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In this paper we analyse in depth the Lost Work in an irreversible process (i.e.
W rey = Wiy —W,,, ). This quantity is also called ‘degraded energy’ or ‘Energy

unavailable to do work’. Usually in textbooks one can find the relation W, , =TAS,,.
Here we show that W,

1. can be expressed in terms of internal and external Entropy

production, 7. and 7

nt

quantities which enable to write down in a simple way the

ext

Clausius inequality. We will show that W

Lost ext ext

B B
= j-Tm o, +T .[57z'E"d” , where T, is the
A A

temperature of the system during the corresponding quasi-static process and 7, is the
temperature of the external heat source during the related Endo-reversible process.
or" is the infinitesimal entropy production in each infinitesimal step of such Endo-

ext

reversible process. Examples are given for elementary processes.
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1. Introduction

Entropy production, a fascinating subject, has attracted many physics researches even in cosmological physics
[1], moreover in the past ten years there has been renewed interest in thermodynamics of heat engines; many
papers address issues of maximum power, maximum efficiency and minimum Entropy production both from
practical and theoretical point of view [2-6].

One of the main points in this field is the analysis of Available Energy and of the Lost Work. Here we
give a general relation between Lost Work and Entropy production merging together the pioneering papers of
Sommerfeld (1964), Prigogine (1967), Leff (1975) and Marcella (1992), which contain many examples of
such relation, and the substance-like approach to the Entropy of the Karlsruhe Physics Course due mainly to
Job (1972), Falk, Hermann and Schmid (1983) and Fucks (1987).

It is well known [7-13] that for some elementary irreversible process, like the irreversible isothermal

expansion of an ideal gas in contact with an heat source T, the work performed by the gas in such process



W,

irrev

is related to the reversible work W;. (i.e. the work performed by the gas in the corresponding
reversible process) by means of the relation

Wrrev = WRev - T ASU (1)

where AS,, is the total entropy change of the universe (system + environment). The degraded energy TAS,, is

usually called W, . ‘the Lost work’, i. e.:

ost

WL WRe v

ost irrev

the work that could have been performed in the related reversible process (here the reversible expansion); it is
also called ‘energy unavailable to do work’.

By the energy balance, the same relation holds for the amount of heats extracted from the source T

Qirrev = QRe v T ASU

Therefore TAS,, is also called the ‘Lost heat Q, ,’, i.e. the additional heat that could have been drawn from
the source in the related reversible process T'[9].
The total variation of Entropy ,AS,, , is usually called ‘Entropy production’. To be precise let us call it here

7, . The second Law claims that

7z, =20

The relation between Entropy production and W, , (or Q,, ) is the main subject of this paper. Let us

outline the steps that lead to the relation (1).
For a process (A—>B) in which the system (for example, the ideal gas) absorbs a given amount of

heat Q from the heat source at temperature 7, and performs some work W, the entropy production of the

S

Universe, i. e. the total variation of Entropy of system+environment, is

ﬂ’-U = ASsys _g (2)
From the energy balance AU =0 —W it follows
TvﬂIU = TYASsys _Anys _W (3)

* For an irreversible compression TAS, is sometime called W,

or Q... [10]1.e. the excess of work performed on the
system in the irreversible process with respect to the reversible one (or the excess of heat given to the source

in the irreversible process). In a forthcoming paper we will show that W, is related to the environment

Xtra

temperature and to the entropy productions



If the process is reversible then 7, =0 and W =W, =T AS  — AU, which shows that the Reversible

Work in a given process depends only on the endpoints and on the heat sources of the environment [9].

In general for an irreversible process, 7, >0, 1.e. from relation (3), it follows

W

irrev

< WRe v (4)

1.e. the Reversible Work 1s the maximum amount of work that can be performed in the given process, and

W, =We,~W,. =T.7, (5)

Lost Rev irrev
which defines the Lost Work and proves relation (1).
There are however some irreversible processes for which relation (5) is not suitable to evaluate the

Lost Work, for example the irreversible adiabatic processes, in which there is some W, ., some Entropy

ost ?

production 7, , but no external source T .

In Sec. 3 we evaluate W

L. fOr some simple irreversible processes, refine relation (5) taking account of

internal and external irreversibility and give a general procedure to evaluate the Lost Work. Such procedure
follows from the analysis of Sec.2 where it has been shown that often the total Entropy production is due to
the entropy production of the sub-systems. When the subsystems are the system and the environment their

entropy productions has been called respectively internal and external, i.e. 7, =7, +7,,

In Sec.2 we analyse by means of the substance-like approach the entropy balance and the entropy
productions for some elementary irreversible processes.

In the following the heat quantities Q’s are positive unless explicitly stated and the system is almost always

the ideal gas.

2. Entropy production for irreversible processes
In this Section are given some examples of Energy conservation and Entropy production for elementary
processes.

First we analyse the irreversible isothermal expansion (A-->B) of one mole of monatomic ideal gas

which receives the heat Q. = from a source at temperature 7 .

To be clear let us first analyse with the substance-like approach the Energy balance for this process.

For the system (the ideal gas), we have AU _, =F, —E_,, where E, 1is the energy which enters into the

syst out ?

system ( 1.e. Q,,,, ), and E_, is the energy which flows out of the system (i.e. W,

irrey?

the work performed by

irrev t

the gas); AU is the gain of Internal Energy of the system. For the heat source the gain is

syst

AU

Heat—sourse Qirrev



+ AU =W

Heat—sourse system irrev *

Therefore for the Universe (system+environment) AU, = AU Of course for the

isolated system ideal-gas+heat source+air-around we have AU, , =0, since the Energy is conserved. All

Total
this is for the Energy balance.

For the Entropy things are different: the Entropy is conserved only for reversible processes, for
example in the reversible isothermal expansion A—>B, for the ideal gas we have

AS = Sin - Soul (6)

syst

where S, , =0 since no entropy goes out of the system, the Entropy which comes into the system is

|QRev VB 1 f
Sln —T—Rlnv_ , S1INCE QRev _'I[@RCV -

A

PdV = RTln“j—B. Or., 18 the work performed by the system

A

B Sy Y

in the reversible isothermal expansion and is also the heat which flows from the heat source into the system.

B
- V
The intrinsic increase in Entropy® for the system is AS = J. % - Ran_B ; R=8.314 J/mol. K° is the
A A
universal constant for the gases.

For the Heat Source (which is the external world) we have

AS“ =S8;" =S (7)
T T

+ASexl :OZSIZ —SU Whel’e Szl;l/ :SU :0

out out

For the Universe, ideal gas+heat-source, AS, =AS

syst
since there is no Entropy flowing through the composite system, i.e. the composite system is thermally
isolated, it behaves like an isolated system. Of course for the total system ideal-gas+heat source+air-around,

which is totally isolated we have AS, , =0. In this example (a reversible process) the Entropy is conserved.

Total
Let us turn to the irreversibility and take a look at the irreversible isothermal expansion at temperature 7 of

one mole of monatomic ideal gas from the state A to the state B (let, for example, P, = 4P, ). This can be done

by means of thermal contact with a source at temperature 7 or at temperature greater than 7 .

SAS o is usually called (internal) “Entropy creation” [15]

S



I) Thermal contact with a source at temperature T

The ideal gas, in contact with the source T, is at pressure

m ext .
P =p P,=4P, =4P“'by means of some mass m on the mass-less piston. Let

V, be its volume. The mass is removed from the piston and the ideal gas
P, performs  an isothermal irreversible expansion and reaches the

volumeV, at pressure P, =P“" . In the expansion the gas has
performed the work

W,

irrev

=P, V, —VA>=%RT ®)

By means of the Energy Balance we can see that the heat which lives the source and goes into the system is
Qirrev = mrrev (9)
The intrinsic increase of the Entropy in the ideal gas is the same as for the reversible process i.e.
B
V
As,, = Drer _ p1pYe _ pina
V A T A

We can verify that now relation (6) is not fulfilled, in fact S,, =0, since no Entropy goes out from the

system

_ |Qirr€V — ER , SO Assvst
T 4 |

S

In # Sin - Sout ¢

To restore the balance we must add to the right-hand side a quantity 7, , the Entropy production” due to the

int 2

internal irreversibility

ASsyst = Sin - Sout + ﬂ-inl (10)
. 3
We see that 7, is 7,, = RIn4— ZR.
On the contrary for the heat source the relation (6) is fulfilled
A =55 - S
in fact AS*" :—_|Qi”ev , S =0and S = —|Qi”ev :
T T

There is no external irreversibility, there is no external Entropy production, in the general relation

AS“ =8 -S>+ 1, (11)

“* This definition of Entropy production is different from the “ Entropy creation” , they coincide only for adiabatic processes.



here we have 7,, = 0. It is well known indeed that the isothermal exchanges of heat between heat reservoirs

are reversible.
For the Universe (ideal gas+heat source ) we have

AS, =AS., +AS“ =SV -SY 47, =7,

syst out

U _ U __
because S, =S,, =0
and here
Ay =Ty +7,, =7

int ext int

since 7,, =0.

The only source of Entropy is the internal irreversibility.

The entropic balance (10) is reported in Fig. 1, where the circle is the system (i.e. the ideal gas)

SIn

Figure 1. The entropic balance for the ideal gas.

The entropic balance for the heat source (11) is reported in Fig. 2, where the square is the heat source T

S ext

out

[}

7, =AS"{)+854=0

out ~

Figure 2. The entropic balance for the heat source T

(12)

(13)



II) Thermal contact with an heat source at 7'

ext

4
>T forinstance 7, , = ET .

The gas ,which is in the state (P,,V,,T)is brought in thermal contact with the heat source 7, , and the mass

ext

on the piston is removed. The thermal contact with the source is now shorter than before in order to not

increase the temperature of the gas. Now Q,.., W,,.., Wy, .7, and AS_ are the same as before, but
Qirrev
AS = —|—, therefore
ext
V Q‘rrev Q'rr %
m, =AS,,, +AS™ =RIn—* —|’— =7r, +7,, =Rln4 —L+7rm (14)
A ext T
which implies that 7, is different from zero, it is
e Qirrev Qirrev Qirrev T Qirrev
e :| _| :| (1__):_| (15)
T Text T Text T

where 7 is the performance of a reversible engine working between 7, and 7 <T,

ext ext
This result is general whenever we have some heat which flows from a hotter to a colder source. Here
3.1 3
7[6)(! P R L=
4 4 16

Let us give three more examples of Entropy productions in irreversible processes

I1T) For the irreversible process in which the heat |Q| flows from the source 7, to the colder source
T, we can easily verify that 7, =AS, = Q _|Tg| and that
2 1
o, 7 _l9
v ( T ) T, n (16)

Where 77 is the performance of a reversible engine working between the heat sources 7, <T,
As pointed out by S.K. Das [11] it is interesting to consider the case of two heat sources with finite
capacity C . In the irreversible process the heat can flow until the temperature
1
T, = (T, +T)
is reached. The total heat which flows is Q = C(T; —T},) . In the related reversible process however the final

temperature is 7, = /1,7, ; in Appendix B we find the Entropy production and the Lost Work for this

process.



IV) TIrreversible adiabatic expansion

The vessel is thermally isolated. The ideal gas, is maintained at pressure
P,=4P, =4P“'by means of some mass m on the mass-less piston. Let

PV,

V, be its volume and 7, = the initial temperature. The mass is

removed from the piston and the ideal gas performs an adiabatic
irreversible expansion and reaches the volumeV, at pressure P, = P .
Since no heat has gone into the system, the work performed by the gas in
the expansionis W, =-AU  =-C, (T, -T,)

irrev

Moreover S, =S, =0 , therefore

T, =%, =AS (17)

where there is no external irreversibility.

To evaluate the intrinsic increase of the Entropy in the ideal gas(the internal “creation of entropy”), we must

follow one of the many reversible paths fram A to B. Here we take the reversible isotherm (A=>C) + the

reversible isochoric (C->B). Since by First Law 60 = PdV + C, dT , it follows

B C B
dT T
AS,, = | Dre, deV+jCV :Ran—B+CV In=<
T 1T Vv T

T

A B

V) Finally let us consider the irreversible isobaric expansion at pressure P, of one mole of monatomic ideal

gas from the state A to the state B for which, for example, T, = 27, .

P ext — PA

f

PB

The ideal gas, initially at temperature 7, is brought in thermal contact with
the source 7T, =2T,, then an irreversible isobaric expansion at pressure
P,=P, = P*" takes place and the ideal gas reaches the final state B. Let
V., be the initial volume and V, the final volume. In the expansion the gas
has performed the work (=E )

w..=P,V,-V,)=R(T,-T,) (18)

=C, (T, -T,).

From the energy balance we understand that there has been an increase of
internal energy AU, , =E, —-E, , =C,(T,-T,)

m out

and has extracted from the source 7, the heat(=FE, ) |QW




where C, and C, are the molar specific heats respectively at constant pressure and at constant volume.

For this process

T, |0
7, =AS,, +AS™ =C, 1n—B—|Q'l (19)
- A TB

As in the previous cases we want to find 7, and 7

nt

i.e. the Entropy production due to the internal

ext

irreversibility and that due to the external irreversibility.
The path we follow is to analyse the related externally reversible process (Eso-reversible process); for

this we evaluate the Entropy production, which is therefore due only to the internal irreversibility. This will be

7, . From this we can havez, (the Entropy production due to the external irreversibility) by subtracting
z, from 7, ie.

T, =%, —7T,

nt

(20)

ext

Remark that this procedure allows to evaluate 7,, and 7, also for the previous process ( II) , in fact to

int

perform the Eso-reversible process in which the gas at temperature T receives the heat Q we need an

irrev ®

auxiliary heat source at 7', from which the gas takes Q and an auxiliary reversible heat engine which

irrev *

takes the heat Q™ from T, In such Eso-reversible process

Eso _ QRe v Qirrev Qirrev Qirrev

T =TT — =i and QF° =222 Q. from relation (20) we could have 7 = =irer _ Zirev |
U int T T Q T errev ( ) ext T T

ext

and gives to the source at 7' the heat Q

irrev *

which is relation (15).
Here, for the isobaric , to perform the Eso-reversible process we need a sequence of heat sources ranging

from T, to T,, from which the gas takes, at each infinitesimal step, the heat dQ to perform the irreversible

isobaric expansion, and an auxiliary reversible heat engine which takes from the source T, the heat
Eso TB : :
™ = 75Q and give to the source 7 of the sequence, the heat dQ = C,dT . Such an engine at each step

T,
dr =T, C,In-2

B
performs the work oW, = 0"’ (1 —1) . Obviously QES”=.[5QES0 =C,T,| —
Ty A r T,

B C—

In this Externally reversible process (Eso-reversible) the Entropy production due to the Internal irreversibility

O

nt syst

: e o : ‘ dT
at each step is due to the infinitesimal variation of Entropy of the gas (i.e. dS2° =C, 7) and to the

infinitesimal variation of Entropy of that heat source of the sequence which is active in the step ( i.e.

ast =-c, dTT) hence

ext

st =dst +ast =c, L _c 9T _
T

syst ext T
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We find therefore that z,, =0, there is no internal Entropy production in this Eso-reversible process;

therefore

z. =z, =C il _ Gl @1)

TA TB
The total entropy production is only due to the external irreversibility, therefore the Eso-reversible process is

also Totally-reversible. If we call Q"* the Maximum quantity of heat that the external source gives in the
totally-reversible process, here we have that Q" =Q%*. Of course Q, . <Q0" <Q" and

Q... <0, <O""; we understand that the processes for which Q, , =Q"" are the Endo-reversible
processes, which are also Totally —reversible, i.e. the Endo-reversible processes for which 7z, , =0.

To conclude this Section we remark that the global Entropy change is related the local Entropy

productions by means of the following relation:

7y, =AS, =AS  +AS =g+,

The second law of the thermodynamics claims that the global Entropy production is greater or equal zero

AS,, 20.i.e. 7, =20 but from all these examples we see that also 7,, 20 and 7,, =0, this suggests that in

-
each subsystem the Entropy cannot be destroyed. On the other hand, from the substance-like approach of
Karlsruhe, i.e. from the local Entropy balance, (that we can write for each subsystem) this condition is
completely natural’’ [7],[12].The proof that for each subsystem 7 >0 has been given in Sommerfeld (1964)
[7].

Moreover as a consequence of this formulation of the Second law of the Thermodynamics we have the

following formulation of Clausius inequality: if the system makes a whatsoever cycle, relation (10) implies:

0=§as,, :§;2+ﬁim - ﬁﬁso (22)

syst syst

where 00 >0, i.e. it is positive, when it comes into the system and T, is the system’s temperature in each

step of the cycle. This formulation of the Clausius inequality seems more simple and elegant than the
traditional one.

Similarly for the environment, when it makes a whatsoever cycle, from relation (11), we have

" This local formulation of the second law was also given by Prigogine [7]. In a recent paper [14] it has been pointed out that

those irreversible processes for which some local entropy production 77 is negative (if any) are more efficient than the

corresponding reversible processes. Here we will find always 7 >0 .
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0=fds :ﬁﬁmw = %Qso“ (23)

3-Lost Work : examples and general expression

In this section we evaluate the Lost Work for each of the processes of the Sec.2. For each process we can
easily evaluate the work available in the related totally- Reversible process, from this we subtract the effective
work performed in the irreversible process and this difference gives the Lost Work. This enables to check how
suitable relation (5) is to give the Lost Work in terms of the Entropy production. As already pointed out, for
adiabatic processes we need a relation more general than relation (5). In this section such general link between

Entropy production and Lost Work is finally given.

I) For the irreversible isotherm expansion at temperature 7", as has been already shown, the Lost Work is

given by

|4

Lost = WR W

ev irrev

=RT1n4—§RT
4
or

QL”‘” = QRev_ Qirrev =RTIn4- %RT
On the other hand relation (5) gives the same result.

W

Lost

=Trx, =Tx, =T(RIn4 —%R)

II) For the irreversible isotherm expansion at temperature 7 , by means of a source at T, >T , the Total

ext —
Reversible Work is the Reversible work of the gas + the work of an auxiliary reversible engine working

between T,, and T'. For the gas W,  (gas)=0Q .,= RT In4

ext

The auxiliary reversible engine, which brings the heat Q ., to the system (the ideal gas at temperature

T
T') and takes from the heat source 7,, the heat Q .., ;f’ does the Work

T T
ext (1—_—_
T ( T )

ext

Wie, (engine) = Q. ,
Therefore the total reversible work is

WReva‘al = WRev (gaS) +WRev (englne) = QRev + QRev

T T T
ext 1_ — ext  _ Max 2 4
T ( T ) = Oke, T 0 (24)

ext

# A similar remark is due to Marcella[9]
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rrev

On the other hand the Work performed by the gas in the irreversible expansionis W, ,, = Q, . = %RT ,

therefore
WLost = WRevTotal - Wrrev = QMHX - Qirrev (25 a)
The same result we have from the relation (5)
Q ey Qirrev ax
WLost = Textﬂ’-U = Text (% - |T—) = QM - Qirrev : (25b)

ext
We can also compute the Lost Work due respectively to the internal and external irreversibility

Qirrev Qirrev Qirrev
w7 =T, (e ‘|T) +T, (|T —|T—

ext

w,.=T.,7,=T,,(«,

Lost ext

) (26)

Let us call Q" the quantity Q

irrev

T T
% ie. Q" =0, . ;f’ . The second term, the Lost Work due

to the External irreversibility is the work of a reversible engine which takes from T, the heat Q""" and

gives to the system the heat Q

irrev

WLost (e.xt) = Text ﬂ-ext = QUPP” (1 N Tl) - QUppern = QUPP” - Qirrev (27)

ext

The first term, i.e. the lost Work due to the internal irreversibility, is

Wy, (int) =T, 7, = Q" = Q" (28)
It says that the internal irreversibility is a constraint which forbids the extraction of the maximum available
heat, i.e. QM

On the other hand, from the physical point of view we understand that

1) WLost (lnt) = QRev - Qirrev = RT ln 4 _%RT

2) WLost (e‘XI) = QMM - QRev
Therefore there are also physical reasons to write down a more intuitive and general expression of the Lost
Work in terms of the internal and external Entropy production.

Let us outline the way to find it. Looking at the System at temperature 7'

sys ?

in the process some heat Q

comes in and some work W comes out, therefore from relation (10) and the First Law

AS :£+7r.

syst T int

sys

T ﬂ = ASSyS - Q = ASS)’S - AUS)’S _W

sys ‘" int

Y,

._/
Qirrev \H
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If the process is Endo-reversible we have

0=AS,, —AU, —We

Rev

Therefore

T, Tine = WREeriflo -W= QRev - Qirrev (29)

sys“int

re. T, 7, =W

sys“”int Lost

(int) it is the lost work due to the internal irreversibility, i.e. the lost work with respect to the

Endo-reversible process.
It remains to evaluate the external Lost Work with respect to the Endo-reversible process. In the

Endo-reversible process, from relation (11)

7Z.Endo — QRev +ASext — QRev _ QRev

ext T T Texf
ndo Q ev ax Q ev T
Textﬂ-eitd = Text ; - QRe v = QM - QRe v = Text % (1 - T_) (30)

ext

As expected! Relations (29) and (30) are more intuitive than the relations (27) and (28)

Therefore, in general

W, =T x_ +T gk (31a)

Lost sys“”int ext’” ext

or if the system has variable temperature (See Appendix A)

W =

Lost

T or, +T, 7% (31b)

sys ext’% ext

P 1

Or for both temperatures variable, and for 7,

Xt

ranging between T, and T, (Seee Appendix A)
o (3lc)

III) For the irreversible process in which the heat |Q| flows spontaneously from the source 7; to the colder

source T, there is no irreversible work (W, = =0). The only reversible work is the work made by the

rrev

auxiliary reversible engine, which carries to 7, the heatQ , and takes from the heat source 7, the heat

T
0" =Q T_l therefore we have
2

. T
WRevTotal :WRev (englne) = Q T_l(l -

2

T, _ 5_ _ Max _
E)—Q T, 0=0 Q

Therefore

W

Lost

=W,

RevTotal
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On the other hand, we have the same result from the relation (5)

T ax
W, =Tz, =T, Z(-72=0" -0 (32
r, T
Remark that unfortunately in the text-books, for such process we find
Q. I T
W, o=Lx,=T, —(1-—)=0(1-—) . 33
Lost 2°%U 2 T2 ( 7.,1 ) Q( 7,1 ) ( )
that is the reversible work of an engine which takes O from 7, and brings to 7, the heat
T
Qdown = Q F2

1
Also using relation (31 a) for this process we have (let the system be the heat source 7))

Q@9
, T,
The analysis of the Lost Work when 7, and 7, have finite heat capacity C is reported in Appendix B

W :T 7Z.End0:7—vl(

Lost ext”” extx

)=0" -0

IV) For the Irreversible adiabatic expansion (A->B) of the ideal gas, there is no external irreversibility, no

0,,..,and no external heat source. The irreversible Work , can be easily computed by means of the Energy

balance W, =-AU  =-C, (T, -T,)=C,(T, —T,). Moreover remember that
B C B
C,dT V T,
Ty =T =AS =] D _ deV+j Y =RIn—2+C, In-%
A T A T C VA TB

and observe that, since there is no thermal interaction with external world, we cannot compute W, . by

oSt
means of relation (5), and that the related reversible process from A to B can be made in many different way,

For each one of this, here we evaluate the Reversible Work and then the Lost Work.

a) We can go from A to B by means of the reversible isotherm (A—>C) + the reversible isochoric

(C=2>B) ; since there is no work in the isochoric

A

B C Vv
W, (a)=|PdV = |PdV = RT In—<
Rev V
A A

The Lost Work is therefore, since V, =V,

WLost (a) = WRe vlotal W

irrev

=RT ln“j—3+ C,(T,-T,) (34)

A
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Since from the Energy balance (the First Law) 80 = PdV + C,dT , in the infinitesimal step( See AppendixA)
oQ PdV dT

oz, =dS = +C, (35)
Sys sys Tsy.?
From (31b) we have
B
WLosf = I Tvysé‘ﬂ.int =RT ln“j_B + CV (TB - TA) (36)
A A

b) We can go from A to B by means of the reversible adiabatic (A=>D) + the reversible isochoric (D->B)
The reversible work is the work made in reversible adiabatic (A>D) in which PV7” =Const. , y= C%
\%

ie.

D D

Wy, (b) = [ PAV = Const.[ V7dV =C, (T, ~T,)

A A

Therefore
Wi (D) =Wy, (0) = W, =C, (T, =T,)+ C, (T, =T,)=C, (T, —T,)

To find this by means of relation (31b) we use relation (35)

o, (b)=dS_(b)

sys

rrey

sys sy

C,dT
And since dS__(b) =0 in the adiabatic A—>D and dS__(b) = VT in isochoric we have from (31b)

nt

B B
Wy, (b) = [ T,,6%,(b) = [C,dT = C, (T, =T,)
A D

¢) We can go from A to B by means of the reversible isobaric (A>E) and the reversible isochoric
(E=>B) . The total reversible work is the work made in the reversible isobaric (A=>E). In the isobaric
P(V)=P, , therefore

E E
Wy, ()= [PV = P, dV = P,(vV, =V,)
A A

Therefore
W, ) =Wy (c)-W_ =P V,-V)+C,(T,-T,)
To find this by means of relation (31b), recall again that
or, (c)=dS, (c)

sys

rrey

C,dT
And since dS, (c)=C, d?T in the isobaric A>E and dS s (b) = VT in isochoric E2B

sys

from (31b) we have

B E B
Wy, (©) = [ T,,6m,(c)=[ C,dT + [C,dT =C,(T, ~T,) +C, (T, ~T,) =
A A E

=RT,-T)+C,(T,-T,)
The paths a), b) and c) are only three of the possible reversible paths from A to B
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V) For the irreversible isobaric expansion at pressure P, of one mole of monatomic ideal gas from the

state A to the state B for which, for example, 7, = 2T, , the irreversible work is

T, Qi
TA TB .

14

irrev

=P, (V,-V,)=R(T,-T,)and 7, =z, =C,In

The total Reversible work is the reversible work made by the gas (which is identical to the irreversible work)
and the work made by the auxiliary reversible engine working between 7, and the variable temperature 7
of the sequence of sources which we use to make the reversible isobaric expansion.

T T
Weevroa = Wre, (8as) tWy, (engine) = Py (V, =V, ) + J. 30" (1- T_)
A

B

T
where Q"™ = FBCPdT ="

Therefore

T
WLost = WRe vTotal mrrev = CPTB lnT_B - CP (TB - TA)
A
On the other hand by relation (5)
T,
Wie =Tpmty =Ty7,,, =CuTy th_ -G (T, -T,)

A

It easy to verify that we can compute W,  with relation (31 b)

oSt

572. Endo

ext

1% =

Lost

T . om, +T, 70" =T,

ext’” ext B

P 1
o C— Ty

In fact from relation (11) at each infinitesimal step of the Endo-reversible process. Since 6Q = C,dT and

T . ranges between 7, and T,

sys

speni _ 02 80 _Cpdl  Cpdl _ C,dr | T,
“ Tsys Text T TB T TB
It follows
w —TBa E'"‘”—BT Cpdl - L =T,C,1 TB—C T,-T
Lost — B:[ ”ext _:[ B T ( E)_ BYP HE P( B A)
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4- Conclusion

By means of the substance-like approach we have shown that the entropy production mand entropy creation
AS , are different concepts. They coincide only for adiabatic processes or when the whole Universe (system+
environment) is investigated. The Second Law is a constraint on the total entropy creation, i.e. there are many
processes in which one subsystem has negative entropy creation AS , instead the entropy production, for each

subsystem, is always 7 = 0. We have shown that the relation 7z, =7, +7,, is suitable to give in a short

way the Clausius inequality and mainly to give an expression of the Lost Work in terms of the entropy

production. We believe that the relation 7, =7z, +7,, will be also useful to make an analysis of the Extra

Work (W,

Xtra

)i.e. the excess of work that is performed on the system in some irreversible process. The excess

will be evaluated with respect to work performed in the reversible one. That analysis is in progress.

Acknowledgments : This work is mainly due to useful discussion with Marco Zannetti, Caterina Gizzi-
Fissore, Michele D’ Anna, Corrado Agnes and with my friend Franco Siringo to whose
memory this paper is especially dedicated.

APPENDIX A
Here we prove relations (31b) and (31c)
When T and T, are variable, we must consider infinitesimal steps, i.e. the related quasi-static process.

sys ext

Looking at the System at temperature 7, , in the infinitesimal process some heat Q0 comes in the system and

some work OW leaves it, therefore from relation (10) and the First Law

ds =X | spoe

syst nt
Sys

Where Oz is the infinitesimal entropy production in the related quasi-static irreversible process.

nt

T 5”.‘1.& = T dSSyX - @ = T dSsys - dUS)'S - é“/‘/

sys int sys sys

Fig. 4 Some heat comes in the system and some work
leaves the system in the infinitesimal step.

If the infinitesimal process is Endo-Reversible ( 7" =0 ) we have

nt

ndo
O = TvystxyS - dUsys - éVVREev
Therefore
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T 57[6] . MREende - 6‘/‘/ = 5QRev - @irrev (Al)

Sys nt

ie.T, ol =oW

o 1. (iNt) 1is the infinitesimal Lost work due to the Internal irreversibility, i. e. the

infinitesimal Lost work with respect to the Endo-reversible process.

Therefore

Losr

(int) = j T, om j SW Erdo _ f W
A

Remark that for the adiabatic process, many Endo-reversible paths are possible; therefore for each Endo-

reversible path connecting A and B, we evaluate the Lost Work for the related quasi-static process. Moreover
in that case o7 =dS,

Finally we evaluate for each infinitesimal step the External Lost Work with respect to the Endo-reversible

process. In each step the Endo-reversible process

57z.Endo — 5QRev —dS — 5QRev _ 5QRev

ext ext
T T T
sys sys ext
Ts s
Text 57[5;’[10 = Text @Rev 5QRev @M"X @Rev = ext @RBV (1 - _‘) = Text @RBV 77 (Az)
Tfys Tvys Text Tvys

Where 771is the performance of the heat engine that works between T,, and 7, . Therefore

Losr (e.xt) Text ﬂ-i’r‘d” (ASa)
Or for T,, ranging between T.and T
W, (ext) = I T, 075" (A3b)
In conclusion for both temperatures variable
B
W, =| T,0mk" + T om (A4)
Lost int ext ext
A

APPENDIX B

Lost Work and Entropy production in the thermal contact of two heat sources with finite heat

capacity

Let 7, and 7, be two heat sources with finite heat capacity C, for example two identical objects,

respectively at temperature 7, and 7, .
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In order to transfer in a reversible way some heat from 7, to 7, , we need an auxiliary reversible engine which
can work until both bodies reach the same temperature 7.
In such a process 7, has given to the engine the total heat Q,=C(I; —T;), and 7, has received from the
engine the heat Q, =C(T,, —T,), therefore the Reversible work performed by the engine is

Wee, =0, =0, =C(T, +T, - 2T) (B1)

W,

Since no work has been performed in the corresponding irreversible process, we have W, ey -

ost

In order to find 7, we must remind that at in each infinitesimal step during the reversible process the

following relation is satisfied

Where X is the decreasing temperature of the source 7, which at the end takes the value 7}, and Y is the

increasing temperature of 7, . Moreover since |5Q]| =C |dX | and|5Q2| = CdY , from relation (B2) 7, is such

that
T T;
:CldX|  tcdy
| 2] _ | cd (B3)
n X n Y
And since |dX | = —dX by integration we have
T T
—Cln—>=Cln—-~ (B4)
1 TZ
From which it follows that 7, = /T, T,
The entropy production in this reversible process is, of course, zero. In the corresponding irreversible
process, in which, at each step, some heat |5Q| goes from 7, to 7, , we have
50| _ |0
or, =% 1% Bs
vy Ty (BS)

In order to evaluate the total Entropy production, let us introduce an auxiliary source 7;, which, at
each step, receives the amount of heat |5Q| from the source at temperature X and gives it to the source at

temperature Y ; relation (B5) becomes

S R - N 56
Y T, T, X
Where
o 0 (1—£)=@ nyY) and On :@(1—5):@77()()

Ty T, Y Y, xT T,
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Here 7(Y)is the performance of a reversible engine that works between 7, and ¥ and 77(X) the
performance of the engine that works between X and7,, therefore at each infinitesimal step

ow,,, =Yor, +T,0r, (B7)
W, .. can be computed by means of (B7) and (31c), but we can find it also from the total Entropy production.
7,, . From relation (B5), using the relation |5Q| =—CdX = CdY and relation (B4) (which defines 7)), we
have

z, :Tf@(l_i Tf@(l_ﬂ

) + )=
T2 Y TO T1 TO X
T0 T0O
cdy C C CdX
= [ (0, -T) (T, — T + [~ = (B8)
T2 Y TO TO T1
= £(T1 +7,-2T,)
TO
On the right hand side we have the total Reversible Work, i.e. the Lost Work in this process, therefore
TO ﬂ’-U = WLost (B9)

Relation (B9) and also Relations (31) confirm the Marcella (1992) assertion that the degradation of energy is

always, in some way, proportional to the Entropy production; in our case the proportionality constantis 7.
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