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Chapter 1

Introduction

The existence of infinite words on a finite alphabet without adjacent repeats

of a same factor is one of the oldest problems in Combinatorics on words,

[4]. In [40] and [41], the norwegian mathematician Axel Thue (1863-1922)

noted that any binary sequence of lenght larger than 4 must contain a square

i.e. two consecutive identical factors. He then asked whether it was possible

to find an infinite binary sequence that neither should contain any cube i.e.

three consecutive identical factors nor overlaps i.e. a factor of the form

awawa, where a ∈ {0, 1} and w is a factor. The answer to all these questions

was positive. Thue used a sequence

t = 0 1 1 0 1 0 0 1 1 0 0 1 · · ·

which construction is given in Chapter 5. More general repetitions can be

considered as well. Thue himself called a word on n letters irreducible if

two distinct occurrences of a non empty factor are always separated by at

least n− 2 letters. Thus, irreducible means overlap-free if n = 2 and square-

free if n = 3. A more general concept, first considered by F. Dejean [16]

is what we call fractional repetition: a word xyx, where x is nonempty, is

3



4 CHAPTER 1. INTRODUCTION

a repetition of exponent l, where l = |xyx|/|xy|. Thue proved that every

binary word of lenght 4 contains a square and that there exist infinite bi-

nary overlap-free words (such as the Thue-Morse word). A similar property

holds for ternary words: Dejean proved that every ternary word of lenght

39 contains a repetition of exponent 7/4 and exists a word generated by a

suitable endomorphism that has no repetitions of exponent larger than 7/4.

We call repetition threshold the smallest number RT(k) such that there exists

an infinite word over k letters that has only repetitions of exponent less than

or equal to RT(k). We know that RT(2) = 2, RT(3) = 7/4, [16]. It was

conjectured, in the same paper, that RT(4) = 7/5 and RT(k) = k/(k − 1),

for k ≥ 5. This conjecture has been proved to be true for k = 4 by Pansiot

[34] and, with extensive use of computer, for 5 ≤ k ≤ 11 by Moulin-Ollagnier

[29] and more recently, for 12 ≤ k ≤ 14 by Mohammad-Noori and Currie

[28] and for k ≥ 33, by Carpi [8]. Recently, Shallit et al. [24] has introduced

the notion of generalized repetition threshold RT(k, l) which takes into ac-

count not only the exponent but also the lenght of the factors to be avoided.

Dejean’s conjecture is equivalent to say that, for any k ≥ 5, there exists

a word on k letters such that the distance among any two occurrences of

a same factor of lenght n is at least n(k − 1) and this bound is tight. To

formalize this notion of minimal distance among two occurrences of a same

factor of lenght n in a fixed word w, A. Carpi and V. D’Alonzo introduced

in [10] a particular function Iw(n), called repetitivity index. In this thesis we

will study some of its interesting properties. In particular, we will study the

repetitivity index of some classes of words. In [3], J. Beck proved that given

an arbitrary small ε > 0, there exists a binary infinite word w such that, for

all sufficiently large n, Iw(n) ≥ (2− ε)n. This proof is not constructive and it

uses a powerful tool in combinatorics, namely the Lovász Local Lemma [22].
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In Chapter 4, we effectively construct an infinite word w having a similar

(though weaker) property: for any ν > 0, there exists an integer n(ν) such

that, for all n > n(ν), Iw(n) > nν . In Chapter 5, we study the repetitivity

index Iw(n) when w is the Thue-Morse word. We effectively obtain all the

values of this function, for all n > 0. In particular, we obtain these values:

It(n) = n,

if n = 1, 2, 3, 4 and

It(n) = 2 It(dn/2e),

for any n > 4.

In Chapter 6, we study this function when w is the Kolakoski word. This

word,

k = 22︸︷︷︸
2

11︸︷︷︸
2

2︸︷︷︸
1

1︸︷︷︸
1

22︸︷︷︸
2

1︸︷︷︸
1

22︸︷︷︸
2

11︸︷︷︸
2

· · ·

introduced by Kolakoski himself in [33], is a word over the alphabet {1, 2}

defined by the property that the word of its runlenghts is equal to k itself.

Here a run is a maximal sub-word of consecutive identical letters. This

sequence is representative by the class of infinite C∞-words. In this Chapter,

we prove that the repetitivity index, for any C∞-word, and in particular for

the Kolakoski word, is ultimately bounded from below by n+rn1/q where r is

a suitable constant and q = log 1.5006/log 1.4994. This research is motivated

by the fact that A. Carpi in [9] conjectured that, for any rational e > 1, the

lenght of the factors of the Kolakoski word with exponent larger than e is

bounded. This is equivalent to say, as proved in [10], that repetitivity index

of Kolakoski word is not linearly bounded. In last Chapter, we study the

repetitivity index of k-synchronized sequences. These are integer sequences

whose graph is represented, in a fixed base k, by a right synchronized rational

relation. The notion of a k-synchronized sequence was introduced in [23] as an
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intermediate notion between those of k-automatic and k-regular sequences,

introduced respectively by Cobham [14] and by Allouche and Shallit [2].

The main result of this section is that repetitivity index of a k-synchronized

sequence is a k-synchronized sequence itself.



Chapter 2

Preliminaries

2.1 Words

All through this paper, we will denote by A∗ the free monoid generated by

an alphabet A. Its elements are called words. The neutral element of A∗,

or empty word, will be denoted by ε. The length of a word w ∈ A∗ will

be denoted by |w|, while |w|a will denote the number of occurrences of the

letter a ∈ A in w. A word v ∈ A∗ is a factor of the word w if there exist

r, s ∈ A∗ such that w = rvs. The set of the factors of a word w is denoted

by Fact(w). If r = ε, then v is a prefix of w; if s = ε, then v is a suffix of w.

The sets of all prefixes and suffixes of a word w is denoted with Pref(w) and

Suff(w), respectively. The reversal operation is the unary operation ∼ in A∗

recursively defined as ε∼ = ε and (ua)∼ = (au∼) for all u ∈ A∗ and a ∈ A. A

word w which coincides with its reversal is called palindrome. Let A = {1, 2}.

The mirror image of a word w ∈ A∗ is the word obtained by the interchange

of 1′s and 2′s. For example, the word 112212 is the mirror image of the word

221121. Let t be a non-negative integer. A repetition with gap t is any word

of the form uvu with u, v ∈ A∗ and |v| = t. A non-empty repetition with

7



8 CHAPTER 2. PRELIMINARIES

gap 0 is said to be a square. A cube is any word of the form uuu with u a

non-empty word. An infinite word on A is any unending sequence of letters

w = w1w2 · · ·wn · · · , wi ∈ A, i ≥ 1.

Its factors are the words wiwi+1wi+2 · · ·wj (1 ≤ i ≤ j), as well as the empty

word. In particular, the factors w1w2 · · ·wj are the prefixes of w. The set of

all infinite words is denoted with Aω.

A word w ∈ Aω is uniformly recurrent if for each finite factor of symbols

r occurring in w there exists an integer n such that for all i, the factor

wi+1 · · ·wi+n contains an occurrence of r. A word w ∈ Aω is ultimately

periodic if there exist integers p ≥ 1, N ≥ 0 such that wi = wi+p, for all

i ≥ N.

A sequence (un)n≥0 of finite words over an alphabet A converges to an

infinite word u if every prefix of u is a prefix of all but a finite number of the

word un. This word u is unique and is denoted by

u = lim
n

un.

As an example, the sequence anbn converges to aω = aaaaa · · · .

Let w ∈ Aω. The subword complexity λw of w is the map λw : N → N

defined by

λw(n) = Card(Fact(w) ∩ An),

for all n ∈ N, where An is the set of all words of lenght n on the alphabet A.

Example 2.1.1 Let A = {0, 1}. The Fibonacci word is the infinite word

inductively defined as follows

f0 = 0, f1 = 1, fn+1 = fnfn−1, n ≥ 1
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and

f = lim
n

fn = 010010100 · · ·

It results that λf (n) = n + 1. �

The recurrency index of an infinite word w is the function ρw : N →

N ∪ {∞} defined as follows: for any n ≥ 0, ρw(n) is the least integer, if any

exists, such that each factor of w of lenght ρw(n) contains every factor of w

of lenght n. If such an integer does not exist, then ρw(n) = ∞. If ρw(n) is

finite for all n ≥ 0, then w is uniformly recurrent.

A morphism is a map φ satisfying φ(xy) = φ(x)φ(y), for all x, y ∈ A∗.

Let k ≥ 2 an integer. A morphism φ is k-uniform if |φ(a)| = k, for all a ∈ A.

Definition 2.1.1 A positive integer p is a period of w = w1w2 · · ·wn if when-

ever 1 ≤ i, j ≤ |w|, one has that

i ≡ j (mod p) ⇒ wi = wj

As is well known [25], a word w has a period p ≤ |w| if and only if w = ur =

su, with |s| = |r| = p. We recall the famous theorem of Fine and Wilf stating

that if a word w has two periods p and q, and |w| ≥ p + q − gcd(p, q), then

w has also the period gcd(p, q). The minimal period of a word w is denoted

by πw. For example, the periods of the word w = 101101 are 3, 5 and any

integer p ≥ 6. Therefore, its minimal period is πw = 3.

Definition 2.1.2 The exponent of a word w, denoted by e(w) is the ratio

among its lenght and its minimal period.

For example, the word w = 1011011 has minimal period πw = 3 and lenght

|w| = 7; therefore, e(w) = 7/3.
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Definition 2.1.3 The critical exponent of an infinite word w, is defined in

this way

ce(w) = sup{e(x) | x ∈ Fact(w)}.

For any integer l ≥ 1, the generalized critical exponent of an infinite word w

is defined as

ce(w, l) = sup{e(x) | x ∈ Fact(w), with |x| ≥ l}.

We observe that

• ce(w) ≥ ce(w, l), for all l ≥ 1.

• ce(w) = ce(w, 1)

2.2 Automata and automatic sequences

A deterministic finite automaton, or DFA, is one of the simplest possible

models of computation, [1]. It is an acceptor ; that is, strings are given as

input and are either accepted or rejected. A DFA starts in an initial state and

after reading the input can be in one of a finite number of states. The DFA

takes as input a string w and-based on the symbols of w, read in order from

left to right-moves from state to state. If after reading all the symbols of w

the DFA is in a distinguished state called an accepting state (or final state),

then the string is accepted; otherwise, it is rejected. The language accepted

by the DFA is the set of all accepted strings. A DFA can be represented by

a directed graph called a transition diagram. A directed edge labeled with a

letter indicates the new state of the machine if the given letter is read. More

formally, a DFA M is defined to be a 5-tuple

M = (Q,A, δ, q0, F ),
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where

• Q is a finite set of states

• A is the finite input alphabet

• δ : Q× A→ Q is the transition function

• q0 ∈ Q is the initial state and

• F ⊂ Q is the set of accepting states.

Note that a DFA is said to be complete if δ is defined for all pairs in its

range. In order to formally define acceptance by DFA, we need to extend

the domain of δ to Q × A∗, where A∗ is the free monoid generated by the

alphabet A, respect to the operation of concatenation. We do this as follows:

first, we define δ(q, ε) = q, for all q ∈ Q, and define δ(q, xa) = δ(δ(q, x), a)

for all q ∈ Q, x ∈ A∗ and a ∈ A. Then L(M), the language accepted by M,

is defined to be:

L(M) = {w ∈ A∗ : δ(q0, w) ∈ F}.

We call a state q of a DFA reachable if there exists x ∈ A∗ such that δ(q0, x) =

q, and unreachable, otherwise. A deterministic finite automaton with output,

DFAO, is defined to be a 6-tuple:

M = (Q, A, δ, q0, ∆, τ),

where Q,A, δ, q0 are as in the definition of DFA, ∆ is the output alphabet

and τ : Q→ ∆ is the output function. We define a function from A∗ to ∆,

which we denote as fM(w), as follows

fM(w) = τ(δ(q0, w)).
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This function is called a finite-state function. We can represent a DFAO

with a transition diagram, much the same way we did for DFAs; the only

difference is that a state labeled q/a indicates that the output associated

with the state q is the symbol a. When the input alphabet A = Ak =

{0, 1, 2 . . . , k − 1} for an integer k ≥ 2, we call DFAO as k-DFAO. Now,

we are ready to define the notion of a k-automatic sequence. Informally, a

sequence (an)n≥0 is k-automatic if an is a finite-state function of the base-k

digits of n. More precisely, we compute an by feeding a finite automaton with

the base-k representation of n, starting with the most significant digit, and

then applying an output mapping τ to the last state reached. More formally,

we say that a sequence (an)n≥0 over a finite alphabet ∆ is k-automatic if

there exists a k-DFAO

M = (Q,Ak, δ, q0, ∆, τ),

such that an = τ(δ(q0, wn)), for all n ≥ 0, where wn is the expansion of n in

base k. If M is as above, we say M generates the sequence (an)n≥0.

Example 2.2.1 (Thue-Morse sequence)

Let A = {0, 1} and µ : A∗ → A∗ the 2-uniform morphism such that

µ(0) = 01 and µ(1) = 10. The Thue-Morse sequence is defined in this way:

t = lim
n

µn(0) = 01101001 · · · ,

where µn(0) = µ(µn−1(0)). The Thue-Morse sequence is 2-automatic, since

it can be generated by the 2-DFAO in figure below

// WVUTPQRSq0/0

0

�� 1 ** WVUTPQRSq1/1

0

��

1

jj
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n 0 1 2 3 4 5 6 7

tn 0 1 1 0 1 0 0 1

Example 2.2.2 (The Baum-Sweet sequence)

This sequence b = (bn)n≥0 takes the value 1 if the binary representation

of n contains no block of consecutive 0’s of odd lenght and 0 otherwise. Here

are the first few therms of this sequence:

n 0 1 2 3 4 5 6 7

bn 1 1 0 1 1 0 0 1

The 2-DFAO in figure below generates this sequence:

// WVUTPQRSA/1

0

��
1 // WVUTPQRSB/1

1

�� 0 ** WVUTPQRSC/0

1

��

0

jj
1 // WVUTPQRSD/0

0,1

��

Here the meaning of the states is as follows:

• A: reading the leading zeros of the input;

• B: all blocks of zeros (including current one) are even lenght;

• C: the last block of zeros seen has odd lenght so far, but all previous

ones have even lenght;

• D: we’ ve seen a block of zeros of odd lenght.

Example 2.2.3 (The regular paperfolding sequence) First, take a rect-

angular piece of paper and fold it in half lenghtwise, then fold the result in
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half again, etc., ad infinitum, taking care to make the folds in the same di-

rection each time. Next, unfold the paper. The sequence (Ri)i≥1 of ‘hills’ (1)

and ‘valleys’ (0) that results is called the regular paperfolding sequence. For

example, after fold and unfolding to 90◦ we obtain this sequence:

n 1 2 3 4 5 6 7 8

Rn 1 1 0 1 1 0 0 1

The regular paperfolding sequence R = (Rn)n≥1 is generated by the 2-DFAO

in figure below:

// WVUTPQRSq0/1

0

�� 1 ** WVUTPQRSq1/1

0

jj

1
��WVUTPQRSq3/0

0

SS

1

<<

WVUTPQRSq2/0

1

SS0
oo



Chapter 3

Repetitivity index

3.1 Main properties

Let w an infinite word on finite alphabet A.

Definition 3.1.1 The repetitivity index of w is the function Iw : N → N

defined as follows:

Iw(n) = min{k > 0 | ∃x, y, z s.t. |x| = n, |y| = |z| = k, xy = zx ∈ Fact(w)} .

In other terms, Iw(n) gives the minimal distance among any two occurences

of a same factor of length n in w. Grafically,

� �x x� �
z

y
w

Iw(n) = min
|x|=n
|z| = min

|x|=n
|y|

15
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In this section, we study some properties of the repetitivity index.

Proposition 3.1.1 The repetitivity index of an infinite word w is a non-

decreasing function.

Proof. For any n > 0 we can find x, y, z ∈ A∗ such that |x| = n, |y| = |z| =

Iw(n), xy = zx ∈ Fact(w). Setting x = x′a, ay = y′b, a, b ∈ A, one has

x′y′b = xy = zx = zx′a and therefore x′y′ = zx′, a = b, with |x′| = n − 1,

|y′| = |z| = Iw(n). This implies Iw(n− 1) ≤ Iw(n). �

There is a strictly relation between critical exponent, generalized critical

exponent and repetitivity index of an infinite word w. In fact, we obtain

Proposition 3.1.2 Let w be an infinite word. Then one has

ce(w) = 1 + sup
n≥0

n

Iw(n)
.

ce(w, l) ≥ 1 + sup
n≥l

n

Iw(n)
,

for any l ≥ 1.

Proof. Let w ∈ Aω and v = ur = su ∈ Fact(w), with |u| = n, |r| = |s| =

Iw(n). Then Iw(n) is a period of v and, therefore

e(v) =
|v|
πv

≥ 1 +
n

Iw(n)
.

As |v| > n, we obtain that ce(w, n) ≥ e(v). On the other hand

ce(w) ≥ ce(w, n) ≥ 1 +
n

Iw(n)
,

for all n ≥ 0. Therefore

ce(w) ≥ 1 + sup
n≥0

n

Iw(n)
.
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On the other hand, let v be a factor of w with exponent t > ce(w)− ε. Then

v = ur = su, with |r| = |s| = πv and, therefore, |r| ≥ Iw(|u|). It follows

t = 1 +
|u|
|r|
≤ 1 +

|u|
Iw(|u|)

≤ 1 + sup
n≥0

n

Iw(n)

and by the arbitrariness of ε,

ce(w) ≤ 1 + sup
n≥0

n

Iw(n)
;

then the first relation is proved. On the other hand, by relation

ce(w, n) ≥ 1 +
n

Iw(n)
,

one has that

sup
n≥0

ce(w, n) ≥ 1 + sup
n≥0

n

Iw(n)
;

by definition of generalized critical exponent, one has

ce(w, l) ≥ ce(w, n),

for all n ≥ l > 0. Therefore the conclusion follows. �

Proposition 3.1.3 Let w be an infinite word on a d-letter alphabet A. Then

for all n > 0,

Iw(n) ≤ dn.

Proof. Since there are dn distinct words of lenght n on the alphabet A,

any factor of w of lenght dn + n necessarily contains two occurrences of a

same factor of lenght n. Let v be a factor of w of minimal length with two

occurrences of a same factor of length n. Then v has the form v = xy = zx

with x, y, z ∈ A∗, |x| = n, |v| ≤ dn + n. Thus, |y| = |z| = |v| − |x| ≤ dn.

Since Iw(n) ≤ |y|, the conclusion follows. �
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Proposition 3.1.4 Let w ∈ Aω. Then for all n ≥ 0,

Iw(n) ≤ ρw(n)− n + 1 . (3.1)

Moreover, one has

Iw(n) = ρw(n)− n + 1 ,

for some n > 0 if and only if w is ultimately periodic.

Proof. Equation (3.1) holds trivially if ρw(n) =∞. Thus we assume ρw(n) ∈

N. As any factor of w of length ρw(n) contains all factors of w of length n, a

factor of w of length ρw(n)+1 necessarily contains two occurrences of a same

factor of length n. Thus, Equation (3.1) can be easily obtained proceeding

as in the proof of the Proposition 3.1.3.

Now, suppose that Iw(n) = ρw(n) − n + 1 for some n > 0. From the

definition of repetitivity index, for any i ≥ 1, the words

w[i, i+Iw(n)− 1], w[i+1, i+Iw(n)], . . . , w[i+Iw(n)− 1, i+Iw(n)+n− 2],

are pairwise distinct. Moreover, as ρw(n) = Iw(n) + n − 1, these are all the

factors of w of length n. For the same reason, also the words

w[i+1, i+Iw(n)], w[i+2, i+Iw(n)+1], . . . , w[i+Iw(n), i+Iw(n)+n− 1],

are all the factors of w of length n. Hence, necessarily,

w[i, i + Iw(n)− 1] = w[i + Iw(n), i + Iw(n) + n− 1]

and, consequently, wi = wi+Iw(n). Thus, w has period Iw(n).

Conversely, suppose that w is periodic and let p be its minimal period. In

such a case [27], for any n ≥ p, one has ρw(n) = p + n− 1 and, moreover, w

has p distinct factors of length n. This implies that for any i ≥ 1, the words

w[i, i + n− 1], w[i + 1, i + n], . . . , w[i + p− 1, i + p + n− 2],
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are all the factors of w of length n and they are pairwise distinct. Conse-

quently, Iw(n) ≥ p. Since, as we have seen, p = ρw(n) − n + 1 ≥ Iw(n), one

derives ρw(n)− n + 1 = Iw(n). �

Example 3.1.1 Let A = {0, 1} and µ : A∗ → A∗ the 2-uniform morphism

such that µ(0) = 01 and µ(1) = 10. The Thue-Morse word is defined in this

way

t = lim
n

µn(0) = 01101001 · · · ,

where µn(0) = µ(µn−1(0)), for all n > 1. In this infinite word any factor has

exponent minus than or equal to 2; on the other hand, any word of lenght 4

on a binary alphabet has a factor of exponent 2; therefore,

ce(t) = 2.

By Proposition 3.1.2, we obtain that the repetitivity index of Thue-Morse

word satisfies a relation of this type

It(n) ≥ n.

�

Example 3.1.2 The Fibonacci word is the limit of the sequence of words

f1 = b, f2 = a, fn+1 = fnfn−1, n ≥ 2.

Notice that for all n ≥ 1, the length of fn is the n-th term of the Fibonacci

numerical series Fn. The critical exponent of the Fibonacci word is ce(f) =

2 + φ, where φ = (
√

5 + 1)/2 is the golden ratio [30]. By Proposition 3.1.2,

for all n ≥ 0, one has 1 + n/ If (n) ≤ ce(f), that is,

If (n) ≥ n

ce(f)− 1
=

3−
√

5

2
n .
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Let n ≥ 3 and set v = fnfn+1. Then v ∈ Fact(f). Indeed, one has fn+3 =

fn+2fn+1 = fn+1fnfn+1. Moreover, one has

v = fnfnfn−1 = fnfn−1fn−2fn−1 = fn+1fn−2fn−1 ,

so that v = xy = zx, with x = fn+1, y = fn−2fn−1, z = fn. One derives that

If (Fn+1) ≤ Fn.

Now let k > 2 = F3. Then we can find n ≥ 3 such that Fn < k ≤ Fn+1.

Since If is non decreasing, one obtains

If (k) ≤ Fn < k .

The first few values of If (k) are

If (0) = If (1) = 1 , If (2) = If (3) = 2 , If (4) = If (5) = If (6) = 3 ,

If (7) = If (8) = If (9) = If (10) = If (11) = 5 .

Example 3.1.3 Let A = {a, b, c} a ternary alphabet. Dejean word [16], is

a ternary infinite word w generated by the 19-uniform morphism h

a → abcacbcabcbacbcacba

b → bcabacabcacbacabacb

c → cabcbabcabacbabcbac

Any factor of this word has exponent minus than or equal to 7/4. Moreover,

this word has infinitely many factors of exponent 7/4. In fact, for example,

the factor acbcacb of the word h(a) = abcacbcabcb
︷ ︸︸ ︷
acbcacb a has exponent 7/4

as the factor hn(acbcacb), for all n ≥ 1. Therefore,

ce(w) = 7/4.

By Proposition 3.1.2, the repetitivity index of Dejean word is:
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Iw(n) ≥ 4

3
n. (3.2)

As we have seen, the equality is verified by infinitely many values of the

integer n. �

Remark 3.1.1 For any n ≥ 2, the minimal critical exponent of infinite

words on n letters is called the repetition threshold on n letters and it is de-

noted by RT(n). As we have seen, Dejean [16] proved that repetition thresh-

old on 3 letters is 7/4. Dejean has also showed that for n ≥ 5, the repetition

threshold on n letters is not smaller than n/(n− 1) while if n = 4, then it is

not smaller than 7/5. She conjectured that these are the actual values of the

repetition threshold. This conjecture has been proved to be true for n = 4 by

Pansiot [34] and, with extensive use of a computer, for 5 ≤ n ≤ 11 by Moulin-

Ollagnier [29] and, more recently, for 12 ≤ n ≤ 14, by Mohammad-Noori and

Currie [28] and for n ≥ 33, by Carpi, [8].

Remark 3.1.2 Let α > 1 be a rational number, and let l ≥ 1 be an integer.

A word w is a repetition of order α and lenght l if we can write it as w =

(xy)nx, with |xy| = l and |w| = αl. For any integers k ≥ 2 and l ≥ 1,

the generalized repetititon threshold RT(k, l) was defined in [24] as the real

number α such that there exists an infinite word on k letters which avoid

repetition of order α′, and lenght l′, for all α′ > α and l′ ≥ l. Notice that

RT(k, 1) = RT(k), for all k > 1. The values of RT(k, l) for some small values

of k and l was computed in [24]. For instance, RT(3, 2) = 3/2, RT(2, 5) =

7/5.



Chapter 4

Beck’s Theorem

A well-known theorem in combinatorics states that given an arbitrary natural

number n, there exists an infinite binary word w, the de Bruijn cicle, such

that Iw(n) = 2n, (see, e.g., L. Lovász problem book [22], Problem 8); for

example, let A = {a, b} and we consider the word w = (bbbabaaa)ω. This

word satisfies the equation Iw(3) = 8. In [3], J. Beck proved that given

an arbitrarily small ε > 0, there is an infinite binary word w such that

Iw(n) ≥ (2 − ε)n, for all n > n(ε). This proof is not costructive: it is based

on a probabilistic lemma due to L. Lovász [20]. On the other hand, in

this chapter, we will construct effectively an infinite binary word w having a

similar (though weaker) property. For any ν > 0, there exists an integer n(ν)

such that for all n > n(ν), Iw(n) ≥ nν ; the integer n(ν) can be effectively

computed. This result has been obtained with A. Carpi, [10]. An interesting

consequence concerns the exponents of the factors of w. Indeed, from the

preceding result we derive that for any ε > 0 the number of distinct factors

of w with exponent larger than 1 + ε is finite. The chapter is organized as

follows: in Section 4.1, we give some preliminary definitions useful in the

sequel. In Section 4.2, we recall the proof of Beck; in Section 4.3, we prove

22
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the main result of this chapter.

4.1 Preliminaries

A set of words is prefix-closed if it contains the prefixes of all its elements.

A set of words is factor-closed or factorial if it contains the factors of all its

elements. The following result is known as König’s Lemma, [25].

Proposition 4.1.1 If X is an infinite prefix-closed set of words over a finite

alphabet A, there is an infinite word w having all its prefixes in X.

In other terms, if X is a set on an alphabet A then this two properties are

equivalent

1. There are infinitely many words on A∗ that have no factors in X.

2. There is an infinite word on A that has no factors in X.

We can observe that, in general, there is not an effective method to construct

an infinite word by a set which verifies 1. In mathematics, a σ-algebra over

a set X is a non empty collection Σ of subset of X that is closed under

complementation and countable uniones of its members. In mathematics, a

probability of an event A is represented by a real number in the range 0 to

1 and written as Pr(A). The complement of the event A, is the event A such

that Pr(A) = 1 − Pr(A). Let p, q be integers. We shall write p | q (resp.,

p - q) to denote that p divides q (resp., p does not divide q).

4.2 Beck’s Theorem: Lovász Local Lemma

In this section, we recall the proof of Beck’s Theorem, [3]. We first need the

following purely probabilistic theorem:
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Theorem 4.2.1 (Lovász local lemma) [20]

Let G be a simple graph on the vertex set V (G) = {1, 2, . . . ,m} and let an

event Ai be associated with each vertex i. Suppose that there are real numbers

x1, . . . , xm, (0 ≤ xi ≤ 1) such that

(a) every Ai is independent of the σ-algebra generated by the set of all Aj’s

for which j is not adjacent to i;

(b)

Pr(Ai) ≤ (1− xi)
∏

{i,j}∈G

xj, (i = 1, . . . ,m).

Then

Pr(A1 ∩ A2 . . . ∩ Am) > 0.

�

Concerning further applications of Lovász local lemma, see Spencer [36] and

Graham - Rotschild - Spencer [35]. Now we can prove the Theorem of Beck.

Theorem 4.2.2 Given an arbitrary small ε > 0, there is an integer n(ε) and

an infinite binary word w such that Iw(n) ≥ (2− ε)n, for all n > n(ε).

Proof. Let f(n) = (2 − ε)n, for n > n(ε) and 0 for 1 ≤ n ≤ n(ε), where

the threshold n(ε) will be specified later. By König lemma, it sufficies to

prove the following finite version of the theorem: given an arbitrary natural

number N, there exists a binary word w, with |w| = N having the property

that Iw(n) > f(n), for each 1 ≤ n ≤ N. Let ε1, ε2, . . . , εN be independent

random variables such that Pr(εi = 0) = Pr(εi = 1) = 1
2
. Let A(k, l, n)

denote the event that the intervals (εk+1, . . . , εk+n) and (εl+1, εl+2, . . . , εl+n)

are identical, i.e. εk+i = εl+i, for each 1 ≤ i ≤ n. By properties of the Pr

function, one has

Pr(A(k, l, n)) = 2−n,
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for k 6= l. Now we define a graph G. Let the vertex set V (G) be the set of all

triplets (k, l, n) for which 0 ≤ k < l, l + n ≤ N, l − k ≤ f(n) and n > n(ε).

The vertices (k1, l1, n1) and (k2, l2, n2) are adjacentes in G if and only if the

unions of intervals

J(ki, li, ni) = [ki + 1, ki + ni] ∪ [li + 1, li + ni],

for i = 1, 2 have at least one common element. Observe that if J(ki, li, ni), (i =

1, 2, . . . r) are disjoint from J(k, l, n), then the event A(k, l, n) is indipendent

of the σ-algebra generated by the set of events A(ki, li, ni), (i = 1, 2, . . . , r).

Thus, in our case, condition (a) of Lovász Local Lemma is satisfied. Let

xk,l,n = 1 − 1
f(n)n3 . In the next step we will verify condition (b) of Lovász

Local Lemma, that is the inequality below

2−n0 = Pr(A(k0, l0, n0)) ≤ (1− xk0,l0,n0)
∏

(k,l,n),(k0,l0,n0)∈G

xk,l,n. (4.1)

For notational convenience let

P (i) =
∏

(k,l,n)

(i)
xk,l,n (i = 1, 2, 3, 4)

where the products
∏i (i = 1, 2, 3, 4) are extended over all triplets (k, l, n)

for which 0 ≤ k < l, l + n ≤ N, l − k ≤ f(n), n > n(ε) and property

(πi) (i = 1, 2, 3, 4) holds, respectively

(π1) [k + 1, k + n] ∩ [k0 + 1, k0 + n0] 6= ∅;

(π2) [k + 1, k + n] ∩ [l0 + 1, l0 + n0] 6= ∅;

(π3) [l + 1, l + n] ∩ [k0 + 1, k0 + n0] 6= ∅;

(π4) [l + 1, l + n] ∩ [l0 + 1, l0 + n0] 6= ∅.
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By definition, ∏
{(k,l,n),(k0,l0,n0)}∈G

xk,l,n ≥
4∏

i=1

P (i) (4.2)

Now we estimate the factors P (i) (1 ≤ i ≤ 4). We have P (1) = P (11)P (12),

where

P (11) =

k0+n0−1∏
k=k0

N−k∏
n=n(ε)+1

min{k+f(n),N−n∏
l=k+1

xk,l,n

and

P (12) =

k0−1∏
k=0

N−k∏
n=max{k0+1−k,n(ε)+1}

min{k+f(n),N−n}∏
l=k+1

xk,l,n.

Clearly

P (11) ≥
∞∏

n=n(ε)+1

(
1− 1

f(n)n3

)n0f(n)

>
(
1−

∞∑
n=n(ε)+1

1

n3

)n0

>
(
1− 1

n(ε)

)n0

(4.3)

On the other hand,

P (12) ≥
∞∏

n=n(ε)+1

(
1− 1

f(n)n3

)nf(n)

> 1−
∞∑

n=n(ε)+1

1

n2
> 1− 1

n(ε)
. (4.4)

Thus, by (4.2) and (4.3), one has

P (1) ≥
(
1− 1

n(ε)

)n0+1

. (4.5)

The same computation gives

P (i) ≥
(
1− 1

n(ε)

)n0+1

, for 2 ≤ i ≤ 4. (4.6)

Summarizing, by equations (4.2), (4.3), (4.4) and by definition of xk,l,n, one

has

(1− xk0,l0,n0)
∏

{(k,l,n),(k0,l0,n0)}∈G

xk,l,n ≥
1

f(n0)(n0)3

4∏
i=1

P (i)

≥

(
1− 1

n(ε)

)4n0+4

f(n0)(n0)3
=

(
1− 1

n(ε)

)4n0+4

(2− ε)−n0(n0)
−3.
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Simple computation shows that(
1− 1

n(ε)

)4n0+4

(2− ε)−n0(n0)
−3 ≥ 2−n0 (4.7)

for all n0 > n(ε), if n(ε) is sufficiently large depending only on ε. Thus, (4.6)

and (4.7) complete the proof of the relation (4.1). By the application of

Lovász Local Lemma we obtain the existence of a binary word w of lenght

N such that Iw(n) ≥ (2− ε)n, for each n(ε) < n ≤ N. �

4.3 Beck’s Theorem: an effective construc-

tion

In this section, we construct the infinite binary word w with the above men-

tioned properties. The following lemma is proved in [8], in the particular

case p = 3.

Lemma 4.3.1 For any p ≥ 3, let wp = (bp,i)i≥1 be the infinite word on the

alphabet {0, 1} defined by

bp,i =


0 if i ≡ 1 (mod p)

1 if i 6≡ 0, 1 (mod p)

bp,i/p if i ≡ 0 (mod p)

If a factor x of wp has a period r and lenght |x| ≥ r + pk with k ≥ 0, then pk

divides r.

Proof. Let x = bp,ibp,i+1 · · · bp,i+|x|−1 with i ≥ 1. By the periodicity of x one

has

bp,ibp,i+1 · · · bp,i+pk−1 = bp,i+rbp,i+r+1 · · · bp,i+r+pk−1 . (4.8)

Let pq be the maximal power of p dividing r and assume by contradiction

q < k. We can write r = pqt with p - t. First we consider the case that
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p - t + 1. In this case, 1 + t 6≡ 0, 1 (mod p). Let j be the integer such that

i ≤ j < i + pk and j ≡ pq (mod pk). Then one has j = pq(1 + t′pk−q) for a

suitable integer t′ ≥ 0 and j + r = pq(1 + t + t′pk−q). From the definition of

wp, one derives

bp,j = bp,1+t′pk−q = 0 and bp,j+r = bp,1+t+t′pk−q = 1 .

This yields a contradiction because by (4.8), bp,j = bp,j+r. Now we consider

the case that p | t + 1. In this case, 2 + t ≡ 1 (mod p). We can take j such

that i ≤ j < i + pk and j ≡ 2pq (mod pk). Then one has j = pq(2 + t′pk−q)

and j +r = pq(2+ t+ t′pk−q) for a suitable integer t′ ≥ 0. From the definition

of wp, one derives

bp,j = bp,2+t′pk−q = 1 and bp,j+r = bp,2+t+t′pk−q = 0 ,

so that one has again a contradiction. �

We obtain a similar result also when p = 2. In fact, one has:

Lemma 4.3.2 Let w2 = (b2,i)i≥1 be the infinite word on alphabet {0, 1} de-

fined by

b2,i =


0 if i ≡ 1 (mod 4)

1 if i ≡ 3 (mod 4)

b2,i/2 if i ≡ 0, 2 (mod 4)

If a factor x of w2 has a period r and lenght |x| ≥ r + 2k with k ≥ 3, then 2k

divides r.

Proof. Let x = b2,ib2,i+1 · · · b2,i+|x|−1 with i ≥ 1. By the periodicity of x one

has

b2,ib2,i+1 · · · b2,i+2k−1 = b2,i+rb2,i+r+1 · · · b2,i+r+2k−1 . (4.9)
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First we prove that r is even. Indeed assume r odd. Let j be the integer

such that i ≤ j ≤ i + 3 and j ≡ 2 (mod 4). Then one has j = 2j′ for some

odd integer j′ ≥ 1. Since j is even, r is odd and j + r ≡ j + r + 4 (mod 4),

from the definition of w2 one obtains

b2,j+r = b2,j+r+4 .

Moreover, from (4.9) one has b2,j+r = b2,j and b2,j+r+4 = b2,j+4 and from the

definition of w2, b2,j = b2,j′ and b2,j+4 = b2,j′+2. Hence,

b2,j′ = b2,j′+2 .

As j′ is odd, from the definition of w2 one derives j′ ≡ j′+2 (mod 4), which

is a contradiction. Thus we can write r = 2qt with q ≥ 1 and t odd. Let us

assume, by contradiction, q < k. Let j be the integer such that i ≤ j < i+2k

and j ≡ 2q−1 (mod 2k). Then one has j = 2q−1(1 + t′2k−q+1) for a suitable

integer t′ ≥ 0 and j + r = 2q−1(1 + 2t + t′2k−q+1). Since t is odd and k > q

one has 1 + t′2k−q+1 ≡ 1 (mod 4) and 1 + 2t + t′2k−q+1 ≡ 3 (mod 4). One

easily derives

b2,j = 0 and b2,j+r = 1

which contradicts (4.9). We conclude that q ≥ k. �

We notice that the word w2 defined above is the so-called regular paperfolding

sequence (see Preliminaries, [1] and [26]). Now we construct the infinite

binary word

w = a1a2 · · · an · · ·

with the announced properties. In the sequel, we shall denote by pr the r-th

prime number. Let i > 0 and r be the least positive integer such that 2r - i.

We set

ai = bpr,(i+2r−1)/2r .
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In other words, for all k ≥ 0, the word

a2ka3·2ka5·2k · · · a(2n+1)·2k · · ·

is equal to wpk+1
.

Grafically,

a1a2a3a4a5a6a7a8a9a10a11a12a13· · ·

• • • • • • • w2

• • • w3

• • w5

• w7

...
...

w =0 0 0 0 1 1 0 0 0 0 1 1 1 · · ·

The word w verifies the following property.

Lemma 4.3.3 Let x ∈ Fact(w) and p be a period of x. If |x| ≥ p + 40, then

p is even.

Proof. Let x = aiai+1 · · · ai+l. By the periodicity of x,

aiai+1 · · · ai+39 = ai+pai+p+1 · · · ai+p+39 (4.10)

Let r be the least odd integer such that r ≥ i. By definition of w, we obtain

arar+2 · · · ar+38 = b2,r′b2,r′+1 · · · b2,r′+19, (4.11)

for a suitable r′ ≥ 1. Now, let r′′ be the least odd integer such that r′′ ≥ r′.

From the definition of w2 one derives that the word

v = b2,r′′b2,r′′+2 · · · b2,r′′+18
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is a factor of (01)n for some n > 0 and therefore v has period 2. By equations

(4.10) and (4.11) one derives that

v = asas+4 · · · as+36, (4.12)

with s ∈ {r + p, r + p + 2}. Suppose by contradiction that p is odd. In this

case, s is even, as r is odd. First, we consider the case that 4 - s. By (4.12)

and the definition of w one has that v is a factor of w3. As v has period 2

and lenght |v| = 10, this yields a contradiction by Lemma 4.3.2. Now, we

consider the case that 4 | s. Select t ∈ {s, s + 4} such that 8 - t. From the

definition of w, the word

v′ = atat+8at+16at+24at+32

is a factor of w5. On the other hand, v′ is obtained from v by taking only

the letters of odd places or those of even places. Hence, as v has period 2,

the word v′ has period 1, i.e. v′ ∈ {00000, 11111}. This is a contradiction

since, as one easily verifies, neither 05 nor 15 are factors of w5. We conclude

that p has to be even. �

Lemma 4.3.4 Let ν be a positive integer and set

n(ν) = max{2ν , 40} , c(ν) = 2ν(ν+1)/2

ν∏
i=2

pi .

If x ∈ Fact(w) has period p and length |x| ≥ n(ν) + p, then

p >
(|x| − p)ν

c(ν)
. (4.13)

Proof. Let x ∈ Fact(w) be a word of period p and length |x| ≥ n(ν) + p. For

any r ≤ ν one has

p + 2r · pkr
r ≤ |x| < p + 2r · pkr+1

r , (4.14)
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for a suitable integer kr ≥ 0. In particular, for r = 1 one has p + 40 ≤ |x| <

p + 2k1+2 which implies k1 ≥ 3 so that by Lemma 4.3.3 the period p is even.

Hence, the word

w2 = a1a3 · · · a2n+1 · · ·

will contain a factor x̃ with period q = p/2 and lenght |x̃| ≥ b|x|/2c. As

b|x|/2c ≥ b(p + 21+k1)/2c = q +2k1 , by Lemma 4.3.2 one has that 2k1 divides

q, i.e., 2k1+1 divides p. We notice that p + 2ν ≤ |x| < p + 2k1+2 and therefore

ν ≤ k1 + 1. Thus, 2ν | p. Now, let 3 ≤ r ≤ ν. Since 2r | p there is a factor x̂

of the word

wpr = a2ra3·2r · · · a(2n+1)2r · · ·

with period q′ = p/2r and lenght |x̂| ≥ b|x|/2rc. As |x| ≥ p+2rpkr
r , we obtain

|x̂| ≥ q′ + pkr
r and therefore, by Lemma 4.3.1, pkr

r | q′. This proves that p is

divided by pk1
1 , pk2

2 , . . . pkν
ν s and therefore

p ≥ pk1
1 pk2

2 · · · pkν
ν .

In view of (4.14) one has pkr
r > (|x| − p)/(2rpr), 1 ≤ r ≤ ν. Thus, from the

previous equation,

p >
(|x| − p)ν

2ν(ν+1)/2p2 · · · pν

. (4.15)

�

Theorem 4.3.1 For all ν > 0 the repetitivity index Iw of the word w verifies

eventually the following inequality

Iw(n) ≥ nν .

Proof. From the definition of repetivity index there exist words x, y, z such

that xy = zx is a factor of w, |x| = n and |y| = Iw(n). Thus the word
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v = xy = zx has period Iw(n) and lenght n + Iw(n). With the notations of

Lemma 4.3.4 for all n ≥ n(ν) one has

Iw(n) >
nν

c(ν)
.

By the arbitrariness of ν, the conclusion follows easily. �

From the previous theorem, one derives the following

Corollary 4.3.1 For any ε > 0, the number of distinct factors of w with

exponent larger than 1 + ε is finite.

Proof. Let v be a factor of w. One can write

v = xy = zx (4.16)

with |y| = |z| = πv. Set r = |x|. Then one has necessarily

e(v) =
|x|
πx

= 1 +
r

πv

.

If r < επv, one derives e(v) < 1+ε. From (4.16) one easily derives |z| ≥ Iw(r).

By Theorem 4.3.1, there exists an integer k such that Iw(n) ≥ n2 for all

n > k. Thus, if r > k0 = max{k, 1/ε}, then πv = |z| ≥ Iw(r) > r2 > r/ε and

therefore

e(v) = 1 +
r

πv

< 1 + ε .

Thus, if e(x) ≥ 1 + ε one has

επx ≤ r ≤ k0 .

This implies that

|v| = πv + r ≤ r

ε
+ r ≤ k0

(
1 +

1

ε

)
.

This proves that the factors of w with exponent larger than 1+ε have bounded

length. �



Chapter 5

Thue-Morse word

As we have seen in the introduction, in [40] and [41] the norvegian mathe-

matician Axel Thue noted that any binary word of lenght ≥ 4 must contain

a square, i.e. two consecutive identical factors. He then asked whether it was

possible to find an infinite binary word that neither should contain any cube

i.e. three consecutive identical factors nor overlaps i.e. factors of the form

awawa, where a ∈ {0, 1} and w ∈ A∗. The answer to all two questions was

positive. This work of Thue was the starting point of an important branch

of combinatorics, now called combinatorics on words. It is worth noting that

Thue explained he had no particular application in mind, but he thought

the problem was interesting enough in itself to deserve attention. Thue’s pa-

pers were rediscovered by several different authors, including Marton Morse.

Although there are uncontably many overlap-free sequences on two symbols

[6], the Thue-Morse sequence is, roughly speaking, the ‘canonical example’.

In this chapter, we study the repetitivity index of this word. We prove that

the function It(n) satisfies a relation of this type

It(n) = 2 It(dn/2e),

34
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for any n > 4 and

It(n) = n,

for any 1 ≤ n ≤ 4. The chapter is organized as follows: in Section 5.1, we

give a formal definition of the Thue-Morse word and we recall some useful

properties. In Section 5.2, we prove the main result of this chapter.

5.1 Definitions and main properties

We first give a formal definition of the Thue-Morse word. We denote by

t = (tn)n≥0 the Thue-Morse word over {0, 1}, defined recursively by t0 = 0

and t2n = tn, t2n+1 = tn for all n ≥ 0, where, for x ∈ {0, 1}, we define

x = 1−x. Denote by sk(n) the sum of the digits in the base-k representation of

the integer n. Since we clearly have s2(2n) = s2(n) and s2(2n+1) = s2(n)+1

for every integer n ≥ 0, we easily obtain the following equivalent definition

Proposition 5.1.1 The Thue-Morse word t is equal to the word (s2(n) mod

2)n≥0.

Yet another definition, which is easily seen to be equivalent to the previous

two, is the following

Proposition 5.1.2 [1]

Let X be an indeterminate. Then we have

∏
i≥0

(1−X2i

) = (1−X)(1−X2)(1−X4) . . . =
∑
j≥0

(−1)tjXj.

Proposition 5.1.3 Define the morphism µ on the alphabet {0, 1} by µ(0) =

01, µ(1) = 10. Then the Thue-Morse word t is the unique fixed point of µ

that begins with 0.
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Our first theorem is the one we mentioned in the introduction. It is due to

Thue [40].

Theorem 5.1.1 The Thue-Morse word t is overlap-free and does not con-

tain a cube.

A natural arising question is whether possible to build another binary word

that is both overlap-free and generated by a morphism. The next theorem

due to Berstel and Séébold [5] answers this question negatively.

Theorem 5.1.2 If an overlap-free binary word is a fixed point of a non

trivial morphism, then it is equal either to the Thue-Morse word t or to its

complement t = (tn)n≥0 = 1001011001101001 · · · .

The Thue-Morse sequence has the nice property that it exhibits regularity

without being ultimately periodic.

Proposition 5.1.4 (Morse) There exists an infinite sequence over {0, 1}

which is uniformly recurrent but not ultimately periodic.

The sequence that Morse gives is exactly t. The Thue-Morse word is the

prototype of a class of sequences called 2-automatic sequences. Roughly

speaking, a sequence is k-automatic if its n-th term is generated by a finite-

state machine which takes as input the base-k expansion of n, cfr. Section

2.2. For more about this class of sequences, see for example [14]. Now, we

define the notion of fractional power. We say that a (finite or infinite) word

w contains an α-power (real α > 1) if w has a factor of the form xbαcx′, where

x′ is a prefix of x and |xbαcx′| ≥ α|x|. For example, the word:

2301
︷ ︸︸ ︷
01234567

︷ ︸︸ ︷
01234567

︷︸︸︷
0123 310,

has a 5
2
-power. A word is α-power-free if it contains no α-power. Given

an infinite word w it is an interesting and challenging task to determine its
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critical exponent ce(w), such that w contains α-powers for all α < ce(w) but

has no α-powers, for α > ce(w).

Theorem 5.1.3 The critical exponent of the Thue-Morse word t is 2.

Proof. The word t begins 011 · · · and hence contains a square. If t would

contain a (2 + ε)-powers for some ε > 0, then it would contains an overlap.

But t is overlap-free by Theorem 5.1.1.

5.2 Computing the repetitivity index

Let w an infinite word on finite alphabet A. We recall that the repetitivity

index of w is the function Iw(n) defined as follows

Iw(n) := min{k > 0 | ∃x, y, z ∈ A∗, |x| = n, |y| = |z| = k, xy = zx ∈ Fact(w)}.

In this section, we prove that this function satisfies the following relations:

for k > 0, 2k < n ≤ 2k + 2k−1, one has:

It(n) = 2k + 2k−1;

for k > 0, 2k + 2k−1 < n ≤ 2k+1, one has:

It(n) = 2k+1.

Lemma 5.2.1 Let t be the Thue-Morse word. Then

It(n) ≥ n,

for all n > 0.

Proof. We recall by Preliminaries that

ce(t) = 1 + sup
n>0

n

It(n)
;
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therefore, as ce(t) = 2, we obtain that

It(n) ≥ n.

�

Lemma 5.2.2 Let w ∈ {0110, 1001}ω. For all n ≥ 4, Iw(n) is even.

Proof. Write w = w0w1 · · ·wi · · · , wi ∈ A, i ≥ 0. As w ∈ {0110, 1001}ω, for

any odd i one has

wiwi+1wi+2wi+3 ∈ {110, 001}A ∪ A{011, 100}.

In other therms, for any odd i, the word wiwi+1wi+2wi+3 either starts or ends

with 00 or 11. On the contrary, for any even i,

wiwi+1wi+2wi+3 ∈ {01, 10}2,

i.e. wiwi+1wi+2wi+3 neither starts nor ends with 00 or 11. We conclude that

the parity of i is uniquely determined by the word wiwi+1wi+2wi+3. Now, for

any n ≥ 4 there exists i s.t.

wiwi+1 · · ·wi+n−1 = wi+Iw(n) · · ·wi+Iw(n)+n−1.

Thus, wiwi+1wi+2wi+3 = wi+Iw(n) · · ·wi+Iw(n)+3. Hence i and i + Iw(n) have

the same parity, so that Iw(n) is even.

�

Lemma 5.2.3 Let w be a fixpoint of a uniform morphism of lenght k. Then

for all n > 0,

Iw(nk) ≤ k Iw(n).
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Proof. We can find words r, s, t, such that

rs = st ∈ Fact(w), |s| = n, |r| = |t| = Iw(n).

Since w is a fixedpoint of a uniform morphism f of lenght k, setting r′ =

f(r), s′ = f(s), t′ = f(t), one has that:

r′s′ = s′t′ ∈ Fact(w), |s′| = nk, |r′| = |t′| = k Iw(n),

and the conclusion follows.

�

Proposition 5.2.1 Let t the Thue-Morse word. For any n ≥ 4,

It(n) = 2 It(dn/2e).

Proof. From Lemma 5.2.3, as It(n) is non decreasing, one has

It(n) ≤ It(2dn/2e) ≤ 2 It(dn/2e). (5.1)

Let n ≥ 4. There exists i ≥ 0 s.t.

titi+1 · · · ti+n−1 = ti+It(n)ti+It(n)+1 · · · ti+It(n)+n−1. (5.2)

By Lemma 5.2.2, It(n) = 2k, for some k > 0. We set m = dn/2e. First we

consider the case that i is even, say i = 2j. By definition of Thue-Morse

word, one has:

titi+2 · · · ti+2m−2 = tjtj+1 · · · tj+m−1,

ti+It(n)ti+It(n)+2 · · · ti+It(n)+2m−2 = tj+ktj+k+1 · · · tj+k+m−1.

From (5.2) one derives,

tjtj+1 · · · tj+m−1 = tj+ktj+k+1 · · · tj+k+m−1.
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This implies that It(m) ≤ k i.e. It(n) ≥ 2 It(m) and conclusion follows

from (5.1). Now consider the case that i is odd. As t ∈ {01, 10}ω, one has

ti−1 = ti and ti+It(n)−1 = ti+It(n). From (5.2), ti = ti+It(n) and consequently,

ti−1 = ti+It(n)−1. Thus (5.2) holds with i replaced by i−1, and we are reduced

to the previous case. �

Proposition 5.2.2 Let t be the Thue-Morse word. Then It(n) = n, for

n = 1, 2, 3, 4.

Proof. Since the words

11, 1010, 010010, 10011001,

are factors of the Thue-Morse word,

t = 0
︷︸︸︷
11 0

︷ ︸︸ ︷
10011001 011

︷ ︸︸ ︷
010010 11001

︷︸︸︷
1010 01 · · ·

one has

It(1) ≤ 1, It(2) ≤ 2, It(3) ≤ 3, It(4) ≤ 4.

On the other hand, by Lemma 5.2.1,

It(n) ≥ n,

for all n > 0. The conclusion follows.

�

Proposition 5.2.3 Let t be the Thue-Morse word. For k > 0, 2k < n ≤

2k + 2k−1, one has

It(n) = 2k + 2k−1.

For k > 0, 2k + 2k−1 < n ≤ 2k+1, one has

It(n) = 2k+1
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Proof. In the case k = 1, the statement is true, by the previous proposi-

tion. The proof can then be achieved easily by induction on k, using the

Proposition 5.2.1 �



Chapter 6

C∞-words

The Kolakoski word k, introduced in [33], is a word over the alphabet {1, 2}

defined by the property that the word of its runlenght is equal to k itself

k = 22︸︷︷︸
2

11︸︷︷︸
2

2︸︷︷︸
1

1︸︷︷︸
1

22︸︷︷︸
2

1︸︷︷︸
1

22︸︷︷︸
2

11︸︷︷︸
2

. . .

Here a run is a maximal subword of consecutive identical letters. This word

is an example of an infinite C∞-word, as defined in [17]. For a survey on

this word we refer to F.M. Dekking [18], [19]. How is this word generated?

Culik et al. in [13] proposed the double substitution rules σ1(1→ 1, 2→ 11)

and σ2(1 → 2, 2 → 22) which are applied alternatingly to each letter of

the word. These substitutions can also be found in Allouche et al in [1].

In the paper [38], N. Ücoluk proved that the Kolakoski word is not ulti-

mately periodic solving a question introduced by Kolakoski himself in [33].

A. Carpi in [9] proved that Kolakoski word is cube-free and contains only

finitely many distant squares. These properties are shared by the class of

the infinite C∞-words of which Kolakoski word is a representative. This

notwithstanding, several questions on it remain unanswered: among them

we recall the asymptotical density of the letters and recurrence, i.e. whether

42
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each factor appears infinitely often. Recently, [7], A. Ladoucer and S. Brleck

proved that the existence of arbitrarly long palindromes implies the recur-

rence of the Kolakoski word. In this chapter, we start the investigation on

the repetitivity index of C∞-words. This research is motivated by the fact

that some arguments pointed out in [9] conjectured that, for any rational

e > 1, Kolakoski word only contains finitely many distinct factors with ex-

ponent larger than e. This is equivalent to say, as proved in [10], that the

repetitivity index of Kolakoski word is not linearly bounded. In particular,

we prove that this function is ultimately bounded from below by n + rn1/q,

where r is a suitable constant and q = log 1.5006/ log 1.4994. This result has

been obtained with A. Carpi in [11]. The chapter is organized as follows: in

Section 6.1, we give some preliminary definitions; in Section 6.2, we recall

some results on C∞-words useful for our purposes; in Section 6.3, we prove

the main result of this chapter.

6.1 Preliminaries

All through this chapter, A = {1, 2}. Any word w ∈ A∗ can be uniquely

written as

w = ak1
1 ak2

2 · · · akn
n , (6.1)

with n ≥ 0 , ai ∈ A , ki ≥ 1 , 1 ≤ i ≤ n , aj 6= aj+1 , 1 ≤ j ≤ n−1. The word

aki
i is said to be the i-th run of w. If one has ki ≤ 2, for 1 ≤ i ≤ n, then w is

said to be differentiable. In this case, one can consider the word k1k2 · · · kn on

the alphabet A, which is called the mother of w and it is denoted by M(w).

The derivative of w is the mother of the word obtained by w, by deleting

the first and/or the last run, if their lenghts are equal to 1. It is denoted by

D(w). For example, D(22112122) = 22112, D(12211) = 22 and D(212) = 1.
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We put D(ε) = ε, where ε is the empty word. Also D(12) = D(21) = D(2) =

D(1) = ε, in accordance with the definition. A word v such that D(v) = w is

called primitive of w. A word can have 8 primitives, at most; for example, the

primitives of 22 are 1122, 2211, 21122, 12211, 11221, 22112, 122112, 211221.

The two primitives with minimal lenght are called principal primitives. The

maximal set of differentiable words (with respect to inclusion) closed for

derivation is denoted by C∞. Its elements are called C∞-words or smooth

words. We remark that the language C∞ is recursive; to decide whether

a word belongs to C∞ it is sufficient to compute the sequence of words

D(w), D2(w), D3(w), . . . , halting when a non differentiable word, or the

empty word, is found: one has w 6∈ C∞, in the first case, w ∈ C∞, in the

second case. For instance, the word w = 11212212 = 122111221121 is differ-

entiable; one has M(w) = 211211 and D(w) = 21121. The word D(w) is still

differentiable, as well as its derivative D2(w) = 21. Since D3(w) = D(21) = ε,

we conclude that w ∈ C∞. The word v = 2212122 is differentiable, too, but

D(v) = 21112, is not differentiable: therefore, v 6∈ C∞. By Equation (6.1), if

w is differentiable, then one derives

|w| = k1 + k2 + · · ·+ kn = |M(w)|1 +2 · |M(w)|2 = |M(w)|+ |M(w)|2. (6.2)

Since by the definition of derivative one has |M(w)| − 2 ≤ |D(w)| ≤ |M(w)|

and |M(w)|2 = |D(w)|2, by (6.2) we derive the useful inequalities

|D(w)|+ |D(w)|2 ≤ |w| ≤ |D(w)|+ |D(w)|2 + 2 (6.3)

An infinite C∞-word is an infinite word whose factors belong to C∞. The

Kolakoski word is the only infinite C∞-word k, beginning with the symbol

2, whose set of prefixes is closed for derivation. Thus,

k = 2211212212211211 · · · .
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6.2 Main properties of smooth words

In this section we introduce some properties of the smooth words proved by

Chvátal [12], Weakley [39] and Carpi [9].

Proposition 6.2.1 (Carpi, [9]) For all k ≥ 0, C∞ contains only finitely

many repetitions with gap k. In particular, the lengths of squares belonging

to C∞ are 2, 4, 6, 18, and 54.

Proposition 6.2.2 (Carpi, [9]) The maximal exponent of a C∞-word is 8/3.

Consequently, no cube is a C∞-word.

Remark 6.2.1 In particular, Kolakoski sequence is cube-free and contains

only squares of lenght 2, 4, 6, 18, and 54.

Let w be an infinite word on the alphabet A. For any a ∈ A if the limit

lim
n→∞

1

n
|w[1, n]|a

exists, where w[1, n] = w1w2 · · ·wn , it is called the density (or frequency) of

a in w. It has been conjectured by Keane in 1991 [31] that the asymptotic

frequency of each symbol in the Kolakoski word is 1/2. Chvátal has found a

limitation close to this value.

Proposition 6.2.3 (Chvátal, [12]) There exists a positive constant c such

that, for any C∞-word u one has

0.4994|u| − c < |u|1, |u|2 < 0.5006|u|+ c

Proposition 6.2.4 (Weakley, [39]) Any factor of a C∞-word is a C∞-word.

Conversely, for any C∞-word w there exist words r, s of arbitrarily large

length such that rws ∈ C∞.
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Let γ(n) denote the number of C∞-words of lenght n. We denote respectively

by γ′ and γ′′ the first and the second difference of γ, i.e.,

γ′(n) = γ(n + 1)− γ(n) , γ′′(n) = γ′(n + 1)− γ′(n) , n ≥ 0 .

We say that a C∞-word w is left special if both 1w and 2w are C∞-words.

For each nonnegative integer n, let LSn denote the set of left special C∞-

words of lenght n. In view of Proposition 6.2.4 one has that γ(n + 1) =

γ(n) + Card(LSn), that is, Card(LSn) = γ′(n).

Proposition 6.2.5 (Weakley, [39]) Let w = a1a2 · · · an be a C∞-word, ai ∈

A, 1 ≤ i ≤ n, n ≥ 2. The following conditions are equivalent

1. w is a left special C∞-word;

2. a1 6= a2 and D(w) is a left special C∞-word.

For a nonempty word w, let T (w) denote the word obtained by removing the

rightmost letter of w.

Proposition 6.2.6 (Weakley, [39]) Let n > 0 and w ∈ A∗. If w ∈ LSn,

then T (w) ∈ LSn−1 and there is a s ∈ LSn+1 such that T (s) = w.

We say that a C∞-word w is fully extendable if 1w1, 1w2, 2w1, 2w2 ∈ C∞.

Let FEn denote the set of fully extendable words of lenght n. In view of

Proposition 6.2.4, one has |LSn+1| = |FEn|+ |LSn|. Since |LSn| = γ′(n), one

obtains γ′′(n) = |FEn|.

Proposition 6.2.7 (Weakley, [39]) Let w = a1a2 · · · an be a C∞-word, ai ∈

A, 1 ≤ i ≤ n, n ≥ 2. The following conditions are equivalent

1. w ∈ FE;
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2. D(w) ∈ FE word, a1 6= a2, and an−1 6= an;

3. D(w) ∈ FE and w = |D(w)|+ |D(w)|2 + 2.

The height of a C∞-word w is the least integer k such that Dk(w) = ε. We

write ht(w) for the height of w. For example, the word 221121 has height 3;

in fact, D(221121) = 221, D(221) = 2, D(2) = ε. For each k ≥ 0, let A(k)

denote the minimum and B(k) the maximum lenght of fully extendable words

of height k. W. Weakly showed that B(k − 1) < A(k) for k = 0, 1, 2, . . . , 17

and for each n satisfying B(k − 1) + 1 ≤ n ≤ A(k) + 1, he proved that

1. γ(n) = (n + 3)2k − 2 · 3k

2. There are positive constant c1, c2 such that c1n
p ≤ γ(n) ≤ c2n

p, where

p = log 3/ log 1.5 ≈ 2.71

On the other hand, F. M. Dekking in [18], proved that cn2.15 ≤ γ(n) ≤ n7.2,

where c is a suitable positive constant. Recently, Y. B. Huang in [21]

proved that c1n
p1 ≤ γ(n) ≤ c2n

p2 for any positive integer n, where p1 =

log 4.448/ log 1.50084 > 3.6757, p2 = log 4.5063/ log 1.49916 < 3.749. There-

fore, there are only finitely many positive integer k such that B(k−1) < A(k).

In the same paper, the author conjectures that there exist a suitable positive

constants c1 and c2 such that c1n
p ≤ γ(n) ≤ c2n

p for any positive integer n,

where p = log 4.5/ log 1.5 ≈ 3.7095.

The C∞-words occurring in Kolakoski word k are called admissible. In

[32], C. Kimberling asked to prove or disprove the following properties:

Mirror invariance: a word is admissible if and only if its mirror image is

admissible.

Recurrence: every admissible word occurs infinitely often in k.

In [18], F. M. Dekking proved that
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Proposition 6.2.8 Mirror invariance implies recurrence.

Proposition 6.2.9 Mirror invariance holds if and only if each C∞-word is

admissible.

At the I.C.M. of Berlin in 1998, J. Cassaigne proved that the above mentioned

properties are strictly related to the subword complexity of the Kolakoski

word. More specifically, one has

Proposition 6.2.10 Let k be the Kolakoski word.

1) Keane problem implies that λk(n) = O(nα+ε),

2) Mirror invariance implies λk(n) ≥ Cnα,

with α = log(3)/ log(3/2), C a suitable constant and for all ε > 0.

In [7], A. Ladouceur and S. Brlek give a characterization of the palindromes

related to the Kolakoski word k. They proved that the set of all smooth

palindrome words P is obtained in this way

P = {q̃ ·1 · q, q̃ · 1 · q | q ∈ Pref k}∪{q̃′ ·11 · q′, q̃′ · 11 · q′ | q′ ∈ Pref(∆−1
2 (k)},

where 1 = 2 and 2 = 1 and ∆−1
2 , ∆−1

1 : A∗ → A∗are so defined

∆−1
2 (u) = 2u[1]1u[2]2u[3] . . .

∆−1
1 (u) = 1u[1]2u[2]1u[3] . . .

For example, if u = 221121 then ∆−1
2 (u) = 221121221.

This characterization of all C∞-palindromes, based on the left palin-

dromic closure of all prefixes of k obtained by using a bijection between

the class of right infinite words over A and a class of words over the same

alphabet, reveals the first link between the existence of some palindromes

and the recurrence of k. In fact, they proved that

Proposition 6.2.11 If |P ′′ ∩ Fact(k)| =∞, then k is recurrent, with P ′′ =

{p ∈ P | p = q̃ · 1 · q and q ∈ Pref(k)}.
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6.3 Repetitivity index of smooth words

In [9], A. Carpi introduced the following relation on A∗:

R = {(u, v) ∈ A∗ × A∗ | ∃z ∈ A∗, u = M(z), v ≈ z, and |u| is even}

and proved that

Lemma 6.3.1 Let u, v ∈ A∗ be words such that |u| ≥ 2 and uvu is differen-

tiable. Then there are words u′, v′ ∈ A∗ such that

D(u) = u′, D(uvu) = u′v′u′, (u′v′, uv) ∈ R, |u′| < |u|, |v′|+ |v′|2 ≤ |v|+ 2.

�

In the sequel, by R-closure of a subset C of A∗, we mean the minimal subset

C ′ of A∗ such that C ⊆ C ′ and R∩ (C ′ ×A∗) ⊆ C ′ × C ′. In the same paper

the author denotes by h(n) the maximal absolute values of |x|2−|x|1, with x

a factor of Kolakoski word of lenght n. Supported by machine computations,

Keane in [31] conjectured that the density of the symbol 2 in Kolakoski word

is asymptotically equal to 1/2; a strengthening of this conjecture, proved

by Chvátal [12], implies the sublinearity of h(n). A direct analysis seems

to suggest that h(n) grows like
√

n. Moreover, Chvátal checked that ||x|2 −

|x|1| ≤ 5147, for any x occurring the prefix of lenght 109 of the Kolakoski

∆̃−1
2 (k) ← · · · 112122121

eq′︷ ︸︸ ︷
12112212 11

q′︷ ︸︸ ︷
21221121 121221211 · · · → ∆−1

2 (k)

k̃ ← · · · 12212211211212211 2 11221211211221221 · · · → k = ∆−1
1 (k)

k̃ ← · · · 211211221 22121122︸ ︷︷ ︸eq
1 22112122︸ ︷︷ ︸

q

122112112 · · · → k

Table 6.1: Construction of palindromes in C∞-words
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word. Carpi conjectured that h(n) = O(n1−δ), for some δ > 0. On the other

hand, by machine computation Carpi checked that the R-closure of any C∞-

word of lenght smaller than 16 is finite. One could think that the same

property holds for all C∞-words. The next proposition proved by Carpi in

[9], shows an interesting implication of the conjectures above.

Proposition 6.3.1 If h(n) = O(n1−δ) and the R−closure of any C∞ word

is finite, then, for all e > 1, the lenght of the factors of the Kolakoski word

with exponent larger than e is bounded.

Therefore, if it would prove that the repetitivity index Iw(n), with w a C∞-

word, is upper bounded by a linear function then, by Proposition 3.1.2 and

Proposition 6.3.1 at least one of the two problems above mentioned,R-closure

of any differentiable word and the conjecture on the density of the letter 2,

is false. In this section we will establish a lower bound for this function.

As proved in [9], for all n ≥ 0, there are only finitely many C∞-words w of

the form w = uvu with u, v ∈ A∗ and |v| ≤ n. Thus, we can introduce the

function f : N→ N defined by

f(n) = max{k ≥ 0 | ∃u, v ∈ A∗, |u| = k, |v| ≤ n, uvu ∈ C∞} . (6.4)

The following holds.

Lemma 6.3.2 One has f(n) = O(nq), where

q =
log 1.5006

log 1.4994
.

Proof. For any non-negative integer n, we can find two words u, v ∈ A∗ such

that

|u| = f(n), |v| ≤ n, uvu ∈ C∞.
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By Lemma 6.3.1, one has

D(u) = u′, D(uvu) = u′v′u′ ∈ C∞, |v′|+ |v′|2 ≤ |v|+ 2,

for suitable u′, v′ ∈ A∗, and also from (6.3),

|u′|+ |u′|2 ≥ |u| − 2.

By Proposition 6.3.1 one derives

n ≥ |v| ≥ |v′|+ |v′|2 − 2 > 1.4994|v′| − c− 2

and

f(n) = |u| < |u′|+ |u′|2 + 2 < 1.5006|u′|+ c + 2.

As u′v′u′ ∈ C∞, one has |u′| ≤ f(|v′|), so that from the previous equations,

taking in account the fact that f is non decreasing, one obtains

f(n) < 1.5006 f

(⌊
n + c + 2

1.4994

⌋)
+ c + 2.

From this inequality, the statement follows easily using the Master Theorem

(see, e.g., [15]). �

Theorem 6.3.1 Let w be an infinite C∞-word. Then there is a constant

r > 0 such that eventually,

Iw(n) ≥ n + rn1/q,

where q has been defined in Lemma 6.3.2.

Proof. Let n > 54 and set Iw(n) = k. Then there exist x, y, z ∈ A∗ such that

xy = zx, |x| = n, |y| = |z| = k.

Let us verify that k ≥ n. Indeed, suppose k < n. In such a case, one has

x = zv = vy for some v ∈ A∗, so that xy = vyy. By Proposition 6.2.1 one
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derives |y| ≤ 27. If moreover, |v| ≥ |y|, from x = zv = vy one derives v = uy

for some u ∈ A∗, so that xy = vyy = uyyy; this yields a contradiction

since by Proposition 6.2.1, C∞-words are cube free. Thus, |v| < |y| and,

consequently, n = |x| = |vy| < 2|y| ≤ 54. Thus, we may assume k ≥ n.

Then one has z = xv, y = vx for some v ∈ A∗ and xvx is a factor of w.

Hence, |x| ≤ f(|v|), where f is the function defined by Equation 6.4. Hence,

one has

|xv| ≤ f(|v|) + |v| ≤ c|v|q + |v|,

for a suitable c > 0 and consequently, n = |x| ≤ c|v|q. One derives that

|v| ≥ c−1/qx1/q and therefore

f(n) = k = |xv| ≥ n + c−1/qn1/q,

which proves the statement by taking r = c−1/q. �

6.4 Further remarks

In the paper [33], W. Kolakoski introduced the homonymous infinite word

and proposed two questions: what is the n-th term of this word? Is this

word periodic? If the second question was solved by Necdet Ücoluk in [38]

the following year, the first question was solved by B. Steinsky only in 2006,

[37]. The recursive formula for n-term of the Kolakoski word is:

Kn = Kn−1 + (3− 2Kn−1)
(
1− 1

2

Kn−1 −Kn−2

3− 2Kn−2

(
1 + (−1)

K
1+

Pn−1
j=2

Kj−Kj−1
3−2Kj−1

))
.



Chapter 7

Synchronized sequences

In [23], the authors introduce the notion of a k-synchronized sequence, where

k is an integer larger than 1. Roughly speaking, a sequence of natural num-

bers is said to be k-synchronized if its graph is represented, in base k, by a

right synchronized rational relation. This is an intermediate notion between

k-automatic, cfr. Section 2.2 and [14], and k-regular sequences [2]. In this

chapter, we prove that the repetitivity index of a k-synchronized sequence

is a k-synchronized sequence itself. This result has been obtained with A.

Carpi in [11].

7.1 Preliminaries

Let Ai,, 1 ≤ i ≤ r, be r alphabets, r ≥ 1. By relation on the alphabets Ai,

1 ≤ i ≤ r, we mean any subset of the direct product

M = A∗
1 × A∗

2 × · · · × A∗
r,

i.e., any element of the monoid ℘(M) of the subsets of M . A relation is

rational if it belongs to the smallest submonoid of ℘(M) containing the finite

53
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parts and closed for the operations of finite union and submonoid generation.

A relation ρ ⊂M is lenght-preserving if for all element (w1, . . . , wr) ∈ ρ one

has |w1| = |w2| = · · · = |wr|.

Let $ 6∈
⋃r

i=1 Ai be a new symbol. A relation ρ ⊂ M is said to be right

synchronized rational if the relation

{($t−|w1|w1, . . . , $
t−|wr|wr) | (w1, . . . , wr) ∈ ρ, t = max

1≤i≤r
|wi|} ,

is a lenght-preserving rational relation.

Let k ≥ 2 be an integer. For any n ∈ N, we shall denote by [n]k the

standard expansion of n in base k. Thus, [n]k is a word on the digit alphabet

Dk = {0, 1, . . . k− 1}. We shall say that a subset σ of Nr is a k-synchronized

relation if the relation

{([n1]k, . . . , [nr]k) | (n1, . . . , nr) ∈ σ}

is a right syncronized rational relation in D∗
k×· · ·×D∗

k. A sequence of natural

numbers u = (un)∞n=0 will be called a k-synchronized sequence if its graph

Gu = {(n, un) | n ∈ N} is a k-synchronized relation.

By projection of a relation ρ ⊂ Nr we mean any of the r relations,

{(x1, . . . , xi−1, xi, . . . , xr) | ∃xi ∈ N such that (x1, . . . , xr) ∈ ρ} , 1 ≤ i ≤ r .

Example 7.1.1 The ‘sum’ and the ‘order’ relation

{(m, n,m + n) | m, n ∈ N} , {(m,n) | m, n ∈ N, m < n}

are k-syncronized relation, for all k ≥ 2. For all a, b ≥ 0, the sequence an+ b

is k-syncronized, for all k ≥ 2 [23].

From the analogous properties of right syncronized rational relations,

one derives the following closure properties of the family of k-synchronized

relation (see [23]).
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Proposition 7.1.1 For any k ≥ 1, the class of k-synchronized relations is

closed for Boolean operations, Cartesian product, projection, and permutation

of coordinates.

7.2 Repetitivity index of k-synchronized se-

quences

In this section, we study the repetitivity index of k-synchronized sequences.

In order to study this function the following proposition proved in [23] is

useful.

Proposition 7.2.1 Let w = (wn)∞n=0 be a k-synchronized sequence. Then

the relation

γw = {(i, j, h) ∈ N | h > 0, w[i, i + h− 1] = w[j, j + h− 1]},

is k-synchronized.

Now we can prove the main result of this section.

Proposition 7.2.2 Let w = (wn)∞n=0 be a k-synchronized sequence. Then

its repetitivity index Iw is a k-synchronized sequence.

Proof. By definition, the repetitivity index Iw(n) is the least positive integer

h such that w[i, i + n− 1] = w[i + h, i + h + n− 1] for some i ≥ 0. In other

terms,

Iw(n) = min{h > 0 | ∃i ∈ N, (i, i + h, n) ∈ γw} , (7.1)

where γw is the relation introduced in Proposition 7.2.1. Consider the rela-

tions

ρ1 = {(i, h, i + h, n) | i, h, n ∈ N} , ρ2 = {(i, h, j, n) | h ∈ N, (i, j, n) ∈ γw} .
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In view of Propositions 7.1.1 and 7.2.1 they are both k-synchronized, since

they can be obtained respectively from the ‘sum’ and from γw by Cartesian

product with N and permutation of coordinates. Still by Proposition 7.1.1,

the relation

ρ3 = ρ1 ∩ ρ2 = {(i, h, i + h, n) | i, h, n ∈ N, (i, i + h, n) ∈ γw}.

is k-synchronized. Projecting ρ3 on the second and fourth coordinates we

obtain another k-synchronized relation,

ρ4 = {(h, n) ∈ N× N | ∃i ∈ N, (i, i + h, n) ∈ γw}.

Also the relation

ρ5 = ρ4 \ ({0}×N) = {(h, n) ∈ N×N | h > 0 and ∃i ∈ N, (i, i + h, n) ∈ γw}

is k-synchronized and from (7.1),

Iw(n) = min{h ∈ N | (h, n) ∈ ρ5} . (7.2)

Now, consider the relation

ρ6 = {(h, h′, n) ∈ N× N× N | (h′, n) ∈ ρ5, h > h′}.

Using Propositions 7.1.1 one easily verifies that ρ6 is k-synchronized, since

it can be obtained by intersecting the k-synchronized relations N × ρ5 and

> × N . Projecting ρ6 on the first and third coordinates, we obtain the

k-synchronized relation

ρ7 = {(h, n) ∈ N× N | ∃h′ < h, (h′, n) ∈ ρ5}.

One easily verifies that a pair (h, n) ∈ N× N belongs to the relation ρ5 \ ρ7

if and only if h is the least positive integer such that (h, n) ∈ ρ5. Thus, in

view of (7.2)

ρ5 \ ρ7 = {(Iw(n), n) | n ∈ N} .
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Since the relation ρ5 \ ρ7 is k-synchronized, from Propositions 7.1.1 we con-

clude that Iw(n) is a k-synchronized sequence. �

As proved in [23], any k-synchronized sequence is linearly bounded. One

derives immediately the following corollary of Proposition 7.2.2

Corollary 7.2.1 The repetitivity index of a k-synchronized sequence has a

linear upper bound.

Remark 7.2.1 As the Thue-Morse word is generated by a 2-DFAO, it is

2-automatic, cfr. Section 2.2. As any k-automatic sequence is also k-

synchronized, cfr. [23], then the Thue-Morse word is 2-synchronized. Thus,

by Proposition 7.2.2 the repetitivity index of the Thue-Morse word has to be

2-synchronized. This is confirmed by Proposition 5.2.3.



Chapter 8

Final remarks

Some questions considered in this thesis remain unsolved. In Chapter 4, we

have construct effectively an infinite binary word w having this property: for

any ν > 0, there is an integer n(ν), effectively computed, such that, for all

n > n(ν), Iw(n) > nν . The next objective is to construct an infinite binary

word w such that, given an arbitrary small ε > 0, Iw(n) ≥ (2 − ε)n, for all

n > n(ε) and therefore to solve the Beck’s theorem in a costructive form. In

Chapter 5, we have completely solved the study of the repetitivity index of

the Thue-Morse word t, giving a formula to compute It(n). The more general

problem of computing the repetitivity index of synchronized sequences has

been solved in Chapter 7.

In Chapter 6, we have started the investigation on the repetitivity index

of C∞-words and in particular for the Kolakoski word. We have proved that

this function is ultimately bounded from below by n + rn1/q, where r is a

suitable constant and q is a constant strictly related to the frequency of the

symbols. As we have seen, this research is motivated by the fact that A.

Carpi has conjectured in [9] that, for any rational e > 1, the lenght of the

factors of the Kolakoski word with exponent larger than e is bounded; this
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result is equivalent to say, as proved in [10], that the repetitivity index of

Kolakoski word is not linearly bounded. Therefore, the next objective is to

search for an upper bound of this function.
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