mk . (1.2)

We remark that, by symmetrical arguments, one can prove results analogous
to Proposition 2.1.13 and Theorem 2.1.37, namely, +f 7, = L,+1, then w € St,

and a palindrome w € A* 1s Sturmian if and only if m, = L, + 1.
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1.3 Overlap-free and normal codes

We say that a code Z over A is overlap-free if no two of its elements overlap
properly, i.e., if for all u,v € Z, Suff u N Pref v C {¢, u, v}.

For instance, let Z; = {a,bac,abc} and Z, = {a,bac,cba}. One has that
Z1 is an overlap-free and suffix code, whereas Z, is a prefix code which is not
overlap-free as bac and cba overlap properly.

A code Z C A*' will be called right normal if it satisfies the following

condition:
(Pref Z\ Z)N RS Z C {e}, (1.3)

i.e., any proper and nonempty prefix u of any word of Z such that u ¢ Z is
not right special in Z. In a symmetric way, a code Z is called left normal if it

satisfies the condition
(Suf Z\ Z)NLS Z C {e}. (1.4)

A code Z is called normal if it is right and left normal.

As an example, the code Z; = {a, ab, bb} is right normal but not left normal,
the code Z, = {a,aba,aab} is normal. The code Z; = {a,cad, bacadad} is
biprefix, overlap-free, and right normal, and the code Z; = {a, badc} is biprefix,
overlap-free, and normal.

In the rest of this section, we analyse some properties of left (or right)
normal codes, under some additional requirements such as being suffix, prefix,
or overlap-free. We stress that all statements of the following propositions can
be applied to codes which are biprefix, overlap-free, and normal.

A first noteworthy result, which will be useful in the sequel, is the following:

Proposition 1.3.1. Let Z be a biprefiz, overlap-free, and right normal

(resp. left normal) code. Then:

1. if z € Z 15 such that z = Avp, with A\,p € A* and v a nonempty prefic
(resp. suffiz) of 2’ € Z, then A\z' (resp. z'p) is a prefiz (resp. suffiz)
of z, proper if z £ 2'.

2. for 21,2, € Z, if 2] = 2§ (resp. 2t = 2L), then z = 2.
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Proof. Let z = Avp with v € Pref 2’ and v # €. If v = 2/, there is nothing to
prove. Suppose then that v is a proper prefix of z’. Since Z is a prefix code,
any proper nonempty prefix of 2/, such as v, is not an element of Z; moreover,
it is not right special in Z, since Z is right normal. Therefore, to prove the
first statement it is sufficient to show that |vp| > |2'|, where the inequality is
strict if z # 2. Indeed, if |vp| < |2/|, then a proper prefix of 2’ would be a
suffix of z, which is impossible as Z is an overlap-free code. If |vp| = |2/|, then
z' € Suff z, so that 2’ = z as Z is a suffix code.

Let us now prove the second statement. Let 2,2, € Z with zlf = z2f By
contradiction, suppose z; # 2». By the preceding statement, we derive that z;
is a proper prefix of 2, and 2, is a proper prefix of z;, which is clearly absurd.

The symmetrical claims can be analogously proved. 0

From the preceding proposition, a biprefix, overlap-free, and normal code
satisfies both properties 1 and 2 and their symmetrical statements.
The following general lemma on prefix codes, will be very useful in the next

sections:

Lemma 1.3.2. Let g : B* — A* be an injective morphism such that g(B) =
Z 1s a prefizx code. Then for all p € B* and q € B* one has that p is a

prefiz of q if and only if g(p) is a prefiz of 9(q).

Proof. The ‘only if’ part is trivial. Therefore, let us prove the ‘if’ part. Let us
first suppose ¢ € B*, so that g(g) = g(p)¢ for some ¢ € A*. Since g(p), g(q) €
Z* and Z* is left unitary, it follows that { € Z*. Therefore, there exists, and
is unique, r € B* such that g(r) = ¢. Hence g(q) = g(p)g9(r) = g(pr). Since g
is injective one has ¢ = pr which proves the assertion in this case. If ¢ € B,
there exists a prefix qp, of ¢ such that g(p) € Prefg(q,). By the previous
argument, it follows that p is a prefix of g, and then of q. 0

Lemma 1.3.3. Let Z be a left normal and suffix code over A. For any
a,b€ A, a#b, A€ A", if a),bX € Fact Z* and )\ ¢ Pref Z*, then al,b) €
Fact Z.

Proof. By symmetry, it suffices to prove that a\ € Fact Z. By hypothesis
there exist words v,{ € A* such that vaA( = 2z;---2,, withn > 1 and 2; € Z,
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1=1,...,n. If n =1, then a) € Fact Z and we are done. Then suppose n > 1,

and write:
va =21 2,0, OA( =2Zpi1 " "2n, 2Znp1=0&=2, (1.5)

with 6 € A*, h > 0, and £ # €. Let us observe that § # ¢, for otherwise
A € Pref Z*, contradicting the hypothesis on A.

If |6A] < |z|, then since a = % we have al € Fact Z and we are done.
Therefore, suppose || > |z|. This implies that £ is a proper prefix of A, and
by (1.5), a proper suffix of z. Moreover, as a = §*, we have a¢ € Fact Z.

Since b\ € Fact Z*, in a symmetric way one derives that either bA € Fact Z,
or there exists ¢’ # € which is a proper prefix of A and a proper suffix of a word
z' € Z. In the first case we have bA € Fact Z, so that a¢, b € Fact Z, whence
£ eSuff ZNLS Z, and £ ¢ Z since Z is a suffix code. We reach a contradiction
since £ # € and Z is left normal.

In the second case, ¢ and ¢ are both prefixes of A. Let £ be in {&,¢'} with
minimal length. Then a, b € Fact Z, so that £ € Suff ZN LS Z. Since £ ¢ Z,
as Z is a suffix code, we reach again a contradiction because £ # ¢ and Z is
left normal. Therefore, the only possibility is that aA € Fact Z. O

Proposition 1.3.4. Let Z be a suffiz, left normal, and overlap-free code
over A, and let a,b € A, v € A*, A € A" be such that a # b, va ¢ Z*,
va € Pref Z*, and b\ € Fact Z*. Then a) € Fact Z.

Proof. Since va) € Pref Z*, there exists ( € A* such that vaA{ = 2z;---2,,
n>1 2 €Z,1=1,...,n Then we can assume that (1.5) holds for suitable
h>0,0 € A* and £ € A*. We have n > 1, for otherwise the statement is
trivial, and § # ¢ since va ¢ Z*. As 6 = q, if [6A| < |z| we obtain a) € Fact Z
and we are done. Therefore assume |[§A| > |z|. In this case £ is a proper prefix
of A and a proper suffix of 2. If A € Pref Z* we reach a contradiction, since
&€ € Suff Z N Pref Z* and this contradicts the hypothesis that Z is a suffix and
overlap-free code. Thus A ¢ Pref Z*; this implies, by the previous lemma, that
a) € Fact Z. O

Proposition 1.3.5. Let Z be a biprefiz, overlap-free, and right normal code

over A. If A € Pref Z* \ {e}, then there exists a unique word u = 2;--- 2
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with k >1and z; € Z,1=1,...,k, such that
U=21--2t =X, 212,10 = A, (1.6)
where 6 € AT and ( € A*.

Proof. Let us suppose that there exist A > 1 and words z7,...,2; € Z such
that
21z =X, zyzp 0= (1.7)

with ¢’ € A* and §' € A". From (1.6) and (1.7) one obtains u = z;---2;, =
21 -2,_40'Cand 2] -z, = 21+ 2xg_10(’, with 2, = 0¢ and z;, = 6'¢’. Since Z
is a biprefix code, we derive h = k and consequently 2; = 2. fors=1,...,k—1.
Indeed, if A # k, we would derive by cancellation that 6’¢ = € or §{’ = ¢, which
is absurd as 4,0’ € A™.

Hence we obtain 2, = 6’ = 6(, whence § = ¢’. Thus § is a common
nonempty prefix of z; and z;. Since Z is right normal, by Proposition 1.3.1 we

obtain that z; is a prefix of z; and wvice versa, i.e., 2 = 2. O

Proposition 1.3.6. Let Z be a biprefix, overlap-free, and normal code over
A. Ifu e Z*\ {e} is a proper factor of z € Z, then there exist p,q € Z*,
h,h' € A" such that h* ¢ Suff Z, (h')/ ¢ Pref Z, and

z = hpugh’ .

Proof. Since u is a proper factor of z € Z, there exist £,£' € A* such that
z = &ué’; moreover, £ and ¢’ are both nonempty as Z is a biprefix code. Let p
(resp. g) be the longest word in Suff £ N Z* (resp. Pref ¢’ N Z*), and write

z = éué' = hpugh'

for some h,h’ € A*. Since u and hp are nonempty and Z is a biprefix code,
one derives that A and A’ cannot be empty. Moreover, h® ¢ Suff Z and (h') ¢
Pref Z, for otherwise the maximality of p and ¢ would be contradicted using
Proposition 1.3.1. ]
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Chapter 2

Sturmian and Episturmian words

2.1 Sturmian words

Sturmian words were first considered in the 18th century by J. Bernoulli III,
in his astronomical studies. Several authors later developed the subject from
different points of view, but the first systematic study was given in 1940 by
M. Morse and G. A. Hedlund (cf. [51]). They were also the first to use the

name Sturmian, in honor of C. F. Sturm.

By definition, an infinite word is Sturmzian if for each n» € N it has n + 1
distinct factors of length m. This implies that a Sturmian word is on a two-
letter alphabet, that will be A = {a, b} for the rest of this chapter (we shall
keep using a non-calligraphic A for a generic alphabet). As is well known [45],
an infinite binary word z is Sturmian if and only if for any n > 0 there is only

one right special factor of = of length n.

A famous theorem by Morse and Hedlund (cf. [50]) states that an infinite
word s has less than n + 1 factors for some n > 0 if and only if it is eventually
periodic, that is, writable as s = uv* for some finite words u, v. Thus Sturmian
words have the smallest possible number of factors of each length, among all

infinite words which are not eventually periodic.

A first description of the structure of Sturmian words was given in [51],
where the following well-known characterization is found: an infinite word

s € A¥ is Sturmian if and only if it is not eventually periodic and it is balanced,
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i.e., it satisfies, for all n > 0 and u,v € A™ N Fact s,

ula — [vlal <1 (2.1)

2.1.1 Standard and central Sturmian words

An equivalent geometrical definition of Sturmian words can be given in terms
of cutting sequences. In fact, a Sturmian word can be defined by considering
the sequence of cuts in a squared lattice (N x N) made by a ray having a slope
which is an irrational number . A horizontal cut is denoted by the letter b, a
vertical by a, and a cut with a corner by ab or ba.

A Sturmian word represented by a ray starting from the origin is usually
called standard or characteristic. We shall denote by c, the standard Stur-
mian word associated with the irrational slope a. Standard Sturmian words
can be equivalently defined as follows. For any sequence dy,d;,...,d,,... of
integers such that do > 0 and d; > 0 for + > 0, one defines, inductively, the

sequence of words (s,),>o where
so=">0,5 =a, and 5,41 = 5% s, 4, forn > 1. (2.2)

The sequence (s,),>o converges to a limit s which is an infinite standard Stur-
mian word. More precisely, one has s = c,, where the slope « is given by the

continued fraction

a=— = [0;do,d, .. ]
o+ ———

1
di + —

(see for instance [45]). Any standard Sturmian word can be generated in this

way. If d; = 1 for all 2 > 0, one obtains the famous Fibonacct word
f = abaababaabaababaababaa - - -

whose slope is the inverse of the golden ratio.
We shall denote by Stand the set of all the words s,, » > 0 of any sequence
(8n)n>0 constructed by the previous rule (2.2). Any word of Stand is called
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finite standard (Sturmian) word. We recall the following characterization of

Stand given in [28]:
Stand = AU (PAL? N PAL{ab,ba}) , (2.3)

i.e.,, a word w € A* is standard if and only if it is a letter or it satisfies the
following equation:

w=oaf =7ty ,
with a, 8,7 € PAL and {z,y} = A.

A finite word w is called central if it has two periods p and ¢ such that
gcd(p,q) = 1 and |w| = p+ g — 2. Conventionally, the empty word ¢ is central
(in this case, p = ¢ = 1). Central words are over a two-letter alphabet. The
set of all central words over A = {a, b} is usually denoted by PER. It is well
known (see [28, 45]) that the set PER coincides with the set of palindromic
prefixes of all standard Sturmian words. In the remaining part of this section
we recall some properties of standard and central words which will be useful
in the sequel.

The following important characterization of central words holds (see for
instance [18]):

Proposition 2.1.1. A word w is central over A if and only if w 1s a power

of a letter of A or it satisfies the equation
w = wiabws = wybaw,

for some words w, and w,. Moreover, in this latter case, w, and wy are
central words over A, p = |wi| + 2 and q = |ws| + 2 are coprime periods of

w, and min{p, ¢} is the minimal period of w.
Example 2.1.2. Let w = aabaabaa € PER. We have
w = a(ab)aabaa = aabaa(ba)a ,

with 3 = m, = |a| + 2 and 7 = |aabaa| + 2 being coprime periods of w, and
lw|=8=3+7-2.

From (2.3) and the preceding proposition, one easily derives (cf. [28]) that

Stand = AU PER{ab,ba} , (2.4)
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i.e., any finite standard Sturmian word which is not a single letter is obtained
by appending ab or ba to a central word. Conversely, any central word is
obtained by deleting the last two letters of a standard word.

Let St be the set of finite Sturmian words, i.e., factors of infinite Sturmian
words over the alphabet A = {a,b}. We recall that for any infinite Sturmian
word there exists an infinite standard Sturmian word having the same set of

factors (cf. [45]). Therefore one easily derives that
St = Fact(Stand) = Fact(PER) . (2.5)

Lemma 2.1.3 (see [18]). If a central word w has the factor =", with z € A
and n > 0, then z" ! is a prefiz (and suffiz) of w.

Proposition 2.1.4 (see [52]). A word w is central if and only if wab and

wba are conjugate.
Now let us suppose that the alphabet A is totally ordered by setting a < b.

Proposition 2.1.5 (see [6]). The set AU aPERb s equal to the set of all
Lyndon words which are Sturmian. Similarly, AU bPERa 1s the set of

anti-Lyndon Sturmian words.

Proposition 2.1.6 (see [39]). A Sturmian word is unbordered if and only

if 1t 1s a Lyndon or anti-Lyndon word.

From Propositions 2.1.4 and 2.1.5, one derives the following interesting

characterization of words conjugate of a standard word.

Proposition 2.1.7. A primitive word z ¢ A 1s a conjugate of a standard
word if and only if the Lyndon and the anti-Lyndon words in its conjugacy

class have the same proper median factor of mazximal length.

Proof. Let z be a primitive word of length |2| > 1. Let s be a standard word
conjugate to z. By (2.4), s can be written as s = vzy, with v € PER and
{z,y} = A. By Proposition 2.1.4, one derives that z is a conjugate of avb and
bva. From Proposition 2.1.5, avb and bva are, respectively, a Lyndon and an
anti-Lyndon word, so that the necessity is proved.

Conversely, let z € A* and suppose that the Lyndon and the anti-Lyndon
words in the conjugacy class of z can be written respectively as atb and bta,
with a,b € A and a < b. By Proposition 2.1.4, one has that ¢ € PER, so that
by (2.4), z is a conjugate of tab € Stand. O
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2.1.2 Finite Sturmian words and periodicity

In this section we give two characterizations of finite Sturmian words, based
on properties of their fractional root. We need some preliminary propositions.
The first one gives some characterizations of the words w such that w? € St
(such words have been called cyclic balanced in [20]). The equivalence of
some of the conditions in Proposition 2.1.8 has recently been proved in [20]
(see also [41]). We report here a more direct and simple proof for the sake of
completeness.

Proposition 2.1.8. Let w be a word. The following conditions are equi-
valent:

~

. w? € St,

2. w* C St,

3. every conjugate of w? is Sturmian,
4. every conjugate of w is Sturmian,
5. the primaitive root of w 1s a conjugate of a standard Sturmian word.

Proof. 1. = 2. Let n > 2. Any two factors of w” of length k& > |w|/2 overlap,
thus it suffices to verify the balance condition only for factors of w™ of length
k < |w|/2, which is satisfied because such words are also factors of w? € St.

2. = 8. This is trivial, since any conjugate of w? is a factor of w?®.

3. = 4. This is trivial too, because the square of a conjugate of w is just
a conjugate of w?.

4. = 5. Let u be the primitive root of w. If every conjugate of w is
Sturmian, then so is every conjugate of u. Hence it suffices to prove that if w
is primitive, then it has a conjugate which is a standard word. Indeed, there
exists a unique conjugate of w which is a Lyndon word, say w'. Since w’ is
Sturmian, by Proposition 2.1.5 one has that w' is either a letter or a word avb
with v € PER. In the former case, the desired standard conjugate is w' itself;
in the latter case, one can take vba.

5. = 1. Let u be the primitive root of w = u*; if v is a standard word

in its conjugacy class, from equations (2.2) and (2.5) one derives that v? € St.
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Since 1. = 8. and u? is a conjugate of v?, one has u? € St. As 1. = 2., this
implies w? = u?* € St. O

Let w,u € A* with w unbordered; the word wu is called a Duval extension

of w if no unbordered factor of wu is longer than w.

Proposition 2.1.9 (see [49]). Every Duval extension wu of a Sturmian

unbordered word w has the period |w]|.

We are now in the position of giving our first characterization of finite

Sturmian words.

Theorem 2.1.10. A nonempty word is Sturmian if and only if its fractional

root 1s a conjugate of a standard word.

Proof. Let w be a word. If its fractional root 2, is a conjugate of a standard
word, then by Proposition 2.1.8, 2z} C St, so that w € Fact 2z, C St.

Conversely, let s be an unbordered factor of w € St of maximal length. One
has w = usv for suitable u,v € A*. The word sv is a Duval extension of s, by
the maximality of s. Since § is unbordered too, and again by the maximality
of s, the word 54 = ws is a Duval extension of 5. From Proposition 2.1.9, one
gets that both sv and @s have the period |s|. This implies that also us has the
period |s].

By Lemma 1.2.2, all factors of us and sv having length |s| are conjugates
of s. Since any factor of w of length |s| is either a factor of us or of sv, and
s is a factor of both, we deduce from Lemma 1.2.2 that the whole w has the

period |s|. Moreover, such period is minimal, because
|s| =ms <y < 5] .

By Lemma 1.2.2, z,, is a conjugate of s; since s is an unbordered Sturmian
word, by Proposition 2.1.6 it is a Lyndon (or anti-Lyndon) word, and therefore,
by Proposition 2.1.5 it is in the set AU aPERbUbPERa. Hence s, as well as
Zw, 18 a conjugate of a standard word, which proves the assertion. O

Examples 2.1.11. Let w be the word aababaa. Its fractional root z,, = aabab
is a conjugate of the standard word ababa, so that w is Sturmian.
Let » = baabb. In the conjugacy class of its root z, = baab there is no

standard word, so that r is not Sturmian.
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Corollary 2.1.12. Let w be a nonempty word and z,, be its fractional root.

Then w is a finite Sturmian word if and only if so is z2.

Proof. This is a straightforward consequence of the preceding theorem and of
Proposition 2.1.8. ]

The following proposition improves upon a result in [25].
Proposition 2.1.13. Let w be a word. If my, = R, +1, then w 1s Sturmzan.

Proof. Let w € A*. If m, = 1, the result is trivially true. Thus we assume
Ty = R, + 1 > 1, so that there exists a right special factor s of w such
that |s| = m, — 2. Hence, there exist letters a,b € A such that a # b and
sa,sb € Factw. The words sa and sb cannot be both suffixes of w, so we
suppose, without loss of generality, that sa is not. Therefore one has either
saa € Factw or sac € Fact w with ¢ # a. Since |saa| = |sac| = 7, these two

possibilities imply, respectively:
w € Fact((saa)*) (2.6)

or
w € Fact((sac)*) . (2.7)

We first show that (2.6) cannot hold. By contradiction, assume that it
does hold. Since sb is a factor of w, it has to be a factor of saas as well.
We clearly have sb # sa, thus there exist u,v € A* and z € A such that
saas = uzsbv. The words u and v are respectively a prefix and a suffix of s,
and |u| + |v| = |saas| — |zsb| = 2|s| + 2 — |s| — 2 = |s|. Therefore s = uv and
vaau = zuvb. But this is a contradiction, because |vaau|, > |zuvb|,.

Equation (2.7) is then satisfied. Let u = sacsa. The word sb € Factw
has to be a factor of u; since sb is not a suffix of u, one has either sba €
Fact u or sbx € Factu, with ¢ # a. By Lemma 1.2.2, the latter is impossible,
because |sac| = |sbz| = T, is a period of u, and |sac|, > |sbz|,. Thus sba is a
factor of u, and by Lemma 1.2.2 it is a conjugate of sac. Therefore ¢ = b; by
Proposition 2.1.4 and equation (2.4) one derives that sab is a standard word of
length m,. By Lemma 1.2.2, z,, is a conjugate of sab, so that by Theorem 2.1.10
one obtains w € St. 0
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We recall that L, denotes the minimal integer k for which w has no left
special factor of length k. By symmetrical arguments, one can easily prove a
result analogous to Proposition 2.1.13, namely, if 7, = L,, + 1, then w € St.

Ezamples 2.1.14. The word w = abbab has minimal period 7, = 3 and R,, = 2,
therefore it is Sturmian. The word v = aabba is not Sturmian, and indeed
mn, =4 >3=R,+1 =L, +1. However, for u = aabab € St one has
Ty =5 >4 =max{R,, L,} + 1.

Our second characterization of finite Sturmian words is a modification of

Proposition 2.1.13:

Theorem 2.1.15. A finite nonempty word w s Sturmian if and only if
Tw =R,z +1. (2.8)

Proof. Assume (2.8) holds. By Lemma 1.2.3, one has 7,2 = [24] = Ty =
R,: + 1, so that from Proposition 2.1.13 it follows 22 € St. As w € Fact 2},
one obtains w € St by Proposition 2.1.8.

Conversely, let w € St. The result is trivial if m, = 1, so assume |2,| > 1.
By Theorem 2.1.10, z,, is a conjugate of a standard word. Since all conjugates
of 2, are factors of z2, by (2.4) and Proposition 2.1.4 there exists v € PER
such that vab and vba are factors of z2, of length m,. This means that v is a
right special factor of z2 of length 7, — 2; thus R,2 > m,2 — 1. By (1.1), one
has m,2 > R,2 + 1, hence m, = 7,2 = R,z + 1 as desired. O

We remark that in the case of palindromes, condition (2.8) in the preceding
theorem can be replaced by the equation 7, = R, + 1. This will be proved in
Theorem 2.1.37, as a consequence of Proposition 2.1.13 and of a property of

Sturmian palindromes (cf. Proposition 2.1.32).

Proposition 2.1.16. Let w be a word having minimal period m, > 1 and v
be its shortest prefir such that m, = m,. Let uz (z € A) be the suffiz of v
of length m, — 1. One has w € St if and only if there exists a letter y #

such that uy 1s a factor of z2.

Proof. If uy € Fact 22, then u is a right special factor of z2 of length 7, — 2,
so that 7, < R,2 +1. By (1.1) one has m,, = m,2 > R,> +1; thus 7, = R,2 +1
and by Theorem 2.1.15 it follows w € St.
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Conversely, as shown in the proof of Theorem 2.1.10, any word of St has
an unbordered factor of maximal length, whose value is the minimal period
of the word. Therefore, one can write v as v = tz with z € A and m < 7,
and t cannot have unbordered factors of length 7, since the maximal length
of these factors is m;. Since v € St, it has an unbordered factor r» of maximal
length |r| = 7, = m,. This factor has to be necessarily a suffix of v. Since
r is unbordered and |r| = 7, > 1, from Propositions 2.1.5 and 2.1.6 one has
r = yuz with v € PER and {z,y} = A. By Lemma 1.2.2, 2, is conjugate
of yuz and, by Proposition 2.1.4, of zuy. Since zuy € Factz2, the result
follows. ]

Ezamples 2.1.17. Let w = aababaa € St. One has 7, = 5, 22 = aababaabab,
and R,> = 4, so that m, = R,2 + 1. The shortest prefix v of w such that
T, = My 18 v = aabab. Its suffix of length 7, — 1 is ub = abab, and ua = abaa
is a factor of 22.

Let 7 = baabb ¢ St. One has 7, = 4, z2 = baabbaab, and R,: = 2, so that
m, > R,z + 1. In this case, the shortest prefix v such that 7, = 7, is v = 7.
The suffix ub of v of length 3 is abb, and aba ¢ Fact 22.

Enumeration of primitive Sturmian words

As an application of preceding results, we give a formula which counts for any
n > 1 the finite primitive Sturmian words of length n. We need the following:

Lemma 2.1.18. The number of words of length n > 0 which are conjugate
of standard Sturmian words is 2 if n =1 and ng(n) for n > 1, where ¢ s

Euler’s totient function.

Proof. For n = 1 the result is trivial since the only two words conjugate of
standard words are a and b. Let us suppose n > 1. As is well known (see
for instance [45, Chap. 2]), the number of standard words of length n > 1 is
given by 2¢(n). If s is a standard word, by (2.4) we can write s = vzy with
{z,y} = {a,b} and v € PER. By Proposition 2.1.4, s' = vyz € Stand is a
conjugate of s. In the conjugacy class of s there is no other standard word.
Indeed, if ¢ = uzy is a conjugate of s, with u € PER, then |t|, = |s|, and
|t|s = |s]s, so that ¢ and s have the same “slope”; from this it follows that u = v
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(see for instance [6, 45]). Hence, in each conjugacy class of a standard word of
length n > 1 there are exactly two standard words. Thus, the number of these
conjugacy classes is ¢(n). Since any standard word is primitive, in any class

there are n words. From this the assertion follows. O

Proposition 2.1.19. For any n > 1, the number of primitive finite Stur-

mian words of length n 1s given by:

Z(n +1—1)p(z) — > do(d) .
i=1 dln
d#n

Proof. Let w be a non-primitive Sturmian word of length n > 1. The word w
can be written uniquely as w = u*, with u € 7(A*) and k > 1. Moreover, from
Lemma 1.2.3 one has z,, = u; by Theorem 2.1.10, u is a conjugate of a standard
word. Since |w| = k|u|, the integer |u| is a proper divisor of n. Conversely, if
u is a conjugate of a standard word, then by Proposition 2.1.8 one has that
u* € St for any k.

The number of primitive Sturmian words of length n is then obtained by
subtracting from card(St N .A™) the number of words conjugate of a standard
word whose length is a proper divisor of n. It is well known (see for instance [45,
Chap. 2]) that the number of all finite Sturmian words of length n is given by

the following formula:
card(StN A") =1+ zn:(n +1—12)¢() .
i=1
From Lemma 2.1.18 it follows
card(StNw(A*)NA") =1+ i(n +1—12)¢(2) — ( > do(d )
i=1 dn
d#n

which proves the assertion. O

2.1.3 Sturmian palindromes: structural properties

In the remaining part of this chapter we shall be interested in the set StNPAL,
whose elements will be called Sturmian palindromes.
One has that PER C St N PAL. However, the previous inclusion is strict

since there exist non-central Sturmian palindromes, for instance abba.
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We have seen that St = Fact(PER). We shall prove (cf. Corollary 2.1.21)

a similar property for Sturmian palindromes.

Theorem 2.1.20. Every palindromic factor of a standard Sturmian word

co 1S a median factor of a palindromic prefiz of c,.

The result is attributed to A. de Luca [24] by J.-P. Borel and C. Reuten-
auer, who gave a geometrical proof in [9]. Theorem 2.1.20 can be also obtained
as a consequence of a more general result of X. Droubay, J. Justin, and G. Pir-

illo [29]. We shall report later a direct proof for the sake of completeness.

Corollary 2.1.21. A word s a Sturmian palindrome if and only if it s a

median factor of some central word.

Proof. Trivially, every median factor of a palindrome is itself a palindrome.
Since St = Fact(PER), it follows that a median factor of an element of PER
is a Sturmian palindrome.

Conversely, let u be in St N PAL. By definition, there exists an infinite
(standard) Sturmian word s such that u € Facts. By Theorem 2.1.20, u is
a median factor of a palindromic prefix of s. Since palindromic prefixes of
standard Sturmian words are exactly the elements of PER, the result follows.

O

Our proof of Theorem 2.1.20, which follows a simple argument suggested
by A. Carpi [17], is based on the following results (see [24]):

Proposition 2.1.22. If w € Factz, where = 1s an infinite Sturmian word,
then the reversal W s a factor of ¢ too. Moreover, if ¢ 1s standard, then

w 18 a right special factor of x if and only if W s a prefiz of x.

Corollary 2.1.23. A palindromic factor of an infinite standard Sturmian
word T 1S a right special factor of ¢ if and only if it 1s a palindromic prefiz

of x.

Proof of Theorem 2.1.20. By contradiction, let c, = Auz, where u is a palin-
drome that is not a median factor of any palindromic prefix of c,, and A € A*
has minimal length for such condition. Since u cannot be a prefix of c,, we

have |[A| > 1. Thus we can assume, without loss of generality, A = A'a. Now let
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z be the first letter of z, so that £ = zz'. Suppose first 2 = a. The palindrome
aua is not a median factor of a palindromic prefix of c,, otherwise so would
be u. But ¢, = Nauaz' with |\'| < |A|, and this contradicts the minimality of
|A|. Therefore z = b, and then aub and bua = aub are factors of c,, in view of
Proposition 2.1.22. This means in particular that u is a right special factor of

co. Corollary 2.1.23 then implies that u is a prefix of c,, a contradiction. [
We recall some basic facts (see [28, 24]):

Proposition 2.1.24. Let w be a word. The following conditions are equi-

valent:
1. w e PER,
2. awb and bwa are Sturmian,
3. awa, awb, bwa, and bwb are all Sturmian.

Proposition 2.1.25. If wa and wb are Sturmian words, then there exists

a letter € A such that zwa and zwb are both Sturmian.
We now prove two easy consequences (see also [24]):

Proposition 2.1.26. Let w € A* be a palindrome. If wa and wb are Stur-

maan, then w 1s central.

Proof. From the previous proposition, there exists a letter € A such that
zwa and zwb are both Sturmian. Without loss of generality, we may suppose
T = a, so that awb € St. Therefore awb = bwa is Sturmian too, thus by

Proposition 2.1.24, w is central. O

Lemma 2.1.27. Let w be a Sturmian palindrome. If w is not central, then

there ezists a unique letter x € A such that zwz is Sturmian.

Proof. If awa and bwb are both Sturmian, then w € PER by Proposition 2.1.26,
a contradiction. Since by Corollary 2.1.21 the word w is a (proper) median
factor of some central word, there exists a unique letter z € A such that zwz

is Sturmian. O
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We have seen with Corollary 2.1.21 that a Sturmian palindrome is a median
factor of a central word. We will now give some further results concerning the

structure of Sturmian palindromes.

Proposition 2.1.28. A palindrome w € A* with minimal period m, > 1 can

be uniquely represented as
W = W TYWy = W YTW;

with ¢,y € A, w, the longest proper palindromic suffiz of w, and |w,zy| =
Tw. The word w is not central if and only if either w; ¢ PAL or w =

(wizz)*w, where k > 1 is the order of w.

Proof. Since m, > 1, it follows by Lemma 3.1.3 that w can be uniquely fac-
torized as w = w;zyw, where w, is the longest proper palindromic suffix of w,

z,y € A, and |w;zy| = m,. Since w is a palindrome, we can write
W = Wi TYWy = W YTW; .

When 7, > 1, by Proposition 2.1.1, w is central if and only if w; € PAL
and z # y. Therefore, in the case w; € PAL, w is not central if and only if

W = W TTWy; = WozTw;. The word w has the two periods
Ty = |wizz| and q = |wyzz| (2.9)

and length 7, + ¢ — 2. Thus w ¢ PER if and only if d = gcd(my,q) > 1.
Since |w| > m, + ¢ — d, by Theorem 1.2.1 the word w has the period d = 7.
This occurs if and only if ¢ = k7, with £ > 1. From (2.9) this condition is

equivalent to the statement wyzz = (w,zz)F, i.e., w = (wizz)*w;. ]

Ezample 2.1.29. Let w = aaabaaaaaabaaa € St N PAL, with m, = 7. The
word w can be factorized as (aaaba)aa(aaabaaa), where aaabaaa is the longest
proper palindromic suffix of w, |aaaba| = 7, — 2 = 5. The prefix aaaba is not
a palindrome, thus w is not central.

Let v = abaababababaaba € St N PAL. We factorize v as

v = (abaabab)ab(abaaba)

where abaaba is the longest proper palindromic suffix of v. Also in this case

abaabab is not a palindrome, so that w ¢ PER.
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Let u = abbabbabba € St N PAL. We factorize u as (a)bb(abbabba), where
abbabba is the longest palindromic suffix of u. In this case, the prefix a is a

palindrome, and u = (abb)®a. Hence u is not central.

Lemma 2.1.30. If w = wizyw, = woyzW;, where w, 1S the longest proper
palindromic suffic of w and z,y € A, then w' = ywy has the minimal

period My = Ty.

Proof. Since w is a factor of w’, one has m, > m,. The word yw,yy is a

palindromic proper suffix of w' = yw,;zyw,y, so that by Lemma 3.1.3 the
word w' has the period |yw;z|. Hence, 7, < |ywiz| = |wizy| = 7. Thus
My = Moyl O

The next lemma is essentially a restatement of Lemma 2 in [22]. Note that

its first part is an obvious consequence of Lemma 2.1.30.

Lemma 2.1.31. Let w = wizyws; = weyzw; € PER, with |ws| > |wi| and
{z,y} = A. The word v = ywy has mintmal pertod m, = m,, whereas

v = zwz = zwizyw,z has minimal period T, = |wy| + 2 = |w| — Ty, + 2.

Let w € (StN PAL)\ PER. We denote by u the (unique) shortest median
extension of w in PER, and by v the longest central median factor of w. Note
that also v is unique. For instance, for the Sturmian palindrome w = baaabaaab

one has u = aawaa and v = aaabaaa.

Theorem 2.1.32. Let w € (StN PAL)\ PER. With the preceding notation,

one has m, = m,. Moreover, either T, = m, or m, = |v| — m, + 2.

Proof. We consider first the case that m, = 1, so that v = z” with z € A and
n = |v|. In such a case w has also the median palindromic factor v; = yz"y,
where {z,y} = A (recall that v is the longest central median factor of w).
Moreover, n = |v| is at least 2, otherwise v; would be equal to yzy € PER.

One has 7,, = |yz"| =n+ 1= |v| — 7, + 2. Now we define, for 2 <1 < n:
v; = zv;iz = ¥ tyzyzt = (2 lyz™ ) (2 tyt ) . (2.10)

The word v, = z" 'yz"yz™ ! is central, whereas by Lemma 2.1.3 we have
v; ¢ PER. From Lemma 2.1.27 it follows that the words v; are the only
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Sturmian extensions of v; which are median factors of v,. Since for « < n one
has v; ¢ PER, one derives that w = v; for some 1 < k < n, and u = v,,. As
shown in (2.10), by Lemma 2.1.30 all the v;’s have the same minimal period,
for 1 <17 < n. The result in this case follows: m, = m, = |[v| — 7, + 2.

Now let us assume 7, > 1. One has v = wyzywy; = wyyzw,, with wy, w, €
PAL and z # y. We suppose |w;| < |ws|, so that m, = |w;| + 2. From the
definition of v, it follows that there exists a letter z € A such that v; = zvz is
a median factor of w which is not central. By Lemma 2.1.31, we have 7,, = 7,
ifz=y,orelsem, =v|—m,+2if z=1=z.

Using Lemma 2.1.30, we shall now define a sequence of palindromes with
the same minimal period as v;. Let us first suppose that z = y, so that v; =
ywizywsy. We set v, = zv1z = (zyw; )(zywyyz). Moreover, if wy = pi1ps - - - D

with p; € Afor 1 <j <k, we set v; = px_;y3V; 1DPk_i+3 for ¢+ > 3, so that

Vs = DpU2Pk = (DRTYD1- - Dk—1)(DeTYW2YTDL) ,

Vptz = D1VUk41P1 = D1 PkTYWITYW YTy - - - P1 = W1TYWITYWLYT Wy .

Since w; = W,, the last equation can be written as

Ver2 = (w1)zy(wizywayzw;) = (Wizywyzw, ) yz(w;)

showing, by Proposition 2.1.28, that the word v, is central, so that for any
1<m,=k-+2onehas v; € StN PAL.

Let s < k + 2 be the minimal integer such that v, € PER. Since for 7 < s
one has v; ¢ PER, one derives from Lemma 2.1.27 that v = v, and w = v, for
some integer r < s. Hence 7, = m,, = T, and in this case m, = m,.

The case z = z is similarly dealt with, but interchanging the roles of w;
and w,. Thus one assumes wy = ¢1---qx, ¢; € A, 1 < j < k, and defines v;
as g ;+3Vi 1qx 43 for © > 3, starting from v, = yv,¥ = (yzw,)(yzw,zy) and
ending with

U2 = WaYTWrYTwW1TYWw, € PER .

Therefore there exist integers 7 and s such that 1 <r < s < k+2 = |v|-m,+2,

w = v,, and u = vy, so that 7, = 7, and 7, = m,, = |v| — ™, + 2. O
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Ezample 2.1.33. Let w = baaabaaab € St N PAL. Following the notations of
Theorem 2.1.32, one has v = aaabaaa, v, = w, and u = v3 = aabaaabaaabaa.
Thus 7, = 7, — 7, — 4.

Let w = babbbbab. In this case we have v = bbbb, w = vy, and u = vy =
bbbabbbbabbb, so that m, = m, =5=|v|+ 1= |v]| —m, + 2.

For any word w € A*, we denote by K, the length of the shortest unre-
peated suffix of w. Conventionally, one assumes K, = 0. There exist some
relations among the parameters R,, K, 7, and |w|; the following lemma
synthesizes some results proved in [25, Corollary 5.3, Propositions 4.6 and 4.7]

which will be useful in the sequel.
Lemma 2.1.34. For any w € A*, one has
lw| > Ry + Ky .
Moreover, the following holds:
e if T, = Ry, + 1, then |w| = Ry + Ky,

e if |lw| = Ry, + K, then for any n there exists at most one right spectial

factor of w of length n.

The following theorem gives a further criterion, different from Proposi-

tion 2.1.28, to discriminate whether a palindrome is central or not.

Theorem 2.1.35. Let w € A* be a palindrome with m, > 1. Then w 1s
central if and only 1f its prefiz of length m, — 2 1s a right special factor of
w.

Proof. From Proposition 2.1.28, we can write
W = W1TYWy = WYL, (2.11)

where z,y € A, w, is the longest proper palindromic suffix of w, |w;| = m, — 2,

and w is central if and only if w; € PAL and z # y. Therefore we have to

prove that w; is a right special factor of w if and only if w; = w; and z # y.
Indeed, assume that these two latter conditions are satisfied. Since w; = w;

and w is the longest proper palindromic suffix (and prefix) of w, one has that
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w; is a border of w,. This implies, from (2.11), that w; is a right special factor
of w.

Conversely, suppose w; is a right special factor of w. Let us first prove
that w, € PAL. By hypothesis, we have 7, — 2 = |w;| < R, — 1, that is
R, > m, — 1. By Lemma 2.1.34 one has 7, > R, + 1, so that 7, = R, + 1.
This implies |w| = R, + K, again by Lemma 2.1.34. The suffix @, of w is
repeated, because w; is a right special factor of w, which is a palindrome. This
leads to

Ty — 2= || < Ky —1

and thus to |w| = R, + K, > 2m, — 2. If |w| = 2m, — 2, then |w;| = |w,
so that one derives w; = wy € PAL. If |w| > 2w, — 1, then w has the prefix
w;TzYyw1 T, so that yw,;z € Fact w. Since w; is a right special factor of w, there
exists a letter 2 # x such that w;2z € Factw. Moreover, since w;z is not a
prefix, there exists a letter ¥’ such that y'w;z € Fact w. One has y # ¥/, for
otherwise yw; would be a right special factor of w of length 7, — 1 = R,,
which is a contradiction. As w is a palindrome, the words zw,y and zw,y' are
factors of w too, so that w, is a right special factor of w. By Lemma 2.1.34,
one obtains w; = w;. Therefore we get w; € PAL again.

We shall now prove that £ # y. By contradiction, suppose w has the
factorization

w = (wyzz)*w, , with £ > 1

as granted by Proposition 2.1.28. Since w; is a right special factor of w, one
has w;z € Fact w for a suitable letter z # z. Thus we have either w;2 = zw;
Or W12 = UyTZV12, Where v;2 is a prefix of w; and v, is a suffix of w;. Since
|lwi| = |wiz| — 1, we can write w; = vizav,, with a € A. The first case is

impossible since w; is a palindrome and z # z. In the latter case, one obtains:
V1Z0Uy = Wy = W1 = V1 TTVs
which is absurd again, because = # z. ]

Example 2.1.36. The word w = baab is a Sturmian palindrome of minimal
period m, = 3. Its prefix of length 1 is not a right special factor, hence
w ¢ PER. The word v = abababbababa is a Sturmian palindrome having

minimal period 7, and its prefix ababa of length 5 is not right special. Therefore
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v ¢ PER. On the contrary, the word u = aabaabaa has minimal period 3, and

its prefix of length 1 is a right special factor, so that u is central.

In Proposition 2.1.13 we have proved that any finite word w such that
My = Ry + 1 is Sturmian. The converse does not hold in general, as shown
in Examples 2.1.14 and 2.1.38. However, the result is true for Sturmian palin-

dromes, as the next theorem shows.

Theorem 2.1.37. A palindrome w € A* is Sturmian if and only if T, =
R, +1.

Proof. By Proposition 2.1.13, the condition is sufficient. Necessity is trivially
true if 7,, = 1. By (1.1), one has 7, > R,, + 1. Hence, if m,, > 1 the condition
T, = Ry + 1 is equivalent to the existence of a right special factor s of w of
length |s| = m, — 2.

We prove that every Sturmian palindrome w such that m, > 2 has such a
factor. If w is central, the result follows directly from Theorem 2.1.35. Thus
we suppose w ¢ PER, and as in Theorem 2.1.32 we denote by v the central
median factor of w of maximal length.

If m, = 1, then there exists a letter z € A and an integer n > 1 such that
v = z". From the maximality condition, one derives that n > 1. In this case,
by Theorem 2.1.32 one derives 7, = |v|+ 1 =n + 1 and yz"y € Fact w, where
{z,y} = A, therefore z" ! is the desired right special factor of w, of length
n—1=m, — 2.

If m, > 1, by using Proposition 2.1.1 we can write v as v;xYyvs = vU>yzvy,
with 7, = |v;zy|. By Theorem 2.1.32, one has either 7,, = m, or m, = |v| —
m, + 2. In the first case, the result is a consequence of Theorem 2.1.35. Indeed,
the prefix v; of the central word v, whose length is 7, — 2 = 1, — 2, is a right
special factor of v, and then of w. In the latter case, one derives that the word
TUT = TU1TYVU-T = TVUyYzTV1 T 1S a factor of w, so that v, is a right special factor

of w, of length |v| — m, = m, — 2. O

Example 2.1.38. The word u = ababaa is not a palindrome, but 7, = 5 =
R, + 1, thus it is Sturmian. However, the word v = aabab € St has m, =5 >
3=R,+1. Let w = abba € StnN PAL. One has 7, =3 = R, + 1. The

palindrome s = aabbaa is not Sturmian. One has 7, =4 > 3 = R, + 1.
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2.2 Episturmian words

A word w € AY is called Episturmian if it is closed under reversal and it has
at most one right (or equivalently, left) special factor of each length. We recall
(see [29]) that every Episturmian word is uniformly recurrent, i. e., every
factor of an Episturmian word occurs infinitely often, with bounded gaps.

An Episturmian word w is called standard if every left special factor of w
is a prefix of it. We denote by Ep(A), or simply Ep, the set of all Episturmian
words over A, and by SEp the set of standard ones.

Proposition 2.2.1 (cf. [29]). For every Episturmian word w, there exists a

standard Episturmian word s such that Fact(s) = Fact(w).

Thus Fact(Ep) = Fact(SEp). The elements of Fact(Ep) are called finite
Episturmian words.

Given a word w € A*, we denote by w(t) its right palindrome closure,
i. e., the shortest palindrome having w as a prefix. Similarly, w(~) is the left
palindrome closure of w. For instance, if w = abacbca, then w(*) = abacbcaba
and w(~) = acbcabachbea.

For any w € A*, one has w(") = @), Moreover, if Q is the longest
palindromic suffix of w and w = sQ, then w(*) = sQ5.

Let 9 : A* — A* be defined by 9¥(g) = ¢ and ¥ (va) = (¥(v)a)*) for any
a € Aand v € A*. For any u,v € A%, one has ¢¥(uv) € ¢(u)A* N A*Y(u). The
map 9 can then be naturally extended to A“ by setting, for any infinite word
z,

P(z) = lim P(wn),

n—oo

where {w,} = Pref(z) N A" for all n > 0.

Proposition 2.2.2 (cf. [29]). Let s € AY. The following conditions are

equivalent:
1. s 1s a standard Episturmian word,
2. for any prefiz u of s, uY) is also a prefiz of s,

3. there exists ¢ € AY such that s = ¢(z).
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Given a standard Episturmian word s, the (unique) infinite word z such
that s = 9(z) is called directive word of s and is denoted by A(s), or simply
by A. From the preceding proposition, one can easily derive (cf. [29]) that the

set of palindromic prefixes of a standard Episturmian word s coincides with

{¥(u) | u € Pref(A(s))} .

A standard Episturmian word s over the alphabet A is called a (standard)
Arnouz-Rauzy word if every symbol of A occurs infinitely often in the associ-
ated directive word A(s). We will denote by AR(A), or simply AR, the set of
Arnoux-Rauzy words over A. In the case of a binary alphabet, an AR-word is

usually called standard Sturmian word.

Ezample 2.2.3. Let A = {a,b} and z = (ab)”. One has that
f = 9¥(z) = abaababaabaababa - - -

is the famous Fibonacci word, a standard Sturmian word. On an alphabet

with three letters A = {a, b, c}, if we take z = (abc)” as a directive word, then
T = 9Y(z) = abacabaabacababacabaabac - - -

is a standard Arnoux-Rauzy word, often called Tribonacct word. The word s =
cabaabacababacabaab - - - such that abas = 7 is an example of an Episturmian
word which is not standard, as a is a left special factor of s but not a prefix of
it.

The periodic word s = (abac)” is standard Episturmian, but not Arnoux-
Rauzy. Its directive word is A(s) = abc”.

The following proposition can be easily proved using well-known results on
Episturmian words (see [29]).

Proposition 2.2.4. Let s be a standard Episturmian word. Any bispecial
factor of s 1s a palindromic prefiz of s. If s 1s not periodic, the converse
holds too.

Proposition 2.2.5. Fact(Ep) = Fact(AR).
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Proof. Let u € Fact(Ep) = Fact(SEp). Hence there exists s € SEp such that
u € Fact(s). Now let be s = ¥(A) where A = t1t5---t, -, with ¢, € A for ¢ >
1. Therefore there exists a palindromic prefix p of s such that u € Fact(p). Now
p=Y(ty---t;) for some i. We can consider A’ = ¢, - - -t;t with ¢ € A¥ such that
any letter of A occurs infinitely many times in ¢. Hence s’ = ¥(A’) € AR and
contains p as a factor, so that u € Fact(s'). Therefore, Fact(Ep) C Fact(AR).

Since the inverse inclusion is trivial, the result follows. O

The following proposition collects two properties of standard Episturmian

words (cf. Lemmas 1 and 4 in [29]) which will be useful in the sequel.

Proposition 2.2.6 (cf. [29]). Let s be a standard Episturmian word. The
following hold:

1. Any prefix p of s has a palindromic suffizx which has a unique occur-

rence in p.

2. The first letter of s occurs in every factor of s having length 2.

Clearly, if pis a prefix of a standard Episturmian word, then the palindromic
suffix of p which has a unique occurrence in p is the longest palindromic suffix
of p.

We recall (cf. [29, 43]) that an infinite word ¢ € A is standard Episturmian
if it is closed under reversal (that is, if w € Factt then W € Factt) and each
of its left special factors is a prefix of . We denote by SEpi(A), or by SEp:
when there is no ambiguity, the set of all standard Episturmian words over the
alphabet A.

Given a word w € A*, we denote by w(t) its right palindrome closure,
i.e., the shortest palindrome having w as a prefix (cf. [24]). If @ is the longest
palindromic suffix of w and w = sQ, then w(*) = sQ5. For instance, if w =
abacbca, then w'*) = abacbcaba.

We define the iterated palindrome closure operator ¢ : A* — A* by setting
Y¥(e) = ¢ and Y(va) = (¥ (v)a)*) for any a € A and v € A*. From the
definition, one easily obtains that the map ¥ is injective. Moreover, for any
u,v € A*, one has 9(uv) € ¢¥(u)A* N A*yY(u). The operator 9 can then be

naturally extended to A“ by setting, for any infinite word z,

¢(m) = lim z,b(:z:[n]) .

n—oo
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The following fundamental result was proved in [29]:

Theorem 2.2.7. An infinite word t is standard Episturmian over A if and
only if there exists A € AY such thatt = Y(A).

For any t € SEp1, there exists a unique A such that ¢t = ¢(A). This A is
called the directive word of t. If every letter of A occurs infinitely often in A,
the word ¢ is called a (standard) Arnouz-Rauzy word. In the case of a binary
alphabet, an Arnoux-Rauzy word is usually called a standard Sturmian word
(cf. [8]).

Ezample 2.2.8. Let A = {a,b} and A = (ab)”. The word ¥ (A) is the famous
Fibonacci word

f = abaababaabaababaababa - - - .

If A= {a,b,c} and A = (abc)*, then ¥(A) is the so-called Tribonacct word
7 = abacabaabacababacabaabacabaca - - - .

A letter a € A is said to be separating for w € A* if it occurs in each

factor of w of length 2. We recall the following well known result from [29]:

Proposition 2.2.9. Lett be a standard Episturmian word and a be its first

letter. Then a 1s separating for t.

For instance, the letter a is separating for f and 7.
We report here some properties of the operator 1 which will be useful in
the sequel. The first one is known (see for instance [24, 29]); we give a proof

for the sake of completeness.

Proposition 2.2.10. For all u,v € A*, u is a prefiz of v if and only if Y(u)
1s a prefiz of Y(v).

Proof. If u is a prefix of v, from the definition of the operator 1, one has that
Y(v) € Y(u)A* N A*Y(u), so that ¢¥(u) is a prefix (and a suffix) of ¥(v). Let
us now suppose that ¥(u) is a prefix of ¥(v). If ¥(u) = 9¥(v), then, since 9
is injective, one has u = v. Hence, suppose that ¢ (u) is a proper prefix of
Y(v). If u = ¢, the result is trivial. Hence we can suppose that u,v € A". Let

U =a;---a, and ¢ be the integer such that 1 <z <n — 1 and

[Y(ar---a:;)| < [Y(u)] < [¢(ar---ai1)l
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If [Y(ar---a;)| < |¢¥(u)|, then ¥(a;---a;)a;41 is a prefix of the palindrome
¥(u), so that one would have:

[Y(ar-ai)l = [($(ar - a:)ais) D] < [9(u)] < [(as- - ain)|

which is a contradiction. Therefore |¢(a; - - -a;)| = |¢(u)|, that implies ¢(a; - - - a;) =
Y(u) and u = a; - - a;. ]

Proposition 2.2.11. Let z € AU{e}, w' € A*, and w € w'A*. Then ¢(w'z)
18 a factor of Y(wz).

Proof. By the previous proposition, ¢ (w') is a prefix of 1(w). This solves the
case ¢ = €. For ¢ € A, we prove the result by induction on n = |w| — |w/|.

The assertion is trivial for n = 0. Let then n > 1 and write w = ua with
a € Aand u € A*. As w' € Prefu and |u| — |[w'| = n — 1, we can assume
by induction that ¥ (w'z) is a factor of ¥(uz). Hence it suffices to show that
Y(uz) € Fact Y(wz). We can write

P(w) = (Y(u)a) ") = y(u)av = Tay(u)

for some v € A*, so that ¥(wz) = (Daw(u)z)™). Since ¥(u) is the longest
proper palindromic prefix and suffix of ¢ (w), if z # a it follows that the longest
palindromic suffixes of 9 (u)z and ¥(w)z must coincide, so that ¥ (uz) =
(¢(u)z)H) is a factor of 9(wz), as desired.

If z = a, then Y (uz) = ¢¥(w) is trivially a factor of ¢¥(wz). This concludes
the proof. ]

The following proposition was proved in [29, Theorem 6].

Proposition 2.2.12. Let z € A, u € A*, and A € AY. Then Y(u)z s a
factor of ¥(uA) if and only if ¢ occurs in A.

For each a € A, let u, : A* — A* be the morphism defined by u,(a) = a and
pa(b) =abfor allb € A\ {a}. Ifai,...,a, € A, we set fy, = lg, 00 g, (in
particular, u, = id,). The next proposition, proved in [42], shows a connection

between these morphisms and iterated palindrome closure.

Proposition 2.2.13. For any w,v € A*, Y(wv) = p,(¢¥(v))Y(w).
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By the preceding proposition, if v € A“ then one has
Y(wv) = lim P(won) = lim po (% (V) )¥(w)
= nh_{EO 'U’w("ﬁ('u[n})) = pu(P(v)) .

Thus, for any w € A* and v € A¥ we have

P(wv) = pu(P(v)) - (2.12)
Corollary 2.2.14. For any t € AY and w € A*, Y(w) s a prefiz of ly(t).

Proof. Let t = tyty---t,---, with t; € A for ¢ > 1. We prove that ¥ (w) is a
prefix of p,(tp)) for all n such that |, (tn))| > [¥(w)|. Indeed, by Propos-
ition 2.2.13 we have, for all ¢ > 1, u,(¢)¢¥(w) = Y(wt;) = Y(w)é; for some
& € A*. Hence

o (tm) Y(W) =ty (B2) - oo (E) (W) = P(w)E1 - &n
and this shows that ¢ (w) is a prefix of L, (¢[))- =

From the definition of the morphism u,, a € A, it is easy to prove the

following:

Proposition 2.2.15. Let w € A® and a = w’. Then a is separating for w

if and only if there exists o € A® such that w = u,(a).

For instance, the letter a is separating for the word w = abacaaacaba, and

one has w = p,(bcaacba).

2.2.1 A closure property

We want to show that if w € Fact(Ep), then also its right and left palindrome
closures belong to Fact(Ep); since Episturmian words are closed under reversal,
and w(") = @w(*), it suffices to prove only the right palindrome closure case.
We have the following

Proposition 2.2.16. Let u be a non-palindromic finite Episturmian word,
let Q be the longest palindromic suffiz of u and write u = saQ) wherea € A
and s € A* (s possibly empty). Then ua = saQa s a finite Episturmian
word.
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Before proving the proposition we need some lemmas. The first lemma was

proved in [3, Theorem 1.1]. We report here a different and simpler proof.

Lemma 2.2.17. Let w be an Episturmian word and P € PAL N Fact(w).

Then every first return to P in w 1s a palindrome.

Proof. By Proposition 2.2.1, we may always suppose that w is a standard
Episturmian word. Let u € Fact(w) be a first return to the palindrome P, i.
e, u = P)\=pP, A\, pc A*, and the only two occurrences of P in u are as a
prefix and as a suffix of u. If |P| > |p|, then the prefix P of u overlaps with
the suffix P in u and this implies, as is easily to verify, that u is a palindrome.
Then let us suppose that u = PvP with v € A*.

Now we consider the first occurrence of u or of @ in w. Without loss of
generality, we may suppose that w = auw’ and that % does not occur in the
prefix of w having length |au| — 1. Let @ be the palindromic suffix of au of
maximal length. If |Q| > |ul|, then we have that @ occurs in au before u, which
is absurd. Then suppose |Q| < |u|. If |u| > |Q| > |P|, then one contradicts the
hypothesis that w is a first return to P. If |Q| = |P|, then Q@ = P has more
than one occurrence in ou, which is absurd in view of Proposition 2.2.6. The

only remaining possibility is @ = u, i. e., u is a palindrome. ]

The following lemma is well known. We report here a proof for the sake of

completeness.

Lemma 2.2.18. Let w € AR and s be the unique right special factor of
length n. If Bi,...,Bm,... are the bispecial factors of w ordered by in-
creasing length, then s is a suffiz of any B,, such that |s| < |B,,| and, for
any z € A, sz € Fact(w).

Proof. Since w is not periodic, by Proposition 2.2.4 the bispecial factors B;,
1 > 0, are its palindromic prefixes. Moreover, if t = t;ty---t,--- € A“ is the
directive word of w, then B;,; = (Bt;)*) for any 4 > 0. Since s is a right
special factor of w, § is left special and thus a prefix of w. Therefore, s is a
suffix of any palidromic prefix B,, of w such that |s| < |B,|. As w € AR,
any letter £ € A occurs infinitely often in ¢; hence there exists & > m such
that x = t;, so that B,z is a factor of w. Since B,, is a suffix of B, it follows
sz € Fact(w). ]
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Lemma 2.2.19. Let w and w' be Arnouz-Rauzy words on the alphabet A.
If w and w' have the same right special factor of length n, then they share

the same factors up to length n + 1.

Proof. Trivial if n = 0. By induction, suppose we have proved the assertion
for the integer n — 1 > 0. Let @ be the common right special factor of w and
w' of length n. If we write Q@ = a@Q’, with a € A, then Q' is the only right
special factor of length n — 1 of both w and w’. Hence w and w' have the same
factors up to length n.

By symmetry, it suffices to prove that any factor v of w, of length |v| = n+1,
is also a factor of w'. Let v = v'b, b € A. Suppose first that v/ = Q. By
Lemma 2.2.18, each right extension Qz, with z € A, is a factor of both w and
w'; in particular, v is a factor of w'.

Now assume that v # Q. Let v' = cv” with ¢ € A, and suppose that
v" = @'. One has then c # a. In this case, since v = cv”"b and Qb = av"b are
different factors of w, one has that v"b is left special in w. Since |[v"b| = n,
one derives that v"b = Q is a left special factor of w' too, so that v = cv”b is a
factor of w’ as a consequence of Lemma 2.2.18.

If v" # @', then v"b is the unique right extension of v" in w. As |v"b| = n, it
is also a factor of w’, and no other letter z is such that v"z € Fact(w'). Hence

v = cv"b is the only right extension in w’ of the factor cv” # Q. O
We can now proceed to prove Proposition 2.2.16.

Proof of Proposition 2.2.16. We first observe that u contains a single occur-
rence of Q. Indeed, if u contained other occurrences of @), by Lemma 2.2.17 the
suffix of u beginning with the penultimate occurrence would be a palindromic
suffix of u strictly longer than @, contradicting the hypothesis of maximality
of the length of Q.

By Proposition 2.2.5 there exists an Arnoux-Rauzy word w such that u €
Fact(w). We can assume that ua ¢ Fact(w) (otherwise ua is in Fact(AR)
as required); so there exist b € A such that b # a and ub € Fact(w). Thus
aQb € Fact(w); since Q is a palindrome and w € AR, also bQa € Fact(w) and
Q@ is a bispecial factor of w. Then it follows that every left special factor of
w longer that ¢ must contain @ as a prefix, and since there is only a single

occurrence of @ in u, @ itself is the longest suffix of u which is left special
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in w. Thus every occurrence of a@ in w must be “preceded” by s, i. e., if
w = AaQu, then w = AN'saQu, with A = A's. In particular aQa is not a factor
of w, for otherwise ua would be in Fact(w), contradicting our assumption.

Set A(w) = tity---. Let B; = €, B,,... be the sequence of all bispecial
factors of w, ordered by increasing length, i. e., |B;| < |B;;1| for all 2 > 0. By
Proposition 2.2.4, they are the palindromic prefixes of w as w is not periodic.
Moreover, for each 7 > 0 we have B;,; = (B;t;)(*), so that Bt; is left special
and t;B; is right special.

Since @ is a bispecial factor of w, one has @ = B,, for some m > 1. Let
|Q| =n — 1 for n > 2. We then have that ¢,,Q is right special in w and, from
Lemma 2.2.18, t,,Qz € Fact(w) for all z € A. It is clear that t,, # a since
aQa ¢ Fact(w) and t,,Qa € Fact(w), then we have that a@Qb and ¢,,Qb are
distinct factors of w, thus Qb is left special and bQ is the unique right special
factor of w of length n. So t,, = b.

Let w’ be any Arnoux-Rauzy sequence over A, whose directive word A(w') =
tit, - - satisflest; = ¢, for 0 <1 < m—1andt,, = a. Since Q is the unique right
special factor of w and w' of length n — 1, from Lemma 2.2.19, we obtain that
w and w’ have the same factors of length k for each £ < n. However, they differ
on some factors of length n + 1. Indeed, from the definition of w’, we have that
a@ is its unique right special factor of length n, so that by Lemma 2.2.18, for
all z € A we have that aQz € Fact(w'). Therefore aQa € Fact(w') \ Fact(w).

Now let us prove that, as in w, each occurrence of a@ in w' is preceded
by s. Let p € A* be such that |p| = |s| and pa@ € Fact(w'). Let then S be
the largest common suffix of pa@ and sa@ and Q' its prefix of length n — 1.
Clearly @ # Q' since there is only one occurrence of @ in sa@. If we assume
that S # pa@Q, then there exist z,y € A such that z # y, S € Suff(saQ) and
yS € Suff(pa@Q); then zQ' and yQ' are both factors of w and w’ since these
latter words have the same factors of length n. Thus Q' is a left special factor
of w and w’, and that is a contradiction, since the only left special factor of
length n» — 1 in w and in w' is @. Thus p = s and so every occurrence of a@Q
in w' is preceded by s.

Since aQa is a factor of w', it follows that saQa = ua is a factor of w'.
Hence ua is in Fact(AR) as required. O

From the preceding proposition one derives the following theorem, an-
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nounced without proof in [27].

Theorem 2.2.20. If w is a finite Episturmian word, then so is each of w(H)

and w().

Proof. Trivial if w € PAL. Let then w = a;---a,Q, where a;, € A for
1=1,...,nand Q is the longest palindromic suffix of w. By Proposition 2.2.16,
wa, = a; - --a,Qa, is a finite Episturmian word; since its longest palindromic
suffix is a,Qa,, also wa,a,_; is Episturmian. In this way, by applying Pro-

position 2.2.16 exactly n times, one eventually obtains that
a1a2 e anQan e .. a2a1 — w(+)
is Episturmian. Since w(~) = w(), the assertion follows. O

Corollary 2.2.21. Let a € A and u € A*. If au 1s a finite Episturmian

word, then so is au(™).

Proof. If au is not a palindrome, then by Theorem 2.2.20, (au)*) = au(Ha is
an Episturmian word and therefore so is au(*). Let us then suppose that au is
a palindrome.

By Theorem 2.2.20 one has u(*) € Fact(s) for a suitable s € AR. Since s is

recurrent there exist letters z,y € A such that
zuMy € Fact(s) .

If z # y, then, since s is closed under reversal, one has also yu(*)z € Fact(s).
Hence u(*) is bispecial, so that it follows au(*) € Fact(s). Let us now consider
the case £ = y. If £ = a, then the assertion is trivially verified.

Suppose then z # a. As au is a palindrome, we can write © = u'a with
u' € PAL. Hence,

z(u'a) Pz € Fact(s) .

Since (u'a)(*) begins with u'a and ends with aw’, one has that zu'a and au'z
are factors of s, so that v’ is bispecial and then a palindromic prefix of s by
Proposition 2.2.4.

Let A(s) = tity---t,--- be the directive word of s. There exists an integer
k such that u' = ¥(¢1ts---tx). We consider any AR word s’ whose directive
word A(s') has the prefix ¢;t;---tra. Thus uw'a = u is a prefix of s’. This
implies, by Propositions 2.2.2 and 2.2.4, that () is a bispecial prefix of s'.

From this one derives au(*) € Fact(s'). O
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2.3 Episturmian morphisms

We recall (cf. [29, 42, 43]) that a standard Episturmian morphism of A* is
any composition u, o o, with w € A* and o : A* — A* a morphism extending
to A* a permutation on the alphabet A. All these morphisms are injective. The
set £ of standard Episturmian morphisms is a monoid under map composition.
The importance of standard Episturmian morphisms, and the reason for their
name, lie in the following (see [29, 43]):

Theorem 2.3.1. An injective morphism ¢ : A* — A* is standard Epistur-
mian if and only if ¢(SEpi) C SEpt, that s, if and only if it maps every
standard Episturmian word over A into a standard Episturmian word over
A.

A pure standard Episturmian morphism is just a u, for some w € A*.
Trivially, the set of pure standard Episturmian morphisms is the submonoid

of € generated by the set {u, | a € A}. The following was proved in [29]:

Proposition 2.3.2. Lett € AY and a € A. Then u.(t) is a standard Epis-

turmian word if and only if so s t.
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Chapter 3

Episturmian words and

generalizations

3.1 Involutory antimorphisms and pseudopalin-

dromes

In this section we shall give the basic notions that, together with the Sturmian
words, which have been presented before, will be the basis of the generalizations

introduced in this chapter.

3.1.1 Antimorphisms of a free monoid

We recall that any (anti-)morphism whose domain is the free monoid A* is
uniquely determined by the images of the letters. Formally, for any monoid M
and any map ¢ : A — M, there exists a unique morphism ¢ : A* — M (resp. a
unique antimorphism ¢ : A* — M) that extends ¢, i.e., such that @|, = ¢
(resp. @|a = ). This property characterizes free monoids, and is usually taken
as the definition of free objects in the frame of category theory (cf. [47]).

A morphism or antimorphism ¢ : A* — A* is tnvolutory if it is an involu-
tion of A*, that is, if ¢? = id.

Ifw=a,---a, € A*, a; € A, 1 =1,...,n, the mirror tmage, or reversal,
of w is the word

W= Qn - 01 .
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One sets € = ¢. The map R : A* — A* defined by w?® = 1 for any w € A*,
called reversal operator, is clearly an involutory antimorphism of A*.

Let 7 be an involution of the alphabet A. Clearly, it can be regarded as a
map 7 : A — A*, and then extended to a unique automorphism 7 of the free
monoid A*. The map ¥ = ToR = Rof7 is the unique involutory antimorphism of

A* extending the involution 7. One has, forw =a;---a,,a;, € A,2=1,...,n,

Any involutory antimorphism of A* can be constructed in this way; for example,
the reversal R is obtained by extending the identity map of A.

If A= {a,b}, then there exist only two involutory antimorphisms, namely,
the reversal R and the antimorphism e = E o R, called exchange antimorph-
1sm, extending the exchange map E defined on A as E(a) = b and E(b) = a.

If the alphabet A has cardinality n, then the number of all involutory
antimorphisms of A* equals the number of the involutory permutations over n

elements. As is well known, this number is given by
[n/2] 1
! - -
" kz:% 2%(n — 2k)!k!

(sequence A000085 in [55]).

3.1.2 Pseudopalindromes

Let ¥ be an involutory antimorphism of A*. A word w € A* is called ¥-
palindrome if it is a fixpoint of 9, i.e., w = w®. The set of all ¥-palindromes
of A* is denoted by PALs(A) or simply PALs when there is no ambiguity.
An R-palindrome is usually called palindrome and PALpg is denoted by
PAL. In less precise terms, a word which is a ¥-palindrome with respect to a
given but unspecified involutory antimorphism %, is also called pseudopalin-

drome.

Ezamples 3.1.1. The English word racecar is a palindrome.

Let A = {a, b}, e be the exchange antimorphism, and w = abaabb. One has
w® = aabbab. The word abbaab is an e-palindrome.

Let A = {a,b,c} and 7 be the involutory permutation defined as 7(a) = b,
7(b) = a, and 7(c) = c. Setting ¥ = ToR, the word abcacbcab is a ¥-palindrome.
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A word is called ¥9-symmetric if it is the product of two ¥-palindromes. An
R-symmetric word is simply called symmetric. In particular, any ¥-palindrome
is ¥-symmetric.

Some combinatorial properties of symmetric words were studied in [23], and
more recently in [10], where the term symmetric was used. One easily verifies
that all words on the alphabet {a, b} of length < 5 are symmetric. The word
w = abaabdb is not symmetric but it is e-symmetric, because it is the product
of the two words ab and aabb which are e-palindromes.

In the remaining part of this section, we will assume that ¢ is a fixed
involutory antimorphism of A*. To simplify the notation, for any w € A*, we

shall denote by w the word w?, so that for all u,v € A* one has

|G| =|u|, wv=va, and TU=wu.

Lemma 3.1.2. A word w s a conjugate of w if and only if it s U-

symmetric.

Proof. If w = o8 with o, 8 € PALy, then w = Ba, so that w ~ w. Conversely,
suppose that w and w are conjugate. One can write w = Ay and w = pA for
some A, 4 € A*. Thus w = AL = Au. Since |A\| = |A|, one obtains A = A and
Y= [ O

Lemma 3.1.3. A ¥-palindrome w € A" has a period p < |w| if and only if
it has a ¥-palindromic prefiz (suffiz) of length |w| — p.

Proof. If w has a period p < |w|, then it has a border v of length |w| — p,
so that we can write w = Av = vu for some words A and u. Since w is a
¥-palindrome, one has

w=vu="7T\.

Therefore, v = ¥. Conversely, if the ¥-palindrome w has the ¥-palindromic
prefix v, one has

W=Vl = [,
so that v is a border of w and |w| — |v]| is a period of w. ]

Lemma 3.1.4. Let w € A" and z, be its fractional root. The word zg s a

conjugate of Z,.
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Proof. Let w be a nonempty word. Since ¥ acts on the alphabet as a per-
mutation, one derives that p is a period of w if and only if it is a period of w.
Therefore one has 7, = m5. We can write w = zF 2’ with £ > 1 and 2’ a proper
prefix of 2z, and

1 =k h 1
w

W=22, =252

with A > 1 and 2" a proper prefix of 2. Since |w| = |@| and |Z,| = |24| = Ta,

one has h = k and, by Lemma 2.1.32, zZ,, ~ 2. O

The following lemma, which will be useful in the sequel, can be derived by

the propositions above.

Lemma 3.1.5. Let w € A" be a ¥-palindrome having a period p < |w|. Any

factor u of w of length p is 9-symmetric. In particular, z, 1s ¥-symmetric.

Proof. Since w = @ and |u| = p, by Lemma 2.1.32 one has u ~ 4. Hence, by

Lemma 3.1.2 one obtains u € PAL3. As |z,| = 7, one derives z,, € PAL3. [

For instance, let A = {a,b} and let ¥(a) = b, %(b) = a. The word w =
babaababbaba is a ¥-palindrome, having the periods 8 and 10. Any factor of w
of length 8 or 10 belongs to PAL3; as an example, abaababb = (ab)(aababb) €
PALA.

For any involutory antimorphism %, one can define the (right) 9¥-palindrome
closure operator: for any w € A*, w®® denotes the shortest ©¥-palindrome
having w as a prefix.

We shall drop the subscript ¥ from the ¥-palindrome closure operator ®¢
when no confusion arises. As one easily verifies (cf. [27]), if @ is the longest

¥-palindromic suffix of w and w = s@, then

Ezample 3.1.6. Let A = {a,b,c} and ¥ be defined asa = b, ¢ =c. Ifw =

abacabc, then Q = cabc and w® = abacabcbab.

The following lemma will be useful in the sequel.

Lemma 3.1.7. For any u € PALy \ {e} and a € A, (ua)® is a first return
tou, 1. e, if (ua)® = Aup with A\, p € A*, then either A =€ or p=¢.
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Proof. By contradiction, let A, p € A" be such that
(ua)® = Aup . (3.1)

Clearly |A| + |u| + |p| = [(ua)®]| < 2|u| + 2, which implies |A| < |u| +2 — |p| <
|lu| + 1. Let us show that actually one has |A| < |u|. Indeed, if A = ua then
from (3.1) one derives |(ua)®| = 2|u| + 2; this implies that a ¢ PALs and
(ua)® = uwadu = waup, so that up = au. It follows that for some £ > O,
u = a*¥ ¢ PALs, a contradiction.

Let then v,w € A* be such that v = Av and (ua)® = uw = Wwu, whence
Aup = uw = Avw. Thus up = vw, so that v is also a prefix of w and therefore
a border of u. Since u is a ¥-palindrome, v is a ¥-palindrome too, so that
u = \v = v\. Therefore

(ua)® = Aup = Avdp.

Thus AvA is a ¥-palindrome beginning with ua and strictly shorter than (ua)®,

which is a contradiction. O

3.1.3 Unbordered pseudopalindromes

We denote by Ps the set of unbordered ¥-palindromes. We remark that Py
is a biprefiz code. This means that every word of Py is neither a prefix nor
a suffix of any other element of Py;. We observe that P = A. The following
result was proved in [12]:

Proposition 3.1.8 (Theorem 3.6.2). PALy = Pj.

This can be equivalently stated as follows: every ¥-palindrome can be
uniquely factorized by the elements of Ps. For instance, the ¥-palindrome
abacabcbab of Example 3.1.6 is factorizable as ab - acabcb - ab, with acabcb, ab €
Ps.

Since Py is a code, the map

fiPs — A (3.2)
r — 7t

can be extended (uniquely) to a morphism f : P; — A*. Moreover, since Py
is a prefix code, any word in Py can be uniquely factorized by the elements of

Ps, so that f can be naturally extended to Py.
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Proposition 3.1.9. Let ¢ : X* — A* be an injective morphism such that
#(X) C Ps. Then, for any w € X*:

1. ¢(w) = p(w),
2. w € PAL < ¢(w) € PALsy,

3. $p(w) = g(w)®.

Proof. The first statement is trivially true for w = ¢. If w = z;---z, with
z; € X fori=1,...,n, then since ¢(X) C Py C PALy,

¢(D) = @(n) -+ $(z1) = P(2n) - - (1) = P(w) .

As ¢ is injective, statement 2 easily follows from 1.
Finally, let ¢(w) = v@Q where v € A* and Q is the longest ¥-palindromic
suffix of ¢(w). Since ¢p(w), @ € P; and Py is a biprefix code, we have v € Pj.

This implies, as ¢ is injective, that there exist w;, wy € X* such that w = w;w,,

¢(w;) = v, and ¢p(w2) = Q. By 2, w, is the longest palindromic suffix of w.
Hence, by 1:
¢(w(+)) = P(wrw21:) = vQV = (/5('00)EB )

as desired. !

Ezample 3.1.10. Let X = {a,b,c}, A ={a,b,c,d, e}, and ¥ be defined in A as
a=>b¢=c and d=ce. Let ¢ : X* — A* be the injective morphism defined
by ¢(a) = ab, ¢(b) = ba, ¢(c) = dce. One has ¢(X) C Py and

o) ((abc)(+)) = ¢(abcba) = abbadcebaab = (P(abc))® .

3.2 Pseudostandard words

We can naturally define a map 9 : A* — A* by 9s(e) = € and

Vs (ua) = (Yo(u)a)®

for u € A*, a € A. For any u,v € A* one has 9¥s(uv) € ¥s(u)A* N A*s(u),
so that, as done for the iterated palindrome closure, the domain of ¥ can be

extended to infinite words too. More precisely, if z € A, then

"pﬂ(x) = 77:,|'l—>nolo wﬁ(wn) )
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where {w,} = Pref(z) N A" for all n > 0. The word z is called the directive
word of ¥(z) and is denoted by A(9s(z)). The images of infinite words over A
by 1 have been called ¥-standard words in [27]. If ¥ = R, then ¥z = 9, where
1 is the iterated palindrome closure operator introduced before, so that an R-
standard word is a standard Episturmian word. A ¥-standard word, without

specifying the antimorphism ¢, has been called pseudostandard word.
Ezample 3.2.1. Let A = {a,b} and ¥ = E o R, so that @ = b. For z = (ab)",
we have 95(a) = ab, ¥s(ab) = abbaab, and

s = 9Ps(z) = abbaababbaabbaab- - - .

The word s is the ¥-standard word having z as its directive word.

The following theorem, proven in [27], shows that any 9¥-standard word is
a morphic image of the standard Episturmian word having the same directive
word.

Theorem 3.2.2. For any w € A%, one has ¥s(w) = us(¢¥(w)), where ps s

the injective morphism defined as us(a) = a® for any letter a € A.

For instance, one easily verifies that the word s of Example 3.2.1 is equal to
u(f), where f is the Fibonacci word and p = p is the Thue-Morse morphism
defined as u(a) = ab, u(b) = ba.

A new proof of Theorem 3.2.2 will be given in Section 3.3, as a consequence
of a more general result. Some general properties of ¥-standard words have

been considered in [27]. In particular, we recall that

Proposition 3.2.3. Let s = ¢s(z) be a ¥-standard word. The following
hold:

1. w is a prefiz of s if and only if w® is a prefiz of s,

2. the set of all ¥9-palindromic prefizes of s is given by s(Pref(z)),
3. s 1s closed under 9, 1. e. , if w € Fact(s), then w € Fact(s).
Moreover, the following holds:

Proposition 3.2.4. If s 1s a ¥-standard word over A and two letters of A
occur infinitely often in A(s), then any prefix of s is a left special factor

of s.
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Proof. A prefix p of s is also a prefix of any ¥-palindromic prefix B of s such
that |p| < |B|. Since B is a suffix of any 1}-palindromic prefix of s whose length
is at least |B|, and there exist two distinct letters (say a and b) which occur
infinitely often in A(s), by Proposition 3.2.3 one derives Ba, Bb € Fact(s).
Therefore, as p € Suff(B), we have pa,pb € Fact(s), i. e. , p is right special.
Since by Proposition 3.2.3 s is closed under 1, one has ap,bp € Fact(s); as
a #b, p is left special. O

For the converse of the previous proposition, we observe that a ¥-standard
word s can have left special factors which are not prefixes of s. For instance,
consider the ¥-standard word s in Example 3.2.1. As one easily verifies, b and
ba are two left special factors of s, which are not prefixes.

However, we will show that if a left special factor w of a ¥-standard word
s is not a prefix of s, then |w| < 2. For a proof of this we need a couple of
lemmas. We denote by A’ = A\ PALs the set of letters of A that are not
¥-palindromic.

Lemma 3.2.5. The following holds:
A'ps(A") N ps(A™) = po(A)A N us(A*) =0 .

Proof. 1t is sufficient to observe that any word in us(A*) has an even number

of occurrences of letters in A'. O

Lemma 3.2.6. Let b,c € A', and let f = bus(u) and g = us(v)c be factors
of a ¥-standard word t = us(s), with s € SEp. Then:

1. If bu,vc € Fact(s) and |f| > 1, then f # g.
2. If u € Fact(s) and |f| > 3, then bu € Fact(s).

Proof. (1). Since |f| > 1, one has u # . By contradiction, if f = g, one has
also v # €, so that, from the definition of ., bb is a prefix of uy(v). Then bb is a
prefix of wy(u), and so on; therefore, f = b(bb)* = (bb)*b for k = |u| = |v| > 1.
Hence ¢ = b, u = b*, and v = b*. As k > 1, by Proposition 2.2.6, bu = b**! and
vc = b¥*! cannot be both factors of the Episturmian word s, a contradiction.
(2). Since |f| > 3, one derives |u| > 1. By contradiction, suppose bu ¢
Fact(s). By the preceding lemma and by Theorem 3.2.2, one derives f =
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ws(v')c' for some suitable v’ € A* and ¢’ € A’ such that v'c’ € Fact(s). As done
before, one then obtains f = (bb)*b so that b*,b* € Fact(s), which is absurd by
Proposition 2.2.6, as k > 2. L

Theorem 3.2.7. Let w be a left special factor of a ¥-standard word t =
ws(s), with s € SEp. If lw| > 3, then w 1s a prefiz of t.

Proof. By Theorem 3.2.2, w can be written in one of the following ways:
1. w = py(u), with u € Fact(s),

2. w = bus(u), with bu € Fact(s) and b € 4’,

w

w = ps(u)c, with uc € Fact(s) and c € 4/,
4. w = bus(u)c, with buc € Fact(s) and b,c € A’

In case 1, let zw, yw € Fact(t) with z # y letters of A. If z is ¥-palindromic,
then clearly one must have zu € Fact(s). If z € A', then by the preceding
lemma one has Zu € Fact(s), as |[zw| > 3. Since the same holds for y, v is a
left special factor of the Episturmian word s, and therefore a prefix of it. Thus
w = ps(u) is a prefix of t.

Cases 2 and 4 are absurd; indeed, by the preceding lemma one derives that
every occurrence of w is preceded by b.

Finally, in case 3, by the preceding lemma one derives that every occurrence
of w is followed by ¢. Hence ws(uc) is a left special factor of ¢ and one can

apply the same argument as in case 1 to show that it is a prefix of ¢. ]

An infinite word ¢ is a ¥-word if there exists a ¥-standard word s such that
Fact(t) = Fact(s). An R-word is an Episturmian word.

Proposition 2.2.16 and Theorem 2.2.20 can be extended to the class of ¥-
words, showing that if w is a factor of a ¥-word, then w® and w® are also factors
of ¥-words. A proof can be obtained as a consequence of Theorems 2.2.20 and

3.2.2 and of Corollary 2.2.21. However, we need the following lemma (cf. [27]):

Lemma 3.2.8. Let u € A* and z € AU {e}. Then

(ko(w)2)® = o ((u2) V) .
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Theorem 3.2.9. Let w be a factor of a ¥-standard word. Then each of w®

and w® 1is a factor of a ¥-standard word.

Proof. We shall suppose w ¢ PALy, otherwise the result is trivial. Since
w® = w®, it suffices to prove the result for w®. Let A' = A\ PALy as above.
From Theorem 3.2.2, one derives that w can be written in one of the following

ways:
1. w = ps(u)z, with z € AU {e} and uz € Fact(Ep),
2. w = @us(u)b, with a,b € A’ and aub € Fact(Ep),
3. w=apys(u), with a € A" and au € Fact(Ep).

In the first case, by Theorem 2.2.20 there exists a standard Episturmian word
s = (A) such that (uz)*) € Fact(s). Thus, by Lemma 3.2.8 and The-
orem 3.2.2, w® = py ((um)(+)> is a factor of the ¥-standard word 94(A) =
s (S)-

In the second case, by using Lemma 3.2.8, one has:

w® = a (us(w)b)® a = auy ((ub)(”) a € Fact (/Jug (a(ub)(+)a>> :

Moreover, aub is not a palindrome, since otherwise one would derive, for in-
stance using Lemma 3.2.8, that w = aus(u)b is a ¥-palindrome, which con-
tradicts our assumption. Thus (aub)™) = a(ub)(*)a and the result is a con-
sequence of Theorem 3.2.2.

In the third case, since w is not a ¥-palindrome, by Lemma 3.2.8 one obtains
w® = auy(u)®a € Fact (uﬂ(au(”a)) :

If u = a* for some k > 0, then au(*)a = a**2 € Fact(Ep); otherwise aul*) is
not a palindrome and au(*)a = (au(™)*), so that aul*)a is Episturmian by
Corollary 2.2.21 and Theorem 2.2.20. Once again, the assertion follows from
Theorem 3.2.2. O

Corollary 3.2.10. Let w be a factor of a ¥-standard word. Then there

erists a ¥9-standard word having both w® and w® as factors.
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Proof. Trivial if w € PALy. Let then w = Pbt = sa@, where P (resp. Q) is
the longest ¥-palindromic prefix (resp. suffix) of w, and a,b € A. Thus wa and
bw, being respectively factors of w® = saQas and w® = tbPbt, are factors of
¥-standard words by Theorem 3.2.9.

Suppose wa ¢ PALy. Then (wa)® = aw®a, so that w®a is a factor of some
¥-standard word, by Theorem 3.2.9. Consider the word

(w®a)® = (tbPbta)® = (tbsaQa)® ,

and call Q' the longest ¥-palindromic suffix of w®a; then @' = aQa. Indeed,
since aQa is a ¥-palindrome, one has |Q’'| > |aQal; but [aQa| < |Q'| < |saQa]|
is absurd, for @ would not be the longest ¥-palindromic suffix of w, and |Q’| >
|saQa| cannot happen, for otherwise there would exist a ¥-palindromic proper
suffix of w® having w as a suffix, contradicting the definition of w®. Thus

(w®a)® = thsaQasbt = tbPbtasbt

is a factor of some ¥-standard word, again by Theorem 3.2.9, and it contains
both w® and w® as factors.

If wa € PALy but bw ¢ PALs, one can prove by a symmetric argument
that (bw®)® is a factor of some ¥-standard word having both w® and w® as
factors. Let then wa,bw € PALs, so that

®

w® = wa = aw and w® = bw = Wh . (3.3)

If w is a single letter, one derives w — a = b, so that w® = a@ and w® = aa.
Therefore w® and w® are factors of any ¥-standard word whose directive word
begins with a®. Let us then suppose |w| > 1. From (3.3) it follows w = aRb
for some R € A* such that aR = Ra = P and Rb = bR = Q. Moreover,

w = aRb = abR = Rab, (3.4)

showing that R is a border of w. Therefore one has either w = (ab)* or
w = (ab)*a, for some k > 0. In the first case, from (3.4) one derives a = a@ and
b = b, so that any ¥-standard word whose directive word begins with ab*+?
contains both w® = (ab)*a and w® = b(ab)* as factors. In the latter case,
by (3.4) one obtains a = b, so that any ¥-standard word whose directive word

begins with a**! contains both w® = (aa)* and w® = (@a)* as factors. O
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Remark. For a finite Episturmian word w, the proof of the preceding result
can be simplified by using Theorem 2.2.20 and Corollary 2.2.21. Indeed, if
w is not a palindrome, we can write w = Pbt = saQ), where P and @ are
respectively the longest palindromic prefix and suffix of w, and a,b € A. By
Theorem 2.2.20, w*) and w(~) are finite Episturmian words; moreover bw is a
factor of w(*), so that by Corollary 2.2.21, bw(t) is a finite Episturmian word.
By Theorem 2.2.20, (bw(Jr ))H is a finite Episturmian word, which has also
w(~) as a factor, as one can prove similarly as in the proof of Corollary 3.2.10.

In the case of Sturmian words, results analogous to Theorem 3.2.9 and
Corollary 3.2.10 were proven in [27] with a different and simpler technique

based on the structure of finite Sturmian words.

Example 3.2.11. Let 7 be the Tribonacci word
T = ¢ ((abc)*) = abacabaabacababacabaabacabac- - - .

If w = bac € Fact(r), one has that w(*) = bacab and w(~) = cabac are
factors of 7. However, in the case of the factor v = abacabab, one has v(*) =
abacababacaba € Fact(7), whereas v(~) = babacabab is not a factor of 7, since
otherwise v would be a left special factor of 7, which is a contradiction as
v ¢ Pref(7). Nevertheless, both v(*) and v(~) are factors of any Epistur-
mian word whose directive word begins with abcbb. Indeed, v = Pb where

P = abacaba is the longest palindromic prefix of v, and

(bv(”)(i) = abacababacababacaba = 1 (abcbb) .

3.3 Words generated by nonempty seeds

We now consider a generalization of the construction of ¥-standard words.
Define the map vy : A* — A* by setting ¥s(e) = uo with ug a fixed word of
A* called seed, and

Po(ua) = (s(u)a)”
for u € A* and a € A. As usual, we can extend this definition to infinite words
t € A¥ by:

z)519(75) = nh_)T{)lo z)519(“%) )
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where {w,} = Pref(t) N A" for all n > 0. The word ¢ is called the directive
word of zﬁﬁ(t), and denoted by A(iﬁﬂ(t)). When the seed u, is empty, one has
s = 5 so that one obtains ¥-standard words. If uy # €, then any word ﬁﬂ(t)
is called ¥-standard with seed.

Ezample 3.3.1. Let A = {a,b,c}, ¥ be the involutory antimorphism exchan-

ging a and b and fixing ¢, uy = acbbc, and w = abc. Then

Po(w) = (z%(ab)c)GB = ((z%(a)b) ® c) L (((acbbca)%) ® c) ?
= ((acbbcaacbb)@c) ® — acbbcaachbeaachbcachbeaachbeaach .

Ezample 3.3.2. Let A = {a,b,c}, ¥ be the involutory antimorphism exchan-

ging b and c and fixing a, uy = ab, and w = aac. Then

?ﬁﬁ('w) = (?ﬁﬁ(aa)c>e = ((lﬁa(a)a)ec>® = ((abaca.a.)EB c)e)

= (abacaabacac)® = abacaabacacbabacaabaca .

Let t = ztit,---, withz € A and ¢; € A for + > 1. We remark that the set
of ¥-palindromic prefixes of the word w = 9,(t) is

(PALs N Pref(ug)) U{u, |n > 1},

where u; = (uoz)® and w1 = (u;t;)® for 7 > 1.

Define the endomorphism ¢, of A* by setting

¢.(a) = Ps(za)Ps(z) ™"

for any letter a € A. From the definition, one has that ¢, depends on ¥ and
ug; moreover, ¢,(a) ends with a for all a € A, so that any word of the set
X = ¢,(A) is uniquely determined by its last letter. Thus X is a suffix code,

and ¢, is an injective morphism.

Example 3.3.3. Let A, 19, and uq be defined as in Example 3.3.1, and let z = a.
Then

¢.(a) = s(aa)ys(a)™! = acbbcaach ,
do(b) = vg(ab)hs(a)™ = achbea , (3.5)
bo(c) = vs(ac)Ps(a)™ = acbbcaache .
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To simplify the notation, in the following we shall often omit in the proofs

the subscript z from ¢,, when no confusion arises.

Theorem 3.3.4. Fizz € A and ug € A*. Let 1y and ¢, be defined as above.
Then for any w € A*, the following holds:

Yo (zw) = ¢(Y(w))s(z) -

Proof. In the following we shall often use the property that if v is an endo-

morphism of A* and v is a suffix of u € A*, then y(uv ) = y(u)y(v) .

We will prove the theorem by induction on |w|. It is trivial that for w = ¢
the claim is true since ¥(¢) = € = ¢(g). Suppose that for all the words shorter
than w, the statement holds. For |w| > 0, we set w = vy with y € A.

First we consider the case |v|, # 0. We can then write v = v;yv, with

|va]y = 0, so that

Ps(zv) = Ps(zv1yvs) = Ps(zv1) YA = AgPs(z01)

for a suitable A € A*. Note that 93(zv,) is the largest ©¥-palindromic prefix
(resp. suffix) followed (resp. preceded) by y (resp. 7) in ¥y(zv). Therefore,

Ps(zvy) = AGPs(zv1)yA = Ps(zv)Ps(zv1) “Ps(zv) - (3.6)

By a similar argument one has:

Y(vy) = Y)Y (v) Y (v) . (3.7)

By induction we have:

Po(zv) = P(Y(v))Ps(x) , Po(zv1) = H(P(v1))Ps() -

Replacing in (3.6), and by (3.7), we obtain

~

Po(zvy) = d(¥(v)p(W(v1)) *d(W(v))Ps(z)
= (W)Y (v1) Y(v))Ps(z)
= ¢(¥(vy))¥s(z) ,

which was our aim.

Now suppose that |v|, = 0 and PALy N Pref(uoz)y * # 0. Let o, be the
longest word in PA Ly N Pref(uez)y~?, that is the longest ¥-palindromic prefix
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of ugz which is followed by y. Since |v|, = 0, one derives that the longest

¥-palindromic suffix of ﬁﬂ(mv)y is ya,y, whence

Ps(zvy) = (zﬁﬁ(xv)y)ea = Ps(zv)oy, Ps(av) - (3.8)

By induction, this implies

Yo (zvy) = d(P(v))s(z) o, d(P(v))ds(2) - (3.9)

By using (3.8) for v = ¢, one has ¥y(zy) = ﬁﬂ(m)aglzﬁﬁ(x), and

B(y) = Po(zv) (Yo(2)) = Pole)a, "

Moreover, since 9 (v) has no palindromic prefix (resp. suffix) followed (resp. pre-
ceded) by y one has

Y(vy) = P(v)yy(v) - (3.10)
Thus from (3.9) we obtain

~

Ps(zvy) = ¢(¥(v)d(y)d(¥(v))ds(z)
= ¢ (v)yy(v))Ps(z)
= ¢(¥(vy))vs(z) .

Finally we consider |v|, = 0 and PALs N Pref(upz)y™* = 0. In this case,
since ¥y(zv) has no ¥-palindromic suffix preceded by 7 (has no 9¥-palindromic

prefix followed by y), we have

Ys(zvy) = Ps(zv)y®ds(zv) - (3.11)
By induction we then obtain
Vs(zvy) = Ps(zv)y®Ps(zv) (3.12)
= d(Y(V)¥s(2)y®(W(v))Ps(z) -
In particular, if v = &,
bs(zy) = Ps(2)y®ds(2) ,

S0

@Zﬁ(xy)"ﬁﬂ(x)il = 1ﬁ19($)ya9 = d(y) .
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Then from (3.12) and (3.10) one derives

Po(zvy) = ¢(W(v))PY)d(¥(v))Ps(z)
= (Y)Y (v))Ps(z)
= ¢(¥(vy))Ps(z) ,

which completes the proof. O

Ezxample 3.3.5. Let us refer to Example 3.3.1. We have w = abc, ug = acbbc,

and ¢ defined by @ = b, ¢ = c. By the preceding theorem, one has

s (abe) = (9 (bc))Ps(a) -

Since 1(bc) = beb, ¢a(beb) = Bo(b)Pa(c)Pa(b), and 9s(a) = (uoa)® = acbbcaach,
by using (3.5) we obtain

Ps(abc) = acbbcaacbbcaacbcacbbcaacbbeaach |,

as already shown in Example 3.3.1.

From Theorem 3.3.4, in the case that w is an infinite word, we obtain:

Theorem 3.3.6. Let w € AY and x € A. Then

Ys(zw) = do((w))

1. e. , any Y-standard word s with seed 1s the image, by an injective
morphism, of the standard Episturmian word whose directive word s ob-

tained by deleting the first letter of the directive word of s.

Proof. Let w € A, t = ¢¥(w), and w, = Pref(w)N A" for alln > 0. From The-
orem 3.3.4, for all n > 0, g (zw,) = ¢p(¥(w,))Ps(z). Since Y(Wny1) = Y(w,)én

with gn € A+; one has ¢(¢(wn+1)) = ¢(¢(wn))¢(£n) Hence; "ﬁﬂ(mwnﬁrl) has
the same prefix of 9s(zw,) of length |¢((w,))|, which diverges with n. Since

lim $(9(wn) = ¢ ($(w)) |

the result follows. O
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In the case of an empty seed, from Theorem 3.3.4 one has

Po(zw) = o (Y(w))¢Ps(z) = G (9h(w))z® . (3.13)

Moreover, one easily derives that

¢=(z) =2, ¢u(y) =2%® fory#z.

When 14y = € and ¥ = R, the morphism ¢, reduces to u, defined as
pz(y) = zy for y # z and u,(z) = z. Since z® = z, from (3.13) one obtains

the following formula due to Justin [42]:

Y(zw) = pe(Y(w))z . (3.14)

It is noteworthy that Theorem 3.3.4 provides an alternate proof of The-

orem 3.2.2:

Proof of Theorem 3.2.2. 1t is sufficient to observe that, in the case of an
empty seed, z® = us(z) and ¢, = wy o u,, so that by (3.13) and (3.14) one
derives:

Po(zw) = (ks © o) (P(w))to(2) = wo(p=(¥(w))z) = po(Y(zw)) ,
as desired. O

Our next goal is to prove a result analogous to Theorem 3.2.7 for words
generated by nonempty seeds. However, because of the presence of an ar-
bitrary seed, one cannot hope to prove exactly the same assertion; thus in
Theorem 3.3.10 we shall prove that any sufficiently long left special factor of
a ¥-standard word with seed is a prefix of it, and give an upper bound for the
minimal length from which this occurs, in terms of the length of (ugz)®.

In the following, we shall set
ur = Ps(z) = (u02)®,

so that ¢,(a) = (u1a)®u; ' and |¢,(a)| < |uy| + 2 for any a € A.

For any letter a, u, will denote (if it exists) the longest 9¥-palindromic suffix
(resp. prefix) of u; preceded (resp. followed) by @ (resp. by a). One has then
u; = ¢.(a)u, for any a such that u, is defined, and ¢,(a) = u;a® otherwise.
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Lemma 3.3.7. Let X = ¢,(A). If w € X*, then u; € Pref(wu,).

Proof. Trivial if w = €. We shall prove by induction that for all n > 1, if
w € X", then u; € Pref(wu;). Let w € X. Then there exists a € A such that
w = ¢(a) = (u1a)®u;’. Thus wu; = (u;a)®, so that the statement holds for
n=1.

Let us suppose the statement is true for n, we will prove it for n + 1. If
w € X" there exist a € A and v € X™ such that w = ¢(a)v. By induction,
vu; can be written as u;v’' for some v’ € A*. Then one has wu; = ¢(a)u,v’

and, as shown above, u; is a prefix of ¢(a)u;, which concludes the proof. [J

Recall (cf. [7]) that a pair (p, q) € A* x A* is synchronizing for the code X
over the alphabet A if for all A, p € A%,

Apgp € X* — Ap,gp € X*.
Proposition 3.3.8. The pair (e,u;) is synchronizing for X = ¢,(A).
Proof. Since X is a suffix code, it suffices to show that for any A, p € A,
Ayp€e X' —= upe X*.

This is trivial if A = €. Let us factorize Au;p by the elements of X. Then we
can write A = Xp and u;p = sp/, where X, p’' € X*, and ps = ¢(a) € X for
some letter a (see Figure 3.1). If p = ¢, then trivially u;p € X*. Suppose then
p # €, so that s ¢ X.

Since ps € X, it follows |s| < |us| + 1. Let us prove that |s| < |u;|. By
contradiction, suppose |s| = |u;| + 1. Then ¢(a) = ps = w;ad and s = u,a.
Therefore ps = u;ad = pu,a, so that u;a = pu,;. This implies a = p and u; =
a* for a suitable k > 0. Since a is not a ¥-palindrome, it follows u; ¢ PALsy, a
contradiction.

Thus one has u; = sw for some w € Pref(p’). By Lemma 3.3.7, u; is a
prefix of p'u;; clearly, w is a prefix of p'u; too. Therefore w is a prefix of u;,

as |w| = |u;| — |s|. Thus u; = w3, and
(u10)® = ¢(a)us = psu, = psws = pu,3 .

Since p # ¢, by Lemma 3.1.7 one obtains 5§ = €. Hence u,p = p' € X*. O
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U1

U1

Figure 3.1: Proposition 3.3.8

In the following, if Z is a finite subset of A*, we shall denote by Z“ the
set of all infinite words which can be factorized by the elements of Z. As is
well known (cf. [7]) a word ¢ € Z“ has a unique factorization by means of the
elements of Z if and only if Z is a code having finite deciphering delay. By
Lemma 3.3.7, the code X = ¢.(A) has the property that there exists an integer
n > 0 such that u; € Pref(v) for all v € X™; from Proposition 3.3.8 it follows
that all pairs of X™ x X™ are synchronizing for X, so that X has a bounded

synchronization delay and therefore a finite deciphering delay.

Lemma 3.3.9. Let X = ¢,(A) and w = rujazs € X*, with a,z € A and
r,s € A*. If we set v' = ¢,(a) ‘uiaz, then (r,v's) is in X* x X* and it is

an occurrence of ¢.(a) in w.

U1

Figure 3.2: Lemma 3.3.9

Proof. Let w € X* be such that w = ru;azs, with 2z € A. From Proposi-
tion 3.3.8 we have that r and u;azs are in X*. Let y € A be a letter such

that v = ¢(y)‘uiazs is in X* and set v'

= ¢(y)'uiaz. It is clear from
the definition of ¢ that either v' = ¢, v = 2 or v' = uyaz, where u, is the
longest ¥-palindromic suffix of u; preceded by . In the first two cases, it must
be ¢(y) = u1a®, so that a = y; let then v = uyaz (see Figure 3.2). Since
v =v's € X*, from Lemma 3.3.7 it follows that u, is a prefix of v'suy, so uya,

whose length is less than |u,|, is a prefix of u;. By definition, u, is a prefix of
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u; followed by y, hence u,y = uy,a and a = y. Thus (r,v's) € X* x X* is an

occurrence of ¢(a) in w. O

Theorem 3.3.10. Let t = Py(zA) be a ¥-standard word with seed. Then
there exists an integer N > 0 such that any left special factor of t of length

greater than or equal to N is a prefic of t.

Proof. Set z = Y(A) = z125---2,---, Where 2; € A for all 2 > 1. From

Theorem 3.3.4 we have that ¢t = ¢(2), so that ¢ can be factorized uniquely as

t = @(21)P(22) - B(2n) -~ € XY,

where X = ¢,(A). We shall prove that each left special factor w of ¢ longer
than 2|u;|+2is also a prefix of ¢. Since w is left special, there exist two different
occurrences of w in ¢ preceded by distinct letters, say a and b. Moreover, since

|lw| > 2|u;| + 2, we can write
W = pP(Zis1 - Zisn)s = PP(2j41 - Zj4k)S (3.15)

where ¢(z;) = rap, ¢(2;) = r'vy’, ¢(zitn+1) = sA, and @(2j4x41) = s'N, with
A A € AT and 1, 7, h, k positive integers. Thus one can rewrite ¢ as

t=¢(21 zii1)rawAP(Zigni2- ) = P21 - 2j_1) P bWN B(2j 0427 - - )

Without loss of generality, we can suppose |p| < |p|. From (3.15) and from the

preceding equation, we have
rap' (241 2j4k)S AD(Ziynio- - ) € XY,

Since |w| > 2|ui| 4+ 2 and p' < |uq| + 1, one has |¢(2;+1- - 2j4x)s"| > |u| + 1,
so that from Lemma 3.3.7, u; is a prefix of ¢(2;41---2j1x)s'A'u; and then of
G(241 - Zj4)s"

By Proposition 3.3.8, (p', #(2;+1 - - - 2j1x)s) is a synchronizing pair for X, so
that rap’ is in X*. If p’ # ¢, then 7'bp’ is the only word of the code X having
p' as a suffix (recall that any codeword of X is determined by its last letter);
hence it should be a suffix of rap’, which is clearly a contradiction as a # b.

Then p’ = ¢, that implies also p = €. Thus, we can write

t=@(21- - 2)WAG(Zisni2- -+ ) = P21 - 'zj)W/\l¢(zj+k+2 1),
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and z; # z;, as w is left special. Since

W= @(2ziy1- - 2ign)s = G(Zj11 - Zj4k)$

is longer than 2|u;| + 2, and |s|, |§'| < |uy| + 1, there exists a letter ¢ € A such
that u;cis a prefix of both ¢(2;11 - - - 2i44) and ¢(2j41 - - - 2j4¢). By Lemma 3.3.9
one has $(zi1 -+~ 2isn) = B(c)p and P(zjs1- - zj4x) = $(c)o With p, 0 € X7,
so that z;.1 = z;41 = c since X is a code.

Let [ be the greatest integer such that z;,, = 24, for all m < [. Then
both 2,241 ---2;4; and 2;2j41---2j41 = 2j2i41 - - 2 are factors of z. Since
Z; # Zj, Ziy1+ -2y 18 a left special factor of the Episturmian word z, thus a
prefix of z, 1. e. , Z;y1 -2, = 21--- 2. Hence ¢(2;41---2:4;) is a prefix of ¢.

Now let us suppose that w' = @(zi11411 - 2Zisn)s = (254141 2j1k)8 18
strictly longer than w;. By Lemma 3.3.7, there exists a letter d such that u;d
is a prefix of w’, so, by applying Lemma 3.3.9 to w'A € X* and to w'\ € X*
one derives @(z;1111) = ¢(2j14+1) = ¢(d), contradicting the fact that 2 + I
was the largest of such indexes. Then |w'| < |u;|. By Lemma 3.3.7, u; is
a prefix of w'Au;. Thus w' is a prefix of u; and w = @(z;11- - 2z;)w' is
a prefix of ¢(z;41---2i1)ur = @(21---2;)u;. Let m be an integer such that
lur| < |p(z131 - 214m)|- By Lemma 3.3.7, u; is a prefix of ¢(2;11- - 211m) and
@¢(21---z)uy is a prefix of ¢(2;---211m) Which is a prefix of ¢. In conclusion,
we obtain that w is a prefix of ¢. O

We observe that the proof of the preceding theorem shows that for a -
standard word s with seed wuy, all left special factors of length greater than or
equal to N = 2|u;| + 3 are prefixes of s. However, this bound is not tight. In
fact, for instance, if ug = ¢ then N = 5, whereas from Theorem 3.2.7 one has
that all left special factors of a ¥-standard word s, having length at least 3, are
prefixes of s.

The following lemma, whose proof is in [27], will be useful in the sequel.

Lemma 3.3.11. Let u € A* and w = (uz)®, where z € A. If p is any prefic
of w of length |p| > |u|, then p® = w.

Proposition 3.3.12. Let s = 94(A) be a ¥-standard word with a seed uy of
length k. The following hold:
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1. A word w with |w| > k is a prefiz of s if and only if w® s a prefiz of

S,
2. the set of all ¥-palindromic prefizes of s 1s given by

Po(Pref(A) \ {e}) U (PALs N Pref(u,)) , (3.16)

3. s 15 closed under U.

Proof. If w® is a prefix of s, then trivially w is a prefix of s. Conversely,
suppose that w is a prefix of s with |w| > k. If A = =ztyty---t,--- with
z € Aandt; € A, i > 0. Let us set u; = (uoz)® = ¥y(z) and for n > 1,
Upi1 = ﬁﬁ(xtl -++t,), so that u,,; = (u,t,)®. We consider the least n such
that |u,| < |w| < |up11|.- By Lemma 3.3.11 one has w® = u, ; € Pref(s). This
proves point 1.

By the definition of ¥-standard words with seed, all the words in the set
(3.16) are ¥-palindromic prefixes of s. Conversely, let w be a ¥-palindromic
prefix of s. If |lw| < k, then trivially w € PALs N Pref(u,). If |lw| > k, then
by following the same argument used for point 1, one has that there exists an
integer n > 0 such that w = w® = u,, € ¢s(Pref(A)). This proves point 2.

Let w be a factor of s. Since there are infinitely many 1J-palindromic prefixes
of s, there exists a ©¥-palindromic prefix u having w as a factor. Therefore, also

w is a factor of u and of s. This concludes the proof. O

By a generalization of an argument used in [29] for Episturmian words, one

can prove the following:

Proposition 3.3.13. Any ¥-standard word s with seed is uniformly recur-
rent.

Proof. Let A(s) = zt;---t,--- be the directive word of s = lim,, , u,, where
U1 = (upz)® and u, 1 = (unt,)® for n > 0. The word s is trivially recurrent.
We shall prove that the shifts of the first returns to any factor v of s are
bounded by a constant. Let m be the smallest integer such that v € Fact(u,,).
Let us set p = u,, and let p, be the maximal shift of all first returns to p in
Un, for all m > m. Since u,,; = (unt,)®, one has |u,1| < 2|u,| + 2, where

such upper bound is reached if and only if U, 1 = Untnt,u,. This implies that
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pm+1 < |p| + 2. Moreover, for all n > m we have p,.1 < max{p,, |p| + 2}.
Indeed, let w be a first return to p in u,; of maximal length, so that its shift
is pny1. If w € Fact(u,), then p,.; = p,. Let us suppose that w is not a
factor of u,. We set u, = A\p = pA and u,,; = awfB with o, 3, X € A*. Then
o] > |A| and |B| > ||, otherwise w would be a factor of u,. Therefore, as

|Uny1] < 2|u,| + 2, we obtain
[w| < |tny1| = 2[A] = [Uni1| — 2|un| +2[p| < 2[p[+ 2,

so that p,y1 < |p| + 2. Thus in any case p,,; < max{p,, |p| + 2}. As ppni1 <
Ip| + 2, it follows that p, < |p|+ 2 for all n > m.

Since v is a factor of u,,, the shifts of all first returns of v in s are upper
limited by |p| + 2 = || + 2. O

Let 94(A) be a ©¥-standard word with seed uo and directive word A =
xtity---t, -+ -. Define the endomorphism ¢, of A* by setting

¢:(a) = Ps(za)Ps(z)

for any letter a € A. From the definition, one has that ¢, depends on % and
ug; moreover, ¢,(a) ends with a for all a € A, so that any word of the set
X = ¢.(A) is uniquely determined by its last letter. Thus X is a suffix code

and ¢, is an injective morphism.

Ezample 3.3.14. Let A, ¥, and uy be defined as in Example 3.3.2, and let

z = a. Then

¢a(a) = "ﬁﬂ(aa)%zﬁ(a)fl = abaca ,
¢a(b) = "ﬁﬂ(ab)%&ﬁ(a)fl = abac ,
do(c) = s(ac)s(a) = abacach .
The following important theorem on ¥-standard words with seed, whose

proof is in [13], shows that such words are morphic images of standard Epis-

turmian words.

Theorem 3.3.15. Let w € AY and z € A. Then

~

Yo (zw) = ¢u(Y(w)) ,
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1.e., any ¥-standard word s with seed is the image, by an injective morph-
1sm, of the standard Episturmian word whose directive word is obtained
by deleting the first letter of the directive word of s.

Proposition 3.3.16. If s 1s a ¥-standard word with seed and two letters of

A occur infinitely often in A(s), then any prefiz of s is a left special factor

of s.

Proof. A prefix p of s is also a prefix of any ¥-palindromic prefix B of s such
that |p| < |B|. Since there exist two distinct letters, say a and b, which occur
infinitely often in A(s), one has Ba, Bb € Fact(s). Therefore, pa, pb € Fact(s),
i.e., p is right special. Since by Proposition 3.2.3, s is closed under ¥, one has
ap,bp € Fact(s); as @ # b, p is left special. O

In general, a ¥-standard word with seed (empty or not) can have left spe-
cial factors which are not prefixes. However, Theorem 3.3.10, shows that all
sufficiently long left special factors of a 1¥-standard word with seed are prefixes
of it. One of the main results of Section 3.5 shows that the previous property
on left special factors, along with closure under ¥, characterizes ¥-standard
words with seed.

An infinite word s € A“ is called a ¥-word with seed if there exists a
¥-standard word ¢ with seed such that Fact(s) = Fact(t).

3.4 Y-Episturmian words

In [12] standard ¥-Episturmian words were naturally defined by substituting,
in the definition of standard Episturmian words, the closure under reversal with
the closure under ¥. Thus an infinite word s is standard ¥-Episturmian if it

satisfies the following two conditions:
1. for any w € Fact s, one has w € Fact s,
2. for any left special factor w of s, one has w € Pref s.

We denote by SEpt, the set of all standard ¥-Episturmian words on the al-
phabet A.
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More generally, it will be useful to introduce for any N > 0 the family
SWys(N) of all infinite words w which are closed under ¥ and such that every
left special factor of w whose length is at least N is a prefix of w. Moreover, by
Ws(N) we denote the class of all infinite words having the same set of factors
as some word in SWy(N). Thus SWy(0) = SEpis and Wy(0) = Epis. By
Theorem 3.2.7, the class of ¥-standard words is included in SWy(3).

Proposition 3.4.1. An infinite word s is in Wy(N) if and only if s is closed
under ¥ and it has at most one left special factor of any length greater

than or equal to N.

Proof. The “only if” part follows immediately from the fact that Fact(s) =
Fact(t) for some ¢t € SWy(N). Let us prove the “if” part. Let us first suppose
that s has infinitely many left special factors. Hence s has exactly one left
special factor for each length n > N, say v,. Then for any n > N, v, is a
prefix of v,,1, so that

t= lim v,

n— oo

is a well-defined infinite word. Trivially Fact(t) C Fact(s); thus to prove that
Fact(t) = Fact(s) it suffices to show that any given factor w of s with |w| > N
is a factor of some v,,, n > N. Since s is closed under ¥, w is a factor of s. Let
p be a prefix of s ending in w. Since s is recurrent, we can consider a prefix of
s of the kind pup for some u € A*. Then there exists v € A* such that pv is a
right special factor of s, for otherwise one would have s = (pu)“, contradicting
the fact that s has infinitely many left special factors. Hence wv is a right
special factor of s, so that 7w is a left special factor of s. Since |w| > N, we
have |Jw| > N and therefore 9w € Pref(t); thus Fact(t) = Fact(s) as desired.
This implies that any left special factor of ¢ is also left special in s. It follows
that t € SWy,(N).

Now suppose that s has only finitely many left special factors. As is well
known, this implies that s is eventually periodic, and hence periodic since it is
recurrent. Let then w be the longest left special factor of s, and let s = Aws’
for some A € A* and s’ € AY. Then t = ws’' has the same set of factors as s.
This implies that ¢ is a word of SWy(N). O

As an immediate consequence, one obtains:



80 Chapter 3. Episturmian words and generalizations

Corollary 3.4.2. An infinite word 1s ¥-Episturmian if and only if it s

closed under 9 and it has at most one left special factor of each length.

Remark. In the case of a binary alphabet A = {a, b}, by definition any word
s € Epis has a subword complexity A, such that A;(n) <n+ 1 foralln > 0.
It follows that any word in Epis is either Sturmian or periodic. In particular,
if 9 = F o R, then the word s cannot be Sturmian, since any Sturmian word
has either aa or bb as a factor, but not both, whereas s, being closed under ¥,
does not satisfy this requirement. Thus Epis contains only the two periodic

words (ab)“ and (ba)“, whereas Epig contains all Sturmian words.

The following two propositions, proved in [12], give methods for construct-
ing standard ¥-Episturmian words.

Proposition 3.4.3. Let s be a ¥-standard word over A, and B = alph(A(s)).

Then s 1s standard ¥-Episturmian if and only if
teEB,z# — T ¢ B.

Ezample 3.4.4. Let A={a,b,c,d,e}, A = (acd)*, and ¥ be defined by a = b,
¢ =c, and d = e. The 9-standard word v3(A) = abcabdeabcaba - - - is standard

¥-Episturmian.

Proposition 3.4.5 (Proposition 3.6.7). Let ¢ : X* — A* be a monerasing

morphism such that

1. ¢(z) € PALys for allz € X,
2. alph¢(z) Nalph¢p(y) =0 if z,y € X and z # y,

3. 3|¢(z)la <1 forallzec X anda € A.

Then for any standard Episturmian word t € X¥, s = ¢(t) ts a standard
9-Episturmian word.
Ezample 3.4.6. Let A = {a,b,c,d,e}, a = b, C=1c, d =¢, X = {z,y},
and s = g(t), where ¢t = zzyzzzyzzzyzzy- - € SEpi(X), A(t) = (zzy)”,
g(z) = acb, and g(y) = de, so that

s = acbacbdeacbacbacbde - - - . (3.17)

By the previous proposition, the word s is standard ¥-Episturmian, but it is
not ¥-standard, as a® = ab ¢ Pref s.
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It is easy to prove (see [12]) that every standard ¥-Episturmian word has
infinitely many ¥-palindromic prefixes. This implies, by Proposition 3.6.2, the
following:

Proposition 3.4.7. Every standard 9-Episturmian word s admits a (unique)

factorization by the elements of Py, that 1s,
S=TM Mg - Mp--- ,
where m; € Py for 1> 1.

For a given standard ¥-Episturmian word s, such factorization will be
called canonical in the sequel. For instance, in the case of the standard ¥-

Episturmian word of Example 3.4.6, the canonical factorization is:
acb-acb-de-acb-acb-acb-de--- .
The following important lemma was proved in [12]:

Lemma 3.4.8 (Theorem 3.6.4). Let s be a standard ¥-Episturmian word,
and s = my-- T, -+ be its canonical factorization. For all 1+ > 1, any

proper and nonempty prefiz of m; is not right special in s.

In the following, for a given standard ¥-Episturmian word s we shall denote
by
I, ={m, |n>1} (3.18)

the set of words of Py appearing in its canonical factorization s = mymy - - -.

Theorem 3.4.9. Let s € SEpty. Then II; s a normal code.

Proof. Any nonempty prefix p of a word of II; does not belong to Il;, since
IT; is a biprefix code. Moreover, p ¢ RSII; as otherwise it would be a right
special factor of s, and this is excluded by Lemma 3.6.4. Hence II; is a right
normal code. Since s is closed under ¥ and II, C PALs, it follows that II; is

also left normal. ]
The following result shows that no two words of II; overlap properly.

Theorem 3.4.10. Let s € SEpty. Then Il 1s an overlap-free code.
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Proof. If cardll; = 1 the statement is trivial since an element of P cannot
overlap properly with itself as it is unbordered. Let then m, 7’ € II; be such
that m # 7’. By contradiction, let us suppose that there exists a nonempty
u € Suff m N Pref 7' (which we can assume without loss of generality, since it
occurs if and only if u € Suff #'NPref 7). We have |7| > 2|u| and || > 2|u|, for
otherwise u would overlap properly with % and so it would have a nonempty -
palindromic prefix (or suffix), which is absurd. Then there exist v, v’ € PALy
such that 7 = vu and 7' = uv'a.

Without loss of generality, we can assume that m occurs before 7’ in the
canonical factorization of s, so that there exists A € (II; \ {7'})* such that
Am € Prefs. Since by Lemma 3.6.4 any proper prefix of m cannot be right
special in s, each occurrence of @ must be followed by vu; the same argument
applies to 7/, so each occurrence of u in s must be followed by v'%. Therefore
we have

s = Aavuv')? = A(mv')* .

As v' is a ¥-palindromic proper factor of 7', it must be in (Ps \ {7'})*, as well
as v’ and, by definition, A. Thus we have obtained that s € (IL, \ {n'})¥, and
so ' ¢ II,, which is clearly a contradiction. Then 7 and 7' cannot overlap
properly. O

The following theorem, proved in [12, Theorem 5.5|, shows, in particular,
that any standard ¥-Episturmian word is a morphic image, by a suitable in-
jective morphism, of a standard Episturmian word. We report here a direct
proof based on the previous results.

Theorem 3.4.11. Let s be a standard ¥-Episturmian word. Then f(s) is
a standard Episturmian word, and the restriction of f to I, 1s injective,
n.e., if m; and m; occur in the factorization of s over Py, and 7r{ = 7r{, then

Ty =Ty

Proof. Since s € SEpt,, by Theorems 3.4.9 and 3.4.10 the code II; is biprefix,
overlap-free, and normal. By Proposition 1.3.1, the restriction to Il of the map
f defined by (3.2) is injective. Let B = f(II;) C A and denote by g : B* — A*
the injective morphism defined by g(nf) = 7 for any 77 € B. One has s = g(t)
for some t € B“. Let us now show that ¢ € SEpi(B). Indeed, since s has
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infinitely many ¥-palindromic prefixes, by Proposition 3.1.9 it follows that ¢
has infinitely many palindromic prefixes, so that it is closed under reversal.
Let now w be a left special factor of ¢, and let a,b € B, a # b, be such that
aw,bw € Factt. Thus g(a)g(w), g(b)g(w) € Facts. Since g(a)? # g(b)’, we
have g(a)® # g(b)¢, so that g(w) is a left special factor of s, and then a prefix
of it. From Lemma 1.3.2 it follows w € Preft. ]

3.5 Connection between classes of generalized

Episturmian words

Let us recall that SW,(N) is the family of all infinite words w which are closed
under ¥ and such that every left special factor of w whose length is at least N
is a prefix of w. Trivially, we have SW3(N) C SWy(N + 1). Let us denote by
SW, the class of words which are in SWys(N) for some N > 0, i.e.,
SWs = | J SWs(N).
N>0

One of the main results is the proof that SW coincides with the class of -
standard words with seed (cf. Theorem 3.5.4). As a corollary, we will derive
that any standard ¥-Episturmian word is a ¥-standard word with seed.

For the sake of clarity, we report in Table 3.1 the definitions and the nota-
tions of the different classes of words introduced so far. We consider only the
standard case, since the “non-standard” words of a given class are defined by

the property of having the same set of factors as a standard one.

In order to prove the main theorem, we need some preliminary results.

Lemma 3.5.1. Let w € SW3(N) and u be a ¥-palindromic factor of w such
that |u| > N. Then the leftmost occurrence of u in w is a median factor

of a ¥-palindromic prefiz of w.

Proof. By contradiction, suppose that w = Azvuvyw’, for some letters z,y € A
with ¢ # y, and words A\, v € A*, w' € A“. Since w is closed under ¥, both
zvuv and yvuv are factors of w, so that vuv is a left special factor of w of
length |vu®| > N, and hence a prefix of it. This leads to a contradiction,

because we have found an occurrence of u in w before the leftmost one. O
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Table 3.1: Summary of the generalizations of standard Episturmian words

Name Symbol Definition
¥-standard with seed SWy @ Generated by iterated ¥-palin-
drome closure, starting from any
seed
¥-standard Generated by iterated ¥-palin-

drome closure, starting from ¢
Standard ¢¥-Episturmian SEpiy = SWy(0) Closed under ¥, and all left spe-
cial factors are prefixes
SWs(N) Closed under 1, and all left spe-

cial factors of length at least N
are prefixes

2After Theorem 3.5.4

Proposition 3.5.2. Any word in SWy has infinitely many ¥-palindromic

prefizes.

Proof. Let w € SWy(N) for a suitable N > 0, and u be a prefix of w, with
|lu| > N. We shall prove that w has a ¥-palindromic prefix whose length is at
least |u|, from which the assertion will follow.

Let at (a € A*) be the prefix of w ending with the first occurrence of u.
Since u is a prefix of w, one has at = uf for a suitable § € A*. If 8 = ¢, then
a = ¢ and u = 4, so that otz = u is the desired ¥-palindromic prefix.

Then suppose 8 = 125z, with z; € Afor ¢t =1,...,n. As |o| = |B|,
onehasa =vy,...y; forsomey, € A,2=1,...,n. Since a # ¢, one has u # 1,
so that 4 is not left special in w. Hence y;% is the only left extension of % in w.
As w is closed under ¥, uy; is the only right extension of u in w. This implies
Y1 = ZT1.

Since ati = y, - - - YT, 4 ends with the first occurrence of % (and hence with
the first occurrence of Z;%), one can apply the same argument as above to the
prefix uz,, in order to show that y, = Z,. Continuing this way, one eventually

obtains y; = Z; for all 4 = 1,...,n, so that o = B and o is again the desired
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1¥-palindromic prefix of w. ]

For a (fixed but arbitrary) word w € SWy we denote by (B,),>1 the
sequence of all -palindromic prefixes of w, ordered by increasing length.
Moreover, for any 2z > 0 let z; be the unique letter such that B;z; is a pre-
fix of w. The infinite word £ = z125---z,, --- will be called the subdirective
word of w. The proof of Proposition 3.5.2 shows that for any 2 > 0, B;
coincides with the prefix of w ending with the first occurrence of z;5;.

The next lemma shows that, under suitable circumstances, a stronger rela-
tion holds.

Lemma 3.5.3. Let w € SWy(N). With the above notation, let n > 1 be
such that z,, = z for some k < n with |By| > N—2. Then B,,; = (B,z,)®.

Proof. Let k be the greatest integer satisfying the hypotheses of the lemma.
Let us first prove that Q = Z, Bz, does not occur in B,. By contradiction,
consider the rightmost occurrence of Q in B,, i.e., let Qp be a suffix of B, such
that @ does not occur in any shorter suffix. If |p| < |By|, then one can easily
show that the suffix Qpz, of B,z, is a ¥-palindrome, which is absurd because
its length is |Qpz,.| > |Q|.

Suppose then Qp = Z,Byz,vZ,B; for some v € A*. Since Qp is a suffix
of B,, one has that pQ = Byz,9Q is a prefix of B, (see Figure 3.3). Now
there is no proper suffix u of ¥ such that u@ is left special in w. Indeed,
if such u existed, then u@ would be a prefix of B,, and so Qu would be
a suffix of B,, contradicting (as |u| < |p|) the fact that Qp begins with the
rightmost occurrence of @ in B,,. Hence every occurrence of @ in w is preceded
by . Since pz, = vZ,Byz, is a factor of w, one obtains v = ¥, so that
Qpx, = Z,ByT,vT,Byx, is a ¥-palindromic suffix of B,z, longer than @, a
contradiction.

Thus @ does not occur in B,. Since @ is the longest ¥-palindromic suffix
of B,z,, we can write

w= Byz,w' = sQu’,

where (s,w’) is the leftmost occurrence of @ in w. By Lemma 3.5.1, sQ35 =

(Bnz,)® is a prefix of w. From this one derives B, 1 = (B,z,)®. O

Theorem 3.5.4. Let s € AY. The following conditions are equivalent:
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Figure 3.3: Lemma 3.5.3

1. s€e SW@,

2. s has infinitely many 9-palindromic prefizes, and if (B, )n>o 1S the se-
quence of all its ¥-palindromic prefizes ordered by increasing length,

there exists an integer h such that
B,i1 = (Bnz,)?,
for all n > h, for a suitable letter z,,
3. s 1s a ¥-standard word with seed.

Proof. 1.=2. Let s € SWs(N), 125 -z, --- be its subdirective word, and
(B;)i>o the sequence of all ©¥-palindromic prefixes of s. We consider the minimal
integer p such that |B,| > N —2. We set T, = Z,Zp11---Zn - - € AY, and take
the minimal m such that alph(z,---z,;m) = alph(zy)). Let A =p+m + 1.
Then for all n > h, there exists & with p < k£ < p+m such that z;, = z,,. Since
k > p one has |By| > N — 2, so that by Lemma 3.5.3, B,,; = (B,z,)®.

2.= 3. Let 99(A) be the ¥-standard word with seed u, = By, and directive
word A = ZZpy1 - Tp---. One has then gﬁﬁ(A) =s.

3.= 1. This follows from Theorem 3.3.10. O

Let us set
Wy = U Ws(N) .

N>0
The following corollary is a straightforward consequence of the preceding the-

orem.

Corollary 3.5.5. Wy coincides with the set of all $-words with seed.
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Let s € SWs(N). We call critical integer h of s the minimal integer p
with the property that for all n > p there exists £ < n such that |By| > N — 2
and z, = z,. We observe that the proof of Theorem 3.5.4 shows that for
any given s € SWy(N) having critical integer h, one has that for all n > h,
B,.1 = (Bnz,)®.

Corollary 3.5.6. Any standard ¥-Episturmian word 1s a ¥-standard word
with seed. Moreover, if s € SEpiy and T = 1Ty - T, - -+ 1S 1ts subdirective
word, then the critical integer h of s 1s equal to the minimal integer p such
that alph(z) = alph(z; - - zp_1).

Proof. 1t is sufficient to observe that a standard ¥9-Episturmian word s is in
SWy(0) because all its left special factors are prefixes of s. Therefore by The-
orem 3.5.4, s is a ¥-standard word with seed Bj. Since for all n > 0 one has
|Bn| > N — 2, it follows trivially that h = p. O

Proposition 3.5.7. Let s be a ¥-standard word with seed and h be 1its
critical integer. Any prefix p of s of length > |By| has a ¥-palindromic

suffiz with a unique occurrence in p.

Proof. Since |p| > |By| there exists n > h such that
|BnZn| < [p] < [Bnsl,

with B, 1 = (B,z,)® by the definition of A.

We can write B,z, = vQ, where @ is the longest ¥-palindromic suffix of
B,z,, which is nonempty, and, as shown in the proof of Lemma 3.5.3, has a
unique occurrence in B,z,. Since B, ,; = vQu, we can write p = vQU,, where
v = v,v, for some vy, v, € A* and |v,| < |v|. Now v,Q7, is a ¥-palindromic
suffix of p which has a unique occurrence in p, for otherwise ¢ would be

repeated in B,z,. This concludes the proof. ]

Let us observe that in the case of a standard Episturmian word s, a stronger

result holds: any prefix p of s has a palindromic suffix which is unrepeated in
p (cf. [29]).

Proposition 3.5.8. Let s be a ¥-standard word with seed, and h be its
critical integer. For any ¥-palindromic factor P of length |P| > |Byl,

every first return to P in s 1s a ¥-palindrome.
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Proof. Let P be a ¥-palindromic factor of s, with |P| > |By|. Let u € Fact(s)
be a first return to P, ie.,, u = PX = pP, A\, p € A*, and the only two
occurrences of P in u are as a prefix and as a suffix of u. If |P| > |p|, then
the prefix P of u overlaps with the suffix P in v and this implies, as is easily
to verify, that u is a ¥-palindrome. Then let us suppose that u = PvP with
veEA.

Now we consider the first occurrence of w or of @ in s. Without loss of
generality, we may suppose that s = aus’, and % does not occur in the prefix of
s having length |au| — 1. Let @ be the ¥-palindromic suffix of au of maximal
length. If |@Q| > |u|, then we have that @ occurs in au before u, which is
absurd. Then suppose |Q| < |u|. If |u| > |Q| > |P|, then one contradicts the
hypothesis that w is a first return to P. If |Q| = |P|, then @ = P has more
than one occurrence in au. Since |ou| > |B|, one reaches a contradiction by
Proposition 3.5.7. Thus the only remaining possibility is @ = u, i.e., u is a
1¥-palindrome. O

In the case of Episturmian words, one has the stronger result that every first
return to a palindrome is a palindrome. This was proven in [3] (see also [13]).
However this cannot be extended to ¥-Episturmian words. For instance, let s
be the standard ¥-Episturmian word (abaca)?, where ¥(a) = a and ¥(b) = c.
Then aba is a first return to a in s, but it is not a ¥-palindrome.

3.6 Structure of ¥-Episturmian words

In this section we shall analyse in detail the class of ¥-Episturmian words, also
by showing some relations with the other classes introduced so far.
From Corollary 3.5.6 and Theorem 3.3.15, one derives the following

Proposition 3.6.1. Let s be a standard ¥-Episturmian word, h be its crit-
1cal integer, and ¢ = 125 - - T, -+ be the subdirective word of s. Then s 1s
the tmage, by an injective morphism, of the standard Episturmian word t

whose directive word 1S Th 1Thio Ty -+

However, this can be improved. In fact, the next results will show (cf. The-

orem 3.4.11) that every s € SEpi, is a morphic image, by an injective morph-
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ism, of the standard Episturmian word whose directive word is precisely z, the
subdirective word of s.

In the following we shall denote by Py, or simply P, the set of unbordered
¥-palindromes. We remark that P is a biprefiz code, i.e., none of its elements

is a proper prefix or suffix of other elements of P.
Proposition 3.6.2. PAL, = P*.

Proof. Since P C PALy, one has P* C PALj. Thus it suffices to show
that every nonempty ¥-palindrome admits a factorization in unbordered 1§-
palindromes, i.e., is in P*. Note that such a factorization is necessarily unique,
as P is a code.

Let w € PALy. If lw| = 1, then clearly w is unbordered, so that w € P.
Let then |w| > 1 and suppose, by induction, that every ¥-palindrome which is
shorter than w can be factorized in elements of P. If w is unbordered, then
we are done. Let then u be the longest proper border of w. Since w is a
¥-palindrome, so is u.

If |lw| > 2|u|, then w = uvu for some v € PALy, so that both u,v € P* by
induction. This implies the assertion in this case.

If jw| < 2|ul, then there exists a border 8 of u such that w = u;84,, where
u = w13 = Bu;. By induction, both 8 and u = u;6 are in P*; since P is a
biprefix code, this implies that u; = u8~! is in P* too. Hence w = u,u € P*

as requested. ]

Ezample 3.6.3. Let A = {a,b,c,d,e} and ¥ be the antimorphism defined by
a=a,b=c, and d = e. The word acbdaaecba.abaca € PAL3 can be uniquely

factorized in unbordered ¥-palindromes as:
a.cb.daae.cb.a.a.bac.a .

We remark that from the preceding proposition one derives that any stand-
ard ¥-Episturmian word s admits a (unique) infinite factorization in elements

of P, i.e., one can write
S=TMMg - Mp--+, WwithmePforallz>0. (3.19)

Lemma 3.6.4. Let s € SEpiy, with s = mmy---mT,--- as above. Let u be
a nonempty and proper prefix of m,, for some n > 0. Then u s not right

spectal in s.
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Proof. By contradiction, assume that u is a right special factor of s. Then
it is not left special; indeed, otherwise it would be a ¥-palindrome since s is
¥-Episturmian, and this is clearly absurd as m, € P.

Consider now the smallest integer A such that u is a prefix of m,. If h = 1,
then u would be a ¥-palindrome, which is again a contradiction. Let then
h > 1. Since u is not left special, a,_;u is its unique left extension in s. One
can keep extending to the left in a unique way, until one gets a left special
factor, or reaches the beginning of the word. In either case, the factor g of
s that one obtains is a prefix of s. Moreover it is right special in s, as every
occurrence of the right special factor u extends to the left to g. Hence ¢ is a
left special factor of s, and then a prefix of s. Thus ¢ is a 9¥-palindrome, and
therefore it begins with 4. One has |g| > 2|u/|, for otherwise there would be a
nonempty word in Pref(u) N Suff(z), that is, a nonempty 9¥-palindromic prefix
of u, which contradicts the hypothesis that w is a proper prefix of m,. Thus
g — uq'u for some q' € PALs;.

We have 7 ---m,_; € P* and, by Proposition 3.6.2, ¢’ € P*. Since P is a
biprefix code, this implies 7; - - -7, _1(¢')~t € P*, i.e., ¢’ = mp - - - 7,1 for some
h' < h (if ' = h, then ¢’ = €). Then 7, ---my _; has @ as a suffix. As 4 has
no nonempty ¥-palindromic suffixes, it is a proper suffix of m,/_;, which then

begins in u, contradicting the minimality of A. 0J

The next result has already been proved (cf. Theorem 3.4.11) however, we

report here a different proof for the sake of completeness.

Theorem 3.6.5. Let s € A be a standard ¥-Episturmian word, A be its

subdirective word, and B = alph(A). There ezists an injective morphism
u: B* — A* such that s = u(y(4)) and u(B) C P.

Proof. We can assume that s can be factorized as in (3.19). For any n > 0,
let a, be the first letter of m,. We shall prove that if n,m > 0 are such that
Qn = Qy,, then m, = m,,.

Let u be the longest common prefix of 7, and m,,, which is nonempty as
@, = G.,,. By contradiction, suppose m, # 7. Then, as P is a biprefix code,
u must be a proper prefix of both m, and m,,, so that there exist two distinct
letters b,, b,, such that ub, is a prefix of m, and ub,, is a prefix of m,,. Hence

u is a right special factor of s, but this contradicts the previous lemma.
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We have shown that for any n > 0, 7, is determined by its first letter a,.
Thus, letting
C={a,|n>0}CA,

it makes sense to define an injective morphism y : C* — A* by setting u(a,) =
7, for all n > 0. The word

t=u(s)=aa3---a, --€CY

has infinitely many palindrome prefixes, each being the inverse image of a ¥-
palindromic prefix of s. Indeed, if 7y - - - 7, is a ¥-palindromic prefix of s, by the
uniqueness of the factorization over P one obtains m; = 1,1 ; fore=1,...,n;
conversely, if w € PAL, then trivially u(w) € PALs. Hence t is closed under
reversal.

Let w be a left special factor of ¢, and let ¢, be such that a; # a; and
a,w,a;w € Fact(t). Then a,u(w),a;ju(w) € Fact(s), so that u(w) is a left
special factor of s, and hence a prefix of it. Again by the uniqueness of the
factorization of s over the prefix code P, one derives w € Pref(¢). Therefore ¢
is a standard Episturmian word over C.

Let A = zy25---2,---, and let B, = u(a;)---u(a,,) be the n-th -
palindromic prefix of s for any n > 1. Then, as shown above, a;---a,, is
exactly the n-th palindromic prefix of ¢. Since the only word occurring in the
factorization (3.19) and beginning with z,, is u(z, ), we have B,u(z,) € Pref(s),
so that =, = a,,,1 for all n > 1. This proves that the directive word of ¢ is
exactly A, and hence C = B. ]

Corollary 3.6.6. A standard ¥-Episturmian word s is ¥-standard if and
only if s = ps(t) for some t € A”.

Proof. If s is ¥-standard, then by Theorem 3.2.2 there exists a standard Epi-
sturmian word ¢ such that s = us(¢t). Conversely, if ¢ € AY and s = us(t),
then, since ps(a) € P for any a € A, by the uniqueness of the factorization
over P one has that uy is the morphism p considered in the preceding the-
orem. Thus ¢ = uy'(s) is a standard Episturmian word and s is 9-standard by
Theorem 3.2.2. L

Proposition 3.6.7. Let u: B* — A* be a nonerasing morphism such that
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1. u(z) € PALy for all z € B,

2. alph(u(z)) Nalph(u(y)) =0 if z,y € B and z # y,
3. |u(z)|la <1 forallze B anda € A.

Then, for any standard Episturmian word t € B, s = u(t) is a standard

9-Episturmian word.

Proof. From the first condition one obtains that x sends palindromes into
¥-palindromes, so that s has infinitely many ¥-palindromic prefixes, and is
therefore closed under 4.

Let w be a nonempty left special factor of s. Suppose first that w is a
proper factor of u(z) for some z € B, and is not a prefix of u(z). Let a be
the first letter of w. By the second condition, u(z) is the only word in u(B)
containing the letter a; by condition 3, a occurs exactly once in u(z). Since a
is not a prefix of u(z), it is always preceded in s by the letter which precedes
a in u(z). Hence a is not left special, a contradiction.

Thus we can write w as w;pu(u)ws, where w; is a proper suffix of u(z;)
and w, is a proper prefix of u(z,), for some suitable z;,z, € B such that
z1uz, € Fact(t). One can prove that w; = € by showing, as done above, that
otherwise its first letter, which would not be a prefix of u(z;), could not be
left special in s.

Therefore w = u(u)w,. Reasoning as above, one can prove that if w, # e,
then w is not right special, and more precisely that each occurrence of w can
be extended on the right to an occurrence of u(uz,). Since w is left special in
s, 80 is u(uzs).

Without loss of generality, we can then suppose w = p(u). Since u is
injective by condition 2, u is uniquely determined. As w is left special in s,
there exist two letters a,b € A, a # b, such that aw, bw € Fact(s). Hence there
exist two (distinct) letters z,,z, € B such that z,u,z,u € Fact(t). Then u is
a left special factor of ¢ and hence a prefix of ¢, so that w = p(u) is a prefix of
s. 0]

Ezample 3.6.8. Consider the standard Sturmian word

t = aabaaabaaabaab - - -
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having the directive word (aab)“. Let A = {a, b, ¢, d, e}, and 9 be the involutory
antimorphism defined by @ = b, ¢ = ¢, d = e. If y is the morphism y : {a, b}* —
A* defined by u(a) = acb and u(b) = de, then the word

s = u(t) = acbacbdeacbacbacbde - - -

is a standard ¥-Episturmian word. We observe that s is not ¥-standard, since

it does not begin with ab = a®.

Remark. Any morphism satisfying conditions 1 and 3 in the statement of Pro-
position 3.6.7 is such that u(z) € P for any letter z. However there exist stand-
ard ¥-Episturmian words for which the morphism u given by Theorem 3.4.11
does not satisfy condition 3. For instance, the standard ¥-Episturmian word
s = (abaca)¥, with @ = a and b = c, is given by s = u(t), where t = v(aba),
u(a) = a, and p(b) = bac.

We say that a subset B of the alphabet A is ¥-skew if BN ¥(B) C PALy,
that is, if
t€EB, s+ =—=1ZI¢B. (3.20)

Proposition 3.6.9. Let s be a standard 9-Episturmian word and A be its
subdirective word. Then B = alph(A) is ¥-skew.

Proof. We can factorize s as in (3.19). By Theorem 3.4.11, it suffices to show
that if m,, = zwZ for some n > 0 and w € A*, then 7, does not begin with Z,
for any k£ > 0. By contradiction, let £ be the smallest integer such that = €
Pref(m). Without loss of generality, we can assume n < k. By Lemma 3.6.4,
no suffix of wz is a left special factor of s. Hence every occurrence of Z in s
is preceded by zw (or by a proper suffix of it, if the beginning of the word
is reached). First suppose that m, is preceded in s by zw. Then, since w €
PALs C P* and P is a biprefix code, one has w = 7y - - - m,_; for some k' < k.
Thus 7, ends in z and therefore begins with Z, contradicting the minimality
of k.

If mp---mp_y € Suff(w), from n < k it follows that 7, = zwZ is a proper

factor of itself, which is trivially absurd. ]

A 9Y-standard word s can have left special factors which are not prefixes

of s. Such factors have length at most 2, by Theorem 3.2.7. For instance,
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consider the ¥-standard word s with # = E o R and A(s) = (ab)“. One has
s = abbaababbaabbaab---. As one easily verifies, b and ba are two left special
factors which are not prefixes. Hence in general, a ¥-standard word is not
standard 9-Episturmian.

The next proposition gives a characterization of ¥-standard words which

are standard ¥-Episturmian.

Proposition 3.6.10. A ¥-standard word s s standard ¥-Episturmian if
and only if B = alph(A(s)) s ¥-skew.

Proof. Let s be a ¥-standard word such that B is ¥-skew. By Theorem 3.2.2,
one has s = us(t), where ¢t = ¥ (A(s)) is a standard Episturmian word. The
morphism us satisfies conditions 1 and 3 in Proposition 3.6.7 by definition.
By (3.20), one easily derives that the restriction of us to alph(t) = B sat-
isfles also condition 2 of Proposition 3.6.7, so that s = us(t) is a standard
¥-Episturmian word.

The converse is a consequence of Proposition 3.6.9, as the subdirective word
of a ¥-standard word s is A(s). O

Ezample 3.6.11. Let A = {a,b,c,d, e}, A = (acd)”, and ¥ be defined by a = b,
¢ =c, and d = e. The ¥-standard word s(A) = abcabdeabcaba - - - is standard

¥-Episturmian.

Let us observe that in general a standard ¥-Episturmian word is not a -
standard word. A simple example is given by the word s = (abaca)”, where ¥
is the antimorphism which exchanges b with ¢ and fixes a. One easily verifies
that € and a are the only left special factors of s, so that s is standard -
Episturmian. However (cf. Proposition 3.2.3) s is not }-standard, since ab is
a prefix of s, but (ab)® = abca is not. Another example is the word s considered
in Example 3.6.8: s is standard ¥-Episturmian, but it is not 1¥-standard because
its first nonempty ¥-palindromic prefix is acb and not ab = a®.

Although neither of the two classes (9-standard and standard 9-episturmian

words) is included in the other one, the following relation holds.

Proposition 3.6.12. Every ¥-standard word 1s a morphic image, under

a literal morphism, of a standard O-Episturmian word, where ¥ is an

extension of ¥ to a larger alphabet.
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Proof. Let s = 93(A) be a ¥-standard word, B C A be the set of letters
occurring in A, and A’ = A\ PALs. Moreover, let us set

C={ce BnA'"|3re (B\{cc}):rce Pref(A)},

i.e., C is the set of letters c occurring in A and such that ¢ occurs before the
first occurrence of c. If C = (), then by the previous proposition s is a standard
¥-Episturmian word, so that the assertion is trivially verified. Let us explicitly
note that if c € C, thenc ¢ C.

Suppose then C' nonempty, and let ¢’ = {¢' |c € C} and C = {¢|c e C}
be two sets having the same cardinality as C, both disjoint from A. One can
then naturally define the bijective map ¢ : B — (B\C)UC" such that ¢(a) = a
ifa ¢ C, and ¢(a) = o’ otherwise. Set A = AUC'UC, and define an involutory
antimorphism & over A by setting 1§|A = and J(¢') = & for any ¢ € C".

Extending ¢ to a morphism from B* to A*, it makes sense to consider the
infinite word A = @(A) over A. Thus we can define as well the d-standard
word § directed by A. Since alph(A) is 1§—skeW, by the previous proposition §
is also J-Episturmian.

By Theorem 3.2.2, one has s = us(¥(A)) and § = uy(¢(A)). Since ¢ is
injective on B, it follows 1(A) = ¢(¥(A)), so that

§ = us(e(¥(4))) - (3.21)
Let g : A* — A* be the literal morphism defined as follows:
g\C’:(P_l’ g‘é:'ﬁo(p_lo'é’ and g\A:]-d)

ie, g(a) =aifa € A, and for all c € C, g(c’) = c and g(¢é) = ¢. We want
to show that g(38) = s = us(¢¥(A)). In view of (3.21), it suffices to prove that
gouzo @ = us over B. Indeed, by the definitions, if c € C then

9(us(p(c))) = g(c'e) = et = ws(c) ,
whereas if a € B\ C, then

9(us(p(a))) = g(a®) = a® = us(a) . O
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Ezample 3.6.13. Let A = {a,b}, 9 = Eo R (i.e., @ = b), and s be the -
standard word having the directive sequence A = (ab)¥, so that

s = abbaababbaabbaab - - - .

In this case A'= A= B, C = {b}, C' = {¥'}, and C = {b}. We set ¢ = b’ and
d = b, so that A = {a,b,c,d}, 1§(a) = b, and 1§(c) = d. The morphism ¢ in
this case is defined by ¢(a) = a and ¢(b) = c. Hence A = (A) = (ac)”. The
d-standard (and standard @—Episturmian) word § directed by A is

§ = abcdababedabedabab - - - .

The literal morphism g is defined by g(a) = g(d) = a, and g(b) = g(c) = b.
One has g(8) = s.

3.7 The importance of involutory antimorph-
isms

The main result of this section shows that the existence of an underlying in-

volutory antimorphism 6 is a consequence of three natural word combinatorial

assumptions: recurrence, uniqueness of right and left special factors, and con-

stant growth of the factor complexity:
Theorem 3.7.1. Let w € AN be a word on a finite alphabet A. Suppose
1. w 1s recurrent.

2. For each n > 1, w has a unique right special factor of length n and

a unique left special factor of length n.

3. There exists a constant K such that p(n) = cardA+(n—1)K for each
n > 1.

Then there exists an involutory antimorphism 6 : A* — A* relative to

which w 18 a 8-Episturmian word.

While each of the hypotheses (1)—(3) above is in fact necessary (see the
examples below), Theorem 3.7.1 is not a characterization of #-Episturmian
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words since the converse is in general false. For instance, it is easy to verify
that the word on {a,b,c} obtained by applying the morphism 0 +— a and
1 +— bac to the Fibonacci word f does not satisfy condition (3) above but is
f-Episturmian relatively to the involutory antimorphism generated by 6(a) = a
and 6(b) = c.

The next series of examples illustrate that each of the hypotheses (1)—(3)
above is in fact necessary and independent of one another. In what follows f
denotes the Fibonacci infinite word.

Ezample 3.7.2. The word 2f = 201001010010010100101001001010 - - - satisfies
conditions (2) and (3) but not (1). The set of factors of this word is not closed
under 6 for any choice of the involutory antimorphism € of {0, 1, 2}, so that 2f

is not #-Episturmian.

Ezample 3.7.3. The fixed point of the morphism 0 — 021, 1 — 0, 2 — 01
satisfies (1) and (3) but not (2), in fact for each n > 1, this word has a unique
right special factor of length n but two distinct left special factors of length n.

Hence this word is not #-Episturmian.

Ezample 3.7.4. Consider the word w = 7 o o(f) where ¢(0) = 0, o(1) = 12,
7(0) = 10, 7(1) = 1, and 7(2) = 12. It is readily verified that w satisfies
conditions (1) and (2), but not (3) as p(1) = 3, p(2) = 5, and p(3) = 6. The
word w is not #-Episturmian, in fact one easily verifies that the factor 10112101

is a bispecial factor of w and yet is not fixed by any involutory antimorphism.

Using the notion of degree, condition (3) in Theorem 3.7.1 can be replaced
by the following: All nonempty right special factors and all nonempty left
spectal factors of w have the same degree, namely K + 1 (cf. Lemma 3.7.5
in next section). We remark that in the case K = cardA — 1 condition (3) is
trivially true also for n = 0, and conditions (1)-(3) give a characterization of
Arnoux-Rauzy words.

For definitions and notations not given in the text the reader is referred
to [44, 8, 13, 12].

3.7.1 Proof of Theorem 3.7.1

The proof is organized as follows. First we prove that any factor of w is con-

tained in a bispecial factor of w. In particular, this implies that w has infinitely
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many distinct bispecial factors. Next, we prove that there exists an involutory
antimorphism 6 of A* such that all bispecial factors are #-palindromes. From
this we derive that 8 preserves the set of factors of w, so that w is ¥-Episturmian.
The following notation will be useful in the proof of Theorem 3.7.1: Let
u and v be non-empty factors of w. We write u - uv to mean that for each
factor w of w with |w| = |u| + |v|, if w begins in u then w = uwv. If it is not the
case that u - uv, then we will write u ¥ uv. Similarly we will write vu 4 u to
mean that for each factor of w with |w| = |u|+ |v| if w ends in u then w = vu.
Otherwise we write vu A u.
We begin with a few lemmas. The following lemma is an immediate con-

sequence of the hypotheses of Theorem 3.7.1:

Lemma 3.7.5. Let u and u' be right (respectively left) special factors of
w. Then under the hypotheses of Theorem 3.7.1, for any letter a € A, ua
(respectively au) is a factor of w if and only if u'a (respectively au') is a

factor of w.

Proof. Conditions (2) and (3) of Theorem 3.7.1 imply that K is a positive
integer, and that each right special factor u has exactly K + 1 distinct right
extensions of the form ua with a € A, i.e., has degree K + 1. Moreover, if u
and u' are right special factors of w, then by (2) one is a suffix of the other.
Hence ua is a factor of w if and only if u’a is a factor of w. A similar argument

applies to left special factors of w. ] O

Lemma 3.7.6. Let u be a factor of w. Then under the hypotheses of
Theorem 3.7.1 we have that u 1s a factor of a bispecial factor of w. Let
W denote the shortest bispecial factor of w containing u. Then u occurs

ezactly once in W.

Proof. We first observe that by condition (2) of Theorem 3.7.1, w is not peri-
odic.

Since w is recurrent, there exists a factor z of w which begins and ends in u
and has exactly two occurrences of u. Writing z = vu, clearly we have vu # u,
otherwise w would be periodic. Thus some suffix of z of length at least |u]
must be a left special factor of w. Let z € A* be of minimal length such that

zu is a left special factor of w. Such a word is trivially unique, and we have



3.7. The importance of involutory antimorphisms 99

zu - u. In a similar way, there exists a unique y € A* of minimal length such
that uy is right special in w, and it satisfies u - uy.

From the preceding relations one obtains zu - zuy and zuy 1 uy. Since
zu is left special in w and zu is always followed by y one has that zuy is also
left special. Similarly, since uy is right special and always preceded by z, zuy
is right special. Hence every factor u of w is contained in some bispecial factor
W = zuy of w. Furthermore, this W is the shortest bispecial factor containing
u. Indeed, if W' = z'uy’ is bispecial in w and |[W’| < |W|, then either |z'| < |z|
or |y'| < |yl|; since z'u and uy' are respectively a left and a right special factor
of w, this violates the minimality of z or y. Using the same argument, one

shows that W cannot have more than one occurrence of u. O O

It follows immediately from Lemma 3.7.6 that w, under the hypotheses of
Theorem 3.7.1, contains an infinite number of distinct bispecial factors

EZWO,W]_,Wg,...

which we write in order of increasing length. Thus, as a consequence of condi-
tion (2), for each k > 1 we have that W}, begins and ends in Wj.

Lemma 3.7.7. Let a € A, and let W), be the shortest bispecial factor of
w containing a. Then Wy = W,_1VWy,_1, where V contains the letter a.
Moreover, all letters in V are distinct and none of them occurs in Wy_.

If Ua 15 a factor of w for some bispecial factor U, then a is the first letter
of V.

Proof. Clearly since W; begins and ends in W},_; and a does not occur in Wy,
it follows that W;, = Wy VW;_1, for some non-empty factor V' containing a.
We will first show that the first letter of V' does not occur in W,_;. Then we
will show that no letter of V' occurs in W,_;. Thus for each letter b which
occurs in V, we have that W, is the shortest bispecial factor containing b.
Hence by Lemma 3.7.6 we have that b occurs exactly once in V.

Let a’ denote the first letter of V' which does not occur in W, ;. We claim
that o' is the first letter of V. The result is clear in case Wj_; = €. Thus we
can assume W,_, is non-empty. Suppose to the contrary that a’ is not the first
letter of V. Then there exists a letter b immediately preceding a’ in V, which

also occurs in W}, ;. We claim b is a right special factor of w. This is trivial if
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b is the last letter of Wj_;. If this is not true, then there is an occurrence of b
in W, _, followed by some letter ¢ # a’. Thus b is a right special factor of w.

Now, since ba' is a factor of w, it follows from Lemma 3.7.5 that Wya' is
a factor of w. We can write Wia' = Wy_1Xa'YW;_;1a’, with X non-empty.
By the definition of a/, one has that W, is the shortest bispecial factor of w
containing a’. It follows that every occurrence of o’ in w is preceded by W;,_; X.
Hence W,_1X is both a prefix and a suffix of W}, whence is a bispecial factor
of w of length greater than |W, ;| and less than |Wj|, a contradiction. Hence
a’ is the first letter of V, in other words the first letter of V' does not occur in
Wi 1.

We next show that no letter in V' occurs in Wj_;. Again this is clear in case
Wi_1 = €. Thus we can assume W,_; is non-empty. Suppose to the contrary:
Let d denote the first letter in V' which also occurs in W;_;. We saw earlier
that d is not the first letter of V. Thus the letter e preceding d in V' does
not occur in Wy ;. We claim that d is a left special factor, or equivalently is
the first letter of Wj_,. Otherwise, if d were not the first letter of Wj_1, there
would be an occurrence of d in W),_; preceded by some letter e’ # e. Thus d
is left special, a contradiction.

Since ed is a factor of w, it follows from Lemma 3.7.5 that eV}, is a factor of
w. We can write eW;, = eW; 1 X'eY'W}_; with Y’ non-empty (since it contains
d). Since e does not occur in W;_y, it follows that Wy, is the shortest bispecial
factor of w containing e, and hence every occurrence of e in w is followed by
Y'W,_.. Hence Y'W,_, is both a prefix and a suffix of W}, and hence a bispecial
factor of w whose length is greater than that of W,_; but smaller than that of
Wi. A contradiction. Hence, no letter occurring in V' occurs in Wy ;.

Finally suppose Ua is a factor of w for some bispecial factor U. By Lemma 3.7.5
we have that Wya is a factor of w. Writing Wya = Wy 1 X"aY" Wy _1a, we have
that every occurrence of a in w is preceded by W,_; X", whence W,_ X" is
both a prefix and a suffix of W;,. This implies that W,_; X" is a bispecial factor
of w, and hence equal to W;_;. Thus X" is empty and a is the first letter of V
as required. This concludes the proof of Lemma 3.7.7. ] O

We now proceed with the proof of Theorem 3.7.1. It suffices to show that
there exists an involutory antimorphism 6 : A* — A* relative to which each

Wy is a @-palindrome. Indeed, by Lemma 3.7.6 any factor u of w is contained
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in some Wy, and hence so is 6(u).

We proceed by induction on k. By Lemma 3.7.6, W; is of the form W; =
apay - --a, with a; € A, 0 <1 < n, and with a; # a; for 1« # j. Hence we can
begin by defining 6 on the subset {ao,a,...,a,} of A, by 6(a;) = a,_;. Thus
0(W,) = Wy, i.e., W; is a f-palindrome.

By induction hypothesis, let us assume 6 is defined on the set of all letters
occurring in Wy, W, ..., Wy with each W, (1 < ¢ < k) a 6-palindrome. Let
a € A be the unique letter such that Wya is a prefix of W, ; and then a left
special factor of w. We consider two cases: Case 1: a does not occur in Wy,

and Case 2: a occurs in Wj.

Case 1: Since a, does not occur in W, but occurs in Wy, it follows from
Lemma 3.7.7 that Wy, ; = W, VW, where all letters of V are distinct and none
of them occurs in W;. Thus we can write V' = bob; - - - bjy|—1 and extend the
domain of definition of 8 to {bo, b, ..., by -1} by 8(b;) = bjy|—i—1. In this way
W1 becomes a f-palindrome.

Case 2: In this case we will show that Wy, is the 8-palindromic closure of
Wia, that is the shortest 8-palindrome beginning in Wja. In fact we will show
that Wi, = WiaV where W, = UaV for some word V' and f-palindrome U.
Let W, be the shortest bispecial factor containing a. Hence n < k. Since
Wia is a factor of w, it follows from Lemma 3.7.7 that W, _;a is a prefix of
W,, and hence a prefix of W},. Thus there exists a bispecial factor U (possibly
empty) such that Ua is a prefix of W;. Let U denote the longest bispecial
factor of w with the property that Ua is a prefix of Wy, and write W, = UaV/,
where V' is possibly the empty word. We will show that Wy ; = WiaV.
Setting @ = 6(a), we will show that aUa F aUaV. First of all, since Ua is
a prefix of the #-palindrome Wy, and U is bispecial and then #-palindrome, it
follows that aU is a factor of w; hence by Lemma 3.7.5, aW, = aUaV is a factor
of w. Suppose to the contrary that aUa ¥ aUaV. Then there exists a proper
prefix V' of V and a letter b € A such that V'b is not a prefix of V and aUaV'd
is a factor of w. Thus aUaV’ is right special, and hence aUaV’ is a suffix of
Wy. Since UaV' is also a prefix of Wy, it follows that UaV' is bispecial, and
hence a f-palindrome. We deduce that UaV'a is a prefix of W}, contradicting
the maximality of the length of U. Thus, aUa - aUaV as required. It follows
that Wia = WyiaV, since aUa is a suffix of W,a. Hence WiaV is a left special
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factor of w, as the Wya is left special and extends uniquely to WiaV'.

It remains to show that W,aV is also right special. In the same way that we
showed that aUa I aUaV, a symmetric argument shows that (V)aUa 1 aUa.
Thus to show that W,aV is right special, it suffices to show that aUaV is right
special. Now since Wja is left special and aU is a factor of w, it follows from
Lemma 3.7.5 that aWya = aUaVa is a factor of w. So if aUaV were not right
special, it would mean that aUa - aUaV + aUaVa = af(V)aUa. This implies
that w is periodic, a contradiction. Thus WjyaV is right special, and hence
bispecial. Since Wia - WiaV, Wy, cannot be a proper prefix of W;aV, so
that Wi 1 = WiaV.

It remains to show that Wj,; is a f-palindrome. But, using the fact
that U is a #-palindrome, §(Wy, 1) = (WiaV) = 8(V)aW, = 6(V)aUaV =
8(V)abd(U)aV = 8(UaV)aV = 8(Wy)aV = WraV = Wyyy. Thus Wiy, is a
f-palindrome.

Having established that each bispecial factor of w is a #-palindrome, we
conclude that w is a f-Episturmian word. This concludes the proof of The-

orem 3.7.1.

Remark. 1t follows that for each k¥ > 1, the #-palindromic prefixes of W, are
precisely the bispecial prefixes of W,.

Let 6 be an involutory antimorphism of the free monoid A*. In [12] the
authors introduced various sets of words whose factors are closed under the
action of . One such set is SWjy(N) consisting of all infinite words w whose
sets of factors are closed under € and such that every left special factor of w
of length greater or equal to N is a prefix of w. Thus SWy(0) is precisely the
set of all standard #-Episturmian words. Fix N > 0, and let w € SWy(N).
Let (W, )n>o denote the sequence of all #-palindromic prefixes of w ordered by
increasing length. For each n > 0 let z,, € A be such that W,z, is a prefix
of w. The sequence (z,),>o is called the subdirective word of w. In [12], the

authors establish the following lemma (Lemma 4.3 in [12]):

Lemma 3.7.8. Let w € SWy(N). Suppose z, = z,, for some 0 < m < n
and with |W,,| > N —2. Then W, = (W,z,)®°.

In case N = 0, we can say more:
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Proposition 3.7.9. Let w be a standard 0-Episturmian word. Suppose that
W,a 1s left special for some n > 0, and that the letter a occurs in W,.
Then Wy, = (W,a)®e.

Proof. By Lemma 3.7.8 it suffices to show that for some 0 < m < n, W,,a is
left special. Let W,,,; be the shortest bispecial factor containing the letter a.
Thus, m + 1 < n since W,, contains a. Since W,, does not contain a, we can
write Wy, 11 = W, XaYW,,. Here any one of X,Y, and W,,, may be the empty
word. Since W,,; is the shortest bispecial factor containing a, it follows that
every occurrence of a in w is preceded by W,,X. Since W,a is a factor, and
W1 is a suffix of W, it follows that W,,X is both a prefix and a suffix of
Wony1. But this implies that W,, X is bispecial, and since |W,, X| < [Wii1l,
we deduce that W,,X = W,,, in other words, X is empty. Hence W,,a is left

special as required. O ]

We observe that Proposition 3.7.9 holds also for (general) #-Episturmian
words, since for any #-Episturmian word there exists a standard #-Episturmian
word having the same set of factors.

In general Proposition 3.7.9 does not extend to words w € SWy(N) for
N > 0. For instance, let t be the Tribonacci word, i.e., the fixed point of the
morphism 0 — 01, 1 + 02 and 2 +— 0. Let w be the image of t under the
morphism 0 + a, 1 — bc, and 2 + cab. Let 8 be the involutory antimorphism
generated by 6(a) = a, and 6(b) = c. Then it is readily verified that w €
SWe(4), but w ¢ SWy(3) since both abc and cab are left special factors. We
have that W; = a, W, = abca, and W3 = abcacababca. Thus although Wsc is
left special, and ¢ occurs in W,, we have that W3 # (W,c¢)®? = abcacbabea.

3.8 Special factors and images of Arnoux-Rauzy

words

The main result of this section shows that, for generalized Episturmian words
in the standard case, even when the step of dropping the “closure under some
19" requirement is made, the large class of words thus obtained retains a strong

link with Arnoux-Rauzy words. More precisely, we will prove the following.
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Theorem 3.8.1. Let s € AY satisfy the following two conditions for all
k> N, where N > 0:

1. any left spectal factor of s having length k 1s a prefiz of s,
2. s has at most one right special factor of length k.

Then there exists B C alphs and a standard Arnouz-Rauzy word t € BY

such that s is a morphic image (under an injective morphism) of t.
The following simple lemma is the first basic ingredient for our main result.

Lemma 3.8.2. Let s be an infinite word such that any sufficiently long left

spectal factor of s 1s a prefiz of it. Then s is recurrent.

Proof. By contradiction, suppose that Aw is a prefix of s ending with the
rightmost occurrence of w in s. Then all prefixes of s from length |Aw| on do
not reoccur in s, and so have no left extensions in s. By a counting argument,
this implies that s has also at least one factor with more than one left extension
(i.e., a left special factor) for each length n > |Aw|. For sufficiently large n,
such a left special factor should be a prefix of s by hypothesis. We have reached
a contradiction. O

We need one of the most well-known and useful restatements of the theorem
of Morse and Hedlund (cf. [50, Theorem 7.3]):

Theorem 3.8.3. An infinite word s is ultimately periodic if and only if

cs(n) = cs(n+ 1) for some n > 0.
As a consequence of Lemma 3.8.2, we obtain the following specialization.

Proposition 3.8.4. An infinite word s is (purely) periodic if and only if it

has no left special factor of some length n.

Proof. If s = p¥ with p € A*, then s has no left special factors of length |p|.
Conversely, assume that s has no left special factor of length n. This implies

card(A™ N Fact s) = card(A™*! N Fact s) ,

so that by Theorem 3.8.3, s is ultimately periodic. Clearly s has no left spe-
cial factor of any length & > n, thus it trivially satisfies the hypothesis of
Lemma 3.8.2. Therefore s is recurrent, and hence periodic. 0J
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The following proposition was proved in [14, Lemma 7] under different

hypotheses. We report an adapted proof for the sake of completeness.

Proposition 3.8.5. Let s be a recurrent aperiodic infinite word. Then

every factor w of s 1s contained in some bispecial factor of s.

Proof. Since s is recurrent, we can consider a complete return 2z to w in s.
Writing z = vw, it cannot happen that the factor w is always preceded by v in
s, otherwise s would be periodic. Thus some suffix of z of length at least |u|
must be a left special factor of s. Let £ € A* be of minimal length such that
zw is a left special factor of s. Such a word is trivially unique, and w is always
preceded in s by z. In a similar way, there exists a unique y € A* of minimal
length such that wy is right special in s, and w is always followed by y.

Since zw is left special in s and zw is always followed by y one has that zwy
is also left special. Similarly, since wy is right special and always preceded by
z, zwy is right special. Hence every factor w of s is contained in some bispecial
factor W = zwy of s. ]

A recurrent word s € A¥ with A = alphs is an Arnouz-Rauzy word if it
has exactly one left special factor and one right special factor of each length, of
degree cardA. Arnoux-Rauzy words are uniformly recurrent (cf. [29]); this was
part of the definition in [4]. An Arnoux-Rauzy word s is standard if its left
special factors are prefixes of s. Thanks to Lemma 3.8.2, one does not have to
consider recurrence, when checking if a given word is a standard Arnoux-Rauzy

word.

Proof of Theorem 3.8.1

Suppose first that s has no left special factor of some length n. Then s is
periodic by Proposition 3.8.4, so that it is trivially a morphic image of z* for
any z € alphs.

Now let us assume that s has at least one left special factor of each length
— exactly one, from length N on. By Lemma 3.8.2, s is recurrent, so that
by Proposition 3.8.5 it has infinitely many bispecial factors, which we denote
by Wo = ¢, Wi,...,W,,..., where |W;| < |W,,,| for all © > 0. Let 7 be the
least index such that |[W;| > N. By conditions 1 and 2, W; is a border of W;
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for all 7 > 5. The sequence whose n-th term is the (right) degree of W, for
all n > 7 is then non-increasing. Hence there exists £ > 7 such that W, has
the same degree of W, for all n > k, that is, the above considered sequence is

constant from its k-th term on. We set
B ={z € A| Wiz € Fact s} C alphs,
so that card B is, by definition, the degree of W,.

We now consider the return words to w = W;, in s. Let uw;w = wv; and
UsW = WV, be any two distinct complete returns to w in s, and let us show that
vlf #* v{ . Indeed, let p be the longest common prefix of v; and v,. If p = vy,
then |vs| > |v1| as v; # vs; since wv; = u,w, there is an internal occurrence of
w in wv,, contradicting the definition of complete return. The same argument
applies if p = v5,. Thus p is a proper prefix of both v; and v,, so that wp is a
right special factor of s. Since s has only one right special factor per length,
and w is a right special factor of s, it follows that w is a suffix of wp. This
implies p = ¢, since otherwise there would be an internal occurrence of w in
wv; and wv,. Hence v{ #* v{ as desired. Since w is also left special in s, using
a symmetric argument one can prove that u§ # uf.

From this it follows that for each z € B, there exists a unique complete
return u,w = wv, to w in s, such that vg = z. We define a morphism
¢ : B* — A* by ¢(z) = u,. Note that ¢ is injective, as ¢(B) is a suffix code
having the same cardinality of B.

By definition, we have s = ¢(t), where ¢t € B“ is a derivated word of s with
respect to its prefix w. We remark that, as a consequence of the definition of

return words, one has
z € Factt & ¢(z)w € Facts and =z € Preft & ¢(z)w € Prefs. (3.22)

We will prove that ¢ is a standard Arnoux-Rauzy word by showing that ¢ has
exactly one right special factor (of degree cardB) of each length, and that all
left special factors of ¢ are prefixes of it.

Let z; and 2z, be any two right special factors of ¢ having the same length.
Thus there exist distinct letters zi,y:,z2,¥2 € B such that z; # y; and
2:%;, 2;y; € Factt for 1 = 1,2. By (3.22), this implies ¢(z;z;)w, ¢(z;y:)w €

Fact s. Since for a € {z;,y;} and 72 = 1,2 we have

d(z:0)w = P(z;)uqw = ¢(z;)wv, € Facts
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with v], # v],, it follows that ¢(2z;)w and @(z,)w are right special factors of s.
By condition 2, either ¢(z;)w € Suff(¢(z2)w), or vice versa. The word w has
|21] +1 = |22| + 1 occurrences in both ¢(2;)w and ¢(z;)w, and it is a prefix of
both, by the definition of return word. Hence we derive ¢(2z;)w = ¢(22)w, so
that z; = 25 by the injectivity of ¢.

If z is a right special factor of ¢, by the above argument ¢(z)w is right
special in s. Since |¢p(z)w| > |w|, we obtain that ¢(z)wz € Facts for all
z € B. Since the only complete return to w in s starting with z is v,, it follows
d(2)wv, = ¢(2)u,w = @(zz)w € Facts, so that zz € Factt for all z € B,
proving that z has degree cardB.

Let now 2’ be a left special factor of ¢, and let z2/,y2’ € Factt for some
distinct letters z,y € B. Then ¢(zz')w, ¢(yz')w € Facts. As ¢(z)¢ = ué #
ul = ¢(y)’, ¢(z)w is a left special factor of s. By condition 1, it follows
¢(2")w € Pref s and then 2’ € Preft by (3.22).
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Chapter 4

Characteristic morphisms

4.1 Basic definitions and properties

Let X be a finite alphabet. A morphism ¢ : X* — A* will be called ¥-
characteristic if
¢(SEpi(X)) C SEp1y ,

i.e., ¢ maps any standard Episturmian word over the alphabet X in a stand-
ard ¥-Episturmian word on the alphabet A. Following this terminology, The-
orem 2.3.1 can be reformulated by saying that an injective morphism ¢ :
A* — A* 1s standard Episturmian if and only if it 1s R-characteristic.

For instance, every morphism ¢ : X* — A* satisfying the conditions of
Proposition 3.6.7 is ¥-characteristic (and injective). A trivial example of a
non-injective ¥-characteristic morphism is the constant morphism ¢ : z €
X — a € A, where a is a fixed ¥-palindromic letter.

Let X = {z,y}, A= {a,b,c}, ¥ defined by @ =a, b =c, and ¢ : X* — A*
be the injective morphism such that ¢(z) = a, ¢(y) = bac. If t is any standard
Episturmian word beginning in y3z, then s = ¢(¢) begins with bacbaca, so
that a is a left special factor of s which is not a prefix of s. Thus s is not
¥-Episturmian and therefore ¢ is not ¥-characteristic.

In this section we shall prove some results concerning the structure of -

characteristic morphisms.

Proposition 4.1.1. Let ¢ : X* — A* be a ¥-characteristic morphism. For
each z in X, ¢(z) € PAL;.
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Proof. 1t is clear that |¢(z)| is a period of each prefix of ¢(z“). Since ¢(z¥) is
in SEpig, it has infinitely many ¥-palindromic prefixes (see [12]). Then, from
Lemma 3.1.5 the statement follows. U

Let ¢ : X* — A* be a morphism such that ¢(X) C Pj. For any z € X, let
¢(z) = 7\ - - 71(®) be the unique factorization of ¢(z) by the elements of P.
We set

Mg)y={mePs|IzecX,F:1<1<r, and7r:7r£z)}. (4.1)

If ¢ is a ¥-characteristic morphism, then by Propositions 4.1.1 and 3.6.2,
we have ¢(X) C PAL3 C Pj, so that II(¢) is well defined.

Proposition 4.1.2. Let ¢ : X* — A* be a ¥-characteristic morphism. Then

I1(p) ts an overlap-free and normal code.

Proof. Let t € SEpt(X) be such that alpht = X, and consider s = ¢(t) €
SEpis. Then the set II(¢) equals II;, as defined in (3.18). The result follows
from Theorems 3.4.9 and 3.4.10. O

Proposition 4.1.3. Let ¢ : X* — A* be a ¥-characteristic morphism. If
there exist two letters z,y € X such that ¢(z)* # ¢(y)?, then ¢(X) C PALs.

Proof. Set w = ¢((z%y)¥). Clearly ¢(z) is a right special factor of w, since
it appears followed both by ¢(z) and ¢(y). As w is in SEpis, being the
image of the standard Episturmian word (z%y)“, we have that ¢(z) is a left
special factor, and thus a prefix, of w. But also ¢(z) is a prefix of w, then

it must be ¢(z) = ¢(z). The same argument can be applied to ¢(y), setting

w' = ¢((y*z)").
Now let z € X. Then ¢(z)’ cannot be equal to both ¢(z)’ and ¢(y)’.
Therefore, as shown above, ¢(z) € PALs. From this the assertion follows. [

Proposition 4.1.4. Let ¢ : X* — A* be a ¥-characteristic morphism. If
for z,y € X, Suff ¢(z) N Suff ¢p(y) # {e}, then ¢(zy) = ¢(yz), that s, both
¢(z) and ¢(y) are powers of a word of A*.

Proof. If ¢(zy) # ¢(yz), since Suff ¢(z) N Suff Pp(y) # {e}, there exists a
common proper suffix ~ of ¢(zy) and ¢(yz), with h # €. Let h be the longest
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of such suffixes. Then there exist v,u € A" such that

¢(zy) =vh and ¢(yz)=uh, (4.2)

with v # u®. Let s be a standard Episturmian word whose directive word
can be written as A = zy?z A, with A € X¥, so that s = zyzyzzyzyzt, with
t € X¥. Thus

¢(s) = d(zy)d(zy)a = ¢(z)d(yz)d(yz)d(zy)B
for some a, 8 € AY. By (4.2), it follows
¢(s) = vhuha = ¢(z)uhuhvhf .

The underlined occurrences of hv are preceded by different letters, namely v*
and u’. Since @(s) € SEpi,, this implies hv € Pref ¢(s) and then

hv = vh . (4.3)

In a perfectly symmetric way, by considering an Episturmian word s’ whose
directive word A’ has yz?y as a prefix, we obtain that uh = hu. Hence u
and h are powers of a common primitive word w; by (4.3), the same can be
said about v and h. Since the primitive root of a nonempty word is unique,
it follows that u and v are both powers of w. As |u| = |v| by definition, we

obtain © = v and then ¢(zy) = ¢(yz), which is a contradiction. O

Corollary 4.1.5. If ¢ : X* — A* 15 an injective 9-characteristic morphism,
then ¢(X) s a suffiz code.

Proof. 1t is clear that if ¢ is injective, then for all z,y € X,z # y, one has
d(zy) # ¢(yz); from Proposition 4.1.4 it follows Suff ¢(z) N Suff ¢p(y) = {e}.
Thus, for all z,y € X, if z # vy, then ¢(z) ¢ Suff ¢(y), and the statement
follows. ]

Proposition 4.1.6. Let ¢ : X* — A* be a ¥-characteristic morphism. Then
for each z,y € X, either

alph ¢(z) Nalph ¢(y) = 0

or

$(z) = (y)’.
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Proof. Let alph¢(z) Nalphd(y) # 0 and ¢(z)’ # ¢#(y)’. We set p as the
longest prefix of ¢(z) such that alphp Nalph@(y) = 0 and ¢ € A such that
pc € Pref ¢(z). Let then p’ be the longest prefix of ¢(y) in which ¢ does not
appear, i.e., such that ¢ ¢ alphp’. Since we have assumed that ¢(z)’ # ¢(v)’,
it cannot be p = p' = €. Let us suppose that both p # ¢ and p' # €. In this
case we have that c is left special in (¢(zy))“, since it appears preceded both
by p and p' and, from the definition of p, alphp N alphp’ = 0. We reach a
contradiction, since ¢ should be a prefix of ¢(zy)* which is in SEpi,, and thus
a prefix of ¢(z).

We then have that either p # € and p' = ¢ or p = € and p’ # €. In the first
case we set 2 = z and 2’ = y, otherwise we set z’ =  and z = y. Thus we can

write
¢(z) = Acy, ¢(z') =cY', (4.4)
with A € AT, ¢ ¢ alph ), and 7,7 € A*. For each nonnegative integer n,

(z"2')¥ and (2'™z)“ are standard Episturmian words, so that (¢(z"z'))” and
(¢(2""2))¥ are in SEpiy. Moreover, since

(#(22))" = ¢(2) " ($(2'2))”  and  (4(2'2))" = ¢(2) ' (#(22"))" ,

it is clear that ¢(z2')“ and ¢(2'z)” have the same set of factors, so that each left
special factor of (¢(22'))* is a left special factor of (¢(2'z))* and wvice versa.

Let w be a nonempty left special factor of (¢(z'z))¥; then w is also a prefix.
As noted above, w has to be a left special factor (and thus a prefix) of (¢(zz'))*.
Thus w is a common prefix of (¢(2'2))* and (¢(z2'))“, which is a contradiction
since the first word begins with ¢ whereas the second begins with A, which
does not contain c¢. Therefore ¢(2'z)“ has no left special factor different from
€; since each right special factor of a word in SEpi, is the ¥-image of a left
special factor, it is clear that (¢(z'z))“ has no special factor different from e.

Hence each factor of (¢(2'2))” can be extended in a unique way both to the
left and to the right, so that by (4.4) we can write

(B(2))" = ey'rc- -

and, as stated above, each occurrence of ¢ must be followed by 7'Ac, which
yields that

(¢(2'2))" = (ev'A)” = (#(2)A)
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so that this infinite word has the two periods |¢(2'z)| and |¢(2")A|. From the
theorem of Fine and Wilf, one derives ¢(2'z)(¢(2')A) = (¢(2")A)@(2'2), so that

d(z2")A = Ap(2'2) . (4.5)

The preceding equation tells us that A is a suffix of A¢(z'z) and so, as
|#(2)| > |A|, it must be a suffix of ¢(z); since A does not contain any c, it has
to be a suffix of v, so that we can write

¢(2) = AcgA (4.6)

for some word g. Substituting in (4.5), it follows

P(zz') = Ap(2") Acg .

From the preceding equation, we have

(8(272)) = ¢(2')p(2") Ap(2') Acg - - (4.7)

From (4.6), ¢(z)® = A‘. Proposition 4.1.4 ensures that A* = ¢(z)* must be
different from ¢(z')*, otherwise we would obtain ¢(zz') = ¢(z'z) which would
imply c is a prefix of ¢(z), which is a contradiction. Thus, from (4.7), we have
that ¢(2')) is a left special factor of ¢(2?2)“ and this implies that ¢(z")) is a
prefix of ¢(2')%¢(z), from which we obtain that X is a prefix of ¢(2'z) = cy'¢(2),
that is a contradiction, since A does not contain any occurrence of c. Thus the
initial assumption that alph ¢(z) N alph ¢(y) # 0 and ¢(z)* # ¢(y)7, leads in
any case to a contradiction. ]

Proposition 4.1.7. Let ¢ : X* — A* be a ¥-characteristic morphism. If
z,y € X and ¢(z),d(y) € PALy, then either alph¢(z) Nalph¢(y) = 0 or
d(zy) = ¢(yz). In particular, if ¢ is injective and ¢p(X) C PALy, then for
all z,y € X with ¢ # y we have alph ¢(z) N alph ¢(y) = 0.

Proof. If alph¢(z) N alph¢(y) # 0, from Proposition 4.1.6 we obtain, as

¢(z), $(y) € PALy, that ¢(z)* = ¢(z)” = ¢(y)” = ¢(y)*. Then ¢(z)° = ¢(y)*
and, from Proposition 4.1.4, we have that ¢(zy) = ¢(yz).

If ¢ is injective, then for all z,y € X with z # y we have ¢(zy) # ¢(yz) so
that the assertion follows. O
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Corollary 4.1.8. Let ¢ : X* — A* be an injective ¥-characteristic morph-
1sm such that ¢(X) C PALs and cardX > 2. Then ¢(X) C Py.

Proof. Let z,y € X with z # y. Since ¢ is injective, we have from Proposition
4.1.7 that alph ¢(z) Nalph ¢(y) = 0. Let u be a proper border of ¢(z). Then

there exist two nonempty words v and w such that
¢(z) = uv = wu.
Since alph ¢(z) N alph ¢(y) = 0, we have ¢(y)* # w?; thus

d(yz)” = d(y)uvd(y)wud(y) - - -

shows that u is a left special factor in ¢(yz)“, but this would imply that u is
a prefix of ¢(yz). As alphu Nalph¢(y) = 0, it follows u = ¢, i.e., ¢(z) € Ps.
The same argument applies to ¢(y). O

The following lemma will be useful in the next section.

Lemma 4.1.9. Let ¢ : X* — A* be a ¥-characteristic morphism. Then for
each z € X and for any a € A,

|¢($)|a >1= |¢(x)|¢(m)f > 1.

Proof. Let b be the first letter of ¢(z) such that |¢(z)|, > 1. Then we can
write
#(z) = vbwbw'

with w,w' € A*, b ¢ alphw, and |¢(z)|. = 1 for each c in alphv. If v # €, then
we have that v* # (bw)’, but that means that b is left special in ¢(z*), which
is a contradiction, since each left special factor of ¢(z*) is a prefix and b is not
in alphv. Then it must be v = € and b = ¢(z)’. O

4.2 First results

The first result of this section is a characterization of injective ¥-characteristic
morphisms such that the image of any letter is an unbordered ¥-palindrome.

A wider characterization will be given in Section 4.3.
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Theorem 4.2.1. Let ¢ : X* — A* be an winjective morphism such that for
any z € X, ¢(z) € Ps. Then ¢ is ¥-characteristic if and only if the

following two conditions hold:

1. alph ¢(z) nalph ¢(y) = 0, for any z,y in X such that z # y.

2. foranyz € X and a € A, |¢(z)]. < 1.

Proof. Let ¢ be ¥-characteristic. Since ¢ is injective, from Proposition 4.1.7 we
have that if z # y, then alph ¢(z) Nalph ¢(y) = 0. Thus condition 1 holds. Let
us now prove that condition 2 is satisfied. This is certainly true if |¢(z)| < 2,
as ¢(z) € Ps. Let us then suppose |¢(z)| > 2. We can write

¢(z) =azy---z,b,

withz, € A,1=1,...,n,a=>0,and a #b.
Let us prove that forany ¢ = 1,...,n, z; ¢ {a,b}. By contradiction, suppose
that b has an internal occurrence in ¢(z), and consider its first occurrence.

Since ¢(z) is a ¥-palindrome, we can write
#(z) = azy - -T;bA = AaZ; -+ T1b,

withAc A", 1<i<n,andz;#bforg=1,...,1

We now consider the standard -Episturmian word s = ¢(z*), whose first
letter is a. We have that no letter Z;, 7 = 1,...,1, is left special in s, as
otherwise T; = a that implies z; = b, which is absurd. Also b cannot be left
special since otherwise b = a. Thus it follows that z; = Z{, z,_1 = Zo, ...,
z, = I;. Hence, az, - - - z;b is a proper border of ¢(z), which is a contradiction.
From this, since ¢(z) is a ¥-palindrome, one derives that there is no internal
occurrence of a in ¢(z) as well.

Finally, any letter of ¢(z) cannot occur more than once. This is a con-
sequence of Lemma 4.1.9, since otherwise the first letter of ¢(z), namely a,
would reoccur in ¢(z). Thus condition 2 holds.

Conversely, let us now suppose that conditions 1 and 2 hold; Proposi-

tion 3.6.7 ensures then that ¢ is ©¥-characteristic. ]

A different proof of Theorem 4.2.1 will be given at the end of this section, as
a consequence of a full characterization of injective 9-characteristic morphisms,

given in Theorem 4.3.1.
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Remark. In the “if” part of Theorem 4.2.1 the requirement ¢(X) C Py can
be replaced by ¢(X) C PALy, as condition 2 implies that ¢(z) is unbordered
for any z € X, so that ¢(X) C Ps. In the “only if” part, in view of Corol-
lary 4.1.8, one can replace ¢(X) C Py by ¢(X) C PALy under the hypothesis
that card X > 2.

Ezample 4.2.2. Let X, A, ¥, and g be defined as in Example 3.4.6. Then the
morphism g is ¥-characteristic.

As an immediate consequence of Theorem 4.2.1, we obtain:

Corollary 4.2.3. Let ( : X* — B* be an R-characteristic morphism, g :
B* — A* be an injective morphism satisfying g(B) C Ps and the two condi-

tions in the statement of Theorem 4.2.1. Then ¢ = go( 1s ¥-characteristic.

Ezample 4.2.4. Let X, A, ¥, and g be defined as in Example 3.4.6, and let
¢ be the endomorphism of X* such that {(z) = zy and ((y) = zyz. Since
¢ = Hgzy 0 0, where o(z) = y and o(y) = z, ¢ is a standard Episturmian
morphism. Hence the morphism ¢ : X* — A* given by

¢(z) = acbde, ¢(y) = acbdeacd
is ¥-characteristic, as ¢ = go (.

Theorem 4.2.5. Let ¢ : X* — A* be a ¥-characteristic morphism. Then
there exist B C A, a morphism ( : X* — B*, and a morphism g : B* — A*
such that:

1. ¢ 1s R-characteristic,
2. 9(B) =T11(¢), with g(b) € bA* for all b € B,

3. p=goC.

Proof (see Fig. 4.1). Set II = II(¢), as defined in (4.1), and let B = f(II) C
A, where f is the morphism considered in (3.2). Let ¢, : X* — IT* and f| : IT* —
B* be the restrictions of ¢ and f, respectively. Setting ¢ = fjo¢ : X* — B*, by
Theorem 3.4.11 one derives ((SEpi(X)) C SEpi(B), i.e., ¢ is R-characteristic.

Let t € SEpi(X) be such that alpht = X, and consider s = ¢(t) € SEpi,.
Since IT equals I1;, as defined in (3.18), by Theorem 3.4.11 the morphism f is
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X* A*
\ /
T
|lf|
|
B*

Figure 4.1: A commutative diagram describing Theorem 4.2.5

injective over II, so that f| is bijective. Set g = 1o f|_1, where ¢ : I[T* — A* is
the inclusion map. Then g(B) = II, and g(b) € bA* for all b € B. Furthermore,

we have

p=top =to(flof)og=(of)o(fiog)=go(
as desired. m

Ezample 4.2.6. Let X = {z,y}, A = {a,b,c}, and ¥ be the antimorphism
of A* such that @ = a and b = ¢. The morphism ¢ : X* — A* defined
by ¢(z) = a and ¢(y) = abac is ¥-characteristic (this will be clear after
Theorem 4.3.1, see Example 4.3.2), and it can be decomposed as ¢ = g o (,
where ¢ : X* — B* (with B = {a,b}) is the morphism such that {(z) = a
and ((y) = ab, while g : B* — A* is defined by g(a) = a and g(b) = bac. We
remark that ((SEp:(X)) C SEpi(B), but g(SEpi(B)) £ SEpi, as it can be
verified using Theorem 4.2.1. Observe that this example shows that not all

1¥-characteristic morphisms can be constructed as in Corollary 4.2.3.

Proposition 4.2.7. Let ( : X* — A* be an injective morphism. Then ( 1s
R-characteristic if and only if it can be decomposed as ( = u, on, where

we A and n: X* — A* 15 an injective literal morphism.

Proof. Let ( = puyom, with w € A* and 7 an injective literal morphism. Then
7 is trivially R-characteristic and u,, is R-characteristic too, by Theorem 2.3.1.
Therefore also their composition ¢ is R-characteristic.

Conversely, let us first suppose that {(X) C a;A* for some a; € A. Then
for any t € SEpi(X), ¢(t) is a standard Episturmian word beginning with a;,
so that by Proposition 2.2.9 the letter a, is separating for ¢{(¢). In particular
a; is separating for each ((z) (z € X); by Proposition 2.2.15 there exists a
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morphism o, : X* — A* such that { = p,, o;. Since t € SEpi(X), tha, (01(t))
is a standard Episturmian word over A, so that by Proposition 2.3.2 the word
a;(t) is also a standard Episturmian word over A. Thus «; is injective and
R-characteristic, and we can iterate the above argument to find new letters
a; € A and R-characteristic morphisms o; such that ( = p,, 0+ -0 g, 0 0y, as
long as all images of letters under o; have the same first letter.

If cardX > 1, since ( is injective, we eventually obtain the following de-
composition:

C:/J'alO/J'azo"'o,u'anol’?:,u'woni (48)

where ai,...,a, € A, w = a; - --a,, and n = a, is such that n(z)’ # n(y)’ for
some z,y € X. If the original requirement {(X) C a; A* is not met by any a,,
that is, if {(z)7 # ((y)’ for some z,y € X, we can still fit in (4.8) choosing
n=0and w=c¢.

Let then z,y € X be such that n(z)’ # n(y)/. Since n is R-characteristic,
by Proposition 4.1.3 we obtain n(X) C PAL. Moreover, since 7 is injective,
by Corollary 4.1.8 we have n(X) C Pr = A, so that n is an injective literal
morphism.

In the case X = {z}, the lengths of the words «;(z) for > 1 are decreasing.
Hence eventually we find an n > 1 such that a,(z) € A and the assertion is

proved, for

C:/.Lalo"'O,LLanOOln:/leOOln,

withw =a;---a, € A* and a, : X* — A* an injective literal morphism. [
Ezample 4.2.8. Let X = {z,y}, A={a,b,c}, and ( : X* — A* be defined by:
¢(z) = abacabaabacab = u,(bcbabch) and ((y) = abacaba = p,(bcba) ,
so that a;(z) = becbabeb and o (y) = beba. Then ((z) can be rewritten also as
((z) = pa(a1(2)) = (Ha © ps)(cach) = (ka © ps © pic)(ab) = pavea(D) -

In a similar way, one obtains ((y) = asea(@). Hence, setting n(z) = b and
n(y) = a, the morphism ¢ = pape,07 is R-characteristic, in view of the preceding
proposition.

From Theorem 4.2.5 and Proposition 4.2.7 one derives the following:
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Corollary 4.2.9. Every injective ¥-characteristic morphism ¢ : X* — A*

can be decomposed as
¢p=gopuon, (4.9)

where n : X* — B* 1s an injectwe literal morphism, u, : B* — B* 15 a
pure standard Episturmian morphism (with w € B*), and g : B* — A* is

an tnjective morphism such that g(B) = II(¢).

Remarks.

1. From the preceding result, we have in particular that if ¢ : X* — A* is

an injective ¥-characteristic morphism, then cardX < cardA.

2. Theorem 4.2.5 and Proposition 4.2.7 show that a decomposition (4.9) can
always be chosen so that B = alphw Un(X) C A and g(b) € bA* N Py
for each b € B.

3. Corollary 4.2.9 shows that the code ¢(X), which is a suffix code by
Corollary 4.1.5, is in fact the composition (by means of g) [7] of the
code u,(n(X)) C B* and the biprefix, overlap-free, and normal code
g9(B) C A~.

4. From the proof of Proposition 4.2.7, one easily obtains that if card X > 1,

the decomposition (4.9) is unique.

Proposition 4.2.10. Let ¢ : X* — A* be an injective ¥-characteristic
morphism, decomposed as in (4.9). The wordu = g(¢¥(w)) is a ¥-palindrome
such that for each z € X,

$(z)u = (ug(n(z)))® (4.10)
and ¢(z) is either a prefiz of u or equal to ug(n(z)).

Proof. Since ¥(w) is a palindrome and the injective morphism g is such that
g(B) C Py, we have u € PALy in view of Proposition 3.1.9. Let z € X and
set b = n(z). We have

¢(z)u = g(pw(n(z))P(w)) = g(kw (b)Y (w)).
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By Propositions 2.2.13 and 3.1.9 we obtain

9(ku(b)¥(w)) = g((wb)) = g((%(w)b)") = (9(4(w)b))® = (ug(b))®,

and (4.10) follows. Thus, since g(b) is a ¥-palindromic suffix of ug(b), we derive
|¢(z)| < |ug(b)|. By Proposition 4.1.1, ¢(z) € P;. Therefore it can be either
equal to ug(b) or a prefix of u. Indeed, if ¢(z) = ur with r a nonempty proper
prefix of g(b) € Ps, then r € Pj, as P} is left unitary. This gives rise to a
contradiction because Py is a biprefix code. O

Corollary 4.2.11. Under the same hypotheses and with the same notation
as in Proposition 4.2.10, if 1,25 € X are such that |¢(z1)| < |¢(z2)|, then
either ¢(z1) € Pref ¢(z,), or ¢(z1) and ¢(z2) do not overlap, t.e.,

Suff ¢(z,) N Pref ¢(z,) = Suff ¢p(z2) N Pref ¢(z,) = {e} .

Proof. For ¢ = 1,2, let us set b; = n(z;). By Proposition 4.2.10, ¢(z;) is either
a prefix of u or equal to ug(b;).

If ¢(z,) is a prefix of u, then it is a prefix of ¢(z2) too, as |p(z;1)| < |d(z2)|-
Let us then suppose that

¢(z;) = ug(b;) fori=1,2. (4.11)

Now let v be an element of Suff ¢(z;) "Pref ¢(z,). Since ¢(z,) € P}, we can
write v = v'A, where v’ is the longest word of P} N Pref v. Then A is a proper
prefix of a word 7 occurring in the unique factorization of ¢(z5) over Py. If A
were nonempty, 7 would overlap with some word 7’ of the factorization of ¢(z;)
over Ps. This is absurd, since for any ¢t € SEp:(X) such that z;,z, € alpht,
both 7 and 7’ would be in Il4y), which is overlap-free by Theorem 3.4.10.
Hence A = € and v € Pj. Therefore by (4.11) we have v = g({), where £ is an
element of Suff(y(w)b;) N Pref(y(w)b,).

By Proposition 4.2.10, (4.11) is equivalent to (ug(b;))® = ug(b)u, ¢ =
1,2. Since for + = 1,2 the word g(b;) is an unbordered ¥-palindrome, any
Y¥-palindromic suffix of ug(b;) longer than g(b;) can be written as g(b;)&:g(b;),
with ¢; a ¥9-palindromic suffix of u. Hence (4.11) holds for ¢ = 1, 2 if and only
if » has no ¥-palindromic suffixes preceded respectively by g(b;) or g(b;). By
Proposition 3.1.9, this implies that for 2 = 1, 2, ¥(w) has no palindromic suffix
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preceded by b;, so that b; ¢ alphw = alphy/(w). Therefore, since b; # b,, the
only word in Suff(¢(w)b;) N Pref(y(w)b,) is . Hence v = g(e) = €.
The same argument can be used to prove that Suff ¢(z,) N Pref ¢(z,) =

{e}. ]

Ezample 4.2.12. Let X = {z,y}, A = {a,b,¢,d,e}, B = {a,d}, and 9 be
defined by @ = b, € = ¢, and d = e. As we have seen in Example 4.2.4, the
morphism ¢ : X* — A* defined by ¢(z) = acbde and ¢(y) = acbdeach is -
characteristic. We can decompose ¢ as ¢ = g o toq 01, Where g : B* — A* is
defined by g(a) = acb € Py, g(d) = de € Py, and 7 is such that n(z) = d and
n(y) = a. We have u = g(¢(ad)) = g(ada) = acbdeach, and

¢(z)u = acbdeacbdeach = (acbdeacbde)® = (u g(n(z)))® .

Similarly, ¢(y)u = (u g(n(y)))®. In this case, ¢(z) is a prefix of ¢(y).

4.3 A characterization of characteristic morph-
isms

The following basic theorem gives a characterization of all injective -charac-

teristic morphisms.

Theorem 4.3.1. Let ¢ : X* — A* be an winjective morphism. Then ¢ 1s

¥-characteristic if and only if it 1s decomposable as
¢p=gopwon

as wn (4.9), with B = alphw U n(X) and g(B) = II C Py satisfying the

following conditions:
1. TI s an overlap-free and normal code,

2. LS ({g(¢(w))} UII) C Pref g(¢(w)),

3. if byc € A\ Suffll and v € IT* are such that buc € FactIl, then v =
g(Y(w'z)), with w' € Prefw and z € {e} U (B \ n(X)).
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The proof of this theorem, which is rather cumbersome, will be given at
the end of this section, using some results on biprefix, overlap-free, and nor-
mal codes proved in Section 1.3. Before presenting the proof, we give some
examples and a remark related to Theorem 4.3.1; furthermore, we derive from
this theorem a different proof of Theorem 4.2.1.

Ezample 4.3.2. Let A = {a,b,c}, X = {z,y}, B = {a,b}, and let ¢ and
¢ : X* — A* be defined as in Example 4.2.6, namely @ = a, b = ¢, and
® = go g omn, where n(z) = a, n(y) = b, and g : B* — A* is defined by
g(a) = a and g(b) = bac. Then II = g(B) = {a,bac} is an overlap-free code
and satisfies:

e (Suff IT\ IT) N LSTII = {e}, so that IT is normal,
e LS5({9(4(a))} V) = LS({a} UII) = {e} C Prefa.

The only word verifying the hypotheses of condition 3 is bac = bab = g(b) € II,
with a € IT* and b ¢ Suff II. Since a = g(¥(a)) and B\n(X) = 0, also condition
3 of Theorem 4.3.1 is satisfied. Hence ¢ is ¥-characteristic.

Ezample 4.3.3. Let X = {z,y}, A = {a,b,c}, ¥ be such that @ = a, b = c,
and the morphism ¢ : X* — A* be defined by ¢(z) = a and ¢(y) = abaac.
In this case we have ¢ = g o y, o m, where B = {a, b}, g(a) = a, g(b) = baac,
n(z) = a, and n(y) = b. Then the morphism ¢ is not ¥-characteristic. Indeed,
if t is any standard Episturmian word starting with yzy, then ¢(¢) has the
prefix abaacaabaac, so that aa is a left special factor of ¢(¢) but not a prefix
of it.

In fact, condition 3 of Theorem 4.3.1 is not satisfied in this case, since
baac = baab = g(b), b ¢ SuffII, aa € IT*, B\ n(X) = 0, and

aa ¢ {g(y(w")) | w' € Prefa} = {e,a} .
If we choose X' = {y} with n'(y) = b, then

9(ka(n'(y*))) = (abaac)” € SEpiy ,

so that ¢’ = g o u, o n’ is Y-characteristic. In this case B = alpha U 7'(X’),
B\ n'(X') = {a}, and aa = g(¢(aa)) = g(aa), so that condition 3 is satisfied.
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Ezample 4.3.4. Let X = {z,y}, A = {a,b,c,d,e, h}, and ¥ be the antimorph-
ism over A defined by @ =a,b=c,d =e, h = h. Let also w = adb € A*,
B = {a,b,d} = alphw, and 7 : X* — B* be defined by n(z) = a and n(y) = b.
Finally, set g(a) = a, g(d) = dahae, and g(b) = badahaeadahaeac. Then the
morphism ¢ = g o u,, o7 is such that

¢(y) = adahaeabadahaeadahaeac and ¢(z) = ¢(y) adahaea ,

and it is ¥-characteristic as the code IT = g(B) and the word u = g(¢(w)) =
g(adabada) = ¢(z) satisfy all three conditions of Theorem 4.3.1.

Remark. Let us observe that Theorem 4.3.1 gives an effective procedure to
decide whether, for a given %, an injective morphism ¢ : X* — A* is ¥-

characteristic. The procedure runs in the following steps:
1. Check whether ¢(X) C Pj.
2. If the previous condition is satisfied, then compute IT = II(yp).
3. Verify that II is overlap-free and normal.

4. Compute B = f(II) and then the morphism g : B* — A* given by
9(B) =1L

5. Since ¢ = g o (, verify that ¢ is R-characteristic, i.e., there exists w € B*
such that ¢ = puy o n, where 7 is a literal morphism from X™* to B*. This
can be always simply done, following the argument used in the proof of
Proposition 4.2.7.

6. Compute g(¢(w)) and verify that conditions 2 and 3 of Theorem 4.3.1

are satisfied. This can also be effectively done.

Before going on, we now give a new proof of Theorem 4.2.1, based on The-
orem 4.3.1.

Proof of Theorem 4.2.1. Let ¢ : X* — A* be an injective morphism such
that ¢(X) = II C Py and satisfying conditions 1 and 2 of Theorem 4.2.1. In
this case we can assume w = ¢, so that B = n(X), v = g(¢(w)) = €, and
¢ = gon. Hence IT = g(B) = ¢(X). The code II is overlap-free by conditions 1
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and 2. Since any letter of A occurs at most once in any word of II, we have
LS({e} UII) C {e} = Pref u, whence

(SuffII\ )N LSTI C {e},

i.e., IT is a left normal, and therefore normal, code. Let b,c € A\ SuffII, and
v € II* be such that bvc € Factm for some m € II. This implies v = € =
9(¢¥(¢)), because the equation v = my - - -, with 7y, ..., m € II would violate
condition 1 of Theorem 4.2.1. Thus all the hypotheses of Theorem 4.3.1 are
satisfied for w = €, so that ¢ = g o u, o n is ¥-characteristic.

Conversely, let ¢ : X* — A* be an injective ©¥-characteristic morphism such
that ¢(X) = II C Py. We can take w = ¢, B = n(X) C A and write ¢ = gon,
so that g(B) = ¢(X) = II. Since u = ¢, by Theorem 4.3.1 we have

LS({e} UTI) C {&} , (4.12)
and, as B\ n(X) =0, for all b,c € A\ SuffIT and v € IT*,
butc € FactIl — v =g(¢(e)) =¢. (4.13)

Moreover, since II = II(¢), we have that IT is normal and overlap-free by
Proposition 4.1.2.

Now let a € A and suppose a € alph7 for some 7 € II. We will show that
any two occurrences of a in the words of IT coincide, so that a has exactly one

occurrence in II. Let then 7, m € IT be such that
T = Aap; and T = Aaps

for some Ay, Ay, p1, p2 € A%, and let us first prove that A\; = .

Let s be the longest common suffix of A; and A,, and let A\; = Als for
1 = 1,2. If both A] and A, were nonempty, their last letters would differ by
the definition of s, and therefore sa would be in LSTI, contradicting (4.12).

Next, we may assume A} = € and A, # €, without loss of generality. Then
sa € Pref m;, so that by Proposition 1.3.1 we obtain Aym; € Pref my; in partic-
ular, we have m; # m,. Let then r be the longest word of IT* N Suff A, and set
A, = ¢r. Since A, # € and II is a biprefix code, we have ¢ # ¢. Furthermore, ¢*
is not a suffix of any word of II, for if 7’ were such a word, by Proposition 1.3.1

we would derive that 7' € Suff £, contradicting the definition of r.
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Let us now write my = £rm6. The word ¢ is nonempty since II is a biprefix
code. Let ' be the longest word in IT* N Prefd and set 6 = r'{. Since II
is a biprefix code, ¢ # . By Proposition 1.3.1, we derive that ¢/ ¢ PrefIl.
By (4.13), we obtain that rm;7' = ¢, which is absurd.

Thus A} = A, = ¢, whence A\; = A, as desired. From A;a = Aqa it follows
'/r{c = 7r§, so that by Proposition 1.3.1 we have m; = 7, and hence p; = p».
Therefore, the two (generic) occurrences of a we have considered are the same.

We have thus proved that every letter of A occurs at most once among
all the words of IT = ¢(X), so that conditions 1 and 2 of Theorem 4.2.1 are

satisfied. ]
In order to prove theorem 4.3.1, we need the following lemma.

Lemma 4.3.5. Lett € SEpi(B) with alpht = B, and let s = g(t) be a stand-
ard ¥-Episturmian word over A, with g : B* — A* an injective morphism
such that g(B) C Py. Suppose that b,c € A\ SuffIl; and v € II} are such
that buc € FactII;. Then there exists § € B* such that v = g(v¥(9)).

Proof. Let m € II; be such that bu¢ € Fact . By definition, we have I, = g(B),
so that, since v € II%, we can write v = g(¢) for some ¢ € B*. We have to
prove that £ = (0) for some § € B*. This is trivial for { = . Let then
¥(6') be the longest prefix in ¥(B*) of &, and assume by contradiction that
¢ # Y(d"), so that ¢¥(6")a € Prefé for some a € B. We shall prove that
P(6'a) = (¥(8")a)") € Pref ¢, contradicting the maximality of 9 (d").

Since g(9(¢")) is a prefix of v, we have bg(¢(d')) € Fact m C Fact s. Moreover
g((6")a) € Pref v C Fact . By Proposition 3.1.9 and since 7 is a 9¥-palindrome,

we have
g9(a(8")) = g(¥(8")a) € Fact .

Thus g((8')), being preceded in s both by b ¢ Suff IT, and by (g(a))* € Suff I1,,
is a left special factor of s, and hence a prefix of it.

Suppose first that a ¢ alph¢’, so that ¥(d'a) = ¥(6')ayp(d’'). Let A be the
longest prefix of 1(¢') such that (6')a) is a prefix of £&. Then g(9(6")al) is

followed in vc by some letter z, i.e.,

g(¢¥(8")aX)z € Pref(ve) . (4.14)
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We claim that
g(N\)z ¢ Pref g(y(d')) . (4.15)

Indeed, assume the contrary. Then z is a prefix of g(A) *g(¥(8")), which is
in IT* since II is a biprefix code. Hence z € Pref g(d) for some d € B such
that g(Ad) € Prefg(¢(d")), and then Ad € Pref(¢') by Lemma 1.3.2. As
¢ ¢ PrefII, we obtain z # ¢, so that by (4.14) it follows g(v(6')al)z € Pref v.
Therefore g(¢(0")aAd) € Pref v by Proposition 1.3.1, so that 1(d')aAd € Pref ¢
by Lemma 1.3.2. This is a contradiction because of our choice of A.

Let us prove that A = (§'). Indeed, since A € Suff (d’), by (4.14) the
word g(Aa))z is a factor of 7, and so is its image under ¥, that is Zg(Aa)). By
contradiction, suppose |A| < |¢(8")|. By (4.15), Zg(}) ¢ Suff g(%(8")), so that
the suffix g(Aa)) of g(¥(6")a)) is preceded by a letter which is not Z. Thus
g(ia)\) is a left special factor of m € Fact s, and hence a prefix of s. As we have
previously seen, g(v(d)) is a prefix of s too, so that, as |A| < |¢(d')], it follows
by Lemma 1.3.2 that Aa is a prefix of ("), contradicting the hypothesis that
a ¢ alph¢’. Thus A = 9(¢'), so that ¥ (6'a) € Pref ¢, as we claimed.

Now let us assume a € alph ¢’ instead, and write §' = yay' with a ¢ alph+/,
so that ¥(8") = ¥(v)ap = payy(y) and () is the longest palindromic prefix
(resp. suffix) of 9(¢’) followed (resp. preceded) by a. Thus

P(8'a) = pap(y)ap = %(8)ap .

Let A € Pref pand z € A be such that (4.14) holds and g(A\)z ¢ Pref g(p). With
the same argument as above, one can show that if |A| < |p|, then g(Aa(7)al)
is a left special factor, and then a prefix, of s. Since g(¢(d')) is a prefix
of s too, and |[Aay(y)a| < |paw(y)| = |¥(6")|, by Lemma 1.3.2 we obtain
;\mp('y)a € Prefy(d’). Since ) is a suffix of B, ;\mp('y) is a suffix, and then
a border, of 9(¢'). This is absurd since () is the longest border of (')
followed by a. Thus A = p, showing that 9(d'a) is a prefix of ¢ also in this
case. The proof is complete. O

We can now proceed with the proof of Theorem 4.3.1.

Necessity. The decomposition (4.9) with B = alphw U n(X) follows from
Corollary 4.2.9 and subsequent Remark.
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Since IT = g(B) C Pys and ¢ is ¥-characteristic, one has by Theorem 4.2.5
that IT = II(¢) as defined by (4.1), so that it is overlap-free and normal by
Proposition 4.1.2.

Let us set u = g(¢(w)), and prove that condition 2 holds. We first suppose
that cardX > 2, and that a,a’ € n(X) are distinct letters. Let A be an infinite
word such that alph A = n(X). Setting t, = ¥ (waA) and t,, = Y(wa'A),
by (2.12) we have

to = tw(W(aA)) and ty = p,(¥(a'A)),

so that, setting s, = g(t,) for y € {a,a’}, we obtain

sy = 9(uw(¥(yA))) € SEpiy,

as Y(yA) € n(SEpi(X)) C SEpi(B) and ¢ = g o u, o n is Y¥-characteristic.
By Corollary 2.2.14 and (2.12), one obtains that the longest common prefix
of t, and t, is ¥(w). As alphA = n(X) and B = alphw U n(X), we have
alpht, = alpht,, = B, so that II,, = II,, = II. Since g is injective, by
Theorem 3.4.11 we have g(a)’ # g(a’)’, so that the longest common prefix of
s, and s, is u = g(¢¥(w)). Any word of LS({u}UII), being a left special factor
of both s, and s,/, has to be a common prefix of s, and s,, and hence a prefix
of u.

Now let us suppose X = {z} and denote 7(2) by a. In this case we have

¢(SEpi(X)) = {9(kw(a”))} = {(9(kw(a)))”} -

Let us set s = (9(uw(a)))” € SEpiy. By Corollary 2.2.14, u = g(¢(w)) is a
prefix of s. Let A € LS({u} U II). Since IT = II;, the word A is a left special
factor of the ¥-Episturmian word s, so that we have A € Pref s.

If a € alphw, then B = {a} U alphw = alphw = alph(w), so that
IT C Fact u. This implies |A| < |u| and then A € Pref u as desired.

If a ¢ alphw, then by Proposition 4.2.10 we obtain ¢(z) = g(uw(a)) =
ug(a), because ¢(z) ¢ Prefu otherwise by Lemma 1.3.2 we would obtain
pw(a) € Prefy(w), that implies a € alphw. Hence s = (ug(a))”. Since
IT C {g9(a)} UFact u, we have |A| < |ug(a)|, so that A € Pref(u g(a)). Again, if
A is a proper prefix of u we are done, so let us suppose that A = u)’ for some
X' € Pref g(a), and that A is a left special factor of g(a). Then the prefix A’ of
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g(a) is repeated in g(a). The longest repeated prefix p of g(a) is either a right
special factor or a border of g(a). Both possibilities imply p = ¢, since g(a)
is unbordered and II is a biprefix and normal code. As X' € Prefp, it follows

A = €. This proves condition 2.

Finally, let us prove condition 3. Let b,c € A\ SuffII, v € IT*, and 7 € II
be such that buc € Factw. Let t' € SEpi(X) with alpht’ = X, and set
t = uy(n(t')), s = g(t). Since ¢ is ¥-characteristic, s; = ¢(t') is standard
U-Episturmian. By Lemma 4.3.5, we have v = g(¢(§)) for some § € B*. If
0 = € we are done, as condition 3 is trivially satisfied for w' = z = ¢; let
us then write § = d’a for some a € B. The words bg(%(d")) and g(a(d))
are both factors of the ©¥-palindrome 7; indeed, 1¥(¢'a) begins with 9(4")a and
terminates with a/(d’). Hence g(9(¢')) is left special in m as b ¢ SuffII is
different from (g(a))* € Suff II. Therefore g(¥(8')) is a prefix of g(¥(w)), as
we have already proved condition 2. Since g is injective and II is a biprefix
code, by Lemma 1.3.2 it follows 9(¢') € Pref¢(w), so that ¢’ € Prefw by
Proposition 2.2.10. Hence, we can write 6 = w'z with w’ € Pref w and z either
equal to a (if §'a ¢ Prefw) or to . It remains to show that if w'z ¢ Pref w,
then z ¢ n(X).

Let us first assume that 7(X) = {z}. In this case we have s; = g(u,(n(t))) =
g(¥(wz*)) by (2.12). Since bv = bg(¢(w'z)) € Factm, g(z) is a proper factor
of w. Then, as B = {z} Ualphw and g(z) # 7, we must have 7 € g(alphw),
so that buv € Factg(y(w)) as alphw = alphy(w). By Proposition 2.2.11,
Y(w'z) is a factor of ¥ (wz). We can then write ¥ (wz) = (Y (w'z)(’ for some
¢,¢" € B*. If ( were empty, by Proposition 2.2.10 we obtain w'z € Pref(wz).
Since w'z ¢ Pref w we would derive w = w’, which is a contradiction since we
proved that bv = bg(yy(w'z)) € Fact g(¥(w)). Therefore ¢ # €, and v is left
special in s, being preceded both by (g(¢))* and by b ¢ Suff[I. This implies
that v is a prefix of s and then of g(¢¥(w)) as |v| < |g(¢(w))|. By Lemma 1.3.2,
it follows ¢¥(w'z) € Pref¢(w) and then w'z € Pref w by Proposition 2.2.10,
which is a contradiction.

Suppose now that there exists y € n(X) \ {z}, and let A € n(X)¥ with
alphA = 7n(X). The word s, = g(¢¥(wyzA)) is equal to g(u.(¥(yzA)))
by (2.12), and is then standard ¥-Episturmian since ¢ = g o p, o n is -

*

characteristic. By applying Proposition 2.2.11 to w' and wy € w'A*, we ob-
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tain ¢ (w'z) € Facty(wyz). We can write ¢¥(wyz) = (¢ (w'z)(’ for some
¢,¢" € B*. As w'z ¢ Prefw and z # y, we have by Proposition 2.2.10 that
Y(w'z) ¢ Prefy(wy), so that { # €. Hence v = g(¢(w'z)) is left special in
s, being preceded both by (g(¢))’ and by b ¢ SuffII. This implies that v
is a prefix of s, and then of g(9(wy)); by Lemma 1.3.2, this is absurd since

Y(w'z) ¢ Pref Y (wy). ]

Sufficiency. Let t' € SEpi(n(X)) and t = u,(t') € SEpi(B). Since g(B) =
IT C Py, by Proposition 3.1.9 it follows that g(¢) has infinitely many 9-
palindromic prefixes, so that it is closed under 4.

Thus, in order to prove that g(¢) € SEpig, it is sufficient to show that any
nonempty left special factor A of g(t) is in Pref g(¢). Since A is left special,
there exist a,a’ € A, a # a/, v,v' € A*, and 1,7’ € AY, such that

g(t) = vadr = v'a'Ar' . (4.16)

The word ¢(t) can be uniquely factorized by the elements of II. Therefore, vai

and v'a’\ are in Pref IT*. We consider three different cases.
Case 1: va ¢ IT*, v'a’ ¢ IT*.

Since II is a biprefix (as it is a subset of Py), overlap-free, and normal code,
by Proposition 1.3.4 we have a),a’A € FactII. Therefore, by condition 2 of
Theorem 4.3.1, it follows A € LSII C Pref g(9(w)), so that it is a prefix of g(¢)
since by Corollary 2.2.14, 9¥(w) is a prefix of ¢t = p,(t').

Case 2: va € IT*, v'a’ € TT*.

From (4.16), we have A € Pref IT*. By Proposition 1.3.5, there exists a unique
word A’ € IT* such that A = -1, = A and 7y -+ - 710 = A, with & > 1,
me€llfori=1,...,k, 0 € AT, and ( € A*.

Since g is injective, there exist and are unique the words 7,7,v’ € B* such
that g(7) = X,g9(v) = va,g(y') = v'a’. Moreover, we have g(y7) = vaX' =
vaA( € Pref g(t) and g(7'7) = v'a’ X' = v'a’A{ € Pref g(¢t). By Lemma 1.3.2, we
derive y7,y'T € Preft. Setting a = 7%, o' = 7", we obtain ar, o' € Factt, and
a # o' as a # a/. Hence 7 is a left special factor of ¢; since ¢t € SEpi(B), we
have 7 € Preft, so that g(7) = X' € Pref g(t). As X is a prefix of X, it follows
A € Prefg(t).
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Case 3: va ¢ IT*, v'a’ € II* (resp. va € II*, v'a’ ¢ I1*).

We shall consider only the case when va ¢ IT* and v'a’ € IT*, as the symmetric
case can be similarly dealt with.

Since v'a’ € IT*, by (4.16) we have A € Pref IT*. By Proposition 1.3.5, there
exists a unique word A’ € IT* such that \' =7 ---m, = Al and 7y - - - 10 = A,
withk > 1, m €llfore=1,...,k, 6§ € AT, and ¢ € A*. By the uniqueness of
N, v'a’ X' is a prefix of g(t).

By (4.16) we have vam; ---m,_10 € Pref g(t). By Proposition 1.3.4, a) €
Fact IT, so that there exist £, &' € A*, m € I1, such that

aXé = €amy - 106 =7 Il

Since ¢ is a nonempty prefix of m, it follows from Proposition 1.3.1 that 7 =
Eamy - - - mR€" = EaX'E", with £ € A*. By Proposition 1.3.6, we can write

m = EaN€" = hp)'gh’

with h,h' € A*, p,q € II*, b= h* ¢ Suff II, and ¢ = (A') ¢ Pref1I.

By condition 3, we have pA'q = g(¢(w'z)) for some w' € Prefw and z €
{e} U (B\ n(X)). Since p, X', q € II* and g is injective, we derive X' = g(7) for
some 7 € Facty(w'z). We will show that A’ is a prefix of g(¢), which proves
the assertion as A € Pref \'.

Suppose first that p = €, so that a = b and 7 € Pref¢(w'z). If 7 €
Pref ¢(w'), then X € g(Prefy(w')) C Prefg(¢(w')) C Pref g(¢(w)), and we
are done as g(¢(w)) € Prefg(t). Let us then assume z # ¢, so that z €
B\ n(X), and ¢(w')z € Pref 7. Moreover, we can assume w'z ¢ Pref w, for
otherwise we would derive X' € Pref g(¢(w)) again. Let A € n(X)“ be the
directive word of ¢/, so that by (2.12) we have t = ¢(wA). Since w' € Pref w,
we can write wA = w'A’ for some A’ € BY, so that ¢t = ¥(w'A’).

We have already observed that v'a’\’ € Pref g(t); as v'a’ € II*, by Lemma 1.3.2
one derives that 7 is a factor of ¢. Since ¢(w')z € Pref 7, it follows 9 (w')z €
Fact (w'A"); by Proposition 2.2.12, we obtain z € alph A’. This implies, since
z ¢ n(X), that w # w', and we can write w = w'ozo’ for some 0,0’ € B*.
By Proposition 2.2.11, ¥(w'z) is a factor of ¢(w'cz) and hence of ¥(w), so
that, since 7 € Pref¢(w'z), we have 7 € Facty(w). Hence we have either
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T € Prefy(w), so that \' € Prefg(¢(w)) and we are done, or there ex-
ists a letter y such that y7 € Facty(w), so that d\' € Factg(y(w)) with
d = (g(y))* € Suff TI. In the latter case, since a = b ¢ Suff IT and a)’ € FactIl,
we have by condition 2 that X' € Pref g(¢(w)). Since g(¢(w)) is a prefix of
g(t), in the case p = ¢ the assertion is proved.

If p # ¢, we have a € Suff II. Let then a,a’ € B be such that (g(a))’ = a
and (g(a'))¢ = a'; as a # a/, we have a # o'. Since p)’ is a prefix of g(¢(w'z)),
p € I1*, and p* = (g(a))* = a, by Lemma 1.3.2 one derives that a7 is a factor
of Y(w'z). Moreover, as v'a’\ € Pref g(t) and v'a’ € IT*, we derive that o' is
a factor of ¢.

Let then ¢’ be any prefix of the directive word A of #, such that o'7 €
Fact ¥ (wd"). By Proposition 2.2.11, ¥(wé’z) contains ¢(w'z), and hence ar,
as a factor. Thus 7 is a left special factor of ¥(wd’'z) and then of the standard
Episturmian word ¢¥(wé'z®); as |7| < |¢(wd')], it follows 7 € Pref ¢(wé’) and
then 7 € Preft, so that A’ € Pref g(¢). The proof is now complete. O

4.4 Further results on characteristic morphisms

Theorem 3.4.11 shows that every standard ¥-Episturmian word is a morphic
image, under a suitable injective morphism, of some standard Episturmian
word. The following theorem improves upon this, showing that the morphism

can always be taken to be ¥-characteristic.

Theorem 4.4.1. Let s be a standard ¥-Episturmian word over A. Then
there exists X C A, t' € SEpi(X) and an injective ¥-characteristic morph-
ism ¢ : X* — A* such that s = ¢(t').

Proof. Set II = II,. By Theorem 3.4.11, the restriction to II of the map
f:w € Py — w € Ais injective. Hence, setting B = f(II) C A, we can
define an injective morphism g sending any letter z € B to the only word
of IT beginning with z. We have s = g(t), where t = f(s) € SEpi(B) by
Theorem 3.4.11.

Let now w € B* be the longest word such that ¥(w) € Pref¢ and g(¢(w)) €
FactII. Such a word certainly exists, as ¢ = 9(g) € Preft and ¢ = g(¢(¢)) €
FactII. Since ¢¥(w) € Preft, we can write ¢ as ¥ (wA) for some A € B¥; let us
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set
X =alphACB and ¢t =9(A)ec SEpi(X).

By (2.12) we obtain s = ¢(¢'), where ¢ = g o u,, on and 7 is the inclusion map
of X in B, ie., n(X) = X.

Let us now show that ¢ is ©¥-characteristic. We have B = X U alphw, and
g(B) =TI, C Py is a biprefix code. By Theorems 3.4.9 and 3.4.10, II is also
normal and overlap-free, so that condition 1 of Theorem 4.3.1 is satisfied.

Let us first prove that ¢ meets condition 3 of that theorem. Indeed, if
v € IT* and b,c € A\ Suff IT are such that bvc € Fact m with 7 € II, then by
Lemma 4.3.5 we have v = g(9(6)) for some 6 € B*. If § = ¢ we are done;
let us then write § = ¢’a for some a € B. The words bg(¢(d')) and g(a(d'))
are both factors of the -palindrome 7, so that g(v(¢')) is left special in 7
as b ¢ SuffII is different from (g(a))’. Therefore g((8')) € Pref g(¢), so that
by Lemma 1.3.2 we have 9(8') € Preft. Since g(¢(¢')) € FactIl, from the
maximality condition on w it follows |§’'| < |w|. Moreover, as ¥ (w) € Preft,
by Proposition 2.2.10 it follows ¢’ € Pref w. Hence, we can write § = w'z with
w' € Pref w and z either equal to a (if 0'a ¢ Pref w) or to €.

In order to prove condition 3, it remains to show that if w'z ¢ Pref w, then
z ¢ X. By contradiction, assume z € X = alph A and write A = £zA’ for some
€ € (X\{z})*and A’ € X“. From (2.12), it follows ¢t = ¢ (wézA’). By applying
Proposition 2.2.11 to w' and w¢ € w'B*, we obtain 9 (w'z) € Fact ¢ (wz); let
us write Y(wéz) = (Y (w'z)(’ for some (,{’ € B*. We claim that { # ¢, i.e.,
Y(w'z) ¢ Pref ¢(wéz). Indeed, assume the contrary. Then w'z € Pref(wéz)
by Proposition 2.2.10, so that w' = w and £ = ¢ since w'z ¢ Prefw and
z ¢ alph¢. Thus g(¢(wz)) = g(¢(8)) = v € FactIl and 9y (wz) € Preft, but
this contradicts the maximality of w. Therefore ¢ # ¢, so that g(y¥(w'z)) is
left special in s, being preceded both by b ¢ Suff IT and by (g(¢))¢ € SuffII.
Hence g(¢(w'z)) is a prefix of s, and then of g(¢¥(wéz)). By Lemma 1.3.2, we
obtain ¢ (w'z) € Pref ¢ (wéz), a contradiction. Thus ¢ satisfies condition 3 of
Theorem 4.3.1.

Finally, let u = g(¢(w)) € Prefs and let us prove that LS({u} UII) C
Prefu. Any word A € LS({u} UII) is left special in s, and hence a prefix of it.
If A is a factor of u, then |A| < |u|, so that A € Pref u as desired.

Let then A € LSTI, with A # €. Since A € Prefs, we have A € PrefIT*,
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so that by Proposition 1.3.5 there exists a unique X' = mymy---m, € IT* (with
k>1landm, € IIfori=1,...,k)suchthat A € Pref X and 7y - - - 1 € Pref .
Because of its uniqueness, A’ has to be a prefix of s. Moreover, as a consequence
of Proposition 1.3.1, every occurrence of A as a factor of any m € II can be
extended to the right to A’ € Factw, so that A € LSTII. As X' € II*, we can
write X' = g(7) € Pref g(t) for some 7 € B*. By Lemma 1.3.2, 7 is a prefix of
t.

As X' € LSTI, it is a proper factor of some 7 € II. By Proposition 1.3.6,
we can write 1 = hpMgh' with h,h' € A", p,q € IT*, b = h* ¢ SuffII, and
¢ = (k') ¢ PrefIl. Therefore, as we have already proved that condition 3
of Theorem 4.3.1 is satisfied, pA'q = g(¢¥(w'z)) for suitable w' € Pref w and
z € {e}U(B\ X). As p € IT*, this implies 7 € Fact ¢(w'z).

We claim that 7 € Pref ¢(w), so that A € Pref X' is a prefix of u. Indeed,
suppose this is not the case, so that, since 7 € Pref ¢, one has 9¥(w)d € Pref r
where d is the first letter of A. Then 9 (w)d € Fact ¥(w'z). This is absurd
if w'z € Prefw, as |¢(w)d| > |[¢(w'z)| in that case. If w'z ¢ Prefw, since
w' € Prefw we can write w = w'yw” for some letter v # z and w"” € B*.
Then ¢(w')y is a prefix of ¢¥(w)d € Facty(w'z) C Facty(w'z¥). Asy ¢
alph z¥, we reach a contradiction by Proposition 2.2.12. Hence all conditions

of Theorem 4.3.1 are met, so that ¢ is ©¥-characteristic. ]

Let us consider the family SWy(N), introduced in [12], of all words w € A
which are closed under ¥ and such that every left special factor of w whose
length is at least N is a prefix of w. Moreover, SW, will denote the class of
words which are in SWy(N) for some N > 0. One has that SWy(0) = SEpts.
It has been proved in [12] that the family of ¥-standard words is included in
SWys(3), and that SWy coincides with the family of ¢-standard words with
seed introduced in [27, 13].

Proposition 4.4.2. Let ¢ : X* — A* be an injective morphism decompos-
able as ¢ = gou,,on where w € B*, B = alphwUn(X), n a literal morphism,
and g is an injective morphism such that g(B) =II C Py. IfII 1s overlap-
free and normal, then o(SEpi(X)) C SWs(N) with N = max{|r| | = € II}.

Proof. The proof is very similar to the sufficiency of Theorem 4.3.1. Using the
same notation, suppose that A is a left special factor of g(¢) of length |A| > N
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where ¢ = u,(t') € SEpi(B) and t' € SEpi(n(X)). One has that Cases 1
and 3 cannot occur since otherwise one would derive a) € FactIT that implies
|A\| < N, which is a contradiction. It remains to consider Case 2. By using
exactly the same argument one obtains that A is a prefix of g(¢). Finally, since
g(t) has infinitely many 9¥-palindromic prefixes one has that g(t) is closed under
9. O



Chapter 5

Rich words

In this chapter, we present and study the class of words which have a maximal
number of palindromic factors for each length. Such words, called rich words,
are again a generalization of Episturmian words, though quite different from
those presented so far. The main results of this chapter have appeared in [16]
and [15].

5.1 Introduction

Given an infinite word w, let P(n) (resp. C(n)) denote the palindromic com-
plezity (resp. factor complezity) of w, i.e., the number of distinct palindromic
factors (resp. factors) of w of length n. In [1], J.-P. Allouche, M. Baake,
J. Cassaigne, and D. Damanik established the following inequality relating the

palindromic and factor complexities of a non-ultimately periodic infinite word:
16
P(n) < ;C(njt {%D for alln € N.

More recently, using Rauzy graphs, P. Baldzi, Z. Masdkovéd, and E. Pelantova [5]
proved that for any uniformly recurrent infinite word whose set of factors is

closed under reversal,
P(n)+P(n+1)<C(n+1)—C(n)+2 forallneN. (5.1)

They also provided several examples of infinite words for which P(n)+P(n+1)
always reaches the upper bound given in relation (5.1). Such infinite words
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include Arnouz-Rauzy sequences, complementation-symmetric sequences,
certain words associated with G-expansions where 3 is a stmple Parry number,
and a class of words coding r-interval exchange transformations.

In this section we give a characterization of all infinite words with factors
closed under reversal for which the equality P(n)+P(n+1) = C(n+1)—C(n)+2
holds for all n: these are exactly the infinite words with the property that all
‘complete returns’ to palindromes are palindromes. Given a finite or infinite
word w and a factor u of w, we say that a factor r of w is a complete return to
u in w if r contains exactly two occurrences of u, one as a prefix and one as a
suffix. Return words play an important role in the study of minimal subshifts;
see [31, 32, 33, 34, 40, 54].

Our main theorem is the following:

Theorem 5.1.1. For any wnfinite word w whose set of factors is closed

under reversal, the following conditions are equivalent:
(I) all complete returns to any palindromic factor of w are palindromes;
(II) P(n)+P(n+1)=C(n+1)—C(n)+2 for alln € N.

Recently, in [38], it was shown that property (I) is equivalent to every factor
u of w having exactly |u|+ 1 distinct palindromic factors (including the empty
word). Such words are ‘rich’ in palindromes in the sense that they contain
the maximum number of different palindromic factors. Indeed, X. Droubay,
J. Justin, and G. Pirillo [29] observed that any finite word w of length |w|
contains at most |w| + 1 distinct palindromes.

As already said, the family of finite and infinite words having property (I)
are called rich words in [38]. In independent work, P. Ambroz, C. Frougny,
Z. Masdkovd, and E. Pelantovd [2] have considered the same class of words
which they call full words, following earlier work of S. Brlek, S. Hamel, M. Nivat,
and C. Reutenauer in [10].

Rich words encompass the well-known family of Episturmian words origin-
ally introduced by X. Droubay, J. Justin, and G. Pirillo in [29] (see Section 5.3
for more details). Another special class of rich words consists of S. Fischler’s
sequences with “abundant palindromic prefixes”, which were introduced and

studied in [35] in relation to Diophantine approximation (see also [36]). Other
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examples of rich words that are neither Episturmian nor of “Fischler type”
include: non-recurrent rich words, like abbbb--- and abaabaaabaaaab- --; the
periodic rich infinite words: (aab*aabab)(aab®aababd)---, with k > 0; the non-
ultimately periodic recurrent rich infinite word v(f) where f = abaababaaba - - -
is the Fibonacct word and 1 is the morphism: a — aab®*aabab, b — bab; and
the recurrent, but not uniformly recurrent, rich infinite word generated by the
morphism: a — aba, b — bb. (See [38] for these examples and more.)
From the work in [29, 38|, we have the following equivalences.

Proposition 5.1.2. A finite or infinite word w 1s rich if equivalently:
e all complete returns to any palindromaic factor of w are palindromes;
e cvery factor u of w contains |u| + 1 distinct palindomes;

e the longest palindromic suffiz of any prefiz p of w occurs exactly once

n p.

From the perspective of richness, our main theorem can be viewed as a
characterization of recurrent rich infinite words since any rich infinite word
is recurrent if and only if its set of factors is closed under reversal (see [38] or
Remark 5.1.1). Interestingly, the proof of Theorem 5.1.1 relies upon another
new characterization of rich words (Proposition 5.1.4), which is useful for es-
tablishing the key step, namely that the so-called super reduced Rauzy graph
is a tree. This answers a claim made in the last few lines of [5] where it was
remarked that the Rauzy graphs of words satisfying equality (II) must have a
very special form.

After some preliminary definitions and results in the next section, Section
3 is devoted to the proof of Theorem 5.1.1 and some interesting consequences

are proved in Section 4.

5.1.1 Notation and terminology

We recall that a factor of an infinite word w is recurrent in w if it occurs
infinitely often in w, and w itself is said to be recurrent if all of its factors
are recurrent in it. Furthermore, w is uniformly recurrent if any factor of w

occurs infinitely many times in w with bounded gaps.
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Remark. A noteworthy fact (proved in [38]) is that a rich infinite word is

recurrent if and only if its set of factors is closed under reversal.

More generally, we have the following well-known result:

Proposition 5.1.3 (folklore). If w is an infinite word with F(w) closed

under reversal, then w 1s recurrent.

Proof. Consider some occurrence of a factor u in w and let v be a prefix of
w containing u. As F(w) is closed under reversal, ¥ € F(w). Thus, if v is
long enough, there is an occurrence of @ strictly on the right of this particular
occurrence of u in w. Similarly u occurs on the right of this @ and thus u is

recurrent in w. O

5.1.2 Key results

We now prove two useful results, the first being a new characterization of rich

words.

Proposition 5.1.4. A finite or infinite word w s rich if and only if, for
each factor v € F(w), any factor of w beginning with v and ending with ¥

and not containing v or U as an wnterior factor is a palindrome.

Proof. ONLY IF: Consider any factor v € F(w) and let u be a factor of w
beginning with v and ending with ¥ and not containing v or ¥ as an interior
factor. If v is a palindrome, then either v = v = ¥ (in which case u is clearly
a palindrome), or u is a complete return to v in w, and hence u is (again) a
palindrome by Proposition 5.1.2. Now assume that v is not a palindrome.
Suppose by way of contradiction that w is not a palindrome and let p be
the longest palindromic suffix of u (which is unioccurrent in u by richness).
Then |p| < |u| as u is not a palindrome. If [p| > |v|, then ¥ is a proper suffix of
p, and hence v is a proper prefix of p. But then v is an interior factor of u, a
contradiction. On the other hand, if [p| < |v|, then |p| # |v| and p is a proper
suffix of ¥ (as ¥ is not a palindrome), and hence p is a proper prefix of v. Thus
p is both a prefix and a suffix of u; in particular p is not unioccurrent in u, a

contradiction.

IF: The given conditions tell us that any complete return to a palindromic

factor v (= 9) of w is a palindrome. Hence w is rich by Proposition 5.1.2. [
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Proposition 5.1.5. Suppose w s a rich word. Then, for any non-palindromaic

factor v of w, ¥ 1s a untoccurrent factor of any complete return to v in w.

Proof. Let r be a complete return to v in w and let p be the longest palindromic
suffix of 7. Then |p| > |v|; otherwise, if |p| < |v|, then p would occur at least
twice in r (as a suffix of each of the two occurrences of v in r), which is
impossible as r is rich. Thus v is a proper suffix of p, and hence 7 is a proper
prefix of p. So ¥ is clearly an interior factor of r.

It remains to show that ¥ is unioccurrent in r. Arguing by contradiction,
we suppose that ¥ occurs more than once in . Then a complete return 7’ to
U occurs as a proper factor of r. Using the same reasoning as above, v is an
interior factor of 7/, and hence an interior factor of r, contradicting the fact

that r is a complete return to v. Thus 7 is unioccurent in r. ]

Note. The above proposition tells us that for any factor v of a rich word w,

occurrences of v and 9 alternate in w.

5.1.3 Proof of Theorem 5.1.1

Following the method of Balazi et al. [5], a key tool for the proof of our main
theorem is the notion of a Rauzy graph, defined as follows. Given an infinite
word w, the Rauzy graph of order n for w, denoted by I',,(w), is the directed
graph with set of vertices F,(w) and set of edges F,,;(w) such that an edge
e € F,;1(w) starts at vertex v and ends at a vertex v’ if and only if v is a
prefix of e and v’ is a suffix of e. For a vertex v, the out-degree of v (denoted
by deg®(v)) is the number of distinct edges leaving v, and the in-degree of v

(denoted by deg (v)) is the number of distinct edges entering v. More precisely:
degt(v) =f{z € A|vz € F,,1(w)} and deg (v)=f{z € A|zv € Fri1(w)}.

We observe that, for all n € N,

S degt(v) = fFan(w) = Y deg ()
vEFp (W) vEFn(W)
(Note that iF, 1(w) =C(n + 1).) Hence
Cn+1)=C(n)= >  (deg'(v)-1)= ) (deg (v)-1). (52)

vEFp (W) vEFn (W)
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It is therefore easy to see that a factor v € F,(w) positively contributes to
C(n+1)—C(n) if and only if deg™ (v) > 2, i.e., if and only if there exist at least
two distinct letters a, b such that va, vb € F,1(w), in which case v is said to
be a right-spectal factor of w. Similarly, a factor v € F,(w) is said to be a
left-special factor of w if there exist at least two distinct letters a, b such that
av, bv € F,;1(w). A factor of w is said to be special if it is either left-special
or right-special (not necessarily both). With this terminology, if we let S, (w)
denote the set of special factors of w of length n, then formula (5.2) may be

expressed as:

Cin+1)—C(n)= >_ (deg*(v)—1) forallneN. (5.3)
vESn(W)

Using similar terminology to that in [5], a directed path P in the Rauzy
graph I',,(w) is said to be a stmple path of order n if it begins with a special
factor v and ends with a special factor v’ and contains no other special factors,
i.e., P is a directed path of the form vv’ or vz; - - - 2;v' where each z; is a non-
special factor of length n. A special factor v € S, (w) is called a trivial simple
path of order n.

In what follows, we use the following terminology for paths. Hereafter,

“path” should be taken to mean “directed path”.

Definition 5.1.6. Suppose w 1is an infinite word and let P = v---v' be a

path in T',(w).

e The first vertex v (resp. last vertex v') s called the initial vertex

(resp. terminal vertex) of P.

e A vertex of P that is neither an initial verter nor a terminal vertex

of P 1s called an interior vertex of P.

e P 15 said to be a non-trivial path if it consists of at least two distinct

vertices.

e The reversal P of the path P is the path obtained from P be reversing

all edge labels (and arrows) and all labels of vertices.

e We say that P is palindromic (or that P 1s invariant under reversal) if
P=P"P.
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Note. Given a path P in I',(w), the reversal of P does not necessarily exist in
I, (w).

Suppose P = wjw;---w; is a non-trivial path in I',(w), and for each 2
with 1 <1 < k, let a; and b; denote the respective first and last letters of w;.
Then, by the definition of I',(w), we have wiby - by = a;---ax 1wi. We call
this word the label of the path P, denoted by Zp. Note that the :-th shift of
Lp := wiby - - - by begins with w;,; for all 2 with 1 <1 <k — 1.

For our purposes, it is convenient to consider the reduced Rauzy graph
of order n, denoted by I',(w), which is the directed graph obtained from
I',(w) by replacing each simple path P = wyws---wy 1wy with a directed
edge w; — wy labelled by £p. Thus the set of vertices of I', (w) is S,(w). For

example, consider the (rich) Fibonacci word:
f = abaababaabaababaababaabaababaabaababaababaabaababaaba - - -

which is generated by the Fibonacct morphism ¢ : a +— ab,b — a. The
reduced Rauzy graph I';(f) consists of the two (special) vertices: ab, ba and
three directed edges: ab — ba, ba — ba, ba — ab with respective labels: aba,
baab, bab.

Lemma 5.1.7. Let w be a rich infinite word and suppose P = wiws -+ - Wy
1s a non-trivial path in T',(w) with k > 2. Then the label £p = wiby - - - by

18 a rich word.

Proof. We proceed by induction on the number of vertices k in P. The lemma
is clearly true for k£ = 2 since £p = w;bs is a factor of w of length n + 1. Now
suppose k£ > 3 and assume that the label of any path consisting of k — 1 vertices
is rich. Consider any path consisting of k£ vertices, namely P = wiw, - - - wg,
and suppose by way of contradiction that its label £p = w1b, - - - by is not rich.
Then the longest palindromic prefix p of £p occurs more than once in £p.
Hence there exists a complete return r to p which is a prefix of ¢p. It follows
that » = £p, otherwise r would be a factor of the prefix u := wiby---by_; of
Zp, and hence a palindrome since u is rich by the induction hypothesis. But
this contradicts the maximality of the palindromic prefix p. So £p is a non-
palindromic complete return to p. Let g be the longest palindromic prefix of u

(which is unioccurrent in u by richness). If |p| > |g|, then g is a proper prefix
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of p, and hence ¢ occurs more than twice in u, a contradiction. On the other
hand, if |p| < |g|, then p is a prefix of g, and hence p is an interior factor of £p
(occurring as a suffix of g), a contradiction. Thus £p is rich, as required. [

The proof of Theorem 5.1.1 relies upon the following extensions of Propos-
itions 5.1.4-5.1.5 to paths.

Lemma 5.1.8. (Analogue of Proposition 5.1.4.) Suppose w s a rich infinite
word and let v be any factor of w of length n. If P=v---9 1s a path from
v to U in IT',(w) that does not contain v or ¥ as an interior vertex, then P

1s palindromic. This property also holds for paths in I', (w).

Proof. We first observe that if P consists of a single vertex, then P = v = 7,
and hence P is palindromic. Now suppose P is a non-trivial path. If P = v7,
then P is clearly palindromic. So suppose P = vz;---2;U where the z; are
factors of w of length n. By definition, the label £p = vb; - - - bpby 1 begins
with v and ends with ¥ and contains neither v nor ¥ as an interior factor
(otherwise P would contain v or ¥ as an interior vertex, which is not possible).
Thus, as £p is rich (by Lemma 5.1.7), it follows that £p is a palindrome by
Proposition 5.1.4; whence P must be invariant under reversal too. It is easy
to see that this property is also true for paths in the reduced Rauzy graph
M (w). O

Lemma 5.1.9. (Analogue of Proposition 5.1.5.) Suppose w s a rich infinite
word and let v be any non-palindromic factor of w of length n. If P =
v---v is a non-triwvial path in T'y,(w) that does not contain v as an interior
vertez, then P passes through U exactly once. This property also holds for

paths in T (w).

Note. Of particular usefulness is the fact that any path from v to v must pass

through v.

Proof. Let us write P = vz; - - - 2,v where the z; are factors of w of length n.
By definition, the label £p = vb; - - - bybx; contains exactly two occurrences of
v, one as a prefix and one as a suffix (otherwise, if £p contained v as an interior
factor, then v would be an interior vertex of P, which is not possible). Thus,

as {p is rich (by Lemma 5.1.7), it follows that ¥ is a unioccurrent (interior)
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factor of £p by Proposition 5.1.5; whence P passes through 7 exactly once. It
is easy to see that this property is also true for paths in the reduced Rauzy
graph I') (w). O

(I) implies (II)

Suppose w is an infinite word with F'(w) closed under reversal and satisfying
property (I). Then w is recurrent by Proposition 5.1.3 (i.e., w is a recurrent
rich infinite word). Moreover, recurrence implies that for all n, the Rauzy
graph I',(w) is strongly connected, i.e., there exists a directed path from any

vertex v to every other vertex v’ in 'y, (w).

Fix n € N and let us now consider the super reduced Rauzy graph of order
n, denoted by I'(w), whose set of vertices consists of all [v] := {v, ¥} where
v is any special factor of length n. Any two distinct vertices [v], [w] (with
v ¢ {w,W}) are joined by an undirected edge with label [¢p] := {£p, £z} if P or
P is a simple path beginning with v or ¥ and ending with w or w. For example,
in the case of the Fibonacci word, I'}(f) consists of only one vertex: [ab]. In
general, the super reduced Rauzy graph consists of more than one vertex and

may contain multiple edges between vertices.
Suppose I', (w) consists of s vertices; namely [v;], 2 = 1,..., s. Since I',(w)
is strongly connected (by recurrence), I'”(w) is connected; thus it contains at

least s — 1 edges.

Now, from Lemma 5.1.8, we know that if v is a special factor, any simple
path from v to 4 is palindromic (i.e., invariant under reversal). Moreover, by
closure under reversal, if there exists a simple path P from a special factor v
to a special factor w, with v ¢ {w, @}, then there is also a simple path from
W to ¥ (namely, the reversal of the path P). Neither of these simple paths is

palindromic.

We thus deduce that there exist at least 2(s — 1) non-trivial simple paths
in the Rauzy graph I',(w) that are non-palindromic (i.e., not invariant under
reversal). In fact, we will show that there are exactly 2(s — 1) non-trivial
simple paths of order n that are non-palindromic. Indeed, if this true then, as

each palindromic factor of length n or n + 1 is a central factor of a (unique)
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palindromic simple path of order n, we have:

P(n)+Pn+1)= > deg'(v)—2(s—1)+p (5.4)
vESR (W)

where, on the right hand side, the first summand is the total number of non-
trivial simple paths, the second summand is the number of non-trivial simple
paths that are non-palindromic, and p is the number of special palindromes
of length n (i.e., the number of trivial simple paths of order n that are palin-
dromic). By observing that the number of special factors of length n is 25 — p,
we can simplify equation (5.4) to obtain the required equality (II) as follows:

P(n)+P(n+1) = > deg'(v)—(25s—p)+2
vESRH(W)
= > (deg'(v)—1)+2
vESRH(W)

= C(n+1)—C(n)+2  (by (5.3)).

We observe, in particular, that any infinite word w with F'(w) closed under
reversal satisfies equality (II) if and only if any simple path between a special
factor and its reversal is palindromic, and for each n, there are exactly 2(s —1)
non-trivial simple paths of order n that are non-palindromic. The latter condi-
tion says that, for all n, the super reduced Rauzy graph I'’/(w) contains exactly
s — 1 edges (with each edge corresponding to a simple path and its reversal),
and hence I'/(w) is a tree as it contains s vertices, s — 1 edges, and must be
connected by the recurrence of w (which follows from Proposition 5.1.3). More

formally:

Proposition 5.1.10. An wnfinite word w with F(w) closed under reversal
satisfies equality (II) if and only if the following conditions hold:

1) any stmple path between a special factor and its reversal is palin-

dromic,
2) the super reduced Rauzy graph I'!(w) is a tree for all n.

Proof. Suppose w is an infinite word with F'(w) closed under reversal. Then
w is recurrent by Proposition 5.1.3. We have already shown that conditions

1) and 2) imply that w satisfies equality (II). Conversely, if at least one of
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conditions 1) and 2) does not hold, then P(n) + P(n + 1) < C(n + 1) —
C(n)+2 (by the arguments preceding this proposition), i.e., w does not satisfies
equality (II). ]

To complete the proof of “(I) = (II)”, it remains to show that any recurrent
rich infinite word w satisfies condition 2) of Proposition 5.1.10, since we have
already shown that condition 1) holds for any such w (using Lemma 5.1.8).
The proof of the fact that w satisfies condition 2) uses the following two lemmas
(Lemmas 5.1.11-5.1.12).

Notation. Given two distinct special factors v, w of the same length n, we
write v /4 w if there does not exist a directed edge from v to w in the reduced

Rauzy graph IV (w) (i.e., if there does not exist a simple path from v to w).

Lemma 5.1.11. Suppose w s a recurrent rich infinite word and let v, w
be two distinct spectal factors of w of the same length with v ¢ {w,w}.
If there exists a stmple path P from v to w, then P 1s unique and there
also ezxists a unique simple path from W to 9 (namely, the reversal of P).

Moreover:
1) v /4 W, and hence w 4 U (unless w s a palindrome);
1) W 4 v, and hence 9 / w (unless v is a palindrome);
11) w 4 v, and hence U A W (unless v and w are both palindromes).

Proof. By closure under reversal (Remark 5.1.1), if there exists a simple path
P from v to w, then the reversal of P is a simple path from % to ¢ in the Rauzy
graph of order |v| = |w| = nm. To prove the uniqueness of P, let us suppose
there exist two different simple paths P, P, from v to w in the Rauzy graph
I',(w). Then

P =vu;---upyw and P, =wvz;---z,w forsomek,l €N,

where uy, ..., Ug, 21, - - -, 2¢ are non-special factors of w of length n and u; # z;
for some 7. Note that either P, or P, (not both) may be of the form vw.

To keep the rest of the proof as simple as possible, we assume hereafter that
neither v nor w is a palindrome; the arguments are similar, and in fact easier,

in the cases when either v or w (or both) is a palindrome.
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Consider a path @ of minimal length beginning with P, and ending with P,
(in the Rauzy graph I',(w)):

Q=PbF P = VUL URW Y2y ZeW
Q1
First we observe that @ contains ¥ since any path from v to itself must pass
through 4, by Lemma 5.1.9. Moreover, the left-most ¥ in @ must occur in the
subpath @ (since ¥ is not equal to any of the non-special factors u;, z; and
¥ # w). Therefore

~

Q:’Uul...ukw...fu...fuzl...zlw
Q2
where the subpath @), ends with the left-most ¢ in the path ). By Lemma 5.1.9,

Q- is a path from v to ¥ that does not contain v or ¥ as an interior vertex.

Thus, by Lemma 5.1.8, ), is palindromic, and hence @)» ends with the reversal
of the path P; since it begins with P;. More explicitly:

Qs
Q:fuul...ukw...wﬁk...ﬁlff}...vzl...zlw_

Py 1'51 Py
We distinguish two cases.

Case 1: If the subpath @3 contains w as a terminal vertex only, then @ is
not an interior vertex of ()3 by Lemma 5.1.9, and hence @3 is palindromic by
Lemma 5.1.8. It follows that ¥ = £ and 2; = u; for all 2 = 1,...,k. Thus

P, = P,; a contradiction.

Case 2: If the subpath @3 contains w as an interior vertex, then @Q; first passes
through w after taking the path P (at the beginning) and before taking the
path P, (at the end). Hence, by Lemma 5.1.8, Q3 begins with a palindromic
path from @ to w that begins with P, and hence ends with P,. But then Q
passes through the path P, at least twice before taking the path P, contradict-
ing the fact that @ is a path of minimal length beginning with P, and ending
with P;.

Both cases lead to a contradiction; thus the simple path P from v to w is
unique (and its reversal P is the unique simple path from @ to ¥). It remains

to show that conditions ¢)—¢27) hold. As 4z) is symmetric to ), we prove only
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that ¢) and ¢27) are satisfied. By what precedes, it suffices to consider paths in

the reduced Rauzy graph I', (w).

1): Arguing by contradiction, let us suppose that there exists a (unique) simple
path from v to 0, i.e., there exists a directed edge from v to @ in the reduced
Rauzy graph IV (w). Then (from above) we know that there also exists a
directed edge from w to 9. Consider a shortest path @ in the reduced Rauzy
graph I'! (w) beginning with v% and ending with vw. By Lemma 5.1.9, any
path from v to itself passes through 7, so we may write

Q=vd-- -9 -vw,

Q1
where the subpath @; ends with the left-most ¥ in the path @. By Lem-

mas 5.1.8-5.1.9, the path ¢); = v - - - ¥ is palindromic, and hence it ends with
wiy. So we have Q = vW---w?---vw; moreover, by Lemma 5.1.9, W must

occur between the last two w’s shown here. In particular,

—_——

Q2

where the subpath @), contains W as a terminal vertex only. Thus, by Lem-
mas 5.1.8-5.1.9, the path () = w? - - - W is palindromic, and hence it ends with
vw. But then @ ends with a shorter path of the form v - - - vw, contradicting
the fact that @ is a path of minimal length beginning with v and ending with

vw.

121): Again, the proof proceeds by contradiction. Suppose there exists a
(unique) simple path from w to v. Consider a shortest path Z in the reduced
Rauzy graph I',(w) beginning with wv and ending with vw. By Lemma 5.1.9,
the path Z must pass through ; thus

Z=wvu---W--vW.

—_————
Zy

where the subpath Z; ends with the left-most W in the path Z. Now it follows
from Lemmas 5.1.8-5.1.9 that the subpath Z; is palindromic, and hence Z;

must end with 9. So we may write

Z=wv: 90 -vw.
——
Za
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If the subpath Z, contains v as a terminal vertex only, then neither v nor ¥ is an
interior vertex of Z, by Lemma 5.1.9. Thus Z, is palindromic by Lemma 5.1.8,
and hence Z, ends with wv. But then the path Z ends with the path wvw,
which is impossible by Lemma 5.1.9. Thus, the subpath Z, must pass through
v at an earlier point, and hence we have Z, = 9wW---v---v. In particular,
the path Z, begins with a palindromic subpath of the form ¥ ---wv, by
Lemma 5.1.8. But then the path Z ends with a shorter path from wv to vw,
contradicting the minimality of Z. O

X

Notation. For a finite word v, let v° represent either v or ¥ and set v~

Lemma 5.1.12. Let w be a recurrent rich infinite word. For fized n €
N,, suppose the super reduced Rauzy graph T'.(w) contains at least three
distinct vertices: [vq], [v2], ..., [Us], s > 3. Then, for each k with3 <k < s,

the reduced Rauzy graph I',(w) contains a path from vy to vi* of the form:
€ € €k—1 €k
7_;17_;22 e 7_;21;33 e vk—2'Uk_1 e vk—lvk ,

where for all v+ = 2,...,k — 1, the subpath v;*---v; (which may consist of
only the single vertez v;*) does not contain v;, U; for all j with 1 < j <k,
] # 1.

Proof. We use induction on k£ and employ similar reasoning to the proof of
Lemma 5.1.11.

First consider the case kK = 3. Recurrence implies that I'/,(w) is connected,
so we may assume without loss of generality that I"/ (w) contains a directed
edge from v; to v3?, a directed edge from v, to v3®, and a path from v5* to vs.
That is, I/ (w) contains a path beginning with v;v5’> and ending with v,v3®.

Consider such a path of minimal length:
Q = v1v5% - - UpvgR.

To prove the claim for £ = 3, we show that none of the special factors vy, 7,
vs, U3 are interior vertices of Q. If v5> = v,, then Q = v,v,v3® (by minimality)
and we are done. So let us assume that v3> = ¥, # v,.

Observe that if v; is an interior vertex of (), then ¥; must be an interior

vertex of @ since any path from v; to itself must contain 7;, by Lemma 5.1.9.
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Similarly, if v5® is an interior vertex of @, then w3 is an interior vertex of Q.
Therefore it suffices to show that 7; and v; “® are not interior vertices of Q. We
prove this fact only for ¥; as the proof is similar for v; .

Arguing by contradiction, suppose ¥; is an interior vertex of Q. Then @
begins with a palindromic path from v;%, to ¥; (by Lemmas 5.1.8-5.1.9), and

this palindromic path clearly ends with v,7;. Hence

Q = ity - Ualy -+ Vo VP
o

where the subpath @’ begins with a palindromic path from wv,%; to ¥, (by
Lemmas 5.1.8-5.1.9), and this palindromic path clearly ends with v;7%,. But
then the path @ ends with a shorter path from v;7, to vyvs®, contradicting the
minimality of Q. Thus the lemma holds for k£ = 3.

Now suppose 4 < k < s and assume the claim holds for £ — 1. Since I} (w)
is connected, it contains a path beginning with v;v5? - - - v,v5 - - - v _ov* 1 and
ending with v, ;v;* (where the former path satisfies the conditions of the

lemma). Consider such a path of minimal length:

Z = 01U VU U U U VR (5.5)
Zl Zz
where for all ¢ = 2,...,k — 2, the subpath v;* - - - v; (which may consist of only

the single vertex v;*) does not contain v;, ¥; forall j with1 <57 <k—1,7 #1.
To prove the induction step, we show that the path Z satisfies the following

two conditions:
1) the subpath Z; contains neither v, nor ¥;

i1) the subpath Z, = v*} - v, does not contain v;, ¥; for all j with
1<y<k jg#k-1

First suppose that condition %) is not satisfied, i.e., Z; contains v, or .
Without loss of generality we assume that v is the right-most of the vertices

Uk, Uy appearing in 7.

Case 1: Suppose v;* = vp # U. Then Z ends with a path from v, to itself,
which must pass through 9, by Lemma 5.1.9; moreover, 7, must be an interior
vertex of Z, (by the choice of v). Thus, by Lemmas 5.1.8-5.1.9, Z>v;, (and
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hence Z) ends with a palindromic path from @ to v,_;v,. Hence Z, contains

Uk _1, and we have:

€p—1 ~
ZoUk = Uy - UpUk—1 -~ Vg1V

where the subpath Z; ends with a palindromic path from v;_; to ¥x0,_1 (by
Lemmas 5.1.8-5.1.9); thus Z; contains v; ;v;. But then Z begins with a shorter
path from Z; to v, ,v;*, contradicting the minimality of Z.

Case 2: Suppose vy* = 9. Then the path Z (= Z,Z,7;) ends with a path of
the form:

no vk,
If v, or ¥ is an interior vertex of Z,, then we reach a contradiction using the
same arguments as in Case 1. On the other hand, if neither v, nor ¥ is an
interior vertex of Z,, then Z, is palindromic by Lemma 5.1.8. So the path
Z, begins with v,¥,_; since it ends with v,_;9,. But then ¥,_; is an interior

vertex of Z;, a contradiction.

Thus the path Z satisfies condition ¢). In proving this fact, we have also
shown that vy, U, are not interior vertices of Z,. It remains to show that the
subpath Z, does not contain v;, 9; for all 7 with 1 < 7 < k — 2 (and hence Z
satisfies condition 22)). We prove only that Z, does not contain #; or #; since
the proof is similar when considering other v;, ¥;.

Suppose on the contrary that Z; contains v; or ¥;. Then, by Lemmas 5.1.8—
5.1.9, Z begins with a palindromic path from v; to 7;, and this palindromic
path begins with Y = Z;v*7 (and hence ends with ¥) by the conditions on
Z under the induction hypothesis. More explicitly, we have:

palindromic

— € €k—1 —€k—1 ~ —€p €L
7 = 'U]_'U22 e Up_ Uy q U Uk—2 U 2'U]_ Ce U1 Uy

Y ¥ Zs
Hence, as v, ; and ¥ ; are not interior vertices of Y (by the induction hypo-
thesis), the subpath Y Z begins with a palindromic path from v, % to v;* 7,
and this palindromic path begins with ¥ (and hence ends with Y'), by Lem-
mas 5.1.8-5.1.9. But then Z ends with a shorter path from Y to v,_,v;%,
contradicting the minimality of Z.
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We conclude that the subpath Z, = v,i’“_‘f -+ -U,_y does not contain v;, ¥;
for all 7 with 1 < j <k, 7 # 1 (i.e., the path Z satisfies condition 7)), and the
proof is thus complete. 0

Lemma 5.1.13. Suppose w s a recurrent rich infinite word. Then the

super reduced Rauzy graph I'!(w) s a tree for allmn € N,.

Proof. First recall that for all n, I'”?(w) is connected (by the recurrence prop-
erty of w). Moreover, Lemma 5.1.11 tells us that if two distinct vertices in
I (w) are joined by an edge, then this edge is unique (and corresponds to a
simple path and its reversal). It remains to show that I’ (w) does not contain
any cycle (i.e., does not contain a chain linking a vertex with itself).

Suppose on the contrary that I'/(w) contains a cycle for some n. Then
I'’(w) must contain at least three distinct vertices: [vi], [vs], ..., [vs], s > 3,

and a cycle of the following form:
[v1|—[va]— - -+ —Jvk]—[vi] for some k with 3 < k <'s. (5.6)

We thus deduce from Lemma 5.1.12 that the reduced Rauzy graph I' (w)
contains a path from v; to vi' of the form:

€k—
P = 'Ul’U;2 Ce ’U2’U§3 Ce ’Uk_g'Ukk_ll Ce Uk—1’UZk Ce ’Uk'U;l,

where for all 2 = 2,.. ., k, the subpath v;*- - - v; (which may consist of only the
single vertex v;*) does not contain v;, 9; for all j with 1 <j <k, j # 1. (Note
that P corresponds to the cycle given in (5.6).)

First suppose that v; is a palindrome. In this case, as neither v; nor ¥, is
an interior vertex of P, it must be a palindromic path by Lemma 5.1.8. But
then v, = v5 ®*, a contradiction (as k£ > 3).

Now suppose that v; is not a palindrome. If vi* = 7;, then we deduce (as
above, using Lemma 5.1.8) that the path P must be palindromic, yielding a
contradiction. On the other hand, if v{ = v;, then, by Lemma 5.1.9, the path
P must pass through 7, a contradiction.

Thus I''(w) is a tree. O

This concludes our proof of the “(I) = (II)” part of Theorem 5.1.1.
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(IT) implies (I)

Conversely, suppose w is an infinite word with F(w) closed under reversal
and satisfying equality (II). Then w satisfies conditions 1) and 2) of Proposi-
tion 5.1.10.

Now, arguing by contradiction, suppose w does not satisfy property (I)
(i.e., w is not rich). Then there exists a palindromic factor p that has a non-
palindromic complete return u in w; in particular, we have u = pqavbgp for
some words ¢, v (possibly empty) and letters a, b, with a # b. So the words
pga, bgp and their reversals adp, pgb are factors of w. Thus pg (resp. gp) is a
right-special (resp. left-special) factor of w. Hence, if u does not contain any
other special factors, then u forms the label of a non-palindromic simple path
beginning with pg and ending with §p. But this contradicts condition 1) of
Proposition 5.1.10. Therefore v must contain other special factors of length
n := |pg|, besides pg and §p. In particular, v begins with the label of a
simple path of order n beginning with pg and ending with another special
factor s; of length m. Similarly, u ends with the label of a simple path of
order n beginning with a special factor s, of length n and ending with §p.
Moreover, since u is a complete return to p, neither s; nor s, is equal to
pq or gp (otherwise p occurs as an interior factor of u). Thus, in the super
reduced Rauzy graph I',(w), there is an edge between the vertex [pg] and
each of the vertices [s;] and [s;]. In particular, there exists a path of the
form: [s;|—[pg]—]s2]. Furthermore, as u contains a factor that begins with
s; and ends with s, and contains no occurrence of pg or §p, there also exists
a chain (or possibly just an edge) linking [s;] and [s,] that does not contain
the vertex [pg]. Thus, if {s1, 5;:} # {s2, 52}, then we see that I'],(w) contains a
cycle, contradicting condition 2) of Proposition 5.1.10. On the other hand, if
{51, 81} = {s2, 82}, then there are at least two edges joining the vertices [s;] and
[pg]. Indeed, there exists a simple path P, from pq to s; and there also exists a
simple path P, either from s; to §gp or from §; to gp. By closure under reversal,
the reversals P,, P, of the respective simple paths P;, P; also exist. Moreover,
none of these four simple paths coincide. Certainly, P, # P, P, # Py, and
P, #+ P, as neither s; nor 3, is equal to pg or §p, and P, # P, as the second
vertex in P; ends with the letter a, whereas the second vertex in the path B,

ends with the letter b # a. So I'/(w) is not a tree, contradicting condition 2)
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of Proposition 5.1.10. This concludes our proof of Theorem 5.1.1. ]

5.2 Factors of rich words

The following proposition collects together all of the characteristic properties

of rich words that were previously established in [29] and in Proposition 5.1.2.

Proposition 5.2.1. For any finite or infinite word w, the following condi-

tions are equivalent:
1) w s rich,

1) every prefiz of w has a unioccurrent palindromic suffiz (and equival-
ently, when w 1is finite, every suffic of w has a unioccurrent palin-

dromic prefiz);
11) every factor u of w contains ezactly |u| + 1 distinct palindromes;

w) for each factor u of w, every prefiz (resp. suffiz) of u has a untoc-

current palindromic suffiz (resp. prefiz),

v) for each palindromic factor p of w, every complete return to p in w

15 a palindrome.

Remark. The equivalences: i) < ii), i) < iii), and i) < iv) were proved in
[29].

Explicit characterizations of periodic rich infinite words and recurrent bal-
anced rich infinite words have also been established in [38]. In the preceding
section, the following connection between palindromic richness and complexity
has been proved,

Proposition 5.2.2. For any infinite word w whose set of factors s closed

under reversal, the following conditions are equivalent:
e all complete returns to palindromes are palindromes;

e P(n)+P(n+1)=C(n+1)—C(n)+2 for alln €N,



154 Chapter 5. Rich words

where P (resp. C) denotes the palindromic complexity (resp. factor com-
plexity ) function of w, which counts the number of distinct palindromic

factors (resp. factors) of each length in w.

From the perspective of richness, the above result can be viewed as a char-
acterization of recurrent rich infinite words since any rich infinite word is
recurrent if and only if its set of factors is closed under reversal (see [38]). In-
terestingly, the proof of Proposition 5.2.2 relied upon another characterization
of rich words, stated below.

Proposition 5.2.3. A finite or infinite word w s rich if and only if, for
each factor v of w, every factor of w beginning with v and ending with U

and containing no other occurrences of v nor of ¥ s a palindrome.

In this section, we establish yet another interesting characteristic property

of rich words. Our main results are the following two theorems.

Theorem 5.2.4. For any finite or infinite word w, the following conditions

are equivalent:
(A) w is rich;

(B) each mon-palindromic factor u of w is uniquely determined by a pair
(p,q) of palindromes such that p and g are not factors of each other

and p (resp. q) ts the longest palindromic prefiz (resp. suffiz) of u.

Theorem 5.2.5. A finite or infinite word w s rich if and only if each
factor of w 1s uniquely determined by its longest palindromic prefiz and

its longest palindromic suffiz.

By contrast, a rich word is not uniquely determined by its longest palin-
dromic prefix and suffix. For example, consider the words acb and adb where
a, b, ¢, d are mutually distinct letters. These two words are rich with the same
longest palindromic prefix (namely a) and the same longest palindromic suffix
(namely b).
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5.2.1 Proofs of Propositions 5.2.1 and 5.2.3

For the sake of completeness, we will first provide simple proofs of the charac-

teristic properties stated in Propositions 5.2.1 and 5.2.3.

Proof of Proposition 5.2.1. We begin by proving the equivalence of proper-
ties i) and ii).
i) < ii): Let P(w) denote the number of distinct palindromic factors of w. For

any word u and letter z, we have

P(u) if uz does not have a unioccurrent palindromic suffix,

P(u) 4+ 1 if uz has a unioccurrent palindromic suffix.

P(uz) = {

Therefore, by induction (with P(e) = 1), it follows that P(w) is precisely
the number of prefixes of w that have a unioccurrent palindromic suffix. In
particular P(w) < |w| + 1, and moreover we see that P(w) = |w|+ 1 (i.e., w
is rich) if and only if each prefix of w has a unioccurrent palindromic suffix.
Similarly, when w is finite, we deduce that w is rich if and only if each suffix

of w has a unioccurrent palindromic prefix.

ii) = 1iii): Suppose w satisfies property ii) (i.e., w is rich) and let u be any
factor of w. Then w = vuv' for some words v, v’ where v is finite, and v’ is
finite or infinite depending on w. By property ii), every prefix of vu has a
unioccurrent palindromic suffix, and so again by ii), every suffix of u have a
unioccurrent palindromic prefix. Thus, by the equivalence of properties i) and

ii), w is rich, i.e., u has exactly |u| + 1 distinct palindromic factors.

iii) = iv): Suppose w satisfies property iii). Then every factor of w is rich.
Hence, for each factor u of w, every prefix (resp. suffix) of u has a unioccurrent

palindromic suffix (resp. prefix), by the equivalence of properties i) and ii).

iv) = v): Suppose to the contrary that property v) does not hold for w sat-
isfying property iv). Then w contains a non-palindromic complete return r
to a palindrome p. We deduce that r = pup for some non-palindromic word
u. Indeed, since r is not a palindrome, r # pp and the two occurrences of
p in r cannot overlap; otherwise there exists a non-empty word v such that
r = pv !p, in which case p = vf = gv = 9§ = p for some words f, g. Whence

v = ¥ and r = g9 = gvg, a palindrome. Now, we easily see that p is the
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longest palindromic suffix of r; otherwise p would occur in the interior of r
as a prefix of a longer palindromic suffix of r. But then r does not have a

unioccurrent palindromic suffix (as p is also a prefix of ), a contradiction.

v) = i): Suppose not. Let u be a factor of w of minimal length satisfying
property v) and not rich. Since all words of length 3 or less are rich (easy
to check), we may write u = zvy with z,y letters and v a word of length at
least 2. By the minimality of u, zv is rich and by the equivalence of i) and ii),
the longest palindromic suffix p of u occurs more than once in u. Hence, by

property v), we reach a contradiction to the maximality of p. O

Proof of Proposition 5.2.3. ONLY IF: Consider any factor v of w and let u
be a factor of w beginning with v and ending with ¥ and containing neither
v nor ¥ as an interior factor. If v is a palindrome, then either v = v = ¥ (in
which case u is clearly a palindrome), or u is a complete return to v in w, and
hence u is (again) a palindrome by Proposition 5.2.1.

Now assume that v is not a palindrome. Suppose by way of contradiction
that v is not a palindrome and let p be the longest palindromic suffix of u
(which is unioccurrent in u by richness). Then |p| < |u| as u is not a palin-
drome. If |p| > |v|, then ¥ is a proper suffix of p, and hence v is a proper
prefix of p. But then v is an interior factor of u, a contradiction. On the other
hand, if |p| < |v|, then |p| # |v| and p is a proper suffix of 9 (as ¥ is not a
palindrome), and hence p is a proper prefix of v. Thus p is both a prefix and
a suffix of u; in particular p is not unioccurrent in u, a contradiction.

IF: The given conditions tell us that any complete return to a palindromic

factor v (= ) of w is a palindrome. Hence w is rich by Proposition 5.2.1. [J

5.2.2 Proof of Theorem 5.2.4

We will now prove our first main theorem. The following two lemmas establish
that (A) implies (B).

Lemma 5.2.6. Suppose w 1s a finite or infinite rich word and let u be any
non-palindromic factor of w with longest palindromic prefiz p and longest
palindromic suffix q. Then p # q, and p and q are not proper factors of
each other.
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Proof. By Proposition 5.2.1, p and g are unioccurrent factors of u. Thus, since
u is not a palindrome (and hence |u| > max{|p|, |¢|}), it follows immediately
that p # ¢, and p and g are not proper factors of each other. ]

Lemma 5.2.7. Suppose w 1s a finite or infinite rich word. If u and v
are factors of w with the same longest palindromic prefix p and the same

longest palindromic suffiz q, then u = v.

Proof. We first observe that if u or v is a palindrome, then u = p=¢ = v. So
let us now assume that neither u nor v is a palindrome.

Suppose to the contrary that u # v. Then u and v are clearly not factors of
each other since neither u nor v is equal to p or g, and p and g are unioccurrent
in each of u and v (by Proposition 5.2.1). Let z be a factor of w of minimal
length containing both u and v. As w and v are not factors of each other,
we may assume without loss of generality that z begins with w and ends with
v. Then z contains at least two distinct occurrences of p (as a prefix of each
of u and v). In particular, z begins with a complete return r; to p with
|r1| > |u| because p is unioccurrent in u by Proposition 5.2.1. Moreover, 7,
is a palindrome by the richness of w, and hence r; ends with % since u is
a proper prefix of r;. Similarly, z ends with a complete return r, to ¢ with
|r2| > |v| since ¢ is unioccurrent in v by Proposition 5.2.1. Hence, since 7, is a
palindrome (by the richness of w) and v is a proper suffix of r,, it follows that
ro begins with 9. So we have shown that @ and ¥ are (distinct) interior factors
of z.

Let us first suppose that an occurrence of ¥ is followed by an occurrence
of 4 in 2z (i.e., z has an interior factor beginning with ¥ and ending with ).
Then, since ¢ is a unioccurrent prefix of each of the (distinct) factors ¥ and
%, we deduce that z contains (as an interior factor) a complete return 3 to g
beginning with . In particular, as r3 is a palindrome (by richness), 73 ends
with v. Thus, z has a proper prefix beginning with u and ending with v,
contradicting the minimality of z. On the other hand, if z has an interior
factor beginning with 4 and ending with ¥, then using the same reasoning as
above, we deduce that 2 has a proper suffix beginning with « and ending with

v. But again, this contradicts the minimality of 2; whence u = v. ]

The proof of “(A) = (B)” is now complete. The next lemma proves that
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(B) implies (A).

Lemma 5.2.8. Suppose w 1s a finite or infinite word with the property that
each non-palindromic factor u of w is uniquely determined by a pair (p, q)
of distinct palindromes such that p and q are not factors of each other and
p (resp. q) is the longest palindromic prefiz (resp. suffiz) of u. Then w 1s

rich.

Proof. To prove that w is rich, it suffices to show that each prefix of w has a
unioccurrent palindromic suffix (see Proposition 5.2.1).

Let u be any prefix of w and let g be the longest palindromic suffix of u. We
first observe that if w is a palindrome then u = g, and hence ¢ is unioccurrent
in u. Now let us suppose that u is not a palindrome and let p be the longest
palindromic prefix of u. If ¢ is not unioccurrent in u, then, as p and g are
not factors of each other (by the given property of w), we deduce that u has a
proper factor v beginning with p and ending with ¢ and containing neither p nor
g as an interior factor. Moreover, we observe that p is the longest palindromic
prefix of v; otherwise p would occur in the interior of v (as a suffix of a longer
palindromic prefix of v). Similarly, we deduce that g is the longest palindromic
suffix of v. So v has the same longest palindromic prefix and the same longest
palindromic suffix as u, a contradiction. Whence ¢ is unioccurrent in u. This

completes the proof of the lemma. O

5.2.3 Proof of Theorem 5.2.5

Lemma 5.2.7 proves that each factor of a rich word is uniquely determined by
its longest palindromic prefix and its longest palindromic suffix.

Conversely, suppose w is a finite or infinite word with the property that
each factor of w is uniquely determined by its longest palindromic prefix and
its longest palindromic suffix. To prove that w is rich, we could use very similar
reasoning as in the proof of Lemma 5.2.8. But for the sake of interest, we give
a slightly different proof. Specifically, we show that all complete returns to any
palindromic factor of w are palindromes; whence w is rich by Proposition 5.2.1.

Let us suppose to the contrary that w contains a non-palindromic complete
return r to a palindromic factor p. Then r = pvp for some non-palindromic

word v (as already observed in the proof vi) = v) in Proposition 5.2.1). We
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easily see that p is both the longest palindromic prefix and the longest palin-
dromic suffix of r; otherwise p would occur in the interior of r as a suffix of
a longer palindromic prefix of r, or as a prefix of a longer palindromic suffix
of r. As r # p, we have reached a contradiction to the fact that p is the only
factor of w having itself as both its longest palindromic prefix and its longest
palindromic suffix. Thus, all complete returns to p in w are palindromes. This

completes the proof of Theorem 5.2.5. O

5.3 A few consequences and remarks

From Theorem 5.1.1, we easily deduce that property (I) is equivalent to equality
(II) for any uniformly recurrent infinite word. Indeed, equality (II) implies the
existence of arbitrarily long palindromes since P(n) + P(n + 1) > 2 for all
n, so together with uniform recurrence one can readily show that factors are
closed under reversal; hence property (I) holds by Theorem 5.1.1. Conversely,
richness (property (I)) together with uniform recurrence implies closure under

reversal by Remark 5.1.1, and hence equality (II) holds.
Question: In the statement of Theorem 5.1.1, can the hypothesis of factors

being closed under reversal be replaced by the weaker hypothesis of recur-

rence?

As above, it follows directly from Theorem 5.1.1 and Remark 5.1.1 that for
any recurrent infinite word w, if w satisfies property (I) (i.e., if w is rich, and
hence has factors closed under reversal), then equality (II) holds. However,
to prove the converse using our methods, one would need to know that any
recurrent infinite word satisfying equality (II) has factors closed under reversal.
We could not find a proof of this claim nor could we find a counter-example.
Let us point out that whilst uniform recurrence and the existence of arbitrarily
long palindromes imply closure under reversal, this is not true in the case of

recurrence only. For instance, consider the following infinite word:
s = bcabcabea’bea*bea’beabea’bea’be - - -,

which is the limit as n goes to infinity of the sequence (s,),>1 of finite words
defined by:

s =bc and s, =s,1a"s,_1 form > 1.
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This infinite word is clearly recurrent (but not uniformly recurrent) and con-
tains arbitrarily long palindromes, but its set of factors is not closed under
reversal. (Note that s is not rich and does not satisfy equality (II).) If one
could show that recurrence together with equality (II) implies arbitrarily long
palindromic prefixes, this would be enough to prove that factors are closed
under reversal.

In the context of finite words w, the hypothesis of factors being closed under
reversal can be replaced by the requirement that w is a palindrome. Indeed,
all we really need is the super reduced Rauzy graph to be connected, which is

true for palindromes.

Theorem 5.3.1. For any palindrome w, the following properties are equi-

valent:
1) w contains |w|+ 1 distinct palindromes;
11) all complete returns to palindromes in w are palindromes,
11) P(1)+P(i+1)=C(e+1)—C(2) + 2 for all © with 0 <1 < |w|. [
We now prove two easy consequences of Theorem 5.1.1.

Corollary 5.3.2. Suppose w 1s a recurrent rich infinite word. Then the

following properties hold.
1) w s (purely) periodic if and only if P(n) +P(n+ 1) =2 for some n.

1) (P(n))n>1 s eventually periodic with period 2 if and only if there
ezist non-negative integers K, L, N such that C(n) = Kn + L for all
n>N.

Proof. Suppose w is a recurrent rich infinite word. Then P(n) + P(n + 1) =
C(n+1)—C(n)+ 2 for all n, by Theorem 5.1.1 and Remark 5.1.1.

1): If P(n)+ P(n + 1) = 2 for some n, then C(n + 1) = C(n), and hence
w is eventually periodic; in particular, w must be (purely) periodic as it is
recurrent. Conversely, if w is periodic, then C(n + 1) = C(n) for some n, and
hence P(n) + P(n +1) = 2.

12): The condition on C(n) implies that for alln > N, C(n+1)—C(n) = K, and
hence P(n)+P(n+1) = K+2 =P(n+1)+P(n+2). Thus P(n) = P(n+2) for
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all n > N. Conversely, suppose (P(n)),>1 is eventually periodic with period
2. Then there exists a non-negative integer N such that P(n) = P(n + 2) for
allm > N. Hence, for alln > N, P(n) + P(n+1) =C(n+1) —C(n) +2 =
P(n+1)+P(n+2) =M > 2. Therefore C(n +1) —C(n) = M — 2 for all
n > N. L]

Remark. Item iz) of the above corollary can be compared with a result of
J. Cassaigne [19], who proved that if C(n) has linear growth, then C(n+1)—C(n)
is bounded.

Remark. In [5], Balazi et al. remarked: “According to our knowledge, all

known examples of infinite words which satisfy the equality P(n)+P(n+1) =

C(n+ 1) —C(n)+ 2 for all n € N have sublinear factor complexity.” Actually,

there do exist recurrent rich infinite words with non-sublinear complexity. For
instance, the following example from [38]: abab®abab®abababab*abab’abab®abab’abad® - - -
(which is the fixed point of the morphism: a — abab, b — b) is a recurrent

rich infinite word and its complexity C(n) grows quadratically with n. Another

example that was indicated to us by J. Cassaigne is the fixed point of a — aab,

b— b:

aabaabbaabaabbbaabaabbaabaabbbbaabaabbaabaabbbaabaabbaabaabbbbbd - - - .

It is a recurrent rich infinite word and its complexity is equivalent to n?/2. More
precisely, P(n)+P(n+1)—2 =C(n+1)—C(n) = n+1—-#{k > 0| 2*+k—2 < n}.

In [29], X. Droubay et al. showed that the family of Episturmian words
(e.g., see [29, 43, 37]), which includes the well-known Sturmian words, com-
prises a special class of uniformly recurrent rich infinite words. Specifically,
they proved that if an infinite word w is Episturmian, then any factor u of w
contains exactly |u|+ 1 distinct palindromic factors (see [29, Cor. 2]). An al-
ternative proof of the richness of Episturmian words can be found in the paper
[3] where the fourth author, together with V. Anne and I. Zorca, proved that
for Episturmian words, all complete returns to palindromes are palindromes.
(A shorter proof of this fact is also given in [13].) More recently, P. Baldzi et
al. [5] showed that all strict Episturmian words (i.e., Arnouz-Rauzy sequences
[4, 53]) satisfy P(n) + P(n +1) = C(n + 1) — C(n) + 2 for all n. This fact,
together with Theorem 5.1.1, provides yet another proof that all Episturmian
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words are rich (since any factor of an Episturmian word is a factor of some
strict Episturmian word).

Sturmian words are exactly the aperiodic Episturmian words over a 2-letter
alphabet. They have complexity n+1 for each n and are characterized by their
palindromic complexity: any Sturmian word has P(n) = 1 whenever n is even
and P(n) = 2 whenever n is odd (see [30]). From these observations, one can
readily check that Sturmian words satisfy equality (II) (and hence they are
rich).

We can now say even more: the set of factors of all Sturmian words satisfies
equality (II). To show this, we first recall that F. Mignosi [48] proved that, for

any n > 0, the number ¢(n) of finite Sturmian words of length n is given by
c(n)=1+> (n+1—1)¢(s),
=1

where ¢ is Fuler’s totient function. More recently, in [26], the second author
together with A. de Luca proved that for any » > 0, the number p(n) of
Sturmian palindromes of length n is given by

In/2]—1
p(n) =1+ Z d(n — 21).
i=0

Equivalently, for any n > 0,

p(2n) =1+ zn: $(2¢) and p(2n+1)=1+ zn: ¢(21 + 1).

=1 2=0
Thus, for all n > 0,

n 2n+1

p(2n) +pn+1) =2+ {p(2i)+p(2e + 1)} +2= > ¢() + 2,

i=1 =1
and

c2n+1)—c(2n)+2 = 2§51(2n +2—1)¢(z) — in:(2n +1—12)¢p(z) + 2

=1 =1

= ¢(2n+1)+§:¢(i)+2

= 2§1 #(2) + 2 = p(2n) + p(2n + 1).
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